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A bstract

This thesis addresses the problem of navigation by a mobile robot operating in 
large, real world environments which have not been modified for the purpose 
of robot navigation. Maps are essential for mobile robot control in complex 
environments, being needed for self-localisation, path planning and human-robot 
interaction. In attem pting to navigate in unknown environments, a self-governing 
robot is faced with a fundamental dilemma: to explore and build maps of un­
charted territory, the robot needs to know its location, but in order to know its 
location, the robot needs a map.

A unified solution to the problems of simultaneous map building and self­
localisation is presented, which is embedded in a hybrid deliberative-reactive 
control architecture. A particular contribution of the work is tha t all of the 
environment and location models, feature models and sensor-motor competences 
required for navigation are acquired independently by the robot. The learning 
techniques include self-organisation, where no teaching signal is required, and 
self-supervised learning, where all of the training examples are generated by the 
robot. Consequently, the new system is able to build its own maps and navigate 
in many different, indoor environments tha t are unfamiliar, without requiring 
intervention by a human operator.

During an exploration phase, the robot builds a graph-like representation of 
its environment, in which each location is identified by a description of the robot’s 
sensory information known as a landmark. To determine an appropriate landmark 
recognition mechanism, an experimental procedure was developed which perm it­
ted different algorithms to be compared under identical experimental conditions. 
W ith this method, existing approaches to landmark recognition were evaluated, 
and a new self-localisation system was developed. To overcome problems such as 
perceptual aliasing — the fact tha t landmarks may not be unique to individual 
places — a self-localisation algorithm was developed which accumulates sensory
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evidence over time so tha t the robot can recover its position even after becoming 
lost. To maintain geometric consistency in the robot’s map, an optimisation algo­
rithm  was developed, which is proved to converge to a globally optimal solution. 
To explore unknown environments, an artificial neural network was trained to 
recognise areas of uncharted territory. Quantitative performance measures were 
applied throughout the work, guiding the development of the new algorithms and 
allowing the effects of individual system components to be investigated.

Finally, the research was validated by building a complete, self-navigating 
mobile robot capable of operation in complex, untreated environments of several 
hundred metres squared. In this system, human intervention is only required to 
specify a goal location, and all processing is carried out in real-time on board the 
robot, thereby increasing the autonomy of the robot.
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Chapter 1

Concurrent M ap B uilding and  
Self-Localisation for M obile  
R obot N avigation

A b o u t th is  c h a p te r . This chapter begins by introducing the problem ad­
dressed by this thesis. The scientific context is then discussed, including the 
relevance of the thesis to mobile robotics and other disciplines. This is followed 
by details of the experimental method used to tackle the problem and a summary 
of the contributions made to mobile robotics.

1.1 M otivation

In recent years, there has been a great deal of interest in the use of mobile robots 
for automation. These machines have the potential to carry out many tasks which 
are considered undesirable or difficult for humans, for example, due to hazardous 
working conditions (nuclear reactors) or a shortage of skilled labour (health­
care). Other reasons for using robots include freeing human labour from menial 
and repetitive work (transportation and domestic service), increasing safety and 
reliability by augmenting human labour with robot assistance (inspection and 
surveillance), increasing productivity (farming and mining), and applications in 
education and leisure (tour guides and toys).

Navigation is an essential competence for mobile robots, because most of the 
potential applications require the ability to move purposefully between locations.
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W ithout navigational skills, a mobile robot would have to resort to random move­
ment, which would severely limit its possible uses.

There have been some well-publicised successes in the field of mobile robotics 
(for example, in extra-terrestrial exploration). However, almost every case so far 
has consisted of a one-off exercise in systems engineering for a specific application, 
and to a greater or lesser extent, these systems cannot operate without human 
intervention. For example, some robots are dependent on remote teleoperation 
(Mars rovers), while others require modifications to their environment, e.g., using 
specially placed beacons or induction loops to guide the robot (automatic guided 
vehicles or AG Vs). The few systems which can operate without on-line assistance 
typically depend upon pre-installed world knowledge, e.g., using a predefined 
CAD model of the environment to navigate. Once the robot is moved to a new 
and unfamiliar set of surroundings, these systems are incapable of purposeful 
activity, requiring reprogramming for each new application.

This thesis takes a step towards general purpose robots which are capable 
of independent operation in many different applications and environments. The 
basic idea is to avoid pre-installation of world knowledge by the system designer by 
enabling the robot to adapt its own internal representations to whatever features 
are naturally present in a given environment. In this approach, the world models 
required for navigation are acquired independently by the robot. The ultimate 
goal was to produce a mobile robot which can navigate from scratch in unmodified 
environments tha t are unfamiliar, without requiring intervention by a human 
operator.

Finally, a further motivation for studying mobile robotics lies in understanding 
the underlying principles of successful navigation systems. In building complete 
navigating robots, the results of mobile robotics research can inform and validate 
hypotheses of spatial cognition in biological systems as well as robots.

1.2 The Problem

Gallistel (1990, p. 35) defines navigation as follows:

“Navigation is the process of determining and maintaining a course or 
trajectory from one place to another. Processes for estimating one’s 
position with respect to the known world are fundamental to it. The
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known world is composed of the surfaces whose locations relative to 
one another are represented on a map.”

It follows from this definition that if a robot is to be self-navigating, it needs 
both some representation of the environment, in general a map, and the ability 
to locate itself within tha t representation in order to navigate between arbitrary 
locations. Successful mobile robots have been developed where some form of map 
is pre-installed by the human designer. However, in order to operate in unknown 
environments, a navigating mobile robot is faced with a fundamental dilemma: 
to explore and build maps of uncharted territory, the robot needs to know its 
location, but in order to know its location, the robot needs a map.

Self-Localisation

Environment
Model

(Map)

Location
Model

(Position Estimate)

Map Building

Figure 1.1: The problem of concurrent map building and self-localisation.

The circular nature of the problem is illustrated in figure 1.1. The robot has 
to maintain two representations at the same time: firstly, an environment model 
or map, and secondly, a location model or position estimate. For example, the 
environment model might consist of a set of discrete locations, and the corre­
sponding location model might be a probability distribution over these locations. 
This thesis assumes tha t both of these models are initially completely unknown 
to the robot. Therefore, the robot must be able to acquire its own map and 
simultaneously maintain a sufficiently accurate position estimate for useful map 
building to be possible.

In fact, a more complete picture is provided by the diagram in figure 1.2. 
Here, the problem is shown within the context of a navigating robot interacting
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Self-Localisation

Environment Location
Model Model

Map Building

Sense Act

ENVIRONMENT

Figure 1.2: The situated problem.

with a real world environment. Map building and self-localisation are active 
perceptual processes, through which the robot must make decisions about how 
to sense and act in the world, i.e., how to explore the environment in order to 
obtain useful sensory information. Updating the map requires both the current 
location and new sensory information, while self-localisation requires the current 
environment model and new sensory information. In order to obtain this new 
sensory information, the robot needs to be capable of finding its way through 
existing charted territory and into new areas of unexplored territory. This last 
requirement entails being able to determine and follow routes using the map.

In summary, the following competences are required by a mobile robot to 
solve the problem of concurrent map building and self-localisation:

• Exploration. Where to travel in order to obtain useful sensory information.

•  Map Learning. How to represent the environment.

•  Self-Localisation. How to establish the robot’s location in the map.
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For building maps in complex environments, “exploration” includes the compe­
tence of way finding, which refers to the ability to plan paths and monitor progress 
towards reaching a goal location.

In this thesis, novel mechanisms are combined with existing techniques for 
exploration, map learning and self-localisation. These mechanisms are then in­
tegrated to produce a solution to the problem of concurrent map building and 
self-localisation. A further product of this research is a complete mobile robot 
which can navigate independently and reliably between specified locations in com­
plex, real world environments which have not been modified for the purpose of 
robot navigation.

1.3 The C ontext

There is no generally accepted view on what exactly constitutes a robot. For the 
purposes of this thesis, Arkin’s definition of an intelligent robot (1998, p. 2) seems 
the most appropriate:

“An intelligent robot is a machine tha t is able to extract information 
from its environment and use knowledge about its world to move safely 
in a meaningful and purposeful manner.”

The ability to move purposefully rather than randomly between known locations 
is an essential requirement for most applications of mobile robots. Much research 
in mobile robotics has therefore concentrated on the topic of navigation.

Navigation has also received much attention in psychology and biology. Psy- 
chologists have studied the development of cognitive maps in humans, and there 
has been much debate among biologists over whether animals use maps at all for 
navigation (see for example, O ’Keefe & Nadel (1977) versus Bennet (1996)). This 
thesis does not enter into this particular debate — I make no claims concerning 
the biological validity of the mechanisms presented, and GallistePs definition of 
navigation is assumed from the start.

Many psychologists and biologists regard the ability to construct “short cuts” — 
that is, to infer novel routes from stored spatial information — as a defining 
characteristic of a map. In this thesis, path planning techniques are used to 
find new routes through previously explored territory, and also to infer possible
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routes through territory which has not yet been visited by the robot (described 
in section 9.6).

A useful analogy concerning the scale of the navigational tasks under consid­
eration is available in the biological literature (see e.g., Wehner (1996)), where 
the following categories are used:

1. Small-Scale. Navigating within the vicinity of a home or goal location (e.g., 
view-based navigation by rats).

2. Middle-Scale. Leaving the sensory range of the home or goal location, and 
navigating within the wider environment (e.g., foraging desert ants).

3. Large-Scale. Navigating over very large distances between different envi­
ronments (e.g., inter-continental navigation by migratory birds).

In mobile robotics, the navigational tasks which can be accomplished de­
pend greatly on the type of environment model used by the robot. Some robots 
use detailed metric maps, consisting of high resolution geometric representations 
with an explicit Cartesian reference frame, for example, CAD models (Stevens 
et al. 1995) or occupancy grids (Moravec h  Elfes 1985). Others use quali­
tative topological maps, where the environment is represented as a graph of 
interconnected places, as shown in the example of figure 1.3 (Mataric 1991; 
Kortenkamp & Weymouth 1994).

While metric maps enable very precise positioning by the robot, topological 
maps have, by nature of their compactness, the potential for representing envi­
ronments which are several orders of magnitude larger than those which can be 
tractably navigated using metric maps. In my opinion, metric maps are there­
fore better suited to small-scale navigation tasks by mobile robots. Grid-based 
maps in particular are useful for tasks such as homing where the target location 
lies within the robot’s immediate sensory range (see for example, Yamauchi & 
Beer (1996)).

This thesis, however, is concerned with the question of navigation in middle- 
scale environments. For mobile robots, middle-scale navigation means leaving 
the robot lab and entering unmodified public areas, such as corridors and offices, 
which are subject to unpredictable variations. A fundamental problem for nav­
igation in middle-scale environments is perceptual aliasing, which refers to the 
situation where several places are perceptually similar enough to be confused by
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Figure 1.3: Example of a qualitative topological map, taken from Zimmer (1996). 
The environment is represented as a connected set of places, each place being 
identified by some perceived environmental feature or “landmark” . Extra infor­
mation such as approximate distances may also be added describing how to move 
between the places.

the robot. While many robot navigation systems have been tested in small-scale, 
laboratory environments (see Borenstein et al. (1996) for a detailed review), rel­
atively few systems have been validated in middle-scale environments tha t have 
not been altered for the purpose of robot navigation (see Kortenkamp et al. (1998) 
for some examples).

Finally, to complete the analogy, large-scale navigation is used here to refer 
to robots which must leave indoor environments and navigate over much larger 
distances, e.g., farm robots. For these robots, global positioning systems (GPS), 
which use transm itted information from earth-orbitting satellites, might provide 
a suitable mechanism for self-localisation (Borenstein et al. 1996). GPS would 
be unsuitable for use in experiments described in this thesis, however, because it 
cannot be used indoors, and the dependence on external agents (satellites) would 
reduce the autonomy of the robot. In the absence of external assistance, a robot 
must rely on its own perceptions and internal representations to navigate.

This last aspect raises a much more difficult philosophical issue, namely the 
nature of “autonomy” , which can be defined as “being capable of existing in­
dependently without outside control” (Merriam-Webster 1999). In my opinion, 
the term has been widely misused within the mobile robotics community, and 
has lost much of its original meaning as a result. For example, various authors
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have claimed tha t their navigating robots are autonomous, when the environment 
model used by the robot was actually pre-installed by the system designer, or the 
robot had to be guided around the environment by a human operator in order to 
acquire its own map. Others have used the term to refer to robots which require 
modifications to their environment, for example, using specially placed beacons 
for self-localisation. At the other extreme, some researchers have argued th a t an 
agent cannot be considered to be autonomous if its behaviour is dictated in some 
way by the experimenter (see e.g., Steels (1993)).

Perhaps the most im portant issue concerning the true autonomy of mobile 
robots is the question of knowledge acquisition by the robot. A distinction is 
drawn here between pre-installation of world knowledge by the system designer 
and self-acquisition of this knowledge by the robot, particularly with respect to 
the world models required for navigation. World models include not only en­
vironment and location models, but also implicit models of robot-environment 
interaction introduced by the system designer. For example, if the roboticist 
pre-installs hand-crafted rules for obstacle avoidance or wall-following, then an 
implicit model of robot-obstacle interaction or robot-wall interaction has been in­
troduced. Similarly, if the roboticist writes a special algorithm to detect whether 
a door is open or closed, then an implicit model of robot-door interaction has 
been introduced.

Machine learning techniques such as neural networks present an ideal alter­
native to pre-installation. In this thesis, all of the environment models, location 
models, feature models and sensor-motor competences required for navigation 
are acquired independently by the robot. The learning techniques include self­
organisation, where no teaching signal is required, and self-supervised learning, 
where techniques from supervised learning are used but all of the training ex­
amples are generated by the robot itself through trial and error. In particular, 
the robot is able to construct its own maps without requiring any pre-installed 
knowledge of the environment. As a consequence, human intervention is only re­
quired in this system to specify a goal location; all environment learning prior to 
human-robot interaction is achieved by the robot itself. The term  self-navigating 
is therefore used to refer to this aspect of the system, namely the fact that the 
robot is entirely responsible for its own operation unless otherwise instructed.

A further contribution of this thesis is the development of quantitative meth­
ods for evaluating navigation performance. One of the main problems faced by
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any scientist when confronting the robotics literature is the lack of objective cri­
teria for comparing different approaches. Unfortunately, robotics research so far 
has been dominated by qualitative descriptions of robot behaviour. Quantitative 
comparison of different systems is largely impossible.

In biology, replication and comparison of results for navigation experiments 
involving rodents has been made possible through widespread use of the Morris 
watermaze (Morris et al 1982). This is a standard experimental set-up in which 
the animal has to find a submerged platform in a bowl of opaque water. One 
approach to achieving objective comparison of results in mobile robotics would 
be to devise a set of benchmarks for mobile robots, i.e., standard tests in stan­
dardized environments with task-specific performance measures, e.g., time taken 
to reach the goal, distance travelled, etc. However, the problem with benchmarks 
for mobile robotics is tha t the tasks and environments under investigation vary 
widely, and a set of tests for one application would be of little use to another. 
For example, a benchmark test for an office delivery robot would not apply to a 
sewer robot. Experience in the computing industry has also shown tha t where 
industry-wide benchmarks exist, designers tend to heavily engineer systems to 
perform well on these tests rather than in general, real world situations.

The alternative to benchmarks and application-specific measures of perfor­
mance is to use general performance measures, such as localisation quality and 
map quality, which are applicable to many different robots, tasks and environ­
ments. In the same way th a t ethologists investigate the behaviour of animals in 
their natural habitat, the aim is to study navigating robots in their target en­
vironments. For example, the quantitative measure of localisation performance 
described in chapter 5 allows different self-localisation mechanisms to be com­
pared in a variety of middle-scale, real world environments. From a scientific 
perspective, quantitative performance measures help us to generate better expla­
nations of complex behaviour by mobile robots, and increase our understanding 
of the mechanisms required for truly autonomous operation. From an engineering 
perspective, this understanding helps us to make better robots!
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1.4 The M ethod

Concurrent map building and self-localisation presents the robot with a “chicken 
and egg” problem — map building requires the ability to self-localise, but self­
localisation requires a map. Some means of “pulling yourself up by the boot­
straps” is needed to resolve this dilemma. In this thesis, the sub-problem of 
self-localisation is tackled first, using a pre-installed map provided by the system 
designer, then the sub-problem of autonomous map building is addressed once 
a successful self-localisation system has been produced. Finally, system integra­
tion and validation experiments are conducted to assess the performance of the 
complete system.

All of the results presented were obtained using a real robot operating in a 
series of unmodified, real world environments. In the intermediate stages of the 
research, the real sensor data of the robot was sometimes recorded and then played 
back in later experiments, allowing different mechanisms to be evaluated under 
the same experimental conditions. Because current simulator technology uses 
simplified numerical models which cannot capture the true complexity of robot- 
environment interaction (Lee et al 1998), simulation was only used for initial 
prototyping of algorithms. At the present time, only experiments conducted on 
a real robot can answer the questions asked in this thesis. Even if a much more 
accurate simulator technology was to become available, there is always the danger 
tha t “unless you saddle yourself with all the problems of making a concrete agent 
take care of itself in the real world, you will tend to overlook, underestimate, or 
misconstrue the deepest problems of design” (Dennett 1998, p. 166).

1.4.1 T he R ob ot, Task and Environm ent

The experiments were conducted using a Nomad 200 robot, which is shown in 
figure 1.4. This robot is equipped with coarse 360 degree range-finder sensing, 
consisting of sixteen ultrasonic sensors (range up to 6.5 m) and sixteen infrared 
sensors (range up to 60 cm). Both sets of sensors are spaced at 22.5 degree inter­
vals around the robot’s turret, which can be rotated independently relative to the 
base of the robot using an electric motor. Two other motors located in the base 
of the robot were used to control the translational and rotational movement of 
the robot. A flux-gate compass provided the robot with an approximate estimate 
of the orientation of its turret. The camera shown was not used in this thesis.
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Figure 1.4: The Nomad 200 mobile robot FortyTwo.

For fully autonomous operation, no tether or radio link to external processors 
was allowed, and all computation was carried on board the robot’s 486 proces­
sor. The only human intervention permitted during the final experiments was to 
recharge the robot’s batteries, switch the robot and its navigation system on and 
off, and to specify a goal location.

To validate the research carried out, an office delivery task was considered, 
in which the robot had to find a series of arbitrary routes through an untreated, 
middle-scale environment. The environments used for the experiments through­
out the thesis were assumed to be unmodified, initially unknown to the robot 
and semi-structured — that is, they may contain many unpredictable variations 
such as moving people, doors opening and closing, etc., but the basic structural 
elements, such as walls and corridors remain constant with respect to time. There­
fore, all environment learning was carried out in a single exploration phase. A 
possible mechanism for dealing with environments which are subject to structural 
changes is suggested as a topic for future research (section 11.2.3).

1.4.2 Self-L ocalisation

To operate without human intervention, any mobile robot must depend only 
on its own sensory perceptions for location recognition. The space of possible 
perceptions available to the robot may be divided into two categories:

1. Exteroception. The robot’s current perceptions of the outside world (ex­
ternal stimuli). A robot’s exteroceptors may include range-finding sensors, 
tactile sensors, video cameras, etc.
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2. Proprioception, The robot’s perceptions of its own body movements (inter­
nal stimuli). In particular, odometry refers to the proprioceptor mechanism 
used for dead reckoning in mobile robots.

A localisation system based solely on proprioception would be unsuitable for 
two reasons. Firstly, no a priori information may be available to the robot when 
trying to self-localise. For example, if the robot becomes lost, then it will not be 
possible to initialise any form of dead reckoning. Secondly, any proprioceptive 
sensor system will be subject to cumulative drift errors, e.g., due to wheel slip­
page, which cannot be compensated through proprioception alone. The further 
the robot travels, the more inaccurate the position estimates produced by dead 
reckoning will become.

Exteroception offers potential solutions to these problems, allowing places 
to be identified and drift errors to be corrected on the basis of perceived en­
vironmental features or “landmarks” . In the navigation system developed, the 
robot FortyTwo uses a graph-based representation of its environment, where the 
nodes correspond to places and the links to possible transitions between places. 
Each place is identified by a description of the robot’s sensory information at 
tha t place — it is this description or place “signature” which is referred to as a 
landmark in the rest of the thesis.

M easurem ent o f L ocalisation Perform ance

One im portant aim of this thesis was to establish an objective set of criteria 
for assessing localisation performance. Experimental procedures and quantita­
tive performance measures were developed, which perm itted different algorithms 
for landmark identification and self-localisation to be compared under identical 
experimental conditions. Two important problems were addressed:

• Measurement of localisation quality.

• Tracking the robot’s true location.

To assess localisation quality, an entropy-based statistic was used, which mea­
sures the extent to which the particular mechanism under investigation predicts 
the robot’s true location (see chapter 5 for full details). In order to calculate this 
statistic, some means of recording the true location of the robot was required. 
In initial experiments, this was measured by hand, but this process was time
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consuming and prone to human error. A novel mechanism for measuring the 
robot’s actual location was therefore developed which is based on retrospective^ 
corrected odometer data. The approach has the advantage th a t no interpretation 
of the “correct” response by the robot is required, and no optimum standard has 
to be established by the observer.

C om parative S tudy o f Landmark R ecogn ition  System s

The next stage of the research, described in chapter 6, involved examining existing 
approaches to landmark recognition in the robotics literature, in order to find 
an appropriate mechanism for the Nomad 200 robot. Two different types of 
landmarks were found:

• Designer-determined landmarks.

•  Robot-determined landmarks.

In the first approach, the categories assigned to environmental features are 
determined a priori by the system designer; for example, features such as ceiling 
lights, doors and junctions might be used. Problems with this approach are 
tha t the designer might not select the most appropriate landmarks for robot 
navigation, due to the different sensors of robots and humans, and tha t it can only 
be used in environments which contain the appropriate objects (the general make­
up of the environment must be known in advance by the designer). Designer- 
determined landmarks were not used in this thesis because one of the main aims 
was to avoid pre-installation of world knowledge by the system designer.

Instead, systems which determine their own landmarks were considered. These 
included statistical clustering techniques, self-organising neural networks and oc­
cupancy grids. In these approaches, the representation schema is determined 
in advance by the system designer, but the robot is able to represent its own, 
arbitrary sensor patterns by filling in the details. The various approaches were 
evaluated in a number of different environments, using quantitative performance 
measures which took into account both localisation quality and computational 
efficiency.

N ovel Self-Localisation System

The results of the comparative study were then used to guide the development 
of a novel self-localisation system. A key problem for mobile robots operating in
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middle-scale environments is tha t of perceptual aliasing, where several different 
places in the environment may share the same perceptual signature. Therefore, 
currently observable landmarks alone may not be sufficient to uniquely identify 
the robot’s true location. Landmark misclassification can also be caused by sensor 
noise and the movements of other inhabitants of the environment. To overcome 
these problems, a self-localisation algorithm was developed which accumulates 
sensory evidence over time to identify places. As a result, the robot should be 
able to relocalise even after becoming completely lost in environments containing 
no guarantee of unique perceptual cues.

The topic of mobile robot self-localisation is usually divided into the sub­
problems of global localisation, which means being able to relocalise under global 
uncertainty (an example is the “lost robot problem” , where the robot has no prior 
information about its location), and position tracking, which means being able 
to accurately determine the robot’s position once its general location is known1. 
While individual solutions exist for each of the problems, few robots can deal 
efficiently with both at the same time. In chapter 7, a unified and computationally 
efficient solution to the two problems is presented which is suitable for robot 
navigation in complex, middle-scale environments.

1.4.3 M ap B u ild ing

The next part of the thesis addresses the question of how to explore and build 
maps of an unknown environment. In previous research, many systems have relied 
on maps which are pre-installed by the system designer (Stevens et al 1995), or 
use passive mechanisms to build maps while the robot is steered manually around 
the environment by a human operator (Kortenkamp & Weymouth 1994; Engelson 
1994). In other systems, the sensor-motor data required for map learning is first 
collected by the robot under manual control, then an off-line learning algorithm 
is used to find the best map to fit the data (Shatkay & Kaelbling 1997; Thrun et 
al. 1998b).

While both of these methods have their merits, manual intervention is by 
nature costly and prone to human error. Similarly, reactive behaviours such as 
wall-following, though often very robust, cannot be guaranteed to build complete

1Note that the terms “global localisation” and “position tracking” are used here to refer 
to mobile robot self-localisation within previously mapped territory, it would be unrealistic, for 
example, to expect the robot to solve the lost robot problem in completely unknown territory.
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maps in large, complex environments. The most flexible approach is for the 
robot itself to acquire its own maps through a process of autonomous, map- 
based exploration. In other words, the robot should be able to identify regions 
of unexplored territory, navigate to the identified areas using its own map, and 
update its representation of the environment incrementally at the same time.

A version of this strategy was used here, described in chapter 9, in which the 
robot continuously tries to expand the territory which has already been charted. 
The robot attem pts to recognise areas of open space in the environment which 
it has not visited before. Places which are presumed to exist, but have not yet 
been visited by the robot are added tentatively to the robot’s map. Subsequent 
motion by the robot is used to verify whether these predicted places actually exist 
or not. The process is repeated until the robot has built a complete map of the 
target environment.

Two key problems were addressed, namely how to detect areas of open space, 
and how to deal with errors in the robot’s map resulting from miscalculations in 
the dead reckoning — both are explained in further detail as follows.

Learning a M odel o f O pen Space

To explore an environment in the manner described, some mechanism is required 
to detect areas of unexplored territory. Individual range-finder readings are not 
well suited for this purpose because of sensor noise and occlusions caused by 
people. An alternative would be to write a special feature detection algorithm 
to determine whether an area of open space exists in front of the robot, but 
this would involve the pre-installation of another world model by the system 
designer. Instead, an artificial neural network was used to learn the concept of 
“open space” , combining noisy information obtained from many sensor readings. 
All of the data required for training the network, including the ability to travel 
in a particular direction, was collected by the robot itself, thus avoiding the need 
for manually labelling the training examples with the desired output categories. 
In this approach, the training data is generated by trial and error, i.e., “move 
until you hit something” .

C orrection o f D ead R eckoning Errors in th e M ap

A fundamental problem for robot map building is tha t of obtaining globally con­
sistent metric information in the map. The robot can only produce consistent
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position estimates by dead reckoning over very short distances, due to the in­
evitable problem of odometry drift. Over longer distances, these drift errors 
accumulate and the position estimates quickly become unreliable.

A global coordinate system in the robot’s map is desirable for a number of 
different purposes, for example, inferring possible areas of unexplored territory, 
self-localisation, inferring novel routes and human interpretation of the robot’s 
map. In particular, because the new self-localisation algorithm uses local odo- 
metric information between observed landmarks to disambiguate similar looking 
places, it requires tha t the places in the robot’s map are labelled with Cartesian 
coordinates.

An optimisation algorithm was developed for assigning geometrically consis­
tent coordinates to the places in the robot’s map using only local odometric 
information, i.e., the relative displacement of the robot between topologically 
connected places, described in chapter 8. This algorithm is self-organising, using 
only local information and local interactions to converge upon a stable solution. 
It is proved tha t the algorithm will alway converge to the same globally consistent 
solution given the same local metric information. Subsequent experiments with 
the real robot demonstrate tha t the maps produced are of sufficient quality to 
enable reliable self-localisation and navigation by the robot.

1.4.4 T he C om plete S ystem

The final stage of the research involved combining the various mechanisms to 
produce a complete navigating mobile robot. A hybrid deliberative-reactive ar­
chitecture was developed, as shown in figure 1.5. In this architecture, the high- 
level activities of path planning, map learning and self-localisation are carried 
out in the deliberative layer. Low-level motor control is achieved using a set of 
previously acquired sensor-motor competences in the reactive layer, such as ob­
stacle avoidance and wall-following. The interface between the deliberative and 
reactive layers consists firstly of feature detectors, such as the landmark recogni­
tion mechanism developed in the work of self-localisation and the model of open 
space acquired by the robot in the work on exploration. In addition, a set of 
intermediate control routines are used to select an appropriate combination of 
behaviours in the reactive layer, depending on the required heading of the robot. 
Thus, exploration and way finding are achieved through a combination of dis­
tributed control modules in the three different layers. The resulting system is
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Figure 1.5: System architecture.

able to operate in complex, untreated environments of several hundred metres 
squared in real-time without requiring human assistance.

To validate the work carried out, an office delivery experiment was conducted 
in a busy university department building. Here, the robot was first allowed to 
explore the test environment fully, then had to navigate between a series of user- 
chosen locations. Reliability and efficiency-based measures were used to evaluate 
the overall navigation performance. To demonstrate the robustness of the system, 
the ability of the robot to recover from becoming lost was also considered.

The final results confirmed that the complete navigating robot is able to build 
its own maps through free exploration, determine its own location in the map and
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navigate reliably between user-specified locations. Furthermore, the robot can 
recover from error, and does not require any external processing or simplifying 
assumptions about the structure of environments.

1.4.5 L im itations

The navigation system presented in this thesis is specific to a holonomic mobile 
robot equipped with (1) a compass, (2) sonar and infrared range-finder sensors, 
and (3) odometry accurate enough to measure distances of up to 1 m with small 
errors (e.g., 5% of distance travelled on the Nomad 200). Nevertheless, most of 
the techniques presented should be applicable to most similar robots with only 
minor changes to take into account the different sensors.

The maps built by the robot — in common with all maps — will eventually 
become out of date. If the underlying structure of an environment changes, then 
the robot would need to build a new map. While this would not be a major 
drawback for the mobile robot presented in this thesis, as it can build its own 
maps, a better solution might be to allow the robot to continuously adapt its 
existing model of the environment during normal operation. A discussion of this 
problem of “lifelong learning” can be found in section 11.2.3.

The system as it stands only builds consistent maps in indoor, semi-structured 
environments which do not contain large cycles or “loops” . Large cyclical en­
vironments present a seriously non-trivial challenge for current mobile robots. 
After traversing a large cycle, the robot needs to be able to recognise tha t it 
has returned to a previously visited location, otherwise it will mistakenly create 
multiple (inconsistent) representations in the map for the same physical location. 
A detailed discussion of this open question is given in section 11.2.4.
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1.5 C ontributions to  M obile R obotics

This thesis describes all of the necessary parts, elements and steps required to 
build a self-navigating mobile robot. All of the internal representations, sensor- 
motor competences and feature detection mechanisms required for navigation are 
acquired independently by the robot, without requiring human intervention. The 
specific contributions of this research include:

1. The development of quantitative methods for assessing navigational com­
petence in mobile robots; in particular, measures of self-localisation perfor­
mance and map quality were considered.

2. Replication and a comparative study of existing work on mobile robot self­
localisation, including work by other researchers, using quantitative perfor­
mance measures.

3. A new method of matching occupancy grids, which has a much lower com­
putational cost than previous methods.

4. A solution to the lost robot problem.

5. A unified algorithm for solving the problems of global localisation and posi­
tion tracking within previously mapped territory, which has been validated 
through its integration into a complete navigating mobile robot.

6. A relaxation algorithm for assigning geometrically consistent Cartesian co­
ordinates to the places in a topological map using only local odometric 
information, which is proved to converge to a globally optimal solution.

7. A novel technique for exploring an unknown environment using an artificial 
neural network to learn the concept of open space, in which all of the 
training examples are generated by the robot itself through trial and error.

The ultim ate contribution of the thesis is an untethered mobile robot which 
builds its own maps through free exploration, identifies locations, determines 
routes and navigates reliably between user-specified locations in unmodified, 
middle-scale environments, without requiring off-line processing. The thesis also 
represents a case study in “quantitative robotics” ; tha t is, an application of quan­
titative performance measures to the design, testing and validation of a complete, 
self-navigating mobile robot.
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1.6 Thesis O utline

The remainder of the thesis is organised as follows.

C h a p te r  2 reviews previous work on navigating mobile robots, including details 
of control architectures, world models and methods for map building and 
self- lo calisation.

C h a p te r  3 provides a detailed, high level analysis of the requirements of building 
a mobile robot tha t can navigate in middle-scale environments.

C h a p te r  4 briefly describes the basic mechanisms for sensing and low-level mo­
tor control and the assumptions used in the following chapters.

C h a p te r  5 describes an experimental procedure and a general, quantitative per­
formance measure for evaluating self-localisation performance.

C h a p te r  6 presents an experimental comparison of previous algorithms for land­
mark recognition using quantitative performance measures.

C h a p te r  7 describes the complete system developed for self-localisation, includ­
ing global localisation, and its quantitative analysis.

C h a p te r  8 describes the algorithms used for map learning by the robot, includ­
ing an optimisation algorithm for maintaining geometric consistency.

C h a p te r  9 presents an exploration system for mapping an unknown environ­
ment, in which the environment model is acquired incrementally by the 
robot.

C h a p te r  10 describes the integration of the mechanisms for self-localisation and 
map building into a complete navigation system, and validation experiments 
involving an office delivery task.

C h a p te r  11 provides a summary, open questions and conclusions.



C hapter 2 

R eview  of N avigating M obile  
R obots

A b o u t th is  c h a p te r . This chapter reviews related work on robot navigation. 
The motivation for concentrating on complete robots is first discussed, followed 
by details of common control architectures and world models used for navigation. 
Some representative examples of navigating robots are then described, particu­
larly with respect to the mechanisms used for map building and self-localisation..

2.1 Introduction

2.1.1 W h y S tu d y  C om plete R obots?

Dennett (1998, p. 308) listed five simplification strategies which are commonly 
used by Al researchers:

1. Ignore learning and development; model the mature competence, postpon­
ing questions of how it could arise.

2. Isolate a subcomponent, ignoring problems of how it might be attached to 
the larger system.

3. Limit the domain to a toy problem, hoping tha t scaling up will be straight­
forward.

4. Bridge the gaps in one’s model with unrealistic or miraculous stopgaps.

36
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5. Avoid the complexities of real-time, real world coordination by ignoring 
robotics.

The problem with all simplifications is in deciding which factors are impor­
tant, and which factors to leave out. In studying a subcomponent such as map 
building or self-localisation in isolation (item 2), it is possible to avoid the real 
problems th a t will affect the whole system. “Bridging the gaps” (item 4) amounts 
to the same thing; by assuming a pre-installed map or guiding the robot around 
an environment by hand, the designer may miss some other requirement for truly 
autonomous operation. Similarly, work based on simulations or idealised assump­
tions is unlikely to reveal much about real robots (item 5), and systems which 
are only tested in specially constructed laboratory environments are in danger of 
solving only specially constructed problems (item 3).

Consequently, this review concentrates on research which has been validated 
through developing complete navigating robots operating in middle-scale envi­
ronments. The robots described in this chapter were selected for their particular 
relevance to the problem of concurrent map building and self-localisation.

Perhaps the most common simplification made in mobile robotics is to ignore 
learning and development (item 1). This is not particularly surprising, given 
th a t most roboticists are more interested in building robots th a t work than in 
producing realistic cognitive models. However, there is a very good reason for 
studying robots which learn. It is common practice in mobile robotics to hand­
craft the necessary behaviours, feature detectors, etc., required for a particular 
application. If the robot is then transferred to a new environment, the pre­
installed competences may fail. By contrast, a learning robot need not be given 
all of the details of its environment by the system designer, and its sensors and 
actuators need not be finely tuned (Dorigo & Columbetti 1998). Learning offers 
the ability to adapt to new situations — this issue is discussed in further detail 
in the following sections.

2.1.2 R ob ot C ontrol A rchitectures

Most mobile robots can be classified according to one of three possible control 
architectures:

1. The Functional Approach.
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2. Behaviour-Based Control.

3. Hybrid Architectures.

The first approach is based on a series of functional modules. Sensing involves 
transforming incoming sensor data into a central world model, planning involves 
using the model to predict an appropriate set of actions, and acting involves 
executing the plan by controlling the robot’s actuators. However, this approach 
can be brittle (failure in one module leads to failure in the whole system) and 
slow to react in dynamic environments. Perhaps its most serious drawback is the 
well-known frame problem, tha t is, the inability of the world model to predict all 
of the changes which can occur in the real world.

One response to the shortcomings of the functional approach is to eliminate 
the central world model and the planning module completely, instead decom­
posing the robot controller into a set of parallel, task-achieving behaviours — 
see in particular the subsumption architecture proposed by Brooks (1986). Each 
behaviour consists of a tightly coupled link between sensing and acting, with 
only minimal communication between behaviours. However, this approach has 
its own disadvantages; while robust and quick to react to real world situations, 
it is limited in its ability to carry out the kinds of goal-directed activity required 
for many applications, e.g., delivery, inspection, etc.

For these reasons, many researchers agree tha t a hybrid approach presents 
the best option, combining the high-level, model-based abilities of the functional 
approach with the low-level, sensor-motor capabilities of behaviour-based control. 
All of the robots reviewed in the rest of this chapter use, to a greater or lesser 
extent, a combination of explicit world models and reactive behaviours. While 
relatively few hybrid systems so far have a well-defined architecture (see chapter 
6 of Arkin (1998) for some exceptions), a useful decomposition is provided by the 
following three-layer description, after Gat (1998):

1. Deliberative Layer.

2. Sequencing Layer.

3. Reactive Layer.

The deliberative layer is responsible for high-level activities such as planning, 
the reactive layer for low-level sensor-motor control, and the sequencing layer 
describes the interface between the deliberative and reactive layers.
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2.2 M odels U sed B y N avigating R obots

The world models used by a robot may take many forms. Some may be explicit, 
others may be implicit in the robot’s control software. Zimmer (1997) distin­
guished general models such as behaviours, where “decisions are based on local, 
immediate sensing” , from specific models such as maps, which contain informa­
tion about “time, place or state” . In order to make clear exactly what constitutes 
a world model in this thesis, I devised the following taxonomy:

1. Environment Models. The models such as maps used to represent the 
robot’s environment.

2. Location Models. The models such as probability distributions used to 
represent the robot’s location within an environment model.

3. Behaviour Models. The models used to implement primary sensor-motor 
skills such as obstacle avoidance, by translating sensor information directly 
onto motor actions.

4. Feature Models. The models used to translate sensor or motor information 
into internal concepts (percepts) such as landmarks.

5. Sensor Models. The numerical models used to approximate the true func­
tion of a robot’s sensors.

6. Motion Models. The numerical models used to approximate the true func­
tion of a robot’s actuators.

7. Noise Models. The numerical models (often implicit) used to represent the 
noise in the robot’s sensors and actuators.

Note th a t these categories are intended neither to be exhaustive nor mutually 
exclusive. Some of these models may be composed of other lower level models. 
For example, an environment model may typically be defined in terms of feature 
models. In this thesis, standard techniques are used to provide the sensor, motion 
and noise models for the navigating robot. However, in contrast to previous 
work, all of the environment, location, behaviour and feature models required for 
navigation are acquired independently by the robot, instead of being pre-installed 
by the system designer. The possible models considered are discussed as follows.
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2.2.1 E nvironm ent M odels

The environment models used for robot navigation are often divided into two 
approaches, namely topological and metric maps.

A topological map records a set of recognisable locations and the traversable 
paths between the locations. The paths may be augmented with distance and 
angle information, and the locations are usually identified by observed environ­
mental features or landmarks. Some approaches assume th a t the landmarks are 
assigned uniquely to  individual places (Mataric 1991; Kortenkamp & Weymouth
1994), or use an exploration strategy to disambiguate similar looking places by 
taking into account the sequence of landmarks observed (Nehmzow et al. 1991; 
Kuipers & Byun 1991).

In a metric map, the locations of objects in the robot’s environment are spec­
ified in a global coordinate system. Some approaches use a feature-based repre­
sentation, where the map consists of a set of geometric primitives such as line 
segments (Leonard et al. 1990; MacKenzie k  Dudek 1994). Other approaches use 
a grid-based representation, such as occupancy grids, where each grid cell contains 
some measure of the certainty tha t the corresponding area is occupied by any ob­
ject. Possible representation schemes for occupancy grids include probabilistic 
models (Moravec k  Elfes 1985), fuzzy logic (Oriolo et al 1998) and Dempster- 
Shafer theory (Hughes & Murphy 1992; Pagac et al 1996). Another alternative 
is to use quad trees (Zelinsky 1992), where the geometric space is decomposed 
recursively into smaller grid cells.

While many different proposals for robot maps exist in the literature, rel­
atively few approaches have been applied successfully in complete, navigating 
robots. For example, the assumption of perceptually unique landmarks can never 
be guaranteed in practice, so systems based on this assumption are unlikely to 
succeed in practice. Systems which use feature-based representations tend to be 
brittle because they suffer from the correspondence problem of matching noisy 
sensor readings to the designer-determined primitives. Computational efficiency 
is another im portant consideration; metric maps require large amounts of mem­
ory and processing, and also depend critically on accurate position information 
for map building.

Some successful applications of robot map building are described later in 
this chapter. These include robots which use metric and topological maps, and 
also some approaches which attem pt to integrate both topological and metric
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representations.

2.2.2 L ocation  M odels

The location model used by a robot depends closely on its environment model. 
The simplest approaches are unimodal — tha t is, the robot maintains a single 
estimate of its position within the map. In a topological map, this may be 
implemented by a winner-takes-all strategy, using a matching process between 
the current sensor data and the stored landmarks in the map to determine the 
most likely location of the robot.

In a metric map, the robot’s location is typically represented by a Cartesian 
coordinate and updated on the basis of the positions of perceived environmen­
tal features in the map. A common technique for combining position estimates 
obtained from different observations over time is the Kalman filter (Gelb 1974; 
Maybeck 1990), where the uncertainty in the robot’s location estimate is repre­
sented by a unimodal (typically Gaussian) probability density function. At each 
iteration, the filter is used to combine an existing position estimate updated by 
dead reckoning with a new position estimate obtained from sightings on known 
environmental features, according to the respective uncertainty in each of these 
measurements.

While unimodal approaches can produce very accurate position information, 
they also tend to be brittle, because they require an a priori position estimate in 
order to resolve perceptual ambiguity, i.e., to deal with situations where several 
locations in the map appear similar enough to be confused by the robot. This 
means tha t the robot cannot be guaranteed to recover its position if it becomes 
lost. A mobile robot operating in complex, real world environments is bound 
to become lost eventually, regardless of the accuracy of its sensors, especially in 
environments which are subject to unpredictable variations over time.

Multimodal approaches offer a more reliable alternative, being able to rep­
resent situations where the robot is uncertain of its true location, but has some 
idea of possible regions of the map in which it might be located. An example of 
this approach is used in Hidden Markov Models (Koenig et al 1996), where the 
robot’s location model consists of a probability distribution over a set of discrete 
states corresponding to possible robot locations and orientations. The Markov 
localisation approach has also been applied to high resolution grid-based maps, 
maintaining the probability distribution over the cells in the grid (Burgard et al.
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1998b).
In this thesis, a multimodal location model is used which provides a gener­

alisation on the Kalman filter. A set (or mixture) of competing location “hy­
potheses” is maintained, each with its own separate probability density function 
over Cartesian space, thereby combining the reliability of discrete probabilistic 
methods with the precision of the Kalman filter.

2.2.3 Feature M odels

The feature models used by many robots are hand-crafted by the system designer 
to suit a particular application. Example features used by navigating robots 
include walls, doors and ceiling lights. However, the problem with pre-installation 
is th a t the feature detectors are unlikely to work in different environments. A 
good example is provided by Nourbakhsh (1998) in describing the 1994 AAAI 
National Robot Contest. To the surprise of many contestants, the walls of the 
test environment at the competition were constructed from smooth sheet plastic. 
This had the effect of confusing many of the sonar-based robots, “causing them 
to veer into walls and to pick up large numbers of false features” .

The alternative to using hand-crafted features is for the robot to acquire 
its own feature models. One approach is to use supervised learning, such as 
artificial neural networks trained by back-propagation. For example, Hertzberg 
& Kirchner (1997) trained a multi-layer perception to recognise the different types 
of junctions found in sewage pipes. Similarly, Mahadevan et al (1998) trained a 
network to learn the concepts of “door” , “opening” , “wall” and “undefined” in 
an indoor corridor environment.

While designer-determined feature categories may be ideal for one specific ap­
plication in a known domain, they cannot be used for mapping new environments 
which may contain many unknown features. Learning mechanisms based on self­
organisation present one possible alternative, including Kohonen networks (Ko- 
honen 1993), ART networks (Carpenter & Grossberg 1987) and Growing Neural 
Gas networks (Fritzke 1995). Another approach is provided by self-detailing fea­
ture models, such as local occupancy grids (Yamauchi & Langley 1997), which 
are also able to represent arbitrary sensor patterns.

A further alternative investigated in this thesis is to use self-supervised learn­
ing, where all the training examples required to learn a particular classification
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function are discovered by the robot itself through trial and error. In the explo­
ration mechanism presented in chapter 9, a self-acquired feature detector is used 
to recognise areas of open space in the robot’s environment. This function was 
obtained by training a neural network to associate recorded sensor readings with 
the robot’s own ability to travel in a given direction.

2.2 .4  B ehaviour M odels

Pre-installed sensor-motor competences are also prone to human error and failure 
in unknown environments. For example, many robots use a set of hand-crafted 
rules to avoid obstacles. A common method is described by Nourbakhsh (1998), in 
which each range-finder sensor reading contributes to the forward and rotational 
velocities of the robot according to a weighted sum. However, the problem here is 
how to set the weights, particularly as the human designer “has no real intuition” 
on how to fine-tune the robot’s behaviour.

An alternative method is to obtain the weight values by supervised or self­
supervised learning. Nehmzow et al. (1991) developed a mechanism in which a 
single perceptron learns behaviours such as obstacle avoidance and wall-following 
in a small number training steps, by associating sensor patterns with required 
motor actions (figure 2.1). The teaching signal is provided by feedback from 
the robot’s sensors, using a predetermined set of “instinct rules” to guide the 
acquisition of the sensor-motor behaviours. A further advantage of this approach 
is th a t the robot can adapt to changes in its morphology such as sensor failure 
by adjusting its behaviour during operation. Alternatively, the training signal 
can be provided directly by a human teacher via a joystick (Martin & Nehmzow
1995).

2.3 R obots w ith  M etric M aps

In the rest of this chapter, a number of research robots are reviewed, discussing 
their relative merits with respect to the problem of concurrent map building and 
self-localisation. This first section covers systems which use metric maps, that 
is, environment models in which an explicit Cartesian reference frame is used to 
represent objects in the robot’s environment. In particular, the two most common 
approaches are considered, namely feature-based and grid-based maps.
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Figure 2.1: Pattern associator for learning behaviours, adapted from Martin & 
Nehmzow (1995). A perceptron is trained to associate sensor patterns with re­
quired motor actions. The training signal comes either from a predefined set of 
“instinct rules” , which monitor and correct the behaviour of the robot, or from 
a human teacher by joystick input.

2.3.1 F eature-B ased  M aps  

A G V s

Leonard & Durrant-W hyte (1992) investigated an approach for robot navigation 
using sonar sensors and a precise metric map, which was implemented on various 
Robosoft automatic guided vehicles (AGVs). The map was built from a set of pre­
defined geometric features including planes, cylinders, corners and edges. These 
features were made up of primitives known as “regions of constant depth” , con­
sisting of sets of adjacent sonar returns of nearly the same range. Self-localisation 
was achieved while the robot was in motion by tracking stationary features in the 
environment and applying an extended Kalman filter to combine the inferred po­
sition estimates. An im portant contribution of this work was the development of 
an improved sonar sensor model for robot navigation.
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One of the drawbacks of this approach is tha t very accurate position informa­
tion is required for map building. The authors sketched a hypothetical framework 
for simultaneous map building and self-localisation, but the two mechanisms were 
only implemented separately, using a hand-measured map for localisation and pre­
cise a priori position information for map acquisition. These competences were 
also only tested in a small-scale, static environment, so it is unclear whether they 
would scale to more complex environments.

A fundamental weakness of the feature-based approach is th a t it suffers from 
the correspondence problem of matching the raw sensor readings to the human- 
defined feature categories. Systems which need to solve the correspondence prob­
lem tend to be brittle, particularly in dynamic environments where there may be 
many temporary occlusions and false sensor returns. Any incorrectly identified 
features would be added to the map, which in turn would result in position­
ing errors, leading to a mutually destabilising effect between map building and 
self-localisation during concurrent operation.

Cox & Leonard (1994) proposed a multiple hypothesis tracking technique to 
deal with the problems of map building in dynamic environments. In this ap­
proach, multiple environment models are maintained at each time step according 
to different possible interpretations of the robot}s sensor data. Each model is as­
sociated with a probability reflecting its likelihood of being the “correct” model 
of the environment. However, this technique was only tested in a small-scale en­
vironment, and it is questionable whether such an approach would be tractable 
in a complex, real world setting.

A R N E

David Lee (1995) implemented a map building system for a mobile robot known 
as A R N E } which was equipped with a single rotating sonar sensor. This sys­
tem also used a feature-based metric map and an extended Kalman filter for 
self-localisation, and was tested in a static, laboratory environment. A separate 
grid-based map was derived from the feature-based map for the purpose of path 
planning. Again, this system relied upon precise position information and accu­
rate feature detection, so it would be unlikely to work in real world, middle-scale 
environments.

The principal contribution of this work was its quantitative, experimental eval­
uation of various exploration strategies used by the robot to build its maps (Lee
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& Recce 1997). In this analysis, the performance of the autom ated exploration 
strategies was compared to th a t of an optimal exploration behaviour determined 
by a human observer. A comparative measure of the quality of the grid-based 
maps generated by the robot was used to assess performance. The authors found 
tha t the best results were achieved by a hybrid model-based/reactive exploration 
strategy, consisting of wall-following with some map-based interventions accord­
ing to a predefined set of heuristics.

2.3.2 G rid-B ased  M aps

Some of the most successful approaches to robot navigation have used the Carte­
sian occupancy grid representation developed by Moravec and Elfes (Moravec 
& Elfes 1985; Elfes 1987). Each cell in the grid model contains the probability 
tha t any object occupies the corresponding location in the robot’s environment. 
The probabilities are obtained by using a pre-installed sensor model to project 
the robot’s range-finder readings onto the corresponding grid cells, and applying 
a Bayesian update rule to combine multiple readings over the same cell. Self­
localisation is achieved through correlation of a grid constructed from the current 
sensor readings with the stored map, finding the displacement and rotation which 
produces the best match between the two grids.

The approach avoids the correspondence problem because it does not need to 
identify the source of the robot’s sensor returns. Occupancy grids also provide a 
natural representation for combining different sensor modalities, provided tha t a 
good model is available for each different type of sensor. For example, Thrun et 
al. (1998a) used an occupancy grid to fuse range information from stereo vision 
and sonar. The disadvantages of the approach are tha t it takes up a large amount 
of memory, requires precise position information for map building and depends 
on accurate range-finder sensing. For example, the specular effects associated 
with sonar sensors often result in geometric errors in the map.

ARIEL

Yamauchi et al. (1998) developed an autonomous robot known as ARIEL  which 
explored and built its own map of an unknown environment (see figure 2.2). The 
system was implemented on a Nomad 200 robot equipped with a planar laser
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Figure 2.2: An example occupancy grid acquired by the ARIEL  system, taken 
from Yamauchi et al. (1997).

range-finder in addition to its sonar and infrared sensors. The research inte­
grated a map building strategy known as frontier-based exploration (Yamauchi 
1997) with a continuous localisation technique for correcting the robot’s odome- 
try (Schultz & Adams 1998).

The system used a sensor scanning technique in which specular reflections 
affecting the robot’s sonar sensors were corrected by the laser range-finder. A 
process analogous to edge detection and region extraction in computer vision was 
then used to detect regions between open and unexplored space in the global grid 
model known as “frontiers” . During exploration, the robot attem pted to navigate 
to the nearest frontier in the current map. When the robot reached this frontier, 
it carried out a new sensor scan and updated the map, adding any new frontiers 
detected to the list of unexplored goal locations.

Self-localisation was performed by matching a short term, local occupancy 
grid constructed from the robot’s recent perceptions to the long term, global 
map. The matching process was restricted to a small space of possible transla­
tional and rotational errors in the global grid centred around the current position 
estimate produced by dead reckoning. Note that this dependence on prior po­
sition knowledge for self-localisation means that the system would be unable to 
recover from becoming lost.

ARIEL  was tested successfully in a 21 m long corridor environment. A dis­
advantage of the approach is its high computational requirements, needing radio
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Figure 2.3: RHINO , a RWI-B21 robot at Bonn University.

communication with two external Sparcstation 20s. In addition, the approach re­
lies on the accuracy of its range-finder sensors, so it would be unlikely to produce 
geometrically correct maps in dynamic environments where there may be many 
unpredictable variations in the robot’s sensor data.

R H IN O

RHINO  is a RWI-B21 mobile robot equipped with a stereo camera system and 
a ring of 24 sonar sensors (figure 2.3), which has been used as a test-bed for 
many innovations and state-of-the-art techniques for navigation using metric 
maps (Thrun et al. 1998a; Burgard et al. 1998a). For example, later versions 
of the system have used Markov localisation (Burgard et al. 1998b) to avoid 
dependence on a priori position information from dead reckoning (see also sec­
tion 2.4.2), and an “entropy filter” to detect the presence of humans within the 
robot’s sensory range (Fox et al. 1998).

The system is able to build accurate metric maps using information from 
both its vision and sonar sensors. A neural network is used to translate the 
sonar readings into occupancy probabilities in the grid, combining information 
from neighbouring sensors to reduce specular effects and increase the geometric 
accuracy of the map. The vision system is able to recover depth information from
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vertical edges detected in the camera images, allowing the robot to detect objects 
which cannot be perceived using sonar.

Another interesting aspect is tha t the system can extract a topological map 
from the grid-based map, using critical points detected in a Voronoi diagram to 
partition the unoccupied space in the grid into a set of discrete locations (Thrun 
1998b). The topological map is then used for path planning. Thrun claims tha t 
this approach allows the robot to exploit the “orthogonal strengths” of metric 
and topological maps, although the robot is still faced with all of the consistency 
problems and computational overheads involved in maintaining a full metric map.

RHINO  has recently been tested extensively as a tour guide in a busy museum 
environment (Burgard et al. 1998a), though the map required for this task was 
constructed by the designers from accurate distance measurements taken by hand. 
This application incorporated other areas of AI research, including high-level 
problem solving and human-robot interaction. A major drawback of the system 
is its high computational requirements, needing two on-board processors and a 
radio link to several Sparcstations for normal operation. The system also depends 
on an assumption tha t walls are always parallel or perpendicular to each other, 
a constraint which, while frequently met, cannot be guaranteed in practice.

Work is currently in progress on a successor to RHINO  called MINERVA  (Thrun 
et al. 1999; Roy et al. 1999), implemented on a RWI-B18 robot, which is based 
on the same underlying principles and software architecture as RHINO . Its inno­
vations, so far, include extra sensors — for example, an upwards-pointing camera 
is used to learn a map of the ceiling (Thrun et al 1999), and “coastal naviga­
tion” (Roy et al. 1999), wherein the robot chooses motor actions designed to 
improve localisation quality.

2.4 R obots w ith  Topological M aps

The problems with maintaining high-resolution geometric maps, namely the high 
computational requirements and the need for accurate position information, have 
lead many researchers to investigate the use of topological maps. In this approach, 
the environment is represented as a graph of connected places, and the problem 
of self-localisation becomes tha t of place recognition (Kortenkamp & Weymouth
1994). These systems have the advantage tha t the robot does not need to know
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its exact position for map building. Some pioneering work on navigation us­
ing topological maps was carried out by Kuipers & Byun (1991), introducing 
the notion of locally distinctive places, but this research was only carried out in 
simulation. Wan Yik Lee (1996) implemented Kuipers’ “Spatial Semantic Hier­
archy” on a real robot, but the system was only tested in a small-scale laboratory 
environment consisting of three cardboard corridors.

Toto

Mataric (1991) developed a mobile robot known as Toto, which used a topolog­
ical map and explored its environment by wall-following. Sonar sensors and a 
compass were used to identify landmarks according to a designer-determined set 
of categories. Each distinctive landmark was represented by a node in the map, 
recording the links to the previous and next landmarks identified en route. Dur­
ing navigation, a path to a goal location was found by spreading activation from 
the destination node. A fundamental drawback of this approach is th a t it relies 
upon the correct identification of landmarks, so it is likely tha t the system would 
fail in the presence of sensor noise or perturbations in a real world environment. 
The approach is also only relevant to environments which can be explored by 
wall-following.

2.4.1 Self-O rganising R ob ots

A lder and C airngorm

Nehmzow (1992) developed a reactive controller for the Fischertechnik robots 
Alder and Cairngorm (figure 2.4), using wall-following and robot-determined 
landmarks to identify places. All of the world models used in this system were ac­
quired autonomously by the robots. The sensor-motor competences were learned 
by a simple feedforward neural network, as described in section 2.2.4. A self- 
organising feature map (Kohonen 1993) was used for map building, allowing the 
robot to construct its own internal representation of the environment by cluster­
ing together similar groups of sensor readings. These mechanisms have also been 
validated on a Nomad 200 robot operating in untreated, middle-scale environ­
ments, for example, using a self-organising feature map for route-learning (Owen 
& Nehmzow 1997) and wall-following for relocalisation after becoming lost (Duck­
ett & Nehmzow 1998).
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Figure 2.4: Alder and Cairngorm, Fischertechnik robots at Edinburgh University.

This research addressed the problem of perceptual aliasing by incorporating 
history of the robot’s sensor-motor experience into the recognition of locations, 
adding previous sensor readings and motor commands to the input vector of 
the feature map. A disadvantage of this approach is tha t location recognition 
depends on visiting locations in the same sequence as used for map building, 
therefore restricting the behaviour of the robot to following fixed paths. In ad­
dition, location recognition is limited by the duration of the stored history, and 
does not generalise to cover arbitrarily large areas of perceptual ambiguity such 
as long, featureless corridors. The self-organising feature map also requires a set­
tlement period to achieve a stable clustering of its input space, and has a number 
of critical parameters such as the network size which have to be determined in 
advance by the designer.

ALEF

Kurz (1996) developed a topological mapping system for a modified RWI-B12 
robot known as ALEF  (figure 2.5). In this system, classification algorithms such 
as self-organising feature maps were used to group together similar sets of sonar 
readings. The resulting feature categories were then used to partition the robot’s 
environment into contiguous regions known as “situation areas” (see figure 2.6).

During map building, a graph-based representation of the environment was 
constructed, recording both the topological relations between the situation areas
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Figure 2.5: ALEF , a RWI-B12 robot at Darm stadt University.

Figure 2.6: Representation of an environment using situation areas, taken from 
Kurz (1996). A self-organising classifier is first used to cluster the robot’s sonar 
readings into prototypical “situations” ; the resulting classifications are then used 
to partition the explored territory into regions.
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Figure 2.7: ALIC E , a custom-built robot at Kaiserslautern University.

and position information obtained from the robot’s odometry. In this approach, 
the coordinates produced by dead reckoning in a particular situation area were 
averaged to produce a single coordinate for each node in the graph.

The robot was also able to navigate to arbitrary locations in the map using the 
A * algorithm (Nilsson 1980) for path planning. Self-localisation was achieved by 
a Kalman filter, using the coordinates of the observed situation areas to correct 
the odometry drift errors. A disadvantage of this approach is tha t the robot has 
to rely on dead reckoning when exploring unknown areas, thus limiting the size of 
the environments which can be mapped according to the accuracy and reliability 
of the robot’s odometry. Furthermore, the system contains no mechanism for 
recovery after becoming lost, so localisation errors caused by perturbations or 
perceptual aliasing could lead to failure of the whole system.

ALICE

Zimmer (1995a) developed a concurrent map building and self-localisation system 
for a custom-built robot known as ALICE  (figure 2.7). Although this system was 
only tested in a small-scale laboratory environment, the robot was deliberately 
designed to use only low resolution, low reliability sensors, thereby allowing the 
designer to investigate some of the fundamental problems which affect any mobile 
robot operating in an unknown environment. ALICE  was equipped with a ring of 
passive light sensors and touch-sensitive whiskers for location recognition, and a 
basic dead reckoning mechanism affected by drift errors of up to 25%. In contrast
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to many other robots, this system had no separate phases for map learning and 
navigation, instead being able to continuously adapt its internal representations 
through a process of lifelong learning.

For map building, ALIC E  used an extension of the Growing Neural Gas net­
work (Fritzke 1995), consisting of a set of stored sensor prototypes augmented 
with Cartesian coordinates and the topological connections between them. The 
input vector to the network was constructed from the light sensors, tactile sensors 
and odometer readings. A new node was added to the map whenever a distance 
measure of the similarity between the current input and the nearest matching pro­
totype exceeded a predefined threshold. At the same time, the robot’s odometry 
was continuously recalibrated through correlation of the current sensor readings 
with the map. Exploration was carried out using a reactive controller, which was 
subject to top-down influence from various “instincts” , such as trying to reach 
areas of unexplored territory, or trying to improve localisation quality by moving 
through areas of previously charted territory.

One of the most im portant contributions of this research was the handling 
of the concurrent updates to the robot’s environment and location models. In 
particular, it was found th a t simultaneous updates led to instability in the world 
models, because each representation was updated directly with the errors and 
noise from the other (Zimmer 1995b). The solution found to this problem was 
to adapt the robot’s environment model more slowly than the location model, 
delaying the integration of the current sensor information into the map by a pre­
determined time interval. In addition, the robot’s map was adapted by gradient 
descent, moving the stored prototypes in the direction of the sensory input, rather 
than by a single step.

2.4.2 H idden  M arkov M odels

So far, all of the navigating robots described have used a unimodal location model, 
in which self-localisation is achieved either by a winner-talces-all mechanism or 
through correction of an a priori Cartesian position estimate. The problem with 
these approaches is th a t localisation errors such as those caused by perceptual 
aliasing are often fatal, because the robot cannot recover from losing its position. 
To overcome these problems, many researchers have investigated systems with 
multimodal location models, such as Hidden Markov Models (HMMs) and their 
extension to Partially Observable Markov Decision Process models (POMDPs)
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Figure 2.8: Example of a Hidden Markov Model with four states 51 to 54. Each 
state contains a probability of being the “true” state of the system. The arcs 
are labelled according to a probability transition matrix, which describes the 
likelihood of moving from one state to another. Another probability distribution, 
not shown, associates possible observations with each of the states. (Adapted 
from a figure by Magnus Rattray.)

(Simmons & Koenig 1995; Cassandra et al. 1996; Hertzberg & Kirchner 1997). 
Using this approach, the robot can represent the global uncertainty in its true 
location. For example, the robot might be “almost certain tha t it is in the North- 
East corner of either the fourth or seventh floors, though it admits a chance that 
it is on the fifth floor as well” (Kaelbling et al. 1998).

An HMM is a stochastic variant of a finite state automaton, in which pos­
sible robot locations and orientations are represented by states, and the robot’s 
estimated location is represented by a probability distribution over the states, 
as the true state of the system is “hidden” or unknown. The robot’s ability to 
move between states is defined by a probability matrix over all of the possible 
state transitions (see figure 2.8). Observable environmental features are associ­
ated with the states according to another probability distribution. The POMDP 
model extends the HMM by incorporating information about possible actions in 
each state, and the rewards for taking each action in each state. Key problems 
addressed by research into HMMs and POMDPs for robot navigation include how 
to obtain the models and how to estimate the true state using only the robot’s 
sensory perceptions.
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D ervish

Nourbakhsh (1998) implemented a navigation system on a customised Nomad 100 
robot known as Dervish, in which hand-crafted feature detectors were used to 
identify landmarks such as doors or junctions. These routines were not partic­
ularly reliable, for example, the closed door detection algorithm only gave the 
correct classification 70% of the time. However, this low-level inaccuracy was 
overcome by using a high-level self-localisation algorithm known as state set pro­
gression.

In this approach, the robot’s location model consisted of a “state set” , con­
taining a subset of the possible locations in a pre-installed topological map. The 
set was initialised from the features detected in the current sensor data, as deter­
mined by the landmarks associated with the locations in the map. Progression 
of a state consisted of removing it from the set and replacing it with all of the 
possible subsequent states, depending on the new sensor data  and the robot’s 
direction of travel.

A probability value was assigned to each state using a hand-crafted “certainty 
m atrix” , which represented the likelihood of obtaining the observed features from 
the actual landmarks in the environment. These values were then propagated in 
Bayesian fashion during state set progression. Dervish used the most likely state 
to plan a path to a goal location, stopping to replan if the robot was no longer on 
the intended path, for example, because the robot relocalised itelf to a different 
location in the map or overshot a turn into another corridor.

This approach was not used in this thesis because it requires a pre-installed 
topological map, and the feature models and certainty m atrix have to be hand­
crafted to suit a particular environment.

Xavier

Koenig & Simmons (1996; 1998) developed a navigation system for performing 
delivery tasks in an office environment, which was implemented on a RWI-B24 
robot known as Xavier. In this approach, the environment and location models 
were defined more formally as a Partially Observable Markov Decision Process 
(POMDP), though the underlying mechanisms for feature detection and self­
localisation were much the same as those used by Dervish.

Xavier also required a pre-installed topological map, but had some ability to 
adapt its environment model through on-line learning. The user-defined map was
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augmented with approximate information about the distances between locations 
and the robot’s sensors and actuators. The pre-installed models were translated 
into the POMDP representation by a specially written compiler. An extended 
version of the Baum-Welch algorithm (Rabiner 1989) was then applied during 
navigation to improve the compiled distance, sensor and actuator models by 
adjusting the corresponding probabilities in the POMDP model.

The Baum-Welch algorithm is an expectation maximisation (EM) method 
for acquiring HMMs and POMDPs from data. This algorithm has a number of 
drawbacks, for example, it requires a large amount of data, is slow to converge 
and is subject to local maxima in the likelihood space. Koenig and Simmons 
avoided the problem of local maxima by pre-installing the initial model, and 
made learning in real-time possible by restricting the amount of training dath, to 
a sliding “time window” (Koenig & Simmons 1996). The size of this window could 
be varied according to the computational resources available. The algorithm was 
also speeded up by enforcing a number of constraints in the model based on the 
designers’ world knowledge.

The main disadvantage of this approach is its dependence on pre-installed 
world knowledge. Xavier relied on several assumptions about indoor environ­
ments which cannot be guaranteed in practice, for example, th a t corridors are 
always straight and perpendicular to each other. The compiled POMDP model 
also used a somewhat ad hoc representation for areas of open space.

R am ona

Shatkay & Kaelbling (1997) extended the Baum-Welch algorithm to allow off­
line acquisition of the map using pre-recorded sensor data collected by a modified 
RWI-B21 robot known as Ramona. This was achieved by extending the basic 
Hidden Markov Model to incorporate odometric information, and adapting the 
expectation maximisation algorithm to maintain geometric consistency in the 
model. A special clustering algorithm was developed to provide the initial model, 
based on local odometric relations extracted from the recorded sensor data.

The new version of the algorithm was shown to produce better models from 
less data and fewer training iterations, and was capable of learning models for en­
vironments containing loops. However, this approach still requires a large amount 
of data for re-estimating the probabilities in the model, and this data has to be 
collected manually by driving the robot around every section of the environment
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many times. The improved algorithm remains computationally expensive and is 
also affected by local maxima, so there is no guarantee tha t it would find a map 
which is topologically or geometrically correct.

A major drawback of the HMM and POMDP models is tha t they cannot rep­
resent arbitrary robot positions and orientations, because the robot’s environment 
model has to be quantized into a set of discrete states. Similarly, landmarks have 
to be quantized into a discrete set of possible observations, so the approach can­
not represent arbitrary sensor patterns. For these reasons, HMMs and POMDPs 
were not used in this thesis.

2.5 R obots w ith  Hybrid M aps

Some researchers have made attem pts to integrate topological and metric rep­
resentations (Edlinger & Weiss 1995; Yamauchi & Beer 1996; Simhon & Dudek 
1998; Gasos &: Saffiotti 1999). In this approach, the environment is represented 
globally as a graph of connected regions. Each region is then represented sepa­
rately by a small-scale, local metric map. This approach has the advantage that 
a globally consistent metric map is not required. The topological representation 
is used for path planning and middle-scale navigation, and the local metric maps 
are used for small-scale navigation. For example, Simhon & Dudek (1998) ad­
dressed the question of how to select good regions of the environment in which 
to establish local metric maps, based on the robot’s ability to carry out precise 
positioning using its immediate sensory information.

ELD E N

Yamauchi & Beer (1996) developed a navigation system known as ELDEN  for a 
Nomad 200 robot, which was tested in an 14 m x 8m laboratory environment. 
Exploration was carried out by a reactive controller, using an arbitration mech­
anism to combine a number of hand-crafted behaviours such as wandering and 
obstacle avoidance. Dead reckoning was used to construct a topological map. 
adding a new place whenever the distance to the nearest stored place exceeded 
a predefined threshold. To correct the odometry drift errors, the robot had to 
return to its starting location periodically to carry out a special recalibration 
procedure. Here, an occupancy grid constructed from the current sonar readings
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Figure 2.9: M OBOT-IV, a robot vehicle at Kaiserslautern University.

was compared to a previously stored grid, using hill climbing to find the trans­
formation producing the best match between the two grids. This transformation 
was then used to correct the robot’s odometry.

The need for regular homing imposes severe scaling limitations on this system, 
and the reliance on odometry means that the robot would be unable to recover 
from becoming lost. ELDEN  was later extended to use a set of stored occupancy 
grids for recalibration, one for each place node in the map (Yamauchi & Langley 
1997) (see also section 6.2.4). However, there was no mechanism for dealing 
with perceptual aliasing or for correcting the dead reckoning errors between the 
places in the map, so it is unlikely that the system would scale well to larger 
environments. Perhaps the most significant contribution of this work is the ability 
to adapt the robot’s map constantly in dynamic environments, using variable- 
confidence links to represent the uncertainty in the topological relations. Simple 
rules were used to strengthen and weaken the confidence levels, so tha t the system 
could plan an alternative route to a goal location if one of the previously explored 
paths became blocked by some object.
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M O B O T-IV

Edlinger & Weiss (1995) developed a navigation system for the mobile vehicle 
M O B O T-IV  (figure 2.9), in which the internal representation acquired by the 
robot was used to guide the exploration of an unknown environment. This system 
used a global topological map for navigation, storing the connections between a 
set of local metric maps obtained using a 360 degree laser range-finder. The laser 
scanner was first used to construct a temporary metric map from the current 
sensor data. This representation was then used for self-localisation and to detect 
areas of unexplored territory. The current sensor map was added to the global 
map whenever the distance of the robot from the nearest stored node exceeded a 
predefined threshold.

Self-localisation was achieved through cross-correlation of the current sensor 
map with the nearest stored scan in the global map (Weiss h  von P u tt lam er
1995). In this approach, angle histograms were first constructed and convolved 
(by searching the space of possible translations between the histograms for the 
current and stored scans) to find the most likely rotation of the robot, as in Hinkel 
& Knieriemen (1988), then x and y histograms were matched to determine the 
most likely translation. To detect regions of unexplored territory, a “passage” 
was defined as a region of open space in the current sensor scan with a width 
greater than th a t of the robot. During map building, the detected passages were 
added to a stack of goal destinations for the navigating robot. Path  planning was 
carried out on the topological map using the A* algorithm.

The M O B O T-IV  system was tested in a static corridor environment of size 
70 m x 55 m, demonstrating the reliability and scalability of the approach. How­
ever, the dependence on high resolution range-finding means th a t the system 
would be unlikely to work in a dynamic environment, where many temporary oc­
clusions and variations may be caused by other inhabitants of the environment. 
The system also depends upon prior position knowledge for self-localisation, so 
it would be unable to recover its position after becoming lost.

2.6 Concluding Remarks

Navigating mobile robots vary widely, especially in the details of their control 
architectures and the models used to represent the environment. Nevertheless,
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many researchers now agree tha t a hybrid deliberative-reactive architecture pro­
vides the most flexible approach for robot control, combining high-level, model- 
based reasoning with low-level, sensor-motor behaviours (see section 2.1.2).

Two competing paradigms exist for representing the environment. The first 
consists of detailed metric maps, in which the locations of objects in the robot’s 
environment are specified in a global coordinate system. Of the different pro­
posals for metric maps, the occupancy grid representation developed by Moravec 
& Elfes (1985) has been tested the most extensively over large environments. 
This includes perhaps the most successful robot navigation system to date (at 
least in terms of the number of PhD theses published during the 1990s), namely 
the RHINO/M INERVA  project, described in section 2.3.2. In my opinion, this 
approach has a number of fundamental weaknesses, which are common to all 
navigation systems based on full metric maps:

1. Dependence on accurate position information for map building. Metric 
maps can only be updated consistently using precise estimates of the robot’s 
position, a requirement which is particularly hard to fulfil in complex, 
middle-scale environments. This dependency also requires very accurate 
sensor information for both map building and self-localisation, discussed as 
follows.

2. Dependence on accurate sensing. Robots building metric maps depend crit­
ically on a geometrically accurate interpretation of sensor data, both to up­
date the map and to achieve the accuracy of localisation required for map 
learning. The task of high precision sensing is often undermined by the 
unpredictable variations which occur in the real world. To meet this re­
quirement, the RHINO  and MINERVA systems have incorporated a series 
of increasingly sophisticated sensor systems, including laser-range finders 
and stereo vision. This leads in turn to the following drawback.

3. High computational requirements. Robots using detailed metric maps re­
quire extremely large amounts of memory and processing power even to 
navigate in small environments. As a result, these systems are often depen­
dent on radio communication with external processors, a requirement which 
would be hard to fulfil in many real world environments. In my opinion, 
metric maps are therefore better suited to small-scale navigation tasks.
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Topological maps provide a compact alternative to metric maps which can 
represent much larger areas using the same resources, and have a much lower 
dependency on accurate positioning and accurate sensing for map building. A 
further possibility is provided by hybrid metric-topological maps, consisting of a 
topologically connected set of local metric maps. However, both topological and 
metric-topological maps can suffer from localisation errors caused by perceptual 
aliasing and sensor noise. In fact, any navigating robot is bound to become lost 
at some stage in environments of any real complexity. W ithout the ability to 
recover from localisation errors, the robot will be incapable of building a globally 
consistent map of its environment. A fundamental question is therefore how to 
identify places reliably which have been visited before by the robot. These issues 
are explored further in the next chapter, where the requirements for building a 
mobile robot capable of autonomous navigation in middle-scale environments are 
determined.



C hapter 3 

R equirem ents A nalysis

A b o u t th is  c h ap te r . An overview of the requirements for autonomous robot 
navigation in real world environments is first provided. This is followed by details 
of the specific needs of self-localisation and the map building scheme required, 
together with a summary of requirements.

3.1 A utonom ous M obile R obot N avigation

This chapter discusses the requirements for building a navigating robot capable of 
operating in indoor, middle-scale environments. In particular, these environments 
will be unknown — the robot will have no pre-installed map, unmodified — the 
environments will not be altered for the purpose of robot navigation, and semi­
structured — while the basic structure of an environment may be constant over 
time, there will be many variations in the appearance of th a t environment to the 
robot which cannot be predicted.

Perhaps the most essential competence required for robot navigation (other 
than staying operational and avoiding collisions) is tha t of self-localisation. W ith­
out the ability to identify locations reliably, a mobile robot will inevitably become 
lost, and therefore be unable to move reliably between target locations.

Proprioceptive sensor systems such as wheel encoders are unsuitable for po­
sition estimation over distances of any real significance because of drift errors 
caused by wheel slippage. Dead reckoning also depends on a priori knowledge of 
the robot’s position, and thus cannot relocate the robot should it become lost. 
Therefore, a navigating robot must depend primarily on its perception of external 
environmental features or landmarks for self-localisation. A key question is which

63
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features to extract from the robot’s sensor readings.
Localisation in turn requires a map of the environment. To be capable of 

independent operation, the robot needs the ability to construct its own maps on­
line using only its own sensory impressions of the target environment. To obtain 
this sensory information, the robot needs to be capable of goal-directed explo­
ration; th a t means being able to identify possible areas of unexplored territoiy, 
navigating towards these areas using its own map, and incrementally updating 
the map at the same time. Basic competences are required for avoiding collisions 
and following planned paths through the environment.

There are a number of issues in the map learning problem which also need to 
be addressed. The sensory information available to the robot is noisy, and can 
produce errors when integrated into the robot’s map. In particular, the robot’s 
odometry is subject to drift errors, which can lead to an inconsistent mapping of 
the environment. To obtain a coherent representation of the environment which 
can be reconciled with future sensory perceptions, some means of maintaining 
consistency in the map is required.

It is inevitable at some point that the robot will become lost. In real world 
environments, unpredictable variations in the robot’s sensor data will occasionally 
result in localisation errors, regardless of the accuracy of the actual sensing and 
position tracking methods employed. The ability to relocalise after becoming lost, 
a (hardest) special case of the problem of global localisation, is therefore essential 
if the robot is to be capable of recovery from such errors.

Finally, all of the above requirements need to be handled on a robot platform 
which has limited computational resources. Navigation in unmodified, middle- 
scale environments means tha t communication with external computers may not 
always be possible. Therefore, all of the computational mechanisms developed 
must be tractable and allow for real-time operation.

3.1.1 T he N eed  for Q uantitative Perform ance M easures

So far, mobile robotics research has had only limited success in achieving the ob­
jective of building robots capable of autonomous navigation in unmodified, real 
world environments. This is due in part to the numerous scientific challenges 
discussed briefly in the above section. However, in the opinion of a growing num­
ber of researchers (Smithers 1995; Lee & Recce 1997; Nehmzow 1997), there is a 
second reason why progress has been slow; objective comparison of existing work
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is often impossible, because researchers use different robots, apply different qual­
ity measures and conduct different experiments to validate their work. W ithout 
the ability to make meaningful comparisons between results, it is perhaps not 
surprising tha t overcoming the scientific challenges has been difficult.

In this thesis, quantitative measures of localisation performance and map 
quality are required. These measures would provide not only the criteria for as­
sessing the success of the research, but also a means of developing and refining the 
mechanisms for map building and self-localisation, allowing the effect of individ­
ual parameters and system sub-components to be assessed. In fact, localisation 
quality and map quality are closely related; for example, the quality of a map can 
be assessed using the robot’s ability to localise itself using th a t same map. The 
required performance measures should be applicable to a wide variety of different 
mechanisms for map building and self-localisation, allowing disparate systems to 
be compared under the same experimental conditions.

3.2 Self-Localisation

3.2.1 Self-O rient at ion

In attem pting to recognise locations, the robot is first faced with a basic problem, 
namely tha t the appearance of locations to the robot depends on the direction 
from which the robot views the location. One solution to this problem would be to 
make sure tha t the robot always approached locations from the same direction, 
by constraining the behaviour of the robot to following fixed paths. However, 
this approach will not be suitable for exploring and navigating in middle-scale 
environments of any real complexity.

Self-orientation is often treated as an integral part of the self-localisation prob­
lem in mobile robotics. A common approach involves matching the robot’s current 
sensory information to a stored map, searching the space of possible rotations as 
well as translations to find the best match (see e.g., Moravec & Elfes (1985)). The 
alternative would be to treat the problem of self-localisation separately, using a 
compass sense to first remove the problem of self-orientation.

There is certainly some evidence tha t biological navigation systems may rely 
on the latter approach. For example, pigeons may use either a geomagnetic 
compass or an internal function based on the position of the sun at the horizon



C h a p t e r  3 .  R e q u i r e m e n t s  A n a l y s i s 66

to calculate their orientation (O’Keefe & Nadel 1977, p. 65) (see also section
11.2.1). In rats, separate neurons have been found which signal the orientation of 
the animal’s head, irrespective of the animal’s actual location, known as “head- 
direction” cells. These contrast with the “place cells” which fire maximally at 
a particular location, irrespective of the animal’s orientation (see citations in 
McNaughton et al (1996)).

Using a compass on the mobile robot would have the advantage of greatly 
simplifying the self-localisation problem, reducing the search space in matching 
sensor readings to the map by an order of magnitude. It also has the disadvantage 
of reliance on one particular sensor, which will be subject to noise in real world 
environments. On the Nomad 200 robot,' the flux-gate compass is subject to vari­
ations in the magnetic field of the environment, and occasionally fails completely 
to find magnetic North. Therefore, in order to use this compass reliably, some 
method of dealing with the noise in the compass readings is required.

3.2.2 Landm ark R ecogn ition

Self-localisation is possible using artificial landmarks such as beacons. However, 
this research is concerned with navigation in unmodified environments, so the 
robot must depend solely on its own perceptions for landmark recognition. This 
is complicated by the problems of using sensors in the real world. For example, 
due to sensor noise, the robot will often obtain different sensor readings when 
revisiting a previously encountered location — individual sensory perceptions 
may be inconsistent and unreliable.

In order to cope with sensor noise, the robot should be capable of generalising 
on its perceptions in order to extract the salient features in a given situation, 
without being too distracted by the finer detail of individual sensor patterns. 
For robots equipped with sonar sensors, such as the Nomad 200 robot used in 
this thesis, other problems which must be overcome include cross-talk, where the 
echo from one sonar transm itter is picked up by a different receiver, and specular 
reflection, where a sonar receiver fails to detect an echo from the first object 
encountered by the transm itted sound pulse, instead receiving a reflected return 
from some other object. The robot’s range readings may also be affected by 
occlusions caused by other inhabitants of the environment,

A further problem is tha t people observe the world differently to robots, a 
problem described as perceptual discrepancy by Nehmzow & Mitchell (1995). This
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means tha t the designer may not select the most appropriate landmarks for the 
robot, due to the mismatch between the perceptual apparatus of the robot and 
tha t of the human designer. It is for precisely this reason th a t landmark recog­
nition systems based on artificially constructed maps such as CAD models can 
be brittle, and may suffer from the correspondence problem, where the robot fails 
to match its sensory perceptions to the corresponding components of the map. 
Rather than attem pting to identify specific objects in the robot’s environment, 
e.g., walls, doors, etc., the main requirement for reliable landmark recognition is 
the ability to recognise distinct sensory impressions of an environment according 
to their similarity. The required mechanism should be able to distinguish sensor 
patterns which share common features from those which do not.

Landmark recognition systems based on self-organisation, such as Kohonen 
networks (Kohonen 1993), and ART networks (Grossberg 1988), present one pos­
sible means of achieving these objectives. These systems cluster together sim­
ilar sensor patterns, avoiding many of the difficulties of sensor noise, specular 
reflection and cross-talk because they do not attem pt to extract explicit met­
ric information from their sensory inputs. Ultimately, however, the appropriate 
mechanism for landmark recognition on a particular robot can only be validated 
through experiments on the robot itself. The decision on which mechanism to 
choose was therefore based on the results of an experimental comparison of sys­
tems described in chapter 6.

3.2.3 G lobal L ocalisation

In addition to the problems described above, the task of localisation is made 
non-trivial by the fact tha t many places may look the same to the robot, a char­
acteristic of sensory perception known as perceptual aliasing. Thus, the currently 
perceivable landmarks alone may not be sufficient to uniquely identify the true 
location of the robot. In many localisation systems, this problem is avoided in the 
first instance by position tracking, using prior position information from odom­
etry to constrain the landmark recognition process to a small area in the map 
around the robot’s current position estimate, thereby eliminating many other 
places which may look the same to the robot. The odometry is then corrected 
using the known positions of the perceived landmarks in the map. However, this 
approach is bound to fail eventually when the robot becomes lost, because the 
robot’s position cannot be recovered without using some other mechanism for
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disambiguating perceptually aliased locations.
Global localisation is generally recognised as one of the hardest problems in 

mobile robot navigation. It requires exploration, since the robot often needs more 
than just its sensory impressions of a single location to relocalise, and correlation 
of the subsequent sensory perceptions with the map. It also needs methods for 
representing and reasoning with the uncertainty in the robot’s position, since 
this can never be established with absolute certainty. Given the difficulty of the 
task, and the fundamental importance of this particular competence above all 
others, I would argue strongly tha t the robot should try  to use as much of the 
available sensory information as possible in trying to localise itself. This includes 
information from odometry about the relative displacement of the robot between 
observed landmarks (since odometry can only produce reliable position estimates 
over small distances) as well as the landmarks themselves. In some situations, for 
example where an environment contains repeated constellations of very similar 
looking places, reliable landmark-based localisation might only be possible with 
the help of extra sensory information from odometry. Methods for combining 
information from both the robot’s exteroceptive and proprioceptive sensors are 
therefore required, and metric information would also need to be incorporated 
somehow into the robot’s map.

3.3 The Choice of M ap

3.3.1 T opological versus M etric M aps

I have argued for the use of metric information as well as landmarks in the robot’s 
map for self-localisation, on the grounds tha t many sources of sensory informa­
tion will be better than one. Yet in the preceding chapter, consideration of the 
previous work on navigating mobile robots lead to the conclusion th a t topological 
maps are better suited to navigation in middle-scale environments than metric 
maps. The low computational cost of maintaining topological representations, to­
gether with their reduced dependence on accurate sensing and accurate position 
estimation for map building, were particular reasons for reaching this conclusion.

Lee (1995, p. 33) introduced a classification of robot maps based on the notion 
of geometric strength, consisting of the following categories:

1. Recognisable Locations. The map consists solely of a set of locations which
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can be identified by the robot — no geometric information can be recovered.

2. Topological Maps. The map consists of recognisable locations, and informa­
tion about the connectivity between visited locations can also be recovered.

3. Metric Topological Maps. In addition to topology, metric information can 
be recovered about paths which have been travelled.

4. Full Metric Maps. Metric information can be recovered about any objects 
in the map.

In determining the requirements for a delivery application, Lee argued tha t 
his robot needed a full metric map because topological maps would not allow 
the robot to take the “short cuts” which he claimed were necessary for efficient 
performance on the delivery task (1995, p. 47). However, Lee’s robot experiments 
were conducted in a small-scale, laboratory environment, where the impact of 
dead reckoning errors would have been relatively minor. It is very unlikely tha t 
such an approach would scale to a larger environment, where accurate positioning 
becomes much harder to achieve, since precise position information is needed to 
update full metric maps. In middle-scale environments, robots trying to build 
accurate metric maps face a losing battle in reducing the uncertainty in the robot’s 
estimated position against problems such as wheel slippage, sensor noise, specular 
reflection, cross-talk, perceptual aliasing and becoming lost, even without the 
presence of humans and changes to the environment.

At the same time, I concur with Lee on the limitations of purely topological 
maps. W ithout using any stored metric information, it would be very difficult for 
a robot to identify perceptually aliased locations, explore complex environments 
and plan shortest paths. To solve this dilemma, some means of reconciling topo­
logical and metric representations is required. Thrun (1998b) developed a dual 
mapping system in which a topological map is derived from an underlying metric 
map, described in section 2.3.2. However, this approach means th a t the robot 
would still be affected by all of the problems of maintaining a full metric map. 
The alternative investigated in this thesis is to use a topological map to provide 
the basic underlying representation in the robot’s environment model, then to 
augment this with additional metric information as required. The requirements 
of such a scheme are discussed as follows.
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3.3.2 T he U se o f M etric Inform ation

The use of odometry for navigation is the most im portant consideration, since 
this will dictate the required representation of metric information in the robot’s 
map. One possible mapping scheme would be to record only local metric relations 
in map, tha t is, to add information concerning the relative distances and angles 
between stored locations. Self-localisation would then consist of correlating the 
observed sequence of sighted landmarks and the measured displacement of the 
robot between sightings with the stored relations in the map. However, to build 
such a map by itself, the robot would have to explore every possible transition 
in the map between neighbouring places to obtain the metric information needed 
for localisation (a very inefficient map building strategy in itself). This in turn 
would require the ability to recognise previously visited locations — tha t would, 
however, be very difficult because some of those places might themselves be per­
ceptual aliased locations, which could then only be identified using an additional 
exploration strategy known as a rehearsal procedure (Kuipers & Byun 1991).

An alternative approach would be to incorporate global metric information 
into the robot’s map, tha t is, to assign Cartesian coordinates to each of the 
stored locations in the map. Self-localisation would then involve correlation of the 
perceived metric relations between sighted landmarks and the equivalent, inferred 
relations within the Cartesian coordinate system. This approach would have 
the advantage tha t perceptually aliased locations could be recognised even when 
approached from an unfamiliar direction, using the global metric information in 
the map to resolve perceptual ambiguity and eliminating the need for a rehearsal 
procedure. In addition, a global coordinate system would be useful for mapping 
an unknown environment, providing a framework for integrating new sensory 
information and adding new territory to the map.

3.4 M ap Building

The above argument for global metric information in the robot’s map is based 
on the assumption of geometric consistency. In practice, however, odometry drift 
errors mean tha t it is very difficult to maintain a globally consistent coordinate 
system using dead reckoning. The position estimates obtained from wheel en­
coders quickly become unreliable, leading to inconsistencies with the existing 
metric information in the map. Mechanisms for performing odometry correction
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such as the Kalman filter cannot solve this problem either, because these methods 
can only produce accurate location estimates within territory which has already 
been mapped correctly. In order to obtain reliable global metric information in 
a robot’s map, some other means of enforcing geometric consistency is required.

Additionally, to operate in an unknown environment, the robot needs to be 
able to acquire its own maps through exploration. In complex environments, this 
means being able to use the map itself to navigate to possible areas of unexplored 
territory. The robot must then head off into unfamiliar territory to obtain the new 
sensory information required to extend the map. However, this introduces a new 
problem, namely how to self-localise in uncharted territory. One possibility is to 
stay within range of existing landmarks in the map, another is to use a local dead 
reckoning strategy. The robot also needs to decide which way to go. One method 
would be to head off in a random direction, but this could be inefficient since it 
might take many attem pts to reach some parts of the environment. Alternately, 
the robot could use some mechanism for detecting possible areas of uncharted 
territory, such as areas of open space which are not present in the map.

3.5 Sum m ary of Requirem ents

In order to build a mobile robot capable of navigating in unmodified, middle-scale 
environments from scratch, the following requirements were determined:

1. Landmark Recognition. The problems of odometry drift mean tha t the 
robot must rely on its perception of external environmental features for 
navigation. The robot needs to generalise on its perceptions to extract 
the salient features from its raw sensor data, and to overcome problems 
including sensor noise and specular reflection.

2. Self-Orientation. In order to recognise landmarks from arbitrary orienta­
tions, the robot needs a compass sense. This can be obtained either using 
a real compass or an equivalent mechanism for recovering the robot’s ori­
entation unambiguously from external environmental features.

3. Global Localisation. The robot needs the ability to re-identify locations, es­
pecially after becoming lost. In order to overcome the problem of perceptual 
aliasing (similar looking places) the robot needs to explore the environment.
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Extra sensory information from relative odometry between perceived land­
marks can help to relocalise the robot.

4. Metric-Topological Map. Due to limited computational resources, a robot 
needs an efficient representation of a middle-scale environment — topologi­
cal maps are more compact, and require less accurate position information 
for map learning than metric maps. However, tasks such as global local­
isation and map building are very difficult without metric information in 
the robot’s map — a global coordinate system would be the most flexible 
approach.

5. Map Learning. The robot needs the ability to build its own maps to operate 
in unknown environments. Incorporating a global coordinate system into 
the robot’s map introduces a further requirement, th a t of geometric consis­
tency. A globally consistent coordinate system cannot be obtained using 
dead reckoning — therefore, some other mechanism for enforcing geometric 
consistency is required.

6. Exploration. Global localisation and map building both require exploration 
in order to collect useful sensory information. To extend an existing map, 
the robot needs to be able to navigate towards areas of unexplored territory. 
This in turn  requires basic sensor-motor competences for avoiding collisions 
and following planned paths through the environment.

To evaluate the performance of the system and its sub-components, quanti­
tative measures are required, in particular for assessing localisation quality and 
map quality. In the following chapter, we turn to some of the basic mechanisms 
and assumptions underpinning the rest of this research.



C hapter 4

Basic M echanism s and  
A ssum ptions

A b o u t th is  c h a p te r . This chapter provides a brief description of the mech­
anisms developed for sensing and low-level motor control and the assumptions 
behind the research presented in the following chapters.

4.1 System  Overview

In the following chapters, the development of a complete system for concurrent 
self-localisation and map building by a navigating mobile robot is described. The 
research was carried out on the Nomad 200 mobile robot Forty Two, using its 
sonar, infrared and odometry sensors and an on-board flux-gate compass. The 
robot has three degrees of freedom, being able to rotate the tu rret independently 
of the base of the robot, which contains separate motors to control the robot’s 
translational and rotational movements (see figure 1.4).

In this thesis, the turret was controlled separately using the compass to pro­
vide the robot with a canonical view of locations, described in section 4.2. The 
compass sense was also used to remove the rotational drift affecting the robot’s 
odometry, described in section 4.3. Landmark recognition was carried out using 
the sonar sensors, while tasks requiring close proximity sensing, such as collision 
avoidance, were carried out using a combination of sonar and infrared.

All of the subsequent experiments were conducted in a series of unmodified,
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middle-scale environments in the Computer Science building at Manchester Uni­
versity. The environments were assumed to be unknown, unmodified and semi­
structured, being subject to transient variations in the robot’s sensor data. People 
were free to move in the immediate vicinity of the robot, but it was assumed tha t 
the robot’s path would never be completely blocked during exploration, so tha t 
the robot could construct its maps in a single tour of the environment.

The high-level control routines used for map building and self-localisation are 
described in subsequent chapters. For low-level motor control, previously ac­
quired behaviours for obstacle avoidance and wall-following were used, described 
in section 4.4.

4.1.1 M etric-T opological M ap

For the reasons discussed in the previous chapter, it was decided to use a hybrid 
metric-topological map. The basic underlying representation consisted of a topo­
logically connected set of places, each place being identified by a description of 
the perceived environmental features or landmarks at th a t location. To improve 
the reliability of landmark recognition, a sensing strategy designed to increase the 
resolution of the robot’s sensors was used, described in section 4.5. The experi­
ments conducted to determine an appropriate landmark recognition mechanism 
for the Nomad 200 are described in chapter 6.

In addition, the map was augmented with metric information describing the 
relative displacement of the robot between connected places. The optimisation 
algorithm described in chapter 8 was used to assign a globally consistent set of 
Cartesian coordinates to the places in the map based on the local metric relations. 
The coordinates were used for a number of purposes, including self-localisation 
(chapter 7) and exploration of unknown environments (chapter 9). The local 
metric information used for both map building and self-localisation was obtained 
from the dead reckoning mechanism described in section 4.3.

Full details of the representation schema can be found in the chapters on 
global localisation (section 7.2.1) and map learning (section 8.2).

4.2 Com pass Sense

A basic problem for landmark-based robot navigation is th a t the appearance of 
locations to the robot depends on the direction in which the robot’s sensors are
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Figure 4.1: Left: raw odometry. Right: compass-based odometry. The accumu­
lated rotational drift in the robot’s raw odometry was removed on-line using the 
compass sense.

facing. To eliminate this problem, a separate behaviour was used to rotate the 
turret at small speeds, while the robot was in motion, so tha t the turret always 
had the same orientation, as indicated by the flux-gate compass. The effect of 
this behaviour was to smooth out local fluctuations in the magnetic field of the 
environment, so tha t the robot explored with its sensors facing in the same global 
direction throughout rather than the direction of travel. Consequently, the ap­
pearance of locations depended on the robot’s position alone, not its orientation.

While this method is robust in dealing with minor variations in the magnetic 
field, ferrous building materials could cause severe compass errors in some en­
vironments. However, for the purpose of landmark recognition, the important 
point is tha t the appearance of locations remains invariant with respect to the 
robot’s heading, regardless of global magnetic deviations. For the purpose of 
global self-orientation, a more reliable compass sense could be obtained by inte­
grating perceptual information from the robot’s exteroceptive and proprioceptive 
sensors, as in the self-orientation system described by Li et al. (1998), or by using 
correlation with a vision-based map of the ceiling as in Thrun et al. (1999).
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4.3 D ead Reckoning

4.3.1 C om pass-B ased  O dom etry

Dead reckoning using odometry consists of integrating small measurements from 
the robot’s wheel encoders. Separate encoders track the robot’s rotational and 
translational movements, both of which are subject to cumulative drift errors. 
In this thesis, however, the rotational drift affecting the robot’s odometry was 
removed as follows. Instead of using the robot’s rotational wheel encoders for the 
on-line dead reckoning, the relative angular displacement of the turret against 
the direction of travel was used (see figure 4.1). The robot’s (x ,y)  coordinates 
were continually recalculated according to the following equations:

x' ~  x-t-€ t cos at (4.1)

y’ =  y +  e* sin a* (4.2)

where et refers to the distance travelled, as measured using the robot’s raw odom­
etry, and a t to the measured angle at each time step t. This eliminated the
accumulated angular drift because the turret was anchored to magnetic North
by the compass sense. Using compass-based odometry on the Nomad 200 leaves 
a translational drift error of up to 5% of distance travelled. Comparison of the 
diagrams in figure 4.1 shows clearly the two components of dead reckoning error, 
translational and rotational.

4.3.2 R epresen ting  th e  U ncerta in ty

In mobile robotics, the inherent uncertainty of dead reckoning means tha t position 
estimates are typically represented as a probability density function rather than a 
single point value. Because the compass sense was used to remove the rotational 
error in the robot’s odometry, it was possible to use a very simple noise model to 
represent the uncertainty in the robot’s distance measurements. For a given point 
(a;,y), the noise is assumed to be distributed equally in all directions according 
to a Gaussian function of the distance from (rr,y). Thus, the area in which the 
robot may be located with non-negligible probability is modelled by a circle, and 
the uncertainty in any point measurement is represented by a single variance a 2 
(see figure 4.2).
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Figure 4.2: The assumption of circular, Gaussian noise. The noise in the robot’s 
position estimates is assumed to be distributed equally in all directions according 
to a Gaussian distribution; thus, position estimates are represented by a triple 
(x, y , a 2) where (x, y) is the mean position and a 2 the corresponding variance (see 
section 4.3.2).

The assumption of circular noise means that the robot’s actuators are not 
modelled accurately. In some cases, it might be preferable to use a model which 
captures more accurately the underlying physics of robot motion, for example, 
with separate components in x , y and 9 (see e.g., Smith et al. (1990)). The 
assumption of Gaussian noise also means tha t each distance measurement is con­
sidered to be independent, and that the model cannot deal with cumulative phe­
nomena such as battery drain. Nevertheless, the results presented later in the 
thesis show that the simple model is sufficient for robust navigation performance 
in the real world. The model is also attractive for real-time operation in middle- 
scale environments because of its low computation cost.

4.3 .3  R etrosp ective  O dom etry C orrection

The above sections described the on-line dead reckoning method (section 4.3.1) 
and the corresponding model of the accumulated dead reckoning error (section 
4.3.2). In this section, I introduce an off-line method for dealing with the remain­
ing translational error affecting the robot’s compass-based odometry. Provided 
that clearly identifiable landmarks are available, this error can be removed post- 
hoc by applying the following procedure (see figure 4.3).

Firstly, the recorded data is divided manually into laps by finding some promi­
nent feature, such as a corner, in the odometer trace. (This could easily be
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Figure 4.3: Left: compass-based odometry. Right: retrospectively corrected 
odometry. The remaining translation error in the robot’s compass-based odome­
try was removed post-hoc through manual identification of prominent landmarks 
in the recorded odometer trace (see section 4.3.3).

done automatically by using an external sensor to detect the completion of an­
other lap by the robot, for example, using an overhead cross-bar sensor as in 
Smithers (1995).) For each lap, the accumulated drift error is then removed by 
correcting each data point by an amount proportional to the distance travelled 
along the route. Finally, a translation is applied to all of the laps but the first 
one so tha t all laps start and end at the same (x, y) position.

Clearly, this technique cannot be used for real-time robot navigation. How­
ever, it is very useful both in studying the problem of self-localisation and in 
analysing the performance of the navigating robot. The application of this 
method — including its limitations — to the measurement of localisation perfor­
mance is discussed in section 5.3.1.

4.4 R eactive Behaviours

In order to avoid pre-installation of control knowledge by the system designer, 
the low-level sensor-motor behaviours required for navigation were acquired in­
dependently by the robot using an artificial neural network. This mechanism 
consisted of a single perceptron which was trained to associate the robot’s sonar
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and infrared sensor readings with continuous-valued motor velocities (see figure
2.1), as in Nehmzow (1994).

The sensor input was first pre-processed to take into account the heading of 
the robot, since the robot’s sensors were fixed to magnetic North by the compass 
sense. The 11 sonar and 11 infrared readings centred around the direction of travel 
were then presented in the input vector to the perceptron. Two output units were 
used to control the robot’s motor actions, one to determine the translational 
velocity and the other the rotational velocity.

The training signal was determined using a predefined set of “instinct rules” , 
as in Nehmzow (1992). To obtain the required behaviour for avoiding obstacles, 
the robot was provided with two instinct rules, one to teach the robot to move 
faster if its actual translational velocity fell below a prespecified threshold, and 
one to teach it to turn  away from objects detected within a certain sensor range. 
In order to obtain the required behaviour for wall-following, a third instinct rule 
was added, teaching the robot to turn  towards the nearest perceived object if the 
distance to th a t object exceeded a given threshold. The three instinct rules can 
be summarised as follows:

1. Move forwards.

2. Turn away from obstacle if nearest infrared reading <  5.

3. Turn towards obstacle if nearest infrared reading > 1 0 .

This approach has the advantage tha t the neural network can be quickly 
retrained to work in new environments. In these experiments, the required be­
haviours were first acquired in a small-scale environment, then the weights were 
fixed before the system was used in middle-scale environments. In fact, the 
weights in the network could be continuously adapted on-line using the instinct 
rules if required, as in Nehmzow (1992), though this was found to be unnecessary 
for the experiments conducted here.

4.5 Sensing Strategy

The sensing strategy used for map building and self-localisation consisted of peri­
odically stopping the robot and then rotating its turret to obtain a detailed sensor 
scan, before resuming exploration. By taking nine sets of sensor readings at 2.5
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degree intervals, a scan consisting of 144 sonar and 144 infrared readings was 
obtained. This sensory information was then used as input to the mechanisms 
for landmark recognition, self-localisation and map acquisition.

The motivation for using this sensing strategy was firstly to increase the reso­
lution of the robot’s sensory apparatus, thereby improving the accuracy of feature 
detection and landmark recognition by the robot. Secondly, the strategy reduces 
the effect of variations in the robot’s environment. For example, if a person 
walks past the robot, it is likely tha t several of the robot’s sonar readings may 
be occluded, which can often result in landmark identification errors. By taking 
a succession of sensor readings at small time intervals while the robot rotates its 
turret, this effect can be dramatically reduced, since a much smaller proportion 
of the total number of sensor readings will be affected.

However, while using more exteroceptive sensory information reduces the like­
lihood of localisation errors, this strategy can never be guaranteed to eliminate 
these errors completely, due to the problem of perceptual aliasing. For this reason, 
the evidence-based localisation algorithm described in chapter 7 was developed.

4.6 Sum m ary

Environments are assumed to be unknown, unmodified and semi-structured, and 
are represented using a metric-topological map. A geomagnetic compass is used 
to remove the problem of self-orientation and the accumulated rotational drift 
errors affecting the robot’s odometry. The uncertainty in the robot’s distance 
measurements is represented using a simple noise model; in all of the algorithms 
in the following chapters, position estimates in Cartesian space are represented 
by an (x, y) coordinate associated with a single variance measure. Self-acquired 
reactive behaviours for obstacle avoidance and wall-following are used for low- 
level sensor-motor control. A technique for taking detailed range-finder scans is 
used to increase the resolution of the robot’s sensors for landmark recognition.



Chapter 5 

M easurem ent of Localisation  
Perform ance

A b o u t th is  c h a p te r . This chapter addresses the question of how to measure 
the performance of mobile robot self-localisation systems in middle-scale envi­
ronments. Experimental procedures and a general performance metric are intro­
duced, for which no semantic interpretation of the robot’s environment model is 
required.

5.1 Introduction

So far, relatively few attem pts have been made in mobile robotics to quantify 
robot-environment interactions or to conduct experimental comparisons of navi­
gating robots. Exceptions include the work of Schoner & Dose (1992), Schoner 
et al (1995) and Smithers (1995), where fundamental sensor-motor behaviours 
were analysed in terms of dynamical systems theory; Lee (1995) and Lee & 
Recce (1997), where various exploration strategies for map building were evalu­
ated; and Gutmann & Schlegel (1996), Gutmann et al (1998) and Thrun (1998a), 
where different algorithms for self-localisation were compared. In this thesis, a 
general method of evaluating localisation quality over middle-scale environments 
was required to determine reliable mechanisms for landmark recognition and self­
localisation.

A number of different measures have been used by mobile robotics researchers
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to assess localisation quality. Absolute error, measured as the difference be­
tween the robot’s predicted and actual position in an external Cartesian ref­
erence frame, is one approach (Gutmann & Schlegel 1996; Oore et al 1997; 
Thrun 1998a). However, this metric is really only feasible for simulations and 
small-scale environments, because a great deal of time and effort is required to 
measure the exact position of a moving robot in a middle-scale environment. 
Also, such a measure does not facilitate comparison with systems which pro­
d u c e r  non-Cartesian response to their perceived location, such as self-organising 
feature maps (Nehmzow et al 1991).

A second approach is to evaluate a percentage correct figure for the system 
under investigation (Yamauchi & Langley 1997). However, this calculation re­
quires tha t the human observer is able to interpret the meaning of the robot’s 
response with respect to the robot’s environment. Such an interpretation would 
not be readily available in many cases, for example, in robotic implementations 
of models of the hippocampus (Touretzky et al 1994; Burgess et al 1997; Bethell
1996) and self-organising systems (Nehmzow et al 1991; Keuchal et al. 1993; 
Lambrinos et a l 1995), where the robot forms its own internal representation of 
the world.

A third method was used by Gutmann et al (1998) in an experimental com­
parison of two self-localisation systems based on metric maps, using sensor-motor 
data previously recorded by a navigating robot. Again, the accuracy of localisa­
tion was measured using absolute error, but global localisation performance was 
also assessed by measuring the number of times the robot would have become lost 
using a particular localisation method. However, the latter metric also requires 
interpretation of the robot’s position estimates to determine whether the robot 
has become lost, and would be difficult to apply to systems which generate a 
non-Cartesian response.

Instead, the approach taken here was to adopt a “black box” or stimulus- 
response model of the robot’s interactions with its environment. A performance 
measure based on the statistical notion of mutual information (Shannon & Weaver 
1949) is detailed in the next section. This effectively measures the extent to which 
the robot’s response predicts its true location, without requiring any semantic 
interpretation of the robot’s environment model by the observer.

Section 5.3 describes the basic experimental procedure used to calculate this
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statistic. This includes mechanisms for recording the robot’s sensor data and esti­
mating the true location of the robot, since this information is required to assess 
localisation performance. Section 5.4 describes an extension to this procedure 
known as the “lost robot experiment” , in which the localisation performance of 
the robot is measured over time as it attem pts to relocalise from an unknown 
starting position.

5.2 The Perform ance M etric

The calculation of the performance measure is based on a data  structure known 
as a contingency table (Press et al 1992, p. 628). In the example shown in 
figure 5.1, a sample consisting of 100 data points has been collected. Each data 
point has two attributes; one corresponding to the location predicted by the robot 
(known as the robot’s response, R), and the other to the actual location occupied 
by the robot (known as the robot’s location, L). The robot’s true location must 
therefore first be quantized into a set of “bins” — a procedure for automatically 
recording the actual location of the robot is described in the following section. 
By convention, the rows of the table are used to represent the response, and 
the columns to represent the location. For example, figure 5.1 shows one cell 
containing 19 data points where the robot’s response was measured as row 3 and 
the location as column 5.

For a contingency table, the Row Totals for each response i (equation 5.1), 
Column Totals for each location j  (equation 5.2) and the Table Total (equation 
5.3) are calculated as follows, where refers to the number of data points 
contained in the cell a t row i and column j :

N .j =

(5.1)

(5.2)

iV =  ] T J V  (5.3)
id

For the example table, the total of row 3 (IV3.) is 22, the to tal of column 5 (iV.s) 
is 21, and the table total is 100.
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L o c a t i o n  (L)

<D
w
Pi
o
Pi
to
Q)

0 2 15 0 1 18

10 10 0 0 0 20

0 2 1 0 19 22

5 7 3 1 1 17

0 0 0 23 0 23

15  21  19  24  21  100

Figure 5.1: Example contingency table. The rows correspond to the response pro­
duced by the particular localisation system under investigation, and the columns 
to the “true” location of the robot as recorded by the location binning mechanism 
described in section 5.3.1. This table represents 100 data points, and also shows 
the totals for each row and column.

The Row, Column and Cell Probabilities can then be calculated using

Pi- =  7 ^ .  (5-4)

P-i = 7 p  (5-5)

PH =  T P  (5.6)

For the example table, the probability of a data point lying in row 3 is 0.22, the 
probability of a data point lying in column 5 is 0.21, and the probability of a data 
point lying in cell (3, 5) is 0.19.

The next set of equations are used to evaluate the entropy of the variables 
under consideration, i.e., the amount of information required to remove any un­
certainty in these quantities. The Entropy of L (equation 5.7), the Entropy of R  
(equation 5.8) and the Mutual Entropy of L and R  (equation 5.9) are defined as

H (L ) =
3

(5.7)
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H( R)  =  - ! > .  In (5.8)
i

H ( L , i?) =  -  lnp*j. (5.9)

In particular, we are interested in measuring the useful information provided by R  
in predicting the value of L. (We are not concerned with the reverse relationship; 
for example, if two responses both predict the same location this should not have 
a negative impact on the metric.) Therefore, the Entropy of L given R  is obtained 
as

H (L  | R) =  H ( L } R) -  H(R)  (5.10)

where

0 < H( L  | R) < H(L)  (5.11)

This last property (equation 5.11) means tha t the range of values for H ( L  \ R)  
will be dependent on the size of the environment, because H(L)  increases as 
the number of location bins increases. For making comparisons across different 
environments, an alternative statistic is the Uncertainty Coefficient of L given R , 
where the performance measure is scaled to lie between 0 and 1, given as

u(l i * ,, m i i a .  (!U 2)

The question asked by this metric is “How much information does R  provide about 
L?”. A value of U(L  | R) = 0 means tha t R  provides no useful information about 
L } and implies tha t the robot’s response never predicts its true location. A value 
of U(L  | R) =  1 means th a t R  provides all the information required about L, 
and implies th a t the response always predicts the true location. It should also be 
noted th a t the ordering of the rows and columns in the contingency table makes 
no difference to the outcome of this calculation, hence no external interpretation 
of the robot’s responses is needed.
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5.3 Basic Experim ental Procedure

This section describes the basic experimental set-up used to evaluate localisation 
quality. It has the following components:

1. Middle-Scale Environment. The experiment requires a large environment, 
as we are interested primarily in the robot’s ability to recognise distinct 
locations over middle-scale distances, rather than precise positioning over 
a small area.

2. Exploration by Wall-Following. Wall-following was used because the purely 
reactive nature of this strategy means tha t sensor data can be recorded and 
played back for later experiments, whilst preserving the full complexity of 
robot-environment interaction.

3. Data Collection. As the robot explored each environment, a data record­
ing mechanism was used to record the robot’s range-finder and odometer 
sensor readings into a datafile at regular intervals. The sonar and infrared 
readings were recorded by stopping the robot at 0.50 m intervals, and then 
rotating the robot’s turret to obtain a detailed sensor scan, as described 
previously in section 4.5. The collected data could then be played back 
to assess the performance of different localisation systems as required. Us­
ing the same recorded data throughout ensured th a t all experiments were 
conducted under identical conditions.

4. Location Recording. The problem addressed here was to find some way 
of measuring the “true” location L  of the robot for later comparison with 
the responses of a particular system. In earlier experiments (Duckett & 
Nehmzow 1997b), this was done manually by drawing a grid on the floor 
of the environment and recording the time whenever the robot moved into 
a new grid cell. However, this process was time-consuming and prone to 
human error, so an automated location recording mechanism was developed, 
described in the next section.

5. Quantitative Performance Measure. The uncertainty coefficient U(L \ R) 
(equation 5.12) was used to determine the strength of the association be­
tween the responses of the localisation system under investigation and the
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Figure 5.2: Left: location binning mechanism. Right: corresponding floor plan. 
The recorded odometry data was first corrected using the technique described in 
section 4.3.3 (see also figure 4.3). The dotted grid was then used to coarse-code 
the corrected location data into bins.

true location of the robot. Some heuristics for choosing an appropriate 
number of responses and location bins are discussed in section 5.3.2.

5.3.1 L ocation  B inn ing M echanism

To determine the robot’s true location L, the technique for retrospective odometry 
correction described in section 4.3.3 was applied. Recall tha t this procedure 
involves applying a post-hoc correction to the recorded odometry data for each 
successive lap of the environment by the wall-following robot. The corrected 
data was then coarse-coded into equally sized bins as illustrated in figure 5.2. 
The orientation and positioning of the dotted grid shown in figure 5.2 over the 
corrected odometer trace was determined using an exhaustive search procedure 
to minimise the number of bins occupied, and then to maximise the value of H(L)  
(equation 5.7) where several possible grid positions produced the same number 
of bins. The choice of bin size is discussed in the following section.

For performance evaluation, the recorded sensor data from the robot’s first 
lap of the environment was used for map building (or landmark learning), and

Corrected Odometry

12 18 24  30  36  42
Odometer X/m
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the data from the subsequent laps was used for testing.

N o te : The procedure for correcting the recorded odometry data  assumes tha t 
drift error occurs equally over distance travelled. In practice, the robot’s wheels 
tend to slip more on turns than on forward motion. Wheel slippage can also 
vary according to the speed and acceleration of the robot. There can also be 
magnetic variations in the environment which affect the robot’s on-line compass- 
based odometry; this is noticeable, for example, in figure 5.2 when the robot 
passed the workshop, a room containing heavy machine tools. However, such 
distortions in the corrected odometer trace should not adversely affect the per­
formance measures, provided tha t the assignment of bins to locations is consistent 
between successive laps of the environment by the wall-following robot. Note also 
tha t any variations in the recorded sensor data will affect all systems equally in 
any performance comparisons; sensor noise is a natural, inseparable aspect of 
robot-environment interaction, which should be included in any assessment of 
navigating mobile robots.

5.3.2 C hoosing th e  E xperim ental P aram eters

There are a number of im portant parameter values which must be determined 
before calculating the uncertainty coefficient. Firstly, the number of data points 
used for performance evaluation should be selected so th a t all parts of the en­
vironment are equally represented, otherwise the performance measures will be 
biased towards one particular region. For data collected by wall-following, this 
means using data from a whole number of laps (circuits) of the environment.

The next decision is to select the number of responses N r  by configuring 
the individual system parameters of the particular localisation mechanism under 
investigation (for example, many systems have some critical parameter which de­
termines the sensitivity to perceptual detail, and therefore the number of different 
landmarks recognised). The higher the number of responses a system produces, 
the more information it can give about its true location. Therefore, if several dif­
ferent systems are to be compared, these systems should be configured as closely 
as possible to produce the same number of responses N r  in the same environment.

The size of the location bins, and therefore the number of location bins 7VL, 
depends on the particular experiment being conducted. For assessing global lo­
calisation, the bins can be very large, whereas a fine resolution would be required
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to measure the accuracy of a robot’s position estimates.
Another im portant consideration is the effect of quantization errors due to 

the grid representation used by the location binning mechanism (see figure 5.2). 
For some systems, there may be a big discrepancy between the shape of the 
locations recognised by the robot and the square cells of the grid — for example, 
consider the “situation areas” shown in figure 2.6 for the maps built by the 
ALEF robot (Kurz 1996). In this case, big location bins should be used, so 
tha t N r is several times larger than N L (i.e., each location bin contains several 
robot responses) in order to minimise discrepancies caused by quantization effects, 
particularly if the experiment involves comparing a number of disparate systems.

A detailed example is presented in the next chapter, comprising an experi­
mental comparison of landmark recognition systems.

5.4 The Lost R obot Experim ent

As discussed in the requirements analysis, a mobile robot needs the ability to 
recover from becoming lost if it is to navigate robustly under realistic operating 
conditions, such as dynamic environments. To measure this ability, I designed 
the following experiment. The basic idea is that the robot is first subjected 
to a “virtual kidnapping” (after Engelson (1994)), being transported to an a 
;priori unknown location with its sensors “blind-folded” and odometry disabled 
during this move. The performance of the particular localisation system under 
investigation is then measured against the distance travelled by the robot from 
the starting position.

The “kidnapping” is implemented by re-initialising the localisation system at 
the start of each experimental trial. The system is then tested using a stream of 
previously recorded sensor-motor data, as collected by the wall-following robot, 
and the responses of tha t system to the played-back sensory data  are logged 
against distance travelled. This procedure is repeated many times ( “trials”) from 
a series of different starting positions, and the uncertainty coefficient U{L | R) is 
then calculated against distance, using all of the logged location-response data. 
Implementing this procedure requires some careful treatm ent of the recorded 
data, described as follows.



C h a p t e r  5 . M e a s u r e m e n t  o f  L o c a l is a t io n  P e r f o r m a n c e 90

Time Series Data

i i i i n  h i m  i i i i t  a t t  n
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trial 1

trial 2
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Figure 5.3: Treatment of time series data in the lost robot experiment. The 
recorded sensor-motor data is played back to test the localisation system under 
investigation. Each trial (1,2, lasts for a fixed distance I and begins from
a different position along the recorded route data (do,ch, ...dn_{).

5.4.1 M easuring Perform ance A gainst D istan ce  Travelled

Again, the first lap of the recorded sensor-motor data is used for map building. 
The localisation system under investigation is then tested over a large number of 
trials using the remaining laps. Each trial begins from a different location along 
the route traversed by the robot, and lasts for a fixed distance (see figure 5.3). 
There is some overlap between successive trials, but each starts from a different 
position along the recorded time-series data. Again, the number of the trials 
should be chosen carefully so tha t each part of the environment is represented 
equally in the test data.

In the experiments conducted in this thesis, trials of length 20 m were used, 
starting at 0.5 m intervals along the recorded route data. For the subsequent 
analysis, it is assumed tha t all trials begin nominally at distance 0 m and end at 
distance 20 m. After testing the localisation system for the appropriate number of 
trials, the resulting location-response data is split into 201 separate contingency 
tables, one for the starting point plus one for each 0.10 m travelled by the robot. 
The performance measure U(L \ R) is then calculated for each of the tables. A
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number of examples where the uncertainty coefficient is plotted against distance 
can be found in chapter 7 (section 7.4).

5.5 C oncluding Remarks

This chapter presented the experimental procedures used for evaluating localisa­
tion performance in the rest of the thesis, including an entropy-based performance 
measure (the uncertainty coefficient U) and a novel mechanism for recording the 
true location of the robot. The approach has the advantage tha t it requires 
no interpretation of the “correct” response made by the robot and no optimum 
standard has to be established by the observer. The entropy-based performance 
measure is consistent with the “Infomax” principle (Linsker 1988), which states 
th a t a perceptual device should organise itself to transm it the maximum possible 
information about its inputs. Furthermore, only approximate location recording 
is required to evaluate localisation quality, because the uncertainty coefficient is 
measured over a set of discrete location bins rather than an exact Cartesian ref­
erence frame. In the next chapter, the basic experimental procedure is used to 
compare a number of previous approaches for landmark recognition.



C hapter 6 

W hat is a good landmark?

A b o u t th is  c h a p te r . Due to the fundamental unreliability of navigation by 
dead reckoning, a robot must depend on its perception of landmarks for self­
localisation. An empirical study is presented in which a number of algorithms for 
landmark recognition are compared quantitatively in four different environments.

6.1 Introduction

This chapter examines possible approaches for landmark recognition by a navi­
gating mobile robot. A variety of landmark recognition mechanisms have been 
proposed by previous researchers (see Borenstein et al. (1996) for a detailed sur­
vey) . Two approaches are commonly found:

1 . Designer-determined landmarks. One method is to provide the robot with 
predetermined feature categories such as doorways (Nourbakhsh 1998) or 
ceiling lights (King & Weiman 1990). Geometric features such as arcs or 
line segments can also be used (Leonard & Durrant-W hyte 1992; Lee 1995). 
However, a major problem here is tha t the designer may not select the most 
appropriate landmarks for robot navigation, due to the different perception 
of an environment by the designer and the robot.

2 . Robot-determined landmarks. The alternative is to avoid pre-installation of 
the feature categories by the system designer, instead allowing the robot to

92
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represent its own arbitrary sensor patterns and to exploit whatever fea­
tures are naturally present in a given environment. Possible represen­
tation schemes include statistical clustering techniques (Kurz 1996), self- 
organising neural networks (Nehmzow et at 1991), occupancy grids (Moravec 
& Elfes 1985). and various techniques for matching dense sensor scans (Weiss 
& von Puttkam er 1995; Lu & Milios 1997b).

It was decided here to use robot-determined landmarks, since one of the aims 
of the thesis was to avoid pre-installation by the system designer. For topological 
map building, the space of possible perceptions available to the robot needs to be 
quantized into a set of landmark descriptions or “place signatures” . The robot’s 
location in the map can then be estimated by matching the robot’s incoming 
sensor readings to the stored place signatures in the map. The comparative 
study presented in this chapter examines a number of possible matching schemes, 
with the aim of choosing the best mechanism for recognising landmarks on the 
Nomad 200 robot Forty Two. This was achieved using the basic experimental 
procedure described in the previous chapter.

Here, landmark recognition is treated as a pattern classification problem 
(Duda & Hart 1973). For each of the systems examined, the robot’s current 
sensory perception is classified according to the best matching pattern among a 
set of stored place signatures. The paradigm of pattern classification is partic­
ularly well-suited to the problem of landmark recognition by a mobile robot for 
several reasons. Firstly, this approach provides the generalisation on perception 
which is needed to cope with sensor noise, as discussed in section 3.2.2. Secondly, 
the approach avoids many of the problems associated with sonar sensors, such 
as cross-talk and specular reflection, because it does not rely on an accurate ge­
ometric interpretation of the robot’s sonar returns. The most im portant point 
is tha t similar perceptions produce similar patterns, irrespective of the actual 
range-finder readings themselves.

6.1.1 R elated  W ork

Gutmann & Schlegel (1996) examined three algorithms for matching 2D laser 
scans in an indoor environment, namely the Cox algorithm (Cox 1991), which 
works by assigning points in the scans to line segments and then matching the 
segments; the cross-correlation function (Weiss & von Puttkam er 1995), which
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matches stochastic histograms derived from the points in the scans; and the idc 
algorithm (Lu & Milios 1997b), which carries out a point-to-point correspondence 
to calculate the scan alignment. The algorithms were extended to estimate an 
error covariance m atrix (an ellipse) as well as an (x: y) coordinate for the mobile 
robot. The authors found tha t the all of the methods provided accurate local­
isation in two small-scale environments, namely a square room and a corridor. 
However, the extended idc algorithm failed to produce an appropriate covariance 
m atrix for the corridor environment, and the Cox algorithm could not be used in 
a non-polygonal environment.

Gutmann et al (1998) conducted an experimental comparison of two self­
localisation methods, namely Markov localisation, which was used to maintain a 
probabilhy distribution over a grid of possible locations (Burgard et al 1996), and 
a combination of laser scan matching and Kalman filtering (Lu & Milios 1997b; 
Gutmann & Schlegel 1996). The results showed th a t Kalman filtering produced 
more accurate position estimates, but Markov localisation was more robust in the 
presence of sensor noise or perceptual ambiguity.

Thrun (1998a) developed a localisation system in which a mobile robot learned 
to choose its own landmarks by training a neural network to minimise the ex­
pected deviation between the estimated and true location of the robot. An ex­
perimental comparison of the system with two other systems based on designer- 
determined landmarks, namely ceiling lights in King &; Weiman (1990) and doors 
in Simmons & Koenig (1995), was then conducted. The systems were evaluated 
by measuring the percentage reduction in absolute error; this meant tha t differ­
ent results could be compared in the same scale, irrespective of the magnitude of 
the actual error. A drawback of this landmark learning system is tha t accurate 
a priori position information is required for training the network, and training 
times can be very large (up to 12 hours on a Pentium Pro to learn a route of 
89 m).

6.2 Landmark R ecognition System s Investigated

6.2.1 R estricted  C oulom b E nergy (RCE) C lassifier

The first approach considered was one of the clustering mechanisms used by 
Kurz (1996), which is a simplified version of the Restricted Coulomb Energy
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Figure 6 .1: RCE classifier (example in 2 dimensions). A new sensor pattern is 
created if the input pattern fails to lie within a fixed threshold of any of the stored 
patterns. Otherwise, the sensory input is classified according to the nearest stored 
pattern. Adapted from Kurz (1996).

network (Reily et al 1982). In this system, the robot’s sonar readings are classified 
according to the nearest neighbour among a set of stored sensor patterns. Each 
pattern is represented by a vector taken directly from the raw sensor readings. 
Training the RCE classifier involves determining the stored patterns. A new 
pattern is stored if the sensory input failed to lie within the “sphere of influence” 
of any of the existing stored patterns (see figure 6 .1).

In the implementation used here, all of the stored patterns were provided with 
influence spheres of the same size, as in Kurz (1996). The input patterns were 
normalised, and the dot product was used to compare vectors. A fixed threshold 
value was used to decide whether a new stored pattern should be added, i.e., to 
determine the size of the clusters. If the similarity between the input and the 
nearest stored pattern exceeded this value, then the input pattern  was assigned 
to tha t particular class, otherwise a new pattern was created from the input data.

6.2.2 A dap tive R esonance T heory (A R T 2) C lassifier

Several authors (Racz & Dubrawsld 1995; Balkenius & Kopp 1996; Duckett & 
Nehmzow 1997a) have considered self-localisation using neural networks based 
on Adaptive Resonance Theory (Grossberg 1988). The basic ART architecture
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Figure 6.2: Basic ART architecture. Adapted from Racz & Dubrawski (1995).

consists of two fully connected layers of units (figure 6.2). There are two sets of 
weights between the layers, corresponding to feedforward and feedback connec­
tions. A “winner-takes-aH” criterion is used during the feedforward phase, and a 
similarity criterion is used to accept or reject the resulting categorisation in the 
feedback phase. During training, the weights for the winning unit are adapted to 
be more similar to the sensory input.

The principal difference between ART and feedforward classifiers such as RCE 
is that with ART there are different criteria for winning in the two different 
phases, so tha t the best matching unit in the feedforward phase may be rejected in 
the subsequent feedback phase. On presentation of a sensor pattern at the feature 
layer, the feedforward weights are used to determine the best matching unit in 
the category layer. The response from the category layer is then compared to the 
actual input through the feedback weights. If the similarity between the sensory 
input and the stored pattern in the feedback weights exceeds a predetermined 
threshold, known as the “vigilance” , then both sets of stored weights for the 
winning node are modified to be more similar to the input. Otherwise a “reset” 
occurs, wherein the responding unit in the category layer is disabled, and the 
network searches for another node to match the input pattern. If none of the 
stored patterns is similar enough to the input, then the weights for a new category
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unit are initialised from the sensory input.
The different criteria for winning in the two phases are used to implement the 

self-scaling property, which prevents any pattern tha t is a subset of another from 
being classified in the same category (see Grossberg (1988) for details). Grossberg 
calls this “the discovery of critical features in a context sensitive manner” . The 
motivation for including the ART network in this study was to discover whether 
this property would offer any advantages for landmark recognition on a mobile 
robot.

In the ART2 implementation used here, an additional layer of preprocessing 
units was added to reduce noise and enhance contrast in the input patterns, as in 
Carpenter & Grossberg (1987) — see Duckett & Nehmzow (1996) for full details. 
A number of different parameters had to be predetermined, the most critical being 
the vigilance parameter, which determines the sensitivity to perceptual detail,
i.e., the number of stored patterns. In this study, the vigilance was determined 
by experiment, and the other parameters were set by default to the values in 
Carpenter & Grossberg (1987).

6.2.3 G rowing Cell S tructures (G C S) C lassifier

A number of authors (Nehmzow et al 1991; Kurz 1996; Janet et al 1995; Morellas 
et al 1995) have proposed self-localisation systems based on self-organising fea­
ture maps as developed by Kohonen (1993). In this approach, the sensory input 
is classified according to its nearest neighbour among a network of stored pat­
terns. Like the ART network, the weights of the best matching unit are adapted 
to be more similar to the sensory input during training. In addition, the other 
patterns which are directly connected to the best matching unit are also adapted 
by a smaller amount. This has the effect of preserving neighbourhood relations 
in the input data, whereby similar input patterns produce similar responses. As 
a result, the distribution of the stored patterns in a trained Kohonen network is 
found to reflect the underlying distribution of the input data  (Kohonen 1993).

However, the structure and size (number of stored patterns) of the Koho­
nen network have to be fixed in advance by the designer, which means tha t the 
system cannot be used to map arbitrary, unknown environments. To overcome 
this problem, Fritzke (1994) developed a growing self-organising network which 
can store an arbitrary number of patterns depending on the amount of training 
data presented to the network. Like the Kohonen network, the stored patterns
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are topologically connected according to their similarity, and the neighbouring 
patterns of the best matching unit are adapted during training. In addition, at 
regular intervals, a new pattern is inserted into the most adapted region of the 
network, and the network topology is modified accordingly — see Fritzke (1994) 
for full details.

6.2.4 O ccupancy Grid Classifier
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Figure 6.3: Example occupancy grids. In the occupancy grid classifier investi­
gated (Yamauchi & Langley 1997), grids of 64 x 64 cells were used, where each 
cell represents an area of 15 cm x 15 cm.

Courtney & Jain (1994) and Yamauchi & Langley (1997) both considered 
mobile robot localisation by classification of occupancy grids. The environment 
is represented by a set of local grids, each corresponding to a small part of the 
environment observed from a single viewpoint, so a global metric map is not 
required. This means tha t odometry is not required to construct the actual grid 
models, and that the grids do not need to be geometrically accurate — as with the 
other classifiers, the important factor is that similar perceptions produce similar 
grid patterns. Therefore, this approach avoids many of the problems associated 
with grid models.

For this study, the system developed by Yamauchi & Langley (1997) was 
considered. In this approach, a recognition grid is first constructed from the 
robot’s immediate sensor readings. Localisation then consists of matching the 
recognition grid with a set of previously stored grids (figure 6 .3), using a hill
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climbing procedure to search the space of possible rotations and translations 
between the recognition grid and each stored grid. Here, the recognition grid 
is translated and rotated to find the best match with the stored grid, using an 
evaluation function to assess the quality of the match. The best matching grid is 
then used to determine the location of the robot.

This system requires an external procedure to decide when to add new grid 
patterns to the map. In these experiments, a new grid was added every time the 
robot had travelled by more than a prespecified distance (1.5 m, as in Yamauchi & 
Beer (1996)) from the position of the nearest stored grid in the map. The position 
estimates were obtained from the retrospectively corrected odometry trace used 
for measuring the “true” location of the robot (see section 4.3.3). (Obviously, for 
autonomous map building, this information must come from some other source, 
described later in chapter 8 .) The self-orientation component of the occupancy 
grid classifier was disabled here, using the compass sense instead, in order to 
enable a fair comparison between systems.

6.2.5 N earest N eighbour Classifier

The inclusion of the occupancy grid classifier in the study introduces an arte­
fact into the experimental comparison, namely the external procedure used to 
determine when to add new grids patterns. In order to investigate the effect of 
this procedure, a fifth classifier mechanism was considered. This system is sim­
ilar to the RCE classifier, but differs in one important respect. As in RCE, the 
current sensory input is classified according to its nearest neighbour amongst a 
set of normalised sensor patterns. Classification is decided by normalising the 
robot’s current vector of sonar readings, and using the dot product to determine 
the nearest stored pattern. However, unlike the RCE classifier, this system uses 
a priori position information (from the location recording mechanism in these 
experiments) to decide when to add new patterns to the robot’s map. In order to 
facilitate direct comparison with the occupancy grid classifier, exactly the same 
sensor readings were used for map building as in tha t system, i.e., new sensor 
patterns were added to the map at 1.5 m intervals.
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D escription Approx.
Size

R oute
Length

D ata
P oints

N l N r

A T-shaped hallway 16 m x 13 m 54 m 623 5 16
B Conference room 16 m x 11 m 49 m 668 6 25
C L-shaped corridor 34 m x 33 m 147 m 854 12 42
D Long straight corridor 53 m x 3 m 111 m 645 9 32

Table 6 .1: Characterisation of environments. N l denotes the number of location 
bins, and N r  the average number of responses used in the calculation of the 
uncertainty coefficient (see section 5.2). The number of data points used for 
performance evaluation is also indicated (see also figure 6.5).

Figure 6.4: Corridor environment. This is a busy public area containing few 
distinctive landmarks (environment C in table 6 .1).
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6.3 Experim ental Procedure

D ata was collected by the Nomad 200 in four environments in the computer 
building at Manchester University (table 6.1). Wall-following was used for explo­
ration, stopping at 0.50 m intervals to take detailed scans consisting of 144 sonar 
readings, as described in section 4.5. The environments were chosen to test the 
different systems under a variety of conditions, including very high levels of per­
ceptual aliasing, specular reflection and cross-talk (see figure 6.4). Environment 
D is an extreme case; this consisted of a very long corridor with few distinctive 
features. All of these environments were subject to unpredictable variations in 
the sensor data, for example, due to people walking past the robot or doors being 
opened and closed.

The localisation quality obtained by the different systems was then assessed 
with the basic experimental procedure described in section 5 .3 , using the first lap 
of recorded robot data for landmark learning and the remaining laps for testing. 
Following the heuristics introduced in section 5.3.2, location bins of size 6 m x 6 m 
were used for performance evaluation (see figure 6.5). This bin size was chosen 
because (1) we are primarily interested here in the problem of global localisation 
(recall tha t the maximum sensor range of the robot is 6.5 m), and (2) the systems 
under comparison are very different, so the number of bins N l should be smaller 
than the number of responses N r in order to reduce the impact of quantization 
effects.

Initial experimentation revealed tha t the performance of the self-organising 
classifiers (RCE, ART2 , GCS) was highly dependent on the parameter values 
used to determine the number of stored patterns. This was especially true for the 
RCE classifier, where the optimal value of this parameter was different for each 
environment; the value which produced the best performance in one environment 
could lead to worse performance in another. In addition, while the RCE and 
ART2 classifiers were capable of one-shot learning, it was found tha t the GCS 
network needed to be presented with the training data a large number of times 
(100 in these experiments) to obtain a stable clustering of the sensory input.

Another problem found with all of these mechanisms was tha t better per­
formance could generally be obtained by configuring the system parameters to 
produce a large number of stored patterns. This meant th a t the classifier had 
effectively memorised the training data rather than providing a generalisation on



C h a p t e r  6. W h a t  is a  g o o d  l a n d m a r k ? 102

perception. This generalisation is essential if the robot is to be capable of nav­
igating freely rather than just following a fixed route, as in these experiments, 
and also to make navigation computationally tractable.

Some policy was therefore needed to facilitate an objective comparison be­
tween systems. In these experiments, the systems were configured as closely as 
possible to store the same number of patterns, and therefore to produce the same 
number of responses in each environment (see also section 5.3.2 on the choice of 
experimental parameters). For the occupancy grid and nearest neighbour clas­
sifiers, the number of stored patterns was determined using the retrospectively 
corrected odometry trace (section 4.3.3), adding new patterns to the robot’s m ap1 

at 1.5 m intervals. The parameters of the other classifiers were then adjusted to 
yield the same number of responses in each of the different environments2, as 
shown in table 6 .1 .

6.4 R esults

Environment R C E A R T 2 N stN b r G C S O ccG rd
A 0.554 0.573 0.650 0.719 0.732
B 0.552 0.669 0.715 0.770 0.879
C 0.462 0.538 0.551 0.502 0.644
D 0.220 0.265 0.350 0.340 0.487

Mean, /i 0.447 0.509 0.567 0.582 0.686
Cost, C t 218t t t 1305R

Table 6.2: Localisation quality U(L \ R) for the RCE classifier, ART2 classifier, 
nearest neighbour classifier (NstNbr), growing cell structures (GCS) and occu­
pancy grid classifier (OccGrd) in environments A to D; the mean value fi over 
the four environments; and the mean cost per match per landmark (7, where 
t =  1.8 x  1CT5s as measured on a Sparcstation 20.

The results of the comparative study are shown in table 6 .2 . A statistical test 
was also performed to evaluate the significance of the comparative measures of

1Here, a “map” is taken to mean a set of recognisable locations, following Lee’s taxon­
omy (1995, p. 33) — see section 3.3.1.

2For RCE, the threshold value 7 .4  =  0.960,7 5  — 0.860, j c  — 0.974,723 =  0.984 was used 
for environments A to D. For ART2, parameter values a =  5.0, b =  5.0, c =  0.225, d — 0.8, e =  
0.001,0 =  0.1 were used throughout; for environments A to D, p a  =  0.910, pB =  0.918, pc =
0.945, p d  =  0.953. For GCS, parameter values k — 6, ei — 0.06, en — 0.002, a  =  1.0,/? =  0.0005 
were used throughout; for environments A to D, A  ̂ =  1040, Ab  =  500, X q — 800, Ad  — 840.
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Ph0 A R T 2 N s tN b r G C S O ccG rd
R C E 0.06 0.01 0.04 0.01

A R T 2 0.04 0.16 0.01
N stN b r 0.60 0.01

G C S 0.05

Table 6.3: Paired Student’s t-test results for the comparative study. Each pair of 
systems in table 6.2 was compared in turn, computing the probability of obtaining 
these results assuming the null hypothesis H Q that their performance U is really 
the same over the 4 different environments.

localisation quality U (L \ R). This consisted of a pairwise comparison of the sys­
tems to test the null hypothesis H q, for each pair of systems, th a t the results are 
really the same over environments A to D. Given the large differences between the 
environments, it would be meaningless to conduct a standard Student’s t —test 
to compare the mean localisation quality p  of both systems. Instead, Student’s 
t-test for paired samples was applied (Press et al. 1992, p. 618). The four data 
points for environments A to D in table 6.2 for each pair of systems were paired 
by environment, and the probability of obtaining these results assuming the null 
hypothesis pn0 was computed. The probability values in table 6.3 indicate signifi­
cant differences between all of the systems (pHo ^  0.05), except in the comparison 
of the nearest neighbour and GCS classifiers, where p# 0 = 0 .60 . There is a slight 
anomaly in the comparison of ART2 and GCS, where a value of Ph0 =  0.16 was 
observed, though we should expect some variations given the relatively small size 
of the samples.

In addition, the computational efficiency of the various algorithms was mea­
sured using the time taken to localise on a SparcStation 20 (referred to as the 
cost C in table 6 .2). This was computed as the mean time taken per match per 
landmark during testing (the time taken to initialise the stored patterns during 
training was not included). The motivation for using a SparcStation here was 
simply to reduce the amount of time required to conduct the comparative study; 
we are, of course, really interested in recognising landmarks in real-time on the 
Nomad 200 robot.3

Of the one-shot self-organising classifiers, ART2 performed better than RCE

3The SparcStation 20 has a Dhrystone V 2 .1  performance of 112.9 MIPS, compared to the 
Nomad 2 0 0  486 PC ’s performance of 39.3 MIPS. Source: Performance Database Server (Netlib 
1999).
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(.Ph0 = 0.06), indicating the usefulness of the self-scaling property for landmark 
recognition. Both of these systems were outperformed by the GCS network 
(Ph 0 = 0.16), though this was only achieved after conducting a series of experi­
ments to determine an optimal set of parameter values to maximise the value of 
U(L  | R). This would suggest th a t the GCS network might not be well suited 
for use in unknown environments, since a posteriori knowledge of the system’s 
performance was required to obtain a set of stored patterns which best reflected 
the underlying distribution of the input data.

The nearest neighbour classifier achieved a similar level of performance to the 
GCS network (pnQ = 0.60). This can be explained as follows. Using corrected 
odometry data to decide when to add new sensor patterns ensured tha t the distri­
bution of the stored patterns produced a good approximation to the distribution 
of the input data, since the stored patterns were drawn more or less evenly from 
all parts of the environment. This assumes of course tha t such position knowledge 
would always be available to the robot -  in some environments, for example, due 
to extreme wheel slippage, this might not be the case, and a self-organising mech­
anism such as ART2 or GCS would be better suited for landmark recognition.

The best results were obtained by the occupancy grid classifier (ph0 =  0.05). 
The main difference between this system and the other systems is th a t it uses 
information about the angular displacement of the robot’s sonar readings as well 
as the actual range-finder measurements themselves. The probabilistic method 
used to update occupancy grids effectively uses this information to give more 
weight to the robot’s sonar readings where they “agree” with each other, and less 
weight where they disagree (Elfes 1987). However, the main disadvantage of this 
approach is its high computational requirements; in Yamauchi & Langley (1997), 
location recognition using 43 stored grids took 5 minutes on a Decstation 31004. 
The other systems can be used to recognise locations in real-time on our No­
mad 200 mobile robot, whereas the occupancy grid classifier cannot.

These results strongly influenced the design of the self-localisation system 
described in the next chapter. The motivation was to obtain the level of perfor­
mance (and beyond) attained by the occupancy grid classifier, while using only 
minimal computational resources, as in the simpler mechanisms for landmark 
identification.

4The Decstation 3100 has a Dhrystone V 2 .1  performance of 13.4 MIPS (Netlib 1999).
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6.5 D iscussion

To achieve reliable self-localisation over realistic distances, a mobile robot must 
depend on its ability to recognise places using landmarks rather than by dead 
reckoning alone. This chapter considered approaches for landmark recognition in 
which the robot determines its own landmark categories, in order to allow the 
robot to adapt its internal representations to the features which are naturally 
present in a given environment. Quantitative performance measures were used 
to compare five different algorithms under a realistic set of operating conditions, 
namely a mobile robot traversing a series of unmodified, real world environments. 
The results are summarised in tables 6.2 and 6.3.

All of the landmark recognition mechanisms investigated need to maintain 
a balance between over-generalisation and over-fitting to the sensory input. For 
example, in the one-shot classifier mechanisms investigated, some distance metric 
is used to determine when to add new patterns to the robot’s map. If this 
metric is set too high, the classifier will over-generalise on the data and not 
recognise sufficient features for useful navigation. However, if the metric is too 
low, the robot will become too dependent on perceptual detail, and be incapable 
of interpolating between known environmental features.

For the RCE classifier, it was found tha t the simple distance threshold applied 
to the sensor data was too sensitive to be generally useful in unknown environ­
ments; in the study presented, it was only possible to choose a suitable parameter 
value for a particular environment by a posteriori examination of the robot’s per­
formance in tha t environment. ART2 was found to be better suited for navigation 
in unknown environments, due to its internal mechanism for distinguishing sensor 
patterns which share some common features but differ in others. However, both 
of these mechanisms would suffer from the problem of adding spurious landmark 
categories in the presence of severe sensor noise or unpredictable variations in the 
sensor data caused by other inhabitants of the environment.

The GCS network was found to achieve the highest level of performance among 
the self-organising clustering mechanisms by replicating the underlying distribu­
tion of the pre-recorded sensor data for a given environment. However, again this 
was only made possible by retrospective examination of the robot’s performance. 
The strategy of adding new nodes to the network at regular time intervals would 
make little sense in an unknown environment, where there would be no obvious 
stopping criterion for determining when the network had reached an appropriate
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balance between generalisation and over-fitting of the sensory input. It is un­
clear therefore whether this network offers any real advantage over the Kohonen 
network for the purpose of landmark recognition.

It was found th a t the best method for obtaining a representative clustering 
of the robot’s sensor data was by using prior position information to determine 
when to create new landmark categories. In particular, the best performance 
was obtained by Yamauchi and Langley’s method of matching local occupancy 
grids (1997). However, this was achieved at an extremely high computational 
cost, preventing this system from being used for location recognition in real-time 
on the Nomad 200 robot without using external processors. In addition, despite 
the use of detailed sensory information, this approach still does not overcome 
the problem of perceptual aliasing, and would therefore be unable to relocalise a 
navigating robot under global uncertainty.

6.6 C oncluding Rem arks

This chapter presented a comparative study of previous approaches to landmark 
recognition for mobile robot navigation, including replication of the work of other 
researchers. In the next chapter, these results are used to guide the development 
of a new landmark recognition mechanism for the Nomad 200 robot. For a dif­
ferent robot, different results might be obtained, for example, due to different 
sensory apparatus. However, the im portant point is th a t an objective set of cri­
teria was developed and used to determine the best mechanism for one particular 
platform, rather than relying on the intuition of the system designer.

In the experiments presented in this chapter, the various mechanisms were 
assessed using a “winner-takes-all” criterion for landmark recognition. However, 
as will be explored in the next chapter, it is often desirable to represent situa­
tions in which the robot is unsure of its exact position, and to assign appropriate 
levels of belief to many possible locations. This means using a multimodal loca­
tion model, rather than a single “winner-takes-all” position estimate, based on 
the degree of match between the current sensor readings and each of the stored 
landmark descriptions.

None of the landmark recognition systems investigated were able to overcome 
the problem of perceptual aliasing, and therefore cannot be used alone to localise 
the robot under global uncertainty. In environments of any real complexity,
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there can be no guarantee of uniquely identifiable landmarks; there may often 
be many places which share the same perceptual signature, particularly in the 
uniform corridors and hallways which are common to many office buildings. The 
results confirmed tha t reliable location recognition could not be achieved using the 
robot’s current sensory perception alone. The next chapter therefore addresses 
this problem by using a sequence of sensory perceptions to identify locations.
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Figure 6.5: D ata points used for performance evaluation. The corrected odometer 
positions for the test data are plotted for the four different environments (see 
also table 6.1). The dotted grid shows the location bins used for calculating the 
uncertainty coefficient.



C hapter 7 

So w here am I?

A b o u t th is  c h a p te r . A key question addressed by the thesis is tha t of global 
localisation, using a previously obtained map for the task of identifying places. A 
complete self-localisation system is presented which accumulates both exterocep­
tive and proprioceptive sensory evidence over time, allowing the robot to recover 
its position even after becoming lost.

7.1 Introduction

This chapter describes the development of a new self-localisation system for the 
Nomad 200, based on the results of the previous chapter. The topic of mobile 
robot self-localisation is often divided into two related sub-problems:

1 . Global Localisation. This involves being able to localise under global uncer­
tainty. An example is the “lost robot problem” , or the “kidnapped robot 
problem” (Engelson 1994), where the robot has no prior information about 
its true location in the map. The uncertainty is typically represented over 
a discrete state space, corresponding to possible robot locations in the map 
(see e.g., Hidden Markov Models (Koenig et al 1996)), and the task of lo­
calisation involves identifying the most likely state or location occupied by 
the robot.

2 . Position Tracking. This involves being able to accurately estimate the po­
sition of the robot based on approximate knowledge of the robot’s global 
location in the map. Here, the uncertainty is typically represented over a 
continuous state space. The most common solution is the Kalman filter

109



C h a p t e r  7. So w h e r e  a m  I? 110

(Gelb 1974; Maybeck 1990), where the robot’s location model consists of 
a Gaussian probability density function, the mean and variance of which 
represent the most likely Cartesian coordinate for the robot and the uncer­
tainty in this estimate.

This chapter is concerned primarily with the problem of global localisation. 
However, the research presented shows tha t overall self-localisation performance 
can be improved by combining mechanisms for global localisation and position 
tracking. The result is a unified solution to the two problems, based on a topolog­
ical map augmented with metric information. The new system solves the global 
localisation problem by tracking multiple Gaussian location hypotheses over the 
space of possible locations in the robot’s map. It solves the position tracking 
problem by calculating the most likely (a;, y) coordinate for each of the possible 
places.

For landmark recognition, I developed a new method of matching local occu­
pancy grids, which overcomes the high computational requirements of the grid 
matching algorithm described in the previous chapter. In order to  overcome the 
problems of perceptual aliasing and misclassification errors due to sensor noise, I 
developed an iterative self-localisation algorithm, which works by accumulating 
sensory evidence over time as the robot explores its environment.

A quantitative, experimental evaluation of the new self-localisation system 
was conducted, in which global localisation performance was assessed over a series 
of middle-scale environments. This included a set of controlled experiments to 
determine the influence of different sub-components on the overall system; these 
“lesion experiments” were conducted by removing the sub-components in turn 
and assessing the change in performance.

7.1.1 R elated  W ork

A wide variety of localisation methods have been proposed for mobile robots, 
and a number of laboratory prototypes have been developed (Borenstein et al 
1996). However, relatively few of these systems have been tested in middle-scale 
environments, generally consisting of enclosed areas within office buildings such 
as corridors and hallways.

As described earlier, Yamauchi & Langley (1997) developed a localisation 
system based on classification of local occupancy grids. In the previous chapter,
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it was shown that this method of matching occupancy grids produced better 
self-localisation performance than a number of alternative mechanisms such as 
self-organising neural networks. In addition to performing place recognition, this 
approach exploits the spatial information content of the robot’s sensor readings, 
enabling the robot to estimate its relative position within the local grid model, 
without using odometry.

A related approach is that of Weiss & von Puttkam er (1995), using cross­
correlation of laser scans to identify both the current place occupied by the robot 
and the robot’s position within th a t particular place. In the latter approach, 
however, the scans are reduced to histograms before matching takes place, then 
the techniques for scan matching developed by Hinkel & Knieriemen (1988) are 
applied. Angle histograms are first convolved to address the problem of self­
orientation, then x  and y histograms are convolved to determine the robot’s 
position. Histograms were applied in this chapter to overcome the high cost of 
the matching local occupancy grids.

However, neither of the above approaches is guaranteed to solve the global lo­
calisation problem in environments of any real complexity, due to the problem of 
perceptual aliasing. A number of methods have been proposed for resolving per­
ceptual ambiguity by using a sequence of sensory perceptions over time. Perhaps 
the most popular method in recent years is the probabilistic approach known as 
Markov localisation, for example, see (Burgard et al. 1998b; Cassandra et al. 1996; 
Fox et al. 1998; Hertzberg & Kirchner 1997; Simmons & Koenig 1995), etc., which 
can be applied to either topological or grid-based maps.

For topological maps, the main paradigm for probabilistic localisation is tha t 
of Hidden Markov Models (HMMs), and their extension to Partially-Observable 
Markov Decision Process (POMDP) models (Simmons &; Koenig 1995; Cassandra 
et al 1996; Hertzberg & Kirchner 1997). Here, the robot maintains a probability 
distribution over a set of discrete locations, known as the robot’s belief about its 
possible location. Similarly, possible landmarks and possible actions are typically 
defined according to a set of designer-determined categories. For example, possi­
ble landmarks might be “doors” , “junctions” , etc., and possible actions might be 
“Go North” , “Go West” , etc. The localisation system presented in this chapter 
differs from other topological approaches in that possible location estimates are 
represented by continuous valued Cartesian coordinates, actions are described by 
arbitrary displacements within Cartesian space, and landmarks are defined by
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arbitrary sensor patterns.
Probabilistic localisation methods have also been applied to high resolution, 

grid-based maps. This approach has the advantage of high accuracy, but typi­
cally requires a great deal of computational resources. An elegant solution to this 
problem is provided by Burgard et al (1998b), where a variable resolution map­
ping strategy is used to trade off global uncertainty against accurate positioning. 
The approach uses Markov localisation to identify possible sub-areas of the whole 
state space in which the robot might be located, then position tracking is carried 
out only on these sub-areas, “zooming in” to a higher level of resolution when 
the robot has a high degree of certainty in its location. The localisation system 
presented in this chapter differs in tha t the full state space in the robot’s map 
is always searched, and efficient matching algorithms are used to overcome the 
problem of limited computational resources.

More recently, a number of successful self-localisation systems have applied 
Monte Carlo methods (also known as the condensation algorithm), in which the 
underlying probability density function for the robot location is approximated by 
a large set of “samples” or particles (Dellaert et al 1999; Thrun et al 2000; 
Jensfelt et al 2000). During localisation, these methods enumerate random 
weighted samples which estimate the posterior distribution by taking into account 
the previous samples and new sensor information. However, these approaches re­
quire a high amount of computation to work in large environments, as they suffer 
from poor degradation to small sample sets, and cannot be guaranteed to recover 
from becoming lost once the particles have converged around one location in the 
map (Thrun et al 2000).

7.2 N ew  Self-Localisation System

7.2.1 R epresen tation  

E nvironm ent M odel

The robot’s environment model consists of a set of N  stored places, the centre 
of each place i being associated with a Cartesian coordinate (x^yi) .  In the lo­
calisation experiments presented in this chapter, these coordinates were obtained 
using the a posteriori odometry correction technique described in section 4.3.3. 
The subject of autonomous map acquisition by the robot is covered in chapters
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Figure 7.1: Example occupancy grid and histograms. Occupied cells are shown 
in black, empty cells in white and unknown cells in grey. A separate pair of 
histograms is used to represent each individual place in the robot’s map.

8 and 9.
Landmark information is also attached to each of the places as follows. Firstly, 

the robot takes a detailed sonar scan at its current location and a local occupancy 
grid consisting of 64 x 64 cells is then constructed, where the robot location is 
taken as the centre of the grid, as in Yamauchi & Langley (1997). However, 
in the system presented here, the occupancy grids themselves are not stored or 
matched. Instead, each grid is reduced to a pair of histograms (one in x  direction, 
and one in y direction), which is then used as a stored signature for that place 
in the robot’s map, as shown in figure 7.1. Angle histograms are not required 
here, because the compass sense described previously in section 4.2 was used to 
remove the problem of self-orientation.

Each occupancy grid cell represents an area of 15 cm x 15 cm, and is consid­
ered as being in one of three possible states; occupied (O), empty (E) or unknown 
(U), depending on the corresponding probability of occupancy for tha t cell, i.e.,

f O if p{cxy) > 0.5
State(cxy) =  [/ if p(cxy) = 0.5

[ E  if p{cxy) < 0.5
(7.1)
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where p(cxy) refers to probability of occupancy for the cell at column x  and row 
y. These probabilities were obtained using the standard method for updating 
occupancy grids developed by Moravec h  Elfes (1985). One histogram is then 
derived by adding up the total number of occupied, empty and unknown cells in 
each of the 64 columns, and the other by adding up the totals for each of the 
64 rows. Note tha t the probability p(cxy) =  0.5 is the default probability used 
to initialise the cells; this value usually indicates tha t the cell has not yet been 
updated because the robot’s view of the corresponding location is occluded by 
some other object.

L ocation M odel

The robot’s location model consists of a set of competing location hypothe­
ses % — {/t-i, ..., hN}, one for each place i. A probability distribution V  = 
{p(hi) ■> p(ii2 ) ■> is associated with set reflecting the robot’s belief in
each of the hypotheses being its true location. Each location hypothesis consists 
of a Cartesian coordinate (xhi}ytH), and a variance VjH which is used for position 
tracking. Thus, each hypothesis is represented by a separate Gaussian density 
function as in the circular noise model described in section 4.3.2. The initial val­
ues for the probability distribution and the coordinates of the location hypotheses 
are obtained using the histogram matching procedure described in section 7 .2 .2 , 
and updated using the iterative localisation algorithm described in section 7 .2 .3 .

7.2.2 Landm ark R ecogn ition

To begin localisation, the robot takes a new sonar scan. Again, the resulting 
occupancy grid is processed to produce a pair of histograms. These histograms 
are then convolved with the corresponding stored histograms for all of the places 
in the robot’s map. For each stored place i, the matching procedure yields two 
useful quantities: £

1. The strength of the match between the current and stored histograms -  
this is used to provide a likelihood L{S \ hi) of obtaining the current sensor 
scan S  from each place hypothesis hi.

2 . The most likely offset (rXiiryi) of the robot in Cartesian space from the 
centre of the stored grid pattern, i.e., the position in which the sonar scan 
for th a t place was originally taken.
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Figure 7.2: Matching the x  and y histograms. The new histograms are convolved 
with the stored histograms for each place in the robot’s map to find the best 
match.

The first quantity is derived from the product of two separate metrics; one 
obtained by convolving the current and stored x  histograms, and the other by 
convolving the respective y histograms (figure 7.2). The strength of the match 
between two histograms T a and T b is calculated using the following evaluation 
function

Match(T\r*) =  l y  [fflinfO*,0$) +  [ /))] , (7.2)
W j

where Oj, Ej and Uj refer to the number of occupied, empty and unknown cells 
contained in the j th  element of histogram T, and w = 64 x 64 is a normalising 
constant such that 0 <  Match{) <  1. In the convolution, the stored histogram 
is kept stationary and the recognition histogram is translated against it, using 
the above function to calculate the best match over the 64 elements of the stored 
histogram. Any non-overlapping elements in the recognition histogram due to 
the translation are assumed to consist entirely of unknown cells.

The likelihood L (S  \ hi) is then calculated from the best match scores as

L (S  | hi) oc M i’ x (7.3)
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where refers to the value of MatchQ  produced by the best matching align­
ment of x histograms for place i.

The most likely displacement (rXi,r yi) of the robot from the centre of each 
place i is obtained by multiplying the translations for the x  and y histograms by 
the dimensions of one grid cell (i.e., 15 cm x 15 cm). The coordinates for each 
hi are then calculated as

Xhi = Xi + rx., (7.4)

yiH =Vi + ryi, (7.5)

i.e., by combining the coordinates of the place centre and the offset values pro­
duced by histogram matching.

Finalty, to obtain an estimate of the measurement error in the scan matching, 
the following heuristic function was used:

_____&1____________ &2 pN

hi ~  (M** -  M l)2 (M** -  M i r

where M* refers to the mean value of MatchQ  in the convolution of x  histograms
for place i, and the constants k\ =  &2 =  2.5 m2 in these experiments.

7.2.3 A ccum ulation  o f Sensory E vidence

After carrying out the above matching process, the place which yielded the highest 
match score could be taken as the winner. However, this simple “winner-takes- 
all” strategy, i.e., using only the current sensory input, is bound to fail in middle- 
scale environments due to factors such as perceptual aliasing and sensor noise. To 
overcome these problems, I developed the following algorithm for accumulating 
sensory evidence, which uses a succession of sonar scans taken from different 
positions over time.

A schematic diagram of the localisation algorithm is given in figure 7.3. At 
each iteration, the algorithm takes as input a prior set of location hypothe­
ses % — {hi, /i2, ..., hN} and the corresponding probability distribution V  =  
{p(hQ,Pihz)> •■■,7>(/iiv)} from the previous iteration. On initialisation, sets Ti 
and V  will be empty. The algorithm can be explained in the following steps.
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(eqns. 7.3 - 7.6)
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n 1 =

Com pass-based  
odom etry A x , A y

O ld  h y p o th e s e s  =  { / i i , / 1 2 1 ■■ ■ 1 h n  } w ith  
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W

Predict coordinates and  
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(eqns. 7,8 - 7.10)

n

Find best m atching  
prior hypothesis liy* 
for each )i-

(eqns. 7 .1 1 -7 .1 2 )

A pply Bayes rule to produce 
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variances over H '

(eqns. 7.15 - 7.17)

N e w  h y p o th e s e s  H 1 w ith  
probability  d istribution  "P'

Figure 7.3: The localisation algorithm.

In itia lisation

Localisation begins by taking a sonar scan and constructing a set of location 
hypotheses T-L =  { h i , ..., hN}, as described in section 7.2.2. For each of these 
hypotheses, the likelihood L (S  \ hi) is obtained using equation 7.3 and the coor­
dinates (xhi,yhi) are obtained using equations 7.4 and 7.5. The initial probability 
distribution over % is then calculated using

-W - s w m r
After initialisation, localisation proceeds as follows. This algorithm is best ex­
plained as a three-step predict-match-update cycle, after Crowley (1995).

P redict Step

Firstly, the robot waits until it has travelled a further 0.5 m, then the coordinates 
{x hi->yhi) of each of the prior hypotheses hi are translated to take into account 
the robot motion, using

2 /ii(t) =  Xhi(t -  1) +  A i , (7.8)
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Vhi(t) = yhAt -  1) +  Ay, (7.9)

where the vector (A#, Ay) refers to the robot’s own displacement in Cartesian
space observed since the previous iteration, using its on-line compass-based odom- 
etry (section 4.3.1).

The additional uncertainty due to the robot motion is approximated by in­
creasing the variance for each of the prior hypotheses as

Vhi{t) =  vhi(t -  1) +  /c3, (7.10)

where a value of &3 =  1 m2 was used for these experiments. This constant is
based on an approximate estimate of the odometry drift (given th a t the robot 
moves a constant distance between scans) plus some extra noise. This has the 
effect of “blurring” the density function for each of the prior hypotheses.

M atch Step

The robot then takes a new sonar scan, and a second set of candidate hypotheses 
hi' =  {hi, is created from the new sonar information. In the algorithm
presented here, exactly one hypothesis is generated for each place in the map. 
(W ithout a compass, it might be necessary to generate several hypotheses per 
place, corresponding to possible orientations of the robot.)

A matching process between the two sets % and %' then follows. For each 
new hypothesis hp  this attem pts to find the one most likely equivalent prior 
hypotheses hi (since only one hypothesis can actually be the “true” location of 
the robot). Each /?,'• is therefore compared to every A, and the likelihood L(hj \ hi) 
of obtaining each hj from each predicted hi is calculated as

U tij  | hi) oc Gaus ( I K ^ / ,^ / )  -  ( ^ M ,^ W ) | |) p ( h ; ) >  (7-n )

where the Gaussian function Gaus(z) = e~vz2 is used to model the noise in the 
robot’s position estimates. This is weighted here by the prior probability p(hi) 
in order to take into account the relative “mass” of evidence afforded to tha t 
particular prior hypothesis. The constant r\ effectively determines the relative 
weighting of exteroceptive and proprioceptive sensory information in the locali­
sation algorithm; a value of 77 =  0.25 was used in these experiments. For each h'p 
the best matching prior hypothesis hj* is therefore defined by
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V? : \/i ?  j*  : L(h'j \ h ^ )  > L(/iJ | hi). (7.12)

In the event of a tie, one of the best matching hypotheses is picked at random. 
In practice, this is highly unlikely, and did not occur in any of the experiments 
presented here.

U pd ate Step

The likelihood values L(hj | hj*) produced by the match step are used to provide 
a prior probability pPrior{h'j) f°r each h'j according to

Pwwr[ >] ~ i : km \ hk,y
and a new probability distribution over %' is calculated using Bayes rule as

rj . ( } I hj)Ppri.or{tij ) ( s
”  E* L(S  | h'k)Pprtm{h'k) ■ (7-U)

This step effectively combines a “sensor model” L (S  | hj) and a “motion model” 
L(h'j | hj*) for each location hypothesis h'j.

The following equations are then used to update the Cartesian coordinates of 
each h/j, taking into account the coordinates of both hj and hj*.

(7.15)

Vh'‘ =Vl‘-  + ^ ^ i {yh^ yhi' ) ' (7' 16)

—  =  ~ ^  +  — . (7.17)
Vh’j vh.* vh>

The robot then continues to explore, taking a new sonar scan at 0.5 m intervals
and updating its estimate of its true location by repeating the above process.

7.3 H ow It W orks

The robot’s location model can be thought of as a collection of different sized 
“blobs” scattered over the robot’s map. The relative mass of the different blobs
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reflects the amount of belief assigned to each of these location “hypotheses” . 
Each blob actually consists of a Gaussian density function, the parameters of 
which represent the Cartesian coordinate (the mean) and the variance for that 
particular position estimate. When the robot moves, the whole distribution gets 
shifted according to the observed robot motion; the blobs are translated across 
the map and “blurred” a little to reflect the added uncertainty due to odometer 
drift (this is the predict step described above).

After moving, the robot takes a new sonar scan. The landmark description 
(histograms) derived from the new sonar readings is compared to all of the stored 
place signatures in the map to produce a second collection of “blobs” . At this 
stage, the robot has two alternate sets of location estimates, one predicted from 
its old location model and the observed change in odometry, and one from the 
currently observable landmarks. The match step described above tries to find 
a correspondence between the two sets, matching each blob in the new set to 
its most likely neighbour in the old set (blobs in the old set may therefore be 
matched to more than one hypothesis in the new set).

Finally, the update step merges together the two sets of location estimates, 
using Bayes rule to propagate the belief assigned to the different hypotheses and 
simple position tracking equations to merge the density functions for each pair 
of matched blobs. The result is a new collection of blobs which improves the 
robot’s location model based on all of the the available information. At the next 
iteration, this whole distribution will be shifted and blurred, matched to a new 
distribution based on the landmarks perceived and updated again.

7.3.1 R elationsh ip  to  th e  K alm an F ilter

In the Kalman filter, the robot’s location model is unimodal, and the probability 
density function evolves as a Gaussian. By contrast, the new self-localisation 
algorithm maintains a whole set of competing location hypotheses, each with its 
own Gaussian density function. In this respect, the approach can be seen as 
a multi-modal generalisation on the Kalman filter, because the robot’s location 
model consists of a mixture of Gaussians — each updated by a separate filter — 
rather a single position estimate. However, it should be noted th a t the algorithm 
makes some approximations in its treatm ent of uncertainty which are modelled 
more accurately in many Kalman filter implementations (see Gelb (1974) on opti­
mal linear filtering). For example, the constants fci, fc2, fc3 and 17 were determined
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D esc rip tio n A pprox .
Size

R o u te
L en g th

N o.
T ria ls

N l n r

A T-shaped hallway 16 m x 13 m 54 m 623 5 16
B Conference room 16 m x 11 m 49 m 668 6 25
C L-shaped corridor 34 m x 33 m 147 m 854 12 42
D Long straight corridor 53 m x 3 m 111 in 645 9 32

Table 7.1: Characterisation of environments. N l denotes the number of location 
bins, and N r the number of responses (equal here to the number of mapped 
locations N )  used in the calculation of the uncertainty coefficient. The number 
of trials used for testing is also shown (this is equal to the number of data points 
used in the landmark recognition experiments).

largely by trial and error, so tha t the noise in the robot’s sensors is only mod­
elled approximately — a more rigorous approach might investigate using some 
statistical techniques to optimise the values of these parameters.

7.3.2 C om plexity  A nalysis

The computational complexity of the algorithm in its current implementation 
would be 0 ( n 2), where n  is the number of location hypotheses. However, the 
complexity could be reduced by an order of magnitude to 0 (n )  by restricting the 
search over the space of prior hypotheses % in the match step to those places 
lying within a prespecified distance of a given posterior hypothesis / i ' . This could 
be implemented using efficient data structures, e.g., by storing a linked list of 
nearby map locations for each of the places in the map. Then the amount of 
computation required for self-localisation would grow only linearly with the size 
of the map. In fact, the current algorithm already has a very low computational 
cost for maps of the scale considered in this thesis — for the biggest map of 42 
places (environment C in table 7.1), one complete cycle of the new localisation 
algorithm takes 0.002 sec on a 600 MHz Pentium III processor.
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Environ. O ccupancy
Grids

H istogram
M atching

N earest
N eighbour

A 0.732 0.806 0.650
B 0.879 0.850 0.715
C 0.644 0.632 0.551
D 0.487 0.439 0.350

Mean, fi 0.686 0.682 0.567
Cost, C 13051* 31* t

Table 7.2: Landmark recognition performance. This shows the localisation qual­
ity U(L | R) for each environment, the mean value /jl over all 4 environments, 
and mean cost per match per landmark (7, where  ̂— 1.8 x 10”5s as measured 
on a Sparcstation 20.

7.4 Experim ents

7.4.1 Landm ark R ecogn ition

The new landmark recognition mechanism was assessed using the basic experi­
mental procedure (section 5.3) and the same recorded robot data  as in the pre­
vious chapter (figure 6.5). The environments used for testing are summarised 
once more in table 7.1. Location bins of size 6 m x 6 m were used for perfor­
mance evaluation, and new places were entered into the robot’s map at 1.5 m 
intervals. Again, the “winner-takes-all” rule was used to determine the robot’s 
response R. The performance of the new mechanism was compared to tha t of 
the previous method for matching local occupancy grids developed by Yamauchi 
& Langley (1997) (section 6.2.4) and a third “baseline” method for identifying 
landmarks, namely the nearest neighbour classifier (section 6.2.5). Student’s t- 
test for paired samples was used to determine the significance of the performance 
comparisons, as described in section 6.4.

The results given in table 7.2 indicate no significant difference in perfor­
mance between histogram matching and classification of full occupancy grids 
(.Ph0 =  0.90), and tha t this was achieved at a greatly reduced cost in processing 
requirements. For reference, both of the occupancy based methods performed 
significantly better than the nearest neighbour classifier (pHo =  0.01). Typically 
only a single iteration of temporal evidence accumulation, i.e., a second sonar 
scan, was then required for the performance of the new system to overtake tha t 
of the occupancy grid classifier, as described in the following experiment.
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7.4.2 Lost R ob ot E xperim ent

To assess global localisation performance, the lost robot experiment was con­
ducted, using the experimental procedure described in section 5.4 to calculate 
the uncertainty coefficient U(L \ R) against distance travelled. In addition, a 
further metric was introduced to assess the robot’s degree of certainty or “confi­
dence” in the location estimates produced by the new system. This was achieved 
by calculating the entropy of the probability distribution in the robot’s location 
model after each iteration of localisation as

H (V ) = - ' £ , P ( l k ) l n p ( h i ).  (7.18)
i

The lower the value of H{V), the more confident the robot becomes in its es­
tim ated location. An equivalent measure of localisation certainty has been pro­
posed independently by various researchers (Donnett 1993, p. 155) (Cassandra et 
al. 1996) (Fox et al. 1998).

In figure 7.4, the complete localisation system is compared again to the local 
occupancy grid classifier and the nearest neighbour classifier. Note the improve­
ment in performance over time for the new system as the robot traversed the 
environment. These graphs actually represent the worst case performance for the 
different localisation algorithms, since failure to localise correctly in any single 
trial will reduce the value of the uncertainty coefficient.

The corresponding “confidence” levels are shown in figure 7.5. Comparison 
of figures 7.4 and 7.5 shows tha t the robot continues to become more certain of 
its estimated location for some distance after relocalising itself successfully. For 
example, in environments A and B, the entropy over the robot’s location model 
continued to fall for about 5 m after the uncertainty coefficient reached its max­
imum. This effect provides the robot with a degree of “inertia” in its location 
model; if the robot’s immediate sensory perceptions are affected by unpredictable 
changes such as doors being opened and closed, the “correct” location hypoth­
esis will persist for some distance (e.g., 5 m in environments A and B) before 
localisation errors can occur.

7.4.3 Lesion E xperim ents

A further set of experiments were conducted in order to evaluate the effect on 
system performance of three particular mechanisms; (1) the position tracking
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Figure 7.4: Localisation quality U(L  | R) for the lost robot using the new 
evidence-based localisation system, measured against the distance travelled by 
wall-following, compared to the full occupancy grid classifier and the nearest 
neighbour classifier.
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Figure 7.5: Localisation confidence H (V)  for the lost robot, measured against 
the distance travelled by wall-following.
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equations (section 7.2.3), (2) the histogram matching mechanism (section 7.2.2) 
and (3) the high resolution sensing strategy used for landmark recognition (section 
4.5). Here, the complete localisation system was used as a control, its performance 
being used as a baseline against which the following modified versions of the 
system were compared:

1. The position tracking equations were disabled. Here, instead of applying 
equations 7.15 to 7.17 after each iteration of the self-localisation algorithm, 
the coordinates of the new hypotheses (x 'h, , y1. , ) were left unchanged.

3 3

2. The histogram matching mechanism was removed. Instead, the nearest 
neighbour classifier (section 6.2.5) was used for landmark recognition, us­
ing the dot product to provide the likelihood values L (S  \ hi) instead of 
equation 7.3. This meant also tha t the robot could no longer estimate its 
most likely offset (r^ , rVi) within the current location from its current sonar 
readings. The offset values in equations 7.4 and 7.5 were therefore always 
set to zero, and a constant measurement error of V}H =  2.5 m 2 was assumed 
instead of using equation 7.6.

3. The high resolution sensing strategy was omitted. The robot was allowed to 
use only its first 16 sonar readings for landmark recognition instead of the 
usual detailed scan of 144 readings. Again, the nearest neighbour classifier 
was used for landmark recognition, this time based on sonar signatures 
consisting of a normalised vector of 16 sensor readings (in other words, this 
particular lesion also includes lesion 2).

The results are shown in figure 7.6. Environments A and B produced similar 
results for the four different systems. Both environments were rich in useful land­
marks; as a result, omitting the position tracking equations made little difference 
to overall system performance, and systems 2 and 3 were able to “catch up” with 
the control system after a further 10 to 15 m of travel. Comparison of systems 
2 and 3 shows tha t extra sensory information made little difference to system 
performance here, the environmental cues being strong enough to be perceived 
using only the basic ring of 16 sonar sensors on the robot.

A different outcome was observed in environments C and D, both consisting 
of long, largely featureless corridors. In both environments, a clear drop in per­
formance was observed for system 1 , indicating the importance of the position
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Figure 7.6: Localisation quality U(L \ R) for the lesion experiments, measured 
against the distance travelled by wall-following, compared to the “control” per­
formance of the complete evidence-based localisation system.
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tracking equations for processing the robot’s proprioceptive sensory input and 
localising the robot as it traversed the corridors. The biggest difference in perfor­
mance between systems 2 and 3 was noticed in environment C. This environment 
contained some distinctive landmarks, such as the junctions and corners between 
corridors, and adding exteroceptive sensory information helped the robot to re- 
localise itself more quickly. Environment D contained no such perceptual cues, 
consisting of a single, straight corridor which is subject to an extreme level of 
perceptual aliasing. Neither system 2 or 3 was able to relocalise the robot here 
within the 20 m travelled by the robot. (A further experiment conducted over 
50 m confirmed tha t both systems were eventually able to catch up with the 
control after approximately 40 m of travel.) This indicates the importance of the 
histogram matching mechanism in extracting as much of the available information 
as possible from the robot’s sonar sensor readings for global localisation.

7.5 Sum m ary of R esults

The new self-localisation system was tested in a number of real world environ­
ments, using quantitative performance measures to assess its performance. Con­
trolled experiments were also used to investigate the influence of individual sys­
tem components. The new histogram matching mechanism for landmark recog­
nition proved to be particularly effective, requiring only minimal computational 
resources. The lost robot experiment showed that the new self-localisation system 
relocalises the robot reliably under global uncertainty in middle-scale environ­
ments. Lesion experiments demonstrated the importance of the new landmark 
recognition mechanism and the position tracking equations; both mechanisms 
improved the quality of global localisation.

7.6 C oncluding Remarks

This chapter described the development and quantitative analysis of a complete 
self-localisation system for a Nomad 200 robot. A cross-correlation technique for 
matching local occupancy grids using histograms was developed to overcome the 
high computational requirements of Yamauchi and Langley’s approach (1997). 
This mechanism was combined with a novel self-localisation algorithm for accu­
mulating sensory evidence over time, allowing the robot to relocalise under global
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uncertainty. This algorithm combines exteroceptive and proprioceptive sensory 
information without being dependent on a priori position knowledge from dead 
reckoning for global position estimation.

In this approach, the robot’s location model consists of a mixture of Gaussian 
density functions, which are updated by an iterative self-localisation algorithm 
on the basis of new sensory evidence. The result is a unified solution to the 
problems of global localisation and position tracking. Furthermore, the system 
requires only minimal computational resources due to the efficiency of its match­
ing algorithms. This approach is therefore well-suited to situations in which no 
radio link to external processors is available, and operation within real-time con­
straints is required. To the best of my knowledge, it is the only such system at 
the current time which can operate in environments of the scale presented using 
only the robot’s on-board computing power.

In the experiments presented, the robot was provided with a pre-installed 
map and explored the environments using a reactive wall-following behaviour. 
At the end of this chapter, the question of autonomous map building by the 
robot still remained unanswered. In particular, two key problems needed to be 
solved; firstly, the maintenance of a geometrically consistent environment model, 
and secondly, the exploration of an unknown environment to obtain the sensory 
information required for map learning. These problems are therefore addressed 
in the following chapters.



Chapter 8 

On-Line M ap Learning

A b o u t th is  c h a p te r . This chapter describes the algorithms used by the robot 
for map learning. A fundamental problem is tha t dead reckoning cannot be 
used for global position estimation during map building because of cumulative 
drift errors caused by wheel slippage. Instead, an optimisation algorithm was 
developed to maintain global consistency in the robot’s map, using only local 
dead reckoning to obtain the metric relations between places.

8.1 Introduction

In order to achieve concurrent map building and self-localisation, the robot needs 
to solve a “chicken and egg” problem; self-localisation requires a map of the 
environment, while map building requires the ability to self-localise. The previous 
chapters considered the topic of self-localisation in isolation, assuming tha t a 
previously acquired environment model was provided to the robot. This chapter 
describes the algorithms developed to allow the robot to acquire and maintain a 
map of its environment.

As described previously, the map consists of a list of places, each identified 
by two histograms, and a list of links which connect some pairs of places. Each 
link is labelled with local metric information, describing the distance and angle 
between the two places it connects. In addition, the places in the robot’s map 
are located within a Cartesian coordinate system. These coordinates are useful 
for a number of purposes, including:

• Self-Localisation. The relative locations of perceived environmental features

129
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in the coordinate system were used by the localisation algorithm described 
in the last chapter.

• Exploration of Uncharted Territory. The coordinates are used by the ex­
ploration system described in the following chapter to infer possible regions 
of unexplored territory in the robot’s environment.

A fundamental problem for robot map building is tha t odometry can only 
produce accurate coordinate values by dead reckoning over short distances. Over 
longer distances, drift errors caused by wheel slippage accumulate, and the posi­
tion estimates quickly become unreliable. I therefore developed an optimisation 
algorithm to assign Cartesian coordinates to the places in the robot’s map, us­
ing only the local metric relations between places. In section 8.4.2, it is proved 
th a t this algorithm will always converge to a globally optimal solution, thereby 
maintaining geometric consistency in the map.

8.1.1 R elated  W ork

Engelson & McDermott (1992) developed a passive mapping system, in which 
they attem pted to detect and diagnose errors in a topological map when further, 
conflicting sensory information was obtained. For example, their system con­
tained rules for merging together different nodes in the map which were found 
to correspond to the same physical location. However, this approach was only 
implemented in simulation, and much of the world knowledge it required was 
embedded in the simulator, so it would be unlikely to work on a real robot.

Lu & Milios (1997a) considered the problem of enforcing geometric consistency 
in a metric map. Their approach maintained a history of all the local frames 
of sensor data used to construct the map and the network of spatial relations 
between the frames. The spatial relations were obtained either by odometry or 
pairwise matching of the range-finder data in adjacent frames, using the scan 
matching algorithm described in Lu & Milios (1997b). A maximum likelihood 
algorithm was then used to derive a position estimate for each of the frames, by 
minimising the Mahalanobis distance between the actual and derived relations 
over the whole network of frames. A drawback of this method is th a t it requires 
the inversion of a 3n x 3n  matrix, where n  is the number of frames, so the approach 
is likely to be computationally expensive in large environments.
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A similar approach, using a graph-based model of the robot’s environment, 
was developed by Golfarelli et al. (1998). Their system was based on the anal­
ogy of a mechanical spring system, in which each link in the graph is modelled 
by a pair of springs, a linear axial spring and a rotational one. The elasticity 
parameters of the springs were used to represent the uncertainty in the robot’s 
odometry measurements. The x  and y components of the elasticity parameters 
for both springs were derived, defining a 4 x 4 “stiffness m atrix” for each link. A 
globally consistent set of coordinates was then determined by applying a proce­
dure known as the “stiffness method” (Martin 1966, p. 21). In this procedure, the 
individual stiffness matrices are superimposed to form a Am x Am matrix, where 
m is the number of nodes, then the equilibrium position for the whole structure 
is calculated. This calculation requires inversion of the 4m x 4m matrix, so the 
approach would be likely to be at least as expensive as th a t of Lu and Milios.

Shatkay & Kaelbling (1997) and Shatkay (1998) addressed the problem of 
incorporating metric information from odometry into robot maps based on Hid­
den Markov Models (HMMs) and enforcing geometric consistency in these maps. 
The sensor-motor data from which the models were acquired were first collected 
by the robot under manual control, then an expectation maximisation (EM) al­
gorithm was used to find the map which best fitted the recorded data. In this 
approach, the conditions of additivity (consistency of distance measurements be­
tween places) and anti-symmetry (all links assumed to be bi-directional) were 
enforced directly in the re-estimation procedure for obtaining the probabilities in 
the HMM. This algorithm is heavily dependent on a good initial model to avoid 
local maxima. The approach would not scale well to larger environments due 
to the large amount of data needed and the high computational cost of the EM 
algorithm.

Both approaches described above, namely m atrix methods and expectation 
maximisation, are computationally expensive. The m atrix methods generate a 
globally consistent map in a single step, by solving a set of N  simultaneous 
equations, where N  is the number of places in the map. This operation requires 
the inversion of a large m atrix every time tha t new information is added to the 
map. By contrast, the new optimisation algorithm presented in this chapter 
solves the problem by minimising an energy function over many small steps, as 
in a Hopfield network (Hopfield 1982). It is particularly efficient because it does 
not need to recompute the whole coordinate system from scratch every time tha t
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new information is added — instead, the existing solution is refined. In contrast 
to expectation maximisation algorithms, which are subject to local maxima, the 
new method is guaranteed to find a globally optimal solution.

8.2 M ap R epresentation

The map built by Forty Two consists of a set of N  place nodes, and a set of 
links which connect some pairs of places. Each place i consists of a Cartesian 
coordinate (x£, yi) and a variance Vi reflecting the uncertainty in the calculation of 
tha t coordinate, according to the noise model described in section 4.3.2. Each link 
connects two places i and j ,  and is associated with a confidence level 0 <  ĉ - <  1 

reflecting the robot’s belief tha t the link can be successfully traversed. A vector 
(dij,9ij) is also attached to each link, where dij refers to the distance and %  to 
the heading observed by the robot in moving from place i to place j .  Again, the 
uncertainty in the measurement of this vector is represented by a single variance 
Uij according to the noise model in section 4.3.2. In this thesis, the links were 
constrained to be bi-directional, tha t is, Cij = C j i , d #  — d j i  and 0̂ - —  Oji +  7r.

8.3 M ap A cquisition

Whenever the robot moved between two places i and j  for the first time, a new 
topological connection was recorded in the map. The confidence level for each 
link was initialised to 0.5 and adapted according to the following rules taken from 
Yamauchi & Beer (1996). During subsequent traversals of an existing link in the 
map, the confidence level was increased using

cij ~  ^ +  (1 — A)Cij, (8.1)

where the link adaptation rate, A, was 0.5 in these experiments. Conversely, 
whenever the robot failed to traverse a given link, for example, because the robot 
reached a different place to the intended destination produced by path planning, 
the confidence value was decreased using

C i j  ~ ~  (1 (8.2)
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A link was deleted from the map whenever its confidence level fell below a 
pre-specified threshold (0.2 in these experiments). A node was deleted from the 
map if no path could be found to tha t node from the robot’s current location,
i.e., when no possible routes existed due to link deletion.

In addition, the distance dij and heading Oij of the robot between the two 
places was recorded, and the variance Uij in this the measurement of this vector 
(dij, 6ij) was estimated as 5% of the distance travelled. These measurements were 
obtained by simple vector arithmetic, taking into account both the displacement 
of the robot between the two places, measured by odometry, and the most likely
offset of the robot from the centre of each place, determined by the histogram
matching procedure described in section 7.2.3. These calculations are summarised 
as follows:

= yJ(Axij)2 +  (A y^)2, (8.3)

dij =  atari ( ^ )  , (8.4)

where

A Xij — rXi +  A x -  rXj, (8.5)

A y i3 = ryi +  A y  -  ry., (8 .6)

where the vector (Arc, A y)  refers to the robot’s own displacement in Cartesian 
space observed using its on-line compass-based odometry (section 4.3.1), and 
the (rXiry) refer to the mostly likely offsets for places % and j  calculated by 
the histogram matching mechanism (section 7.2.2). The local metric relations 
(dij, 0%j ) are defined by Polar rather then Cartesian coordinates to emphasize the 
relative nature of the measurements.

8.4 M aintaining Global C onsistency

The following relaxation algorithm was developed to assign globally consistent 
coordinates to the places in the robot’s map using only the local metric relations 
between places. In this approach, the coordinates of the places are treated as free
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variables which are continuously refined over time towards an optimal solution. 
The basic idea is to pick each node in turn, and move it to “where its neighbours 
think it should be” . By repeated application of this rule, the map gradually 
converges upon a globally consistent set of coordinates.

8.4.1 T he R elaxation  A lgorithm

At each iteration of the algorithm, a two-step procedure is carried out for each 
node % of the map in turn:

Step 1

For each of the neighbours j  of node z, i.e., the places which are 
topologically connected to z, an estimate (x1̂,  yL) of the coordinate of 
node z is obtained using

x j T  dji cos 0ji,

Uj -(- dji sin Oji,

where the coordinate of j  is denoted by (X j,y j). The variance Vji in 
this estimate is obtained using

U j i  —  V j  ~\~ U j i

where Vj refers to the variance for node j  and Uji to the variance for 
the link from j  to z.

Step 2

The position estimates (a;L, yL) for all j  are then combined to produce 
a new coordinate for node i. First, the new variance Vi for node i is 
calculated as

x3i =

y'ji -
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where Yfj refers to the sum over the neighbours of node i. A new 
coordinate (x^yi)  is then calculated by taking a weighted mean of 
the estimates ( x ^ y '^ )  as

Xi

Vi

= E'  x 'nVi
V313

' y'nv ’-E
3

v3i

This last step has the effect of moving the node to the average of where the 
neighbouring nodes “think it should be” , weighted by the variance in each of 
these estimates. The algorithm is repeated until some arbitrary stopping crite­
rion is reached, for example, when the total change in the coordinates falls below 
some threshold. In the experiments presented in this thesis, the algorithm was 
run for a single iteration each time the robot moved to a different place in the map.

An example illustrating the propagation of uncertainty by the relaxation al­
gorithm is shown in figure 8 .1 . This diagram shows tha t where there are several 
measurements for a place coordinate, i.e., because the node is connected to several 
neighbours, the variance in tha t coordinate tends to be low. Conversely, where 
a node is only connected to one neighbour, its variance tends to be high. In the 
complete system for concurrent map building and self-localisation, the variance 
measures assigned to the places by the relaxation algorithm are combined with 
the variance estimates produced by scan matching (equation 7.6) to obtain the 
measurement errors in the self-localisation algorithm (see section 7 .2 .3).

8.4.2 P ro o f o f C onvergence

Each link in the map can be thought of as a spring which connects two adja­
cent places i and j  (Lu & Milios 1997a; Golfarelli et.al. 1998; Shatkay 1998). 
The spring reaches minimum energy when the relative displacement between the
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Figure 8.1: Example showing the propagation of uncertainty by the relaxation 
algorithm. In this figure, the nodes are spaced at approximately equal intervals 
of 1 m. The variance in each of the coordinates after the relaxation algorithm 
converges is indicated by the radius of the corresponding circle. The variances 
were exaggerated by a factor of 10 here for illustration purposes.
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coordinates of i and j  is equal to the vector (dij, Oij) measured by the robot. 
Equilibrium is reached in the whole map when the total energy over all of the 
springs reaches a global minimum. Thus, global consistency is maintained in the 
map by minimising the following energy function:

/

E  = 53  (x3 ~  x i +  djicos Qjif +  (Vj ~  Vi +  dji sin % ) 2 , (8.7)
i 3

where Yfj refers to the sum over the neighbours of a given node. In order to 
prove convergence of the relaxation algorithm, it is sufficient to show tha t the 
algorithm is always guaranteed to minimise this energy function. The following 
proof consists of examining the change in energy after updating a single node in 
the map and showing tha t this must always be less than zero.

In order to simplify the notation, it is assumed th a t all of the variances in the 
map are equal to 1 , since the actual values of the variances will not affect the 
generality of the proof. The following notation is also adopted:

Cji = Xj +  dji cos 9ji, (8 .8)

Sji =  yj djism$ji. (8.9)

Consider how an arbitrary node with coordinates (a;<,t/j) is updated by its
neighbours:

<  =  (81°)
1 3

y'i = jr X  ̂  (8.ii)
* j

where Ni = Y^j 1 refers to the number of neighbours of node i.
The total change in energy after updating any node i is defined by

A E  =  2 | -  E (iP a  -  X i ?  +  ( %  -  J / i ) 2 )  +  £  ((C *  -  x[?  +  (Sji -  2 /( )2 )  |  •

(8 .12)
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There is a coefficient of 2 because each link is bi-directional and therefore updates 
both of the nodes tha t it connects. It is sufficient to show th a t AE  < 0 to 
prove convergence, i.e., tha t the total energy before updating any node is always 
greater than or equal to tha t afterwards. Consider the change in energy for the1 

x coordinate of the updated node,

A E .  =  (8.13)
3 j

' V  '- £ ( C ^ ) 2. (8.14)
3 J  3

The energy function is defined in terms of the relative positions of the points 
rather than absolute coordinates. It is therefore possible to add a constant vector
to all points without affecting the energy. Thus, without loss of generality, let
Xi — 0. Hence,

AE* =  (8.15)

=  E ^ - 4 , e ( ^ E ^ U ^ ( e ^  - ± C %  (8.16)

-  4 ( E ' ) ’ + r ( E ' ) ’ (817)

- T?0") < s - i ! )

<  0 . (8.19)

In other words, updates always result in a decrease in energy until an equilib­
rium is reached. The algorithm will always converge to a minimum in the energy 
function, because this function is bounded below by zero. Since the energy func­
tion is quadratic, this can only be a global minimum.
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8.4.3 C om p lexity  A nalysis

In contrast to previous methods, the algorithm is computationally inexpensive. 
During on-line operation, it was found tha t only a single iteration of the algorithm 
was required at each stage of the map building process. For the worst case of 
a completely connected graph, in which each node is connected to every other 
node, the complexity of the algorithm would be 0 (n 2), where n  is the number of 
nodes. However, for a map, the number of links per node will not grow with the 
size of the map, so the complexity is linear or O(n). This compares favourably 
with the 0 ( n 3) complexity of m atrix inversion methods. In the map building 
system presented here, the robot attem pts to space the nodes at equal intervals, 
so the maximum connectivity per node is 6. (If the nodes are spaced at equal 
intervals, then for any node, the minimum angle of incidence between any two 
of its neighbours will be 60°, where the three nodes form an equilateral triangle. 
Therefore, the maximum connectivity per node is 360°/60° =  6.)

8.5 R esults

To demonstrate the convergence of the relaxation algorithm, an off-line experi­
ment was conducted in which the coordinates of a previously acquired map were 
reinitialised to randomly selected values. The algorithm was then iterated until vi­
sual inspection revealed th a t a steady solution had been obtained (see figure 8.2). 
By fixing one of the points as the origin throughout, it was confirmed tha t the 
coordinates in the map always converged to exactly the same solution, as implied 
by the proof of convergence.

In order to assess the accuracy of the maps produced by the complete on­
line map building system, an experiment was conducted in which a geometrically 
“correct” map was recorded by a human observer for comparison with the robot’s 
self-acquired map. A laboratory environment of size 5.38m x 3.88m  was used to 
allow manual recording of the robot’s position with a tape measure (see figure 8.3). 
The robot explored the environment from a variety of different starting positions, 
and the actual position of the robot was recorded whenever it added a new place to 
the map using the exploration strategy described in the previous chapter. Here, 
the exploration software was modified to make sure tha t the robot physically 
traversed every link in the map, so tha t the robot obtained a measurement of the 
local metric relation between every pair of connected places.
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Figure 8.2: Convergence of the relaxation algorithm. The first picture shows a 
topological map constructed incrementally by the robot during exploration of a 
corridor environment (see figure 10.1 for the corresponding floor plan). In the 
second picture, the coordinates in the map have been randomly reinitialised. 
The remaining pictures show the map after 5, 25, 50, 250 and 500 iterations 
respectively of the relaxation algorithm in section 8.4.1.
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Figure 8.3: Accuracy of the maps produced by the complete system. The maps 
produced by the robot are compared to the equivalent maps created by a human 
observer. The numbers indicate the sequence in which the places were added to 
the robot’s map. A laboratory environment of size 5.38m  x 3 .88777, was used to 
allow manual recording of the robot’s position.
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The results shown in figure 8.3 reflect the accuracy of the whole system, 
and therefore represent the worst case results for the relaxation algorithm, since 
the maps produced will also incorporate any errors in self-localisation, histogram 
matching and local dead reckoning by the robot. Nevertheless, the maps obtained 
show a good correspondence with the measurements taken by the human observer, 
indicating the efficacy of the overall approach. The higher the connectivity of the 
robot’s map, the closer it tends to be to the equivalent human-measured map.

8.6 D iscussion

Leonard & Durrant-W hyte (1992, p. 146) considered rock-climbing to be a useful 
analogy for concurrent map building and self-localisation. They regarded map 
building

"... as a methodical, incremental process, in which each successive 
foothold (vehicle position) is made secure before the next advance.
The uncertainty introduced into the system by each move of the ve­
hicle must be eliminated as early and often as possible.”

In other words, mapping errors are avoided by trying to prevent erroneous in­
formation from being added to the map in the first place. However, this approach 
is bound to fail sooner or later for the following reasons. Firstly, the models used 
by robots to interpret sensory information can only approximate the real world, 
so mapping errors are inevitable on a real robot. Secondly, even if perfect sen­
sors were available, errors would still occur, because real world environments are 
subject to variations which cannot always be predicted by an autonomous agent. 
The ability to correct existing errors in the map based on new, conflicting sensory 
information is essential for navigation in middle-scale environments.

In the map learning scheme described in this chapter, the robot has the ability 
to modify its map on-line in order to correct possible sensing errors. Places and 
links can be added or deleted, allowing the robot to adapt its internal represen­
tation to the observed topography of the environment. The relaxation algorithm 
is then applied to find the best map to fit all of the available information, us­
ing all of the local metric relations in the map to obtain the place coordinates. 
In contrast to many previous map building systems, for example, Leonard & 
Durrant-W hyte (1992), Kurz (1996) and Yamauchi & Beer (1996), the algorithm
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can thus correct existing errors in the map as well as mapping new territory, 
because all of the place coordinates are recalculated at each iteration.

Solutions to the consistency maintenance problem exist which are based on 
m atrix methods (Lu & Milios 1997a; Golfarelli et al. 1998). However, in compar­
ison to the relaxation algorithm presented here, these methods are complicated 
to implement and require a large amount of computation to recalculate the whole 
map whenever new sensory information is obtained. The relaxation algorithm is 
particularly efficient because it does not throw useful information away; instead 
of recalculating the entire map from scratch every time, the existing solution is 
refined. As a result, only small changes to the map are typically required when 
new information is added. In the complete map building system developed, it 
was found tha t it was only necessary to run the relaxation algorithm for a single 
iteration at each cycle of the exploration process.

A further advantage of the approach is tha t it is possible to adapt the robot’s 
map slowly in the direction of the global minimum in the energy function, rather 
than jumping straight to the “correct” solution. This is useful for concurrent 
map building and self-localisation, because simultaneous updates to the robot’s 
environment and location models can lead to the mutually destabilising effect 
reported by Zimmer (1995b), in which each representation becomes corrupted by 
the errors in the other. The technique of adapting the map by a single iteration 
each time counters this effect by providing the robot with a degree of “inertia” 
in its environment model.

8.7 C oncluding Rem arks

In this chapter, a relaxation algorithm for maintaining global consistency in the 
robot’s map was presented. This algorithm is self-organising, using only local 
information and local interactions to converge upon a globally optimal solution. 
It works by minimising an energy function over many small steps, as in a Hopfield 
network (Hopfield 1982). Apart from being simple and easy to implement, the 
algorithm is very effective because it uses all of the local metric information in the 
map to obtain the place coordinates. The algorithm is also very efficient (its com­
plexity is 0 (n )  compared to the 0 ( n 3) complexity of m atrix inversion methods), 
enabling fast, on-line map learning by the robot in middle-scale environments. 
Furthermore, in contrast to expectation maximisation algorithms (Shatkay &
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Kaelbling 1997; Thrun et al 1998b), which are subject to local maxima, it has 
been proved tha t the algorithm will always converge to a global solution. The 
next chapter considers how to explore an unknown environment in order to obtain 
the sensory information required for map learning.



Chapter 9

Exploration o f an Unknow n  
Environm ent

A b o u t th is  c h ap te r . In order to build a map of an unknown environment, 
a robot needs to travel to uncharted territory. A map-based exploration system 
is presented, in which the environment model is acquired incrementally by the 
robot. The basic mechanisms include an artificial neural network which is trained 
to detect areas of open space in the environment.

9.1 Introduction

Various possible strategies for exploration of an unknown environment are de­
scribed in the robotics literature. The following taxonomy is taken from Lee (1995, 
p. 19):

1. Human control.

2. Reactive control.

3. Approaching the unknown.

4. Optimal search strategies.

In the first approach, the robot is guided around the environment by a hu­
man operator. A map is constructed either on-line using a passive mapping sys­
tem (Kortenkamp 1993; Engelson 1994), or using an off-line learning algorithm 
after exploration has been completed (Shatkay 1998). This approach requires

145
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human intervention in the map building process, and is therefore unsuitable for 
use by a self-navigating mobile robot.

A reactive exploration strategy is another alternative (item 2), for example, 
wall-following (Mataric 1991; Nehmzow & Smithers 1992) or random exploration. 
However, while reactive behaviours are often very robust, they cannot be guaran­
teed to build complete maps in middle-scale environments. Wall following cannot 
be used to explore areas of open space such as rooms, and random exploration is 
unsuitable for environments of any real complexity; the robot may get “trapped” 
in one part of the environment or take many hours, if at all, to cover the whole 
area.

In the strategy known as approaching the unknown (item 3), the robot tries to 
move towards the regions of the environment about which it knows the least. The 
map acquired by the robot is used to guide the exploration process, directing the 
robot towards areas of uncharted territory. The new sensory information obtained 
by the robot as it moves into new territory is used in turn  to  update the map. 
This process is repeated until the whole environment has been covered.

A version of the last strategjr, in which the robot continuously tries to expand 
the territory which has already been charted, was used here. The basic idea is tha t 
the robot travels to the edge of the existing map, and then uses its range-finder 
sensors to detect new regions of uncharted territory. The new territory is added 
to the map, then the robot tries to reach the next unexplored edge of the map. 
The sequence is repeated until the robot has traversed the entire environment.

The approach differs from previous work in tha t it does not require high pre­
cision sensing or depend upon simplifying assumptions about particular environ­
ments, and has been tested in populated, real world environments in experiments 
reported in this chapter. An artificial neural network is used to detect areas of 
unexplored territory, fusing together information from the robot’s sonar and in­
frared sensors. All of the data required for training the network is collected by 
the robot itself, avoiding the need for the system designer to determine the train­
ing signal. The complete system requires only minimal computational resources, 
thereby eliminating the need for off-line processing and increasing the autonomy 
of the robot.

In addition to the exploration strategies described above, Lee identified a 
fourth category, namely optimal search strategies. In the new exploration system, 
the robot uses a greedy, sub-optimal strategy, namely “head for the nearest area of
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unexplored territory” . However, extending the system to use an optimal strategy 
would be straight-forward, since deciding which place to visit next is equivalent 
to the well-known Travelling Salesman Problem (Gibbons 1985).

9.1.1 R elated  W ork

Yamauchi (1997) developed a technique called “frontier-based exploration” . In 
his system, a global occupancy grid was used to represent the environment. Im­
age segmentation techniques were used to extract regions in the grid between 
charted and unknown territory known as “frontiers” . Exploration was then di­
rected towards the frontiers. A disadvantage of this approach is tha t it depends 
critically upon accurate laser sensors and precisely corrected odometry, because 
exact position information is needed to update grid-based maps.

Thrun (1998b) also developed a map building system based on a global grid 
model. An artificial neural network was trained to translate neighbouring groups 
of sonar readings onto occupancy values in the grid. Exploration was then di­
rected towards areas of high uncertainty in the acquired map. The required 
training examples were obtained using a simulator, though the trained neural 
networks were shown to work well on the real robot. However, this system de­
pends on an assumption tha t environments are rectilinear, i.e., tha t surfaces are 
always parallel or perpendicular to each other.

Edlinger & Weiss (1995) developed a robot map building system in which the 
map consisted of a set of laser range-finder scans and the topological relations 
between the scans. Their system attem pted to detect obstacle-free segments in 
the scans known as “passages” , tha t is, regions of open space which are wide 
enough for the robot to move into. The detected passages were added to a stack 
of unexplored locations, which were visited in turn until the whole environment 
had been covered by the robot. This system was tested successfully in a static 
office environment of middle-scale dimensions, though the sensing strategy used 
could fail in populated environments, because possible passages in the laser scans 
might be occluded by moving people.

Kunz et al. (1999) developed an automatic mapping system called Inducto- 
Beast which used a topological map and dead reckoning to identify places. To 
correct the rotational drift errors affecting the robot’s odometry, environments 
were assumed to be rectilinear. An interesting feature of this system is its use
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of inductive learning during map building, hypothesizing the existence of unex­
plored hallways based on knowledge of the symmetries which commonly occur in 
office buildings. However, this approach depends on a set of simplifying assump­
tions about office environments, such as rectilinearity, known corridor widths and 
minimum distances between junctions. This means tha t the system would fail in 
environments which do not conform to these a priori assumptions.

Of the above studies, the approaches based on topological maps would seem 
the most promising, due to the higher accuracy required for updating grid-based 
maps. The assumption of rectilinearity, however, while an attractive simplifica­
tion for many indoor environments, cannot be used in environments which contain 
non-rectangular objects such as furniture and plants. For example, the recreation 
area used for one of the experiments presented here contained cylindrical rubbish 
bins, concave vending machines and a number of objects, including a wall, in 
orientations which would cause this assumption to fail. The approach presented 
here is closest in spirit to tha t of Edlinger & Weiss (1995), though it does not 
depend upon accurate range-finder sensing and takes various steps to eliminate 
possible occlusions and variations in the robot’s sensor data (see section 9.3).

9.2 Exploration Strategy

In the new exploration system, the robot builds a topological map which is aug­
mented with metric information concerning the distance and angles between con­
nected places. The map contains two different types of places (see figure 9.1):

• Predicted. Places presumed to exist but not yet visited by the robot.

• Confirmed. Places actually visited by the robot.

Exploration consists of continuously trying to expand the territory already mapped 
by the robot, using a neural network to add new predicted places to the map. 
Subsequent movement by the robot is used to verify whether the predicted places 
actually exist or not. This exploration strategy is carried out as follows.

From its initial location, the robot takes a new sensor scan. It examines this 
scan, searching in all directions for possible areas of uncharted territory, using 
the neural network to identify areas of open space. The robot adds the first 
set of predicted places to the map, and then attem pts to navigate to the nearest
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Figure 9.1: Example of topological map building. Places predicted by the neural 
network but not yet visited by the robot are shown by squares. Places actually 
visited by the robot are shown by filled circles. The numbers indicate the sequence 
in which the nodes were visited.

predicted place (choosing one at random if there are several options). If the robot 
is able to move to a physically distinct new location in the environment without 
encountering any obstacles, the predicted place is replaced by a confirmed place, 
otherwise it is deleted. If any obstacles are encountered, reactive sensor-motor 
behaviours steer the robot away from possible collisions. A local dead reckoning 
strategy is used to decide whether to confirm the predicted places. Whenever 
another place is confirmed in the map, the neural network is used again to predict 
more new places. In addition, connections are inferred to any other confirmed 
places lying within a certain distance (1 m in these experiments) of the added node 
within the global coordinate system, provided tha t the neural network indicates 
open space in tha t particular direction. The whole process is repeated until all 
predicted places in the map have either been visited by the robot or deleted.

9.2.1 B asic M echanism s

In order to implement this strategy, the following mechanisms were required:
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1. Compass Sense. To determine the direction of unexplored territory and to 
control the robot’s heading during exploration, the robot needs to be able 
to determine its orientation (section 4.2).

2. Open Space Detection. Some mechanism was also required to add the new 
predicted places to the map, i.e., to detect areas of unexplored territory in a 
particular direction. Individual range-finder readings are not well suited for 
this purpose because of problems such as occlusions, sensor noise, cross-talk 
and specular reflections. Instead, an artificial neural network was trained 
to learn the concept of “open space” , combining noisy information obtained 
from many sensor readings (section 9.3).

3. Local Dead Reckoning. To determine whether a predicted place should be 
confirmed and added to the map, a local dead reckoning strategy was used, 
based on the robot’s on-line compass-based odometry (section 4.3.1). If 
the robot managed to travel by a pre-specified distance threshold (1 m in 
these experiments) from the nearest stored place in the map, as measured 
in the global coordinate system, then a new confirmed place was added to 
the map.

4. Map Learning and Self-Localisation. The map learning mechanisms em­
ployed by the robot were described in the previous chapter. The robot also 
needs the ability to determine its location within th a t map, as described in 
chapter 7.

5. Way Finding. Path planning was carried out using D ijkstra’s algorithm. 
The robot’s heading was controlled by taking into account the robot’s cur­
rent location in the map, the compass sense and the shortest path to the 
goal location. A reactive controller was used for moving forward while 
avoiding obstacles (section 9.4).

9.3 Learning a M odel o f Open Space

To detect regions of unexplored territory, I developed a mechanism which uses 
an artificial neural network to estimate the likelihood of the robot being able to 
move into open space — th a t is, space which is unoccupied by any object — 
in a given direction. A fully connected, feedforward network with 6 inputs, 3
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Figure 9.2: Architecture for open space detection. Two pre-processing functions 
were applied to the sensory input, then an artificial neural network was used to 
detect the presence or absence of open space in a given direction (see section 9.3).
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hidden units and 1 output was trained to associate the sensory input in the given 
direction with the robot’s ability to travel by a pre-specified distance (1 m) in 
tha t direction. The output of the network was the probability of open space 
(see figure 9.2). All of the data required for training the network, including the 
ability to travel in a particular direction, was collected by the robot itself, thus 
avoiding the need for manually labelling the training examples with the desired 
output categories, as in the concept learning mechanism described by Mahadevan 
et al (1998).

9.3.1 D a ta  C ollection

The sensing strategy used by the robot consisted of rotating its tu rret to obtain 
a detailed scan, consisting of 144 sonar and 144 infrared readings at 2.5 degree 
intervals (see section 4.5). For data collection, a scan was first taken, then the 
robot attem pted to move as far as possible in an arbitrary direction until an ob­
stacle was detected within 15 cm of the robot, recording both the sensor readings 
from the scan and the distance travelled. D ata was collected in several different 
areas of the computer building at Manchester University, including the robotics 
laboratory, a junction and a corridor.

9.3.2 P re-P rocessin g

The sensor readings were first processed to take into account the heading of the 
robot. A subset of 58 of the 288 readings, centred around the direction in which 
the prediction of open or occupied space was to be made, was used as input to 
the classification mechanism. (For training and testing, this was the recorded 
direction of travel. During on-line operation, the sensor scan was subjected to 
a series of 144 rotations, the subset of 58 sensor readings being extracted from 
each rotated scan in turn before presentation to the classifier, thus enabling the 
prediction of open space in all 144 directions). The following functions were 
applied to the selected subset of sensor readings.

1. M ed ian  F ilte r . The robot’s raw sensor readings rarely give accurate range 
measurements; the values may be too high, e.g., due to specular reflections, 
or too low, e.g., due to cross-talk or occlusions caused by moving people. 
To reduce these effects, groups of 5 or 6 adjacent sensor readings (of the 
same sensor modality, sonar or infrared) were combined to produce a single
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reading, by taking their median value. This resulted in five sonar and five 
infrared inputs to the next pre-processing stage. An alternative would be to 
use the mean value, but this would be susceptible to the effects of outliers 
in the data; the median is recognised as a more robust statistic (Bishop 
1995).

2. S y m m e try  F il te r . This function was used to exploit the bilateral symmetry 
inherent in this classification task. For example, the left-most sonar reading 
was combined with the right-most sonar reading by taking the minimum of 
the two values (i.e., the nearest of the two obstacles detected). The middle- 
left and middle-right readings were similarly combined. This resulted in 
three sonar and three infrared inputs to the neural network, since the centre 
readings were not affected by this operation. An alternative would be to 
synthesize new training examples by manually reflecting the sensor readings, 
as in the training of the network used to steer the ALVINN autonomous 
vehicle (Pomerleau 1989), but this would double the size of the training set 
and necessitate a more complicated network architecture.

9.3.3 Training and T esting

A key issue was tha t of misclassification errors. Though the performance of the 
network used here was very good (see section 9.5), any classification mechanism is 
bound to make some errors. These errors will either be false positives, where the 
robot predicts open space when the space is actually occupied, or false negatives, 
where the robot predicts occupied space when the space is actually open. In 
the exploration system presented here, false positives are not a major problem, 
because subsequent movement by the robot is used to verify whether the predicted 
places actually exist. However, false negatives would pose a problem because they 
might cause the robot to miss some area of unexplored territory.

The solution adopted here was to bias the classifier mechanism into over­
estimating the likelihood of open space in a given direction, thereby producing 
more false positives but fewer false negatives (none in the experiments presented 
here). The network was trained off-line by back-propagation, using the sensor- 
motor data previously collected by the robot, each training example consisting of 
a pre-processed sensor scan and a target output taken from the distance travelled 
by the robot (equal to 1 if the robot could travel by the pre-specified distance of
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1 m, and 0 otherwise). The network was trained to produce outputs which can be 
interpreted as the posterior probability of open space by using the cross-entropy 
error function, given by Bishop (1995, p. 231) as

E  =  -  £ > " l n y ’* +  (l - t “)ln (l -  j,")}, (9.1)
71=1

where N  is the number of training examples, tn is the target output and yn is the 
actual output of the network for a given training example n  =  {1,..., N }. This 
can be compared to the sum-of-squares error function used most often for training 
neural networks by back-propagation, given as

E  =  l ' E ( t n -  y " ?  • (9 -2)
Z n=l

During testing and on-line operation, a bias value (0.125 in these experiments) 
was added to the actual output of the network in order to produce the desired 
over-estimates. An input pattern was thus classified as “open space” if the actual 
output yn was greater than 0.5, and “occupied space” otherwise.

9.4 W ay Finding

9.4.1 H igh-L evel C ontrol

Dijkstra’s shortest path  algorithm (Gibbons 1985) was used for planning routes in 
the topological map. This is an exhaustive search algorithm which is guaranteed 
to find the shortest path to the goal location from all of the other nodes in a graph 
in the lowest possible computational complexity. An alternative would be to use 
a heuristic search method, the optimal choice being the A* algorithm (Nilsson 
1980), though the result would be exactly the same.

During exploration, the robot stopped to take a new sensor scan (section 4.5) 
every time it had travelled 0.5 m from the position in which the previous scan was 
taken. The new scan was used for both self-localisation, as described in chapter 
7, and open space detection, as described above.

Whenever the self-localisation algorithm detected a change in the robot’s cur­
rent location in the map, a new heading was determined based on the direction 
to the next node on the shortest path to the goal location. The robot’s steering 
orientation was then adjusted relative to the orientation of the turret, since the
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turret was already fixed in the direction of North by the compass sense.

9.4.2 Low -Level C ontrol

After setting the new heading, control was passed to a set of reactive behaviours 
until a further 0.5 m had been travelled by the robot. During this phase, the 
orientation of the robot’s turret was controlled using the compass sense. The 
initial behaviour used by the robot was to move forwards. If an obstacle was 
detected within 0.6 m of the robot by the forward facing sensors, control of 
the translational and rotational motors was passed to the previously acquired 
behaviour for wall-following described in section 4.4. If the detected obstacle 
was on the left side of the robot, a left-hand wall-following behaviour was used, 
otherwise right-hand wall-following was used.

Again, this raises the problem of sensor noise and occlusions. If the decision 
on whether to go left or right is based on a spurious sensor reading, the wrong 
decision might be made. The solution adopted here was to use a pair of “virtual” 
sensors; the “left” sensor being taken as the median value of the four infrared 
sensor readings to the immediate left of the direction of travel, and the “right” 
sensor as the corresponding median value on the other side.

The reason for using wall-following was as follows. In initial experiments, the 
learned behaviour for obstacle avoidance was used, which is based on the two 
instinct rules for moving forwards and turning away from obstacles (described 
in section 4.4). Sometimes, however, this behaviour would result in the robot 
failing to reach predicted places. For example, if the robot tried to turn into 
a narrow opening such as an intersecting corridor to reach a new place, the 
obstacle avoidance behaviour could sometimes cause the robot to miss the opening 
completely. Instead, it was found tha t the wall-following behaviour produced the 
best results, because the third instinct rule for turning towards obstacles meant 
tha t the robot would still avoid collisions but stay close enough to the original 
intended trajectory to find its way through relatively narrow spaces (e.g., the 
corridors in our building are 1.75 m wide).

9.5 R esults

The neural network was trained to perform the open space detection task using 
a training set of 276 examples and a testing set of 92 examples, resulting in a
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D e sc rip tio n A pprox .
Size

M ap -B ased
Distance/m

W all-Follow ing
Distance/m

A Long straight corridor 53 m x 3 m 106.64 ±  1.48 110.91 ±  0.09
B L-shaped corridor 34 m x 33 m 146.33 ±  3.45 146.68 ±  0.31
C T-shaped hallway 16 m x 13 m 58.02 ±  2.64 X
D Recreation area 20 m x 11 m 91.86 ±  2.86 X

Table 9.1: Test environments for exploration. The total distance travelled with 
standard deviation is shown for the map-based exploration strategy in all four 
environments. Only the corridor environments A and B could be explored by 
wall-following, therefore no comparison between the two strategies is shown for 
environments C and D.

test error of 7.6%. This mechanism was then validated through its integration 
into the map-based exploration system, using a different set of environments to 
those used for training and testing. Using the proportion of predicted places 
which were not confirmed during map building, a validation error of 4.0% was 
observed. T hat this is lower than the test error can be explained by the fact tha t 
the data used for training and testing contained a higher proportion of “difficult” 
examples, such as junctions and corners.

The map-based exploration strategy was tested in a number of middle-scale 
environments in the computer building at Manchester (see table 9.1), which con­
tained transient changes such as people walking past the robot and doors being 
opened and closed. An example of one of the exploration trials is shown in fig­
ure 9.4, illustrating the incremental acquisition of the robot’s map. Two of these 
environments, A and B, were composed entirely of corridors, so could therefore 
also be explored systematically using wall-following. The performance of the 
map-based exploration system was compared to tha t of wall-following in these 
environments by taking the to tal distance required to conduct a complete tour of 
the environment and then return to the starting location. The results show tha t 
the performance of the map-based exploration strategy is comparable to tha t of 
wall-following in these environments, while having the additional benefit of being 
able to operate in open environments such as G and D.

To assess the quality of the maps obtained, the ability of the robot to navigate 
using a self-acquired map was considered. Firstly, the robot’s ability to relocalise 
under global uncertainty, i.e., to recover its position after becoming lost, was 
assessed. Secondly, the map building system was validated through its integration
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Figure 9.3: Forty Two explores part of the recreation area near to some vending 
machines (environment D in table 9.1).

into a complete navigation system, which was tested on a delivery task in a 
middle-scale environment. These results are reported in chapter 10.

9.6 D iscussion

In this chapter, a map-based exploration system for a mobile robot was pre­
sented. The basic mechanisms used included a compass, a topological map 
augmented with metric information and a neural network trained to detect ar­
eas of open space. The neural network can easily be retrained to work with 
other environments or sensors, thus increasing the overall flexibility of the sys­
tem. In the experiments presented, a number of unmodified, real world envi­
ronments of several hundred metres squared were mapped independently by the 
robot, without requiring off-line processing or human intervention in the map 
building process. Furthermore, no simplifying assumptions concerning the struc­
ture of the environment were required, as in previous approaches (Thrun 1998b; 
Kunz et al. 1999).

In the new exploration system, path planning takes place over the whole map, 
including both the predicted and confirmed places; this means that the robot is 
able to infer routes across territory which it has not yet visited. Subsequent 
exploration by the robot is used to confirm whether or not the inferred places
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Figure 9.4: Testing of the exploration system. The map acquired by the robot in 
the recreation area .(environment D in table 9.1) is shown after 2, 7, 17, 25, 55 and 
80 steps of exploration, where the nodes in the map are spaced at approximately 
equal intervals of 1 m. The last region to be added to the map (see bottom-right 
picture) was the vending machine area in figure 9.3.
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actually exist. If the intended route is found to be blocked, then the robot simply 
replans a new route to the goal location using the updated version of the map.

The way finding mechanism described in section 9.4 employs a somewhat ad 
hoc collection of routines to coordinate the high-level activities of path planning 
and path execution with the low-level sensor-motor behaviours. This is sometimes 
referred to as the task integration problem (Saffiotti 1997), th a t is, the problem 
of maintaining the right correspondence between the achievement of goals at the 
higher level and the execution of behaviours at the lower level. According to 
Saffiotti (1997, p. 17), “the problem of how to coordinate the activity of a set 
of behaviours remains the Achilles> heel of behaviour-based robotics” . A proper 
treatm ent of this problem would warrant another PhD thesis in its own right. 
The routines used here were determined largely by trial and error, since the focus 
of this research was primarily on the high-level algorithms required for concurrent 
map building and self-localisation.

This chapter only considered exploration as a map learning problem, assum­
ing tha t reliable location recognition is always possible; in some environments, 
the robot might occasionally need to travel back through previously charted ter­
ritory in order to improve localisation quality, as in Zimmer (1995a) and Beetz 
et al (1998). This issue is discussed further in section 10.3.

9.7 C oncluding Rem arks

This chapter described an automated mapping system based on a single tour of 
an unknown environment. An artificial neural network was trained to recognise 
areas of unexplored territory, by learning a model of open space, thus avoiding 
the pre-installation of a world model for this purpose by the system designer. 
This approach could be extended to allow continuous exploration of environments 
which are subject to structural changes over time. The relaxation algorithm 
presented in the previous chapter would allow constant adaptation of the robot’s 
environment model depending on perceived changes to the environment. At the 
moment, the place signatures and the local metric relations in the map are fixed 
by “one-shot” learning; these would also need to be continuously modifiable.

To recap, chapters 6 and 7 considered the topic of self-localisation, assuming 
a previously acquired map of the robot’s environment. This chapter and the 
previous chapter considered the topic of map building, assuming tha t the robot
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had the ability to localise itself. In combination, these chapters present a com­
plete solution to the problem of concurrent map building and self-localisation 
by an autonomous mobile robot operating in middle-scale environments. The 
next chapter documents the integration testing and final validation experiments 
conducted to assess the performance of the complete system.



Chapter 10 

The C om plete System

A b o u t th is  c h a p te r . This chapter describes the experiments conducted to 
test the integration of the mechanisms for self-localisation and map building into 
a single robot controller. A validation experiment for the complete navigating 
robot involving an office delivery task is then presented.

10.1 Integration Testing

To complete the research, all of the mechanisms described in the preceding chap­
ters were integrated into a single controller for the Nomad 200 robot FortyTwo. 
An overview of the system architecture was provided in section 1.4.4. To fa­
cilitate human interaction with the controller, a basic interface was provided, 
allowing the user to initiate map building in a new environment or to specify a 
goal destination in the self-acquired map when the map building phase had been 
completed.

The map building abilities of the complete system were then tested in a num­
ber of different environments around the computer building at Manchester Uni­
versity. Results concerning the robot’s ability to explore an unknown environ­
ment were presented in chapter 9. To assess the quality of the maps obtained, the 
robot’s ability to navigate using its own self-acquired map was then evaluated. 
In particular, the robot’s ability to recover its position after becoming lost was 
considered.

In chapter 7, relocalisation performance was assessed using a map which was 
created manually using retrospectively corrected odometry data. To validate 
the work of the last two chapters on autonomous map building, relocalisation

161
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PG Lab
2.80

1.75Plant Room

Workshop

Robot Lab

Finance
Office12.66 2.70

10m

Figure 10.1: Floor plan of the corridor environment. The experiments were 
carried out in the shaded area shown in the upper storey of the computer building 
at Manchester (approximate size 34 m x 33 m).

R oute From To
1 Workshop Robot Lab
2 Robot Lab Room 2.58
3 Room 2.58 Room 2.66
4 Room 2.66 Finance Office
5 Finance Office Plant Room
6 Plant Room Room 2.80
7 Room 2.80 Postgraduate Lab
8 Postgraduate Lab Room 2.75
9 Room 2.75 Room 2.70
10 Room 2.70 Workshop

Table 10.1: Routes traversed in the delivery experiment (see figure 10.1).
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performance was assessed using a self-acquired map.
The experiment was conducted in the corridor environment shown in fig­

ure 10.1 (referred to as environment C in table 6.1). This area is a busy thor­
oughfare affected by many transient changes such as moving people, doors opening 
and closing, etc. The environment was also chosen because it is subject to very 
high levels of perceptual aliasing; in chapter 7 it was shown th a t a wall-following 
robot needed to travel as far as 18 m to relocalise successfully here after becoming 
lost.

To begin the experiment, the robot built its own map of the environment. The 
sensor-motor data required for measuring localisation quality was then collected 
by wall-following, and the experimental procedure described in section 7.4.2 was 
used to calculate the uncertainty coefficient U (L \ R) against the distance trav­
elled by the robot. The performance was then compared to th a t of self-localisation 
using a manually constructed map (exactly as described in chapter 7). The first 
lap of the recorded data was reserved for constructing the pre-installed map and 
the remaining 2 laps were used for testing both systems. A to tal of 290 localisa­
tion trials were used in the calculation of the performance measures.

10.1.1 R esu lts

0.95

0.9

0.85

0.8

0.75

0.7

0.65 Self-A cquired  M ap —  
P rein sta lled  M ap —

0.6
0 10

D istan ce/m
5 15 20

Figure 10.2: Localisation quality using a self-acquired map, compared to the 
performance using a pre-installed map.

The results in figure 10.2 show the localisation performance obtained using 
a self-acquired map compared to th a t using the manually installed map. The
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localisation quality achieved by the complete system is nearly as good as that 
achieved with a “perfect” pre-installed map. Note tha t this is only one experiment 
conducted using one set of data. The experiment would need to be repeated man}' 
times to show any kind of significance in this result. Such a study would require a 
great deal of time and effort; instead, it was decided to use the limited amount of 
time available to assess the complete system’s performance by a more ecological 
method, measuring its ability to carry out an office delivery task.

10.2 D elivery Experim ent

In order to validate the complete navigation system, a delivery experiment was 
conducted, in which the robot had to navigate between a series of user-specified 
locations. This was carried out firstly to test overall performance of the system 
under real world operating conditions. In addition, to assess the robustness of 
the system, its ability to recover from error in navigating to a goal location 
was considered. Here, the robot was “blindfolded” and physically moved to an 
unknown starting position at the start of each navigation attem pt.

The robot first built its own map of the environment. The robot then had to 
find ten successive routes through the corridors, navigating from one user-chosen 
location to the next (see table 10.1). These locations form a path  connecting a 
list of offices, designed to test the system on a likely delivery “mission” . The 
experiment was carried out firstly with the robot knowing its initial location (the 
“control” ), and then with the “lost” robot, where the robot’s localisation mecha­
nism was disabled and re-initialised at the start of each navigation attem pt. This 
procedure was repeated 10 times to allow for experimental variations between 
trials, giving 200 trials in total. To assess the robot’s performance, two measures 
were considered:

•  Effectiveness of navigation. This was measured using the percentage of 
trials in which the robot navigated successfully to the goal location.

•  Efficiency of navigation. This was measured using the length of the paths 
traversed by the robot in the successful trials. To compare the performance 
of the two systems, the ratio of their respective mean path  lengths was 
taken.
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R o u te C
Success

o n tro l
Distance/m

Lo
Success

s t R o b o t
Distance/m

i-T es t
PH0

Effic.
R a tio

1 10 15.13 ± 0 .88 10 15.84 ± 1 .15 0.14 1.05
2 10 18.85 ± 1 .10 8 > 18,55 ± 0 .53 0.45 0.98
3 10 12.32 ±1 .06 7 > 14.08 ± 1 .7 4 0.02 1.14
4 10 15.33 ±1 .10 9 > 18.09 ±2 .01 0.02 1.18
5 10 13.26 ± 1 .04 10 13.37 ± 0 .92 0.82 1.01
6 10 16.72 ±1 .25 8 > 17.52 ±2 .01 0.31 1.05
7 10 8.80 ±1.21 10 9.30 ±  1.65 0.44 1.06
8 10 11.87 ± 0 .64 10 11.20 ± 1 .12 0.29 0.94
9 10 28.80 ± 1 .48 10 28.77 ± 1 .90 0.97 1.00
10 10 11.40 ± 0 .92 10 11.52 ± 1 .23 0.80 1.01

Table 10.2: Results of the delivery experiment, showing the number of successful 
trials (out of 10) and mean distance travelled with standard deviation for each 
route. In routes 2, 3, 4 and 6 the mean distances for the lost robot will be 
underestimates, indicated by >, because they do not include the failed trials. 
Also shown are the Student’s t -test results, indicating the probability of the null 
hypothesis H0 for each route tha t the mean distances are really the same, and 
the efficiency ratio of the mean distances for both systems.

10.2.1 R esu lts

The effectiveness measures shown in table 10.2 show firstly th a t under “normal” 
operation using prior position knowledge, the navigation system is highly reliable, 
always managing to reach the desired goal locations. However, the lost robot was 
not quite as successful, being affected by various errors as it attem pted to recover 
its position — the overall success rate of the lost robot was 92% compared to 
100% for the control.

Perceptual aliasing or sensor noise could sometimes lead to the robot believing 
falsely tha t it had reached the goal location, when in fact more exploration was 
required to  relocalise successfully. This tended to happen when the robot started 
to navigate from a location somewhere in the middle of a long, featureless corridor, 
for example, on route 6 in this experiment.

The robot could also become trapped in a “local minimum” , moving back­
wards and forwards between two incorrectly identified places and taking a very 
long time to acquire sufficient sensory information to relocalise correctly (at the 
moment, the robot itself has no idea of whether it has produced the “correct” 
location estimate — see discussion). For example, two attem pts at route 3 were
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abandoned after 10 minutes because the robot had still not managed to relocalise 
and find the goal. These errors can be explained by the fact tha t the robot’s 
motor actions depend upon its current position estimate, so there is no guarantee 
tha t the robot will take appropriate actions to relocalise itself should it become 
lost.

The efficiency measures obtained are shown in the right-most column of fig­
ure 10.2. Note th a t the mean distances travelled for the lost robot will be under­
estimates in routes 2, 3, 4 and 6 because they do not include the failed trials. A 
standard Student’s t-test (Press et al 1992, p. 616) was conducted to determine 
the probability of obtaining the mean distances for each route, assuming the null 
hypothesis H q tha t the distances for both systems are really the same.

On the whole, the distance efficiency of the lost robot was as good as tha t 
of the control. A significant difference between the mean distances travelled was 
found only on routes 3 and 4 (pHo < 0.05). This can be explained by the fact 
tha t many of the perceptually aliased locations in the long corridors were as­
signed similar headings by the path planning algorithm. Thus, the robot often 
managed to perform the correct action, even though it had actually recognised 
the wrong location. Ballard & W hitehead (1992) distinguished “beneficial” per­
ceptual aliasing, where the same actions are required at similar-looking locations, 
from “destructive aliasing” , where different actions are required. In this partic­
ular experiment, the lost robot would seem to have been assisted by beneficial 
aliasing on several occasions, but hindered by destructive aliasing on others.

10.3 D iscussion

In this chapter, the performance of the complete system for concurrent map build­
ing and self-localisation was evaluated, including its integration into a navigation 
system for a mobile robot. The experiments showed tha t under normal operation, 
the entire system is very reliable, enabling autonomous navigation by the robot 
between user-specified locations.

The integration experiments confirmed tha t the robot was able to relocalise 
itself reliably using a self-acquired map of the environment by wall-following. 
Following a canonical path through the environment guaranteed tha t the robot 
would eventually experience a unique sequence of perceptions, allowing successful 
relocalisation even if no single place in the robot’s environment had a unique
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perceptual signature. However, in the complete navigation system as it stands, 
the robot’s motor actions depend upon its current position estimate, so there is 
no guarantee th a t the robot will follow such a path and thus relocalise correctly 
should it become lost. This lead to the errors described in section 10.2.1.

One solution to this problem would be to choose actions designed to improve 
localisation quality, as in Fox et al (1998) and Roy et al (1999). Alternately, 
the robot could revert to wall-following in order to relocalise whenever it believed 
it might be lost. To detect when it might be lost, the robot would measure its 
confidence in its current location estimate, using the entropy-based measure given 
in equation 7.18. Recall tha t this measure decreases as the robot becomes more 
certain of its position. In the results given in figure 7.5, this measure reached 
a minimum of approximately H (V ) — 1.7. Therefore, to improve localisation 
quality, the robot would resume wall-following whenever H (V )  >  1.7.



Chapter 11 

Sum m ary and Conclusions

A b o u t th is  c h a p te r . This chapter provides a summary of the main results in 
the thesis, followed by a description of the open questions and conclusions arising 
from the research conducted.

11.1 Sum m ary of R esults

This thesis presents a solution to the problem of concurrent map building and 
self-localisation by a self-navigating mobile robot operating in unknown, unmodi­
fied environments of middle-scale dimensions. In contrast to previous research, all 
of the environment and location models, feature models and sensor-motor com­
petences required for navigation are acquired independently by the robot. As a 
result, the complete navigation system is able to operate in many different, real 
world environments which are initially unknown to the robot, without requiring 
intervention by a human operator or modifications to its surroundings.

The research began by looking at the sub-problem of self-localisation in iso­
lation, assuming a pre-installed map provided by the system designer (chapters 
6 and 7). After developing a successful self-localisation system, the sub-problem 
of autonomous map building by the robot was considered (chapters 8 and 9). 
System integration and validation experiments were then conducted to assess the 
performance of the complete system (chapter 10).

Due to the fundamental unreliability of navigation by dead reckoning, self­
localisation based on external perceptual cues or “landmarks” was considered. In 
order to determine the best mechanism for landmark recognition on the Nomad 
200 robot, an experimental procedure was developed to enable the comparison of

168
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different mechanisms under the same experimental conditions. An information- 
theoretic performance measure was used to assess localisation quality. It was 
found tha t a system for matching local occupancy grids produced the best results, 
but only at a computational cost which was prohibitive for real-time operation.

The results of the comparative study of landmark identification mechanisms 
were then used to guide the development of a complete self-localisation system 
for the Nomad 200. A new technique for matching local occupancy grids was 
developed, enabling precise positioning at a low computational cost. This was 
combined with a probabilistic algorithm for accumulating sensory evidence over 
time, enabling relocalisation under global uncertainty. Quantitative performance 
measures demonstrated the ability of the robot to recover from becoming lost in 
complex, middle-scale environments.

To enable autonomous map building by the robot, an exploration system 
was developed in which the robot’s motor actions were guided by the current 
state of the robot’s environment model. In this approach, the robot continuously 
expands the area which it has already mapped until the whole environment has 
been covered. To detect areas of uncharted territory, an artificial neural network 
was trained to learn the concept of open space. This approach fuses perceptual 
information from different types of sensors without requiring pre-installed world 
models.

In order to maintain geometric consistency in the robot’s map, a relaxation 
algorithm was developed for assigning Cartesian coordinates to the places in the 
map. This algorithm is self-organising, using only local interactions and local 
odometric information to converge upon a globally optimal solution. In addition, 
the algorithm propagates the uncertainty in the robot’s distance measurements 
through the map, this information being used in turn to improve the quality of 
self-localisation by the robot. A system integration experiment was conducted 
to measure the robot’s ability to build its own map and then relocalise after 
becoming lost using the self-acquired map.

Finally, to assess the performance of the complete navigation system, a deliv­
ery task was considered in which the robot had to navigate between a series of 
arbitrary, user-chosen locations. Reliability and efficiency measures were used to 
assess the overall level of navigational competence.
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11.2 O pen Q uestions

11.2.1 E xten sion s to  th e B asic S ystem  

Im proved Com pass Sense

The basic compass sense consists of a simple behaviour designed to rotate the 
robot’s turret in the direction of magnetic North according to a flux-gate compass 
(section 4.2). While this mechanism proved to be robust in the environments con­
sidered in this thesis, environments containing severe variations in the magnetic 
field, e.g., due to heavy machinery or ferrous building materials, could cause 
it to fail. On metal boats, there is a technique of installing heavy iron blocks 
symmetrically on either side of a compass, so lessening the effect of exterior fer­
rous material. Alternately, a more robust compass sense might be obtained by 
combining perceptual information from other sensor modalities.

Biological systems may use several redundant sources of sensory information 
for self-orientation. For example, the adult pigeon can use either the position 
of the sun or a geomagnetic compass sense (O’Keefe & Nadel 1977, p. 65). The 
position of the sun above the horizon is combined with information from an 
internal clock and an ephemeris function to calculate where the sun is located at 
tha t particular time of day. Alternately, when the sky is overcast, the pigeon will 
resort to information from its geomagnetic compass sense.

On the robot, the other sensor modalities which could be used would include 
sonar, infrared and odometry. One possible method of matching information from 
the robot’s range-finder sensors would be to apply the technique for matching 
angle histograms constructed from detailed sensor scans developed by Hinkel & 
Knieriemen (1988). Alternately, the robot’s camera (not used in this thesis) 
could be pointed upwards, either a t the ceiling or a conical mirror, as in Franz et 
al. (1998), to obtain more detailed 360 degree sensory information.

Im proved Sensor-M otor Control

This thesis was concerned primarily with the high-level algorithms required for 
self-localisation and map learning, and relatively little time was spent developing 
the mechanisms used for low-level sensor-motor control. The routines for obstacle 
avoidance and wall-following are quite coarse grained, and the robot cannot nav­
igate through gaps of less than 1.2 m (the diameter of the robot is approximately
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0.60 m). Navigation through narrow doorways is a difficult control problem which 
would require further investigation.

The progress of the robot in exploring new environments and carrying out 
navigation tasks can sometimes seem slow, due to the strategy of periodically 
stopping to take a new sensor scan. It would be relatively straightforward to 
integrate this sensing strategy with the other sensor-motor behaviours, rotating 
the robot’s turret independently of the translational and rotational motors while 
the robot is in motion. This would speed up the whole navigation process and 
give the appearance of a more “intelligent” behaviour to the uninitiated observer.

M ore R igorous Treatm ent o f U ncertainty

Similarly, coarse grained techniques were used in the thesis for representing the 
uncertainty in the robot’s sensor readings. For example, the model used to rep­
resent the noise in the robot’s odometry measurements (section 4.3.2) is very 
simple. More accurate position information could be obtained by deriving a 
more elaborate noise model, e.g., using a covariance m atrix (Smith et al. 1990).

However, its should be noted tha t no model would ever be likely to capture 
the true physics of robot sensors. For example, the covariant model of odometry 
drift used by Leonard & Durrant-W hyte (1992) does not take into account local 
variation in the environment; some areas of the floor might produce different levels 
of wheel slippage to others. This thesis has shown that reliable robot navigation 
is possible using simple sensor models which only capture an approximate or 
“naive” physics (Hayes 1979) of robot-enviromnent interaction.

11.2,2 A ctive Selection  o f Landm arks

All of the landmark recognition systems considered in chapter 6 used a fixed 
distance metric, either in Cartesian space or some abstract perceptual space, to 
determine when to add new landmarks to the robot’s map. This strategy could 
be inefficient, as some parts of the environment might contain richer perceptual 
cues than others.

Simhon & Dudek (1998) proposed a mapping scheme in which only the most 
“distinctive” regions of the environment were represented in full using local met­
ric maps. These regions were linked topologically in the robot’s global map by
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fuzzy, semi-unknown areas which were not represented in any detail. The “dis­
tinctive” regions were chosen according to their reliability for performing accurate 
localisation within the local metric representation.

An alternative approach has recently been investigated by Duckett & Nehm- 
zow (1999); see Nehmzow et al (2000) for some further results. Here, the most 
distinctive landmarks are seen as those which are the most unusual or “surpris­
ing” , and therefore the least predictable to the robot as it explores the envi­
ronment. A simple neural network was trained off-line to predict the robot’s 
next sensory perception based on the immediate, preceding perception. During 
on-line operation, the prediction error was calculated at the following time step 
from the difference between the predicted and actual sensor readings. Smoothing 
functions were then applied to the series of error values generated, and the per­
ceptions which produced local maxima in the smoothed error curve were taken 
as candidate landmarks for inclusion in the robot’s map.

These approaches are certainly much closer in spirit to the cognitive mapping 
schemes which have been postulated for human navigation (see e.g., Yeap (1988) 
and citations therein), and to the notion of a qualitative topological map as 
depicted in figure 1.3.

11.2.3 L ifelong Learning

In this thesis, the environments were assumed to be semi-structured so tha t the 
robot could construct a complete map using a single tour of the target environ­
ment. This assumption would fail if the environment was subject to structural 
changes, for example, if the robot’s path became blocked during subsequent nav­
igation1.

Extending the system to enable continuous adaptation of the robot’s environ­
ment model over time would be fairly straight-forward — in fact, the algorithms 
for map learning presented in chapter 8 would already support this. The map 
uses variable-confidence links to model the uncertainty in the perceived topo­
logical relations in the environment, as in Yamauchi & Beer (1996), and the 
relaxation algorithm (section 8.4.1) continuously adapts the whole map in order 
to maintain a globally consistent representation.

Hf the robot’s path did become blocked, the system as its stands might well be fooled into 
believing that it was in a different location
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In this approach, map learning would be carried out continuously during nor­
mal operation. Whenever the robot had no particular task to perform in its target 
application, exploration would be resumed, repeatedly traversing the previously 
mapped territory to look for changes to the environment.

However, in some situations a dynamic environment might lead to localisa­
tion errors and would therefore produce errors in the map during concurrent map 
building and self-localisation. One solution to this problem would be maintain 
multiple versions of the environment model, as in Cox & Leonard (1994), cor­
responding to different possible interpretations of the robot’s sensor data. The 
“correct” map could then survive temporary localisation errors and re-emerge as 
the most likely environment model upon subsequent exploration. According to 
O’Keefe & Nadel (1977, p. 96):

“The updating of maps does not imply that the old map is literally 
erased. Some representation of every experienced state of the en­
vironment must be maintained, along with information as to which 
representation is current and which is no longer so.”

There would be several issues to address here, including on which version of 
the map to base decisions, where to move and computational tract ability. The 
main disadvantage of Cox and Leonard’s approach is the exponential growth in 
the tree of possible maps. Expectation maximisation (EM) algorithms can also 
be used to backwardly re-estimate the most likely environment model based on 
new, contradictory sensor information (Thrun et al. 1998b), but they suffer from 
local maxima as well as high computational cost. Some fast, on-line method of 
resolving these conflicts would be required.

A further extension would be to introduce on-line learning of system param­
eters — at the moment, the system contains a number of parameters, such as 
the distance threshold for adding new places to the map, which are determined 
manually by the system designer. Adapting the parameters on-line would require 
some feedback signal to indicate the success of the current set of parameters in 
achieving the system’s navigational objectives, e.g., efficiency-based measures of 
the distance travelled to a goal location could be used.
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11.2.4 C losing th e  Loop

A fundamental problem for any navigating robot is to build consistent maps 
in environments containing very large loops. Here, the robot’s self-localisation 
mechanism needs to recognise when a previously visited location has been reached 
once the robot has made a complete circuit of a loop, otherwise the robot will 
keep on adding new, duplicate copies of the same physical locations to the map 
ad infinitum. This cannot be achieved using exteroception alone, because of 
perceptual aliasing, but equally cannot be achieved using proprioception, because 
of the inevitable drift errors.

Humans can typically only solve the loop closing problem in large, complex 
environments by reading signs, such as street names or door numbers. However, 
since artificial “markers” are excluded from our definitions of “autonomous nav­
igation” and “self-navigation” , this alternative was not considered in this thesis.

So far, navigating mobile robots have only been able to “close the loop” by 
using accurate range-finding sensors and precisely corrected odometry. For exam­
ple, the system described by Thrun (1998b) has successfully mapped a circular 
route of 160 m using laser range-finder sensors and a high resolution metric map. 
However, this approach will inevitably fail once the size of the environment is 
increased beyond the accuracy limits of the robot’s dead reckoning mechanism. 
Gutmann & Konolige (1999) have recently proposed a method for mapping cyclic 
environments which combines the Lu and Milios algorithm for obtaining geomet­
rically consistent metric maps (1997a) with a variant of Markov localisation for 
recognising when the starting location has been reached once more. However, 
again this method relies ultimately on the accuracy of dead reckoning, because it 
will fail if the wrong location is identified as the start location. A manual method 
of closing the loop using retrospectively corrected odometry was introduced in 
section 4.3.3, but my attem pts at autonomously mapping an environment con­
taining a circuit of length 190 m with Forty Two have so far been unsuccessful.

It is perhaps unrealistic to expect a “perfect” solution to this problem, partic­
ularly when biological systems can fail at closing the loop too. For example, lost 
humans can travel for long distances without realising tha t they have returned 
to a previously visited location. Conversely, perceptual aliasing can lead to iden­
tification of the wrong place as the starting location. The solution must lie in 
using all of the available perceptual information, and finding appropriate noise 
models to ensure th a t previously visited locations can possibly be recognised after
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travelling long distances. Again, it may be necessary to m aintain multiple ver­
sions of the map, since further exploration might be needed to correct mapping 
errors. The complete map building and self-localisation system developed in this 
thesis has great potential here, because the efficiency of its representations and 
algorithms means th a t it could easily be generalised to m aintain many alternative 
versions of the robot’s environment and location models at the same time.

11.2.5 U niversal N avigation  A rchitecture

A further open question concerns the generality of the mechanisms developed 
in this thesis to work on other robot platforms. The mechanisms for landmark 
identification evaluated in chapter 6 were all based on a holonomic robot design 
with sonar sensors spaced at equal intervals around the robot’s turret, so it is 
unlikely tha t all of these methods would work with non-holonomic robots. How­
ever, the im portant point is th a t a standard experimental procedure was used to 
select the best landmark identification mechanism for one particular robot. Fu­
ture work could investigate automating this process (perhaps using evolutionary 
learning) so th a t the best landmarks could be selected automatically for an a 
;priori unknown robot morphology.

At present, developing navigation software for mobile robots is an extremely 
labour intensive process, usually requiring a complete redesign from scratch for 
each new robot. Widespread use of mobile robots is unlikely to occur until generic 
software for navigation becomes available. However, as the technology progresses, 
it is likely tha t robot hardware in turn will change, making existing control soft­
ware obsolete.

A solution to this problem would be to develop a universal software architec­
ture for robot navigation, which would be applicable to many different robots, 
including autom atic guided vehicles, robotic wheelchairs, domestic service robots, 
etc. This would consist of a common core, perhaps based on the probabilistic al­
gorithms for self-localisation and map learning developed in this thesis, together 
with the facility to “plug in” different sensor models and sensor-motor compe­
tences for different robots. Learning would be utilised at every level of the archi­
tecture, so tha t the system could adapt itself to work with almost any present or 
future robot platform.
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In this approach, there would be an initial learning phase, during which pri­
mary sensor-motor skills and feature detectors would be acquired through self­
organisation and self-supervised learning (or reinforcement learning when only a 
positive or negative feedback signal is available for training). This might be fol­
lowed by a secondary learning phase, in which the internal representations of the 
robot would be adapted for a specific application. During the final deployment 
of the system, the robot would then begin concurrent map building and self­
localisation in the target environment. After completing the initial learning of 
the environment, the desired function of the navigation system would be similar 
to tha t of an operating system on a stand-alone PC, monitoring the progress of 
its user applications and being responsible for executing required actions, whilst 
running in the background and consuming minimal resources.

11.3 Conclusion

Levitt & Lawton (1990) defined the task of navigation by the three questions: 
“Where am I?” , “Where are other places relative to me?” and “How do I get to 
other places from here?” . In this thesis, these questions were answered through 
the development of a complete navigating robot equipped with concurrent, inter­
dependent mechanisms for self-localisation (question 1), map learning (question 
2), exploration and way finding (question 3). Furthermore, this was achieved 
with minimal pre-installation of world knowledge by the system designer. Nehm- 
zow (1992, p. 196) states tha t

“People as designers of robot controllers do not have the experience 
of a robot, undeniably so, which makes its impossible for them to 
reliably determine all the features a robot will require a priori. The 
more dependent on designer-defined knowledge a robot controller is, 
the less flexible it will inevitably be when in operation.”

The robot developed in this thesis can be placed in an a priori unknown en­
vironment, build its own map through free exploration and then use this map for 
navigation, without requiring external assistance or modifications to the target 
environment. The representations and algorithms developed are so computation­
ally cheap th a t self-navigation in middle-scale environments was achieved using 
only Forty Two’s own internal 486 processor. To the best of my knowledge, it is
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the only navigating mobile robot so far with the ability to operate from scratch 
in unmodified, populated environments of middle-scale dimensions using only 
on-board computation and its own self-acquired models for feature detection, 
sensor-motor control, map learning and self-localisation.

At the same time, the system as it stands stills suffers from many of the 
limitations common to all current mobile robots. Place it in a building site, and it 
would happily trundle through any unglazed window frames towards an untimely 
death, with no self-awareness or realisation of the consequences of its actions. We 
could fix the immediate problem by providing the robot with downward pointing 
sensors and a new control program (preferably self-acquired, personal injury to the 
robot notwithstanding) to detect this danger -  some robots are indeed equipped 
with such sensors. However, the basic underlying problem would remain, namely 
tha t currents robots lack the means for dealing with situations unforeseen by the 
system designer. Clearly, far more sophisticated techniques for robot learning are 
required, which go beyond the current paradigm of generalisation on examples 
and include other forms of inference and reasoning. To be truly successful, I 
believe th a t mobile robotics research must integrate itself with many other areas 
of AI research, including machine learning, vision, planning and natural language 
processing, to name but a few, if robots are to operate with any real degree of 
autonomy within human-oriented applications.

The new navigation system was developed only after conducting numerous 
experiments with robot Forty Two over middle-scale distances, including the ex­
perimental procedure described in chapter 5. Some of the early prototyping work 
was done first on the Nomadic simulator, but only the experiments on the real 
robot could confirm whether this work would transfer to the real world. This is 
not particularly surprising, given tha t no simulator can capture the true complex­
ity of robot-environment interaction; models can only ever approximate the real 
world. This experience confirmed my earlier argument in section 2.1.1 on why 
we should be interested in building complete robots navigating over middle-scale 
environments.

However, the “existence proof” of building a complete navigating robot does 
not in itself constitute a meaningful contribution to the scientific study of robotic 
systems. According to a very famous quotation by William Thomson (Lord 
Kelvin), taken from MacHale (1993),

“When you measure what you are speaking about and express it in
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numbers, you know something about it, but when you cannot express 
it in numbers your knowledge about it is of a meagre and unsatisfac­
tory kind.”

W ithout quantitative metrics, it would be very difficult for roboticists to evalu­
ate performance, to compare competing theories, and to analyse and formulate 
hypotheses about robot behaviour. As yet, however, there have been very few 
studies which attem pt to quantify robot-environment interactions or make exper­
imental comparisons of navigating robots (see chapter 5 for some examples). In 
short, measures of robotic performance would serve to increase our understanding 
of the mechanisms which underlie intelligent behaviour, and thus to advance the 
state-of-the-art in real world applications of robotics.

I believe th a t the quantitative measures required to describe robotic systems 
are already available in computer science, particularly from Shannon’s m ath­
ematical theory of communication -theory ( “information theory”) (Shannon Sz 
Weaver 1949). My view is th a t the fundamental processes of robot-environment 
interaction, robot-robot interaction and human-robot interaction could all be for­
mulated as a communication process involving a transfer of information between 
the respective agents and the robot controller. For example, a sensor can be seen 
as a noisy communication channel which transmits information from the robot- 
environment system to the controller. Conversely, actuation can be seen as the 
reverse process, resulting in a change of state in the robot-environment system.

Robot-environment interaction is to some extent a “black box” — we can know 
precisely what goes into the robot controller and measure its effect, but we cannot 
isolate the function of the robot controller from tha t of its interaction with the real 
world. Lelas (1993, p. 425) points to the situation in quantum physics in which 
theory cannot avoid reference to experimental arrangements. Similarly, noise and 
variations are an inherent and vital part of robot-environment interaction which 
cannot be excluded from any theory of autonomous mobile robot navigation.

In this thesis, an information-theoretic performance metric was used to assess 
both localisation quality and map quality, by measuring the information content 
of a robot’s responses in predicting its true location. This approach allowed a 
navigating mobile robot be studied within a series of middle-scale environments, 
including all of the phenomena associated with using real sensors and real ac­
tuators in the real world. The influence of individual system parameters and
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sub-components was assessed through controlled experiments. As such, this the­
sis represents a case study in “quantitative robotics” ; th a t is, an application of 
quantitative measures of robot-environment interaction to the design, testing and 
validation of a complete navigating mobile robot. I hope th a t this will be a useful 
contribution towards the science of mobile robotics.
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1. Tom Duckett and Ulrich Nehmzow, A Robust Perception-based Localisation 
Method for a Mobile Robot, Department of Computer Science, Manchester 
University, Technical Report Series, ISSN 1361-6161, Report UMCS-96-11- 
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2. Ulrich Nehmzow and David Gelder and Tom Duckett, Automatic Selec­
tion of Landmarks for Mobile Robot Navigation, Department of Computer 
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A .2 A bstracts

Tom Duckett and Ulrich Nehmzow, Mobile Robot Self-Localisation and Measure­
ment of Performance in Middle Scale Environments, Robotics and Autonomous 
Systems, 24(1-2):57-69, 1998.

This paper addresses the question of self-localisation in autonomous 
mobile robot navigation, i.e., the task of identifying places after pre­
vious exploration and map building by the robot. We present a novel 
localisation system which accumulates both exteroceptive and proprio­
ceptive sensory evidence over time to localise, without requiring prior 
knowledge of the robot’s position. We show that the system relocalises 
successfully on a real robot in middle-scale environments containing 
transient changes such as moving people.

In  addition, a general performance metric and a standard experimen­
tal procedure are introduced, allowing disparate localisation systems to 
be compared on the same robot in the same environm,ent. To demon­
strate the utility of the approach taken, we test the evidence-based 
localisation system in six different environments, comparing its per­
formance to that of localisation using dead reckoning or currently ob­
servable landmarks alone. In addition, the results provide us with 
some useful quantitative measures for characterising different envi­
ronments.
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Tom Duckett and Ulrich Nehmzow, Mobile Robot Self-Localisation Using Occu­
pancy Histograms and a Mixture of Gaussian Location Hypotheses, Robotics and 
Autonomous Systems, to appear, 2000.

The topic of mobile robot self-localisation is often divided into the sub­
problems of global localisation and position tracking. Both are now 
well understood individually, but few mobile robots can deal simulta­
neously with the two problems in large, complex environments. In this 
paper, we present a unified approach to global localisation and position 
tracking which is based on a topological map augmented with metric 
information. This method combines a new scan matching technique, 
using histograms extracted from local occupancy grids, with an efficient 
algorithm for tracking multiple location hypotheses over time. The 
method was validated with experiments in a series of real world envi­
ronments, including its integration into a complete navigating robot.
The results show that the robot can localise itself reliably in large, in­
door environments using minimal computational resources.

Tom Duckett and Ulrich Nehmzow, Performance Comparison of Landmark Recog­
nition Systems for Navigating Mobile Robots, Proceedings of the Seventeenth 
National Conference on Artificial Intelligence (AAAI’2000), Austin, Texas, July 
30-August 3 1999.

Self-localisation is an essential competence for mobile robot naviga­
tion. Due to the fundamental unreliability of dead reckoning, a robot 
must depend on its perception of external environmental features or 
landmarks to localise itself. A key question is how to evaluate land­
mark recognition systems for mobile robots. This paper answers this 
question by means of quantitative performance measures. An empiri­
cal study is presented in which a number of algorithms are compared in 
four environments. The results of this analysis are then applied to the 
development of a novel landmark recognition system for a Nomad 200 
robot. Subsequent experiments demonstrate that the new system ob­
tains a similar level of performance to the best alternative method, but 
a,t a much lower computational cost.
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Tom Duckett and Stephen Marsland and Jonathan Shapiro, Learning Globally 
Consistent Maps by Relaxation. Proceedings of the IEEE International Confer­
ence on Robotics and Automation (ICRA’2000), San Francisco, CA, April 24-28 
2000 .

Mobile robots require the ability to build their own maps to operate 
in unknown environments. A fundamental problem is that odometry- 
based dead reckoning cannot be used to assign global position informa­
tion to a map because of drift errors caused by wheel slippage. This 
paper introduces a fast, on-line method of learning globally consistent 
maps, using only local metric information. The approach differs from  
previous work in that it is computationally cheap, easy to implement 
and is guaranteed to find a globally optimal solution. Experiments 
are presented in which large, complex environments were successfully 
mapped by a real robot, and quantitative performance measures are 
used to assess the quality of the maps obtained.

Tom Duckett and Ulrich Nehmzow, Exploration of Unknown Environments us­
ing a Compass, Topological Map and Neural Network, Proceedings of the 1999 
IEEE International Symposium on Computational Intelligence in Robotics and 
Automation , Monterey, CA, November 8-9 1999.

This paper addresses the problem of autonomous exploration and map­
ping of unknown environments by a mobile robot. A map-based ex­
ploration system is presented, in which a topological map of the en­
vironment is acquired incrementally by the robot, using an artificial 
neural network to detect new areas of unexplored territory. Using 
this approach, no manual intervention in the map acquisition process 
is required, and all computation is carried out in real-time on board 
the robot. Experiments are presented in which a Nomad 200 robot 
successfully mapped and navigated complex, real world environments 
containing transient changes such as moving people.

Tom Duckett and Ulrich Nehmzow, Knowing Your Place in Real World Envi­
ronments, Proceedings of EUROBOT *99, 3rd European Workshop on Advanced 
Mobile Robots, IEEE Computer Press, 135-142, 1999.
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The topic of mobile robot self-localisation is usually divided, into the 
sub-problems of global localisation and position tracking. Both are now 
well understood individually, but few mobile robots can deal simulta­
neously with the two problems in large, complex environments. While 
efficient solutions have been found for metric maps, topological maps 
have, by nature of their compactness, the potential for representing 
environments which are several orders of magnitude larger than those 
which can be tractably navigated using metric maps.

In this paper, we present a unified approach to global localisation and 
position tracking which is based on a topological map augmented with 
metric information. The method was validated through a series of 
experiments conducted in four real world environments, including its 
integration into a complete navigating mobile robot. Quantitative per­
formance measures were used to assess localisation quality versus com­
putational efficiency. The results show that our robot can localise and 
navigate reliably in large, complex environments using only minimal 
computational resources.

Tom Duckett and Ulrich Nehmzow, Self-Localisation and Autonomous Naviga­
tion by a Mobile Robot, Proceedings of T IM R ’99, Towards Intelligent Mobile 
Robots, Department of Computer Science, Manchester University, Technical Re­
port Series, ISSN 1361-6161, Report UMCS-99-3-1, Bristol, March 26 1999.

This paper provides an overview of a three year project conducted on 
the subject of self-localisation and autonomous navigation by a mobile 
robot. The research was carried out in two stages:

Self-Localisation. Due to the fundamental unreliability of dead reck­
oning, landmark-based methods were investigated. Several related is­
sues were addressed, including performance evaluation, replication 
and comparison of existing work, and the development of a novel lo­
calisation system based on the results obtained.

Autonomous Navigation. This work included the development of novel 
mechanisms for exploration and map building, as well as validating the 
previous work on self-localisation, in a complete, navigating mobile 
robot. Quantitative assessment of the different competences required 
for navigation was also carried out.
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Tom Duckett and Ulrich Nehmzow, Knowing Your Place in the Real World, 
ECAL-97 Fourth European Conference on Artificial Life, presented paper, 1997.

This paper addresses the scalability of existing techniques for mobile 
robot navigation to work in large, unstructured environments. In  par­
ticular, we are interested in the problem of relocalisation after the robot 
has been placed at some arbitrary location (unknown to the robot) in 
a previously explored environment. In the first instance, we assess the 
problems found when a system previously shown to work in a small- 
scale environment was transferred to a middle-scale environment.

Through analysis of the results, we are able to show that successful 
performance in the middle-scale environment requires a global com­
pass sense. We provide a suitable quantitative measure for assessing 
localisation quality in the larger environment, and are able to quantify 
post hoc the performance which would be obtained given an appropri­
ate compass mechanism. In addition, we use the same quality metric 
to evaluate various different approaches for pre-processing the robot’s 
sensory information.

Tom Duckett and Ulrich Nehmzow, Quantitative Analysis of Mobile Robot Lo­
calisation S}'stems, Proceedings of T IM R ’97, Towards Intelligent Mobile Robots, 
Department of Computer Science, Manchester University, Technical Report Se­
ries, ISSN 1361-6161, Report UMCS-97-9-1, Manchester, September 5 1997.

This paper addresses the question of how to measure the perform,ance 
of mobile robot localisation systems. A general performance metric 
and a standard experimental procedure are introduced, where no se­
mantic interpretation of the robot’s internal world model is required.
A novel mechanism for tracking the “true” location of the robot is also 
presented.

Together, these methods facilitate the comparison of disparate localisa­
tion systems on the same robot in the same environment, and also the 
replication of such experiments by other researchers. To demonstrate 
the utility of the approach taken, three different localisation systems 
are compared using the same data collected by a real robot travelling 
over a route of 175m.
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Tom Duckett and Ulrich Nehmzow, Experiments in Evidence Based Localisation 
for a Mobile Robot, Proceedings of the A IS B ’97 Workshop on Spatial Reasoning 
in Animals and Robots, Department of Computer Science, Manchester Univer­
sity, Technical Report Series, ISSN 1361-6161, Report UMCS-9T-4-1, Manchester, 
April 7-8 1997.

This paper addresses the problem of localisation in autonomous mobile 
robot navigation, i.e., the task of identifying places after prior explo­
ration and mapbuilding by the robot. In particular, the work is con­
cerned with the more general problem of relocalisation without using 
past experience (i.e., knowing roughly where you are to start with), re­
ferred to here as the lost robot problem. In the experiments presented 
here, the robot had to relocalise after being moved to a randomly cho­
sen location, its sensors being disabled during that move. The robot 
therefore had no a priori knowledge of its position, and had to use 
current sensory perceptions and map knowledge alone to relocalise.

A perception-based localisation method is presented which is resilient 
to the problem of perceptual aliasing (i.e., perceptual identity of dis­
tinct locations), and is capable of relocalising even in environments 
where no single place has a unique perceptual signature. During an 
exploration phase, the robot builds a map of its environment, using 
a self-organising neural network to cluster its perceptual space. The 
robot is then moved to an arbitrary location, where it will attempt to 
relocalise. By actively exploring, and accumulating evidence through 
the use of relative odometry between competing place memories, the 
robot is able to establish its location with respect to perceptual land­
marks very quickly.

Tom Duckett and Ulrich Nehmzow, A Robust Perception-based Localisation Method 
for a Mobile Robot, Department of Computer Science, Manchester University, 
Technical Report Series, ISSN 1361-6161, Report UMCS-96-11-1, 1996.

This paper addresses the problem of localisation in autonomous mobile 
robots, which is the task of identifying places that have been visited 
before by the robot. In  particular, this paper is concerned with the 
more general problem of relocalisation, where the robot is unable to
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localise using past experience (in other words, the robot is “lost”). 
A perception based localisation algorithm is presented, which operates 
independently of any global reference frame. The method is resilient to 
the problem of perceptual aliasing (i.e., perceptual identity of distinct 
locations), and is capable of localising even in environments where no 
single place has a unique perceptual signature.

During an exploration phase, the robot builds a map of its environ­
ment, using a self-organising neural network to cluster its perceptual 
space. The robot is then moved to a randomly chosen position, where 
it will attempt to localise. By actively exploring, and accumulating ev­
idence through the use of relative odometry between local landmarks, 
the robot is able to determine its location with respect to perceptual 
landmarks very quickly.
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