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Abstract

Over recent years, the possibility of reconstructing three dimensional models from images 
has led to a very active research field. This has recently culminated in systems that are 
capable of largely automated reconstruction even when nothing at all is known about the 
cameras or scene except the images themselves. To achieve this has required the combination 
of computer vision techniques and statistical methods with extensive development of the 
geometry of multiple views.

Whilst much of the theory underlying the process is very well understood, there still 
remain numerous problems associated with automated reconstruction. This thesis attempts 
to improve the state of the art systems by refining and adding to the existing techniques.

The approach involved work on many different aspects of the problem. Firstly, to re­
solve problems with point matching and accuracy, a new matching approach utilising video 
sequences was developed. This includes methods to enable successful tracking of features 
despite occlusion or degenerate motions and a method of selecting frames from video se­
quences so as to avoid degeneracy and maximise the accuracy with which geometry can be 
determined.

This new tracking scheme is also integrated with a new and more general projective 
reconstruction algorithm. This includes new robust methods for projective reconstruction 
which result in sometimes dramatic increases to speed, accuracy and flexibility of the re­
construction process. These new algorithms are extensively compared to existing projective 
reconstruction algorithms using both real and synthetic data.

Finally, all the techniques are combined with existing state of the art methods and other 
more minor new algorithms to create a completely automated reconstruction system that 
produces texture mapped models of scenes from video sequences and involves absolutely no 
user intervention or calibration at all.
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Notation

Throughout this text, capital letters will refer to matrices e.g. P, and bold letters will refer 
to column vectors e.g. x or X. Unless otherwise indicated subscripts on vectors such as an 
indicate the nth item in that vector.

section of the lines x and x'

• P n Represents Euclidean n-space.

• V n Symbolises projective n-space.

• M* Indicates the matrix of co-factors of M.

• ~  Used to indicate equivalence subject to a non-zero scale factor.

• [t]x The antisymmetric matrix defined by t such that [t]x x =  t  x x.

• de(x, y) Is defined as the euclidean distance between the two points x and y. To be 
more exact, for n dimensional points x and y given in homogenous notation as n +  1 
vectors this gives

• xj In the context of multiple views this will indicate item j in image i.

• Fij Indicates the fundamental matrix from image 1 to image 2. This is defined such

• e*j- In the case of e representing an epipole this indicates the image of the centre of 
camera j in camera i.

• Tijk For T  representing the trifocal tensor.

A Is the usual euclidean intersection operator, for example x A x '  indicates the inter-

that x jF i 2 Xx =  0, for image 1 point xi and image 2 point X2 .
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• A+ Is the pseudo inverse of the n x m  matrix, defined such that AA + = Inxn. See 
section 3.1.1 on page 44 for more details.

• ||a|| Indicates the euclidean norm of the vector a. More specificaly if a has n items 
then ||a|| =  x / I X T k F
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Chapter 1 

Introduction

Understanding the three dimensional structure in a scene from just images of that scene has 
been a long-standing area of research in both computer vision and geometry. The very first 
directly related work was the specification of the perspective relationship between images 
and the scene that they capture. This was first specified as far back as the beginning of 
the 15th century by the Italian architect Filippo Brunelleschi and then formalised in the 
same year by Leon Battista Alberti. It was immediately applied by the painters of the 
Italian renaissance. Over time, the initial description was developed into a complete branch 
of geometry - projective geometry. This geometry has been specifically designed to model 
what information a projection (for example, an image) captures.

In the 20th century, measurement from images has proved to be of great interest. Initial 
efforts focused on industrial inspection and robotics type applications where accuracy is of 
paramount importance. This very restricted application domain resulted in systems using 
expensive devices to take very accurate measurements in tightly controlled conditions and 
of tightly controlled scenes.

More recently, the rise of the personal computer has led to a huge expansion in the 
numbers of three dimensional computer graphics and multimedia applications. There has 
been a correspondingly large rise in the need to quickly, easily and cheaply produce realistic 
3D models for these applications. Subsequent research into three dimensional reconstruc­
tion has focused more on solving these problems and has led to efforts toward automated 
reconstruction using nothing more than conventional video cameras.

Initial attempts at this automated reconstruction used careful calibration to determine 
the parameters of the camera such as focal length and centre. Since this was restrictive, 
later researchers have applied the tools of projective geometry to produce reconstructions

18



1.1. 3D STRUCTURE CAPTURE: EXISTING METHODS 19

subject to an arbitrary projective transformation instead of a more conventional Euclidean 
one. A projective transformation is a much more general transformation than a Euclidean 
one, and so the calibration details of the camera such as its focal length and centre can be 
absorbed into the reconstruction.

With the emergence of self-calibration techniques that could convert these reconstruc­
tions into a more conventional Euclidean form, the techniques were in place to completely 
automate reconstruction from images. Whilst the basic techniques and theory have existed 
since the mid 1990’s, the problem is still far from being practically solved for the general 
case. Self-calibration is still unreliable except when some details about camera motion or 
scene structure are used, and the problem of automated feature tracking, although solved 
for video sequences, is always problematic. There is also room for improvement throughout 
all stages of the process, where existing techniques are giving good (but rarely ideal) results.

The work in this thesis sets out to overcome some of the remaining problems and to 
refine existing solutions. In particular, the main problems addressed and refined are feature 
tracking, projective reconstruction and rectification, with the ultimate aim of taking totally 
automated reconstruction out of the lab and making it practical.

1.1 3D Structure Capture: E xisting M eth od s

As would be expected, making measurements of a three dimensional scene can be achieved 
by other means than interpreting images. To illustrate why image based measurement is de­
sirable over these methods, a number of alternative measurement methods with overlapping 
application domains will be reviewed, along with their pros and cons.

1.1.1 Structured Light

One means of structure capture is to project certain easily detectable patterns of light onto 
an object, and based on the deformation of these patterns infer surface structure. Such 
systems can produce very high accuracy, even when the objects being measured possess 
little or no texture. It has for example been used to capture facial expressions, and small 
objects on turn tables.

The big disadvantage of structured light is a lack of flexibility. As would be expected, 
it requires tightly controlled lighting conditions and scene positioning. On top of this it is 
complicated by reflections off more than just one object in the scene, and is thus unable to
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handle reflective objects or general environments well.

1.1.2 Ultrasonic

It is also possible to take measurements by bouncing sounds (usually ultrasonic) off an object 
to be measured and, based on the time the sound takes to return, determine the distance to 
the object. Initial and well known systems of this form were used to determine the depth of 
the sea directly under a ship. Modern development has led to very accurate and relatively 
cheap ultrasonic devices that have been successfully used in applications such as medical 
imaging and robot navigation.

One advantage and disadvantage of ultrasound is that it can pass through regions that 
light cannot (e.g. water or skin). However, the speed of sound tends to mean that it can 
be fairly inaccurate. It is also complicated by unpredictable phenomena such as multiple 
reflection of sound off different objects in the scene, or reflection and deflection caused by 
passing through different substances.

1.1.3 Laser Range Finders

Laser range finders work on a very similar basis to ultrasound devices, but use light instead 
of sound. Distance is then measured by the phase of the light or by the echo time, and tends 
to produce highly accurate results. Laser range finders have been successfully applied to 
capture of objects and scenes in tightly controlled conditions as well as to other computer 
vision applications such as robot navigation.

However, laser range finders suffer from many drawbacks. In particularly the use of 
phase mean they usually have a limited depth resolution and need to be tuned to a cer­
tain depth. They are also easily disrupted by small scene movements such as might occur 
in a natural scene, they are very expensive, and they can suffer from the same reflection 
problems as structured light and ultrasonic devices. On the whole they are most useful for 
controlled conditions where high accuracy is required, e.g. applications such as measurement 
on production lines.

1.1.4 Passive Devices

All the previous examples have been of active measurement devices. Unlike active devices, 
passive devices do not send signals into the environment, but instead interpret existing
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signals being reflected or emitted from the environment (e.g. light or heat). The advantages 
are fairly self evident - the device will require only a receiver and not a transmitter thereby 
making possible greater flexibility and cheaper and simpler hardware.

Cameras are a good example of a passive device. Light reflected off the scene is im­
aged by a camera, converting the reflections and emissions of light from three dimensional 
structure into a planar representation. This conversion inevitably results in the loss of some 
information such as angles or lengths and makes subsequent interpretation of the scene far 
more difficult. The other major problem is that, because cameras use light, interpretation of 
images will be subject to suitable lighting being available and will be complicated by many 
types of lighting effect.

On the other hand, the camera-based approach has many advantages. Firstly, the free­
dom offered by a camera and the quick image formation time make it very flexible as well as 
requiring less control of the scene. Cameras are also widely available, with cameras already 
in extensive use for numerous applications. Cameras are therefore cheap, accurate, easy to 
use, readily available and widely understood.

Another advantage of camera-based measurement is that objects can be captured re­
gardless of their distance and size. Images are also ideal for taking measurements that will 
have application to visualisation problems since they record the same information as the 
eye. This also means that, unlike active devices more information can be recovered - most 
notable of which is colour. In theory, even lighting and reflective properties of the scene 
could be determined. Although techniques for lighting capture are not yet well developed, 
they are fast becoming practical [GHH01].

1.2 3D R econstru ction  From Im ages

This work sets out to further practical reconstruction for more general low cost applications 
where expensive devices and extremely high accuracy are not appropriate or necessary. As 
such, it will make use of only a hand-held video sequence to produce three dimensional 
models using entirely automated means.

This is no small task. As mentioned above the information loss resulting from the imaging 
process makes reconstruction from just images a difficult task. Subsequently, this section 
will attempt to present all the different problems that must be solved in order to produce a 
reconstruction from images, as well as a brief review of the existing solutions and literature. 
The wide ranging nature of the problem precludes a single literature review, and so more
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detailed reviews of existing literature will be given as they become relevant.

1.2.1 Feature M atching

Before any reconstruction can be attempted some method is required for detecting suitably 
’interesting’ points and tracking them between images. At the heart of this is the most 
basic element of point tracking: given a 3D feature, where does it appear in two different 
images? This can be a very difficult problem to solve. If nothing is known about the 
scene structure and camera positions it is necessary to make certain assumptions about the 
differences between images that may not always hold true.

Many of the simplified models that are used to match a point in one image to another 
will hold true only if there is little variation between the images due to camera position, 
lighting and scene movement. Fortunately, this will usually be the case for a video sequence, 
and so effective point matching is almost always possible provided the scene itself is largely 
rigid (i.e. very little movement.). For this reason, this project attempts reconstruction from 
video sequences rather than arbitrary images.

Two main methods of point tracking for image sequences have been proposed. The first 
makes use of geometric constraints to help guide a correlation based matching scheme across 
image pairs or triplets (see [ZDFL95, ZDFL94, BTZ96, FZ98b, Pol99]). The alternative 
approach (see [TS94, BGK98, TFTR98]) uses a very simple model of image motion and 
attempts to track features using this alone.

In fact, regardless of the scheme, feature matching can be very closely integrated with 
the whole reconstruction process. After a reconstruction has been produced, structure can 
be projected through the hypothetical cameras and used to guide further matching. This 
matching is significantly simplified, and can occur across larger gaps in the sequence than 
consecutive image pairs.

1.2.2 Reconstruction of Cameras and Structure

Once some tracked features are available, it becomes possible to attempt to reconstruct the 
cameras and the three dimensional structure associated with those features. This problem, 
often referred to as the structure and motion problem, has proved to be quite a formidable 
task. In essence, the problem involves minimising the error from re-projecting the hypoth­
esised three dimensional structure into images using the hypothesised cameras subject to
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some assumed noise model. This function is highly nonlinear and involves projecting un­
known structure with unknown cameras. Since such a function cannot be solved directly for 
a general camera, it can only be used to refine an existing reconstruction (e.g. using the well 
known Bundle Adjustment [TMHFOO, Sla80]).

Initial attempts at solving the structure and motion problem assumed that cameras were 
calibrated, i.e. that their internal parameters such as focal length and centre were known. 
The first solutions focused on the two view problem [LH81], but soon progressed to the 
more difficult problem of longer sequences. Some representative works can be found in 
[CWC90, SA90, Jac97]. Of note is the work of [TK92] which provides a closed form solution 
to the reconstruction problem provided the cameras can be approximated with a simpler, 
less general affine model.

For calibrated systems to work, the calibration of the camera must be very accurate, 
involving both a cumbersome and difficult calibration stage. Calibration can also be signifi­
cantly affected by temperature or mechanical shock and so must be repeated for each scene. 
To avoid these problems, later researchers started to produce reconstructions subject to an 
unknown projective transformation rather than a Euclidean transformation.

As for calibrated reconstruction, the difficulty of uncalibrated reconstruction meant that 
early work focused on very small collections of images. For such image collections, similar 
simple relationships exist for the uncalibrated projective case as were found for the cali­
brated Euclidean case [Fau92, Har92, Har97]. These so called ’multilinear forms’ are much 
more easily determined from real data and so are very useful for purposes of robust recon­
struction (either calibrated or uncalibrated) and for boot strapping larger reconstructions. 
The development of the theory and practice of multilinear forms is now fairly complete - see 
[ZDFL95, LF96b, TZ97, Har97, PF98, Har98, TZOO, TZM98] for a sample of some of the 
most relevant work.

The multilinear forms, whilst effective could only be used to produce cameras and struc­
ture for very small collections of images [HS94, BTZ96]. Extra techniques were therefore 
developed for longer sequences. So-called factorisation techniques [ST96, HBS99], which 
were originally invented for calibrated reconstruction, take a different approach by attempt­
ing to solve for all cameras and structure at the same time, but as a result only produce an 
approximation. Alternative solutions involve building a reconstruction up bit by bit, starting 
from multilinear forms and using existing reconstructed data to add new cameras and struc­
ture to the reconstructions as well as refining existing ones - see [BZM97, BTZ96, FZ98b] 
for a sample of such systems.
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One final approach of note is that of [AP95, JAP99] which, starting from the assumption 
that the scene is effectively planar, attempts to produce a full Euclidean reconstruction by 
a nonlinear minimisation. However, since the initial guess is totally arbitrary it tends to be 
very unreliable.

1.2.3 Self-Calibration

Although projective structure is easier to determine, and considerably more flexible, it is also 
harder to work with and less suited to most modelling tasks. Subsequently, much work has 
also been done in attempting to upgrade reconstructions from the projective framework into 
a Euclidean framework. This can be achieved very reliably by using known scene details such 
as vanishing points, angles or shapes (see [FLR+95, HZOO]). Recently, it has also become 
possible to attempt this using entirely automatic means (see [PKG97]), especially if the 
reconstruction is good.

Totally automatic calibration has also received much attention over the years. The first 
general approach was proposed in [MF92] and was based on the so called Kruppa Equations. 
These equations express a constraint due to the absolute conic - a special conic which remains 
fixed for the group of Euclidean transformations. Because it is fixed, it can be used to identify 
Euclidean transformations as a sub-group of projective transformations. Through a large 
amount of work, this led to fairly stable algorithms for self-calibration (for example [PKG97]), 
but these require a good reconstruction and are prone to degeneracy [Stu97, Kah99, Stu99].

Other approaches to self-calibration sometimes take advantage of restricted motions such 
as pure translations [MGDP94] or pure rotations [Har94c]. Similar success has been achieved 
with stereo rigs [ZBR95] resulting in what appear to be highly effective algorithms. However, 
unless scene details or restricted motions and cameras are used, self-calibration can still not 
be regarded as a reliably solvable problem.

1.2.4 Dense Correspondence

The solution to the reconstruction problem and self-calibration only makes use of a sparse set 
of interesting points. Interesting points are usually selected for the ease and accuracy with 
which they can be matched between images rather than to allow a model of the structure 
in the scene to be produced. Once cameras are available though, the knowledge of their 
positions can be used to greatly simplify the matching problem. It is therefore possible to
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return to the images and attempt to match enough features so that a model of the scene can 
be produced.

Some commercial systems [pbR, pbESI] exist that allow this sort of modelling, provided 
that cameras and calibration are available. These invariably use some form of user-guided 
interaction to produce shapes and objects. An alternative approach is to attempt to match 
very large numbers of points between images (dense correspondence) and then fit surfaces 
or models to the huge set of points that result.

Performing this dense correspondence is a very difficult problem since many regions of 
an image exhibit very little texture variation and so are hard to match. To deal with this, 
many approaches enforce extra constraints to make the resulting points fit neatly to certain 
natural assumptions, such as surface smoothness and uniqueness of matches.

There are many approaches to dense correspondence. Some are based on feature match­
ing, such as [PMF85, OK85, MP79], and use features to split the images into regions. Others 
are based on correlating small regions of images, such as [Fa!94, Fal97, CHRM96, RC98, 
Kos93, Sun97, BT98], and then propagate this information so that natural constraints are 
imposed.

1.2.5 M odel Creation

Once a dense model is available, the final stage is to attempt to fit planes and surfaces onto 
the model. This problem is beyond the scope of this project and has not been extensively 
approached in this work. However, it does seem fairly clear that existing techniques can 
probably be adapted to perform model building to a largely automated extent. In [Pol99] 
thin plate splines were used to determine surfaces and then existing triangulation techniques 
were used to produce a set of triangles suitable for efficient rendering using existing hardware.

Alternative automatic techniques involve plane fitting [FZ98a], or space carving [KS98], 
but tend to be suitable only for specific types of scene. However, automation remains a 
lofty goal, and the most effective solutions are doubtlessly the CAD based ones. These tend 
to use quite large amounts of user interaction to fit features and objects to the images (for 
example [Str94]). Knowledge of camera geometry can prove invaluable to this process and 
can help guide user interaction as well as refining accuracy to greatly improve the quality 
and speed of reconstruction over a conventional CAD tool. However, complex scenes can 
still prove difficult to reconstruct.
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1.3 E xisting  System s

As can be seen from the brief overview in the previous sections automated model production 
requires solving many different problems and is a very complex task. Whilst total automation 
is an ideal, for quite a long time systems have been available that allowed partially automated 
reconstruction using all or some of the techniques from previous sections.

Initial systems such as [TM91, CB88] were focused on the calibrated approach (calibration 
here refers to known or roughly approximated camera internal parameters and not necessarily 
relative motion) with sparse collections of images. Calibration is either provided by an 
accurate calibration stage prior to geometry determination as in [CB88] or is solved for by 
using rough approximations to the internal parameters with Euclidean motion equations 
[TM91] (a method which seems to be as effective as more modern work, although possibly 
less general).

These calibrated approaches that avoid the use of projective reconstruction are now 
widely commercialised - for example, the well known PhotoModeller [pbESI]. These assume 
calibrated cameras, and build models using large amounts of user-interaction, in controlling 
image acquisition, camera calibration, feature matching and modelling. They can produce 
very effective results, but the large amount of user interaction makes complex models very 
slow and difficult to produce. In effect, most commercial systems of this type offer CAD 
tools more than they do automated reconstruction.

More recent systems have greatly improved this approach whilst maintaining the flexi­
bility of using very few photographs. The system of Debevec, Taylor and Malik [DTM96a, 
DTM96b] is capable of producing reconstructions from a singe calibrated image. It does, 
however, rely on user interaction to semi-automatically fit a three dimensional model to the 
image. This was combined to good effect with image based techniques that enabled very 
realistic texture mapping and display of 3D models.

A similar but multiple view approach to modelling (but not reconstruction) was taken by 
the DIPAD project [Str94], which uses user interaction to fit a model to calibrated images. 
Multiple view information was then used to refine the accuracy, and guide the user to further 
matching in other images. However, camera positioning is determined by user interaction 
(aligning the existing model with a projected model), and so the whole process, whilst 
effective, is fairly labour intensive.

To the author’s knowledge one of the first systems to offer an uncalibrated approach, 
where calibration was determined after a projective reconstruction, was the Realise system
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[FLR+95]. This system made use of user-specified information, such as vanishing points and 
parallelism, to calibrate the cameras. Such information is not always readily available, but 
since this system was designed for reconstruction of urban scenes, such features could easily 
be obtained.

Such uncalibrated approaches are just beginning to be commercialised. Of particular 
note is the image processing factory suite of software [pbR], which combines self-calibration 
techniques with similar user guided model construction. However, to remain practical it was 
found necessary to allow the user to provide the calibration or extra information to aid in 
the calibration in order to keep the system general.

Less specifically targeted and non commercial systems have focused more on the auto­
mated approach. The first system to make use of video sequences to aid point matching 
was based on the Tomasi and Kanade factorisation approach [TK92], but was limited by the 
need for points to be matched across all images and by the use of a less general calibrated 
affine camera model.

More recent work by Beardsley, Torr and Zisserman [BTZ96] used a full perspective 
camera model for reconstruction, and added in a greatly improved matching scheme guided 
by geometry calculation. However, the system still assumed that some means of camera 
calibration was available if Euclidean structure was required, and did not attempt to build 
models. More recent work along the same lines [FZ98a] has added actual semi-automatic 
model building and self-calibration tools to this process.

A similar system [KPG98, Pol99] using the same underlying techniques attempted to 
use dense correspondence for model building in an attempt to increase automation. It was 
also the first to introduce totally automatic and fairly general self-calibration algorithms 
after the projective reconstruction process. Note however, that Euclidean (i.e. calibrated) 
reconstructions were being more reliably produced using little or effectively no calibration 
by many earlier systems such as [TM91, CB8 8 ].

1.4 C ontributions

Before giving an overview of the contents of this thesis, an overview will be given of the main 
contributions made by this work. This is especially relevant since automated reconstruction 
from image sequences is far from being a new research field, and so contributions are built 
on top of numerous existing methods.
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• A new projective reconstruction algorithm was developed. This made use of a merging 
approach to reconstruction whereby larger reconstructions are produced by merging 
smaller ones. This technique is shown to be much more flexible than existing methods. 
A number of new techniques are then invented for merging two reconstructions, as 
well as a number of robust methods. Extensive comparisons with existing projective 
reconstruction methods show a very significant improvement both in speed and ac­
curacy, especially to robust reconstruction. When accumulated over large sequences, 
these improvements can be very significant, and allow reconstruction from much less 
accurate and much longer sequences.

• Feature matching, and subsequently reconstruction, was improved by providing a 
means of selecting images from a video sequence with which to start the reconstruc­
tion. This scheme selects the best pairings so as to maximise the accuracy with which 
the geometry can be calculated. Without this selection process, reconstruction can be 
very poor, and also very slow. It also provides a means of avoiding and coping with 
degeneracy as well as a sensible means of matching with existing structure when using 
merging reconstruction. Overall, this enables the input sequences to be very large, 
much larger than could be handled before, as well as greatly increasing the scope of 
sequences the system could handle.

• A new approach to image rectification was proposed. This makes use of matched 
points between images to produce a rectification for an image pair which minimises 
image distortion. The method simplifies previous general methods as well as resolving 
some minor problems.

• A complete system capable of reconstruction from video sequences was presented that 
combined all the previously mentioned advancements. This was then used to illustrate 
the effectiveness of the proposed methods on real data.

1.5 T hesis O verview

Because the system built in this work makes use of many well established theories and 
techniques, chapters 2 to 6  describe the necessary background. In chapter 2, projective 
geometry will be briefly described. Projective geometry is important to this work, because 
it provides a natural mathematical framework with which to describe the image formation
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process. This chapter will attempt to communicate the basic structure, transformations and 
standard notation for this geometry, as well as the close relationship it has with the affine 
and Euclidean geometries.

Chapter 3 uses the tools of projective geometry to describe the image formation process 
by a projective camera. This is extended to model the image formation process of more than 
one view and some relationships arising from multiple views are discussed.

Chapter 4 gives a brief overview of existing techniques for robustly estimating the geom­
etry of multiple views using the multiple view relations discussed in chapter 3. This sets the 
scene for chapter 5 which then covers reconstruction of cameras and structure either using 
these relations or using known structure.

With the underlying theory and techniques of multiple view reconstruction laid down by 
earlier chapters, chapter 6  extensively reviews existing state of the art methods for projective 
reconstruction of longer sequences. This chapter attempts to describe all the methods as 
well as show their applicability and limitations.

Chapter 7 then describes the new projective reconstruction algorithm. First, this involves 
explaining the merging approach to reconstruction. The merging approach is then shown to 
offer much greater flexibility than existing methods, by designing a number of algorithms for 
projective reconstruction. Each of these algorithms is designed to take a different form of 
image data (e.g. image collections or video sequences), but uses the same core techniques. 
The robust merging algorithm is then described and shown to produce considerably improved 
results on both synthetic data and real data.

The problem of feature matching both across image pairs and longer sequences is dis­
cussed next, in chapter 8 . Feature matching is left until this point in the work, because it 
is so heavily integrated into the reconstruction scheme. The chapter first reviews a method 
for matching between image pairs, then introduces a method to select suitable image pairs 
for reconstruction. Finally, a method is given for matching during the merging process used 
for reconstruction.

With a complete reconstruction system described, chapter 9 describes the rectification 
process. This process makes matching between images very simple by aligning the cameras so 
that the two image geometric constraint between images is of a particularly simple form. This 
simplification is absolutely essential in order to make the dense correspondence algorithms 
used to produce models tractable.

The penultimate chapter 10 puts all the components described together to create a com­
plete system. It then gives some sample results using real video sequences and discusses
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the limitations and possible extensions of the complete system. Finally, chapter 1 1  briefly 
presents a general summary and some conclusions from the work.



Chapter 2 

Basic Projective Geometry

2.1 Introduction

Geometry will prove an invaluable tool in addressing the reconstruction problem. It provides 
a well established and well tested means of describing a scene, its projection and the process 
by which it is projected. Whilst the familiar Euclidean geometry will prove highly useful 
to this end, there also exists another more relevant geometry - namely projective geometry. 
Projective geometry was developed in the 17th century by Desargues, specifically to model 
what is left after the projection of a Euclidean space and so is already tailored to reasoning 
about images.

Knowledge of projective geometry is not absolutely essential to make use of structure 
and motion algorithms, but it is not easily possible to understand the theory underlying the 
algorithms unless at least some projective geometry is known. Indeed, the close relationship 
between Euclidean and projective geometries means that projective geometry is already in 
widespread use in computer graphics where the conventional notation is used to express 
projective concepts (e.g. projection) in a linear manner. Readers who are further interested 
in the subject of projective geometry may like to consult projective geometry texts, such as 
the classic [SK51] or the simpler [Sam8 8 ], and the directly relevant [MT96].

This chapter will start by attempting to provide a conceptual understanding of projective 
geometry, and its relation to the other natural geometries (Euclidean and affine geometries). 
A concise definition of projective geometry will then be given with the introduction of some 
general rules and notation for n dimensional projective spaces. These are then used to 
examine in detail the two and three dimensional projective spaces that are most commonly 
used in computer vision, in this case to represent an image and a world space respectively.

31
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90 °

90 °

Figure 2.1: Example projection of a cube to illustrate perspective effects. Note how the right 
angles no longer appear as right angles in the projection

Finally, the notion of a hierarchy of geometries consisting of Euclidean, affine and projective 
geometries is refined and the relationship between them discussed in detail.

2.2 The H ierarchy of G eom etries

Usually, we think in terms of the world around us as being Euclidean in nature, and as such 
model it using Euclidean geometry. However, when we actually observe the world using our 
eyes (effectively by a process of projection) we do not see the world in a Euclidean form. For 
example, consider figure 2.1 illustrating a projected cube. In this case, because it is a cube, 
we know all the corner angles are 90 degrees, but in the projection they do not all appear to 
be 90 degrees. This is an example of a perspective effect, and is caused by the loss of some 
information (in this case angles) when a Euclidean space is projected.

This loss of Euclidean concepts through projection also includes notions such as distance, 
continuity and betweenness. It is from this realisation that projective geometry arises; it is 
a geometry based purely on those properties of Euclidean geometry which remain invariant 
to projection. As would be expected, since projective geometry is based on a looser inter­
pretation of the same underlying world, there is a close relationship between Euclidean and 
projective geometries. Indeed, this is the case. However, before continuing to a more concise 
description of this relationship, it will first be necessary to consider in more detail how it is 
possible to actually define a geometry.

The famous Erlangen program of Klein (Klein’s inaugural address to the University of 
Erlangen in 1872) takes the approach of studying all geometries as a space of points and the
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group of transformations that leave the structure of that space unchanged. Theorems are 
then just invariant properties of the group of transformations. It follows that a geometry can 
be described completely either by the set of axioms (fundamental and absolute principles, e.g. 
definition of points, lines, parallelism, etc.) giving the structure of the space, or alternatively 
by the set of transformations that leave this space unchanged. Either the axioms or the 
transformations can be implicitly derived from each other.

Now that a method of understanding geometries has been given, it is possible to address 
the standard hierarchy of ’natural’ geometries in detail. These geometries are termed natural 
here, because they have been created to model the natural world:

Projective C Oriented Projective C Affine C Metric C Euclidean

Starting from Euclidean geometry and moving up the hierarchy, each geometry is based on 
the previous geometry, but with fewer axioms (derived from the same set). This means each 
successive geometry has a less rigid space and hence also more and more transformations that 
leave that space invariant. Section 2.3 below will aim to show how the most general of these 
geometries - projective geometry - can be defined and expressed. The concepts introduced 
will then be used to describe in more detail the hierarchy of geometries mentioned here.

2.3 P rojective  G eom etry

Now that an intuitive interpretation of projective geometry has been given, it is appropriate 
to provide a much more rigorous definition including the conventional notation normally used 
to represent projective spaces. Note that from this point on, no distinction will be made 
between the algebraic treatment of projective geometry expressed using the given notation, 
and the ’coordinate free’ geometric viewpoint.

For an n dimensional Euclidean space Rn, it is normal to express points using n numbers, 
each giving a coordinate position in each dimension. However, in an n dimensional real 
projective space V n, a point is described by an n + 1  vector of coordinates x =  [mi, . . . ,  xn+i]T 
where at least one of the is non-zero. The vector representation for a point in V n is often 
referred to as the homogeneous or projective coordinate representation of the point. As 
stated at the beginning of this section, in this text both a point and the coordinate vector 
representation will be indicated using the same symbol.

There is a further constraint on this coordinate vector representation that needs to be 
defined before it will exclusively represent the space of all projective points. Two coordinate
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vectors x =  (a;i,. . . ,  xn+\)T and y =  (j/i,. . . ,  yn+i)T are defined as being equivalent if there 
is some non zero scalar A such that AXi = y% V i € { l , . . . , n  +  1} resulting in the following 
important condition:

VxGP", AeR,  A7 ^ 0  =>- Ax =  x (2 .1 )

This so called scale factor constraint is of great significance, since, as will be seen throughout 
this text, the lack of a one to one relationship between points and coordinate vectors makes 
the application of linear algebra to projective geometry slightly more difficult. To aid clarity, 
throughout this text, the scale factor constraint will be indicated by using the symbol ~  and 
so equation 2 . 1  can be rewritten as x ~ x .

2.3.1 Projective Transformations

A collineation is just a linear transformation of a projective space which preserves collinearity 
(i.e. collinear points are mapped to collinear points). For an n dimensional projective space 
a collineation from V n into itself is any (n +  1) x (n + 1 ) matrix A where det(A) ^  0 (i.e. 
it is invertible). An important observation due to equation 2 . 1  above is that any matrix A 
associated with a collineation is defined subject to a nonzero scale factor A and so A = A A.

In the more general case, an arbitrary projective transformation can define a mapping 
from V m into V n and can be represented by any (m +  1 ) x {n +  1 ) matrix which need not 
be invertible. Sometimes, and if they are invertible, projective transformations are referred 
to as projectivities, collineations or homographies. Any projective transformation A  can be 
applied to a point x linearly as x'~Ax.

2.3.2 The Projective Basis

Just as in Euclidean geometry, it is possible to consider projective spaces in terms of an 
arbitrary basis. A projective basis in V n is described by a set of n +  2 points of V n such 
that n o n  +  1 of these points are linearly dependent (not on the same line). Any point in 
V n can then be described in terms of any n + 1 of these basis points. This description of 
a point omits one of the basis points, but this surplus point is still needed to constrain the 
arbitrary scale factor for all the other points in the basis.

The standard projective basis is given by e* =  (0, . . . ,  1 , . . . ,  0), \fi E {1, . . . ,  n +  1} 
where the 1  is at the ^th position in the vector and en + 2  =  ( ! , . . . , ! ) .  A projective point
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x =  xn) of V n can be described using any n -fi 1  points of the standard basis e.g.:

n+i 
x = X&i

i—1

This form of projective basis is often known as the canonical basis and will be important 
in simplifying representations in later chapters (see section 3.2.8, page 52 on canonical form 
for camera matrices). An important result associated with bases given in [Fau93] states 
that any projective basis of V n^ \ , ... , x n + 2  can be transformed via a uniquely determined 
projectivity T  to the canonical basis as e^Tx*. Similarly, and in general, any projective 
basis can be transformed into any other projective basis by a unique projectivity in the same 
manner.

2.3.3 The Projective Plane

The projective plane is simply the projective space V 2. This is the simplest projective space 
that will be of direct practical interest, because it is ideal for modelling the image plane of a 
camera (a plane in 7Z2). This is possible because TZn is embedded within V n. More details 
of this embedding will be given later.

As described in section 2.3 we can represent a point in V 2 as a coordinate vector x ~ 
(aq, x2, xs)T. Similarly, a line is represented by a 3-vector 1 ~  ( h j 2 , h )T, and consists of 
all points satisfying the equation lTx — 0. Both lines and points can be swapped in this 
equation without altering it. This results in the aptly named principle of duality - that 
to any theorem of 2 -dimensional projective geometry there is a dual theorem obtained by 
reversing the roles of lines and points.

As a consequence of this duality it is possible to think of any coordinate vector x in the 
projective plane as representing either:

• The set of lines which pass through the point that the coordinate vector x defines; that 
is all lines described by the coordinate vector 1 for which lTx =  0

• Or, alternatively, the coordinate vector 1 can be thought of as the set of points repre­
sented by the line equation it defines. This means all points x, for which lTx =  0.

It is important to note that a line passing through two points can be found as the 
cross product of the two points. Also, if a matrix A  represents a mapping of homogeneous 
coordinates then A* (the matrix of cofactors) is the corresponding mapping applicable to
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lines. In future discussions, it is worth noting that for invertible matrices the line map can 
easily be obtained as A* (AT)_1.

2.3.4 Projective 3-space

The next important projective space to be looked at is V 3. Just as in Euclidean space 7Z3, 
in V 3 there are points, lines and planes. From the definition of projective spaces, points in 
V s can be modelled as a tuple of 4 numbers - for example the point x can be represented 
by the coordinate vector (xi,%2 > %3 > %a)T ' Similarly, planes are also represented by a tuple of 
four numbers - for example the equation of the plane (u\, v,2 , u±) is:

UiX\ + U2%2 +  U3X3 + U4X4 =  0

The fact that points and planes have the same representation leads us back to the principle 
of duality. In V 2 there were identical representations for points and lines, and similarly in 
V 3 there are identical representations for points and planes. As before, this means there are 
two ways to think about a coordinate vector y in the projective space:

• The set of all planes which pass through the point that the coordinate vector y defines; 
that is to say all planes described by the coordinate vector x for which xTy = 0

• Or, alternatively the coordinate vector x can be thought of as the set of points repre­
sented by the plane x defines. This means all points y for which yTx = 0

A line in V 3 now has to be represented either as the linear combination of two points, i.e. 
AjXi +  A2 X2 or as the intersection of two planes.

2.4 T he H ierarchy o f G eom etries R ev isited

Now that projective geometry has been described, it will be possible to use the notation 
and concepts from projective geometry, to show how it sits in the hierarchy of ’natural’ 
geometries first mentioned in section 2 .2 :

Projective c  Oriented Projective C Affine C metric C Euclidean

To reiterate, starting from Euclidean geometry and moving up the hierarchy, each geome­
try is based on the previous geometry, but with less rigid structure and more transformations.
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In fact, the space of all points in each geometry is a subset of the space of all points in the 
geometry above it in the hierarchy. Similarly, all transformations in a lower geometry form 
a subset of all the transformations in a higher geometry.

The rest of this section will aim to show in more detail how these different geometries 
fit together and how they restrict transformations and structure for the particular case of 3 
dimensional space. It will also show how homogeneous (projective) notation, being the most 
general notation, can easily be used to express the transformations and structure of all these 
geometries.

2.4.1 Projective Geometry

The weakest geometry is projective geometry. It preserves only those properties of Euclidean 
structure that remain invariant to projection, and hence allows the largest group of transfor­
mations. As seen earlier in this chapter, a general transformation of V s can be represented 
using homogeneous notation by any 4 x 4  matrix:

p l l p l 2 p lS p l 4

p21 p22 p2S p24

pSl pS2 pSS

CO

p41 p42 p4S p44

defined subject to a nonzero scale factor (it need not be invertible). Consequently, there 
are 15 degrees of freedom in a projective transformation. It is important to note that 
if homogeneous notation can express a transformation in a linear manner it must be a 
projective transformation.

Since the corresponding structure is restricted by so few invariants, there are not many 
relations that remain protectively invariant. Primarily, notions of incidence, collinearity 
and tangency are projective invariant as well as the cross ratio and cross ratio derivatives. 
However, compared to the richness of Euclidean geometry, there is relatively little structure. 
Note that for the practical problems projective geometry is to be applied to in this work, 
these relations will never be exact and will always be subject to the noise present in the 
images (e.g. the intersection of two lines will never be exact).
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2.4.2 Oriented Projective Geometry

Oriented projective geometry is a relatively new concept, only recently being proposed by 
Stolfi [Sto91]. The direct usefulness of the concepts underlying oriented projective geometry 
to the structure and motion problem was first pointed out in [Har93], and refined in [Lav96, 
LF96a] (where the link to oriented projective geometry was made).

The new geometry is obtained by only a minor modification to normal projective geom­
etry. Returning to equation 2.1, it has been seen that all projective points can be expressed 
as an equivalence class of vectors x:

VxeP”, AeR,  A^O Ax = x

In other words, if x is a vector representing a point in V n then so is Ax. It may be useful to 
consider each non zero vector as defining a line through the origin. Under this consideration, 
two vectors can be considered equivalent if they define the same line.

In oriented projective geometry, the equivalence relation is changed slightly so that if x 
is a vector representing a point in oriented n space On, then so is Ax provided that A > 0, 
i.e.

Vx<G(9n, A e R, A > 0 ==> Ax — x

Considering each non zero vector as lines again, equivalence now becomes between half-lines 
defined by vectors. This allows the definition of a coherent orientation over the whole of On 
so that it becomes possible to introduce the notion of betweenness, i.e. that one point lies in 
front of or behind a plane. Transformations of oriented projective geometry have the same 
notation as for projective geometry (see equation 2 .2 ) but are now also defined subject to a 
non zero positive scale factor. Note that the extra constraint on the scale factors means that 
for every projective transformation Tp there exist two oriented projective transformations Tp 
and — Tp.

In the context of the structure and motion problem this notion of orientation will prove 
highly useful to distinguish between points in front of and behind a camera (not possible 
with normal projective geometry). This can be achieved using the constraint that all points 
known to be visible in an image must be in front of the camera. It is expressed in the 
reconstruction of the 3D points by enforcing the convention that points in front of the 
camera have a positive transformation TP and those behind have a negative transformation

m J. p .
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Figure 2.2: Illustration of infinite points: Parallel lines such as the road in this figure converge 
in an image at a point infinitely far away. Similarly, the plane on which the road lies intersects 
the set of infinite points at a line - the horizon line.

2.4.3 Affine Geometry

Affine geometry can be seen to fit between projective and Euclidean geometries. It allows for 
the inclusion of important missing concepts such as parallelism and the notion of betweenness 
i.e. that one point can be between two other points. These properties are added to projective 
geometry to create affine geometry, by the identification of so called infinite points. For 
example, imagine the image of a pair of parallel lines; the two lines converge to a point 
infinitely far away on the horizon line as shown in figure 2.2. This convergence at infinite 
distance can serve as a definition of parallelism. So, by the identification of the infinite 
points forming a line in an image (or a plane at infinity for 3D space), the geometry may be 
considered affine.

This definition allows us to consider affine space as a projective space, but with the 
points at infinity identified. Consequently, an affine transformation must be a projective 
transformation that maps infinite points to infinite points. Given that infinite points must 
remain within the plane at infinity, there is no need for the capacity to express them explicitly 
when working with affine points. Consequently, points in A 3 can be defined using only 3 
coordinates instead of the 4 used for homogeneous notation. Transformations of affine space 
then take the following form:

an au a13 

O21 <222 <223
<231 &32 <233

It has already been established that the group of affine transformations will be a subgroup 
of all projective transformations, and so, subsequently, it makes sense that affine structure 
and transformations can be represented using homogeneous notation. In order to do this, 
a special plane must be fixed in P 3 to act as the infinite plane. For simplicity in notation 
mappings, by convention infinite points are usually fixed as all points in V 3 with a final

1

*
1

Y' =

1 1 1--
---

--

X <214

Y + <224

Z

1

CO<3
1
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coordinate of 0. i.e. for a point in V 3, (X ,Y ,Z ,W )  the infinite plane is all points of the 
world with the form (X,Y,Z,  0 ). Consequently, the plane at infinity can be defined as 
noo = (0,0,0,1) in P 3.

Given this convention for the location of the plane at infinity, a one to one mapping 
can be obtained from affine coordinates to projective coordinates as A 3 —> P 3 : (X , F, Z) —> 
(X, Y, Z , 1), i.e. take the affine coordinate vector and add a 1. Similarly, if the infinite points 
are known and fixed as just defined, a mapping from projective space to affine space can be 
determined as:

This mapping is naturally only defined if IT /  0 . This is convenient since such points are 
by our convention the infinite points and do not need a representation in affine notation 
anyway.

Since this relation allows affine structure to be expressed with homogeneous notation, it 
makes sense to provide a representation for affine transformations in homogeneous notation. 
These take the form:

an & 1 2 &13 a 14

& 21 ® 2 2 &23 (224
G&31 &32 <̂33 (234

0 0 0 A

Here, A is introduced to account for the arbitrary scaling in homogeneous notation. As can 
be seen from this, an affine transformation has 1 2  degrees of freedom and it can easily be 
verified that the homogeneous form leaves the plane at infinity Eloo =  (0,0, 0, 1) invariant 
i.e. Talloo =  rioo- Note that this does not mean that the position of points in the plane at 
infinity remain unchanged - they only remain within Iloo.

2.4.4 Euclidean Geometry

Euclidean space, in this case, means Euclidean space under the group of similarity trans­
forms, i.e. we also allow uniform changes of scale as well as rigid displacements. In some 
treatments of Euclidean geometry, this is considered as extended Euclidean, similarity or 
metric geometry. For the case in hand of reconstructing 3D information from photographs, 
absolute length cannot be determined anyway without taking some actual scene measure­
ments, so any measurements taken from photographs are usually subject to an arbitrary 
scale.
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Overall Euclidean geometry represents a very significant strengthening of structure and 
a subsequent decrease in the number of invariant transformations. The only remaining 
transformations are similarity transforms, that is transformations which preserve angles, but 
not necessarily length. With this restriction comes two new important invariant properties, 
angles and relative lengths.

In order for transformations to leave this rigid structure invariant, it is necessary to 
further specialise the group of affine transformations by requiring they leave a particular 
conic invariant as well as the infinite points. In R? this conic is known as the absolute conic 
Q and is located on the plane at infinity. The notion of the absolute conic is a little more 
abstract than the notion of the plane at infinity, but it can be understood by reconsidering 
the horizon line discussed previously in the context of affine geometry. When observing the 
world it can be seen that parallel lines can converge to any point on a sphere at infinite 
distance, depending on the orientation of the lines in 3-space (defined by their angle). It 
follows that the angle two lines make at their intersection can be determined by where they 
intersect with the infinite sphere.

With the geometry defined, the notation can now be defined. As with affine geometry, 
points in R 3 can be represented by using 3 coordinates. This means there is a one to one 
bidirectional mapping between points in Rn and points in An and so the same notation is 
valid for the structure of both affine and Euclidean geometries. The big difference is that, 
in Euclidean geometry, transformations must take the further restricted form:

X ' ' ru T12 T13 ’ X Ix
Y' = A T 21 T22  ̂23 Y + ty
Z ’ **31 T 32 3̂3 Z tz

where are coefficients of an orthonormal matrix R , t{ is a translation and A represents an 
arbitrary scaling. A should be removed when dealing with a truly Euclidean transformation 
instead of a metric one. The above transformation can be seen to have 7 independent degrees 
of freedom, 3 for the rotation, 3 for the translation and an arbitrary scaling.

Note that if an n x n  matrix is orthonormal then it must be subject to  ̂constraints
as E*=i Tikrjk — fiiji with Sij as the Kronecker delta:

6ij — 1 for i — j  

= 0 for iy^j

This corresponds to the matrix relation that RTR = RRT — I ,hence R _1 — RT, and 
det R — 1.
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In the same way that affine transformations can be expressed in homogeneous notation, 
Euclidean transformations can too. In this case, a general transformation takes the form

A r n A r i 2 A r i 3 t x

A f 2 1 A r 2 2 A r 2 3 t y

A r 3 i A r  3 2 A r 3 3 t Z

0 0 0 1

where again the r# form an orthogonal matrix. Since the absolute conic is invariant to 
Euclidean geometry, and hence not a Euclidean concept, Euclidean notation does not need 
the capacity to describe it. However, since a one to one mapping between Euclidean points 
to projective points has been established (via affine geometry), it follows that we can use 
projective geometry to describe the absolute conic. The conic is given by the intersection of 
the quadric of equation X 2 + Y 2 + Z 2 + W 2 = 0 with Hoc,. This places the restriction W  = 0, 
so ft is given by:

X 2 + Y 2 Y Z 2 = 0 with W  = 0

Note that this entity requires two equations to describe it and so is somewhat cumbersome. 
It is however possible to use the dual of the absolute conic, the absolute dual quadric 17*. 
This is referring back to the principal of duality, and so whilst the absolute conic is defined 
as an equation on points, the absolute dual quadric is defined as an equation operating on 
lines (in V 2) or planes (in V 3). This allows the absolute dual quadric in V 3 to be expressed 
in homogeneous notation much more simply as (in canonical form):

"  1 0 0 0 ’

=  0 1 0 0
0 0 1 0

_ 0 0 0 0 _

Note that the plane at infinity =  (0,0, 0,1) is both the left and right null space of ft,*. 
Being a dual quadric, a transformation T is applied to it as T f tT T. Using this definition, it 
is easy to verify that Euclidean transformations leave this conic invariant.

So far, a mapping from Euclidean to affine and hence projective notation has been given. 
The equivalent mapping of projective to Euclidean structure is however more complex, since 
it requires that the infinite plane and absolute conic be identified. Given knowledge of 
these two entities they can both be transformed to their canonical forms and, subsequently, 
structure may be thought of as being Euclidean, but represented in projective space.
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geometry transformations DOF invariants

projective Tr

p l l  p l2 p l3  p l4  
p21 p22 p23 p24 
p31 p32 p33 p34 
p41 pA2 p43 p44

15 cross-ratio, 
collinearity, in­
cidence, tangency

affine Ta —

an &12 &13 &14
&21 &22 a23 tt24
&31 <̂ 32 &33 &34

0 0 0 1

12 relative distances 
along direction, 
parallelism

metric T\M

A rn Ar1 2 Ar 1 3 tX
Ar2i m 22 Ar23 ty
Ar3i Ar3 2 Ar3 3 t z

0 0 0 1

relative distances, 
angles

Euclidean

»"ii r l2 r 1 3  tx 
yT2i r 22 r 23 t,

r 31 r32 r33 tz 
0 0 0 1

absolute distances

Table 2.1: Properties of the standard hierarchy of geometries. The coefficients form 
orthonormal matrices.

2.4.5 Summary of the Hierarchy

Table 2.1 gives a brief overview of all the geometries in the hierarchy, the number of degrees 
of freedom in a transformation of that geometry, and some of the major invariants of the 
geometry.

2.5 Sum m ary

This chapter has provided an introduction to the nature of, and notation used for, the hierar­
chy of natural geometries, consisting of Euclidean, metric, affine and projective geometries. 
These geometries and their notation can now be used to provide a means of describing the 
camera and scene and so will prove an invaluable tool for the process of reconstruction.

In particular, projective geometry provides a very convenient means of expressing the 
contents of an image in terms of the information it contains about three dimensional space 
that was not lost during projection. Furthermore, the notation of projective geometry allows 
this to be expressed in a linear manner.



Chapter 3 

Camera Model and Multiple View  
Geometry

3.1 Introduction

Since the ultimate goal of this work is to produce a reconstruction from a set of images, an 
accurate description of the process of image formation will be necessary. To this end, this 
chapter first introduces an appropriate geometric model of a camera, provides an analytical 
representation and then generalises this to describe worlds defined using affine or projective 
geometry. Finally, the second part of the chapter discusses important relationships arising 
from this model, when multiple views of the same scene are available.

3.1.1 Preliminaries

In later discussion, it will be useful, when given a column vector, t =  (£x, ty, tz)T, to introduce 
the skew-symmetric matrix [t]x defined as:

[t]x =
0

t z

- t .

tz ty
o - t x
tx 0

For any non-zero vector t, the above matrix has rank 2 and is closely related to the 
cross-product of vectors. Given a vector s then sT [t]x = s x t  and [t]x s =  t x s. Although 
this convention and matrix is used throughout this text, it has been restated here because 
knowledge of the properties held by this skew symmetric matrix is key to some of the

44
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derivations in this chapter.
It is also worthwhile to bear in mind that, throughout this chapter there is only a slight 

distinction between a metric and a Euclidean world. A metric world is subject to an unknown 
and arbitrary scale factor. This is different to a truly Euclidean world where the scale factor 
is fixed (see section 2.4.4 on page 39 for more details). Note that most theoretical discussion 
is relevant to either form and in other texts the distinction is sometimes not even made, with 
metric geometry being referred to as Euclidean.

Pseudo Inverse

The pseudo inverse of non square matrices will receive a fair amount of use throughout this 
work, and so will be described in detail here. The pseudo inverse of a square diagonal matrix 
D is the diagonal matrix D+, such that:

A t = { °  l f D i i  =  0
if Da ^  0

This can be extended to an m x n  matrix A where m>n  by considering the SVD of A as 
A = UDVT. The pseudo inverse of A is then given by:

=  V D +Ut

As is generally the case when performing an SVD if n < m  then A  can be extended to a 
square matrix by adding rows of zeros. The pseudo inverse A+ of an m xn matrix A  has the 
property that A A + =  Imxm.

3.2 Cam era M odel

There are numerous ways to approach the modelling of a camera, depending on the type 
of camera being used, the accuracy required and the type of information to be considered. 
In this work, a lens-based camera will be considered leading to a model based on central 
projection, sometimes referred to as the pinhole or perspective camera model. A geometric 
illustration of this model is given in figure 3.1. Despite its simplicity, this model is sufficient 
for representing most commonly used lens based cameras.

In figure 3.1, the two screens R and F are two planes, with the plane labelled R being 
called the retinal plane or image plane and the second plane F being called the focal plane.
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M
(X.Y.Z)

' m
(u.v)

optical axis

Figure 3.1: The pinhole camera model

The image of any point X  on the retinal plane R is formed by an operation called a perspective 
projection which uses the point c called the optical centre at a distance /  (known as the focal 
length) from R, to form an image on R of world structure X  in the scene as the intersection 
of the line < c, X  > with the retinal plane R. Note that this projection process is undefined 
if the point X  is at c. Also important to future discussion is the line passing through the 
optical centre c and orthogonal to the retinal plane R, which is known as the optical axis or 
principal ray.

In order to make use of this simple geometric model, it is necessary to derive a quantitative 
interpretation of it. There are two main ways to go about this - either model the physical 
effects of the camera and create a model based on reflection and emission of light energy, or 
alternatively make a geometric model which considers reflection and emission of rays of light. 
Since the goal of this work is to reconstruct geometric and not photometric information, the 
latter approach will be taken here. Equivalent photometric models can be found in many 
books on computer graphics or computer vision and will not be discussed further here.

3.2.1 A Simple M odel

For the simplest model, the optical centre c is placed at the origin of the world coordinate 
system and the retinal plane is taken to be the plane Z = 1 (i.e. the optical axis is aligned 
with the z axis). In this case, the projection of 3D structure (X ,Y ,Z)  in the world coor­
dinate system (object space) into the image coordinate system (u , v) (image space) can be
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Figure 3.2: Effect of the intrinsic parameters on image formation.

represented as (this can be derived using similar triangles):

X Y  
u = z  v = z

However, despite the simplicity of the model this representation is still nonlinear. Since it 
would be convenient to be able to exploit the power of linear algebra, it is best to express 
this relationship in a linear manner by using the tools of projective geometry. The projection 
equation just presented transforms points from a metric object space R? to a metric image 
space R? . Since metric space R n can be embedded within projective space V n, it is possible to 
consider projection as a projective transformation and express it linearly using homogeneous 
notation:

" X  * T  
Y  *T  
Z * T 

T

where the arbitrary non zero scale factors s and T  have been introduced to convert the 
metric points into homogeneous notation. Also note that if the world point (X , Y, Z ) is on 
F  then Z = 0 and the mapping just presented is undefined.

u  *  s 1 0 0 0

V *  s = 0 1 0 0

s 0 0 1 0

(3.1)

3.2.2 Intrinsic Parameters: Camera Calibration

In practice, an actual camera will not have the ideal arrangement assumed in the simple 
model of the last section, but will distort the image in a number of ways. For a start, the 
focal length of the camera will not necessarily be 1 and so the image points will be scaled 
by a factor / .  A further scaling occurs independently on each axis ku, kv to account for the
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difference between the size of the sensors used to sample the image and some arbitrary but 
fixed unit of length.

Further distortion is also caused when the intersection of the optical axis with the retinal 
plane is not at the centre of the image. To remove this, a transformation (cx,cy) can be 
applied to take the centre to the origin. Finally, to account for non-orthogonality between 
the image axis a skew factor also needs to be introduced. All these effects are illustrated 
in figure 3.2 above, and can be modelled by a transformation applied to the ideal image 
coordinates (u,v) to get the actually observed image coordinates (u,v):

f k u (tan(a)) f k v Cx

1-----
<3

0 f k v C y V

0 0 1 1

In practice, ku and kv need not be considered individually and are often combined with 
the focal length to create f u and f v. The ratio between these two values, i.e. jr is often 
referred to as the aspect ratio. Similarly, the term representing the skew factor is simply 
considered as a single independent unknown resulting in the simpler form that will be used 
throughout this text:

u fu s u
V = 0 f v C y V (3.2)
1 0 0 1 1

The upper triangular matrix in the previous equation is often referred to as the camera 
calibration matrix and will be represented throughout the rest of this text using the nota­
tion K. Often, for convenience, if this transformation is known, it is applied to all image 
coordinates x$ to get the normalised image coordinates x* as:

3.2.3 Extrinsic Parameters: Camera Position

Up to now it has been assumed the centre of the camera is located at the centre of the world 
coordinate system and oriented so there is no rotation away from the axis. However, when 
considering more than one camera or a specific world coordinate system it is necessary to 
account for the different positions and orientations of the cameras. Since a camera can 
be placed at the centre of the world by a rigid transformation, it is possible to add a
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transformation to the camera description so that it will be transformed to the desired position 
in space:

  p
— “ C E N T R E

R

01
for some rotation R  and translation t. Note that because of the gauge freedom, by simply 
changing the convention it is possible to express the same rotation and translation as an 
inverted rotation and translation applied to the cameras. Applying the inverse form gives 
rise to a different expression for the camera:

P = PtC E N T R E
RT - R H  

1
(3.3)

In general, whichever form provides the most mathematical convenience will be used. Usu­
ally, this means the inverse based form is used because it makes the centre of projection 
t  (centre of projection is given by the null-space of P). It is both intuitively correct and 
mathematically convenient to have the centre of the camera at the camera’s position in 
space.

3.2.4 The Complete M odel and the Projection M atrix

Combining all the equations 3.1, 3.2 and 3.3 gives an expression for projection using a pinhole 
camera with a given internal calibration as well as position and orientation.:

u

V =

1

f u  & Qc

9 f v  Cy

0 0 1

1 0  0 0 

0 1 0  0 

0 0 1 0

RT - R l t  
of1 1

X
Y
Z
1

(3.4)

Rather than expanding out the matrices, this will usually be written compactly in block 
form as

x~ X  [Rt | -  Rt t] X

or even
x~ P X

where the 3 x 4  matrix P  is known as the camera projection matrix.
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3.2.5 Other Distortions

The model described so far, although workable, is idealised and is often further refined by 
taking into account the optical distortions of the camera lens. There are both geometrical 
and physical distortions, but since we are dealing exclusively with the geometric case, phys­
ical distortions will be ignored. Distortions are modelled by introducing a new non-linear 
stage after the projection - for example, to model the radial distortion (generally the most 
prominent effect):

xc — x + ax(x2 +  y2), yc = y +  ay(x2 +  y2)

for corrected image coordinates xc,yc and sampled coordinates x^y. There are many other 
forms of correction and the topic has been extensively studied - see for example [TV96, Sla80] 
- but this work will generally ignore these extra distortions. This is a practical assumption, 
often applicable to high quality camera lenses. However, it should be noted that even with 
high quality lenses it can be helpful to account for distortions, particularly radial distortion 
(see [HZ00] for a good overview of how to do this).

3.2.6 Stratification of the Camera Model: Projection Matrices for 
Affine and Projective Worlds

Although the most intuitive way of interpreting a scene is to use Euclidean geometry, it 
has long been known in computer vision and computer graphics that it is actually much 
simpler, more efficient and generally more practical to consider a metric reconstruction as 
a special case of a projective reconstruction. One advantage of this has already been seen 
in this chapter when the homogeneous notation of projective geometry was used to express 
the projection process in a linear manner. However, in that case, metric world structure was 
assumed, and it is in fact possible to achieve still further simplifications by allowing affine 
or even projective structure and cameras.

To understand why this should make the modelling process simpler, consider the defini­
tion of projective geometry. As already discussed in chapter 2 it is a very weak geometry, 
missing many basic concepts present in Euclidean geometry, such as angles, distances or 
parallelism. Consequently, the group of transformations that can be applied to a projective 
space is very general, removing the need to consider lots of special cases and special forms 
of transformation, e.g. orthogonal matrices for rotations.

A further advantage of producing affine or projective reconstructions is that the stronger
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geometries, i.e. Euclidean geometry, share all the axioms of the weaker geometries, i.e. 
affine and projective. This means that any quantitative results from a stronger geometry 
can be used in a weaker geometry without any additional work (and vice-versa for theoretical 
results). Similarly, results from a weaker geometry can be used in a stronger geometry with 
the addition of only a little information. This flexibility is further facilitated by homogeneous 
notation which provides a linear means of expressing the transformations and structure of 
any of the three geometries. All this combined allows easy movement up and down the 
hierarchy of geometries, using exactly the same representation and by the addition or removal 
of very little information. For example, to convert a projective reconstruction to an affine 
reconstruction a transformation is applied to all cameras and structure that will take the 
plane at infinity to the form (0, 0, 0,1).

As a perfect and very important example of the advantages of the use of projective 
geometry, consider the case of an unknown camera calibration matrix. The calibration matrix 
represents a non metric transformation and so, if we were working in a metric coordinate 
system it would have to be kept separate from the camera and structure. On the other hand, 
if the reconstruction is affine or projective, the camera calibration matrix is a transformation 
that leaves the properties of the geometry invariant. It can simply be absorbed into the 
projection matrix and subsequently the unknown gauge freedom of the structure space. 
Indeed, when considering projective reconstructions, it is rare to consider the calibration 
matrices separately, but when working with metric reconstructions it is generally impossible 
to do otherwise.

3.2.7 Gauge Freedom

If the camera matrices are allowed to be arbitrary, that is if the world coordinate system is 
not fixed, then it is well known [Fau92, HGC92] that the scene may not be reconstructed 
more precisely than up to an arbitrary transformation of the world space. For example, with 
a projective world, an arbitrary projectivity T  can be applied to both the structure X  and 
cameras P  as:

P ~ P T ~ l

X ~TX
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If the modified structure and cameras are then used for projection, the transformation T  
can be seen to cancel out:

x ^ P T ^ T X

meaning that we can apply any projectivity T  we desire without affecting the reconstruc­
tion. Hence, any Euclidean, metric, affine or projective reconstruction can be altered by a 
transformation of the relevant geometry without altering the projected properties.

Throughout the rest of this text, this gauge freedom will be assumed unless otherwise 
stated. This is sensible for any conceivable situation, because even if the world coordinate 
system has been fixed, it is still reasonable to alter the world coordinate system, and then 
transfer it back later.

3.2.8 Alternative Decom positions of the Camera M atrix

It should now be clear that, because the matrix based camera representation just introduced 
is expressed using homogeneous notation, it can be used to represent projection of Euclidean, 
metric, affine or projective worlds. This high degree of versatility means there are many ways 
to decompose the camera matrix, other than the simple one just given in equation 3.4 on 
page 48. A small selection of example decompositions are given here, selected because they 
will be used throughout the rest of the text. Because some of these decompositions may 
seem bizarre or useless at first, where appropriate, a brief indication of what they will be 
used for will be given.

Block Form

In general, when working with a camera matrix, particularly in the projective case a complete 
decomposition of the camera matrix is not used and it is simply treated as 11 unknowns and 
an arbitrary scale factor. Sometimes, for mathematical convenience, the camera matrix is 
considered in block form as a 3x3 matrix and a vector:

P  — [A.3x3|a]

This decomposition will often be used when attempting to consider in detail equations involv­
ing P  because it allows such equations to be broken into parts. In fact, this decomposition 
will be used for this purpose in the next sub-section.
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D ecom position in Term s of C am era C entre

Using the property that the mapping of a camera is not defined at its centre of projection 
(there are no longer two world points to define a ray with), then given the cameras centre 
as T  =  (t, 1)T it follows that F T  — 0. Writing P  in block form as P — [A\a\ and applying 
that the centre of projection is the null-space gives At  + a  =  0, and so a — — At  meaning 
we can write P  in the form:

P  = [A\ -  At]

Note that this enforces the camera centre to be finite (i.e. it is not on the plane at infinity). 
What it means if the camera is infinite will be discussed in section 3.2.9 below. The main 
advantage of this decomposition is that it makes the cameras centre explicit and hence easy 
to find. This will find almost immediate use in deriving and considering the matrix used 
to express relations between two views. It should also be noted that this decomposition 
is suitable for Euclidean, metric, affine or projective cameras, and indeed, in section 3.2.3 
above a similar centre based decomposition was introduced; it has been generalised here.

Canonical Form

Originally due to [LV94], in this parameterisation the gauge freedom of the reconstruction 
is used to simplify the form of the first camera matrix, by aligning the first camera matrix 
with the canonical projective basis. Assuming either a projective or affine reconstruction, 
or in the metric case that all image points have been normalised to remove the calibration 
matrix, then the projective basis can be aligned with the first camera matrix Pi to give a 
set of camera matrices of the form:

Pi — [-̂ 3x3 IO3 ]

Pn — |/4.n | ̂ -n]

Using this form has the benefit of removing some or all of the gauge freedom in a reconstruc­
tion depending on which geometry is used to represent the world. However, it does come 
with a practical drawback when cameras can only be determined subject to a certain degree 
of error. In that case, this parameterisation will favour the first image, because by using 
convention to align the centre of the world with the first camera, it will be located without 
any error.

In Euclidean, metric or affine cases, transforming a camera so that it is in canonical form 
has the effect of entirely removing the gauge freedom. However, in the projective case, a
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camera represents only 11 parameters yet the gauge freedom is 15 parameters. This counting 
argument means that 4 parameters will not be accounted for. These four parameters in fact 
represent a change of the plane at infinity as well as an arbitrary scaling. The extra freedom 
can be written in matrix form as (after reducing Pi to [I|0]):

1 0 0 0
0 1 0 0
0 0 1 0
al a2 a3 P

where al ,a2,a3 represent the position of the plane at infinity and p the scaling needed 
because the affine transformation is being represented in projective notation.

The metric case also presents an anomaly: because the calibration matrix K  is not a 
metric transformation, it cannot be absorbed by the gauge freedom. Consequently, K  is 
made explicit and the canonical form is written as:

P l-^ l[/3 x 3 |0 3]
Pn~ K n [i?n| -  Rnt n]

The canonical form will often be used throughout this text for many different reasons, usually 
for purposes of simplification. It can be achieved very simply in practice by multiplying all 
camera matrices with the pseudo inverse of the first camera matrix, i.e. P\P+ =  [/3 x3 1 0 s]- 
Note that this assumes a camera matrix as being a 4x4 matrix, with an extra row of the 
form (0,0,0,1) added. This is just considering the image space of a camera matrix as being 
embedded within a higher dimension (i.e. a plane in P 3), and fixing the extra freedom (i.e. 
which plane) for mathematical convenience.

Stratification

As already discussed, the 12 parameters of a projection matrix can be used to represent a 
projective, affine, metric or Euclidean camera. However, to represent an affine, metric or 
Euclidean camera using projective notation, certain restrictions have to be imposed on the 
form of the transformations that can be applied to the camera matrix and structure. One 
way of doing this is to consider each camera as being a metric camera matrix decomposed 
as in equation 3.4, page 48 that has been subjected to a general transformation (change of 
basis) of the relevant geometry.
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For a projection matrix working with a fully Euclidean world, this change of basis is 
manifest as an arbitrary rotation and translation (and a scaling for a metric world). This 
means that given a reconstruction, the camera matrices can be altered by a transforma­
tion composed of a rigid rotation R and translation t without altering the reconstruction 
(provided the structure is also updated by the inverse transformation):

E
^3x3 t

P

On the other hand if the produced reconstruction were of an affine world, then the abso­
lute conic would no longer be fixed and the rotation and translation of the above equation 
would no longer be anything more than an arbitrary 3 x 4  matrix, that in this case will be 
decomposed as [iir3 x 3  |h]. For affine transformations, the plane at infinity must remain fixed, 
enforcing zeros in the bottom row of the transformation. As such, the complete transforma­
tion will take the form (p is the scale factor):

PA = K[R\t] H3 x 3

0T3

h
1

In its weakest form, the projection matrix Pp works with a fully projective world. A change 
of basis in a projective world can be any 4 x 4  projectivity H. This means that

Hi3x3

where a =  (ai, 0 2 , a3) represents a transformation of the plane at infinity and p an arbitrary 
scaling.

Although this representation is somewhat cumbersome since it includes the gauge freedom 
explicitly, it will prove to be invaluable for approaching the problem of merging reconstruc­
tions differing by a gauge freedom. It also proves invaluable for considering self-calibration, 
however self-calibration will not be addressed in detail in this work.

3.2.9 Other Camera M odels

There are many variations on the central projection camera model, most of which represent 
more restricted forms of the full perspective model just given. In general, these forms of 
camera model can be separated into finite and infinite cameras where an infinite camera has 
a camera centre on the plane at infinity and a finite camera does not. Throughout this work,
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full perspective cameras will usually be assumed, although occasionally a finite camera will 
be required, particularly when using certain camera decompositions.

For a camera to be infinite, the centre of the camera must lie on the plane at infinity. 
For this to be true, the camera must have a centre of the form C = (c,0). Consequently, 
given P ~  [A|a], the centre is given by the null-space as Ac — 0 and so, for this equation to 
have a solution, A must be singular. This means that for a camera to be finite A must be 
non-singular (i.e. detA =  0 ).

Infinite cameras can be further classified into two types - affine and non-affine cameras. 
Affine cameras have a third row of the form (0 , 0 , 0 , 1 ) giving a camera matrix of the following 
form:

Pu Pl2 Pis Pu

p  ~ P21 P22 P23 P24

0 0 0 1

which maps infinite points to infinite points (hence the name affine camera). The big ad­
vantage of this simplification is that all scale factors A in the projection equation Ax — PX  
become 1, greatly simplifying the projection equation. However for the affine model to be 
a good approximation to the projection process, the distance of each point from the optical 
axis must be small (i.e. a small field of view) and there must be little depth variation in 
each image.

Although alternative models are not used in this work, they can be extremely useful in 
some cases, particularly for purposes of simplifying the reconstruction problem at the cost 
of generality. For further details of many different affine and non-affine infinite cameras, the 
reader is referred to other works, such as [HZ00].

3.2.10 Summary

This section has presented the full perspective camera model. This model maps a region of 
R} to R 2, which for mathematical and practical convenience has been extended in this case 
to be between P 3 and V 2. This mapping is undefined at the camera’s centre of projection.

The projection process is represented by a 3x4 matrix P  of rank 3, known as the projection 
matrix. This matrix transforms object space points (4 vectors) to image space points (3 
vectors) by the equation x~PX . The projection matrix is only defined subject to a non­
zero scale factor, and so it has only 11 independent entries. These entries allow for the 
modelling of the camera’s relative position and orientation in object space, and, in the



3.3. TWO VIEW  GEOMETRY: THE EPIPOLAR GEOMETRY  57
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Figure 3.3: Geometry of two views - the epipolar geometry

affine or projective case, the intrinsic effects of the camera. In general, any set of cameras 
is considered to be subject to a gauge freedom. If an affine or projective world is being 
considered, then internal camera parameters as described in section 3.2.2 can be included in 
the gauge freedom of the reconstruction and not determined explicitly.

3.3 Two V iew  G eom etry: The Epipolar G eom etry

Now that the model for a single image of a scene has been addressed, it is possible to move 
on and consider the case when there are two views of the same scene. The addition of an 
extra view creates new relationships between image points which are extremely important to 
most of the processes involved in multiple view image analysis. The geometry of two views 
is often referred to as the epipolar geometry.

Before discussing the geometry of two views, it is worth taking note of a new convention in 
notation. When working with two view geometry, priming will be used to indicate quantities 
in the second image. For example, camera 1 would be denoted P  and camera 2 P'. When 
working with more than two views, priming will be dropped in favour of explicit numbering, 
e.g. Pn. When there is a need to express both a point number j  and an image number i a 
point will be written mj.

Figure 3.3 gives a pictorial representation of the central projection of a point M  onto two 
image regions II and 12 by two cameras with centres of projection C and C'. Given only 12, 
all that can be determined about M  from its image x' is that M  must lie on the infinite line 
defined by O' and x' (the back projection of x'). As a direct consequence of this, given II
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as well, it is known that the matching projection of M  (i.e. x) must lie on the projection of 
the line < O', M > in II.

The projection of < O', M  > in image 1  is also known as an epipolar line and it can be 
seen that all points m!k in 1 2  will generate a pencil of epipolar lines in image 1  all containing 
the point e. The point e is known as the epipole and is the image of the point O' (the 2 nd 
cameras centre), the only point common to all back projected lines in image 2  (it must be 
common to all points because it is the centre of projection). It is natural to consider the 
plane defined by the centre of both cameras and a scene point. Any point on this plane, 
often known as the epipolar plane, will share the same pair of epipolar lines in both images 
with any other point on the plane. As such, the epipolar plane illustrates the ambiguity 
present in the geometric information of two images when only one projection of a point is 
known.

This mapping of points in one image to lines in the other image is known as the epipolar 
constraint and can be represented algebraically by a 3x3 rank 2  matrix F  known as the 
fundamental matrix (due to [Fau92, Har92]). If calibrated image points are used, then the 
equivalent matrix is known as the essential matrix (due to Longuet-Higgins [LH81]). If 
Xj i— > xj are a set of matching points lying on lines 1* and 1 '* respectively, then:

F*i ~  1' (3.5)

F t x' ~  1 i (3.6)

If it is then imposed that the corresponding point must lie on the transferred line, it is possible 
to write that x'r F TXi — 0. This relation shows that it is possible to express the relationship 
between a match across two images in a linear manner. An equivalent linear expression can
also be found for three or four images [Har98, HZ00, Har97], and such constraints are often
referred to as the multilinear constraints. These multilinear constraints will prove to be very 
useful for the practical application of multiple view image analysis.

3.3.1 The Essential M atrix

Since it is most intuitive to consider the cameras in terms of rotations and translations, a 
derivation will be given for the essential matrix E  first. The essential matrix assumes a 
normalised coordinate system as discussed in section 3.2.2. In this coordinate system, the
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projection of the 3D structure X =  (x, 1)T into the two images as X i,x2 can be written as:

A].x =  P X  = [Rt \ -  Rt t] X (3.7)

A2x' - P 'X = [ / 3x3|0]X (3.8)

when the coordinate system is aligned with the second camera P '. Equation 3.8 reduces to 
X =  A2x', which substituted into equation 3.7 gives

A]X -  RTA2 x' -  R t t

Multiplying by R  and combining the two scale factors into one (A) gives:

A Px — x' — t

Performing a cross product with t to eliminate —t on the right:

At x (Px) = t  x x 1 (3.9)

It should be noted here that t is in fact equivalent to the epipole in image 2. This is because 
from the parameterisation of P  the camera centre is (t, 1), which projects into image 2 as 
[̂ 3 x3 10] [t, 1] = t hence t  is the epipole in image 2. Using this, the above equation can be 
written as:

[t] x R x  ~  tx jd ^

This can be seen to be equivalent to equation 3.5. The equivalent of equation 3.6 can be 
found by performing the same derivation but swapping PI and P 2 . It can be seen that E 
depends on only 5 parameters: 3 for a rotation and 3 for a translation less 1 because the 
scale is arbitrary. An important point of note is that the structure has been eliminated, 
leaving a minimal representation, and meaning the gauge freedom in object space no longer 
needs to be considered. Equivalent derivations can be found throughout the literature on 
epipolar geometry (for example [LH81, LF96b]).

3.3.2 The Fundamental M atrix

The essential matrix E  is associated with a normalised image coordinate system where the 
internal parameters of the imaging system such as focal length and camera centre have 
already been accounted for and their effects removed from the images. In practice, the 
transformation normalising the image coordinate system can simply be added into E  to give
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the fundamental matrix F. Given two cameras with calibration matrices K\ and X 25 the 
relationship between E  and F  can be expressed as:

F ~ K ^ lE K i

Since the essential matrix is a fundamental matrix, with an identity mapping for the calibra­
tion matrices, it follows that the essential matrix can easily replace the fundamental matrix 
in any of the following discussions.

In keeping with the notion that the cameras can work with Euclidean, metric, affine or 
projective spaces, the fundamental matrix will now also be derived using projective cameras 
(following [Har95c]). Note that this proof is much more general, and applicable to a world 
described using any of the natural geometries. More precisely, it is going to be shown 
that, given two projective cameras represented by the matrices P — (A| — At) and P' — 
(.A'| — A't'), the corresponding fundamental matrix is given by:

-“1

(3.10)

This can be proved by considering that the epipolar line 1' will be the projection of the 
line < 0 ,m  > in image 2  (as in figure 3.3 above). The image of this line can be determined 
by projecting two points on < 0 ,m  >.

The first point we can use is the camera centre which, because of the parameterisation 
of the camera, is c =  (tT, 1)T. Projecting this through camera 2, we get the epipole:

e' =  (A'| -  A't1) = A’t  -  A’t' (3.11)

The point at infinity of the line < O, M  > can also be projected:

(A'| ~ A’t ’)
A_1x

0
A 'A ^x

Taking the cross product of these two points gives the projected line:

V = (A't -  A't') x (A'A_1 x) -  [A' (t -  t ')]x (A'A-1) (3.12)

It can easily be seen that the resultant matrix F  will be of rank 2  because it contains a 
skew symmetric matrix guaranteed by its form to be of rank 2 .
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Again, the equivalent fundamental matrix for transfer from image 2  to image 1  can be 
found by performing the previous derivation, but swapping P  and P '. To the best of the 
author’s knowledge, credit for this elegant derivation should go to Faugeras and can be found 
in [Har95c]. Naturally, there are many alternative ways to derive the fundamental matrix - 
see for example [LF96b, Fau92, Har92, ZX97] for a small selection.

3.3.3 Summary

When two images of the same scene are available, it becomes possible to define a 3 x 3 matrix 
F  known as the fundamental matrix - that transfers points in one image to lines (epipolar 
lines) in the other. This process is linear in terms of F  and does not involve any world 
structure. The fundamental matrix has the following properties:

• The fundamental matrix is subject to the constraint that it has rank 2 and when 
defined in matrix terms is subject to an arbitrary scale factor. This means that, 
despite 9 matrix entries, it has only 7 independent parameters.

• F can be used to transfer points in both images x,x' to lines in the other image 1,1' as:

F x ~ l '

F Tx' ~  1

• An epipole is defined as the image of one camera in another. In the two image case, 
there are two epipoles (one in each image) which can be recovered from the left and 
right null-spaces of F. So:

Fe =  0 

FTe' = 0

•  F can be factored as a product of the epipole and a projectivity M  to give:

F  =  [e'L M  =  M* [e]x

See equation 3.12. The projectivity M  can be used to transfer epipolar lines 1, 1' 
between images as 1 = I'M. This particular factoring of F  also has the advantage of 
enforcing that the rank of F  is 2  since the skew symmetric matrix must also be of rank 
2 .
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Figure 3.4: The geometry of three views

• The analogous matrix for working with a normalised image coordinate system is the 
essential matrix E. This depends on 5 parameters and can be decomposed in a similar 
manner to the fundamental matrix as:

E ^ [ t ] x R

for some rotation R and translation t.

3.4 Three V iew  G eom etry: the Trifocal Tensor

The addition of a third view gives rise to a much more complete geometry, as illustrated in 
figure 3.4. Across three views, there are three cameras P(,i = 1,2,3 and three fundamental 
matrices F 1 2 , F 1 3 , F2 3 . Of interest is the trifocal plane, defined by the three camera centres 
C\ , C25 C3 , which is simultaneously an epipolar plane for each pair of cameras. With three 
images, there are now two epipoles in each image, one epipole for the image of each of the 
other camera centres. Since the trifocal plane contains all the camera centres, it follows that, 
from their definition, all epipoles must lie on the lines of intersection of the trifocal plane 
with the images d1? d2: d3.

The importance of the addition of a third view is very significant from the point of both 
robustness and accuracy. Whereas in the two view case, a point in one image could be 
constrained to lie on a line in the other image, with three views a point in two views is
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constrained to an exact point in the third view. It is fairly clear how this transfer can be 
affected. When using projection matrices, it is possible to reconstruct a point using two 
views and then project it into the third. When using fundamental matrices, a point can 
be constrained to lie on a line in the third image by both the other images it appears in. 
These lines will intersect at a single point provided they are not coincident (the possibility 
of coincidence is a drawback of using fundamental matrices for transfer in the triplet case).

3.4.1 Euclidean Cameras

The most intuitive way to interpret the three view geometry is to consider it in Euclidean or 
metric terms. Assuming a normalised image coordinate system, the three camera matrices 
can be written in the form Pn = [i?n|t„], each consisting of a world rotation and translation 
resulting in a system involving 18 parameters. However, since the world coordinate system 
is subject to a gauge freedom of 7 parameters (a rotation, translation and scaling) it follows 
that there are only 1 1  parameters fully describing the triplet.

This has implications on the form of the three underlying essential matrices. Since 
between them they represent 15 parameters, they must be subject to further constraints. 
These constraints are easy to understand in the Euclidean sense, since the definition of an 
essential matrix is E  ~  [t]x R  for some rotation R and translation t. It can be seen that it is 
possible to remove one essential matrix entirely since it can be determined as the composition 
of the transformations involved in the other two. However, to do that it is necessary that 
all the essential matrices have the same relative scaling. Making the relative scale factors 
explicit gives a definition for the three essential matrices of:

E u ~  A12 [ti2]x Rl2 

E23 ~  A2 3 [̂ 2 3 ] x R 23 

E u  — A l3  [ t l 3 ] x RlS

The arbitrary scaling of the world coordinate system is then selected so that A12 =  1. 
It follows that £ 1 2  is described by 5 parameters, and £ 2 3 , £ 1 3  are both described by 5 
parameters plus 1 extra to give them the same relative scale. Now including the relative 
scales, it is possible to define one essential matrix in terms of the other two, e.g. for Ei$\

E 13 =  [t12 + A23t 23]x R12M3R23 

leaving only 1 1  parameters as required.
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3.4.2 Projective Cameras

In this case, three camera matrices represent 33 unknowns, and the gauge freedom in the 
world coordinate system can eliminate 15 unknowns, leaving 18 parameters to fully describe 
the geometry. If this is related to the fundamental matrices, it can be seen that three 
fundamental matrices give 21 unknowns leaving 3 surplus parameters to be accounted for.

One way to account for these parameters is to return to the discussion of the trifocal plane 
defined by all 3 camera centres. It can be seen that the fact all epipoles are the intersection 
of the trifocal plane with the images implies certain extra constraints. In particular, if the
fundamental matrix is used to transfer an epipole to an epipolar line in another image, then
that epipolar line should be the line passing through both epipoles in that image. Using the 
notation from figure 3.4 above, this results in 12 constraints - 4 for each image and 2 each 
for the transfer of each epipole to the other two images. Of these constraints only three are 
independent - for example, the following three:

T 12^13 — d2 — e2i A e23 

A3ie32 = di = ei2 A ei3 
-F23e2i — d3 = e32 A e3i

Considering these three constraints and the fundamental matrices, the complete system is 
described by 18 parameters. A similar and more in depth discussion of the concepts in this 
section can be found in [Fau92].

3.4.3 The Trifocal Tensor

So far, the geometry of three views has been considered in terms of the epipolar geometry and 
projection matrices. Both of these representations have drawbacks. When using projection 
matrices, it is necessary to consider world structure as well as cameras, complicating the 
whole problem. On the other hand the representation in terms of the epipolar geometry 
cannot be used to transfer any structure on the epipolar plane. In this case, the epipolar lines 
for all three images will be coincident (see figure 3.4 above) so they cannot be intersected. In 
practice, this also means any points that are near the trifocal plane will transfer inaccurately.

As work progressed on the geometry of triplets, linear relations were found that governed 
the positioning of points in 3 images. These relations are often expressed with a 3 x 3 x 3 
homogeneous tensor, called the trifocal tensor. With hindsight, the trifocal tensor was first
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discovered in work concerning the reconstruction of lines using calibrated cameras [SA90, 
WA92], but was not thought of as a tensor until [LV93].

Independently, work on the equivalent system of three images for uncalibrated cameras 
[Sha9 5 ] introduced a set of 27 coefficients for a set of four independent linear conditions 
relating the coordinates of corresponding points in three views. This was clarified in [Har94a], 
where the constraints were derived by considering the triplet case using normalised camera 
matrices. These coefficients were later found to be equivalent to a 3x3x3 homogeneous 
tensor that will be symbolised T(k here. The tensor consists of 27 parameters, but only 
18 are independent due to additional nonlinear constraints (see [PF98] for a more in depth 
discussion). The relationship between points matched in the three images (x', x", x'") where 
x =  (m1, m2 ,m 3)T can be expressed in tensor notation as:

mk {rn'im"mT,l! -  -  m'im"lTim + m'i m"lT p \  =  0 iilm

Here, the standard convention of sumation over indices, repeated in both upper and lower 
positions, is used. This equation cancels out on the left for i = j  or I = m, and swapping i 
and j  or I and m simply changes the sign of the equation.

A similar constraint exists for lines, and a triplet of lines 1,1', 1" is subject to:

1 ~  Y Y 'T jk h  —  i-jh ',1 i

It has been shown [Har94a, Har94c, Har97] that the tensor is also closely related to a triplet 
of projection matrices in canonical form, i.e. Pi cs [I|0 ] , P2 ~  [A|a], P3 ~  [P|b] as:

T?k~A{bh -  a.j B?

Although the trifocal tensor will be mentioned throughout this work, it will not receive a 
great deal of theoretical attention and so will not be discussed further here. It will later 
be shown that for practical estimation of the geometry of image triplets, the cameras and 
structure approach is good as if not better than, the trifocal tensor. However, this does not 
depreciate the value of the trifocal tensor as a tool for understanding the geometry of image 
triplets. The interested reader is referred to the body of work referenced above, particularly 
[Har97, PF98, HZOO] for a full description.

3.5 Four V iew  G eom etry: The Q uadrifocal Tensor

The last multiple view relations of any importance covers four images and is expressed by 
the quadrifocal tensor. This tensor provides 5 independent constraints per point and marks
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the maximum number of images for which linear constraints can be determined. In [Har98], 
a method for computing this tensor was given, but since the quadrifocal tensor has no 
direct relevance to the remainder of this work it will not receive further attention here. The 
interested reader is referred to [SWOO] for more details.

3.6 M ultip le V iew  G eom etry and Inter Im age H om o- 

graphies

The homographies to be discussed in this section are a special form of planar projectivites 
from V 2 —>V2 which describe the transformation from one plane to another. Of particular 
interest are inter image homographies that transfer the images of points on a particular 
world plane from one image to another. Such transformations are useful in their own right, 
particularly for tasks such as point matching, but a detailed analysis of inter image homo­
graphies in relation to cameras and multiple view geometry provides other extremely useful 
results.

In particular, this analysis will allow projective and affine camera matrices to easily 
be related to the fundamental matrix. Whilst this discussion can also be generalised to 
cover fully Euclidean cameras, it is not necessary to do so because in the Euclidean case 
both the camera matrix and essential matrix can be decomposed in terms of rotations and 
translations. Consequently, different methods should be applied (see [HZOO]).

The derivations in the following sections are spread widely throughout the literature, but 
in this case are reworked versions of those found in [HZOO, Pol99, LV94]. In particular, most 
of the groundwork for the following sections was laid down by Luong and Vieville [LV94].

3.6.1 Inter Image Homographies

To illustrate inter image homographies, it is best to start by considering the projection of 
points M n belonging to a plane II in V 3 into an image i (also a plane in V 3) to give points 
mni- This can be considered to be equivalent to transferring points between planes in V 3. 
Considering the camera projection matrix P{ in block form as Pi = [Hj|a^], the projection 
process can be written as:

m n i—P M n — [^1^] M n
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However, this does not express the fact that M n must belong to the plane II. This can 
be enforced by using the standard equation for a plane, which states that if a point M n — 
(xj", l) belongs to a plane I I~  (7rr , l) then IITM n = 7TTm n + 1  =  0 . Substituting —7rTm n 
for the 1 in M n means the point M n must be part of the plane II:

M n

which makes it possible to rewrite the projection equation as:

m n
M n —

m n 73x3
—7rTm n

rn m n
1 — 7T

mm ~  [Ai\ai hxs
- 7TT

mn -  [Ai -  ai7TT] m n (3.13)

It follows that the homography transferring points on a world plane onto the image plane is 
given by Ifni—-M ~ SLi'KT. Note that, in the specific case of n  being the plane at infinity II — 
[0 , 0 , 0,1], the homography has the simpler form Hm~Ai. Also note that this homography 
transfers points in the coordinate system of the relevant plane (i.e. 3  vectors) and not in the 
world coordinate system (4 vectors).

Given the above definition, it is simple to obtain the homography that transfers pro­
jections of points in the world (P3) between images. For transfer from image i to j  this 
homography for a particular plane II can be determined as Hjj =  HnjH^h  i.e. transfer the 
point from image i to the plane n  in the world and then from this plane into image j.  It 
is worth noting that this is independent of a change of basis in V 3 since if T  is a change in 
basis then Hjj becomes H ujTT^ 1 : effectively cancelling T out.

3.6.2 Relation to Camera Projection M atrices

When considering projection from an affine or projective world, the first camera may be 
aligned with the standard basis to give Pi = [7 3 x3 IO3 ]. In this case, any homography for 
transferring points from a plane n  onto the first image plane will have the form Hm = I 3 X3 , 
and thus =  Pni- Subsequently, the projection matrix for image i can be factored as a 
homography due to some reference plane R E F  and the projection of the centre of camera 1  

in camera z, e^:
Pi =  [ f f ^ l e u ]  (3.14)

eii is actually the epipole of the fundamental matrix between images 1 and z, i.e. Fu. This 
is because the epipole is the image of camera z’s centre, and, given the special form of Pi, the
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camera centre will reconstruct as (e^, 1). The new notation H FEF indicates a homography 
transferring points on plane R EF  from image 1 to image i. Note that, for the affine case, 
the plane R E F  will be the plane at infinity. Overall, this is really just another way of 
interpreting the camera matrix.

An important relationship between inter image homographies and projection matrices 
can be seen by relating the projection matrix in equation 3.14 above and an arbitrary plane 
n  ~  [7rT, l] defined as in equation 3.13:

o - n  t t R e f  t  t in —tin  -  eliK

This relationship shows how the homography used in the camera matrix in equation 3.14 can 
be made to correspond to any reference plane 7r. The implications of this for a projective 
reconstruction are that these three parameters are totally arbitrary. However, for an affine 
reconstruction, the arbitrary reference plane R E F  in the projective reconstruction must 
correspond to the plane at infinity.

3.6.3 Relation to Fundamental Matrix

There also exists a very useful relationship between homographies and fundamental matrices. 
Given the image of a point on a plane n  in image i, xj1, and some inter image homography 
transferring such points to an image j  H ^ t it follows that that the image of the same point 
in image j  will be given by Plugging this into the epipolar constraint gives:

XjFij-Xi = (HljX.i)T FijXi — 0 (3.15)

Since the fundamental matrix maps points to epipolar lines as F ^ x ^ x ^ x e ^ , equation 3.15 
is equivalent to x j  [e^]x HjjXi — 0. Identifying this with the original epipolar constraint 
xjFijX.i = 0, and realising that equation 3.15 is valid for any point in image i x*, F  can be 
defined as:

Consider two images i and j , and a plane n  formed by back-projecting a line in image j, 
1j. If a point on the plane n  is projected into image i as x$, then the corresponding point 
in image j  must lie on the corresponding epipolar line, FyX*. Since the corresponding point 
x^j must also lie on the line lj, it is possible to identify the exact point as 1jxFijXi, provided 
that 1j is not coincident with the epipolar line. This means that the homography Hjj is 
equivalent to l;x  Fij (i.e. a plane can be used to constrain the fundamental matrix to an
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exact equivalence). The problem of coincidence can easily be avoided when 1j is since 
the line cannot pass through the epipole (i.e. ^  0 ). As a consequence of all this:

[edx Ptf

corresponds to the homography of a plane. Identifying this with the previous equations 3.14 
and 3.13, it follows that it is possible to write the projection matrices for two views as:

Pi =  [JaxalO?]

P t =  [[ei2]x * 1 2  -  ei27rT|ei2]

Note that this is a very important result that allows a projective camera setup to be deter­
mined directly from the fundamental matrix. Note that it is also subject to four degrees of 
freedom - 3 for the arbitrary plane 7r and one extra for the relative scale between P 12 and 
ei2. Because of these arbitrary values, it is not possible to use this to directly create any 
more than two cameras in a projective frame, since these arbitrary values must be consistent 
(i.e. refer to the same plane) for a set of cameras to be in the same coordinate frame.

3.6.4 Summary

This section has provided a small number of results concerning the relationships between 
camera matrices, the fundamental matrix and inter image homographies. In summary, the 
main results are:

1. It has been shown in section 3.6.1 that, given a plane II in V 3 and two cameras Pi 
and P2, there is a homography written H^2 which can be used to transfer points on 
the plane II from one image Xi to the other x 2 as:

x2~ P g x i

2. The projection matrix for an image p  can be factored as a homography due to some 
reference plane R E F  and the projection of the centre of camera 1 in camera i, the 
epipole eu provided that Pi is in canonical form:

Pi  — [ ^ 3 x 3 10]

This result was derived in section 3.6.2.
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3. Given a fundamental matrix between two images F1 2 , with epipoles ei2 and e2 i, the 
corresponding projection matrices Pi and P2 for both images can be written as:

Pi =  [ / 3 x 3 1 0 3 ]

P2 = [[ei2]x ^ 1 2  — ei27rr |e12]

for some 3 vector ir giving the position of the plane at infinity. In the projective case, 
we are free to set the plane at infinity to anything we desire, so 7r is arbitrary. This 
important result was derived in section 3.6.3 above.

3.7 O rientation

In this section, a very brief discussion of oriented projective representations for images and 
multiple view relations will be given. The notion of oriented projective geometry was intro­
duced in section 2.4.2, page 36 and is the refinement of a projective space by the introduction 
of the notion that some points are in front of a plane and others are behind. This is enforced 
in homogeneous notation by changing the scale factor constraint, so that all homogeneous 
quantities are subject to a non zero positive scale factor rather than a non zero scale factor.

In the context of modelling cameras and structure, it proves useful because it can be used 
to improve a standard projective reconstruction by distinguishing between points in front of 
and behind a camera. This can be achieved using the constraint that all points known to 
be visible in an image must be in front of the camera and expressed in the reconstruction 
of the 3D points by enforcing the convention that points in front of the camera project to 
a positive scale factor and those behind to a negative (and hence invalid) scale factor. For 
more information relating to the application of oriented projective geometry to multiple view 
geometry, see [Har93, Lav96, LF96a].

3.7.1 Oriented Two View Geometry

The notion of oriented projective geometry can also be applied to the epipolar geometry. In 
this case, a point in one image matches to a half epipolar line in the other image instead of a 
full epipolar line as in the fully projective case. This is illustrated in figure 3.5 below, where 
two world points, X and Y, on the same epipolar plane II are projected through the camera 
centres C' and C to form matching image points x-f-̂ -x' and yir+y'. Since by definition the 
camera centres and epipoles lie on the same line (the baseline), matches are restricted to
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X .

/

/

Figure 3.5: Illustration of epipolar geometry with epipoles in the images. Matching for the 
point M can be seen to be restricted to a half epipolar line. The point N illustrates that if 
the point matches to the other half of the epipolar line in 71 it must be behind 72.

being between points on the same side of the base line. If the correspondences are not on the 
same side of the baseline, the world point will be behind one of the cameras, as illustrated 
by the point Y.

To orient the epipolar geometry, at least one match is needed. Half lines are represented 
by restricting all epipolar lines to have a positive scale factor. For example, the epipolar 
line 1 = (a, —7, c) represents only half a line, with the other half represented by the line 
(—a, 7, —c). The orientation is then enforced by using the match x x' and finding the 
corresponding epipolar lines 1 and 1'. Both of these epipolar lines should transfer to exactly 
the same half epipolar line, and if they do not, the sign of the homography used to transfer 
them is changed - e.g., if 1' = (—a, b, — c)  and the homography 77 transfers 1 to (a, — 6, c)  

then 77 would be multiplied by -1. It is worth noting that, in order to avoid problems at the 
boundaries of quadrants, the match pair should first be Hartley-Sturm corrected (see section
5.4.3 on page 1 0 2 ). Alternatively, more than one match can be used. Ideally this method can 
be used with all the matches and used to reject any matches that are not possible because 
the corresponding point is behind one camera (i.e. all the points in the minority).
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3.7.2 Oriented Cameras and Structure

A projective reconstruction, consisting of cameras Pi and structure Xj, can be upgraded 
to an oriented projective reconstruction by insisting that the scale factors of all structure 
projected to the images xj has a positive scale factor, i.e.

Axj =  PiX-j where A > 0

This can be achieved by selecting the signs of the structure and cameras (i.e. multiplying 
by —1), so this is always the case. An exact method for achieving this with cameras will be 
given in section 5.5 on page 105.

3.8 Sum m ary

This chapter has provided a brief introduction to the concepts and theory of single and 
multiple view geometry. A camera notation was introduced using the tools of projective 
geometry, and it was shown how this notation was capable of representing cameras across 
the hierarchy of geometries. This camera notation was then used to derive two and three 
view constraints that were linear in terms of points matched between all the images and 
some results involving these were discussed. Finally, some very important results concerning 
homographies and camera matrices were discussed, leading to a very useful method for 
transferring representation between fundamental matrices and projection matrices without 
the need to determine any additional information.

3.8.1 Camera M atrices and Structure vs M ultilinear forms

This chapter has given two approaches to expressing and interpreting the geometry of multi­
ple images. Both methods have advantages and disadvantages which make them applicable 
to different problems. A brief summary of some of these advantages and disadvantages is 
given in the next two sub-sections.

Because of their different characteristics, both representations are useful in producing a 
practical system. The multilinear forms are very useful for obtaining an initial approximation 
of camera positions since they express constraints on camera positions without involving 
world structure. The camera and structure approach can then be used to determine any 
structure, and also to extend the limited number of images represented by multilinear forms 
to any desired extent.
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Camera M atrices and Structure

Advantages:

• The ability to produce structure using this approach is naturally a benefit, since many 
applications require some form of structure

• Since the camera matrices are a model of the physical process of projection, it is very 
easy to use them to produce physically meaningful measurements. This is particularly 
important when some form of noise is expected to disturb observed points and it is 
necessary to model this noise.

• There is no limit to the number of images that can be modelled using camera matrices.

Disadvantages:

• Since a reconstruction is subject to a gauge freedom, there are redundant parameters 
that are fixed arbitrarily. This makes it hard to relate one reconstruction to another, 
and increases the effort required to produce a reconstruction in the first place.

• The projection equation x ~ P X  is nonlinear in unknowns, if neither structure nor 
cameras are known. Subsequently, given only projections of structure, this makes 
determining either cameras or structure using the projection process very difficult.

M ultilinear Forms

Advantages:

• As their name suggest, the multilinear forms provide a linear relationship between 
the projection of points in different images. These linear relationships do not have to 
include structure and so make the multilinear forms much simpler to estimate from 
real data.

• Multilinear forms do not make use of world structure and so do not include an arbitrary 
gauge freedom for the world coordinate system. This means they provide a minimal 
means of representing the geometry of the relevant number of images.

Disadvantages:

• The multilinear forms are limited to modelling collections of 2,3 or 4 images only. 
Beyond that, the forms cease to be linear and so are not particularly useful.
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It is impossible to produce any easily interpreted information on the 3D structure using 
just the multilinear forms. The representations that can be produced are only implicit 
and not as easily worked with.

The linear relationship between points in different images has no real physical meaning, 
and so needs to be re-interpreted in a nonlinear manner for many applications.



Chapter 4

Estimating Multiple View Geometry

4.1 Introduction

The multiple view constraints described in chapter 3 are key to much of multiple view image 
analysis. Because they avoid the need for structure, they have a linear form which provides 
a very good means of acquiring an accurate description of the geometry of pairs or triplets of 
views. Consequently, they can prove very useful in the analysis of a pair or triplet of images, 
or as a stepping stone to build descriptions of larger sequences.

This chapter focuses on a review of methods for determining the geometry of a pair or 
triplet of images using the multilinear constraints. The difficulty in this process is that any 
real data will not conform exactly to the idealised model presented so far. This difference will 
be manifest as errors on the localisation of points in images and will need to be accounted 
for in a principled manner if good results are to be produced. Consequently, a number of 
algorithms are presented based on the assumption of an error that conforms to a zero mean 
Gaussian distribution.

4.2 Prelim inaries

Before continuing to the actual problem of determining geometry, it is worth stating a few 
important assumptions and techniques relating to numerical stability, model fitting and the 
errors inherent in observing points in real images. These are applicable throughout this work 
and not just to determining multiple view geometry.

75
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4.2.1 M easurement Errors and Their D istribution

Before any solution can be attempted, it is extremely important to consider how measure­
ment errors will have affected the data. Such errors will be assumed to come from a large 
number of sources, particularly things such as inaccuracies in sensors used for digitisation 
or point location and matching algorithms.

Furthermore, it will be assumed that any measurement errors conform to a two dimen­
sional isotropic Gaussian distribution with zero mean and uniform standard deviation. This 
is in general a well founded assumption with much empirical evidence to support it. In 
addition, the response characteristics of photometric cells have long been known to produce 
a Gaussian localisation error. Furthermore, the characteristics of many feature detection 
and matching schemes are known to produce approximately Gaussian distributed localisa­
tion errors, even to the extent that the assumption is the basis for the corner detector, e.g. 
[HS88]). Based on this, the safety of the Gaussian assumption will be taken as granted. 
Further justification is omitted due to the very long-standing nature of the assumption and 
the construction of many successful algorithms and systems based around it.

4.2.2 M odel Fitting and Least-Squares

The basic problem to be approached in this chapter is as follows: given a set of data ob­
served with measurement errors, and some model based on adjustable parameters, find the 
parameters that give the best fit for the data to the model. In other words, it is desirable to 
find the set of parameters that maximise the probability of the data, given the parameters. 
This form of parameter estimation is known as maximum likelihood estimation.

As just discussed in section 4.2.1 it is assumed that the errors corrupting observed data 
are Gaussian in nature. This leads to the use of the well known least-squares methods (due 
to [PeaOl]). Given N  observed data points (%i,yi) i = 1.. .N, these are fitted to a model 
that has M  adjustable parameters a,j j  =  1 .. .M. The model predicts a relationship between 
the measured variables independent and dependent on the model:

y i - y ( x ; a i . . . a M) + €i i —

where is assumed to be some Gaussian distributed error associated with the measured 
point, yi. An appropriate Gaussian function can be substituted for the set of e* and the
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resultant equation simplified. Consequently, the maximum likelihood estimate of the pa­
rameters d i  that minimises the error can be found by minimising:

N

' E i V i - V  { X i ) f
i = 1

The reader is referred to appropriate statistical texts for a proof, e.g. [KS83b, DS83]. This 
minimisation can be achieved using any of numerous methods, such as singular value de­
composition (SVD), QR or LQ factorisation, Moores-Penrose inverse or many others.

Whilst least-squares is well documented, it will be worthwhile to point out the less well 
known orthogonal least-squares [KS83a]. The major drawback with least-squares as just 
presented above is that it assumes the error exists in only one coordinate - y\ in the example 
above. This is dependent upon the often justified assumption that the X i are not subject 
to errors. For example, if the function were measuring the relationship between the time in 
an experiment (xi) and some observed value (^), then the time can be found subject to no 
significant error, but the observation will have error.

However, it may often be the case that there are errors in all coordinates - for example 
predicting the position of a point in one image given another image of that point. In this 
case, both points will be measured with error. Orthogonal least-squares assumes that there 
are errors in all coordinates and sets about solving a different and constrained minimisation 
to account for this.

For example, consider fitting a hyperplane h = (f, hp) to a set of j  points z* = (zn, Z&,. . . ,  Zin ) 

in n space. The maximum likelihood estimate for f can be found as minimising:

3

(hTzi) 2 subject to fTf = 1
i = 1

The scaling constraint ensures that the error measure is invariant to both a Euclidean trans­
formation and a scaling of the coordinate system. This is not the case with normal least- 
squares. This can be performed as a constrained minimisation (see [GVL89]), and an ex­
ample solution can be found in section 4.3.1 where it will be applied to fundamental matrix 
estimation.

4.2.3 Uncertainty Analysis

All the algorithms to be described in this and the following chapters rely on expressing 
uncertain input quantities in terms of parameterised models, also determined with a degree of



4.2. PRELIMINARIES 78

uncertainty (described by a covariance matrix). Consequently, the estimates of the observed 
independent parameters produced by the model are also subject to a degree of uncertainty. 
Since Gaussian distributed errors are being assumed, the uncertainty will take the form 
of a chi-squared distribution and should be propagated through the model to account for 
the errors in determining the model. Once a covariance matrix has been determined, it is 
possible to identify all points that have a certain percentage chance of occurring given the 
model, and visualise this as an ellipsoid centred on the estimated point. The shape and size 
of this region can be determined by the principal components of the propagated covariance 
matrix.

Defining such an elliptical region for a particular model estimate has many uses - for 
example, rejecting points that are outlying to the model (because they are not likely to 
have occurred), or for guiding matching. However, the exact method is fairly involved; for 
detailed descriptions of the propagation and determination of uncertainties, the reader is 
referred to [HZOO] for a more general discussion and to [CZZF96] for a discussion in relation 
to the fundamental matrix.

For purposes of this work, uncertainty analysis is simplified by not using error propaga­
tion, but instead assuming a very simple circular confidence region (as if there were no error 
in the model, only the data). Having circular confidence regions makes determination of the 
region and testing for data inside and outside the region very simple and efficient. The size 
of this circular region can easily be defined by the standard deviation of the data and a value 
representing the percentage confidence required (easily obtainable from mathematical tables 
of x 2 probability). Note that small improvements have been observed (e.g. in [CZZF96]) 
by not assuming perfect models and using an elliptical confidence region. However, these 
improvements are not huge and do come at a computational and complexity cost.

4.2.4 Normalising Image Points and Numerical Stability

When using homogeneous points, there is a very important practical problem concerning 
numerical stability that needs to be addressed. Measurements in an image are usually given 
in terms of image pixels, so an 800x600 image will have a typical point of homogeneous form 
(400,300,1). Since the first two items in this point are two orders of magnitude larger than 
the final one, any associated matrices calculated using points of this form will have a very 
bad condition number (see [Har95a] for a discussion of this in relation to the fundamental 
matrix).
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Ideally, the average point should be of the form (1,1,1) so as to minimise both round 
off errors and condition number problems (even if infinite precision arithmetic is used, poor 
condition numbers will produce bad results). Similarly, any linear approximations to distance 
measures (e.g. see equation 4.3) which are not invariant to Euclidean transformations of the 
points should be conditioned so as to produce more accurate approximations to the actual 
Euclidean distance. This can all be achieved by transforming the image coordinate frame 
so that the centroid of the points is at the origin and then scaling isotropically so that the 
average distance of a point from the origin is \/2.

The transformation and its inverse taking points to and from these coordinate systems 
can easily be found and applied to all points prior to computation. Such transformations can 
also be applied to any calculated quantities to make them work in the original coordinate 
system, e.g. if matched points X* x- are normalised such that x* =  Tx^ and xj =  T'xJ 
and a fundamental matrix F  is found, then the fundamental matrix for the unnormalised 
points is found as F — T't FT.

This normalisation of image points is so effective that, unless otherwise stated, it will 
always be assumed that it has been applied to any technique involving homogeneous quanti­
ties such as image or world points. The importance of normalisation to fundamental matrix 
estimation was first pointed out in [Har95a],

Furthermore, because of the scale factor constraints in homogeneous quantities, sensible 
decisions are always assumed on the scale of computed numerical quantities. For example, a 
matrix may be scaled so that it has a Euclidean norm of 1 or so that the largest item in the 
matrix is 1. This will also be assumed, except where it is relevant to the process in hand, 
e.g. for a parameterisation.

4.3 Linear E stim ation  o f th e Fundam ental M atrix

This section will aim to describe the main techniques used for robustly estimating the fun­
damental matrix F  from points matched between a pair of images. It should be recalled 
from the previous chapter that the fundamental matrix is a 3 x 3 matrix that can be used 
to transfer one point from a match pair x «-»• x' to an epipolar line in the other image 1,1; 
containing the matching point:

F x  ~  I' 

F t x! ~  1

(4.1)

(4.2)
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It is also defined subject to an arbitrary scale factor and to the constraint that it must have 
a rank of 2. These two constraints mean that, although the matrix has 9 entries, only 7 are 
independent. In practice the problem to be addressed in this section is how to estimate F 
given a set of n matches x* ++ xj Vi G (1, . . . ,  n) between features, each of which has been 
determined subject to Gaussian distributed measurement errors.

4.3.1 The 8 Point Algorithm

The first thing that must be achieved is to find a closed form means of determining the 
fundamental matrix. Since the expressions for transfer using the fundamental matrix F are 
linear in terms of F, they form a logical starting point for a linear method to calculate F. 
By imposing that the transferred line should have the matching point on it, the following 
constraint is derived:

x,rFx  = 0 (4.3)

Since, as will be shown below, it is possible to impose the scale factor constraint, 8 matches 
are required to solve for F  using equation 4.3. In practice usually far more than 8 matches are 
available, and these match points will be assumed to be perturbed by Gaussian distributed 
noise. It is important to note that, in this case, it will be assumed there are no errors due to 
the placement of features in space, such as might occur from mismatches or moving objects. 
Such incorrect placements corrupt the Gaussian assumption and will be dealt with by the 
robust techniques to be reviewed in section 4.5.

Although the algebraic measurement errors from equation 4.3 will be physically mean­
ingless and not Gaussian distributed, it is still close enough to be reasonable with n matches
Xj Vi G (1, . . . ,  n) to use equation 4,3 and solve for F  using existing linear least-squares
methods to minimise:

n

min ^  (x'TFx) 2 (4.4)
*=i

To make the relationship with each item of F  explicit, this can be rewritten as:
n

(4-5)

where x* = (iii,v»), = and

U i =  [mui, Viu'i, u[, mv'i, v ^ ,  v', uu Vi, 1]T , f  =  [An, F12, F i3, F2i, F22, F23: T3 1 , £ 3 2 , FS3]T
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All that remains is to impose the scale factor constraint. This is achieved by using orthogonal 
least-squares and solving equation 4.5, subject to the constraint that ||f|| =  1. In this 
situation, no one parameter of f will prevail over any other and consequently there will be 
no bias. The resulting constrained problem can be transformed into an unconstrained one 
by the use of Lagrange multipliers:

i —1

with A as the Lagrange multiplier. Requiring the first derivative of this function with respect 
to f to be zero gives:

u £ u „ f = Af

Identifying this to a linear system of equations, the solution f must be a unit eigenvector 
of the 9 x 9  moment matrix U^Un and A the corresponding eigenvalue. Since we wish to 
minimise the function, the solution will be the unit eigenvector associated with the smallest 
eigenvalue. This type of linear algorithm is generally referred to as the 8 point algorithm.

Im posing th e  R ank 2 C onstraint

The advantage of the linear method is that it provides a closed form solution for F, but 
it does suffer from not imposing the rank 2 constraint. This can be a significant problem 
because a fundamental matrix that is not of rank 2 will produce epipolar lines that do not 
intersect at a consistent epipole. Subsequently, the rank 2 constraint is imposed after solving 
for jF, by setting the smallest singular value of F  to 0 by decomposing and recomposing F  
using the singular value decomposition. In effect, this replaces F  by F' that minimises the 
frobenius norm of ||jP — F '|| subject to the condition that det (F ') = 0.

Alternatively, it is possible to minimise the algebraic distance given in minimisation 4.5 
subject to the rank constraint using an iterative scheme. Briefly, this method enforces that 
the fundamental matrix be of rank 2 by factoring it as F = M  [e]x (see sections 3.3.2 and
3.3.3 on page 58 for details of this factorisation). The algorithm proceeds by obtaining an 
initial estimate of the epipole from the 8 point algorithm. Given this estimate [e]x can 
be fixed and the remaining parameters in M  found in closed form so as to minimise the 
algebraic error subject to a scale factor constraint. This is used in an iterative gradient 
descent method such as LM iteration (appendix A) to minimise against the homogeneous 
epipole. The obvious advantage of this method is that the minimisation is in terms of only 
2 values (or 3 if the scale of the epipole is allowed to vary), but it is a fairly complicated



4.3. LINEAR ESTIMATION OF THE FUNDAMENTAL M ATRIX 82

method to implement. In general, it is advisable to use the simple SVD method mentioned 
first. See [HZOO] for more details of this method.

4.3.2 Minimal M ethod Using Seven Points

Since the fundamental matrix has 7 entries, it follows that it should be possible to calculate 
F  using only 7 point matches, rather than 8 as required by the previous method. In this 
case, it is possible to impose 6 constraints on the 9 unknowns of f which gives an under­
determined set of linear equations. SVD of the set of equations can then be used to find two 
basis vectors fi and f2 which span the solution space. Since the two vectors fi and f2 form 
a basis of the solution space, they can be combined linearly o;fi +  /3f2 to give all possible 
solutions. An exact solution can then be found by imposing the rank 2 and scale factor 
constraints.

Because of the scale factor constraint, the linear combination of fi and f2 must only be 
in terms of one independent parameter a. This gives:

afi + (1 — a) f2 (4.6)

The rank 2 constraint can then be imposed by enforcing that the determinant of F must 
be 0 yielding det [ĉ fL + (1 — a) f2] — 0. This gives a cubic polynomial in a which can then 
be solved using the standard formulae to give one or three real solutions for a. The solutions 
for a can then be substituted back into equation 4.6 to get a complete value for f.

Although this minimal algorithm may seem to be of little immediate use, it will prove 
invaluable when considering robust methods for the computation of F.

4.3.3 Other Linear M ethods

There are some alternative linear methods which are now established do not perform signif­
icantly better (see [Zha98]), but worthy of note is a recent method [CGVC00] which solves 
the minimisation problem in equation 4.5 subject to both the rank and scale factor con­
straints. However, the method is very complex and does not seem to result in significant 
improvements.
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4.4 N onlinear E stim ation  of the Fundam ental M atrix

The linear 8  point algorithm for fundamental matrix estimation that was just presented 
provides a closed form means of determining the fundamental matrix. However, it suffers 
greatly from a number of drawbacks. In particular:

1. The ’algebraic’ distance measure being minimised has no real physical meaning and so 
does not always produce Gaussian distributed errors. The lack of physical meaning also 
means the error measure is not invariant to Euclidean transformations of the images,
i.e. the error function will produce different values depending on the image coordinate 
system.

2 . The error function also suffers from a lack of normalisation, meaning that a different 
scale for F  will result in different error values.

3. Finally, the constraint that the rank of F  is 2  is not enforced during the minimisation.

In the next sections, solutions to these problems will be presented. Solving the first two will 
require a change in error function, and solving the third will require a special parameteri- 
sation of F  to enforce all the constraints on it. Both these problems will now be addressed 
separately.

4.4.1 Error Function

Since the need for the error function to be linear has been dropped, it is appropriate to 
attempt to solve the first two problems outlined above and look for an error function that 
is a maximum likelihood estimator (ML) for the given noise model.

To find such a function, first consider a perfectly matched pair of error free points 
m m ;. Such matches will have to satisfy the two image geometric constraint m ^ F m  = 0 
exactly. However, in practise the observed match points x «-)■ x' will be disturbed by mea­
surement errors, in this case assumed to be Gaussian distributed. Under this noise model, 
the ML estimate can be found by minimising the square of the residuals, hence the following 
function:

de (x, m ) 2 +  de (x', m ' ) 2 (4.7)

subject to the underlying geometric constraint that m 'TF m  = 0. Note that terms for 
both images are required to prevent one image being unfairly weighted against the other
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(the effects of which are discussed in [LDFP93]). This variational approach to parameter 
estimation was first specified in [Tri87] where a solution was found using simplex methods. 
Unfortunately, in this particular case, the resultant minimisation is not a good candidate 
for practical use since it is nonlinear, constrained, and for n matches requires calculation of 
4n + 7 unknowns, i.e. m, m f,F.

Fortunately, the constraint that m'TFm  = 0 can be added to the error function quite 
easily by restating it in terms of the transfer constraints provided by equations 4.1 and 4.2. 
These allow de (x, m) to be rewritten as di (x, F Tm') where di is the orthogonal distance of 
a point to a line, giving a new function to minimise:

di (x, Ft m ' ) 2  +  di (x', Fm ) 2 (4.8)

The global minimum of this function will be an ML estimate because by definition it will 
always be the orthogonal projection of x on FTxh' and x' on Fxh which minimise the sum 
of squared distances in equation 4.7. The distance of points to their orthogonal projection 
on a line is naturally equivalent to the orthogonal distance of points to lines, so the two 
minimisations are the same.

It is actually possible to minimise equation 4.8 using an algebraic search method such as 
gradient descent or Levenberg-Marquardt. After an initial estimate of F  has been obtained, 
the methods to be presented in section 5.4.3 (page 102) can be used to determine the error 
free matches m f t m '  exactly for the given F. The minimisation can then proceed allowing 
F  to vary and re-calculating the error free matches m  m r for each updated F. However, 
such a method is computationally very expensive and it will be shown later that there is a 
better approach based on projection matrices and 3D structure.

Although optimal, there is a major problem with the previous function in that m  and 
m' are unknowns. Instead, at the cost of optimality the following function can be minimised 
instead:

di (x, Ft m ' ) 2  + de (x;, F x ) 2  (4.9)

The obvious advantage of this function is that given n points it only requires estimation of 
7 parameters instead of 7 + 4n as for equation 4.8. However, minimising it using standard 
methods no longer produces an ML estimate under the Gaussian assumption since noisy 
points are transferred. However, it does provide a very close approximation.

An intuitive alternative to all the previous discussion is to replace the error free points 
m f> m' in equation 4.7 with the projection of 3D structure:

de (xj, P X )  + de (x', P'X)
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For projection matrices P, P' and structure X. Whilst minimising this function produces 
a maximum likelihood estimate it does suffer from the drawback that P, P' and X are 
unknowns. It should be noted that this represents an improvement over the function in 
equation 4.8 by reducing the number of unknowns from 4n + 7 to 3n + 11 (assuming P  is 
fixed).

Minimisation of this function is viable, and is achieved by using the methods of sections 
5.3 and 5.4 in chapter 5 to produce cameras and structure from an initial guess of the fun­
damental matrix. Minimisation can then proceed using the well known bundle adjustment, 
a nonlinear refinement where both structure and cameras are allowed to vary at the same 
time. This minimisation is discussed in detail in appendix B, and it is notable that it can 
be implemented very efficiently. Considering all this, minimisation of re-projection error is 
usually the best approach.

There are also other alternative error measures. Particularly worthy of note is the recast­
ing of the estimation problem as minimising the distance between the four dimensional point 
(xj,xj) and the quadratic surface defined by x'TF x  — 0. This difference can be determined 
exactly with great computational effort using the techniques in [LDFP93], or can be approx­
imated to first order using the technique of [Sam82] (originally developed for conic fitting). 
However, it has been shown in [LDFP93, LF96b] that this technique has very similar results 
to the error function in equation 4.9 so shall not be considered here.

4.4.2 Relation to the Linear Criterion and Iterative M ethods

It is interesting to relate the nonlinear measure in equation 4.9 to the linear criterion in 
equation 4.3 x'TF x  = 0. If orthogonal distance is used to measure distance between points 
xj and corresponding epipolar lines Fx^ = 1* = K, 2̂ ^ 3)5 it gives:

d, (x', Fxi) = A * Vi = 1  v fF x ;  (4.10)

From looking at this equation it is apparent that it is the same as equation 4.3 but weighted
by > I . It follows that if the weighting in equation 4.10 were known it could be used to 

\/h
replace the distance measures in equation 4.9, to make the error measure linear.

However, the weights themselves depend on the estimate of F, which immediately sug­
gests the possibility of an iterative algorithm. In this case all weights are initially set to 1 
and a solution found using the 8  point algorithm. Subsequent stages, apply weights which 
are calculated from the previous stage and thus can minimise equation 4.9 until there is
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no improvement in the error measure. However, reviews of fundamental matrix estimation 
[Zha98] as well as personal experience have shown iterative linear methods to provide little 
or no improvement so they will not be considered further here.

4.4.3 Summary of Error Functions

Since such a large number of error functions have been presented the methods will all be 
briefly summarised here:

• Algebraic distance: x,rF x = 0 . This measure has the advantage of being linear, and 
hence can be minimised in a least-squares sense in closed form. However, it does not 
produce Gaussian distributed errors, is not invariant to Euclidean transforms of the 
image space and is sensitive to changes in the scale of F.

• Iterative Linear: This approach uses the algebraic distance to generate a guess of F, 
and then based on this guess determines weights for each residual function so that it 
produces a fully euclidean distance measure (rather than the algebraic approximation). 
However, iterative methods often fail to improve errors and frequently fail to converge 
on an exact minimum but iterate to wildly different (and sometimes worse) results.

• Euclidean distance to error free epipolar lines: di (x, F Tnir ) 2 +  di (x', E m )2. Has the 
advantage of producing errors with a Gaussian distribution, and of being normalised. 
Comes with the disadvantage of being nonlinear and complex and expensive to evaluate 
fully.

• Euclidean distance to epipolar lines: di (x, FTx! ) 2 + di (x ',F x)2. Provides only an 
approximation of the maximum likelihood estimate. Has advantage of only containing 
7 unknowns, of being simple to evaluate and of being normalised.

• Re-Projection: de (xi5PX ) +  Gfe (xJ,P'X). Only disadvantage is the nonlinearity, re­
quiring minimisation of both projection matrices and structure. Has the advantages 
of being normalised, being efficient to minimise, producing a maximum likelihood es­
timate and having less unknowns than the equivalent maximum likelihood measure 
involving fundamental matrices.



4.4. NONLINEAR ESTIMATION OF THE FUNDAMENTAL M ATRIX 87

4.4.4 Param eterisation of F

As well as requiring a new error function, the fundamental matrix also needs to be parame- 
terised so as to take into account the scale factor and rank constraints. Three methods for 
performing this will be presented here.

Using the Determ inant Constraint

An intuitive way to enforce that the rank of F  is 2  is to use the constraint that det (F) = 0 . 
Expanding out det (F) — 0 provides a cubic equation in the coefficients of F  that can easily 
be used to determine one item of F  given the other eight. The scale factor constraint can 
then be enforced by fixing the largest remaining parameter of F  to 1. This method will be 
referred to as N 1 .

Considering the Fundamental M atrix as a Singular M atrix

In order for a fundamental matrix F  to have a rank of 2 and hence be singular, one row or 
column must be a linear combination of the other two e.g. given columns Ci,C2 ,c 3 it must 
be the case that

(3j0, j l ,  j 2  £ [1,3]) (3Ai, A2  £ 77), Cjo + AiCji + \ 2 Cj2 = 0 (4.11)

($X £ 77), cji -f- Xcj2 = 0  (4.12)

Condition 4.12 is a non-existence condition that enforces the rank of F  is not less than
2. Since it cannot easily be expressed by a parameterisation it will not be used.

Given the problem is symmetrical it makes sense to enforce this for both columns and 
rows, resulting in a description for F  by four variables, and two pairs of scalings. If the
scalings are collected into a vector associated with the relevant columns or rows of the
fundamental matrix and a 1  is added they can be seen to be equivalent to the left and right 
null-spaces (kernels) of the fundamental matrix - the epipoles. For example, given epipoles 
(aqy, 1 ), 1 ) and the four unknown parameters a, b, c, d the matrix can be written as
(selecting the third column and row to be linear combinations).

F =
—ax — by 
—cx — dy

—ax1 — cy' —bx' — dy1 (ax -f- by)x' + (cx + dy)y'
( 4 . 13)
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Finally, to impose the scale factor constraint, the largest parameter of the four remaining 
parameters a,b,c,d is normalised to 1. Depending upon which row or column is expressed 
as a linear combination of the other two, it can be seen that excluding the scale factor there 
are 9 possible parameterisation of the fundamental matrix.

In [Zha98, CZZF96] the best parameterisation was then selected by maximising the rank 
of the 9x8 Jacobian of the appropriately re-parameterised fundamental matrix. This method 
will be referred to as N2t and full details of it can be found in [CZZF96].

P aram eterisa tion  in Terms of Left and R ight Kernels

There is also a slightly different formulation of the previous parameterisation that is much 
clearer and more general. This formulation has also found use for parameterisation of the tri­
focal tensor [PF98] which can be decomposed into a set of 3 matrices similar to fundamental 
matrices and also of rank 2 .

The formulation considers that both left and right null-spaces are attached to specific 
properties of the system of cameras, epipoles in the case of fundamental matrices. It follows 
that the space A4 (L, R) of all matrices with a given left kernel L =  [h, h, h] 7  ̂ 0 and right 
kernel R  =  [ri, r2 ,rs\ /  0  is of some importance. If the left and right kernels are considered 
to be homogeneous quantities then it follows that the rank of any matrix in M  (L, R) must 
be at most 2 .

The space defined by M. (L, R) is in fact a linear space of dimension 4. Consequently, it 
is possible to find a basis and so describe any matrix of Ad (L, R) in terms of 4 coordinates 
marking a position in the linear space. In fact, these 4 coordinates correspond to the 4 
coefficients of the original homography that relates epipolar lines in the two images (a, &, c, d) 
in the previous method.

Unfortunately there is no means of specifying a basis for A4 (L,R) that will be valid for 
any choice of L and R  since certain entries in L and R  may be 0. However, since L and R  
are epipoles it is known that L ^  0  and R  ^  0. Because of this, if it is assumed that the 
highest components in magnitude of both L and R  are in first position it is guaranteed that 
11 ^  0 and ri ^  0. Consequently the following four matrices of rank 1 always constitute a 
basis of M  (L, R)

fzh 0 - r i h ~ r2l 3 rih

i—o

II

0 0 0 , m 2 = 0 0 0

- ^ l 0 rxli Tzh - n h 0
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~r3h 0 rih

J
-i to h-1 - r i h

1

0

m 3 — rzh 0 - r i h ,m 4  = - n l i rih 0

0 0 0 0 0 0

This means a fundamental matrix with left and right kernels L and R  can be described in 
terms of the basis just given and four coordinates Gq, <2 2 , a3, a4  as

F — Qj\M\ T  cl2M2 T  cl3M3 +  0,4M4 (4.14)

It can also be seen that M  is of rank 1 iff < 2 2 0 3  — alcq =  0. In order to ensure that the 
largest value of L and R  are in the first position, the rows and columns of the fundamental 
matrix must be circularly permuted appropriately prior to decomposition, and then back 
again after re-composition. Furthermore, for increased numerical stability the largest value 
of the left and right kernels should also be normalised to 1. This method will be referred to 
as TV3.

In fact, if equation 4.14 is multiplied through, a very similar parameterisation to that 
used for method TV2 from the previous section will be derived. The only difference is that 
the parameterisation TV2 assumes the final coordinate of the epipole is 1 i.e. e = (ex, ey, 1). 

As mentioned in section 4.2.4 this can be numerically unstable and so the method TV2 can 
be modified to deal with the problem. To allow for arbitrary scaling of the epipoles, the 
condition 4.11 is modified so that an extra scaling factor is included

PjO, j l ,  j 2  £ [1,3]) (E3Ai, A2 , (A3  7  ̂ 0) £ TV), A3 cj Q +  A3 A1 C7 1  +  ^sX2Cj2 =  0

Using this new condition, and normalised epipoles e = (ei,e 2 ,e3) and e' = (e^e^eg) such 
that the largest item in the epipole is 1 , the fundamental matrix can now be written as (in 
this case, the first row and column are selected to be linear combinations of the other two):

F =
(e3a — e2 b) e 3 +  e '2 ( e 2d  — e 3c)  (e'3b — e'2d )  e \  (e'2c — e3 a) ei 

(gsC _  e2CQ e/ e Ye [ d  —e\e \ c

(e2b — e3 a) e[ ~~eie[b e\e[a
(4.15)

If it is compared with the parameterisation TV3 just given, this new form is now exactly 
equivalent. Equivalence can also be established the other way around by enforcing that the 
largest item in the left and right kernels is permuted to be in e3, e3 and is set to 1 , then use 
the parameterisation 4.13 directly.
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4.4.5 Summary

Overall this section has given a large number of parameterisations and error functions for 
fundamental matrix estimation. Whilst this has reviewed most state of the art nonlinear 
techniques it hasn’t paid particular attention to which is the most effective.

Recall that to produce the ideal nonlinear method two things are needed, both an error 
function and a parameterisation. Ideally the error function should be a maximum likelihood 
estimator under the assumption that projection has resulted in Gaussian distributed errors 
being added to the image points. This leaves only two criteria:

• Euclidean distance to error free epipolar lines: di (x, F Tui f ) 2 +  di (x',Fm )2. Has the 
advantage of producing errors with a Gaussian distribution and of being normalised. 
Comes with the disadvantage of being nonlinear, but can still be minimised efficiently 
using the Trivedi-Simplex algorithm [Tri87] (see [LPT00] for information on perfor­
mance).

• Re-Projection: de (xi,PX) + de (xj, P'X). Main disadvantage is the nonlinearity, re­
quiring minimisation of both projection matrices and structure. However, is nor­
malised, efficient to minimise using existing Bundle Adjustment algorithms, and has 
less unknowns than the equivalent maximum likelihood measure above that involves 
fundamental matrices. Note that to avoid fixing the coordinate basis of projective 3 
space arbitrarily the cameras should be kept in canonical form (see section 3.2.8 on 
page 52).

All parameterisations enforce all the possible constraints, and so the best must be se­
lected for numerical stability and generality. Method N 3 from section 4.4.4 is definitely the 
ideal. This method is equivalent to method N 2  but with more control over the normalisa­
tion of the epipole, which helps avoid problems with infinite epipoles, as well as increasing 
numerical stability. Extensive testing elsewhere [LF96b] has shown method TV 1  to be inferior 
numerically.

To conclude, the ideal nonlinear minimisation uses the re-projection error. A small im­
provement can sometimes be made by using parameterisation N 3 and the Euclidean distance 
to error free epipolar lines, which will help remove the 4 degrees of freedom that cannot be 
fixed by putting cameras into canonical form, and can use fewer unknowns if m and m' from 
equation 4.8 are recalculated at each iteration. However, it is notable that overparameteris- 
ing the model rarely makes a significant difference to the result.
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4.5 R obust E stim ation  o f th e Fundam ental M atrix

So far, it has been assumed that all the measurement and matching errors of points conformed 
to a Gaussian distribution around the ideal value. However, if some points are mismatched, 
this assumption will often be wildly incorrect for those mismatched points. Even with the 
presence of only a few of these so called outlying points, the least-squares methods being 
used in the previous sections are normally rendered useless.

Standard least-squares methods attempt to minimise J2irh  where the residual can be 
defined as the difference between the ith observation and the zth fitted value. Because the 
function is squared, large residuals associated with outliers will have a dominating effect on 
any estimated parameters. For the estimation of the fundamental matrix, the large quantity 
of outliers that are often present has led to the use of random sampling methods for outlier 
removal, in particular LMedS [RL87], RANSAC [FB81] and MLESAC [TZOO], The use 
of random sampling methods in fundamental matrix estimation is now relatively standard 
[BTZ96, FZ98b, Zha97, TZ98], For a comprehensive review of robust methods applied to 
fundamental matrix estimation see [Tor95],

The basis of any random sampling method is to pick random sub-samples of the data 
set and estimate the model parameters using each sub-sample of data. The best of the 
estimates is then determined according to the whole data set and used to eliminate outliers, 
the idea of this being that if enough sub-samples are taken there is a good chance at least 
one sub-sample will be outlier-free. Consequently, when using a random sampling method 
it is very important that the minimum number of points per sub-sample are used so as to 
reduce the probability of an outlier being included.

All of RANSAC, LMedS and MLESAC work on these principles, with the main difference 
being defined by the number of samples taken and the function minimised. LMeds attempts 
to minimise the median error, RANSAC attempts to maximise the number of inliers and 
MLESAC attempts to minimise a robust function of the residuals involving both inliers and 
outliers (e.g. a Huber function - see section C.2, page 256). The number of sub-samples 
is often defined so as to ensure a particular chance of successfully selecting a sub-sample 
containing no outliers. Alternatively because the process is a minimisation, an arbitrary 
and fairly large number of sub-samples is taken to ensure a good minimum and not just no 
outliers. Although, all three of these algorithms have been implemented for the purposes of 
this work, MLESAC proved to produce the best solutions. It has been shown elsewhere to 
outperform other random sampling methods in the case of fundamental matrix estimation
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[TZOO], and so was used in all situations. To give a general feel for random sampling, the 
LMedS and MLESAC algorithms have been described in detail in appendix C.

Outlier Removal

The random sampling techniques work much better than least-squares when there are out­
liers, but are very inefficient in the presence of Gaussian noise. To remedy this, the funda­
mental matrix MLESAC produced is used as a ground truth to determine which matches 
are outliers so that they can be removed. Once the outliers have been removed, it is then 
reasonable to assume a Gaussian error for the remaining matches.

Outliers are determined by checking to see which matches are outside a certain confidence 
region of the probability distribution for errors in the data set. If the residual function r{ is 
the orthogonal distance of points to corresponding epipolar lines, then it would be expected 
for residuals to conform to a chi-squared distribution with 1  degree of freedom. Consequently, 
for each point if rf <3.84cr2 the point should be discarded as being an outlier. The constant 
3.84 is selected because it represents a confidence limit of 95% for a chi-squared distribution 
with one degree of freedom, i.e. an inlier will be incorrectly rejected only 5% of the time.

However, this test is not yet usable because it requires the standard deviation a. Un­
fortunately, this cannot be obtained since the data set contains outliers and so does not 
have a Gaussian probability distribution. Instead, a robust approximation to the standard 
deviation must be used, such as (see [RL87]):

cr -  1.4826 [1 +  5/ (n -  p)] y/Wj

where Mj is the median of squared residuals for the F  estimated by random sampling, n 
is the number of matches in the data set and p is the number of matches in a sub-sample. 
Finally, outliers can be removed and, if desired, the fundamental matrix recalculated using 
least-squares methods.

4.6 Sum m ary o f M ethods for Fundam ental M atrix Es­

tim ation

A large number of different algorithms for fundamental matrix estimation have just been 
proposed, but they are not equally effective. From experience and results in other works
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(particularly [LF96b]), the following approach to fundamental matrix estimation is taken by 
this work:

• Robust Estimation: MLESAC is used to robustly determine the fundamental matrix. 
Outliers are identified and removed. Note that this uses a nonlinear minimisation to 
further refine the robust Huber function also being minimised by random sampling.

• Linear Estimation: After point matching, the linear 8  point algorithm presented in 
section 4.3.1 is used. Points are also normalised, using the method of section 4.2.4 
prior to this calculation, and the rank 2  constraint is imposed after the minimisation.

• Nonlinear Estimation: This is then refined by using a nonlinear minimisation of equa­
tion 4.8. See section 4.4 for details.

• Bundle Adjustment: Cameras and structure are instantiated using the techniques of 
sections 5.3.2 and 5.4 and a bundle adjustment minimising re-projection error is run. 
See section 6.3.1 (page 110) for details.

4.7 E stim ating  th e  Trifocal Tensor

The previous section has reviewed methods for calculating the fundamental matrix for a 
pair of views. Since these techniques have proved to be very robust and practically useful, 
similar techniques and theory for the calculation of the trifocal tensor across a triplet of 
views have also been developed. In this section, a very brief overview of these methods for 
robust computation of the trifocal tensor will be given. Less detail will be given in these 
descriptions since trifocal tensor computation will only be used for comparison with new 
algorithms in later chapters. Trifocal tensor estimation will not form part of the complete 
reconstruction system to be presented in chapter 1 0 .

As discussed in section 3.4.3 (page 63) of the previous chapter, the trifocal tensor provides 
a linear relationship between the projections of points in three images (often referred to as 
the trilinear equations):

mk (m ’im"mT3k‘ -  m = 0ij‘m (4.16)

One big advantage of the three image case is that it is now possible to match lines and so 
a similar constraint, linking lines in two images to the exact line in the third image, can be
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found. This relationship is:
1. ^  p P f  (4.17)

It should also be noted that there is a close relationship between the tensor of three views 
and a triplet of projection matrices in canonical form (Pi ~  [7|0] ,P 2 ~  [7l|a] ,P 3 — [P|b]) 
due to Hartley [Har94c]:

Tih~ A ib k -  a’B* (4.18)

and so the trifocal tensor can be created from the normalised projection matrices with ease.
The trifocal tensor marks a significant strengthening of the geometric constraints over the 

fundamental matrix. Whereas in the two view case, a point in one image could be constrained 
to lie only on a line in another image, for the three image case, given two projections of a 
point, an exact projection in the third image can be predicted. The implications of this are 
significant since, in the two view case, a matching point may lie anywhere on a line in the 
other image, meaning that it can be outlying and still fit the geometry. Such points will 
become outlying when the three image constraints are applied.

4.7.1 Linear M ethods 

Using th e  Transfer Relations

After outliers have been removed using robust methods, it makes sense to attempt a recon­
struction of the trifocal tensor using all available matches. The linear constraint provided 
by the tensor provides a good starting point for a linear algorithm:

m k (m'im"mT Jk‘ -  -  m!im"lTi'n + =  0ij,m

The equation zeros out on the left for i = j  or / =  m, and swapping i and j  or I and m 
simply changes the sign of the equation. The resulting variation means that there are twelve 
equations, of which only four are independent. For example, setting j  = m ~  3, letting i and 
I range freely and setting x 3 =  x 13 — x"3 — 1 gives a simple set of 4 independent equations:

rnk (mfim"lTg3 -  m"l7 f  -  mHT 31 +  = 0a

for varying /, m — 1,2. Stacking these equations for each triplet match x «-» x' ^  x" means 
that, given at least 9 points, this equation can be solved in a least-squares sense. This is 
achieved by forming a moment matrix as in the 8  point algorithm for the fundamental matrix 
and solving using eigen analysis. See [Har95b, Har97, HZOO] for more details.
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Note that if lines are also to be considered, then it is also possible to include the con­
straints provided by lines in equation 4.17. Eliminating the scale factor results in an addi­
tional 2  constraints per line per image.

After computation with the linear algorithm, it is usually a good idea to impose the 
internal constraints of the tensor. Unlike the case of the fundamental matrix where there 
was only a simple rank constraint, performing this for the tensor is much more involved (see 
[HZOO] for details). For implementations presented here, the parameterisation of [PF98] was 
used to enforce all the constraints after using any of the linear algorithms. However, it is 
likely this is not the ideal method (mainly due to it’s complexity).

From Projection M atrices

A good alternative approach to calculating the trifocal tensor in a linear manner is first to 
determine three projection matrices representing the three images and then using equation 
4.18 create the trifocal tensor from them.

Obtaining the first two camera matrices Pi and P2 is very simple, and can be achieved 
by using the fundamental matrix estimation techniques of section 4.3 above. 3D structure 
and cameras for the two views can then be estimated using the techniques to be presented 
in sections 5.3 (page 98) and 5.4 (page 101).

The third camera matrix can then be estimated using a technique known as resectioning. 
Almost invariably, some of the matches between images two and three will share common 
points in image two with matches between images one and two. These matches allow a 
relationship to be established between 3D structure and corresponding projections in the 
third image. Resectioning can then be used to determine the third camera - see section 5.3.1 
(page 98) for a detailed description of resectioning.

After all three projection matrices have been determined, the trifocal tensor is easily 
recovered using the relationship in equation 4.18. The main disadvantages of this method 
are that lines cannot be included very easily and that the result will often be biased toward 
the first two images for which a fundamental matrix was calculated.

4.7.2 Nonlinear M ethods

As with the linear methods for estimating the fundamental matrix, the linear methods for the 
trifocal tensor use an inferior error measure, and overlook certain internal constraints on the 
tensor. For the case of the trifocal tensor this is quite a significant problem, since it depends
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on 18 parameters, yet is estimated by the linear algorithm using 26. These constraints 
are fairly involved and will not be discussed here, so the interested reader is referred to 
[PF98, FP97, TZ97] for details on how to parameterise the tensor and to [TZ97] for details 
on an error measure that gives a first order approximation to an ML error measure.

In experimenting with these nonlinear methods, the author found that the method in 
[PF98], whilst it improved results, was not as effective as calculating all the structure and 
cameras, then running a bundle adjustment. Although this may be a reflection on the quality 
of the implementation, there is still some doubt as to the usefulness of a direct nonlinear 
refinement of the trifocal tensor. This seems to be largely because the error measure for 
tensor transfer does not result in a maximum likelihood estimate, whereas the measure used 
by bundle adjustment does.

4.7.3 Robust M ethods

The trifocal tensor can also be calculated using the same robust methods as the fundamental 
matrix (section 4.5). These robust algorithms require a method which takes a minimal 
number of observations to produce an estimation of the model parameters. In this case, the 
trifocal tensor has 18 parameters, and so six points across 3 images give 3*6 = 18 constraints 
and so represents the minimal amount of data. The so called six point algorithm for minimal 
reconstruction of the trifocal tensor is given in appendix D.

4.8 Sum m ary

This chapter has presented a number of methods for calculating both the fundamental matrix 
describing the geometry of two views and the trifocal tensor describing the geometry of three 
views.

In order to calculate a fundamental matrix, it is recommended to use the eight point 
algorithm described in section 4.3.1, followed by imposing the rank 2 constraint using either 
of the methods in section 4.3.1. In general, the method based on SVD is to be recommended 
for purposes of simplicity. If desired, the final stage in fundamental matrix estimation is 
a nonlinear refinement in order to find a maximum likelihood estimate of the fundamental 
matrix. The best algorithm for this is the bundle adjustment approach using structure and 
cameras.

For estimation of the trifocal tensor, if only points are to be considered, it is recommended
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to first obtain a linear estimate using the method described in section 4.7.1. Otherwise, if 
lines are to be included, the method based on transfer relations should be used instead. 
Finally, a refinement of the triplet geometry should be achieved using a bundle adjustment 
approach based on minimising the re-projection of structure using camera matrices. Since 
the tensor is not necessary for any of these stages, it can finally be constructed using the 
simple relation in equation 4.18.

Regardless of which quantity is being estimated, if there is any possibility of outliers then 
the robust approaches presented in sections 4.5 and 4.7.3 should be used.



Chapter 5

Projective Reconstruction of 3D 
Cameras and Structure

5.1 In troduction

The multilinear constraints discussed so far provide a convenient, minimal, and above all 
else, easily calculated representation for the geometry of two, three or four images. However, 
for some applications, or if more images are to be considered, multilinear forms can become 
inadequate or even difficult and cumbersome. Consequently, it is often beneficial to convert 
the representation from multilinear forms to the more intuitive form of projection matrices 
and three dimensional structure.

There are naturally advantages to using projection matrices and structure, instead of 
multilinear forms, to describe geometry. The biggest difference is that multilinear forms can 
only describe the cameras and not the structure in the scene. Structure can clearly be useful 
for many applications, and also in maximum likelihood estimation. In addition, the use of 
projection matrices instead of multilinear forms enables the modelling of much longer image 
sequences in a much more convenient manner.

This chapter will address the problems of determining projection matrices and structure 
from the multilinear forms, or from an existing reconstruction. Essentially, these methods 
consider the problem of obtaining reconstructions for only very small sequences. Chapters 
6  and 7 will then present a number of effective methods for determining cameras for much 
longer sequences of images. These methods for long sequences will often rely heavily on the 
methods presented in this and the previous chapter.

98
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5.2 R econstruction  A m biguity

It is important to remember that, when modelling a scene with camera matrices and struc­
ture, the reconstruction will be subject to an arbitrary transformation of the world space; 
a gauge freedom (as discussed in section 3.2.7 on page 50). This means that an arbitrary 
projectivity T can be applied to both cameras P  and structure X  without altering the 
reconstruction:

P ~ P T ~ X

X ~TX

Reprojecting the altered reconstruction cancels T out:

x -P T ^ T X

This gauge freedom means that two projective reconstructions must have the same projec­
tive basis in order for cameras and structure in one reconstruction to relate to the other 
reconstruction. This presents a problem for the cameras and structure representation since 
in the projective case 15 extra degrees of freedom exist.

A similar problem does not exist when considering the geometry as described by the 
multilinear forms. Since the multilinear forms work with image quantities only, the recon­
struction ambiguity has been cancelled out by the projection process as just shown.

5.3 R econstruction  o f Cam eras

This section will address the problem of determining projection matrices given a fundamen­
tal matrix, trifocal tensor, or if there is some way of relating known 3D structure to 2D 
projections.

5.3.1 Resectioning: Using Projections of Known 3D Structure

It is not uncommon, when reconstructing, for some structure to be known, either from actual 
measurements of the world or from an existing reconstruction. In this case, it is possible 
to add camera matrices for new images, provided a relation can be established between the 
known 3D structure X* and projections of that structure in the new images x*, e.g. by image
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based matching. Given this relationship, the projection process can be used to provide linear 
constraints on the unknown camera matrix P:

PXi  ~  Xi

Eliminating the unknown scale factors yields two linear constraints on P  per point as follows:

f  T i i  \  f  p i  \

— AT

^ X J

°T

ViXT

-UiXT
= 0 (5.1)

Pi / P i
P2 =  A  P2 

V P3 J P3 )
where pn indicates the column vector associated with the nth row in P. In this case, at least 
6  points are required to determine the twelve parameters of P. If more than six points are 
available, the criterion 5.1 can be minimised in a least-squares sense, subject to the scale 
factor constraint on P. Imposing the scaling using Lagrange multipliers (as in section 4.3.1, 
page 79) means a least-squares solution can be found as the eigenvector associated with the 
smallest eigenvalue of the moment matrix ATA.

It is fairly obvious that the linear criterion in equation 5.1, used to estimate the projection 
matrix, is not going to produce a maximum likelihood estimate for a sensible noise model. 
The algebraic distance it minimises will not be invariant to transformations of the image 
plane and is not normalised. Consequently, after obtaining the linear estimate, a maximum 
likelihood estimate for the camera matrix (assuming no error on the structure X*) is found 
by using an error criterion based on re-projection error and a Gaussian noise model:

mm ̂  d2e (PXi,Xf)
i

This minimisation can be carried out using an iterative method such as gradient descent or 
Levenberg-Marquardt (see appendix A). Note that this criterion is not a maximum likeli­
hood estimator, if all the X* are determined subject to errors. A true maximum likelihood 
estimator would need to minimise both structure and camera matrices simultaneously (a 
bundle adjustment) and will be presented in section 6.3.1 (page 110).

Overall, this resectioning process finds many uses. It has the advantage that it allows 
a camera matrix to be added to a current reconstruction and hence to be found in the 
same projective basis as the reconstruction. On the other hand, the quantity it minimises is 
questionable and produces worse results than many other techniques, certainly those based 
on multilinear forms.
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5.3.2 From the Fundamental M atrix

If the fundamental matrix is available, then there is a very good method for camera deter­
mination without the need for resectioning. This method was already given in section 3.6.3, 
page 67 where the camera matrices were directly related to the fundamental matrix as:

P i =  [isxalOl]

P2 — [[ei2]x F12 — ei27rT|a;ei2] (5-2)

for projection matrices P, fundamental matrix F, epipoles e, a scaling a and some 3 vector 
7r. Since this relates the projection matrices to fundamental matrices directly, there is no loss 
of accuracy in converting between representations. It also has the advantage that existing 
structure is not required to produce a reconstruction. However, it does have the disadvantage 
that using this relation requires fixing the projective basis arbitrarily (by the form of P\ and 
the 4 parameters 7r and c k ) ,  and so this does come with the drawback that reconstructions 
are limited to only two images.

5.3.3 From the Trifocal Tensor

Obtaining camera matrices from the trifocal tensor is a little more complex than for the 
fundamental matrix. In brief, epipoles and then fundamental matrices are determined from 
the tensor. The first two cameras can then be reconstructed from the fundamental matrix 
between the first two images Pi2, as just described in section 5.3.2. It is important to 
remember that these projection matrices will be determined subject to fifteen arbitrary 
degrees of freedom corresponding to a change of projective basis.

Since these fifteen degrees of freedom have been fixed, the relation in section 5.3.2 cannot 
be used with P13 to create a third camera. Fortunately, 11 parameters can be dealt with 
easily since Pi2 and P13 share the same first camera. By convention, fixing this camera as 
[1-3 x3 103] immediately eliminates 11 of the unknown parameters.

However, four degrees of freedom still remain, as represented by 7r and a in equation 
5.2. In order to calculate these four degrees of freedom, the third camera is parameterised 
using equation 5.2 in terms of the four unknowns 7T, a and then substituted along with the 
first two cameras into the equation relating cameras and the tensor (equation 4.18, page 93). 
Rearranging the equation allows the four unknown parameters to be determined, and a third 
camera in the same projective basis to be produced. A complete and much more detailed 
description of this process can be found in [HZ00].
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5.4 R econstruction  o f 3D Structure

Once camera projection matrices have been obtained, it is possible to estimate 3D struc­
ture, provided projections of that structure are available in two or more images. There are 
numerous approaches to this ’triangulation’ problem, and a comprehensive review of these 
methods applied to projective reconstruction can be found in [HS94, HS97]. For purposes 
of brevity, only the most effective methods for projective reconstruction will be explained in 
detail here.

Before continuing, it is worth mentioning the well known midpoint method often en­
countered in texts concerning reconstruction. This approach back-projects the image points 
to lines in space. Since the observed points are subject to measurement errors, these lines 
will not intersect exactly and so the space point is reconstructed as the midpoint of the 
common perpendicular to the two rays. Because the object space used for the case in hand 
is projective, concepts such as perpendiculars and distance are meaningless, resulting in a 
method that is not invariant to projective transformations of the object space, and hence 
not desirable. It should, however, be noted that the midpoint method is widely regarded as 
the method of choice when working with a Euclidean object space [HS94].

5.4.1 Linear M ethod

In order to produce a method that is invariant to projective transformations of the object 
space, it is best to use measurements in the image space only. Considering the projections 
of the 3D structure X =  [x,y,z,t]T into a set of any n images, and labelling the projection 
in image i as x* =  l]r , Vi E (1 ,... , n), then re-projection using the relevant camera
Pi gives a simple set of 3 linear constraints per image:

Si [uh Vi, 1]T =  Pi [x, y, z, t]T

If the scale factors Si = p^X are eliminated and the constraints for all n points are stacked 
into a matrix A, 2n independent constraints on X are obtained as follows:

p£ -  îpS 
pS -  îpS

pfl -  UnPS 
PS ”  VnPls

X  =  A X  =  0
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where p*n indicates the column vector associated with the nth row in P i, provided that 
n > 2 this criterion can be used in a least-squares minimisation. Care still needs to be taken 
though, since X is itself only defined subject to a scale factor. This scale factor constraint 
||X || =  1 can be imposed by again using Lagrange multipliers (see section 4.3.1, page 79) 
and, subsequently, a least-squares solution can be found as the eigenvector associated with 
the smallest eigenvalue of the moment matrix ATA.

5.4.2 Nonlinear M ethod

The best approach to estimating structure is to develop a maximum likelihood estimator. 
In this case, the assumption that point localisation is perturbed by noise with a Gaussian 
distribution is made and so the subsequent maximum likelihood estimator would need to 
minimise the squared re-projection error with respect to both structure and cameras. Since 
only structure is being estimated here, the assumption that P i is known without error can be 
made and an approximation to the true maximum likelihood estimate found by minimising:

im n ^ d K P f X ,^ )  (5.3)
i

for structure X projected through cameras Pi to give image points x*. Since this is nonlinear, 
in general it can only be used as a refining stage applied, after an approximation of structure 
has been obtained, for example using the linear algorithm. Minimisation could, for example, 
proceed using the Levenberg-Marquardt algorithm (see appendix A).

5.4.3 Hartley-Sturm  Match Correction for Two Images

In [HS94, HS97], a closed form solution for the maximum likelihood estimate of structure 
is presented, in the context of points matched for two images only. The method is based 
on using a simple maximum likelihood criterion for fundamental matrix estimation which 
minimises the squared distance between the error free images points to be estimated m «-»• m' 
and the observed image points x <H> x;:

de (x, m )2 + de (xr, m ')2

subject to the constraint that m /TF m  = 0. The reader is referred to chapter 4 for full 
details and development of this criterion (particularly section 4.4 and equation 4.7). After 
minimising this least-squares criterion, the error free points m  and m ' will be known and
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so 3D structure minimising equation 5.3 can be reconstructed perfectly using any linear 
technique (since there is no error to minimise).

Considering this, di can be substituted for de (x, m )2 to give a new function to
minimise:

been found by minimising this equation, then rh and m ' can be found as the orthogonal

Perform ing th e  M inim isation

The approach for minimising equation 5.4 relies on a parameterisation of the epipolar lines in 
the images in terms of only one parameter i, thus recasting the minimisation as a polynomial 
in terms of that parameter. This is achieved by applying a rigid transformation to the points 
in both images in order to take x and x' to the origin (0,0,1). The epipoles are then rotated 
so that they are placed on the x axis at points (1,0, / )  and (1, 0, / ') . The translation to take 
x to the centre is very straightforward. Given x = (u, v, 1) it can be represented by:

Next, to place the epipole e on the x axis, a rotation is performed around the origin by 
an angle a.. To prevent problems with infinite epipoles, the rotation of the epipolar line 
containing x and e is considered, i.e. 1 = (/0, lb, lc) = x x e. To rotate this line to the form

As mentioned in section 4.4.1 the difficulty with this minimisation is in applying the 
constraint that rhlTFni  == 0. Fortunately, there is a fairly simple solution because any pair 
of points m  m/ that perfectly satisfy the epipolar constraint will themselves lie on a pair 
of corresponding epipolar lines 1 *-» 1'. Of all points on these epipolar lines, it will be the 
orthogonal projection of x on 1 and x' on 1' which minimise the sum of squared distances in 
equation 4.7.

(5.4)
A A A A

subject to the constraint that 1 and 1' are corresponding epipolar lines. Once 1 and 1' have

projections of x on 1 and of x' on 1' respectively.

1 0  0 —u 
T =  0 1 0 - v  

0 0 1 1

y=0 (and hence place the epipole on the x axis), an anticlockwise rotation of the following 
form is used:

cos(a)—sin(a) 0 
R = sin(a) cos(a) 0

0 0 1
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The angle a  can be calculated using the constraint that the line 1 must have the form (0,1,0):

RT* * 1 =  A * (0,1,0)

where A is an arbitrary non zero scale factor and T * indicates the matrix of cofactors of T  
(Note if a matrix M  transforms points, then M * is the equivalent transformation for lines). 
Developing this equation results in three individual equations, one of which can be used to 
recover a easily, for example:

( l aa = arctan I ~~
\ k .

Assuming an R/ and T ' are found that have the equivalent effect on the second image, then 
the fundamental matrix which works with the new coordinate systems F  can be found from 
the original fundamental matrix Fq as:

F  = (R’T 'y T F0 (T R )_1 =  R'T’- t F0T - 1Rt

Returning to the minimisation problem, since Fe = elTF  =  0, F  must now have a simpler 
form with only 5 degrees of freedom (2 degrees of freedom have been removed by reducing 
the epipoles to only 2 parameters instead of 3):

f f ' d  - f ' c  - f ' d  
F ~  - f b  a b

—f d  c d

The advantage of this is that all epipolar lines can now be described by only one parameter. 
Considering an epipolar line passing through the point (0, £, 1) (by varying t all epipolar 
lines not parallel to the y axis can be obtained) and the epipole (1 ,0 ,/), we get a vector 
description of the line as 1 (£) =  (0,t, 1) x (1 ,0 ,/) — (t * / ,  1, —£). This means that the 
squared distance from the line to the matched point (at the origin) is now:

dl{m’m 2  = Y T W 2
Using the simplified fundamental matrix to find the corresponding epipolar line in the other 
image, the distance measure becomes:

J ( V _  (Ct +  d)2,(m , (i)) ((_ c t _ d ) / ,)2 +  ((rf +  6)2

Thus the total squared distance to minimise is given by:

, N t 2 (ct +  d) 2
s (t) =  +1 +  ( i /)2 ((~ct -  d ) f f  +  {at +  b f
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Maxima and minima of this function can be found by enforcing that =  0. Differentiating 
it yields a sixth order equation in terms of t which may have up to 6 real roots. Finding 
the real roots of this equation then gives the values of t for which maxima and minima of 
s(t) occur. By placing these values of t into s(t) and evaluating, the global minimum can be 
found, and coordinates for the new point positions found as orthogonal projections of the 
origin on to the epipolar lines represented by t. It then simply remains to undo the effect 
of the coordinate system change incurred by R  and T to get a solution to the minimisation 
problem.

Note that, although all the roots of a 6th order polynomial cannot be guaranteed to 
be found, the effectiveness of root finders, such as the Jenkins-Traub technique used in the 
author’s implementation, mean that, almost all the time, the global minimum will be found.

It is important to note that the addition of this method for finding error free point 
matches to the direct relationship of fundamental matrices to projection matrices allows a 
conversion of a fundamental matrix to cameras and structure without incurring any extra 
error in the representation.

5.5 O rienting a R econstruction

The idea of orienting a reconstruction has already been introduced in section 3.7 (page 
69). To recap, a projective reconstruction consisting of cameras Pi and structure Xj can be 
upgraded to an oriented projective reconstruction by imposing that all structure projects to 
the images it is observed in xj with a positive scale factor i.e.:

AxJ- — PiX.j where A > 0

This can be achieved by selecting the signs of the structure and cameras (i.e. multiplying by 
— 1) so that this is always the case. However, because both cameras and structure have scale 
factors, it becomes necessary to fix one of these scale factors and enforce A to be positive 
using the other scale factor alone.

To do this, the first projection matrix is left as it is, and all structure visible in the first 
image is projected and then multiplied by — 1 if A < 0. Each subsequent camera is then 
dealt with one by one, and the matches between the previous camera and the current camera 
obtained. The structure associated with each of these matches will already be oriented, but 
the current camera will not be. Subsequently, all of this structure is projected with the
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current camera and, if the majority are found to project with A < 0, the camera is multiplied 
by —1.

After this, any of the matches that project with A < 0 can be removed because they 
represent incorrectly oriented points. All the structure in the current image can then be 
oriented and the process move onto the next image until there are no more images. The 
result is an oriented reconstruction.

5.6 Sum m ary

This chapter has presented a number of methods for determining projective cameras and 
structure by utilising observed image features and either knowledge of existing structure or 
some multilinear form. In particular, a method was provided which allowed the fundamental 
matrix governing the camera positions for a pair of images to be converted, along with a 
set of point matches to a camera and structure representation without the addition of any 
more error (in the maximum likelihood sense) than that inherent in the fundamental matrix. 
These methods will all prove invaluable as building blocks in many of the methods to be 
presented in the following chapters.



Chapter 6

A Review of Projective 
Reconstruction for Extended 
Sequences

6.1 In troduction

The projective reconstruction techniques considered so far have all relied on the so called 
multilinear constraints that can be obtained from 2,3 or 4 images. Although effective, these 
techniques suffer from the major drawback of being limited to reconstructions involving at 
most 4 images. Since it is often desirable to reconstruct image sequences of greater length, 
alternative algorithms have also been developed. These can roughly be categorised into two 
main types, sequential and batch methods.

For sequential methods, a multilinear constraint from some part of the sequence is used 
to initialise structure and camera matrices for those views. New images are then added 
sequentially, and matching between existing structure and the new image allows calculation 
of the new camera matrix and up dating/addition of structure. Some more recent examples 
of this type of system include [BZM97, BTZ96, AS98] amongst many others.

For batch methods, all structure and camera matrices are computed simultaneously. If 
the camera model is restricted to an affine approximation then the factorisation method of 
[TK92] is optimal. Similar factorisation like methods [ST96, HBS99, MHOO] exist for the 
full projective model, but minimise only an algebraic approximation to re-projection error 
as well as being limited to solving for systems in which all points are visible in all views
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(a problem addressed at some cost to accuracy in [Jac97]). When Euclidean distance is 
used for re-projection, reconstruction becomes a nonlinear problem and it is necessary to 
use algebraic search methods such as the well known bundle adjustment [Har94b]. The 
problem of projective reconstruction then becomes one of finding a good approximation to 
the structure and motion, in order to initialise the bundle adjustment.

Recently, an alternative hybrid approach was presented in [FZ98b] where the strength 
of methods for reconstruction from image triplets was utilised by producing different recon­
structions for each triplet and then merging the reconstructions hierarchically, using bundle 
adjustment to refine the reconstruction at each stage. This removes the dependency of se­
quential systems on a good initial estimate, whilst achieving a higher degree of accuracy and 
flexibility than factorisation based approaches.

This chapter will first review all of these techniques briefly in order to set the scene for 
the presentation of a new algorithm, as well as to aid later comparisons.

6.2 Sequential M ethods

The sequential addition of new cameras and structure to an existing reconstruction is the 
most well established projective reconstruction method and there are many variants on 
it. Sequential processing will always have uses, because it is perfectly adapted to on line 
algorithms where new images become available all the time (e.g. robot navigation).

6.2.1 Triplet based

The technique presented here is a sequential methodology based on image triplets. In many 
ways, it is similar to that presented in [BTZ96]. It is presumed that the reconstruction is 
to be obtained from a linear sequence of images, such as might be obtained from a video 
sequence. At the start of the process, the trifocal tensor associated with the first image 
triplet is used to initialise cameras Pj and structure X* for that triplet. This can be achieved 
using the techniques in chapter 4. For each new image k that is then added, a new triplet 
is formed from the last two images of the reconstruction so far and the new image. Robust 
correlation based matching, using the robust estimation techniques of chapter 4, is then 
carried out across the triplet so as to obtain a set of points tracked for the new triplet.

Some of the points that have been matched across the new triplet will have been matched
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into the common image(s) in previous triplets, and so a correlation between existing 3D struc­
ture Xj and features in the new image xJk can be determined. Plugging this into the standard 
projection equation results in a simple linear system in the unknown projection
matrix Pk (see section 5.3.1 on page 98). This linear system can be solved using robust 
random sampling methods, such as LMedS or RANSAC, with minimal random samples of 6 
points. After outliers have been removed, Pk can be estimated using linear least-squares and 
refined using a nonlinear least-squares method, as described in the context of trifocal tensor 
estimation in section 4.7.1 of chapter 4. Finally, the structure can be recalculated or updated 
using a Kalman filter, or the Variable State Dimension Filter (VSDF) (see [MM95]).

Given the new projection matrix Pk, it is then possible to project existing structure from 
the sequence as a whole into the new image, and search around the projected point for 
suitable image features that match the existing structure. The results of this are additional 
matches between existing 3D structure and image features which can be used to robustly 
re-calculate Pk and refine the accuracy of the results.

6.2.2 Variations

There are many variations to the above scheme. In particular, it is not uncommon to use 
pairs of images rather than triplets. Although pairwise schemes are clearly less robust and 
less accurate, they are easier to implement and faster to execute. A good example of a 
system of this type can be found in [BZM97] where it is applied to robot navigation.

More recently, an interesting variation was presented in [AS98] which involved ’threading’ 
fundamental matrices together to create a set of projective camera matrices all in the same 
projective basis. The approach exploits a decomposition of the tensor that relates the trifocal 
tensor with the fundamental matrix of the first 2 views, a homography from image 1 to 2 via 
some arbitrary plane and the camera motion between images 2 and 3. This decomposition, 
when used in the standard tensor transfer functions (see equation 4.16, page 92), provides 
linear constraints on the camera motion between images 2 and 3 without the use of any 3D 
structure. Whilst avoiding 3D structure can be useful, transferring points using the tensor 
is inaccurate because the quantity being minimised is meaningless in a least-squares sense. 
Altogether, this makes the stability of the method questionable.

Note that the merging algorithms of the next chapter achieve a similar minimal approach, 
but with a meaningful error criteria.
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6.3 B atch  m ethods

Batch methods cover all those methods that attempt to solve for all 3D structure and 3D 
cameras at the same time. If a projective reconstruction is to be determined and Euclidean 
re-projection error is used then the ideal method is that of bundle adjustment. However, 
Euclidean distance measures give rise to nonlinear equations, and to provide a linear approx­
imation, a factorisation type method can be employed. Since these two cases are distinctly 
different, they will be treated separately in the following two subsections.

6.3.1 Bundle Adjustment

The bundle adjustment [Bro58] is a well known and very well established method for provid­
ing a nonlinear refinement of all structure and all cameras in a scene (see [Sla80, TMHFOO, 
Har92, SKZ99]). Although it was initially designed for refining manual reconstructions, 
it has proved simple to adapt to refining automated reconstructions, and even projective 
reconstructions.

The basis of bundle adjustment is to find the least-squares solution that minimises the 
re-projection error:

(6 . 1)
ij

for all cameras P* in image i, 3D structure Xj and associated 2D image features xj. This 
equation is nonlinear, involving unknowns for both structure and cameras as well as an 
unknown scale factor that has to be eliminated by dividing through. For projective cameras, 
in general, the best that can be done to minimise the exact error measure in equation 6 . 1  

is to refine a supplied initial solution using a gradient descent technique such as Levenberg- 
Marquardt or Newton iteration (see appendix A for a detailed description).

Whilst it would be quite straightforward simply to use the error measure in equation
6.1 in a conventional Levenberg-Marquardt implementation, it would unfortunately not be 
practical because of the size of the problem involved. For example, consider a normal scene 
involving 40 images with 2000 points. This leads to 40 * 11 +  2000 * 3 =  6440 unknowns, 
an intractable problem when using normal methods. Nevertheless a solution is still feasible, 
because the Jacobian matrix for the problem has a special sparse block structure. This leads 
to a similar sparse block structure for the normal equations used in Levenberg-Marquardt or 
Newton iteration. If the sparsity is properly exploited, it is possible to obtain an enormous 
simplification in the solution of the normal equations. See appendix B for a full description
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of the specialised bundle adjustment method in [Har92], including some minor practical 
refinements.

6.3.2 Factorisation M ethods

Factorisation methods have received much attention over the years, and have proved very 
difficult to get as accurate as the more conventional relating 3 D to 2D structure used in the 
sequential methods. Recently however, results have become very good.

The basis of factorisation approaches lies in a closer analysis of the projection equation, 
which after making the scale factor A explicit can be compactly written as:

A}x} = PiXj (6.2)

given xj as the projection of jth  item of 3D structure Xj into image i with camera matrix 
Pi. Sometimes the scale factors AJ are referred to as the projective depths of the points (or 
just the depths). The set of depths for all the projections of a particular 3D point are not 
unique, but are defined subject to an arbitrary non zero scale factor per point as well as per 
image (i.e. all depths for a particular image are themselves also defined up to an arbitrary 
non zero scale factor). If these scale factors are fixed (for example making A in image 1 
equal to 1), then the resultant so called kinetic depths have been shown in [Hey95, Spa94] 
to be independent of the chosen image coordinate systems and to completely describe the 
multi-imaging situation.

The best established factorisation method for projective reconstruction is based on the 
method of [TK92] for producing an affine reconstruction. Stacking equation 6 . 2  into matrix 
form, it is possible to introduce the following matrix W  for the coordinates of all n points 
in all m  images:

w  =

Ajx}
\ 1V1 

A 2 X 2

Ajxf . 

A |x | .

. X f x f

■ a 2 2

\ n i ' m  
n n

The matrix W  will be referred to as the re-scaled measurement matrix because it also contains
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the scale factors. Similarly, a matrix X  is defined for the 3D structure X{ in image i :

X =

and finally, a matrix P  for each of the projection matrices:

X\ x 2 . x n

Vi V2 . • Un

Zl 22 • 2n

w 1 w 2 . ■ W n

P =

Pi
P2

Pm

Now the original projection equation 6 . 2  can be written as the following matrix product

W  = P X

The basis of most factorisation methods is to attempt to decompose the left half of this 
equation (or a similar one) to get the right hand side of the equation. It is worth noting 
that, if the correct projective depths A] are used to determine W,  then W  has a rank of at 
most 4. The matrix W  can then be factored using a singular value decomposition to give:

W  = f/diag (cri, cr2, . . . ,  as) V

for singular values as, where s = min(3m, n) and the singular values are arranged in de­
scending order of magnitude. Since W  is of rank 4 only, cq for which i < 4 should be non 
zero, and so only the first 4 columns of U and rows of V  contribute to the matrix product. 
Given U' and V' as the matrix of these first 4 columns or rows, W  can be written as:

W  =  t/L x 4diag (<7i, 0 -2 , <73, o-i) v ;xn =  U'SV'

Any factorisation of £  into two 4 x 4  matrices £ ' and Ew, £ =  £ ;£" leads to:

W  = = 4% xn
U V

This is valid regardless of the factorisation of £  because the whole reconstruction is subject 
to an arbitrary projective transformation of the world space (both structure and cameras are 
unknown). The matrix U can be interpreted as a collection of m  (3 x 4) projection matrices, 
and Pi, V  as a collection of n 4 vectors Xj  representing the 3D structure.
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Finding the Projective Depths

Given that the scale factors used in the re-scaled measurement matrix are unknown, an 
initial result can be obtained by using the above technique and just setting all scale factors 
to one. In general, this produces poor results, and other techniques for determining the scale 
factors should be used. If the camera model being used is the affine model, then the model 
is designed so that these scale factors come for free, but if a full projective model is used, 
a little more work is necessary. Following [ST96], it is possible to make use of the so called 
closure constraints to determine the projective depths.

The derivation of the closure constraints is somewhat lengthy and will be omitted here. 
The interested reader is referred to [Tri95, ST96] for more details. Briefly, the constraints 
are:

Fij (AjXj) +  eij A (AfX*) = 0 (6.3)

for 2 images i and j ,  epipoles e*j and fundamental matrix Fij. For 3 images i, j  and k with 
trifocal tensor T/fc, the closure constraint is given by:

T l k (AiXi) -  (AjXj) (eki)T +  eji (Xkx k)T =  0

These equations can be rearranged to give the scale factor for an image in terms of the scale 
factors in the other image(s). Naturally, the 3 image closure constraints will be more robust, 
but also much more complex. The simplest scheme involves just using equation 6.3. By 
estimating a sufficient number of fundamental matrices, it is possible to amass a system of 
homogeneous linear equations in terms of the unknown depths.

However, there is a further problem that the fundamental matrices and epipoles can 
themselves be recovered only up to an unknown scale factor. To overcome this scale 
factor problem, it is possible to use only the minimal set of fundamental matrices, i.e. 
F\2 i F23 , . . . ,  Fm_im, and use the unknown scale factors for each image to absorb the 
arbitrary relative scale of F  and e. If redundant equations are used, it becomes essential 
to choose self consistent scaling for the estimated fundamental matrices and epipoles as 
described in [Tri95].

A further advantage of using a minimal set of fundamental matrices is that it is possible 
to simply chain equation 6.3 together to find successive scale factors. Because the scale 
factors for each point are only defined subject to a scale factor, the first scale factor can be 
fixed for example to 1  and then the rest determined consecutively by solving equation 6 . 3  in
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least-squares to find Aj in terms of Â:

\ _  (^tjAXj) (EjjXj)
Ai -  ||eyXj|P

An additional improvement has been added to the algorithm for the purposes of this work. 
Solving equation 6.3 in a least-squares sense involves minimising a quantity that is not really 
meaningful. Instead, before using equation 6.3, the point match across that image pair is 
Hartley-Sturm corrected (see section 5.4.3 on page 1 0 2 ). Since the corrected points will fit the 
epipolar geometry perfectly, the equivalence expressed by the image pair closure constraint 
will be exact. Consequently, instead of minimising an arbitrary quantity, the orthogonal 
Euclidean distance from points to epipolar lines has been exactly minimised, resulting in 
vastly improved results.

One final improvement of note is available, but not assessed in this work. That is the 
recent development [MHOO], which calculates the unknown scale factors by solving a gener­
alised eigenvalue problem derived from a subspace constraint on all the projections of a 3D 
point. However, this still minimises a meaningless value and it seems unlikely it will produce 
any large improvement (the author has not tested this hypothesis).

Other Factorisation M ethods

Alternative approaches for factorisation do also exist. Most recently in [HBS99], a method 
was proposed that relies on subspace methods only, and hence provides the significant advan­
tage of being independent of the world coordinate system. However, the method is somewhat 
slower and recovers 3D structure only. In order to determine the camera matrices, it is nec­
essary to solve for them in a least-squares sense using the known depths and 3D structure. 
Since this can only be performed using a linear approximation, there is some degradation in 
performance.

An alternative, new and very promising approach is presented by the so called plane and 
parallax methods. These are based on the realisation that the most significant aspect of a 
camera description is the centre of projection. Rotations and calibration changes produce 
trivial image deformations that can be described by 2D homographies, whereas translation 
results in the parallax effects from which structure can be determined. In order to cancel 
out the simple calibration and rotation deformations, all image points are placed into the 
coordinate system of a particular 3D plane in the images. The disparity of points then 
becomes the projective distance of points from the selected plane and the underlying 3D and 
matching tensor geometry becomes much simpler.
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However, there are clear limitations of this technique which have yet to be addressed. 
For example, it is necessary to be able to accurately determine the same plane in all images, 
which is not always feasible if there is a lot of camera movement and no easily identifiable 
planes. Secondly, it is hard to know which plane is best to use and, thirdly, a bad choice of 
plane can seriously distort the original images. For more details see [TriOO]

6.4 Sum m ary and C onclusions

A number of algorithms have been presented in this chapter, all of which have their own 
advantages and drawbacks. In an attempt to keep this all in perspective, a brief summary 
of the algorithms will now be given, along with a brief statement of the advantages and 
disadvantages of each approach.

• Sequential methods: Methods based on a sequential methodology attempt to produce a 
reconstruction an image at a time. Structure is initialised at the start of the sequence, 
and images added one by one. For each new image, matching between existing structure 
and points in the new image allows new camera matrices and structure to be calculated.

The big advantages of this methodology are that it is very simple to implement, and 
that images are handled on line making it perfect for applications for which images 
become available over time (e.g. robot navigation). On the other hand, it suffers from 
an accumulation of error as the sequence increases in size. In general, the reconstruction 
has a bad tendency to drift with points at the end of the sequence in a very different 
coordinate frame to those at the beginning. This means a small section of poor quality 
reconstruction can throw the whole reconstruction.

• Bundle Adjustment: This is a nonlinear refinement method that minimises the max­
imum likelihood error measure of distance between projected features and observed 
image features. Since this measure is nonlinear, it is necessary to use gradient descent 
or iterative methods to refine some initial guess.

A great benefit of bundle adjustment is that it is a maximum likelihood estimator. 
However, because the criterion minimised is nonlinear, the obvious drawback of bundle 
adjustment is that it is highly dependent on the quality of the initial guess. It is also 
fairly complex to implement, requiring special handling of the huge sets of equations 
to provide a tractable solution.
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• Factorisation: If the projection equations for all points in all images are stacked to­
gether it becomes possible to factorise the joint matrix of image points into the struc­
ture and camera positions.

The principal reason for the attractiveness of factorisation methods are that they solve 
for all camera matrices and structure at the same time, thus balancing error evenly 
across the whole sequence. The simplicity of a simple factorisation also results in a 
very quick method, especially since there is no need for intermediate results (on the 
other hand this also means there are no intermediate results to guide or aid matching). 
Unfortunately the cost of all this is that the methods can produce pretty bad results, 
because they do not minimise a meaningful error measure. This is largely remedied by 
use of the closure constraints (see section 6.3.2), but again lack of a meaningful error 
measure causes bad degradation in results as the size of the image sequence increases. 
Finally, they become impractical for long sequences, because points that are missing 
projections in images cannot be handled without further loss of accuracy.

As can be seen existing methods offer little scope for flexibility. Given exact knowledge 
of the particular application, it is usually clear which method to use, but long sequences 
remain a significant problem.



Chapter 7

Robust Merging Based Projective 
Reconstruction

7.1 In troduction

It has been shown in previous chapters that a key problem to be addressed in projective 
reconstruction is to find an initial estimate of the scene structure and camera motion, using 
only the observed projections of a real scene.

The previous chapter reviewed a number of well established methods for finding this 
initial approximation. However, all the techniques were found to suffer from significant 
drawbacks. Sequential methods, which continually add new structure and cameras to an 
existing reconstruction are heavily reliant on a good initial estimate of structure which can 
be updated across the whole sequence. Factorisation methods overcome these problems by 
calculating all cameras and structures at the same time, but suffer from a lack of robustness 
and flexibility for purposes of further matching, or when points are missing projections in 
some images. When combined with the lack of a meaningful error criterion, it becomes 
clear that factorisation methods are at best inaccurate over long sequences and at worst 
inapplicable.

To overcome these problems, it was proposed in [FZ98b] to reconstruct small sequences 
and then merge them together hierarchically to create larger sequences, using bundle ad­
justment to refine the results at each stage. This chapter will present a new method for 
projective reconstruction that generalises this hierarchical approach to a merging based ap­
proach to reconstruction. The previously unexplored flexibility of this merging approach is

118
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then examined, and applied to specific applications such as image sequences.
Finally, a large number of new and robust techniques for the merging of projective recon­

structions are introduced and it is then shown that the quality of reconstruction from these 
new methods are dramatically improved. In practice, it is shown that the improvements are 
so great that merging reconstruction can be used to supplant even methods based on mul­
tilinear forms such as the trifocal tensor. Finally, to justify these claims, a comprehensive 
comparison with existing projective reconstruction methods is given.

7.2 M erging M ethodology

As already mentioned, the basis of the new method presented in this chapter is to merge 
projective reconstructions from small sub-sequences of images to create a reconstruction 
for the whole sequence. These initial reconstructions could come from multilinear forms 
such as the fundamental matrix or trifocal tensor. Alternatively, small sub-sequences could 
be reconstructed using factorisation techniques, which can be achieved robustly by using 
recently proposed robust methods for sequences of arbitrary length [SZHOO].

Initially, this means the scene is represented by a set of independent projective recon­
structions. Since independent projective reconstructions of the same scene can be related 
by a change of projective basis, it is necessary to use corresponding scene structure to com­
pute this basis change in the form of an arbitrary projectivity of V 3. This process will be 
described in detail in section 7.4 with the associated robust method described in section 7.5.

Assuming availability of robust techniques to compute the aligning homographies, reg­
istration proceeds robustly merging sub-sequences into new larger sub-sequences before ap­
plication of a bundle adjustment to redistribute error in an optimal manner. An example of 
this is given in figure 7.1 where, starting from a sequence of image triplets, the triplets are 
merged hierarchically so as to keep two images overlapping at all times.

7.2.1 Overlap and Correspondence

An important consideration in the merging approach is that in order to register sub-sequences, 
common structure needs to be found. If sub-sequences share one or two images then estab­
lishing these correspondences is trivial because some features in the common images will 
relate to 3D structure in both of the different sequences. However, for the case of zero 
overlapping images, it is necessary to return to the images themselves and look for matches
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1. Robustly produce cameras and structure for the first image pair.
2. For each new image, produce cameras and structure for the image pair containing 
the new image and the last image in the existing reconstruction.
3. Use the 1  view overlapping techniques to robustly merge the two reconstructions.
4. Repeat from step 2 until no more images.
5. (Optional) Bundle adjustment of the complete sequence.

Table 7.1: Sequential merging for image pairs

between the features in both sub-sequences. This is an important advantage of using over­
lapping sequences.

A further advantage conferred by using more than one overlapping image is that of outlier 
detection. If a point is found to track inconsistently, it can be flagged as an outlier. For 
example, if a point has projections u, u', u" in images 1,2 and 3 from triplet one, but has 
projections u', v, u" in images 2,3,4 from triplet two, then something is clearly wrong and 
the robust schemes in section 7.5 should be used to remove all outlying projections.

7.3 M erging Schem es

One of the advantages of the merging based approach to reconstruction is a great deal of 
flexibility. It is a general technique and does not necessitate any assumptions about the 
nature and distribution of images that are available, e.g. that they are all in a closely 
connected sequence. As a consequence, it may be used for many different reconstruction 
applications, and in many different ways. To illustrate the flexibility, the merging approach 
has been used here to design algorithms capable of performing reconstruction for different 
types of image acquisition. This can be achieved using exactly the same set of techniques 
for each algorithm, relying only on the existence of a specific feature matcher suitable for 
the task in hand. Indeed, the details of the merging have been deliberately omitted until a 
later stage because there is no need to adapt them to the individual algorithms:
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Figure 7.1: Hierarchical merging of sub-sequences - 2  image overlap scheme

7.3.1 Sequential Merging

For this scheme, merging is arranged so as to reconstruct in a similar manner to the sequential 
reconstruction method based on re-sectioning (see section 6.2 on page 108). In the re- 
sectioning method, new images are added to an existing reconstruction one by one, and the 
new camera estimated by the relationship between existing structure and associated matches 
in the new image.

The merging techniques are also applicable to this form of problem, and to illustrate this 
an image pair based scheme will now be presented. Processing starts as for conventional 
sequential reconstruction, by producing a reconstruction for the first image pair using the 
techniques of chapters 4 and 8 . When a new image is added, it is paired with the last image 
from the existing reconstruction, and robust methods are used to match and produce an 
independent reconstruction for the pair. The result is two reconstructions overlapping by 
one image, which can be robustly merged using the techniques of this chapter. The sequential 
merging algorithm is summarised in table 7.1.

7.3.2 Hierarchical Merging

If a complete sequence of images are available prior to processing, then the sequential method 
just outlined is not necessarily the best method. This is because it tends to favour the images 
used for the initial reconstruction, and because it has a tendency to drift out of the original 
projective coordinate frame when near degenerate sections of sequence are encountered. If all
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Figure 7.2: Hierarchical merging of sub-sequences - 1 image overlap scheme

images are available at the start of processing, and consecutive images have small baselines 
then an alternative is to merge sub-sequences hierarchically.

An example of this hierarchical reconstruction is given in figure 7.1 where, starting from 
a sequence of image triplets, the triplets are merged hierarchically so as to keep two images 
overlapping at all times. Of course, this scheme is highly flexible and could start from 
arbitrary length sequences overlapping by arbitrary numbers of images.

The advantages of hierarchical merging are that it tends to distribute error more evenly, 
is easily able to handle missing images or sub-sequences, that the bundle adjustment can 
sometimes be faster when it is split up in this manner and that it is highly suited to parallel 
or distributed implementation. However, for larger sequences, the bundle adjustment can 
become quite slow, and so if desired, bundle adjustment can be stopped at a certain level 
and merging simply proceed without it. In these cases it is very important to reconstruct 
or update the 3D of all merged points and cameras. A bundle adjustment can then be 
performed at the end when the complete sequence is available.

M erging Schemes

As mentioned, hierarchical merging is very flexible, allowing sub-sequences to be omitted 
and overlap to occur for differing numbers of views. Consequently, there are many ways to 
vary the overlapping scheme, for example:

• For greater computational efficiency only one view needs to be kept overlapping, as is 
illustrated in figure 7.2

• To also produce speed increases, hierarchical registration can stop at a certain level, 
and registration proceed sequentially as described in section 7.3.1.
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Figure 7.3: Hierarchical merging of sub-sequences with Image Dropping

• To keep the quantities of data more manageable images can be dropped as illustrated 
in figure 7.3. It is only a good idea to do this when merging small sequences. In these 
cases, the inaccuracies of the small baseline mean that it is effective only to keep the 
large baseline matches. Note, it is not a good idea to downgrade triplets to pairs in 
this manner because of the significant weakening of the matching constraint.

7.3.3 Application to Sparse Collections of Images

The final problem to be addressed with merging based reconstruction, is to produce re­
constructions for collections of images which have no temporal connection - for example, a 
collection of images of the same scene taken arbitrarily using a normal camera. In these 
cases, a different approach is suggested because the relationship between images is arbitrary 
and not ordered.

Firstly, a pair-wise reconstruction is built for each image pair for which a fundamental 
matrix can be calculated. The problem then becomes one of choosing the best way to merge 
the pairs together so that each image is included in the sequence.

This is done by building a graph structure, with pair-wise reconstructions at the nodes, 
and links between nodes indicating that the pair-wise reconstructions have some common 3d 
structure. Each node stores the mean re-projection error, and each link stores the amount 
of shared structure between reconstructions.

Choosing the best way of merging sequences is therefore equivalent to finding a spanning 
tree for the graph, ensuring that each image appears in at least one node of the tree, the sum 
of re-projection errors at each node is minimised, and the amount of structure shared between 
each node is maximised. This is achieved using a modified version of Prim’s algorithm
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Figure 7.4: Illustration of re-projection constraints making use of matching cameras (fig. a) 
or matching structure (fig. b). In figure a the same item of structure X* from sub-sequence 1 
is projected through each of the matching cameras, but the camera from sub-sequence 2  P'k 
is modified by the aligning homography so it is in the sub-sequence 1 co-ordinate frame. In 
figure b matching structure Xj X' is projected through the same sub-sequence 1 camera 
Pi, but the structure from sub-sequence 2 X' is modified by the aligning homography so that 
it is in the co-ordinate frame of sub-sequence 1. Note that for purposes of illustration the 
rnis-alignment between sub-sequence 1 and transferred sub-sequence 2  structures has been 
greatly exaggerated

[Wei99].
Once a spanning tree is constructed, the merging can take place. The tree is traversed 

multiple times. During each pass, the leaf nodes in the tree are robustly merged with their 
immediate parent. This is repeated until a single (complete) sequence is left at the root of 
the tree.

Note that this particular reconstruction algorithm is due largely to Simon Gibson.

7.4 M erging Different P rojective R econstructions

So far, the core problem associated with the merging based approach has not been addressed. 
That is to say, given reconstructions for two sub-sequences of the same scene, how can they
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be robustly merged into one reconstruction in the same projective basis? This section aims
to describe in detail some methods for this registration process, under the basic assumption 
that some of the 3D points and possibly camera views are common to both sub-sequences, 
and that at least some of these common points or camera views are known.

Suppose point j  has matching structure represented by the coordinate vector Xj in the 
first sub-sequence and XJ in the second sub-sequence. Since projective reconstructions are 
equivalent if they are related by a projectivity H  of V 3, it follows that:

where Pi and P( are camera matrices for the same view % of the scene, but in the differing 
projective basis of the two sub-sequences. This provides two approaches to applying con­
straints on the unknown projectivity H\ either by using matches between items of structure 

X'- or by using matches between projection matrices Pj-H-FJf.
With real data, equations 7.1 and 7.2 will not be satisfied exactly, and so an error 

minimising estimate must be found instead. Since the reconstructions are assumed to be 
projective it will be most sensible to work with image measurements alone, and use some 
form of re-projection error. This re-projection error can exploit either matches between 
structure or matches between cameras. For a geometric interpretation of this, the reader is 
referred to figure 7.4,

One approach is to take matches between structure Xj -H- X'> and using the unknown 
projectivity H  convert these matches into the other sub-sequence and project them (figure

for all structure j, images in sub-sequence 1  z, images in sub-sequence 2  k for which this 
structure has been observed, and number of residuals in sequence 1  and 2  n\ = T 
n2 = Ylkj 1- This measure basically states that, for a common pair of 3D points, we wish to 
convert each of the 3D points into the other sub-sequence, and minimise the re-projection 
error in all images of that other sub-sequence in which it is visible. Note that figure 7,4b 
provides an illustration of what this means for the first part of equation 7.3 only.

Whilst the measure just suggested makes use of structure matches, it follows that it must 
also be possible to create an error measure that only relies on matches between projection 
matrices P -̂H-P  ̂ (figure 7.4a). Since this does not require matching structure, any structure

Pi^PlH- 1

(7.1)

(7.2)

7.4b).

(7.3)
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can be used regardless of whether it has been found in both sub-sequences. In particular, 
for structure X{ in sub-sequence 1 projecting into matching images k, and structure Xj  from 
sub-sequence 2  projecting into the same images k:

] T  d2 PfcXi) + (Pkm c jt P ^ X ') (7.4)
ki kj

The advantage of this criterion is that it allows extra constraints from unmatched structure 
as well as providing an error measure that is not susceptible to corruption by structure 
mismatches between the sub-sequences (because it does not use matches). However, not 
using matches means that only 1 1  parameters of H  can be constrained if a single image 
is used, rather than the full homography. Note also that figure 7.4a provides a geometric 
interpretation of the first half of equation 7.4 only.

In all the previously given criteria, the distance function d, (X, Y) takes two homogeneous 
n-vectors representing points in T>n~l and can represent either Euclidean distance:

4 ( X , Y )  =  £ ( | ^ - T ) 2 (7.5)

or algebraic distance:
71—1

d \  (X, Y ) =  J 2  (X kYn -  YkX nf  (7.6)
k = 1

Also note that, since all of Pj, P/, Xj, X'- are computed subject to errors, a minimum of 
either equation 7.3 or equation 7.4 does not represent a maximum likelihood estimator for 
the whole structure and motion problem - only for the estimation of H.

7.4.1 Merging with One Overlapping View:

The previous section has discussed two constraints that can be imposed on the aligning 
projectivity H. These assume matches between structure are available and/or matches 
between cameras are available. Since the application of these criteria depend on the number 
of camera and structure matches that are available it is appropriate to use different methods 
based on the data available. In this section the most useful case for the task in hand will be 
examined - that of one overlapping view (hence one camera match), combined with a set of 
outlier free structure matches.

Whilst the criterion in equation 7.4 allows constraints to be placed on the merging pro­
jectivity H  using the matching camera, in this case the existence of only one such match
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means the equivalence can be exact (i.e. equation 7.2 - P ^ P /P " 1 can be satisfied exactly). 
In [FZ98b], it was shown how these overlapping camera matrices, P  and P', can be registered 
exactly using equation 7.2, and hence be used to remove 11 degrees of freedom from the 15 
degrees of freedom in the projectivity relating the two sub-sequences.

Because a projection matrix P  can be transformed to a canonical form [ijO] by multi­
plication with its pseudo inverse P +, it follows that the projectivity H  converting P  to P' 
exactly can be found as P +P' subject to four extra degrees of freedom a. Note here that 
both P + and P' have been upgraded from their usual 3 x 4  form to a 4 x 4 form. This is 
simply upgrading the dimension into which the projection matrix projects, and considering 
the image space as embedded within the structure space (which it is - it is a plane). This 
requires fixing the extra information to some arbitrary value. In this case, it can be expressed 
using notation with the multiplication P h X4 -

Given this, if we wish to find the projectivity H  that minimises equation 7.3 subject to 
P H  ~  P f, then the solution will belong to the 4-parameter family of homographies:

H(v) =  P +P' + haT (7.7)

where h is the null-space of P. Plugging this expression for H into equation 7.3, substituting 
x/c = P{X.j and ignoring the terms involving JEf-1, yields two linear equations in terms of a 
per projected point:

(pi -  x fcp3) (haTX /) =  (xfcp3 -  pi) (P +P'X') (7.8)

where pn represents the nth row of P  and k £ (1 , 2 ). This is a very similar scheme to that 
presented in [FZ98b], but using re-projection error instead of 3D error (3D error will be 
discussed later, see equation 7.17).

Note that, by moving to re-projection, the exact alignment of the overlapping cameras 
has caused some interesting effects in the error measure. Those points that project into the 
overlapping images will impose no constraints on the unknowns a in the transformation, and 
so should not be considered. This must be the case because both the projection matrices 
will be exactly the same after registration using the above technique.

An A lternative Formulation

If the registered overlapping projection matrix is transformed to the form [T3 x3 10], then
the null-space h becomes (0,0,0,1) and so haT has a simplified form. Consequently, the
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constraints on H  provided by equation 7.7 can be formulated slightly differently:

H  =  [/|0 ]+ ([/|0 ] J4X4) +  (0 , 0 , 0 , i f  vT

U xa +  A where A = hx3 0  

a l , 2,3 a 4
(7.9)

In this equation, ai,2 , 3 represents 3 unknown parameters and a 4 an unknown scaling. For 
greater simplicity in later descriptions, it will be assumed at this point that all structure 
and cameras have been transformed so that the overlapping camera matrix P0 for both 
sub-sequences is of the form [-̂ 3 x3 1 0], i.e for the first sub-sequence:

Pi = PiPo 
x, = a x ,

This changes equation 7.9 to the much simpler form of H  =  A and so equation 7.8 becomes:

(pa: -  XfcPs) AX' = 0  (7.10)

After this transformation, the original H  can easily be recovered as H ~ P A P '+.

Improving the A lgorithm

There may appear to be little gain by using re-projection error instead of 3D error because 
both error measures are meaningless. However, an important improvement can be found by 
relating algebraic and Euclidean distance for re-projection error. Euclidean error dE gives:

PkAXf „  _   ̂ f t 7 ,— -z-  - x k - d E (7.11)
P3AX'

whereas algebraic error gives (expanding equation 7.10):

p kAX' -  x kp 3A ± ! = dEf>3 A ± '  (7.12)

It can easily be seen that equation 7.11 can be obtained by dividing equation 7.12 by p 3 AX'. 
This is very useful, because by using the constraint from equation 7.1 that X =  AAX', an 
equivalent value to p 3 AX; can be found and then used to weight the measure in equation 
7.12, thus approximating Euclidean re-projection.

The approximation to p 3 AX' can be found by projecting the equivalent structure from 
the other sub-sequence p 3 AX. Of course p 3 AX' and p 3AX will not normally be exactly
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the same due to differing reconstructions in the two sub-sequences, but assuming accurate 
reconstruction they will be similar enough.

In practice equation 7.1 does not express an exact equivalence between X and X', and 
the two are related by the unknown transformation A and a scale factor A that is common 
to all structure:

X =  A AX'  (7.13)

Fortunately, because the first 3 rows of A represent an identity mapping, the scale factor 
A can easily be determined from X* =  XI3 x3 X.'k for k G {1,2,3}. It has been found in 
experiments that it is best determined by solving using least-squares and the 3 available 
constraints on A to give:

A =
\ “2 v̂3 /

Since A is now known, a new and very nearly Euclidean linear distance measure can be used 
in the minimisation:

PaAX' xfcp 3 AX'
p3AX p3AX 

A Further Improvement: Adding the Inverse

= dE A p p (7.14)

a4 0 0 0
0 0 0
0 0 a4 0

-Ol —  Cl‘2 - a 3 1

By reformulating the problem as in equation 7.9, the affine parameters come in an easily 
invertible form to give:

A'

The implications of this simple inverted form is that it is now possible to keep the inverse 
part of equation 7.3 linear. Considering only this part for now, substituting xj. for PkXj  and 
following the reasoning in the previous section, the following error measure is arrived at:

p ' ^ - 1*  -  x'fcp ' =  c te f tA -1*

It would be desirable to use the weighting trick again and find jia^ in X& = /ra4 Xk, for 
k e {1,2, 3}. Identifying this with equation 7.13 gives /ia4  =  ^ and a new error measure of:
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This can be used with the error measure in equation 7.14, in the least-squares minimisation 
7.3 to give a complete linear approximation. Generally, the addition of the inverse component 
provides only small improvements to the results. Sometimes, it can result in worse solutions 
and so, for best results, a solution both with and without the inverse should be found, and 
the best of the two selected using the full error measure.

Poorly Aligned Sequences

If the two sub-sequences being merged are very different, then it can often be the case that 
the overlapping camera matrices will not present a good means of aligning the two sequences. 
In these situations, it is generally better to use structure to estimate the 11 parameters of 
the projectivity instead of aligning the projection matrices.

To do this, an alternative method based on using the constraints provided by matching 
projection matrices (equation 7.4) can be used instead of using the direct alignment given 
by Pi~P!H~l . In this case, for only one overlapping image pair P-f-hP', equation 7.4 reduces 
to:

min/r Y  PX;) +  d2 (P f fX ', P'X'.) (7.16)
j

for overlapping cameras P, P' and all structure i in sequence 1 and structure j  in sequence 2. 
The advantage of this measure is that, because it considers only one overlapping camera P, 
it is invariant to affine transformations of the structure space P 3. Consequently, it applies 
constraints to only the top 3x4 sub-matrix of the projectivity H. This means an H  of the 
following form can be estimated:

H l l H 1 2 H 13 P14
H21 H22 H23 H24
m i H32 P33 H U

0 0 0 1

This form of estimation is in fact closely related to the resectioning algorithm (see section
5.3.1 on page 98). Just considering one part of equation 7.16, it can be seen that estimating 
H  is exactly equivalent to re-estimating Pk as in resectioning. However, in this case, it is 
balanced by expecting the inverse to be true.

A linear algorithm can be derived, using the same method as for resectioning (i.e. substi­
tuting algebraic distance into equation 7.16). Since there are two possible linear algorithms, 
depending on which half of equation 7.16 is used, it is recommend to try both as well as
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the direct registration method (i.e. H = P +P !) and select the one minimising the full error 
measure.

Whilst this algorithm is fairly effective, it does present a problem. For the one view 
criterion in equation 7.9, the form of the projectivity was greatly simplified by aligning the 
overlapping camera matrices with the basis. If the first camera is not aligned with the 
standard basis, then the projectivity has to have the form in equation 7.7:

H(v) =  P +P' + haT

By altering the form of the aligning projectivity, so that the two cameras no longer register 
exactly, it is possible to move only one camera to the standard basis, leaving H — [7|0]P' 4 - 
(0, 0 ,0 ,1)T aT. This means H does not have the same simple form as in equation 7.9, and so 
will not be linear in the unknowns if it is inverted for the minimisation using the distance 
criterion in equation 7.15. Hence any H  that is part estimated in this manner cannot be 
used with the complete linear algorithm (only the part of 7.15 involving the non inverted 
H).

One final important note concerning this algorithm is that it is robust and does not rely on 
the accuracy of any structure matches that may or may not be available. Subsequently, the 
method can be run before any outlier identification. However, this algorithm is not strictly 
speaking necessary and rarely results in anything more than a 1 % or 2 % improvement overall 
(on the tests to be presented in the results section) unless very large errors are encountered 
(a few pixels), or there is a particularly inaccurately reconstructed image.

Practical Considerations

In practice, both the algorithms considered so far only give a close approximation to Eu­
clidean structure and are not absolutely perfect. Because of this, it is recommended to try 
calculating A as normal, swapping P, P' and X , X'  then calculating A-1. The one that gives 
the best result according to equation 7.3 with Euclidean distance should then be accepted.

So far, only linear approximations to the merging error have been discussed. Although 
the results from these are excellent, it is often worthwhile refining the results from them 
using the full nonlinear measure. In this case, an iterative technique, such as Levenberg- 
Marquardt (see appendix A), can be used to minimise equation 7.3 with Euclidean distance 
for all the 15 parameters of H.
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7.4.2 Merging with Other Degrees of Overlap

The one view algorithm just presented is without a doubt the most effective method. Indeed, 
if there is more than one view overlapping, the one view algorithm can still be applied, but 
in that case it should be tried individually on all the overlapping views and the best result 
selected. However, algorithms can still be developed to better handle either fewer or more 
overlapping camera views.

Zero Overlapping Views:

In this case, constraints are provided by equation 7.1 only, and it is only possible to use the 
error measure 7.3 alone (with a complete 15 parameter homography). If Euclidean distance is 
used, then both error measures are nonlinear and no direct solution can be obtained. Instead 
the algebraic distance measure can be used, and the inverse omitted, in order to obtain a 
linear approximation, before refinement with a nonlinear stage using the full Euclidean 
measure. It is worth noting that the zero view overlapping methods are applicable to any 
number of overlapping views provided structure matches can be found.

Two or More Overlapping Views

For the case of two overlapping views, the constraints offered by matching projection matrices 
(via equation 7.4) are sufficient to determine H  completely. Recall from section 7.4.1 that 
with only one overlapping projection matrix, only 11 parameters can be determined. The 
two or more view projection matrix only algorithm tends to be less effective than the one 
view overlapping algorithms but has uses because it is robust to structure mismatches (a 
point that will be very relevant later in the chapter).

The constraints for this algorithm have already been provided in equation 7.4 and take 
the form:

E d2 ft*,)+E  ■d2 p & j )
ki kj

If algebraic distance is used with these equations, and the part of the equation involving 
H~l is omitted, a linear algorithm can be used to determine H. Naturally, the process 
should be repeated after swapping the sub-sequences to get H~x and the best solution kept. 
Alternatively one of the overlapping projection matrices can be aligned exactly (all can be 
tried and the best kept) as in the one view overlap algorithm and the aligning homography 
reduced to 4 unknown parameters. This means the same trick can be used to determine
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accurate scale factors and include the inverse component, and can result in a very accurate 
algorithm.

7.4.3 Alternative Criteria for Merging Sub-Sequences

The methods presented above all relied on the two error measures presented in section 7.4
which rely on either camera or structure matches. Whilst these are the only two error
measures that will be used in this work, both different measures and different variations on 
these two criteria are possible. In the interests of completeness some of these measures will 
now be reviewed and discussed here.

In [FZ98b, ZBR95], two other least-squares minimisation criteria were suggested for use 
in merging projective sub-sequences. The first of these is to minimise the squared distance 
between 3D points common to both sub-sequences:

m m ^ d 2 (X3-,iJX ') (7.17)
3

The second criterion minimises the squared re-projection error to the original observed cor­
ners Xj from which the 3D points were triangulated:

min Y  d? (PiHX'j, x}) + d2 (.P l H ^ X j , xj) (7.18)
ij

Since there is no concept of distance in projective space the first measure in equation 7.17 is 
only strictly meaningful if the 3D frame is a metric one. However, in the metric case it was 
pointed out in [FZ98b] that H  is limited to being a similarity transform and can be solved 
in closed form using equation 7.17 with Euclidean distance. Since this is optimal, there is 
little need to further consider the least-squares registration problem in the calibrated case. 
Similarly, if the frame is quasi-Euclidean (a Euclidean approximation based on inaccurate 
calibration), this 3D measure can often give good results, but an algebraic distance measure 
still needs to be used.

For the fully projective case, it is a good idea to work with image quantities only and 
hence with the measure in equation 7.18. However, this particular criterion has drawbacks. 
Firstly, it suggests that re-projection errors should only be minimised in images common 
to both sub-sequences. And secondly, rather than minimise the difference between the two 
reconstructions, it minimises the difference between one reconstruction after transfer to the 
projective basis of the other reconstruction and the observed data.
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The alternative criterion suggested in this work (equation 7.3) minimises the difference 
between the two reconstructions, leading to a two fold advantage. Firstly, both reconstruc­
tions have been estimated using all data in the relevant sub-sequence, and so their projections 
should be a more reliable estimate of the actual feature position than the observed feature. 
Secondly, because the same projection matrix is being used to project both the points being 
compared, they will be subject to the same uncertainty due to the projection matrix, sim­
plifying the error model and making it less prone to large errors (it is still not a maximum 
likelihood estimator for the full problem though).

In addition, by not just using residuals for points that appear in overlapping images, the 
new measure has a further advantage in that it will favour the more reliable further tracked 
points. On the other hand, the symmetry of equation 7.18 is lost so that it is possible for one 
sub-sequence to contribute more residuals than the other. In practice a slight improvement 
can be made by weighting the two halves of equation 7.3 to make the contribution of residuals 
from both sub-sequences even (m and n2 in equation 7.3).

There are also other numerous minor variations on these and other error criteria (for 
example considering projection of matched structure in matched images). However, the 
author has experimented with some of these and found that there is little difference between 
them. It seems best to simply involve as many cameras and items of structure as possible 
rather than use elegant methods which require very specific data.

7.5 R obust M erging

It is reasonable to expect structure outlying to the sub-sequences used to initialise the 
merging process has been removed, and as such it would be expected that there would be 
very few outlying structure matches between the sub-sequences. Indeed, if the initial sub­
sequences are longer than two images and sub-sequences share common images, it is often 
quite possible to obtain a reasonable reconstruction using normal least-squares techniques 
alone. However, this is by no means a guarantee against outliers and they can still occur, 
even with points that have been tracked for many images.

For example, given two points that have been tracked for 3 images each, and which share 
one common point, it is quite possible that image effects such as shadow or occlusion have 
caused one of the points to be matched incorrectly and then tracked anyway in a manner 
consistent with the geometry. However, when the points are joined they will become outlying.

Although rarely significant, except in specialised cases, outliers can sometimes have a
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large effect on the result. Consequently, to ensure a viable solution it is recommended to 
use a robust method, then detect and remove outliers. At the heart of any robust method 
is a different, more robust function of the residuals than that used in normal least-squares 
methods. As such, it will be appropriate to first describe the function used for the purposes 
of this work.

7.5.1 A Robust Error Criterion

Standard least-squares methods attempt to minimise where the residual r* can be
defined as the difference between the «th observation and its fitted value. When there is the 
possibility of outliers in the data, a different function p (rc) that is robust to outliers should 
be minimised instead, meaning the robust function to be minimised can be written as:

For this case, r* can be taken from equation 7.3 and the standard deviation a can be replaced 
with the robust standard deviation, defined as:

a  -  1.4826 1  +
n — p

median In

for n observations and a parameter space of dimension p (see [RL87] for full details). For 
the case in hand, a robust Huber function [Hub81] is suggested for p(x):

x 2 x < T
p W =  , 9

\ T *  X  >  T

See appendix C for more details of this. The constant r  should be selected based on some 
confidence limit. If an algebraic approximation to distance is being used for n , then p (^-) 
will conform to a x 2 distribution with one degree of freedom and so the value a/ 3.84 can 
be used for a 95% confidence level. If, on the other hand, Euclidean distance is being used, 
then a/ 5-99 can be used for the same 95% confidence level.

The big advantage of this Huber cost function is that it conducts the minimisation over 
all structure whether or not it is outlying. By applying a fixed cost for all outliers, it is 
assumed outliers are drawn from a uniform distribution. Another big advantage of this is 
that points that are poorly localised but are not outlying still contribute to the result (such 
points can become inlying after re-calculation of structure).
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Whilst minimisation of this robust Huber function utilising r* from 7.3 will work, much 
better results can be obtained if it is realised that both the different sub-sequences will have 
different errors in their reconstruction and hence different standard deviations. Consequently, 
equation 7.3 should be split into two parts:

*; 1

kj

each of which should be evaluated separately, using a different robust standard deviation 
for each part. This is very important because otherwise, if one sub-sequence has been 
reconstructed with a much lower standard deviation, it will cause all residuals in the other 
sub-sequence to be flagged as outliers.

Now that the robust function has been presented, it will be possible to address how 
that function may be minimised. One approach would be to use an iterative method such 
as Levenberg-Marquardt (see appendix A) to minimise the function directly. This can be 
effective, but it still requires that an initial solution be found.

Recently, random sampling techniques have proved highly successful at minimising these 
sorts of functions (see work relating to MLESAC, [TZOO]). However, because of the sparsity 
and lack of effect of outliers, it is proposed that in many cases, particularly where compu­
tational efficiency is an issue, it would be more appropriate to use standard M-estimator 
techniques and remove outliers based on the results this produces.

7.5.2 M -Estim ators

An M-Estimator attempts to minimise the nonlinear Huber function directly. Since, in this 
case, a good estimate of the parameters can be obtained using normal least-squares even 
with outliers, a good approximation of this minimisation can be found by recasting it as an 
iterative re-weighted least-squares problem (see [Zha97] for details).

Since the Huber cost function relies on an estimate of the standard deviation, a least- 
squares method is run repeatedly, and the results from the previous run used to determine 
the robust standard deviation and hence weightings for the next run. If a residual r* is found 
that is greater than r, it is weighted by J- otherwise it is not weighted at all.• i

This solving and re-weighting is repeated until there is no significant change in the sum 
of the Huber function for all r\. Note that, if the data set contains outliers with very large
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residuals (not likely when merging), then the initialisation may fail and the solution vary 
wildly. This needs to be detected and handled by using a different technique (such as random 
sampling).

7.5.3 Random Sampling M ethods

The effectiveness of M-estimators for the case in hand does not entirely preclude the need 
for random sampling methods for some specialised cases, in particular the case of zero views 
overlapping or poor quality point tracking (for example merging sub-sequences with only two 
images in each). In these situations, outliers can be very significant and a random sampling 
technique will be most effective.

The basis of random sampling is to pick random sub-samples of the data set and estimate 
the model parameters using those samples of data only. The best of these estimates is then 
determined based on the error measure being minimised. When using a random sampling 
method, it is therefore important that the minimum number of points are used to estimate 
the model parameters so as to reduce the probability of an outlier being included in the 
random sample. This necessitates minimal algorithms for differing degrees of image overlap.

Zero V iew  Overlap

In this case, the only constraints available are those offered by corresponding 3D structure. 
Since a general projectivity has 15 degrees of freedom, it follows that at least 5 points are 
needed to compute the projectivity. 5 points in fact form a projective basis of P 3, and so 
it is appropriate to reformulate the problem as a change of projective basis. If 5 3D points 
Xn are selected in the first sub-sequence, they are easily made into the standard projective 
basis by a transformation B  of the form:

B = A i X x  A 2 X 2  A 3 X 3  A 4 X 4

X F
where

Ai A2 A3 A4 ] = [ X 1 X2 X3 X4

A similar transformation B' can be found to move the same 5 points in the other sub­
sequence to the standard projective basis. Since this aligns both sub-sequences in the same 
projective basis, the projectivity H  in equations 7.1 and 7.2 can be found as H = B ’~XB.

The results from using this algorithm are, naturally, heavily dependent on the accuracy 
of the 5 points selected, and can often produce useless results when some of the 5 selected
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points are poorly localised inliers. This means it is necessary to use at least somewhere in 
the region of five hundred random sub-samples to ensure a sufficiently accurate result.

One V iew  Overlap

In the case of only one overlapping view, the minimal algorithm is simply that given in section
7.4.1 which requires four projections of four, preferably different 3D points. An advantage of 
this algorithm is that it is minimal for calculation of triplet geometry, yet requires only four 
unknown parameters be determined. Recall that, in the case of a triplet of images, there 
are 18 unknown parameters describing the trifocal tensor. However, for the merging case, 
14 of these have been eliminated by making use of the fundamental matrices to produce 
reconstructions for the two image pairs. This confers definite performance advantages if the 
two fundamental matrices are already available.

So, how should the points be selected? Although only four projections are required for 
the minimal algorithm, it is not usually a good idea to give it only the minimal data. Instead, 
it is recommended to select four pairs of matching 3D points and use all projections of these 
points. To select the structure, selection is performed from the set of all projections. The 
advantage of this is that it increases the chance of a point tracked for many images being 
selected. This is not a bad thing because such points are very likely to be reliable because 
they have been tracked so far.

7.5.4 Two or More Overlapping Images: Robust Error Criteria

Whilst robust methods are effective, it would be better still if some normal least-squares 
criterion could be used that is not affected by potentially outlying matches between structure. 
To do this, constraints can be imposed by using the relationship between different projection 
matrices for the same image (as in equation 7.2) rather than by using matches between 
structure (equation 7.1). Each overlapping image can impose 11 constraints in this manner, 
and so at least two overlapping images are required to determine H  completely.

One suitable technique along these lines has already been mentioned in section 7.4.2. For 
this method, the error criteria based on matches of projection matrics is used to produce a 
method insensitive to mismatched structure. See section 7.4.2 for details of the method.
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7.6 M erging Tw o Sub-Sequences

After robustly calculating homographies, it becomes possible to merge the two sub-sequences. 
This first requires outlier removal, followed by re-estimation of the merging projectivity using 
the least-squares methods before finally the sub-sequences can be merged into the same 
projective basis.

7.6.1 Rem oving Outliers

Once a merging projectivity has been robustly estimated, it is necessary to remove outliers 
before the more effective least-squares methods can be used. Outliers are removed on a 
per-projection basis, and are determined by using Euclidean distance in the cost function 
given in equation 7.3 for every ij  and ik. Note that this does not require any re-calculation 
of structure and so is very fast.

It is important to note, that as discussed back in section 7.5.1, the merging results 
for projecting one sequence into the other are often significantly different from the converse 
results. This is particularly prevalent if one sub-sequence is reconstructed far more accurately 
then the other. Consequently, to prevent favouring one sequence (sometimes disastrously), 
the outlier rejection should be run twice, once for the projection of each sub-sequence into 
the other, i.e. equation 7.3 should be split into two:

i j

k j

Similarly, it is important to note that no residuals for feature matches in overlapping images 
should be included in robust outlier rejection. This is because such points are common to 
both items of structure and hence definitely outlying to neither.

Under the assumption that structure with only two projections is unreliably matched, 
if either of the two points being merged is reduced to having less than two projections it 
should be removed totally. Similarly, if after outlier rejection, the resulting merged point is 
reduced to having less than 3 projections, both points should be removed. This final check 
is only necessary if more than one image is overlapping, because this allows two items of 
structure to be reduced to having exactly the same pair of projections, e.g. Given matches 
u,u’,u” in sequence 1 and u’,u” in sequence 2 then if u is identified as an outlier only a pair 
of points will be left.
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Noting that the Euclidean distance is approximated by a %2 variable with 2 degrees of 
freedom, this means that a projection of a point is flagged as an outlier if it has a squared re­
projection error greater than 5.99 (<r)2. Here, 5.99 again corresponds to the 95% confidence 
level and o to the robust standard deviation (calculated seperately for each sub-sequence).

For Small Sub-Sequences

When merging one or more short sub-sequences such as image pairs then per-projection 
outlier rejection is usually highly inaccurate. This is mainly because of the inaccuracy of 
point reconstruction from only two images. Instead of rejecting on a per-projection basis, 
the two sub-sequences are merged using the technique in section 7.6.2, all structure is re­
calculated using all projections and then outlier rejection is performed based on the average 
re-projection error for each item of structure against observed features. Matches are then 
rejected if the merged structure projects outside a 95% confidence limit i.e.:

y :  d% (P*X, x») > 5.99 (a) 2

i

where a is the robust standard deviation for the above re-projection error and x* is the 
observed projection of merged feature X in image i. If an outlier is found, the item of 
structure with least projections that formed the match is rejected outright. If either item 
of structure in an outlying pair has less than 3 projections before merging, then it is also 
rejected outright. This method of outlier rejection is much more effective for merging image 
pairs or triplets.

A further consideration which must be observed when dealing with merging involving 
one or more sub-sequences with two images, is that due to the sometimes large number of 
outliers the two image reconstructions can sometimes be very poorly aligned. Subsequently, 
after outlier removal, any image sub-sequences should be re-constructed without the outliers.

7.6.2 Merging the Sub-Sequences

After the projectivity that can be used to merge two sub-sequences has been robustly com­
puted, and outliers removed, the actual process of merging can proceed. To perform this, all 
structure and cameras from one sub-sequence is appropriately transformed using equations
7.1 and 7.2 and then placed into the other sub-sequence. This presents a problem because, in 
overlapping images there will be more than one potential projection matrix, and for structure 
that is common to both sub-sequences there will be more than one 3D reconstruction.
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To deal with this, all structure that is present in both sub-sequences is assigned the 3D 
reconstruction that produces the lowest error (Euclidean re-projection squared) for all the 
structures projections in both sub-sequences. For projection into common images, the error 
for both possible projection matrices is included. After all structure has been merged, the 
best projection matrix can be selected for each overlapping image, again based on squared 
Euclidean re-projection error for points in that image.

If speed is not an issue further improvements can be made by re-calculating any merged 
3D structure and seeing if it produces an improved result. Similarly, cameras in the over­
lapping images can be re-calculated or nonlinear refined using re-sectioning. Alternatively 
a Kalman filter can be used to update the reconstruction, and a final bundle adjustment 
omitted totally.

A final point particularly worth noting is that points which have been tracked for only 
2 images should be considered unreliable and as soon as it has been identified they will not 
be tracked by a merge they should be removed. It is important to note that they should 
only be removed from the merged sequence, and if the sub-sequences are to be re-used in 
any future merges then the two image tracks should be included for that merge.

Since there generally tends to be a large number of points tracked for only 2 images, if 
they are included in processes such as bundle adjustment they can really slow things down 
and throw the accuracy so this trimming of points is highly recommended.

7.7 M erging A lgorithm  Sum m ary

For clarity, the complete merging algorithm will now be outlined. Note that this is indepen­
dent of the reconstruction algorithm being used, and is applicable to any of the algorithms 
outlined in section 7.3.

1. Identify all structure common to both sub-sequences.

2. Remove any structure that has only two projections and is not tracked between the 
sub-sequences.

3. If more than one image is overlapping, discard any structure from both sequences if 
they track inconsistently, e.g. the structure from sequence 1 projects to u,u’ in the 
overlapping images and the structure from sequence 2 to v,u\
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4. Robustly calculate the merging projectivity using any of the methods in section 7.5. 
A robust estimate can be obtained using random sampling followed by a nonlinear 
minimisation of a robust Huber function. For two or more views overlapping, the 
robust criterion can be used instead, and random sampling avoided if desired.

5. Remove outliers from the set of common structure using the techniques in section 7.6.1.

6. If any sub-sequences are only two images in size, they should be re-estimated using 
only the remaining inliers.

7. (Optional) Re-estimate the merging projectivity using a linear least-squares method, 
followed by an optional nonlinear refinement. See section 7.4 for more details. Because 
of it’s accuracy, the one view overlapping method utilising the inverse (see section 
7.4.1, page 128) almost invariably produces significantly better results than any ro­
bust method for any number of overlapping views (even if a nonlinear refinement is 
performed on the Huber function).

8. Merge the sub-sequences using the technique in section 7.4.

9. Re-calculate or refine all structure that was matched, and all overlapping projection 
matrices.

10. (Optional) bundle adjust the resulting sequence.

7.8 R esu lts

In order to evaluate the different solutions to the merging problem presented in this chapter, 
a number of experimental results have been obtained for both real and synthetic data. 
These have been split into two different sections. The first of these sections will attempt 
to determine the effectiveness of the alternative approaches to merging, and the second will 
compare the merging approach to other projective reconstruction methods.

7.8.1 Synthetic Data

The method used to generate synthetic data for all the tests in this chapter is basically the 
same, and so it shall be described first. For synthetic simulation, the setup was kept as close 
as possible to real life, with a scene consisting of a set of 200 ±  50 3D points X* scattered
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randomly in a cube with edges of size 2000 units. Initially, the camera is positioned 2500 
units away from the centre of the cube and is given a focal length of 600 plus a uniform 
random number of ±200. Skew, aspect ratio and principal point are set to uniform random 
values between ±0.1, ±1.0 and ±10 off image centre respectively. These intrinsic parameters 
then stay constant throughout the whole sequence.

To create a sequence, additional cameras Pj are added by perturbing a camera trajectory. 
Initially, the camera is placed at the centre of the coordinate system and given no movement 
in a random direction. For each new image, a small uniformly random rotation of ± ^  
radians and uniformly random translation of ±100 units is added to the current movement 
direction and magnitude, which is then used to displace the previous camera position. This 
provides a more natural model of movement than simply applying random displacements to 
the previous camera, an important consideration when dealing with long sequences.

When the cameras have been determined, all the structure is projected into 800 x 600 
images, and random Gaussian noise with standard deviation a is added to the image points. 
If there are too few points in any image, then the sequence is discarded and another created. 
Given a viable sequence, it can then be split into suitably overlapping image sub-sequences 
and all points that are not visible in at least 3 images are removed. To model matching 
failure, a random percentage between 0% to 15% of projected points are removed from each 
image in the sub-sequence. Note that this modelling of matching failure is not used when 
factorisation methods are being considered because factorisation methods cannot effectively 
handle the missing data (except at a cost to accuracy).

If outliers are to be added, then a final stage will randomly select the relevant percentage 
of points and add a uniform distributed amount of noise to each of those points. This noise 
is at most the size of the image, but if it results in a point within the 95% confidence limit 
of the added noise or a point outside the image then the outlier offset is re-estimated until 
it becomes suitable.

7.9 R esu lts for M erging R econstruction

This section will aim to study the merging approach to reconstruction and compare the dif­
ferent merging schemes and algorithms. In more detail, the two main points to be addressed
are:
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No. Iterations Average Error
350 0.594213
500 0.582406
800 0.568105
1000 0.559434
1500 0.54377

Table 7 .2 ; Performance of the six point random sampling algorithm as number of samples 
is varied. All results are for noise of standard deviation 0.4 pixels added to the data.

• Results will be given to indicate whether or not it is desirable to start the merging 
process from image pairs or image triplets. This will be achieved by comparing robust 
merging reconstruction for a triplet with other robust triplet reconstruction techniques.

• Next, an attempt will be made to compare the different merging schemes. This will be 
done using both real and synthetic data. It will primarily address the effect of numbers 
of overlapping images, and which merging algorithm to use.

7.9.1 Merging Pairs to Create Triplets

One approach to producing a reconstruction from a triplet of images is to use the relevant 
multilinear form - the trifocal tensor. Methods for robust reconstruction using the trifocal 
tensor are well established, and have been shown through experience to be very effective and 
accurate (see [BTZ96]). As an alternative, the merging approach can produce a reconstruc­
tion for an image triplet by merging reconstructions of two image pairs that overlap by one 
image.

If this transpires to be as effective as the trifocal tensor approach, then it means that 
merging based reconstruction can be initialised with pairs rather than triplets and some 
complexity avoided. It is especially worth noting that computation of the trifocal tensor can 
be very complicated, particularly when producing a maximum likelihood estimate (see for 
example [PF98]) and so it would be beneficial to be able to avoid it.

R obust Triplet R econstruction

To robustly reconstruct an image triplet, it is possible to use either the six point algorithm 
to calculate the trifocal tensor (see appendix D), or alternatively to reconstruct both the
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Reprojection Error for Robustly Calculated Triplet G eom etry
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Figure 7.5: Comparison of robust image triplet reconstruction algorithms for up to 20% 
points as outliers
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consecutive image pairs in the triplet and then merge them. This allows either the four point 
algorithm given in section 7.5.3, or the M-estimator algorithm given in section 7.5.2, to be 
used.

The random sampling four point merging algorithm already has a clear computational 
advantage over the six point algorithm since it requires fewer sub-samples to gain the same 
probability of selecting in-lying points. Similarly, the M-estimator does not sample and so is 
far more efficient. Furthermore, both merging algorithms come complete with 3D structure 
and camera matrices, allowing very efficient measurements of error. This is unlike the six 
point algorithm which requires either some form of structure to be computed or use of an 
inaccurate transfer error (although a good and fast to compute first order approximation to 
the ideal error is possible).

It remains to establish that the new robust algorithms are as effective. To do this, 
synthetic sequences of 3 images were generated, but modified to contain a random proportion 
of up to 20% outliers. An outlier in this case, is defined as any point outside the 95% 
confidence limit on the normal distribution of the outlier free data, that is still within the 
800 x 600 image region.

All the different approaches to robust triplet reconstruction were then applied. For clarity, 
the exact method used for both approaches will now be detailed. In the case of the six point 
robust algorithm this is:

1. Take 1000 random samples of 6 points

2. For each sample produce an estimate of the trifocal tensor using the six point algorithm 
(see appendix D). This produce one or three solutions for each sample.

3. For each estimate of the trifocal tensor, evaluate a Huber function based on a 95% 
confidence limit (5.99 * a where a is the robust standard deviation) and re-projection 
error. In this case re-projection error means each point is reconstructed using the 
estimates of the cameras and then the sum of it’s re-projection error taken in all three 
images.

4. The estimate associated with the smallest Huber function result is taken as the solution 
and decomposed into three projection matrices.

5. Outliers are flagged as those points outside the 95% confidence limit used in the min­
imum Huber function.
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For the four point merging method, the following algorithm is used:

1. For each of the two sub-sequences composed of images 1,2 and images 2,3 robustly 
generate a fundamental matrix F\ 2 and jF2 3 :

(a) Take 600 random samples of 7 points.

(b) For each random sample estimate a fundamental matrix using the seven point 
algorithm.

(c) For each estimate of the fundamental matrix evaluate a Huber function based on 
a 95% confidence limit and transfer error using the fundamental matrix.

(d) Select the result with the lowest Huber function as the estimate of the fundamental 
matrix.

2. Produce a reconstruction from each of the fundamental matrices using factorisation to 
produce the projection matrices and Hartley-Sturm correction to produce 3D points 
(see chapter 5).

3. Take 200 random samples of 4 points.

4. For each random sample estimate the complete merging projectivity using the one view 
overlap algorithm.

5. For each estimate of the merging projectivity evaluate a robust Huber function based 
on a 95% confidence limit and re-projection error as stated in section 7.5.1.

6. Select the lowest result as the estimate of the merging homography.

7. Merge the two reconstructions using the selected result to produce a set of three con­
sistent projection matrices.

8. Reject outliers using the method of section 7.6.1.

Note that for the merging algorithms a robust reconstruction was produced for both pairs 
of consecutive images, but no outliers were rejected until after the merge. This is important 
to ensure that the quality of outlier rejection for the triplet is not affected by the quality of 
outlier rejection for the image pairs.

The quality of the results that were produced were finally evaluated using two error 
measures. For the first error measure, projection matrices and structure were calculated after
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outlier removal, and the average Euclidean image distance between re-projected points and 
the perfect noise free points was taken. Naturally, this was only performed for those points 
that were actually non-outlying. It is fairly inevitable that, the closer the reconstruction is 
to being perfect, the more accurate outlier detection will be.

In order to measure the effectiveness of the outlier rejection process, a second error 
measure was also used. This plots the number of true positive outliers multiplied with true 
negative outliers, i.e. the number of identified inliers that were actually inliers multiplied 
with the number of identified outliers that were actually outliers. This is similar to the type 
of score that might be plotted on an ROC curve. However, an ROC curve is not appropriate 
to the case in hand because an ROC curve measures the effectiveness of a classifier as the 
classification boundary changes, whereas this experiment measures the effectiveness of a 
classifier with the same classification boundary, but varying model parameters.

Results for these measures as the amount of noise a added to the images is varied, are 
shown in figure 7.5. They indicate that, for any amount of noise, the new algorithms are 
superior (varying from 10% to 20% improvement). It is hard to know exactly why this is 
and would prove an interesting problem to pursue.

One possible reason for the improved results is that the merging approach actually uses 
up to 18 different points to estimate the complete triplet geometry as opposed to the six 
point algorithms which only uses 6 different points (and 3 projections of each point). It is 
well known that using more noisy points to estimate a mean value produces a better estimate 
of the mean. This has been demonstrated in the context of random sampling in [LPT00]. In 
theory this could be tested by creating an 18 point algorithm for estimating triplet geometry. 
However, such an algorithm would not be workable if lots of outliers were present because 
the chance of picking up an outlier in a random sample would be very large. The merging 
algorithm circumvents this problem by breaking the 18 point sample into smaller bits.

Another possible reason for the improved results is the error measure. In the merging 
approach structure has been estimated very accurately using the underlying pairs and then 
projected into the third image. This is very similar to the transfer error often used with the 
trifocal tensor, but in this case, the points are estimated using the already accurately de­
termined fundamental matrices and then projected using the potentially inaccurate aligning 
homography.

However, these two reasonable suggestions have not taken into account the possibility 
of experimental error, particularly associated with errors in my versions of the code. To 
eliminate further possible sources of error, a further set of runs was performed for the case
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of 0.4 standard deviation noise added to the points. In this case the triplet algorithm was 
run with successively more random samples to illustrate the adding more random samples 
to the trifocal tensor routine will not improve it’s performance significantly. The results can 
be seen in table 7.2, and proves that the number of samples taken for the six point algorithm 
(1000) has not biased the results toward the merging algorithm since using more samples 
would only result in a negligible improvement.

A similar trend is borne out in graph 7.6 where, instead of varying noise, the percentage 
of outliers is varied. This graph illustrates the important fact that when, there are a lot 
of outliers, M-estimators are not to be recommended over random sampling (about 18% in 
this case). It is important to note that this graph only illustrates the effect of % of outliers. 
The point at which M-estimators initialised by least-squares fails is not only defined by the 
number of outliers, but also by the magnitude of the residuals produced by the outliers 
(assuming an unweighted initialisation). For example, just one outlier that is producing 
residuals well out on the tail of the distribution could make it fail. Bearing this in mind, 
M-estimators are not always to be relied on.

Least-Squares Triplet Reconstruction

The lack of need for 3D structure has long been seen as one of the advantages of using 
the trifocal tensor for reconstruction purposes, but it is proposed here that although math­
ematically elegant this does not always translate to accuracy or performance gains. This 
seems to be the case, because transfer of points with the tensor is fairly inaccurate. On the 
other hand, the high quality of reconstruction from image pairs (see section 3.6.3, page 67) 
and Hartley-Sturm reconstruction from image pairs (see section 5.4.3, page 102), means the 
presence of the redundant information inherent in projection matrices and 3D structure is 
not a problem for the two image reconstruction case. Indeed, it is actually an advantage 
because it allows easy and efficient use of meaningful error measures (and more importantly 
maximum likelihood estimators).

To support this (it is essentially a pragmatic proposition), a set of synthetic tests has 
been carried out. The synthetic system was used to generate image triplets with varying 
amounts of added noise a. Each of a number of triplet reconstruction methods was used to 
produce a reconstruction, and the image error between the projections of the reconstructed 
model and the projections of the perfect model were taken. For comparative purposes, triplet 
reconstruction was tested with 4 different algorithms and run 4000 times for each value of
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Figure 7.7: Comparison of different methods for generating a projective reconstruction of an 
image triplet
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<7 .

The first algorithm, labelled Hartley Linear is the linear method that uses the tensor 
trilinearities directly, as described in [Har95b, Har97]. The second method, Linear from 
Projection Matrices, performs a reconstruction from the fundamental matrix of the first two 
images in the triplets and uses the subsequent 3D to 2D relationship to calculate the third 
camera matrix using resectioning (see section 5.3.1, page 98). Structure is then recalculated 
using all 3 images and the third camera matrix re-estimated.

Of the final two methods, Merge Sequences is the new merging sub-sequence method 
presented in section 7.4.1. To initialise this, reconstructions were calculated from two image 
pairs and merged using all 1 view overlap algorithms. In order to avoid biasing the results 
against the purely linear method, the fundamental matrices were not nonlinear refined. Fi­
nally, the factorisation method is the one based on the closure constraints and Hartley-Sturm 
correction, and selects the best result from either the subspace or non-subspace methods for 
each test. See section 6.3.2 for further details on the factorisation methods. Note that for 
all methods, normalisation on the 2D points was used (as given in section 4.2.4, page 77), 
and no nonlinear refinement stages were used anywhere.

As can be seen from the results in graph 7.7, there is little difference between the algo­
rithms. The least effective is the linear tensor method (Hartley Linear), which is heavily 
over parameterised and minimises a meaningless error measure. However, it should not be 
disregarded because it does provide an integrated means of including constraints from lines 
in the minimisation. Most effective is the factorisation method which is only slightly better 
than the merging approach (less than 0.05 pixels), which is slightly better than the linear 
from projection matrices method. Overall, the methods based on image merging are just as 
good as any other method and so can safely be recommended for general use in place of any 
existing triplet reconstruction methods.

7.9.2 Different Merging Algorithms

The next major question to be addressed, is to determine which of the numerous merging 
algorithms is most effective. To test this, random sequences randomly varying in length from 
3 to 31 images were generated and split into two equally sized (or as close as possible) and 
appropriately overlapping image sequences. A projective reconstruction was then estimated 
for each of the two sub-sequences to be merged, by using the hierarchical reconstruction with­
out bundle adjustment. Merging then proceeded from the two reconstructed sub-sequences,
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Figure 7.8: Comparison of different 1 view merging algorithms
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Figure 7.9: Comparison of 1 view and N view merging algorithms
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using each of the merging algorithms individually to create cameras and structure for the 
whole sequence. The results of this final merging were then evaluated by taking the average 
Euclidean distance between each reprojected point and the associated projection from the 
perfect generated sequence. Finally, in order to prevent degeneracies causing huge upsets, 
an upper limit of 5cr was placed on the average error.

Figure 7.8 gives the results of this process for comparing the different algorithms. As 
can be seen the new 1 view algorithm performs notably better that the algorithm based 
on 3D error, regardless of the number of overlapping images (on average 10% better than 
the 3D error). However, it is far from perfect because the nonlinear refinement of the new 
algorithm adds some notable improvement. This is because the nonlinear method optimises 
all 15 parameters of a general projectivity wheras the linear method optimises only 4. It 
was found that if the nonlinear method only optimised the same 4 parameters as the linear 
method, there was neglible improvement. Although these may not seem like very significant 
improvements in themselves, the cumulative effect when merging hierarchically can be very 
significant, especially when reconstructing very long sequences.

The next figure, 7.9 illustrates the effectiveness of the algorithm which assumes no overlap 
(applicable to N views overlapping). It performs fairly well at low error, but is basically 
nowhere near as effective as the one view overlap algorithm. However, this does not mean 
that the algorithm is useless, because unlike the one view algorithm it involves estimating a 
complete projectivity rather than just 4 parameters. It follows that if the two sub-sequences 
being merged have reconstructed in significantly different ways, the one view algorithms will 
not perform well. As such, it can be concluded that it is best to include an estimate using 
the N view algorithm and compare it against the 1 view overlap algorithms.

7.9.3 One and Two View Overlap Comparison

The final question to be addressed is whether or not it is a good idea to use one or two over­
lapping views when merging. To do this, synthetic sequences were generated with varying 
amounts of noise and complete reconstructions produced using the hierarchical method start­
ing from image pairs with one view overlapping and without ever using bundle adjustment. 
No outliers were included in this process.

The graph in figure 7.10 shows the results of this comparison. It illustrates that, having 
two views overlapping results in significant improvements to reconstruction quality. It seems 
likely that this is caused by the extra overlapping images providing more chance of a better
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Average Reprojection Error for Different Overlap Schemes
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Figure 7.10: Comparison of Merging with Differing Numbers of Overlapping Images

registration for the projection matrices. It does, however, slow the whole process down, 
because it requires more merges.

However, this test has not considered the problem of robust reconstruction. From a robust 
point of view, two views overlapping is highly recommended, because of the availability of 
robust linear least-squares merging criteria and the possibility of outlier detection due to 
inconsistent tracks in the overlapping images. Because of this, two view overlap is to be 
highly recommended except where speed is a critical factor.

7.10 Comparison with Existing Projective Reconstruc­
tion M ethods

7.10.1 Synthetic Data

In this case, exactly the same synthetic runs were performed as for testing one and two view 
overlap, but this time also including a sequential reconstruction algorithm as described in 
section 6.2 on page 109 and a factorisation based algorithm. The factorisation method is
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Figure 7.11: Comparison of merging and factorisation methods
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Figure 7.12: Comparison of merging and sequential methods
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Figure 7.13: Images 0, 4, 8, 12 and 16 from the cluttered sequence of 17 images

the one based on the closure constraints, and selects the best result from either the subspace 
or non-subspace methods for each test (as described in section 6.3.2 on page 112). All 
algorithms were started from image pairs, including factorisation which only used the two 
image closure constraints and not the three image ones.

Graphs 7.11 and 7.12 shows that the new approach to projective reconstruction provides 
significant improvements. Of particular note is that factorisation algorithms perform very 
badly, even with the closure constraints and sub space methods. The new merging based 
algorithm on the whole performs the best. In effect, it was found that, if a bundle adjustment 
was run on the new algorithm’s results, it produced very little improvement. In fact, the 
graph representing this has not been included because the average improvement is so small.

Real Data

Tests were also performed with real data. An automatic feature tracker was first used to 
obtain feature correspondences across some video sequences. A projective reconstruction 
was then found, starting from image pairs and using the different hierarchical methods with 
1 view overlap and a conventional sequential method. Note that no bundle adjustment was 
used at any stage.

Figure 7.13 shows some images from a sample sequence of 17 images. Graph 7.14 shows
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Figure 7.14: R,e-projection error for points in all images of the cluttered sequence

Figure 7.15: Images 1,20,40,60 from the table sequence of 70 selected images (originally 280 
images).
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Figure 7.16: Re-projection error for points in all images of the table sequence

the different squared re-projection errors for the two methods with the resulting reconstruc­
tion after self-calibration. Both reconstructions has a very similar number of points in them 
(around 500).

Finally, to show the effects on long sequences, a sequence of 70 images selected from a 
video sequence of 280 images (figure 7.15) was taken and the re-projection errors measured 
for each image using both reconstruction schemes. The resultant graph in figure 7.16 shows 
large improvements from the hierarchical scheme. Note that, in images where the sequential 
method failed to produce a reasonable error, it has been capped to 0.55 pixels so as not to 
distort the graph.

Note that these graphs fail to illustrate one important point. This is that sequential 
methods have a bad tendency to accumulate error. This would be manifest as the graph 
for sequential error consistently getting worse and worse in consecutive images. This is not 
visible on the graphs presented in this section because at each stage new points were being 
added to the reconstruction. It is however visible if the errors on existing tracked points are 
observed, since these can be seen to accumulate. This was a practical necessity given the 
size of the image sequences used in these examples.
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A further consideration, when interpreting the graphs of error, is that since these methods 
are robust the number of points also affects the re-projection error. In practice, it was found 
that fewer points were found with the hierarchical scheme but that they were tracked much 
further and with less error. In fact, in the table sequence, 3132 points with 19218 projections 
were found for the sequential scheme and 2700 points with 19144 projections were found 
with the hierarchical scheme. This means not only was reconstruction better for hierarchical 
merging, but so was the outlier rejection.

7.10.2 Summary

A very large quantity of results have just been given in the preceding section, all of which 
aim to prove certain points. An attempt will be made in this section to summarise the 
meaning of all these results, and produce a number of key conclusions.

• Robust Triplet Reconstruction: The robust merging approach to producing triplet ge­
ometry is without doubt superior to those based on the trifocal tensor. This is because 
only 4 parameters need to be estimated robustly, with the remaining 14 coming from 
estimation of the fundamental matrix using all data. It is also considerably faster, be­
cause the method comes complete with existing structure and requires no calculation 
to determine transfer error as do methods involving the tensor.

• Triplet Reconstruction: Merging algorithms hold their own for triplet reconstruction, 
but there is no truly significant difference in quality or speed. This means it is per­
fectly reasonable to start any merging based reconstruction from pairs and that no 
improvement will be achieved by starting from triplets determined using other means.

• Robust Merging: The robust merging approach does on the whole seem to be quite a 
bit more effective when applied to real data. It has been shown to fail less than the 
alternative robust resectioning approach.

• Merging Overlap: When merging, it is best to use two image overlap if speed is not a 
serious issue. Not only does it add robustness, but it increases reconstruction accuracy. 
Although it increases the number of merges that need to be performed, it also enables 
the use of robust merging criteria which enable slower random sampling algorithms to 
be avoided.
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• Merging Algorithm: If the reconstruction is projective then only merging algorithms 
based on re-projection should be used.

7.11 Sum m ary

This chapter has reviewed new techniques for projective reconstruction applicable to sizable 
image sequences. A number of methods based on reconstruction by merging were proposed, 
each tailored to certain types of image collections. A set of new techniques were then 
given for merging two projective reconstructions together as well as a number of robust 
methods. Finally, all techniques were extensively evaluated on both real and synthetic 
data and shown to provide increases (some dramatic) in accuracy, flexibility and speed over 
existing methods.



Chapter 8 

Feature Tracking

8.1 Introduction

Key to all the techniques of the previous chapters has been the knowledge of features matched 
between images. Up to now this has simply been assumed, but in this chapter an entirely 
automatic technique for determining such matches across sequences will be presented.

In fact, this tracking of points across images is perhaps the most difficult problem in 
reconstruction. It is absolutely essential, if a reliable reconstruction is to be produced, for 
points to be tracked as accurately as possible, across as many images as possible with as few 
mis-tracks as possible. This matching and reconstruction process is complicated by image 
effects due to camera movement, lighting and sampling errors as well as by the potential for 
degenerate image pairings for which geometry cannot be calculated by normal means.

Because it forms the starting point for most image processing tasks, feature extraction 
and matching is a large and well developed field and so will not be addressed in any great 
detail here. Instead, a brief overview of the problems and specific techniques relevant to 
the case in hand will be given. After this, the chapter will cover the details of a scheme for 
tracking points through video sequences acquired using a hand-held camera. Such sequences 
can be large, and the motion can contain degeneracies.

Before continuing to the matching algorithm itself, a brief overview of the problems 
involved in feature matching and degeneracy of structure and motion estimation will be 
given. This entails first giving a description of the effects on image points of differing camera 
position and orientation as well as a description of the two main critical forms of motion 
degeneracy.

162
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Image 1 Image 2

Figure 8.1: Perspective distortion due to motion parallax: objects further from the camera 
move less between the images.

Image 2

Figure 8.2: Image distortion due to camera rotation

8.1.1 Camera M otion and Image Matching

Matching schemes involve attempting to locate images of the same structure in both of a pair 
of images taken by a camera undergoing movement. One of the main difficulties associated 
with this problem is that, because the images are taken from different view points, perspective 
effects will cause certain distortions to occur between the images. In order to aid further 
discussion, an attempt will be made here to give an intuitive understanding of the effects of 
camera motion on the points visible in a scene. Additional effects such as aliasing, reflection, 
changes in lighting, noise in the electronics, camera internal parameters or image sampling 
will not be considered here.

Corrupting effects come from the two main forms of camera movement - camera transla­
tion and camera rotation:
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• Camera Translation: the corrupting effect of translation in the images is motion par­
allax. This is illustrated in figure 8.1 where it can be seen that image points undergo 
different translations between the images, based on the distance from the camera of 
the world point being imaged. The extent of parallax-based distortion is determined 
by two main factors; how much depth variation relative to the camera there is, and 
how large the baseline is (distance between cameras).

Camera translation causes two main problems for image matching; image occlusions 
and local inconsistency. For occlusions, features that were visible in one image become 
obscured by objects in the foreground and hence cannot be matched to. Furthermore, 
if there is depth variation relative to the camera, parallax means that a matching scene 
region will look different in the two images. If the baseline between the images is small, 
this difference can be so small as to be negligible. Parallax effects can only be removed 
if both camera motion and scene structure are known.

• Camera Rotation: this is rotation between cameras, causing rotation of the objects in 
the image (see figure 8.2). It is worth noting that this form of camera motion alone 
does not corrupt the image with parallax effects and so can be totally removed if the 
rotation is known.

So, how does this affect image matching? Many methods of image matching attempt to 
model these image distortions by using simplified models that hold true most of the time, 
particularly in small regions of an image. The most common assumption is that, away 
from occluding boundaries, the changes in image intensity between two images 71, 72 can be 
described with an image motion:

72 (a + e (x, y) , y + A (x, y)) =  71 (x, y)

where the functions e(x,y)  and \ ( x , y )  give the displacement between the images of the 
point at x = (x,y) in image 71. This measure basically states that all points in image 72 
can be obtained by performing some transformation of all points in image 71.

At their simplest, the displacement functions take the form of a pure and constant trans­
lation d  = (dx, dy) i.e. e (x, y) = dx and A (x, y) — dy to give:

I2(x  + dXiy + dy) = 71 (x,y) (8.1)

The simplest image matching measures, such as window based correlation (see appendix 
F) assume this form of model. However, it is rarely satisfied, even within a small image
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region unless there is very little translation and rotation between the cameras (such as is 
likely to occur in consecutive frames of a video sequence).

For more significant camera motions, an affine motion model can give a far better rep­
resentation of localised image distortion. In vector form, the displacement function for this 
affine motion model can be written as:

This model is capable of representing an affine transformation of the image plane, which 
means that unlike the pure translation model, it is also able to handle rotation effects as 
well as affine distortion (indeed any affine transformation).

Since projection is essentially a projective transformation, one final model suggests itself. 
This model is the familiar homography H - a 3:r3 homogeneous matrix representing an 8 
parameter projective transformation between images. However, to express this in a linear 
manner, the points x must take on homogeneous form x = (xty, 1) and the additional scale 
factors make solving for H  much more difficult. It is still useful though, and is represented 
by (note that all quantities are homogeneous in this equation):

The advantage of the full projective transformation is that, unlike the affine form, it can 
account for very complex changes in camera internal parameters, including some camera 
distortions. Indeed, it can cope with any projective transformation of the image plane.

Note that all these models are not ideal, since they do not account for any depth-related 
effects (to remove those requires knowledge of structure), but instead account for constant 
image transformations only. However, particularly for planar scenes with small baselines, it 
is very common for these matching models to be near perfect in small image regions and 
away from occluding boundaries.

S (x) =  Dx + d

where:

is a deformation matrix, and d is the translation of the feature. A point x in I I  is moved 
by this model to image 1 2  as:

12 (Dx + d) = 71 (x) (8 .2)

12 IHk) ~J1 (x) (8.3)
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8.1.2 Similarity Measures

Once an approximate model of image motion, such as those given in the last section, has 
been decided upon, it is possible to use the simplified model to derive expressions giving the 
similarity between a pair of points in the two images. This similarity could simply be the 
sum of squared differences in a small n x m  window, centred on the point at (xt y), i.e.

n m
(12 (M(x  + i ,y + j)) -  I I  (x +  i t y +  j ) f  (8.4)

i——n j ——m

for deformation model M, as described in the last section (see [BYX82] for details of sum of 
squares methods). Instead, it could be a more complicated measure, such as normalised zero 
mean cross correlation - a sum of squared differences, weighted by the standard deviations of 
the image regions, and with image values normalised to have zero mean in the image regions 
(so as to produce normalised scores between -1.0 and 1.0). There have been many studies of 
image correlation measures (see for example [FP86, RGH80]). However, it is notable that, 
whilst most of the work on the pure translation model occurred in the 1970s and 1980, it 
is only in more recent years that models other than the pure translation one have been 
used for feature matching, such as the affine model ([TS94]) and the full homography (see 
[PZ98, TVPG99]).

8.1.3 Degenerate Camera M otions for Image Pairs

The other major problem encountered when attempting to track points, and also when 
attempting to produce a reconstruction, is degeneracy. That is to say motions between 
image pairs which are not best described using the fundamental matrix (see [TZM98] for 
a complete review and catalogue of degeneracy). However, only two of these degenerate 
motions are critical, in that, if they occur, correct estimation of the fundamental matrix 
cannot be performed. The other motions are also reduced forms of the epipolar geometry, 
but are best described by a different but equivalent form of representation involving fewer 
parameters (i.e. the same matrix with fewer parameters). However, even if these non-critical 
degenerate motions are encountered, a fundamental matrix along with cameras can still be 
estimated reliably, and so they will not be considered further here.

The two critical degeneracies simplify the epipolar geometry so much that the points in 
the images x x' are related by an image homography xc=:iJx instead of by a fundamental 
matrix. In these cases, a 2 parameter family e of fundamental matrices will fit the points F  ~
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[e] x H. Consequently, when robustly estimating a fundamental matrix using such degenerate 
data, outliers will determine the remaining parameters e and so any reconstruction produced 
from the fundamental matrix will be useless. In more detail, the two degenerate forms of 
cameras and structure are cameras undergoing pure rotation and planar degeneracy. These 
will be described in detail in the two sections below:

Cameras Undergoing Pure R otation

If a camera undergoes pure rotation about its centre, then there will be no motion parallax 
(consequently depth cannot be recovered). Instead, the transformation between the images 
is completely represented by a 3 x 3 homography H , corresponding to a transformation of 
the image plane from one camera position to the other (as described in equation 8.3).

Fortunately, provided that features can be tracked into the degenerate image from non­
degenerate images, it is still possible to produce a reconstruction for the camera if this form 
of degeneracy exists. Since a projective camera representing pure rotation requires only 8 
parameters instead of 11, it follows that the homography provides sufficient constraints to 
calculate the projection matrix relative to some existing reconstruction. This can be done 
either using resectioning, or alternatively, matching between the degenerate image and a 
valid image can be used to create a homography H  that can be added to the camera for the 
valid image P  as HP.

If a sequence of images is truly hand-held, then it is safe to say that it is unlikely that 
this rotational degeneracy will occur for very many consecutive frames, unless a deliberate 
attempt is made to rotate around the camera’s centre. For a human with a hand-held 
camera, this would require rotating the camera on a tripod, or by turning the wrist. Neither 
of these is a particularly natural method of performing any large movement, and so both 
require premeditation. This means rotation cannot be expected to occur in large quantities, 
but it is still not important if it does since it may be handled elegantly.

Planar Degeneracy

The second degeneracy occurs if all the tracked features belong to the same plane. Unfor­
tunately, this is fairly common in many types of scene - for example, imaging only one flat 
surface such as a wall or ceiling. In such cases, only a homography can be defined which 
provides a mapping of points on the given plane between the two images. However, unlike 
the rotational case, no camera matrix can now be produced, since the camera has a full 11
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degrees of freedom but the homography only 8.
Note that, in the case of an affine or Euclidean reconstruction, a camera can be produced 

for the image, because in these cases the plane at infinity is also known and two planes 
provide sufficient constraints to completely determine a camera (see [Fau93]). Subsequently, 
without upgrading the structure to metric, it will not be possible to survive such degeneracies, 
unless matching between the images before the degenerate section, and the images after the 
degenerate section can be performed later on in the sequence (e.g. if the sequence returns 
to view something viewed earlier).

8.2 Tracking A cross a V ideo Sequence

Now an outline of the problems associated with matching image features between image pairs 
has been given, it is possible to consider the problem of tracking across many images for the 
specific case of a video sequence. Since a video sequence is being used, it is safe to assume 
there is a very small baseline and hence very little difference between each pair of adjacent 
images in the sequence. The advantage of this is that, because the images are so similar, 
motion effects will be very small and so matching will be much easier. A disadvantage, 
though, is that these motion effects are the key to extracting depth and motion, and so 
reconstructions from small baselines tend to be unreliable. Similarly, the lack of motion 
means that consecutive image pairings are frequently near to, or actually are degenerate.

8.2.1 F-Based Tracking

One approach to tracking is to take pairs of images, extract interesting and salient features 
in both images, determine matches between these features using correlation, robustly esti­
mate the epipolar geometry in the form of the fundamental matrix and then use the epipolar 
constraint to guide further matching. Consecutive stages estimate more fundamental ma­
trices, and use them to build a reconstruction which in turn guides further matching. This 
approach to the correspondence problem, sometimes referred to as the F-Tracker, is well 
established and can be very effective (see [ZDFL95, ZDFL94, BTZ96, FZ98b, Pol99]).

However, this guided matching approach suffers from drawbacks when it is applied to 
complete video sequences. Whilst the small baselines of a video sequence reduce image 
parallax, and thus make matching much easier, the lack of parallax effects also results in 
highly inaccurate estimates of the fundamental matrix (and hence problems with guided
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matching). Furthermore, small baselines are likely to represent camera motions that are 
degenerate or near degenerate for estimation of the fundamental matrix.

Consequently, F-based tracking is ideal for larger baselines, but needs to be modified to 
select between homography and fundamental matrix tracking, if it is to be used on small 
baseline sequences (for example, using the methods of [TFZ98, TFZ99]). However, in this 
case it is slow, and the use of outlier detection tends to drop tracks that are just poorly 
localised because of the small baseline rather than poorly matched.

8.2.2 Different M odels for Different Baselines

Due to the problems with applying F-based tracking to every image of a video sequence, 
an alternative approach is to use simpler models for small baseline matching. In this case, 
the simpler translation image motion model (equation 8.1) is used to track points between 
consecutive images in the video sequence. This simpler image based model is far more 
accurate for smaller baseline matching, and only when the baseline between the images is 
determined to be large enough is the epipolar geometry actually calculated, outliers removed 
and the process of reconstruction started.

M atching B etw een Image Pairs

At the heart of this tracking method is a matcher for taking very small baseline image pairs 
and tracking features. The features to be used are points and are identified in a principled 
manner in the first image only, so that the n points that will match best using the translation 
motion model are used (see [TS94] for details). Because it is a pure implementation of the 
method in [TS94], in the interests of brevity only a brief overview will be given here.

The basis of the method is that, for a video sequence with very small baselines between 
images, the pure translation motion model of equation 8.1 is the most effective measure for 
matching (as shown in [TS94]). To actually match, features are either identified in the first 
image and/or carried over from previous matching. A match for each feature is then sought 
in the second image by minimising the sum of squared differences, using the pure translation 
motion model.

This minimisation is conducted on a per point basis, by taking a small image region 
around the selected feature in the first image. A no motion model (dx — 0 and dy = 0 in 
equation 8.1) is then used to initialise a Newton-Raphson style minimisation, which follows 
the image gradient so as to determine the translation that minimises the sum of squared
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differences (equation 8.4). A multi resolution pyramid approach, which matches first at 
lower resolutions and then at higher resolutions, is used to enable this to work over larger 
image regions. The result is an extremely effective small baseline matcher, applicable to 
image pairs where there is unlikely to be more than a few pixels difference between matches. 
However, it is not effective if the no motion model is far from the truth.

A distinguishing feature of this scheme is that, unlike the F-based tracker which works 
to match between image pairs independently, it first attempts to track the existing features 
carried over from the previous pair. If any tracks fail, new features are found to replace 
them so as to maintain a constant number of features. The advantage of this is that it puts 
an emphasis on maintaining feature tracks for as many images as possible, resulting in fewer 
points, but much longer and more reliable tracks. This greatly reduces the number of outliers 
and speeds the matching, but is only effective for very small baselines. Feature to feature 
matching (as opposed to tracking) is much more reliable for larger baselines, particularly if 
the affine or projective image motion model is used.

Note that extensions to this scheme have been proposed in the literature, e.g. [TFTR98], 
but are mostly concerned with outlier rejection. For the purposes of this work, it was found 
that the number of outliers produced by the original technique were so few that outlier 
rejection was best handled more accurately by the later reconstruction stages.

8.3 Frame Selection: Selecting Im age Pairs to  Start 

R econstruction

The tracker just described in section 8.2.2 above is so effective that it does not need to be 
supplemented by guided matching using the fundamental matrix. In fact it rarely drops 
more than a few tracks out of a few hundred (mostly due to occlusion or severe perspective 
effects) for each image, and amongst the remaining matches there are very few outliers.

To illustrate the effectiveness, figure 8.3 shows the length of the tracks for points across 
a sequence of 279 images, after outlier rejection using full geometric models, and using no 
extra matching except the image pair scheme just described. As can be seen, on the whole, 
points are tracked for a great number of images, on average just less than 30 images. To 
give a further insight into the accuracy, figure 8.4 shows the longest tracked match (images 
1 to 161) plotted in the first and last images of the track. The difference in the images is 
undoubtedly very large and the point has been accurately matched about as far as it possibly
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Figure 8.3: Graph of track length across sequence of 279 images

can be. The point was also fairly accurate, being reconstructed with an average re-projection 
error of 0.45 pixels across all 161 images.

Consequently, the matcher can safely be used to very quickly and accurately track points 
across large numbers of images. All that remains is to identify pairings of images that 
represent the optimal trade off between accuracy, number of matches and baseline size and 
then use the tracks between these to start a robust hierarchical reconstruction.

More precisely, the ideal pairings of images to start a reconstruction should have the 
following desirable properties:

1. Should not be degenerate - hence enough parallax effects in the point set larger than 
the image noise to enable accurate estimation of the epipolar geometry.

2. As many matches as possible

3. Should produce a low re-projection error after reconstruction

These properties can be detected by using different properties of the set of point matches 
without referring to the images directly. A discussion of some relevant properties are given 
in the following subsections.

8.3.1 Detecting Degeneracy

In order to test whether the image pairing is near degenerate, and the extent to which the 
image pairing exhibits parallax (criterion 1), a homography can be robustly fitted to all the
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Figure 8.4: Extreme images for the longest track in the video sequence, between images 0 
and 161
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e1 d1 e1

H is good fit H is bad fit

Figure 8.5: Effect of epipole position on epipolar error if a homography H can or cannot be 
fitted to the points well. If H is a good fit, then whether the epipole is selected to be el or 
e2 makes little difference to the errors dl and d2  (perpendicular distance to epipolar lines). 
On the other hand if H is a bad fit whether el or e2 is selected to be the epipole makes a 
large difference in the errors dl and d2 .

matches in the two images. A homography will provide a good description of the differences 
between the image points, only if the points are at least effectively co-planar for the given 
degree of camera translation (this can happen for pure rotation or small translations). Note 
that this can also happen if the data is dominated by one plane, in which case the robust 
selection will remove all the points off the plane. Such a situation is also undesirable for 
purposes of reconstruction because depth variation is beneficial for geometry estimation.

All this means it can safely be concluded that, if a homography fits the data well, it will 
not be good for estimating the fundamental matrix. This can be intuitively understood by 
considering the fundamental matrix after decomposition into the epipole e and a homog­
raphy H  as F — [e]x H  (refer back to section 3.6.3, page 67 for a full description of this 
decomposition and what it means). Basically, this decomposition considers epipolar transfer 
as having two components - firstly a homography that transfers a point from one image 
to the other image and secondly, the corresponding epipolar line is then found as passing 
through both the epipole and the transferred point.

From this decomposition, it follows that, if H  transfers points very accurately, then the 
constraints on F  will be satisfied regardless of where the epipole e is situated. For an example 
see figure 8.5 where the perpendicular distances to epipolar lines dl and d2 are very similar 
for a good fitting H, but not for a bad fitting H. This explains why, for small baselines, the
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epipole has been observed to be the least accurate component to be estimated in F  (see 
[LF96b]). From this, it can be concluded that, if a homography can be fitted well to the 
data, then regardless of why it fits the data well, the pairing is not going to produce a good 
reconstruction of camera centres (or their images, the epipoles).

Comparing the residual produced by homography fitting to the residual produced by 
fitting a fundamental matrix unfortunately does not present a viable solution. Invariably 
the fundamental matrix will produce a lower residual because it is the more general model. 
To handle this problem, there are a number of methods that can deal with this problem, 
most notable of which are the relative GRIC scores. These will be discussed in more detail 
in the context of detecting (rather than avoiding) degeneracy in section 8.5.

8.3.2 Number of M atches

To handle the second criteria and ensure a large number of matches are available, the most 
simple scheme would try to maintain as many tracks as possible between image pairs. How­
ever, this is not necessarily the best criterion because each pairing of images will later be used 
to produce a complete reconstruction, and so only points that track across image triplets 
will be able to contribute to reconstruction of more than two images. This is important 
because robust reconstruction for triplets is considerably more accurate than pairs due of 
the strengthening of the geometric criterion (matching points are constrained to an exact 
position and not to a line).

8.3.3 Epipolar Error

To deal with the third criterion, the fundamental matrix can be robustly estimated. Provided 
there isn’t degeneracy, the lower this residual is, the better the quality of reconstruction. 
However, care needs to be taken because fewer matches usually produce lower residuals than 
a large number of matches. Subsequently, when comparing different fundamental matri­
ces, the number of matches also needs to be considered to make valid conclusions about 
reconstruction error from the epipolar error.

8.4 A  Sim ple Frame Selection  A lgorithm

For the purposes of this work, a very simplistic approach was found to be very effective for 
purposes of frame selection (but it could doubtlessly be improved). In the implementation
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the desirable properties are enforced by using a number of functions of the matches. These 
functions are combined into a similarity score and, at each stage, the pairing of images that 
minimises this similarity score is selected to start the reconstruction.

The algorithm itself is fairly straightforward. Starting from the first image, all possible 
pairings of the first image with consecutive images in the sequence are considered. This is 
continued until the number of matches tracked between the first image and the image under 
consideration falls below 60% of the total number of features in the first image, and the 
image pairing is non-degenerate (more precise details are given in the algorithm summary). 
The similarity score is then applied to all images that fall within this category, and the 
image pairing that minimises it is selected. The minimal scoring image then becomes the 
new first image, and the process repeats until there are no more images left. The whole 
process terminates either when there are no more images, or when the last image is included 
in the pairings and some suitable image pair cannot be found.

All that remains now is to define the similarity score. There are a number of different 
functions involved in this, each of which is used to detect different criteria from the list used 
in the discussion section 8.3. Note that all these scores only aim to give an approximation.

8.4.1 Epipolar Error

To measure the accuracy of reconstruction, the fundamental matrix can be robustly esti­
mated using MLESAC, and a the median epipolar error squared, r 2 used. Note that the 
median epipolar error squared is used rather than the Huber function so that no judgement 
need be made on inliers and outliers.

8.4.2 Degeneracy
m  2To measure degeneracy, the value Jjj is used where v is the median residual of all points to 
the robustly estimated homography and r is the median residual of all points to the robustly 
estimated fundamental matrix (as defined in section 8.3.3). It follows that the smaller this 
value is, the worse the homography fits, and the diminishing nature of the 1.0/a; function 
means very bad homography fits are not particularly favoured over bad fits. This is desirable 
because in effect a bad fit is just as good for epipolar geometry estimation as a very bad fit, 
and so the selection between the associated image pairings should be made based on other 
criteria than homography fitting.
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Figure 8.6: Similarity score and tracks for sample sequence section of 21 images

Note that this measure attempts to obtain a certain degree of invariance to the amount 
of noise in the images by using the epipolar error as well as the homography fit error. This 
is far from the ideal approach to this, which would use the covariance matrices to determine 
the actual image noise given the residual errors for the particular model. Consequently, the 
relationship between the two measures could be based on this less model specific measure. 
However, such a scheme would be complex, and it will be shown in the results section 8.4.6 
below that the method presented here represents a practical solution for the range of errors 
to be expected under normal circumstances.

8.4.3 Number of Tracks

Bearing in mind the discussion of section 8.3.2 it is not desirable to pick images so far apart 
that large numbers of points cannot be tracked across triplets of the selected images. To 
remedy this, the number of tracks that are counted is the number of tracks that are carried 
over from the previous pairing into the current pairing (i.e. share the same feature in the 
second image of the triplet). Note that, to handle the first pairing of images easily, the 
number of tracks between the image pair can be used instead.
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Figure 8.7: Similarity score and tracks for sample sequence section of 30 images
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8.4.4 The Complete Criterion

The three functions just outlined are then weighted and combined very simply to give the 
complete score to be minimised:

2V /  7 7 . \
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where v is the median squared homography residual, rn is the number of features in image 1 
of the pair that are tracked from previous images, n is the number of features tracked to the 
second image of the pair and r is the median squared epipolar error residual. The weightings 
Wi allow the significance of each score to be altered.

The weightings used are fairly important. In the authors implementation, wi is set to 15.0
and u>3 is set to 1.0, selected so that a homography that produces a 15 times greater residual
than the fundamental matrix will be assigned a score exactly the same as the fundamental 
matrix. This is the point at which the homography score is considered just as relevant as the 
fundamental matrix score. Finally, because, the number of points is unimportant relative to 
their distribution amongst different planes in the image (this distribution is detected by the 
homography fitting), w2 is set to 1.0.

These weightings are designed so that the homography estimation is dominant if effec­
tively degenerate motions are encountered. Assuming a bad fit for the homography (15 
times worse residual in this case), the homography measure becomes less relevant and the 
best image pairing is selected based on reconstruction error and number of points. If the 
reconstruction error is consistently low, then the best image pairing is selected based on
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number of tracks, otherwise it is selected so as to minimise the reconstruction error. This 
gives a good principled balance.

Note that different weightings and different measures can easily be used to provide dif­
ferent emphasis, e.g. to try and include as many images as possible at a time, to increase 
accuracy, or to account for very poor quality images. Exactly what is best can be deter­
mined by other factors such as speed and accuracy requirements. Weightings also need to be 
adapted to the response of the particular implementations used to calculate homographies 
and fundamental matrices. For example, if the fundamental matrix estimation code is much 
more effective than the homography estimation code used here, a 15 times difference may 
no longer be appropriate.

To help illustrate the way these measures relate to each other, figures 8.6 and 8.7 show 
graphs of how the unweighted individual scores and the total score vary as the image pairing 
varies. Also shown is an image of the features and where they have been tracked. The track 
line in green indicates the part of the track that was before the minimum in the similarity 
score, and the part in blue indicates the part of the track that was after the minimum. 
The graphs of similarity score show that a reasonable amount of the track is selected, with 
the score initially getting lower as the baseline gets larger. Then, when the tracker starts 
to become inaccurate because of the distance, the epipolar error increases. In the second 
example, figure 8.7, the score reaches a minimum at the end of a very jittery section of camera 
movement. This is because such movements cause tracking inaccuracy and also degeneracy 
(since the effective baseline is small). Due to the effective degeneracy, the break has been 
deferred until after the degeneracy has disappeared (after the jittery section).

8.4.5 Algorithm Summary

To summarise, the steps of the algorithm are as follows:

1. Extract m  features in the first image as described in section 8.2.2.

2. Attempt to track all features into the next image using the method of section 8.2.2.

3. For all untracked features identify new features to replace them and start tracking 
them instead. Attempt to maintain m features whenever possible.

4. Return to step 2 until no more images.
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5. Calculate similarity score from section 8.4.4 for pairing of first image with each con­
secutive image in the sequence. This is continued until less than 60% structure has 
been tracked into the second image. At this point, if a homography has not been found 
which has a median residual greater than 4.0 pixels then pairing continues until 30% 
structure has been tracked. Can also increase speed by terminating if n poor quality 
fundamental matrix fits are observed in a row (e.g. median residual error greater than 
3.0 pixels).

6. Select best scoring image pairing and calculate a reconstruction for that pairing to 
initialise the hierarchical scheme.

7. Consider the second image as the new first image and return to step 5. Terminate if 
the second image is the last image of the sequence and if the median residual for the 
homography fit, on the selected image pairing, is less than 4.0 pixels.

8.4.6 Results

Now the scheme has been presented it will be appropriate to discuss some of the issues and 
possible improvements. Where relevant, these will be illustrated with examples on synthetic 
data.

The first issue to be addressed is whether or not this scheme is actually any good at 
detecting degeneracy. To this end synthetic sequences have been generated using the same 
trajectory based method as described in section 7.8.1, page 141, but this time matching 
failure is modelled by removing up to 1% of points from each image (rather than 15%). In 
addition, a large degenerate section of 40 images has been placed at the beginning of the 
sequence during which only rotation and no translation occurs.

The frame selection process was run on this sequence after noise of 0.4 and 1.0 pixels 
standard deviation had been added. The results can be seen in figure 8.8 for the different 
measures. Whilst there is no doubt that the degeneracy dominates the score when it is 
prevalent, these graphs also illustrate the behaviour of the method when there is no degen­
eracy. When the image noise is very low as for the top graph, it can be seen that the number 
of points and homography fitting error dominate the score for the non-degenerate section. 
On the other hand, when the image noise is high (bottom graph), fundamental matrix error 
dominates the score. This behaviour requires correct selection of the weightings such as 
those given in the algorithm description.
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Figure 8.8: Frame selection scores for sequence with a large degenerate section (images 1 to 
40). The top graph shows the scores for added noise of 0.4 pixels standard deviation and 
the bottom for 1.0 pixels.



Sco
re 

Sc
or

e

8.4. A SIMPLE FRAME SELECTION ALGORITHM 181

Similarity Scores
6 FMatrix error —*—
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Figure 8.9: Frame selection scores for sequence with a large gap that breaks tracking. The 
top graph shows the method presented in this chapter, and the bottom graph a normalised 
method (see text for details).
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It may seem a little odd that the method presented here uses absolute values for the 
error measure, rather than for example selecting some normalised criterion. After all, lack 
of normalisation means the weightings must be selected to match the particular implemen­
tations used for homography and fundamental matrix estimation. There is more than one 
reason for this.

Firstly, normalisation is not appropriate to the case in hand, since the larger the value 
the more necessary it is to make it as low as possible. For example if the epipolar error in 
fundamental matrix estimation is very large, then it is much more important that a pairing 
be selected in which the epipolar error is low, than a pairing for which there are a lot of 
matches. Similarly, if there is a very low re-projection error for fundamental matrices then it 
is more desirable to pick a pairing with more matches than it is to pick one with a relatively 
low error.

The second and most important reason for not using normalised error criteria is that 
a large variation in values is often made insignificant by the normalisation. For example, 
consider the sofa sequence in figure 10.3, page 211. This sequence has a very large gap 
in it at image 11 which renders matching highly inaccurate. Ideally the frame selection 
method should be robust enough to detect this and select a lot of images around it to reduce 
problems.

Figure 8.9 shows the frame selection graphs over the broken section using the presented 
method (top graph) and the same method, but this time with the errors from the fundamental 
matrix and homographies normalised so as to have a mean value of 1 (bottom graph). The 
normalisation smooths out the huge jump and subsequently selects a pairing over the jump 
at image 11 which reconstructs to a reprojection error of 1.418 pixels (selected images are 
0,9,29). On the other hand, the non normalised version selects images around the jump 
(0,9,11,21). This time, the pairing over the jump has an error of 0.578 pixels and a much 
better reconstruction is produced. No matter what form of normalisation is used (e.g. median 
error) normalisation will always have the potential of removing large bumps in the data.

8.4.7 Discussion and Other Work

The idea of frame selection is by no means a new one. It is fairly apparent that, when 
handling video sequences, the amount of data needs to be greatly reduced. Methods have 
existed for some time for reducing the number of frames used in video compression. Similarly, 
the technique has previously been applied to structure and motion [NisOO], but in this case a
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totally different approach to that taken here was used. For a start, feature matching between 
images occurs after rather than before frame selection. This is not going to offer the same 
facility for selecting high quality data for the subsequent reconstruction algorithms because 
the data is not yet available.

Furthermore, in the method of [NisOO], no explicit attempt was made to avoid degeneracy, 
and in fact it was even encouraged by not allowing frames to be selected between which the 
points had moved too far. This is not a good test because a large rotation will cause this effect 
but will not result in increased matching difficulty. Recall that rotation is not associated 
with perspective effects or occlusion and so matching is much easier for rotation.

Similarly, images were prioritised based on a sharpness measure which attempts to ac­
count for image blurring effects. These effects are fairly unimportant to structure and motion, 
since all that matters is that accurate matching can be achieved. It seems better to base the 
image selection on accuracy of reconstruction, rather than on better looking images. This 
is not to say selecting sharper images is not a good idea, particularly if textures are to be 
extracted, but this would be more relevant to later stages of processing than structure and 
motion.

Finally, the method in [NisOO] also includes a simple shot detection method (i.e. a change 
from filming one scene to filming another). In this work, the need for shot detection is as­
sumed not to be present, but it would doubtlessly increase robustness to detect a complete 
failure of matching (as would occur at shot boundaries). Unlike the approach in [NisOO], 
for which matches are unavailable, this could probably be achieved by looking for a fail­
ure in matching, manifest as very few matches or as most matches being outlying to the 
fundamental matrix and homography.

The only other big advantage of the method in [NisOO] is that it works as a batch process 
rather than working from one end of the sequence to the other. This is mainly possible 
because the selection measure is much simpler (e.g. sharpness is a per image trait rather 
than degeneracy which is an inter image trait). However, it does not seem likely that the 
batch approach offers much to selection, except ensuring that the final image and first image 
is included in the reconstruction and allowing better balancing. However, using the matching 
method in this work, matches are available for the final image and so, if desired, the final 
image can always be added back into the reconstruction at later processing stages by using 
the resectioning technique of section 5.3.1, page 98.

One final possible improvement could be made, and that would be in changing the method 
used to detect degeneracy. It seems likely that some other measure than raw homography
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fitting could be more appropriate. For example, the relative GRIC scores (see section 8.5 be­
low) or some measure based on detecting multiple solutions for the fundamental matrix. For 
example, when using the method of 4.3.1, page 79 checking to see whether the eigenvectors 
associated with the two lowest eigenvalues both represent viable solutions (see [Tor95]).

Note that if there are multiple solutions for the fundamental matrix, degeneracy must 
exist because for more than one solution to occur, one or more parameters must be irrelevant 
or near to irrelevant to the minimisation criterion (hence the fundamental matrix is over 
parameterised). However, this will also detect non-critical forms of degeneracy.

8.5 D etectin g  and H andling o f D egeneracy

So far, no consideration has been given to actually handling and detecting degeneracy, only 
to avoiding it. This comes down to selecting the most appropriate means of expressing the 
image motion after the frame selection - either a homography or a fundamental matrix. 
However, this requires a more rigorous approach than was used in avoiding degeneracy and 
so it is not easily possible to compare the number of outliers or error residuals directly since 
the more general model (the fundamental matrix) will always produce a lower residual and 
have more inliers.

To deal with this, it is necessary to use alternative measures. Some work exists for the 
detection and handling of degeneracy for motion estimation [TZM98, TFZ99, TFZ98]. For 
the purposes of this work, the approach based on GRIC presented in [TFZ98, TFZ99] was 
used.

The Geometric Robust Information Criteria [Tor97] or GRIC for short, is a robust model 
selection criterion. It is based on an extension of the existing AIC model selection criterion 
(see [Tor99] for details). It calculates a score function for each model to be tested (in this 
case homography and fundamental matrix fitting) that takes into account the inliers, outliers, 
the residuals, standard deviation of the errors and the relative number of parameters and 
dimensions of the models.

When the GRIC score indicates a homography to be the most appropriate fit, it becomes 
necessary to determine whether this is because of a pure rotation or a planar motion (i.e. im­
age of only a single plane). This can again be evaluated using the GRIC score (see [TFZ98]). 
If a rotation is found, then the projection matrix can be identified using resectioning. This 
is handled at the start of hierarchical reconstruction, by absorbing the images undergoing
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rotation into the two image pair reconstructions on either side (so the number of overlap­
ping images is increased), and then reconstructing as normal, but with some of the starting 
sequences not being pairs

Planar degeneracies represent far more of a problem and are not handled in the current 
implementation. To handle such degeneracies, it is necessary to self calibrate the camera 
using the planar images [Tri98, MCOOb, MCOOa]. A more general discussion of how this 
might be achieved will be given later, in chapter 10, section 10.4.2.

In [TFZ98] an alternative approach to handling degeneracy was proposed which did not 
use model selection directly. Instead, this approach allows matching ambiguities for a point 
in one image that matches to more than one point in the next image to be resolved by 
propagating potential matches from both fundamental matrix and homography tracking. 
The ambiguity is then resolved later when a complete track is available. This is unnecessary 
in this work because matching is not guided by a full structure and motion model and 
because tracking rather than independent per image pair matching is performed.

8.6 G uided M atching for M erging B ased  R econstruc­

tion

So far, only matching using consecutive images has been considered. However, at higher 
levels of processing, when a reconstruction is available, it becomes possible to use estimated 
cameras and structure to guide matching. Since the reconstruction method being used here 
is hierarchical, at each merge a pair of complete reconstructions are available to be matched 
to each other. This means that both reconstructions will have their own set of structure 
which will need to be matched into the other reconstruction thus both complicating and 
simplifying the matching.

Because merging involves two sequences, both with well established structure, there are 
two types of potential matches. Matches from structure to new features in the other sequence, 
and new matches from structure in one sequence to structure in the other sequence. This 
leads to two separate matching algorithms, one for identifying structure to structure matches, 
and one for identifying structure to feature matches.
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Figure 8.10: Illustration of the effect of parallax on distances between points in an image. 
Only parallax causes this effect, all other Euclidean transformations preserve length (by their 
very definition).

8.6.1 Determ ining Similarity Between Image Pairs

Before continuing, it will first be necessary to define a method for determining the suitability 
of a pair of images for matching. This method will have use in both forms of matching, either 
to select the best image pair for correlation or to avoid the overheads induced by attempting 
to match between unsuitable image pairs.

Because it will be used for determining the potential for matching between image pairs 
using the affine or translation motion model, the similarity measure to be presented here has 
been designed as far as possible to be sensitive to disruption of the affine image motion model. 
Since it is very difficult to actually be sensitive to the full affine model without parameter 
estimation, an assumption is made that the image motion is Euclidean (not metric since 
scaling is a by product of translation) i.e. an affine model, as in equation 8.2, but where D 
is orthogonal (a rotation).

In order to be sensitive to motion parallax, the measure is based on the difference in 
distance between images of the same structure in the two different images. This is illustrated 
in figure 8.10 where motion parallax has made the same measurement (distances d\ and cfe) 
different This distance measure will be invariant to Euclidean transformations of the image 
plane caused by rotation or planar motion, but not to motion parallax caused by camera 
translation (this can also cause scaling). It follows that the bigger the difference the worse 
the potential match.

Naturally, it is not efficient to perform this distance test for every possible pairing of 
points. It would however, not be effective either because matching relies on similarity in



8.6. GUIDED MATCHING FOR MERGING BASED RECONSTRUCTION 187

only a small matching window. Only localised distortion is of interest, and so the distance 
test is only performed for each point and its nearest neighbour.

So, onto the algorithm itself. Firstly, all structure from the reconstruction that is con­
nected with features in the first image is identified and then projected into the second image. 
At this stage, it is important that any points that project outside the bounds of the second 
image are discarded from further processing. Furthermore, if less than a certain percentage 
of points (20% in the authors implementation) can be projected into the second image then 
the similarity measure result is set to 0.

The outcome of this is a set of pairings between points in both images. To actually calcu­
late the measure, the distance from every point in the first image to the nearest neighbouring 
point is found, and the pairings used to find the distance between the same two points in 
the second image. The ratio of these distances is then used as the measure of similarity. 
However, because it is not relevant whether the two points are separated by a smaller or 
larger distance, the ratio is always of the form:

smallerdistance
largerdistance

To get the complete similarity score, the ratios for all points are summed, and then divided 
by the number of points to give a final score between 0 and 1. It is also a good idea to 
multiply this score by the fraction representing the percentage of points that were projected 
into the second image. This helps weight against matching into images for which there 
is little common structure, but does have the drawback that it makes the error measure 
considerably more arbitrary. The major drawback with this measure is that, although it 
is invariant to rotation and translation of the image plane, it is not invariant to distortion 
caused by camera internal parameters. It is notable though that with good quality cameras 
this distortion is rarely sufficiently significant to cause an upset.

When merging, this similarity measure can be run for every possible pairing of images 
in the first sequence with images in the second sequence. The result is a matrix of values 
giving the similarity between the images. This matrix of values will be useful in the matching 
schemes to be presented in the following sections.

Other Approaches to Frame Selection

The technique in the previous section has been designed to help tackle two different problems. 
Firstly, to detect if a camera has returned to view something it has viewed earlier and to
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select image pairings that best conform to the assumptions underlying correlation (and hence 
resolve problems of which image pairs to match).

Whilst the second of these problems has received very little attention elsewhere, the first 
problem of detecting for a returning camera has been addressed. If the sequence is calibrated 
then this can be solved for by using a distance measure between cameras. However, such 
a method can not be used with projective sequences, and alternative approaches have been 
developed (e.g. [Saw98]).

Im plem entation D etails

The above algorithm can be very slow if it is not implemented efficiently. It is very important 
to optimise wherever possible, particularly if one image is to be compared to many others at 
the same time. In this situation, the common image can have all re-projections pre-calculated 
and then ordered to help find nearest neighbours.

However, the algorithm can still be very slow if a brute force approach is taken to de­
termining nearest point pairs. A simple scheme is to first sort the list of all points by x 
coordinate, and then to find the nearest neighbour for each point, a search is carried out up 
and down the list from the point which has the nearest x coordinate. This search progresses 
through the list recording the best result so far, until the search turns up a point that has 
an absolute difference in x coordinates which is greater than the minimum distance found so 
far. Such points mark the boundary at which it is impossible to get a closer point given the 
points are ordered on x coordinate. This approach is efficient enough to calculate similarity 
pairings for more image pairs than could be reasonably used in a reconstruction.

8.6.2 Structure to Structure Matching

The first type of matching that will be addressed is between structure in one sequence 
and structure in the other sequence. Because, for the case in hand, the sub-sequences are 
projective, the only effective means of determining similarity between potential structure 
matches will be to use the projections of the structure in the images. If sub-sequences are 
Euclidean then distance between structure in 3 space can be used and a simpler algorithm 
produced.

It is fairly safe to say that two items of structure are similar, if all projections of the 
structure in one sequence are within a certain confidence limit of the projections of potentially 
matching structure in the other sequence. So, given an item of structure in sequence one
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X that has been observed in images k, an item of structure in sequence two X' observed in 
images j ,  and a homography aligning the coordinate frames H , then for the structure X,X' 
to match:

\/kd%(PkH X ',P kX)  <5.99 (a2f  (8.5)

and
Vj dE (P jff- 'X , p p C') < 5.99 (CTl)2 (8.6)

The standard deviations cq and o2 should be calculated to be the standard deviations of the 
relevant error measure above, for all the known matches between structure used to calculate 
the initial aligning homography H. For example, these could be matches inferred from
common features in an overlapping image. Note that the error criteria above are the same
as are used in a least-squares sense to calculate the merging homography (see equation 7.3 on 
page 124). Consequently, the constant 5.99 corresponds to the same 95% confidence limit.

However, these criteria are not ideal in themselves, because structure is often tracked for 
many many images and can drift. This is particularly relevant because the sort of matches 
this scheme turns up are tracks broken because of occlusion or reinstated because part of a 
scene has come back into view. Subsequently, it is not unlikely for a very good match to 
fail some of the above tests and so, rather than reject a match if any of the projection tests 
should fail, a match is accepted provided that at least n% of all projections in a particular 
sequence pass in = 80% in the authors implementation). For balance, this means n% of the 
tests in equation 8.5 must pass as well as n% of the tests in equation 8.6.

Similarly, to ensure that structure in sequence one matches accurately, it is insisted that, 
for each particular sequence, at least 3 projections match. By enforcing this, it is possible to 
avoid the need for correlation because 3 projections are sufficient to accurately constrain the 
position of the structure. This is one of the big advantages of this matching scheme, that it 
avoids correlation and hence the need for the actual images.

Using the above selection criterion, all structure in sequence one can be compared one 
by one to all the structure in sequence two. Because the criterion is symmetric, there is no 
need to reverse the process to match structure in sequence two to sequence one. The net 
result will be a set of potential matches for each item of structure in sequence one to item(s) 
of structure in sequence two.

Although it is not necessary to insist that one item of structure in sequence one matches 
one item of structure in sequence two it is necessary to insist that none of the matches are 
inconsistent. This means none of the projections of the matching structure from the same



8.6. GUIDED MATCHING FOR MERGING BASED RECONSTRUCTION 190

sequence should project to different features in the same image. If multiple candidates are 
found, the best solution is to reject the potential match with the least number of projections 
passing the selection criterion in equations 8.5 and 8.6. Note that this check is also necessary, 
even if there are not multiple candidates, since a new match may contradict a previous match.

Im plem entation D etails

The above algorithm is completely workable in itself, but it is very important to note the 
explosion in computational effort required by matching all projections of structure in one 
sequence to all projections of structure in the other sequence. As such, it is very important 
to ensure efficient implementation.

Firstly, it should be noted that all projections of sequence two structure in sequence 
two images, i.e. PpU  and sequence one structure in sequence one images, i.e. P&X can be 
pre-calculated. Similarly, the projection of each item of structure in every image in the other 
sequence can be pre-calculated i.e. and

Even with this pre-calculation, there is the problem that very large numbers of point 
projections still need to be checked. Consequently, great improvements in speed can be made 
when checking the projections of a potential structure match, by stopping if any projection 
fails the projection test very badly. Severe failure is defined as any point projecting outside 
the 99.9% confidence limit, i.e. 13.82(72 or 13.82of.

With these two speed enhancements, it is quite possible to merge extraordinarily large 
sequences. For example, on a Pentium II 300Mhz computer, merging two sequences of 32 
images each with about 1500 points having approximately 8000 projections, matching can 
be completed in about 1/2 second resulting in 175 new structure to structure matches.

Despite these improvements, for even larger sequences it can become necessary to be 
more selective about which structure is used. In these cases, matching can only be attempted 
between structure that projects into certain images in the sub-sequences. These images can 
be selected using the matrix of similarity scores to pick only images that have at least one 
similarity score with an image in the other sequence that is above a certain threshold. This 
means that if a row or a column of the similarity matrix does not contain a score above a 
certain threshold (0.5 in the authors implementation) the image associated with that row or 
column should be disregarded. Only structure that has projections in the relevant images 
should then be tested.
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One final note on the nature of structure to structure matching is that, given the con­
straint on the number of projections that must match, there is little point in attempting this 
sort of matching if there are fewer than 3 non-overlapping images in each sub-sequence. In 
general, few new matches will be obtained unless there are at least 5 non-overlapping images 
and plenty of occlusion. Essentially, this matching scheme is only really useful in scenes with 
a lot of occlusion or for extremely long sequences where the camera returns to view previous 
sections of the scene.

8.6.3 Structure to Feature M atching

As well as looking for structure to structure matches, it is also possible if desired to look 
for structure to feature matches (this should be done after structure to structure matching). 
Unlike the structure to structure matching, this sort of matching task is not symmetric and 
must be performed from sequence one to sequence two and from sequence two to sequence 
one, meaning that it can only be applied to smaller collections of images. For ease of 
interpretation, the scheme will be presented for the specific case of matching structure in 
sequence one to features in sequence two. The opposite matching scheme is simply obtained 
by swapping the sequences.

This form of matching is best performed after the merge of the two sequences. The 
merged subsequence can easily be considered as being two separate sub-sequences the same 
as those prior to merging. All structure common to both sub-sequences is ignored for this 
form of matching. The process then selects potential matches to features based on the 
projection of structure from sequence one into sequence two. To do this, all structure in 
sequence one that is not already matched into sequence two is projected into each image in 
sequence two, and then an image-based similarity score (similar to the one used for initial 
feature tracking) is calculated between the projected feature and some observed projection 
of the structure in sequence one. This still leaves some major problems to be addressed. 
If the sequence is large, this matching method is going to be intractable and secondly it is 
necessary to select the best pairing of images between which to do the match.

Selecting Images to M atch

If the sub-sequences being merged are large, then matching all structure from sequence 
one into every image in sequence two is going to result in far too many correlations to be 
practical. Instead, matching is only attempted for structure that is visible in certain images
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in sequence one.
To handle this, the matrix of similarity scores is used to select all image pairings between 

sequence one and sequence two images that have a similarity score above a certain threshold 
(0.3 in the authors implementation). Consideration is also given to memory usage, since 
the images from one sub-sequence will all need to be held in memory (or else some fairly 
complex caching scheme adopted). As such the images are selected so that at most the best 
n images will be used.

Then, for all the structure in sequence one observed in the qualifying first images, the 
structure is projected from sequence one to all relevant qualifying images of sequence two 
(all those pairings above the given threshold). If the projection is within the image, then it 
is added to the set of potential structure to feature matches.

Note that it is possible different pairings of images will produce the same potential 
structure to feature match, and so duplicates need to be detected and removed prior to full 
matching.

Correlate Potential Feature M atches

In this sub-section, the matching of an item of structure in sequence one into an image in 
sequence two will be considered. There are two main problems associated with this. The 
first is determining which pairing of images the correlation should be performed over. The 
second is matching for the inevitably wide baselines.

The first problem is that a potentially matching item of structure X in sequence one will 
project into a number of images in sequence one, for example images 1,2,3,5,6,9,10. Now 
all these points potentially match to the new feature in sequence two, but to correlate all of 
them would be both ineffective and time consuming. Ideally, the image that is closest to the 
image the new feature is in should be used where closest is defined by the pairing that best 
satisfies the motion model used for correlation.

So, how do we go about selecting which image(s) to correlate? For a simple algorithm, 
the closest image in the sequence could be used, in this case image 10. However, especially 
for long sequences, this is no guarantee. As an alternative, it is proposed to use the matrix 
of similarity scores defined in section 8.6.1. This matrix can be very simply used to find the 
pairing between the images in sequence one for which the feature has been observed, and 
the image in sequence two that maximises the similarity score.

The second problem that can now be addressed is how to match the points, given that the
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baseline is very large. Again, the methods proposed in [TS94]) can be used, but the motion 
model varied according to the similarity score. The Newton-Raphson style minimisation, 
utilising image gradients is used again if the score is above a certain threshold (0.6 in the 
authors implementation) otherwise a normalised zero mean cross correlation. To initialise 
this model, it is given a translation relevant to the predicted features in both images (i.e. the 
re-projection). Even across very large baselines this can produce a very effective matching 
scheme, even if the pure translation is not a very good approximation to image motion. 
However, without a doubt it seems highly probably significant improvements could be made 
by adapting the gradient descent algorithm to use an affine image motion model.

This matching is done for each image in the second sub-sequence, working from the first 
image to last image of that sequence. The reason for this ordering is so that any matches 
found in sequence two can then be matched to later potential matches. For example, if 
structure from sequence one was matched into image 10 of sequence two, the next match 
into image 11 would involve a correlation between images 10 and 11. The net result is that if 
a point is picked up again in the second sub-sequence it is tracked using subsequent images.

8.7 R esu lts

To give a basic illustration of the effectiveness of this matching scheme, the graphs in figure 
8.11 show the results for tracking across a video sequence involving an orbital motion of a 
scene (the sequence illustrated in figure 7.15, page 157). The automatic selection scheme has 
selected 31 images which were then tracked using the methods in this chapter. It is fairly 
clear that the additional matching has resulted in much longer tracks.

8.8 Sum m ary

This chapter has presented a scheme to track points across very large video sequences taken 
using a hand-held camera, as well as for practical detection of degeneracy in those sequences. 
Initially, this involves a scheme for tracking points using consecutive image pairings, followed 
by detection and selection of ideal image pairings with which to start the reconstruction pro­
cess. A scheme is then presented to enable further matching, guided using the reconstruction.

Brief results were also given to illustrate the effectiveness of matching. Far more examples 
of the effectiveness in practical use will be given in chapter 10 where this tracking scheme 
will be used to produce a complete system for reconstruction.



8.8. SUMMARY 194

Figure 8.11: Graph of points tracked into images for normal tracking (left) and with extra 
matching during matching (right). White regions on the graphs show the point (y axis) is 
tracked into the given image (x axis).



Chapter 9

Rectification of Image Pairs

9.1 In troduction

Rectification is a process used to facilitate the analysis of a stereo pair of images by making it 
simple to enforce the constraints offered by the epipolar geometry. The process of rectification 
achieves this by making all matching epipolar lines coincident and parallel with an image 
axis. Many stereo algorithms assume this simplified form because subsequent processing 
becomes much easier if differences between matched points will be in one direction only. In 
this work, this will find use in aiding the problem of dense point matching.

In the past, stereo images were primarily rectified using optical techniques such as those 
discussed at length in [Sla80]. However, in more recent times, these have been replaced by 
software techniques that model the geometry of optical projection by applying a single linear 
transformation to each image. This effectively rotates both cameras until both image regions 
are due the same plane. [HG93] provides an example of this sort of technique which assumes 
that the camera(s) taking the images have been calibrated. In [Har95c], an alternative 
approach is given which assumes no camera calibration, and in [CTB92, LTSI96] a hardware 
implementation of planar rectification is proposed.

This approach of applying a single linear transformation is often referred to as planar 
rectification. It has significant advantages in that it is mathematically simple, fast and 
preserves image features such as straight lines. Unfortunately, planar rectification is not 
general and, if there is a large forward component in the camera movement it may produce 
unbounded, large or badly warped images. In the past, this was not a problem because 
stereo vision was usually performed using stereo rigs with near parallel cameras. However, 
recent advances in uncalibrated stereo vision, such as this work or [FZ98b, KPG98], have
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focused more on hand-held sequences in which forward movement can frequently be present.
To deal with these restrictions, a cylindrical rectification technique was proposed in 

[SMI97] which used a separate transformation for each epipolar line. However, the technique 
was complex, omitted many implementation details and worked largely in 3D. A later work, 
[PKG99] overcame most of these problems, by using the tools of oriented projective geometry 
to perform a similar nonlinear rectification without using 3D.

In this chapter, a new general rectification technique is presented which further improves 
on these techniques. Firstly, it uses existing matches between the images, e.g. those used to 
calculate the epipolar geometry, to determine a linear transformation that makes epipolar 
lines coincident and minimises perspective distortion effects such as motion parallax between 
the images. Secondly, because epipolar lines are coincident, they can then be made parallel 
to an axis by applying the same nonlinear transformation to both images. Using the same 
transformation overcomes a problem with existing general techniques where the application 
of different nonlinear transformations to each image results in matching image features being 
warped differently in each image. Finally, it simplifies the approach of [PKG99] as well as 
addressing a number of unmentioned implementation details. It also handles a number of 
other minor problems overlooked by previous work, such as sub pixel coordinates and infinite 
epipoles.

9.2 Background

Before continuing to the rectification method, it will be appropriate to introduce and review 
some additional theory. This will set the scene for the new rectification method.

9.2.1 Oriented Projective Geometry

This chapter will rely on some concepts of oriented projective geometry. The reader is 
referred back to sections 3.7 (page 69) and 2.4.2 (page 36) for a proper description. In 
particular, the notion that matches between an image can be restricted to half epipolar lines 
instead of full epipolar lines will prove important. This simplifies the rectification procedure 
and prevents problems with matches occurring that refer to points behind one of the cameras.
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9.2.2 Using a Single Homography for Rectification

It will now be shown how it is not always possible to keep rectified images bounded when 
rectifying using a single homography. From the axiom defining parallelism, two lines are 
considered parallel if they meet at the same point at infinity. This means that, for the case 
of a finite convex image region in two dimensional projective space, all epipolar lines passing 
through the image must meet at the same point on the line at infinity U  for the lines to be 
parallel and the image to be rectified. This leads to the conclusion:

Proposition 1 If /  represents a finite image region and e a point, then there exists a 
homography T  taking e to infinity that keeps 7 finite if and only if e is not contained in 7

This is proved in [Har95c] by considering that, if the transformed region 7 is to remain 
finite, T~l (Iqo) should be a line that does not intersect with 7. Since 7 is presumably convex 
(images are usually rectangular), and it is possible when rectifying to make any line passing 
through e into U , it follows that it is always possible to select a line that does not intersect 
7 if e is not inside 7.

9.2.3 Homographies Compatible with a Fundamental M atrix

As seen in section 3.6.1, page 65, it is possible to define an inter image homography that 
maps points on a particular world plane between two image planes. Such homographies can 
be used to perform linear planar rectification by applying one to each image so as to make 
all epipolar lines coincident and parallel (see [Har95c]). However, because making epipolar 
lines parallel can result in unbounded and badly warped images (see [Har95c] and section 
9,2.2), only homographies which make epipolar lines coincident, but not necessarily parallel, 
will be considered here. These will be termed compatible homographies.

More concisely, given a fundamental matrix F  for an image pairing and a match between 
the images x <r» x', a compatible homography 77 will transfer x' so that the resultant point 
Hx' lies on the corresponding epipolar line F x 1. The result of applying this homography to 
all the points in one image will by definition be a pair of images that have coincident epipolar 
lines and hence the same epipole, i.e. He1 ~  e and H ^ e  ~  e'. The set of homographies 
that are consistent with the geometry of a particular image pair can be obtained from the 
fundamental matrix as: (see section 3.6.3 on page 67 for more details)

77 ~  [e']x F -  e'aT (9.1)
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where a is an arbitrary 3 vector such that detH^O. Note that this means there is a 3 
parameter set of homographies that are compatible with the fundamental matrix. Since 
compatible homographies can be considered as transforming points on a world plane between 
two different images, these 3 parameters can be considered to represent a plane in the scene. 
In image terms, these 3 extra parameters amount to defining a one dimensional projective 
transformation that is applied along all the epipolar lines in an image.

Most rectification techniques make no attempt to select the free parameters a in equation 
9.1 using any principled manner. In [Har95c] rectification was improved by selecting these 
parameters so as to minimise perspective distortion between the images. In this work it is 
proposed to alter this approach so it may be applied to generalised rectification (by removing 
the lines becoming parallel constraint) to produce a number of improvements. Previous 
generalised rectification methods applied different versions of these free parameters to each 
epipolar line in each image. Subsequently, distortion arises which causes features not to 
look the same in both images for reasons other than perspective or photometric effects. In 
this work, the use of a compatible homography reduces these problems because the same 
parameters are applied to matching epipolar lines. However, it does not solve the problem 
totally, because different parameters are still applied to non matching epipolar lines.

One final point of note is that a compatible homography is a point to point mapping and 
so must enforce orientation. This is because, assuming the matches are correct, the mapping 
must map between the correct half epipolar lines because no points will match to incorrect 
half epipolar lines. Consequently, there is no need to enforce orientation explicitly as in the 
method of [PKG99].

9.3 G eneral R ectification

The rectification method presented here comes in two stages. First, a compatible homogra­
phy is selected so as to minimise distortion due to perspective effects in some supplied set 
of matches, and then applied to one image to make all matching epipolar lines coincident. 
Epipolar lines are then made parallel to an image axis by parameterisation of both images 
with polar coordinates centred on the epipole. Note that, because a compatible homography 
has been used on one image, the same nonlinear epipolar alignment process can be used for 
both images and so problems of inconsistent image warping avoided. On input, the rectifi­
cation process expects to be provided with two rectangular images as well as a fundamental 
matrix and a set of point matches such as those used to calculate the fundamental matrix.
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9.3.1 Determ ining a Compatible Homography

This section will address the method by which a compatible homography is obtained. This 
method uses known matches and the fundamental matrix between the images to attempt 
to find a compatible homography that minimises inter image distortion due to perspective 
effects.

To do this, an attempt is made to find the homography compatible with the fundamental 
matrix F  that transfers points xj in image two as close as possible to their matches in 
image one x*. This will find the best fitting plane for all the observed points (remember a 
homography transfers points on a world plane between images), and so if the image is then 
warped to make the found plane exhibit no parallax, perspective effects should be reduced. 
Assuming the point matches have been identified subject to a Gaussian distributed error, 
the following least-squares criterion should be minimised for n points:

n

mm 4  (x i> (Ie']x F  -  e'aT) xS)
i=1

where ds is Euclidean distance and the compatible homography is parameterised as in equa­
tion 9.1. Replacing Euclidean distance with algebraic distance, and [e']x .F with H , the 
result is two linear equations k € (1,2) in terms of a per point match x «-)■ x':

( x l e 3 -  e 'fc) x T a  =  ( x ibh 3 -  h i )  x

where subscripts indicate the nth item in a vector and hn the nth row of H.  Stacking these 
equations gives a linear system of the form X a =  b which can be solved using any standard 
linear least-squares technique.

Whilst this linear algorithm is effective, it does come with the major problem that, even if 
the matches conform to the epipolar geometry, they can still be incorrect because the epipolar 
geometry only constrains matches to lie on a line. Consequently, some form of robust solution 
must be found. One approach is to use a random sampling method to minimise a robust 
Huber function p(x) of the residuals x (a is the robust standard deviation), i.e:

. I x 2 x 2 < 3.84cr 
p(x) = < n (7 = 1.4826

1 3.84<7 x > 3.84cr
1 + n — p_

median I rA

for n observations and a parameter space of dimension p, p = 3 for this case (see [RL87] 
for full details). This can be achieved by taking m  minimal samples (m =  300 in my 
implementation) of 3 points and using them to find a solution a„. The solution an, which
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minimises the Huber function just outlined is then accepted as the best solution. Outliers 
are rejected using a 95% confidence limit and the robust standard deviation a of the best 
solution i.e. x 2 > 3.84<7. Finally, the calculation can be repeated using the linear method.

Even if no point matches are outlying, the robust approach is still advisable because 
depth variation may mean that some points, although correctly matched will be so far off 
the best fit plane they will skew the selected plane very badly. This might occur if there is 
a very large amount of depth variation in an image or a very dominant plane. This is based 
on the assumption that it is desirable to find the best fit plane in general that will result in 
the most points matching well, and not to allow small insignificant image regions to skew 
the fit.

9.3.2 Unbounded Images

Since a linear transformation is being used, it is possible for the compatible homography to 
result in an unbounded image. This occurs in the extremely unlikely situation of the epipole 
in first image being infinite, and the epipole in the second image being within the image. 
In this case, the compatible homography will cause the epipole in the second image to be 
mapped to infinity, causing an unbounded second image. Fortunately, such a degeneracy is 
easily handled by swapping the images so that the homography maps points from image one 
(infinite epipole) to image two (epipole in image).

Near this degeneracy, problems will also occur with large images. In order to deal with 
this, the whole technique is modified by swapping the images the homography transfers 
between so that points are transferred to the image with an epipole closest to' the image 
centre. For simplicity from this point onwards this swapping will be assumed and the image 
which has the compatible homography applied to it will be considered to be image two of 
the pair.

Applying to The Image

After determination, the compatible homography can be used to warp all points in the second 
image to the first image plane as Hx'^ thus making all epipolar lines coincident, giving both 
images the same epipole and orienting the epipolar geometry. The nonlinear mapping of 
epipolar lines to the rectified image using polar coordinates will then be exactly the same 
for both images.
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epipole

Figure 9.1: As can be seen, if the epipole is moved nearer to the image edge then the angle 
range covered by the image will increase. When it is on the edge it will represent a maximum 
angle range of 7r radians.

9.3.3 Rectifying the Images

After the compatible homography has been applied to one image, rectification can proceed 
so as to make epipolar lines parallel with the x axis. This is achieved by parameterising 
all image points in terms of polar coordinates centred on the epipole. Subsequently, each 
rectified point is described by a y coordinate given by an associated polar angle — tt < 0 < 7r, 

and an x coordinate given by the distance of the rectified point from the epipole.
Recalling section 9,2.1, it should be noted that it is necessary to consider only positive 

distances from the epipoles. Points at negative and positive distances do not belong to the 
same half epipolar line and so cannot match to the same half epipolar line in the other image.

Before reparameterisation can proceed, it is first necessary to find the common bounds of 
the rectified images in polar coordinates. This amounts to identifying the range of epipolar 
lines common to both images as well as the maximum and minimum distance of points from 
the epipole for both images. Once bounded, the rectified images can then be built up line 
by line, with the distance between consecutive epipolar lines selected individually so as to 
avoid pixel compression. The output image is then created as the region that bounds the 
reparameterised image.

Finding the Com mon Region

Before finding the epipolar lines common to both images, it is best to first identify the 
extreme epipolar lines for both images. If it is assumed that the input images are rectangular, 
maximal epipolar lines are guaranteed to pass through the image corners and the angle range
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e=c

1
' i+ i

Figure 9.2: Determining the minimum distance between consecutive epipolar lines so as to 
avoid pixel loss

spanned by the image is guaranteed to be at most 7r radians (see figure 9.1). Consequently, 
the maximal corners can be found by determining the polar angle for each corner, and 
selecting the maximum and minimum corners so that the total angle range is less than 7r 
radians. Because of the restriction on the angle range, this can easily be achieved by first 
normalising all the angles, so that one angle is 0 radians, and then using normal minimum 
and maximum.

Since a compatible homography is available, all the image corners from image two can be 
transferred to image one prior to finding the maximal corners. The common region is then 
found as the second maximum and second minimum angle, such that the image spans less 
than 7r radians. In effect, this means that given minimum angles n,n' and maximum angles 
x,x' for both images, the second minimum sn and maximum sx are given by:

{ MIN(n,n ')  \\n — n'\\ > n ( M AX(x ,x ')  \\x — x ' \ \> i r
sx = <

MAX(n,n ')  ||n — n'|| <=  7r [ M IN (x ,x ' )  \\x — x ' \ \< =n

This scheme will fail if an epipole is within an image, because in that case the relevant image 
will cover an angle range of 2n radians. Fortunately, this is an easily handled anomaly. If 
the epipole is within one image, then minimum and maximum angles can simply be set to 
the bounds of the other image. If the epipole is within both images, the maximum and 
minimum angles can be set to —7r and 7r.

Selecting the Epipolar Lines To R ectify

The next step is to build a table that will be used to transfer epipolar lines to and from 
different scan lines in the rectified image. To do this, the process starts from one extreme
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epipolar line, assigns it the rectified line y — 0 and associates it with the relevant angle. 
Subsequent epipolar lines y =  n are then found by taking a small angle step from the 
previous epipolar line so that there is no pixel compression within the region of the epipolar 
line intersecting the image. The worst case pixel will always be situated at the furthest 
distance from the epipole, i.e. the image edge opposite to the epipole. Figure 9.2 shows how 
the angle step 9 can be calculated very simply as 9 = arctan Q) where d can be found by 
intersecting the epipolar line with the image.

Note that when this table is built up, each epipolar line from both images can be unrec­
tified and intersected with the image. From this, the maximum and minimum distance from 
the epipole can be found. Subsequently, the maximum and minimum distance anywhere in 
both images can be found, and both output images completly bounded.

9.3.4 Rectifying and Unrectifying points

Unfortunately, avoiding pixel compression means it is necessary to rectify and unrectify 
points using look-up tables. Each y coordinate of the rectified image can be associated 
with an angle to enable unrectification, and vice-versa to enable rectification. However, this 
makes it difficult to rectify any point and to unrectify points with a subpixel y coordinate. In 
order to perform such operations, it is necessary to interpolate the look-up tables. For this 
reason, it is best to represent unrectified epipolar lines by their polar angles and interpolate 
the angles.

9.3.5 Resampling the Image

The image can be resampled very efficiently. For each line of the first image, the maximum 
and minimum distance of points from the epipoles can be unrectified, to give an epipolar 
line segment. Pixel sized steps from one extent of this segment to the other can be taken, 
and the output row of the rectified image can be built up. The same scheme can be used for 
the other image, but with the different maximum and minimum distances for the relevant 
image. Then, as the epipolar line in image one is being worked along in pixel sized steps, it 
is transferred into image two using the compatible homography.
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9.3.6 Infinite Epipoles

Images with infinite epipoles will in fact not work with the above technique because all 
distances will become infinite, and all angles will be the same. Fortunately, they can easily 
be detected as an image with an effective angle range of 0 radians. Note that an infinite 
epipole in the second image is irrelevant because the use of a compatible homography means 
that points from the second image are transferred into the first image. Consequently, only 
an infinite epipole in the first image need be detected. For this case, the rectification can 
simply apply the compatible homography and rotate both images so that the epipole lies on 
the x axis. Although this is an exception case, it is extremely easy to detect and handle.

9.4 E xam ples

Figures 9.3 and 9.4 give a qualitative feel for the effects of rectification on some example 
images. For all the scenes, the fundamental matrix was first estimated using the techniques 
of chapter 4.

Figure 9.3 illustrates the rectification of an image pair produced with a camera undergoing 
a mainly forward movement, the sort that would result in an unbounded image if planar 
rectification were used. Notice how the epipole has been mapped to a line and how this has 
resulted in disparities which are purely horizontal making this a usable rectification. The 
other stereo pair in figure 9.4 was taken using a more conventional near parallel camera 
movement and can be seen to have produced very little image distortion.

9.5 C onclusion

This chapter has presented a simple and fast algorithm for rectification of any stereo image 
pair without the need for any calibration. Compared to previous techniques, it has reduced 
inter image distortion caused by the nonlinear rectification as well as providing a simpler and 
more complete set of implementation details. It has also provided a means of minimising 
image distortion due to perspective effects if some pre-determined matches are provided 
(such as might have been used to calculate the epipolar geometry). Overall, the result is a 
more general technique that produces images that are easier to match.
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Figure 9.3: Forward movement image pair before (top) and after (bottom) rectification
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Figure 9.4: Near parallel image pair before (top) and after (bottom) rectification



Chapter 10 

Models from Video Sequences

10.1 In troduction

This chapter will attempt to gather together the fairly varied collection of techniques pre­
sented in the rest of this work and combine them with existing state of the art techniques 
to create a complete reconstruction system. This system is general, in that it can take any 
video sequence without any real restrictions on the form except that certain degeneracies be 
avoided. These degeneracies are primarily allowing a single plane to fill the view which causes 
problems with projective reconstruction, and orbital motion which causes the self-calibration 
to fail.

10.2 O verview

The system takes as input a complete video sequence. In theory, any camera that conforms 
well to the full perspective model could be used for this purpose provided that the aspect 
ratio is close to one and there is little or no skew. The reconstruction then proceeds in a 
number of nicely separate modular stages:

• Matching: To start the whole process off, matching is performed between each con­
secutive image to produce pairwise sets of matches. During this process, an effort is 
made to match existing features already matched across the previous pair. The result 
of this is a large number of features many of which will be tracked across a great many 
images.

207
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• Image Selection: In order to deal with the potentially inhibiting number of images 
and to avoid degeneracy, overlapping pairs of images are selected so as to minimise 
degeneracy and maximise accuracy. This sparse image sequence then forms the basis 
for the reconstruction.

• Structure and Motion: The image pairings are then used to build a set of reconstruc­
tions, one for each consecutive pair of images. These are robustly merged with further 
point matching to produce a set of projective cameras and a sparse collection of struc­
ture points.

• Self-Calibration: The next stage attempts to self calibrate the camera. This is achieved 
using natural constraints as well as certain assumptions about the camera, for example 
that it has zero skew and principal point in the centre of the image. At the end of this 
process, all structure and cameras are upgraded to a metric form.

• Dense Correspondence: At this stage, an effort is made to match every point in each 
image with the consecutive image. These correspondences are performed for every 
consecutive pair in the sparse image sequence and then chained together to produce 
large sets of points tracked for many images.

• Model Construction: The points from the dense correspondence are used to create 
depth maps (containing the distance of each point from the camera) which are then 
projected into the images and used to triangulate a mesh. Due to time constraints this 
part of the system is still a little primitive.

10.3 T he C om plete System

Now an overview has been given, it is appropriate to give a more detailed description of each 
of the stages involved in the reconstruction.

10.3.1 M atching

Before any reconstruction can begin, it is first necessary to find the same world feature 
in different images. In this system, point features only are matched between consecutive 
images and chained together to produce longer tracks. The process works sequentially from 
the first image to the last image and involves two main steps. Firstly, images are rejected
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Figure 10.1: An example of feature tracking. The crosses indicate features in the image and 
the blue lines the trail taken by the points over the previous 120 images.

totally if the consecutive pairing is too similar and then point features are matched between 
consecutive images.

Image Rejection

Because a hand-held video sequence is being used, it is frequently the case that consecutive 
images show so little difference that there is no point in even trying to match between them. 
If this is found to be true then one of the two images can safely be permanently discarded 
and further processing proceed without it.

Detecting such similarity is a very simple and efficient process. Basically normalised zero 
mean cross correlation with a large window size (21x21 in my implementation) is used to 
obtain a correlation score between every pixel (x, y) in image 1 and the corresponding pixel 
at (x, y) in image 2. The average correlation score is taken from these and if it is found to 
be greater than some threshold (0.97 in my implementation) the second image of the pair is 
rejected. This can be achieved extremely efficiently [Sun97] using box filtering [McD81] to 
perform the cross correlation as described in appendix F.

Point Tracking

The point tracking algorithm of chapter 8 is next used to track points across as many images 
as possible. To avoid repetition the discussion of the point matching method used in this 
system (due to [TS94]) will not be repeated. The basic method finds features in the first 
image which are likely to be easy to match, and then attempts to track these into the second
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image. New features are then found in the second image to replace any that could not be 
tracked and the second image becomes the new first image with the whole process repeating 
until there are no more images.

Figure 10.1 shows an example set of tracks, these are tracks across 120 images with the 
trails representing the path of the points. Note that this is purely the response of the feature 
tracker and includes no outlier rejection.

10.3.2 Image Selection

Because a video sequence can contain many thousands of images, the next stage selects a 
smaller set of images covering the whole sequence. This serves a two fold function, firstly to 
reduce the computational load and secondly to allow selection of images so that the camera 
motion between the images is sufficiently large and non degenerate to allow accurate camera 
determination. Without this stage, geometry estimation can still produce reconstructions 
with good re-projection error, but the reconstructions will usually be sufficiently inaccurate 
to make later stages (particularly self-calibration) fail.

The image selection is performed using the techniques of chapter 8, and attempts to find 
pairings of images that minimise a certain similarity score based on maximising the number 
of matches and minimising both the reconstruction error and degeneracy. The result is a 
sparse set of images and the pairwise geometry of these images in the form of the fundamental 
matrix.

10.3.3 Structure and M otion

Now a sparse set of images and the associated pairwise image relations are available, they 
are used to build a set of reconstructions, one for each consecutive pair of images. These are 
then robustly merged with outlier removal and further point matching to produce a set of 
projective cameras and a sparse collection of structure points.

This topic was treated extensively in chapter 7, and so only the specific solution used will 
be detailed here. Starting from the selected image pairs, the fundamental matrix governing 
the geometry of each pair is used to produce a reconstruction using the techniques of chapter 
5. For best results a bundle adjustment is run on the pairwise reconstructions.

Each consecutive pair of images is then robustly merged to produce a reconstruction for 
the resultant triplet of images. Pairs of triplets are then merged robustly so as to keep two
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Figure 10.2: Hierarchical merging used for reconstruction

images overlapping at all times and the merging repeats hierarchically as shown in figure 
10.2. A bundle adjustment is performed after every merge.

To handle extremely large sequences in a computationally efficient manner, if the number

of hierarchically. Bundle adjustment is not performed during the sequential merging, but is 
delayed until the complete sequence is available.

Throughout the merging process, a continual effort is made to find more matches. After 
each merge, this will take all points in one sub-sequence that are not already tracked into 
the other sub-sequence and attempt to find matches for them using the newly calculated 
structure and cameras. This takes the form of a guided search as described in section 8.6, 
page 184, and although not essential can help a great deal if parts of the scene go in and out 
of view either due to occlusion or returning to view something seen earlier. For very long 
sequences the extra matching is highly advisable.

The next stage attempts to self calibrate the sparse cameras. This is achieved by using nat­
ural constraints to relate the equivalent metric cameras to the projective ones. In particular 
the constraint that the absolute conic (see section 2.4.4, page 39) remains invariant to the 
Euclidean component of a camera matrix.

If this constraint is used in combination with certain assumptions about the camera, 
such as zero skew and principal point at the centre of the image then linear constraints can

of images in a sub-sequence gets above 60 then the merging proceeds sequentially instead

10.3.4 Self-Calibration
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Figure 10.3: Selected images from the sofa sequence of 327 images (includes first and last 
image).

Figure 10.4: Two views of the calibrated sparse set of points and cameras generated from the 
sofa scene. Cameras are marked with cones. Note how the one camera has been incorrectly 
reconstructed due to a trade off between focal length and movement along the optical axis.
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Figure 10.5: Selected images from the box sequence. This includes the first and last images.
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Figure 10.6: Two views of the sparse set of calibrated points and cameras generated from 
the box scene.

be found on the projective form of the absolute conic. Once the location of the absolute 
conic has been found in the projective reconstruction it can be reduced to canonical form, 
upgrading the structure and cameras to a metric form. This is achieved using the entirely 
automatic algorithm of [PKG97, Pol99].

Due to space constraints the self-calibration algorithm will not be detailed here because it 
does not represent an original contribution of this work. For the interested reader, appendix 
E gives a detailed description of the algorithm as well as a little background on the self­
calibration problem.

Figures 10.4 and 10.6 show novel views of the sparse points and cameras obtained after 
self-calibration for the two video sequences shown in figures 10.3 and 10.5 respectively. It can 
be seen that the points are relatively noise free and accurately determined as are the cameras. 
Note that the two video sequences shown in figures 10.3 and 10.5 cover the complete video 
sequence, and include first and last frames. A more complete set of images from the sofa 
sequence can be found in appendix G.

Practical Notes

Self-calibration is far from being an ideally solved problem. There exist numerous degen­
eracies for the form of self-calibration used here. See [Stu97] for a complete analysis for 
constant intrinsic parameters and [Stu99, Pol99] for varying focal length. More recent work 
on degeneracy can be found in [Kah99]. The most common form of degeneracy likely to 
dominate a large sequence is orbital motion or planar scenes. The algorithm also requires a
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very good reconstruction.
Personal experience with non degenerate sequences has drawn to light two main problems 

with self-calibration. The first of these is a tendency to exchange changes of focal length with 
movement along the optical axis. This is probably because a change of focal length differs 
only by minor second order differences from a movement along the optical axis. Bearing 
all this in mind, it probably explains the success of self-calibration methods which allow 
focal lengths to vary. Such approaches can account for the aforementioned errors without 
damaging the reconstruction of the plane at infinity.

In the projective reconstruction, it follows that this trade off of movement against focal 
length is caused by inaccurate reconstruction of epipoles (i.e. camera centres). The frame 
selection method outlined in section 10.3.2 can help a great deal with this problem, as can 
a constrained bundle adjustment enforcing consistent focal lengths (but this is at the cost 
of allowing focal length to vary). Figure 10.4 illustrates an example failure, where the far 
right camera should be at a roughly similar distance from the sofa but clearly is not. In 
this example, because it is viewed from a novel point and the structure still looks metric, 
the plane at infinity has been correctly located even if the cameras have not. It follows that 
allowing varying focal lengths has saved the metric properties of the reconstruction.

The second major problem with self-calibration is projective drift. This is more prevalent 
in very long sequences in which later images do not contain features tracked from earlier 
images. The result is a tendency of the projective coordinate frame to drift slightly, meaning 
that there will no longer be a consistent plane at infinity for the self-calibration. Similar 
drift has been observed in closed sequences (see [FZ98b]) where the last and first camera 
positions should be the same, but are not in the reconstruction.

This problem can be significantly alleviated by using the merging based approach to 
reconstruction presented in this work which provides better balancing of error. However, it 
is by no means solved and to cope with it in a fail safe manner it would be necessary to 
eliminate the projective drift entirely.

10.3.5 Dense Correspondence

The reconstruction thus far has only made use of a sparse set of easily matchable points. 
At this stage, an effort is made to match every point in each image with the consecutive 
image. The same sparse image set used for structure and motion calculation is used for this 
purpose. The dense set of pairwise matches this produces are then robustly combined to
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Figure 10.7: Dense correspondence as a path search

Figure 10.8: Disparity map (left) generated from the pentagon image pair (right), 

create longer more reliable tracks.

Rectification

Perhaps the most important constraint that can be imposed when attempting to match 
between image pairs is that offered by the epipolar geometry. This can imposed in a compu­
tationally efficient manner by first rectifying the pairs of images. To this end, the completely 
general rectification method of chapter 9 is employed to make all matching epipolar lines 
coincident and parallel to the x axis. The advantages of using this particular rectification 
method are that it is applicable to any epipolar geometry and that unlike other general 
methods it minimises distortion due to perspective effects.
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Figure 10.9: Depth map (left) generated from the pair of images (right) of a cluttered desk. 
The depth map is from the point of view of the middle image.

Figure 10.10: Depth map (left) generated from the pair of images (right) of a sofa and chair. 
The depth map is from the point of view of the middle image.
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Dense Correspondence for Image Pairs

The approach to pairwise dense correspondence taken here is an extended version of the 
method presented in [CHRM96]. This method attempts to match individual pixels subject 
to extra constraints in addition to that offered by the epipolar geometry. In particular, 
uniqueness is enforced so that given a match in one image it may only match one point in 
the other image. As a by product of this, the so called ordering constraint is also enforced, so 
that given a particular match at (x,y) in image 1, the next match at (x +  1 ,y) must either 
be occluded or at a greater disparity. If it is at less disparity then it will match something 
that could have been matched to earlier in the scan line.

The original method in [CHRM96] matches on a per pixel basis, but to increase robustness 
the starting point for the implementation presented here was a normalised zero mean cross 
correlation (as in [Fal94]). This ’box matching’ is performed between all points (x,y) in 
the first image and all points (a; +  d, y) at a certain disparity d in the second image. Such 
matching can be performed efficiently using a box filter (see appendix F) to perform all 
correlations for a range of disparities dmin<d<dmax. When colour images are available further 
improvements were obtained by summing the correlations for each of the red, green and blue 
channels. Similar colour based improvements to block matching have been used before 
[Kos93],

Matching is then performed so as to match each pixel in the first image with a corre­
sponding pixel in the second image which maximises the correlation score. This is re-cast as 
a path search problem for each epipolar line, so that the ordering and uniqueness constraints 
can be imposed (as in [CHRM96]).

Figure 10.7 illustrates this path search problem. The white band in this figure indicates 
the region of potential matches (defined by the disparity range drnin<d<dmax) , and the line 
through this region, an example path built from left to right. The constraints are enforced by 
insisting that only three types of step may be taken to create a path. This can be a diagonal 
step corresponding to a match, a horizontal step corresponding to an occlusion in the left 
image or a vertical step corresponding to an occlusion in the right image. A step along the 
path as indicated by the dotted line would result in potentially non-unique matches and so 
is not allowed.

Each type of step is assigned a particular cost. A step associated with a match is assigned 
a cost the same as the correlation score and a step associated with an occlusion is assigned 
a certain fixed cost. Dynamic programming is then used to find the path with the highest
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score.
To increase efficiency and improve the accuracy a pyramid scheme was used ([Fal97]). 

In this scheme both images are low pass filtered and then scaled down by a power of 2. 
Matching is then performed at the lower resolution, and the results scaled and interpolated 
so as to restrict the matching at the next level of resolution. By using the same correlation 
window size at each resolution the matching window effectively decreases in size, allowing 
a larger window matching to provide an initial guess before refinement of finer details with 
less accurate and smaller correlation windows.

When matching is complete, the resulting disparity maps are median filtered so as to 
remove isolated points and to smooth the disparity map. Some example disparity maps 
and depth maps can be seen in figures 10.8 to 10.10, with occlusions and unmatched areas 
marked in red.

The first figure, 10.8 shows a disparity map for a fairly standard and accurate test pair 
of images often used to asses correspondence algorithms. The next figure 10.9 shows a depth 
map for a pair of very detailed images and illustrates the sort of scene for which dense 
correspondence is not ideal due to the large number of distinct depth changes (at object 
boundaries). The final figure 10.10 shows a much more suitable scene without the sharp 
edges.

Dense Correspondence for Multiple Views

The pairwise disparity maps are usually fairly inaccurate because the epipolar constraint 
only constrains the match for a point to lie on lines. To help overcome this problem and 
to greatly increase the accuracy, matches from the disparity maps are chained together to 
create longer matches.

A different approach was taken to previous methods ([KPG98]). Rather than convert all 
disparity maps into depth maps (i.e. distance from the camera rather than disparity) and 
then refine these depth maps by linking up and down using the matches, an effort is made 
to reconstruct a set of points from all the disparity maps.

To do this, a set of tracks is initialised using the first disparity map. Using each subse­
quent disparity map the tracks are extended by rectifying the point from the second image of 
the last pair into the first image of the new pair and using the interpolated disparity value. 
At each stage a new set of tracks are added for any points which were not used in extending 
previous tracks. All points are constantly reconstructed and then tracking stopped if their
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re-projection error falls outside a confidence limit. Rejected points are added to the complete 
set of points only if they have been tracked for 4 or more images.

The advantage of this approach is that it is viewpoint independent and does not require 
calibration. However, it can be slower and does produce data which is harder to work with.

10.3.6 M odel Construction

To produce a model for viewing purposes, the large point set obtained from dense corre­
spondence is projected into a particular image to produce a depth map. The resultant depth 
map is then smoothed using a median filter that preserves edges (a cross shaped window 
rather than a box shaped window) and small gaps in the depth map filled by interpolation.

A triangular mesh is then fitted to the depth map, by placing large squares of a certain 
edge size (e.g. 6 pixels) over the depth map. These squares are then halved into triangles 
and the depth map used to compute the 3D coordinates of the vertices. To prevent problems 
with blurring of edges, if a triangle is found to have a surface normal pointing away from 
the camera it is split into two until this is not the case. Any triangles of unit edge size that 
still point away are removed entirely.

This method whilst fairly primitive can produce visually pleasing results, particularly if 
the resultant models are texture mapped as shown in figures 10.11 and 10.12. These two 
particular models have been selected since figure 10.11 contains only nice smooth objects 
and is ideal for this approach to model construction, whereas figure 10.12 is a low quality 
greyscale sequence with many distinct edges which illustrates the ineffectiveness of dense 
correspondence on low quality images or at obtaining accurate edges.

10.4 Further Im provem ents

Due to the limited time available for this project much has not been addressed. In particular, 
there are many existing improvements to the techniques used which could be added to the 
system as well as other problems which yet need to be addressed. A brief summary of some 
of these are given here.

10.4.1 Feature M atching

It is fairly safe to say that point matching for video sequences is to all intensive purposes 
practically solved. The system presented in this work as well as previous systems have
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Figure 10.11: Four textured novel views (top) of the model generated from the sofa sequence 
and two un-textured (bottom). This sequence is well suited to the dense correspondence 
process and looks good even from very different viewpoints far from those visible in the 
sequence. A comprehensive selection of the images from the sofa sequence can be found in 
appendix G.
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Figure 10.12: Three textured novel views (top) of the model generated from the box sequence 
and two un-textured (bottom). Note how the sharp edges are not recovered especially 
accurately and how the lack of texture in the images (particular for the floor) has resulted 
in large sections not being recovered. In particular notice the incorrect reconstruction of the 
empty space under the lid of the box. A sample of the images used to generate this sequence 
can be found in figure 10.5.
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illustrated the suitability and generality of points for reconstruction and tracking. However, 
there is still plenty of room for improvement by extending the system to use lines [CCZ96], 
curves [SZOO] or even conics and edges. Not only can such features be very accurately located, 
but they can be very useful for identifying object boundaries when constructing models.

10.4.2 Degeneracies for Structure and M otion

Recalling section 8.1.3, page 165 there are two critical forms of motion, rotation and imaging 
planar scenes which will not allow determination of a camera. Since detection and handling 
degeneracy due to rotation is accounted for in the system developed for this work, only planar 
motion remains to be handled. This is in theory possible, since as discussed in section 8.1.3, 
page 166 a camera imaging a planar scene can be reconstructed if the structure in the scene 
is metric.

Fortunately self-calibration algorithms for planar scenes do exist and techniques are avail­
able for fixed [Tri98, MCOOb] or varying [MCOOa] focal lengths. Consequently, calibration of 
the camera in the planar section can be used to determined cameras and structure using the 
techniques in [Fau93]. To do this requires at the least 3 views for a very restricted camera 
model or 4 if the focal length is allowed to vary. Since video sequences are being used it is 
extremely unlikely that a plane which dominated the view in at least one image cannot be 
tracked for many more than 4 images.

Detection of planar motion is already included in the system, and so to deal with it the 
only necessary extension would be the addition of the self-calibration and reconstruction 
algorithms. For greater robustness it would also be a good idea to implement a homography 
based feature tracker suitable for tracking points on the plane causing the degeneracy for 
as many images as possible. Naturally, this discussion does rely on the relatively untested 
effectiveness of the planar self-calibration algorithms to be feasible.

10.4.3 Self-Calibration

Whilst projective reconstruction can be achieved very reliably for very long video sequences, 
self-calibration is still fairly unreliable. The use of the image selection system and new 
merging based projective reconstruction proposed in this work enables sufficiently good re­
construction for self-calibration to work most of the time. However, it is still not very reliable 
for very large sequences and is very unstable. In particular, it is prone to replacing camera 
movement along the optical axis with changes in focal length as well as to projective drift.
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It is likely much could be done to alleviate these problems. In particular, allowing the 
user to provide certain scene constraints such as parallel lines, vanishing points and known 
structure or angles should the automatic methods fail. It also seems likely that further 
work on self-calibration to detect and capitalise on degeneracies (such as pure rotation) 
could yield some benefits. It would also be interesting to integrate the self-calibration into 
the hierarchical scheme so that when possible, merging could be performed between two 
calibrated sequences. By making the reconstructions metric as early as possible problems of 
projective drift could be dealt with because the reconstruction would be metric and so could 
not drift in a projective manner.

10.4.4 Dense Correspondence

Dense correspondence can still be very unreliable for many image pairs. In particular, 
images with lots of depth variation or little texturing rarely work well, if at all. It seems 
likely that much more could be achieved along the lines of dense correspondence. The 
implementation used in this work is not completely state of the art, and there do exist further 
slight improvements to the type of approach, particularly the disparity map interpolation 
offered in [Fal94]. This method attempts to make disparity edges and luminance edges 
line up and would greatly reduce the blurring of edges (corona effect) due to the use of 
block based disparity estimation. Also of use would be the addition of the assumption that 
depth discontinuities are associated with intensity discontinuities [BT98] that would allow 
untextured areas to be handled.

Very good results in dense correspondence have also been obtained by performing match­
ing using many images (e.g. [CHRM96, NMS096]). Although this needs to be performed 
on a per pixel basis, using as many as 19 or 20 images has been shown to produce very high 
accuracy. It would be interesting to pursue this approach since suitable images can usually 
be obtained from a video sequence, and it is likely results would be better than imposing 
the consistency after matching by linking the disparity maps.

One approach of interest is to extend dense correspondence so that it uses correlation 
scores from image triplets rather than pairs to initialise the correspondence. This is possible 
when using planar rectification because all points of the same disparity belong to the same 
plane. Consequently, the third image can be warped by a homography for each depth to 
align this plane and the correspondence performed. This is still possible for general camera 
motions because the method presented in this work maintains this property (unlike previous
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general methods). However, it is further complicated because each scanline needs to be 
transformed separately. Unfortunately due to time constraints there was no chance to finish 
pursuing this (except the new rectification algorithm).

10.4.5 M odel Construction

Since the model construction method in this work is so simple there is doubtlessly much room 
for improvement on this front. For example, attempting to fit thin plate splines to create 
surfaces and then matching these surfaces between images to get more accurate positioning. 
Also, textures could be extracted to sub pixel accuracy by interpolating the visible texture 
regions in all images

It would also be interesting to attempt to extend the method to be less viewpoint depen­
dent. Although this could be achieved by producing a set of models for each viewpoint and 
then merging them, it is probably not the best approach. Such a method would be highly 
redundant and so instead it would probably be better to produce a model using one view­
point then project it into another view point, fill in the gaps and refine where possible, then 
project into yet another view point. Provided care is taken to detect one surface overlaying 
another this would probably be far simpler.



Chapter 11

Conclusion

11.1 Sum m ary

This work has developed a complete system for producing models from video sequences, with 
emphasis on enhancing certain aspects of the reconstruction process.

Firstly, problems of effective image acquisition were resolved by a method to select suit­
able frames for reconstruction from a video sequence. The use of a video sequence makes 
feature matching very easy and accurate as well as ensuring a good distribution of images 
are available. This approach avoids problems due to the overwhelming quantities of data 
and serious inaccuracies caused by geometry estimation for small baselines.

Whilst feature matching is a very difficult problem it can provide only a starting point 
for reconstruction. At the heart of most uncalibrated reconstruction systems is a method 
for projective reconstruction. Although existing approaches to projective reconstruction are 
very effective, this work has further extended them to produce significant improvements. 
New robust merging based algorithms were proposed and shown on both synthetic and real 
data to produce large improvements over existing methods.

Finally, these and numerous other improvements were incorporated into a complete sys­
tem for 3D reconstruction from video sequences. This entirely automatic system is capable 
of producing realistic models with no human interaction. It should be noted that this sys­
tem also serves to demonstrate the effectiveness of the new techniques, and is arguably not 
a major contribution in itself (models have been produced from images using dense corre- 
spondance techniques for decades).

The modular nature of the whole reconstruction process means that all the contributions 
of the work are generally applicable. For example, the video frame selection process does

226
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not have to be applied to projective reconstruction, and rectification has many uses other 
than dense correspondence.

11.2 D iscussion

Whilst totally automated model building does now seem possible, there are still many lim­
itations and practical problems. The process can benefit a great deal from user interaction 
and further improvements to the techniques. Due to the many and varied aspects of recon­
struction a discussion relating to each of the main areas will now be given:

11.2.1 Feature M atching

Point matching can now be considered a practically solved problem, particularly for video 
sequences. With video sequences, it has long been known that the very small difference 
between frames allows matching to be performed using a very simple model of image motion. 
This is not true for sparse matching (i.e. a collection of images separated by arbitrary 
and larger baselines), where a more complete motion model needs to be used to guide the 
matching process.

Experience with this work has led me to believe that a very great deal of complexity can 
be avoided by using video sequences instead of sparse image sets. The reasons for this lie 
in the feature tracking. Tracking features using very simple motion models avoids a great 
deal of the complexity required for geometry guided matching. Primarily, it avoids the need 
for model selection (i.e. selection between homographies and fundamental matrices), avoids 
problems with low frequency repeated structure, simplifies image acquisition, and greatly 
increases the accuracy and length of tracks.

Combining these simplifications with the image selection process results in an extremely 
effective and robust method. In my experience, unless effort was made to introduce planar 
degeneracies, projective reconstruction never failed to produce extremely good results even 
with very poor quality sequences. However, all this is not to say that further improvements 
are not still possible, particularly in handling and even capitalising on degeneracies (e.g. 
tracking with a homography), in matching other forms of structure such as lines, conics or 
even edges or even by using different robust methods (for example, see [LPTOO] where a 
simplex based approach is shown to be more effective than RANSAC).



11.2. DISCUSSION 228

11.2.2 Structure and M otion

The problem of producing cameras and structure is a very long-standing problem that has 
received a great deal of attention. There is no one ideal solution, whether working with 
calibrated or uncalibrated cameras, but instead a plethora of techniques from which the most 
appropriate must be selected for the task in hand. This work has successfully generalised 
a method of reconstruction so that it can be adapted to most problems that require a full 
projective camera model.

In my view, the application of projective geometry to modelling the image formation 
process presents an effective way of approaching the reconstruction problem when only pro­
jective (or image based) concepts are required (e.g. for point matching or rectification). It 
allows all the often unnecessary constraints required to make a space metric to be ignored 
(e.g. rotation matrices), and greatly simplifies both the theoretical and practical application 
of geometry to the reconstruction problem. It is simpler to consider only those properties of 
the object space that have been preserved in the image than to add in all the details that 
have been lost. This usually results in increased accuracy and ease of computation.

Because of the increase in accuracy, even in situations where camera calibration is to be 
performed, a projective interpretation can prove very useful for stages where calibration is 
not needed (e.g. to match points). Even if calibration is required at some stage, projective 
reconstruction can provide a useful means of boot strapping the whole process or verifying 
the accuracy of the calibrated results.

However, as will be discussed in the next section, the lack of effective calibration algo­
rithms for upgrading projective structure to metric makes general use of projective recon­
struction very difficult. Good results have been achieved producing metric reconstructions 
directly using only a very rough approximation of camera calibration (a guess) as a starting 
point (e.g. [TM91, LTCP01]). This consideration means that in many cases it is not worth 
attacking the unusal and un-intuitive (it is however mathematially simpler) projective ap­
proach since it offers little practical benefit in situations where metric reconstructions are 
required.

11.2.3 Self-Calibration

Despite extensive work on the problem of self-calibration, a robust and practical solution 
remains to be found for upgrading projective structure to metric. Although very effective 
solutions have been obtained for specialised situations such as stereo rigs or restricted camera
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of camera self-calibration is now very well understood, although it is still likely that some 
improvements will be found by addressing it further.

However, if pure self-calibration is ever to become generally reliable, it is likely that a 
more pragmatic approach will probably be necessary that focuses more on the where and 
when of applying the calibration rather than the calibration method itself. For example, 
the idea of including self-calibration into the merging based reconstruction so as to avoid 
problems of projective drift, or of using some form of random sampling to select cameras 
from which to calibrate (the latter was suggested by Simon Gibson and is not the author’s 
idea).

An alternative would not be to attempt calibration after reconstruction, but to take 
approximations to the camera calibration (e.g. a guess) and use this to initialise a fully metric 
reconstruction (e.g. [TM91, ?]). This method can be surprisingly robust, and certainly more 
robust than the existing general self calibration algorithms.

11.2.4 M odel Building

This section covers the entire process of model building - a problem that has been resolved in 
this work by using a dense correspondence approach. The drawback with dense correspon­
dence is that it provides a low degree of accuracy. It particularly tends to fail at detecting 
sharp edges, and suffers badly from problems with objects that are viewed at odd angles. 
Although the later problem can probably be dealt with by some form of registration using 
all views.

In the author’s opinion the dense correspondence approach to modelling still needs a fair 
bit of work. In particular, integrating the multiple view linking into the actual matching 
process itself has been shown to produce dramatic improvements and would doubtlessly be 
invaluable. Also producing the models from the dense set of points needs a great deal of 
work. Ideally a method that only infers surfaces from continuous regions in images and then 
links these together in a viewpoint independent manner is required (e.g. [MKOO] has made 
a start on this approach). This is probably better than building a set of models from each 
viewpoint, and then merging these together - an approach designed for different forms of 
acquisition where different data is available (e.g. volumetric data).

Perhaps it might even be possible to resolve some of the matching problems by converting 
the dense correspondence problem across relatively wide baselines into a tracking problem 
across consecutive frames of a video sequence. In this way, disparities between images can



11.2. DISCUSSION 230

be relied upon to be very small, and so searching greatly reduced. This seems particularly 
appropriate if the matching is performed across many images rather than just a pair.

Of course, dense correspondence does not present the only solution to the modelling 
problem. A lot could be done in producing semi automated CAD tools, which could be 
guided by user interaction to fit models to the images. This is an especially good idea 
since most of the guided user interaction could be done prior to calibration. User provided 
shapes such as conics and squares can then be used to greatly improve the reliability of a 
self-calibration.
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Appendix A

Nonlinear refinement

For many of the methods in this thesis, nonlinear least-squares refinement is absolutely 
essential. For many problems (particularly those with smooth functions), the Levenberg- 
Marquardt (abbreviated to LM) iteration algorithm is widely accepted as being the most 
successful algorithm, and this appendix will aim to provide a very brief outline of the method. 
The outline will only be sufficient to develop an understanding of the algorithm’s practical 
form, and for a more complete description the reader is referred to more concise books on 
the subject, such as [DS83].

A .l  N ew ton  Iteration

Given a function y = /  (x), a measured value y for y and an initial estimated value x 0 for 
x, Newton iteration attempts to find the vector x  that most nearly satisfies this functional 
relation y — /  (x) . It does this by continually refining the estimate under the assumption 
that the function /  is locally linear. More precisely, there will be an error e0 associated with 
the initial estimate such that:

y = / ( x  0) + e0 (A.l)

Assuming that /  is locally linear it can be approximated at x0 by:

/  (x0 + A) =  /  (x0) +  J  A  (A.2)

where J  — ^  is the mapping represented by the Jacobian matrix. Setting xi = x 0 +  A  
and substituting into equation A.2 leads to y — /  (xx) =  y — /  (x0) — J  A. Identifying with 
equation A.l gives y — /  (xi) =  eo — J  A. As such, minimising the error (|y ~  /  (xi) || is
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equivalent to minimising:
ll*o -  JA || (A.3)

Solving for the unknown A in equation A.3 is a linear minimisation that can be solved by 
the method of normal equations. The minimum occurs when JA  — e0 is perpendicular to the 
row space of J, leading to the so called normal equations J T (JA — eo) = 0 which simplify 
to J TJA  =  J7 e0. Finally, the normal equations can be solved by any appropriate means, 
such as Gaussian elimination and the recovered A  used to update the estimated parameter 
vector x0.

To sum up, the solution is found by stepping in the direction of the functions gradi­
ent taking successive approximations according to the formulae (under the assumption the 
function is locally linear):

X;+1 =  Xi + A; 

where A* is the solution to the normal equations:

J TJ A { =  J T€i

Unfortunately, this iteration procedure can often fail to converge to the required least-squares 
solution x, or can get stuck on a local minimum value. In some situations it may not even 
converge at all. The behaviour and success of the algorithm depends very heavily on the 
initial estimate xo-

A .2 Levenberg-M arquardt Iteration

The Levenberg-Marquardt iteration method (often abbreviated to LM) is a slight variation 
on the Newton iteration method. The normal equations N A  — J T J  A  — J Te are replaced 
by the augmented normal equations N fA  =  J Te, where N# = (1 +  A) Nu and — N y  

for The value A is given an initial value, typically 10-5, and the augmented normal 
equations solved as for Newton iteration. If the value of A leads to a reduction in the error, 
then the increment is accepted and A is divided by 10 before the next iteration. On the 
other hand, if A leads to an increase in error, then A is multiplied by 10 and the augmented 
normal equations are solved again. This process repeats until a value of A is found which 
gives a decreased error. This repeated solving, using different values for A, constitutes one 
iteration of the LM algorithm.



Appendix B 

Bundle Adjustment

The bundle adjustment [Bro58] is a well known and very well established method for provid­
ing a nonlinear refinement of all structure and all cameras in a scene (see [Sla80, TMHFOO, 
Har92, SKZ99]). The basis of bundle adjustment is to find the least-squares solution that 
minimises the re-projection error:

(B.l)
ij

for all cameras Pi in image i, 3D structure Xj and associated 2D image features xj. This 
equation is nonlinear, involving unknowns for both structure and cameras as well as an un­
known scale factor that has to be eliminated by dividing through. For projective cameras, 
in general the best that can be done to minimise the exact error measure in equation B.l 
is to refine a supplied initial solution using a gradient descent technique such as Levenberg- 
Marquardt (abbreviated to LM) or Newton iteration (see appendix A for a detailed descrip­
tion).

Whilst it would be quite straightforward simply to use the error measure in equation B.l 
in a conventional LM implementation, it would unfortunately not be practical because of 
the size of the problem involved. For example, consider a normal scene involving 40 images 
with 2000 points. This leads to 40 * 11 +  2000 * 3 = 6440 unknowns. As would be expected, 
it is not tractable to solve for that many unknowns using normal methods. Fortunately a 
solution is still feasible, because the Jacobian matrix for the problem has a special sparse 
block structure. This leads to a similar sparse block structure for the normal equations 
used in LM or Newton iteration (see appendix A for a description of LM). If the sparsity is 
properly exploited, it is possible to obtain an enormous simplification in the solution of the 
normal equations.
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Figure B.l: Graphical illustration of the sparse Jacobian matrix for bundle adjustment

To illustrate the sparsity, consider the two different types of independent parameters, 
cameras Pi and structure Xj. Altering a camera Pt will alter the re-projection error for all 
points in the same image i as the camera, and altering 3D structure Xj will lead to a change 
of re-projection error in all projections of that point xj.  This means that the matrix of partial 
derivatives of the dependent parameters with respect to the independent parameters has a 
particular sparse structure as shown in figure B.l. In the figure, the grey regions indicate 
areas that are invariably filled with zeros and white areas indicate areas with varying value.

The case illustrated is three cameras and four points visible in all images. If a point 
were not visible in certain images then the relevant rows would be missing, and if a camera 
were fixed then the corresponding columns would be missing (for example the first camera 
P0 might be fixed to (/|0)). Given that the Jacobian J  has a special sparse structure, so do 
the normal equations J TJ A = JTe as illustrated in figure B.2

If the form of the normal equations is examined a little more closely, it can be seen that it 
is possible to give individual formulae for each of the blocks in the normal equations. Given

• dx^ 'N  images and M  points then jpj- for j  £ {1, . . . ,  11} can be defined as the M x 11 matrix of 
partial derivatives of the image points x ) with respect to the matrix of camera parameters

d x ’Pi. Also, ^  for i £ {1, . . . ,  4} can be defined as the N  x 4 matrix of partial derivatives of 
the projected image points xj with respect to 3D structure Xj. Finally, given e (xj) as the 
re-projection error from equation B.l, we may write:
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Figure B.2 : Graphical illustration of the sparse normal equations for bundle adjustment

TJ  V ' '  ^  ^ XjUi — l ^ j  dp. dp.
\ f  dx*. ^  dx*
J fix, dxj

^  g  (B-2)
«(Pi) -  E i («•})
c fo )  =  E j  «(«}•)

And so, the normal equations JTJA  = JTe may be written in the form:

VFT V

where matrix U, V and vectors e (P), e (Ar) are made up of sub blocks as given in equation
B.2, and A (P), A (Ar) also naturally decompose into sub blocks.

If it is assumed that V is invertible (this is reasonable when using Levenberg-Marquardt 
- see below) and multiply each side of the normal equations on the left by:

—W V

and work through, the following equation is obtained:

/  i / _ W V - i W T o \  /  A (P) \  _  /  e(P) — W V ~ 1e(X) 

I W T V J { A ( X )  j  ~  [  e(X)
(B.3)
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Equation B.3 can then be split into two parts to be solved separately. The top half gives:

U -  W V ~ lW TA (P) = e(P) -  W V ~ le{X) (B.4)

which presents a set of N  * 1 1  equations in iV* 1 1  unknowns and can be solved to give A (P).
The resulting solution can then be substituted into the bottom half of equation B.3 which 
after rearranging gives:

A (X) = V - 1 (e (X) -  W TA (P)) (B.5)

allowing a simple solution for A (X). Because of the block-diagonal form of V, the equations
B.4 may be computed efficiently using the quantities computed in B.2 . In particular, the 
matrix A = U — W V ~ lW T divides naturally into sub-blocks, where the (i,j) th sub-block is 
the matrix:

W  -  J 2  W ik V ^ W j k (B.6)
k

Similarly, the vector b — e (P) — W V ~ le (X) also divides into blocks of the form:

bi =  € {Pi) -  J 2  W i j V f h  (Xj ) (B.7)
3

It is worth noting that the matrix A and the vector b can both be computed directly 
without needing to compute and store the matrix J or the normal equations. The amount 
of computation required is linear in the number of points Xj involved, and also linear in the 
total number of observed points xj.

Also, the back substitution given in equation B.5 can be done block by block as follows:

A (Xj) =  q - 1 f « (xj )  -  W l A (fl) j (B.8)

This back substitution also requires computation time linear in the number of points involved. 
So far, the normal equations being solved are those from Newton Iteration. It is easy to 
extend this to Levenberg-Marquardt by augmenting the matrix J T J  with the LM parameter 
A. This is equivalent to augmenting the matrices Ui and VJ, a process that will help to ensure 
that the matrices Vj will be invertible even in degenerate cases when Vj is singular. This 
effect means it is not essential to avoid over parameterisation of the minimisation problem.

B .l  Im plem entation  D etails

The implementation can follow the above description in quite a straightforward manner. 
For a decent computational efficiency, it is first necessary to precompute all the sub-blocks
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in equation B.2. This can be done quite easily without needing to store the matrices of 
partial derivatives. Everything else can then be achieved without making further demands 
on memory usage.

After this, all the Vj matrices can be inverted. Equations B.7 and B . 6  can then be used to 
find bi and Aij before solving for A (X) using equation B.5. Finally this can be substituted 
into B . 8  to give the solution for A (x^).

At this point it is worth mentioning a further and mainly implementation improvement 
to bundle adjustment, one not made explicit in any descriptions found by the author. If 
the bundle adjustment is to be used for ’natural’ problems then there will usually be a large 
number of images and many points will only be tracked for a few images. Because of this, it is 
absolutely essential to ensure appropriate rows and columns are missing from the Jacobian. 
Also, it is absolutely essential to ensure that the appropriate Wij matrices are not calculated 
or stored. If this is not done, then memory requirements quickly become out of control. For 
example, given 40 images with 1000 points tracked on average 6  images, then the memory 
required to store all 11 x 3 matrices would be O (40 * 1000 * 11 * 3) =  O (1320000), 
whereas if appropriate matrices are omitted it would be O ( 6  * 1 0 0 0  * 1 1  * 3) =  O (198000), 
a difference of approximately 6 |  times the memory usage.

A further benefit of simply considering certain Wij to be zero is that calculations involving 
multiplication with a zeroed Wij can simply be ignored and set to 0. This occurs when solving 
using equation B.5, when calculating using equation B . 6  or bj using equation B.7, and 
finally when solving for A (xj) using equation B.8 . Again, given a fairly ’natural’ problem, 
this results in very significant performance increases.

Given an efficient implementation, it is quite feasible in terms of memory and time usage 
to solve systems involving hundreds of images with thousands of points. Without using the 
technique, such systems would be impossible to handle, for example 1 0 0  images with 2 0 0 0  

points would result in normal equations with dimension 7100 x 7100, which would clearly 
be impractical to solve using normal methods (such as Gaussian elimination).

B.2 E uclidean B undle A djustm ent

In this work, use is made of bundle adjustment, not only for projective reconstruction, but 
also for purposes of refining Euclidean reconstructions. The bundle adjustment algorithm re­
mains largely unaltered, but it does become necessary to parameterise the camera projection 
matrices differently. To enforce a Euclidean frame, each camera matrix must be decomposed
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in terms of a calibration matrix, a rotation matrix and a translation matrix.
Factorisation can be used to perform this decomposition. Considering the camera matrix 

as P = [A|a], A can be decomposed using RQ decomposition into an upper triangular matrix 
and an orthogonal matrix. Relating this to the Euclidean camera matrix P ~  [KR\\ — KRt\,  
these two matrices represent the calibration and rotation. The translation matrix can then be 
obtained as —A ^ 1 a since relating this to the Euclidean form gives A  =  K R  and a — —KRt,  
so this multiplication removes KR.  Note that the supplied form of K  used in this work 
assumes a right handed coordinate system, and so, if a left handed form is being used, all y 
coordinates must have their sign changed to prevent orientation problems with the cameras.

However, this still leaves the problem of how to parameterise the rotation matrix in a 
minimal manner. In [Hor90], it has been proposed to parameterise rotations using quater­
nions, but this has the disadvantage that a rotation is parameterised by 4 parameters instead 
of the minimal 3. Instead, experience has shown that Euler angles perform much better, 
provided care is taken to avoid problems with singularities.

In order to avoid singularities in the Euler representation, it was proposed in [Har94b] to 
represent rotations Ri as incremental with respect to a base rotation X{ as Ri =  X{A (0 *, 0 *, «*) 
The base rotation Xi is taken as the initial guess, and A (0*, <j>i} Ki) is the rotation represented 
by Euler angles. Initially, the rotation parameters 0», (pi and /c* are all set to 0 and subse­
quently A is the identity mapping. At the end of each LM iteration, the base rotation is 
reset to the new rotation as X{A (0 *, (pi, «*) and 0 *, 0 ;, Ki are reset to 0 .
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Random Sampling for Robust Model 
Fitting

Random sampling algorithms are an approach to parameter estimation for data that may 
contain outliers. That is to say, the set of data from which parameters are to be estimated 
may contain items which do not fit the distribution of the selected error model at all. The 
basis of random sampling is to take minimal samples of the data and estimate the model 
using these. It is hoped that, one or more of the minimal samples will not contain any outliers 
and so will produce a valid solution. The model that produces the best result according to 
some criteria involving all the data is then kept as the best result.

For example, standard least-squares methods attempt to minimise r?, where the resid­
ual ri can be defined as the difference between the ith observation and the fitted value. If 
errors in observed data conform to a Gaussian distribution then the global minimum of this 
function represents the maximum likelihood estimate. However, it is not uncommon for real 
data to be contaminated by outliers with large residuals that would be considered highly 
improbable in a Gaussian distribution. Because the function is squared, any of these large 
residuals will have a dominating effect on any estimated parameters if a least-squares method 
is used.

To deal with the problem of outliers, it is possible to minimise something more robust 
than the sum of the residuals squared, for example the median residual or some robust 
function such as a Huber function (this will be described in detail later in this appendix). 
Random sampling algorithms provide one means of performing this minimisation.

There have been a number of random sampling algorithms proposed in the literature. 
Primarily, these consist of least median of squares (LMedS) ([RL87]) which minimises the
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median of the residuals, random sampling consensus (RANSAC) [FB81] which minimises 
the number of outliers, and maximum likelihood sample consensus (MLESAC) [TZOO] which 
minimises a Huber function (to be detailed later). To give a feel, both LMedS and MLESAC 
will now be described in detail. Note the versions here assume Gaussian distributed errors.

C .l Least M edian o f Squares (LM edS)

As the name suggests, Least Median of Squares attempts to minimise the median residual. 
The median can easily be seen to be more robust than the mean by a simple example. 
Consider a set of numbers - 1,100,101,102,103 where 1 is considered to be an outlier. The 
mean of this set of numbers is 81.4 whereas the median is 101. This means the central value 
of the correct data has been estimated much more accurately by the median. So in LMedS, 
parameters are estimated by solving the following minimisation problem for a particular 
error measure function - rp.

min medians?

Since this is a nonlinear minimisation, there is no straightforward formula that can be 
used to minimise it. Instead, it can be minimised by searching in the space of all possible 
parameters estimated from the data. Since this space is going to be far too large for an 
exhaustive search, only a randomly chosen subset can be analysed. The algorithm here is 
based on the algorithm in chapter 5 of [RL87]:

1. Initially m  random sub-samples of p data items are drawn, p should be the minimum 
numbers of observations needed to calculate the given parameters.

2. For each sub-sample, indexed by j, the parameters aj are determined.

3. For every aj the median of the square residuals Mj is calculated with respect to the 
whole set of points, i.e.:

Mj = median,;-

4. Finally, the estimate aj for which Mj is minimal is retained and this forms the solution

This algorithm is now complete, except that we need to determine some sensible way of 
finding m  -  the number of sub-samples used. The idea is that we want to pick enough sub­
samples to be certain that at least one of those sub-samples contains no outliers. So, if we
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assume that we have a fraction e of outliers and a sub-sample size of p, then the probability 
that at least one of the sub-samples is good is given by:

P  = 1 -  [1 -  ( 1  -  e)p]m (C.l)

We can then rearrange this to determine m  in terms of e,p and P  to get:

l o g ( l - P )  
log [ 1  -  ( 1  -  6 )*]

It is then possible to determine a value for P by requiring it to be near 1 and setting a value 
of e. For example, P = 0.999 and e is set to 40 percent initially.

The LMedS technique works much better than least-squares when there are outliers, but 
it is very inefficient in the presence of Gaussian noise. To remedy this, after robust estimation 
outliers are normally removed and least-squares techniques used to produce a final estimate.

C .2 M axim um  Likelihood Sam ple C onsensus (M LE­

SAC)

Unlike LMedS, which minimises the median, MLESAC attempts to minimise a robust Huber 
function of the residuals rp.

7 g )  = ( l  n l P (C.2)\  a  /  p2 n >  p

where p is some threshold usually based on a confidence limit and a is the standard deviation 
of the residuals. In this case, a must be approximated with the robust standard deviation:

51.4826 1 + median tvn — p j i

for n observations and a parameter space of dimension p (see [RL87] for full details). This 
function assigns outliers a fixed cost to reflect the notion that they probably arise from a 
diffuse or uniform distribution, the likelihood of which is constant. Inliers on the other hand 
conform to a Gaussian distribution, so are assigned the familiar cost used to find a maximum 
likelihood estimate.

Minimisation occurs using random sampling to select minimal sets of samples from which 
to produce an estimate for the model parameters. Each of these is evaluated against the 
whole data set using the sum of the Huber function for all items of data XI* 7*- The one
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which produces the minimal sum value is then accepted as the best solution. The number 
of samples to take can be arrived at using the same criteria as for LMedS, but on the whole 
MLESAC is a minimisation function and so it is best to set the number of samples to some 
suitably larger number than the minimal number of samples to ensure a sample of inliers. 
For fundamental matrix estimation this was set to 300.

Because a Huber function is being minimised, it is very reasonable after obtaining an 
estimate using random sampling to attempt an iterative nonlinear minimisation of the Huber 
function using a method such as those presented in appendix A. As with LMedS, it can also 
be a good idea after this stage to remove outliers and produce a solution using only the 
inlying data and a normal least-squares method.



Appendix D

Determining Triplet Geometry using 
only Six Points

When using robust random sampling algorithms (see appendix C), it is essential to develop 
a method for calculating the trifocal tensor that uses minimal data. Since the trifocal tensor 
depends on 18 parameters, it follows that at least 18 constraints will be necessary for the 
tensor to be determined. This can be provided by the projection of 6  world points into the 
three images, giving 3 * 6  =  18 independent constraints.

The method given here for calculation of the trifocal tensor is based on the method given 
in [Qua94] for computing the structure of 6  points in 3 views. The basis of the technique is 
to simplify the problem by first aligning the points with the standard basis, and then solving 
for the remaining unknowns.

To align points with the basis, the six points are assigned projective world coordi­
nates (1 , 0 , 0 , 0 )T, (0 , 1 , 0 , 0 )T, (0 , 0 , l , 0 )r , (0 , 0 , 0 , 1)T,(1,1 ,1 , 1 )T and (X ,Y t Z ,W )T where 
X ,Y ,Z ,W  are unknown. Similarly, the corresponding image points are assigned to the pro­
jective basis of each image, i.e. (1 , 0 , 0 )T, (0 , 1 , 0 )T, (0 , 0 , 1 )T, (1 , 1 , 1 )T, ( x 5 , y 5 , w 5) T  and
(*̂ 6j ?/6, ^6) •

The transformations B l for each image i to take points aq, x2, #3 , £ 4  into this canonical 
frame can be efficiently calculated as:

B % = [Ai^!, A2 x2, A3 X3 ]

where:

( Ai A 2  A 3  J — X i  x 2 x 3
- 1

X4
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This leads to a simple set of equations for the projection of all six points in each image i:

p r -
"  1 0 0 0 1 X ■

1 0 0 1 4 a 1 0 0 5*
0 1 0 0 1 Y

0 1 0 1 y\ 3/6 rsj
0 4 0

0 0 0 Z1 1
0 0 1 1 w\ 0 0

- _ 0 0 0 1 1 w _

(D.l)

The problem is now to recover X , Y, Z, W  and a \  8% for each camera. From the pro­
jection of the last two points (last two columns) in equation D.l, it is possible to determine 
the values of the sixth space point and camera parameters in terms of the fifth and sixth 
image coordinates. Writing this as a linear system in terms of the unknown cameras gives:

w l5 0 - 4 4
1•«?a lO!

0 4 “ 4 4 - v i 4
w'6X 0 - x \ Z w^w ~ XqW 7*

0 w\Y - v i z w\W -  yl6w  _ .  ^  .

The 4 x 4  matrix on the left is rank 3 and so must have a determinant of 0:

(-4 * 4  +  4 4 )  (wx -  y z ) +  ( 4 4  -  4 4 ) ( w y  -  y z )  + 

( - 4 4  + 4 4 ) (wz -  y z )  + ( — 4 4  +  4 4 ) ( x r  -  y z )  +

(4 4 - 4 4 ) (x z - y z ) = 0

(D.2)

This is true for all three images giving three linear constraints on the five unknowns: 
(W X  -  YZ),  (W Y -  YZ), (W Z -  YZ),  ( X Y  -  YZ)  and ( X Z  -  YZ).  If the constraints 
from equation D.2 are stacked into a 3 x 5 matrix, this matrix will be of rank 3 provided 
the 3D points are in general position. The two dimensional null-space of this matrix may be 
recovered using an SVD to get ti, t 2 as the two vectors spanning this null-space. What is 
sought is a vector t  =  (t\, t2, £ 3 ,  £4 , t$) corresponding to the five unknowns in equation D.2. 
Rearranging D.2 in terms of the image coordinates of the fifth and sixth points gives:

x\ y\ w\
0  5̂ — ^ 1 t\ ~  4̂ 4
h  0  U - 1 2 vi =  0

—is 3̂ 5̂ 0 ii

(D-3)

It can be seen that the determinant of the matrix in equation D.3 is zero, giving the following 
constraint on the elements of t:
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Since ti  +  a t2 — t, this constraint gives a cubic polynomial in terms of the unknown scaling 
a which can be solved to give 1 or 3 real solutions, and hence one or three solutions for t. 
Once t  has been obtained, (X, Y, Z, W)T can be recovered as follows:

X  £ 4  —  £ 5  Y  £ 4  Z  £ g

W  £2  —  £3  W  £1  — £3 W  t\ — £2

In the situation where W  = 0, the sixth point is on the plane at infinity, and it is possible
simply to rearrange the ordering of the points so that a different point is the sixth point.
Given (X, Y, Z, W)T, equation D.l provides a set of linear constraints on the camera matrices 
(cd, /3J, 7 *, Y). The three camera matrices are then obtained as:

a 1 0 0 Y

0 /Y 0 Y

0 0 V Y

and the tensor may be recovered directly using equation 4.18 described on page 93.



Appendix E 

Self-Calibration

A lot of this work has focused on producing a 3D reconstruction of a scene that is defined 
subject to an arbitrary projective transformation. Whilst this is useful for many applications, 
in order to view, manipulate or measure the scene using existing hardware and software, it 
is usually necessary to upgrade this reconstruction to metric. Although the theoretical 
possibility of recovering intrinsic camera parameters has been known since the beginning of 
the 2 0 th century, translating it into a working implementation has proved very difficult. As 
such, there is extensive work on the subject, too extensive to review here. Instead, only the 
method used in this work will be presented, and the interested reader is referred elsewhere 
for more details on the topic of self-calibration (for example [HZ00, Pol99, Arm96]).

E .l  Prelim inaries

Key to all self-calibration algorithms is some means of relating Euclidean, projective and 
possibly affine cameras. To facilitate this, a brief overview of how cameras for different 
geometries can be related will be given. Unlike previous discussions on this subject (such as 
section 3.2.6 on page 49), this will make use of homogeneous notation to give a more concise 
description.

E.1.1 Projective Cameras

It is possible to decompose a projective camera matrix Ppn for an image n as:

PPn ~  [# in|eln] (E.l)
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where Hin is an inter image homography that transforms points on some reference plane 
between the first and nth image, and ein is the projection of the 1 st cameras centre in the 
image n. Any reference plane is valid in equation E.l provided that the same reference plane 
is used for all views and the following transformation can be applied at will to all cameras 
in order to change the reference plane:

1 0 0 0

0 1 0 0

0 0 1 0

pal pa2 pa3 P

where p represents an arbitrary change in scale. Given the decomposition of Ppn in equation 
E.l, this means homographies for different planes are related as follows:

H'in—Hin -  ei„ • aT (E.3)

for a =  (al, a2, o3) and p absorbed into the arbitrary scaling. See section 3.6.1 on page 65 for 
more details on the relationships between inter image homographies and camera matrices.

E .l .2 Affine Cameras

The affine representation of a camera is the same as the projective one, but with the inter 
image homography H\n due to the plane at infinity JTooin- Therefore, the camera matrices 
can now be decomposed as:

P au  -  [H oo i„ |e ln ]

This corresponds to transforming the projective camera matrices as in equation E.3 using 
some particular a which makes the reference plane the plane at infinity. The same transfor­
mation can be applied to all cameras, and so in general affine cameras can be obtained from 
projective ones with the following transformation:

PAn—PpnP

for some T  as defined as in equation E.2 which makes the reference plane the plane at infinity.
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E .l .3 Euclidean Cameras

To transform projective camera matrices into a Euclidean form requires that a full projec- 
tivity H  be applied to all cameras Ppn and structure as:

PEn -P p nH  (E.4)

The result will be Euclidean camera matrices. Since they are Euclidean, it follows that it 
should be possible to decompose the camera matrix as a non-Euclidean calibration matrix 
K n and a Euclidean transformation giving the camera orientation:

PEn~ K n [R| -  Rt] (E.5)

Given PEn — [A|a] = [KnR\ — K nRt], this can be achieved by the use of RQ decomposition 
on A to decompose it into an upper triangular matrix (Kn) and an orthogonal matrix (R). 
Finally, t  can be obtained as —A ~ 1 a.

E.2 Self-C alibration

Although the idea of self-calibration has been around for some time, the first real self­
calibration algorithm is usually attributed to [FQM92]. Early works primarily considered 
the case of constant internal camera parameters and bundle adjustment like methods (for 
example [Har94b]). Later works studied specific camera motions such as pure rotation and 
translation [MGDP94, Har94c] or stereo rigs [ZBR95].

Later work by Triggs [Tri97] introduced the absolute dual quadric as a tool for self­
calibration. This was later refined in the works of [HA97] and [PKG97], The technique 
presented here is a refined version of the technique [PKG97] presented in [HZOO].

E.2.1 Absolute Dual Quadric

The basis of the technique presented here is that in space one degenerate dual (i.e. plane) 
quadric exists which is fixed under all Euclidean transformations. This quadric is called the 
absolute dual quadric (The dual of the absolute conic discussed briefly in section 2.4.4). It 
is usually written as fi* and represented with a 4x4 symmetric matrix of rank 3:
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This is the dual of the quadratic point equation x 2 +  y2 +  z 2 = 0 which is a circle of radius 
a/—1 in the plane at infinity. Of particular importance is the projection of the absolute conic 
into the images to give the dual image of the absolute quadric w* in image n:

co*n =  PEnO*P^n

Note that projective transformations H  are applied to a dual quadric as £7* = HQ*HT. If 
the decomposition of the Euclidean cameras as in equation E.5 is then substituted into this 
equation and worked through, it can be found that:

id *  ~  K  K t<JJn — XVnXVn

Note how the invariance of the absolute quadric to the Euclidean component of the camera 
matrices eliminates the rotation and translation component, leaving only the non-Euclidean 
camera calibration.

This projection of the quadric can be used to obtain constraints on the reconstruction 
by projecting the absolute dual quadric with projective cameras that are modified to be 
Euclidean (as in equation E.l):

u j - l ^ P PnH ^ H T P ^ n (E.6)

This provides constraints on the calibrating homography H. Once H  has been determined, 
it can then be applied to the cameras and structure as in equation E.4 to upgrade the 
reconstruction to Euclidean.

E.2.2 Nonlinear M ethod

Given the relation in equation E.6 , it is possible to derive a non-linear equation in terms of 
the unknown calibration matrices and the unknown projective quadric HQ,*HT. Both these 
should be parameterised in a minimal manner. HQ^HT should be parameterised using a 
minimum of 8  parameters by imposing the symmetry, scale factor and rank 3 constraints. 
This can be achieved by simply setting f23 3 to 1  and calculating ^ 4 4  from the rank 3 constraint 
(detfi = 0 ).

Similarly, the upper triangular calibration matrices can be parameterised using a minimal 
5 parameters by setting K n55 to 1. However, this represents a practically inhibiting 8  +  5n 
unknowns where n is the number of images. To remedy this, certain assumptions can be 
made about the camera calibration matrix. In particular, with most high quality modern
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Restriction on K Constraint on w* type No. Constraints

zero skew W 1 2 W 3 3  =  ^ 1 3 ^ 2 3 * quadratic n

principle point at origin W 1 3  =  W 2 3  =  0 linear 2 n

zero skew and principal point at origin = 0 linear n

fixed (unknown) aspect ratio with zero 
skew and principal point at origin for 
cameras i and j

k> *ll __  k ' j u

Wi22 Wj22
quadratic n- 1

known aspect ratio r with zero skew 
and principal point at origin

r2toli =  w| 2 linear n

cameras, it can safely be assumed that the skew is zero and that the camera centre is in the 
middle of the image.

Assuming the image coordinate system has been altered so that the camera centre is at 
(0,0), this means the calibration matrices K n now have the simplified form:

f n 0 0

11 0 f n 0

0 0 1

Given these parameterisation for K n and S~2* the following criterion can then be minimised 
using any standard nonlinear minimisation technique (such as Levenberg-Marquardt):

m i n ^  ||AnK kK j  -  PPk (.BQ,*HT) P j j 2  (E.7)
fc=l

The unknown scale factors Xn can be eliminated by using a matrix norm so that both K kK k 
and PPkHtt*HTpTk have a frobenius norm of 1 .

E.2.3 Linear M ethod

Although a nonlinear minimisation has been presented, it does not represent a feasible 
self-calibration algorithm without some means of initialisation. This can be achieved, by 
re-examining the effect of the assumptions on camera form on the image of the absolute dual
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quadric u;*~KnK %:

ioo1 ioo*4
f T

" A /2 0 0 "

u*n  —  A

o-4o O*
4

o = 0 A p n 0

0 0 1 0 0 1 i o o )—
1

1

This enables certain extra constraints to be imposed per image based on the form of the 
matrix rather than the full measure in equation E.7. In particular, it can be enforced that 
cut i = co%2 and that cu 12 =  coi3 — co23 = 0. These constraints can be transformed to constraints 
on the form of PPk Ppk to give 4 constraints per image.

Different forms of these constraints (as well as some nonlinear ones) are also available if 
different assumptions are made about the camera, and table E.2.3 gives a complete summary 
of these constraints. For more details see [HZ00], On the whole, the best algorithm for the 
case in hand will be the one that makes the most assumptions it can about the camera form, 
given the camera being used. For the video sequences used in this work, it was found that 
known aspect ratio, zero skew and principal point at image centre could safely be assumed.

E.2.4 Alternative Nonlinear M ethod

In practise the linear approach does not allow all the constraints listed in table E.2.3 to be 
enforced. Subsequently, a nonlinear minimisation is carried out that enforces all the possible 
constraints. Note that there is little point in minimising the nonlinear criterion in equation 
E.7 because the quantity being minimised is meaningless anyway so it does not necessarily 
represent a better solution.

For best results, and to minimise something meaningful, a constrained Euclidean bundle 
adjustment (see section B.2, page 252) is performed in which the camera parameters are 
allowed to change, but are constrained sensibly. This Euclidean bundle adjustment is not 
strictly necessary to get a reasonable solution in many cases, but can help resolve problems 
in camera localisation, in particular the trade off between focal length and movement along 
the optical axis.

E.2.5 Upgrading to M etric

Once the projective form of the absolute dual quadric HLl*HT is known, it becomes necessary 
to identify the projective transformation H  that will take the conic to canonical form. This 
is achieved by decomposing the absolute dual quadric using SVD into the product of three
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matrices U W VT. Because the absolute dual quadric is symmetric U = V } and because it 
is rank 3 W  — (Ai, A2 , A3 , 0 ) assuming the singular values are arranged in descending order. 
This leaves a decomposition of the form UWUT. Note that, if the smallest singular value is 
not 0 , it can be set to 0  to enforce the rank 3 constraint. A similar transformation can be 
determined using eigen decomposition of Ll*, bearing in mind that singular values are the 
squared eigenvalues.



Appendix F 

Cross Correlation and Box Filtering

F .l  Cross C orrelation

At the core of many feature based matching methods is some method for obtaining the 
similarity of the features in a potential match - a correlation score. Consequently, it will be 
worth discussing the process of window-based cross correlation in detail, and in particular 
the zero mean normalised cross correlation.

Some details about cross correlation have already been alluded to in chapter 8 . Of 
particular relevance is the discussion in section 8 .1 .1 , p i62 concerning the modelling of image 
effects due to camera motion with very simple models of image motion. Cross correlation is 
usually built around the simplest of these models: pure translation. This assumes that, in 
a localised region, all points in the matching region of another image will have undergone a 
constant translation (see figure F.l). This assumption is not always well founded, particularly 
if there is significant camera rotation or the regions being imaged exhibit a lot of motion 
parallax.

There are many different measures of correlation that can be applied using the cross 
correlation approach, but for this work, a zero mean normalised cross correlation score will 
be discussed. Specifically, this bases similarity between a pair of candidate matches xi and 
x 2, on the image intensities in a rectangular correlation window of size (2 n 4 - 1 ) x (2 m  + 1 ) 
centred on the features. The zero mean normalised correlation score is then calculated as
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Image 1 Image 2

Figure F.l: The usual assumption applied to window based cross correlation of a pure 
translation being applied to the window in the first image to give the window in the second 
image

follows:

Correl (xi, x2) =
n  mE E F (iti + i ,v i + j) -  I\ (uu ui)l \l2 (u2 + i ,v 2 + j) -  I2 (u2, v2)

i = —n  j — — m

(2 n  +  1 )  ( 2 m  +  1 )  s/ a \ ( « i ,  !>i) <r|  ( 1 1 2 , ^ 2 )
( F . l )

where (x, y) is a function giving the intensity of the pixel at position x , y in the kth image

Er=-nh  (u, (2n -f 1) (2m +  1)

,  \  I s - ^ i = —n  s.— n  — —m  ~ k  \ ~  /  r  ,  \

 ( 2 n  +  l ) ( 2 m  +  l ) --------------------h { u ’v)
are the mean and standard deviation of the image intensities in the correlation window.

To sum up, this measure is a normalised summation of the squared differences between 
relatively corresponding points in a window centred on the potential match. The result 
will be a value between —1.0 and 1.0, with negative values indicating worse scores. The 
normalisation is very useful because, if a raw sum of squared differences is used, then for 
example a threshold on quality of matches needs to be adapted to the amount of variation 
in the images and to the number of bits per pixel used to represent the image.
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Figure F.2: Box filtering. A window is passed over the image (ABCD) and summation 
maintained for all columns in the window. As the window moves down, the rows indicated 
by dashes are added and removed. The same applies to movement along the rows.

F.2 B ox F iltering

Box filtering is a very well established method for high speed digital filtering of data [McD81]. 
The process allows a (2 n +  1 ) x (2m + 1 ) region around a point (it, v) to be summed for a 
function /  (d) as follows:

n m
X  X  f  [I {u +

Assuming images with integer values are used, both the numerator and denominator here can 
be evaluated using integer arithmetic, with the division rounded to the nearest integer for 
extremely fast operation. Since this form of filtering is frequently applied to every point (e.g. 
in an image), box filtering capitalises on the repeated summation for overlapping sections. 
For example, if a sum for the box centred at (it, v) is found then the sum for the box at 
(it + l,u) will be exactly the same, but less the column at it — n and plus the column at 
it + n + 1. Naturally, the same applies to movement down columns.

To achieve this optimisation on both columns and rows, the filter is applied first across
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and then down the image. Figure F.2 illustrates how the optimisation is achieved. Starting 
from the top, a window ABCD is placed over the image I  centred on column v. A buffer 
IBUF(n) is maintained which contains the sum of the corresponding columns in the window 
ABCD. At the start of the filtering operation, IBUF is filled using a complete summation, 
but for subsequent rows, the window is moved down and IBUF updated by subtracting the 
top row v — m  and adding the new bottom row v +  m + 1  (as indicated by the dotted lines).

A similar process is used to maintain the complete value when moving the window along 
the row. In this case a single value ISUM is maintained that is the sum of the relevant IBUF 
entries. The box filter result is obtained from this as:

, , . ISUM
O l l L . V )  =  — ------------ - V 7 -------------------- r

(2n  H-1) (2m +  1)

As the box moves along the row to (u +  1, u), ISUM is updated by adding the next value at 
IBUF(ii +  n +  l) from ISUM and subtracting the old value at IBUF(w — n).

This provides a very brief overview of box filtering. For more precise details, including a 
review of different image boundary handling strategies, the reader is referred to the work of 
[McD81].

F.2.1 Application to Cross Correlation

Applying box filtering to the zero mean normalised cross correlation discussed earlier is fairly 
straightforward and involves breaking the cross correlation equation F .l into components 
involving summation. Each summation can then be handled using a box filter.

There are three summations in the equation which can be handled with a box filter. The 
first and fairly straightforward ones involve the calculation of mean and variance for each 
pixel in the images. On top of these, the numerator of the correlation function can then be 
separated into:

/  n m  \

Correl (xi, x2) =  E  E *  (ui +  z, V i  + j) I2 (u2 + i ,v 2 + j) J
\ i = ~ n j = : —m  J

-  (2n +  1) (2m +  1) h  (ui,vi)I2 (u2, v2)

and the summation determined using a box filter over a special image created by multiplying 
both images.

For a more exacting description of how box filtering may be applied to cross correlation, 
the reader is referred to [Sun97]. The process is also hinted at in [McD81].



Appendix G 

The Sofa Image Sequence

Figure G.l: The sofa sequence of 327 images. Sampled at roughly every 10 images and
including the first and last frames. Images 0 - 170.
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Figure G.2: The sofa sequence of 327 images. Sampled at roughly every 10 images and
including the first and last frames. Images 180 - 327.
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Figure G.2: The sofa sequence of 327 images. Sampled at roughly every 10 images and
including the first and last frames. Images 180 - 327.


