
TEMPORAL DATA MINING:

ALGORITHMS FOR TEMPORAL ASSOCIATION

RULES

A thesis submitted to The University of Manchester for the degree of

Doctor of Philosophy

in the Faculty of Humanities

2006

Xiao Fu

School of Informatics

ProQuest Number: 10997222

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10997222

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

(ePrysr)

Fh 261 &°\
__

List of Contents
List of Contents -2

List of Figures and Tables -6

Abstract -8

Declaration -9

Copyright Statement -10

Acknowledgements -11

1 Introduction -12

1,1 Background -12
1.1.1 Data Mining -12
1.1.2 Temporal Data Mining -15

1.2 Thesis Objectives -16
1.3 Thesis Organisation -17

2 Data Mining -21

2.1 Introduction -21

2,2 Motivation of Data Mining -22

2.3 Data Mining -23
2,3.1 Knowledge Discovery in Databases -23
2.3.2 Data Mining -24

2.4 Data Mining Approaches -25
2.4.1 Top-down Approach -25
2.4.2 Bottom-up Approach -25

2.5 Data Mining Process -26

2.6 Mining Techniques -29
2.6.1 Classification -29
2.6.2 Clustering -29
2.6.3 Summarisation -30
2.6.4 Regression -30
2.6.5 Sequences -31
2.6.6 Association Rules -31

2.7 Summary -32

3 Association Rule Mining -33

3.1 Introduction -33

- 2 -

3.2 Association Rules -34
3.3 Discovering Frequent Itemsets -35

3.3.1 Frequent Itemset Discovery -36
3.3.2 Association Rule Construction -36

3.4 Association Rule Algorithms -37
3.4.1 AIS -37
3.4.2 SETM -37
3.4.3 Apriori -38
3.4.4 AprioriTid -41
3.4.5 AprioriHybrid -42
3.4.6 Apriori-like Algorithms Comparison -43
3.4.7 Partition -44
3.4.8 Sampling -45

3.5 Mining Frequent Itemsets without Candidate Generation -48
3.5.1 Frequent Pattern Growth -48

3.6 PRICES -53
3.6.1 Frequent Itemset Generation -55

3.7 Summary -59

4 Temporal Data Mining -60
4,1 Introduction -60

4,2 Background to Temporal Data Mining -61

4.3 Potential Knowledge in Temporal Databases -62
4.3.1 Data Objects in Temporal Databases -62
4.3.2 Identifying Patterns in Temporal Databases -64

4.4 Temporal Data Mining Operations - 66
4.4.1 Association Rules -67
4.4.2 Classification -68
4.4.3 Clustering -69
4.4.4 Prediction -69

4.5 Representation of Temporal Features -70
4.5.1 Time Representation -70
4.5.2 Time Series -71
4.5.3 Calendar -71

4.6 Temporal Features -72
4.6.1 Time Intervals -72
4.6.2 Periodicity -72

4.7 Temporal Association Rule Mining -73
4.7,1 Temporal Association Rules -73
4.7.2 Mining Areas of Temporal Association Rules -76

4.8 Summary -77

5 Discovering Interval Association Rules -78

5.1 Introduction -78

5.2 Problem Description - 79 -
5.2.1 Previous Research Areas of Mining Temporal Association Rules - 79 -
5.2.2 Challenge of Mining Interval Association Rules -8 0 -

5.3 Definitions Related to Mining Interval Association Rules -8 2 -
5.3.1 Temporal Features Related to the Interval Association Rule

Mining Task - 82 -
5.3.2 Additional Definition for Mining Interval Association Rules - 84 -

5.4 Algorithm IARMiner - 84 -
5.4.1 Longest Interval Searching Technique - 85 -
5.4.2 Association Rule Searching Technique - 88 -
5.4.3 Algorithm Description - 88 -

5.5 Implementation - 92 -
5.5.1 Program Structure - Overall Structure -9 2 -
5.5.2 Program Structure - Step 1 of IARMiner - 94 -
5.5.3 Program Structure - Step 2 of IARMiner -9 6 -

5.6 Evaluation - 98 -
5.6.1 Experiment Dataset -9 8 -
5.6.2 Time Consumption Experiments - 99 -

5.7 Summary -114-

A Tree-Projection Method for Mining Temporal Association Rules -115-
6.1 Introduction -115-

6.2 Using the Temporal Itemset Base Instead of the Transaction Set -116-
6.2.1 Motivation -116-
6.2.2 Minimising System Consumption by Reducing Multi-Passing -116-

6.3 Tl-tree (Temporal Itemset tree) -117 -
6.3.1 Design Requirements of the Temporal Itemset Base -118-
6.3.2 Tl-tree (Temporal Itemset tree) -118-
6.3.3 Mining Temporal Association Rules from the Generated Tl-tree -120 -

6.4 Improvements to the Tl-tree -123 -
6.4.1 The Size Problem - 123 -
6.4.2 The Complex Problem -124 -
6.4.3 The Improved Tl-tree -125 -
6.4.4 The Potential Weakness of the Tl-tree -127 -

6.5 Implementation -128 -
6.5.1 Program Structure to Generate the Tl-tree -129 -
6.5.2 Program Structure of Mining Interval Association Rules from a

Generated Tl-tree -133 -
6.6 Evaluation - 135 -

6.6.1 Experiment Dataset -136-
6.6.2 Time and Memory Consumption Experiments of Generating the

Tl-tree -136 -
6.6.3 Time Consumption Experiments of Mining Interval Association Rules
from the Tl-tree -138 -

6.7 Summary -144-

7 Conclusion and Future Work -145

7.1 Introduction -145

7.2 Summary of Background Research -146
7.3 Summary of the Research Work in This Thesis - 147

7.3.1 Discovering Interval Association Rules -147
7.3.2 A Tree Projection Method for Mining Temporal Association

Rules -148

7.4 Future Research Areas -149
7.4.1 Mining Periodic Association Rules -149
7.4.2 Developing the Memory Management Mechanism for the

Tl-tree -150
7.4.3 Improving the Efficiency of the Tl-tree -150

References -152

Appendix A: Program IARMiner -164

Class IARMiner.java -164

Class ILSList.java -179

Class IntervalList.Java -180

Class IntervalNode .j ava -181

Class Largeltemset.java -183
Class Largeltem.j ava -184

Class Item.java -185

Appendix B: Program Tl-tree -186

Class Tl-tree.java -186
Class Tree.java -190

Class Node.j ava -198

Class ItemSet.java - 200

Class ItemsetList.java - 203

Class Interval.java - 204

Class TimeDomainTransactionCounts.java - 205

Class TimeSeriesPatternCounts.java - 208

- 5 -

List of Figures and Tables

Figure 2.1 Data mining process model - 27
Figure 3.1 SQL code of SETM [Agrawal and Srikant, 1994] - 38
Figure 3.2 Pseudo code of Apriori [Agrawal and Srikant, 1994] - 39
Figure 3.3 Join step of apriori-gen [Agrawal and Srikant, 1994] - 40
Figure 3.4 Prune step of apriori-gen [Agrawal and Srikant, 1994] - 40
Figure 3.5 Algorithm Partition [Savasereet al., 1995] - 45
Figure 3.6 Algorithm Sampling [Toivonen, 1996] - 47
Figure 3.7 FP-tree [Han and Kamber, 2001] - 50
Figure 3.8 Conditional FP-tree [Han and Kamber, 2001] - 52
Figure 3.9 Algorithm of FP-tree construction [Han and Kamber, 2001] - 52
Figure 3.10 Algorithm of FP-tree mining [Han and Kamber, 2001] - 52
Figure 5.1 Interval association rules - 85
Figure 5.2 Strictly long interval - 86
Figure 5.3 Interval combination - 87
Figure 5.4 Searching interval association rule - 88
Figure 5.5 Data structure of interval list - 89
Figure 5.6 Pointers used for interval list - 89
Figure 5.7 Program structure of IARMiner - 93
Figure 5.8 Program structure of step 1 of IARMiner - 95
Figure 5.9 Program structure of step 2 of IARMiner - 97
Figure 5.10 Time consumption of IARMiner - 99
Figure 5.11 Time consumption of IARMiner -100
Figure 5.12 Time consumption of IARMiner - 101
Figure 5.13 Time consumption of IARMiner -101
Figure 5.14 Time consumption of IARMiner -102
Figure 5.15 Time simulation of 1 st step of IARMiner -103
Figure 5.16 Granularity simulation of 1 st step of IARMiner -103
Figure 5.17 Time consumption of IARMiner -105
Figure 5.18 Time consumption of 1 st step of IARMiner -106
Figure 5.19 Time consumption of 2nd step of IARMiner - 107
Figure 5.20 Time consumption of 1 st and 2nd steps of IARMiner -107
Figure 5.21 Time consumption of 1st and 2nd step of IARMiner -108
Figure 5.22 Time consumption of 1 st and 2nd step of IARMiner -108
Figure 5.23 Time consumption of IARMiner and LISeeker -110
Figure 5.24 Time consumption of IARMiner and LISeeker -110
Figure 5.25 Time consumption of IARMiner and LISeeker -111
Figure 5.26 Time consumption of IARMiner and LISeeker -112
Figure 5.27 Time consumption of IARMiner and LISeeker -112
Figure 5.28 Time consumption of IARMiner and LISeeker -113
Figure 6.1 Temporal association rule mining process -117
Figure 6.2 Temporal association rule mining process temporal itemset base -117
Figure 6.3 Tree organised in time series -119
Figure 6.4 Gl-tree linked in time series -120

- 6 -

Figure 6.5 Gl-tree linked by G-list - 120
Figure 6.6 Example of Gl-tree - 122
Figure 6.7 Example of Gl-tree - 124
Figure 6.8 Complex problem of Gl-tree and G-list -125
Figure 6.9 Organisation of Gl-tree and G-list -126
Figure 6.10 Overall program structure of Tl-tree -129
Figure 6.11 Program structure for generating Tl-tree - 130
Figure 6.12 Program structure for generating sub-itemsets -131
Figure 6.13 Program structure for inserting itemset into I-tree -132
Figure 6.14 Program structure for comparing itemset with tree node -133
Figure 6.15 Program structure of beginning of mining -134
Figure 6.16 Program structure of regressive incovation -135
Figure 6.17 Time consumption of generating Tl-tree -137
Figure 6.18 Memory consumption of generating Tl-tree -13 8
Figure 6.19 Time consumption of mining IARs from Tl-tree -139
Figure 6.20 Time consumption of mining IARs from TTD using Tl-tree -140
Figure 6.21 Time consumption of Tl-tree and IARMiner -141
Figure 6.22 Time consumption of Tl-tree and IARMiner -141
Figure 6.23 Time consumption of Tl-tree and IARMiner -142
Figure 6.24 Time consumption of Tl-tree and IARMiner -143

Table 3.1 Transaction dataset for FP-growth [Han and Kamber, 2001]....- 49
Table 3.2 Mining of FP-tree [Han and Kamber, 2001]..- 51
Table 3.3 Values of items [Wang and Tjortjis, 2004]..- 54
Table 3.4 Prices of transactions [Wang and Tjortjis, 2004]....................................- 54
Table 3.5 Large Bit Mark [Wang and Tjortjis, 2004].. - 55
Table 3.6 Frequent itemset table [Wang and Tjortjis, 2004]...................................- 56
Table 3.7 Generating pruned price [Wang and Tjortjis, 2004]............................... - 56
Table 3.8 Pruned prices of transactions [Wang and Tjortjis, 2004]....................... - 56
Table 3.9 Frequent itemset table [Wang and Tjortjis, 2004].........................- 57
Table 3.10 Frequent itemset table [Wang and Tjortjis, 2004]................................ - 58
Table 3.11 Restore pruned prices [Wang and Tjortjis, 2004]..................................- 58

- 7 -

Abstract

Studies on data mining are being pursued in many different research areas, such as

Machine Learning, Statistics, and Databases. The problem of association rules,

motivated by the application of the market basket analysis, forms one of the most

important research areas of the database perspective of data mining. This thesis

considers the unsolved challenge of temporal association rule mining techniques, that

being to directly discover temporal association rules, through two fields.

The focus of the study is on directly searching interval association rules from

temporal transaction datasets, which is the main problem of directly mining temporal

association rules. Some special issues about interval association rules are highlighted

together with the definitions relating to interval association rule mining techniques.

The method introduced for mining interval association rules applies the special

techniques for balancing the two aspects of the interval association rule mining

problem, which are the searching of longest intervals and the searching of association

rules. After the algorithm description and implementation, the efficiency and

effectiveness of this interval association rule mining method are evaluated by using

both synthetic and real business datasets.

The second focus of this thesis is a tree projection algorithm, which will accelerate

most itemset-based temporal association rule mining methods. This delivers the idea

of projecting the temporal transaction dataset into a structured temporal pattern base

to accelerate the temporal association rule mining process. The tree structure is

highlighted for this purpose by introducing the special requirements of its use. This

tree projection method involves projecting the temporal transaction dataset into the

tree and the method of mining temporal association rules from the projected tree.

After the discussion on implementation, which presents the key programming

structures of this method, the evaluation exercise uses a real business sales dataset to

evaluate the efficiency and effectiveness of the technique.

Declaration

No portion of the work referred to in the thesis has been submitted in support of an

application for another degree or qualification of this or any other university or other

institute of learning

Copyright Statement

1. Copyright in text of this thesis rests with the author. Copies (by any process)

either in full, or of extracts, may be made only in accordance with instructions

given by the author and lodged in the John Rylands University Library of

Manchester. Details may be obtained from the Librarian. This page must form

part of any such copies made. Further copies (by any process) of copies made in

accordance with such instructions may not be made without the permission (in

writing) of the Author.

2. The ownership of any intellectual property rights which may be described in

this thesis is vested in The University of Manchester, subject to any prior

agreement to the contrary, and may not be made available for use by third

parties without the written permission of the University, which will prescribe

the terms and conditions of any such agreement.

3. Further information on the conditions under which disclosures and exploitation

may take place is available from the Head of the School of Informatics.

Acknowledgements

There are many people who have contributed to this study. First of all, I wish to offer

my special thanks to my supervisor Dr Ilias Petrounias, who has provided very helpful

information and guidance throughout the whole process of this research. Then, I

would like to express my gratitude to the School of Informatics in the Faculty of

Humanities of the University of Manchester (formerly the Department of

Computation of UMIST) for a range of support, which is certainly vital to the

completion of this thesis.

I would like to give the most faithful thanks to my mother, SuXia Xue, and my

fiancee AoFeng Mu, for their continued financial and emotional support during all

these years. Without their patience, tolerance, and belief in me, the completion of this

thesis would not have been possible.

Particular thanks are also given to Mrs. Yi Qian, mother to my friend JunTao Luo,

who provided me with the precious evaluation data for my research.

It is impossible to list all those people who have contributed to this thesis, and all the

sources of energy I have received, but I would especially like to acknowledge the

sense of balance, pleasure and happiness provided by my two cats, Bora and Soda,

who have unfailingly managed to lighten my spirits during this long research journey.

1 Introduction

1.1 Background

1.1.1 Data Mining

Coupled with the newly-improved data storage and management technologies, the

advances in business, scientific and medical data collections make it quicker and

easier to collect and store data. The explosive growth in databases has provided huge

amounts of data that may contain much important and useful information (knowledge).

This enormity of information is likely to be explored by many organisations or

individuals for making crucial business decisions, and/or for improving their existing

understanding of business behaviour, or medical and scientific phenomena.

Nonetheless, despite their potential, large databases can become ‘data tombs’ [Han

and Kamber, 2001], because human analysts do not have the tools to extract

meaningful information from such huge amounts of data. In order to deal with the

analysis of data in large databases, Data Mining technology is needed.

Data mining is considered to be a step in the Knowledge Discovery in Databases

(KDD) process, which includes other phases such as data pre-processing and pattern

evaluation [Fayyad et al., 1996]. These steps are necessary in order to ensure that the

extracted patterns are useful. Although some components of data mining technology

have been undergoing development for many years in research areas such as statistics,

artificial intelligence, and machine learning, applying these techniques to large

databases is still a challenging problem [Chen, 1999]. The important distinguishing

characteristic of data mining is that the volume of data is assumed to be very large.

Therefore, the running time of a data mining algorithm must be predictable and

acceptable in large databases. Apart from the development of effective and efficient

data mining algorithms for various data mining tasks, many important issues, such as

data mining methodologies, data mining processes, and integrated data mining

environments remain to be studied further [Chen, 1999].

As Hand et al. [Hand et al., 2001] explain, data mining is the science of extracting

useful information from large data sets, lying at the intersection of statistics, machine

learning, data management and databases, pattern recognition, artificial intelligence,

and other areas. It can also be considered as the task of discovering interesting

patterns from large amounts of data where the data can be stored in database, data

warehouse, or other information repositories [Thuraisingham, 1999].

Statistics has been used for data analysis for many years. Over the past years, much

related statistics work has concentrated on hypothesis testing or confirmation [Long et

al., 1991] [Glaymour et al., 1996]. Some estimation techniques [Chowdhury, 1991] in

statistics have also been used in sampling data and dealing with missing values. In

addition, exploratory data analysis is one of the important techniques for data

classification and clustering. A complete survey of statistical perspectives on

knowledge discovery and data mining can be found in [Elder and Pregibon, 1996],

Machine learning is most closely linked with data mining, forming the foundation for

much of the work in the area of knowledge discovery in databases. Decision tree

learning and rule induction [Quinlan, 1986] [Quinlan, 1993] is the major machine

learning technique used for data classification in today’s data mining. Neural

networks have also been used as important tools for building predictive models in

data mining [Lu et al., 1996]. Inductive logic programming (ILP) [Muggleton and De

Raedt, 1994] is a new machine learning technique based on a first-order language.

Recent advances in inductive logic programming [Dzeroski, 1996], such as multiple

predicate learning, inductive data engineering and causal discovery, have drawn great

attention in KDD. Differing from data mining, machine learning is based on the

assumption that training data sets can be accommodated in the memory.

Databases relate to data mining obviously. Ad hoc querying and report generation

supported by relational database management systems (DBMSs) are the most

common tools for traditional data analysis. The newly-developed on-line analytical

processing (OLAP) techniques [Harinarayan et al., 1996] provide users with a new

way to manipulate and analyse data in data warehouses, using multi-dimensional

methods. With OLAP, it is possible to collect statistics and aggregations based on

various groupings of the data. Supporting operations from the database perspective in

data mining systems is an emerging research area in the database community

[Imielinski and Mannila, 1996] [Imielinski et al., 1996] [Chaudhuri, 1998].

Many methods and techniques have been presented by researchers from different

research communities [Thuraisingham, 1999] [Han and Kamber, 2001] [Hand et al.,

2001] [Chen, 1999] [Agrawal et al., 1993] [Cios et al., 1998], each technique typically

suiting some problems better than others. As Chen [Chen, 1999] states, there is no

universal data mining method and choosing a particular algorithm for a specific

application is something of an art. The most important methods of data mining are

classification, clustering, summarisation, regression, sequences and association rules.

As Han and Kamber state in [Han and Kamber, 2001], classification is the process of

finding a set of models or functions that describe and distinguish data classes or

concepts, for the purpose of being able to use the model to predict the class of objects

whose class label is unknown. Clustering analyses data objects without consulting a

known class label. The objects are clustered or grouped based on the principle of

“maximizing the intraclass similarity and minimizing the interclass similarity” [Han

and Kamber, 2001]. Since summarisation is an approach towards characterising data

via a small number of features or attributes, which means one or more sub-sets of the

data are described according to a more general characteristic of this sub-set, it is often

applied to an interactive exploratory data analysis and automated report generation.

Regression involves predicting the value of a given continuous valued variable, based

on the values of other variables, assuming a linear or non-linear model of dependency.

- 1 4 -

Sequences analysis identifies each item in a set of items as associated with its own

timeline of events, and then discovers the dependencies among different events. The

discovery of association rules shows the attribute-value conditions that occur

frequently together in a given set of data. In other words, association rules are used to

identify possible relationships among different record sets or tables within a database.

1.1.2 Temporal Data Mining

One of the main unresolved problems that arise during the data mining process is

treating data that contains temporal information. In this case, a complete

understanding of the entire phenomenon requires that the data should be viewed as a

sequence of events [Antunes and Oliveira, 1998]. The attributes related to the

temporal information present in this type of database need to be treated differently

from other kinds of attributes. However, as Antunes and Oliveira [Antunes and

Oliveira, 1998] point out, most of the data mining techniques tend to treat temporal

data as an unordered collection of events, ignoring its temporal information. Therefore,

the ability to record temporal data in database has created a new mine for knowledge

derivation, further expanding data mining to temporal data.

Depending on the nature of the event sequence, the approach to solve the problem

may be quite different. A sequence composed of a series of nominal symbols from a

particular alphabet is usually called a temporal sequence; and a sequence of

continuous, real-valued elements, is known as a time series [Antunes and Oliveira,

1998]. Both time series and temporal sequences appear naturally in a variety of

different domains, which are described in [Antunes and Oliveira, 1998] as follows:

In engineering ., time series and temporal sequences usually arise with either

sensor-based monitoring or log-based systems monitoring. In scientific areas,

they appear in spatial missions or genetics domain. In finance, applications on

the analysis ofproduct sales or inventory consumptions are o f great importance

to business planning [Antunes and Oliveira, 1998],

Another very common application in finance is the prediction o f the evolution o f

financial data . In healthcare, temporal sequences are a reality fo r decades; with

data originated by complex data acquisition systems, or even with simple ones

like measuring the patient temperature or treatments effectiveness [Antunes and

Oliveira, 1998],

Temporal data mining is defined by [Chen, 1999] as “a set of approaches to deal with

the problem of knowledge discovery from temporal data or database”. The ultimate

goal of temporal data mining is to discover hidden relations between sequences and

sub-sequences of events. The knowledge obtained through temporal data mining is

very important today, and forms one of the main focus fields of data mining [Chen,

1999] [Chen and Petrounias, 1998a] [Antunes and Oliveira, 1998] [Li et al., 1999]

[Ale and Rossi, 2000] [Jensen, 1995] [Saraee and Theodoulidis, 1995].

1.2 Thesis Objectives

Many forms of patterns have been identified by data mining researchers using various

methods. Association rules, motivated by the application of the market basket analysis,

may be applied to various business domains like catalogue design and store layout to

help people gain relevant business knowledge in order to improve the quality of

decision-making. As an extension to association rule problems, temporal issues of

association rules have been recently addressed in [Chen et al., 1998], [Chen and

Petrounias, 1999], [Chen and Petrounias, 2000], [Chen and Petrounias, 2000a],

[Ozden et al., 1998], [Ramaswamy et al., 1998].

The mining of temporal association rules has a two-dimensional solution space, that is,

the space consisting of patterns and temporal features. According to different

restrictions, the problems of mining temporal association rules can be classified into

three groups which are: finding the temporal features of a given association rule,

finding association rules with a given temporal feature, and finding all possible

temporal association rules of a certain kind [Chen et al., 1998]. Most research has

been focused on the first two problems because it was thought that from a practical

point of view, it was too expensive to directly search for all possible hidden temporal

association rules from large databases without any given information, and hence, the

third problem group has not been studied so far. Consequently, this thesis focuses on

that third problem, and tries to directly search for temporal association rules from

temporal transaction datasets.

Previous research work such as that of [Chen, 1999] and [Chen and Petrounias, 1998a]

developed several techniques for discovering the temporal features of a given

association or discovering associations with given temporal clues. Additionally, these

researchers believe that speculations can often be made by experienced experts, and

need only to be validated before being used for decision-making. However, that is not

always the case. A real world application also needs to discover unimaginable

temporal association rules without any speculation. Experts make their speculations

based on the knowledge they already know, and data mining is the technique that

helps in discovering that knowledge, so, experts can not always make speculations

before the knowledge has been discovered.

This thesis will consider the unsolved challenge of temporal association rule mining

techniques, that being to directly discover temporal association rules, through two

fields. The first study focus is on directly searching interval association rules from

temporal transaction datasets, which is the main problem of directly mining temporal

association rules. The second area of this thesis studies a tree projection algorithm,

which will accelerate most itemset-based temporal association rule mining methods.

1.3 Thesis Organisation

This introductory chapter has provided the background to the research topic, through a

brief discussion of data mining, and temporal data mining. It has then presented the

objectives of the research.

Chapter Two - Literature Review: Data Mining

The purpose of Chapter Two is to present and further analyse the area of investigation

for this research. First of all, the motivation for data mining is introduced in order to

- 1 7 -

establish its origin. Then, data mining is defined and briefly discussed before attention

is turned to data mining approaches, the data mining process, and data mining

techniques. Two data mining approaches are presented and six mining techniques are

briefly considered.

Chapter Three - Literature Review: Association Rule Mining

As one of the most important techniques of data mining, and the research concern of

this thesis, association rule mining forms the basis of Chapter Three. The definition of

association rules is presented at the start of the chapter, and this is followed by the

definition of frequent itemset, which is the core of association rule mining. Several

algorithms, including AIS, SETM, Apriori, AprioriTid, AprioriHybrid, Partition and

Sampling are then discussed in detail, and a comparison of these algorithms is given

to present the best features of each. Finally, as most Apriori-based algorithms use the

process o f ‘generating and counting candidate itemsets’, an alternative way of mining

frequent itemsets without candidate generation and mining association rules using

logical operations is introduced at the end of the chapter.

Chapter Four - Literature Review: Temporal Data Mining

As the other concern of this thesis, temporal data mining forms the main content of

Chapter Four and appears to support the research area of temporal association rule

mining. The chapter details how the data mining process is extended to extract

knowledge through temporal data, and clarifies issues related to the temporal data

mining field. Firstly, an overview of temporal data mining is given to establish the

background. Then, the motivation of temporal data mining, which is the potential

knowledge in temporal databases, is discussed. Previous research studies about

temporal data mining are then classified into four groups, these being: association

rules, classification, clustering, and prediction. This is done in order for the next two

sections to be able to clearly discuss temporal data mining, temporal features and

representation of temporal features. Finally, the literature relating to temporal

association rule mining techniques is discussed.

Chapter Five - Discovering Interval Association Rules

As one of the research areas of this thesis, an algorithm called IARMiner (Interval

Association Rule Miner) that directly searches interval association rules from

temporal transaction datasets, is discussed in Chapter Five. Firstly, since most of the

background concerning interval association rule mining problems is discussed in

previous chapters, some special issues about interval association rules are highlighted

with the definitions relating to the interval association rule mining technique. Then,

the algorithm IARMiner is introduced through the longest interval searching

technique and association rule searching technique. The following section provides

the actual description of the algorithm, before the section on implementation

introduces the method and structure for realising IARMiner at some key points.

Finally, the efficiency and effectiveness of IARMiner are evaluated by using both

synthetic and real business datasets.

Chapter Six - A Tree Projection Method for Mining Temporal Association Rules

Chapter Six is the other research area of this thesis. It delivers a tree projection

method called Tl-tree to project temporal transaction datasets into a tree structure,

which will accelerate the temporal association rule mining process. After introducing

the idea of using a projected tree to speed up the mining process, Chapter Six

discusses the tree structure and the special requirements of its use. Then, the method

of mining temporal association rules from a projected tree produces the requirements

for realising a tree, after which an improved tree structure is introduced to overcome

some of the disadvantages. After the discussion on implementation, which presents

the key program structures of this tree projecting method, the evaluation exercise uses

both real business and synthetic datasets to evaluate the efficiency and effectiveness

of the method.

Chapter Seven - Conclusion and Future Work

The purpose of Chapter Seven is to provide a summary of the research performed in

this thesis, highlight the main points, and propose ideas for future research. Thus, a

- 1 9 -

comprehensive picture of the entire thesis is presented, outlining the main issues

covered throughout. Additionally, based on the evaluations of Chapter Five and

Chapter Six, potential improvements to the two algorithms are discussed with a view

identifying further research possibilities.

Appendixes - two appendixes present the actual code of the programs which are

realised to evaluate the algorithm IARMiner and the Tl-tree. These two programs are

coded using the Java programming language on the platform of Microsoft Visual J++

6.0. The programs only realised the algorithms for evaluation, and not for a real

application.

2 Data Mining

2.1 Introduction

Data mining is a relatively new technology that in recent years has been recognised as

a promising new area for database research [Thuraisingham, 1999]. This chapter will

describe data mining technology in several different aspects: data mining motivation,

data mining and knowledge discovery in databases definition, data mining approaches,

the data mining process, and data mining techniques. All these aspects will be

summarised and some important research issues and challenges will be discussed. In

this way, a complete and comprehensive understanding of the data mining area is

provided to support the major concern of this thesis.

2.2 Motivation of Data Mining

Database technology has been characterised as employing advanced data models such

as extended-relational, object-oriented, object-relational, and deductive models since

the mid-1980s [Thuraisingham, 1999]. Issues related to the distribution,

diversification, and sharing of data have been studied extensively. Han and Kamber

[Han and Kamber, 2001] note that heterogeneous database systems and Internet-based

global information systems such as the World Wide Web have emerged and play a

vital role in the information industry. In addition, they point out that the amazing

progress of computer hardware technology provides a great boost to the database and

information industry, and makes a huge number of databases and information

repositories available for transaction management, information retrieval, and data

analysis.

Data can be stored in many different types of databases. One database architecture

that has emerged is the data warehouse, which includes data cleaning, data integration,

and On-Line Analytical Processing (OLAP) [Hand et al., 2001]. Furthermore, as

Thuraisingham [Thuraisingham, 1999] mentions, a number of additional data analysis

tools are required for in-depth analysis, such as data classification, clustering, and the

characterisation of data changes over time.

However, the abundance of data, coupled with the need for powerful data analysis

tools has been described as a ‘data rich but information poor’ situation [Hand et al.,

2001]. Han and Kamber [Han and Kamber, 2001] observe that “data collected in large

databases become ‘data tombs’, important decisions are often made based not on the

information-rich data stored in databases but rather on a decision maker’s intuition,

because the decision maker does not have the tools to extract the valuable knowledge

embedded in the vast amounts of data”.

For this reason, the widening gap between data and information calls for the

systematic development of data mining tools that will turn data tombs into ‘golden

nuggets’ of knowledge [Han and Kamber, 2001]. As Hand et al. [Hand et al., 2001]

- 2 2 -

explain, data mining tools are able to perform data analysis and uncover important

data patterns, contributing greatly to business strategies, knowledge bases, and

scientific and medical research.

2.3 Data Mining

2.3.1 Knowledge Discovery in Databases

As Thuraisingham [Thuraisingham, 1999], Han and Kamber [Han and Kamber, 2001],

and Hand et al. [Hand et a l, 2001] state, data mining refers to extracting or mining

knowledge from large amounts of data. However, many people treat data mining as a

synonym for another popularly-used term, Knowledge Discovery in Databases (KDD).

Alternatively, others view data mining as an essential step in the process of

knowledge discovery in databases [Thuraisingham, 1999] [Han and Kamber, 2001].

Definitions for each are as follows [Fayyad et al., 1996]:

Data Mining is a step in the KDD process consisting o f particular data mining

algorithms that, under some acceptable computational efficiency limitations,

produce a particular enumeration o f patterns over databases [Fayyad et al,

1996].

The KDD process uses data mining methods (algorithms) to extract what is

deemed knowledge according to the specifications o f measures and thresholds,

using the database along with any required preprocessing, sub-sampling, and

transformation o f database [Fayyad et al, 1996].

In this way, KDD refers to the overall process of discovering useful knowledge from

data, while Data Mining refers to the application of algorithms for extracting patterns

from data without the additional steps of the KDD process, such as incorporations of

appropriate prior knowledge and proper interpretation of the results.

2.3.2 Data Mining

Thuraisingham [Thuraisingham, 1999] defines data mining as follows:

Data mining is the process o f posing various queries and extracting useful

information, patterns, and trends often previously unknown from large

quantities o f data possibly stored in database [Thuraisingham, 1999],

Hand et al. [Hand et al„ 2001] also describe data mining as the automatic exploration

and analysis of huge amounts of data in order to extract meaningful patterns or rules

that are hidden in a large database. Examples of such patterns or rules might be the

association among the items that are purchased by customers in a supermarket

database, an increasing trend in the price of a share in a stock market database, and

the common characteristic of symptoms among a group of patients recorded in a

medical database.

As Chen [Chen, 1999] argues, the potential applications of data mining can be

grouped into three different domains: business, science and medicine. Chen [Chen,

1999] states that data mining is being used in a variety of business areas, such as

marketing, finance, banking, insurance, etc. as many applications have shown the

value of data mining in improving abilities to compete in business. In the scientific

domain, a tremendous amount of raw data is collected from observations, experiments

and simulations, but there is a widening gap between the abilities to collect that data

and the resources to analyse it. Consequently, data mining is playing an increasingly

more important role in the analysis of scientific data in various disciplines. Chen

[Chen, 1999] also points out that a great number of medical databases, where a huge

amount of knowledge may be potentially held, have been built. By using data mining

technology, many research results have been reported on extracting different kinds of

knowledge from various medical databases, for example, healthcare and patient-

record databases.

Agrawal et al. [Agrawal et al,, 1993] conclude that data mining is a new technology

with great potential to help people uncover important information hidden in their

databases or data warehouses.

2.4 Data Mining Approaches

As Berry and Linoff [Berry and Linoff, 1997], Thuraisingham [Thuraisingham, 1999],

and Chen [Chen, 1999] explain, there are two approaches which can implement the

data mining process on a database: ‘top-down’ and ‘bottom-up’ methodologies. Berry

and Linoff [Berry and Linoff, 1997] state that these methodologies are neither the

outcomes nor the techniques, but are rather, the steps one would take to perform the

mining.

2.4.1 Top-down Approach

The top-down approach starts with a hypothesis proposed by domain experts. The

hypothesis is validated or denied by testing it with the data in the database, and hence,

the methodology is also known as hypothesis testing.

Agrawal et al. [Agrawal et al., 1993] state that hypothesis testing is about generating

ideas, developing models, and then evaluating the model to determine whether the

hypothesis is valid. The user begins with a hypothesis and uses data to refute or

confirm it. Consequently, the rationale for the specific approach is that after the

hypothesis is set, a series of techniques will be used to mine the data and test or prove

the validity of the hypothesis. The most common techniques applied in this case

concern statistical analysis, such as regression modelling, and multi-dimensional

analysis.

2.4.2 Bottom-up Approach

The bottom-up approach is also known as knowledge discovery [Thuraisingham,

1999] [Han and Kamber, 2001] [Berry and Linoff, 1997]. It is different from the top-

down approach as no initial hypothesis is set. As Thuraisingham [Thuraisingham,

1999] mentions, “this is much harder as the tool has to examine the data and then

come up with patterns”. In this way, the mining process is initialised in the database

to discover knowledge that was previously unknown. Popular techniques and methods

implemented in this approach include clustering, decision trees, summarisation,

association rules, and neural models. In general, these techniques are applied to

examine the data and identify meaningful patterns that are unknown in advance.

As Thuraisingham [Thuraisingham, 1999] illustrates, a combination of both top-down

and bottom-up mining, named the ‘hybrid approach’, is possible. The mining process

can be initialised with a bottom-up approach to identify unknown patterns, and

thereafter a hypothesis can be set for these patterns. Finally a top-down approach can

be used to test the hypothesis, and thus, the tool can switch between top-down and

bottom-up mining.

2.5 Data Mining Process

Data mining forms a specific step within an overall process for discovering

knowledge in databases. In several cases, it can also be identified as a process in its

own right [Srikant and Agrawal, 1996] [Thuraisingham, 1999] [Chen, 1999]. A series

of different attempts have been made to adequately describe all the different steps

involved in the data mining process.

The data mining process involves acquiring all necessary knowledge relating to the

client, and concentrating on a particular domain of data. Chen [Chen, 1999] provides

a generalised view of the data mining process, showing the main activities being

divided into three essential steps. Firstly, the data is prepared by determining a

specific target source, applying the potential data transformation, and representing the

cleaned data in a reflective and understandable way. Following this, the actual data

mining occurs by choosing the corresponding techniques and algorithms to discover

the patterns of hidden information, and then achieving the interesting outcomes.

Finally, results explanation and interpretation is performed by analysing and

evaluating the patterns obtained in the previous steps.

Fayyad et al. [Fayyad et al., 1996] present a more detailed data mining process, which

is comprised of a series of nine fundamental sequential activities: clean or pre-process

the target data, identify the potential reflective views for the data, define and select the

desired data outcomes by implementing the appropriate algorithms, generate and

represent the interesting patterns using an explicit method, and finally, assemble and

organise the obtained knowledge.

Although several different approaches regarding the steps included in the data mining

process exist, all follow a similar rationale and attempt to meet certain requirements in

order for the process to be efficient and effective. They all require a specific, well-

defined and clean set of data on which mining will be applied, determination of the

desired outcomes, selection of the proper techniques and methods, and finally

accurate results interpretation and evaluation.

Based on this summarisation, a descriptive model of the data mining process is

provided in Figure 2.1.

Prepare the Target Data

Results Interpretation

Specify the Target Data and Determine the Outcome

Select and Apply the Techniques and Methods

Results Evaluation

Figure 2.1 Data mining process model

Step 1: Specify the Target Data and Determine the Outcome

This step identifies the internal or external sources of information, and selects

which sub-set of the data is needed for the data mining. As Hand et al. [Hand et

al., 2001] point out, the objectives drive the entire data mining process. This

step also defines the objectives of the mining process and specifies patterns.

Step 2: Prepare the Target Data

This step involves data sampling and quality testing. It performs potential joins,

removes nulls and duplicates, and corrects invalid entries. Its aim is to ensure

the quality of the selected data.

Step 3: Select and Apply the Techniques and Methods

This step selects the appropriate algorithms to accomplish the outcomes. A

number of techniques and methods can be selected, for example, classification,

association rules, clustering, summarisation, etc.

Step 4: Results Interpretation

This step maps knowledge acquired and perceives results. It interprets and

evaluates the output according to the data mining operation. This step often

requires a return to the data preparation stage.

Step 5: Results Evaluation

This step closes the whole loop. There are two challenges in this step, one is to

present the new findings in a user-oriented way; the other is to formulate the

ways in which the new information can be best exploited.

- 2 8 -

2.6 Mining Techniques

Many methods and techniques have been presented by researchers from different

research communities [Thuraisingham, 1999] [Han and Kamber, 2001] [Hand et al.,

2001] [Chen, 1999] [Agrawal et al., 1993] [Cios et al., 1998], each technique typically

suiting some problems better than others. As Chen [Chen, 1999] states, there is no

universal data mining method and choosing a particular algorithm for a specific

application is something of an art. In the following sub-section, discussions are

focused on just some of the data mining techniques for several typical tasks in the

database community.

2.6.1 Classification

The purpose of classification is to develop training sets with pre-classified examples,

and then build a model that fits the description of the classes. This model is then

applied to the data not yet classified and results are obtained. As Han and Kamber

[Han and Kamber, 2001] state, classification is the process of finding a set of models

or functions that describe and distinguish data classes or concepts, for the purpose of

being able to use the model to predict the class of objects whose class label is

unknown. The derived model is based on the analysis of a set of training data, for

which the class label is known.

Data classification is widely used in credit approval, target marketing, medical

diagnosis, treatment effectiveness analysis, performance prediction, etc. An example

in medical diagnosis is the classification of a set of diseases and the provision of

symptoms which describe each class or sub-class.

2.6.2 Clustering

In this case, clustering analyses data objects without consulting a known class label.

The objects are clustered or grouped according to the principle of “maximizing the

intraclass similarity and minimizing the interclass similarity” [Han and Kamber,

2001]. In other words, the clusters are determined by examining the attributes of the

relations in terms of continuity, or statistically, and also depending on the

requirements of each case and the relationships among the data. As Thuraisingham

[Thuraisingham, 1999] states, “clustering is a challenging field of research where its

potential applications pose their own special requirement, the measures used in each

case are determined depending on the requirements of each case and the relationships

among the data”.

The main difference between clustering and classification is that the clusters are

created according to certain similarities characterising the group of records, whereas

the classes are pre-defmed.

2.6.3 Summarisation

As Thuraisingham [Thuraisingham, 1999] describes, summarisation provides a more

abstract summary of the sub-set of data, and can be the mean or the standard deviation

of a particular record set. Han and Kamber [Han and Kamber, 2001] also mention that

summarisation is often applied to an interactive exploratory data analysis and

automated report generation. In more detail, summarisation is an approach towards

characterising data via a small number of features or attributes, which means one or

more sub-sets of the data are described according to a more general characteristic of

the sub-set. An example of summarisation is where a number of different salaries are

described according to a mean approximation for different ages of employees.

2.6.4 Regression

Regression involves predicting a value of a given continuous valued variable, based

on the values of other variables, assuming a linear or non-linear model of dependency.

Cios et al. [Cios et al., 1998] point out that the extent, to which the regression model

properly describes the data, depends on the character of data. In other words,

regression is used in cases where the predicted output can take on many, or unlimited

possible values. The underlying idea of regression is to construct a linear or non-linear

function: y - f i x , a) to explain the data.

2.6.5 Sequences

Sequence analysis identifies each item in a set of items as associated with its own

timeline of events, and then discovers the dependencies among different events. In

this way, the deviation or the activities of a process over time are revealed. In other

words, sequence rules can be viewed as a special case of association rules, which

mine the frequently-occurring patterns related to time or other sequences. This

technique is useful for targeted marketing, customer retention, and weather prediction,

as many business transactions are time-sequence data. As Han and Kamber [Han and

Kamber, 2001] discuss, a sequence analysis could show the time when a specific item

was purchased in relation to certain other relating goods. The same results could be

generated for events or any type of record whose occurrence is temporarily related

with other records.

2.6.6 Association Rules

The discovery of association rules shows the attribute-value conditions that occur

frequently together in a given set of data. In other words, association rules are used to

identify possible relationships among different record sets or tables within a database,

expressed according to certain degrees of support and confidence. The support of a

rule is the portion of transactions that the rule concerns. The confidence of a rule is

the probability that a transaction containing X also contains Y . Assuming m is the

number of transactions in D that contain^, n is the number of transactions in D

that contain X u f , and k is the number of transactions in Z), the confidence c of a

rule X =$ Y in the transaction set D can be calculated by c = m / n , and the support

s of a rule X => Y in the transaction set D is evaluated by s = n /k .

An association rule between two items X and Y means that the presence of A in a

record also implies the presence of Y in the same record. The discovery of such

association helps retailers to develop marketing strategies by gaining insights into

which items are frequently purchased together by customers. Association rules

analysis is widely used for market basket or transaction data analysis, and also helps

in many business decision-making processes.

2.7 Summary

The emphasis in this chapter has been on basic data mining concepts and techniques

for uncovering interesting data patterns hidden in large data sets. Firstly, this chapter

demonstrated how data mining is part of the natural evolution of database technology,

why data mining is important, and how it is defined. Thereafter, the different

approaches and the issues involved in the data mining process were reported and

explained. Furthermore, because data mining involves various techniques and

representation methods, a discussion of these primary techniques was presented.

3 Association Rule Mining

3.1 Introduction

This chapter focuses on association rules analysis, and will explore the concept of

association rules. The discovery of interesting association relationships among huge

amounts of business transaction records can help in many business decision-making

processes. A typical example is market basket analysis, which helps the retailer to

develop marketing strategies by gaining insight into which items are frequently

purchased together by customers.

The discovery of frequent itemsets will be presented next. This step generates the

candidate itemsets and counts their support. Because the overall performance is

determined in this step, most algorithms focus on reducing the numbers of generated

candidates and the numbers of scans at this point. Following this, a number of

algorithms will be introduced for discovering significant association rules between

items in a large database of transactions, among them AIS, SETM, Apriori,

AprioriTid, AprioriHybrid [Agrawal and Srikant, 1994], Partition [Savasere et al.,

1995] and Sampling [Toivonen, 1996]. Additionally, an alternative way of mining

association rules without generating candidates, called FP-growth [Han et al., 2000],

and a special method of mining association rules using logical operations, named

PRICES [Wang and Tjortjis, 2004] will be presented.

- 3 3 -

3.2 Association Rules

Mining association rules is one of the important data mining applications [Agrawal

and Srikant, 1994] [Agrawal et al., 1993a] [Srikant and Agrawal, 1996]. Since the

concept of association rules was first introduced by Agrawal for the ‘market-basket’

analysis purpose, the discovery of association rules has been extensively studied in

several ways. There are numerous applications that fit into this framework, the

supermarket being a canonical example. The items are products and the baskets are

customer purchases at the checkout. By using association rules analysis, the

supermarket manager can determine what products customers are likely to buy

together, which can be very helpful for planning and marketing.

In general, as Agrawal and Srikant [Agrawal and Srikant, 1994] describe, association

rule analysis focuses on a database that consists of a large collection of transactions,

where each transaction is a collection of data items. Discovering association rules

refers to the identification of relationships between the appearances of various items

within the sub-sets (baskets). Agrawal and Srikant [Agrawal and Srikant, 1994] also

show that for a given set of transactions, the problem of mining association rules is to

generate all association rules that have support and confidence greater than the user-

specified minimum support and minimum confidence respectively. ‘Support’

represents the portion of transactions in a set of transactions, and ‘confidence’ denotes

the probability that a transaction that contains X will also contain Y [Agrawal and

Srikant, 1994] [Agrawal et al., 1993a] [Srikant and Agrawal, 1996] [Bayardo and

Agrawal, 1999] [Sarawagi et al., 1998], The confidence of a rule reveals how often it

can be expected to apply, while its support indicates the trustworthiness of the entire

rule. For a rule to be relevant, enough support and sufficient confidence are necessary.

Agrawal and Srikant [Agrawal and Srikant, 1994] define association rules as follows:

“Let / = be a set o f literals, called items. Let D be a set o f

transactions, where each transaction T is a set o f items such thatT c; I .W e say

that a transaction T contains X , a set o f some items in I , i f X c T . An

- 3 4 -

association rule is an implication o f the form X => Y , where X c I , Y a I

and X n 7 - 0 . The rule X -=> Y holds in the transaction set D with

confidence c i f c% o f transactions in D that contain X also contain Y . The

rule X :=> Y has support s in the transaction set D i f s% o f transactions in

D contain X k j Y ” [Agrawal and Srikant, 1994].

For example, if there are two sets of items X and Y , and an association rule between

them is an expression of the form X => Y , denoting the presence of X in one

transaction will also imply the presence of Y in the same transaction [Agrawal and

Srikant, 1994] [Agrawal et al., 1993a] [Srikant and Agrawal, 1996]. An example of an

association rule could be given in a student bookshop database, showing that 25%

(support) of students who purchase science books also buy fiction books, with a

probability of 85% (confidence). In this case, X - ‘science books’, Y = ‘fiction

books’, there are 25% of transactions that contain the items science books and fiction

books, and 85% of transactions that have the item science books also have the item

fiction books in them.

3.3 Discovering Frequent itemsets

The association rules will be generated from the frequent itemsets. As Megiddo and

Srikant [Megiddo and Srikant, 1999] describe, the general idea of generating

association rules is that if AB and A are both frequent itemsets, one can determine

that the rule A^> B holds, if the value of confidence{AB) is greater than the

minimum confidence.

Most association rule algorithms follow a basic scheme. However, different

algorithms separate rule construction from finding frequent itemsets. This section will

focus on the basic role of counting frequent itemsets used in most of the algorithms.

In the next section, algorithms for finding frequent itemsets will be discussed.

3.3.1 Frequent Itemset Discovery

As Agrawal and Srikant [Agrawal and Srikant, 1994] state, the algorithms for

discovering frequent itemsets make multiple passes over the data. In the first pass, the

algorithms count the support of individual items and determine which of them are

frequent. The basic method which every algorithm follows is to create a set of

itemsets, called candidates. In each subsequent pass, the algorithms start with a seed

set of itemsets found to be frequent in the previous pass. The algorithms use this seed

set for generating new potentially frequent itemsets. These are candidate itemsets. The

algorithm counts the actual support for the candidate itemsets during the pass over the

data. At the end of the pass, the algorithm determines which of the candidate itemsets

are actually frequent, and they become the seed for the next pass. This process

continues until no new frequent itemsets are found.

As counting the occurrences of a candidate set affects the amount of the processing

memory and time, reducing the number of candidates generated by the algorithm and

the number of passes over the database becomes the goal of the performance

optimisation.

3.3.2 Association Rule Construction

Possible association rules can be generated and their confidence can be determined, as

long as all frequent sets and support values are available. The minimum confidence

level determines whether the rule is accepted or discarded. For example, if AB is a

frequent itemset, the confidence(A ==> B)~ suPPort^ ^) . determines if the rule
support [A)

A^> B holds. If confidence(A => B)> minimum confidence , the rule holds. If

confidence(A B)< minimum confidence , the rule fails, and no sub-sets of its

antecedent need to be further considered.

3.4 Association Ruie Algorithms

3.4.1 AIS

The concept of association rules was first introduced by Agrawal et al. [Agrawal et al.,

1993a], who then discussed the AIS algorithm in [Agrawal and Srikant, 1994],

Candidate itemsets are generated and counted on the fly as the database is scanned.

After reading a transaction, it is determined which of the itemsets that were found to

be frequent in the previous pass, are contained in this transaction. Extending these

frequent itemsets with other items in the transaction generates new candidate itemsets.

These frequent itemsets are called frontiers, and the candidates are called extensions.

A frequent itemset / is extended with only those items that are frequent and occur

later in the lexicographic ordering of items more frequent than any of the items in I .

The extensions are generated when a transaction that supports a frontier set is read.

The candidates created from a transaction are added to the set of candidate itemsets

maintained for the pass, or the counts of the corresponding entries are increased if

they were created by an earlier transaction. After a complete pass through all

transactions, the candidates with more frequent than the minimum support, become

the new frontier sets, the next extension phase begins and continues until no frontier

sets have been found. This implies that none of the previous candidates are frequent.

However, the AIS algorithm does not lead to efficient performance, mainly because it

creates a large number of candidates, and uses a sophisticated pruning technique to

decide if an extension should be included in the candidate set. Further details of the

AIS algorithm can be found in [Agrawal and Srikant, 1994].

3.4.2 SETM

The SETM algorithm [Agrawal and Srikant, 1994] was motivated by the desire to use

SQL to compute frequent itemsets. As with the AIS algorithm, SETM generates

candidates on the fly based on transactions read from the database. However, SETM

uses the standard SQL join operation for candidate generation. It uses its own data

representation to store every itemset supported by a transaction along with the

transaction’s ID (TID).

As Agrawal and Srikant [Agrawal and Srikant, 1994] state, SETM separates candidate

generation from counting. It saves a copy of the candidate itemset together with the

TID of the generating transaction in a sequential structure. At the end of the pass, the

support count of candidate itemsets is determined by sorting and aggregating this

sequential structure. The SQL code of SETM is shown in Figure 3.1.

insert into Ck+l
select a.TID, a.item,, a.item2 itemk,b.itemk
from Lka, Lkb
where a.TID - b.TID, a.item, = b . i t e m ,a . i t e m k., — b.itemk_,, a,itemk <b.itemk

Figure 3.1 SQL code of SETM [Agrawal and Srikant, 1994]

The advantage of SETM is that it remembers the TIDs of the generating transactions

with the candidate itemsets, SETM can easily find the frequent itemsets contained in

the transaction read, and therefore, the sub-set operation is avoided. Agrawal and

Srikant [Agrawal and Srikant, 1994] point out that SETM only needs to visit every

member of Lk once in the TID order and the candidate generation can be performed

by using the relational merge-join operation.

The disadvantage of this algorithm is due to the size of candidate sets. For each

candidate itemset, the candidate set has as many entries as the number of transactions

in which the candidate itemset is present. Moreover, these huge relations have to be

sorted twice on the TID before they can be used for generating candidates in the next

pass. In this way, the inefficiencies of SETM have outweighed its advantage.

3.4.3 Apriori

This, and the following sections discuss two algorithms for finding association rules:

Apriori and AprioriTid, that are fundamentally different to AIS and SETM in terms of

which candidate itemsets are counted in a pass, and in the way that those candidates

are generated.

Apriori was proposed by Agrawal and Srikant in [Agrawal and Srikant, 1994]. It

separates candidate generation from support counting, which causes two major effects.

Firstly, it reduces the number of generated candidates. Secondly, it increases

efficiency in the support counting step. For this reason, most of the more recent

association rule algorithms are variations of Apriori.

The pseudo code of Apriori (Figure 3.2) is taken from Agrawal and Srikant [Agrawal

and Srikant, 1994], who state that the first pass of the algorithm simply counts item

occurrences to determine the frequent 1 - itemsets. A subsequent pass consists of two

phases.

First, the frequent itemsets I A._, found in the (k - \) th pass are used to generate the

candidate itemsets Ck, by using the apriori-gen function.

Next, the database is scanned and the support of candidates in Ck is counted. For fast

counting, it is necessary to efficiently determine the candidates in Ck that are

contained in a given transaction t .

Apriori candidate generation: apriori-gen

The apriori-gen function consists of two steps [Agrawal and Srikant, 1994]: the join

step and the prune step. It takes as argument LkA , the set of all frequent

1)
2)
3)
4) forall transactions t <= D do begin
5) C, = subset(CA ,t}> //Candidates contained in t
6) forall candidates c e C(do
7) c.count+ +
8) end
9) Lk = {c e CA | c.count > minsup}
10) end
11) Answer = [jkLk;

Figure 3.2 Pseudo code of Apriori [Agrawal and Srikant, 1994]

(* - 1) -item sets , In other words, it returns a superset of the set of all frequent

k-item se ts . As Agrawal and Srikant [Agrawal and Srikant, 1994] state, apriori-gen

is successful in reducing the number of candidates that has been used in most

proposed algorithms.

In the join step, apriori joins Lk_x with Lk_x to generate potential candidates. As

Agrawal and Srikant [Agrawal and Srikant, 1994] state, this step is equivalent to

extending Lk_x with each item in the database and then deleting those itemsets for

which the (k - \) ~ itemset obtained by deleting the (k - \)th item is not in Lk_x. As

shown in Figure 3.3, the condition p.itemk_x <q.itemk_x simply ensures that no

duplicates are generated. Thus, after the join step, Lk Ck. For example, let I3 be

{{l 2 3}, {l 2 4}, {l 3 4}, {l 3 5}, {2 3 4}}. After the join step, C4 will be {{l 2 3 4}, {l 3 4 5}}.

insert into Ck
select p.itemx, p.item2, * ■ •, p.itemk_x, q.itemk_x
from p ,L t_x q
wherep.itemx = q.itemx,"',p ,item k̂ 2 = q.itemk_2ip item k_x <q.itemk_x\

Figure 3.3 Join step of apriori-gen {Agrawal and Srikant, 1994]

In the prune step, apriori deletes all itemsets c e C k> such that some (k - l) - sub - set

of c is not in Lk_x , which is presented in Figure 3.4. In other words, all

(* - 1) - sub - sets of each candidate are tested for membership in Lk_x. If one sub-set

does not exist in Lk_x, the candidate is deleted. Using the same example as above, this

step will delete the itemset {134 5} because the itemset {l 4 5} is not in L ,, and then

leave with only {123 4} in C4.

forall itemsets c e Ck do
forall (ji - 1) - subsets s o f c do

if (s g L^Jthen
delete c from Ck;

Figure 3.4 Prune step of apriori-gen [Agrawal and Srikant, 1994]

The sub-set function increases the efficiency in the support count step. A set of

candidate k - itemsets Ck and a transaction t are considered as input, and the set of

k - itemsets that are contained in the transaction Ct are given as output.

Candidate itemsets Ck are stored in a hash-tree. Agrawal and Srikant [Agrawal and

Srikant, 1994] discussed the sub-set function in detail. A node of the hash-tree either

contains a list of itemsets (a leaf node) or a hash table (an interior node). In an interior

node, each bucket of the hash table points to another node. The root of the hash-tree is

defined to be at depth 1. An interior node at depth d points to nodes at depth d +1.

Itemsets are stored in the leaves. When an itemset c is added, it starts from the root

and goes down the tree until it reaches a leaf. At an interior node at depth d , a branch

is followed by applying a hash function to the d ,h item of the itemset. All nodes are

initially created as leaf nodes. When the number of itemsets in a leaf node exceeds a

specified threshold, the leaf node is converted to an interior node.

3.4.4 AprioriTid

The interesting feature of AprioriTid is that the database D is not used for counting

support after the first pass. Rather the set Ck in the previous pass is used for this

purpose. Apriori has to read the entire database in each pass, although many items and

transactions are no longer needed in later passes. Counting the sets of the impossible

candidates causes expensive effort in performance. For this reason, AprioriTid

employs an encoding of the candidate itemsets for this purpose. In the later passes, the

size of this encoding can become much smaller than the database, thus saving much

reading effort.

Agrawal and Srikant [Agrawal and Srikant, 1994] present AprioriTid that also uses

the apriori-gen function to determine the candidate itemsets before the pass begins.

Each member of the set C[is of the form (TID, {Xk}}, where each X k is a potentially

frequent k - itemset present in the transaction with identifier TID.

-41 -

For k = 1, C(corresponds to the database D , although conceptually each item i is

replaced by the itemset {/}.

For k > 1, C[is generated by the algorithm. The member of Ck corresponding to

transaction t is (t.TID, {c e C* | c contained in tty .

If a transaction does not contain any candidate k - itemset, then Ck will not have an

entry for this transaction. Thus, the number of entries in C[may be smaller than the

number of transactions in the database, especially for large values of k .

For large values of k , each entry may be smaller than the corresponding transaction

because very few candidates may be contained in the transaction.

For small values of k , each entry may be larger than the corresponding transaction

because an entry in Ck includes all candidates k - itemsets contained in the

transaction.

3.4.5 AprioriHybrid

As Agrawal and Srikant [Agrawal and Srikant, 1994] point out, Apriori and

AprioriTid use the same candidate generation procedure and, therefore, count the

same itemsets. In the earlier pass, Apriori does better than AprioriTid. However, in

the later passes, the number of candidate itemsets reduces, but Apriori still examines

every transaction in the database. On the other hand, rather than scanning the database,

AprioriTid scans C'k for obtaining support counts, and the size of C[has become

smaller than the size of the database. In this way, AprioriTid beats Apriori in later

passes.

Based on such observation, Agrawal and Srikant design a hybrid algorithm, called

AprioriHybrid, that uses Apriori in the initial passes and switches to AprioriTid when

it expects that the set C'k at the end of the pass will fit in memory. The size of the C\

should be estimated if C'k would fit in memory in the next pass. If C[in this pass is

small enough to fit in memory, and there are fewer frequent candidates in the current

pass than in the previous pass, it can switch to AprioriTid.

In general, the advantage of AprioriHybrid over Apriori depends on how the size of

the Ck set declines in the later passes, as switching from Apriori to AprioriTid does

involve a cost. Agrawal and Srikant [Agrawal and Srikant, 1994] point out that

AprioriHybrid may incur the cost of switching without realising the benefits in some

particular situations. For example:

If C[remains large until nearly the end and then has an abrupt drop, it will not gain

much by using AprioriHybrid, since it can use AprioriTid only for a short period of

time after the switch.

If there is a gradual decline in the size of Ck, AprioriTid can be used for a while after

the switch. A significant improvement can be obtained in the execution time.

3.4.6 Apriori-Iike Algorithms Comparison

In both AIS and SETM, candidate itemsets are generated on the fly during the pass as

data is being read. Specifically, after reading a transaction, it is determined which of

the itemsets found to be frequent in the previous pass are present in the transaction.

As Agrawal and Srikant [Agrawal and Srikant, 1994] point out, the major

disadvantage is that this results in unnecessarily generating and counting too many

candidate itemsets that turn out to be small.

Apriori and AprioriTid differ fundamentally from AIS and SETM in terms of which

candidate itemsets are counted in a pass, and in the way that those candidates are

generated. Agrawal and Srikant [Agrawal and Srikant, 1994] describe how Apriori

and AprioriTid generate the candidate itemsets to be counted in a pass by using only

the itemsets found to be frequent in the previous pass - without considering the

transactions in the database. This results in the generation of a much smaller number

of candidate itemsets. In addition, AprioriTid does not use database for counting the

support of candidate itemsets after the first pass. Rather, it employs an encoding of the

candidate itemsets used in the previous pass for this purpose. As the size of this

encoding can become much smaller than the database, it saves much reading effort.

Furthermore, the best features of Apriori and AprioriTid can be combined into

AprioriHybrid. AprioriHybrid scales linearly with the number of transactions, and has

excellent scale-up properties with respect to the transaction size and the number of

items in the database. It opens up the feasibility of mining association rules over very

large databases.

3.4.7 Partition

Unlike the Apriori-like level-wise algorithms, Savasere et al. introduced an

association rule algorithm called Partition in [Savasere et al., 1995], which reads the

database at most two times to generate all significant association rules. As Figure 3.5

shows, algorithm Partition divides the database D into small non-overlapping

partitions Pi>p2>'">P„ and considers them one at a time. The partition sizes are

chosen such that each partition can be accommodated in the main memory so that the

partitions are read only once in each phase, and there will be no additional disk I/O for

each partition after being loaded into the main memory.

Partition executes in two phases. In the first phase, the local frequent itemsets Li in

each partition p f (l < / < «) , can be found by using a level-wise algorithm such as

Apriori. At the end of the first phase, these frequent itemsets £,(1 < i< n) are merged

to generate the global candidate set CG. It uses the property that a frequent itemset in

the whole database must be locally frequent in at least one partition of the database

[Savasere et al., 1995]. In the second phase, all candidates in CG are counted through

the whole database, the actual supports for these candidates are generated, and the

frequent itemsets are identified.

P = partition _ database(p)
n — Number o f partitions
fo r / = 1 to n begin // Phase 1

read _ in _ partition(pi e P)

P = Apriori.(pj)
end

CG = (J.=i 2 ̂P H Merge Phase

for i = l to n begin // Phase 2
read _ m _ partition{pi e P)
fo r all candidates c e C G

gen _count(c, p t)
end

PG = {c e C ° \c.count >m injsup)

Figure 3.5 Algorithm Partition [Savasereet al., 1995]

Partition favours a homogeneous data distribution [Savasere et al., 1995], That is, if

the count of an itemset is evenly distributed in each partition, most of the itemsets to

be counted in the second scan will be large. However, for a skewed data distribution,

most of the itemsets in the second scan may turn out to be small, thus wasting a lot of

CPU time counting false itemsets. As Savasere et al. pointed out [in Savaere et al.,

1995], the effect of data skew can be reduced by randomising the data allocated to

each partition. This is done by choosing the data to be read in a partition randomly

from the database.

3.4.8 Sampling

Sampling [Tovivonen, 1996], is another association rule algorithm trying to reduce

the I/O overhead for very large databases. It reduces the number of database scans to

one in the best case and two in the worst. The idea of sampling is to pick a random

sample, which can fit in the main memory, to find by using this sample, all frequent

itemsets that probably hold in the whole database, and then to verify the results with

the rest of the database.

Sampling makes use of the concept of negative border. For example [Toivonen, 1996]

[Mannila and Toivonen, 1996], let the items in the dataset R - {A ,B ,..,,F} and

assume the collection Fs of frequent itemset is {A}, (#}, {c}, {f}, {.A,B}, {.A,C},

{H,F}, {C,F}, {A ,C ,F }. The negative border of this collection contains, e.g., the set

{B,C}, which is not in the collection Fs , but all its subsets are. The whole negative

border of Fs is Bd~(Fs,) - {{P,C},{B, F},{d},{f}}. The intuition behind the concept

is that given a closed frequent itemset, the negative border contains the “closest”

itemsets that could be frequent, too [Toivonen, 1996]. The negative border function is

a generalisation of the apriori-gen function in Apriori [Toivonen, 1996]. When all

itemsets in Fs are of the same size, Bd~(Fs) = apriori _gen(Fs). The difference lies

in that the negative border can be applied to a set of itemsets of different sizes, while

the function apriori _gen() only applies to a single size.

But as Mannila and Toivonen pointed out in [Mannila and Toivonen, 1996], the

importance is the fact that the negative border needs to be evaluated, in order to be

sure that no frequent itemsets are missed. To illustrate this, suppose

Fs - {{h}, {p}, {c}, {A, P}} . The candidate itemsets for the first scan are

Bd~ (Fs) u F s = {{A,C}, {B, C}} u {{4 (4 {C}, {A, B}} = {{4 {b}, {c}, {A,B},{A, C}, {B,C}}
. If the frequent itemsets are {{4(4 {c},{/4,B},{/!,C}, {B,C}}, i.e., there are two

misses {A,C} and {P,C} in Bd~(Fs), the itemset {H,P,C}, which might be frequent,

but not counted in the first scan of Sampling. Hence the Sampling algorithm needs

one more scan to count the new candidate itemsets like {A,B ,C}. The new candidate

itemsets are generated by applying the negative border function recursively to the

misses. The algorithm is shown in Figure 3.6.

Ds = a random sample drawn from D // draw a sample
Fs = Apriori(Ds,min_sup) // find local frequent itemsets in the sample

C = Bd~(Fs)\JFs
count{C, D) U first scan counts the candidates generated from Fs

Fm = jx|x g Bd~(Fs),x. count > m in_supxfj^H Fm are the misses

i f Fm & 0 then II Cm are the new candidates generated from the misses

Cm = jx|x e C,x.count > min_sup x |D|}

repeat

Cm = Cm u Bd~(Cm)
until Cm does not grow
Cm — C m -C 11 itemsets in C have already been counted in the first scan
count(Cm, D) 11 second scan counts additional candidates

return F = |x|x e C u Cm,x.count > m injsupx|d|J

Figure 3.6 Algorithm Sampling [Toivonen, 1996]

The entire approach is divided into two phases. During the first phase a sample of

database is obtained and all frequent itemsets in the sample are found by using a level-

wise algorithm such as Apriori. Let the set of frequent itemsets in the sample be Fs .

The candidates are generated by applying the negative border function, Bd"(), to Fs .

Thus the candidates are Bd~(Fs)^jFs , After the candidates are generated, the whole

database is scanned once only to determine the counts of the candidates. If all frequent

itemsets are in Fs , i.e., no itemsets in Bd~(Fs) turn out to be frequent, then all

frequent itemsets are found and the algorithm terminates. Otherwise, i.e. there are

misses in Bd~(Fs)> some new candidate itemsets must be counted to ensure that all

frequent itemsets are found in the second phase, and thus a second scan is needed.

Sampling can find association rules very efficiently in only one database pass.

Experiments show that this method works very well in practice, making the approach

attractive especially for very large databases [Toivonen, 1996], But the potential

problem is that the algorithm Sampling needs the datasets to be input as binary

schemas. A binary schema guarantees that all items in a dataset appear in the chosen

sample. Thus, no item can be missed in both Fs and Bd (Fs).

3.5 Mining Frequent itemsets without Candidate Generation

In many cases the Apriori candidate generate-and-test method reduces the amount of

candidate itemsets significantly and leads to a good performance. However, it may

suffer from two costs [Han and Kamber, 2001].

> Firstly, it may need to generate a huge number of candidate itemsets. For

example, if there are 104 frequent 1 - itemsets, the Apriori algorithm will need

to generate more than 107 candidate 2 -item sets and accumulate and test their

occurrence frequencies. Moreover, to discover a frequent itemset of size 100,

such as {a,,..., am }, it must generate more than 2 100 « 10 30 candidates in total.

> Secondly, it may need to repeatedly scan the database and check a large amount

of candidates by itemset matching. This is especially the case for mining long

itemsets.

3.5.1 Frequent Pattern Growth

An interesting method called frequent-pattern growth (FP-growth) [Han et al., 2000],

can mine the complete set of frequent itemsets (or called frequent patterns) without

candidate generation, which adopts a divide-and-conquer strategy as follows:

Compress the database representing frequent items into a frequent-pattern tree,

or FP-tree, but retain the itemset association information, and then divide such

a compressed database into a set o f conditional databases, each associated with

one frequent item, and mine each such database separately [Han and Kamber,

2001],

Table 3.1 shows a transaction database D to be mined using the frequent-pattern

growth approach.

TID List of item IDs
T100 11,12,15
T200 12,14
T300 12,13
T400 11,12,14
T500 I I , 13
T600 12,13
T700 11,13
T800 11,12,13,15
T900 11,12,13

Table 3.1 Transaction dataset for FP-growth [Han and Kamber, 2001]

The first scan of the database is the same as Apriori, which derives the set of frequent

1 - itemsets and their support counts. Suppose the minimum support is 2, The set of

frequent items is sorted in the order of descending support count. Thus, the frequent

1 - itemsets is L - [72:7, 71; 6, 73 : 6, 74 :2, 75 :2] .

An FP-tree is then constructed as follows [Han et al., 2000] [Han and Kamber, 2001],

First, create the root of the tree, labelled 4 null1. Scan database D a second time. The

items in each transaction are processed in L order and a branch is created for each

transaction. For example (Figure 3.7), the scan of the first transaction,

“ T l00:71,72,75 ”, which contains three items (72,71,75) in L order, leads to the

construction of the first branch of the tree with three nodes: ((72 : l), (71 :l),(75 :l)),

where 72 is linked as a child of the root, 71 is linked to 72, and 75 is linked to 72.

The second transaction, T'200, contains the items 72 and 74 in L order, which

would result in a branch where 72 is linked to the root and 74 is linked to 72 .

However, this branch would share a common prefix, (72), with the existing path for

Tl 00. Therefore, the count of the 72 node is increased by 1, and a new node, (74: l),

which is linked as a child of (72 :2) is created.

null {}

Support
Item ID count N ode-link

12:7
11:2

14:1
13:2 13:2

15:1 I3:2J

14:1

Figure 3.7 FP-tree |Han and Kamber, 20011

In general, when considering the branch to be added for a transaction, the count of

each node along a common prefix is incremented by 1 , and nodes for the items

following the prefix are created and linked accordingly.

To facilitate tree traversal, an item header table is built so that each item points to its

occurrences in the tree via a chain of node-links (Figure 3.7). Therefore, the problem

of mining frequent itemsets in databases is transformed to that of mining the FP-tree.

The mining of the FP-tree proceeds as follows [Han et al., 2000] [Han and Kamber,

2001]. Start from each frequent 1 -item set (as an initial suffix itemset), construct its

conditional itemset base (a ‘sub-database’ which consists of the set of prefix paths in

the FP-tree co-occurring with the suffix itemset), then construct its (conditional) FP-

tree, and perform mining recursively on such tree. The itemset growth is achieved by

the concatenation of the suffix itemset with the frequent itemsets generated from a

conditional FP-tree.

Mining of the FP-tree is summarised as shown in Table 3.2. Firstly, consider 75

which is the last item in L , rather than the first. 75 occurs in two branches of the FP-

tree (Figure 3.7). The paths formed by these branches are ((/2 71 75: l))

- 5 0 -

and ((/2 71 73 75 : l)) . Therefore, considering 75 as a suffix, its corresponding

two prefix paths are ((72 71: l)) and ((72 71 73 : l)) , which form its conditional

itemset base. Its conditional FP-tree contains only a single path, (72: 2, 71:2}; 73

is not included because its support count of 1 is less than the minimum support

threshold. The single path generates all the combinations of frequent itemsets:

72 75:2 ,71 7 5 :2 ,7 2 71 75:2.

item conditional itemset base conditional FP-tree frequent itemsets generated
15 {(1211: 1), (121113: 1)} <12: 2,11: 2> 1215:2,1115:2,121115:2
14 {(12 11: 1), (12: 1)} <12: 2> 12 14: 2
13 {(1211: 2), (12: 2), (11: 2)} <12: 4,11: 2>, <11: 2> 12 13:4,1113:2,121113:2
11 ((12: 4)} <12: 4> 12 11: 4

Table 3.2 Mining of FP-tree fHan and Kamber, 2001]

For 7 4 , its two prefix paths form the conditional itemset base, {(72 71: l), (72: l)},

which generates a single-node conditional FP-tree (7 2 :2) and derives one frequent

itemset, 72 74 : 2 . Although 75 follows 74 in the first branch, there is no need to

include 75 in the analysis here since any frequent itemset involving 75 has been

analysed in the examination of 7 5 . This is the reason that processing started at the

end of L , rather than at the front.

Similar to the above analysis, 73 ’s conditional itemset base is

{(72 71:2), (/ 2 :2), (71:2)} . Its conditional FP-tree has two branches,

(72 :4 , 71:2) and (7 1 :2) , as shown in Figure 3.8, which generates the set of

itemsets: {/2 7 3 :4 , 71 73 :2 , 72 71 7 3 : 2}. Finally, 71’s conditional itemset

base is {(72:4)} , whose FP-tree contains only one node (7 2 : 4) , which generates one

frequent itemset, 72 71:4 .

Support
Item ID count

\ I
\ i

Node-link
/

/
^ ▼
12 4

11:2

II 4

11:2

Figure 3,8 Conditional FP-tree [Han and Kamber, 2001]

The mining process of this FP-growth method is summarised in Figure 3.9 and Figure

FP - tree construction process.
1) Scan the transaction database D once. Collect the set o f frequent items F

and their supports.
2) Sort F in support descending order as L, the list o f frequent items.
3) Create the root o f an FP - tree, and label it as " null".
4) For each transaction Trans in D do

4.1) Select and sort the frequent items in Trans according to the order o f L.
4.2) Let the sorted frequent item list in Trans be [p\p\ where p is the first

element and P is the remaining list.
4.3) Call msert_tree([p|/>],7,)) which is performed as follows.

4.3.1) I f T has a child N such that N. item - name = p. item - name,
then increment N 's count by 1;

4.3.2) else create a new node N, and let its count be 1, its parent link
be linked to T, and its node - link to the nodes with the same
item - name via the node - link structure.

4.3.3) I f p is nonempty, call insert_tree(/\ N) recursively.

Figure 3.9 Algorithm of FP-tree construction [Han and Kamber, 2001]

FP - tree mining process
procedure FP_growth(71ree, a)
1) i f Tree contains a single path P then
2) fo r each combination (denoted as (3) o f the nodes in the path P
3) generate itemset f i v ja with support - minimum support o f nodes in J3;
4) else fo r each at in the header o f Tree {
5) generate itemset J3 = a,, u a with support - arsupport;
6) construct f3's conditional itemset base and then (3' s conditional FP ~ tree Treep;
7) i f Treep =£ 0 then
8) call FP_growth(7><?e/?, f)/ }

3.10.

Figure 3.10 Algorithm of FP-tree mining [Han and Kamber, 2001]

- 5 2 -

The FP-growth method transforms the problem of finding long frequent itemsets,

looking for shorter ones recursively and then concatenating the suffix. It uses the least

frequent items as a suffix, offering good selectivity. The method substantially reduces

the search costs.

When the database is large, it is sometimes unrealistic to construct a main memory-

based FP-tree. An interesting alternative is to first partition the database into a set of

projected database, and then construct an FP-tree and mine it in each projected

database [Han and Kamber, 2001]. Such a process can be recursively applied to any

projected database if its FP-tree still cannot fit in main memory.

A study on the performance of the FP-growth method shows that it is efficient and

scalable for mining both long and short frequent itemsets, and is about an order of

magnitude faster than the Apriori algorithm. It is also faster than a Tree-Projection

algorithm which projects a database into a tree of projected databases recursively

[Han and Kamber, 2001].

3.6 PRICES

The number of times an algorithm scans the entire database is a significant factor in

terms of speed as it determines the number of time-consuming I/O operations

involved. PRICES [Wang and Tjortjis, 2004] reduces frequent itemset generation time,

known to be the most time-consuming step, by scanning the database only once and

using logical operations in the process.

PRICES uses the same two steps as in other algorithms; it is however faster as it scans

the database only once, to store transactions information in the memory by a succinct

form called Prices Table [Wang and Tjortjis, 2004]. This Prices table can be pruned

by creating a pseudo transaction table called Pruned Prices Table, which contains all

1 - size frequent itemsets after eliminating all those 1 - size non-frequent ones.

PRICES generates k~ size frequent itemsets from the Pruned Prices Table and

(* - i) -s iz e frequent itemsets instead of scamiing the dataset. It uses logical

operations, such as A N D , OR , XOR and left - shift in the process of generating

frequent itemsets and association rules, thus accelerating the mining process.

PRICES gives every item in the transactions a unique value. So every transaction can

be represented by a price, which is the sum of the item values it consists of. Therefore,

every price represents a unique itemset pattern. For example [Wang and Tjortjis,

2004], if there are 5 items, A , B , C , D and E in a database, let the value of item A

be 24 = 10000 in binary mode, the value of item B 23 = 01000 and so on (Table 3.3).

The price of transaction f = {A.C.D} will be 10110 in binary mode (Table 3.4). In

this way, an itemset can also be represented as a price such as

Price({A,C}) = PAC = 10100 .

item value
A 10000
B 0 1 0 0 0
C 0 0 1 0 0
D 00 010
E 00001

Table 3,3 Values of items [Wang and Tjortjis, 2004]

TID items price

T, ACD JN 11 o t—k

°

t2 BCE jra ii o >—k o k—k

t3 ABCE Pr =11101h
T, BE Pr =01001M

Table 3.4 Prices of transactions [Wang and Tjortjis, 2004]

Under this assumption, logical operation AND can be applied to the price of one

transaction and the price of one itemset to determine whether this transaction contains

the itemset, by comparing the result with the itemset price. For example [Wang and

Tjortjis, 2004], the transaction 7] = {A,C,D] {Pr< =10110) contains itemset {A,C}

(PAC =10100) because PAC AND Pr = PAC. Therefore, the task of counting itemsets

changes to identifying all the itemsets prices from {0 0 . ..01} to {ll...ll} occurring

above a threshold in the prices of transactions,

3.6.1 Frequent Itemset Generation

The PRICES algorithm generates frequent itemsets in three steps. First, the Pruned

Prices Table is created, then all frequent 2 -item sets are created and finally, all

frequent itemsets are generated.

Pruned Prices Table

Since it is known that any itemset which contains a small itemset will also be small

[Agrawal and Srikant, 1994], a Prices Table can be primed by eliminating the column

of small items [Wang and Tjortjis, 2004]. This is done in two steps: first generate the

Large Bit Mark (LBM), which is the price of the itemset containing all frequent

1 - itemsets; then create the Pruned Prices Table. To generate the LBM one can set

the price of the first 1 - size candidate to 1 and apply the le ft-sh ift operation to

generate the second candidate price and so on. After calculating each 1 -s ize

candidate’s support, if a candidate is frequent, the corresponding position in LBM is

set to 1, otherwise to 0 (Table 3.5, assume min_sup = 50%). In addition, the

frequent 1 - s iz e itemsets, along with the support and size, are stored in F (Table

3.6).

A B C D E
support 2 3 3 1 3

compare with minjsup > > > < >
LBM 1 1 1 0 1

Table 3.5 Large Bit Mark [Wang and Tjortjis, 2004]

frequent itemset support size pruned price
A 2 1 PPA =1000
B 3 1 PPB = 0 1 0 0
C 3 1 i>Pc = 0010
E 3 1 PPE = 0001

Table 3,6 Frequent iteinset table [Wang and Tjortjis, 2004]

Given the LBM and Prices Table, the Pruned Prices Table can be generated by

eliminating the columns which have 0 in the corresponding position of LBM. Since a

0 in the LBM indicates that the corresponding item is non-frequent, and thus any

itemset containing it is also non-frequent. Therefore, removing these items shrinks the

Prices Table without affecting the generation of frequent itemsets [Wang and Tjortjis,

2004], Table 3.7 shows how PPT (the pruned price of transaction Zj) is generated

from LBM and PTi; and Table 3,8 shows all pruned prices of 4 transactions in the

example given by Table 3.4.

A B c D E
1 0 1 1 0 10110

LBM 1 1 1 0 1 11101
PPTM 1 0 1 - 0 1010

Table 3,7 Generating pruned price [Wang and Tjortjis, 2004]

TID price pruned price

Tx 1

Or*—t
oII

; PPTx =1010

t2 Pr =0110112 II o

T, PT =11101

*—i
1—1
rHII

!

a*

t4 ll o o o js II o o

Table 3.8 Pruned prices of transactions [Wang and Tjortjis, 2004]

Generate Frequent 2-itemsets

As every single item in the Pruned Prices Table is frequent, every 2 -s ize itemset

composed of a different single item from the Pruned Prices Table is a candidate. The

algorithm PRICES calculates the support of every candidate and if it is frequent,

records it into F (Table 3,9), along with its support and size. To compose two

different item prices into one price, PRICES uses the OR operation. For example

[Wang and Tjortjis, 2004], the price of itemset {A,E} (Pae = 10001) can be derived

by applying OR to itemset {^} (PA =10000) and {is} (^-=00001), such as

PAE^ P A OR PF = 10001.

frequent itemset support size pruned price
A 2 1 PPA =1000
B 3 1 PPB = 0100
C 3 1 PPC=0010
E 3 1

ooon£

AC 2 2 Ci II 1—
I o o

BC 2 2 PP,C=0110
BE 3 2 PPSj!r = 0101
CE 2 2 PPC/;=0011

Table 3.9 Frequent itemset table [Wang and Tjortjis, 2004]

Generate k-size Itemsets

k - size frequent itemsets can then be generated from (k - 1) - size frequent itemsets

and the Pruned Prices Table. PRICES uses the XOR operation as a difference

indicator from which one can find how many different bits (items) there are between

two (k - 1) - size frequent itemsets. To generate a candidate Ck, two (& - 1) - size

frequent itemsets must have exactly two different bits. Like Apriori, the candidates

generation and count process repeats until all frequent itemsets are found. Table 3.10

shows the result of F generated from the example presented by Table 3.4.

- 5 7 -

frequent itemset support size pruned price
A 2 1 PPA =1000
B 3 1

ooo1!g?;

C 3 1 PPC =0010
E 3 1 PPE — 0001

AC 2 2 i ^ c =1010
BC 2 2 ■ 5

3 o II o o

BE 3 2 ^ = 0 1 0 1
CE 2 2 PPCE = 0011

BCE 2 3 ^ * * = 0 1 1 1

Table 3.10 Frequent itemset table [Wang and Tjortjis, 2004]

In order to get the frequent itemsets from F , PRICES restores the prices in F from

pruned prices and maps those into itemsets. According to the definition of LBM, a 0

is inserted into pruned prices at corresponding positions to restore prices. Once the

prices are restored, PRICES maps these into itemsets based on the previous definition

of the relationship between price and itemset. Table 3.11 shows this phase.

pruned price price frequent itemset
1000 10000 A
0100 01000 B
0010 00100 C
0001 00001 E
1010 10100 AC
0110 01100 BC
0101 01001 BE
0011 00101 CE
0111 01101 BCE

Table 3.11 Restore pruned prices [Wang and Tjortjis, 2004]

PRICES is an algorithm which mines association rules in two steps by the use of

logical operations. Its major advantage is that it only scans the database once and any

consecutive processing takes places in memory using logical operations. This

advantage means that PRICES outperformes Apriori in terms of speed [Wang and

Tjortjis, 2004]. As Wang and Tjortjis pointed out in [Wang and Tjortjis, 2004],

PRICES triggers further research to address the memory requirements and

performance deterioration due to I/O overhead when data do not fit in memory due to

the possibly very large size of datasets.

3.7 Summary

This chapter focuses on association rules analysis. The concept of association rules

has been presented. The discovery of frequent itemsets was then presented. This step

generates the candidate itemsets and counts their support. Because the overall

performance is determined in this step, most algorithms focus on reducing the

numbers of generated candidates and the numbers of scans during this step. Following

this, a number of algorithms were introduced for discovering significant association

rules between items in a large database of transactions, including AIS, SETM, Apriori,

AprioriTid, AprioriHybrid, Partition and Sampling. Comparison of these algorithms

was provided. Finally, an alternative way of mining association rules without

generating candidates, called FP-growth and a method of mining association rules

using logical operations, named PRICES were presented.

4 Temporal Data Mining

4.1 Introduction

When the data mining process involves treating data which contains temporal

information, it forms a new challenging area of temporal data mining, because the

special characteristics of temporal information require it to be treated differently from

other kinds of information. This gives the common data mining problem another

dimension that makes the difficulty more complicated. The temporal related problem

arises in many areas such as engineering, science, finance, healthcare etc. This chapter

focuses on many aspects of the temporal data mining problem. Firstly, the background

of temporal data mining will be discussed in detail and the definition of temporal data

mining will be considered. Then, to achieve the objective of understanding and

formalising the problem, the potential knowledge in temporal databases will be

introduced and the patterns in such databases will be classified. After that, temporal

data mining operations will be discussed in the categories of association rules,

classification, clustering and prediction. Next, for the following research work, the

temporal features and the representation of these will be introduced. As the main

concern of this thesis, the temporal association rule mining problem will be defined

and discussed in detail.

4.2 Background to Temporal Data Mining

As Antunes and Oliveira [Antunes and Oliveira, 1998] state, with the rapid increase of

stored data, the interest in the discovery of hidden information within the data has

exploded in the last decade. The discovery of the hidden information has mainly been

focused on data classification, data clustering and association finding, with the result

that one of the main unresolved problems arising during the data mining process is

treating data that contains temporal information. In this case, a complete

understanding of the entire phenomenon requires that the data should be viewed as a

sequence of events [Antunes and Oliveira, 1998].

The attributes related to the temporal information need to be treated differently from

other kinds of attributes. However, as Antunes and Oliveira [Antunes and Oliveira,

1998] point out, most of the data mining techniques tend to treat temporal data as an

unordered collection of events, ignoring its temporal information. Therefore, the

ability to record temporal data in a database has created a new mine for knowledge

discovery, further expanding data mining to temporal data.

Antunes and Oliveira [Antunes and Oliveira, 1998] further classify the temporal

problem into two categories as follows;

Depending on the nature o f the event sequence, the approach to solve the

problem may be quite different. A sequence composed by a series o f nominal

symbols from a particular alphabet is usually called a temporal sequence and a

sequence o f continuous, real-valued elements, is known as a time series. Both

time series and temporal sequences appear naturally in a variety o f different

domains,

Additionally, they enumerate several areas in which temporal related problems arise,

as for instance in engineering, time series and temporal sequences usually arise with

either sensor-based monitoring or log-based systems monitoring. In scientific areas,

they appeal* in spatial missions or the genetics domain. In finance, applications on the

analysis of product sales or inventory consumptions are of great importance to

business planning.

Antunes and Oliveira [Antunes and Oliveira, 1998] also state that, as another very

common application in finance, temporal issues are involved in the prediction of the

evolution of financial data. In healthcare, temporal sequences have been a reality for

decades, with data originated by complex data acquisition systems, or even with

simple ones like measuring the patient temperature or treatments effectiveness.

Temporal data mining is defined by Chen [Chen, 1999] as “a set of approaches to deal

with the problem of knowledge discovery from temporal data or database”. The

ultimate goal of temporal data mining is to discover hidden relations between

sequences and sub-sequences of events. The knowledge obtained through temporal

data mining is very important and, it forms one of the main fields of data mining

[Chen, 1999] [Chen and Petrounias, 1998a] [Antunes and Oliveira, 1998] [Li et al.,

1999] [Ale and Rossi, 2000] [Jensen, 1995] [Saraee and Theodoulidis, 1995].

4.3 Potential Knowledge in Temporal Databases

Lee et al. [Lee et al., 1998] state that temporal databases provide a complete history of

all changes to a database and include the times when changes occurred. This allows

users to query the current state of the database, as well as past states, and even

planned future.

4.3.1 Data Objects in Temporal Databases

The data objects stored in temporal databases are the information sources of temporal

data mining. A data object (e.g., an attribute value or a tuple) may be associated with

a time instant or a time interval, depending on the type (an event or a state) of object

that it expresses. From the view of conceptual modelling, data objects in temporal

databases can be classified into the following types, according to their temporal

characteristics [Zaniolo et al,, 1997] [Etzion et al,, 1998]:

> Time-Independent Objects

In information systems, there are some objects that do not change their values

once they are created. These objects are usually not stamped with any time

values.

> Time-Varying State Objects

In many applications, some objects may change values with arbitrary frequency.

These objects are modelled as states in temporal databases. A state is an

instance o f temporal data that is satisfied or exists over a period o f time or at a

specific time instant. Each recorded state o f a time-varying object is time-

stamped with an interval to record the time during which the state is satisfied or

a time instant to record the moment at which the state exists.

> Time-Series State Objects

These objects change their values and the change is tightly associated with a

particular pattern o f time. In application systems, they are usually modelled as

a sequence o f states. Each state is time-stamped with a time instant to record

the moment at which the state exists.

> Time-Related Event Objects

An event object is an instance o f temporal data that happens during an instant

in time. In many systems, each recorded event is associated with a time-stamp to

record the time instant during which the event occurs.

In a temporal database, data concerns information relating to three different

chronological features involved with each record in a database: valid time, transaction

time and user-defined time [Jensen, 1995] [Saraee and Theodoulidis, 1995] [Chen,

1999] [Chen and Petrounias, 2000].

> Valid time concerns modelling a time-varying reality, and refers to the actual

time an event occurred, such as the specific day a product was purchased. It

possibly spans the past, present, and future. However, Jensen [Jensen, 1995]

points out that, the valid time of a fact may not necessarily be recorded in the

database, for any number of reasons. For example, the valid time may not be

known, or recording it may not be relevant for the applications supported by the

database. If a database models different possible worlds, the database facts may

have several valid times, one for each such world.

> Transaction time concerns the moment at which the storage of information in

the database occurs. Unlike valid time, transaction time may be associated with

any database entity, not only with facts.

> User-defined time involves time intervals specified by the user according to the

user’s needs or interpretation of certain chronological facts. Jensen [Jensen,

1995], Saraee and Theodoulidis [Saraee and Theodoulidis, 1995] present the

detailed description of valid time, transaction time and user-defined time in

temporal database.

4.3.2 Identifying Patterns in Temporal Databases

Four main temporal pattern categories have been classified, [Han et al, 1992]

[Agrawal and Srikant, 1995] [Chen, 1999] [Chen and Petrounias, 2000a] and [Han

and Kamber, 2001], these being: inducted patterns, trends patterns, similar patterns

and sequential patterns.

> Inducted Patterns

Inducted patterns arise through various inducted temporal rules that can be

applied in a database. Chen [Chen, 1999] describes an inducted rule as a

description or classification for a sub-set of data in the database. Such

classification occurs based on certain common temporal features or

relationships, which may exist among the elements of the record set.

Characteristic rules, classification and clustering rules are some popular types of

inducted rules. A characteristic rule, as described in [Han et a l, 1992] [Chen

and Petrounias, 2000a], is an assertion that characterises a concept satisfied by

all or a majority number of the examples in the class undergoing learning, called

the target class. For example, the symptoms of a specific disease can be

summarised by a characteristic rule. On the other hand, classification or

clustering rules are created according to the common properties of the attributes

of the objects, belonging to a pre-defined class or cluster [Chen, 1999].

> Trend Patterns

Chen and Petrounias [Chen and Petrounias, 2000a] describe trends as

particularly important knowledge forms in time series data, characterising the

upward or downward fluctuations in a series of data over a period of time. They

state that a trend pattern is the increasing or decreasing oscillation that can

describe time series data during a specific period. In fact, trend patterns

discovered through temporal data mining can yield significant temporal

knowledge. In real world applications, trends are often used to predict the

expected data values, which may form the references of deviation patterns for

time-series data. For example, a trend could be that during 1990 the TOSHIBA

fax-machine sales increased by 20%.

> Similar Patterns

Agrawal et al, [Agrawal et al., 1993], and Chen [Chen, 1999] define Similar

Patterns as time sequences that are similar or tend to be similar to a reference

sequence in time series databases. Thus, similar ‘movements’ in data across the

time interval are identified for examining similar patterns. For example, similar

patterns can help a retailer who wants to optimise purchasing and store keeping,

to find groups of products that have similar forecasted seasonal sales for the

next year, and enable the retailers to use this information for combining

purchases and inventory replenishment. As a result, identifying similar patterns

with respect to time is significantly important. The process can be utilised in

several areas to enhance future predictions, for example, in marketing, finance

or medical areas.

> Sequential Patterns

Saraee and Theodoulidis [Saraee and Theodoulidis, 1995] reveal another major

source for database mining, this being the ordered data, such as temporal data

related to stock, and point of sales data. For example, given a database of

customer transactions over a period of time, each transaction is a list of items in

a visit and all transactions of a particular customer are temporally ordered. In

this case, all the sequential buying patterns supported by a specified minimum

fraction of customers could be looked for. Saraee and Theodoulidis [Saraee and

Theodoulidis, 1995] present another example of a rule about stock market data,

which could be “when BT stock goes up on 2 consecutive days and Mercury

stock does not fall during this period, Orange stock goes up the next day 75%

of the time”. Another example would be a car insurer who wants to study

lapsing and retention among his/her customers. By applying the sequential

patterns technique, the insurer can understand what events lead to lapses.

In addition, sequence rules are handled in a similar way to the association rules.

The temporal nature of relationships between antecedents and consequents can

be handled by the TDBMS (Temporal Database Management System) [Saraee

and Theodoulidis, 1995]. For example, a direct mailer who wants to maximise

cross-selling opportunities can apply the Association and Sequential Patterns

technique to historical order data, to establish what articles sell together and

what articles are bought in a sequence over time [Saraee and Theodoulidis,

1995]. The mailer can use this information to decide on placements of articles in

the catalogue and for deciding on a flyer to attach with a bill.

4A Temporal Data Mining Operations

Antunes and Oliveira [Antunes and Oliveira, 1998] presented a clear view of temporal

data mining, saying that the ultimate goal of this process is to discover hidden

relations between sequences and sub-sequences of events. As a result, the discovery

of relations between sequences of events involves the application of models and

representations to the actual mining problems.

4.4.1 Association Rules

One of the most common approaches to mining frequent patterns is the Apriori

method [Agrawal and Srikant, 1994], When a transactional database represented as a

set of sequences of transactions performed by one entity is used, the manipulation of

temporal sequences requires that some adaptations be made to the Apriori algorithm

[Antunes and Oliveira, 1998], There are several aspects to consider when applying

temporal features to the association rule mining area [Antunes and Oliveira, 1998].

> Sequence

The most important modification o f mining sequential association rules is on the

notion o f supports. Support is the fraction o f entities, which had consumed the

itemsets in any o f their possible transactions [Agrawal and Srikant, 1995], i.e.

an entity could only contribute one time to increment the support o f each itemset,

beside it could have consumed that itemset several times [Antunes and Oliveira,

1998].

After identifying the frequent itemsets, the itemsets with support greater than the

minimum support allowed, they are translated to an integer, and each sequence

is ti'ansformed in a new sequence, whose elements are the frequent itemsets o f

the previous-one. The next step is to fin d the frequent sequences. For achieve

this, the algorithm acts iteratively as Apriori: first it generates the candidate

sequences and then it chooses the frequent sequences from the candidate ones,

until there are no candidates [Antunes and Oliveira, 1998].

Unlike the Apriori-based approaches, the method of searching frequent itemsets

without candidate generation (FP-growth), [Han et al., 2000], follows a different

method to deal with sequential data and is presented in [Han et al., 2000a],

> Relevant Association Rules

The discovery o f relevant association rules is one o f the most important methods

used to perform data mining on transactional databases. Although Apriori is an

effective algorithm to discover association rules, adapting this method to deal

with temporal information leads to some different approaches [Antunes and

Oliveira, 1998].

A possible approach consists o f extending the notion o f a typical rule X => Y to

be a rule with new meaning: X=>‘ Y (which states: i f X occurs then Y will

occur within time T) [Das et al, 1998]. Stating a rule in this new form, allows

fo r controlling the impact o f the occurrence o f an event to the other event

occurrence, within a specific time interval [Antunes and Oliveira, 1998].

> Periodical Association Rules

Another method consists o f considering cyclic rules [Ozden et al, 1998], A

cyclic rule is one that occurs at regular time intervals, i.e. transactions that

support specific rules occur periodically, fo r example at every first Monday o f a

month. In order to discover these rules, it is necessary to search for them in a

restricted portion o f time, since they may occur repeatedly at specific time

instants but on a little portion o f the global time considered. A method to

discover such rules is applying an algorithm similar to the Apriori, and after

having the set o f traditional rules, detects the cycles behind the rules [Antunes

and Oliveira, 1998].

4.4.2 Classification

A classification method to deal with temporal sequences is based on the merge

operator. This operator receives two sequences and returns “a sequence whose shape

is a compromise between the two original sequences” [Keogh and Pazzani, 1998].

The basic idea is iteratively merging a typical example of a class with each positive

example, building a more general model for the class.

Classification is relatively straightforward if generative models are employed to

model the temporal data [Antunes and Oliveira, 1998]. Deterministic and probabilistic

models can be applied in a straightforward way to perform classification [Lang et al.,

1998], since they give a clear answer to the question of whether a sequence matches a

given model [Antunes and Oliveira, 1998],

4.4.3 Clustering

The fundamental problem in clustering temporal sequences databases consists of the

discovery of a number of clusters, able to represent the different sequences. Antunes

and Oliveira [Antunes and Oliveira, 1998] point out that there are two central

problems in clustering: choosing the number of clusters and initialising their

parameters. They also point out another important problem, which appears when

dealing with temporal sequences, that is the existence of a meaningful similarity

measure between sequences. A number of approaches have been considered in

different ways e.g., [Smyth, 1999] [Smyth, 1997] [Ketterlin, 1997] [Fisher, 1987],

4.4.4 Prediction

Prediction is one of the most important problems in data mining. However, in many

cases, prediction problems may be formulated as classification, association rule

finding or clustering problems, but the prediction problems have some specific

characteristics that differentiate them from other problems [Antunes and Oliveira,

1998], Much literature exists on computer-assisted prediction of time series, in a

variety of domains [Weigend and Gershenfeld, 1994], [Mannila et al., 1999], [Lu et

al., 1998] [Giles etal.,2001].

As Antunes and Oliveira [Antunes and Oliveira, 1998] state, in the specific domain of

prediction, care must be taken with the domain where prediction is to be applied.

Well-known and generally accepted results on the inherent unpredictability of many

financial time series imply that significant gains in prediction accuracy are not

possible, no matter how sophisticated the techniques used.

4.5 Representation of Temporal Features

As a fundamental tool for temporal data mining research, the formal representation of

temporal features is confidently expected to depict temporal aspects of potential

knowledge in temporal data.

4.5.1 Time Representation

The physical time space is considered as a hierarchy of totally ordered sets of time

intervals. The smallest, indivisible time unit is called a chronon, and the set of

chronons is at the lowest level in the hierarchy. Chen and Petrounias [Chen, 1999]

[Chen and Petrounias, 1998a] describe a chronon as “a non-decomposable time

interval of some fixed, minimal duration, in which an event takes place”. Each level is

a partition of the next lower level with conventional meaning, such as 1 minute

corresponds to 60 consecutive seconds. The time measure at each of the levels is

called the basic granularity. Granularity refers to the time measure used for one or

more sets within the time domain [Chen and Petrounias, 1998]. For example, the

granularity of years is months, whilst the granularity of minutes is seconds.

Granularity can vary according to the representation and measurement needs, for

instance, the granularity of year can be months, days, or seconds.

The representation problem is especially important when dealing with time series,

since direct manipulation of continuous, high-dimensional data in an efficient way is

extremely difficult. Antunes and Oliveira [Antunes and Oliveira, 1998] address the

problem in several different ways: time-domain continuous representations,

transformation-based representation, and discretisation-based methods. However,

[Chen, 1999] highlights several reasons for choosing a discrete time representation.

> Firstly, measures of time are inherently imprecise [Anderson, 1982] [Clifford

and Tansel, 1985]. Clocking instruments invariably report the occurrence of

events in terms of intervals (even with very small granularity), not time ‘points’.

Hence, events, even so-called ‘instantaneous events’, can best be measured as

having occurred during a time period.

> Secondly, most natural language references to time are compatible with the

discrete time model. For example, when we say that an event occurred at

4.30 pm , we usually do not mean that the event occurred at the ‘point’ in time

associated with 4.30 pm but at some time in the time period (perhaps a minute)

associated with 4.30 pm [Anderson, 1982] [Clifford and Rao, 1987].

> Thirdly, the concepts of time points and intervals allow us to naturally model

events that are not instantaneous but have duration [Anderson, 1982].

> Finally, any implementation of a data model with a temporal dimension will, of

necessity, have to have some discrete encoding of time [Snodgrass, 1987].

4.5.2 Time Series

Time series is a powerful abstraction mechanism to handle collections of data that

possess observed values at regular periods or intervals, Lee et al. [Lee et al., 1998]

define a time series as “a collection of observations made sequentially over time”. It

consists of a sequence of events, an event being “an ordered pair consisting of a

temporal value and an associated list of data value” [Lee et al., 1998]. Collection and

analysis of financial data and scientific data, are examples that can be modelled with

time series.

4.5.3 Calendar

Each data item can be of an atomic data type or a structured data type, such as record,

list array, etc., which provides flexibility in modelling various types of complex data

items. The sequence of temporal values is based on a calendar, which determines the

granularity and period of events associated with a time series. Lee et al. [Lee et al,

1998] describe a calendar model as a totally-ordered set or sequence of intervals with

additional semantics which is represented by a tuple

(,granularity, pattern, period, start time, end time) . Since time series in different

applications can have different types of temporal values for their events, there are

possibly many different types of calendars that can be utilised [Lee et al., 1998] [Chen,

1999] [Chen and Petrounias, 1998a], Some familiar calendar systems are the

Gregorian, Islamic and Oriental-lunar calendars.

4.6 Temporal Features

Based on the above concepts, two fundamental temporal features employed in the

temporal data mining process should be introduced: time intervals and periodicity.

4.6.1 Time Intervals

Time at each level is represented by a temporal element that is a finite union of time

intervals: where /, is a time interval. Lee et al. [Lee et al., 1998] define a

time interval as “an ordered pair of time units represented by [tl, tu\, which refer to

any specific set of consecutive time units with a given start time, end time and

granularity”. For example, the interval between September 1st and September 30th

forms a time interval of the calendar unit ‘months’ with granularity days, whilst the

calendar unit ‘days’ also consists of sub-intervals with granularity hours etc. [Chen,

1999].

4.6.2 Periodicity

Lee et al. [Lee et al., 1998] describe time period as “the length of a time interval at

which a pattern occurs repeatedly”. It is expressed in terms of the number of time

units of a particular granularity in that period, or by a particular granularity. Antunes

and Oliveira [Antunes and Oliveira, 1998] indicate that periodicity involves a cyclic

rule that occurs at regular time intervals, i.e. transactions that support specific rules

occurring periodically, for example, on every first Monday of a month. Such events

(first Monday) are called periodic events, whilst such intervals (months) are called

periodic intervals. In order to discover these rules, it is necessary to search for them in

a restricted portion of time, since they may occur repeatedly at specific time instants

but on a little portion of the global time considered.

Periodicity analysis can be applied to many important areas, for example, seasons,

tides, planet trajectories, daily power consumptions, daily traffic patterns, and weekly

TV programs, all present certain periodic patterns. Han and Kamber [Han and

Kamber, 2001] observe that mining periodic patterns can be viewed as mining

sequential patterns by taking durations as a set of partitioned sequences, such as every

year, every slot after or before the occurrence of certain events, and so on.

4.7 Temporal Association Rule Mining

In the traditional problem of association rule discovery, if the given minimum support

and confidence are high, many rules may not be found from the database. However, it

is possible that some rules may exist with satisfied support and confidence during a

short period of time or a series of short periods (regularly or irregularly) of time over

the whole time domain. To get more accurate and useful information, it is necessary

to introduce temporal issues of association rules, which have been addressed in [Chen

et al., 1998], [Ozden et al., 1998], [Ramaswamy et al., 1998] [Chen and Petrounias,

1999], [Chen and Petrounias, 2000] and [Chen and Petrounias, 2000a].

4.7.1 Temporal Association Rules

The major concern in [Chen et al., 1998] is the discovery of association rules for

which the valid period and the periodicity are known. The valid period, like ‘starting

from September 1995 and ending by August 1998’, shows the absolute time interval

during which an association is valid, while the periodicity, like ‘every weekend’,

conveys when and how often an association is repeated. Both the valid period and the

periodicity are specified by calendar time expression in [Chen et al., 1998]. The

cyclicity of association rules was similarly discussed in [Ozden et al., 1998], where a

cycle of an association rule was defined as a tuple such that the rule holds in every

first time unit starting with the time unit. In [Ramaswamy et al., 1998], the concept of

calendric association rules is defined, where the association rule is combined with a

calendar, such as ‘all working days in 1998’, that is basically a set of time intervals

and is described by a calendar algebra.

Chen et al. [Chen et al,, 1998] define temporal association rules according to the

definition of temporal transactions, as follows:

Let / = {*!, *2 ,•••»hn} be a set o f literals which are called items. A set o f items

X c I is called an itemset. Let D be a set o f time-stamped transactions over

the time domain T which is a totally ordered set o f time instants or chronons.

Each time-stamped transaction S is a triplet (tid, itemset, timestamp) , where

S.tid is the transaction identifier, SJtemset is a set o f items such that

S.itemset cz I , and S.timestamp is an instant (or chronon) which the

transaction S is stamped with, such that S.timestamp <=T. A transaction S

contains an itemset X i f X c S.itemset [Chen et al., 1998].

Furthermore, the definition of a temporal association rule is the form of:

Given a set o f time-stamped transactions, a temporal association is a pair

(.AR,TF) , where AR is an implication o f the form X => Y and TF is a

temporal feature that AR possesses. It expresses that during each interval P in

0(TF), the presence o f X in a transaction implies the presence o f Y in the

same transaction [Chen et al, 1998].

> AR has confidence c% during interval Pj} P, e (J){fF), i f no less than

c% o f transactions in D(Pl|) that contain X also contain Y.

> AR has support s% during interval Pn P t <= <[(TF) i f no less than s% o f

transactions in D(Pi) contain X u Y ,

y AR possesses the temporal feature TF with the frequency f% in the

transaction set D i f it has minimum confidence min_c% and minimum

support min_s% during no less than /% o f intervals in (f)ifF).

In the above definition, the notion of frequency is introduced for measuring the

proportion of the intervals, during which AR satisfies minimum support and

minimum confidence, to the intervals in (f>(fF). It is required that the frequency of

any temporal association rule (.AR,TF) should not be smaller than the user-specified

minimum frequency which is a fraction within [0,1]. In the case that ([(TF) just

includes a single interval, the frequency will be omitted since the meaningful

minimum frequency must be 1 and AR must have minimum support and minimum

confidence during this single interval [Chen et al., 1998],

Depending on the interpretation of the temporal feature T F , a temporal association

rule {AR,TF) can be referred to as [Chen et al., 1998]:

y A universal association rule i f <f>(fF)={T}, where T represents the time

domain;

y An interval association rule i f <f>(TF)= {itvl}, where itvl cz T is a specific time

interval;

y A periodic association rule i f <j>{fF)={/?,, , p n}, where p i c: T is a

periodic interval in cycles;

y A calendric association rule i f (f){fF) = {calx, cal2, • • •, calm}, where calj a T is a

calendric interval in a specific calendar.

- 7 5 -

4.7.2 Mining Areas of Temporal Association Rules

With the above definition, the mining of temporal association rules has a two-

dimensional solution space, that is, the space consisting of patterns and temporal

features. According to different restrictions, the problems of mining temporal

association rules can be classified into three groups as follows [Chen et al., 1998]:

> Finding temporal features of a given association rule (e.g., finding all valid time

periods of a rule);

> Finding association rules with a given temporal feature (e.g., finding all rules

that hold during the weekend);

> Finding all possible temporal association rules of a certain kind (e.g., interval

association rules, periodic association rules, or calendric association rules).

Bases on the above definitions, Chen and Petrounias [Chen and Petrounias, 1999]

[Chen and Petrounias, 2000a] pointed out in that, in many cases of applications,

people might just be interested in some specific associations of some items in the

database, but have no idea about when and/or how often these associations hold. The

mining of temporal features of some specific association is a kind of meaningful and

important problem in association rule discovery. These temporal features are [Chen

and Petrounias, 1999] [Chen and Petrounias, 2000a]:

> Finding all interesting contiguous time intervals over a time domain during

which a specific association holds.

> Finding all interesting periodicities that a specific association has.

> Validating a given temporal feature (e.g., a time interval, a periodicity, or a

calendar) that a specific association has.

4.8 Summary

This chapter has formalised the problem of temporal data mining. The background of

temporal data mining was presented and the definition of temporal data mining was

given. Potential knowledge and patterns in temporal databases were pointed out,

which include inducted pattern, trend pattern, similar pattern and sequential pattern.

After that, temporal data mining operations were discussed in the categories of

association rules, classification, clustering and prediction.

The temporal features and the representation of temporal features were introduced

with some definition to support the following research works. Additionally, to

formalise the research, the temporal association rule mining problem was defined and

discussed in detail.

5 Discovering Interval Association Rules

5.1 Introduction

This chapter introduces an algorithm called IARMiner for discovering interval

association rules. The problem background is pointed out, and the description of

particular mining challenges that temporal association rules pose, follows. Thereafter,

the related definition for mining interval association rules including that for interval

association rule mining tasks, is provided to further formalise the mining problems.

The actual algorithm IARMiner is clearly presented from association rules and longest

interval searching techniques two aspects. Regarding implementation, a clear view of

the programming for IARMiner is provided in every detail. Finally, an evaluation

exercise is performed to examine the efficiency of IARMiner.

5.2 Problem Description

One interesting extension to association rules is the inclusion of a temporal dimension

[Li et al., 1999] [Chen et al., 1998] [Chen, 1999]. For example, bread and coffee may

be ordered together primarily between 7.00 am and 11.00 am. Therefore, the above

association rule has support as high as 40% among the transactions that happen

between 7,00 am and 11,00am, and may have support as low as 0.005% among

transactions other than those from 7.00 am to 11.00 am. As another example, if one

interrogates a database of transactions in a supermarket, turkey and pumpkin pie are

seldom sold together. However, if one only looks at the transactions in the week

before Thanksgiving, most are discovered to contain turkey and pumpkin pie. That is,

the association rule * turkey => pumpkin pie * has high support and high confidence in

the transactions occurring in the week before Thanksgiving. More examples of the

differences between temporal association rules and non-temporal association rules are

given in [Ale and Rossi, 2000] [Antunes and Oliveira, 1998] [Chen and Petrounias,

2000] [Chen and Petrounias, 2000a],

Also, if different time intervals are considered, different association rules can be

discovered. Some association rules may hold during some time intervals but not

others. Discovering temporal intervals as well as the association rules that hold during

those time intervals may lead to useful information. Informally, the association rules

along with their temporal intervals are referred to as temporal association rules [Li et

al., 1999]. The usual objective is to discover regularities in the occurrence of certain

events and temporal relationships between them [Ale and Rossi, 2000].

5.2.1 Previous Research Areas of Mining Temporal Association
Rules

According to the classification of Chen et al. [Chen et al,, 1998], the mining problem

of temporal association rule includes: finding temporal features of a given association

rule; finding association rules with a given temporal feature; and finding all possible

temporal association rules of a certain kind.

Ozden et al. [Ozden et al., 1998] studied the problem of association rules that exist in

certain time intervals and thus display regular cyclic variations over time. They

present algorithms to efficiently discover what they called ‘cyclic association rules’. It

is assumed that time intervals are specified by the user. In both [Chen et al., 1998] and

[Ramaswamy et al., 1998], the mining problem is limited to find all possible

association rules with user-specified periodic or calendric features. That means to

discover all rules with some known temporal features in which people might be

interested.

In [Chen, 1999] and [Chen and Petrounias, 1998a], a framework for the discovery of

temporal data mining was presented, and the discovery of the longest time intervals

and the longest periodicities of association rules, were discussed. Because they

believe that from a computational point of view, it is too expensive to find all possible

hidden temporal association rules from large databases without any given restrictions,

and in practice, the techniques for those restricted mining problems can be

alternatively used in an interactive and iterative mining process in order to find all

possible temporal association rules. The area concerned with finding all possible

temporal association rules of a certain kind has not been touched.

As well as finding temporal features of given association rules and finding association

rules with a given temporal feature, people also study temporal association rules from

other viewpoints. Instead of studying the temporal features of when an association

rule holds, Abraham and Roddick studied the temporal association rule problem by

finding when an association rule changes [Abraham and Roddick, 1999]. Lee et al.

made their focus on the temporal features of items in given datasets instead of

association rules [Lee et al., 2001],

5.2.2 Challenge of Mining Interval Association Rules

Previous research like that of [Chen, 1999] and [Chen and Petrounias, 1998a]

developed a number of techniques for discovering the temporal features of given

associations or discovering associations with given temporal clues. Such research

assumes that speculations can often be made by experienced experts and that those

speculations need only to be validated before being used for decision-making, but that

is not always the case, because a real world application also requires that

unimaginable temporal association rules must be discovered, without any known clue.

Experts provide their speculations according to the knowledge they already possess,

and data mining is a tool that helps them to discover that knowledge, so, experts can

not always provide speculations before knowledge has been discovered. The unsolved

challenge of temporal association rule mining techniques is to discover both temporal

features and association rules without pre-given information.

The mining of interval association rules is one of the problems of mining temporal

association rules which also includes mining periodic association rules; and the

challenge comes from the expensive time and system consumption. The expenses of

directly searching interval association rules are due to the multiple loop-repeat and

regressive invocation when discovering both temporal features and association rules

together. The multiple loop-repeat and regressive invocation is unavoidable because

people can not treat both item and time information in the same way [Antunes and

Oliveira, 1998], This information must be treated separately, repeatedly and

regressively. A typical association rule mining algorithm like Apriori makes the

asymptotic time consumption of the complexity reach / = o(& -2"), where k is the

size of the dataset to be mined and n presents the quantity of items from the

transaction dataset. For mining temporal features, such as longest time intervals, a

typical algorithm like LISeeker [Chen, 1999] [Chen and Petrounias, 1998a] makes the

(j?2 +3j? + 2 slasymptotic time consumption of the complexity reach / = O k • ---------- , where
V 6)

k is the size of the dataset to be mined and g is the amount of granularity among the

whole time domain. Both complexity notations were calculated in the worst situations.

The worst situation for Apriori is that all candidate itemsets found by Apriori are

frequent (satisfying the minimum support). And the worst situation for LISeeker is

that the transaction dataset to be treated is spread equally into g granularity parts

among the time domain, the minimum interval length threshold equals 1, and the

given association rule holds on the whole time domain (the longest time interval

equals the length of the time domain). Obviously, no one will simply combine two

such algorithms together and regressively invoke Apriori and LISeeker to try to

discover both association rules and temporal features of all possible interval

association rules.

5.3 Definitions Related to Mining Interval Association Rules

With respect to a given time-stamped dataset, there may be a series of different

interval association rules existing among the time domain duration. The task of

interval association rule mining is defined as follows:

Given a set of time-stamped transactions (D) over a time domain (T), minimum

support (m in jm p), minimum confidence (m injcon), and minimum interval length

(m in je n), the problem of mining interval association rule (IA R) is to find all

possible association rules (A R s) and all their corresponding longest time intervals

during which the association rules hold.

5.3.1 Temporal Features Related to the Interval Association Rule
Mining Task

To model the interval association rule mining problem, the issue of time intervals

must be introduced firstly, in every respect. Chen and Petrounias [Chen, 1999] [Chen

and Petrounias, 1998] [Chen and Petrounias, 1999] [Chen and Petrounias, 2000a]

[Chen et al., 1998] gave a number of precise definitions about them.

> Interval:

Assume that each interesting time interval is composed o f a totally ordered set

o f contiguous constructive intervals with a given granularity. Here, such a

constructive interval is called a granular interval that is a non-decomposable

interval o f some fixed duration. The interval granular is the size o f each

granular interval (e.g., Hour, Day, Week, Month, etc.) which may vary with

different applications and user's interests.

- 8 2 -

> Valid Interval:

An interval (ITVL) is valid with respect to an association AR i f the temporal

association rule (AR, ITVL) satisfies minjsup (minimum support) and

minjcon (minimum confidence) during that interval.

More often than not people are only interested in those intervals that are long enough,

since some short intervals may not be periods of particular interest or concern for a

particular application. Under the requirement of different applications, the users can

specify a minimum length (m in je n) of the expected intervals. According to this

minimum length, the concept of long intervals can be defined as follows [Chen, 1999]

[Chen and Petrounias, 1998] [Chen and Petrounias, 1999] [Chen and Petrounias,

2000a] [Chen et al., 1998]:

> Long interval:

Given a minimum interval length and an interval granularity (GC), an interval

(ITVL) is long with respect to an association rule (AR) if:

1) ITVL is valid with respect to A R , and

2) length(lTVL, GC) > m in je n . (minimum interval length).

> Strictly long:

Given a minimum interval length and an interval granularity G C , an interval

ITVL is strictly long with respect to association AR i f fo r any ITV L ',

ITVL ' c ITVL and length(lTVL',GC)> m in je n , ITVL' is long with respect to

A R . With respect to a given association A R , for any two strictly long intervals,

ITVL{ and ITVL2, i f ITVLX c ITVL2, we say that ITVL2 is strictly longer than

ITVL,.

> Longest interval:

Given a minimum interval length and an interval granularity G C , an interval

ITVL is longest with respect to an association rule AR if:

1) the interval ITVL is strictly long with respect to A R , and

2) there is no strictly long interval ITVL" with respect to A R , such that

ITVL"zd ITVL.

5.3.2 Additional Definition for Mining Interval Association Rules

With respect to the definitions above, which are used in the algorithm of mining the

longest interval of a given association rule (LISeeker [Chen and Petrounias, 1999b]),

the definition of an interval association rule is:

Given a set of time-stamped transactions, an interval association rule is a

pair (ARJTVL) , where AR is an implication of the form X =>Y and ITVL is

a time interval during which the AR holds. It expresses that during each

interval P in the time domain, the presence of X in a transaction implies the

presence of Y in the same transaction. So:

1) AR has confidence c% during interval P , if no less than c% of

transactions in D(p) that contain X also contain Y .

2) AR has support s% during interval P , if no less than s% of transactions

in D(p) contain X u Y .

Obviously, one can say two interval association rules are the same, if and only if they

have the same AR and the same time interval.

5.4 Algorithm IARMiner

The algorithm IARMiner (Interval Association Rule Miner) was developed to

discover interval association rules (IARs). Given a dataset with a time stamp for each

transaction, a minimum support (m injsup) and a minimum confidence (m injcon),

and even more a basic time granularity unit (G C) and a minimum length of interval

(m in je n), the discovery of interval association rules is to find out all possible

association rules (A R s) and the corresponding longest time intervals (L is) on which

those association rules hold. The process of finding interval association rules falls into

two aspects, finding association rules and finding their corresponding longest time

- 8 4 -

intervals. From another point of view, the focus is on finding all possible association

rules which satisfy the given minimum support and minimum confidence during the

longest intervals, which are not less than the given minimum interval length. One

association rule may exist during the whole time domain or just part of it, and

moreover, can exist during some intervals within the time domain regularly or

irregularly.

5.4.1 Longest Interval Searching Technique

Suppose there is a set of time-stamped transactions D which are ordered by

timestamps, and the time domain T ~ {Gj, G2)..m G„} , where G, (l < z < n) is a

granular interval. The data set D can be partitioned into {d (Gx), D(G3 D(Gn)}.

The problem of searching interval association rules can be considered as successively

looking for all possible association rules (ARs) and their longest sequences

{G,, G2,..., G„} among the time domain, during which the AR holds. The whole

searching process can be performed in two dimensions: finding all A R s , and finding

all their corresponding longest intervals.

As Figure 5.1 shows, there can be a number of I ARs existing in the time domain,

IARX and IAR3 may have the same AR but different time intervals, and likewise

IAR} and IAR5 may have the same time interval but different AR .

D[Gi] D[Ga] D [G 3]

IAR1:cAR*l, G1-G2>

IAR2:<AR2, G2-G4>

IAR4:<AR1, G2>

IAR5:<ARp, G1-G2>

D [G 4] D [G 5]

IAR3:<AR1, G4-G6>

Figure 5,1 Interval association rules

D[Ge]

►

As many algorithms like Apriori have been developed to mine association rules, the

remaining problem is how to find the corresponding longest intervals when mining

association rules. A method called interval combination is introduced to fulfil such

- 8 5 -

requirement. Figure 5.2 shows the MR] on the interval of itvlx. As the definition of

IAR mining, the interval during which the AR holds has to be strictly long.

According to the definition of ‘strictly long’ any sub-interval longer than m in jen has

to be strictly long also, meaning that, AR must hold on itvl2, ilvl3 and itvl4.

D[Gi] D[G2] D[Gs] D [G 4] D [G 5] D[Ge]

IAft1

it\jl1

iu|l3

ityw
min (!en=2

Figure 5.2 Strictly long interval

Searching for longest intervals follows the opposite way. That means that if the

mining process finds that an AR holds on itvl} and itvl2 (Figure 5.3) and they are

both strictly long, one can combine them together to get a longer interval itvl3. If the

AR still holds on itvl3, the itvl3 is also a strictly long interval. It is not necessary to

test the hold of the AR on any sub-interval of itvl3. Likewise, if itvlA and itvl5 have

the same AR and are both strictly long, the condition of itvl6 being strictly long is

only that the AR holds on itvl6 (instead of holding on itvlA, itvl5 and itvl6). But one

can not simply combine itvln and itvl9 to get and verify itvl]0, because according to

the definition of M R , the itvl8, as a sub-interval of i t v j , is longer than the minimum

length and must be strictly long, which can not be conformed.

D[Gi] D[G2]

itv!4

itvl7

D[Gs]

itvl3

itvIS

itvIS

itvilO

D [G 4]

itvl9

Figure 5.3 Interval combination

Definition of combinable intervals:

D[Gs]

►

►

D[Ge]

Combinable intervals (Cl):

Given two strictly long time intervals itvlx and itvl2, and a granularity G C , one

can say that itvlx and itvl2 are combinable if

1) length(itvlx, GC) = length(itvl2, GC) , and

2) the difference between two start time granularities (or end time

granularities) of itvlx and itvl2 equals one granularity.

To find the longest intervals of a given association rule, the algorithm IARMiner takes

the procedure as; finding the minimum length intervals that the association rule (A R)

holds on, combining each pair of combinable intervals (CIs) to get longer intervals

whose lengths are m in jen +1, verifying the combined intervals to still be long, and

repeating the combining process until the longest time intervals are found.

Figure 5.4 shows the basic procedure of searching the IARs in IARMiner. Firstly,

every interval equalling the minimum interval length has to be searched to find all

possible ARs , as shown in step 1 in Figure 5.4. Secondly, for every pair of

combinable intervals, if they have the same AR part, they should be combined to get

a longer interval, and verified as still being long. The same process continues until

any of the following three conditions are reached:

1) no more combinable intervals

- 8 7 -

2) no more combinable intervals have the same AR (or A R s)

3) the length of the longest interval already reaches the whole time domain.

D[Gi]

In terval tnngth=1

an g th = 2

D [0 2]

In te rv a l !ength=3

D[Gs]

In terval len g th = 5

D [G 4] D[Gs]

englh=6

interval length=7

a n g th =

D[Go] D [G 7]

Figure 5.4 Searching interval association rule

D[Ga]

5.4.2 Association Rule Searching Technique

There is no special sub-algorithm of IARMiner for searching association rules within

each minimum length interval from the temporal datasets. Most common association

rule mining algorithms can be used in IARMiner. Apriori [Agrawal and Srikant, 1994]

is chosen for this research because of its simplicity, principles, typicality and

understandability. In IARMiner, Apriori is used to mine all ARs from every possible

minimum length sub-dataset. The job of verifying combined intervals as still long is

performed by scanning and counting the AR part(s) on the sub-datasets of the new

interval length.

5.4.3 Algorithm Description

This section describes the algorithm IARMiner for searching all interval association

rules (IARs) in a database D over a time domain T . For simplicity and without loss

of the granularity, suppose T = {G,, G2,..., } and D = {jDfG,],Z)[G2],...,Z)[gJ} .

The searching process is gradually made by scanning all partitions of the database

For monitoring the searching process a list data structure, IL (interval list) is

introduced to help solve the problem. Every node of IL contains three parts (Figure

5.5):

Start __ G : start granularity (start time point);

End _ G : end granularity (end time point);

ARset : a set of association rules holding on the interval that starts with

Start G and ends with End G .

Node n

End G

ARset

Start G

ARset

End G

Node m

End G

ARset

Start G

Node 1

Start G

Figure 5.5 Data structure of interval list

To help combine the possible combinable intervals, two pointers are used to represent

the nodes of I L , Lptr\ and Lptr2 (Figure 5.6).

Node 3 N ode 4 Node nN ode 2Node 1

Lptrl Lptr2

Figure 5.6 Pointers used for interval list

The first step of IARMiner is to build the IL list by searching all AR s on every sub­

dataset whose interval equals the minimum interval length. After that, the searching

process falls into the loops of combining each pair of combinable intervals having the

same AR(s) and trying to get and verify them. There is only one condition to finish

the mining process, that is where only one, 01* no node is left in the IL after the

combination loops, but three conditions apply in order to break a loop;

1) the current and the next list nodes have at least two different granularities,

(|start _ G, - start _ G21 > 2), (not combinable)

2) the two IL nodes to be combined have no same AR in their ARsets ,

(ARset} n ARset2 = 0)

3) the new combined interval is no longer long (candidate AR s no more hold).

In addition, some functions are designed for manipulating IL as follows:

Output{ARs) : output the IAR ;

S c a n (D [G , £>[G j : scan the dataset partitions from D[Gm] to D\Gn] to

find out whether there are AR (s) holding on such duration (interval).

Data structure: List
Dataset length = n
Every list node contains : Statt granular ; Start_G

End granular: EndJG
a set o f ARs (Frequent Itemset)

First s tep :
ptr} = 1
ptr2 ~ ptr; + m injlen - 1
while(ptr2 < n)do
{ G_Start - ptrt ;

G_End - ptr2;
Input dataset from G_Start to G_End;
Scan dataset fo r ARs (Frequent Itemset%
i f found

IL Add(Strat_G = ptr/ ,E nd_G = ptr2, ARset - ARs),
ptr,+ = 1;
ptr2 + = 1;

}

- 9 0 -

Second s tep :
lptrx — IL.first{);
lptr2 — lptrx .next{);
while{lL.length > l)do
{ i f (lptr3.Start__G -1 > lptrx.Start_G)

then{output{lptrt .ARset);
lptr,.remove{);
Iptr, — lptr2;

lptr2 — lptr2 .next();
continue;

}
if{lptrl .ARset n lptr2 .ARset = 0)

then{output(lptrI .ARset);
lptrl .remove();
Iptri =lptr2;
Iptr2 = lptr2 ,next();
continue;

}
fo r all(ARs = lptri .ARset n lptr2 .ARset)do

{scan dataset fro m . lptrl .Start _ G to lptr2.End _ G
fo r ARs that still hold on the longer interval };

i f {new ITVL found(or : ARs =^0j)
then{output{lptr,, ARset - ARs);

IptrARset = ARs;
Iptr t .End _G+ = 1;
Iptr) = lp tr2;

lptr2 = lptr2.next{);
continue;

}

else{ output(lptrx .ARset);
Iptr) ,remove();
Iptr) = lp tr2;

Iptr2 - lptr2 .next{);
continue;

}
}// End o f while

i f (iL, length = l)
then output(lptr) .ARset);

5.5 Implementation

The algorithm IARMiner is realised using the Java programming language in the

development environment of Microsoft Visual J++ 6.0 on a computer running

WindowsXP operating system.

5.5.1 Program Structure - Overall Structure

The whole program is supposed to run the algorithm IARMiner as a sequence of

input-output (Figure 5.7). After the program begins, it needs the input from the user in

order to specify the target temporal transaction database file stored on a hard disk, as

well as the minimum support, minimum confidence and minimum interval length

thresholds. The target temporal transaction dataset file keeps the transactions in plain

text in the format of one transaction to one line. Minimum support and minimum

confidence thresholds are collected from user inputs in the form of a percentage for

easy understanding. The minimum interval length threshold can be specified by the

user as the multiple of a granularity unit, which is set to 'day’. The reason that this

implementation does not accept specification of the granularity unit is due to the fact

that the program will only be used for evaluation purposes, and the target transaction

dataset was collected at the unit of day.

IARMiner
Begin v

result display

IARMiner
End y

stepl o f IARMiner

step! o f IARMiner

check start and end
point o f time domain

get user input o f
target transaction dataset
minimum support
minimum confidence
minimum interval length

Figure 5.7 Program structure of IARMiner

After collecting the necessary information from the user, the program will then check

the target temporal transaction dataset firstly to determine the start and end point of

the time domain. These points will be used to control the loops of the following

processes.

Once all the necessary information has been obtained, the program automatically

starts the mining process, which is separated into two parts, which make it much

easier to control and program, With respect to the algorithm IARMiner, the program

IARMiner also performs the association rule mining job on each minimum length

interval in step 1. Then step 2 finishes the job of combining each short interval

association rule to the longest intervals.

Before ending the program, the final task is to display the resulting interval

association rules and the system response time. For easy collection of the time

consumption reading, the program IARMiner collects the computer system clock time

before the beginning of step 1 and just after the end of step 2. The time consumption

measurements coming from the difference of these two system clock times are more

accurate than a wall clock. But, because the platform of evaluation is a computer

running the Windows operating system, the response time for the same inputs may get

different results, which are due to some unpredictable processes running at the back of

operating system. This can be reduced by minimising all unnecessary processes and

repeating the evaluation to obtain average readings.

5.5.2 Program Structure - Step 1 of IARMiner

Because step 1 of IARMiner finishes the process of mining association rules on each

minimum length interval, the most important element of the implementation of the

step 1 is controlling the loading of the required transaction dataset for each minimum

length interval, and realising the chosen regular association rule mining algorithm,

which is Apriori [Agrawal and Srikant, 1994] in this research.

steplIARMiner
Begin

L > domain end Z

No

No

Yes
Yes

steplIARMiner
End

association
rule(s) found!.

enqueue iN to interval list

invoke apriori function
to find association rules

import transaction dataset
from t{ to t2 (length = m injen)

set two variables
tx = start o f time domain
f, = t, + min len -1

build an interval node
iN.start _G = tt
iN .end_G ~ t2
iN.ARset -rule(s) found

Figure 5.8 Program structure of step 1 of IARMiner

As Figure 5.8 shows, the program uses two variables to control accurate loading of

transaction datasets on each minimum length interval for the purpose of regular

association rule mining. In each loop, two variables f, and t2 keep the same distance

of minimum interval length. And t2 will also be used to determine whether the whole

time domain has been searched. The interval node will only be built while association

rule(s) is/are actually found at corresponding minimum length intervals to reduce

system consumption.

5.5.3 Program Structure - Step 2 of IARMiner

Step 2 of the IARMiner program finishes the process of combining short combinable

interval association rules for the longest one (Figure 5.9). Two pointers /TV, and iN2

are used to reference two directly-linked interval nodes, which may be combinable.

Because any two interval nodes which are not linked directly in the interval list must

have at least two granularity differences between the start granularity point

(iN2.start _ G ~ iN vstart _G > 2), they are definitely not combinable. New interval

nodes are linked to the end of the interval list when new longer interval association

rules are being found. Since the two pointers iNl and iN2 keep traversing down this

growing interval list, all longest interval association rules will be found while the

pointers reach the end of the list.

In programming, three procedures are introduced to determine whether two directly-

linked interval nodes have combinable interval association rules. Firstly, the interval

length of the two interval nodes are checked to see if they have the same length.

Secondly, if two interval nodes have the same length, the difference between them

will be checked by comparing their start granularities (s tar t_G) . Finally, if they

satisfy the above two conditions, the intersections of the two association rule sets

(ARsets) will be checked to determine whether they have the same association rule(s).

steplIARMiner
Begin

set two pointers
iW, = the firs t node o f interval list
iN2 = fTV, .next

iN, = 0 ? > «

iN , = iN
iN , = iN, .next

iNj .internal length -
iN2.intei-val length!

set a new ARset
nARset = iN,. ARset c\iN 2. ARset

n ARset = 0 ?

import transaction dataset
from iW,.start_G to iN2•en d_ G

recount every association
rule o f nARset

delete evety association rule unsatisfying
minimum support and confidence from nARset

nARset = 0 ?

build a new interval node
nIN.start G = iN, .start G
nIN.end G = iNv end G
nIN. ARset — nARset

enqueue nIN to interval list

steplIARMiner
End

Figure 5.9 Program structure of step 2 of IARMiner

The actual program code is included in appendix-a.

-9 7

5.6 Evaluation

To evaluate the performance of this interval association rule mining algorithm, a set

of experiments were conducted to quantify and measure the effectiveness of the actual

algorithm. This algorithm IARMiner was implemented using the Java programming

language on the platform of a laptop computer running Microsoft Windows XP

Professional operating system with Microsoft Visual J++6.0 programming

environment. The laptop was equipped with an Intel PentiumM 1.5GHz CPU, 60GB

hard drive and 1GB memory.

5.6.1 Experiment Dataset

A set of synthetic datasets and a real business world dataset were used to evaluate the

effectiveness and efficiency of the algorithm.

The synthetic dataset

The synthetic dataset used for the evaluation was designed to meet the requirements

of a temporal transaction dataset, fulfilling the coverage of a one-year time period,

setting the amount of items to 50 for limiting the evaluation time, and setting the

most association frequent itemsets to reach 50% support. In the synthetic dataset,

there were 14,637 transactions, with an average of 10 items in each transaction.

The real business dataset

To overcome the shortcoming of the synthetic dataset, which is over-concentration of

itemsets’ support (to 50%), a real world temporal transaction dataset was introduced

in the evaluation. This dataset came from a retail company, whose business was

selling office copy machines, supporting parts and other office products. The

transaction dataset covers the period from January 2003 to December 2005 - 36

months totally with 140,702 transactions containing 9,605 product IDs (item

number). After categorising, there were 152 new categories (new item number) and

95,138 transactions remained for evaluation.

5.6.2 Time Consumption Experiments

The response time was measured as the time that elapsed from the initiation of the

execution of the actual mining process to the end time of finishing the computation.

Experiments were repeated 5 times to obtain stable values for each data point.

Time consumption experiment against mining period
synthetic dataset, minimum support - 50%

co
Q .
E
3mcooa>
E

h -

600

0
1 12

Mining period (month)

■ MI3D MI5D - - - • MI7D

Figure 5.10 Time consumption of IARMiner

Figure 5.10 shows the time consumption experiment against the mining duration on

the synthetic dataset with the minimum support equalling 50%, on which most

frequent itemsets hold. The response time was measured as the time which elapsed

from the start of loading the first dataset to the end time of finishing the computation,

The experiment collected 144 response times from the 144 tests based on different

mining periods and different minimum interval thresholds. For a clear view, Figure

5.10 shows only 36 response times in three groups which differ from each other on

minimum interval length thresholds, represented in the form of M IxD , In the form, x

is the minimum interval length in the granular imit of ‘day’. Although for a clear view

only the experiment results of 3 days, 5 days and 7 days of minimum interval length

thresholds are shown on the chart, like these three groups, all other results, whose

used minimum interval length vary from 1 to 23 , showed the same trend of

reasonable response time for the mining duration. The reason for the different

response time given by different minimum interval lengths was developed in the next

experiment.

Time consumption experiment against minimum interval length
synthetic dataset, minimum support = 50%

40

0
1 23 51 81

Minimum interval length (day)

■ M P1M MP2M - - - . MP3M~j

Figure 5.11 Time consumption of IARMiner

Figure 5.11 shows the result of the time consumption experiment against minimum

interval length on the synthetic dataset with the minimum support threshold equalling

50%. The experiment collected 65 response times on different mining durations and

different minimum interval length thresholds. The chart (Figure 5.11) shows only the

response time in three groups which differ from each other on mining duration length,

represented in the form of M P xM . In the form, x is the mining duration in the unit of

‘month’. The results pointed out an interesting phenomenon, that being, the response

time rises while the minimum interval length threshold approaches half the length of

the mining duration, and dramatically drops when the minimum interval length is

longer than half the length of the mining duration and reaches the whole length of the

mining duration, (After calculation, it is clear that the undulation of the experiment

Ti
m

e
co

ns
um

pt
io

n
(s

ec
on

d)

Ti
m

e
co

ns
um

pt
io

n
(s

ec
on

d)

results during only small minimum interval lengths are due to the uneven density

distribution of the synthetic dataset, and can be seen as noise.)

Time consumption experiment of first and second step of lARMiner
against minimum interval length, synthetic dataset
minimum support = 50%, mining period = 1 month

4

0
1 23

Minimum interval length (day)

- . . . 1s t 2nd whole

Figure 5.12 Time consumption of IARMiner

Time consumption experiment of first and second step of lARMiner
against minimum interval length, sythentic dataset
minimum support = 50%, mining period = 2 months

16

0
511

Minimum interval length (day)

- - - -1 s t 2nd whole

Figure 5.13 Time consumption of IARMiner

Time consumption experiment of first and second step of lARMiner
against minimum interval length, synthetic dataset
minimum support = 50%, mining period = 3 months

40

0
1 81

Minimum interval length (day)

. . . . 1 s t 2nd whole

Figure 5.14 Time consumption of IARMiner

To study this phenomenon, three more experiments were performed on the same

synthetic dataset but using different mining durations (Figure 5.12, Figure 5.13 and

Figure 5.14). In these experiments the response time was collected after the end of the

first mining step of IARMiner as well as the second. Three experiments ran on one-

month (Figure 5.12), two-month (Figure 5.13), and three-month (Figure 5.14) mining

durations. All of them show that the first mining step of IARMiner takes more time

than the second, and plays the leading role in time consumption experiments of

IARMiner.

This dramatic phenomenon occurs because of IARMiner’s relatively expensive time

consumption during the first running step, and the fact that the minimum interval

length threshold reaches half the length of the whole mining duration. Figure 5.15

simulates the asymptotic time consumption result of the first step of IARMiner

against different mining durations. The time consumption of the first step of

IARMiner reaches the highest level while the minimum interval length approaches

half the length of the total mining time domain. And the worst situation occurs when

the minimum interval length equals half of the total mining time domain length.

- 102 -

120

0
1 20

M inim al In terval len g th

Figure 5.15 Time simulation of 1st step of IARMiner

Figure 5.15 was drawn based on the asymptotic time complexity of the first step of

IARMiner. As Figure 5.16 shows, while the time domain length is 5, the total

granularities to be mined during the first step of IARMiner increase from 5 to 9 when

the minimum interval length increases from 1 to 3. It also reduces from 9 to 5 while

the minimum interval length keeps rising.

 Minimum interval length = 1
----------------- total mined granularities = 5

 __________ Minimum interval length = 2
total mined granularities = 8

— ----------------------- Minimum interval length = 3
total mined granularities = 9

 - = ----------------- Minimum interval length = 4
total mined granularities = 8

-- Minimum interval length = 5
total mined granularities = 5

Figure 5.16 Granularity simulation of 1st step of lARMiner

After inducing, the asymptotic time complexity of the first step of IARMiner is as

follows: Suppose that, the length of the time domain to be mined is n and the

minimum interval length threshold is x , so, while x < n , the total temporal datasets in

- 1 0 3 -

the unit of granularity to be mined by the first step of IARMiner will be

y = ;c*(« + l) - x 2 . Then, when the total time domain to be mined has three

granularities (n = 3), the asymptotic time complexity of the first step of IARMiner

will be / = o[k • (4x - x 2)) , as well as when n = 4 the complexity is

/ = o (^ -(5 x -^ :2)) and when n = 5 , the complexity is / = o(k • (6* - x 2)) . The

variable k is the time complexity of the chosen regular association rule mining

algorithm, which is / = 0 (2 ") here as Apriori is chosen as the regular association rule

mining algorithm in this research.

In conclusion, the time consumption of the first step of IARMiner is predictable while

the time consumption of the second step is really based on the distribution of interval

association rules. Because in a real world application, the mining durations are always

much longer than the user-specified minimum interval length, the worst situation

rarely has the opportunity to occur.

The following experiments were performed on the real business temporal transaction

dataset, which provides IARMiner with a more suitable evaluation while using it in

the real world. The minimum support was set to 15% , at which most interval

association rules were found. The experiments were repeated when the minimum

interval length threshold was set to three, five, and seven days to give a comparison.

Time consumption experiment against mining period
real business dataset, minimum support - 15%

om
Q.
E

900

0
1 36

Mining period (month)

- - - • MI3D MI5D ■ MI7D

Figure 5.17 Time consumption of IARMiner

Figure 5.17 shows the time consumption experiment against mining durations on the

real business dataset with the minimum support threshold equal to 15%, at which

most interval association rules hold. The evaluation mining duration was 36 months,

and the experiment was repeated three times with the minimum interval lengths

equalled three, five, and seven days, which is presented in the chart in the form of

M lxD . While the minimum interval length was three days, the response time raised

above the average level at the duration approaching the 36th month. The reason is

that, more length - 3 interval association rules were found during that period.

- 1 0 5 -

Time consumption experiment of the first step of IARMiner
against mining period

real business dataset, minimum support = 15%

co
£
E3
(A
C
80)
E

800

0
1 36

Mining period (month)

■ M I3D MI5D ■ MI7D

Figure 5.18 Time consumption of 1st step of lARMiner

To determine which procedure took more time consumption in IARMiner, two charts

are given to show the individual time consumption of the first and second steps of the

program. From Figure 5.18, it can be seen that the chart shape of the time

consumption experiment results of the first step of IARMiner has a very similar shape

to the consumption of the whole program (Figure 5.17). Comparing this to the

following Figure 5.19 of the second step of IARMiner, it can be seen that for a real

business dataset, the whole time consumption of IARMiner is decided by its first step.

The second step only slightly increases the time consumption when more candidate

minimum length intervals are found in the first step.

Time consumption experiment of the second step of lARMiner
against mining period

real business dataset, minimum support = 15%

60

, / ■ --------------

0
1 36

Mining period (month)

- ■ - .M I3D MI5D - ■ . MI7eT

Figure 5.19 Time consumption of 2nd step of IARMiner

Furthermore, additional experiments were performed to indicate that. These

experiments put the first and second steps of IARMiner in the same charts to provide

a clearer view.

Time consumption experiment of the first and second steps of
lARMiner against mining period, real business dataset

minimum support = 15%, minimum interval length = 3 days

800

0
1 36

Mining period (month)

1s t 2nd

Figure 5.20 Time consumption of 1st and 2nd steps of IARMiner

- 107 -

Time consumption experiment of the first and second steps of
lARMimer against mining period, real business dataset

minimum support = 15%, minimum interval length = 5 days

co

E
3
(0
C
8a>
E

800

0
1 36

Mining period (month)

■ 1s t 2nd

Figure 5.21 Time consumption of 1st and 2nd step of IARMiner

Time consumption experiment of the first and second steps of
lARMiner against mining period, real business dataset

minimum support = 15%, minimum interval length = 7 days

800

o
*
E

0
1 36

Mining period (month)

■ 1 s t 2nd

Figure 5.22 Time consumption of 1st and 2nd step of IARMiner

Figure 5.20, Figure 5.21 and Figure 5.22 are the results of experiments in which the

minimum interval length equals three, five, and seven days. All these three charts

point out that in comparison to the second step, the first step of IARMiner was really

playing the leading role in the time consumption of the program. As mentioned before,

- 1 0 8 -

the first step of IARMiner is really a repeated regular association rule mining process

running on every minimum length interval. The best way to reduce the time

consumption of IARMiner is to choose a faster regular association rule mining

algorithm (the algorithm Apriori [Agrawal and Srikant, 1994] was chosen in this

research and experiments).

To evaluate the efficiency of IARMiner, a group of tests were set up to compare

IARMiner with LISeeker [Chen, 1999] [Chen and Petrounias, 1998a]. As LISeeker

discovers only the longest intervals of given association rules but IARMiner finds

both association rules and their longest intervals together, Apriori [Agrawal and

Srikant, 1994] was chosen to run firstly on each minimum interval length dataset to

provide LISeeker the association rules.

After calculation, it was assured that the whole datasets to be treated could be loaded

into main memory. This made Apriori run on the whole datasets without suffering

disk I/O overhead, and had the efficiency of algorithm Partition [Savasere et al., 1995].

The response time was measured as the time which elapsed from the start of

IARMiner loading the dataset to the end time of finishing the computation, and from

the start of Apriori loading the dataset to the end time of LISeeker finishing the

computation.

Ti
m

e
co

ns
um

pt
io

n
(s

ec
on

d)

Ti
m

e
co

ns
um

pt
io

n
(s

ec
on

d)
Time consumption experiment against mining period

mining lARsfrom TTD using lARMiner and LISeeker, real business dataset
minimum support = 15%, minimum interval length = 3 days

1400

1 36

Mining period (month)

lARMiner LISeeker

Figure 5.23 Time consumption of IARMiner and LISeeker

Time consumption experiment against mining period
mining lARsfrom TTD using lARMiner and LISeeker, real business dataset

minimum support = 15%, minimum interval length = 5 days

600

0
1 36

Mining period (month)

lARMiner LISeeker

Figure 5.24 Time consumption of IARMiner and LISeeker

- 110 -

Time consumption experiment against mining period
mining lARsfrom TTD using lARMiner and LISeeker, real business dataset

minimum support = 15%, minimum interval length = 7 days

600

■ucoo0)w
coV
CL
E
3
V)
coo0)
E
H

1 36
Mining period (month)

 lARMiner LISeeker

Figure 5.25 Time consumption of IARMiner and LISeeker

Figure 5.23, Figure 5.24 and Figure 5.25 are the experiment results, which compare

IARMiner with LISeeker plus Apriori running on the real business dataset with the

minimum interval length thresholds equal to three, five and seven days. It looks like

IARMiner shows not much better performance than LISeeker plus Apriori. But by

comparing these three figures, one can find that a shorter minimum interval length

threshold provides better efficiency. This is due to the fact that with a shorter

minimum interval length threshold, more interval association rules can be found; thus

IARMiner’s interval combination technique can show its better efficiency than

LISeeker. As previous experiments already show, in comparison to the second step,

the first step of IARMiner is the time-consuming, repeating the regular association

rule mining process running on every minimum length interval, while the second step

is really based on the distribution of interval association rules. Without finding

interval association rules, both IARMiner and LISeeker plus Apriori are the process of

Apriori running on every minimum interval length dataset. So, IARMiner shows

better efficiency than LISeeker plus Apriori while there are interval association rules

existing according to the thresholds; and the more interval association rules that exist,

the better the IARMiner shows.

Ti
m

e
co

ns
um

pt
io

n
(s

ec
on

d)

Ti
m

e
co

ns
um

pt
io

n
(s

ec
on

d)
Time consumption experiment against mining period

mining lARsfrom TTD using lARMiner and LISeeker, synthetic dataset
minimum support = 50%, minimum interval length = 3 days

1600

1 12

Mining period (month)

lARMiner LISeeker

Figure 5.26 Time consumption of IARMiner and LISeeker

Time consumption experiment against mining period
mining lARsfrom TTD using lARMiner and LISeeker, synthetic dataset

minimum support = 50%, minimum interval length = 5 days

1600

1 12

Mining period (month)

lARMiner LISeeker

Figure 5.27 Time consumption of lARMiner and LISeeker

- 112 -

Time consumption experiment against mining period
mining lARsfrom TTD using lARMiner and LISeeker, synthetic dataset

minimum support = 50%, minimum interval length = 7 days

1800

c
oV
CL
E3
CO
c
o
o0)
E

1 12

Mining period (month)

 lARMiner LISeeker

Figure 5.28 Time consumption of IARMiner and LISeeker

Figure 5.26, Figure 5.27 and Figure 5.28 are the same experiment running on the

synthetic dataset. This time, IARMiner shows significantly better efficiency than

LISeeker plus Apriori because more interval association rules were found in the

synthetic dataset than in the real business dataset. It is again confirmed, that

IARMiner is more efficient than LISeeker plus Apriori while interval association rules

exist, and the more interval association rules that exist, the better the IARMiner shows.

5.7 Summary

In this chapter, the algorithm IARMiner was delivered through discussing the problem

background, predicting the mining challenge, describing in detail, the algorithm

implementation, and a range of evaluation processes. In the problem description, the

problem of mining interval association rules was highlighted as an area of temporal

association rule problems. Some previous research studies were reviewed and the

special challenge of mining interval association rules was pointed out. Although the

problem of mining interval association rules has a two-dimension solution space, one

can not simply unite the association rule mining algorithm and the longest interval

mining algorithm to try to find a solution.

Some related definitions for mining interval association rules, including interval

association rule mining task, intervals, valid intervals, long interval, longest intervals

etc., were then reviewed and redefined. The algorithm IARMiner was introduced from

the longest interval searching technique and the association rule searching technique.

A method called interval combination was introduced to IARMiner to fulfil the two-

dimension solution space requirement.

The implementation part of this chapter introduced the programming method of

IARMiner through its overall structure, step 1 structure and step 2 structure, in three

parts. Finally, a real business temporal transaction dataset and a synthetic one were

used to evaluate the algorithm IARMiner. Many experimental results were presented

in clear charts with detailed explanations. The evaluation showed that the algorithm

IARMiner is not only relatively affordable and efficient, but also has the potential to

challenge the problem of mining both association rules and corresponding longest

time intervals together, without any pre-given temporal or association rule clue. It

delivered a reasonable response time, and also showed that its interval combination

technique is more efficient than LISeeker. The algorithm IARMiner still has the

potential to be improved by choosing a faster regular association rule mining

algorithm for its first step.

6 A Tree-Projection Method for Mining Temporal
Association Rules

6.1 Introduction

Since most level-wise association rule mining algorithms suffer the problem of

scanning transaction datasets over multiple passes, as an extension of association rule

mining, temporal association rule mining algorithms are facing the same difficulty.

One of the most important methods for improving the efficiency of temporal

association rule mining algorithms is to reduce the passes of scanning transaction

datasets. A projected pattern base may be the solution. This chapter introduces a tree

projection method called Tl-tree to try to solve the problem.

The chapter discusses the problem firstly as the motivation for the work. Then, it

points out the basic requirement of the projected pattern base to be used to solve the

problem. Some different designs are then compared to choose the most suitable

design, and in the discussion of its implementation, the chapter describes some key

techniques of realising the design. Finally, the evaluation points out the effectiveness

of the new method in comparison with other algorithms.

6.2 Using the Temporal Itemset Base Instead of the
Transaction Set

6.2.1 Motivation

To get the most wanted association rules, a user may repeat the same mining process

multiple times with different minimum support and minimum confidence thresholds.

If a user needs 10 attempts at mining a transaction dataset using different thresholds

to get the average 10 - items association rules he/she wants, the dataset will have to

be scanned 10 x 2 10 =10,240 times if he/she chooses an Apriori-like generate-and-test

based association rule mining algorithm. If the transaction dataset has 100,000

transactions, the total transactions to be read and counted will be more than a billion.

Unfortunately, many real business databases contain many more transactions and

items. In addition to this try-to-get procedure, the same problem can happen to

incremental datasets. Users always have to re-mine association rules with the same

thresholds when new data comes to the database.

The problem also happens with temporal association rule mining applications, and

may become even worse because the minimum interval length is added to the existing

minimum support and minimum confidence thresholds. So, to discover the temporal

association rules required by the user, the try-to-get procedure will have to be

repeated more times than mining regular association rules. Scanning dataset with

multiple passes is the heaviest burden of temporal association rule mining

applications. Although modern computers become faster and faster, such a burden is

still the reason for low efficiency.

6.2.2 Minimising System Consumption by Reducing Multi-Passing

Han et al. [Han et al., 2000] introduced a method called FP-growth, which compresses

the database representing frequent itemsets into a tree-based structure, but retains the

itemset association information, to transform the problem of scanning the transaction

dataset to the traversing generated pattern base. This method greatly reduces the

- 116 -

expense of multi-scanning transaction datasets. Although it takes time to generate a

pattern base (FP-tree), compared to the following mining process, the approach is still

cost effective for regular association rule mining applications. But, since the FP-tree

used by the FP-growth method is a compressed frequent itemsets base, which gives up

some low coimt itemsets, it does not support the mining of incremental datasets

because the low count itemsets can be frequent when new data come in.

The FP-growth method transforms the association rule mining procedure from the

repetition of generate-and-test (which needs scanning transaction dataset multiple

passes), to the traversing of a pattern tree. The same idea can also apply to temporal

association rule mining techniques. To apply such a projected pattern base method to

temporal association rule mining, the generated temporal pattern base also needs to

contain temporal information.

6.3 77-free (Temporal Itemset tree)

The data structure to be introduced as the temporal pattern base, separates the whole

temporal association rule mining process into two steps. As Figures 6.1 and 6.2 show,

the introduced temporal pattern base introduces a middle part called the temporal

itemset base.

Temporal association rules

Figure 6.1 Temporal association rule mining process

Temporal transaction dataset

Temporal r-............... K, Temporal ,----------------- \ Temporal
transaction dataset

[-------------- ^
itemset base V association rules

Figure 6.2 Temporal association rule mining process with temporal itemset base

The first step scans the temporal transaction dataset to generate the temporal itemset

base, which contains all possible itemsets with the counts at every possible granular

time piece. The second step takes the temporal itemset base as the input to search the

association rules and their corresponding temporal features.

- 117 -

6.3.1 Design Requirements of the Temporal Itemset Base

For efficiently mining temporal association rules and reducing the costs of repeating

the try-to-get procedure without multi-pass scanning of datasets, all itemsets and their

counts with the corresponding temporal information from the source dataset, must be

stored in the pattern base. Keeping all information without compressing those low

count itemsets is not only done to maintain the ability to mine incremental datasets,

but also to help the repeating try-to-get procedure of temporal data mining, because

the user may reduce the minimum support or other threshold(s) during that procedure.

Based on the need to keep all itemsets and temporal information, three main

requirements of designing the temporal itemset base arise, which are efficiency,

capacity and size. The efficiency of the temporal itemset base must be high, because

the retrieving speed of the itemset count and temporal information must beat the

scanning of the original temporal transaction dataset. The capacity of the temporal

itemset base must be big, since all itemset, count and temporal information is needed

for the following mining processes. Finally, the size of the temporal itemset base must

be acceptable and flexible. To keep all information well organised, the storage

consumption (either in media or memory) of the base may be more than the original

temporal transaction dataset, but the size must be acceptable or flexible to keep the

temporal itemset base realisable.

In addition, there is some other information rather than itemset counts and

corresponding temporal information, that must be kept in the temporal itemset base,

this being, the amount of transactions of each granularity used to calculate the support

and confidence, and all time granularity information throughout the whole time

domain for mining temporal patterns.

6.3.2 Tl-tree (Temporal Itemset tree)

To satisfy the above requirements, the suitable choice is a binary tree called a

temporal itemset tree (Tl-tree) here. A tree structure can satisfy the requirements and

is more effective than the corresponding table-based or list-based structure because of

- 118 -

its unique searching efficiency. A tree structure can keep all count information from

the transaction datasets well-organised and without duplication, which always

happens in the list-based structure. Although the size of a tree structure is bigger than

a corresponding list structure, it is still much smaller than a tabled one.

Because finding temporal association rules is the final purpose, the Tl-tree structure

has to be organised in time series. As Figure 6.3 shows, the itemsets with count

information for a granular time piece, are projected as the nodes of a tree, and there

are a number of trees in the time series.

G2

G1

itemset with count

Figure 6.3 Tree organised in time series

There are two ways to organise granularity itemset trees, the first way being as shown

in Figure 6.4, in which every granularity itemset tree contains the itemsets and their

counts during the corresponding granular time piece, and all trees are linked together

in the time series to form a bigger tree presenting the whole time domain. But, this

approach has two drawbacks, the size of the structure occupies more storage space

and it also makes it hard to search efficiently, since the same itemsets can repeat

multiple times in different sub-trees.

G1 G2 G3 Gn

/
/

Figure 6.4 Gl-tree linked in time series

Another approach is to store all granularity itemset trees (Gl-tree) separately and

introduce a list structure called G-list (granularity list) to keep all granularity

information throughout the time domain. Each node of the G-list represents a granular

time piece and points to a corresponding granularity itemset tree (Figure 6.5). This

approach can improve the storage problems of Figure 6.4 by keeping granularity

itemset trees separately and it also improves the searching efficiency.

G - List 1 2 3 n

G1 ' G2 * G3 \

Figure 6.5 Gl-tree linked by G-list

6.3.3 Mining Temporal Association Rules from the Generated Tl-
tree

Many existing temporal association rule mining algorithms can be reorganised to

work with a Tl-tree. A Tl-tree provides them with improved efficiency for both

mining incremental temporal transaction datasets and repeating the try-to-get

procedure of discovering temporal association rules. To find the temporal patterns of

- 120-

certain association rules using an algorithm like the longest interval mining algorithm

LISeeker [Chen and Petrounias, 1999] [Chen and Petrounias, 2000a] with the Tl-tree,

the user can search each granularity itemset tree (Gl-tree) in the sequence of the G-list

throughout the time series domain, calculate the counts of the target itemsets stored in

the Gl-trees and get the longest intervals. To find the association rules for a given

time duration, the user can perform a regular association rule mining process on the

desired Gl-tree(s), and the Tl-tree also provides efficiency as it has already kept all

counts information for every possible itemset. To search both association rules and

the temporal information together using an algorithm like IARMiner with the Tl-tree,

the Tl-tree provides unique efficiency for both the association rule and longest time

interval mining processes, which will be discussed in detail later.

To efficiently discover association rules, Apriori [Agrawal and Srikant, 1994] uses a

prune step to delete those candidate itemsets which cannot possibly be frequent in the

candidate-generation function before scanning the transaction set. This method is

easier to realise using the Tl-tree to provide efficiency. As Apriori needs a prune step

to delete those candidate itemsets whose sub-sets are not frequent during the last pass,

the Tl-tree finishes the task by avoiding those nodes whose parent nodes are not

frequent. For example, if a Gl-tree is generated like Figure 6.6, for mining certain

frequent itemsets, the node BCD can be avoided if his parent BC is not frequent, and

the nodes A B C , ABD and ABCD can be avoided if the count of AB is less than the

minimum support threshold. Using this method avoids traversing the whole tree while

mining association rules and can save a great amount of precious time.

ABCD

Figure 6.6 Example of Gl-tree

To efficiently mine the longest intervals of a given association rule, the algorithm

IARMiner can work with the Tl-tree and shows better efficiency than LISeeker. The

time consumption can be further reduced by searching only those intervals during

which the current itemset node’s ancestor nodes hold. The reasoning of such method

is that if an itemset Pa does not hold on the duration Ta, any superset of Pa can not

hold during Pa .

LISeeker [Chen and Petrounias, 1999b] makes the time complexity to

A t + 6«2 + ll« + 6^ „j = O k ----------------------------while mining the longest intervals for a given

association rule, where k is the size of the temporal transaction dataset and n is the

amount of granularity time piece. The asymptotic time complexity of IARMiner is

f = 0 k- +3ft + 2 w^ j e mjnjng the iongest intervals for a given association rule,
V 6)

where k is the size of the temporal transaction dataset and n is the amount of

granularity time piece.

- 1 2 2 -

6.4 Improvements to the Tl-tree

The Tl-tree method discovers temporal association rules based on the time series

counts information of every itemset, which is projected into the Tl-tree from the

source temporal transaction dataset. It shows better performance than multi-pass

scanning of the temporal transaction set but also has limitations from two aspects,

which are huge media and memory consumption, and low efficiency when a Tl-tree

becomes too big,

6.4.1 The Size Problem

Imagine an extreme situation of a temporal transaction dataset, where each granular

time piece contains only one, but a big, transaction (itemset: ABCD), This will cause

the corresponding Gl-tree to generate 15 nodes (A , B , C , D , A B , A C , A D , B C ,

B D , C D , A B C , A B D , A C D , BCD and ABCD), whose storage space is much

bigger than the original transaction dataset (Figure 6.7). If one transaction contains

only one large size itemset consisting of n items, the corresponding Gl-tree built

from it will have Cl + C* + Cft H— + C" = 2" nodes. If a real business temporal

transaction dataset has many such granularity time pieces, the storage and memory

usage will explode.

Transaction itemset: ABCD

Gl-tree: root

ABCD

Figure 6.7 Example of Gl-tree

6.4.2 The Complex Problem

There is the potential for a complex problem to emerge in real world applications

when the user-specified granularity unit is relatively small. For example, a user may

treat ‘second’ as the granularity time unit, but make the mining duration as days or

months. In this situation, too many Gl-trees will be generated and scanned, as Figure

6.8 shows. The mining process will keep tracking the reference processes between the

G-list and Gl-trees in Figure 6.8, and a large amount of system time will be wasted on

traversing the Tl-tree.

G1

Reference processes

Gl-trees:

G2

G-list:

G3

Gn

Figure 6.8 Complex problem of Gl-tree and G-list

6.4.3 The Improved Tl-tree

The above two problems may easily occur in real business applications. A superstore

sales dataset can easily generate temporal transactions using low count but big size

itemsets, and this circumstance makes the temporal association rule mining task work

on long mining durations, but with a relatively short granularity dataset.

Such problems come from the ‘one list linked multiple trees’ structure of the Tl-tree,

The ‘multiple trees’ (Gl-trees) waste the storage and memory spaces, and the ‘one

-125 -

list’ (G-list) reduces the searching efficiency. So, the Tl-tree method can be

reorganised to a "one tree linked multiple lists’ structure to overcome the

disadvantages.

Compared to the original Tl-tree, the improved Tl-tree has only one tree called I-tree

(Itemset tree) but multiple lists called GC-lists (Granular count list) instead of

multiple Gl-trees with one G-list (Figure 6.9). The improved Tl-tree records all

itemsets information as the nodes of the I-tree, while the counts information of an

itemset on each granularity is saved in the GC-list and pointed to by the

corresponding tree nodes.

I-tree

A B C D

‘* jG l|G 2|G3| jon[

Figure 6.9 Organisation of Gl-tree and G-list

In the improved Tl-tree, not every granular count list (GC-list) has to be as long as the

whole time series domain. A GC-list can avoid those list nodes whose corresponding

granularities have no contribution to the count of the itemset. The improved Tl-tree

introduces another granularity transaction amount list (GTA-list) to keep the amount

of transactions on each granularity throughout the time domain. Obviously, the GTA-

list will have to be as long as the whole time domain. Such changing can save a great

amount of storage space and improve the searching efficiency.

- 126-

The improved Tl-tree works as follows:

While mining association rules with temporal clues, go over every itemset node

on the I-tree from the root only once, calculate the count information of each

corresponding GC-list according to the thresholds, and finally generate the

temporal association rules. (Those nodes of the I-tree whose ancestor is small to

the minimum support threshold can be bypassed to create efficiency.)

While mining temporal patterns of a given association rule, search the

corresponding itemset node of the I-tree, and calculate the counts on each

granularity time piece stored in the GC-list according to the user-specified

thresholds, to generate the wanted temporal patterns. (Currently, the most

efficient method is the interval combining technique of IARMiner.)

While mining temporal association rules without any pre-given information, the

situation is much like mining association rules with temporal information, the

only difference being that without temporal information, the calculation has to

be made all over the time series by using the interval combining method of

IARMiner. (The method of bypassing those intervals, during which the ancestor

itemsets are not frequent, can be used here to create more efficiency.)

6.4.4 The Potential Weakness of the Tl-tree

The Tl-tree reduces the expense of multiple scanning of transaction datasets for those

unavoidable loop-repeating processes to provide high efficiency, but it still has some

disadvantages.

Firstly, a Tl-tree will grow bigger and bigger as more new items arrive. Although the

growth is not significant while the user pays more attention to categories instead of

certain item numbers, (which greatly reduces the amount of items,) a newly-

introduced item still has the potential to double the amount of tree nodes by joining all

other itemsets already in the tree. That is the worst situation and has hardly any

chance of happening, but an over-large tree still needs to be separated into parts that

can be stored and loaded into memory.

Another disadvantage of using the Tl-tree happens when a mining process on an

incremental transaction dataset has to change the granularity unit. While an existing

Tl-tree is generated from a 36-month temporal transaction dataset using the

granularity unit of ‘day’, the user can increase the mining duration by projecting

further transactions into the existing Tl-tree without recounting previous transactions.

But if the user wants a new mining job to be finished using the granularity unit of

‘month’, an additional process will be needed to combine the existing counts

information from ‘days’ to ‘months’. If the user wants the new granularity unit to be

changed to ‘hour’, all previous temporal transactions will have to be recounted to

generate a new Tl-tree. So, it is important that the first Tl-tree is generated according

to a proper granularity unit. If the user can not decide which unit to use, choosing a

shorter one will avoid rebuilding the Tl-tree.

6.5 Implementation

The algorithm Tl-tree is realised using the Java programming language on Microsoft

Visual J-H- 6.0 programming environment running on WindowsXP operating system.

The overall program structure, is shown in Figure 6.10. The program Tl-tree generates

the projected Tl-tree including the I-tree and GTA-list using user-specified target

temporal transaction datasets. After the generation of the Tl-tree, the user can specify

minimum support, minimum confidence, and minimum interval length etc., thresholds

for mining temporal association rules from the projected Tl-tree.

Begin

End

generate TI - tree

search temporal
association rules

get user input
mining thresholds

get user input target temporal
transaction dataset file

Figure 6.10 Overall program structure of Tl-tree

6.5.1 Program Structure to Generate the Tl-tree

Figure 6.11 depicts the program structure to generate the Tl-tree, from which it can be

seen that the program opens the target temporal transaction database file firstly, and

then reads the data in each transaction, one by one. After reading a whole transaction,

the program will increase the count information at the corresponding node of the

GTA-list, which will record all transaction amount information in the granularity unit

throughout the whole time domain. Then, the itemset in the transaction will be

collected and sorted in ascending order. This sorting will help the tasks of both

generating sub-itemsets and projecting into the tree. After the sorting, all sub-itemsets

(sub-sets of the original itemset numbers) will be generated and linked in ascending

order including the original itemset from the transaction. This itemset list will be

inserted into the Tl-tree one by one in ascending order. The process will repeat until

the last transaction has been treated.

-129-

Begin

End Yes

No

re a d f ir s t
transaction to t.

re a d next
transaction into t.

open tem poral
transaction da tase t f i le

g en era te item set iS i f r o m t i in
ascen t o rd er o f item num ber

f o r a ll item set iS 2 in item set
lis t i S f a d d them into TI - treeincrease count a t

correspon din g G T A - list node

generate an item set lis t i S f fro m iS];
iSL{ contains a ll su bset o f iS} including iS , its e lf

Figure 6.11 Program structure for generating Tl-tree

Figure 6,12 is the process of generating sub-itemsets of a collected itemset. This

process is much like the join operation of SQL (Structured Query Language). All

sub-itemsets and the source itemset will be finally linked to an itemset list (called

iSLx in Figure 6.12). The generation process starts from reading the first item number

of the source itemset iNx. The first item number will be enqueued to the itemset list

iSLx as a 1 -itemset, then the following item numbers from the source itemset will be

united with those itemsets already in the list iSL{ and enqueued to the list as new

itemsets before enqueueing themselves to the list (as a 1-itemset). This process

finishes when all item numbers from the source itemset are treated. The final itemset

list iSLx will contain all sub-itemsets and original itemsets in ascending order.

- 1 3 0 -

Begin

V

create an empty
itemset list iSL,

read the first item number
iNx from itemset iSl

End

No
r f _______
read the first
itemset iS2 from iSfi

No

add iNl
into iSc

read next itemset
iS2 from iSfi

enqueue iSc to
itemset list iSL

build a itemset iS(
as a copy o f iS2

enqueue iN} to itemset
list iSL as a 1 - itemset

Figure 6,12 Program structure for generating sub-itemsets

After generating all sub-itemsets and building the itemset list in ascending order, all

itemsets in the list will be inserted into the I-tree, thereby increasing the counts at the

corresponding GC-list nodes. This process is depicted in Figure 6.13, and is seen to

follow the procedure of finding a corresponding I-tree node and increasing the count

in the associated GC-list, or building a new I-tree node with the GC-list and

increasing the count. The program uses another procedure called ‘compare’ to

determine the relationship between an itemset and a tree node. Depending on the

relationships returned by the ‘compare’ procedure (which may be ‘same’, ‘descendant

of current node’, ‘elder brother of current node’ or ‘younger brother or descendant of

younger brother of current node’), the program will increase the count in the GC-list,

or traverse down to a descendant, or traverse to a younger brother, or build a new tree

node with an associated GC-list. The program needs only four relationships because

all itemsets within a list are linked and inserted into the tree in ascending order. The

sorting processes reduce system consumption and program complexity.

read next item number
iN] from itemset iSx -

-131 -

Begin
Yes

poin t the firs t child o f root
o f I “ tree as current node N c

No

compare
iS, with N.

iS3 is same to Nc 7Yes

No

iS3 is a descendant o f A^,T>-Yes> Nc = Nc.first child

No

iS3 is an elder
.brother o f N cf f Nc = Nc.younger brother■Yes

create a new tree node
N n using itemset iS3

Nc,elder brother.younger brother = Nn
Nc.elder brother = N n
N„. father = N c. father
Nn.elder brother = Nc.elder brother
Nn.younger brother ~ N c
N = N „

Nc.elder brother = 0 ?

Y es

Nc.father.first child - N,
Nc.elder brother - Nn
Nn.father ~ Nc.father
N".younger brother = Nc

create a new GC - list
pointed by node Nc

create a new tree node
fo r Nc using itemset iS3

increase count at
corresponding GC - l i s t node

End

Figure 6.13 Program structure for inserting itemset into I-tree

Because the item numbers of all itemsets are also sorted in ascending order, the

procedure of comparing an itemset with a tree node is relatively simple, as Figure

6.14 shows. Since the inserting procedure strictly moves down the tree branches from

the root, the compare procedure needs only to compare the last item number of a node

with the corresponding ordinal item number in the itemset being compared.

Begin

set I as ordinal number
o f Nc.itemset,last item

tS3.itemset.item, number -
Nc.itemset.last item number 1

Yes No

iSr itemset size =
Nc.itemset s iz e lYes iS3.itemset.item, number >

Nc.itemset.last item number ?
return :
iS3 is same to Nc

No
Yes Noreturn:

iS3 is a descendant o f N(retu rn :
iS3 is an elder brother o f Nc

return :
iS3 is a younger brother o f N c
or descendant o f younger brother o f N c

Figure 6.14 Program structure for comparing itemset with tree node

6.5.2 Program Structure of Mining Interval Association Rules from
a Generated Tl-tree

This section will explain the program structure for mining interval association rules

from a generated Tl-tree. As mentioned before, the mining of interval association

rules from a Tl-tree has two dimensions. The mining process traverses the I-tree to

find frequent itemset(s), as well as searching for the longest interval(s) from a GC-list.

Figure 6.15 is the program structure for the beginning of mining interval association

rules. When the I-tree is not empty, the mining process calls function trciverseTree()

to finish the job. In fact, because the longest intervals need to be mined at the same

time as mining association rules, the program has to introduce the application of

regressive invocation.

- 133 -

Begin

>
End root.first child = 0 ?Yes

No
___________________________i _______________ ___________

f invoke function
y traverseTre e{roo t.fi rst chi I <i, time domain start, time domain end) J

Figure 6.15 Program structure of beginning of mining

Figure 6.16 is the program structure of the regressive invocation. As the flow chart

shows, the function traverseTree{) continually invokes itself to go through each

child and brother node to traverse the whole I-tree without repeating. Within the

function, it first calls another function called minelongestIntervals{) to find all

possible longest intervals for the current node itemset. (The function

minelongestIntervals() finishes the task as the algorithm IARMiner, which has been

discussed in detail within the last chapter. The detailed flow chart of

minelongestIntervals() can also be found in the last chapter.) Then, the program

detects the existence of the first child of the current node, if it exists, and calls the

function traverseTree() itself again for the first child. The same procedure applies to

its younger brother. To achieve efficiency, the function traverseTree() is invoked

with different parameters. As discussed, in the algorithm Tl-tree, it is unnecessary to

further traverse down to the tree branches when the current node itemset is not

frequent during any possible intervals. Also, if the itemset of the current node is

frequent during some intervals, it is unnecessary to search for the longest intervals of

its descendants’ nodes outside the intervals that the current node is holding. So, when

the function traverseTree{) invokes itself for a child or brother node, it transfers its

holding intervals’ boundary through parameters start x and endx.

-134-

traverseT ree(node l , sta r t {, en d})
Begin

N/*
lon gest in terval lis t
I I f - null

invoke fu n ction
llf i = m ineLongestIntervals{yodex, s ta r t i,en d l)

longest in terval
//, = //T, ch ild

I I , = 0 ? T > ^ //, = II..next

invoke function
traverseTm e(node] .fir s t ch ild , //, .star/1, //, .enc/)

broth er = 0 7 > - No>| Z a V rs^ T rlX o d e , .you nger brother, sta r t,, ewrf,)

traverseTreey)
E nd

Figure 6.16 Program structure of regressive incovation

The detailed program code is included in appendix-b.

6,6 Evaluation

To evaluate the performance of the Tl-tree, a set of experiments were conducted to

quantify and measure the effectiveness of the actual algorithm. The algorithm Tl-tree

was implemented using the Java programming language on the platform of a laptop

computer running Microsoft Windows XP professional operating system with Visual

J++ 6.0 programming environment. The laptop was equipped with an Intel PentiumM

1.5GHz CPU, 60GB hard drive and 1GB memory.

6.6.1 Experiment Dataset

A synthetic dataset and the real business dataset, which is same as the one used for

evaluating IARMiner, are used here to evaluate this tree-projection algorithm.

The real business dataset

The real business dataset came from a retail company, whose business was selling

office copy machines, supporting parts and other office products. The transaction

dataset covers the period from January 2003 to December 2005 - 36 months totally

with 140,702 transactions containing 9,605 product IDs (item number). After

categorising, there were 152 new categories (new item number) and 95,138

transactions remained for evaluation,

The synthetic dataset

The synthetic dataset used for the evaluation was designed to meet the requirements

of a temporal transaction dataset, fulfilling the coverage of a one-year time period,

setting the amount of items to 20 for fitting the generated Tl-tree into main memory,

and setting the most association frequent itemsets to reach 50% support. In the

synthetic dataset, there were 14,637 transactions, with an average of 8 items in each

transaction.

6.6.2 Time and Memory Consumption Experiments of Generating
the Tl-tree

As the Tl-tree was introduced to speed up the temporal association rule mining

process, the consumption time of building the Tl-tree is important and must be

evaluated firstly to obtain a reference point.

The response time was measured as the time that elapsed from the initiation of the

execution to the end of finishing the process. Experiments were repeated 5 times to

obtain stable values for each data point.

- 136-

Time consumption experiment against mining period
generating Tl-tree from TTD

real business dataset

18

0
1 36

Mining period (month)

 Time consumption of generating Tl-tree

Figure 6.17 Time consumption of generating Tl-tree

Figure 6.17 shows the time consumption of generating a Tl-tree from different length

temporal transaction datasets. The experiment was repeated using the temporal

transaction datasets of different lengths that varied from 1 month to 36 months. The

experiment result shows the time consumption increasing by a fixed amount of time

as the length of the temporal transaction dataset increased by one each month. This is

the most expected result as it shows the possibility of building the Tl-tree for real

world applications within acceptable time.

After the time consumption experiment, another key ability for realising the approach

in the real world, that being the memory consumption, was tested. As Figure 6.18

shows, when generating the Tl-tree for the first 24 months, there is a significant rise

in memory consumption. But from the 25th month to the 36th month, the memory

consumption remains almost constant, mainly because the initial 24 months’

transactions bring in almost all items, and from the 25th month onwards, no more tree

nodes are required for new items. The only memory consumption is related to the

storage of new granularity itemset counts, which need much less memory space. This

is quite an inspiring result, as it means that when using the Tl-tree in real business

applications, the demand on the memory will not impede the mining of incremental

- 137-

M
em

or
y

co
ns

um
pt

io
n

(M
B

)

temporal transaction datasets, as long as there is no significant introduction of new

items.

Mem ory consumption experim ent against m ining period
generating Tl-tree from TTD

real business dataset

60

0
1 36

Mining period (month)

 Main memory consumption of Tl-tree

Figure 6.18 Memory consumption of generating Tl-tree

6.6.3 Time Consumption Experiments of Mining Interval
Association Rules from the Tl-tree

Because there is no need to use system memory to build up data structures while

mining interval association rules from a built Tl-tree, only the experiments of time

consumption are presented here.

Time consumption experiment against mining period
minig lARsfrom Tl-tree

real business dataset, minimum support = 15%

30

o
•aa
E

1 36
Mining period (month)

• MI3D MI5D ■ MI7D

Figure 6.19 Time consumption of mining IARs from Tl-tree

Figure 6.19 shows the result of the experiment of mining interval association rules

from a generated 36-month Tl-tree using the minimum support threshold at 15%,

around which most interval association rules hold. As the mining duration increases,

the mining process takes a reasonable response time. Comparing the different

minimum interval length thresholds (which are represented in the chart as MIxD , x

is the amount of granularities as the unit of ‘day’), the longer the minimum interval

length, the more the time consumed. This is because a longer minimum interval

length always needs more calculation.

- 139-

Time consumption experiment against mining period
mining lARsfrom TTD using Tl-tree

real business dataset, minimum support = 15%

50

o
■■oQ.
E3(0
Coo
<D
E

0
1 36

Mining period (month)

• MI3D MI5D • MI7D

Figure 6.20 Time consumption of mining lARs from TTD using Tl-tree

While Figure 6.19 shows the time consumption experiment result of mining interval

association rules from a generated Tl-tree, Figure 6.20 shows the total time

consumption of mining interval association rules from the beginning of generating a

Tl-tree. The response time was measured as the time that elapsed from the initiation

of generating a Tl-tree to the end time when the last interval association rule had been

found. Experiments were repeated 5 times to obtain stable values for each data point.

Because the time consumption is extremely low, the time consumption experiments

were repeated using both Tl-tree and IARMiner algorithms, and the results were

compared to gain a clear view.

Ti
m

e
co

ns
um

pt
io

n
(s

ec
on

d)

Ti
m

e
co

ns
um

pt
io

n
(s

ec
on

d)
Time consumption experiment against mining period

mining lARsfrom TTD using Tl-tree and IARMiner
real business dataset, minimum support = 15%, minimum interval length = 3 days

900

/
r '

Mining period (month)

■ Tl-tree---------IARMiner

36

Figure 6.21 Time consumption of Tl-tree and IARMiner

Time consumption experiment against mining period
mining lARsfrom TTD using Tl-tree and IARMiner

real business dataset, minimum support = 15%, minimum interval length = 5 days

600

/

36
Mining period (month)

• Tl-tree---------IARMiner

Figure 6.22 Time consumption of Tl-tree and IARMiner

- 141 -

Time consumption experiment against mining period
mining lARsfrom TTD using Tl-tree and IARMiner

real business dataset, minimum support = 15%, minimum interval length = 7 days

600

Q.

0
1 36

Mining period (month)

 Tl-tree — — IARMiner

Figure 6.23 Time consumption of Tl-tree and IARMiner

Figures 6.21, 6.22 and 6.23 are the experiment results repeated on the same temporal

transaction dataset with different minimum interval length thresholds. All of the three

figures show that the Tl-tree algorithm provides much better efficiency while mining

interval association rules, and the longer the mining period, the better the result. This

is mainly because of the Tl-tree’s triple acceleration methods. Firstly, using the

temporal itemset tree instead of a transaction dataset reduces the time consumption of

multi-scanning the transaction dataset. Secondly, using the method of bypassing

certain tree nodes whose parent node is not frequent, reduces the time consumption

further, by avoiding traversing every tree node. Finally, the method of bypassing

certain time intervals which camiot possibly be long, delivers more efficiency.

The experiments on the real business dataset were not finished with longer and larger

transaction datasets because the Tl-tree should be fixed in the system’s main memory

to ensure accurate readings. The following experiment was performed on the synthetic

dataset, which set the amount of items to 20 for fitting the generated Tl-tree into

main memory.

- 142-

Time consumption experiment against minimum interval length
mining lARsfrom TTD using Tl-tree and IARMiner, synthetic dataset

minimum support = 50%, mining period = 12 months

M inim um interval length (day)

ED Tl-tree 0 IARMiner

Figure 6.24 Time consumption of Tl-tree and IARMiner

As Figure 6.24 shows, both Tl-tree and IARMiner were performed on the synthetic

dataset to provide the comparison. The algorithms treaded the synthetic dataset

spreading 12 months period with 50% minimum support and one to seven days of

minimum interval length thresholds. As it shows, with all minimum interval length

thresholds, Tl-tree provides better efficiency than IARMiner. Tl-tree took only about

half the running time of IARMiner.

- 143-

6.7 Summary

This chapter introduced a method called Tl-tree to try to make temporal association

rule mining more efficient. The Tl-tree uses a projected tree to record all itemsets and

their counts information at each time granular piece throughout the time domain. This

tree projection method transforms the multi-pass scanning of original temporal

transaction datasets to the traversing of the generated temporal itemset base to avoid

the expensive job of multi-pass scanning of the transaction dataset in temporal

association rule mining.

The chapter first reviewed the problem of current temporal association rule mining

algorithms. Then, the idea of using the temporal itemset base was introduced to solve

the problem. Several design possibilities were discussed, the best one being chosen

according to the requirements of the temporal itemset base, which are the efficiency,

the capacity, and the size. Furthermore, based on the three design requirements, some

important changes have been made to the designed Tl-tree. The improved Tl-tree

provides more efficiency. A set of program structure diagrams were presented as they

represent the key stages in realising the Tl-tree. Finally, a set of experiments were

performed using both real business and synthetic temporal transaction datasets. The

evaluation shows that the results are inspiring although some disadvantages of the Tl-

tree still need more research in order to be overcome.

7 Conclusion and Future Work

7.1 Introduction

The research work undertaken in this thesis makes two contributions to current data

mining research. The first is the interval association rule mining algorithm IARMiner,

which is the first algorithm to discover certain kinds of temporal association rules

without a pre-given association rule or temporal feature clue. The second contribution

is the tree projection method Tl-tree, which introduces the method of projecting the

temporal transaction dataset into an organised temporal itemset tree to accelerate

temporal association rule mining tasks. To achieve these research efforts, related

background including data mining, association rules, association rule mining,

temporal data mining and temporal association rule mining were reviewed. A set of

experiments were performed using both synthetic and real business datasets to

evaluate IARMiner and Tl-tree. Besides the encouraging results, the evaluations also

showed up areas for future research.

7.2 Summary of Background Research

The literature review was comprised of a wide search of the background and

conceptual requirements for this thesis.

Firstly, Chapter Two illustrated data mining technology in several different aspects:

data mining motivation, data mining and knowledge discovery in databases definition,

data mining approaches, the data mining process, and data mining techniques. In this

way, a complete and comprehensive understanding of the data mining area was

provided to support the major concern of this thesis.

Secondly, as one of the most important mining techniques of data mining and the

concern of the research area of this thesis, the concept of association rules, and the

techniques for association rule mining, were presented and discussed in Chapter Three.

As the core problem of association rule mining, the issue of frequent itemsets was

considered. Then several algorithms, including AIS, SETM, Apriori, AprioriTID,

AprioriHybrid, Partition and Sampling were explored in detail since they differ from

each other, mainly in the way they search for frequent itemsets. A comparison of

these algorithms was also provided. As most Apriori-based algorithms use the process

of ‘generating and counting candidate itemsets’, an alternative way of mining frequent

itemsets without candidate generation and mining association rules using logical

operations were introduced at the end of Chapter Three.

Finally, as the other concern of this thesis, temporal data mining forms the main

content of Chapter Four and appeal's to support the research area of temporal

association rule mining. To establish the background, an overview of temporal data

mining was given, followed by a discussion of the motivation.

Chapter Four studies temporal data mining in four classified groups: association rules,

classification, clustering, and prediction. Two related issues - temporal features and

representation of temporal features - were explored in detail in order to support the

research of this thesis, and the literature relating to temporal association rule mining

techniques was also discussed.

7.3 Summary of the Research Work in This Thesis

7.3.1 Discovering Interval Association Rules

The first contribution of this thesis is the interval association rule mining algorithm

IARMiner presented in Chapter Five. As an extension to association rules, the

inclusion of the temporal dimension forms the area of temporal association rules.

Previous research classifies the temporal features relating to association rules into two

forms: interval and periodic. It also classified the mining tasks of temporal association

rules into three groups, which are: discovering association rules for a given temporal

feature, searching the temporal features of a given association rule, and mining

temporal association rules in certain forms (e.g. interval association rules and periodic

association rules) without any pre-given information. Some research work has already

focused on the first two groups of mining task. But since it is believed that it is too

expensive to directly search temporal association rules without pre-given temporal

features or association rules, the third group of mining tasks that concern temporal

association rules of certain kinds, such as interval association rules, were not touched.

Relating to the temporal features of association rules, this group of mining tasks

include the mining of interval association rules and mining periodic association rules.

IARMiner is used for the first, mining interval association rules from temporal

transaction datasets.

The mining task can be defined as “Given a set of time-stamped transactions (D)

over a time domain (T), minimum support (min_sup), minimum confidence

(min_con), and minimum interval length (m in je n), the problem of mining interval

association rules (IARs) is to find all possible association rules (AR s) and all their

corresponding longest time intervals during which the association rules hold”. In

relation to the two dimension solution space which is mining association rules and

finding their longest intervals, a method called interval combination was developed in

this research to effectively search all the longest intervals of those association rules

found during the minimum interval length. In other words, it can be seen as “finding

all minimum length interval association rules, then the minimum interval association

rules growing to the longest interval association rules”. This involves the definition of

combinable intervals, which is used by IARMiner to generate interval association

rules from minimum length interval association rules. IARMiner uses such an interval

growth method to solve the problem of mining both association rules and their longest

interval together.

The evaluation showed that the algorithm IARMiner is not only relatively affordable

and efficient but also a try to challenge the problem of mining both association rules

and corresponding longest time intervals together, without any pre-given temporal or

association rule clue. It delivered a reasonable response time that is better than similar

works, and also a possible way to solve the real business interval association rule

mining problems, and still has the potential to be improved by choosing a faster

regular association rule algorithm.

7.3.2 A Tree Projection Method for Mining Temporal Association
Rules

Another contribution of this thesis is a tree projection method called Tl-tree that helps

to mine temporal association rules efficiently. Since most temporal association rule

mining algorithms use the process of ‘candidate generate and test’, the problem of

scanning transaction datasets using multiple passes is unacceptable. This problem

greatly reduces the efficiency of temporal association rule mining algorithms and

limits the applications in the real world. To solve the problem, a projected patterns

base seems to be the solution. This projects the transactions from a source dataset into

an organised pattern base, where the associations between the items are presented as

the patterns with the counts. Thus, the temporal association rule mining algorithms

does not need to multi-scan the transaction dataset to get count information about a

pattern. This method transforms the problem of multi-passes scanning transaction

datasets to the traversing of the pattern base, and can make for efficiency.

The Tl-tree is a possible pattern base solution for temporal association rule mining, It

was designed to fulfil the special requirements for use with temporal association rules.

It keeps itemset information with count information in time series, so that all

information needed by mining temporal association rules is well-organised and

presented in the projected pattern base to avoid the multi-scanning of the original

transaction datasets. The reason for using a tree-based temporal pattern base rather

than others is the searching efficiency of a tree structure. Traversing a tree is much

less costly than multi-scamiing transaction datasets. The Tl-tree keeps count

information in the duration of each granular time piece, which is the smallest time unit

for a certain temporal association rule mining task. This also provides the Tl-tree with

the ability to mine incremental temporal transaction datasets.

A set of experiments was performed using both real business and synthetic temporal

transaction datasets. In comparison with the IARMiner, the Tl-tree is far more

efficient, and demonstrates much potential application in real business.

7A Future Research Areas

7.4.1 Mining Periodic Association Rules

Since IARMiner is the algorithm for mining interval association rules from temporal-

transaction datasets, the other form of temporal feature - periodic - remains unsolved.

In this case, the interesting temporal feature is a set of regular intervals in cycles,

during each of which the associations exists [Chen and Petrounias, 1999]. For

example, a periodic association rule could be ‘in the last month of every year, most

vouchers and gift cards can be sold together’.

Chen and Petrounias [Chen and Petrounias, 1999] introduce the periodic time

composed by three essential features which are cyclicity, granularity and interval

range. So, they define a periodic time as valid with respect to an association rule if

there are no less than the specified minimum frequency of intervals in the time

domain which are strictly long with respect to the association rule. The introduction of

new threshold minimum frequency brings new challenges. To effectively mine

periodic association rules, a new method like the interval combination of IARMiner

may be necessary.

7.4.2 Developing the Memory Management Mechanism for the Tl-
tree

Although the Tl-tree shows good efficiency for temporal association rule mining, the

unavoidable disadvantage of the Tl-tree is the size. As mentioned in Chapter Six, any

newly arrived item has the potential to double the nodes in the Tl-tree. Although the

chance of that is relatively small since the user pays more attention to categories

instead of certain item numbers (which greatly reduces the amount of items), an

effective mechanism to partially load a Tl-tree and exchange the parts is necessary,

especially for mining large temporal transaction datasets.

There are two possible methods to separate a Tl-tree. One is loading only the itemset

tree in memory and leaving all time series counts lists in the hard disk. The other is

loading part of the itemset tree with its time series counts lists into memory and

leaving the remaining tree branches with their counts lists in the hard disk. Both of

them may have their own advantages and disadvantages to be discovered. The

development of such a memory management mechanism needs special experiments in

advance, and needs to be solved urgently.

7.4.3 Improving the Efficiency of the Tl-tree

Although the Tl-tree shows efficiency for temporal association rule mining, it can be

further improved. The Tl-tree uses a descendants avoiding method, which avoids

those nodes that can definitely not be frequent during any interval, and avoids those

intervals of descendants which can definitely not be long. But the method is not good

enough, since more nodes and intervals can be avoided.

For example, in a generated Tl-tree, the itemset node ABC can be avoided if its

parent AB is not frequent in any interval during the time domain. As the direct

ancestor of A B C , all sub-branches of AB can be avoided in this situation to save

time, but since there is no direct relation between BC and ABC in the Tl-tree, the

current descendants-avoiding method can not be efficient through avoiding ABC if

BC is not frequent during any interval. The same problem also happens with interval

avoiding. So, it is necessary to improve the Tl-tree structure so that the relations

between those indirectly-related nodes can be built to create more efficiency.

References

[Abraham and Roddick, 1999]

Abraham, T. and Roddick, J.F. 1999. Incremental Meta-Mining from Large Temporal

Data Sets. In Advances in Database Technologies, Proc. First International

Workshop on Data Warehousing and Data Mining, Lecture Notes in Computer

Science 1552, Spdnger-Verlag, Berlin. 41-54.

[Agrawal and Srikant, 1994]

Agrawal, R. and Srikant, R. 1994. Fast Algorithms for Mining Association Rules in

Large Databases. In Proceedings o f the 20th International Conference on Very Large

Data Bases (September 12 - 15, 1994). J. B. Bocca, M. Jarke, and C. Zaniolo, Eds.

Very Large Data Bases. Morgan Kaufmann Publishers, San Francisco, CA, 487-499.

[Agrawal and Srikant, 1995]

Agrawal, R. and Srikant, R. 1995. Mining Sequential Patterns. In Proceedings o f the

Eleventh International Conference on Data Engineering (March 06 - 10, 1995). P. S.

Yu and A. L. Chen, Eds. ICDE. IEEE Computer Society, Washington, DC, 3-14.

[Agrawal et al., 1993]

Agrawal, R., Imielinski, T., and Swami, A. 1993. Database Mining: A Performance

Perspective, IEEE Transactions on Knowledge and Data Engineering 5, 6 (Dec.

1993), 914-925,

[Agrawal et al., 1993a]

Agrawal, R., Imielinski, T., and Swami, A. 1993. Mining association rules between

sets of items in large databases. In Proceedings o f the 1993 ACM SIGMOD

International Conference on Management o f Data (Washington, D.C., United States,

May 25 - 28, 1993). P. Buneman and S. Jajodia, Eds. SIGMOD '93. ACM Press, New

York, NY, 207-216.

-152-

[Ale and Rossi, 2000]

Ale, J. M. and Rossi, G. H. 2000. An approach to discovering temporal association

rules. In Proceedings o f the 2000 ACM Symposium on Applied Computing - Volume 1

(Como, Italy). J. Carroll, E. Damiani, H. Haddad, and D. Oppenheim, Eds. SAC '00.

ACM Press, New York, NY, 294-300.

[Anderson, 1982]

Anderson, T. L. 1982. Modeling Time at the Conceptual Level. In Proceedings o f the

International Conference on Databases: Improving Usability and Responsiveness,

273-297, Jerusalem, Israel, (June 1982). Academic Press.

[Antunes and Oliveira, 1998]

Antunes, C. M. and Oliveira, A. L. 1998. Temporal Data Mining: an overview.

Proceedings of the Sixth ACM SIGKDD International conference on Knowledge

Discovery and Data Mining. (1998).

[Bayardo and Agrawal, 1999]

Bayardo, R. J. and Agrawal, R. 1999. Mining the most interesting rules. In

Proceedings o f the Fifth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (San Diego, California, United States, August 15 - 18,

1999). KDD '99. ACM Press, New York, NY, 145-154.

[Berry and Linoff, 1997]

Berry, M. and Linoff, G. 1997. Data Mining Techniques: for Marketing, Sales and

Customer Support. John Wiley & Sons Inc. ISBN: 0471179809

[Chaudhuri, 1998]

Chaudhuri, S. 1998. Data mining and database systems: Where is the intersection?

Bulletin o f the Technical Committee on Data Engineering, 21:4-8, March 1998.

[Chen, 1999]

Chen, X. 1999. Temporal data mining: algorithms language and system for temporal

association rules. Thesis submitted to Manchester Metropolitan University,

Department o f Computing and Mathematics. (1999).

[Chen and Petrounias, 1998]

Chen, X. and Petrounias, I. 1998. Language Support for Temporal Data Mining. In

Proceedings o f the Second European Symposium on Principles o f Data Mining and

Knowledge Discovery (September 23 - 26, 1998), J. M. Zytkow and M. Quafafou, Eds,

Lecture Notes In Computer Science, vol. 1510. Springer-Verlag, London, 282-290.

[Chen and Petrounias, 1998a]

Chen, X. and Petrounias, I. 1998. A Framework for Temporal Data Mining. In

Proceedings o f the 9th International Conference on Database and Expert Systems

Applications (August 24 - 28, 1998). G. Quirchmayr, E. Schweighofer, and T. J.

Bench-Capon, Eds. Lecture Notes In Computer Science, vol. 1460. Springer-Verlag,

London, 796-805.

[Chen and Petrounias, 1999]

Chen, X. and Petrounias, I. 1999. Mining Temporal Features in Association Rules. In

Proceedings o f the Third European Conference on Principles o f Data Mining and

Knowledge Discovery (September 15 - 18, 1999). J. M. Zytkow and J. Rauch, Eds.

Lecture Notes In Computer Science, vol. 1704, Springer-Verlag, London, 295-300.

[Chen and Petrounias, 2000]

Chen, X. and Petrounias, I. 2000. An Integrated Query and Mining System for

Temporal Association Rules. In Proceedings o f the Second International Conference

on Data Warehousing and Knowledge Discovery (September 04 - 06, 2000). Y.

Kambayashi, M. K. Mohania, and A. M. Tjoa, Eds. Lecture Notes In Computer

Science, vol. 1874. Springer-Verlag, London, 327-336.

[Chen and Petrounias, 2000a]

Chen, X, and Petrounias, I. 2000. Discovering Temporal Association Rules:

Algorithms, Language and System. Proceedings o f the 16th International Conference

on Data Engineering (ICDE'2000), 306 IEEE Computer Society, ISBN: 0769505066

[Chen et al., 1998]

Chen, X. Petrounias, I. and Heathfield, H, Discovering Temporal Association Rules in

Temporal Databases. Proceedings o f Workshop on Issues and Applications o f

Database Technology (IADT'98), Germany, July 1998.

[Chowdhury, 1991]

Chowdhury, S., Bodemar, G., Haug, P., Babic, A., and Wigertz, O. 1991. Methods of

knowledge extraction from a clinical database on liver diseases. Comput. Biomed. Res,

24, 6 (Dec. 1991), 530-548.

[Cios et al., 1998]

Cios, K., Pedrycz, W., and Swiniarski, R. 1998. Data Mining Methods for Knowledge

Discovery, Kluwer Academic Publishers, 1998

[Clifford and Rao, 1987]

Clifford, J. and Rao, A. 1988. A simple general structure for temporal domains. In C.

Rolland, and M, Leonard, editors, Temporal Aspects o f Information Systems, pages

17—28, Elsevier Science Publishers B.V., IFIP, 1988.

[Clifford and Tansel, 1985]

Clifford, J. and Tansel, A. U. 1985. On an algebra for historical relational databases:

two views. In Proceedings o f the 1985 ACM SIGMOD International Conference on

Management o f Data (Austin, Texas, United States). SIGMOD ’85. ACM Press, New

York, NY, 247-265.

-155 -

[Dasetal., 1998]

Das, G., Lin, K.I., Mannila, H., Renganathan, G. and Smyth, P. 1998. Rule Discovery

from Time Series. In Proceedings o f the Fourth International Conference on

Knowledge Discovery and Data Mining (KDD-98), AAAI Press (1998) 16-22

[Dzeroski, 1996]

Dzeroski, S. 1996. Inductive logic programming and knowledge discovery in

databases. In Advances in Knowledge Discovery and Data Mining, U. M. Fayyad, G.

Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Eds. American Association for

Artificial Intelligence, Menlo Park, CA, 117-152.

[Elder and Pregibon, 1996]

Elder, J. F. and Pregibon, D. 1996. A statistical perspective on knowledge discovery

in databases. In Advances in Knowledge Discovery and Data Mining, U. M. Fayyad,

G, Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Eds. American Association for

Artificial Intelligence, Menlo Park, CA, 83-113.

[Etzion et al., 1998]

Etzion, O., Jajodia, S. and Sripada, S. (Editors). 1998. Temporal Databases: Research

and Practice. Springer-Verlag Berlin and Heidelberg GmbH & Co. K. ISBN:

3540645195

[Fayyad et al., 1996]

Fayyad, U., Piatetsky-Shapiro, G., Smyth, P. and Uthurusamy, R. 1996. Advances in

Knowledge Discovery and Data Mining. The MIT Press. ISBN: 0262560976

[Fisher, 1987]

Fisher, D.1987. Knowledge acquisition via incremental conceptual clustering.

Machine Learning. (1987) vol. 2 139-172.

- 156-

[Giles et al., 2001]

Giles, L. C., Lawrence, S. and Tsoi, A. H. 2001. Noisy time series prediction using

recurrent neural network and grammatical inference, Machine Learning. (2001) vol.

44 161-183.

[Glymour et al., 1996]

Glymour, C., Madigan, D., Pregibon, D., and Smyth, P. 1996. Statistical inference and

data mining, Commun. ACM 39, 11 (Nov. 1996), 35-41,

[Han and Kamber, 2001]

Han, J. and Kamber, M. 2000. Data Mining: Concepts and Techniques. The Morgan

Kaufmann Publishers Inc. (2000). ISBN: 1558604898

[Han et al., 1992]

Han, J., Cai, Y., and Cercone, N. 1992. Knowledge Discovery in Databases: An

Attribute-Oriented Approach, In Proceedings o f the 18th International Conference on

Very Large Data Bases (August 23 - 27, 1992). L. Yuan, Ed. Very Large Data Bases.

Morgan Kaufmann Publishers, San Francisco, CA, 547-559.

[Han et al., 2000]

Han, J., Pei, J., and Yin, Y. 2000. Mining frequent patterns without candidate

generation. In Proceedings o f the 2000 ACM SIGMOD International Conference on

Management o f Data (Dallas, Texas, United States, May 15 - 18, 2000). SIGMOD '00.

ACM Press, New York, NY, 1-12.

[Han et al., 2000a]

Han, J., Pei, J., Mortazavi-Asl, B,, Chen, Q., Dayal, U., and Hsu, M. 2000. FreeSpan:

frequent pattern-projected sequential pattern mining. In Proceedings o f the Sixth ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining

(Boston, Massachusetts, United States, August 20 - 23, 2000). KDD '00. ACM Press,

New York, NY, 355-359.

- 157-

[Hand et al., 2001]

Hand, D., Mannila, H. and Smyth, P. 2001 Principles of Data Mining. The MIT Press.

(2001).ISBN: 026208290X

[Harinarayan et al., 1996]

Harinarayan, V., Rajaraman, A., and Ullman, J. D. 1996. Implementing data cubes

efficiently. In Proceedings o f the 1996 ACM SIGMOD International Conference on

Management o f Data (Montreal, Quebec, Canada, June 04 - 06, 1996). J. Widom, Ed.

SIGMOD '96. ACM Press, New York, NY, 205-216.

[Imielinski and Mannila, 1996]

Imielinski, T. and Mannila, H. 1996. A database perspective on knowledge discovery.

Commun. ACM 39, 11 (Nov. 1996), 58-64.

[Imielinski et al., 1996]

Imielinski, T., Virmani, A., and Abdulghani, A, 1999. DMajor—Application

Programming Interface for Database Mining. Data Min. Knowl. Discov. 3, 4 (Dec.

1999), 347-372.

[Jensen, 1995]

Jensen, C. S. 1995. Introduction to Temporal Database Research. Proceedings of the

14th International Conference on Object-Oriented and Entity-Relationship Modelling.

(1995)

[Keogh and Pazzani, 1998]

Keogh, E. J. and Pazzani, M. J. 1998. An enhanced representation of time series data

which allows fast and accurate classification, clustering and relevance feedback. In

Proceedings o f the Fourth International Conference on Knowledge Discovery and

Data Mining. (KDD-98), ACM Press 239-241.

- 158-

[Ketterlin, 1997]

Ketterlin, A. 1997. Clustering Sequences of Complex Objects. In Proceedings o f the

Third International Conference on Knowledge Discovery and Data Mining. (1997),

AAAI Press 215-218

[Lang et a l, 1998]

Lang, K. J., Pearlmutter, B. A., and Price, R. A. 1998. Results of the Abbadingo One

DFA Learning Competition and a New Evidence-Driven State Merging Algorithm. In

Proceedings o f the 4th International Colloquium on Grammatical inference (July 12 -

14, 1998). V. G. Honavar and G. Slutzki, Eds. Lecture Notes In Computer Science,

vol. 1433. Springer-Verlag, London, 1-12.

[Lee et al., 1998]

Lee, J. Y., Elmasri, R., and Won, J. 1998. An integrated temporal data model

incorporating time series concept. Data Knowl Eng. 24, 3 (Jan. 1998), 257-276.

[Lee et al., 2001]

Lee, C.H., Lin, C.R., and Chen M.S. 2001. On Mining General Temporal Association

Rules in a Publication Database. Proceedings oflCDMOl, (November 2001), 337-344,

[Li et al., 1999]

Li, Y., Ning, P., Wang, X. S., and Jajodia, S. 2001. Discovering Calendar-Based

Temporal Association Rules. In Proceedings o f the Eighth International Symposium

on Temporal Representation and Reasoning (Time'01) (June 14 - 16, 2001). TIME.

IEEE Computer Society, Washington, DC, 111.

[Long et al., 1991]

Long, J., Irani, E. and Slagle, J. 1991. Automating the Discovery of Causal

Relationships in a Medical Records Database. In Piatetsky-Shapiro, G. and Frawley,

W (editers) Knowledge Discovery in Databases. 465-476, The AAAI Press.

[Lu et al., 1996]

Lu, H., Setiono, R., and Liu, H. 1996. Effective Data Mining Using Neural Networks.

IEEE Transactions on Knowledge and Data Engineering 8, 6 (Dec. 1996), 957-961.

[Lu et al,, 1998]

Lu, H., Han, J, and Feng, L. 1998. Stock movement prediction and n-dimensional

inter-transaction association rules. In Proceedings o f ACM SIGMOD Workshop on

Research Issues on Data Mining and Knowledge Discovery. (1998), 12:1-12:7

[Mannila and Toivonen, 1996]

Mannila, H. and Toivonen, H. On an algorithm for finding all interesting sentences. In

Cybernetics and Systems, Volume II. The Thirteenth European Meeting on

Cybernetics and Systems Research, 973-978.

[Mannila et al., 1999]

Mannila, H., Pavlov, D. and Smyth, P. 1999 Predictions with local patterns using

crossentropy. In Proceedings o f Fifth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, (1999), ACM Press 357-361.

[Megiddo and Srikant, 1999]

Megiddo, N. and Srikant, R. 1998. Discovering predictive association rules.

Knowledge Discovery and Data Mining (KDD-98). 274-278.

[Muggleton and De Raedt, 1994]

Muggleton, S. and De Raedt, L. 1994, Inductive logic programming : Theory and

methods. Journal o f Logic Programming, (19, 20) 629-679, 1994.

[Ozdenetal., 1998]

Ozden, B,, Ramaswamy, S., and Silberschatz, A. 1998. Cyclic Association Rules. In

Proceedings o f the Fourteenth International Conference on Data Engineering

(February 23 - 27,1998). ICDE, IEEE Computer Society, Washington, DC, 412-421,

- 160-

[Quinlan, 1986]

Quinlan, J. R. 2003, Induction of Decision Trees. M ack Learn. 1, 1 (Feb. 2003), 81-

106.

[Quinlan 1993]

Quinlan, J. R. 1993 C4.5: Programs for Machine Learning. Morgan Kaufmann

Publishers Inc.

[Ramaswamy et al., 1998]

Ramaswamy, S., Mahajan, S., and Silberschatz, A. 1998. On the Discovery of

Interesting Patterns in Association Rules. In Proceedings o f the 24th International

Conference on Very Large Data Bases (August 24 - 27, 1998). A. Gupta, O. Shmueli,

and J. Widom, Eds. Very Large Data Bases. Morgan Kaufmann Publishers, San

Francisco, CA, 368-379.

[Sarawagi et al., 1998]

Sarawagi, S., Thomas, S., and Agrawal, R. 2000. Integrating Association Rule Mining

with Relational Database Systems: Alternatives and Implications. Data Min. Knowl.

Discov. 4, 2-3 (Jul. 2000), 89-125.

[Saraee and Theodoulidis, 1995]

Saraee, M. H. and Theodoulidis, B. 1995. Knowledge Discovery in Temporal

Databases. Proceedings of the DOOD'95 Post-Conference Workshops on Integration

of KDOOD and TDOOD, Singapore, National University of Singapore (NUS), (1995)

17-22

[Savasere et al., 1995]

Savasere, A., Omiecinski, E. and Navathe, S. 1995. An Efficient Algorithm for

mining Association Rules in Large Databases. In Proceedings o f the 21st VLDB

Conference Zurich, Swizerland. (1995), 423-443.

[Smyth, 1997]

Smyth, P, 1997. Clustering sequences using hidden Markov models. In Mozer, M.,

Jordan, M. and Petsche, T, editors, Advances in Neural Information Processing

Systems. (1997), vol. 9 648-654, The MIT Press.

[Smyth, 1999]

Smyth, P. Probabilistic model-based clustering of multivariate and sequential data. In

Proceedings o f Artificial Intelligence and Statistics (1999), 299-304. Morgan

Kaufman

[Snodgrass, 1987]

Snodgrass, R. 1987. The temporal query language TQuel. ACM Trans. Database Syst.

12, 2 (Jun. 1987), 247-298.

[Srikant and Agrawal, 1996]

Srikant, R. and Agrawal, R. 1996. Mining quantitative association rules in large

relational tables. In Proceedings o f the 1996 ACM SIGMOD International Conference

on Management o f Data (Montreal, Quebec, Canada, June 04 - 06, 1996). J, Widom,

Ed. SIGMOD '96. ACM Press, New York, NY, 1-12.

[Thuraisingham, 1999]

Thuraisingham, B. 1998. Data Mining: Technologies, Techniques, Tools, and Trends.

CRC Press. ISBN: 0849318157

[Toivonen, 1996]

Toivonen, H. 1996. Sampling Large Databases for Association Rules. In Proceedings

o f the 22nd VLDB Conference. Mumbai (Bombay), India (1996), 134-145.

[Wang and Tjortjis, 2004]

Wang, C. and Tjortjis, C. 2004. PRICES: An Efficient Algorithm for Mining

Association Rules. In Proceedings o f 5th IDEAL, Lecture Notes Computer Science,

(2004), Vol. 3177, 352-358, Springer-Verlag Berlin Heidelberg.

[Weigend and Gershenfeld, 1994]

Weigend, A.S. and Gershenfeld, N.A. 1994. Times Series Prediction: Forecasting the

future and Understanding the Past, Addison Wesley Publishing Company. (1994),

ISBN: 0201626020

[Zaniolo et al., 1997]

Zaniolo, C., Ceri, S., Faloutsos, C., Snodgrass, R. T., Subrahmanian, V. S., and Zicari,

R. 1997 Advanced Database Systems. Morgan Kaufmann Publishers Inc.

Appendix A: Program IARMiner
Class lARMiner.java
import com.ms.wfc.app.*;
import com.ms.wfc.core.*;
import com.ms.wfc.ui.*;
import com.ms.wfc.html.*;
import com.ms.wfc.io,*;
import com.ms.wfc.util.*;

public class IARMiner extends Form
{

public IARMiner()
{

initForm();
initial();

}

public void dispose()
{

super.dispose();
components.dispose();

}
float minimumSupport = 0; //minimum support threshold from user input
int minimumlntervalLength = 0; //minimum interval length threshold from user input
String temporalDatabaseFileName = null; //database file to be mined from user input
TextReader reader = null; //instance o f TextReader class, used to open database file
long transactionID;
long date;
int itemNumber; //used to present the itemNumber field o f each transaction
ILSList iLSList; //the root node o f data structure

void steplIARMiner()
{

//Check begin and end point o f time domain
reader = new TextReader(temporalDatabaseFileName);
String nextLine = reader.readLine();
long domainStart = java.lang.Long,parseLong(nextLine.substring(6,10).trim());
long domainEnd = 0;
while (nextLine != null)
{

domainEnd = java.lang.Long.parseLong(nextLine.substring(6,10).trim());
nextLine = reader.readLineQ;

}
reader,close();
//End check, result stored in long domainStart and long domianEnd

//Begin o f interval large itemset list data structure
iLSList = new ILSList();
iLSList.setTimeDomainStartPoint(domainStart);
iLSList.setTimeDomainEndPoint(domainEnd);
IntervalList intervalList = new IntervalList();
intervalList.setlntervalLength(minimumlntervalLength);
iLSList.enqueuelntervalList(intervalList);
//End o f interval large itemset list data structure

//Minimum time interval control for first step
long minimumTimelntervalStartPoint = 0;
long minimumTimelntervalEndPoint = 0;
minimumTimelntervalStartPoint = domainStart;
minimumTimelntervalEndPoint = minimumTimelntervalStartPoint + minimumlntervalLength - 1;
while (minimumTimelntervalEndPoint <= domainEnd)
{

labelStart,setText(String.vaIueOf(minimumTimeIntervalStartPoint));//can be deleted to save time
labelEnd.setText(String.valueOf(minimumTimeIntervalEndPoint));// can be deleted to save time

//Normal association rule mining process
IntervalNode intervalNode = new IntervalNode();
intervalNode.setStartTimePoint(minimumTimelntervalStartPoint);
intervalNode.setEndTimePoint(minimumTimelntervalEndPoint);
intervalList.enqueuelntervalNode(intervalNode);
apriori(intervalNode, minimumTimelntervalStartPoint, minimumTimelntervalEndPoint);
//End o f normal association rule mining process

minimumTimelntervalStartPoint ++;
minimumTimelntervalEndPoint ++;

}
//End o f minimum time interval control for first step

void apriori(IntervalNode iNode, long start, long end)
{

long numberOfTransaction = 0;
long tid = 9999;

//Search for begin point
reader = new TextReader(temporalDatabaseFileName);
String nextLine = reader.readLine();
while (java.lang.Long.parseLong(nextLine.substring(6,10).trim()) < start)

nextLine = reader.readLine();
}
//End o f searching begin point

//Start o f searching 1 -large item set o f apriori
boolean added = false;
if ((java.lang.Long.parseLong(nextLine.substring(6,10).trim()) <= end) && (nextLine != null))

while (java.lang.Long.parseLong(nextLine.substring(6,10).trim()) <= end)
{

itemNumber = java.lang.Integer.parseInt(nextLine.substring(10,15),trim());
added = false;
labelLargeItemSet.setText(String.valueOf(itemNumber));//can be deleted to save time
if (iNode.getEmptyLargeItemsetList())
{

Largeltemset largeltemset = new Largeltemset();
IargeItemset,setLargeItemsetSize(1);
largeltemset.setCount(l);
iNode.enqueueLargeltemset(largeltemset);
Largeltem largeltem = new Largeltem();
largeltem.setLargeltemNumber(itemNumber);
largeltemset.enqueueLargeltem(largeltem);
largeltemset = null;
largeltem = null;
added = time;

}
else
{

for (int i = 0; i < iNode.getAmountOfLargeItemset(); i++)
{

Largeltemset lisl = iNode.getLargeltemset(i);
Largeltem lil = lisl.getLargeltem(O);
if (itemNumber < lil.getLargeltemNumberQ)
{

Largeltemset largeltemset = new Largeltemset();
lai'geItemset.setLargeItemsetSize(1);
largeItemset.setCount(1);
iNode.insertLargeItemset(i,largeltemset);
Largeltem largeltem = new Largeltem();
largeItem.setLargeItemNumber(itemNumber);
largeltemset.enqueueLargeltem(largeltem);
largeltemset = null;
largeltem = null;
lisl = null;

lil = null;
added = true;
break;

}
if (itemNumber > lil.getLargeItemNumber())

continue;
if (itemNumber == lil .getLargeItemNumber())
{

lis 1 .increaseCount();
lis l = null;
l il = null;
added = time;
break;

}
lisl = null;
lil = null;

}
i f (added == false)
{

Largeltemset largeltemset = new Largeltemset();
largeltemset.setLargeltemsetSize(l);
large!temset.setCount(1);
iNode.enqueueLargeltemset(largeltemset);
Largeltem largeltem = new Largeltem();
largeItem.setLargeItemNumber(itemNumber);
largeltemset.enqueueLargeltem(largeltem);
largeltemset = null;
largeltem = null;

}
}
if (tid !=java.lang.Long.parseLong(nextLine.substring(0,6).trim()))
{

tid =java.lang.Long.parseLong(nextLine.substring(0,6).trim());
numberOfTransaction ++;
labelTID.setText(String.valueOf(tid));//can be deleted to save time

}
nextLine = reader.readLine();
if (nextLine == null)

break;
}

}
//End o f searching 1-large item set o f apriori

//Close
reader.close();
//End o f close

//Begin o f searching 2+-large item set o f apriori
int currentLargestltemsetSize = 1;
long minimumCount = (long)(numberOfTransaction * minimumSupport) + 1;
Largeltemset lis2 = null;
for (int i = 0; i < iNode.getAmountOfLargeItemset();)
{

Iis2 = iNode.getLargeltemset(i);
if (lis2.getCount() < minimumCount)
{

lis2 = null;
iNode.removeLargeltemset(i);
continue;

}
else
{

lis2 = null;
i++;

}
}
iNode.trimLargeItemsetListToSize();
boolean goOn = true;
while ((goOn === true) && (iNode.getAmountOfLarge!temset() > 1))

- 166-

{
currentLargestltemsetSize ++;
goOn = aprioriGenAndCount(iNode, currentLargestltemsetSize, start, end, minimumCount);

//End o f searching 2+-large item set o f apriori
}

boolean aprioriGenAndCount(IntervalNode inode, int cLIS, long start, long end, long minimumCount)

//Apriori-Gen
int pLIS - cLIS - 1;
int pLIA = 0;
int cLIA = 0;
Largeltemset lis3 = null;
Largeltemset lis4 = null;
Largeltem li3 = null;
Largeltem li4 = null;
for (int i = 0; i < inode.getAmountOfLargeItemset(); i++)

lis3 = inode.getLargeItemset(i);
if (lis3.getLargeItemsetSize() == pLIS)

pLIA ++;
lis3 = null;

}
if (pLIA < 2)

return false;
if (pLIS >= 2)
{

int size = inode,getAmountOfLargeItemset();
for (int i = 0; i < size; i++)
{

Iis3 = inode.getLargeltemset(i);
i f (Hs3,getLargeItemsetSize() != pLIS)
{

lis3 = null;
continue;

}
for (int j = i + 1; j < size; j++)
{

lis4 = inode.getLargeItemset(j);
if (lis4.getLargeItemsetSize() != pLIS)
{

lis4 ~ null;
continue;

}
boolean joinAble = true;
for (int k = 0; k < pLIS - 1; k++)
{

113 = lis3.getLarge!tem(k + 1);
114 = lis4,getLargeItem(k);
if (li3.getLargeItemNumber() != U4.getLargeItemNumber())
{

joinAble = false;
113 = null;
114 = null;
break;

}
li3 = null;
H4 = null;

}
i f (joinAble)
{

Largeltemset lis = new Large!temset();
Hs.setLargeltemsetSize(cLIS);
lis.setCount(O);
inode.enqueueLargeltemset(lis);
Largeltem li = null;
for (int k = 0; k < pLIS; k ++)
{

- 167-

Ii3 = lis3.getLargeItem(k);
li = new Largeltem();
li.setLargeItemNumber(li3.getLargeItemNumber());
lis.enqueueLargeltem(li);
li = null;
li3 = null;

}
li4 = Hs4.getLargeItem(pLIS - 1);
li = new LargeltemQ;
li.setLargeItemNumber(li4.getLargeItemNumber());
tis.enqueueLargeltem(li);
li = null;
114 = null;

}
lis4 = null;

}
lis3 = null;

else
{

if ((pLIS == 1) && (inode.getAmountOfLargeItemset() >=
{

Largeltemset lis = null;
Largeltem li = null;
int sizel = inode.getAmountOfLargeItemset();
for (int i = 0; i < sizel -1 ; i++)
{

lis3 = inode.getLargeltemset(i);
Ii3 = Hs3.getLargeItem(0);
for (int j = i + 1; j < s iz e l; j++)
{

lis4 = inode.getLargeItemset(j);
H4 = Hs4.getLargeItem(0);
lis = new Largeltemset();
lis.setLargeItemsetSize(2);
li = new Largeltem();
inode.enqueueLargeltemset(lis);
li.setLargeItemNumber(li3.getLargeItemNumber());
lis. enqueueLargeltem(li);
li = null;
li = new LargeltemO;
li.setLargeItemNumber(li4.getLargeItemNumber());
lis.enqueueLargeltem(li);
li = null;
lis = null;

}
else

return false;
}
//End o f apriori-Gen

//Count
long cCount = 0;
longtTID = 9999;
int tltemNumber = 9999;
for (int i = 0; i < inode.getAmountOfLargeItemset(); i++)
{

lis3 = inode.getLargeltemset(i);
if (lis3.getLargeItemsetSize() == cLIS)

cLIA -H - ;

lis3 = null;
}
if (cLIA < 1)

return false;
for (int i = 0; i < inode.getAmountOfLargeItemset(); i++)
{

Iis3 = inode.getLargeltemset(i);
if (lis3.getLargeItemsetSize() == cLIS)
{

String itse = //can be deleted to save time
for (int m = 0; m < cLIS; m++) //can be deleted to save time
{ _ //can be deleted to save time

li4 = Iis3.getLargeItem(m); //can be deleted to save time
itse = itse + "" + String.valueOf(li4.getLargeItemNumber()); //can be deleted to save time

} //can be deleted to save time
labelLargeltemSet.setText(itse); //can be deleted to save time

reader = new TextReader(temporalDatabaseFileName);
String nextLine = reader.readLine();
while (java.lang.Long.parseLong(nextLine.substring(6,10).trim()) < start)
{

nextLine = reader.readLine();
}
if ((java.lang.Long.parseLong(nextLine.substi'ing(6,10).trim()) <= end) && (nextLine != null))

tTID = java.lang.Long.parseLong(nextLine.substrmg(0,6).trim());
labelTID.setText(String.valueOf(tTID)); //can be deleted to save time
while (java.lang,Long.parseLong(nextLine.substring(6,10).trim()) <= end)
{

tltemNumber = java.lang.Integer.parseInt(nextLine.substring(l 0 ,15).trim());
i f (tTID == java,lang.Long.parseLong(nextLine.substring(0,6).trim()))

for (int j = 0; j < Us3.getAmountOfLargeItem(); j++)

li3 = lis3.getLargeItem(j);
i f (li3.getLargeltemNumber() == tltemNumber)

cCount ++;
}

}
else
{

if (cCount >= cLIS)
1 is3. increaseCount();

cCount = 0;
tTID =java.lang.Long,parseLong(nextLine.substring(0,6).trim());
labelTID.setText(String.valueOf(tTID));//can be deleted to save time
for (intj - 0; j < lis3.getAmountOfLargeItem(); j++)
{

li3 = lis3.getLargeItem(j);
if (li3.getLargeltemNumber() == tltemNumber)

cCount -H -;

}
}
nextLine = reader.readLine();
i f (nextLine = null)

break;
}

}
reader.close();

}
else

continue;
lis3 = null;

}
Largeltemset lis2 = null;
for (int i = 0; i < inode.getAmountOfLargeItemset();)
{

lis2 = inode.getLargeltemset(i);
if (lis2.getCount() < minimumCount)
{

lis2 = null;
inode.removeLargeltemset(i);
continue;

}
else
{

lis2 = null;
i++;

}
>
inode.tr imLargeItemsetListToSize();

return true;
//End o f Count

}
void step2IARMiner()
{

IntervalList iL l = null;
iLl = iLSList.getIntervalList(iLSList,getAmountOfIntervalList() -1);
while (iLl.getAmountOflntervalNodeQ > 1)
{

//Combine
IntervalList iL = new IntervalList();
iL.setIntervalLength(iLl.getIntervalLength() + 1);
iLSList.enqueuelntervalList(iL);

IntervalList iL2 = null;
iL2 = iL l;
IntervalNode iN 1 = null;
IntervalNode iN2 = null;
IntervalNode iN = null;
for (int i = 0; i < iL2.getAmountOfTntervalNode() - 1; i++)

iN l = iL2.getIntervalNode(i);
iN2 = iL2.get!ntervalNode(i + 1);
if(((iNl.getStartTimePoint() + 1) = (iN2.getStartTimePoint())) && ((iNl.getEndTimePoint()

+ 1) == (iN2.getEndTimePoint())))
{

iN = new IntervalNode();
iN.setStartTimePoint(iN 1 .getStartTimePoint());
iN.setEndTimePoint(iN2.getEndTimePoint());
iL.enqueuelntervalNode(iN);

Largeltemset IIS 1 = null;
Largeltemset 1IS2 = null;
Largeltemset IIS = null;
Largeltem 111 = null;
Largeltem 112 = null;
Largeltem II = null;
for (int j = 0; j < iNLgetAmountOfLargeItemset(); j++)
{

for (int k = 0; k < iN2,getAmountOfLargeItemset(); k++)
{

1151 = iNl.getLargeItemset(j);
1152 = iN2.getLargeItemset(k);
if (lISl.getAmountOfLargeItem() == HS2.getAmountOfLargeItem())
{

boolean same = true;
for (int I = 0; I < HSl.getAmountOfLargeItem(); l++)//check exactly same
{

111 = IIS 1 .getLargeltem(l);
boolean samel = false;
for (int m = 0; in < US2.getAmountOfLargeItem(); m-H-)

112 = HS2.getLargeItem(m);
if (II1 .getLargeltemNumberQ = H2.getLargeItemNumber())

samel = sam el | time;
else

samel = samel | false;
112 = null;

}

- 170-

i f (samel == true)
same = same & time;

else
same = same & false;

111 = null;
}//End o f check
if (same — true)
{

IIS = new Largeltemset();
iN.enqueueLargeltemset(lIS);
for (int n = 0; n < USl.getAmountOfLargeItem(); n++)

II = new Largeltem();
III = IIS 1 .getLargeltem(n);
H.setLargeItemNumber(ll 1 .getLargeItemNumber());
HS.enqueueLargeltem(lI);
II = null;
III =null;

}
IIS = null;

IIS 1 = null;
1IS2 = null;

}
}

}
iN2 = null;
iN l = null;

}

iN2 = null;
iN l =null;
//End o f combine

//Count
IntervalNode cIN = null;
Largeltemset cLIS = null;
Largeltem cLI = null;
long tTID = 9999;
int tltemNumber = 9999;
long cCount = 0;
long mCount = 0;
for (int i = 0; i < iL.getAmountOflntervalNode(); i++)
{

cIN = iL.getlntervalNode(i);
IabeIStart.setText(String.valueOf(cIN.getStartTimePoint()));
labelEnd.setText(String.valueOf(cIN,getEndTimePoint()));
for (int j = 0; j < cIN.getAmountOfLargeItemset(); j++)

cLIS = cIN.getLargeItemset(j);

//can be deleted to save time
//can be deleted to save time

//can be deleted to save time
//can be deleted to save time
//can be deleted to save time
//can be deleted to save time
//can be deleted to save time

String itse =
for (int m = 0; m < cLIS.getAmountOfLargeltemQ; m++)
{

cLI = cLIS.getLargeltem(m);
itse = itse + "" + String.valueOf(cLI.getLargeItemNumber());//can be deleted to save time
cLI = null; //can be deleted to save time

} //can be deleted to save time
labelLargeltemSet.setText(itse); //can be deleted to save time

//can be deleted to save time

reader = new TextReader(temporalDatabaseFileName);
String nextLine = reader.readLineQ;
while (java.lang.Long,parseLong(nextLine.substring(6,10),trim()) < cIN.getStartTimePoint())
{

nextLine = reader.readLineQ;

if ((java.lang.Long,pavseLong(nextLine.substrmg(6,10).trim()) <= clN.getEndTimePoint())
&& (nextLine != null))

{
tTID = java.lang.Long.parseLong(nextLine.substring(0,6).trim());
mCount = 0;
labelTID.setText(String.valueOf(tTID)); //can be deleted to save time
while (java.lang.Long.parseLong(nextLine.substring(6510).trim()) <=

cIN.getEndTimePointO)
{

tltemNumber ^ java.Iang.Integer.parseInt(nextLine,substring(10}15).trim());
if (tTID == java.lang.Long,parseLong(nextLine.substring(0,6).trim()))
{

for (Int k = 0; k < cLIS.getAmountOfLargeltemO; k++)
{

cLI = cLIS.getLargeltem(k);
if (cLI.getLargeItemNumber() == tltemNumber)

cCount ++;
cLI = null;

}
}
else
{

if (cCount >= cLIS.getAmountOfLargeltemO)
cLIS. increaseCountQ;

cCount = 0;
mCount ++; //for count transactions
tTID = java.lang.Long.parseLong(nextLine.substring(0,6).trim());
labelTID.setText(String,valueOf(tTID));//can be deleted to save time
for (int 1 = 0; 1 < cLIS.getAmountOfLargeltemO; 1++)
{

cLI = cLIS.getLargeltem(l);
if (cLI.getLargeItemNumber() == tltemNumber)

cCount ++;
cLI = null;

nextLine = reader.readLine();
if (nextLine == null)

break;
}

}
reader.close();
cLIS = null;

}
cIN = null;

}
//trim
long mC = (long)(mCount * minimumSuppoit) + 1;
for (int i = 0; i < iL.getAmountOfIntervalNode();)
{

cIN = iL.getlntervalNode(i);
for (int j = 0; j < cIN.getAmountOfLargeItemset();)
{

cLIS = cIN.getLargeItemset(j);
if (cLIS,getCount() < mC)
{

cLIS = null;
cIN.removeLargeItemset(j);
continue;

}
else
{

cLIS = null;
j++;

}
cLIS = null;

}

- 172-

if (cIN.getAmountOfLargeItemset() < 1)
{

cIN - null;
iL.removelntervalNode(i);
continue;

}
else
{

cIN = null;
i++;

}
cIN = null;

}
//end o f trim

iL2 = null;
//End o f count
iLl = null;
iLl = iLSList.getIntervalList(iLSList.getAmountOflntervalList() - 1);

void initial()
{

situationCheck();
}
void situationPreparing()
{

buttonAllocationDataFile,setEnabIed(true);
comboBoxMinimumSupport.setEnabled(true);
comboBoxMinimumlntervalLength.setEnabled(true);
buttonRun.setEnabled(false);

}
void situationPrepared()
{

buttonAllocationDataFile.setEnabled(false);
comboBoxMinimumSupport.setEnabled(false);
comboBoxMinimumlntervalLength.setEnabled(false);
buttonRun.setEnab led(true);

}
void situationRunning()
{

buttonAllocationDataFile.setEnabled(false);
comboBoxMinimumSupport.setEnabled(false);
comboBoxMinimumlntervalLength.setEnabled(false);
buttonRun.setEnabled(false);

}
void situationRunned()
{

buttonAllocationDataFile,setEnabled(true);
comboBoxMinimumSupport.setEnabled(true);
comboBoxMinimumIntervalLength,setEnabled(true);
buttonRun.setEnabled(false);

}
void situationCheck()
{

i f ((comboBoxMinimumSupport.getSelectedIndex() != -1) &&
(comboBoxMinimumIntervalLength.getSelectedIndex() != -1) &&
editT argetDataF ileFl ame. getT ext() .length () >= 1)

{
situationPrepared();

}
else
{

situationPreparing();
}

}

private void comboBoxMinimumSupport_selected!ndexChanged(Object source, Event e)

- 173 -

{
situationCheck();

}

private void comboBoxMinimumIntervalLength_selectedIndexChanged(Object source, Event e)

situationCheck();
}

Time tim el;
Time time2;
Time time3;
long timeOfStepl;
long timeOfStep2;
long timeOflARSeeker;
float tOSl;
float tOS2;
float tOIARSeeker;

private void buttonRun_click(Object source, Event e)
{

buttonRun.setEnabled(false);
minimumSuppoit =

java.lang.Integer.parseInt(comboBoxMinimumSupport.getSelectedItem().toString());
minimumSupport = minimumSupport /100;
minimumlntervalLength =

java.lang,Integer.parseInt(comboBoxMinimumIntervalLength.getSelectedItem().toString());
MessageBox.show(String,valueOf(minimumSupport) + String. valueOf(minimumIntervalLength));
timel = new Time();
steplIARMinei'O;
time2 = new Time();
step2IARMiner();
time3 = new Time();
MessageBox.show("FINISHED!");
timeOfStepl = time2.toLong() - timel.toLongQ;
timeOfStep2 = time3.toLong() - time2.toLong();
timeOflARSeeker = time3.toLong() - timel.toLong();
tO Sl = (float)timeOfStepl / (float) 10000000;
tOS2 = (float)timeOfStep2 / (float) 10000000;
tOIARSeeker = (float)timeOflARSeeker / (float) 10000000;
MessageBox.show("Stepl = " + String.valueOf(tOSl) + " sec");
MessageBox.show("Step2 = 11 + String.valueOf(tOS2) + " sec");
MessageBox.show("IARSeeker = " + Sti’ing.valueOf(tOIARSeeker) + " sec");
buttonRun.setEnabled(true);

//this is new result section
Result result = new Result(iLSList);
result. setEnab led(true);
result.setVisible(true);
//end

}

private void buttonAllocationDataFile_click(Object source, Event e)
{

openFileDialogl.setDefaultExt("tdf');
openFiIeDialogl.setFilter("Temporal Database file (*.tdf)|H!,td ft);
openFileDialogl.setFilterlndex(l);
openFileDialogl.setInitialDir("C:\\Documents and SettingsW Documents");
int dlgResult = openFileDialogl.showDialogQ;
if (dlgResult == DialogResult.OK)
{

temporalDatabaseFileName = openFileDialogl.getFileName();
editT argetDataFileN ame .setT ext(temporalDatabaseF i leName);

}
situationCheck();

}
/**
* NOTE: The following code is required by the Visual J++ form

- 174 -

* designer. It can be modified using the form editor. Do not
* modify it using the code editor.
*/

Container components = new ContainerQ;
Label labelAnancement = new Label();
OpenFileDialog openFileDialogl = new OpenFileDialog();
Label labelTargetDataset = new LabelQ;
Edit editTargetDataFileName = new Edit();
Button buttonAllocationDataFile = new Button();
ComboBox comboBoxMinimumSupport = new ComboBox();
Label labelMinimumSupport = new Label();
Label labelMinimumlntervalLength = new Label();
ComboBox comboBoxMinimumlntervalLength = new ComboBox();
Button buttonRun = new Button();
Label labelMonitor - new Label();
Label labelNumber = new Label();
Label labelTransactionID = new Label();
Label labelTID = new Label();
Label labelDate = new Label();
Label labelD = new Label();
Label labelltemNumber = new Label();
Label labellN = new Label();
Label labellAR = new Label();
Label labelTI = new Label();
Label labels = new Label();
Label labelE = new Label();
Label labelLS = new Label();
Label labelStart = new Label();
Label labelEnd = new Label();
Label label_ = new LabelQ;
Label labelLargeltemSet = new Label();

private void initFormQ
{

this.setText("IARMinerNew");
this.setAutoScaleBaseSize(new P oin t(5 ,13));
this.setClientSize(new Point(632, 446));

labelAnancement.setLocation(new Point(16,16));
IabelAnancement.setSize(new Point(600, 16));
label Anancement.setTablndex(O);
label Anancement. setTab Stop (false);
labelAnancement.setText("This IARMiner Program is only for evaluation o f the IARMiner

Algorithm rather than any other real application.");
label Anancement. setT extAlign(Horizontal Alignment, CENTER);

/* @designTimeOnly openFileDialogl .setLocation(new Point(408, 112)); */

labelTargetDataset,setLocation(new Point(8, 48));
labelTargetDataset.setSize(new Point(80, 16));
labelT argetDataset. setT ablndex(1);
IabelTargetDataset.setTabStop(false);
labelTargetDataset.setText("Target Data Set:");

editTargetDataFileName.setBackColor(Color.CONTROL);
editTargetDataFileName.setEnabled(false);
editTargetDataFileName,setLocation(new Point(96, 48));
editTargetDataFileName,setSize(new Point(400, 48));
editT argetDataF ileN ame, setT ablndex(2);
editT argetDataF ileN ame .setT ext("");
editTargetDataFileName.setBorderStyle(BorderStyle.FIXEDSINGLE);
editTargetDataFileName.setMultiline(true);

buttonAllocationDataFile.setLocation(new Point(504, 48));
buttonAllocationDataFile.setSize(new Point(l 12, 24));
buttonAllocationDataFile.setTabIndex(3);
buttonAllocationDataFile.setText("AIlocation Data File");
buttonAlIocationDataFile.addOnClick(new EventHandler(this.buttonAIlocationDataFile click));

-175 -

comboBoxMinimumSupport.setLocation(new Point(l04, 112));
comboBoxMinimumSupport.setSize(new Point(64, 21));
comboBoxMinimumSuppoit.setTabIndex(4);
comboBoxMinimumSupport.setText("Select");
comboBoxMinimumSupport.setItems(ne\v Object}] {"5", "10", "15", "20", "25", "30", "35", "40",

"45", "50", "55", "60", "65", "70", "75", "80", "85", "90", "95"});
comboBoxMinimumSupport.addOnSelectedIndexChanged(new

EventHandler(this.comboBoxMinimumSupport_selectedIndexChanged));

labeIMinimumSupport.setLocation(new Point(8, 112));
labelMinimumSupport.setSize(new Point(96, 16));
labelMinimumSupport.setTabIndex(5);
labelMinimumSupport.setTabStop(false);
labelMinimumSupport.setText("Minimum Support %:");

labelMinimumIntervalLength.setLocation(new Point(176, 112));
labelMinimumIntervalLength.setSize(new Point(120, 16));
labelMinimumIntervalLength,setTabIndex(6);
labelMinimumlntervalLength.setTabStop(false);
labelMinimumIntervalLength.setText("Minimum Interval Length:");

comboBoxMinimumIntervalLength.setLocation(new Point(296, 112));
comboBoxMinimumIntervalLength.setSize(new Point(64, 21));
comboBoxMinimumIntervalLength.setTabIndex(7);
comboBoxMinimumIntervalLength.setText("Select");
comboBoxMinimumIntervalLength,setItems(new Object[] {"1", "2", "3", "4", "5", "6", "7", "8",

"9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26",
"27", "28", "29", "30", "31", "33", "35", "37", "39", "41", "43", "45", "47", "49", "51", "53", "55", "57",
"59", "61", "63", "65", "67", "69", "71", "73", "75", "77", "79", "81", "83", "85", "87", "89"});

comboBoxMinimumIntervalLength.addOnSelectedIndexChanged(new
EventHandler(this.comboBoxMinimumIntervalLength_selectedIndexChanged));

buttonRun.setLocation(new Point(528, 104));
buttonRun.setSize(new Point(75,23));
buttonRun.setT ablndex(8);
buttonRun.setT ext(" Run");
buttonRun.addOnClick(new EventHandler(this.buttonRun_click));

labelMonitor,setLocation(new Point(8, 144));
labelMonitor.setSize(new Point(40, 23));
labelMonitor. setT ablndex(9);
labelMonitor.setTabStop(false);
labelMonitor.setText("Monitor:");

labelNumber.setLocation(new Point(48, 144));
labelNumber,setSize(new Point(100, 23));
labelNumber.setTabIndex(l 0);
labelNumber.setTabStop(false);
labelNumber.setText("");

IabelTransactionID.setLocation(new Point(8,240));
labelTransactionID.setSize(new Point(72, 23));
labelTransactionID.setTabIndex(l 1);
labelTransactionlD.setTabStop(false);
labeITransactionID.setText("TransactionID:");

labelTID,setLocation(new Point(80,240));
labelTID.setSize(new Point(100, 23));
lab elTID.setT ablndex(12);
labelTID.setT abStop(false);
labelTID.setText("");

labelDate.setLocation(new Point(192, 240));
labelDate.setSize(new Point(32, 23));
labelDate.setTabIndex(l 3);
labelDate.setTabStop(false);
IabelDate.setText("Date:");

labelD.setLocation(new Point(224, 240));

- 176-

labelD.setSize(new Point(100,23));
labelD.setTabIndex(14);
labelD.setTabStop(false);
labelD.setText("");

labelItemNumber,setLocation(new Point(336, 240));
labeIItemNumber.setSize(new Point(64, 23));
labelItemNumber.setTabIndex(15);
labelltemNumber.setTabStop(false);
labelItemNumber.setText("IteinNumber:");

labelIN.setLocation(new Point(400, 240));
labelIN.setSize(new Point(100, 23));
labellN.setTabIndex(l 6);
labellN.setT abStop(false);
labelIN.setText("");

labelIAR.setLocation(new Point(8, 296));
labelIAR.setSize(new Point(120, 23));
labellAR.setT ablndex(17);
labellAR.setTabStop(false);
labelIAR.setText("Interval Association Rule:");

IabelTI.setLocation(new Point(8, 328));
IabelTI,setSize(new Point(72, 23));
labelTI.setTabIndex(l 8);
labelTI.setTabStop(false);
labelTI.setText("Time Interval:");

labelS.setLocation(new Point(80, 328));
labelS.setSize(new Point(32, 23));
labeIS.setTabIndex(l 9);
labelS.setTabStop(false);
labelS.setText("Start");

labelE.setLocation(new Point(128, 328));
labelE.setSize(new Point(32, 23));
labelE.setTabIndex(20);
labelE.setTabStop(false);
labelE.setText("End");

labelLS.setLocation(new Point(224, 328));
labelLS,setSize(new Point(100, 23));
labelLS.setTabIndex(21);
labelLS.setTabStop(false);
labelLS.setText("Large Item Set:");

label Start. setLocation(new Point(80, 352));
labelStart.setSize(new Point(32, 23));
labelStart.setT ablndex(22);
labelStart.setT abStop(false);
labelStart.setText("");

labelEnd.setLocation(new Point(128, 352));
labelEnd,setSize(new Point(32, 23));
labeIEnd.setTabIndex(23);
labelEnd.setT abStop(false);
labelEnd.setText("");

label_.setLocation(new Point(l 12, 352));
label_.setSize(new Point(8, 23));
label_.setTabIndex(24);
label_.setT abStop(false);
label_.setText("— ");

labelLargeItemSet.setLocation(new Point(336, 328));
labelLargeItemSet.setSize(new Point(288, 23));
labelLargeItemSet.setTabIndex(26);
labelLargeltemSet.setTabStop(false);

- 177-

labelLargeItemSet.setText("");

this.setNewControls(new Control[] {
labelLargeltemSet,
label_,
labelEnd,
labelStart,
labelLS,
labelE,
labels,
label'll,
labellAR,
labellN,
labelltemN umber,
labelD,
labelDate,
labelTID,
labelTransactionID,
labelNumber,
labelMonitor,
buttonRun,
comboBoxMinimumlntervalLength,
labelMinimumlntervalLength,
labelMinimumSupport,
comboBoxMinimumSupport,
buttonAllocationDataFile,
editTargetDataFileName,
labelT argetDataset,
label Anancement});

}

* The main entry point for the application.*
* @param args Array o f parameters passed to the application
* via the command line.
*/

public static void main(String args[])
{

Application,run(new Forml());
}

}

- 178-

Class ILSUst.java
import com.ms.wfc.app.*;
import com.ms.wfc.core.*;
import com.ms.wfc.ui.*;
import com.ms.wfc.html.*;
import com.ms.wfc.io.*;
import com.ms.wfc.util.*;

public class ILSList extends List
{

public ILSListQ
{

this.caplnc = 10;

public void disposeQ
{
}
private long TimeDomainStartPoint;
private long TimeDomainEndPoint;

public void setTimeDomainStartPoint(long tDSP)
{

TimeDomainStartPoint = tDSP;
}

public void setTimeDomainEndPoint(long tDEP)

TimeDomainEndPoint = tDEP;
}

public long getTimeDomainStartPoint()
{

return TimeDomainStartPoint;
}

public long getTimeDomainEndPoint()
{

return TimeDomainEndPoint;
}

public void enqueueIntervalList(IntervalList iL)

this. enqueueltem(iL);

public IntervalList getIntervalList(int n)
{

return (IntervalList) this.getltem(n);
}

public int getAmountOf!ntervalList()
{

return this.getSize();
}

}

- 179-

Class IntervalListjava
import com.ms.wfc.app.*;
import com.ms.wfc.core.*;
import com.ms.wfc.ui.*;
import com.ms.wfc.html.*;
import com.ms.wfc.io.*;
import com.ms.wfc.util.*;

public class IntervalList extends List
{

public IntervalList()
{

this.caplnc = 10;
}
public void dispose()
{
}

private long IntervalLength;

public void setIntervalLength(long iL)

IntervalLength = iL;

public long getIntervalLength()
{

return IntervalLength;
}
public void enqueueIntervalNode(IntervalNode iN)
{

this.enqueueltem(iN);
}
public void removeIntervalNode(int n)
{

this.removeltem(n);
}
public IntervalNode getIntervalNode(int n)
{

return (IntervalNode) this.getltem(n);
}
public int getAmountOflntervalNode()
{

return this.getSize();
}

}

Class IntervalNode Java
import com.ms.wfc.app.*;
import com.ms.wfc.core.*;
import com.ms.wfc.ui.*;
import com.ms.wfc.html.*;
import com.ms.wfc.io,*;
import com.ms.wfc.util.*;

public class IntervalNode extends List
{

public IntervalNode()
{

this.caplnc = 10;

public void diapose()
{
}
private long StartTimePoint;
private long EndTimePoint;

public void setStartTimePoint(Iong sTP)

StartTimePoint = sTP;
}
public void setEndTimePoint(long eTP)
{

EndTimePoint = eTP;
}
public long getStartTimePoint()
{

return StartTimePoint;
}
public long getEndTimePointf)
{

return EndTimePoint;
}
public void enqueueLargeItemset(LargeItemset II)
{

this.enqueueltem(ll);
}
public void insertLargeItemset(int n, Largeltemset II)
{

this.insertltem(n} II);
}
public void removeLargeItemset(int n)
{

this.removeltem(n);
}
public Largeltemset getLargeItemset(int n)
{

return (Largeltemset) this.getltem(n);
}
public int getAmountOfLargeItemset()
{

return this.getSize();
}

public boolean getEmptyLargeItemsetList()
{

return this.getEmpty();
}
public void trimLargeItemsetListToSize()
{

this,trimToSize();
}

}

- 182-

Class Largeltemsetjava
import com.ms.wfc.app.*;
import com.ms.wfc.core.*;
import com.ms.wfc.ui,*;
import com.ms.wfc.html.*;
import com.ms.wfc.io.*;
import com.ms.wfc.util.*;

public class Largeltemset extends List
{

public Largeltemset()
{

this.caplnc - 10;
}
public void dispose()

}
private int LargeltemsetSize;
private long Count = 0;

public void setLargeItemsetSize(int IIS)

LargeltemsetSize = IIS;
}
public int getLargeItemsetSize()

return LargeltemsetSize;
}
public void setCount(long c)
{

Count = c;
}
public long getCount()
{

return Count;
}
public void increaseCount()
{

Count ++;
}
public void enqueueLargeItem(LargeItem II)
{

this.enqueueltem(ll);
}
public Largeltem getLargeItem(int n)
{

return (Largeltem) this.getltem(n);

public int getAmountOfLargeItem()
{

return this.getSize();
}

}

- 183 -

Class Largeltem Java
import com.ms.wfc.app.*;
import com.ms.wfc.core.*;
import com.ms.wfc.ui.*;
import com.ms.wfc.html.*;
import com.ms.wfc.io,*;

public class Largeltem extends Object

public Largeltem()
{
}
public void dispose()
{
}
private int LargeltemNumber;

public void setLargeItemNumber(int UN)

LargeltemNumber = UN;
}
public int getLargeItemNumber()
{

return LargeltemNumber;
}

}

- 184-

Class Item Java
import com.ms.wfc.app.*;
import com.ms.wfc.core.*
import com.ms.wfc.ui.*;
import com.ms.wfc.html.*
import com.ms.wfc.io.*;

public class Item
{

public Item()
{
}
public void disposeQ

public int itemNumber;
}

Appendix B: Program Tl-tree
Class Tl-tree.java
import com.ms.wfc.app.*;
import com.ms.wfc.core.*;
import com.ms.wfc.ui.*;
import com.ms.wfc.html.*;
import com.ms.wfc.io.*;

public class Tl-tree extends Form
{

public TI-tree()
{

superO;
initForm();
tree = new Tree();

}
public void dispose()
{

super.disposeQ;
components.dispose();

}
String temporalDatabaseFileName = null;
Tree tree;
float minimumSupport;
int minimumlntervalLength;
Time createPatternB aseStartTime;
Time createPatternBaseEndTime;
Time mineLongestlntervalLargeltemsetStartTime;
Time mineLongestlntervalLargeltemsetEndTime;

private void menultem3_click(0bject source, Event e)
{

openFileDialogl.setDefaultExt("tdf);
openFileDialogl.setFilter("Temporal Database File (*.tdf)|*.tdf');
openFileDialog 1 ,setFilterIndex(1);
openFileDialogl .setlnitialDir("C:\\Documents and SettingsWDocuments");
int dlgResult = openFileDialogl.showDialog();
if (dlgResult = DialogResult.OK)
{

temporalDatabaseFileName = openFileDialogl.getFileName();
this.setText("3“Levels ; " + temporalDatabaseFileName);

}
}
private void m enultem9_click(0bject source, Event e)
{

long cPBT;
createPatternBaseStartTime = new Time();
tree.generatePattemBase(temporalDatabaseFileName);
createPatternBaseEndTime = new Time();
cPBT = createPatternBaseEndTime.toLongO - createPatternBaseStartTime.toLong();
float cPBTC = (float) cPBT / (float) 10000000;
label3.setText(String.valueOf(cPBTC));

}
private void menultem8_click(0bject source, Event e)
{

long mLILIT;
mineLongestlntervalLargeltemsetStartTime = new Time();
tree.mineIntervalLargeItemset(minimumSupport, minimumlntervalLength);
mineLongestlntervalLargeltemsetEndTime = new Time();
mLILIT = mineLongestlntervalLargeltemsetEndTime.toLongO -

mineLongestlntervalLargeltemsetStartTime.toLongO;

float mLILITC = (float) mLILIT / (float) 10000000;
label4.setText(String.valueOf(mLILITC));
MessageBox.show("Done");

}

private void comboBox l_selectedIndexChanged(Object source, Event e)
{

if(com boBoxl.getSelectedlndexQ != -1)
I

minimumSupport = java.lang.Integer.parseInt(comboBoxLgetSelectedItem().toString());
minimumSupport = minimumSupport /100;

}
}
private void comboBox2_selected!ndexChanged(Object source, Event e)

if (comboBox2.getSelectedIndex() != -1)
{

minimumlntervalLength = java.lang,Integer.parseInt(comboBox2.getSelectedItem().toString());

} }
Container components = new Container();
MainMenu mainMenul = new MainMenu();
Menultem menulteml = new MenuItemQ;
Menultem menultem2 = new MenuItemQ;
Menultem menultem3 = new MenuItemQ;
OpenFileDialog openFileDialogl = new OpenFileDialog();
Menultem menultem4 = new Menultem();
Menultem menuItemS = new MenuItemQ;
Menultem menultemb = new MenuItemQ;
Menultem menultem7 = new MenuItemQ;
Menultem menultem8 = new MenuItemQ;
Menultem menultem9 = new MenuItemQ;
Label label 1 = new LabelQ;
Label label2 = new Label();
Label Iabel3 = new Label();
Label label4 = new Label();
Label label5 = new Label();
Label label6 = new LabelQ;
ComboBox comboBox 1 = new ComboBoxQ;
ComboBox comboBox2 = new ComboBoxQ;

private void initFonnQ
{

menuItem3.setText("Temporal Database File ,td f);
menuItem3.addOnClick(new EventHandler(this.menultem3_click));

menuItem2.setMenuItems(new Menultein[] {menultem3});
menultem2 .s etText(" Open");

menulteml.setMenuItems(new MenuItemQ {menultem2});
menulteml .setText("File");

/* @designTimeOnly openFileDialogl.setLocation(new Point(904, 32)); */

menuItem8.setText("All Interval Large Itemsets");
inenuItem8.addOnClick(new EventHandler(this.menuItem8_click));

menuItem7.setMenuIteins(new Menultem[] {menultem8});
menuItem7.setText("Longest Interval");

menuItem6.setMenuItems(new Menultem[] {menultem7});
menuItem6.setText("Mine");

menuItem9.setText("Using Temporal Database File");
menuItem9.addOnClick(new EventHandler(this,menuItem9_click));

menuItem5.setMenuItems(new Menultem[] {menultem9});

menuItem5.setText("Pattera Base");

menuItem4.setMenuItems(new MenuItemQ {menultem5});
menuItem4.setText("Create");

mainMenul.setMenuItems(new Menultem[] {menulteml, menultem4, menultem6});
/* @designTimeOnly mainMenul.setLocation(new Point(928, 8)); */

this.setText("TI-tree");
this.setAutoScaleBaseSize(new Point(5, 13));
this.setClientSize(new Point(1016, 713));
this,setMenu(mainMenu 1);

labell.setLocation(new Point(8, 656));
label l.setSize(new Point(176,23));
label 1 .setTablndex(O);
label 1 .setTabStop(false);
label l.setText("Creating Pattern Base Used (S e c .) :");

label2.setLocation(new Point(8, 680));
label2.setSize(new Point(208,23));
label2.setTab!ndex(1);
label2.setTabStop(fa!se);
label2,setText("Mining Interval Large Itemset Used (S e c .) :");

label3.setLocation(new Point(184, 656));
label3.setSize(new Point(208, 23));
label3 .setT ablndex(3);
label3.setTabStop(false);
label3.setText("");

label4.setLocation(new Point(216, 680));
label4.setSize(new Point(192, 23));
labe!4.setTabIndex(2);
label4.setTabStop(false);
label4.setText("");

label5. setLocation(new Point(696, 104));
labels.setSize(new Point(128, 23));
labels.setTabIndex(4);
label5.setTabStop(false);
labels.setText("Minimum Support % : ");

labe!6,setLocation(new P oint(696,128));
label6.setSize(new Point(128, 23));
label6.setTabIndex(5);
label6.setT abStop(false);
label6.setText("Minimum Interval Length :");

comboBox l.setLocation(new Point(832, 104));
com boBoxl.setSize(new Point(121, 21));
comboBox 1 .setTabIndex(9);
comboBox l.setTextC'comboBoxl");
com boBoxl.setltem s(new ObjectQ {"5", "10", "15", "20", "25", "30", "35", "40", "45", "50","55",

"60", "65", "70", "75", "80", "85", "90", "95"});
comboBox LaddOnSelectedIndexChanged(new

EventHandler(this.comboBoxl_selectedIndexChanged));

comboBox2.setLocation(new Point(832, 128));
comboBox2,setSize(new Point(121,21));
comboBox2.setTabIndex(8);
comboBox2.setText("comboBox2");
comboBox2.setItems(new ObjectQ {"1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13",

"14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30"});
comboBox2.addOnSelectedIndexChanged(new

EventHandler(this.comboBox2_selectedIndexChanged));

this.setNewControls(new ControIQ {comboBox2, comboBox 1, label6, labels, label4, label3, label2,
label 1});

}

public static void main(String args[])
{

Application.run(new TI-tree());
}

}

- 189-

C/ass Tree.java
import com.ms.wfc.app.*;
import com.ms.wfc.core.*;
import com.ms.wfc.ui.*;
import com.ms.wfc.html.*;
import com.ms.wfc.io.*;
import com.ms.wfc.util.*;

public class Tree
{

private Node root;
private TimeDomainTransactionCounts timeDomainTransactionCounts;

public Tree ()
{

timeDomainTransactionCounts = new TimeDomainTransactionCounts();
root = new Node(null, null, null, null, null);

}
private void compareAndAddNode(Node cAANTN, Node cAANCN)
{
}
private void addNodelntoTree (Node aNITN, long aNITG)
{

long granule = aNITG;
Node currentNode;
Node thisNode = aNITN;
if (root.getFirstChild() = null)
{

thisNode.increasePatternCountOn(granule);
root.setFirstChild(thisNode);
thisNode.setFather(root);

}
else
{

currentNode = root.getFirstChildQ;
char relationship;
relationship = currentNode.compareNode(thisNode);
while ((relationship == 'D’) || (relationship “ ’Y') || (relationship == 'N'))

if (relationship == 'D')
{

if (currentNode.getFirstChild() != null)
{

currentNode = currentNode.getFirstChild();
relationship = currentNode,compareNode(thisNode);
continue;

}
else

break;
}
else
{

if (relationship == ’Y’)
{

if (currentNode.getYoungerBrother() != null)
{

currentNode = currentNode.getYoungerBrother();
relationship = currentNode.compareNode(thisNode);
continue;

}
else

break;
}
else
{

- 190-

if (currentNode.getYoungerBrotherO != null)
{

currentNode = currentNode.getYoungerBrotherO;
relationship = currentNode.compareNode(thisNode);
continue;

}
else

break;
}

}
}
switch (relationship)
{

case 'N':
{

MessageBox.showQError No Relationship");
break;

}
case Y':
{

thisNode.increasePatternCountOn(granule);
thisNo de. setF ather(currentNode, getF ather());
thisNode.setElderBrother(currentNode);
currentNode.setYoungerBrother(thisNode);
break;

}
case 'E':
{

if (currentNode.getElderBrother() = null)
{

Node f = currentNode.getFather();
thisNode.increasePatternCountOn(granule);
thisNode.setF ather(f);
thisNode.setYoungerBrother(currentNode);
f.setFirstChild(thisNode);
currentNode.setElderBrother(thisNode);

}
else //(currentNode,getElderBrother() != null)
{

Node eB = currentNode.getElderBrother();
thisNode.increasePatternCountOn(granule);
thisNode. setF ather(currentNode .getF ather());
thisNode.setElderBrother(eB);
thisNode.setYoungerBrother(currentNode);
eB.setYoungerBrother(thisNode);
currentNode.setElderBrother(thisNode);

}
break;

}
case 'S':
{

currentNode.increasePatternCountOn(granule);
break;

1
case 'A1:
{

MessageBox.showQError Ancestor");
break;

}
case 'D1:
{

thisNode, increasePatternCountOn(granule);
thisNode.setFather(currentNode);
currentNode.setFirstChild(thisNode);
break;

}
case 'R':
{

MessageBox.showQError Root");

break;
}

}
}

private ItemsetList generateltemsets (ItemSet gUS)
{

ItemSet baseltemset = gUS;
ItemsetList itemsetList = new ItemsetList();
Integer number;
int baseltemsetSize = baseItemset.getItemSetSize();
for (int i = 0; i < baseltemsetSize; i ++)
{

number = (Integer) baseltemset.getltem(i);
itemsetList. addInNewItemNumber(number.intValue());

}
return itemsetList;

private void putlntoTree (long pITG, ItemSet pITIS)

Node node;
ItemsetList itemsetList = generateltemsets(pITIS);
timeDomainTransactionCounts.increaseGranuleCountOn(pITG);
int itemsetListSize = itemsetList.getSizeQ;
for (int i = 0; i < itemsetListSize; i ++)
{

node = new Node((ItemSet) itemsetList.getltem(i), null, null, null, null);
addNodeIntoTree(node, pITG);

public void generatePatternBase (String gPBFN)

String fileName = gPBFN;
String nextLine = null;
long granule;
long transactionID;
int itemNumber;
ItemSet itemset;
TextReader reader;
boolean getNewTransaction;
long tID;

itemset = null;
transactionID = -1;
granule = -1;
getNewTransaction = true;
reader = new TextReader(fileName);

nextLine = reader.readLine();
while (nextLine != null)
{

tID = java.Iang.Long.parseLong(nextLine.substring(0, 6).trim());
if (transactionID != tID)
{

getNewTransaction = true;
}
if (getNewTransaction == true)
{

if (itemset != null)
{

putIntoTree(granule, itemset);
itemset = null;

}
transactionID = tID;
granule = java.lang.Long.parseLong(nextLine.substring(6, 10).trim());
itemset = new ItemSetQ;

- 192-

getNewTransaction = false;
}
itemset.addItemNumber(java.lang.Integer.parseInt(nextLine.substring(l 0, 15).trim()));
nextLine = reader,readLine();

}
if (itemset != null)
{

putIntoTree(granule, itemset);
itemset = null;

}
reader.close();

}
private Interval mineLongestlnterval (float rnLIMS, int mLIMIL, Node mLIN)
{

float minimumSupport = mLIMS;
int minimumlntervalLength = mLIMIL;
Node currentNode = mLIN;
Interval first = null;
Interval last = null;
Interval interval;

//Step 1
long begin = timeDomainTransactionCounts,getFirstGranule();
long end = timeDomainTransactionCounts.getLastGranule();
long firsts 1 = begin;
long seconds 1 = begin + minimumlntervalLength -1;
if (seconds 1 > end)
{

return null;
}
while (seconds 1 <= end)
{

if ((currentNode.getIntervalPatternCountBetween(firstSl, seconds 1) >=
(timeDomainTransactionCounts.getIntervalGranuleCountBetween(firstS 1, seconds 1) *
minimumSupport)) && (timeDomainTransactionCounts.getIntervalGranuleCountBetween(firstS 1,
seconds 1)> 0))

{
interval = new Interval();
interval, start = firsts 1;
interval.end = seconds 1;
if (first = null)
{

first = interval;
interval.isFirst = true;
last = interval;
firsts 1 ++;
seconds 1 ++;
continue;

}
else
{

last.next = interval;
last = interval;
firstS 1 ++;
seconds 1 ++;
continue;

}
}
else
{

firsts 1 ++;
seconds 1 ++;

}
}

//Step 2
Interval firstlntervalPoint = null;
Interval secondlntervalPoint = null;
Interval passedlntervalPoint = null;

- 193 -

firstlntervalPoint = first;
if (firstlntervalPoint != null)
{

secondlntervalPoint = firstlntervalPoint.next;
while (secondlntervalPoint != null)
{

i f ((firstlntervalPoint.start + 1 == secondlntervalPoint.start) && (firstlntervalPoint.end + 1 ==
secondlntervalPoint.end))

{
if ((currentNode.getIntervalPatternCountBetween(firstIntervalPoint,start,

secondlntervalPoint.end) >=
(timeDomainTransactionCounts.getIntervalGranuIeCountBetween(firstIntervalPoint.start,
secondlntervalPoint.end) * minimumSupport)) &&
(timeDomainTransactionCounts.getIntervalGranuleCountBetween(firstIntervalPoint.start,
secondlntervalPoint.end) > 0))

{
interval = new Interval();
interval.start = firstlntervalPoint.start;
interval.end = secondlntervalPoint.end;
last.next = interval;
last = interval;
firstlntervalPoint.canBeDeleted = true;
secondlntervalPoint. canBeDeleted = true;

}
}
passedlntervalPoint = firstlntervalPoint;
firstlntervalPoint = secondlntervalPoint;
secondlntervalPoint = secondlntervalPoint.next;
if (passedlntervalPoint.canBeDeleted == true)
{

i f (passedlntervalPoint. isFirst == true)
{

firstlntervalPoint. isFirst = true;
}
first = firstlntervalPoint;
passedlntervalPoint = null;

}
}

}
else
{
}
return first;

}
private Interval mineLongestlnterval (float mLIMS, int mLIMIL, Node mLIN, long mLISG, long

mLIEG)
{

float minimumSupport = mLIMS;
int minimumlntervalLength = mLIMIL;
Node currentNode = mLIN;
Interval first = null;
Interval last = null;
Interval interval;

//Step 1
long begin = mLISG;
long end = mLIEG;
long firsts 1 = begin;
long seconds 1 = begin + minimumlntervalLength -1;
if (seconds 1 > end)
{

return null;
}
while (seconds 1 <= end)
{

if ((currentNode.getIntervalPatternCountBetween(firstSl, seconds 1) >=
(timeDomainTransactionCounts.getIntervalGranuleCountBetween(firstSl, secondSl) *

- 194-

minimumSupport)) && (timeDomainTransactionCounts.getIntervalGranuleCountBetween(firstS 1,
seconds 1) > 0))

{
interval = new Interval();
interval, start = firsts 1;
interval.end = seconds 1;
if (first - null)
{

first = interval;
interval. isFirst = time;
last = interval;
firsts 1 ++;
seconds 1 ++;
continue;

}
else
{

last.next = interval;
last = interval;
firsts 1 ++;
seconds 1 ++;
continue;

}
}
else
{

firsts 1 ++;
secon ds1 H—bj

}
}

//Step 2
Interval firstlntervalPoint = null;
Interval secondlntervalPoint = null;
Interval passedlntervalPoint = null;
firstlntervalPoint = first;
if (firstlntervalPoint != null)
{

secondlntervalPoint = firstlntervalPoint.next;
while (secondlntervalPoint != null)
{.

if ((firstlntervalPoint.start + 1 = secondIntervalPoint.start),&& (firstlntervalPoint.end + 1
secondlntervalPoint.end))

{.
if ((currentNode,getIntervalPattemCountBetween(firstIntervalPoint.start,

secondlntervalPoint.end) >=
(timeDomainTransactionCounts.getIntervalGranuleCountBetween(firstIntervalPoint.start,
secondlntervalPoint.end) * minimumSupport)) &&
(timeDomainTransactionCounts.getIntervalGranuleCountBetween(firstIntervalPoint.start,
secondlntervalPoint.end) > 0))

{
interval = new Interval();
interval.start = firstlntervalPoint.start;
interval.end = secondlntervalPoint.end;
last.next = interval;
last = interval;
firstlntervalPoint.canBeDeleted = true;
secondlntervalPoint.canBeDeleted = true;

}
)
passedlntervalPoint = firstlntervalPoint;
firstlntervalPoint = secondlntervalPoint;
secondlntervalPoint = secondlntervalPoint.next;
if (passedlntervalPoint.canBeDeleted == true)
{

if (passedlntervalPoint.isFirst == true)
{

firstlntervalPoint. isFirst = true;
}
first = firstlntervalPoint;

passedlntervalPoint = null;
}

}
}
else

return first;
}
private void throughoutTree (float tTMS, int tTMIL, Node tTN)

mineLongestInterval(tTMS, tTMIL, tTN);
if (tTN.getFirstChildQ != null)

throughoutTree(tTMS, tTMIL, tTN.getFirstChild());
if (tTN.getYoungerBrotherQ != null)

throughoutTree(tTMS, tTMIL, tTN.getYoungerBrother());
}
private void throughoutTree (float tTMS, int tTMIL, Node tTN, long tTSG, long tTEG)
{

Interval interval = mineLongestInterval(tTMS, tTMIL, tTN, tTSG, tTEG);
while ((interval != null) && (tTN.getFirstChild() != null))
{

throughoutTree(tTMS, tTMIL, tTN.getFirstChild(), interval.start, interval.end);
interval = interval.next;

}
if (tTN.getYoungerBrother() != null)

throughoutTree(tTMS, tTMIL, tTN.getYoungerBrotherQ, tTSG, tTEG);

public void minelntervalLargeltemset (float mILIMS, int mILIMIL)

if (root.getFirstChild() == null)
return;

else
throughoutTree(mILIMS, mILIMIL, root.getFirstChildQ,

timeDomainTransactionCounts.getFirstGranuleQ, timeDomainTransactionCounts.getLastGranuleQ);

public void minelntervalLargeltemset (float mILIMS, int mILIMIL, long mILISG, long mILIEG)

}
public void savePatternBase ()
{
}
public void loadPatternBase ()
{
}
private void showltemset (Node node)
{

String message = null;
ItemSet itemset = node.getItemSet();
int size = itemset.getItemSetSize();
message = String.valueOf(size) + ”
int number;
for (int i = 0; i < size; i ++)
{

number = itemset.getltemNumber(i);
message += "" + String.valueOf(number);

}
MessageBox.show(message);
if (node.getFirstChild() != null)

showItemset(node.getF ir stChi ld());
i f (node.getYoungerBrother() != null)

showItemset(node.getYoungerBrotherQ);

- 196-

}

public void showPatternBase ()

Node node = root.getFirstChild();
showltemset(node);

} }

-197 -

Class Node Java
import com.ms.wfc.app.*;
import com.ms.wfc.core.*;
import com.ms.wfc.ui.*;
import com.ms.wfc.html.*;

public class Node
{

private ItemSet itemSet = null;
private Node father = null; //the reason o f using this reference is to indicate whether this is a 1-

itemset (root)
private Node youngerBrother = null;
private Node firstChild = null;
private Node elderBrother = null;
private TimeSeriesPatternCounts timeSeriesPatternCounts;

public Node (ItemSet nIS, Node nF, Node nYB, Node nFC, Node nEB)

itemSet = nIS;
father = nF;
youngerBrother = nYB;
firstChild = nFC;

timeSeriesPatternCounts = new TimeSeriesPatternCounts ();

public Node getFather ()
{

return father;

public Node getYoungerBrother ()
{

return youngerBrother;

public Node getElderBrother ()
{

return elderBrother;

public Node getFirstChild ()

return firstChild;

public ItemSet getltemSet ()

return itemSet;

public long getlntervalPatternCountBetween (long gPCOG)

return timeSeriesPatternCounts.getlntervalGranuleCountBetween(gPCOG);

public long getlntervalPatternCountBetween (long gIPCBS, long gIPCBE)

return timeSeriesPatternCounts.getIntervalGranuleCountBetween(gIPCBS, gIPCBE);

public void setFather (Node sFF)

father = sFF;

public void set YoungerBrother (Node sYBYB)

youngerBrother = sYBYB;
}

public void setElderBrother (Node sEBEB)
{

elderBrother = sEBEB;
}
public void setFirstChild (Node sFCFC)

firstChild = sFCFC;
}
public void increasePatternCountOn (long iPCOG)

timeSeriesPatternCounts,mcreaseGranuleCountOn(iPCOG);

public char compareNode(Node cNN)
{

return itemSet.compareItemSet(cNN,getItemSet());

}

- 199 -

Class ItemSetjava
import com.ms.wfc.app.*;
import com.ms.wfc.core.*;
import com.ms.wfc.ui.*;
import com.ms.wfc.html.*;
import com.ms.wfc.io.*;
import com.ms.wfc.util.*;

public class ItemSet extends List
{

private Integer itemNumber;

public ItemSet ()
{

this.caplnc = 1;
}
public void addltemNumber (int aINN)
{

itemNumber = new Integer(alNN);
int thisSize = this.getSizeQ;
if (this.getEmpty() == true)
{

this.enqueueltem(itemNumber);
return;

}
Integer testltemNumber;
for (int i = 0; i < thisSize; i++)
{

testltemNumber = (Integer) this.getltem(i);
if ((testltemNumber.intValue() < itemNumber.int Value()) && (i < thisSize -
continue;
else
{

if (testltemNumber. intValue() === itemNumber. intValue())
break;

else
{

i f (testltemNumber. intValueQ > itemNumber. intValue())
{

this. insertltem(i, itemNumber);
break;

}
else
{

i f (i == thisSize -1)
{

this, enqueueltem (itemNumb er);
break;

}
}

}
}

}
}
public char compareltemSet (ItemSet cISIS)
{

char noRelationship = 'N1;
char is YoungerBrother = 'Y';
char isElderBrother = 'E';
char isSame = 'S';
char is Ancestor = 'A1;
char isDescendant = 'D';
char isRoot = 'R1;

int thisSize = this.getSize();

if (cISIS.getSize() == 0)//Empty itemset means root
return isRoot;

else
{

i f (thisSize == cISIS.getSize())//same itemset size compare
{

if (thisSize == 1)//1-itemset special compare
{

Integer testThis = (Integer) this.getltem(O);
Integer testCISIS = (Integer) clSIS.getltem(O);
if (testThis. intValueQ == testCISIS.intValue())

return isSame;
else
{

i f (testThis.intValue() < testCISIS.intValue())
return isYoungerBrother;

else
return isElderBrother;

else//2 or more itemset
{

Integer tT;
Integer tC;
boolean ts l = true;
for (int i = 0; i < thisSize - 1; i++)
{

tT = (Integer) this.getltem(i);
tC = (Integer) clSIS.getltem(i);
if (tT.intValueQ != tC.intValue())
{

tsl = false;
break;

}
}
if (tsl == true)
{

tT = (Integer) this.getItem(thisSize - 1);
tC = (Integer) cISIS.getItem(thisSize - 1);
if (tT.intValueQ == tC.intValueQ)

return isSame;
else
{

if (tT.intVa!ue() < tC.intValueQ)
return isYoungerBrother;

else
return isElderBrother;

}
}
else

return noRelationship;
}

}
else//different itemset size compare
{

if (thisSize < cISIS.getSize())
{

boolean ts2 = true;
Integer tT2;
Integer tC2;
for (int i = 0; i < thisSize; i++)
{

tT2 = (Integer) this.getltem(i);
tC2 = (Integer) clSIS.getltem(i);
if (tT2.intValue() != tC2.intValue())
{

ts2 = false;
break;

-201 -

}
}
if (ts2 == true)

return isDescendant;
else

return noRelationship;
}
else
{

boolean ts3 = true;
Integer tT3;
Integer tC3;
for (int i = 0; i < cISIS.getSize(); i++)
{

tT3 = (Integer) this.getltem(i);
tC3 = (Integer) clSIS.getltem(i);
if (tT3.intValue() != tC3.intValue())
{

ts3 = false;
break;

if (ts3 == true)
return isAncestor;

else
return noRelationship;

}
}

}
}
public int getltemSetSize ()
{

return this.getSize();
}
public int getltemNumber (int gINI)
{

int index = gINI;
Integer numberObject = (Integer) this.getltem(index);
return numberObj ect. intV alue();

}
public ItemSet coloneltemset ()
{

ItemSet newltemset = new ItemSet();
int thisSize = this.getSize();
Integer copyNumber;
for (int i = 0; i < thisSize; i ++)
{

copyNumber = (Integer) this.getltem(i);
newItemset.addItemNumber(copyNumber.intValue());

}
return newltemset;

}
}

-2 02 -

Class ItemsetLlstjava
import com.ms.wfc.app.*;
import com.ms.wfc.core.*;
import com.ms.wfc.ui.*;
import com.ms.wfc.html. *;
import com.ms.wfc.io.*;
import com.ms.wfc.util.*;

public class ItemsetList extends List
{

public ItemsetList ()
{

this.caplnc =10;
}
public void addlnNewItemNumber (int alNININ)
{

int newItemNumber = alNININ;
ItemSet itemset;
ItemSet originalltemset;
if (this.getSize() == 0)
{

itemset = new ItemSet();
itemset.addltemNumber(newItemNumber);
this.enqueueltem(itemset);
return;

}
else
{

int currentltemsetListSize = this.getSize();
for (int i = 0; i < currentltemsetListSize; i ++)
{

originalltemset = (ItemSet) this.getltem(i);
itemset = (ItemSet) originalltemset.coloneltemsetQ;
itemset.addltemNumber(newItemNumber);
this.enqueueltem(itemset);

}
itemset = new ItemSet();
itemset.addltemNumber(newItemNumber);
this.enqueueltem(itemset);
return;

}
}

}

Class Interval.java
import com.ms.wfc.app.*;
import com.ms.wfc.core.*;
import com.ms.wfc.ui.*;
import com.ms.wfc.html.*;
import com.ms.wfc.io.*;
import com.ms.wfc.util.*;

public class Interval
{

public long start;
public long end;
public Interval next;
public boolean isFirst = false;
public boolean canBeDeleted = false;

}
Class GranuleCount.java
public class GranuleCount
{

private long granule;
private long count;

public GranuleCount (long gCG)
{

granule = gCG;
count = 0;

public void increaseGranuleCount ()
{

count++;

public long getGranule ()

return granule;

public long getCount ()
{

return count;
}

}

Class TimeDomainTransactionCountsJava
import com.ms.wfc.app.*;
import com.ms.wfc.core.*;
import com.ms.wfc.ui.*;
import com.ms.wfc.html,*;
import com.ms.wfc.io.*;
import com.ms.wfc.util.*;

public class TimeDomainTransactionCounts extends List
{

private GranuleCount granuleCount;
public TimeDomainTransactionCounts ()
{

this.caplnc = 1;

public void increaseGranuleCountOn (long iGCOG)
{

i f (this.getEmpty() == true)
{

granuleCount = new GranuIeCount(iGCOG);
granuleCount.increaseGranuleCount();
this.enqueueltem(granuleCount);
return;

}
int thisSize = this.getSize();
for (int i = 0; i < thisSize; i++)
{

granuleCount = (GranuleCount) this.getltem(i);
if ((granuleCount.getGranule() < iGCOG) && (i < thisSize -1))

continue;
else
{

if (granuleCount.getGranule() == iGCOG)

granuleCount.increaseGranuleCount();
break;

}
else
{

if (granuleCount.getGranule() > iGCOG)
{

granuleCount = new GranuIeCount(iGCOG);
granuleCount.increaseGranuleCount();
this.insertltem(i, granuleCount);
break;

}
else

if (granuleCount.getGranule() < iGCOG)
{

granuleCount = new GranuleCount(iGCOG);
granuleCount. increaseGranuleCount();
this .enqueueltem(granuleCount);
break;

}
}

}
}

public long getlntervalGranuleCountBetween (long gGCOG)
{

long count = 0;
if (this.getEmptyO == true)
{

return 0;
}

else
{

int thisSize = this.getSize();
for (int i — 0; i < thisSize; i++)
{

granuleCount = (GranuleCount) this.getltem(i);
if (granuleCount.getGranule() < gGCOG)

continue;
else
{

if (granuleCount.getGranule() == gGCOG)
count = granuleCount.getCountQ;

else
{

if (granuleCount.getGranule() > gGCOG)
break;

return count;
}

}

public long getIntervalGranuleCountBetween(long gIGCBS, long gIGCBE)

long count = 0;
if (this.getEmptyO == tine)
{

return 0;
}
else
{

int thisSize = this.getSize();
for (int i = 0; i < thisSize; i++)
{

granuleCount = (GranuleCount) this.getltem(i);
if (granuleCount.getGranule() < gIGCBS)

continue;
else
{ .

if (granuleCount.getGranule() > gIGCBE)
break;

else
count += granuleCount.getCount();

}
}
return count;

}

public long getFirstGranule ()
{

if (this.getSize() > 0)
{

granuleCount = (GranuleCount) this.getltem(O);
return granuleCount.getGranule();

}
else

return -1;
}

public long getLastGranule ()
{

if (this.getSize() > 0)
{

granuleCount = (GranuleCount) this.getItem(this.getSize() - 1);
return granuleCount.getGranule();

}
else

- 206 -

return -1;
}

}

i

-207 -

Class TimeSeriesPatternCounts.java
import com.ms.wfc.app.*;
import com.ms.wfc.core.*;
import com.ms.wfc.ui.*;
import com.ms.wfc.html.*;
import com.ms.wfc.io.*;
import com.ms.wfc.util.*;

public class TimeSeriesPatternCounts extends List
{

private GranuleCount granuleCount;
public TimeSeriesPatternCounts ()
{

this.caplnc = 1;
}

public void increaseGranuleCountOn (long iGCOG)
{

if (this.getEmptyO == tine)
{

granuleCount = new GranuleCount(iGCOG);
granuleCount.increaseGranuleCount();
this.enqueueltem(granuleCount);
return;

}
int thisSize = this.getSizeQ;
for (int i = 0; i < thisSize; i++)
{

granuleCount = (GranuleCount) this.getltem(i);
if ((granuleCount.getGranule() < iGCOG) && (i < thisSize -1))

continue;
else
{

if (granuleCount.getGranuleQ == iGCOG)
{

granuIeCount.increaseGranuleCount();
break;

}
else
{

if (granuleCount.getGraniile() > iGCOG)
{

granuleCount = new GranuleCount(iGCOG);
granuleCount.increaseGranuleCount();
this.insertltem(i, granuleCount);
break;

}
else

if (granuleCount.getGranule() < iGCOG)
{

granuleCount = new GranuleCount(iGCOG);
granuleCount.increaseGranuleCount();
this.enqueueltem(granuleCount);
break;

}
}

}
}

}

public long getlntervalGranuleCountBetween (long gGCOG)
{

long count = 0;
if (this.getEmptyO = true)
{

return 0;
}

-208 -

{
int thisSize = this.getSize();
for (int i = 0; i < thisSize; i++)
{

granuleCount - (GranuleCount) this.getltem(i);
if (granuleCount.getGranule() < gGCOG)

continue;
else
{

if (granuleCount.getGranule() == gGCOG)
count = granuleCount. getCount();

else
{

if (granuleCount.getGranule() > gGCOG)
break;

return count;
}

}

public long getIntervaIGranuleCountBetween(long gIGCBS, long gIGCBE)

long count = 0;
if (this.getEmptyO == true)
{

return 0;
}
else
{

int thisSize = this.getSize();
for (int i = 0; i < thisSize; i++)
{

granuleCount = (GranuleCount) this.getltem(i); f
if (granuleCount.getGranule() < gIGCBS)

continue;
else
{

if (granuleCount. getGranule() > gIGCBE)
break;

else
count += granuleCount.getCount();

}
}
return count;

}

