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Abstract

UNIVERSITY OF MANCHESTER

ABSTRACT OF THESIS submitted by Thomas Barford for the Degree of Doctor 

of Philosophy and entitled The Renormalisation Group and Applications in Few-Body 

Systems

Month and Year of Submission: 2004

This thesis is about effective field theories. We study the distorted wave renormali­

sation group (DWRG), a tool for constructing power-counting schemes in systems where 

some diagrams must be summed to all orders. We solve the DWRG equation for a variety 

of long-range potentials including the Coulomb, Yukawa and inverse square. We derive es­

tablished results in the case of the Yukawa and Coulomb potentials and new results in the 

case of the inverse square potential. We generalise the DWRG to systems of three bodies 

and use it to find the power-counting for the three-body force in the KSW EFT. This power- 

counting corresponds to perturbations in the renormalisation group about a limit-cycle. We 

also derive equations for the LO and NLO KSW EFT distorted waves for three bosons and 

for three nucleons in the 3S i channel. The physical results in the nuclear system agree 

well, once the LO three-body force is determined, with predictions of more sophisticated 

potential models.
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Chapter 1

Introduction

From an historical perspective, the hierarchy of scales to be found in the universe has con­

trolled the development of physics since the middle ages. Time and again the theories of the 

past have been found to be only effective theories that approximate the physical world.

The first great post-Renaissance physics theory, Newtonian mechanics, is still used 

extensively in many areas, yet it has been ‘known’ for a long time that it is only an approx­

imation. The advent of relativistic mechanics brought fresh insight into the nature of the 

universe as well as explaining some mysterious behaviour in the orbit of the planet Mer­

cury, yet its use in explaining the path of a cricket ball struck through mid-wicket has never 

been advocated. Relativistic mechanics is a far more complicated beast than its ‘lesser’ 

cousin, in many cases the pay-off for the extra work involved in a calculation is simply 

not worth it. The difference in the path of that cricket ball as explained by Newtonian and 

relativistic mechanics would be unmeasurable.

Even though Newtonian mechanics is not fundamental to the nature of the universe as 

we know it now, it is still an effective theory; it explains what we see at speeds far below the 

speed of light, c. In quantifying this statement we might say that the difference between any 

classical or relativistic calculation, in which the typical speed is of order v, is of order v2/c2. 

We may then consider any problem, and knowing how accurately we want the result, chose 

between a full relativistic calculation, a simple classical calculation or maybe some middle 

ground in which the classical result is corrected to some order in v2 /c2.

This kind of idea pervades physics today but nowhere is its importance as pronounced

18



Chapter 1. Introduction 19

as in particle physics. Although the domain of particle physics may off-handedly be de­

scribed as the study of the very small, the range of energies that are scrutinised, from the 

neutrino mass to the unification scale, far outstrips any other area of physics.

The first great triumph of quantum mechanics, the theory of the very small, was the 

calculation of the spectra of the hydrogen atom. However, the need for corrections to this 

result was soon apparent and there followed calculations for the fine structure, Lamb shift 

and hyperfine structure, each of which relied upon some previously unconsidered higher 

scale physics: spin-orbit coupling, relativistic corrections, loop diagrams in QED and dipole 

interactions. Despite all the corrections made in this calculation there are yet more that can 

be made, such as corrections due to the finite charge radius of the proton. An estimate 

of the magnitude of such a correction can be made in a similar way to the estimate of the 

relativistic corrections above. The corrections are expected to be of the order of r j /a j  where 

rp ~ 10~16m is the charge radius of the proton and a0 = 5.29 x 10- n m is the Bohr radius 

and an estimate of the typical distance of a ground state electron from the proton. Hence we 

expect a correction of the order AE ~ 10~9£ . The key point here is the seemingly innocuous 

term ‘of the order o f’. What do we mean by ‘of the order o f’?

Arguments, like the one above, that involve using a separation of scales and expressions 

like ‘of the order of’ are implicitly assuming ‘naturalness’. The assumption of naturalness in 

these arguments is absolutely essential, without it nothing can be said about corrections such 

as relativistic corrections. In a nutshell one might say that the assumption of naturalness 

means that the coefficient, b, of for example the relativistic correction 6  = bv2 /c2, is of 

order unity. That is, the number b, which is governed by the dynamics and geometry of the 

problem, is not so large or small to significantly change the size of the correction so that 

expressions like ‘of the order of’ apply.

Naturalness is not something that can necessarily be taken for granted, and indeed some 

fluke of the parameters may change the face of the problem, resulting in unexpected effects 

such as resonances.

It is only comparatively recently that physicists have sought to use the separations of 

scales in particle physics quantitatively to produce what have become known as effective
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field theories (EFTs) [1, 2, 3,4, 5, 6]. In an EFT we seek to write down a low-energy equiv­

alent of some ‘true’ higher energy theory. The concept was first introduced by Weinberg 

[7] in an attempt to use the near chiral symmetry of quantum chromodynamics (QCD) and 

the resulting separation of scales between the pion mass, mn, and all other QCD scales to 

construct a low energy theory equivalent to QCD. Since this initial spark this idea has grown 

to become known as chiral perturbation theory (ChPT).

ChPT is defined by an effective Lagrangian that contains only those degrees of freedom 

explicit at the energies of interest, Q ~ mn, i.e. pion fields and depending upon the partic­

ular problem, nucleon fields, hyper-nucleon fields etc. The fields are coupled by effective 

vertexes that contain the effects of all higher energy physics, of order A0, not included in the 

Lagrangian, which is said to be ‘integrated out’. To include all of the integrated-out physics, 

the Lagrangian must include all terms not forbidden by the symmetries of the higher energy 

physics, invariably resulting in an infinite number of terms. To handle such a formidable 

Lagrangian the terms must be organised according to some ‘power-counting’ that assigns 

each term an order in an expansion in powers of <2/A0. Any observable can be calculated 

to arbitrary accuracy by using the power-counting to include all the necessary terms.

In principle the effective couplings in the ChPT Lagrangian can be found by solving 

QCD, however, in practice they are determined by matching theory to a few experimental 

values, making the theory predictive in other areas.

In particle physics, the expression EFT was once synonymous with ChPT but it has 

since become an umbrella term for any number of theories in particle and atomic physics 

that subscribe to the same philosophy. Although EFTs are predominantly found in nuclear 

physics, where QCD is non-perturbative and hence almost impossible, they have been ap­

plied to areas as diverse as quantum gravity and string theory.

In studying nuclear systems at even lower energies than the pion mass, Q <s: mn, we 

may integrate out the pionic degrees of freedom and deal with the pionless EFT in which 

the only degrees of freedom are the nucleon fields themselves. In this theory the underlying 

physics is that of the pion and the higher energy scale for the theory is the pion mass. The
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non-relativistic pionless EFT Lagrangian for nucleons of mass M  is given by,

X = |j<90 + ' N  + y  |Afl4 + ^ ( V  -  V)2̂ j  N2 + H.c.) + . . .

+ M 6 + ^2 ( ^ (V  -  V)2n A n 'N3 + H.c.) + . . .  .
.36  36 V / (1.1)

It contains four point couplings denoted by C2„ where 2n is the order of the field derivative

at the vertex. Similarly, since they are not forbidden it contains six point couplings, denoted 

by Z>2„, and eight point vertexes, ten point vertexes, etc. Relativistic corrections may be 

included by introducing higher order derivatives in the kinetic term [10].

Ignoring the six and higher point vertexes, which are not relevant to a two nucleon 

problem, we may immediately construct a power-counting to organise the terms in the ef­

fective Lagrangian using naive dimensional analysis, which inspired the power-counting in 

ChPT. The four point vertex couplings, C2,,, have dimension - 2  -  2n. Since they describe 

physics that occurs at the order of the pion mass we may expect,

In addition each loop between the vertexes contributes a term ~ MQ/4n.  The order of 

any diagram involving any number of interactions can be evaluated by simply combining n 

vertex terms with the n — 1 loops in between. A diagram in which the zth vertex contains v,- 

derivatives will occur at order (Q/mn)d where,

This power-counting is known as the Weinberg scheme [8], Unfortunately, when this or­

ganisation of the terms is used to describe the two-nucleon system it fails. The problem is 

the implicit assumption of naturalness.

Empirically, we observe in the two nucleon system a low-energy bound state, the 

deuteron, which has binding momentum y 4  = 45.7Mev<§; mn. The existence of this and 

the low energy resonances in the other isospin channels alerts us at once to some fine tuning 

of the parameters in the EFT. This fine tuning means that the naive dimensional analysis 

that results in the Weinberg scheme is no longer applicable. Some other power-counting 

must be found if we are to handle the infinite number of terms in the effective Lagrangian 

and produce the low-energy resonances [8, 9, 10, 11, 12, 13].

° 2n ~  '

(1.2)

n

(1.3)
i=l
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A new power-counting that resolved the problem was first introduced by Kaplan, Sav­

age and Wise (KSW) [9] using the power divergence subtraction scheme (PDS) but found 

independently by van Kolck [10]. The PDS scheme introduces a new scale, jj., which may 

be chosen to produce the fine tuning effects seen in the two nucleon system. Using the PDS 

scheme the scaling of the coefficients in the effective Lagrangian may be given as [9]

By choosing jj, ~ Q we introduce the new low-energy scale required. Subsequently the term 

Co occurs at order Q~l and so all diagrams containing only the C0 vertex must be summed 

to all orders. All other interactions scale with the negative powers of m„ and so may be dealt 

with perturbatively provided each diagram is dressed with C0 interaction bubbles. (Since an 

arbitrary number of Co interactions before or after the diagram does not change its order.) 

The subsequent power-counting is given by,

This KSW power-counting is able to produce the low-energy resonances of order fi seen in 

nuclear systems.

The origin of these two different power-counting schemes can, in one way, be under­

stood by using the renormalisation group (RG) [14]. The effective Lagrangian contains, 

by its very definition, an infinite number of non-renormalisable couplings. These result in 

divergent loop integrals which must be regularised, with a sharp momentum cut-off, A, for 

example, and then renormalised by absorbing all cut-off dependence into the effective cou­

plings. In the context of EFTs the cut-off, A, is far more than a UV regulator, it ‘floats’ 

between the low-energy physics and the high-energy physics and allows us to control the 

introduction of high-energy physics and construct power-counting schemes. After rescal­

ing all low-energy scales in terms of A, we are led to the concept of Wilson’s continuous 

RG [15] initially conceived for use in condensed matter theory. The RG describes how the 

couplings in the theory change as A is varied.

The use of a sharp momentum cut-off leads us to a very intuitive idea of the RG flow. 

As A gets smaller, more and more of the high energy physics is ‘integrated out’ and ab­

sorbed into the couplings of the EFT. Finally as A reaches zero, all high energy physics

n

(1.5)
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is removed and all that remains is the rescaled low-energy physics, embodied in an infra­

red fixed point of the RG. By perturbing about the IR fixed point with powers of A we 

introduce dimensioned constants of integration that must scale with the high-energy scale 

mn. In this way we can re-introduce high-energy physics into the couplings and create a 

power-counting scheme associated with that fixed point.

In chapter 2 we will study the RG for the two-body pionless EFT and reproduce the 

results of Birse et al [14] that reveal two fixed point solutions, a so-called trivial fixed point, 

which is associated with the Weinberg power-counting scheme and a non-trivial fixed point, 

which is associated with the KSW power-counting scheme. The constants of integration in 

the energy dependent perturbations around the trivial fixed point are in one-to-one corre­

spondence with the terms in the Bom expansion. Those around the non-trivial fixed point 

are in one-to-one correspondence with the effective range expansion [16].

The two-nucleon pionless EFT is a simple example that demonstrates the use of the 

RG in determining power-counting schemes. However, it is clearly not applicable for the 

interaction of two protons because of their electromagnetic interaction. Photon exchange 

between two protons has the characteristic energy scale,

aM
K = —  = 3.42MeV, (1.6)

where a  is the fine structure constant and M  is the mass of the proton. In an EFT for 

protons below the pion mass k  must be considered a low energy scale. All single photon 

exchange diagrams must, therefore, be included to all orders. However, as with the KSW 

power-counting, summing some diagrams to all orders and dressing others with ‘Coulomb 

bubbles’ may completely change the power-counting.

In chapter 3 we will introduce the distorted wave renormalisation group (DWRG) [17] 

and use it to study, as a first example, proton-proton scattering. The DWRG allows us to 

sum some low energy physics and absorb it into the fixed points of the RG. In particular we 

study a system of two particles interacting via some known long-range potential, equivalent 

to the sum of all known non-perturbative diagrams in the EFT, and a short-range potential, 

equivalent to all the shorter range interactions. By working in the basis of the distorted 

waves (DWs) of the long-range potential we show how to separate the effects of the long 

and short range potentials and then to construct a power-counting for the shorter range
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interactions.

The long range potential for the first example in chapter 3 will be the Coulomb poten­

tial. We will again find two fixed points, a trivial and a non-trivial associated with Weinberg 

and KSW -like schemes respectively. The integration constants in the perturbative series 

about these fixed points are found to be in a one-to-one correspondence with the terms in 

the distorted wave Bom [18] and Coulomb modified effective range [19, 20, 21] expansions.

In the remainder of chapter 3 we will consider two more examples. Firstly, the repulsive 

inverse square potential, which is important to the extension of the pionless KSW EFT to 

three bodies and study of the power-counting in higher partial waves. This example is also 

interesting because it produces novel power-counting schemes that are very different to the 

schemes that are seen in the Coulomb DWRG and the ordinary RG.

Secondly, we shall consider a general example of “well-behaved” potentials, which 

includes among many others the Yukawa potential that may be used to include one pion 

exchange (OPE) in a nucleon-nucleon EFT. The solution of this DWRG has much in com­

mon with the solution of the Coulomb DWRG. This general analysis allows us to construct 

a general method for solving DWRG equations that will prove extremely useful in later ap­

plications. We conclude the chapter with the discussion of how to introduce explicit pions 

into an EFT for two nucleons.

After establishing the DWRG we shall look towards using it in the KSW EFT for three 

bodies. As outlined above, the KSW EFT is appropriate for systems with a low energy 

bound state or resonance that constitutes a new low energy scale in the problem. This low 

energy scale is characterised by an unusually large scattering length I f  a ~ Q A0. Since 

this is a low energy scale its effects must be summed to all orders [22, 23, 24] and results in 

our need to use the DWRG.

Efimov [25] studied systems of three bodies with pairwise interactions characterised 

by a large scattering length, a, and zero effective range. He showed that these systems 

are similar to a two dimensional problem with an inverse square potential. This similarity 

occurs when the characteristic distance between the three particles R <§; a and the problem 

essentially becomes scale free. In the limit of a —> oo the system is described exactly by an 

inverse square potential. The strength of the inverse square potential is determined purely
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by the statistics in the system. In the case of three s-wave Bosons and three s-wave nucleons 

in the 3 S' i channel the potential is attractive and singular. The singular nature of these 

potentials has a couple of interesting effects. Firstly, the Thomas effect [26]: the system 

will be no ground state, something first noted by Thomas as long ago as 1935. Secondly, in 

the limit of infinite scattering length, there will be an accumulation of geometrically spaced 

bound states at zero energy, known as Efimov states [25].

As the first step towards understanding the KSW EFT for three bodies, in chapter 4 we 

will look at the DWRG for the attractive inverse square potential. The singular nature of 

this potential means that without special measures the Hamiltonian is not self-adjoint. To 

construct a complete set of DWs we must construct a self-adjoint extension to the Hamil­

tonian [27, 28, 29] equivalent to defining some boundary condition near the origin. The 

connection to the three-body KSW EFT means that the singular nature of this potential has 

once more come under scrutiny [30, 31, 32], in particular with respect to understanding the 

link between the required self-adjoint extension and the three-body force.

The solution of the DWRG equation for the singular inverse square potential reveals 

that the self-adjoint extension is in fact equivalent to a marginal1 perturbation in the DWRG. 

The general method for solving the DWRG outlined at the end of chapter 3, augmented with 

some special considerations for the bound states, will reveal that the RG flow is controlled 

by limit-cycle solutions that evolve logarithmically in A.

In chapter 5 we will look at the extension of the DWRG to three body forces (3BD- 

WRG). The 3BDWRG equation is more complex than the standard DWRG because of the 

multi-channelled nature of the system. The 3BDWRG equation has to describe the coupling 

of the three-body force to each of the channels. Fortunately the lessons learnt in chapters 3 

and 4 allow us to find solutions.

We will demonstrate the solution of the 3BDWRG in an example of “well-behaved” 

pairwise forces and briefly show how the fixed points correspond to Weinberg and an equiv­

alent KSW counting for three body forces. More interestingly we will look to the derivation 

of the power-counting for the three-body forces in the KSW EFT.

‘The perturbations around fixed points in the RG are described as either stable, scaling with 
positive powers of A, unstable, scaling with negative powers of A, or marginal which do not scale 
with any power of A.
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The nature of the three-body force in this system is still open to debate. The similarity 

to the singular inverse square potential is clear and the need for a self-adjoint extension is 

almost universally supported [30, 32], It was hoped by some that effective range corrections 

of the two-body force would resolve the singular behaviour, however, results in this direction 

have failed to match experimental data [67].

Bedaque et al [22, 24] provide arguments in which they explicitly use a three-body 

force to define a self-adjoint extension and then continue to construct a power-counting for 

it. Phillips and Afnan [33] have shown how the inclusion of one piece of three-body data 

is enough to define all the physical variables without explicitly using a three-body force. 

These related approaches give results that are consistent with each other. Although the 

latter do not specify the actual nature of the three-body force it is clear that the inclusion 

of a piece of three-body data defines a self-adjoint extension of the Hamiltonian and is 

therefore equivalent to the leading-order (LO) three-body force given by Bedaque et al,

A third view is given by Gegalia and Blankleider[34] who argue that a unitarity con­

straint is sufficient to define physical quantities with no need for any three-body data at all. 

However, they have failed to produce any results that can be used to check the validity of 

their approach.

Since three-body force terms are not forbidden by the observed symmetries they must 

be included in the EFT Lagrangian. The 3BDWRG solution for the three-body force shows 

that the self-adjoint extension defining term is equivalent to a LO marginal three-body force 

and, consistent with the results of Bedaque et al [22, 24], acts as limit-cycle. Our results 

also support the power-counting suggested by Bedaque et al.

Having established the power-counting for the three-body force in the pionless KSW 

EFT, in chapter 6  we derive expressions for the DWs in this system at LO and next-to- 

leading order (NLO). The equations for the DWs based upon the two-body interactions 

alone show the singular behaviour anticipated by Efimov. The insertion of the LO three- 

body force is most easily achieved in this equations by demanding some boundary condition 

on the DWs close to the origin. Initially we will derive expressions for a three Boson system 

but in order to produce physically interesting results we will extend the equations to deal 

with a three nucleon system, in particular a system of two neutrons and a proton which
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contains the two- and three- body bound states, the deuteron and the triton. The LO three- 

body force can be fixed by matching to the neutron-deuteron scattering length. The EFT 

can then be used to construct the triton wavefunction and neutron-deuteron scattering states 

below threshold.



Chapter 2 

The Renormalisation Group for Short 

Range Forces

2.1 Introduction

In this chapter we will introduce the renormalisation group method for constructing EFTs 

[14]. As already observed, the two key ingredients of an EFT are a power-counting scheme 

and a separation of scales. The first of these allows organisation of the infinite number of 

terms that naturally occur in an effective field theory, the second ensures that these terms 

may be truncated to achieve the desired level of precision.

The separation occurs between the scale of the physics of interest, Q, and that of the 

underlying high-energy physics, A0. The existence of a separation of scales is usually as­

sumed with a particular physical system in mind. For example, in nucleon-nucleon scatter­

ing at energies well below the pion mass, there is a natural separation between the momenta 

of the incoming particles and the lowest energy component of the strong interaction, one 

pion exchange. Utilisation of such a separation leads to what has become known, in nuclear 

physics, as a pionless EFT, in which the only fields are those of the asymptotically free 

particles with no exchange particles [9, 10, 11, 35, 36].

We will consider a system of two non-relativistic identical particle scattering via an 

effective Lagrangian. For weakly interacting systems the terms in the expansion can be

28
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organised according to naive dimensional analysis, a term proportional to (Q/AQ)d being 

counted as of order d. This is known as Weinberg power-counting and is familiar from 

chiral perturbation theory (ChPT) [8 ], However, for strongly interacting systems there can 

be new low-energy scales which are generated by non-perturbative dynamics e.g. the very 

large s-wave scattering length in nucleon-nucleon scattering. In such cases we need to 

resum certain terms to all orders and arrive at a new power-counting scheme, KSW power- 

counting [9, 10, 11]. The origin and use of these schemes becomes quite transparent using 

the renormalisation group method. The contents of this chapter largely follows the work of 

Birse et al [14, 37]

2.2 The RG Equation

In a Hamiltonian formulation, the effective Lagrangian is written as a potential consisting 

of contact interactions, which in coordinate space takes the form of d-functions and their 

derivatives and in momentum space takes the form,

F(k', k, p ) = Coo + C2ook' 2 + Oi2o&/2 + Cnok.k' + Cooip1 + • • •, (2 . 1)

where p -  VM E  is the on-shell momentum corresponding to the total energy E  in the 

centre of mass frame and M  is twice the reduced mass. We shall consider s-wave scattering 

only at this stage, then since V must be independent of k.k', Cno = 0.

Scattering variables are found by solving a Lippmann-Schwinger (LS) equation. In 

particular we shall work with the reactance matrix, K , which is related to the phaseshift, 6  

by,
1 Mp

cot 5, (2 .2 )
K(p, p y p) 4n

and solves the LS equation,

m , k , P) = V(i f ,k ,P) + f 2 f  (2-3)
2 nl Jo p l -  ql

where the bar on the integral sign indicates a principal value prescription for the pole on the 

real axis. Unitarity of the S -matrix is ensured if the K-matrix is hermitian. The on-shell T  

and K  matrices are related by

1 1 iMP+ —A  (2.4)
K(pt p, p) T{p,p, p) 4n '

2.2. The RG Equation
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For short range potentials, it is well known that the inverse of the ^f-matrix may be 

written in terms of the effective range expansion, [16]

4tt 1 1 1 2
— \ = F c o t6  = —  + - r ep  + . . .  (2.5)M  K{p, p,p)  a 2

where a is called the scattering length and re the effective range. The effective range, as its 

name suggests, is related in an indirect manner to the range of the potential [18] (provided 

it is “smooth”).

For contact interactions the integral in Eqn. (2.3) is divergent. From the EFT point of 

view this is to be expected, the divergence occurs because we have allowed high momentum 

modes to probe the EFT beyond its range of validity. The solution is to remove the high mo­

mentum modes and incorporate their effects into the effective potential, V. Mathematically, 

we apply a cut-off, A , 1 to the integral then derive a differential equation for V(k' ,k,p,  A) 

based upon the constraint that K, the observable, is independent of that cut-off. Rather than 

acting as a UV regulator the cut-off acts as a separation scale and ‘floats’ between the low- 

energy scales, Q, and the higher energy scales, Aq. This leads us the concept of a Wilsonian 

renormalisation group (RG) [15]. The interesting limit is A —» 0, in which all high energy 

physics has been integrated out.

The regularised LS equation can be written in operator form as,

K(p) = V(p, A) + V(p, A)Gp0(p, A)K(p), (2.6)

where Gq(p, A) indicates the free Green’s function with standing wave boundary conditions 

and sharp cut-off A. The first step towards an RG equation for V is differentiating Eqn, (2.6) 

with respect to A and then eliminating K  to obtain,

dV(p, A) dGZ(p, A)
' = -V(p,  A) V (p, A). (2.7)

Taking matrix elements and expanding the Green’s function this equation takes the form,

a v w ,  k, p. A) m  A> A) V  V(A> ^ A)_ a g )
<9A 2tt2 ’ A2 — p

1 Any type of regularisation and renormalisation should produce the same results, here we just 
take the simple case of a shaip cut-off.

2.2. The RG Equation
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To obtain the RG equation for V we must now rescale all low energy scales with A. 

We define the rescaled potential V  by,

(>(£', I  p , A) = ^ n h - k ' ,  h k h p ,  A). (2.9)

where k = k !A ,k '  = k ' /A  and p = p /A .  The resulting RG equation is,

otV otV ofV -j

=  +  +  +  ^  +  ^  ^  A  A ) i — ^ ^ ( 1 ’  & A ) - ( 2 * 1 0 )<9 A dp d£ <%' 1 -  p 2

The reason for this rescaling is that it allows distinct treatments of the low-energy physics 

and the parameterisation of high-energy physics. To explain, let us consider solutions that 

are independent of A. These solutions, known as fixed points, are scale free since they are 

independent of the only scale in the problem. Therefore they must be related to the rescaled 

low energy physics and be independent of the unsealed high energy physics.

Fixed-point solutions provide systems in which only the low-energy physics has been 

included and it is this that provides the key to constructing power-counting schemes. Solv­

ing the RG equation in the region of a fixed point by perturbing about it in powers of A 

introduces parameters that must scale in inverse powers of Ao, the scale of the high en­

ergy physics. The perturbations around a fixed point organise the effective couplings into a 

power-counting scheme.

Since a fixed point solution is independent of A, all solutions of the RG equation tend to 

one as A —» 0. We may classify fixed points by examining the stability of the perturbations 

about them as A —» 0. If all perturbations tend to zero as A —» 0, i.e they scale with positive 

powers of A, the fixed point is stable. If there are perturbations that scale with negative 

powers of A then the fixed point is unstable. A perturbation that does not scale with A 

is known as marginal, and as we shall see in later chapters is associated with logarithmic 

behaviour in the cut-off.

In this problem, we shall find two fixed points that are of particular interest. The first 

of these, which we shall refer to as the trivial fixed point, is simply the obvious solution 

V = 0. This solution corresponds to the scale free system in which no scattering occurs. We 

shall see that the power-counting associated with the fixed point is the Weinberg scheme. 

A second fixed point, which we shall refer to as the non-trivial fixed point, gives a scale

2.2. The RG Equation
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free system in which there is a bound state at exactly zero energy. The power-counting 

associated with this fixed point is the KSW scheme.

Eqn. (2.1) and the assumption of s-wave scattering implies that V  should be an analytic 

function of p 2 ,k2, and k!2. These constraints constitute a boundary condition upon the RG 

equation, physically they follow because the energy is below all thresholds for production 

of other particles and that the effective potential should describe short-ranged interactions.

2.3 The Trivial Fixed Point

The Trivial fixed point solution is the A-independent solution V — 0. To examine the 

perturbations around it we write the potential as

V(k ,k \p ,  A) = CAv(f>(k',k,p), (2.11)

insert it into the RG equation, linearise, and obtain the eigenvalue equation

d<b a d(b a 8 6

^  + *S + ̂ +' = * (Z12)
The solutions of this equation are easily found to be

(j)(k',k,p) = k,2lk2mp 2,\  (2.13)

with RG eigenvalues v = 2(1 + m + n) + 1. The analyticity boundary conditions imply that

/, m and n must be non-negative integers, so that v takes the values 1 ,3 ,5 , The solution

to the RG equation in the region of the trivial fixed point is
° °  /  A \ v

V{k\ k, p, A) = V  Cimn —  k,2lk2mp2\  (2.14)
1 , ^ = 0  ' A ° '

where the coefficients <?/,„„ have been made dimensionless by extracting the high-energy 

scale A“v and for a Hermitian potential we must take Cimn = Since all the RG eigen­

values are positive this fixed point is stable as A —> 0.

The RG eigenvalues, v, provide a systematic way to classify the terms in the potential. 

In unsealed units we can see how this provides us with a power-counting scheme and straight 

away identify the couplings in the naively dimensioned potential suggested in chapter 1 :

2 n2 a k,2lk2mp2n
V ( k , k , P iA )=  Cimn 2(/+m-w0 ' <2A5^

l,m,n=0 0

2.3. The Trivial Fixed Point
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The power-counting scheme is the Weinberg scheme if we assign an order d = v -  1 to each 

term in the potential. That this power-counting scheme is useful for weakly interacting sys­

tems now comes as no surprise considering its association with the trivial, or zero-scattering, 

fixed point.

The corresponding AT-matrix is simply given by the first Born approximation, as higher- 

order terms from the LS equation are cancelled by higher-order terms in the potential from 

the full, nonlinear RG equation [14]. It is important to notice that terms of the same order 

in the energy, p 2, or momenta, k2 or k'2, occur at the same order in the power-counting. 

It is therefore possible to swap between energy or momentum dependence in the potential 

without affecting physical (on-shell) observables.

Let us consider a fixed point solution, V0 (p), that depends on the energy, p , but not upon the 

momentum. It satisfies the RG equation

A convenient way to solve this equation, as well as other momentum-independent RG equa­

tions, is to divide through by Vq and obtain a linear equation for 1 / Vo,

2.4 The Non-Trivial Fixed Point

2.4.1 Momentum Independent Solutions

(2.16)

(2.17)

This equation is satisfied by the basic loop integral,

(2.18)

Since J(p) is analytic in p 2 as p 2 -» 0 it is a valid solution to the RG equation. Hence we 

take Vo = 1/7- We shall refer to this as the non-trivial fixed point. When V0 is inserted into 

the LS equation we obtain

K(p, p, p) 1 = 0, (2.19)

2.4. The Non-Trivial Fixed Point
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which corresponds to a system with a bound state at zero energy. Since the energy of the 

bound state is exactly zero, the system has no scale associated with it, which is why it is 

described by a fixed point of the RG.

To find the power-counting associated with this fixed point we look for perturbations. 

This task is considerably easy if we consider momentum independent solutions. We con­

sider perturbations of the form

1 1

V(P, A) % (P)

giving the eigenvalue equation,

+ CAv0(p), (2.20)

A d(b
P~~ ~ 0  = v0 . (2 .2 1 )dp

Notice that since the momentum independent RG equation for l / V  is linear, no approxima­

tion has been made to obtain eqn.(2.21). The potential obtained using these perturbations 

will be an exact solution to the RG equation. The eigenvalue equation is easy to solve:

m  = P2", (2.22)

with RG eigenvalues v = 2n -  1. The analyticity boundary conditions demand that n is

a non-negative integer, so that the eigenvalues are v = - 1 ,1 ,3 ,__  The first eigenvalue

is negative, which means that the fixed point is unstable as A  —» 0. The full, momentum 

independent solution is given by

1 1 00 l < \ 2n- 11 1 v - i  & / A

V(P, A) V0(p) + 71=0

The power-counting about this fixed point is the KSW scheme. As in the Weinberg case we 

assign each term an order d = v -  1, so that the KSW scheme is characterised by the values 

d — - 2 , 0 , 2 , __

When this potential is inserted into the LS equation, we obtain an expression for the 

K-matrix, which upon using eqn.(2.2) gives the phaseshift,

p c o t,  = _ ^ £ c 2„ - , ( f f .  (2.24)

We can see that the terms in the expansion around the non-trivial fixed point are in one-to- 

one correspondence with the terms in the effective range expansion (2.5). In particular, we

2.4. The Non-Trivial Fixed Point
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2

1

■2 0 1 2

Figure 2.1: The RG flow of the general momentum independent solutions, V(p, A) = 
Z!T=o ^2/j(A)p2". The fixed-points are shown as dots. The eigenvector flows are shown in 
bold with the arrows indicating flow as A —» 0. More general flows are shown as dashed.

find

If the theory is natural then we expect the coefficients C2n-i ~ 1. In this case the scattering 

length and the effective range are of order a ~ re ~ 1/A0.

To understand which of the two power-counting schemes is appropriate in a given 

situation, it is fruitful to examine the RG flow of purely energy dependent RG solutions 

illustrated in Fig.2.1. This figure shows the RG flow as A —> 0 in the plane (6 o(A), 62(A)) 

where

V(P, A) = i>o(A) + b2 (A)p2n + . . . .  (2.26)

The trivial fixed point lies at (0,0). All flows near to it flow into it as A 0, illustrating its 

already noted stability. The non-trivial fixed point lies at (-1 , -1 ), only flows lying on the 

critical line 6 0 = -1  flow into it. All other flows in the region of this critical line flow initially 

towards the non-trivial fixed point before the unstable perturbation becomes apparent and 

takes the flow into the domain of the trivial fixed point (possibly ‘via’ infinity).

2.4. The Non-Trivial Fixed Point
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The values of A for which the flow is controlled by the non-trivial fixed point is depen­

dent on the value of the coefficient CLi. In particular if

A > ^  = A0< li (2.27)2 a

then the unstable perturbation is suppressed and the RG flow is controlled by the expansion 

around the non-trivial fixed point. As A becomes less than n/{2a) then the unstable pertur­

bation becomes important and the flow moves away from the non-trivial fixed point and into 

the trivial fixed point.

In a natural theory we have 1 ja ~ A0 so that as A floats between the scale of the high 

energy physics, A0, and 0, the condition (2.27) is not met. This means that the RG flow is 

in the domain of the trivial fixed point and that the appropriate power-counting is the one 

obtained by perturbing about that point, the Weinberg scheme.

If there is some fine tuning in the theory so that C_i is small, then the unstable per­

turbation is suppressed. This fine tuning, according to eqn. (2.25), will reveal itself in a 

surprisingly large scattering length, a »  1/A0. As A varies from Ao to 1 ja  the condition 

(2.27) is true and the power-counting associated with the non-trivial fixed point provides a 

suitable expansion.

For example, in s-wave nucleon-nucleon scattering the scattering lengths are large2 

suggesting a finely tuned effective potential with a small coefficient C- \ , in this case the RG 

flow is dominated by the non-trivial fixed point and the power-counting associated with it, 

the KSW scheme, is the appropriate one to use in organising the terms [9, 10, 36, 11, 35],

2.4.2 Momentum Dependent Solutions.

In the analysis above the Weinberg and KSW counting schemes occur quite naturally. Study 

of the RG flow leads to conclusions about the usefulness of each of the schemes in different 

systems. However, the analysis is not complete as we have not considered the momentum 

dependent solution about the non-trivial fixed point.

Around the trivial fixed point, it was found that the momentum dependent perturbations 

provided no new physics since they occurred at the same order in the power counting as the

2Naturally the scattering length for NN scattering should be of the order of the pion mass, a ~ 
l/mn, however this is not what is empirically observed.

2.4. The Non-Trivial Fixed Point
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energy dependent perturbations. This meant that momentum and energy perturbations could 

not be distinguished within on-shell observables.

Around the non-trivial fixed point things are considerably more complicated, as we 

shall see the momentum and energy dependent perturbations occur at different orders in the 

power counting. This result means that it is not a simple matter to interchange momentum 

and energy dependence of physical observables near the non-trivial fixed point.

To find the momentum dependent perturbations we write the solution in the vicinity of 

the fixed point solution as,

V(k, k \  p, A) = Vo(p) + CAv0 (&, k \  p). (2.28)

After linearising, the eigenvalue equation for 0  is

<90 - <90 <90 Vo(p) r - i
P j ^  + k T? + k T f  + 1---- ^2 h p )  + <f>(hk,p)\ -  ( v -  1)0. (2.29)op ok ok' i -  p L J

Useful solutions to this equation[37] are

+ t W ) Vo (P),  (2 ,3 0 )
1=0 v y

with eigenvalues, v = 2n ~ 2 ,4 ,6 , . . . .  These solutions lead to two forms of perturbation that 

are symmetric in k and k' and so may be used within an hermitian momentum dependent 

potential:

</>& k',p) = p2m [ipn(k, p) + <pn@,  p)}, (2.31)

with eigenvalues v = 2 m + 2 n = 2 ,4 ,6 , . . .  and

<p(k,k',p) = p 2m {<p„(k,P)<pAk',p)}, (2.32)

with eigenvalues v = 2m + 2n + 2nf + 1 = 5,7,9, . . . .  These perturbations plus the the 

purely energy dependent perturbations form a complete set that can be used to expand any 

perturbation about the non-trivial fixed point that is well-behaved as k2, k>2, p 2 —» 0. The

momentum dependent perturbations vanish on-shell and the terms in the on-shell potential

are still in one-to-one correspondence with the terms in the effective range expansion[37].

2.4. The Non-Trivial Fixed Point
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The most general solution in the vicinity of the non-trivial fixed point may be written as
00 I . \ 2n~l

k', p, A) = v 0 (p) + V  C2rt_! •—  p 2nVo(p)2+
\ A°/

°° / A
Y j (n+m) T - p2" [fmik P) + p)} +

n= 0,m = l '

o° / ^  \ 2(«+w+m')+l
2  2̂(n+iH+/n')+l I T - ) p 2n(pm(k,P)<Pm'(k\p).  (2.33)

K=0;m,m' = l ' °''

When the on-shell ^-matrix is calculated using this general form of expansion about the 

non-trivial fixed point, the only terms that contribute are precisely those that appear in the 

expansion given in the previous section, namely the coefficients of the purely energy de­

pendent eigenfunctions, Cv. The momentum dependent eigenfunctions do not contribute 

to on-shell scattering, i.e. physical observables are independent of Dv and Ev at this order 

[14, 37].

The solution given above results from linearisation of the RG equation close to the non­

trivial fixed point. It is not clear that if a full solution to the non-linear RG equation was 

constructed that the one-to-one correspondence betweens terms in the potential and terms 

in the effective range expansion persists. In order to clarify the situation, Birse et al [14] 

calculated corrections to the potential around the non-trivial fixed point due to the neglected 

non-linear terms in the RG equation up to order C-\t>2 and found the additional term,

^ C -,D a ik’2 + P  + Ap2 + — VoCp)) Vo(p ), (2.34)

where A is a constant of integration. In general this second order piece will contribute to the 

effective range term along with the C\ term. Since the constant A is unfixed, we are free to 

set it as we wish to ensure a nice correspondence between terms in the potential and terms in 

the effective range expansion. Setting A = -2  maintains the direct correspondence between 

the effective range expansion and the energy dependent perturbations around the non-trivial 

fixed point. In general it is assumed that at each order in the coefficients further degrees of 

freedom will become available to ensure this correspondence is continued to all orders.

The degrees of freedom that become available as the full non-linear solution is explored 

allows the possibility of generating the effective range terms from momentum dependent, 

rather than energy dependent, perturbations. For example, it is possible to generate the

2.4. The Non-Trivial Fixed Point
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effective range, re, solely from the momentum dependence in the correction given in eqn. 

(2.34). By setting Ci = 0 and A = 0 the effective range would be given by,

4 D2
re = T T '  (2.35)A ~a

However, since the momentum dependent perturbations occur at different RG eigenvalues, 

v = 2,4, . . . ,  than the energy dependent perturbations they are replacing, the coefficient Dv 

is forced to take an unnaturally large value to compensate for the additional factor of AQa.

Unlike the trivial fixed point the possibility of using the equations of motion to move 

between momentum and energy dependence is not manifest at any particular order in the 

power-counting. This trade has to be between terms resulting from non-linear corrections 

in the solution to the RG equation in the vicinity of the fixed point, making it difficult to see 

and implement. Importantly, the momentum dependent perturbations offer no new degrees 

of freedom to on-shell observables than the easily elucidated energy dependent ones.

2.5 Summary

In this chapter we have introduced the RG for short range forces and used it to derive the 

Weinberg and KSW power-counting schemes. The key to solving the RG equation are fixed 

point solutions. Perturbing around the fixed point solutions gives us a simple recipe for 

constructing power-counting schemes. We have identified two fixed point solutions, the 

trivial fixed point that leads to the Weinberg scheme and a non-trivial fixed point that leads 

to the KSW scheme.

The terms in the perturbations around the trivial fixed point are in one to one correspon­

dence with the terms in the DW Bom expansion. Those about the non-trivial fixed point are 

in one-to-one correspondence with the terms in the effective range expansion.

By studying the RG flow with the cut-off A we may make conclusions about the use­

fulness of each of the fixed points. The non-trivial fixed point is unstable and requires the 

fine tuning of a parameter in the expansion around it. This fine tuning results in large scat­

tering lengths. Because of the large scattering lengths observed in nuclear systems the KSW 

counting is the appropriate scheme.

2.5. Summary



Chapter 3

The Distorted Wave Renormalisation 

Group

3.1 Introduction

In this chapter we shall introduce the distorted wave renormalisation group (DWRG) [17]. 

This is an extension of the RG which allows the summation of some physics to all orders.

The ability to construct an EFT with non-trivial low-energy physics is important. Con­

sider proton-proton scattering at low energies. The Coulomb interaction between the pro­

tons is a very long-ranged interaction with a characteristic momentum scale, k  =  —  =  

3.42MeV. If we are interested in scattering between protons of typical energy p ~ k , k  must 

be treated as a low-energy scale, so we must sum all photon exchange diagrams since they 

occur at LO in the EFT [21].

Proton-proton scattering is not the only example that is important to nuclear physics. 

Also of interest is nucleon-nucleon scattering at energies comparable to the pion mass [45, 

39, 38, 37]. In the previous chapter, we constructed a EFT in which all exchange particles 

are absorbed into the effective couplings. In nucleon-nucleon scattering the scale at which 

this breaks down is the pion mass, mn, which acts as a high energy scale in the EFT. If 

we wish to examine nucleon-nucleon scattering at energies comparable to the pion mass, 

pion fields must be introduced into the EFT Lagrangian. Dependent upon our identification

40
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of low-energy scales, one approach may be to sum all one pion exchange diagrams [45]. 

There are many issues surrounding how pions are to be including in an EFT for nucleons 

[40, 49, 8 , 50, 45], we shall consider these towards the end of this chapter.

We will introduce the DWRG equation by showing how the short and long range 

physics can be neatly separated. Then we will apply the equation to a number of exam­

ples. Our first example, in which the long-range physics will be modelled by the Coulomb 

potential, will demonstrate the methods that will be used in later examples. In the DWRG 

analysis of this system we will derive a known result for the distorted wave effective range 

expansion[19, 20, 21].

Our second example, will be the scale-free, repulsive inverse square potential. Our 

interest in this example is two-fold. Firstly, it will allow examination of short range forces 

for higher partial waves in the EFT for short range forces and secondly, the scale-free nature 

of the potential makes it very similar to three body systems[25].

As a final example we shall consider a more general class of long-range forces, namely 

non-singular potentials that facilitate the definition of the Jost function[18]. This general 

analysis is of interest as it includes the Yukawa potential and because the methodology used 

in this section acts as inspiration for the DWRG analysis in later chapters.

3.2 Separating Short- and Long-Range Physics

We shall assume that all non-perturbative EFT diagrams can be summed to give a long range 

potential. To this end, we consider a system of two-particles of mass M  interacting through 

the potential,

v = vL + vs, (3.1)

where Yy is an effective short-range force that consists of contact interactions only. The 

terms in Vs can be related to the couplings in the effective Lagrangian.

The full T -matrix that describes scattering from both the long and short range potentials 

is given by a LS equation,

Tip) = (VL + ?s ) + (VL + Vs )Gq(p )T(p ). (3.2)

3.2. Separating Short- and Long-Range Physics
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We wish to find an RG equation that allows us to determine the power-counting for the 

short range force. Suppose that we were to attempt to find this by applying the cut-off to 

the free Green’s function in eqn. (3.2). The resulting differential equation for Vs, found by 

demanding that T is independent of A, is

dVs ~ dG+= ~{VL + Vs)-g£(VL + Vs). (3.3)

After taking matrix elements we obtain an equation that in general contains complicated A- 

dependence in terms that are quadratic, linear and independent of Vs . In essence this com­

plicated A-dependence is because of the cut-off, which applied to the free Green’s function 

in the LS equation, not only regularises the divergent loop integrals between contact inter­

actions but also cuts-off elements of the long-range potential. Those parts of the long-range 

potential “removed” by the cut-off then have to be absorbed into the short-range potential 

resulting in the equation above, it then becomes difficult to justify any boundary condition 

on the potential, Vs .

To circumvent this complication and obtain an RG equation containing the short-range 

potential alone, it is useful to work in terms of the distorted waves (DWs), \tf/p), of the long- 

range potential. The DWs are simply solutions to the Schrodinger equation containing the 

long-range potential alone:

P  + P> = °. (3.4)

The T-matrix, TL, describing scattering by V7, is simply given by the LS equation:

Tdp)  = VL + VLG+0 (p)TL(p l  (3.5)

The corresponding full Green’s function is

G+l (p) = Gq(P) + G+0 (p)TL(p)G+0 (p). (3.6)

To isolate the effects of the short-range potential and enable a renormalisation group 

analysis we write the full T -matrix as [18]

T{p) = TL(p) + (1 + TL(p)G+0 (p)) fs (p)( 1 + G+0 (p)TL(p)). (3.7)

The operator (1 + G^TL) is the Moller wave operator that converts a plane wave into a DW 

of VL,

|t/rp) = (1 + Gj(p)77.0?))|p>, (3.8)

3.2. Separating Short- and Long-Range Physics
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so that the matrix elements of the full T -matrix are given by,

<k|r(p)|k') = <k|rL(p)|k'> + ( f a i f s i p M i ) .  (3.9)

An equation for the operator Ts {p) can be found by substituting eqn. (3.7) into the full 

LS equation (3.2). After identifying and cancelling the terms in the pure long-range LS 

equation and cancelling the Moller wave operator on the right hand side we are left with,

[1 + TL(p)G+0 (p)]fs (p) = + Vs G+0 (p)[ 1 + TL(p)G+0 (p W s(p )

+VlG+0{P)[ 1 + TL{p)G+0(p)]Ts (p).  (3.10)

The third term on the right-hand side can be seen to cancel with the second on the left-hand 

side after identifying the LS equation for TL. The second term on the right hand side can be 

simplified by identifying the form for the full long-range Green’s function, eqn. (3.6). What 

remains is a distorted wave Lippmann-Schwinger (DWLS) equation for the f s ,

f s (p) = Vs + Vs G+L(p ) f s (p). (3.11)

This equation is now a far more promising starting point for the RG analysis since the effects 

of the long-range potential have been dealt with separately. The operator f s describes the 

interaction between the short-range potential and the DWs of the long-range potential

We shall assume that VL is a central potential and work in the partial wave basis. In 

particular we shall concentrate on s-wave scattering. In that case the on-shell T-matrix may 

be expressed in terms of the phaseshift, 1

(p\T(p)\p) = <3-12>

A similar relation holds between TL and SL, the phaseshift due to the long range potential 

alone. We may write the full phaseshift, d, as 5L plus a correction, 8 S, due to the effect of 

the short-range potential:

S = Sl  + 8 s . (3.13)

^ o te  that the normalisation used in this chapter is slightly different from that implicitly assumed 
in the previous chapter, hence the relation between the T-matrix and the phaseshift differs by a factor 
of p 2.

3.2. Separating Short- and Long-Range Physics
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Substituting this form into eqn. (3.12) and subsequently into eqn. (3.7) we obtain a simple 

relationship between the on-shell matrix elements of Ts and the corrective phaseshift 6 s ,

A.jt n sPids(p) — i
( r p \ f s ( PM p  = -----2 i-----• (3-14)

3.3 The DWRG equation

In order to derive the DWRG equation for the short-range potential it is once again more 

convenient to work with a reactance matrix, Ks , which satisfies the DWLS equation,

Ks (p) = V’s(p) + Vs (p)GpL(p)Ks (p), (3.15)

where in this equation Gp indicates the Green’s function with standing wave boundary con­

ditions. The relationship between the on-shell matrix elements of t  and K  (c.f. eqn. (2.4)

is,
1 e2i6dp) iM

+ -— , (3.16)
{*P\Ks{p) Wp) ( r p\fs{p)\rp) 4 np

where similarly |if/p) without superscript indicates standing wave boundary conditions on 

the DW. Hence the on-shell Ks -matrix is given by

1 M  ̂ = — cot £ (3<17)
(*p\Ks {p)tyP) 4 np

To regulate eqn. (3.15) we expand GPL using the completeness relation for the DWs, and 

apply a cut-off to the continuum states,

Gf c A> = n f  ^ T ^  + r X T T T '  (3-18>2 ?r Jo p 2 -  q2 47T ̂  p 2 + pjt

Demanding that Ks is A-independent we can obtain, as in the previous chapter, a differential 

equation for Vs by differentiating eqn. (3.15) with respect to A and eliminating Ks to obtain,

dV dGp
A) = - V s ( p , A ) - ^ ( p , A ) V s (p,A).  (3.19)

In the remainder of this chapter, to simplify the analysis, we shall assume that the 

matrix elements of Vs depend only on the energy, p  and not on the momentum. As shown 

in chapter 2, the off-shell momentum dependent solutions to the RG equation have more 

complicated forms but are not needed to describe on-shell scattering [14, 37].

3.3. The DWRG equation
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In the previous chapter we simply used a contact interaction proportional to a delta 

function, however, such a choice cannot be used in combination with some of the long-range 

potentials of interest. Long-range potentials that are sufficiently singular that their DWs, 

if/p{r), either vanish or diverge as r -» 0 will result in a poorly defined DWRG equation if a 

delta function contact term is used.

To construct a contact interaction we chose a spherically symmetric potential with a 

short but nonzero range. By choosing the range, R, of this potential to be much smaller 

than 1 /A, we ensure that any additional energy or momentum dependence associated with 

it is no larger than that of the physics which has been integrated out, and hence the power- 

counting is not altered by it. The precise value of this scale is arbitrary and so observables 

should not depend on it, we may consider the results to be equivalent to those that would 

be obtained in the limit R —» 0. R should be thought of nothing more than a tool to avoid a 

null DWRG equation. A simple and convenient choice for the form of the potential is the 

“<5-shell” potential,

Vs (r) = Vs 6 ( r - R ) .  (3.20)

With this choice, the eqn. (3.19) for Vs becomes

dVs (p,K, A) M  | f A(fl) |2
Vj{p,K, A). (3.21)

<9 A In 2 p 2 -  A2

The final step in obtaining the DWRG equation is to rescale each of the low energy 

scales, expressing them in terms of the cut-off A. Dimensionless momentum variables are 

defined by p = p / A  etc., along with a rescaled potential, Vs . The exact nature of the 

rescaling required for the potential is dependent on the form of

The solution to the DWRG equation should satisfy the analyticity boundary conditions 

in p 2 that follow from the same arguments given in the previous chapter. Vs must also be 

analytic in any other low energy scale, k , associated with the long-range potential. The exact 

analyticity condition for each scale k  is case specific. In most cases we need to demand only 

that the effective potential is analytic in k . An example is the inverse Bohr radius which is 

the low-energy scale associated with the Coulomb potential, and which is proportional to 

the fine structure constant, a. Since the short-distance physics which has been incorporated 

in the effective potential should be analytic in a  it should be analytic in k . An important

3.3. The DWRG equation
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exception is the pion mass. This is proportional to the square root of the strength of the 

chiral symmetry breaking (the current quark mass in the underlying theory, QCD) and so, 

as in ChPT, the effective potential should be analytic in m2. Under these restrictions, we see 

that Vs should have an expansion in non-negative, integer powers of p 2 and k (or k2).

Having discussed the general route to the DWRG equation we shall now provide a con­

crete and physically interesting example to see how the whole procedure fits together. The 

Coulomb potential, Vi{r) = ar~l , is highly interesting physically for obvious reasons. The 

wavefunction for the Coulomb potential may be written in terms of the confluent hypergeo­

metric function, <J>(a, b, z),

where rj = k/ p , k = a M / 2[18]. The definition of the phaseshift for the Coulomb potential 

is unusual because the long r~l tail results in logarithmic asymptotic contributions. The 

Coulomb phaseshift is defined by writing the asymptotic behaviour of the wavefunction as,

which gives the phaseshift 6 C = Arg{T(l + *‘77)}. Incidentally, this expression also defines the 

normalisation of the DWs. A simple calculation shows that for R <§c A-1 we have,

where C(rj) is known as the Sommerfeld factor. Hence, in the Coulomb case eqn. (3.21) 

becomes

3.4 The Coulomb Potential

= pre~ W x i  + £jj)®( 1 + it/, 2, - 2 ipr)eipr, (3.22)

—» ejS‘ sin(pr -  r] In 2pr + 6, ), (3.23)

¥a(K)I2 -» A ^ V 'T
27tkAR-

R2 A 2C(k/A).  (3.24)

C(k/A) (3.25)

To obtain the DWRG equation we must rescale the variables p = p A  and k = kA. Vs must 

be rescaled to factor out the scales M  and R . Hence we define,

Vs (p, k, A) = - ^ - V s i A p ,  Ak, A), (3.26)

3.4. The Coulomb Potential
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resulting in the DWRG equation for the Coulomb potential:

dVs dVs dVs ~ C(k) ,
= p i ^  + Ki ^ - + v* + - r ^ i v l  (3-27>o A  op  OK 1 — p l

The boundary conditions that follow from the discussion above are analyticity about p2, k -»

0. We shall assume that k  is positive, i.e. that the Coulomb potential is repulsive, the mod­

ifications to this discussion for an attractive Coulomb potential are examined in Appendix 

B.

Our study of the Coulomb DWRG equation will mirror the RG analysis of the previous 

chapter. In particular we shall concern ourselves with fixed-point solutions and their corre­

sponding power-counting schemes. A trivial fixed point, Vs = 0, is readily identified, but 

the existence of a non-trivial fixed point is not obvious. We will see that no true fixed point 

other than the trivial one exists. However, we will find a logarithmically evolving ‘fixed 

point’ that for the purpose of constructing a power-counting scheme may be regarded as a 

true fixed point. Furthermore, we will find a marginal perturbation in the RG flow about this 

fixed point that is associated with its logarithmic evolution.

3.4.1 The Trivial Fixed Point

An obvious fixed point solution of the DWRG equation for the Coulomb potential is the triv­

ial fixed point solution, % -  0. This solution corresponds to a vanishing short-range force,

i.e. a system in which only the Coulomb force is active. The power-counting associated 

with the point can be obtained by solving the eigenvalue equation for a small perturbation 

about it. Putting

Vs (p, k, A) = CAa(j}{p, k), (3.28)

we obtain an eigenvalue equation that is very similar to that in the previous chapter,

d(b dd)
P dp + k ~dk = ^V ~ 3̂ ‘29^

The solutions that satisfy the boundary conditions are (p = /?2V ”, where n and m are positive

integers. The RG eigenvalues are v = 2n + m + 1 = 1 ,2 ,3 ,__  All the RG eigenvalues,

in common with the pure short range case of the previous chapter, are positive and the

3,4. The Coulomb Potential
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fixed-point is stable. The potential in the vicinity of the fixed-point is given by,
oo / . \2 n + m + \

V s = y \ c 2  —  p2nr. (3.30)
£ £  i \ A°/

If we assign d  = v -  1 then the power-counting scheme is the Weinberg scheme with ad­

ditional /c-dependent terms. Upon substitution into the Lippmann Schwinger Equation, all 

higher order terms vanish and what remains is a distorted wave Bom Expansion,

ta n *  _ n y ,  .  / p 2V " \
p '  2A0C W ^ .  2,w', U r " 7 ’1 nfm =  1 x U 1

which, it should be noted, is independent of the delta-shell range, R. This power-counting 

scheme, in parallel to the trivial fixed point for purely short-range potentials, is appropriate 

for systems with weakly interacting short-range potentials that provide only minor correc­

tions to the Coulomb potential.

3.4.2 The Non-Trivial Fixed Point

The starting point for finding another fixed point solution is to divide the DWRG equation 

through by to obtain a linear PDE for VJ1,

Aavs- ‘ . JV-S ' C(k)
A ' = p ~ d f  + ~ v * ~  1 ^ '  (3 3 2 )

Substitution shows that this equation has a fixed point solution given by the basic loop 

integral,

h p , k ) =  { '  (3.33)
Jo p 2 -  q2

However, we may not simply take Vs = J~l as the solution to the RG equation because it 

does not satisfy the necessary analyticity boundary conditions. A source of non-analyticity 

in p 2 are the poles at q -  ±p. As p  —> 0 these poles move to the endpoint of the integral, q = 

0, causing singular behaviour in J. A  second source of singular behaviour is the essential 

singularity in C(r/) at r) = 0. This singularity means that the integral 3 only converges

for Re{£) > 0 resulting in singular behaviour about k -  0. In order to isolate these non-

analyticities we write J  as:

f(p ,  k) = -  f  dpC(k/q) - p 2 f d q ^ 3 L  + yvt(p, k), (3.34)
Jo Ji p  q

3.4. The Coulomb Potential
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where

?, k) = p 2 £
Jo

The non-analyticity in p 2 caused by the q = 0 endpoint now appears in M , whilst the non- 

analyticity resulting from the essential singularity in C is contained in both M  and the first 

integral in eqn. (3.34). The second integral in eqn. (3.34) avoids the troublesome endpoint, 

q = 0, and is analytic in both k and p. The first integral in eqn. (3.34) may be written as (see 

Appendix A),
u

dqC(k/q) = -1  -  nk Ink + Analytic terms in k, (3.36)JJo'o
So that overall we have,

J(p, k) = M(p, k) -  nk In k + Terms Analytic in p2, k. (3.37)

To construct a solution to the DWRG fixed point equation that satisfies the analyticity 

boundary conditions we must remove the non-analytic terms M  and k In k. The removal 

of the non-analytic term M  is simple. It is not difficult to show that it satisfies the homoge­

neous form of eqn. (3.32),
A d M  ^ d M  a
p +K = 0, (3.38)

O p  O K
A. A

so that J  -  M  satisfies eqn. (3.32). However, the removal of the logarithmic term in 

eqn. (3.36) is not as simple and cannot be done within the confines of the fixed point equa­

tion. It is because of this term that we are forced to introduce logarithmic A dependence 

into the fixed point solution. The term,

Jl(k, A) = -n k  In — , (3.39)
V-

where p  is some arbitrary scale, satisfies the homogeneous form of the eqn. (3.32),

d t  d £  *
A ^ - H f + £  = °, (3.40)<9A o k

and so may be used to remove the logarithmic term from J. Bringing all the terms together 

we take

v f ( p ,  k, A) = (J(P, k) -  M(p,  k) -  l ( k ,  A))“‘ (3.41)

3.4. The Coulomb Potential
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as an analytic solution to the DWRG equation with logarithmic dependence on A. We will 

refer to this as the non-trivial fixed point2.

The perturbations around the non-trivial fixed point can be found in the same way as 

before. Writing,

fr , A  + A W . *). (3.42)
V s (p ,k ,A )  V{s \ p ,K ,  A)

we obtain a linear equation for <p which is readily solved,

0 (/U) = p2"r, (3 .43)

where n and m are positive integers and the RG eigenvalues are v = 2n + m -  1. The leading 

order perturbation around this fixed point has a negative RG eigenvalue and so, like the non­

trivial fixed point seen in the previous chapter, is unstable. Indeed, the power-counting in 

the energy dependent terms around this fixed point is simply the KSW scheme. In contrast 

to the power-counting observed there, the existence of a zero RG eigenvalue means that 

there is a marginal perturbation that does not scale with a power of A. The full solution in 

the vicinity of the non-trivial fixed point is,

i  -1 co i . \ 2 n + m - l
1 1 a / Apo / 4 \ zn + m - i

+ y 4 , J r  P2nZ’\  (3.44)
\ A0/Vs 03, k, A) v f \ p ,  k, A) , ^ 0

The marginal perturbation is the key to understanding the need for logarithmic dependence 

on A in the fixed point solution and the arbitrary scale p. Since the marginal perturbation is 

independent of A it cannot be separated unambiguously from the fixed point solution Vj0). 

The degree of freedom associated with the scale p  is interchangeable with the coefficient 

Coi- Indeed the coefficient, Coi can be chosen to depend on p  in such a way that the term,

A A
nk In — h Coi (P)k, (3.45)

V

and hence the full solution is independent of p.

This system is very similar to the case of considered in Chapter 2. The power-counting 

in the energy dependent terms around both fixed-points is the same as observed in the system 

with just short range forces. As a consequence, the RG flow and the conclusions drawn from

2Although not strictly a fixed point, it shall be referred to as such for ease of nomenclature.
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Figure 3.1: The RG flow in the plane (&0lo(A), 6 0,i(A)), where 62„,OT(A) is defined in 
eqn. (3.46)

its examination are very similar. Writing,

co

Vs (p, k, A) = Y j b ^ W p ^ ' r ,  (3.46)
n,m= 0

the flow in the (&o,o(A), &2,o(A))-plane is as given in Fig. 2.13. In that diagram the logarith­

mic behaviour associated with the non-trivial fixed point is not apparent but is illustrated in 

Fig.3.1, which shows the flow in the plane (6 0,o(A), &0,i(A)). As before, the fixed point is 

shown as a dot, the flows along the RG eigenvectors as bold lines with the arrows showing 

the flow as A —» 0 and the dashed lines showing more general flow lines. The flow associ­

ated with the marginal perturbation carries the potential up the vertical flow line £0,o = - 1  at 

a logarithmic rate. Although the coefficient appears to be tending to infinity along this flow 

line, it will eventually become so large that the expansion (3.46) breaks down. A general 

potential, for which 6 0,o is not exactly -1 , will flow into the trivial fixed point. However, 

provided the coefficient of the unstable perturbation, C0,o is small, it is still possible to ex­

pand around the logarithmic flow line.

3The exact position of the non-trivial fixed point may be different but this does not affect the 
conclusions.
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Despite the logarithmic flow we are led to a similar conclusion arrived at in the previous 

chapter. The organisation of terms using the expansion around the non-trivial fixed point is 

only suitable if there is some fine-tuning of the parameters, which give an unnaturally small 

value for C0i0> otherwise the suitable expansion is that about the trivial fixed point and the 

distorted wave Bom expansion.

3.4.3 The Distorted Wave Effective Range Expansion

In the pure short range case, the terms in the expansion around the non-trivial fixed point 

are in one to one correspondence with the terms in the ERE. The requirement of small C_\ 

for the suitability of this expansion could be reformulated as the need for a large scattering 

length, I /a  A0, as found in nucleon-nucleon systems.

The generalisation of the ERE is the DW effective range expansion (DWERE) [43, 

45, 20, 19]. We will see that the energy dependent perturbations around the DWRG non­

trivial fixed point are in one-to-one correspondence to the terms in the DWERE. To show 

this we insert the solution Vs into the DWLS equation for Ks to obtain an expression for 

the corrective phaseshift, §s . The DWLS equation can be solved by expanding the Green’s 

function in terms of a complete set of DWs and iterating to get a geometric series. This 

series can then be summed to obtain

M K s ^ p )  ...................( .......................... M  r A , \M R ) fr P \Y p/
Im p

= Vs ( p , K , V \ l - V s (p ,K, \ ) — 2 j-a . (3.47)

Notice that the integral in the above expression is equal to AR j(p,  k). Inverting the equa­

tion and substituting the expression for the ^-matrix element in terms of the phaseshift, 

eqn. (3.17), and the expression for \ftp(R) \ 2 for R <§c p ~ \  eqn. (3.24), gives,

C(p)pcot6 S = —  lf(Jpt k) -  Ty—V . (3.48)
n \ Vs (p , k,A ) I

Substituting in the expression for Vs and writing everything in terms of the physical vari­

ables gives the final expression,

K 2A y A / rp‘nPn \
C(rficot Ss -  M(p, k )  = -2kIn  -  -  , (3.49)

^  n.tn '  0 >
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where [41],

2A * f
M(p, k) = — M(p,  k) = \r  ^  4/c p 2

Iq g g2mr/g _ \ p 2 _  q2

r 1= 2/cRe \n(ip) -  —— (3.50)

and if/ is the logarithmic derivative of the F-function. This expansion is equivalent to the 

distorted wave effective range expansion (DWERE) first derived by Bethe [19] expanding 

on earlier work by Landau and Smorodinski [47] and more recently examined from an 

EFT viewpoint by Kong and Ravndal [21], In the expansion all non-analytic behaviour 

has been isolated in the functions C and M  allowing an expansion in p  and k. The use 

of renormalisation group methods in deriving this equation is a new result and provides an 

interesting insight into the use of not only this expansion but also the distorted wave Bom 

approximation. Beyond that it also provides the full power-counting for this system; more 

than was shown in the work of Kong and Ravndal [21]. We may write the distorted wave 

effective range expansion as,

These expansions in aM  correspond to nucleon loops in photon exchange diagrams in the

3.4.4 Proton-Proton Scattering.

The DWERE was first derived specifically to model low-energy proton-proton scattering 

and proved very successful in doing so [19, 20, 21]. The RG analysis tells us that the 

DWERE is only likely to provide a systematic expansion if the parameter C0i0 is small 

allowing organisation of the terms around the non-trivial fixed point. In the case of neutron- 

neutron scattering the same criterion was met because of the large scattering length, ann =

ac z

allowing definition of a Coulomb-modified scattering length and effective-range,

F Y r O  n n t  P L  — S A (  n  F i (3.51)

EFT.
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-18.4fm. In proton-proton scattering the issue is clouded since the Coulomb-modified scat­

tering length depends logarithmically upon the the fine structure constant a. If we assume an 

isospin symmetry for the strong force, then as a  —> 0, the DWERE for proton-proton scat­

tering should become the ERE for neutron-neutron (or proton-neutron) scattering length, 

suggesting that eqn. (3.52) can be written as,

Hence, the criteria for the use of the DWERE to systematically describe proton-proton scat-

This rather naive analysis must be taken with caution, the isospin symmetry of the 

strong interaction is only approximate. Furthermore, the large separation of scales in the 

nuclear system between Ao and 1 /a  tends to amplify the isospin asymmetry of the strong 

interactions due to Coulomb interactions at short scales. For example, the naive argument 

above suggests anp = ann. However we find that ann = -18.4fm  and anp = -23.7fm in the 

spin-singlet channel, where the 25% difference in the scattering length is a result of a much 

smaller difference in the unsealed effective potential. That said, we can only cite studies that 

have successfully used the Coulomb modified ERE in modelling proton-proton scattering 

[21, 19, 20] and the corresponding EFT to model proton-proton fusion [42]

3.5 Repulsive Inverse-Square Potential

The next example in this chapter is the repulsive inverse-square potential,

This potential is of interest because, firstly, the centrifugal barrier is of this form and the 

analysis will show how the power-counting is constructed for different angular momenta, 

and secondly, because of the potential’s relevance to the three body problem [25].

The Schrodinger equation is easily solved in the case where {5 > -1 /4 . The DWs 

satisfying the boundary condition of vanishing amplitude at the origin are

(3.54)

tering is met because C0j0 ~ n/( 2 mnantl) is small.

(3.56)
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where Jv(z) is Bessel’s function and v = + 1 /4. If /? < -1 /4  then v becomes imaginary

and the boundary condition at the origin becomes an issue for discussion, this case is con­

sidered in the next chapter. The long-range phaseshift is given by 5L = tt(1/4 -  v/2). The 

DWRG equation for the short-range potential is determined by the value at the wavefunction 

close to the origin,
Ti (AR\ 2 v + l

= 2 f x T T ^ l T j  ’ (3-57)

giving from eqn. (3.21) the differential equation for Vs ,

^  = M ( ™ \ 2V+1 V* n  sm
dA 4 n n i  + v)2 \ 2 j  A1 -  p 2' K ’

The rescaling of Vs is markedly different to the previous examples because of the odd di­

mension in the A dependence on the right-hand side. The equation is rescaled via the rela­

tionships,

Ap = p, Vs(p, A) = 4„r(1 + y); ( 2 ) AlvVs(Ap, A), (3.59)

resulting in the DWRG equation for V$,

dVs dVs * Vl
A in r  = p + 2vys + 1— (3. 60)oA op 1 -  p l

The RG analysis of this equation is straightforward but interesting [17, 48]. There are two 

fixed points, the trivial fixed point, V5 = 0, and a non-trivial fixed point. If v is an integer the 

latter of these has logarithmic A-dependence. The perturbations around these fixed points 

scale differently to the cases seen so far. In the two previous cases the trivial fixed point 

was stable, with the LO perturbation scaling with A, while the non-trivial fixed point was 

unstable, with the LO perturbation scaling with A-1. In this example, we shall see that 

the trivial and non-trivial fixed points are still stable and unstable respectively (for v =£ 0 ), 

but that the nature of the stable and unstable perturbations are different, resulting in rather 

different power-counting schemes.

Perturbations around the trivial fixed point can be determined, as before, by writing 

Vs(A,p)  = CA^fiip), substituting this into the RG equation and linearising. The resulting 

equation for 0 ,

^ t  = (cr- 2v)(j>, (3.61)
dp
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has solutions (p{p) = p a 2v, which upon application of the analyticity boundary condition 

yields the potential,

As promised, for v £ 0, the fixed point is stable. However, the LO perturbation, instead of 

scaling with A, now scales with A2v. The case of v = 0 is interesting, in this case, the LO 

perturbation is marginal, which will be associated with some logarithmic dependence on A. 

The term proportional to p2n is of order d = 2n+2v- 1 in the corresponding power-counting. 

The non-trivial fixed point is determined by solving the DWRG fixed point equation

The prime on the sum here indicates that the term with n = v must be omitted when v is

v g N as it satisfies the homogeneous fixed point DWRG equation. In the case of v € N the 

logarithmic dependence upon p must be removed in the manner outlined in the Coulomb 

example to give an analytic solution which may be expressed as,

This fixed point is unstable with the number of unstable eigenvectors being determined by 

v. If v lies between the integers N  -  1 and N  then the first N  perturbations are unstable. If 

v = N  then there is also a marginal eigenvector, p 2N, which is associated with the logarithmic 

behaviour in the usual manner.

zri+zv

(3.62)

(3.63)

which is easily solved by the integral,

+ 7:P2vM(P, v), (3.64)

where,

2  In p, v € N.
(3.65)

an integer. The non-analytic term in the solution J(p) can be subtracted off in the case of

(3.66)

The perturbations around this fixed point are easily found,

(3.67)
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The power-counting around the non-trivial fixed point is d — 2n -  2 v -  1 for a term pro­

portional to p 2n. Both of the power-counting schemes are quite different from the Weinberg 

or KSW schemes seen so far. Since the inverse-square potential is scale-free, its strength 

does not provide an expansion parameter in the low-energy EFT, instead it appears in the 

energy power-counting itself.

Because of the difference in stability in the fixed points from the cases examined 

thus far, the RG flow is quite different. The RG flow is illustrated in the familiar way in 

Figs. (3.2,3.3). Fig. (3.2) shows the flow in the (b0 (A), b2 (A)) plane with v = 0.8. The 

trivial fixed point occurs at (0 , 0 ) with the non-trivial fixed point at ( - l / ( 2 v), 1 / ( 2  -  2 v)). 

The solutions flow towards the non-trivial fixed point close to the critical line as in the short 

range case (Fig. 2.1). As the unstable perturbation becomes important the RG flow peels 

away from the critical line very quickly and into the trivial fixed point. As the strength of 

the inverse square potential increases the rate at which the flow peels away from the critical 

line increases until at v = 1 the flow along that critical line becomes marginal resulting in a 

flow like that illustrated in Fig. 3.1. For v > 1 the flow on the critical line becomes unstable. 

Fig. 3.3 shows the RG flow for v = 1.2. In this figure any flow in the region of the non-trivial 

fixed point is pushed away by the unstable perturbations and into the trivial fixed point.

As the strength of the inverse square potential increases, the instability of the non­

trivial fixed point ‘increases’, i.e. the number of unstable perturbations and the order v of 

the unstable perturbation increases. At the same time the stability of the trivial fixed point 

also ‘increases’. In order to keep the RG flow in the vicinity of the non-trivial fixed point, 

all coefficients associated with unstable perturbations, Co up to C2//-1 must be finely tuned. 

For large values of v this fine tuning becomes more and more contrived.

The expansion around the non-trivial fixed point can be expressed in terms of the 

DWERE,

However, in order for this expansion to provide a systematic organisation of the terms we 

require fine tuning of all effective couplings associated with unstable perturbations.

In the case of scattering of a particle with angular momentum I by a short-range poten­

tial, we have v = I + 1 /2  and there is no non-analytic energy dependence in cot(b + In 1 2 ).

p2y (cot 6 s - M ( p / p , v ) ) (3.68)
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Figure 3.2: The RG flow for v = 0.8 in the plane (£>o(A), b2 (A)), where Vsip, A) = 
E r= o ^ (A )p 2". The trivial fixed point is stable, the non-trivial fixed point is unstable with 
a stable NLO perturbation.
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Figure 3.3: The RG flow for v = 1.2 in the plane (60(A),&2(A)), where Vs(p, A) = 
bin(h)P2n- The trivial fixed point is stable, the non-trivial fixed point is unstable with 

an unstable NLO perturbation.
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We can identify two expansions, one based on the trivial fixed point

(3.69)

the other on the non-trivial fixed point,

2/j
(3.70)

If the parameters in the latter expansion are natural then it is equivalent to the expansion 

around the trivial fixed point as can be seen by inverting the left and right hand sides. How-

inverting the equation will have increasingly large coefficients and will not be a systematic. 

The fine tuning required for this expansion will show itself as shallow bound states or res­

onances. In nucleon-nucleon scattering there are no shallow bound states or resonances in 

the higher partial waves and the suitable power-counting is that associated with the trivial 

fixed point.

Having looked at two examples in detail, we shall now turn our attention to a more general 

class of potentials, those for which the Jost function exists. That is all potentials for which,

We shall assume that V*. depends on the low energy scales /q.

3.6.1 The Jost function

We present here a quick overview of Jost’s solutions to the Schrodinger equation and the Jost 

function, for a more thorough analysis see Newton [18]. We are interested in two types of 

solutions of the Schrodinger equation, the regular solution <p(p, /q, r) and the Jost solutions 

f±(p» Ki, r). These satisfy the boundary conditions:

ever, if C2n, (n < N)  are finely tuned to a small amount then the expansion obtained by

3.6 “Well-behaved” potentials

drr\Vi{r)\ < oo (3.71)

<p(p, K i,  0) = 0, <p'(p, K h  0) = 1, (3.72)
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where the prime indicates differentiation with respect to r, and

f ±(p,Ki, r) —» e±ipr as r oo. (3 .73)

These solutions are interesting as their simple boundary conditions allow us to consider their 

properties as an analytic function of the complex variable p. By writing these solutions as 

power series and assuming the constraints (3 .71) upon the potential VL, we may show that 

<p(p,Ki, r) is an entire function of p 2 and that f+{p, /q, r) if- ip,  /q, r)) is an analytic function 

of p  in the upper (lower) half of the complex plane [18].

By analytically continuing f+ip, Ki, r) through the upper half of the complex p -plane 

we arrive at f+{-p, /q, r), which satisfies the same boundary condition as f~ip, Ki, r). Hence, 

for p > 0 we have,

f - ip,  Kh r) = f +(pe+m, Kh r). (3 .74)

Since /+ and /_ are linked by analytic continuation we shall write f+(p,Ki,r) = f{p,Kt, r ) 

and f-(p,  Ki, r) -  f ( - p ,  Kh r). From the reality of VL and the boundary conditions, it follows 

that ip{p, Ki, r) is real for real p  and that

m p \ K i , r ) T = f ( - p , K i , r ) .  (3.75)

We introduce the Jost function, T{p, Ki), by writing the regular solution as a superpo­

sition of the Jost solutions,

<p(p, Kh r) =  Kh r) -  T ip ,  Ki) f{ -p ,  Kh r)). (3 .76)

From the boundary conditions on (pip, Ki, r) and flux conservation it follows that

Tip ,Ki )  = f ip ,K i ,0 ) .  (3 .77)

The analytic properties of T  as a complex function of p follow from those of / .  i.e T  is 

analytic in the upper half of the complex plane. The Jost function also satisfies the conjugate 

relation (3 .75). The Jost function is extremely useful as it provides all the information we 

require to obtain both the long range phaseshift, 8 Lip), and the DWRG equation.

Since the physical wavefunctions must vanish at the origin they must be proportional to 

the regular solution, (pip, /q, r). The DWs, \ffp{r), are found by demanding the normalisation:

IA/?(r) ~ s i n ( / ? r  + 5ip)) as r —» oo. (3.78)
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Comparing the asymptotic form for ij/p{r) to that for ip{p, Kh r) obtained from eqns.(3.73,3.76) 

we obtain,
, , x cp(p, Kh r)

\jfp(r) =  p  (3.79)
^ r ( P,Ki)n-p ,Ki)

From the asymptotic form, eqn. (3.78) we can also obtain an expression for the S -matrix:

e2isL(P) -  F H w ) '  ^
T(p,Ki)

In the case of the bound states we have the boundary condition of vanishing amplitude 

as r —» oo. For p  positive imaginary and for large r we have, from eqn. (3.76),

‘Pip, Ki, r) -> Ki)e-'plr -  T ip ,  (3.81)

which will vanish for large r if T ' ip ,^ )  = 0. This shows that the bound states are given 

by the zeros of the Jost function on the positive imaginary axis. The normalisation of the 

bound state solutions is quite tricky and its proof (see Newton [18]) offers no insight so we 

just state the result:

<A„(r) =   ^  <f(ip,n r \  (3.82)
^ T ( ~ i p n>KdT(iPn,Ki)

where the dot signifies differentiation with respect to p.

3.6.2 The DWRG equation

In the DWRG equation we require the magnitude of the DWs near to the origin, this follows 

easily from the boundary condition on (p(p,Ki, r). For small r, ip(p,Kh r) —> r so that for 

R <sc A -1 we have,

( 3 ' 8 3 )

The differential equation (3.21) becomes

dVs {p, A) MR 2 A2

3A 2n2 T ( A ,  Kt) r ( - A , *rf )  p 2 -  A2 Vs(j?’A)' (3'84)

To rescale this equation we note that the Jost function T  is dimensionless (this follows from 

the dimensionless boundary condition on the Jost solution / ) ,  so that the rescaling of the 

potential is exactly the same as that for the Coulomb potential,

MAR 2
Vs ip, h,  A) = — — Vs (Ap, AKh A), (3.85)
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so that the rescaled DWRG equation is,

(3.86)

where

c(Kt) r c A .A ^ r c - A .M ) ,
(3.87)

which is independent of A since it is dimensionless.

Once again, we identify the trivial fixed point, Vs = 0. Given the similarity of the 

DWRG equation to those considered in the pure-short range case and also in the Coulomb 

case, the analysis of this fixed point is identical to those examples. It is stable with the LO 

perturbation scaling with A. The power-counting is the Weinberg scheme augmented with 

additional terms in kt that are easily resolved. The correction to the phaseshift is given by 

the DW Bom expansion, eqn. (3.31).

Dividing the DWRG equation through by Vj and writing it as a linear PDE in VJ'1 we 

obtain,

In parallel to the solutions for the Coulomb and repulsive inverse square potentials our 

starting point for a non-trivial fixed-point solution to this equation is the basic loop integral,

To isolate the non-analytic behaviour in this integral we need to understand the analytic 

properties of C. Since

and FipiKi) and ^ ( - p ,/q )  are only analytic in the upper and lower half of the complex 

p-plane respectively, we cannot analytically continue C as function of q into the complex 

plane at all. To circumvent this problem we note that since,

C(kj/q). (3.89)

we can write

C(ki/q) = lim (3.92)
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This form for C is more promising as it is now written as the difference of two functions, 

one analytic in the upper half of the complex g-plane and the other in the lower half. If

the long-range potential does not have an r~l singularity as r —> 0 then we may define the

limit4,
am *  /'(&£» °)M(Kh q) = (3.93)

■' W> Ki)
so that,

C(k,/q) = T  (/*(§, *.) _  M ( - q ,  *,)), (3.94)

J(p, *;) = ^ f  ' k,). (3.95)

2 iq
and the basic loop integral can be written as,

1 f 1 ^n  • I dCl ^21 p2 -  q2

The integrand in this integral is meromorphic in the upper half of the complex q plane. It has 

poles at the zeroes of the Jost function, which correspond to bound states, and propagator 

poles at q = ±p. We may ensure analytic properties of the integral by moving the contour of 

integration into the complex plane and not allowing the singularities to ‘pinch’ the contour. 

We define the contour of integration, C, to run from -1  to 1 and follow a path in the upper 

half of the complex <?-plane that avoids the point q = 0 and ensures analyticity in p. This 

means that it must also go outside all the bound state poles (see Fig. 3.4). to avoid getting 

‘pinched’ between two of them as &,■ —> 0. Hence we write the non-trivial fixed point 

solution as,
1 1 C* A

f>(0)/~ = T' I ^ -2 q ~2M{q,ki) .  (3 .96)V f \ p ,  ki) 2 i J c  p — q
It is an analytic function of all scales provided the potential does not violate the constraints

(3 .71) or develop an r~l-singularity as each goes to zero. If these conditions are violated 

as some scales go to zero then there will be a need to subtract logarithms using the method 

outlined in the Coulomb example. These logarithmic counterterms will be associated with 

marginal perturbations in the RG.

The construction of the perturbations around V̂ 0) follows in much the same way as in 

the Coulomb example,
j  |  OO /  A \2 f l+ /H l+ /N 2  +  . . . - l

Vs (p,k, A) Vf>(£ ; + v v  ̂ w ' (3,97)

^See later for dealing with the r 1 singularity
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Figure 3.4: The contour for the non-trivial fixed point solution of the DWRG equation. It 
must run from -1  to 1 going outside all bound state poles.

The LO perturbation is unstable as A —> 0, the NLO perturbations are marginal and cor­

respond to the logarithmic counter terms5. All other perturbations are stable as A *-» 0. 

The power-counting scheme in the ^-independent terms is precisely the KSW scheme. The 

RG flow is the same as described in the Coulomb example and the arguments about the 

usefulness of each power-counting scheme are the same.

The form for the basic loop integral 3.96 is extremely useful and will form the basis 

for non-trivial solutions in later chapters. The important property it possesses is that it is 

always analytic in the energy p.

3.6.3 The DWERE and Interpretation of the Fixed Points

In all our examples, the physical inteipretation of the trivial fixed point has, for want of a bet­

ter word, been trivial. In the pure short range case the non-trivial fixed point corresponded 

to a system with a bound state at exactly threshold. Since we began our analysis of the

5Not all low-energy scales will have this perturbation as they may satisfy an analyticity in k7-
boundary condition, rather than simply in kj.
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DWRG we have used the non-trivial fixed point as a tool for constructing power-counting 

schemes and for understanding the RG flow but have failed to give an interpretation of it. 

To remedy this situation let us derive a DWERE by using the the non-trivial fixed point in 

this example. We substitute the potential into the equation for the t -matrix,

(il/p\ f s \if/p)

\^Pm 2

= Vs (p,K, A) 1 -  Vs (p,K, A)
M  rA \if/q(R) \ 2 M  y  j^ (R )|2 

2tc2 Jo ^  p 2 -  q2 + ie + 4n ^  p 2 + p 2

The term in square brackets on the right hand side may be written as

M AR 2 j V A T («-0)- m  o) , p  -» ipn

(3.98)

, (3.99)
4 in2 [ J_i ” p 2 - q 2 (F(q, kt) ........\ p 2 -  q2 + ie T(q ,  kt) :

where !R{f(z), z —> Zo) indicates the residue of f(z)  at z = zq. This result follows from 

definitions (3.83,3.90,3.94) and from the result for the normalisation of the bound states, 

(3.82). Inverting eqn. (3.98) and using the expression for the T-matrix in terms of the 

phaseshift correction we obtain after some algebra,

2
n

n,/H/=0

YF{p K') |2 Ĉ° ^ S 0  + A1Q?, K;) — ^  6 2„!ffll)ffl2i„Ao
2 n ~ m \ I n  K n̂i \ K^n2

(3.100)

where M{Ap,  A ki) = A M(p, ki), we have absorbed any logarithmic counterterms into the 

marginal couplings and we have used the result:

M ( p ,  Ki) =
2A
7T

q f ' %  0) 1
2i L  d^P 2 - q 2 + ieT(q ,  k) v f \ p ,  k)

- 7 1 R
g 0)

p 2 -  q2 T(q,  h)
, p  - >  xpn (3.101)

which follows from evaluating what is now a closed contour integral using Cauchy’s the­

orem, cancelling the bound state residues and evaluating the remaining residue at q — +p 

(See Fig. 3.5). The final result is expressed as,

\<F(p>KiT2p(co td s -  i) +
f ( p ,  Kh 0 )

(3.102)
T(p ,  Ki)

where the distorted wave scattering length and effective range may contain logarithmic de­

pendence on some of the scales /q. Relationship (3.94) shows that the imaginary parts on 

the LHS cancel to ensure a real phaseshift, 5s.
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Figure 3.5: Evaluation of the removed non-analytic term in the general DWERE

The DWERE (3.102) has been derived before by van Haeringen and Kok [43], fol­

lowing the work of many others (see their references), in a somewhat more mathematically 

inspired manner. The advantage of this derivation is that, because of the EFT philosophy 

behind the derivation, we gain a physical rather than mathematical interpretation of how and 

when it may be used, i.e. when the series is likely to converge well.

To gain insight into the non-trivial fixed point let us examine what the DWERE looks 

like in the limit of all perturbations around the non-trivial fixed point going to zero. The 

DWERE when the solution is taken to be the non-trivial fixed point with no perturbations 

(i.e. a —> oo, re —> 0 etc) can be written as:

where the second identity follows from eqn. (3.91). When this is combined with the form 

for e2ldl, eqn. (3.80), we obtain an equation for the full S -matrix taking account of both long

cot6 $ = K i) f \ -p ,  Kh 0) + i. (3.103)

This may be re-written as an equation for e2iSs

(3.104)
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and short range physics,

e™ = <?*><■ <&* = f h P ' K« ° \  (3.105)
/'(/?, Kh 0)

This equation leads to two interpretations of the non-trivial fixed point, one mathematical 

and the other physical.

Mathematically, to understand what this equation says let us look at the resulting wave- 

functions, Given the form of the S -matrix we know that at large r the wavefunctions 

must go like

-» Kt’ ° y P> ~ f'(P> 0 )e~ipr) (3.106)

and hence are given by (recalling that the short range force acts at zero radius, so that for 

r > 0 the Schrodinger equation is unchanged from its long range counterpart),

fyP{ r )  =  Ki> ° ) / ( P >  Ku r) -  f ' (p ,  Kh 0) f ( - p ,  Kh r)). (3.107)

As r —> 0 these solutions satisfy the Neumann boundary condition, ifrip, k l , r) = 0, rather 

than the usual Dirichlet boundary condition. This offers us a new interpretation of the 

trivial and non-trivial fixed points in terms of boundary conditions on the DWs. The trivial 

fixed point corresponds to the normal boundary condition of vanishing wavefunctions at 

r — 0, while the non-trivial fixed point corresponds to the boundary condition of vanishing 

derivative at r = 0.

The two solutions to the Schrodinger equation with these two different boundary con­

ditions are linearly independent. Hence, the non-trivial fixed point changes each DW into a 

solution linearly independent to it and, in effect, changes it ‘by the maximum amount pos­

sible’. This interpretation of the non-trivial fixed point is also appropriate (as of course it 

should be) for the example in chapter 2, in which there was no long range potential, and had 

been implicitly noted by van Kolck [10].

Physically, we can understand the non-trivial fixed point in terms of a bound state at 

zero energy. As p —> 0, f ' (p ,  Ki, 0) —» ip ,6 so that eliS —> -1  and 5{p ~ 0) = {n + 1/2)tt, 

which is the condition for a zero energy bound state. This interpretation is also in parallel 

with the pure short-range case.

6This is only true for potentials without an r 1 singularity and follows from a power series solu­
tion in r of the Schrodinger equation.
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3.6.4 Identification of Scales and the Yukawa Potential

One particular moot point where the Jost function DWRG analysis is important is in the 

inclusion of pions in an EFT for nucleons. We will now look at the issues surrounding the 

Yukawa potential and pions in an EFT for nucleons.

However, before we can discuss the physics of this problem, we must quickly tidy up 

one final mathematical issue. Our definition of At, eqn. (3.93), relies upon the existence of 

the limit of the derivative of the Jost function as r  —» 0. This limit only exists for potentials 

that d o  n o t  have a r ~ x divergence as r  —» 0. For potentials that do diverge, such as the 

Yukawa potential, we must modify the definition of At. To understand the problem let us 

consider the expansion, in powers of r ,  of the Jost solution for the Yukawa potential for one 

pion exchange between nucleons of mass M. This potential is defined by,

the inverse ‘pionic Bohr radius’7 and mn, the pion mass are the low energy scales associated 

with the potential. The Jost solution for the Yukawa potential is given by

In this case the term ~ r In m n r  means that the derivative of the Jost solution is not defined at 

r  = 0. However, inserting eqn. (3.110) into eqn. (3.91) shows that the identity (3.94) holds

Without going into the details this results in a non-trivial fixed-point, V̂ 0), defined by 

eqn. (3.96) with logarithmic dependence on mn, which can be removed in the usual way. 

See refs. [44, 9, 45] for more details.

1 fn = 93MeV is the pion decay constant, gA -  1.26 is the axial coupling of the nucleon. The 
treatment of this scale k „  as a low energy scale in an EFT for nucleons with explicit pions is still 
open to debate, see below.

MVL(r) = 2 Kn (3.108)
r

where,
_  g W n M  

Kn ’
(3.109)

f \ p ,  K n , m n , r )  =  T n { p ,  K n , m n )  (l + M nxeg(py K n , m n ) r  + 2 K n r  In m n r  + <9(r2) ) . (3.110)

with Al^g replacing M .  The rest of the arguments for the non-trivial fixed point solution
A A.

hold with the substitution At replaced by Al?eg which we may write as

(3.111)
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There has been some debate in the literature as to how to handle OPE in an EFT. One 

scheme (WvK) proposed by Weinberg [8] and further developed by van Kolck [49, 40], 

iterates it to all orders. Another, proposed by KSW [50], treats the force perturbatively.

So far in this section it has been understood that the long range potential has only low 

energy scales associated with it. In this case the analysis is simple and results in a choice 

of two expansions. A Weinberg scheme based upon the trivial fixed point and with terms in 

one-to-one correspondence with the terms in the DW Bom expansion and a KSW scheme 

based upon the non-trivial fixed point and with terms in one-to-one correspondence with the 

terms in the DWERE. We shall see that it is the identification of the low-energy scales in 

the Yukawa potential that has led to such confusion.

Since the DWRG analysis promotes all low-energy physics to a fixed-point, if it was 

applied to the Yukawa potential with the two identified low energy scales Kn and mn it would 

be equivalent to the WvK scheme, summing the effects of one pion exchange to all orders 

and leaving a choice of power-counting schemes. For the strongly interacting nucleon sys­

tem we would expect the non-trivial power-counting scheme and the DWERE to provide a 

parameterisation that converges up to the mass of the p-meson, mp = 770MeV [45]. This 

choice of low energy scales has resulted in some moderate success [49, 40].

Unfortunately there is an issue of debate. In the power-counting around the non-trivial 

fixed point, there are terms like

m2n
(3.112)

A T ’
/dn (3.113) 

An_1

The first of these terms is proportional to ml ’1 and occurs at order d = 2n -  2 in the power- 

counting. The second of these terms occurs at order d = n -  2 in the power-counting, yet 

because Kn oc ml  it is also proportional to mj". Hence, terms of the same order in mn occur 

at different orders in this power-counting and the direct link to ChPT has been lost [51, 50].

If we wish the nuclear EFT including OPE to be consistent with ChPT, then one solu­

tion is the KSW scheme [50]. In this case we treat the scale,

1 6tt f 2
A nn =  ---- ^  = 300MeV, (3.114)

Mg\
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as a high energy scale so that the Yukawa potential is given by
yy, 2  (>-mnY

MVi(r) = —JL-   (3.115)
A nn r

and occurs at the order (Q/Ao)1 in the EFT and so does not require summing to all orders. 

From the DWRG point of view, the effects of the Yukawa potential vanish as the cut-off 

A —» 0 and so do not get promoted into the fixed point. Thus the fixed points are the simple 

ones of the pure short range case. In this case the rescaled DW Green’s function GL can 

be expanded in powers of A / A NN and treated as perturbations around the non-trivial fixed 

point.

Unfortunately, despite consistency with ChPT, the resulting expansion turns out to be 

slowly convergent [45, 37, 38, 46] because of the small separation of scales between the 

pion mass, mn = 140MeV and A NN.

Although the DWRG analysis gives the possible power-counting schemes that can be 

obtained from the non-trivial or trivial fixed point they can only ever be as good as the 

information put in. One must consider very carefully the scales in any particular problem.

3.7 Summary

In this chapter we have introduced the DWRG equation and solved it for several examples. 

The analysis for the Coulomb and general “well-behaved” potentials yielded known results 

that have both recently been used in EFTs. Despite these results being well-known, the 

method of derivation is novel and in itself is interesting. The conclusions regarding the 

usefulness of the two possible power-counting schemes are very much the same as arrived 

out for the pure short-range potential.

The method of solution of the DWRG fixed point equation in the final general example 

will prove extremely useful in later chapters and provides a robust way of solving these 

types of equation.

The other example considered in this chapter was the repulsive inverse square potential. 

As far as we are aware the results derived here are new. The power-counting schemes that 

are derived are novel and depend upon the strength of the potential. The conclusions about 

the use of either power-counting scheme are also different. If the inverse square potential
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is ‘strong’, the use of the non-trivial fixed point scheme may require the tuning of several 

parameters to unnaturally small values, something that may seem a little contrived. It is 

likely that in such a system the trivial fixed point should provide the correct power-counting 

scheme.

3.7. Summary



Chapter 4 

The DWRG for Singular Inverse Square 

Potential

4.1 Introduction

The inverse square potential, eqn. (3.55) is an interesting example. When f3 > -1 /4  the po­

tential has a well-defined set of DWs. However, if/3 < -1 /4  the potential becomes singular 

with no well-defined set of DWs. The reason for this is that any two linearly independent 

solutions of the Schrodinger equation cannot be resolved by a boundary condition at the ori­

gin. Indeed no solution of the Schrodinger equation has a well-defined value at the origin. 

Furthermore, it may appear at first glance that there is a continuum of possible bound states. 

The solution,

if/ oc yfrKiv( y/-MEr),  (4 .1 )

where v = ^ - 1 /4  -J3 and K^(z) is the modified Bessel function of the third kind, satisfies 

vanishing boundary conditions at infinity and the Schrodinger equation, yet the lack of a 

boundary condition at the origin means these bound states are not resolved into a discrete 

spectrum.

Mathematically, the problem with the potential is that the Hamiltonian is no longer self- 

adjoint [27, 28]. The solution is to make it so by introducing an extra boundary condition 

to uniquely define a solution [28, 29]. This extra boundary condition can be introduced in
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several ways, either by requiring vanishing wavefunctions at some radius, Rq, or by defin­

ing some bound state, po [29], However the boundary condition is defined it necessarily 

introduces a new scale into the problem. Mathematically, this is equivalent to forming a 

self-adjoint extension of the Hamiltonian [28, 27],

Once the self-adjoint extension is formed we have a complete set of DWs including a 

discrete spectrum of bound states, however there are still problems to be addressed. The 

resulting discrete spectrum consists of an infinite number of geometrically spaced bound 

states. These bound states accumulate at zero energy and have no ground state. The lack of 

a ground state shows that even after the self-adjoint extension is formed the full resolution 

of the short-range physics has not been achieved. Without a ground state the system would 

‘implode’ radiating an infinite amount of energy.

The resolution of the attractive inverse square singularity in an EFT is critical to the 

understanding of the three-body KSW EFT [25, 22, 30, 24, 52, 65]. Several papers have 

attempted to resolve the problem by replacing the singularity with an ‘effective’ potential 

well at short range and then matching the logarithmic derivative of the wavefunctions in 

the two regions [31, 30, 32]. In each case the range, R , of the effective potential has been 

assumed to be far less than all inverse momenta. The matching criteria acts, in effect, as the 

boundary condition required to form the self-adjoint extension and does not, as correctly 

pointed out by Bawin and Coon [30] but not by Camblong and Ordonez [31] give a ground 

state to the system. Further to this, using this method, the running of the ‘strength’ of the 

effective well is multi-valued [32].

The DWRG method provides the explanation to these problems. We find that the choice 

of a self-adjoint extension is equivalent to the LO EFT, which in turn corresponds to a 

marginal perturbation in the RG. Because the LO EFT is marginal it cannot distinguish 

between high and low energy states, which is why the self-adjoint extension cannot provide 

a ground state.

We shall also see that because of the lack of a ground state in the DWs, the DW Green’s 

function must be truncated in both the continuum and the bound states to obtain an unique 

solution to the DWRG. The multi-valuedness of the effective potential can then be attributed 

to different methods of truncating the bound states.

4.1. Introduction
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4.2 Defining the Distorted Waves

The distorted waves of the inverse square potential satisfy the Schrodinger equation,

~j~2 W r) "  + -  °> (4-2)

of which the general solution can be written as a superposition of Bessel functions of order 

± -^1/4 + /?, When < -1 /4  the orders of the Bessel functions are imaginary and the 

general solution is,

if/p(r)= VKAlJiv(pr )+ A 2 J-iv(pr)), (4.3)

where v = -\j~fl — 1 /4. It is impossible to find a unique solution by defining a boundary 

condition at the origin. To resolve the ambiguity and form a self-adjoint extension we begin 

by considering the Jost solution f (p \  r) that satisfy the Schrodinger equation and has the 

unambiguous asymptotic boundary condition, f(p;  r) —> eipr as r —> oo. f  is easily found to 

be

f{p\  r) = (4.4)

where H ^ \z )  is the Hankel function of the first kind. We would now like to define a Jost

function, T  in terms of the value of the Jost solution, / ,  at the origin but this limit does not

exist. Explicitly, in the limit of r l / p  we have,

^ / f e r ) ~ s i n ( v l o g  (4.5)

where 6  = arg{T(l + zv)}. The solution is to define the Jost function in terms of the value of 

the Jost solution at the point r -  R0 rather than at r = 0, resulting in,

-   /£T
  2e 4 / 7tv \
T (p )  = . . sin tjO) + i— ), (4.6)

V?rv sinlfiyrv) \ ^ /

where

ri(p) = -v ln  + 6  = -v ln  — . (4.7)
2 po

Eqn. (4.7) defines the scale p 0, which as we shall see is simply related to the binding energies 

of the bound states. The definition of the Jost function introduced here is equivalent to 

applying a boundary condition of vanishing wavefunctions at the small distance r  = Rq.
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With these definitions, the free DWs are given precisely as in eqn. (3.79), from which 

follows the usual relation between the S -matrix and the Jost function,

e2%(p) =  ^ ( - P )  =  , sinfo(p) -  l7rv/2 )
T ip )  sin(77(p) + inv/2 ) '

With the Jost function we may begin to investigate the bound states. The eigenvalues, - p 2, 

of the Hamiltonian are given by the poles of the S -matrix or equivalently the zeros of the 

Jost function. Using the definition of T ip )  and qip) we find that these zeroes are defined 

by,

(
H7T\
— J n e  Z. (4.9)

Thus, these bound states, <A„(r), form an infinite tower of states with geometrically spaced 

energies. It is clear that a ground state does not exist and that the states get infinitesimally 

close to zero energy. Since the distorted waves now form a complete set, the familiar spectral 

decomposition of the Green’s function follows. The Green’s function with standing wave 

boundary conditions is given by,

<««>2 n2 Jo p 2 -  q2 4n ^  p 2 + p 2n

Explicitly the DWs, given by eqn. (3.79), are

* ' (r) = ~ t4-11)

and the bound states are,

^ni.r) = U .-~Sinh ^ PnKivipnl-). (4.12)
y nv

The definition of the Jost function in terms of the Jost solution at r = Ro provides the 

additional boundary condition, which in turn forms a self-adjoint extension of the Hamil­

tonian. However, in obtaining the Jost function in this way we have implicitly assumed 

R 0 l / k  for all k, i.e. R0 is some infinitesimal distance, which makes it difficult to un­

derstand the exact nature of the boundary condition. Fortunately, this method lends itself to 

different interpretations. Firstly, and perhaps most simply, R0 fixes the phase of the trig-log 

behaviour close to the origin and hence defines a regular and irregular solution. Secondly, 

Po acts as a choice of a particular bound state, which forces all other bound states to fall into
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the exponential tower defined by eqn. (4.9). Importantly this means that the relationship be­

tween po and choice of self-extension is not one-to-one. Any choice given by p '0 = p§enniv 

is equivalent to the choice p0.

4.3 The DWRG equation

We now move on to the construction and solution of the DWRG equation for the short range 

force. Now that we have arrived at an equivalent of the Jost function for the attractive in­

verse square potential it may be hoped that the general analysis used in section 3.6 will yield 

a method of solving the DWRG equation. However, we are immediately faced with a prob­

lem. In the previous analysis the contour of integration in eqn. (3.95) for the DWRG basic 

loop integral solution had to go outside all the bound state poles to avoid being ‘pinched’ 

as the scales associated with the long range potential went to zero, in this case it is quite 

impossible for the contour to go outside all of the bound state poles because there is no 

ground state.

With a little thought, our inability to define a contour that goes outside the bound state 

poles is not a problem. The position of the poles is controlled by the self-adjoint extension 

defining scale, po. As long as we are not concerned with analyticity of the short-range force 

as po —> 0 then there is no worry with being pinched as po —> 0.

With this problem resolved a new one becomes apparent, namely non-unique solutions 

to the DWRG equation. To explain, if we are to define our basic loop integral solution in a 

method like that outlined in section 3.6 our contour of integration must cross the imaginary 

axis between two particular poles, with no apparent correct choice of which two poles. 

Without resolving this issue, any resulting physical observables will invariably depend upon 

the choice of contour.

It is clear that this problem is a result of the lack of a ground state which in turn is a 

result of the singular behaviour of the long-range potential close to the origin. The philos­

ophy behind the DWRG is to ‘replace’ all the interactions between high energy distorted 

waves with an effective short-range interaction, it therefore makes sense that the deeply 

bound states, which are a result of the inverse square singularity, should be cut-off. Thus,
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we define the truncated Green’s function to be,

^  -X M  £ A,  W 'W '- ')  . M  v  ^ ( r ) ^ ( r ')GL(p, A ;r ,r  ) = —  +  d#—  -----> —  2 (4.13)
2 ^ 2 J 0 P 2 “ <?2 IphKA ^  + ^«

in which all distorted waves with energies outside the range (-A 2 /M, A 2 /M)  are removed. 

As we shall see the truncation of bound states and subsequent renormalisation specifies a 

non-trivial fixed point solution and leads to well-defined results for physical observables. 

The method of truncating the bound states chosen here is far from unique, other truncation 

methods will specify different solutions, however because of the renormalisation procedure, 

physical observables will be independent of the truncation method and of the specific loop 

integral.

The differential equation, (3.21), for Vs is now given by,

IiAaWI2 , n  V2! \> p„(R )\‘dVs_ = _ M _ 2 

dA 2n2 s
71 V 1 IV 'a W I  „ A  , (4.14)p 2 -  A2 2 4_j pi pf

*■ JI  —  - 0 0  A l l

where the cutting off of bound states has resulted in a series of discontinuities expressed in 

terms of a sum of delta functions. Since R is taken as very small, the distorted waves go to,

2 ^  A W n h , v  2A
cosh 7TV -  C O S  277(A) V

where

B(R) = ^sin2( v l n ( ^ j - e ) .  (4.16)

The final step to obtain the DWRG equation is to rescale. In this problem, the only low 

energy scale is the on-shell momentum, p , which is rescaled to p  = p/A .  Vs is rescaled by 

the relation,

% ( P ,  A) = Vs ( p A , A), ( 4 .1 7 )

finally resulting in the DWRG equation,

d / 1 \ „ 5 / 1 \ sinh nv
<9A\Vs/ ^ d p \ v s j  (cosh 7rv -  cos 2vln(A//?0))(l — p 2)

CO -7T 1
v “  p 2 + In=-oo

where we have divided through by Vj? to obtain a linear equation in 1 /Vs. Unlike all the RG 

equations seen so far this one has A dependence in the inhomogeneous term on the RHS. 

This dependence is a result of the scale po, which may not be treated as a low energy scale.
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4.4 Solving the DWRG equation

The DWRG equation, as always, yields a trivial fixed point, = 0. The perturbations, 

Vs -  C A v<pv{p),  satisfy the equation

<f>y(p) = v(f>v(p).  (4.19)

We find <f>y(p) = p v. The corresponding RG eigenvalues are v  -  0 ,2 ,4 ,. . . .  Hence, the RG 

solution in the region of the trivial fixed point is given by,

oo /  . \ 2  n

t>s(A,P) = g C 2 „ ^ )  P2n■ (4.20)

The LO term is marginal, i.e. it does not scale with any power of A and is expected to 

be associated with some logarithmic behaviour in A. However, before we can give a full 

explanation of this we must obtain the full solution to the RG equation.

It is clear, because of the A-dependence on the right-hand side of equation (4.18), that 

no other fixed point solution can be found. However, since that dependence is only loga­

rithmic we may hope to find a slowly evolving solution. (Such a solution will be no worse 

than that encountered when considering the Coulomb potential, in which logarithmic depen­

dence on A was introduced to remove logarithmic dependence upon k.) A logarithmically 

evolving fixed point solution may still be used to construct a power-counting by perturbing 

about it in powers of A.

Since (c.f eqn. (3.94)),

sinh 7tv 1 . 1 A inv\ ( , A inv
cot | v In  — ! -  cot I v ln  h —

P o  2 \  po 2
(4.21)

cosh nv -  cos 2v In A/po 2 i

we can immediately write down a solution to the continuous part of the DWRG equation in

parallel to eqn. (3.95) considered in section 3.6:

q j qA inv''
V f \ p ,  A) 2 i J c p 2 -  q2 COt \V n po 2

which is clearly analytic as p —> 0. The contour C is shown in Fig. 4.1, it follows a path

from q = ~ \  io q ~ The position of bound state poles poles shown in Fig. 4.1 are simply

given by,

ip„ = i ^ l  = (4.23)
A A

( 4 - 2 2 )
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Figure 4.1: The contour in the complex <y-plane for the non-trivial fixed point solution of the 
DWRG equation. It runs from -1  to 1 and crosses the imaginary axis at q = i. The bound 
state poles occur at q = ipn = ip0 enn/v/A.

The position of these poles varies with A. This is in contrast to the examples considered so 

far where the rescaling of the scales in the long-range potential meant that the bound state 

poles in the complex q-plane were independent of A (which of course is what one would 

hope if looking for a fixed point solution). The poles in this example move up the imaginary 

q axis as A —» 0 because the scale that initially controlled their positions, pQ, is treated as a 

high energy scale and not absorbed into the fixed-point solution.

Fortunately this migration of the bound state poles with A is to our benefit as it enables 

us to create the necessary discontinuities in the DWRG solution by allowing the bound state 

poles to cross the contour of integration. Dividing eqn. (4.18) through by A and integrating 

it with respect to A from pn -  e to pn + e we get the discontinuity at A =

A = p n + e1 71 1
(4.24)vsk=Pn-e yp2 +1

If we chose the contour C so that it crosses the imaginary axis at the point q = i then from 

eqn. (4.23) it follows that the bound state pole at q = ipn crosses the contour of integration
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when A = pn and produces the correct discontinuity, namely

1
[Vs

r(0 )

A=p„+e

A -pn-e -2̂ { l ^ cot(vln« - t ) ’9 ^ 'j = I p k I' (4-25)
Hence, Vs is a “fixed point” solution to the DWRG. From its definition it is readily ob­

served that is invariant under the transformation A Aennlv so that V̂ 0) has log- 

periodic behaviour in A. Rather than use the rather stretched notation of a fixed point we 

shall, more appropriately refer to it as a limit cycle solution.

The explicit demonstration of limit-cycle behaviour in the RG for this problem con­

firms what has been shown at LO in several articles [32, 22, 24]. The first example of a 

RG limit cycle solution was given by Wilson and Glazek [53] in a toy model. Since then, 

because of its importance in the three-body EFT, many authors have taken an interest in 

such solutions [54, 32, 30, 55, 65].

Perturbations around this limit cycle are obtained in the usual way. In fact the eigen­

value equation for the perturbation is exactly the same as that for the trivial fixed point, 

(4.19) with the same result. Because the DWRG equation (4.18) for VJ1 is linear, these 

perturbations give an exact solution to the RG equation,
1 1 /  A \l l xn - / A \

+
“  / A

^  «■“ >Vs (p, A) V™(p, A) ,l=0 

The LO term is marginal and is associated with the logarithmic flow in the limit cycle solu­

tion. Since there is a marginal (or A-independent) perturbation, it cannot be unambiguously 

removed from any limit cycle solution. This means that there is, in fact, a family of limit 

cycle solutions parameterised by the value of the marginal perturbation Co.

Previous examples of logarithmic behaviour in the scale A resulted from a need to 

remove logarithmic behaviour in some low-energy scale and necessitated the introduction 

of an arbitrary scale, /i. In this example however, no new scale needs to be introduced since 

the scale pQ fills its purpose.

Where an arbitrary scale was introduced previously it could be traded off against the 

marginal perturbation leaving one remaining degree of freedom. It is not clear that p0 and 

Co represent the same degree of freedom, resolution of this issue must wait until we consider 

the effects of the long and short range potentials in tandem as po also effects the long-range 

physics.
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Figure 4.2: The running of 1/VS(0, A) with A for v = 0.3. The dotted lines show disconti­
nuities.

The RG flow is illustrated in Figs. 4.2 and 4.3. These diagrams show the flow of 

solutions Vs with A. Fig. 4.2 shows the running of V f \ p  —» 0, A)"1. The bold line 

shows the solution l /v j° \  the dotted lines show the discontinuities. The solution follows 

a logarithmically evolving cycle with discontinuities as each bound state is cut-off. Any 

member of the family of limit cycle solutions can be obtained by adding a marginal term, 

C0. In Fig. 4.2 this would simply appear as a constant shift up or down without change 

in form or period. From this diagram alone it is clear that C0 and po cannot represent the 

same degree of freedom in the limit-cycle solution because variation of p 0 will produce a 

horizontal rather than vertical shift in the form of l/v£0).

The limit-cycle behaviour is illustrated in fig. 4.3, which shows the RG flow in the 

familiar slice through the space (^o(A), b2(A ),...). Again the solution V̂ 0) is shown in bold. 

The dashed lines show general solutions generated by perturbing with C2. The solution V̂ 0) 

acts as a limit-cycle solution that loops at a logarithmic rate in A with a discontinuity as each 

bound state is cut-off. All more general solutions move in a cycle (with discontinuities) that 

tends to V f ] like A2 as A —» 0.

Having obtained a general solution to the DWRG we may now understand the nature of
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Figure 4.3: The flow of Vs(p, A) = £  ^2«(A)p2n with A of Vf^ (bold line) and stable pertur­
bations about that (dashed lines). The dotted lines show discontinuities.

the trivial fixed point. As C0 —» oo in eqn. (4.26), the general solution Vs —> 0, i.e the limit 

cycle solution converges on the trivial fixed point. This means that the trivial fixed point is 

a special case of the more general family of limit-cycle solutions, in which the whole limit- 

cycle has been compacted into a point. If the RG flow is perturbed away from the trivial 

fixed point with a marginal term it moves into a nearby limit cycle.

The nature of the renormalisation group flow means that no particular tuning of the 

parameter Co is required. Its exact value merely specifies which limit cycle the RG flow 

will converge upon. As we shall see each of these different limit cycles corresponds to a 

different ‘shift’ in the self-adjoint phase 77 and that there is a one-to-one relationship between 

all possible limit-cycles and all possible self-adjoint extensions.
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4.5 Full S -matrix and bound states

Using very much the same procedure that yields the distorted wave effective range expan­

sion in section 3.6 we may write an expression for the correction to the phaseshift 6 S as,

(4.27)

Equation (4.27) still leaves the relation between the marginal perturbation and the scale 

Pq clouded. Since p 0 also appears in the equation for the long-range component of the phase­

shift, 6 l , the relationship between p 0 and Co may become more transparent in consideration 

of the full S -matrix. Study of the full S -matrix may also highlight the significance of the 

RG solution V̂ 0) and make examination of the bound states possible. The full S -matrix is 

obtained from equations (4.8) and (4.27),

e2i e = iW > '  • (4-28)

In the limit of all perturbations, C2„, going to zero (or equivalently the RG solution reducing 

to v£0)) we have,
I iirv\

Z(p) —> cos ^7(p) + —  j . (4.29)

Comparing this to equation (4.8) for the pure long-range force, we see that there has been a 

maximal change in the arbitrary phase 77. The effect of the solution v£0) is to move the choice 

of self-adjoint extension, made in constructing the distorted waves, by a factor tt/2. The 

significance of the v£0) is now resolved, it is the solution to the RG equation that is‘furthest 

away’, in the sense of maximum possible change of physical observables, from the trivial 

solution Vs = 0, which of course would leave the full S -matrix unchanged from (4.8). This 

interpretation is very much in parallel to that arrived at in the previous chapter for the non­

trivial fixed point for well-behaved potentials. In general we may say that the non-trivial 

fixed point solution changes the boundary condition that defines the regular solution to its 

linearly independent boundary condition.

Physically one may interpret the limit cycle V̂ 0) in terms of its action on the bound 

states, which are shifted to the geometric mean of the original set of states.

The existence of the marginal eigenvalue, Co, and the scale po leads to an embarrass­

ment of parameters that may be resolved if it is apparent that they do in fact represent the

2 . . xn . / p
sinh 7tv cot 6 s = sin 2 r](p) (cosh nv -  cos 2i}(p)) )  C2„

n \A 0
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same degree of freedom in the effective theory. This freedom is not manifest in equation

(4.28) but with the correct rewriting of the parameters, £ 2,1,

~ 7T 2 a / p  \2" csccrZ/i=l Qn  (a^)
C0 = - - cotcr, ~ 2 ,  C2n —  = ------------------------------ 7—^ ( 4 . 3 0 )

2 rin<r +cos<rEL , < * ,(£ )

in terms of the new parameters, cr and C'ln , n. > 2  we are left with a far more transparent 

parameterisation,

e2‘5 = ^z& )’ z (P̂  = sitt(’J(P̂  + o' + Y ')  + C0s(r>(P̂  + cr + Y ' ) X l^ 2 „ ^ j  ■
(4.31)

Recalling that p(p) -  -v ln (p /p 0), eqn. (4.31) for the S -matrix clearly shows the overlap­

ping roles of Co and p0. The scale po acted originally to define a self-adjoint extension, 

through the marginal term in the short range force we may change it to any other choice of 

self-adjoint extension.

The space of all limit-cycle solutions is mapped out as Co varies from - 0 0  to 00 or, from 

eqn. (4.30), as cr varies from 0 to n. In turn the variation of cr from 0 to n with po fixed maps 

out all possible self-adjoint extensions. Hence, the relationship between possible limit-cycle 

solutions of the DWRG equation and self-adjoint extensions is one-to-one. This is in stark 

contrast to the relationship between choices of po and self-adjoint extensions where many 

equivalent p0’s existed. In practice, we may ignore the phase cr and allow the self-adjoint 

extension to be defined by our original choice, p0.

The EFT bound states are given by the zeros of Z(p). The position of the shallower 

bound states are virtually unmodified from the original theory and are controlled by the scale 

Po with minimal dependence upon C2n. There is of course still an accumulation of bound 

states at zero energy, though this is expected as these states exist because of the inverse 

square tail of the potential, which is unaffected by the short-range forces. The deepest 

states within the validity of the EFT, p  < A0, are strongly affected by the higher order 

perturbations. Beyond the range of validity, p  > A0, we can say nothing about the bound 

states except that some other physics must come into play to ensure that a ground state 

exists.

4.5. Full S  -matrix and bound states
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4.6 Truncation of Bound states and Uniqueness of Solu­

tions.

Questions still remain about the the truncation of the bound states. It is obvious that some 

sort of regularisation of these states is necessary, yet the method of truncation of the bound 

states chosen above, though convenient and intuitive, is rather arbitrary. However, with a 

little thought it is quite straightforward to show that no matter how the bound state truncation 

is performed, a solution to the RG equation similar to that found above can be found and 

that more importantly the physical results will be identical.

For example, suppose we choose to truncate the bound states with a second cut-off p. 

Then the renormalisation prescription states that physical variables should be independent 

of p  as well as A. The DWRG equation will be the same as (4.18) without the b-function 

terms. It can be solved in a similar way to the discontinuous DWRG equation,

1 1 r  q / , Aq i7Tv\
—- ------------ = — I d q ~ — ~  cot I v In ----------— , (4.32)
V f \ p , A , p )  2 i J C(AiJLl) p 2 - q 2 \ po 2 )

where the contour C(A,p)  still runs from 1 to -1  but now follows a A-dependent path that 

ensures that as A varies no bound state poles cross it. The exact path of the contour (i.e. 

which two bound state poles it passes between) is then uniquely specified by the renormal­

isation condition on p. The solution to this DWRG equation is of course quite arbitrary 

without the second renormalisation condition.

The family of solutions that result are illustrated in Fig.4.4, which shows the previous 

discontinuous solution, 1 /Vj0), in bold with the discontinuities dotted and the various con­

tinuous solutions as dashed lines. Which solution is correct depends on p. Notice, that the 

correspondence between p  and the continuous RG solutions is not bijective; any two values 

of p  between \pn\ and \pn+\\ will map to the same continuous solution. More generally any 

prescription for truncating bound states will give a unique RG solution, jumping to the next 

branch of the solutions as a bound state is cut-off.

4.6. Truncation of Bound states and Uniqueness of Solutions.
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Figure 4.4: The discontinuous solution and the family of continuous solutions that
result from an alternative method of truncation of the bound states (v = 0.3).

4.7 Summary

In this section we have looked at the attractive inverse square potential and the use of the 

DWRG equation in resolving its singular behaviour. The first step was to introduce a self- 

adjoint extension to the Hamiltonian by defining a Jost function. This allows definition of 

the DWs but does not resolve the singular behaviour. In particular, even after definition of a 

self-adjoint extension there is no ground state.

In order to produce a unique result for the EFT S -matrix it was necessary to truncate 

the deeply bound states that are a result of the singular behaviour of the long range potential. 

The basic loop integral solutions to the DWRG take the form of limit cycles towards which 

all more general solutions tend as A —> 0.

The limit cycle solutions are associated with a marginal perturbation in the DWRG. 

The degree of freedom embodied in this perturbation is the same as that in the choice of 

self-adjoint extension. Despite the complications in obtaining it, the EFT S -matrix, (4.31), 

takes a satisfyingly simple form.

It is difficult to link the limit cycle behaviour seen in our approach to the those seen by

4.7. Summary
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Bawin and Coon [30] and by Beane et al [32]. Their methods rely upon constructing a self- 

adjoint extension and short-range force in one step rather than the two step process that our 

method requires. So whereas their LO force defines the self-adjoint extension ours serves 

to change the original choice. What is particularly pleasing is the common approach of 

this chapter and section 3.6. The limit-cycle solutions do not require any particular special 

treatment apart from the truncation of bound states to specify the ‘branch’ of the multi­

valued solution.

The truncation of bound states in this problem is forced upon us in seeking unique 

physical results. It resolves many of the issues raised about multi-valued solutions to the 

RG in refs. [30, 32]. The need to truncate bound states in this problem occurs because 

their position is controlled by a scale, po, that cannot be rescaled and absorbed into the 

limit-cycle.

4.7. Summary



Chapter 5

The DWRG for Three-Body Forces

In this chapter we shall consider the DWRG equation for three body forces (3BDWRG). In 

particular we shall derive the 3BDWRG equation for a general system for which the two- 

body forces are known but the three-body force is to be constructed using the 3BDWRG. 

The equation is applied to a system in which the pairwise forces are “well-behaved” in the 

sense of section 3.6 and then, more interestingly, used to examine the power-counting for 

the three body force in the KSW EFT for short range forces.

5.1 The Faddeev Equations and the Three-Body Force.

For a system with three particles the LS equation is inadequate. Although the three-body 

T -matrix satisfies the LS equation, it is not possible to use this equation to find it because 

its kernel is not compact. This is because a single LS equation is not enough to specify all 

the boundary conditions for a three-body DW. The solution is to use the Faddeev equations 

(see Appendix C).

Consider the case of three identical bosons interacting via a pairwise interaction V2s- 

The wavefunction is written as

|T +> = |iAo> + ( l + / >) r > ,  (5.1)

where l^o) is the ‘in’-state and solves the free Schrodinger equation and P is a permutation
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operator, which permutes particle indices and has the matrix elements 1

<*12. y3 W 2, y3> = <S3(x,2 -  Xj3)a3(y3 -  y',) + <53(x l2 -  x^)<53(y3 -  y'2)

= <53 (x,2 + ix',2 + y3 j S3 ŷ3 -  ^x'12 + ly j  j

+<53 (x 12 + ±x'12 -  y' J 53 |y 3 + + i y '  j. (5.3)

The Faddeev equation for the wavefunction is written as,

| if,+) = G+0 (p)t+(p ) \M  + G+0 (p)t+(p)P\i/i+), (5.4)

where t+ is the T-matrix given by the equation, t+{p) = V2B + V2sG^{p)t+{p). The corre­

sponding equations for the full three-body Green’s function and T-matrix now follow from 

similar decompositions. If we write the full T-matrix, 7~, in terms of components,

T +(p) = (1 + P)T+( p \  (5.5)

then the Faddeev equation for the T -matrix component is,

T +(p) = f { p )  + t+(p)G+Q(p)PT+(p), (5.6)

It is possible to incorporate three-body forces directly into the Faddeev equations, how­

ever this is not a suitable method for obtaining the DWRG for the three-body force as we 

wish to separate it from the two-body interactions in order to treat it distinctly. Fortunately 

it is quite possible to use the method outlined in chapter 3 to separate the T-matrix. Writing

T +(p) = T U P )  + (1 + T 2+b(p)G+0 ( p W 3+b(p)( 1 + G+0 (p)T2+B(p)), (5.7)

where T 2 B(p) is the T -matrix in the presence of pair-wise forces only and must be obtained 

using Faddeev-like equations, we obtain the equation for T^B(p),

T U P )  = Vs* + ViB&BiP^BiP)-  (5-8)

1 We will work in the coordinate system (xt̂ , y*), given by

x,7 = rf - r „  y‘ = r* 4 (ri + r3)l M

where {z, j, k) is an even permutation of {1,2,3} and ri, r2, r 3 are the absolute coordinates of the three 
particles.

5.1. The Faddeev Equations and the Three-Body Force.
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Notice that this equation is connected since all three particles must interact by the very 

nature of the three-body force.

Eqn. (5.8) leads, after introducing standing wave boundary conditions2, to the distorted 

wave renormalisation group equation for the three-body force,

ip
(5.9)

oA OA

Solving this equation now offers a recipe for constructing the power-counting for the three- 

body force.

5.2 Full Green’s Function and Projection Operator.

We shall consider the simple case of zero total angular momentum. We may identify three 

different types of wave function characterised by their incoming boundary condition. The 

wavefunctions with three free incident particles, PFJ*},3 are given by eqns. (5.1,5.4). If there 

is a two-body bound state with binding momentum yn, there are wavefunctions, |¥+ ) with 

the incoming boundary condition of the bound state and one free particle, the equations that 

define these are found by taking the residues of the equations for at k = iyn,

\ % ^ )  = ( l + P ) \ r p,y , \  (5.10)

K r , )  = ^ >  + Go ^ PK y J '  (5-U >

where the incoming wavefunction [x P,yn)  satisfies the equation, ( H q  +  V 2b +  P 2 1M)\xp>yn) =  0 

and has a bound pair. Finally there are the three-particle bound states, |T„>; these satisfy the 

homogeneous version of eqn. (5.11) with the boundary condition of vanishing amplitude at

2Standing wave boundary conditions on the full three-body Green’s function are quite tricky 
to visualise. We use the expression to refer to a Green’s function which uses a principal value 
prescription on the propagator and avoids any complications in the DWRG arising from using a 
complex valued Green’s function.

3The wavefunctions are labelled by their total centre of mass energy, p2/M,  (M is the mass of
one particle) and the relative momentum of one pair, k. Of course it doesn’t matter which pair since
all three particles are identical, and the wavefunction is symmetric with respect to interchange of any 
of them.

5.2. Full Green’s Function and Projection Operator.
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infinity. We normalise these states with the conditions,

= <5„„„ (5.12)

= \ s { p - p ' ) d m„ (5.13)

= j S ( p - p ' ) 6 ( k - k ' ) .  (5.14)

We may now define the full Green’s function, @2B(p), using the three-body complete­

ness relation,

C± (r, M(x- I 2 y r d j q ^ i r ^ t y j
2 8  \ « p 2 + pI J-ri 2ci  p 2 - q 2± i€

4  r°° n

*Jo dgX
M y  |y„)(y„i m  r
4 n p 2 + p 2 27T2

- ’ I 9 1  p 2 - q 2 ± ie )  ( }

m v> îx̂ i « r <%2) n<?)
p 2 + p 2 2 n2 J _ y 2 2# p 2 -  q2 ± ie’

(5.16)

where !P(#) is a projection operator that projects out all states with energy q2/M  and is given 

by,

H q )  = 2  if ~ < ^  < °> (5-17)
y«>M

nq) = X in .y .X K J  + ;  r < » in * x n * l  i f 92 >0.  <5.18)
r. * Jo

The Green’s function with standing wave boundary conditions is obtained by applying a 

principal value prescription to the pole at p  = q. The cut-off to obtain the DWRG may be 

applied to eqn. (5.16) by changing the upper limit to A2,

^  M - M v  , M P 2 d^2) r{^
@ 2  #(P’A.) — A /  , 2 I 2 O 2 T O 2 2' (5-19)^  p 2 + p 2 2 nl vJ„y2 2<7 p 2 -  #2

We have assumed that the bound states do not need truncating (which as we shall see is not

the case in the KSW EFT). The resulting equation for V^B from eqn. (5.9) is

In the 3BDWRG equation the projection operator replaces the distorted waves.

5.2. Full Green’s Function and Projection Operator.
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The three-body effective interaction, which acts at some small hyperradius R and some 

arbitrary hyperangle or4, is given by

W p A Viaip, « i ,  A)|ffV,> = R V3B(p, K f ,  k, kf\ A) ay¥pJif(R, a), (5.23)

where the scales Kt are low-energy scales associated with the two-body long-range potential. 

We shall assume, as in the previous two chapters, that the off-shell matrix elements of 

the potential are not required to describe on-shell scattering. However, due to the extra 

degrees of freedom in the three body system, the potential must in general depend upon the 

unconstrained momentum k and k'. To obtain the matrix elements of the potential between 

states with incoming and/or outgoing two body bound states we simply set k and/or kf to the 

appropriate iyn, The boundary condition for V3B is the analyticity condition, that is it has an 

expansion in even powers of p,k and kf and an expansion in positive (possibly even) powers 

O f  K h

Substituting the form for the potential into eqns. (5.18, 5.20) we obtain,

Q
- ^ V 3B(p,Ki;kt k';A) =

MR  1
^  V3B(p, *,■; k, iyn\ A)V3B(p, Kt\iyn, kf\ A)|TA>r(i(R, a ) \ 2

7/i2n2 A2 -  p 2

- m 2
2  r  
n  J o

dk"V3B(p, Ki\K k"\A)V 3B(p, Kf, k", k! ; A W A r (R, a)Y . (5.24)

The last step to obtaining the 3BDWRG equation is to rescale all quantities in terms of A, a 

process that of course depends upon the explicit form of the distorted waves.

4The s-wave wavefunctions depend only on xij -  |x(-y| and = |y*|. The hyperpolar coordinates 
are defined by,

R "  Aj xu + = Arctan
2ŷ

(5.21)
V3 Xij,

R is independent of the labelling of particles, while a  is not. Since these are s-wave DWs we have 
factored out the term xijyk so that they are normalised as,

J roo r-nj 2 2
RdR d a % k(R,a)^q̂ k>(R,a) = — 6{q -  q')6(k -  kf), (5.22)

0 Jo 4

consistent with eqn.(5.14).

5.2. Full Green’s Function and Projection Operator.



Chapter 5. The DWRG for Three-Body Forces 93

5.3 Properties of the Projection Operator.

The 3BDWRG equation, which comes from rescaling eqn. (5.24) is obviously going to be 

very complicated. This complication arises because the equation describes the coupling 

of the three-body force to each of the different distorted waves. Let us briefly summarise 

our strategy for solving it. The study of the trivial fixed point that invariably results in 

these equations remains simple since in linearising the equation about the point we are able 

to ignore the complicated coupling to all the different channels. However, the basic loop 

integral solution which may lead to a non-trivial fixed point or limit cycle solution and to a 

general solution to the DWRG equation will depend on these details.

Our strategy in finding a basic loop integral solution will be to generalise the approach 

used in section 3.6 and subsequently in chapter 4. If we look for solutions to the 3BDWRG 

equation that are independent of momentum, then these will satisfy a considerably simpler 

equation because the three-body force decouples from each of the DWs allowing us to divide 

through by V%B to obtain a linear PDE for . In unsealed coordinates, eqn. (5.24) becomes,

d V3B(p ,K i ;A ) M R  2 K^{R,a\ (P(N )\ Rya')
 aX = 2^ ( p . * ; a )— r - p T ......■ (5-25>

In order to use the methods of section 3.6 to solve the fixed point equation that results 

from this simplification we need to know about the analytic properties of the projection 

operator, just as we knew the analytic properties of the Jost functions.

Consider the expression for the full Green’s function as a function of energy, E, where 

E  is a general complex number,

1 V 1 I ^ X ^ I  . 1 r  W )
~ y \w

where,

& b(e ) = ^  L  + 2 ^  f  dE ' ^ W '  (5-26)4 n /—l e  + En 2n2 J_r2/m E - E '

P (E)=  (5.27)
V 4 E

Eqn. (5.26) defines the function Q2b(E) as an analytic function of E  except when E  e

oo) and when E  = —En. It is a simple matter to see from its definition that Q2B(E)

also has simple poles at E = - E n with residues,

K{02b(E), -£ „ )  = (5.28)

5.3. Properties of the Projection Operator.



Chapter 5. The DWRG for Three-Body Forces 94

We can also see directly from its definition that @2b{E) has a branch cut running from -y^/M  

to infinity along the real axis. Using the result,

r dx ™
J_oo X o - x  + ie J „ TO X o - x  

and its complex conjugate we may use eqn, (5.26) to show that,

P{E)  = in(@2B(E + ie) -  @W(E -  iej). (5.30)

Hence, for E e [-y^/M , oo), the projection operator P(E)  is defined by the discontinuity 

across this branch cut. From eqn. (5.18) that defines the projection operator for real E  in 

terms of the distorted waves it follows that the discontinuity across the real E axis must in 

fact be the result of several ‘overlapping’ branch cuts that run from each two-body threshold 

E -  - y f J M  to E = oo and from the three-body threshold E = 0 to E  = oo.

Substituting eqns. (5.28,5.30) into eqn. (5.26) we can see that the spectral decomposi­

tion of the Green’s function is equivalent to a dispersion relation for @2b(E),

e v M + v m g B f M  = _L (5.3D
Z_J E + En 2m Jc  E - E '

where the contour C is illustrated in Fig. 5.1. This relation is consistent with the conclusion 

that the Green’s function is an analytic function of E with no other singularities than those 

observed5.

When we consider the Green’s function as an analytic function of p = VME  the 

singularity structure found as a function of energy is mapped into the upper-half of the 

complex p-plane. The singularity structure in the lower-half of the complex p-plane is 

difficult to determine, fortunately we do not need to know any analytic properties in that 

region.

Now we know the analytic properties of Q2b(p), expression (5.30) can be used to obtain 

an analytic continuation of the projection operator, P(p). Using eqns. (5.27,5.30) we can 

write

n p ) = ^ ( 0 2 B(P) -  @2b(~p)). (5.32)

5There is the possibility of other symmetric singularities whose contributions cancel. If these 
exist they do not effect the validity of the results, which only rely on the dispersion relation.

5.3. Properties of the Projection Operator.
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-V,2/M

Figure 5.1: The singularity structure of an example of the full Green’s function for complex 
E  with three three-body bound states and three two-body bound states. Also shown is the 
contour C used in the dispersion relation.

Due to the form of the equation we cannot readily continue the projection operator into the 

complex /7-plane without assumptions on the analytic properties of Q2b(p) in the lower half 

of the complex plane.

Eqn. (5.32) is the generalisation (in unsealed coordinates) of eqn. (3.94) and provides 

us with the means to solve the 3BDWRG quite generally 6.

5.4 The Solution of the 3BDWRG for “Well-behaved” Pair­

wise Forces.

If the pairwise forces are “well-behaved” in the sense of section 3.6 then the distorted waves

must vanish as R 2 as R —> 0. We can immediately write down a form for the full Green’s

6The extension of the analysis so far in this chapter to general N  body forces is straightforward, 
Because of eqn. (5.32), which is entirely independent of the number of bodies interacting, the method 
used in finding a non-trivial solution to the DWRG equation also generalises.

5.4. The Solution of the 3BDWRG for “Well-behaved” Pairwise Forces.
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function and the distorted waves at the point at which the three-body force acts R, a ,

W a*(R, S)l2 = A4i?V(6)|2£>3(*/A, K-J A), (5.33)

“)l2 = A5tfV (a)|2£>2(K,/A), (5.34)

(R, S|^2b(A)|R, a) = M A ^ i a f V c i K i / h ) ,  (5.35)

where ip{a) is an unimportant functions that describes the hyperangular behaviour of the 

DWs close to the origin. Inserting these forms into eqn. (5.24), the correct rescaling for the 

three-body force is,

M  /\*5 A 4
%b(P, h\ k  k ' \A) = - ^ r ~ V 3B{Kpt Akr, Ak  a ,  if, A). (5.36)

Resulting in the 3BDWRG equation,

A B , V* ~ , f d % B , ?,dV3B , AtrA — ~  = p — - + )  K i - r -  + k— — + k - x -  + 4V3B 
dA dp dKi dk dk'

+ 1 ^ 2 ^  % b (p , kt\ k  i%\ A)t>3 B(p, kf; A)£%(kt)
P '  LL 7n
2 f 1
n  Jo

d t % B(p, kf, I, k" \K)% b(P, U  k", k’\A  )£>3(fc", *,) (5.37)

This equation is quite complicated as it has to describe the coupling of the three-body 

force to each of the distorted waves. The trivial fixed point solution, V3g = 0, corresponds 

to a zero three-body force. The perturbations around it,

00 / a \ v
Y .  Cl i m A  — ) k \p lmk2nk/2n\  (5.38)

have RG eigenvalues v = 2m + 2n + 2nf + £  k + 4 = 4, (5), 6 ... .  All the eigenvalues are 

positive so the fixed point is stable. This fixed point is simply Weinberg counting, in which 

the first three-body force term occurs at (Q/Aq)4.

To find a non-trivial fixed point solution, we generalise the arguments of section 3.6. 

A non-trivial fixed point that is independent of the momentum variables may be found by 

solving the equation,

p ~ i t + ~ ^ ~  = °> (539)

5.4. The Solution of the 3BDWRG for “Well-behaved” Pairwise Forces.
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which comes from using the form for the projection operator (5.32). This is solved by the 

contour integration,

where C is a contour going from -1  to 1 via the upper-half of the complex q-plane outside 

all three-body bound state poles and two-body elastic thresholds on the imaginary axis.

scales that can be removed using counterterms with logarithmic dependence on A. The 

momentum-independent perturbations around this fixed point solution take the form

with RG eigenvalues v = 2m + /,• -  4 = -4 , (-3), - 2 ........  This fixed point is unstable

with 2 energy-dependent unstable perturbations and possibly 2 more /cr dependent unstable 

perturbations. Like the power-counting schemes in the two-body higher partial waves it 

seems implausible that this fixed point is ever likely to provide a useful expansion in physical 

systems because of the fine-tuning required in the unstable perturbations.

5.5 Three Body Force in the KSW EFT for Short Range

In this section we will return to the EFT considered in the chapter 2 and its extension to 

systems of three particles. When we construct an EFT Lagrangian, we have to include all 

terms that do not violate the observed symmetries of the system. In a system in which all 

energies are far lower than the inverse range of the interactions this leads to a Lagrangian 

containing not only all the four-point vertex interactions (including derivative couplings) 

that correspond to the energy-dependent contact potentials but also to six-point and higher 

vertex interactions needed to model interaction channels that only become available in the 

presence of more than two particles. Of course the six point interactions are only required 

in a system with at least three particles, while the eight point terms require four particles 

and so on. The two-body couplings are entirely determined by two-body observables and

(5.40)

This solution is analytic in p but may have simple logarithmic dependence on some of the

(5.41)

Forces
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should be taken as given when considering a three-body system. The three-body couplings 

are fixed by three-body observables.

In reactions between a bound pair and a third particle the pair-wise interactions result in 

a long range force due to the exchange of one particle. The range of this force is comparable 

to the scattering length of the two-body interaction.

If the two-body system is weakly interacting, the correct power-counting in the two- 

body system is the Weinberg system. The two-body scattering length a2 ~ 1/Ao, and hence 

provides a short-range exchange interaction. This system does not provide any particular 

difficulty in the three-body system since we can use naive dimensional analysis to deter­

mine at which order each diagram occurs. In this expansion the three-body force occurs 

at (<2/A0)4 as in the previous example. (There is, of course, the alternative finely-tuned 

three-body force outlined in the previous example.)

In a KSW system the fine tuning of the LO perturbation around the non-trivial fixed 

point of the RG results in a large scattering length, l / a2 ~ Q 1/A0, and hence a long- 

range exchange interaction. This causes a significant complication as all the diagrams in­

volving the leading four-point vertex need to be resummed[66, 22]. Since naive dimensional 

analysis is no longer applicable the power-counting for the three-body forces must be deter­

mined by renormalisation of the diagrams to which they contribute.

The 3BDWRG allows us to resum the effects of these diagrams and promote them to a 

fixed point. In the KSW EFT we need only resum the effects of the scattering length terms 

since it must be treated as a low-energy scale, it is not necessary to resum the effects of the 

effective range terms since these are perturbative \ / r2 ~ Ao

The study of this problem has a long history. Skomiakov and Ter-Martirosian (STM) 

[56] were the first to derive equations for a system of a bound pair and particle with two- 

body contact interactions defined solely by a scattering length. There work was followed up 

by Danilov[57] who realised that in some systems the STM equations did not have unique 

solutions and required the input of a single piece of three-body data, namely the binding 

energy of the three-body state. The work of both of these predates that of Faddeev [58] 

in resolving the disconnected nature of the three-body equations. The STM equations rely
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upon the zero range nature of the two-body interaction to reduce the problem to a one­

dimensional equation.

An alternative approach to the problem was given by Efimov [25]. Efimov’s equations 

show the singular nature of the system far more transparently than those of Skomiakov and 

Ter-Martirosian. We shall look at these equations below: in a nutshell Efimov’s approach 

allows us to express the system in terms of a hyperradial inverse square potential. The 

strength of the potential depends upon the statistics of the system. In the case of three 

Bosons and three nucleons in the 3S \ channel the inverse square potential is attractive and 

hence singular, requiring a choice of self-adjoint extension.

Since the conception of EFTs this system and the related singular inverse square po­

tential have received much attention [22, 24, 30, 31, 32, 33, 34, 23]. In particular, Bedaque 

et al  [22, 24] have used extended versions of the STM equations to create a EFT that has 

proven highly effective in describing three-body data. In nuclear systems, the so-called 

pionless EFT proves effective in the s-wave J -  3/2 system [66] and in higher angular 

momentum systems [59] without three-body forces. These systems are repulsive at short 

distances because of the centrifugal barrier or the Pauli exclusion principle and are there­

fore insensitive to short distance physics and three-body interactions. In Efimov’s approach 

these systems correspond to repulsive hyperangular inverse square potentials and so, from 

the DWRG analysis in section 3.5, the power-countings correspond to a weak system with 

LO three-body force scaling with {Qf A0)2v or a finely-tuned system with a LO three-body 

force scaling with (<2/A0)_2v where v is the strength of the hyperangular potential. Given 

the apparent success achieved without three-body forces the first counting is appropriate. 

These systems are now well understood and we shall not concern ourselves with them.

The systems that correspond to singular hyperangular potentials are still being stud­

ied. Bedaque et al  have incorporated three-body forces into the STM equations and used 

them to resolve the singular behaviour of these system [22, 24]. The effective three-body 

forces contain free parameters that must be fixed by fitting to three-body data. The power- 

counting proposed by Bedaque et al  has three-body forces occurring at orders (<2/^o)2" 

where n — 0 ,1 ,2 , —  The LO force is marginal. Each of the three-body force terms have 

cyclic behaviour in the cut-off, A. Phillips and Afnan [33] have also looked at the problem,
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their solution is to incorporate the 2+1 scattering length into the equations in a manner that 

‘fixes’ the singularity and ensures that they give the correct 2+1 scattering length. The in­

put of a single piece of three-body data is surely equivalent to the LO three-body force of 

Bedaque et al  and both are equivalent to a particular choice of self-adjoint extension of the 

Hamiltonian. The difference in their stances is in attributing it to a three-body force and the 

need for higher order three-body forces.

In this section we shall introduce Efimov’s equations for three Bosons and explicitly 

demonstrate the connection between the inverse square potential and the KSW EFT three- 

body problem. We shall discuss the case of infinite two-body scattering length, where Efi­

mov’s equations may be solved analytically, and show that in this case the power-counting 

for the three-body force is the same as proposed by Bedaque et al[24]. We shall then use 

the 3BDWRG to discuss the more general case of systems with finite two-body scattering 

length. We will show that the introduction of a finite scattering length does not change the 

power-counting for the three-body force and that the 3BDWRG solution is governed by a 

limit-cycle solution.

5.5.1 Efimov’s Equations

The two-body interaction may be written as a boundary condition on the wavefunction at 

zero separation7. The full three-body wavefunction, |T), is defined by the wave equation 

and the three boundary conditions,

(H0 -  E) |T) = 0, (5.42)

dxtj
xtKxij, y*PF)

Xij—0
(5.43)

From here we shall drop the particle number indices by writing the wavefunction in terms 

of the permutation operator, P,

|T ) = (1 + P)|tfr>. (5 .44)

Substituting this form into eqn. (5.43) we obtain,

d
dx

x(x, yl iff) + <x, y\P\i(i) = [cqlx{x,y\<fi)\
*=0

(5.45)

7Compare this to the observations about Neumann and Dirichlet boundary conditions and their 
connections to the fixed points of the two-body DWRG.
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We consider the case of zero angular momentum and write the wavefunction as ip(x, y) = 

xy(x, y\ip), so that eqns.(5.42,5.45) become,

In addition we have the boundary condition which follows from the definition of if/\ 0) =

0. Eqns.(5.46,5.47) are the wave equation with non-trivial boundary condition and are, in 

general, extremely difficult to solve. To examine them more closely we rewrite them in 

terms of the hyperpolar coordinates, x = R cos a ,y  = Y3/2R sin a,

These provide us with the information we require to study the DWRG in this problem.

5.5.2 The Infinite Scattering Length Limit.

Efimov’s equations, (5.48,5.49) may be solved analytically in the limit of infinite scattering 

length. We shall turn our attention to this case as it is considerably simpler than the more 

general case of finite scattering length. In the limit a2 -* °° the boundary condition becomes 

separable. Writing,

dental equation (5.52) must be solved numerically. It has two imaginary solutions s0 = 

± il.006237... and an infinite number of real solutions, the smallest of which is s\ = 4. 

The imaginary roots of Eqn.(5.52) result in an attractive inverse square potential for the 

hyperradial equation (5.51) while the real roots give repulsive potentials.

(5.46)

(5.47)

(5.48)

(5.49)

ip(R, a) = FS(R) sin sa, (5.50)

we obtain,

(5.51)

sic 8 . sn n
s cos — H — sin —- = 0,

2 V3 6 ’
(5.52)

where p = VM E . These equations are now a simple matter to solve. The transcen-
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The hyperradial part of the wavefunction is given by,

Fs(R\p ) = <
f  Js(pR) if 5 € R

(2/j sin(j](p) + mSi/2)\) [(eill{p)JiE{pR) -  e iTlip) J-rs{pR)) if s <£R,
(5.53)

where s = Ims. In the imaginary hyperangular momentum channel, since this is an attractive 

channel, we have, as was necessary, defined a self-adjoint extension of the Hamiltonian by 

choosing a phase, p(p). The bound states of the system only occur in this channel and are 

given, in parallel to the bound states of the attractive inverse square potential, by

These states, like the attractive inverse square potential, form an infinite tower of bound 

states. The lack of a ground state in three body system acting under such forces was first 

noted by Thomas [26] and is known as the Thomas effect; of course such a state of affairs 

is a result of an inexact treatment of short-range physics and will be resolved by the EFT 

precisely as it was in the chapter 4. The accumulation of bound states at zero energy is due 

to the tail of the inverse square potential, and hence a result of this special case of infinite 

scattering length. These states are known as Efimov states [25] and are not a result of any 

mistreatment of physics but are genuine phenomena 8.

Since the Hamiltonian conserves hyperangular momentum we can expand any three 

body scattering amplitude in terms of the hyperangular eigenfunctions and corresponding 

hyper-phaseshifts. This makes the DWRG analysis particularly simple since the equations 

become one-dimensional. The effect of the three-body force may be analysed in each hy­

perangular channel, in other words dependence upon the unconstrained external momentum 

terms k and k ' , favoured earlier in the chapter, can be dropped in favour of dependence upon 

the hyperangular momentum s. The differential equation for the three body force in each

8It is hoped that Efimov states may be observed experimentally by tuning a diatomic bound state 
in a Bose Einstein Condensate. [68]

2 sinh(^r^)
(5.54)
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channel is then,

dV$(p ,  A) =
dA. 2ir2 A2 — p 2 ' 3B

V ^(p, A)2 if s s R, (5.55)

dv$(j>. A)
“ T2----- 2----------------------------  2 _i_ 2A 2 ~ P 2 2 V  P +Pn ,

i f j g R .  (5.56)
dA 2 7T2

Vg<P, A)2

In the repulsive channels (real s) the resulting DWRG equation is precisely that con­

sidered in section 3.5 and the analysis there can be followed to obtain the power-counting 

for the three-body force in those channels. The effects of the force can be expressed as a 

distorted wave Bom or effective range expansion for the correction to the hyper-phaseshift. 

Following the discussion in section 3.5 the fine-tuning required for a non-trivial fixed point 

power-counting for these forces would be rather contrived. For example, the least repulsive 

channel has the eigenvalue si = 4 and would require three unnaturally small parameters to 

ensure the RG flow remained in the region of the non-trivial fixed point. Hence, the appro­

priate power-counting for the three-body force in these channels is based upon the trivial 

fixed point and provides only very small (at least of order (<2/A0)4) contributions to the 

scattering observables.

In the attractive channels we must turn to the analysis considered of chapter 4. The 

DWRG analysis is precisely as found there and is very different from that in the repul­

sive channels and results in a three-body force that contributes at a surprisingly low order, 

(<2/Ao)°, to the scattering observables. In this role it is more important than effective range 

corrections which occur at an order, (Q/Ao)1. This power-counting for the three-body force 

agrees with Bedaque et al [24].

The implications, for both EFT and potential modelling of the three-body problem, of 

such a prominent three-body force will be examined later. Before then we shall show how 

the DWRG analysis for the three body force needs to be modified after the introduction of 

a finite two-body scattering length.

The method outlined in this section is useful because everything may be dealt with 

analytically. However, in order to fully grasp the general problem with finite scattering 

length, our general analysis must be based upon the the 3BDWRG. This not only allows us 

to deal with the problem of the different channels but also allows us to presents results for
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observables in more practical format.

5.5.3 Finite Scattering Length

The Distorted Waves and the DWRG Equation

In reaching eqns.(5.51,5.52) we took the two-body scattering length to infinity. This limit is 

of course also reached if we take the hyperradius to zero, meaning that at small hyperradii 

the general distorted waves have the same functional form (in R) as their infinite scattering 

length counterparts. In particular we must have for any DW,

TOR, a) — Vip(a) sin(^o In p*R), (5.57)

where we must chose the scale in order to define a self-adjoint extension. The magnitude 

of the DWs close to the origin will in general depend upon the two-body scattering length. 

As in the attractive inverse square case, the relationship between self-adjoint extensions and 

p * is not one-to-one. All observables are invariant under the transformation,

p,  -> (5.58)

where s0 = 1.00623 . . .  is the magnitude of the imaginary solution of eqn. (5.52).

The Green’s function, since it solves the Schrodinger equation, also observes the be­

haviour (5.57). We write the Green’s function matrix elements evaluated at small hyperra­

dius as

<R, a\Q2B{p)\R, a) = MT>G (y / p , In/?//?„) \<p(a) \ 2 sin2 (s0 Inp*R), (5.59)

where y  -  l / a 2 is the binding momentum of the two-body bound state. Because of the 

relationship (5.58), V G(x,y) is periodic in y with period 2n/s0. All the analytic properties 

of Qib(p) as a function of p , described earlier, are conferred on the function D G. Namely, 

there is the elastic two-body scattering cut at p  = iy that runs down the imaginary p  axis 

then along the real axis and there are poles at each of the bound states.

The singular behaviour at small hyperradii that leads to the trig-log behaviour in the 

DWs also means that there is no ground state. At very high momentum the two-body scatter­

ing length becomes insignificant and the DWs take the form they would in the limit y  —» 0.
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This means that the deeply bound state take on the geometrically spaced form of the attrac­

tive inverse square potential’s states. At low energies the value of y  is important and disrupts 

the exponential ladder of bound states; the Efimov effect no longer occurs.

The lack of a ground state means that, as in chapter 4, we must truncate the full Green’s 

function in both the continuum and bound states. Notice there is no need to continue this 

truncation into the elastic threshold since this is controlled by the low-energy scale y. The 

result of truncating the bound states is slightly more complicated than in the attractive in­

verse square example because the position of each bound state is not only controlled by 

the high-energy scale p* but also by the low-energy scale y. The effect this has on the 

renormalisation group flow is important and requires careful consideration.

For the individual distorted waves we write down the forms for small R as

| a )|2 = £>3 In — \ |^(a)l2 sin2 (s0 Inp*R) , (5.60)
\P P P*l v 7

a ) \ 2 = p £ > 2 In — ] |y>(a)|2 sin2 In p*tf) , (5.61)
\P P* /

|y n(R, a ) \ 2 = pn(y, p*)2D B (y, pn(y, p*)) \ip(a) \ 2 sin2 ( In p ,/? ), (5.62)

where we have explicitly shown the dependence of the binding momenta, p„, on y  and p*.

From eqn. (5.28) it follows that D B{y, pn) can simply be found by taking the residue of the 

Green’s function at the appropriate bound state pole to give,

8  717
£>fl(r» Pn) = — R {V G(y/p,  In p/p*), p  -> ipn)- (5.63)

Pn

The projection operator matrix element for small R and p 2 > 0 follow from its definition 

(5.18),

(.R , a\P(p)\R, a) = pC ( - ,  In — ] | ^ ( o r ) |2 sin2 (s0 In p*R) , (5.64)
\P P*)

where

c l z , ln JL) = D 2 ( l ln P.) + 2 £ dkD 3 ( k t Z M Z \ .  (5.65)
yP P*J \P P*J X J O  \P P

The function C may also be written using eqn. (5.32) as,

C I —, ln — I = 2 ni | —. In — j — D q (— . In — + in
P P*l \ P  P*

(5.66)
P*.

We are now in a position to rescale the differential equation for V35 to obtain the DWRG 

equation. The scales p, y, k and k' rescale in the usual way. The three-body force is rescaled
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by the relation,

V3 B(P>f,k,k'',A) = ^ \ ( p ( a ) \ 2 sm2 ($o\np*R}v3B(Ap,Ay;Ak,&k' ' ,A).  (5.67)

Using eqn.(5.24) with the addition of the truncated bound states the resulting DWRG for 

the three-body force is,

KdV3B AdV3B , ^dV3B t t dV3B , ?/dV3B 
A ——  = p-——- + y ——-  + k — — + k —™ 

dA dp dy dk dk'

+ 1 T; k, i f,  A)V3B(p, f ,  iy, k'\ A )D 2 (y, In A/p*)

+ -  f  dk"V}B(p, r, k, k"; A)V3b(A r; a )D3(k", y, In A/p.)
71 Jo

n Y t>3s(^’ i/3; a )<>3b(p. y; U  3. A)^ A ~  p»<a »> p ,))A £>B(y/A ,. inp„/p,).2 /  j -J J-7 \l 7 / 7  7 / 7 / _J /J 7 /  7 f 7 ^ 7  / ' I . ' * '' 1 + P
>1 1

(5.68)

where we have suppressed the obvious functional dependence of V3B in the terms on the 

first line to save space.

The perturbations around the trivial fixed point solution, V3B = 0, are given by,

( * v /+2/?i-F2/i+2/if
T -)  • (5.69)

0 >

The leading order perturbation is marginal, this is consistent with the trivial fixed point 

solution in the attractive inverse square (zero y) solution. Like the attractive inverse square 

DWRG this solution means very little by itself and in order to determine the nature of the 

marginal perturbation and the general flow of the DWRG we must examine a more general 

solution. Like the attractive inverse square DWRG the marginal perturbation occurs because 

the basic loop integral solution is an example of a limit-cycle solution.

The Limit-Cycle DWRG solution.

We look now for a solution to the 3BDWRG equation that depends on A logarithmically 

and that is independent of the momentum terms. This satisfies the 3BDWRG equation,

A d 1 A d 1 d 1 C(y, ln A/p*) n  v  <5(A -  p„(Ay, p*))A
A _ _  = p  — Jry— -   -  + -  > --------------- — — ----------V a iy M P n  P*)-

d A v 3B dp V3B d y V 3B 1 -  p2 2 ^  1 + p2
(5.70)
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Figure 5.2: The singularity structure of the integrand in the limit cycle solution. The bound 
state poles occur at q -  ipn, the two-body elastic scattering threshold branch point occurs at 
q = iy. The propagator poles occur at q = ±p. The contour C runs in a semi-circle from -1  
to 1 through the upper half of the complex plane and crosses the imaginary axis at q = i.

The solution to this equation with logarithmic dependence upon A may be constructed in 

much the same way as the solution to the attractive inverse square potential DWRG. We 

write the solution as the integral,

-WO),-1 . = 2ni f  rfg— a c ( | .  In — | , (5.71)
v f J ( p , f , A )  Jc  p 2 - q 2 \ q  P. I

where the contour C is illustrated in Fig.5.2, it runs from -1  to 1 through the upper half

of the complex plane and crosses the imaginary axis at q -  i. Substitution and use of

eqn. (5.66) shows that it satisfies the continuous part of the 3BDWRG equation. The integral

is clearly analytic about p  —> 0 since the propagator poles to do not approach any part of the

contour C in this limit. The integral is also analytic as y  —> 0 since it matches continuously

onto the attractive inverse square solution in that limit. The discontinuities caused by the

truncation of bound states result from allowing the bound state poles to cross the contour.

That the residues of these poles produce the correct discontinuities is readily confirmed

using eqn. (5.63).

The migration of the bound state poles up the imaginary axis is more complicated in
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this example than in the attractive inverse square case. The position of each bound state 

in the unsealed theory is determined by the scales y and p *. In the rescaled theory they 

are determined by y and the ratio p*/A. This has the interesting consequence that as A 

varies only that element of the rescaled poles position controlled by the high energy scale 

p* changes. The element controlled by y, as low energy physics, remains fixed.

We know that the transformation p * p+e71̂ 0 leaves the bound state spectrum un­

changed. This transformation is equivalent, in the rescaled spectrum, to

which must therefore leave the rescaled spectrum unchanged.

As A decreases the poles move up the imaginary q axis. To ensure the rescaled bound 

states poles are invariant under transformation (5.72), new poles must ‘condense’ out of the 

elastic threshold cut when necessary.

The solution (5.71) describes a logarithmically evolving limit cycle solution. This can 

be seen by observing that since V G(x,y) = D G(x,y + 2?r/so),

This cyclic behaviour means that there must be an infinite number of geometrically spaced 

discontinuities as A goes to either zero or infinity. At first it seems strange that we should 

be able to produce an infinite number of discontinuities as A —> 0 because for any particular

g-plane. However, bearing in mind the discussion above we can see that as A —> 0 more 

rescaled bound states appear and, because of eqn. (5.72), these will cross the contours in a 

strictly geometrically spaced pattern.

The limit cycle behaviour is only exact in the rescaled theory. The unsealed potential 

will approximate the limit cycle when A »  y but as A becomes less than y it will deviate 

significantly from it.

The momentum independent perturbations around the limit-cycle solution take the 

form observed in chapter 4,

(5.72)

0 $ (P .? .A )= (5.73)

A there are only a finite number of bound state poles inside the contour C in the complex

2 n + m

(5.74)
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The marginal perturbation Co,o must, as in the inverse square case, embody the same degree 

of freedom as the self-adjoint extension defining scale, /?*. The DWRG flow is very much 

as described in section 3.3 and as illustrated in Figs. 4.2,4.3.

This momentum independent solution may be substituted into the three-body distorted 

wave Lippmann-Schwinger equation (5.8) to obtain results for the -matrix. The analysis 

follows much the same form of that in section 2.6. In this case the truncated Green’s function 

also includes the integral around the branch cut along the imaginary axis, which corresponds 

to elastic bound pair and particle scattering. The result is

for a general 3 —> 3 scattering. For elastic scattering of a bound pair and a single particle we

so that the imaginary parts on the LHS of eqn. (5.76) cancel and the correction to the phase- 

shift, 6 3 B is real. If p2 > 0 then eqn.(5.77) no longer holds because of the 3 —> 3 states.

The results above are for the momentum independent solutions of the DWRG only. 

More general solutions to the DWRG equations can be obtained by perturbing about the 

limit cycle solution with momentum dependent perturbations. These perturbations allow 

the three-body potential to differentiate between different types of DW. It is clear that they 

will be important in amplitudes like (5.75). However, in amplitudes such as (5.76) they will 

not provide any extra degrees of freedom in the power-counting since the external momenta 

k and k! are set to iy in this amplitude. For completeness the momentum perturbations are 

found in Appendix D.

{x¥pAT3B\x¥P<k>)

A ln+m

1/2

(5.75)

may write the T 3B matrix element in terms of a correction to the phaseshift in accordance 

with eqn. (3.14). The DWRG limit-cycle potential then yields the DWERE,

P P
V  r  p2"y "
/  j ^ 2 n ’in A 2 n + m '  

m , n = 0  0

(5.76)

If we have p 2 < 0 then by eqns. (5.65,5.66) we have,

4 n l m D G (5.77)
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In any particular system that the EFT is describing the two-body bound state binding 

momentum, y , is not adjustable. It is therefore impossible to determine the three-body force 

terms that correspond to these perturbations around the limit-cycle solution. For practical 

purposes these terms can be absorbed into the energy dependent perturbations to obtain for 

elastic scattering,

D i  ( —, In — ] (cot $ 3 5  -  0  + 4tt!Dg ( —> In — ] = —  ^ 2n ("a""') • (5.78)
\P P*l \P P j  \ A o)

The power-counting in the energy dependent terms for the three-body force about the 

limit-cycle solution is precisely that found by Bedaque et al. The leading three-body force 

term is marginal and occurs at order (<2/A0)°. This leading order force fixes the phase of 

the three-body DWs close to the origin, or equivalently forms a self-adjoint extension. The 

use of the DWRG method in deriving the power-counting for the three-body force in the 

EFT is a new result. It provides support for the work of Bedaque et al[22], which relies 

on introducing a dimer9 field into the EFT Lagrangian and then practical use of the three- 

body force to renormalise the theory order by order. Despite the power of their approach 

Bedaque et al cannot provide a simple algebraic statement of the power-counting nor a 

simple formula like (5.78).

When looked at from a different angle, our analysis means that the introduction of any 

three-body data to fix a self-adjoint extension such as was done by Phillips and Afnan [33] 

is equivalent to a LO three-body force. It is not necessary to explicitly calculate the three- 

body force. However, if we were to do so after fixing a self-adjoint extension we would find 

that the degree of freedom associated with that three-body force would be equivalent to that 

associated with the self-adjoint extension choice.

The RG methods used here are very different from those used by Hammer and Mehen 

[23], which start with the STM equation and supplement the approach of Bedaque et al 

[22, 24]. The STM equation can only describe three-body bound states and 2+1 scattering 

and so does not include all of the three-body physics. Furthermore, since the equations of 

Hammer and Mehen start from a truncated STM equation, part of the role of their three- 

body force is to restore the truncated part of the STM equation, a complication the DWRG

9A field with the quantum numbers of two particles, essentially used as a bound state.

5.5. Three Body Force in the KSW EFT for Short Range Forces
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method was designed to avoid. For similar reasons the form of our three-body force can not 

be directly compared to that given by Bedaque et al.

A limit cycle form of the three-body force in this EFT has been suggested by many 

previous papers[30, 32] that have essentially tackled the infinite scattering length case of 

the attractive inverse square problem. Bedaque et al also found a limit cycle solution but 

because of their approach could only find the force order by order [24].

Our result is also applicable to the three nucleon force in the pionless KSW EFT 

[24, 22, 65], Braaten and Hammer have discussed the tuning of the quark masses in QCD 

required for an infra-red limit cycle in the three nucleon problem [65]. They assume that to 

obtain the scale invariant relationships that define a limit-cycle, such as (5.72), the system 

must be tuned to the infinite scattering length limit to avoid the introduction of scales that 

break the symmetry. The analysis here, which uses a Wilsonian RG approach, readily pro­

duces limit cycles in the rescaled potential since the low-energy quantities do not affect the 

symmetry. The discussion of Braaten and Hammer [65] applies to our unsealed potential, 

which only exhibits infra-red limit cycle behaviour in the infinite scattering length limit.

The complete 3BDWRG analysis in this system provides a concrete grounding for what 

has been intuitively understood. Beyond that, because of the common method of solving the 

DWRG equations in in this chapter and the previous two, the connection between all these 

results can be seen.

5.6 Summary

In this chapter we have examined the DWRG for three body forces. The approach used can 

be generalised quite simply to A-body forces. The 3BDWRG equation is complicated by 

this multi-channelled problem because the 3BDWRG has to describe the coupling of the 

three-body force to each of the different distorted waves.

The application of the 3BDWRG to the case of “well-behaved” potentials was included 

as an example. The two fixed points found correspond to Weinberg counting and to the three 

body equivalent of the KSW scheme. The instability of the non-trivial fixed point leads us 

to conclude that in almost all systems of this kind Weinberg counting and naive dimensional
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analysis is appropriate.

The 3BDWRG was also used to study three body forces in the KSW EFT. The solutions 

to the equation take the form of limit cycles and have much in common with the solutions 

found in chapter 4. The power counting found is marginal at leading order and matches that 

found by Bedaque et al [24].

Although our analysis has only considered the system of three Bosons, it is also appro­

priate for three nucleons in the 3S i channel as we shall see in the next chapter.

5.6. Summary



Chapter 6 

The KSW Effective Field Theory of 

Three Bodies

A pionless KSW EFT for three nucleons has been successfully described by Bedaque et al 

[24, 6 6 , 59], Their work also covers the related system of three Bosons. We have seen in the 

previous chapter how the 3BDWRG analysis of the three-body force in this problem sup­

ports their conclusions. We shall now look to complement this work by deriving equations 

for the three body DWs.

All the predictive literature on the three body KSW EFT is concerned with scattering 

observables[24, 33]. However, some applications of the EFT require knowledge of the 

wavefunctions. For example, if we want to model scattering of an electron from the triton 

we need to know its charge density, which can be ascertained from the wavefunction.

The explicit solution of the equations for the DWs will also serve to illustrate the 

‘phase-fixing’ role of the LO three-body force. We have seen in the 3BDWRG the equiv­

alence of the choice of self-adjoint extension and the LO marginal term in the short range 

force. Because of this equivalence, the introduction of the three-body force at LO is a trivial 

matter of choosing a boundary condition for the poorly defined DWs.

As an introduction we shall consider the example of three Bosons. We shall then move 

on to the physically more interesting example of three nucleons.

113
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6.1 The EFT for Three Bosons

The distorted waves for elastic scattering of a bound pair and a particle are not particu­

larly easy to find using Efimov’s boundary conditions, although Fedorov and Jensen have 

attempted to develop a method of doing so [60]. We will derive equations for the DWs using 

a useful property of systems with zero range interactions. Namely, that the value of the DW 

may be simply determined from the value of the DW when the relative coordinate of a pair 

of particles is zero. Because the potential is zero at any point other than where two particles 

are ‘touching’, the value of the DW anywhere else may be found by integrating the wave 

equation. Skomiakov and Ter-Martirosian (STM)[56] were the first to take advantage of 

this property in their derivation of equations for the 2 + 1  scattering amplitude for zero range 

forces.

Our equations for the DWs will also use this property. We will derive equations that

may be used to find all DWs below the three-body threshold. At one point in the derivation

we will be able to link our method to the STM equations. Unlike Skomiakov and Ter- 

Martirosian, we will start our derivation with the Faddeev equation (5.11), which we rewrite 

here for convenience,

|'F+> = ( l + P ) | ^ o>, (6.1)

\K>  = W  + GJ(P)/+(P)P |K 0>. (6-2)

where we have now labelled the wavefunctions by k0, the vector of the third particle in the 

centre of mass frame which has magnitude, |ko| = sj^ip2 + y 2) /3, and p2 = ME  < 0 is the 

centre of mass energy, relative to the three-body threshold. Initially we will derive equations 

for the LO EFT, hence the two-body T-matrix is given simply by the scattering length term

6.1. The EFT for Three Bosons
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in the effective range expansion1,

(k, l|f(p)|k', l'> = (2^)3<53(k -  k 'M p , k), (6.5)

4 7T

T ( P ' k )  = ~ M

-1

■y + i \ l p 2 — ~k2 1 . (6 .6 )

To make the importance of the zero separation value of the DWs apparent we will work in a 

mixed co-ordinate system (k, x), i.e. in terms of the distance between two particles and the 

momentum of the third particle in the centre of mass frame. Two matrix elements that will 

be needed are:

(k, x|G j(p)r+(p)jk', x'> = r(p , k')Li(p, k, k \ x)S3(x'), (6 .7)

L\(p, k, k', x) = -(27r)3<53(k -  k ' ) 2 C “ Vp2-3*2, (6.8)
4  7TX

(k, x|PGj(p)f+(p)|k'x') = Tip, k')L2(p, k, k', x )53(x '), (6.9)
cos[x.(k' + ik)]

U i p ,  k. k'. x) = - 2 M k2 + k,2 + k k , 2 p 2 _ i£, (6.10)

The correctly normalised two-body bound state wavefunction is simply given by

*(k,x) = (27r)353(k -  ko)-^-^e-rJt = (p,k,k»,x). (6.11)
4nx M

6.1.1 Momentum Space Equations

As a starting point, we may use the Faddeev equations to write an integral equation for 

^(k, x). Inserting the values for the matrix elements given above we get,

*A(k, x) = i (P, k> ko, x) + J  (P> V) Li (p , k, k ', x) £(k'), (6.12)

!x and y are defined, as before, by

Xij = r i - r j ,  y* = r* -  i f o  + r;), (6.3)

where {i, j, &} is an even permutation of {1, 2 ,3} and r i , r2, r3 are the absolute coordinates of the three
particles. The momentum conjugate to these we label as 1 ij and k* and are given by

1*7 = q; -  qp kfc = q*-~(q/ + qy), (6.4)

where {/, j, k} is an even permutation of {1, 2 ,3} and qi, q2, q3 are the absolute momenta of the three
particles
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where

f  (k) = T(k, x = 0) -  <A(k, x = 0). (6.13)

Already, the importance of the DWs at x = 0 is apparent. T(k, x) is found by operating on 

(6.2) with 1 + P. This gives,

T(k, x) = -L (p, k, k0, x) + J "  (p, k') L (p, k, k ', x) £(k'), (6.14)

where L - L \  + Li. These equations may be used to find a one-dimensional equation for£. 

Subtracting (6.12) from (6.14) and setting x = 0 we get,

f(k ) = '“ M L2{p,k’ko’° ) + /  | ^ T( M ') M A k .k ',0 ) f ( k ') .  (6.15)

Equations (6.15) and (6.14) may now be solved to find T. Our aim is to derive equations for 

the DWs in the coordinate space representation but these equations are not in a convenient 

form for converting into coordinate space. To find more suitable equations, let us define the 

projection of the wavefunction as

®(k) = lim *<r(k, x) = ^ ( 2 n f s \ k  -  ko) -  (p, k) f(k), (6.16)
* - > 0  A n  A n

where the second identity follows from eqns. (6.8,6.10,6.14). Substituting this into equa­

tions (6.14) and (6.15) we get,

An C d3k'
m , x )  = - —J —-jL(p,k,k ',x)<D (k'), (6.17)

r W - 1®(k) = J ' ^ t 2(p,k,k ',0)O(W ). (6.18)

These equations were first derived by Skomiakov and Ter-Martirosian (STM)[56] in a some­

what different manner. The projection of the wavefunction, ®, is the value of T  when two 

of the particles are at zero separation. It can, with caution, be thought of as a wavefunction 

that represents the penetration of the third particle into the bound pair. Mathematically, <E> 

is simply a tool that allows the full DW, T , to be found using a one-dimensional equation. 

An equation for the elastic scattering amplitude can be obtained by assuming an asymptotic 

form for <E>,
y  / ,n_N3c3„_ N . 471 fl(k 0»k)o (k) -  p m k  -  k0 ) + • <6'19)

The resulting equation has been studied by Danilov[57] and has more recently been derived 

by Bedaque el al\2A, 22] from the KSW EFT Lagrangian.

6.1. The EFT for Three Bosons
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6.1.2 Coordinate Space Equations

The STM equations may be Fourier transformed to obtain equations that may be solved to 

find the distorted waves in the coordinate representation (see Appendix E). We define,

d3k' C d3k'
w<y, j U L f  ^ L ( P, k, k',

V3K2 { K2(kQo) + K2(kQ+) + K2{kQS) (6 20)
4^2 I Q02 <a2 ai

. .  , 16;r r  d3k f  d3k' [ [3 ~  T
y , y  = J  w  J  w  r +  i t  ~ p

k2 [„ ,K2(kK)  , J  1 \ K 2(kK))
7 v ^ r y ^ + 4  \y-y)-«r)' ( 6 -2 1 )

where,

So = \ l  ^ x 2 + (y -  y02> Q± = y  ~X2 + y2 + ya + y.y' ± -x.y',

<R = Vy2 + y' 2 + y.y', k  =  - \ J ~ ^ P 2 -

Kn(z) is the modified Bessel function of the third kind. In the case of positive energy, the ie

prescription gives k  = - 2 ip I V3 so that each of the modified Bessel functions go to

-» 2 <",+l«,(,l) W  ■ (6.22)

Using the transforms we may find equations for T^x, y) and ®(y). A simple Fourier trans­

form of eqn. (6.17) yields,

¥(x , y) = f  d3y ' W (y , f ,x )0 (y ' ) .  (6.23)

In order to Fourier transform eqn. (6.18) we first multiple both sides by

16tt 
3M

and then transform to obtain,

(y +  s/3k2/4 -  p2),

(v2 + fc2) <t>(y) + f  d3y' V0(y. y')® (y') = 0. (6.24)

This looks very much like the Schrodinger equation with a non-local potential. This form is 

very suggestive of the interpretation of <D mentioned above, namely a wavefunction describ­

ing the penetration of the third particle into the bound pair. However since the potential is 

not symmetric, and so is not hermitian, this interpretation should be used with caution.
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The s-wave wavefunctions are simply found by integrating over all angles,

d Qy
m y ) ,  ®(y) = y f  ^ ® ( y ) .  (6.25)

By integrating eqns. (6.23,6.24) over all angles we can obtain equations for the s-wave 

wavefunctions:

These equations can be used to find all s-wave DWs to LO in the EFT with total centre 

of mass energy less than zero, i.e. all bound states and all bound pair and particle interactions 

below the three-body threshold. If the centre of mass energy becomes greater than zero, k  

becomes imaginary and the modified Bessel functions in the ‘potential’ become Hankel 

functions. Since vo(y,y') will then have oscillatory behaviour for large y, solution of the 

equations becomes extremely difficult.

(6.26)

(6.27)

where,

V3/cx / K i (kQq) K x(kQD

y37ry' \

and

R± = ^ y 2 +y'2 ±yy' , (6.30)

These s-wave results follow from the indefinite integral result[41],

(6.32)
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6.1.3 Analytic Solution

In general eqns. (6.26,6.27) have to be solved numerically. Before we look at their general 

solution we shall look at their analytic solution in certain limits. Eqns. (6.26,6.27) may be 

solved analytically in the limit k , y  —> 0 as they take on the far simpler forms:

The solutions to these equations correspond to the short range behaviour of the DWs. To 

solve them we assume an ansatz, 0(y) = ys, which we justify by observing that since no 

other scales exist in the equation, the wavefunction must satisfy a power law. This argument 

may be put into a more rigorous form by considering Mellin transforms. Eqn. (6.33) gives 

the possible values of s which we find, by evaluating the integral, must satisfy the equation,

This equation, as it should be, is precisely that obtained from Efimov’s approach. It is in 

fact possible to show that, in accordance with the analytic results of Efimov’s approach, in 

the limit of y  —» 0, but non-zero k  eqn. (6.27) has the solutions Ks(/<y) where s is a root of 

eqn. (6.34).

As noted before, eqn. (6.34) has two imaginary solutions, s = ±iso, with s = 4 the 

smallest real solution. Therefore, the solutions of eqn. (6.27) will be dominated by the so 

solution at small y.

If we take Q(y) = the integral to find T(x,y) is far more involved. After some 

work (see Appendix F) we find we may write the result in terms of the hyperradius and the 

hyperangle:

(6.33)

(6.34)

(6.35)

<p(a)
sin(5cr) cos 5) esc 5) when a <

(6.36)
when a  > | .
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This result confirms that there is no good boundary condition for the DWs as R —> 0. The 

angular behaviour is continuous at a  = tt/ 6  but has a glitch. Since a  = n/6  is where the third 

particle meets either of the particles in the pair, this glitch corresponds to their interactions.

The behaviour of the solutions, ®, of eqn. (6.27) for large y  depend simply on the 

relative values of k and y.  If ko > 0 and k > 0 then the system is above the threshold 

for elastic scattering of a bound pair and particle and below the three-body threshold. The 

projection, 0(y) —> sin(&0y + <5), where 5 is the phaseshift. The ‘potential’, v0(y ,/) ,  is real in 

this limit so the phaseshift is also real. Using eqn. (6.26) we may find T(x,y) in this limit. 

We find,

T(^,y) —» sin(A:0y + 5)e~yx, (6.37)

which describes a non-interacting free particle far from a bound pair.

If /eg < 0 then the system is below the two-body threshold and the only solutions are 

the bound state solutions ®(y) —» e ^ y,

6.1.4 Numerical solution

Solving eqn. (6.27) with some fixed phase in the trig-log behaviour close to the origin is 

equivalent to the three boson EFT to order (QjA0)°. The LO three-boson force is taken to 

be the mechanism by which the phase is fixed in accordance with the analysis in chapters 4 

and 5.

In order to solve eqn. (6.27) numerically we must find some way to deal with the 

singular behaviour close to the origin and to fix the phase of the solution there. We introduce 

some scale Q <§; A0 and define the solution to be,

0(y)
sin(s0 ln(yy) + 77), y < Q.

(6.38)
OqO), y > n .

The three-body force may now be chosen by simply choosing the phase rj of the solution. 

Inserting this into eqn. (6.27) gives a homogeneous equation for

d2o SiQ')
dy2

J r » c x i  pQ,
d /® o ( /)v 0(y , / )  = -  I d y  sin(£ 0 ln(ry') + ri)v0(y,y'), (6.39) 

n Jo
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with the boundary conditions

Oq(Q) = sin Oo ln y£l + rj) ,

= ^  cos (So In y£l + rf) . (6.40)
y= n  ^dy

£1 is simply a numerical tool and, up to numerical noise, results should not depend upon it.

This equation may be solved using linear algebra methods, in practice the upper limit 

in the integral must be made finite, however, because of the exponential suppression of the 

kernel vo(y,y') for large y  the effect upon the result is minimal. The first step in solving 

numerically is discretisation of the variable y. Since the solutions of the eqn. (6.27) depend 

logarithmically on y at small y and linearly at large y, the discretisation of the variable must 

reflect this. We define the points yn by the relation,

un = s0 ln (yyn + ekoy,,ls° -  l ) , (6.41)

where un varies linearly on n. At small yH we have,

un « s0 lnyy„, (6.42)

so that the yM’s are logarithmically spaced allowing them to describe the trig-log behaviour 

of the solutions in that region. At large y„ we have,

un « (6.43)

so that the y„ are linearly spaced allowing them to describe the ordinary trigonometric or 

exponential behaviour there. In order to set the two boundary conditions at the points yo and 

yi we set y2 = Q as the first point at which the value of the solution is unknown.

Using this discretisation of the variable y, eqn. (6.39) can be written as an inhomoge-

neous matrix equation. We define = <D(y„+i) so that the derivative term is found using 

the difference,

tPQCyn) 1 — _L— - 0 (y„) + —i — OCy^o) (6 .4 4 )
d y 2 2(A„ + A„_i) \A„ (A„ + A„-i) 2A„_i

= ®nji-2®n-2 + + (6.45)

where A„ = y,1+] -  y„. The last line defines the derivative matrix D,-j, 1 < i, j  < N  in 

which all other elements are set to zero. Notice that our definition also defines three other
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elements, £h,-i and £>2,0 that do not appear in the matrix; these terms are required to 

set the boundary conditions at yo and y i.

The integral term can simply be written as

where the coefficients, *Vy form the matrix and can most easily be found using Simpson’s 

rule, in which case N  must be chosen to be odd.

Altogether the eqn. (6.27) is written in matrix form as,

N

The second and third lines of eqn. (6.47) define the boundary conditions by ensuring that 

the solution matches on to the form chosen for y < y2.

For scattering solutions, > 0, we solve the equation numerically for two values of 77, 

77 = 0 and 77 = tt/2 for instance. All solutions with different values of 77 can be constructed 

by superposition.

Bound state solutions can be found for any energy by simply solving the equation for 

the two different 77’s then finding the superposition that vanishes for large y. This gives a 

constraint on the interior phase of the bound state solution at that energy. Only the bound 

states with the correct interior phase - chosen by the LO three-body force are the physical 

ones.

Two sample solutions of eqn. (6.27) are shown in Figs. 6.1, 6.2. Fig. 6.1 shows a scat­

tering solution to the equation with incoming momenta ko = y f  2. The figure shows the 

solution on both log and linear plots so that the interior and exterior behaviour of the wave­

function is visible. In the interior the trig-log behaviour is evident, externally the solution 

goes to sin(&0y + <5) where 5 is the phaseshift for the elastic scattering amplitude. The full

(6.46)

<5,,1 ((© 1,0 + *0) sin('so In yy\ + ’J) + £>1.-1 Sin(s0 ln yy0 + //))

- ^ . 2^ 2,0 sin(^ 0 In yyx + 77), (6.47)

where,
ryi
I dy'v0(yn+i , / )  sin(so In yyf + 77). 

Jo
(6.48)
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yp

Figure 6.1: Numerical 2+1 scattering solution to eqn. (6.27) with relative momenta kQ = y /2  
and total centre of mass energy E  = -1 3 y 2/(16M)

<*>cp) °

YP

Figure 6.2: Numerical solution to eqn. (6.27). Example of a shallow bound state solution 
with centre of mass energy E  = -101y2/(100M).
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Figure 6.3: Three-body distorted wave, numerical solution to eqns. ( 6.26,6.27) with relative 
momenta ko = y /2  and total centre mass energy E = -1 3 y 2/(16A/).

a

Figure 6.4: The small R detail of fig. 6.3, matching the anticipated result, eqn. (6.35).
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DW, T(x, y) which results from this solution and was obtained using eqn. (6.26) is shown in 

Figs. 6 .3,6.4.

The full DW solution is plotted on a hyperpolar scale (R , a). The hyperradius R can 

be considered the mean distance between the particles and the hyperangle a  describes the 

configuration of the three particles. Evident in the plots is the symmetry of the wavefunction 

with respect to the interchange of particles. In the fig. 6.3 the hyperradial scale is linear. 

There are two outgoing states at a  = 7t / 2 , corresponding to the ‘chosen’2 bound pair, and 

at a  = 7t / 6  corresponding to the other two possible pairs. The discontinuity across the 

derivative at a  = tt/6 , anticipated in eqn. (6.35) is also evident. Fig. 6.4 shows the small R 

detail of the DWs, which exactly matches the analytic result, (6.35).

Fig. 6.2 shows a bound state solution to eqn. (6.27), again showing detail on both log 

and linear plots. The interior phase of this solution was determined by the choice of binding 

energy. From an EFT perspective the three-body force determines the interior phase which 

in turn determines the binding energy.

Fig. 6.5 shows physical observables determined from solutions to the LO EFT equation

(6.27). Fig. 6.5(A) shows the possible different phaseshift curves for the elastic amplitude 

that result from different choices for the LO three-body force. Each of these curves cor­

responds to a different value for the scattering length (Fig. 6.5(B)). The range of possible 

scattering lengths that can be obtained from different three-body forces is -oo < a3 < oo. 

Notice that it is only because the three-body force occurs at such a low order, (<2/A0)° that 

it is able to affect the scattering length of these amplitudes so completely. Fig. 6.5(C) shows 

the shallowest bound states that result from our choice of three-body force. Figs. 6.5(B) 

and 6.5(C) together imply that there is a single parameter relationship between the elastic 

scattering length and the binding energy of the shallowest bound state, which is illustrated 

in Fig. 6.5(D). This curve cannot be seen experimentally as the physical world corresponds 

to just one point on it. However, the equivalent curve in the three nucleon problem, known 

as the Phillips line [2 2 , 24, 61] has very interesting implications.

2Chosen in the sense of our definition of a.
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Figure 6.5: Numerical Results of the LO EFT for three-bosons. (A) All possible phaseshift 
curves that result from different values of the leading three body force. Each value for the 
LO three body force corresponds to a different interior phase 77 and results in a different 
scattering length for 2+1 elastic scattering (B) and the shallowest bound state (C). Together 
these imply a single parameter relationship between the scattering length and binding energy 
of the bound states (D).
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6.1.5 NLO Equations

At NLO, (<2/Aq) 1 , in accordance with eqn. (5.76) there is no extra three-body force term3 but 

there is an effective range correction in the two-body force. The equations for the effective 

range corrections can be found using eqn. (6.14) and the form for the two-body T-matrix 

with effective range corrections,

4 n 1
r(p, k) =

M

An

- J  + \Pe (y2 + P2 -  \ k 2) + -yjlk2 ~ p :

M y 2 -  | k2 + p2 y +  \ l  ~^2 ”  p 2

1

+ 2P‘ r +  \l-^k 2 - p 2 + (6.49)

This modified form of the effective range expansion ensures that there is a bound state pole 

at iy. Substituted into eqn. (6.14) and keeping just terms of order (<2/Ao) (i.e. neglecting 

terms like p2) gives,

(&q -  ft2) <J>(k) - 16;r 
3M

y +  \ l ^ k 2 - p 2

8 n R  r  d3k'
y  + V  Ak2 '  p2) J  (2^ ^ ’ K  k'’ 0 ) 0 0 0  = °- (6,50)

Fourier transfoiming this equation as before we obtain,

(V2 + fc02)®(y) + f  d3y W y ,y ' ) + f t V 1(y,y'))O(y') = 0, (6.51)

where (see Appendix E),

d3k r  d3k'„ ,  ,, 8 n r  d3k r  d3k ' /
3Mj  (2tt)3 J (2tt)3 7 V(2  n)3

V3k2 f  3K2y/2 K^{kK)

y +  \ \ - k 2 ~ p 2 iv ip , k , k f, o y {k-y-k' ^

2  n2 *  + t ' 2 r r
2y (  2 \ K2(kK ) \

3  lr  y ' l  k  y
(6.52)

3Recall that the general expansion of the three-body force contained a term at this order but 
proportional to y. This will in fact be seen as a small correction to our LO ‘phase-fixing’ three body 
force.
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The s-wave equivalent follows quite simply,

(—\dy2

where

+ j ®(y) + d /(v 0(y, / )  + p ev\(y, / ) $ ( / )  = 0, (6.53)

= .  „(* - !)(*£=> - *f=>

( r  -  _ ^ 1 ^ ± 2 )} .  (6.54)

We can solve eqn. (6.53) up to order p e using first order perturbation theory. If we define 

® (y )  =  ® (0>(y) +  p e® (1)(y) and ®(0)(y) satisfies the LO equation (6.27) then up to order p e, 

®(1)(y) satisfies

($+̂)0('>(y) + fo dy ' » o ( y , / ) * W(y') = -fo v,(y,/)<I)(0)(y'). (6.55)

This equation may be solved numerically by adapting the method used for the LO equation. 

Since no new parameters are entered at this order the results of solving the equations to this 

order give a refinement to the one parameter relationship between the 2 + 1  scattering length 

and the three particle binding energies.

6.2 The Pionless EFT for Three Nucleons.

One area where the two-body EFT for short range forces has proven very successful is 

nuclear physics. As noted in the earlier chapters, nuclear physics provides an excellent and 

physically important example of the KSW power-counting scheme in action. In this chapter 

we will extend the results of the previous section to look at the pionless KSW EFT for three 

nucleons.

The spin and isospin degrees of freedom available to the nucleons as well as Fermi 

statistics makes the problem slightly more complicated then the analysis for Bosons. To 

avoid the complication of electromagnetic interactions we shall concentrate on the system 

of two neutrons and a proton4.

4This system is clearly more interesting than the other electromagnetically neutral possibility of 
three neutrons as it contains a well-known two nucleon bound state, the deuteron, and three nucleon 
bound state, the triton.
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If the total spin of the three nucleons is 3/2 then the three spins are aligned and the 

Pauli exclusion principle acts as a repulsive force between the two neutrons. This system 

is insensitive to short range physics and has been successfully described by an EFT without 

three-body forces [6 6 ]. However, if the total spin is 1/2 then, because it is possible for the 

three nucleons, now non-identical, to approach each other, the system is sensitive to short 

range physics, it is upon this system that we shall concentrate in this chapter.

6.2.1 Wavefunction Symmetry

We assume that the pairwise nuclear force conserves both isospin and spin so that these 

may be taken as constants, and we put the total spin and isospin and isospin component to 

S = T = Tz = i. If we identify one particular pair of nucleons, 1 and 2, then we can identify 

two linearly independent states of three particles with spin 1 / 2  that may be used as a basis. 

Firstly, the singlet state in which the pair of nucleons are in the spin singlet state, s = 0, 

which we denote by u)ls2 and secondly, the triplet state in which the pair are in a spin triplet 

state, s = 1, which we denote by co]2. The singlet state is antisymmetric and the triplet state 

is symmetric under interchange of 1 and 2 . A spin basis may also be constructed using an 

alternative pair, 2 and 3 say, as the starting point for the basis. The transformations between 

the different possible bases are given by,

'k < -  A ( i V3(  23 )
/

23
V

1 
"2

VI
2

2 

1
"2 )

CO

CO

12

12

CO31

CO31

( _1
2

VI
V 2

1
'2 }

(6.56)

Similarly for isospin we have the singlet and triplet states, #J2 and &J2 which satisfy the 

same transformations and symmetries.

Since the pairwise potential is symmetric under interchange of the two interacting par­

ticles the continuous part of the wavefunction must be symmetric under interchange of the 

particles in the pair. Thus a general state which is antisymmetric in 1 and 2 can be written 

in the form,

| <p12)) = co12# 12̂ 2) + ^ 120 J ¥ ,12>. (6-57)

The full wavefunction, which must be antisymmetric in the interchange of any pair can now
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be written as,

|¥ »  = | ipn )}  + |^23)> + |p31»  = (1 + P)\<p», (6.58)

where P  is the permutation operator. To see that IT)) is totally antisymmetric notice that

l?23»  -» l¥>,3»  = V » ,  (6.59)

under the interchange of 1 and 2. Since we have now introduced the permutation operator,

P, we shall drop particle labels. Using the decomposition of |T »  we can write down the

Faddeev equation for |^)>,

(H0 + V -  £)|y>» = -VP\<p)), (6.60)

where the hat on the potential signifies that it is an operator in spin-isospin space.

We shall assume that the potential V is diagonal in spin and isospin. (This assumption 

is approximate but is true to the orders at which we shall be working [22].) In the centre of 

mass frame of the two interacting particles the Pauli exclusion principle restricts V to just 

two non-zero matrix elements:

V u A )  = V,, (coA, < W ,)  = Vt. (6.61)

The matrix elements, in spin-isospin space, of VP now follow from the transformation rela­

tionships (6.56),

VPcjs&,) = \ v sp,

(o>A, VPcj,Vs) = ^ vsP,

(a>lVs,VPa>lVs) = \v,P,
V P w A )  = (6.62)

Taking the inner product of eqn. (6.60) with u sd t and yields coupled Faddeev 

equations for the |^ )  and \i//t),

(ffo + V j -  EM,) = -Vsp ^ s) + ^ , ) \ ,

(H0 + V, -  E M , )  = - V , P ( ^ . )  + , (6.63)
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which can be written in the form,

|^> = GJ(E)fs( E ) p |i |^ .)  + ^ , ) j , 

m  = l*7> + Gl{E)t,{E)P I + \\4>,) | , (6.64)

where \%t) is the asymptotic state with a bound pair (the deuteron) and free particle. There 

is no bound pair in the singlet channel so there is no asymptotic state.

Using eqns. (6.56,6.58) we can now write the full wavefunction in its final form,

|T »  = a>AWs) + a>A\%) + A  -  ^ f)|T w>,
P \ .  . . 3P.{ P \  3 P

i>i 'I> = ( i + ? ) i w  + T |w ,
/ P \  3 P 

|4',) = ( l  + ^ ) l ^ )  + T l^ ) ,

+ 1̂ » , (6.65)

where, <Xi2,y 3|P = (x23,y i| -  (x3i ,y 2|. From these equations we may now parallel the 

analysis for three Bosons to obtain the equations for the full wavefunction which are,

4n P d3k'= f
'P„(k,x) = -

L, (p, k, k ', x)®„(k') + U. (p, k, k', x) |i® „ (k ')  + 5®„(k') 

V3n r  d3k'
/

d kr
^ 3  L3(p, k, k \  x )[o ,(k ') + 0 ,(k')],

r a (p, k) 1 <X>M - f
d3k'

Lz{p, k, k ' ,0 ) i® „(k ') + |® 4(k') (6.66)

where a,b t  {s,t} with a t  b, and L3 is given by, 

Li(p, k, k ', x) = -2zM
sin[x.(k' + -k)]

k2 + k'2 + k.k' -  p2 — ie'
(6.67)

6.2.2 The Coordinate Space Equations.

These equations can as before be readily converted into coordinate space. The equations for 

T(x, y) do not depend upon the two-body T -matrices and are given by,

w, (y, y', x)®0(y') + W2(y, y', x) | i® „(y ') + ®̂„(y')tE'«1(x,y)= f <*y 

.̂(X, y) = J  dly ’Wi( y, y', x) ri®fl(y') + |®*(y')J.

, (6 .68)

(6.69)
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where

Wj( y,y',x) =
V3K2 K2(kQo)
4 7T2

V3K 2 \ K 2 { k Q + ) K 2 ( k Q . )
W2(y, y , x) = — ^  < — ——  +

47r2 £ 2 <22

^ 3(y,y,,x) =
3K2 ( K2(kQ+) K2(kQ.)

(6.70)

(6.71)

(6.72)
I 67F ( 62+ (3 2

In order to get the equations for <t>(y) we must define the two-body T -matrices. The T -matrix 

in the triplet channel is given by,

47T 1
r,(p , k) =

M

47T

-y, + ip, (y,2 + p* -  |F )  + ^ - p 2

M y ? - i f e 2 + p 2
r<+ \ l ^ k 2 ~ P 2

1

+ 2P '
+ (6.73)

This has a pole at p = iys, which corresponds to the deuteron, hence y, is given by the 

deuteron binding momenta y t = 45.70MeV. The effective range is p t = 1.764fm. In the 

singlet channel there is no bound state so the T-matrix is given by,

4n 1
r s(.p, k) = -

M Js + \ r s (p2 -  \k 2) + -yj\k2 - p  

4n 1

M  y 2s -  j k 2 + p2 7s + AI “  P2

+ ~rs 
2 7 s + A14 ^  “  P2 - 7 ?

7s +

%■
7 1—  +

4 W - P 2,

(6.74)

The difference in the expansion makes the NLO term slightly more complicated. Here we 

have y~l = as = -23.714fm and rs -  2.73fm. The Fourier transfoims now follow in much 

the same way as in the Boson case. We get,

v2 + - y 2 -  K2 1 <D„(y) + J" d3y'(vo(y,y'
+r„(V?(y. y') + Sas? t ( y, y')) | i<P„(y') + <̂Dt(y' | = 0, (6.75)
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where VJ(y,y') is given by eqn. (6 .2 1 ) with the substitution y  —» ya, V°(y, y') is given by 

eqn. (6.52) with the substitution y  —» ya and

v-fcv.y) =
8

3M
d3k r  d3k'f  fJ  (2n y j {2n f

y s + + K2)

y , -  ^ \ { k 2 + K2)
U ip ,  k, k ', o y (k-y-k'y ) . (6.76)

We were unable to evaluate this final integral analytically. It can be reduced to a one dimen­

sional equation as in appendix E and then evaluated numerically. The s-wave equivalents of 

these follow easily. The term in eqn. (6.76) is neglected by Bedaque et al [24], who simply 

use the modified form of the ERE in the singlet channel and take p s = rs. The difference is 

comparable to NNLO corrections.

6.2.3 Analytic Results.

It is useful to rewrite the equations for and in terms of 0 ± = ± O,. The LO s-wave

equations for these are then given by,

!L
dy2

where,

+ \ (r2 + yf) ~ k2) ®±(y) + §(??- r2)

+ Jo v f a w + w - = °. (6-77)

vj(y,y') = ^(vJCy,/) ± v^Cy,/))- (6.78)

The equations for ®± are useful because at small y they decouple to give

X
oo

= o, (6.79)+ m ,  r  W* + 2y*t*-Z
d>>2 V3n Jo (y4 + y2y'2 + y'4)2

where X+ = I and /L -  -1 /2 . Substituting <E>± = ys as before we obtain the equation for s,

/7TS\  8/1* . /7TS\

cos( y ) -  v f ^ sm (-6 -) = 0- (6-80)

This equation for s when X = 1 is the same as the equation that describes the Bosonic 

wavefunction at short distances and hence has the imaginary solutions s = ± 5q [25, 22, 24]. 

The equation for X = -1 /2  only has real solutions, the smallest of which is s = 2. In solving 

eqn. (6.77) generally we may identify solutions by their behaviour at small y. There are

6.2. The Pionless EFT for Three Nucleons.



Chapter 6. The KSW Effective Field Theory of Three Bodies 134

solutions in which the interior behaviour is determined by a boundary condition on <D+(y), 

for example,

0 +(y) -» sin(S0 lnyfy + 77) + (6.81)

0 _(y) -> & (ys -  y t) sin(lrvy,y + rj + cr) + . . . ,  (6.82)

where the constants and cr can be determined by solving eqn. (6.77) order-by-order in 

y. There are also solutions in which the interior behaviour is determined by a boundary 

condition on <P_(y), e.g.

® _ 0 > ) (6. 83) 

®+00 -» S (y v -  ■y,)yi + . . . .  (6.84)

These solutions must be uniquely combined in a manner determined by the boundary con­

ditions at y —» 00 . All the physical distorted waves will be dominated at short distances by 

the trig-log behaviour of the 0 + solution.

The three-body force will prove to be very important in this system. The 3BDWRG 

analysis for the three Boson EFT may be extended to this example and its conclusions are

very much the same. Namely the LO three-body force will be marginal and will correspond

to a self-adjoint extension of the Hamiltonian. It will in effect fix the phase of the distorted 

waves close to the origin. The next three-body force term that can be determined5 occurs at 

the order (Q jAo)2. The eqns. (6.77) plus a phase fixing condition correspond to an EFT to 

order {QjA0)0.

At large y, below the three-body threshold but above the deuteron binding energy, the 

singlet solution should vanish. This constitutes an additional boundary condition on the 

equation that determines the combination of solutions described above. After applying this 

boundary condition, the triplet wavefunction has the long-distance form,

0,(y) -> sin(fc0y + 6), (6.85)

where = 4 /3y 2t + k2 is the momentum of the free neutron in the centre of mass frame and 

5 is the phaseshift for neutron-deuteron scattering

5 Recall that the terms that scale with y  cannot be measured since we cannot change the value of 
y, they are therefore absorbed into the energy-dependent force couplings.
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In solving the NLO equations no new three-body force term is required. The y t, y s 

dependent terms at this order in the three-body force will appear as refinements in the LO 

‘phase-fixing’ three-body force. At this order there are two equations to solve, correspond­

ing to the perturbations, rs and p t. Writing,

®±O0 = o f o o  + to  + p,)d>(±1+) + to  -  P,)®!'"’ + • • •. (6.86)

where <J>(± satisfy eqn. (6.77), using first order perturbation theory we obtain the equations,

+1 (7? + 7?) ■- **) <fi,+,(y) + f  (7? -  7?)

+ £  d i |vS(y, /)®c+1+>(/) -  5v;o>, /)®L1+V)j =

-  f o (v*(y,/ )< *? ' ( / )  -  .(6.87)

+ \  (r? + y,2) -  K2j + 1 (7? -  7?) *?“’(>')

+ £  dy' (v J (y ,/)® $ !'V ) -  =

-  ,(6 .88)

where,

vf = (v{ ± Vj + v{)/4. (6.89)

Taking k and y  to zero in these equations gives equations for the behaviour of the correc­

tions for small y. Since these equations become scale free at small y it means that the two 

corrections O ^C y) ~ y5” 1 as y becomes small. Hence, these ‘corrections’ radically change 

the form of the wavefunctions at small y but provide only minor corrections at large y.

6.2.4 Numerical Results

We take the mass of each nucleon to the be isospin averaged mass, M  = 938.9MeV. 

Eqn. (6.77) may be solved numerically using a method adapted from that used in the three 

Boson example. To set the interior phase defined by the LO three-body force, we apply a 

cut-off, ft, that allows us to ‘feed’ the desired phase into the equation. Below the cut-off, 

y  < ft, we use the form given in eqns. (6.81,6.82), for y > f t  the solution is to be determined
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from the resulting homogeneous equation. In order to set the exterior boundary condition 

on the singlet solution we must also solve eqn. (6.77) to obtain a solution that has the small 

y asymptotic form given by eqn. (6.83).

Numerically, the solutions are again most easily found using linear algebra. The dis­

cretisation of the y variable is done as before, however, since we are solving coupled equa­

tions, the matrix equation to be solved is now of order 2 n.

At NLO, the numerical solution of eqns. (6.87,6.88) is achieved similarly but is more 

complicated. Since these equations are still differential equations they require boundary 

conditions. The correct boundary conditions are those that remove all solutions to the ho­

mogeneous equations, which are identical to the LO equations. That is, the solutions of the 

NLO equations should be the particular integral. To find these boundary conditions we must 

solve eqns. (6.87,6.88) order-by-order in y. The results give,

0+1+) —» JTTj/y-1 sin^o lnyy + 77 + cr*), (6.90)

<bi1+) —» yLy-1 sin(5olnyy + 77 + cr*), (6.91)

oL1~) —» &Z(ys ~ Yt) sin(So lnyy + 77 + crl), (6.92)

<D(+1_) -* &r+(ys ~ y t) sin(S0 In yy + 77 + cr~\ (6.93)

where the exact values of the constants 3K and cr are not important for this discussion. These 

boundary conditions are now fed into the equation by using the cut-off Q.

Fig. 6 .6  shows the projection of the wavefunction, ®(y), of an elastic scattering wave­

function at LO and NLO. The solid lines show the triplet wavefunction and dashed lines 

show the singlet wavefunction. The LO result is shown in red and the NLO result in black. 

Since there is no outgoing bound state in the singlet state, the singlet wavefunction vanishes 

as y —» 00 . The wave in the triplet channel corresponds to an outgoing/incoming deuteron 

and neutron. At small y the trig-log behaviour is apparent in the LO solution. The NLO 

solution also displays this behaviour with an extra factor of y-1. The LO and NLO solutions 

become distinct at around 2 fm ~ rs,p t.

To obtain physical variables, the LO three-body force must be fixed. This can be done 

by matching to the deuteron neutron scattering length, and = 0.65 ± 0.04fm[63], With this 

single input the EFT becomes predictive for all other scattering observables including the
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Figure 6.6: Scattering solution to eqn. (6.75) with q Q = 51.0MeV { k  = 13.6MeV) at LO 
(red) and NLO (black). The solid lines are the triplet wavefunction d>,(y), the dashed lines 
are the singlet wavefunction d>5(y)
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triton binding energy. The three-body force at NLO will differ from the three-body force at 

LO by a term of order pey.

The relationship between the choice of three-body force, the neutron-deuteron scatter­

ing length and the triton binding energy is shown in figs. 6.7,6 .8  and 6.9. Fig. 6.7 shows the 

values of the neutron deuteron scattering length that correspond to different interior phases 

of the DWs and hence to different three-body forces. Fig.6 .8  shows how the binding en­

ergy of the Triton (the shallowest bound state) depends upon our choice of three body force. 

Many of these shallowest bound states actually lie outside the validity of the EFT defined 

by the pion mass.

Bringing the results of figs. 6.7 and 6 .8  together gives a one variable relationship 

between the neutron-deuteron scattering length and the triton binding energy, fig. 6.9. Al­

though this curve cannot be seen experimentally as the physical values correspond to a single 

point in this space, shown by a cross, it does have interesting implications for the study of 

three nucleon problems with potential models. The dots in fig. 6.9 correspond to different 

predictions for the triton binding energy and the neutron-deuteron scattering length obtained 

from different pair wise nucleon potentials with the same two body scattering lengths and 

effective ranges as inputs [52], Instead of clustering randomly around the physical values, 

these form a curve through the space.. This relationship was first noted by Phillips [61] in 

looking at the predictions for three-body variables by nuclear pairwise potential models. In 

fig. 6.9 the NLO result (dashed) is a clear improvement upon the LO result (solid). The 

connection between the Phillips line and the three-body force in the three-body EFT has 

already been illustrated by Bedaque et al [24], our NLO curve differs slightly from theirs 

because of the additional term 6.76.

The interior phase of the DWs and the prediction for the Triton binding energy are 

shown in table 6.1. Fig. 6.10 shows the projection of the triton wavefunction at LO and 

NLO. The full LO Triton wavefunction obtained from eqn. (6 .6 8 ) are shown in fig. 6.11 on 

hyperpolar plots. The configuration of the three particles, parameterised in cr, depends upon 

our choice of pair in defining a. In the triplet wavefunction, the ‘chosen’ pair have isospin 

0  and so correspond to a neutron and proton, in the singlet wavefunction the ‘chosen1 pair 

are the two neutrons.

6.2. The Pionless EFT for Three Nucleons.



Chapter 6. The KSW Effective Field Theory of Three Bodies 139

3 0

20

oo
-10

-20

2  - 3 0 , n/4 n/2 3 r c /4  

I n t e r i o r  P h a s e ,  ri

Figure 6.7: Neutron-Deuteron scattering lengths that result from choice of LO three-body 
force, corresponding to a different interior phase, 77, for the trig-log behaviour of the wave- 
functions. The solid and dashed lines show the LO and NLO results respectively
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Figure 6 .8 : Triton binding energies that result from different choices of the LO three-body 
force. The solid and dashed lines show the LO and NLO results respectively
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Figure 6.9: The Phillips line as predicted by the pionless EFT at LO (bold line) and NLO 
(dashed line). The dots correspond to the predictions for the triton binding energy and 
neutron-deuteron scattering length in different models with the same two-body inputs [52]. 
The cross is the experimental result.

LO NLO Physical
Interior Phase of DWs, rj, where 

<D —» sin(^o In [xy + rj) 
and j! = lOOMeV.

2.442 2.419

Triton Binding Energy 8.08MeV 8.68MeV 8.48MeV

Table 6.1: The interior phase of the DWs and the Triton binding energy at LO and NLO 
found by matching to the neutron-deuteron scattering length.
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The highest value of the wavefunction occurs as a proton and neutron are paired with 

a second neutron around lfm  away, which occurs at a = n /6, R = lfm  in both the singlet 

and triplet wavefunctions and also at a = it/2, R = lfm  in the triplet wavefunction. This 

configuration also allows the three nucleons to be spread over the greatest volume, i.e the 

highest density at large values of R corresponds to the values a  = tt/6 in both singlet and 

triplet states and also to a  = 0 in the triplet state. For R < lfm  the wavefunction does not 

distinguish much between the different configurations of the three particles (different a ’s) 

except for a  —> 0 where the wavefunction vanishes. This value, a = 0, corresponds to the 

situation where the third nucleon is directly between the other two.

Fig. 6.12 shows the predictions for the elastic neutron-deuteron phaseshift after match­

ing the three-body force to the neutron-deuteron scattering length at LO (solid line) and 

NLO (dashed line). The circles show the most recent experimental results (circa 1967) [64] 

and the triangles show the results obtained from a combination of V I8 and Urbana IX two 

and three-body forces [62]. Given the age of the experimental results, in makes sense to 

compare the data to that obtained from sophisticated potential models, rather than the ex­

perimental data. These models are fitted to many different variables in two- and three-body 

systems and can be expected to produce a reasonable curve [66, 24, 33].

The EFT curve fits the potential model curve well at NLO. The computing effort in 

solving the EFT equations for the wavefunctions and the physical variables is minimal com­

pared with the effort required for the more sophisticated approaches.

To go to higher orders than NLO requires considerably more effort. A new three- 

body force is required, isospin symmetry violation must be considered and the computa­

tional effort in calculating the four second-order perturbations is considerable. However, 

the agreement achieved with very few parameters and at the relatively low order of (Q /A q)1 

is pleasing.

6.2.5 Summary

In this chapter we have derived and solved equations for the three body DWs for three 

Bosons and three nucleons at LO and NLO in the KSW EFT. In each case a ‘phase-fixing’ 

three-body force is required.
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Figure 6.10: The triton wavefunction’s projection 0(y) as found by matching the three-body 
force to the neutron-deuteron scattering length at LO (red) and NLO (black). The solid lines 
are the triplet wavefunction <F,(y), the dashed lines are the singlet wavefunction <J>y(y)

6.2. The Pionless EFT for Three Nucleons.
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Figure 6.11: Contour plots showing the triton wavefunction at LO. The highest particle 
density occurs at a  = n/6, R ~ lfm in both the triplet and singlet wavefunctions. This 
corresponds to a proton and a neutron on top of each other with the third neutron 1 fm 
away. In the triplet wavefunction the a  = n/2  ‘tail’ is longer and peaks higher as this also 
corresponds to a proton neutron pair with a distinct neutron.

6.2. The Pionless EFT for Three Nucleons.
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Figure 6.12: Physical phaseshifts for neutron-deuteron scattering (q0 = ^/4/yyf~^K^) with 
the LO three-body force fitted to the neutron-deuteron scattering length. The solid and 
dashed lines are the LO and NLO result respectively. The circles are the most recent exper­
imental results from 1967 [64] and the triangles are the results obtained using the Argonne 
V18+Urbana IX two and three-body forces [62].

6.2. The Pionless EFT for Three Nucleons.
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The implications of the LO three-body force in the case of three nucleons is embodied 

in the Phillip’s line, which shows the one parameter relation between the neutron-deuteron 

scattering length and the triton binding energy as predicted by pairwise nuclear potentials. 

The NLO results show convergence upon the potential model results in both the neutron- 

deuteron phaseshift and the Phillip’s line.

The equations, once the three-body force is determined by fitting to the neutron-deuteron 

scattering length, yield the triton wavefunction and all DWs describing elastic scattering of 

a neutron and a deuteron below breakup. The triton wavefunction result can be used in 

applications, such as electron triton scattering.

6.2. The Pionless EFT for Three Nucleons.



Chapter 7

Conclusions

In this thesis we have looked at the use of the renormalisation group in the development of 

effective field theories. Our three main results are the development of a tool, the DWRG 

and general methods of solving the DWRG equation; the use of the 3BDWRG equation in 

deriving the limit-cycle solution for the three-body force in the KSW EFT for short-range 

forces and the corresponding power-counting; the development and solution of equations 

that can be used to practically evaluate three body DWs in the KSW EFT for Bosons and 

the physically and mathematically interesting system of three nucleons in the 3S i channel.

The DWRG is tool that enables us to resum some diagrams to all orders. The general 

method of solving the DWRG equation relies upon the basic loop integral, perturbations 

about which give an alternate power-counting scheme to naive dimensional analysis that 

corresponds to a trivial fixed point in the DWRG. What is pleasing about the results we have 

obtained, using the DWRG, is that established results such as the DWERE for well-behaved 

potentials share a common method with new results such as the limit-cycle solutions for 

short range forces with an attractive inverse square potential.

The solution of the DWRG for the attractive inverse square problem required a little 

care. The system is not properly defined without the input of a scale, p 0, that defines a 

self-adjoint extension. The solutions of the DWRG are in the form of limit-cycles. The 

power-counting associated with the limit-cycle solutions have a LO marginal term, which 

corresponds to the degree of freedom offered by the choice of po. The solution of the DWRG 

answers many issues raised in refs. [30, 32] concerning the connection between the short
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range effective force and the need for a self-adjoint extension, the possibility of multi-valued 

solutions of the RG, and the lack of a ground state.

Our study of the KSW EFT three-body problem was motivated by the recent realisation 

that the three-body force is extremely important in some systems [22, 24], Two systems 

that are particularly interesting are the three s-wave Bosons and three nucleons in the 3S i 

channel. These systems have no net repulsion due to the pair-wise forces and result in 

singularities similar to the attractive inverse square potential. Because of this similarity, 

the 3BDWRG solutions exhibit limit-cycle behaviour and a three-body force that occurs at 

order (<2/A0)°. Our results confirm the power-counting proposed by Bedaque et al [22, 24]. 

The power of our approach is that we are able to give a simple algebraic statement of that 

counting.

Our results also illustrate the limit cycle behaviour of the three-body force that has been 

suggested based on analysis of the attractive inverse square potential [30, 32] and the STM 

equation [22, 24].

The generalisation of the 3BDWRG to four or more bodies is straightforward, our 

method of solution involving the basic loop integral is easily generalised. The scale-free 

systems studied in this thesis and the novel power-counting schemes that correspond to 

them are likely to be important in N-body forces in the KSW EFT due to the scale-free 

nature of these systems at hyperradii far smaller than the two-body scattering length.

The final chapter offers some physical results for the KSW EFT, The convergence 

of the results using a limit-cycle three-body force and their agreement with the results of 

sophisticated potential methods has already been shown, [24, 33]. To complement these 

results and to offer new possibilities of testing the EFT we have derived equations that 

allow calculation of the DWs for the three-body KSW EFT below threshold. Our equations 

are the coordinate space equivalent of the STM equations [56]. Taking advantage of what 

we had shown earlier, the LO three-body force can be chosen by simply fixing the phase of 

the DWs at small hyperradii.

Our results for three nucleons in the lS i channel agree well with those of Bedaque et 

al (up to a difference in definition of NLO corrections). Our method allows us to calculate 

particle density of the triton wavefunction that may be tested by looking at electron-triton
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scattering data.

In summary, the DWRG has shown itself to be a versatile tool and has been used to 

shed light on several issues currently under debate. This thesis has produced several results 

that provide insight into current issues in the EFT community and open new doors for testing 

the KSW EFT for short-range forces.



Appendix A 

Analyticity of J ( p ,  k)

We want to study the analyticity of the integral,

I -  f  dqC(k/q) = 2nK f  ----^ -----  (A.l)
Jo Jo q(e <~i -  I),

which we can write as,

r°° dx r 2nk dx
I  = 2nk I = 2nASc -  , (A.2)

Jink x{ex -  1) J  x(ex -  1)

where A  is some constant. Since we are investigating the behaviour of the integral near 

k  0 we can expand the integrand in the final term in a series in x  and assume k  to be 

within the radius of convergence to get,

/ i i i \ 7T/?,
dx I — -  t — I- —— + . . . )  = 1+  nk(2A + In k + In 2rc) — — + __  (A.3)

\ JV j. M
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Appendix B

DWRG Analysis for the Attractive 

Coulomb Potential

In this appendix we shall look quickly at the modifications to the DWRG analysis for an 

attractive Coulomb potential, i.e. when k  is negative.

Clearly, the power-counting around each fixed point is unchanged as these result from 

the form of the DWRG equation rather than details. The trivial fixed point is also unchanged, 

the expansion around it yields the distorted wave Bom expansion, eqn. (3.31).

The two differences that result from having an attractive Coulomb potential is the ex­

istence of bound states that occur in the truncated Green’s function and the definition of the 

non-trivial fixed point. In the repulsive case the starting point for the non-trivial fixed point 

solution was the basic loop integral,

However, in the repulsive case this integral no longer converges because of the essential 

singularity at q = 0. To remedy this, we now define J  as

where c is the contour shown in fig. B .l. This integral is convergent because it approaches 

the essential singularity from the other direction.

(B.l)

(B.2)
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Figure B .l: The contour of integration in the complex q-plane for the non-trivial fixed point 
in the attractive Coulomb case. The bound states appear as poles at q = ik/n.

The integral J  can now be split up as before to isolate the singularities:

J(p, k) = -R e  f  dqCik/q) -  p 2 f d q ~ ^ x  + M (p, k), (B.3)
Jc J 1 P2 “  r

M (p, k) = p2 Re f dq , (B.4)
J c '  p —q

where the contour c' extends the contour c along the real axis to infinity. As in the repulsive 

case, the second term is analytic, the ternCM is not analytic but satisfies the homogeneous 

DWRG equation and the first term contains logarithmic dependence, which is still given 

by the analysis in the previous appendix. Hence we can write the non-trivial fixed point 

solution precisely as before,

v f  > =  ( j \p k )  -  M (p , *) -  m ,  A ))"'. (B.5)

where X is defined in eqn. (3.39). Now we have found a non-trivial fixed point solution the 

comments on the RG flow are the same as in the repulsive case.

We will find that when writing down the distorted wave effective range expansion there 

is the additional bound state terms in the truncated Green’s function. Eqn. (3.47) should
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now read, 

{^plKstyp)
= VS(P,K, A)

, „ ,  „ I m  j : A w q( R ) ? , m f , \m r )\2
1 -  Vs {p,K, A H  —  f  d q —z . - 5 ------ 7

1 2tt2 Jo p 2 - q 2 4n p 2 +  p \

. - 1

(B.6)

where ^„(r) is the bound state with binding energy En = \t<\2/n2 and is given by,

<A«(r) = \  ^ 2 re ~ KrfnL] dltcr/ri) -> 2 r ( - \  as r  —» 0, (B.7)
\  rP \n f

where LJ is the associated Laguerre Polynomial. The term in braces in eqn. (B.6 ) may be 

written as,
M A R2 ( r '  . , q 2C(k/q) y K fq 2C(K/q)

2n2 JJo
dq-

p2 -  q2 «=1
2

p 2 — q2
, q —> i \K\ /n (B.8 )

and so by Cauchy’s theorem is equal to M A  j(p , k). The analysis follows as before, result­

ing in the DWERE,

K 2Aq yn A ( p 2,V n
C(?7) cot Ss -  M {p , k) = - 2 k In -  — —  V* Cm

p n m I ^2n+m J ’
n,m '  0

(B.9)

where,

2A *
M (p, k )  -  — M (p, k )  = Re 

n £
dq 4 k p 2
q e2nKto -  1  p 2 — q2

-  - 2 /cRe ln(—£77) +  ~ yjfiriri) (B.10)



Appendix C

The Faddeev Equations for Three 

Identical Bosons

For a system with three particles the Lippmann-Schwinger equation is inadequate. Although 

the three-body T -matrix satisfies the Lippmann-Schwinger equation, it is not possible to use 

this equation to find it because its kernel is not compact. This may be understood in several 

ways. Most simply in coordinate space it is a result of a non-vanishing potential as the mean 

separation of the three particles is taken to infinity but two of the particles remain close. This 

in turn is related to the possibility of incoming and outgoing boundary conditions involving 

bound states of particles and also to the possibility of so-called disconnected diagrams, in 

which one of the three-particles fails to interact.

In short, a wave-function with an incoming two-body bound state and a single par­

ticle satisfies the homogeneous version of the Lippmann-Schwinger equation resulting in 

non-unique solutions. The resolution to this quandary is well-known. We must ensure that 

disconnected diagrams are not allowed. One favoured method is to use the Faddeev equa­

tions.

Consider the case of three identical bosons interacting via a pairwise interaction V̂ b-
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The wavefunction must be symmetric with respect to transposition of any two particle in­

dices, hence the wavefunction, |T+) with incoming boundary conditions of three free parti­

cles (rather than a bound state of any two) can be written as

|T +> = |^o> + (l + P M +), (C.l)

where l^o) is the ‘in’-state and solves the free Schrodinger equation and P is a permutation 

operator, which permutes particle indices and has the matrix elements defined in eqn. (5.3). 

The Schrodinger equation is written as,

(Hq + (1 + P)V2b ~ £')|T+> = 0, (C.2)

(1 + P)(H0 + V2B -  E)\ifi+) = -(1  + P ) V 2 b { W q ) + (C.3)

where to obtain the second line, we have used the fact that H0 commutes with the permuta­

tion operator, P. Cancelling the (1 + P) on the left hand side and using = (E -  V2B -  

H0 + ie)~l we obtain,

\r) = G+2B(E)V2B\ M  + G+2B(E)V^P\i^+), (C.4)

= G+0(E)t+(E) |^0> + G+0{E)t+{E)P\^+), (C.5)

where t+ is the T-matrix given by the equation, t+(E) = V2B + V2BG2B(E)V2B. Eqn. (5.4) 

is the Faddeev equation for the wavefunction component [<f/+). It is connected because of 

the P-operator which ensures that each interaction, given by the two-body T -matrix, is not 

between the same two particles as the preceding one.

The corresponding equations for the full three-body Green’s function and T-matrix 

now follow from similar decompositions. If we write the full T-matrix, T  in terms of 

components,

T +{E) = (1 + P)T+{E), (C.6)

then from the equation defining the full wavefunction in terms of the Moller wave operator 

1 + G+(E)T+(E),

|T +> = (1 +  G +q { E ) T +{E))\i}/q) =  |iAo> + (1 + P ) G j ( P ) r > o ( £ ) > ,  { C. l )

and from the definition of PF+) in terms of its components, eqn. (5.1), we obtain the relation, 

|\j/+) = Gq(E)T+(E)l^o), which when substituted into the Faddeev eqn. (5.4) yields the
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Faddeev equation for the T -matrix component,

T +(E) = t+(E) + t+ (E)Gq (E)PT+(E).

We may find a similar relation for the full Green’s function, @+(E) = 

by using the equation Q*{E) = GJ(E) + GJ(E)7~+(£)GJ(£).

(C.8)

G+0(E) + (1+P)G+(E),



Appendix D

Momentum Dependent Perturbations in 

the DWRG for Three-Bodies

Momentum dependent perturbations about the limit cycle solution are found using the ansatz

V3B(p, y, k t k', A) = y, A) + CAv<p(p, y, A), 

(p(p, y, A) = k2n(j)\(p, y, A) + 02(p, y , A),

(D.l)

(D.2)

where <pi and <p2 only depend upon A logarithmically. Substituting this into the DWRG 

equation (5.68), neglecting for now the discontinuities, then linearising gives a partial dif­

ferential equation for (f)\ and (f>2,

k2n Kd0! , „ d(px t /o w  t C(y,InA/p*)
~A d X  + P1 p  + 7 ~d? + (2n ~ v ¥ l + v -3801 l - p

+ dtp2 Ji<p2 , J>4>2 , , ,,!0)2C(y,lnA/p.)
~A 3A + Pl p  + ~ ^  + ^  1 -  />2

. ,.(0)^ C (y ,lnA /p .)
+ V3»Vi----- j— ^ — ■ = 0, (D.3)

where C(y, In A/p*) is given by,

c k  In ^ - )  = f J f
P*/ Jo P.

dk k £>3 A:, y, In (D.4)

From the first line we obtain the RG eigenvalue v = 2n and the solution So that a

with the further substitution,

<!>2 = [<l>?,Vfl-p2n\VfZ  (D.5)
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we obtain a PDE for <f)3,

Kdcf)3 _ t a^ 3 „ ,  , C(f, In A //?*) -  p 2nC(y, In A/p*) /r>
-A d K  + p -aF + y l f ~ 2n^  + ------------------------  = °- (D-6)

This equation should of course have discontinuities on the RHS. The solution of this PDE, 

including those discontinuities, is straight forward and can be reached in much the same 

way as the limit-cycle solution. The momentum perturbations occur at orders 2 ,4 ,6 ,. . .  at 

the same orders of the energy perturbations.



Appendix E

Fourier Transforms

We wish to perform the Fourier transform,

4n f  d3k' f  d3k. . 4n C d3k' r  d3k' T/ , , ,  x
W( y ’ y ’ x) = - M j  wJ ( w L( p ’ k ’ k ’x)e

{ 2 n f
= i  C ^  ^  Jk.(y-y')r ix^/p2~H2

C d3k r  d3k! cos[x.(k' + -k)]
+ 8 ^  “   .gK k.y-k  -y ) --------------- L _ 2 ---------- L _ J --------  ( E  I)

J  (27T)3 J (2tt)3 k2 + k'2 + k .k' -  p 2 -  ie V ;

= h  + h  (E.2)

Doing the integral over all angles in Zi gives,

7l = T T T  i f  ^ ^ s i n ( % - y , |K ^ 'vV/̂ ,  (E.3)2 ^ | y - y ' |  Jo

where we have put k = - 2 p / V3. Using the result

f  dxxe~py! ^ ^  ^mbx = ~ ^ ^ — K 2 { y - ^ ^ b 2) (E.4)
Jo P  + 0

(E.5)

we get,
/  = V^a:2 K2(kQ0)
1 47t2 <Q2

where <30 is given by eqn. (6.31). The second integral, /2, is more involved, making the

change of variable k" = k' + k/2 we obtain,

r  d 3 k  r  d 3 k "  ,  i , N( e " i k " - ( y ' + x )  +  e " ' k " - ( y / " x ) )
In ~  4 n  I — —  I — — e lk-{y+^y ) ~ ___________ — ____________-  ( E 6 1

J  (2tt)3 J  (2tt)3 fr'2 + \ { k2 + k2) ' ( * }
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Performing the k" integral gives/2 = I+ + L  where,

= —  r\y' ± x| J

Then the angular k integral can be done to give,

/± = -— -— ■ I (E7)
1 (2tt)3

1 r°° 1 r
= — n r n — ; + (e .s)2?r2|y + iy'Hy' ± x| J0 22-

=  V 3 x 2 K 2 (k Q ± )

4 7T2 Q 2.

where we have again used result (E.4). The result quoted in the text follows.

(E.9)

The second integral to be done is

167T C d3k r  d3k'
Vo(y, y') =

r  d3k r
3M J  (2n ) 3 J  (2t03

32^-y f  d3k C  d3k'r  dJk r
J  (27T)3 J  
1 6 n  r  d3k r  d3k'
V f J  (2n f j

7  + \ l  2[^2 “  P2

e i(k.y-k'.y')

Li(p, k, k ', 0)ef(k-y“k,-y/)

(27r)3 k2 +  k '2 +  k.k7 +  \ k 2

(2 tt)3

,/(k .y -k '.y ')

+ K
k2 +  k '2 +  k.k7 + I K2

h  + h-

(E.10)

(E .ll)

1$ but for an overall numerical factor is the same of the I2 with x  = 0. Hence we have,

2 k2j  K 2(k<R )h = (E. 12)
^ 2

U can be done in much the same way as the I2 integral (with x = 0) all the way up to the 

final k integral. Hence we get,

2
/4 =

1 r
dkk^Jk2 + k2 sin(Jk|y + -y ' \ )e ~ ^ y (E.13)

o 2V37r2|y + iy 7|y 

Differentiating the result (E.4) on both sides w.r.t. fi gives

d x x y j y 2 +  x2e s i n b x  = ~  ^ ^ ^ ( y  V ^ 2 +

(E.14)
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which can be used to obtain,

_  V 3 k 3/  K z (kK )  2 k2 K 2{kK )  rT1 1 C ^

U ~  W ~  ~  ' - & - •  (R 15 )

The quoted result follows.

The final integral is

87r C d3k C d3k'
V](y,y') = - f —  fJ (27T)3 J3 M  J  (2tt)3 J  (27r)3 

16ny2 f  d3k C d3k'

+

r  d3k r  d3k'
J  ( 2 ^ J  (2^ f

16;ry f  d3k

" v T

y +  V  i k l ~ p l

g i ( k . y - k ' . y ' )

i 2(p ,k ,k /, o y (k-y-k'-y/)

k2 +  k '2 +  k . k '  +  |  k2

cjul
J  (2tt)3 J  ( 2 x ? + K

g i ( k . y - k ' . y ' )

k2 +  k '2 + k.k ' + |/c24n f _£!l f
J  (2 n f  J  (2tt)3(

+  K2)
g i ( k . y - k ' . y ' )

k2 +  k f2 + k.k' + |/c2

= rl 273 + ^| + /5. (E.16)

The results for /3 and /4 have already been established. /5, like /4, can be done in much the 

same way as the I2 integral (with x = 0) all the way up to the final k integral. Hence we get,

1 C°° 1
/3 = ^  T7T7 d k k ( ^  + K1) Sin (k \y + -y '\ )e - fy ' 'm ? . (E.17)

2 n 2 \y  +  ^ y  \y Jo 2

Differentiating the result (E.14) on both sides w.r.t. J3 gives

£  dxx(y2 + x2^ 2̂  sinbx = J ^ L ^ K ^ y  V/32 + 62) -  ^ 2 + ^

(E.18)

which can be used to get,

3 V3k4/ 2 K4(kK ) 3 V3k3 K 3(kR )
5 16tt2 K4 An2 W

All the results brought together give the result in the text.

(E.19)



Appendix F

Zero Energy Wavefunction for the Three 

Body EFT

We wish to evaluate the integral 

1 =

where,

V3 s ,
2 71

a\Q~_
aiQ : (F.l)

<R± = y j ^ x 2 + y2 +y'2 ± 2yy', <3* = + y2 + y'2 ± yy' ± -xy '. (F.2)

In order to use residue calculus to evaluate the integral we write it as

h  =

/  = /l + *2,
V3 r  ,, ,aK - up 

2n(l -  eks) J_„ 31 y K lR l

h =  - XQO 

00

log
q i q + .

(F.3)

(F.4)

(F.5)
V 3 t t ( 1  —  e ® " )  J - c

The poles of the integrand of I\ are given by the zeroes of H± which may be written in terms 

of the hyperpolar coordinates as,

V3y  =  ±i-L-Re±ia. 
J 2

(F.6)

Evaluating the integral using the two residues in the upper half-plane (recalling that 0 < a < 

7t/2) we get,

h  =
V37?

esc j sin^s). (F-7)
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■a+5%16 cc+ t i/ 6

a+rc/6■a+57i/6

a+5 nI6 ■a+rc/6

■a+7c/6a+5n:/6

Figure F.l: The branch structure of the integrand in /2, the labels show the argument of the 
branch point. On the left the case of 0 < a  < nJ6 and on the right tt/6 < a  < n/2.

h  can be evaluated by closing the contour in the upper half plane then collapsing it onto the 

branch cuts there. The branch points are given by the zeroes of 62̂  which are simply,

/  = and y = j l R e ±i{a±5n/6) ^

How the branch points up are joined up depends on the value of a. We do not want any of 

the branch cuts to cross the real axis. The branch structures are shown in Fig. F.l.

Simply evaluating the integrals around the branch cuts gives,

/  V 3 f l V  16 c o s ( f ) s m ( , M )  , J
/ j =  K  2 ) S V3 I + 2 c o s ( f )  ’ ( R 9 )

/  V 3 i? \s 8 s in ( Y - a i ' )  , nf * )  when a  > f.

Finally using the equation for 51 (6.34), and combining the two results we obtain the quoted 

result
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