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PREFACE

None of the work described in this thesis has been 
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October 1964 to October 1966 - SRC Research Studentship,

October 1966 to the time of writing -- Temporary
Demonstrator,

A paper, written jointly with Professor H liuson, has 
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"On the validity of Babinet's Principle for Fraunhofer 
Diffraction", Optica Acta, 1968, U5, 83-91.
A further paper, written jointly with Dr G- liar burn and 
Professor C A Taylor, has also been published during the 
course of the work:

"G-as-phase laser as a Source of Light for an Optical 
Diffractometer", Nature, 1965? 205, 1095-1096.



ABSTRACT

The thesis is divided into two main sections. In the 
first section (chapters 1-4 inclusive) is described how 
three-dimensional optical transforms can be obtained from 
three-dimensional models and used in the solution of crystal 
structures. In the second section (chapters 5-7 inclusive) 
the solution of the crystal structure of 2-diazoindane-*153- 
dione is discussed. It was originally intended to link 
both halves of the work by using three-dimensional optical 
transforms in the solution of the structure of 2-diazoindane- 
1,3-dione. However, the structure was solved by conventional 
methods before this new technique could be developed.

Chapter 1 outlines the conventional optical-transform 
technique of solving crystal structures using two-dimensional 
diffraction screens to give corresponding sections of the 
reciprocal solid. Ways in which the comnlete three- 
dimensional optical transform could be used are indicated 
and Harburn’s method of obtaining non-central sections of 
the reciprocal solid is outlined, Also discussed is the 
suggestion by Earburn, on which this work is based, that 
three-dimensional optical transforms could be formed from 
diffraction patterns of three-dimensional models utilising' 
Babinet's principle.

Babinet's principle is examined critically in chapter 2 
and the very restricted conditions under which it is 
applicable are laid down. It is shown that transforms of



three-dimensional models cannot be obtained in the way that 
Harburn. supposes., because the diffraction pattern of the 
aperture of the diffraction instrument must always swamp 
the pattern given by the model.

Chapter 3 discusses how the difficulties associated with 
Babinet's principle might be overcome using the technique 
known as apodlsation. The use of two-dimensional apodising 
screens is described but rejected, on theoretical and 
experimental grounds. Then the application of apodising 
apertures is explored and they are found to give satisfactory 
results.

Chapter 4 then gives examples of the applications of 
the apodising-aperture method of producing optical transforms 
of three-dimensional models. Other possible uses of the 
method are also discussed.

In Chapter 5 the Initial steps in the solution of the 
structure 2-dia.soindane-l ,3-dione are described. The 
chemical interest in the structure Is first outlined and 
the derivation of the unit cell and the space group is 
described. The solution of the (001) projection of the 
molecule is obtained using a combination of optics]- methods 
and Fourier methods followed by a rigid-body minimum-residual 
refinement.

Chapter 6 describes the completion of the structure 
refinement. The solution of the (100) projection is 
obtained using the minimum-residual refinement method and 
difference maps. Then, all the available data is used in 
a least-squares refinement of the complete structure. The 
resulting structure is examined critically using difference 
maps.



- iv -

Finally in Chanter 7 the refined structure is examined 
in detail. Bond lengths and angles are calculated and 
compared with the values that might be anticipated and the 
degree of planarity of the molecule is examined. The 
packing of the molecules is discussed and lastly the para­
meters of the thermal vibration ellipsoids are derived.

4
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THREE-DIMENSIONAL OPTICAL TRANSFORMS FROM THREE- 
DIMENSIONAL ATOMIC MODELS USING 

BABINET'S PRINCIPLE



CHAPTER 1

THE OPTICAL-TRANSFORM METHOD AND ITS EXTENSION 
TO THREE DIMENSIONS

The optical-transform method is now a well known 
technique in X-ray crystal-structure determination and it 
is not proposed to give an exhaustive description of it here. 
However certain theoretical and practical aspects, that are 
necessary to present a coherent and logical introduction to 
this work, will he outlined. In addition, the notation to 
be used will be introduced. Further information concerning 
the optical-transform method can be obtained from the standard 
works on the subject - Lipson and Taylor (1958) and Taylor and 
Lipson (1964) - and, from a concise but comprehensive review 
article, Lipson and Taylor (1965).

1.1 THE ANALOGY BETWEEN X-RAY AND OPTICAL DIFFRACTION
Consider a parallel beam of monochromatic coherent 

radiation striking a body of some material which will both 
transmit and scatter the radiation (fig.1.1a). If sQ and s 
are unit vectors representing the incident and scattered beams 
respectively, then the wave scattered by an incremental volume 
dV at a distance r from some arbitrary origin 0 is given in 
amplitude and phase by



Fig1.1a

Fig.1.1b
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dG-(s) = p(r) .dV.expC— ™- r . (s - sQ)]

The quantity p(r) is the scattering density of the material
at the element* If we now write S = s - s , then the total— — o
scattering by the whole volume in the direction s is given by

It will immediately be seen that equation 1.1 has the 
form of a Fourier-transform relationship; that is, G(S) is 
the Fourier transform of p(r). G(S) is a complex function 
which can be visualised as a "solid" reciprocal in nature 
to the scattering body p(r) and existing in "reciprocal space" 
that is, S space. The term "reciprocal space" results from 
the inverse relationship between functions and their Fourier 
transforms; fine detail in the diffracting material, or "real 
space", is represented by large distances in reciprocal space.

Figure 1.1b is a vector diagram of the scattering process 
No assumptions have so far been made about the amplitudes of 
s and sq but it is convenient to make these 1 A, where X is 
the wavelength of the radiation, so that the dimensions of

Q c* j_Yl Areciprocal space are independent of X ; then S = --- -— whereA
29 is the scattering angle and

The reeiprocal-space variable S, usually referred to 
simply as the reciprocal vector, has the dimensions of 
reciprocal length. If the incident beam is fixed but 9 is 
allowed to take on all values, then the locus of the end of 
the vector S is the surface of a sphere of radius 1/ x , the

G(S) = J7 p(r) exp[^i r.S]dV (1.1)

G(S) - (* p(r) exp(2rri r.S)d?
V

(1.2)
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sphere of reflection (fig.1.2). If the direction of the 
incident beam is now allowed to take on all possible 
values, it can be seen that the end of the reciprocal-lattice 
vector will occupy all points within a sphere of radius 2/x > 
the limiting sphere. The reciprocal solid may only be 
explored at points within this sphere (lipson and Taylor 
1958).

It will be noted that so far no mention has been made 
about the nature of the scattering material or the radiation. 
We shall, however, be concerned with the scattering of X-rays 
by electrons in crystals and of light waves by diffraction 
screens (under Fraunhofer conditions); although the mechanism 
of scattering is different, the above theory may be applied 
equally well to each. Since optical diffraction is usually 
carried out using two-dimensional screens, the analogy with 
three-dimensional X-ray scattering is often missed; however, 
even a strictly two-dimensional diffraction screen would 
produce a three-dimensional reciprocal solid, variable in 
two dimensions and constant along the other dimension.

One difference between optical and X-ray diffraction is 
extremely important. For X-rays diffracted by the atoms in 
a crystal, the relevant part of the reciprocal solid and the 
limiting sphere are of the same order of magnitude, since 
the wavelength of the radiation is about the same size as 
the atomic spacings. However, with the diffraction equip­
ment used by the author the diffraction screens have 
dimensions about 10^ times the wavelength of light and there­
fore the relevant detail in the reciprocal solid is much 
smaller (10""^ times) than the limiting sphere. In addition, 
the incident beam is fixed during observation of the optical
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diffraction patterns and the diffraction angle 9 is quite 
small (r* 10~^rad.). Ihe total result is that, effectively, 
only a small cross-section of the reciprocal solid is 
observed, where it intersects the sphere of reflection; the 
cross-section appears planar because of the large radius of 
the sphere.

In the case of X-ray diffraction we shall normally only 
consider scattering by crystals whose lattices are perfectly 
ordered in three dimensions. The reciprocal solid is the
familiar reciprocal lattice. Each reciprocal-lattice point
represents a sampling of the continuous reciprocal solid 
obtained from a single unit cell of the real structure 
(Lipson and Taylor, 1958). We may therefore write the 
familiar X-ray scattering equation as

&(S) = F(hkl) = E  Pn exp[2rri(hxn 4- ky^ + lzn )] (1*3)

The summation is taken over the N atoms of one unit cell and 
Pn is the scattering factor for the n atom with coordinates 
xn , y and z expressed as fractions of the unit cell trans­
lations a, b and c. The indices h, k and 1 can assume
whole number values only; they denote integral multiples of

, *  *  * the reciprocal unit cell translations a , b' and c and specify
the reciprocal-lattice points.

1 *2 OPTICAL-TRANSFORM METHODS IE TWO LIMBNSIONS
The similarity between X-ray diffraction and optical 

diffraction forms the basis of the optieal-transform method 
of solving crystal structures. In this method X-ray data 

are compared with the optical diffraction pattern of a
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representation of a possible structure. The representation 
of the structure is made by punching holes at atomic positions 
in an opaque card; it is only necessary to punch the projec­
tion of one unit cell of the structure (Hanson, Lipson and 
Taylor, 1953)* fhe Fraunhofer diffraction pattern, or 
optical transform, is then formed, usually by means of an 
optical diffractometer (Hughes and Taylor (1953) t Taylor and 
Thompson (1957)). The X-ray data are presented in the form 
of the relevant reciprocal-lattice section, drawn on trans­
parent paper, and weighted at each reciprocal-lattice point 
with a black disc whose area is proportional to the X-ray 
amplitude at that point. (It is found convenient to use 
unitary structure factors rather than simple structure 
factors for the data). If the weighted reciprocal-lattice 
net is superimposed on a photograph of the optical transform 
of a trial structure the agreement may be tested and possible 
adjustments to the model suggested.

As was indicated above, the two-dimensional diffraction
screen is a representation of a crystal structure projected
onto a plane, and it has a transform which is constant in one
dimension. The optical transform observed is a cross section
of the transform perpendicular to the constant direction.
What fraction of the total three-dimensional X-ray data can
we compare with this optical transform therefore? The central
section of the X-ray reciprocal solid (or lattice) parallel
to the plane of projection of the structure is the relevant
part. This may be shown simply if we let 0'S S S be anx y z
orthogonal set of axes in reciprocal space parallel to the 
axes Oxyz in real space. Equation 1.2 may be rewritten
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G(Sx ,Sy ,Sa ) =

JJJ p(x,y,z) exp[2rri(xS^ + ySy + xSx )] dx dy dz 
xyz

The complex amplitude distribution on the O'S S planex y
(S = 0) is given by z

G(Sx ,Sy ) =

JJJ p(x,y,z) exp[2rri(xSx + yS )] dx dy dz 
xyz

i.e. G(Sx ,Sy ) =

J J C J  p(x,y,z) dz] exp[2rri(xSx + ySy)l dx (1.4)
xy z

The term in curly brackets represents the projection of the
real-space scattering density on to the Oxy plane. Therefore
from equation 1.3 we can see that the transform of the
projection of the scattering density in real space on to the
Oxy plane is equal to the amplitude distribution on the
parallel O'S S plane in reciprocal space, x y

1.3 THREE-DIMENSIONAL OPTICAL TRANSFORMS - HARBURN'S METHOD 
The optical-transform method is therefore essentially 

limited to two dimensions - projections in real space and 
corresponding sections in reciprocal space. However, as 
crystal structures are attempted which are more and more 
complex, this and other purely two-dimensional methods prove 
frequently inadequate. The usual reason for failure is that 
overlapping atoms in projection make interpretation of



- 7 -

two-dimensional electron density or Patterson maps difficult. 
Thus is has frequently been found necessary to use the full 
amount of information in the three-dimensional data and to 
use three-dimensional visualisations of the structure.

Many of the standard two-dimensional methods, for example, 
Patterson techniques [Buerger (1959)]* have been readily 
extended to three dimensions. Three-dimensional weighted 
reciprocal lattices have been found to give useful information 
also (Iball and Mackay (1962)). Professor 0 A Taylor has 
therefore suggested that it might be valuable to attempt to 
extend the optical-transform method to three dimensions and 
a technique of producing diffraction patterns, representing 
non-central sections of reciprocal space, was evolved by 
Harburn and Taylor (1961) (also Harburn 1961). The basis of 
this method may be seen by rearranging equation 1.3* that is

N
G(S) = 2D Pn exp[2n-i(hxn + kyn + lzn )]

applying it here to diffraction of light by screens, so that
Pn is the scattering factor of an aperture. We may rewrite
the equation as

N
&(§) = E   ̂ Pn  exp[2rri(hxn 4- kyn )] exp(2-rrilzn ) (1.5)

If 1 - 0 this reduces to 
N

G(S) = S  P exp[2iri(hx + ky ) ] (1.6)n = 1 n 11 n

Equation 1.6 indicates that the zero layer of the 
reciprocal lattice (the central section of the reciprocal 
solid) may be represented by a two-dimensional mask equivalent
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to the projection of the crystal structure. Equation 1.5 
shows that, if 1 is not zero (a non-central section), we may 
still use the same mask hut the phases of the light passing 
through each hole must he changed from zero to 2rrlzn .
Harhurn produced these phase changes hy rotating mica plates 
placed over each hole in the mask, which was illuminated by 
circularly polarised light.

1*4 1HREE-DIMENSI0NAL OPTICAL TRANSFORMS USING- BABINET'S 
PRINCIPLE
Harhurn and Taylor have also suggested a further method 

of producing three-dimensional optical transforms. The 
following quotation from Harhurn (1961) outlines the idea:

"Babinet’s theorem states that, except at the centre, 
the intensity distributions in the Fraunhofer diffraction 
patterns of two complementary screens are the same; 
complementary screens have their clear and opaque areas 
interchanged. Utilizing this principle a trial structure 
could he represented in the parallel beam of a diffracto­
meter hy a model with small spherical halls representing 
the atoms and, except for the zero order, the optical 
transform of such an arrangement would he the same as 
that for a mask prepared in the conventional manner.

If the various practical difficulties were overcome 
it would he possible, in theory, to build up the three- 
dimensional transform from a series of pictures taken with 
the model rotated a small amount about a chosen axis 
between exposures."

The optical transform is in each case a central section

of the reciprocal solid; and we can scan the whole of the
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solid by rotating the section. This is somewhat analogous 
to taking a rotation photograph in X-ray crystallography.

The attempt to achieve three-dimensional optical trans­
forms in this way forms the first part of this thesis. It 
was realised early in the work that, in addition to practical 
difficulties, certain theoretical obstacles lie in the way of 
achieving the desired results. As will be shown in the 
following chapter, the view of Babinet’s principle taken by 
Harburn and Taylor is misleading. It should be added that 
the same view is quite generally held to be correct.

DOTATION USED IN FRAUNHOFER DIFFRACTION WORK 
The notation used up to this point is that commonly 

applied to X-ray crystallography and, although it can be 
useful in considering optical transforms, it is inconvenient 
to apply in the case of simple Fraunhofer diffraction of light. 
Figure 1.3 illustrates the notation to be used in discussing 
Babinet's principle (Chapter 2), and apodisation and its 
application to producing three-dimensional optical transforms 
(Chapter 3). The diagram is an idealised optical system of 
an optical diffractometer.

0Q00^ defines the common optic axis of the two lenses 
and 1^, 0Q and 0^ being the focal points of and 1^ 

respectively. Oxyz defines an orthogonal set of axes at
0, Oz lying along the optic axis. O ^ ' p 1 defines a two- 
dimensional set of axes at 0^, in a plane perpendicular to 
the optic axis. If a diffracting object is placed between
1.| and Lg anN illuminated by a monochromatic point source at
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0Q , a Fraunhofer diffraction pattern is produced in the 
0 S V  plane.

The Fourier-transform relation between a two-dimensional 
screen, with transparency distribution T(x,y), and its 
diffraction pattern may be written

a(s 1 ,-n1) -
Jj* T(x,y) expC-jpCxg1 + yq’)] dx dy (1.7)
xy

where p is the focal length of the lens L^. It is usual to 
simplify this relation by writing

§ ~ 5_L and t] = til 3 0  
PX pX

A(§,q) -

JJ1 T(x,y) exp[2rri(xg + yq)] dx dy (1.8)
xy

The similarity between the Fourier transform relationships 
in equation 1.8 and 1.2 can easily be seen. If the screen, 
and hence its diffraction pattern, has circular symmetry then 
we can write

A(p) - J T(r) JQ (2TTrp) 2 ttt  dr (1.9)
r

2 2 2 2 2 2 where p - § + q and r - x + y , Equation 1.9 is in the
form of a Hankel transform relation and it is useful when 
considering apodisation.

We have already seen that if we have a three-dimensional 
transparency distribution
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A(g,r}) =

SI U* ds3 exp[2Tri(xf + yp)] dx dy (1.10)
xy z

the quantity in curly brackets represents the projection of 
T(x,y,z) on to the plane z ~ 0.

1.6 SUMLARY
The purpose of the work described in the first part of 

this thesis may now be summarised. Many crystal-structure 
determinations are now carried out in three dimensions and 
therefore an extension of the optical-transform method to 
three dimensions could prove useful. One possible approach 
to achieving this aim has been suggested: that is to put
actual three-dimensional models in the aperture of an optical 
diffractometer and photograph their diffraction patterns.
We should expect to see optical transforms which correspond 
to those from a punched mask representation of a projection 
of each model. Babinet's principle indicates that this 
latter result should be valid; the following chapter examines 
this principle carefully and shows that the anticipated result 
does not in fact occur.
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CHAPTER 2

BABINET* S PRINCIPLE

2 BABINET * S PRINCIPLE
While attempting to apply Babinet's principle in 

producing optical transforms of three-dimensional objects, as 
outlined in the previous chapter, the author was forced to 
look very closely at the limitations on the principle. This 
chapter is concerned mainly with the conclusions drawn from 
this investigation (see also Bipson and Walkley (1965)). 
Babinet’s principle (Babinet (1837)) is an interesting example 
of an idea which has been changed almost out of recognition 
by the reinterpretations of later investigators; in addition 
a number of fallacies have become associated with it and these 
are pointed out. Although Babinet's principle is applied to 
both Eresnel and Fraunhofer diffraction the discussion is 
mostly concerned with the latter.

2.1 INTRODUCTION TO BABINET!S PRINCIPLE
Bet us examine an account of Babinet1s principle which 

might be given in the average textbook in optics. We 
consider a two-dimensional screen containing a large aperture 
and illuminated by a point source S of monochromatic light 
(fig. 2.1). At some point P, on the far side of the screen



Fig. 2.1
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from the light source, we obtain a diffraction pattern of 
the aperture in the screen, let us suppose that the vector 
amplitude is AQ at P. The large aperture in the screen is 
then covered hy another screen, containing a number of smaller 
apertures, giving a diffraction pattern with vector amplitude^ 
A,j at P. This latter screen is then replaced by another in 
which the opaque portions correspond to clear portions in the 
first screen and vice-versa. (The two screens are said to 
be complementary). If the second screen gives amplitude 
A^ at P, then by the vector addition property of light

Aq = Ai + A2 (2.1)

If A0 = 0 over most of the diffraction pattern then

|A,|| 2 = |A^2 (2.2)

and therefore the diffraction patterns of the complementary 
screens will appear identical, having equal intensity 
distributions.

Equation 2.1 is given in many modern textbooks as a 
statement- of Babinet's principle; however it is often 
regarded to be the statement that complementary screens 
produce identical diffraction patterns, i.e. equation 2.2.
The difficulty arises because it is implicitly assumed that 
the two expressions are equivalent. Equation 2.1 is of 
course absolutely correct within the limits of Kirchhoff's 
diffraction theory but, as we shall see, complementary screens 
only rarely produce similar diffraction patterns. We shall 
in the following regard this latter statement as representing
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Babinet's principle (although, incorrect) since it is the 
traditional physical idea associated with the principle.

Equation 2.1 holds for both Fresnel and Fraunhofer 
diffraction. (In the case of Fraunhofer diffraction S and 
P may be considered to be at large distances from the screen). 
A number of textbooks, e.g. Meyer (1949) and Sommerfeld (1954)> 
recognise that for Fresnel diffraction the quantity AQ will 
have large values over most of the points P not in the 
geometric shadow of the surrounding aperture (that is, 
effectively over the whole pattern). Hence the Fresnel 
diffraction patterns of complementary screens are not 
equivalent and Babinet's principle cannot be applied. For 
Fraunhofer diffraction, however, most optics textbooks assume 
that complementary screens produce identical diffraction 
patterns (see, for example, Michelson (1927)» Sommerfeld 
(1954)» Meyer (1949) t Andrews (1960), longhurst (1962), and 
Jenkins and White (1957)). The usual justification is that 
Aq is very small except for a small region near the centre 
of the pattern. (This particular idea is refuted in section 
2.5.) However, complementary screens produce comparable 
Fraunhofer diffraction patterns only under certain limited 
conditions and the major part of this chapter is devoted to 
demonstrating this fact.

It is convenient to consider here one possible objection 
to the above consideration of Babinet's principle. It would 
be reasonable to consider a situation where there was no 
limiting aperture to the complementary screens. This would

O
mean that there is no contribution AQ and hence IÂ  | =
lAgl for the whole pattern. However this would not 
represent any physically real system. It is always necessary
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to limit the extent of the diffraction screens if only to 
ensure coherent illumination over their total area (Taylor 
and Thompson (1957))*

2.2 HISTORICAL DEVELOPMENT OB BABINET1S PRINCIPLE
It has already been stated that Babinet!s principle is 

a concept which has altered considerably from its original 
form. It is interesting to trace this development, as it 
sheds some light on how and when the various misconceptions 
have arisen.

Babinet's original paper (Babinet 1837) is concerned 
with an explanation of the occasional appearance of haloes 
surrounding the Sun and Moon. He interprets this phenomenon 
as being due to light diffracted by small spherical water 
droplets of roughly uniform size in the atmosphere.

Babinet states the principle thus (in translation): 
"Given a point of light producing its normal image at 
the back of the eye, if, outside the line joining the 
point and the eye, but fairly near to this line, we 
place a small opaque obstacle, the effect of this 
small opaque body will be exactly the same as that of 
a precisely similar aperture illuminated by incident 
light, so that to the extent that the globule would 
seem necessarily to produce opacity, in reality it 
produces illumination."

Babinet does not justify this statement beyond giving 
an explanation of the presence of light in the shadow of an 
opaque body in terms of half-period zones. It will be noted 
that the statement is quite vague and there is of course no 
mention of the idea of complementary screens.
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The phenomenon that Babinet describes, of the diffraction 
of light by collections of small opaque bodies, had been 
previously observed by a number of investigators of whom 
Babinet mentions Newton and Young. Young (1845) used the 
effect in the device known as “Young's Eriometer" (see 2.6) 
to measure the diameters of thin fibres and small particles.

Babinet does not connect his statement with either Fresnel 
or Fraunhofer diffraction, although the phenomenon he describes 
obviously belong to the Fraunhofer class. Sommerfeld (1954) 
states that initially Babinet's principle was applied only 
to Fraunhofer diffraction. It is more probable, however, 
that the distinction had not been clearly drawn at that time 
between Fraunhofer and Fresnel diffraction.

Verdet (1869) describes a particular illustration of the 
principle. He derives the Fraunhofer diffraction pattern of 
a number of parallel threads of the same diameter (as in 
Young's Eriometer) and shows that this is the same as the 
diffraction pattern of its complementary screen (without using 
this terminology). He does not state whether he intends 
the principle to apply to Fresnel diffraction also, although 
he clearly distinguishes between the two types of diffraction 
in his book.

Mascart (1889) extends the concept of Babinet's principle 
beyond the simple idea of the similarity of the diffraction 
patterns of complementary screens, as described by Babinet 
and Verdet. He first defines the meaning of the term 
“complementary screens" (using this terminology) and gives 
an equation similar to 2.1 to describe the relation between 
their diffraction patterns. However he applied this 
equation only to Fresnel diffraction.
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Drude (1902) also introduces an equation corresponding 
to 2.1, apparently applying it only to Fraunhofer diffraction. 
He defines Babinet's principle as follows:

"The diffraction patterns which are produced by two 
complementary screens are identical excepting the 
central spot, which corresponds to the diffraction 
angle zero."

This statement is shown to be incox-rect in the general 
case in section 2.5.

The statements associated with the above authors do not 
mean that they are necessarily the originators of these ideas. 
However it is possible to trace the evolution of Babinet's 
principle through them. It can be seen that by 1902 all the 
ideas now associated with Babinet's principle had been 
gathered. The concept began with the simple qualitative 
statement by Babinet and was then generalised, with the 
additional concept of complementary screens, into equation 
2.1, and applied to both Fraunhofer and Fresnel diffraction. 
The additional idea was also accxxmulated that the Fraunhofer 
diffraction patterns of complementary screens are identical 
except for a small region at the centre.

2.5 EXPERT jMEH TAB INVEST IG-ATIOH OF BABIHET13 PRINCIPLE.
A simple illustration of the workings (or non-workings) 

of Babinet's principle, as applied to Fraunhofer diffraction, 
is now given. Figures 2.2a and 2.2b show two simple comple­
mentary screens and figures 2.2c and 2.2d are their respective 
diffraction patterns. It can be seen that both transforms 
look very similar overall but that a point-to-point comparison
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reveals considerable differences. A further example is 
given in figure 2.3 where two more-complex complementary 
screens are used. Figures 2.3c and 2.3d are the diffraction 
patterns of 2.3a and 2.3b respectively. Again we have the 
overall similarity between the two patterns and the point-to- 
point differences.

If we were to examine both sets of transforms on the 
points of a superimposed lattice, where the lattice points 
coincided with features on one or other of the patterns, we 
should find that the number of points of correspondence 
(positions of equal intensity) was greater for figures 2.3c 
and 2.3d than for 2.2c and 2.2d. This illustrates a general 
property of complementary screens that the more complex are 
the screens (i.e. the finer the detail), the more nearly 
do their diffraction patterns correspond. This is shown 
theoretically in the next section.

The screens of 2.2 and 2.3 have been carefully constructed 
to ensure that the clear areas of each pair of complementary 
screens are equal. This is also another necessary condition 
to obtain similar diffraction patterns. Figure 2.4 illustrates 
a case in which the diffraction patterns of the complementary 
screens are very different because the clear areas are not 
equal (see section 2.5)•

After examining figures 2.2 and 2.3 and many other pairs 
of complementary screens the author was forced to conclude 
that Babinet's principle does not hold with any great accuracy 
in the general case. In fact, figures 2.2 and 2.3 are rather 
favourable examples since the differences in the two diffrac­
tion patterns are often greater. If, therefore, Babinet's 
principle does not hold in the general case, are there any

special conditions under which it does hold? The author
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arrived at the following conditions, under which Babinet's 
principle is most nearly obeyed, by a trial and error 
process, when examining various types of complementary 
screens:

(1) The two screens must each obstruct approximately
half the total aperture.

(2) The detail in the screens must be small compared
to the dimensions of the aperture.

(3) The detail must be evenly distributed throughout
the aperture.

Of all the optics textbooks referred to by the author 
only Ditchbur^(1965) seems to be aware of these limitations. 
Hosemann and Bagchi (1962) do point out some of these 
limitations, although their work is concerned mainly with 
disordered structures and is not a textbook in optics.

2.4 THEORETICAL IWESTIG-ATIOH OB BABIHET1S PRINCIPLE
We may derive these conditions theoretically at least 

for the quite general case of centrosymmetric complementary 
screens in a centrosymmetric aperture. We have seen above 
that the condition for the diffraction patterns of complemen­
tary screens to be the same at any point is that

2 = |A2|2

(equation 2.2) will hold. This will be so if AQ = 0 in 
equation 2.1, i.e.

However AQ depends on the shape of the aperture and in
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general will be zero at a very limited number of points. 
(The conditions under which it is zero over a large number 
of points will be explored in Chapter 5)« It is possible 
to derive a further condition on the complementary screen 
function, which will result in similar diffraction patterns 

From equation 2.1 we may write

2 2

. » * . . * * * -  A1A1 + AqAo -  A1AQ -  AqA1

|A2I 2 = jA.,1 2 + A oA q *  -  A ^ A q *  -  A QA ^ *  (2.3)

If at any point equation 2.1 holds then

Vo* - Vo* - Vi* = 0 (2-4)
We may simplify this expression by considering a centro­
symmetric aperture and centrosymmetric screens, then:

Aq = Aq and A^ - A^

and equation 2.4' becomes

V Ao ■ 2V  = 0 (2-5)
If we ignore the solution Aq = 0 then equation 2.5 becomes

Aq - 2A, = 0 (2.6)
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We may write as:

NA 1 “  ^  1 f n  c o s ( 2 TTP rL • p )  ( 2 . 7 )

if the diffracting screen 1 consists of a centrosymmetric 
arrangement of N apertures ©ach with scattering factor f 
and position vector C* . The vector £ is the position vector 
in the plane of the diffraction pattern.

Aq and A^ are two independent oscillating functions of 
£. From equations 2.6 and 2.7 therefore, equation 2.2 can 
he satisfied for the largest number of values of £ if:

(a) |AqI max> maximum value of AQ , and 2/A^ 
are approximately equal,

(b) (Aq - 2A^) oscillates through zero as frequently 
as possible.

Since |Artl . is proportional to S, the area of the ' o' max *  s  7

aperture enclosing the screens, and |Â | is proportional 
to eS, the clear area of screen 1, then condition (a) implies 
that e = -2 (condition (1) above).

Condition (b) implies that A^ must oscillate as rapidly 
as possible, if we assume that Aq is fixed. In general the 
oscillation of A^ is more rapid for larger values of N, since 
the number of spatial frequency components in the diffraction 
pattern is increased. Also, if the apertures are widely 
distributed, the oscillations of A^ are gcgain more rapid 
since the average period of these spatial frequency components 
is decreased. Thus condition (b) implies conditions (2) and
(3).
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Hosemann and Bagchi (1962) derive similar theoretical 
conclusions but only for one particular set of complementary 
screens in one particular aperture (a square lattice of 
holes - or round obstacles - inside a square aperture).
The above treatment given by the author is therefore more 
general.

2.5 BABINET13 PRINCIPLE FOR LARGE APBRltffi.ES.
It has been indicated above that a number of authors 

(for example Drude (1902), Jenkins and White (1957)> and 
Michelson (1927)) put forward the idea that the Eraunhofer 
diffraction patterns of complementary screens are identical 
except for a small region near the centre (the image of the 
source). Other authors extrapolate from this and suggest 
that for very largeapertures the source image is very small 
(see Longhurst (1962) and Meyer (1949)) and hence conclude 
that better approximations to similarity are obtained for 
large apertures. This can simply be disproved by actually 
performing the experiment.

Figure 2.4a illustrates a hexagonal arrangement of 
diffracting obstacles which are placed in successively 
larger apertures (dotted circles). Figure 2.4b shows the 
complementary screen. Figures 2.4c, d and e respectively

>v /-7
c ' show the diffraction patterns of 2.4a for each aperture. 

Figure 2.4f is the diffraction pattern of the complementary 
screen 2.4b. There is a vague similarity between 2.4f on 
the one hand and 2.4c, d and e on the other (they have the 
same hexagonal symmetry). Asithe aperture size is increased 
however, the diffracted light from the aperture increasingly 

dominates the whole pattern and the similarity decreases.
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This result can he shown theoretically. Let us consider 
the case of a circular aperture whose diffraction pattern is 
given by the familiar relation derived by Airy:

A(p) = 2ira^J^ (2TTpa)/(2rrpa) (2.8)

where a is the radius of the aperture and p is the distance 
from the centre of the diffraction pattern. How the Bessel 
function (z) may be approximated by

^(z) « /(— ) eos(z - -Jtt)

(Handbook of Mathematical Functions) for large values of z, 
the error being of the order of z . Substituting in 
equation 2*8 we obtain

A(p) « /(-■) cos(2rrpa - -fu) (2.9)

Therefore the peak height of the pattern is given by the 
modulus of the right hand side of equation 2.9

M l  max -

Hence, as the radius of the aperture increases, the average 
peak height of the pattern at any point at a distance p from 
the centre of the pattern also increases (as the square root 
of the radius). Therefore the diffraction pattern of any 
obstacles placed within this aperture will increasingly be 
swamped as the size of the aperture is enlarged. The author 
derived this result after performing the experiments of 
figure 2.4 but later found that it had already been noted by
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Boersch (1951), who did not illustrate it experimentally 
however.

2.6 YOUNG'S ERIOMETER
The device known as Young's eriometer is often quoted in 

textbooks as an example of Babinet's principle (MtchkuHi 
(1965) and longhurst (1962)). Unfortunately this assertion 
is extremely suspect.

The device consists of a plate drilled with a number of 
small holes on the circumference of a circle of about 20cm. 
diameter. At the centre of the circle is a larger hole of 
about 2mm diameter. The back of the plate is illuminated 
by an extended monochromatic source, usually a sodium lamp.
If the central hole is now viewed through a glass plate 
sprinkled with fine particles of the order of 10jam. diameter, 
a diffraction pattern is seen, which has the appearance of 
the familiar Fraunhofer diffraction pattern of a circular 
hole. The pattern is in fact that which would be produced 
by a hole which has the average diameter of the powder 
particles.

It is possible to line up the dark rings of the pattern 
with the ring of small holes surrounding the central aperture 
and hence deduce the angular diameter of each dark ring.
These results may then be used to calculate a value for the 
average diamter of the powder particles.

The explanation usually given in optics textbooks of 
the diffraction pattern is that, because of Babinet's principle, 
the random arrangement of powder particles produces the same 
pattern as the complementary random arrangement of apertures.
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The explanation then shows that the diffraction pattern of a 
random arrangement of similar holes is the same as that of a 
single hole, multiplied N times in amplitude, where N is the 
total number of holes.

This illustration of Babinet's principle appears to be 
perfect with no interference from a limiting-aperture 
diffraction pattern. Unfortunately, the explanation is wrong 
at two points. First the diffraction pattern of a random 
array of holes does not have the appearance suggested (Stone
1963)> particularly at points near the centre of the pattern. 
Secondly, the diffraction pattern that is observed is not a 
Fraunhofer diffraction pattern in the normally accepted 
sense. It can be simply shown that, with the experimental 
arrangement given above, good coherence is obtained only 
between points separated by a few particle diameters (i.e. 
not over the whole area of the glass plate containing the 
particles). The calculation is that which is normally 
used to derive the degree of coherence between points in the 
mask plane of the optical diffractometer (Taylor and Thompson, 
1957). The particles are therefore scattering independently 
and the diffraction pattern is that of an individual particle, 
multiplied N times in intensity. Bo interference pattern 
due to a limiting aperture is observed, as this would have 
dimensions of such a size that it would be incoherently 
illuminated.

2.7 GONOLUSIONS CONCERNING- BABINET1S PRINCIPLE
The main conclusion that can be drawn is that Babinet’s 

principle does not hold generally. The principle is only

true for a limited class of complementary screens, unless a
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particular type of limiting aperture is used (see Chapter 3)* 
However, the equation

which is sometimes regarded as an expression of Babinet’s 
principle, is true, but it has no great physical significance 
if it does not imply that complementary screens have identical 
diffraction patterns.

The conditions that must be obeyed by complementary 
screens are that they must each obstruct about one half the 
total aperture and must consist of fine detail evenly spaced 
over the screen. Increasing the size of the limiting 
aperture does not improve the similarity between the two 
diffraction patterns, as is often supposed. The most 
frequently quoted example of Babinet’s principle, Young's 
eriometer, is not a straightforward application of the 
principle, as the diffracting mask (the powder particle 
distribution) is not coherently illuminated.

These restrictions on Babinet's principle are not 
generally appreciated, although some of them have been pointed 
out by other workers. For this reason it was felt necessary 
to treat the subject fully before continuing with the main 
subject of this thesis, the application of Babinet's principle 
to the production of transforms of three-dimensional objects.
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CHAPTER 3

3 THE APPLICATION OF APODISATION IN OBTAINING OPTICAL 
TRANSFORMS OF THREE-DIMENSIONAL OBJECTS 
The work outlined in the previous chapter indicates 

that there is no simple way to obtain the required optical 
transform of a three-dimensional crystal-structure model.
If we were to place such a model directly in the aperture 
of an optical diffractometer, the diffraction pattern of 
the model would in general be completely distorted by the 
light diffracted (Aq ) from the aperture of the instrument. 
Therefore the obvious conclusion is that AQ must be made 
zero, or negligible, over the major part of the diffraction 
pattern of the model; and thus, in some way, the trans­
mission characteristics of the aperture must be altered to 
produce this effect. A somewhat analogous problem, that 
of reducing the "diffraction ripple” surrotmding images 
formed in optical instruments, has been solved by the 
technique known as ''apodisation"; the author was led to 
explore the possibilities of using apodisation to eliminate 
the diffraction ripple represented by the quantity A .

The first attempt to use apodisation with two-dimensional 
apodising screens was unsuccessful and the reasons for its 
failure are discussed. The second attempt, using apodising 
apertures, did succeed and some examples of its use are 
given.
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3*1 APODISATION
Most optical instruments are assessed on their 

ability to resolve two equally bright objects; however, 
there are circumstances in which the instrument is required 
to separate two objects one of which is much fainter than 
the other. In such a case the ring system, or more 
generally the pattern of diffracted light that surrounds 
the brighter image, can obliterate the faint image.
Examples may be found in astronomy - the observation of the 
companion of Sirius by Sinton (1952) -, in spectroscopy - 
the observation of faint satellite lines or lines of rare 
isotopes - and in many branches of optics, particularly 
microscopy, where the resolution of high contrast detail is 
required.

A method of spatial-frequency filtering has been 
developed to suppress the side maxima or 'feet1 of the main 
image and this is known as 'apodisation* (from the greek a, 
to take away and t t o 6 o C ,  foot). It may be easily shown that 
the form of the transmission function of the spatial- 
frequency filter must be such that its Eourier transform 
consists of one single maximum (in practice it is possible 
to achieve only an approximation to this).

The most general type of apodisation - two-dimensional 
apodisation - is achieved by placing an absorbing screen 
with rotational symmetry in the aperture of an instrument. 
The radial transmission function of such a screen is, in 
general, entirely real and decreases gradually from the 
centre outwards. The Eourier transform of the screen will 
approximate to a peak function (in two dimensions), although 
the width of the peak must of course be finite. The
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actual function in the transform plane is given by equation 
1 .9:-

A(p) = J T(r) JQ (2rrr p) 2rrrdr

T(r) being the transmission function of the apodising 
screen. We may write the reverse Hankel (Pourier) trans­
form equation to equation 1.9 as:

It may appear, at first sight, that equation 3*1 implies 
that we can choose some suitable approximation to a peak 
function for A(p) and, hence, calculate the necessary 
apodising screen function T(r). However, the Hankel 
transform of any bounded function for A(p) will transform 
to an unbounded function T(r), and of necessity T(r) must 
be bounded by the instrumental aperture; thus, A(p) cannot 
be chosen a priori. Therefore an indirect solution to the 
problem must be sought.

One approach is that of lansraux and Boivin (1961) who, 
instead of assuming T(r) to be any general function of r, 
limit themselves to all possible linear combinations of n 
basic functions f (r). T(r) is then a function of n

ir
parameters which are the coefficients a of the linearP
combination

r

T(r) = J A(p) J0 (2rrrp)2irpdp (3.1)
P

n - 1T(r) = E  a f (r)
n  =  (S P  Pp = 0

(3.2)
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The basic functions f^Cr) are chosen so that their Hankel
Jr

transforms \j/(p) are known analytically, thus

n - 1A ( p )  -  I) a - J ' - n t p )  ( 3 - 3 )p = o p p

A condition, maximising the diffracted energy within a 
circle of some arbitrary radius p , and by implication 
producing apodisation, is then applied to equation 3*3; 
and a system of linear equations is obtained, which may be 
solved for aQ ... a^, ... an „ hence T(r) is completely 
determined.

Lansraux and Boivin choose
fp(r) = (1 - 4r2)p (3.4)

hence, i|r(p) =  +  V
A , J « ( l T p )

where, A p (p) = 2r(P + 1) —
(np)

T being the factorial function and J  (x) the Bessel functionP
of order p. Figure 3*1a illustrates some of the results 
of lansraux and Boivin for the function T(r) and figure 3-1b

pgives the corresponding values of A(p) (actually A(p) ) 
compared with the results for a uniform (unapodised) pupil.

p
The scale for A(p) is plotted linearly for small values of 
p and then logarithmically for larger values.

The values of A(p) were computed by the author and 
compare well with the published graphs of Lansraux and 
Boivin. Equation 3.3 was reduced by means of equation 3*5
to a summation with terms of the type b J (ttp)/ttp (b constant).P P P
An Atlas-auto cotie library program, which evaluates JQ (x) and
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(x) by means of a polynomial approximation, was mate use 
of and higher order Bessel functions were calculated by 
means of the recurrence relation.

Jp (*) = (2(P - 1)/*)Jp Jp _ 2 (*)

(Handbook of Mathematical Functions)
In certain circumstances circularly-symmetric apodising 

screens are unnecessary - for example, in the observation 
of spectral lines. This particular case requires apodi- 
sation only in directions perpendicular to the length of 
the line; and the requirement may be satisfied by an 
absorbing screen whose transmission function l('x) varies 
parallel to one axis in its plane and is constant along 
the perpendicular axis. Expressions for T(x) have been 
calculated by Dossier et al. (1950) in the form,

n - 1
T(x) = S  a cos(2prrx) (3*6)

P = o p

using a method similar to that described above for two- 
dimensional screens. Screens of this type are known as 
’one-dimensional apodising screens.';

A further more-restricted case of apodisation is that 
produced by placing an aperture of the type shown in figure 
3.6a in the instrument. The apodisation is now only 
obtained along a single line, figure 3*6b (the Fraunhofer 
diffraction pattern), and could be used, for example, in 
spectroscopy if there is a point source or in the problem 
of resolving two stars, if their relative orientations are 
known. The form of the contour of such an aperture is 
given by the one-dimensional apodisation functions of Dossier.
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Apodising screens with non-uniform absorption are 
made by evaporating chromium on to glass. The glass plate 
is placed behind a suitable mask and moved during evaporation 
according to the type of screen; the one-dimensional screen 
is moved back and forth (Jacquinot} 1950), and for screens 
with circular symmetry the plate is rotated (G-iacomo et al.^
1964). Apodising apertures can be cut from an opaque 
screen under a binocular microscope (Dossier et al.?1950) 
or made by photo-engraving on thin metallic sheets (Huet; 
1960).

The above description of apodisation is of necessity 
brief and incomplete. However, further information may be 
obtained from a comprehensive review of the whole subject 
by Jacquinot and Roizen-Dossier (1964).

3«2 THE APPLICATION OF TWO-DIMENSIONAL APODISATION TO 
PRODUCE OPTICAL TRANSFORMS OF TH^EE-DIMENSIONAL 
OBJECTS

3.2.1 Theoretical considerations
Apodisation, therefore, appears to offer a way of 

eliminating the troublesome diffraction contributions from 
the aperture when we attempt to observe the optical trans­
form of a three-dimensional object.

Let us consider what would happen if we place a two- 
dimensional apodising screen (transmission function Ta(r)) 
in the aperture of an optical diffractometer together with 
a model representing a crystal structure. The total 
transmission through the aperture may be written,
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Tt - - Tm (x, y) (3.7)

where T (x, y) is the transmission function of the two- 
dimensional screen complementary to the projection of the 
model. The transform of the apodising screen approximates 
to a peak function and we write this as A(p). If the 
transform of Tm is A j S ,  „), then

Thus the total diffraction pattern consists of the 
pattern of the screen complementary to the model (with a 
negative phase), plus a peak-like function at the origin; 
if the apodising screen is somewhat larger than the model, 
the width of the peak function will he negligible and it 
will overlap little of the diffraction pattern of the 
model. An undistorted diffraction pattern of the model 
should now be visible with a bright spot at the centre.

However, this view is simplified since we have 
implicitly assumed that the model will be uniformly 
illuminated and, of course, the presence of the apodising 
screen will ensure that this is not so; but, if the model 
is small compared to the dimensions of the screen, then the 
differences of illumination over the area of the model will 
also be small.

Another way of looking at this difficulty is by means 
of the idea of the convolution of two functions (Bracewell,
1965). Equation 3*7 should really be written as a product

At = A (p) - r|) (3-8)
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= Ta (r )E1’ "*

thus:

Tt = Ta (r) " Ta (r) Tm (x’ y) ( 3 . 9 )

Therefore equation 3*8 becomes:

A.’t A(p) - A (p ) * 11) (3.10)

The second term on the right hand side of equation 3*10 
represents a convolution product. If A(p) were a true peak 
function, then

and equation 3*10 reduces to the ideal case of equation 3*8. 
When, however, the width of A(p) is finite but small 
compared to the spatial frequencies in h)> then the
effect will be to produce a slight blurring (or smoothing) 
of the function A^ C *  result may be compared to the
scanning of a spectrum by the slit of a spectrophotometer, 
producing a representation of the spectrum with a slight 
loss of resolution. The condition on the width of A (p) of 
course implies that the diameter of the apodising screen is 
large compared to the extent of the model.

Summing up, therefore, provided that the apodising 
screen is large compared to the model, we shall see a 
transform corresponding to that desired of the model with 
perhaps a slight loss of detail; and at the centre of the 
pattern there will be a narrow bright peak.

A(p) * p) = *0
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3.2.2 PRACTICAL CONSIDERATIONS
The author, having deduced that the method was feasible, 

sought a simple experimental demonstration of this fact.
The primary difficulty is that of making a two-dimensional 
apodising screen simply. To use the method of G-iacomo 
unfortunately requires a comparatively elaborate piece of 
apparatus. However, diffraction screens with continuous 
transmission functions have been made in optical-transform 
work by a technique similar to the method of reproducing 
newspaper photographs using half-tone screens (Harburn et 
al.j1965); the apodising screen of figure 5.2a was made 
with this idea in mind. The screen is. actually a photo­
graphic negative of a drawing of a large number of dots on 
the points of a two-dimensional lattice; the diameters of 
the dots (apertures) decrease in size with increasing 
distance from the centre, to reproduce the function

T(r) = 0.068 + 0.290(1 - 4r2) + 0.371(1 - 4r2)2
+ 0.156(1 - 4r2)3 + 0.114(1 - 4r2)4 (3.11)

(T^ of fig. 5*1a). (An order-of~magnitude calculation 
suggested that this function would be adequate for the 
purpose). The representation is very approximate as only 
eleven hole sizes were used in successive circular zones.
The diameter of the screen was 5 cm.

As a test object the familiar hexagonal arrangement of 
obstacles was used, figure 5*2b - actually, 1/I6in. balls 
stuck to a glass plate and in the form of a hexagon of 
0.25cm. side. If the photographic plate of^apodising screen 

and the glass plate with the obstacles were placed directly 
in to the optical diffractometer, differences in phase
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across the aperture would he introduced due to non-uniformity 
in their thicknesses. Therefore the screen and the obstacles 
are immersed in cedar-wood oil contained in a tank having 
an optical flat as its base.

The optical transform of the screen plus the obstacles 
is given in figure 5*2c and may be compared with the ideal 
result in figure 5*2d. The transform is recognisable in 
broad detail but the finer detail is not reproduced.

The author was encouraged by the relative success of 
this rather crude apodising screen and concluded that a 
continuous-tone screen would give much better results. It 
should be stated here that this conclusion was based on very 
approximate order-of-magnitude calculations which later 
proved inadequate.

It was decided to try to make continuous-tone apodising 
screens by a photographic method rather than to use the 
experimentally more difficult chromium-deposition method 
of G-iacomo. (The lack of a large enough vacuum-evaporation 
plant was a major disincentive to using this method).

Therefore, the author made the piece of apparatus, 
illustrated in figure 5*3a> to produce these photographic
apodising screens and it is in fact an optical analogue of
Giacomo's apparatus. The photographic plate is mounted on 
a large (7in. o.d.) bearing and rotated beneath a stationary 
mask (a photographic reproduction) of the type shown in 
figure 5«3b. While it is rotated, a light source above 
the apparatus is used to expose the plate. The mask is 
attached to the bottom side of a perspex sheet, and slots
(not shown) cut into the sheet and the baseplate enable the
lateral position of the mask to be adjusted. The exact form



p e rsp e x  
p la te \

incident
light

m askv pho tog raph ic  plate

d rive  
b e l t ^ ^

tA\\ \ \ \ w v \ \
7 in. bearing

Fig. 3.3a

Fig.3.3b



- 37 -

of the stationary mask may he found empirically, using first 
of all a standard mask to produce a known (e.g. linear) 
intensity distribution across the photographic plate and 
measuring the resulting density distribution.

It is important that the rotation axis of the photo­
graphic plate be colinear with the centre of the mask.
This alignment was carried out by replacing the photographic 
plate by a card with a number of parallel lines drawn on it; 
when this is rotated, a series of concentric rings is 
observed and the centre of the mask may be easily made to 
coincide with the rotation axis, which is at the centre of 
the rings.

The rotational speed of the photographic plate must 
also be chosen carefully. If a single exposure is broken 
up into a number of short exposures (using the same intensity), 
the amount of blackening produced is not the same as that 
produced by the continuous exposure; this effect is known 
as "intermittency failure". Webb (1933) has shown, however, 
that if the flash rate is high enough the blackening produced 
will be that given by the equivalent continuous exposure.
For this reason it is necessary to rotate the plate rapidly 
and a speed of 1500 r.p.m. was chosen.

The development of the photographic plate is perhaps 
the most critical part of the process. The temperature of 
the developer, its concentration and degree of agitation, 
and the development time, must be carefully controlled to 
get reproducible results.

The photometric measurements were made using a rather 
crude densitometer built by Hinde (1951), replacing the 
original selenium photo-voltaic cell with a modern silicon
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type (Ferranti MS2BE) to increase the sensitivity. A heat 
filter was added, since the silicon cell is very sensitive 
to infra-red radiation, and also a spectral filter, of the 
type used in the optical diffractometer, to simulate the 
normal working conditions of the apodising screen.

A 35mm. photographic enlarger was used as a source of 
light; this was convenient since the intensity could he 
adjusted by means of the variable aperture on the lens.
This method of illumination was unsatisfactory for two 
reasons: first the output of the light source was not
stabilised; secondly strict parallelism of the light 
striking the mask and photographic plate was not achieved, 
therefore the distribution of intensity across the plate 
was incorrect. The second of these defects was alleviated 
by marking the separation between the mask and the plate 
as small as possible (^•J-in.) and^ciistance of the light 
source as large as possible. It was hopgd to correct these 
drawbacks after a few preliminary trials of the apparatus.

The function

T(r) == 0.105 - 0.057(1 - 4r2) + 0.777(1 - 4r2 )2
- 0.047(1 - 4r2)3 (3.12)

was used as an initial test of the apparatus. This function 
gives slightly improved apodisation to the function of 
equation 3*11 and has a smaller range of values of T(r), 
hence it can be more easily reproduced in an apodising 
screen. The expression was calculated by Jacquinot and 
Roizen-Dossier (1964), who adopted a criterion of apodisation 
slightly different to that of 3.11.

The actual range of the intensity transmission function
2.(T(r) ) to be reproduced is therefore about 50:1 and this
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requires a reasonably high-contrast photographic plate.
Kodak B4 plates were chosen but no special care was taken 
over the choice of processing chemicals, those readily 
available were used for this preliminary trial. The 
plates were developed after exposure in Kodak D163, a normal 
to high-contrast developer mainly intended for photographic 
paper, and this was diluted 1 part to 3 of water and 
maintained at 20°C during processing. The comparatively 
dilute state of the developer and the consequently extended 
development time assists even blackening over the whole 
plate. During development the surface of the plate was 
stroked regularly with a soft brush to remove the products 
of the reaction, which would otherwise accumulate, slowing 
the development and producing uneven blackening. The 
platen were rinsed for 30 seconds in a 2^ acetic acid 
solution after development and fixed in Ilford IF9 fixer 
(actually an X-ray film fixer) for 10 minutes. They were 
then washed in running water for 30 minutes and rinsed in 
filtered water containing a wetting agent before being 
dried.

As indicated above the plates were calibrated using a 
mask which gave a uniform decrease of illumination along 
the radius. A series of calibration plates were made with 
various total exposure times and a continuous curve of the 
intensity transmission function against time was plotted.
It is then a simple matter to deduce the form of the mask, 
fig. 3*3D, which is required to obtain the correct function

p*$tr) (or T(r) ), from the curve.
Although several short-cuts were taken for this 

preliminary trial of the apparatus, quite a reasonable

reproduction of the desired function was obtained in the
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apodising screen. Figure 3*4a shows the theoretical
pfunction (T(r) ) and the experimental fit of the apodising 

screen function. Since only relative values of the trans­
mission function of the apodising screen could be obtained, 
it was necessary to artificially fit the experimental points 
to the theoretical curve and this was done by arranging that 
one of the experimental values (r = 0.2) should lie on the 
theoretical curve.

The fit for low values of r is not very good and this 
is due to a faint ring pattern at the centre of the screen, 
probably caused by the axis of rotation of the photographic 
plate not being coincident with the centre of the stationary 
mask. However, the fit over most of the screen is quite 
reasonable.

Again the familiar test object was used of a hexagonal 
arrangement of diffracting obstacles - -gin. discs on a 
hexagon of 0.47cm. side. The apodising screen was 8cm. 
in diameter so that the obstacles lay within the region for 
which T(r) > 0.9 of the maximum transmission. Both the 
screen and the obstacles were immersed in cedar-wood oil 
as before. Figure 3*4b shows the diffraction pattern of 
the screen plus the obstacles. There is a very intense 
maximum at the centre, as might be expected, and the six 
main peaks of the diffraction pattern of the obstacles 
show up clearly. Yet the result is disappointing since 
the interference effect of the surrounding aperture is 
still clearly visible as the ripple pattern on the main 
peaks of the transform of the obstacles; obviously some 
improvement is required in the amount of apodisation achieved. 
Comparing this result with that of the half-tone screen, no

great improvement can be observed, although it must be taken
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into account that, there, the diffracting obstacles occupied 
relatively twice as much of the area of the screen.

3*2.3 NUMERICA1 INVESTIGATION
The inadequacy of the apodising screen could be 

explained in one of two ways', either the S'creen was not a 
good enough approximation to the theoretical function, or 
the theoretical function did not give sufficient apodisation. 
This question could obviously be decided by calculating the 
optical transform of the theoretical screen and comparing 
it with that of the hexagonal obstacle-arrangement. It was 
decided not just to do this for one particular screen but 
to choose several screens, with varying degrees of apodisation, 
and to compare their performances.

The problem of calculating the optical transforms of 
two-dimensional apodising screens has been dealt with in 
section 3*1 and the same program could be easily adapted 
for use here. The transform of the hexagonal arrangement 
of obstacles is the same as that dtff its complementary screen 
of holes. From equation 1.8 we have

A(€> r ) = J7 ^(x, y) exp[2TTi(x£ + yn)] dxdy 
xy

The transform of the obstacles may therefore be written as 
the summation,

A(£, r ) = I E  f exp[2n-i(x £ + y t])] dxdy (3*13)
x ynJn

where xn and yn are the positional coordinates of the six 
obstacles (holes) and f is the scattering Factor for each.
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Thus,

P J, (2irpa) 
f = 2"a ~2Trpa

Since the arrangement is centrosymmetric,

A (£, r \ ) = S S f  G.o.s[2n(x{ -1- y r \)] (5*14)
x y nJn

where the summation is taken over a centrosymmetric half 
(three obstacles). The values of A(£, r \ ) were calculated 
from equation 3*14 by means of a simple computer program 
written by the author.

For the purposes of the calculation it was assumed
that the hexagonal arrangement of obstacles consisted of
discs of 1mm. diameter on a hexagon of 0.23cm. side which,
if we use the normal scale of optical transform work
(l/6cm. = 1 S.), represents a benzene ring of side 1.4^;

o-ldistances in the transform can therefore be given as A 
The sizes of the apodising screens were adjusted so that 
the obstacles lay just within the region in which T(r) > 0.9 
of the maximum transmission.

The results of the calculation are given in figure 3*5. 
The apodising screen functions that were used are those of 
figure 3*1> Tq being the uniform (unapodised) pupil and T^, 
T2 and T^ being unapodised functions in order of increasing 
degree of apodisation. The graphs represent cross-sections 
through the modulus of the transform of each screen (full 
lines) compared with the modulus of the transform of the 
obstacles (dotted lines). The cross-section of the 
transform of the obstacles is taken through one of the six 

main peaks.
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The most striking feature of these results is the 
slow rate of fall of the peaks of the transforms of the 
apodising screens as we progress from the least to the most 
effective screen. The reason for this is not difficult to 
see. As we increase the effectiveness of the apodising 
screen, the function T(r) falls off more rapidly, hence the 
size of the screens must he increased (and thus their 
relative diffracting power is also increased) so that the 
obstacles remain within the region T(r) > 0.9*

The function used for the experimental screen gives 
results very similar to the last screen (T^) of figure 3*5 
and this can be seen to be barely adequate. Thus the 
experimental screen would seem to give a result which is not 
too far from theoretical expectations. Evidently an 
apodising screen function T(r) must be used which will give 
a greater degree of apodisation. Unfortunately, such a 
function would give a degree of apodisation which is 
excessive for normal optical applications and therefore it 
has not been calculated by previous workers, as far as can 
be ascertained from the literature. There seems to be no 
reason, however, why such functions should not be calculated 
by the present methods.

3*2.4 OBJECTIONS TO THE METHOD
Although the first experimental trial of the method 

was not clearly successful, it is still theoretically 
feasible. In addition we can expect better results for 
models larger (i.e. with more atoms) than the simple benzene 
ring. If the models are larger and the apodising screen
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is enlarged, so that the models remain within the region 
T(r) > 0.9» then the large peaks of the screen transform 
will move closer to the centre and away from the region of 
interest, say 0,25A~^ to 2. oi“1 (see figure 3*5)• It 
might also be possible to slightly relax the condition 
T(r) > 0,9 to obtain a better result.

Yet, although the method is feasible, there are certain 
experimental difficulties which make it awkward to use in 
practice. The new function T(r), which is required to 
give improved apodisation, would almost certainly have a 
larger difference between the maximum and minimum values of 
f(r), Thus the range of contrast of the photographic 
reproduction would be greater and therefoi*e more difficult 
to control. Also, if the screens were to be so much 
larger (ps 5x) than the extent of the model, so that it 
would lie within the region T(r) >  0*9, then either the 
models must be made very small or the screens very large.
Very small models (say 1cm. across) would entail difficulties 
in construction and this would clash with the essential 
features of optical methods - speed and simplicity, 
large screens woiild require equally large (say 30cm. 
diameter) optical flats for the oil-immersion process and 
these would be prohibitively expensive.

3*3 THE APPLICATION Off ABODISINU APERTURES TO PRODUCE 
OPTICAL TRANSFORMS OF THREE-DIMENSIONAL OBJECTS

3*3.1 INTRODUCTION
Two-dimensional apodising screens would seem to offer 

a way of obtaining optical transforms of three-dimensional



objects but the method is rather cumbersome in practice. 
However, while examining the optical transforms of various 
apodising apertures, the author came upon a much simpler 
method and the idea of using two-dimensional screens was 
dropped in favour of this.

Apodising apertures, that give apodisation along a 
single line in their transforms, have aLready been mentioned 
in section 3-1* Figure 3*6a is an example of such an 
aperture and figure 3 * 6b is its optical transform. The 
striking feature of this optical transform is that, not only 
is there apodisation along a horizontal line through the 
centre of the transform, but the intensity appears to be 
zero also over two symmetrical fan-shaped regions, of which 
this line is the bisector. The angle of the fan may be 
altered by adjusting the relative dimensions, length to 
breadth, of the aperture; in the example shown the ratio 
is 3 i1, which gives an angle of about 110°. The equation 
of the aperture contour may be written

T ( x )  = 0.413 + 0.499 c o s ( ^ )  + 0.087 oosC^S2 ) (3.15)

which is a 'stretched' version of a function (equation 3*6) 
given by Dossier et al. (1950).

The application of these apertures to producing optical 
transforms of three-dimensional objects is quite simple. 
Suppose, for example, we place the usual hexagonal arrange­
ment of obstacles within the aperture of the diffractometer, 
together with the apodising aperture of figure 3*6a. In 
the fan-shaped regions of the optical transform the 
contribution (Aq) from the apodising aperture is ̂ ery small 

and we shall be able to see that part of the optical trans-
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form of the obstacles that lies in this region, figure 3*6c. 
Now, if the aperture is rotated until it is perpendicular 
to its original orientation, the remainder of the obstacle 
transform may be observed, figure 3*6d. If photographs 
are taken with the aperture in both positions, a composite 
photograph, figure 3*6e, may be assembled of the total 
optical transform of the obstacles. This compares extremely 
well with the transform of the complementary screen in 
figure 3*6f.

The advantages of this method over that using two- 
dimensional apodising screens are immediately apparent.
First, it obviously works experimentally! Secondly, the 
apertures may be made much more easily than the photographic 
absorbing screens (methods of making the apertures are 
discussed later). Thirdly, we have no problems with 
uneven illumination over the area of the model. Fourth, 
the screens need not be immersed in cedar-wood oil - a rather 
awkward procedure. The only disadvantage of this method, 
compared to the two-dimensional screen method, is that the 
complete transform of the three-dimensional object cannot 
be viewed, or photographed, at any one instant; however, 
a possible way of overcoming this problem is suggested in 
the next chapter.

3.3.2 NUMERICAL RESULTS
It is obviously of some interest to compare the 

numerical results for the apodising qualities of the aperture 
of figure 3«6& with the results for two-dimensional screens
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obtained in section 3*2.2. In order to do this it is 
necessary to calculate the distribution of amplitude in 
the diffraction pattern of the aperture, i.e. figure 3*6b.

It is quite simple to calculate the amplitude distri­
bution along the line in the pattern for which the aperture 
is designed to give apodisation. If we write the contour 
function of the aperture as:

n - 1
T(x) = S  a cos(2b rrx) (3*16)

p = o y p

where a and b are constants (see equation 3*15), then,ir
along the £ axis of the optical transform, we may write the 
amplitude distribution in the form of a Pourier-transform 
integral

1
A(£) = 2f T(x) exp(2ttx£ ) dx

-1

This may be reduced, since T(x) is even, to:

1
A(5) = 4f T(x) c o s (2ttxC) dx

0 o

21 is the horizontal distance between the tips of aperture 
of figure 3*6a. When the integral is evaluated we obtain:

n - 1 a rsin(4TTl(b + £))n - i a r
A(«) = S

sin(4iTX(b - f)) "]+ ---------------  J (3. n )
P

Obviously A(S) may easily be calculated from equation 3*17,
by hand or with a simple computer program, provided that
care is taken at the discontinuities, i.e. when £ = b •P
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The two-dimensional transform is much more difficult 
to evaluate; the amplitude distribution is given by the 
two-dimensional Eourier-transform integral;

1 T(x)
A(|» p) = f f exp 2tt1(x£ + yp) dx dy (3-18)

-1 -T(x)

We may reduce this to;

1 T(x)A ( { ,  n )  =  4 f  J  o o s (2 T T X 5 )^ (2 iry r ))d x d y  ( 3 . 1 9 )
o o

Integrating over y?equation 3*19 may be written*.

1
A(g, p) = J* sin(2rTT(x)p) cos(2rrx$) dx (3.20)up 0

The author could find no analytic solution to the integral
of equation 3*20 and therefore a numerical method of inte­
gration was sought.

When considering numerical methods of integrating 
equation 3*20,two conflicting requirements are evident.
In the apodised region the values of A(g, p) will be very 
small and therefore high accuracy must be sought. However, 
as we must evaluate the integral at a large number of 
values of g and p, a very efficient method is needed. 
Obviously simple numerical-integration methods such as the 
trapesoidal rule and Simpson’s rule are not suitable.

The numerical-integration method known as ’’Gaussian 
quadrature” (lanczos, 1957), which gives high accuracy with 
a minimal number of sampling points, was therefore applied. 
Effectively, a Legendre polynomial is fitted to the function 
to be integrated and the area under this curve is then
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found. In practice, if we wish to integrate the function; 

b
I = J f(x) dx (3*21)

a

we replace this by the summation^

I = _ S  w±f (x±)

where x^ is a function of the position of the ith zero of 
the Legendre polynomial of order n and w^ is a function of 
the differential of this polynomial at the position of the 
ith zero. Both the positions of the ith zero and the values 
of the differential of the polynomial are tabulated for 
various values of n (Handbook of Mathematical Functions, 
also Kronrod;1965)» thus w^ and x^ may be determined and 
hence the value of the integral. It will be noted that the 
sampling points x^ are not equally distributed along the 
interval a to b, as with the trapesoidal rule and Simpson's 
rule, and it may be shown that the increased accuracy 
results from relaxing this condition*

In using Gaussian quadrature, it is necessary to 
decide upon the minimum number of sampling points necessary 
to achieve the desired degree of accuracy. There are 
analytical methods of estimating this quantity but the 
usual procedure employed is to actually perform the inte­
gration several times, increasing the number of sampling 
points on each occasion; the process is halted when the 
changes in the value of the integral, as the number of 
sampling points is increased, are less than the maximum- 
allowable error.



The function to be integrated in equation 3*20 is 
sinusoidal in form. The average period of the function 
decreases as ?  and p are decreased; therefore, it is 
obviously not sensible to use the same number of sampling 
points for all values of g and p. However, if we examine 
the function to be integrated, we can bee that the maximum 
number of zeroes of the function is the integral part of 
(21g + 2T p + 1), where Tm is the maximum value of T(x) in 
the range x = 0 to 1. If we now divide the function into 
a number of equal ranges, where the number of ranges is 
given by the number of zeroes in the total range, we shall 
be approximately dividing the function into a number of half 
periods of a sinusoid. It is then a simple matter to 
estimate the number of G-aussian sampling points necessary 
to integrate one half period of a sinusoid.

A test program was written to evaluate the integral of 
sin(x) in the range x = 0 to tt by G-aussion quadrature. It 
was found that seven sampling points were necessary to 
achieve a result accurate to 11 significant figures - the 
full decimal accuracy of the store of the Atlas computer.
An Atlas-autocode program was then written by the author 
to evaluate the integral of equation 3*20. The function 
was divided into ranges as indicated above for each value 
of g and p and Guassian quadrature with seven sampling 
points was performed in each range and the total for all 
ranges was then found. It was arranged that these totals 
for various values of f, p should be output on a lineprinter 
in the form of a map of results, so that contours could be 
directly drawn, in an exactly similar way to the normal 
procedure for crystallographic electron density maps.
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If we examine the function to be integrated in 
equation 3*20, it is obvious that care must be exercised 
when n = 0. Here we have that i

1
A(£, r\ -  0 )  = 4[ T(x) cos(2rrx£) dx

o

which is the simple one-dimensional case of the amplitude 
distribution along the line for which apodisation is 
required, as discussed above, and an analytic solution is 
possible - equation 3*17. However, a step was included 
in the program to perform this integration numerically so 
that the results could be compared with those obtained by 
evaluating the analytic solution of equation 3*17. The 
agreement was perfect, at least up to the 6th decimal place 
of the normalised values of A(f, Tl), and may have been 
better as the results of the analytic integration were not 
calculated any more accurately. Thus a further check was 
made on the accuracy of the results (and of the program).

For the purposes of the calculation, it was assumed 
that the size of the aperture was such that it would just 
enclose the obstacles, arranged in the form of a hexagon, 
used in the numerical calculation for the two-dimensional 
apodising screens in section 3*2.3; thus, a direct
comparison of the two methods may be made from the results.

. oNThe actual dimensions of the aperture were 1.7cm.(10.2A) by 
0.57cm.(3*4^)* Figure 3*7 shows the results- of the inte­
gration in the form of a contour map of the function log^Q

p p /
[A (g, ti)], the contours being at unit intervals (A = 10 ).
The results are normalised to give a value of A(£, r)) = 1

Oat the centre of the map (i.e. log^(A (5» n )) = 0) • As
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with the transforms of figure 3*5 the scale is given in 
. Figure 3*7 compares well with the optical transform 

of the apodising aperture in figure 3*6b - a further 
indication of the validity of the numerical results. The 
existence of the large region of very low intensity is also 
confirmed - the lowest contour shown represents an intensity 
of 10™^ of the intensity at the centre of the pattern.

However, it is difficult to assess the worth of the 
apodising aperture from figure 3*7 and to compare its 
usefulness with that of the two-dimensional screens. In 
figure 3*8 it has been supposed that the apodising aperture 
has been used to obtain the optical transform of the 
obstacles in the form of a benzene ring - placing the 
aperture in two orientations at right angles. - The 
modulus of the scattered light from the screen, which 
overlaps into the apodised region (i.e. within the sector 
of angle 90°), is then plotted for both orientations.
Thus, figure 3*8 shows the total interference pattern of 
the light from the apodising aperture for the simple benzene- 
ring transform; these results mp;y now be directly compared 
with the results for two-dimensional apodising screens in 
figure 3*5. The contours of the central peak correspond 
to unit intervals on the vertical scale of the graphs of 
figure 3»5, while the remaining contours correspond to 
intervals of 0.1 units.

A comparison of the results for the best screen in 
figure 3*5 and the results of figure 3*8 reveals that only 
at a small number of points is the performance of the 
aperture inferior and that it is generally superior over
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most of the optical transform. Furthermore, since 
accurate reproduction of the aperture function is much 
simpler than that of the two-dimensional function, we should 
expect the experimental results of the aperture method to 
compare even more favourably. Again, as with two-dimensional 
screens, we may anticipate better results for models with a 
larger number of atoms.

Before leaving this discussion of the evaluation of 
the theoretical transforms of apodising apertures, it may 
be noted that further investigations in this direction 
might be useful. Only one particular contour function has 
been tried and further functions may give better results.
This particular function is in fact the most effective one, 
quoted by Dossier et al. (1950), for one-dimensional 
apodisation. Again, the relative dimensions, length to 
breadth, have been chosen empirically and ideal dimensions 
might be deduced theoretically. The author has not 
pursued this investigation; first, because the present 
aperture is sufficient for the purpose; and secondly, 
because the numerical integration program uses a considerable 
amount of computer time and the investigation would require 
frequent use of this program.

3.5.5 PRACTICAL DETAILS
Apodising apertures are clearly an effective way of 

obtaining optical transforms of three-dimensional objects 
and examples of their use are described in the next chapter.
It is therefore convenient to introduce here some practical 
details of the method.
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Frequent use has been made of the large optical 
diffractometer described by Taylor and lipson (1957), 
since it enables larger structure models to be made.
It has an aperture of 38cm. compared with the 13cm. of the 
more usual diffractometer. Differences in the size and 
the design of the large and the small diffractometers 
result in differences in experimental technique and these 
are pointed out when necessary.

Two methods of manufacturing the apodising apertures 
have been used. Large apertures, suitable for use with 
the big optical diffractometer, are made by plotting the 
required function on graph paper and then cutting it out. 
Smaller apertures, suitable for use with the normal-size 
diffractometer, are made in thin copper sheets by the 
photoetching process of Harburn, Taylor and Yeadon (1965).
Printed-circuit board, consisting of a thin sheet of copper 
laminated to a plastic backing, is coated with an ultra­
violet sensitive emulsion. A photographic plate, of a 
reproduction of the aperture in black, is then used to 
make a contact print on to the sensitised surface of the 
board. The region of the emulsion exposed to the ultra­
violet radiation is hardened, while the unexposed region 
may be easily dissolved away, enabling the underlying copper 
to be attacked by an etching solution, leaving a representation 
of the aperture in the copper sheet. The plastic backing 
may then be removed by soaking in potassium cyanide solution.

Photography of the optical transforms using apodising 
apertures is not straightforward, since the transform of 
the apodising aperture is so much brighter (particularly at
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the centre) than the transform of the obstacles. The 
diffraction patterns of figure 3*6 were produced using the 
technique of overexposing the film and then underdeveloping 
it, thus enhancing the faint detail. However, this method 
is not very satisfactory and obviously a stop is necessary 
to block out the diffraction pattern of the aperture, 
figure 3«9a shows an example of such a stop for use with 
the aperture of figure 3*6a. The angle of the clear seg­
ments is 100°, although in theory it need only be 90°; 
however, a certain amount of overlap is advisable to allow 
for experimental errors. The overall diameter of the stop 
is about 0.3cm. The width of the central portion depends 
on the size of the apodising aperture - it must be large 
enough to block the central maximum of the diffraction 
pattern of the aperture but small enough not to obscure 
relevant detail in the diffraction pattern of the three- 
dimensional model - it is typically 0.2mm. Such stops 
are made by the photoetching process described above.

One rotational movement and two non-parallel trans­
lational movements in the plane of the diffraction pattern 
are required to make the stop coincide with the transform 
of the apodising aperture. The stop is mounted on a 
cylindrical cap, which fits snugly on to the focussing 
drum of the diffractometer (figure 3*9b) and gives the 
necessary rotational movement. (The reader may find it 
useful to refer to the details of the construction and use 
of the optical diffractometer given by Taylor and Lipson, 
1964 and Hughes and Taylor,1958). Translational movements 
of the optical transform of the aperture can be made, in 
the case of the small diffractometer, by adjusting the
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inclination of the mirror which reflects light received 
from the lenses to the focussing drum. However, the 
large optical diffractometer does not have such a mirror 
and a cross-slide arrangement is used to translate the 
stop; the focussing drum is then mounted on the cross- 
side as shown in Figure 3*9c.

The normal type of camera for taking photographs of 
optical transforms is unsuitable here, since the spring- 
loaded platform in the camera, that holds the film against 
the focussing drum during exposure, displaces the drum 
slightly and hence also displaces the stop. A light-weight 
single-exposure camera is therefore used, figure 3*9b, 
having a brass block held in by an elastic band to push the 
film against the stop.

One difficulty that may be mentioned here is the 
problem of the accurate fitting-together of the photographic 
prints representing the two halves of the optical transform 
of the three-dimensional object. Ho really satisfactory 
method of orientating the two halves has been found but a 
reasonable fit may be obtained, if there are details in the 
transform common to both halves, that can be made to overlap. 
It is always advisable to ensure that such common detail 
exists when taking the photographs. Uneven shrinkage 
(i.e. non-isotropic) of the photographic paper during 
processing also causes matching difficulties, but this can 
be overcome if the main shrinkage axis of the paper is made 
to coincide with a prominent direction in the transform for 
both component parts of the photograph.

The complete transform of the three-dimensional model 
may be scanned either by rotating the aperture or by rotating
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the model. In practice it is found simpler to rotate the 
aperture, since movement of the model may easily upset its 
alignment.

Using these experimental techniques outlined above, 
quite accurate optical transforms may be obtained from three- 
dimensional models. Figure 3-10 illustrates such a result. 
The transform is that of a mask representing the structure 
decanamide (Brathovde and Lingafetter, 1958). Figure 3«10a 
shows the optical transform of a distribution of discs fixed 
to an optical flat representing the 010 projection of the 
structure; figure 3*10b shows the corresponding optical 
transform of a punched-mask representation. The two 
transforms are almost identical.

3.4 SUMMARY
The main conclusions of this chapter may now be stated. 

Apodisation clearly offers a way of eliminating the 
contribution (Aq ) from the instrumental aperture to the total 
diffraction pattern, if we attempt to observe the optical 
transform of a three-dimensional model. The use of two- 
dimensional apodising screens is feasible but apodising 
apertures give better results.

The next chapter is devoted to illustrating examples 
of possible applications of both the apodising aperture 
method and optical transforms of three-dimensional objects 
in general.
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CHAPTER 4-

OPTICAL TRANSFORMS OF THREE-DIMENSIONAL CRYSTAL-STRUCTURE 
MODELS OBTAINED USING APODISING- APERTURES

This chapter is mainly devoted to illustrating and 
exploring the possible applications of optical transforms 
of three-dimensional molecular-structure models, obtained 
by the apodising aperture method. The factors influencing 
the building of suitable crystal-structure models are first 
discussed; then, examples of transforms are given.
Finally, future possibilities of using and improving the 
method are mentioned.

4.1 THE MANUFACTURE OF SUITABLE CRYSTAL-STRUCTURE MODELS 
The most important factor to be considered, when 

building simple molecular-structure models, is their scale. 
The size of the models must obviously be such that they are 
easily accommodated within the aperture of an optical 
diffractometer. Furthermore, if an apodising aperture of 
the type shown in figure 3»6a is also to be included within 
the aperture of the diffractometer, the largest dimension of 
the model must be less than one third the distance between 
the tips of the apodising aperture. The lower limit on the 
size of the model is set purely by the difficulties in 
constructing it; very small balls are difficult to drill
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accurately and small, thin bonds between the balls distort 
easily. The scale that is normally used for punched-mask 
representations of structures in smaller diffractometers is 
l/6cm. - l2; making ’ball and bond’ models to this scale 
would be difficult and time-consuming(attributes incompatible 
with optical methods of structure solution]. In fact, ball 
and bond models on any scale, suitable for use with the 
combination of an apodising aperture and the smaller type of 
diffractometer, must have a maximum diameter of about 4cm. 
Making such models would present a number of practical 
difficulties, unless there are only a few atoms in the 
structure. However, the scale normally used with the large 
diffractometer in this department, that is 1cm. = l£, is 
much more promising; components for building models to this 
scale can be obtained commercially (Beevers, 1965). Beevers 
molecular models have been used, together with the large 
optical diffractometer, to produce the optical transforms 
illustrated in this chapter.

One difficulty, encountered with ball and bond models, 
is that light is diffracted from the bonds as well as from 
the balls, and so distortions of the optical transform are 
inevitably produced. A solution, that has been suggested 
to the author, would be to use transparent bonds and to 
immerse the model in a liquid, whose refractive index matches 
that of the bond material. However, so that phase 
distortions need not be introduced in the illuminating and 
diffracted beams at the liquid-air interface, two of the 
sides of the container for the liquid must be optical flats.
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Quite large optical flats would be needed (r# 40cm. diameter), 
if Beevers models with transparent bonds are to be used, and 
such flats would be prohibitively expensive.

Fortunately, if the bonds are thin compared to the ball 
diameter, the effect is small in the author's experience - 
only fainter details near the edge of the pattern are 
seriously affected. The wire normally used for bonds with 
Beever's models is 0.040in. diameter and this is rather 
thick; therefore, the models used had bonds made from 
0.022in.diameter wire. With wire of this latter diameter 
and the 6.9mm. diameter balls used in B e e v e r W  models, for 
a typical carbon-carbon single bond, the ratio of the ball 
to bond scattering is about 30:1 in amplitude. In order to 
fit the 0.022in. bonds in to the 0.040in. holes in the balls 
plastic sleeves were placed over both ends of each bond, 
which was then cemented into position with 'Araldite'. This 
assembly process is very tedious but there seems to be no 
reason why, in future experiments, the models could not be 
built much more quickly, if ba3.1s with holes of the correct 
size were used.

Having chosen the scale of the model a further factor 
must be considered and that is the suitability of the ball 
diameter for this particular scale. The useful extent of 
the optical diffraction pattern of an arrangement of similar 
balls in a model is governed by the size of the individual 
ball, since the transform of the arrangement is modulated 
by the function representing the transform of each ball.
Thus, the limit of the useful extent of the diffraction 
pattern is the point at which the transform of the ball
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becomes zero for the first time. Ideally, all the X-ray 
diffraction data should be represented in the optical 
transform; therefore, the first zero of the optical trans­
form should not correspond to a point nearer to the origin 
than the edge of the limiting sphere for the X-ray data 
(see section 1 * 1).

We may write the amplitude distribution in the 
diffraction pattern of a ball of radius a as

p Jl (2Trap) 
A (p) = 2ua ~ — 2irap

The first zero of the pattern occurs when

2rrap = 3.83

(the second zero of the Bessel function J^fx)). 
Rearranging this expression we may write the distance of 
this zero point from the origin of reciprocal space as

q = 3---8JI2
2rra

Bow if the scale of the model is such that mcm. = l8 then;

» -

If this value of p corresponds to the edge of the limiting 
sphere then:-
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where X is the wavelength (in £) of the radiation used to 
give the X-ray diffraction pattern, which we are simulating 
optically. Thus, from equation 4-1 we may write the 
maximum value of the radius of the ball, that would enable
all the X-ray pattern to be simulated optically, as

a _ 3>832,ml x
max “ 4 t t

For the Beevers models where m = 1, if X = 1 .541& (CuXa 
radiation), then the maximum diameter of the balls that may 
be used can be deduced from equation 4 . 2  to be 9 °4mm; thus, 
the actual diameter of 6 .9mm, is quite adeqiiate under these 
conditions. (In the case of the small optical diffracto­
meter, where m = 1/6 , it is interesting to note that the 
corresponding maxinum diameter of the apertures that may be 
used is 1 .57mm.).

The diameter of the balls is also partly influenced by 
the problem of 'overlap'. In certain projections of most 
models one or more pairs of atoms overlap and the corresponding 
optical transform is partly incofrect, since the double 
scattering is not properly represented. The use of small 
balls helps to reduce the probability of overlap occuring.

Overlap has not been an important problem in any of the 
examples examined by the author. Obviously, whether or not 
the difficulty is serious, depends partly on the structure 
of the model and partly on the particular area of the trans­
form being considered.
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4.2 EXAMPLES OF OPTICAL TRANSFORMS OF THREE-DIMENSIONAL 
MODELS

When we wish to examine the optical-transform corres­
ponding to a particular projection of a molecular-structure 
model, it is necessary to orientate the model so that the 
plane of projection is perpendicular to the optic axis of 
the optical diffractometer. The device shown in figure 4.1 
was constructed by the author for this purpose.

The base of the device is a simple carriage which moves 
along, and may be clamped to, the rail shown, which in turn 
is fixed across the aperture of the diffractometer. The 
horizontal disc with the circular scale, together with the 
remainder of the structure fixed on top of the disc, is 
connected by means of a ball bearing to the carriage and may 
rotate freely in the plane of the disc. The model is 
clamped in the structure above the disc; and the two 
perpendicular rotations (shown in figure 4*1) given by this 
structure, enable the orientation of the model to be adjusted

The direction of the optic axis of the optical diffracto 
meter at points between the lenses of the instrument is 
clearly marked by the light beam, if a large bright source 
is used. The orientation of the model, with respect to the 
optic axis, can easily be determined from the shadow cast by 
the model in the beam. Tims, using the device in figure 4*1 
the required projection of the model may be made perpendi­
cular to the optic axis as follows:-



Fig.4.1



(i) An axis in the model, parallel to the required 
plane of projection, is marked with a straight 
piece of wire. The orientation of the model 
is then adjusted, using the two perpendicular 
rotations, until the marking wire remains 
parallel to the axis of rotation of the hall 
bearing, when the model is rotated on the 
device about this axis.

(ii) The bar supporting the device is then rotated 
about its length, until the rotation axis of 
the ball bearing (and hence the marking wire) 
is perpendicular to the optic axis. This is 
done by placing a straight piece of capillary 
tube on the horizontal disc and rotating the 
rail, until the beam of the diffractometer 
shines straight down the bore of the tube.
(It is usual to repeat this procedure for 
several non-parallel positions of the tube 
on the disc to obtain a 'best fit').

(iii) The model is then rotated on the bearing axis 
until the desired projection is reached, as 
seen from the shadow cast by the model in 
the beam of the diffractometer.

The above procedure may be applied in any general case. 
However, in specific eases, it may be possible to orientate 
the model much more simply.
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4*2.1 CORQKBNE
Coronene (Robertson and White, 1945) was selected as a 

first example of the method of obtaining optical transforms 
of three-dimensional crystal-structure models. The bond 
lengths and angles were idealised for the model actually 
made, figure 4 »2 , so that each bond length was 1 .4cm. and 
each bond angle 120°. Since, in addition, the molecule is 
planar, the model is quite easy to construct.

Figure 4*3 shows, on the right-hand side, the optical 
transforms of the model in three different orientations.
On the left-hand side of figure 4.3 are given the optical 
transforms of the punched masks corresponding to each 
position of the model. The three orientations of the model 
are obtained by rotating it about the axis in the molecular 
plane as indicated in figure 4*2. Transforms 4.3a and 
4 *3b correspond to the model viewed perpendicular to the 
molecular plane. In transforms 4.3c and 4.3d the molecule 
is rotated 3 0° out of this plane and for 4 .3e and 4 *3f? 60° 
out of the plane.

Comparison of the two corresponding sets of transforms 
provides a critical test of the apodising aperture method.
If account is taken of the difficulty of obtaining equivalent 
exposure levels for corresponding transforms, then the two 
sets can be seen to be reasonably comparable. The intense 
ddtail near the centre of the pattern is always reproduced, 
but the fainter detail near the edge of the pattern is 
sometimes suppressed and sometimes enhanced (see particularly 
figures 4.3a and 4.3b). This effect is probably caused by
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the interference of light scattered from the bonds. The 
scattering function of the bonds, along a perpendicular to 
the length of each bond, will fall off much more slowly 
than that of the balls; and thus, at the edge of the 
optical transform the scattering from the bonds may not be 
negligible compared to that from the balls. However, over 
most of the region of interest, the suppression of the fainter 
detail is usually not so great that it cannot be made visible 
by increasing the exposure a little. This procedure would 
be reasonably satisfactory in structure-solution work by 
optical-transform methods, since we are usually more interested 
in the presence or absence of detail rather than the absolute 
intensities of various parts of the pattern. In this 
connection it may be noted that the normal fall-off in 
intensity of the optical transform towards the edge also 
distorts the relative levels of the detail in the pattern; 
however, in a similar way this may be allowed for and it is 
usually not disadvantageous.

4.2*2 BIHYDROXYDUHYL^THAHS
In contrast to the essentially planar structure of 

coronene the second example, bihydroxydurylmethane (Chaudhuri 
and Hargreaves, 1956), is truly three-dimensional (see 
figure 4*4). Again an idealised model of the structure was 
made with all bond angles 1 2 0° and all bond lengths 1 .48.
(apart from those bonds linking the benzene rings to the 
central carbon atom which were made 1.54&). G-reat care was 
taken to make the relative orientation of the planes of the 
benzene rings as near as possible to the structure found by
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Chaudhuri and Hargreaves. The inaccuracies, introdrc ed 
by the approximations made in building the model, make this 
model such that it might correspond to a trial structure.

, Figure 4«5a is the optical transform of the projection 
of the molecule corresponding to the h0 1 data, which are 
given in the superimposed weighted reciprocal lattice.
The agreement is quite good. This projection of the model 
corresponds well with the final structure obtained, as can 
be seen from a comparison of the shadow projection mth a 
drawing of the final structure (as obtained by Chaudhuri 
and Hargreaves).

Figure 4*5b is the optical transform of the projection 
of the model corresponding to the h k O  data. The agreement 
with the superimposed weighted reciprocal lattice is poor, 
although the correct symmetry is present in the pattern.
The fit of the shadow projection of the model in this 
orientation with the final structure is not very good, since 
the inaccuracies in the model tend to show up badly in this 
projection.

4.2.3 A HYPOTHETICAL DISORDERED STRUCTURE
In recent years, there has been considerable interest 

in using optical-transform techniques in investigating 
various types of disordered structures and, in particular, 
fibre structures (e.g. Stern, 1966). Quite crude models 
are often useful for these structures; for example,
Taylor (1965) has used collections of orientated springs to 
simulate the structure of a fibre and has produced optical
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transforms from photographic reproductions of this model.
Obviously, the apodising aperture technique could be 

used to obtain optical transforms directly from such models, 
without the need for the intermediate photographic process, 
figure 4.6 shows such a model consisting of roughly parallel 
strings of balls, which might represent the grouping of 
one-dimensionally ordered polymer molecules in a fibre.
The balls are threaded on wires fixed to a Dexion framework.

The transform of the model is a series of parallel 
streaks, figure 4*7* The spacing between the streaks is 
proportional to the repeat distance between the balls on 
each wire. The diffuseness of the pattern along the streaks 
is due to the lack of order in the spacings between the 
strings of balls.

4• 3 CONCLUSIONS CONCERNING- THE USE OF THE APODISING- 
APERTURE METHOD AND ITS FUTURE POSSIBILITIES

The preceding examples show that the method of using 
one-dimensional apodising apertures to obtain the diffraction 
patterns of models of molecular structures can produce 
reasonably good results, although some inaccuracies may 
occur due to light scattered from the bonds in the model. 
Possibly, the primary source of error is in the actual 
construction and orientation of the model, particularly if 
some complex three-dimensional structure is involved. This 
suggests that the method might be used at very early stages 
of structure solution, when rough three-dimensional details, 
for example the position and. orientation of atomic groLips, 
are being determined. Later detailed, refinement could be
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carried out in projection using more conventional optical 
methods.

Although no attempt has been made by the author to 
construct an actual three-dimensional optical transform, as 
suggested by Harburn (see section 1-4), this is now quite 
feasible. The amount of work involved would, be similar to 
that when constructing a three-dimensional Patterson map.

The application of the method to disordered structures, 
as in section 4-2-3, would also be quite useful. Simple 
ideas about rough structural details can easily and quickly 
be tested. In addition, it is possible to simulate 
structures, in which there is rotational disorder, by 
building,medals which actually rotate in three-dimensions.

Possibly the most useful improvement to the apodising- 
aperture method would be to eliminate the necessity of a 
double exposure to obtain a complete transform. If the 
apodising aperture was oscillated between the two mutually 
perpendicular orientations., at which the two photographs of 
the transform are taken, then the model transform would be 
continuously scanned. If, in addition, this motion was 
linked to a corresponding motion of the stop in the trans­
form plane, only the transform of the three-dimensional 
model need be seen. It would, of course, be impossible to 
clamp a film against this moving stop, to photograph the 
complete transform as it is scanned, but a re-imaging system 
could overcome this problem.

In conclusion, one possible industrial use of the 
apodising aperture method may be noted. Redman (1968) has 
described how the dimensions of machined products, such as
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fuel cans for nuclear reactors, may be checked by examining 
the optical transform of the actual three-dimensional object. 
He envisages simply putting the object in the aperture of a 
diffractometer to obtain a transform, but the use of apodising 
apertures would certainly give better results.



PART 2

THE CRYSTAL AND MOLECULAR STRUCTURE OE 2-DIAZOIN-
DAKfi-1,3-DIONE
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CHAPTER 5

2-DIAZQINDANE-1,3-DIONE: PRELIMINARY INVESTIGATION AND THE
SOLUTION OP THE (001) PROJECTION

5.1 INTRODUCTION
The preceding chapters have described the search for a 

method of obtaining optical transforms of three-dimensional 
molecu.lar-structure models so that complete three-dimensional 
optical transforms could be formed. At the beginning of the 
investigation it was hoped that, when this new optical 
approach was developed, It would be possible to apply it in 
solving an unknown crystal structure. Accordingly, X-ray 
diffraction data were collected for the structure 2-diazoin- 
dane-1,3-dione. However, the problem of obtaining optical 
transforms of three-dimensional objects proved somewhat 
intractable at first and, before the method was sufficiently 
developed, it was found that the structure could be solved 
conveniently by conventional methods.

It was decided, before the structure was investigated, 
that it would be useful to try to achieve the solution by 
purely physical means (and in particular by optical methods) 
without recourse to any chemical information apart from the 
empirical formula C^N^O^H^. Such determinations have been 
attempted successfully in the past (Crowder et al., 1959).
While this approach is quite instructive, suggesting ways of 
tackling problems where the information is wrong or incomplete,
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it does lengthen the process of structure solution* As in 
the present case? if the full information about the confor­
mation of the molecule is not known and if few clues can 
therefore be deduced about its likely mode of packing, the 
derivation of a trial structure suitable for refinement can 
be extremely time-consuming. About half the atoms in the 
molecule could be located by purely physical information; 
however, it was found necessary to use chemical information 
on the likely conformation of the molecule as a source of 
’inspiration1 to locate the remaining atoms.

5 - 2 THE CHEMICAL SIGNIFICANCE OF 2-DIAZ0IHDAHE-1,3-DIOHE
The previously unknown compound 2-diazoindane-1,3-dione 

was discovered almost simultaneously by Holt and Wall (1965) 
and Regitz and Heck (1964) using different synthetic routes. 
It is interesting in that it is one of the first diazo- 
diketones to be prepared and the very first of the type 
2-diazo 1,3 dione. It is also related to the 1,3 indanone 
compounds which are used as anti-tremor agents.

Regitz and Heck give the structure of 2-diazoindane-1,3“ 
dione as a resonance of the two extreme forms
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The synthesis of Holt and Wall involved a novel type of 
cyclisation reaction and it is of some interest to check the 
structure of the substance,obtained by them, by X-ray 
diffraction. In addition the resonance structure proposed 
by Regitz and Heck may be .confirmed,

5.3 PRELIMINARY INVESTIGATION (UNIT CELL AND SPACE GROUP)
A sample of the substance (m.p.105-106°C) was provided

by Dr G- Holt in the form of colourless needle crystals, 
which had been recrystallised from hot water. These crystals 
proved suitable for X-ray examination without further treat­
ment .

It was found that under exposure to the atmosphere and 
X-rays the substance changed into some unknown form, becoming 
brownish in colour. The X-ray reflections from the crystals 
became gradually weaker, as this process continued, until 
after a period of several weeks no sharp reflections could 
be obtained at all. The crystals also had an annoying 
tendency to drop out of the mounting adhesive, when exposures
were being made, and this effect may well have been connected
with the change in structure. It was found that a thin 
coating of shellac over the crystal and its mounting slowed 
the change and prevented it dropping off.

Since the end faces of the crystal, perpendicular to 
the needle axis, were small and not usually well-shaped, it 
was impossible to deduce the crystal form. The cross 
section, perpendicular to the needle axis, appeared to be a 
parallelogram with angles near 90° (often almost square).
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The crystals were soft and it was difficult to cut them 
without producing distortion; thus, the preparation of 
suitable specimens for X-ray examination was extremely 
tedious •

An X-ray investigation of the crystals revealed that 
the symmetry was monoclinic and that the unique (b) axis 
lay perpendicular to the needle axis of the crystal and 
along one of the diagonals of the cross section. The two 
remaining axes (a and c) were chosen such that c lay along 
the needle axis and, since 0 was almost 90°, a lay along the 
other diagonal of the cross section. The unit-cell sides 
- measured from rotation photographs about all three axes - 
and the 0 angle - measured on a Weissenberg photograph of 
the hOl layer of the reciprocal lattice - were found' to be:

a = 9.67$

b = 10.552 

c = 7.932 

|3 = 92.10

The following conditions for reflection were deduced 
from the systematic absences on Weissenberg photographs of 
the hOl, h1l and h21 layers .of the reciprocal lattice:

hkl: h + k + 1 - 2n
hOl: 1 = 2n (h = 2n)
OkO: (k = 2n)

oTwo possible space groups are indicated I— (centrosymmetric) 
and Ic (non-centrosymmetric). It may be noted that these 
two space groups correspond to C“ and Cc, which are the forms 
in which they are given in International Tables for X-Ray 
Crystallography Yol.1. The (001) projections of the two



space groups have the two-dimensional symmetries cmm 
(centrosymmetric) and cm (non-centrosymmetric) respectively.
A statistical test may therefore he applied to the hkO data 
to determine whether there is a centre of symmetry present 
in this projection, and thus, whether one is present in the 
three-dimensional structure.

Wilson (1949, 1950) h as examined theoretically the 
distribution in reciprocal space of the intensities of the 
X-ray reflections from a crystal with a unit cell containing 
a reasonably large number of atoms. The atoms are assumed 
to have approximately equal weights and to be arranged at 
random. Wilson shows that the distributions resulting from 
centrosymmetric and non-centrosymmetric crystals are quite 
different. If P(I)sl is the proportion of the intensities 
lying between I and I -f 61, then for a, non-centrosymmetric 
crystal we have:-

1P(I)6X = 2X£L=-%/.§)**

and for a centrosymmetric crystal:-

7P(I)SI = exP(~ I/£S)6I
1 (2ttSI) 2

S is a distribution parameter which depends on the particular 
set of reflections being considered; for general hkl 
reflections from a primitive lattice we have:
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where the summation is taken over all the atoms in the unit 
cell. From these results Howells et al. (1952) have shown 
that the fraction H(z) of the reflections, whose intensities 
are equal to, or less than, a fraction z of the local average 
intensity, is given, for a non-centrosymmetric crystal, by 
the function:

N(z) = 1 - exp(- z) 

and, for a centrosymmetrie crystal, by the function:

N(z) = erf(-J-z)2

These expressions form the basis of the zero moment (or H(z)) 
statistical test for determining the presence or absence of 
a centre of symmetry in a crystal structure; figure 5*1 
shows both functions (continuous lines).

Figure 5*1 also shows the experimental points (dotted) 
for the H(z) distribution of the hkO data, obtained using 
the method suggested by lipson and Cochran (1966). The 
reflections are first grouped into three ranges of sin 8 
containing approximately equal amounts of data, rejecting 
very low-angle reflections (sin 9 < 0*2) and the OkO and 
hOO reflections. The average intensity (I av.) in each 
range of sin 0 is then determined. The data within each 
sin 8 range are divided into subsets such that the intensities 
within each subset are less than, or equal to, some specific 
fraction of the average intensity (I av.). The numbers of 
reflections in corresponding subsets in each sin 0 range are 
then summed together and expressed as fractions of the total
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number of hkO reflections. These fractions are the experi­
mental values of H(z) for each range of z.

The points in figure 5-1 lie much closer to the centro­
symmetric distribution curve than the non-centrosymmetric
curve. The space group may thus be deduced, with reasonable

2confidence to be I— .c
figure 5«2a gives the symmetry diagrams for the space 

ogroup I— . It will be noted that, although the space group 
is centrosymmetric, a centre of symmetry is not chosen as 
the origin, but the point at the intersection of the 2-fold 
axis and the c-glide plane is used. figure 5®2b shows the 
symmetry diagrams for cmm, the symmetry of the special 
projections (001) and (100), used in the structure deter­
mination. The origin for the projection (100) is shifted 
{ of a lattice translation along the b axis relative to the 
origin of the three-dimensional space group. It will be 
observed that in contrast to the three-dimensional space 
group the two-dimensional space group cmm has a centre of 
symmetry at the origin.

The density of the crystal was measured as 1 .35gm cnT*̂  
by flotation in zinc iodide solution, the density of the 
solution being determined with a specific-gravity bottle.
Then, using this value for the density and the cell dimensions 
given above, the number of molecules per unit cell may be
calculated to be p.82, which gives 4 as the nearest integer.

2The space group I— has 8 general positions and it is there­
fore evident that the molecule of 2-diazoindane-1,3-dione 
must be specially situated with respect to the symmetry 
elements In the unit cell. In fact, there is a 2-fold axis
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in the molecule which follows the line of the C-N-U group 
and relates the two halves of the molecule; and this 2-fold 
axis in each molecule is coincident with a 2~fold axis in the 
unit cell. A knowledge of the structure would have enabled 
this deduction to be made at once, but, as indicated above, 
this information was not available and so the conclusion 
was arrived at by a roundabout method.

5.4 TEE SOLUTION 01 THE (001) PROJECTION

5.4.1 THE COLLECTION AND PROCESSING 01 THE hkO DATA
A crystal of length 0.63mm (needle axis) and cross 

section 0.099 by 0.073nim was selected. The X-ray intensities 
were measured using a Unicam Weissenberg camera with Hi- 
filtered CuKa radiation. Two packs of five films were used 
with exposure times of 120 hours for films 1 to 5 and 24 hours 
for films 6 to 10. The tube current was not stabilised but 
averaged 15ma and the potential across the tube was kept at 
approximately 40KV.

The intensities were measured visually against an 
arbitrary scale of spots which varied linearly in intensity 
from x = 1 (just visible) to x = 20. The sets of values 
for each particular reflection, obtained from several films,
were scaled together by a, method described by Darlow (1960).

c tbEmpirical scale factors for scaling from the n - 1 film
thto the n film were calculated as Sn = (Z) xn )̂/(Z) xn), 

including only intensities measured on both films. All the 
values of S were averaged (except for S , which connects

11 JS

the two packs) with weights proportional to Z) x •
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thNow, since the intensity, x , of a spot on the n
+film can he measured to an accuracj?" of - 1 , the intensity 

of this spot scaled up to the most heavily exposed film is 
given by In = Cn(xn ~  1), where 0 ^  = S^oSg ..... Sn. A 
mean value for the intensity for several spots on adjacent 
films, each spot being weighted by the reciprocal of the 
accuracy of the measurement, is given by lobs. =■ (S x )/ 
rrl/Cn). This latt er expression is extremely easy to 
calculate.

Measurements were made of 45 independent reflections 
out of a maximum possible of 75. Each unobserved reflection 
was given an intensity of 0.5 of the faintest spot recorded.

No absorption correction was applied to the data. The 
maximum error due to absorption was less than and, neither 
the accuracy of the data, nor that of the available absorption- 
correction computer programs, justified taking this step. 
However, the usual Lorentz and polarisation corrections were 
applied to the data and. the values of 13? | , the observed 
structure factor (on an arbitrary scale), were calculated.

An overall temperature factor (B) and a scale factor (K) 
were then foimd by the familiar method due to Wilson (1942). 
Wilson has shown, for a reasonably random atomic distribution, 
that:

| W  | 2
ln(-'Aa.-) = - ln(K2) - “  sin20 (5.1)

t  3 ^

where, | Eq| is the local average value of |E | at a given
* * f-Vivalue of sin 0, f . is the scattering factor of the j atomtj
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in the unit cell, and K  is siich that )Fc| = K|F | . From

may he calculated from the gradient and K from the intercept.
Figure 5° 1b shows the Wilson plot derived from the hkO data
hy the technique described hy Buerger (1960). The reflections
are divided into a number of ranges at equal intervals of 

2sin 9. The average intensity in each range is then found, 
counting zero intensities and extinguished reflections as 
points present but having sere intensity. Similarly Z f  *

is calculated for each reflection and the average found in
2 _ oeach sin 9 range. Then, the average values of ln( F /

™  2 .h^fj ) can be found for each range, and also the average 
2values of sin 0 within the ranges; and both qiiantities are 

then used as coordinates for the points on the Wilson plot. 
Values of 4*5 for B and 3<>2 for K were obtained from the 
hkO data.

As was indicated above, the solution of structure of 
2-diazoindane-1,3-dione was attempted initially without any 
prior knowledge of its conformation. However, it was found 
necessary to use some of the chemical information about the 
structure in order to proceed with the refinement. Two 
incorrect models were proposed before the final correct 
structure was deduced.

From the weighted reciprocal lattice of the hkO data a 
benzene ring was identified in the structure and the

the straight-line graph of ln(|F | /®.f. ) against sin 9, B

5.4*2 SUMMARY OF THE PROGRESS OF THE REFINEMENT OF THE (001)
PROJECTION
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orientation of this ring could be determined. The benzene 
ring was placed in what was later found to be an incorrect 
position in the unit cell. Then, using the chemical 
information on the probable conformation only as a guide, 
the remainder of the atoms in the molecule were positioned 
one by one from the peaks on successive Fourier maps.
This first model of the structure proved to have a substan­
tially correct conformation but to be wrongly positioned in 
the unit cell. The reasons why such a reasonably convincing 
model could be derived and yet be incorrect are quite inter­
esting and are discussed in section 5.4-5*

A second model was deduced merely by changing the 
position in the unit cell of the molecule derived for the 
first model. However, this model also proved to be incorrect 
as the positions of the two nitrogen atoms were wrong,

A final correct model, with the nitrogen atoms repositioned, 
was proposed. This model then refined rapidly using a 
minimum-residual program, which enabled certain rigid-body 
constraints to be applied to the molecule.

5.4-3 THE cmm FOURIER PROGRAM AND THE MINIMUM-RESIDUAL 
PROGRAM USED II\T TID'D REFIMEMEHT.

Before discussing the refinement of the (001) projection 
in detail it is convenient to mention here two of the 
computer programs which were used extensively.

The first of these calculates structure factors and 
Fourier maps for the two-dimensional space group cmm and 
was adapted from one written by Miss A Sutherland of this



- 82 -

department. Structure factors are computed from atomic 
parameters fed into the program using the expression

F (h,k) = S.f. 8 cos(2rrhx) cos(2-rrky) ̂ 3 3
(h + k = 2n)

the summation being taken over all equivalent positions in 
the unit cell. The scattering factors are calculated from 
the expression

f. = A, exp(- a.x^) + B. exp(- b.x^) + C.3 J J J 3 3

(x = sin 6/X)

given by Forsyth and Wells (1959)? who tabulate values of 
A., a., B., etc. for all atoms.

J J J

Fourier maps are computed from the expression

A oo oo
p(x,y) = t [F(00) + 4 S  £  KF (h,k) cos(2nhx).

A h=1k=1 0
cos(2rrky)]

where K, the scaling factor, is calculated as

If = S lP j /S | F o|

Difference maps (F ~ F ) and maps from the calculated 
structure factor (F ) may also he computed and output
simultaneously with Fq maps. Reflections for which
K|F0l > 3 IF | are rejected from the computation, as having 
obviously indeterminate phases.

One interesting feature of the program is that reflections 
may be divided into two groups having values of sin 8 less
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than, or greater than, some specified value. Reflections 
in either the inner or the outer groups may he used alone to 
give Fourier and difference maps. low-angle reflections
are subject to extinction effects and may also he most in 
error, if the hydrogen atoms are not located; it is thus 
often useful to reject them in the final stages of a refine­
ment. High-angle reflections are more sensitive to 
positional and temperature-factor changes and are often 
used on their own in the final refinement stages; hut 
they may he rejected in the initial stages as their very 
sensitivity makes their phases difficult to determine.

One other useful feature enables the value of B, the 
overall temperature factor, to he recalculated as the 
refinement progresses. Values of S\F \ /Z)|F | for variousC 02ranges of sin 0 are output hy the program. Row, since we 
may write

KFq = Fq exp(- B sin20/\2)

then
S|E | n o

In(jV;pG|') = ln(K) + —p sin 0 
'o' X

Thus, in a similar manner to the Wilson plot, values of B 
and K may he determined from a graph of ln(Z)|F I /33If \ )C 02against sin 0.

The second program, used extensively in the refinement, 
was a minimum-residual refinement program (Bhuiya and 
Stanley, 1963)* The method attempts to refine the structure 
merely by reducing the residual factor, R = E(& 1 Fq| - |Fc\ )/ 
S|KFol , which measures the agreement between the observed and
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calculated structure factors. Each parameter of each atom 
is taken in turn and varied step hy step over a discrete 
range of values. That value of the parameter, which gives 
the minimum value of R, is accepted as the refined estimate 
of the parameter. When all the parameters of all the atoms 
have been varied, the process is usually repeated, this time 
restricting a little more the range of variation of the 
parameters.

Several changes were incorporated into the standard 
minimum-residual refinement program. As in the Fourier 
program it was arranged that the reflections he divided into 
finner' and 'outer' groups. It was supposed that the inner 
reflections, when used alone, would allow a more rapid 
initial refinement of the structure. The outer reflections 
would he useful in the final stages for accurate positional- 
parameter refinement and the refinement of the temperature 
factors. In addition, certain rigid-body constraints were 
applied to the movement of the benzene ring as described 
below.

5*4*4 THE DERIVATION OF THE FIRST MODEL
As a first step towards the solution the weighted 

reciprocal lattice of the hkO data was drawn (figure 5*3a).
The black discs represent unitary structure factors,
| Tj(hk) I = |F  ( h k ) l / S . f  .. The most striking feature of the

J J
weighted reciprocal lattice is the presence of the six strong 
peaks that are circled. These peaks are the characteristic 
indication of a benzene ring in the structure of the molecule, 
which is a distinct possibility since there are nine carbon



(b)
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atoms in all* Assuming that there is in fact a benzene 
ring, it is evidently tilted about an axis parallel to the 
b axis. A benzene ring parallel to the hkO plane would 
give six strong peaks all lying on the large circle in 
figure 5»3a; only two of the peaks lie on this circle (the 
benzene circle), and the remaining peaks are displaced from 
the circle and disposed symmetrically on either side of the 
b axis.

The angle of tilt of the benzene ring may be determined 
by a method given by Taylor and Lipson (1964)* (The method 
can in fact be used to locate any general orientation of a 
benzene ring relative to a reciprocal-lattice plane)* The 
centres of gravity of the six peaks in the reciprocal lattice 
are marked - Â  , A^? A^ . Ag - and these points are joined 
to the origin 0 (see figure 5-3b). Then points , B2 •••
B^ are marked on the lines OA^ etc* such that OB^ is inversely 
proportional to OA^ and so on. Perpendiculars to the lines 
OA.j etc. are drawn at B^, «... Bg and these then delineate
the projected shape of the benzene ring. The method relies 
upon the inverse relation between the benzene-ring dimensions 
and the dimensions of its transform (see section 1.1),

Using Taylor and Lipson's construction, the tilt of the 
benzene ring about the b axis with respect the hkO plane was 
calculated as 29°* Unfortunately, the optical transform of 
a benzene ring tilted in this way was found not to give a 
very good fit with the weighted reciprocal lattice; in fact, 
a slightly greater tilt seemed to be required. Transforms 
of benzene rings, tilted by various amounts in the range 
25°-40°, were tried and the one having a tilt of 35° seemed 
to give the best fit. (It may be noted that in the fully

refined structure the tilt was found to be 3 2° ™ a striking
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example of the accuracy obtainable by optical methods).
It has already been noted that, since there are eight 

general positions in the unit cell and only four molecules, 
the molecules must be specially situated with respect to the 
symmetry elements. Six of the nine carbon atoms in the 
molecule are taken up by the benzene ring and obviously this 
ring must also be specially situated. The most likely 
position for the benzene ring is such that each 2-fold axis 
in the space group, parallel to b, lies in the plane of the 
ring and rela.tes the two halves. All the benzene rings on 
the 2-fold axes are then related to each other by the centres 
of symmetry and the screw axes and are all in parallel 
orientation; the parallel orientation is confirmed by the 
clarity of the six peaks in the weighted reciprocal lattice. 
In addition, it can be concluded that at least one of the 
remaining carbon atoms must lie on the 2-fold axis.

In the (001) projection, symmetry cmm (figure 5°2b), 
a pair of 2-fold axes project on to the line x = 0 and 
another pair 011 to the line x = f . Therefore, on the line 
x = 0 in the projection there will be two benzene rings 
symmetrically orientated about this line and related to each 
other by the rotation diad at 0,0. Similarly two benzene 
rings are orientated about the line x ~ i  and related by 
the diad at

The position of the benzene ring along the 2-fold axis 
now needed to be found; at first sight this would appear to 
be a simple one-parameter problem. The molecular-location 
method, described in section 5*4*6, was tried but gave no 
clear indication (probably owing to the difficulty in selec­
ting the correct reflections).
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However, two pieces of information suggested (unfortunately 
quite wrongly) a likely site for the benzene ring. Hirst, 
pairs of benzene rings, such as those related by the diad at 
0,0, would give regularly spaced fringes in the transform 
running perpendicular to the b-axis. Yet, the hkO weighted 
reciprocal lattice does not show evidence of strong fringing. 
This would suggest that the two benzene rings are close 
together and probably overlapping. Secondly, the length of 
the c axis, 7.93&> is such that the planes of these two 
benzene rings are 3«6§. apart. This distance is about the 
normal spacing (3*4&) of aromatic rings, when stacked 011 top 
of each other; again, this suggests that the benzene rings 
are overlapping.

While this evidence, about the positions of the benzene 
rings, was by no means conclusive (and not even really 
circumstantial), in the absence of anything better it was 
decided to initially accept it as correct. A Fourier 
synthesis was calculated from the hkO data using phases 
found from a trial model, in which the two benzene rings 
were exactly superimposed, and thus, situated such that the 
centre of the rings was at 0,0. Figure 5*4 shows the 
resulting electron-density map (one quarter of the total 
projected area of the unit cell). The peaks of the two 
superimposed, benzene rings are returned strongly and other 
peaks appear (indicated by question marks) which could be 
possible atomic sites. The residual of 49^ seemed quite 
promising, considering only half the atoms in the molecule 
have been included in the model, and a not unreasonable 
agreement between the structure factors was obtained.
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Thus, although the model was hased on somewhat insub­
stantial foundations, it seemed probable that it was near 
to the correct structure and was worth attempting to refine. 
Atoms were placed at the positions suggested by the Fourier 
map and agreement between the optical transform of this new 
model and the weighted reciprocal lattice was sought. 
However, it was found that the transform of the benzene ring 
so dominated the weighted reciprocal lattice, that the extra 
detail introduced into the optical transform, when other 
atoms were added to the model, appeared to be relatively 
insignificant.

At this point an impasse had been reached and, although 
a considerable amount of information had been gathered about 
the structure by purely physical methods, it was decided to 
seek guidance on the conformation of the molecule from the 
chemical evidence. This information on the chemical 
structure was given as O

o
Owing to a misunderstanding, it was not realised that the
two nitrogen atoms were supposed to be linked in a chain:
C-F-U. The evidence from the Fourier maps appeared to
suggest that the nitrogen atoms were linked thus: C 1

N
and so this latter configuration was adopted, until 
it later became evident that it was wrong.

Using the information now available about the structure 
it was possible to assign atoms to certain peaks on the 
Fourier map of figure 5*4 and to calculate further Fourier



- 89 -

maps, putting additional atoms into the model, until all 
the atoms were located. A slight variation of this procedure 
was actually adopted. At each stage an optical transform 
was made of the trial structure and only those reflections, 
which corresponded to strong features on the optical trans­
form, were used to calculate the Fourier maps; thus, only 
reflections with well-determined phases were used.

Figure 5*5 shows the Fourier map obtained when all the
atoms were located. It should be noted that the benzene-
ring peaks are of double height, since there are two such
rings superimposed, belonging to the two molecules related
by the diad at 0,0. Although this Fourier map appears to
be not unreasonable in that the peaks appear in the correct
places, are fairly well-rounded and of the right order of
height, other evidence suggests that the model is quite wrong.
First, although all the other atoms have been added, the
residual, now 51? has slightly worsened from that obtained
with the original model, in which only the benzene ring was
located. Secondly, the agreement between the observed and
ca3_culated structure factors is not very good; for example,
for one particular reflection (220) we have F - 50 and F =4-0 0

Attempts were made to refine this structure using 
optical methods, structure-factor graphs and error maps 
without success. While attempting to Lise structure-factor 
graphs to refine the structure, it was realised that only a 
drastic modification could correct the discrepancy in the 220 
reflection, involving the movement of a number of atoms over 
considerable distances. Thus, it was realised correctly 
that the only way that the apparently reasonable Fourier map 
of figure 5*5? agreeing roughly with the known chemical
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structure, could be reconciled with the other indications 
that the structure was wrong was to assume that the model 
was basically correct but that it was in the wrong position 
in the unit cell.

5.4.5 AN EXPLANATION OF THE DERIVATION OF THE FIRST MODEL
An exactly similar situation was found by Pinnock et al. 

(1956) in a structure published by Klug (1950). The reasons 
advanced by Pinnock for IGLug's result hold equally well in 
the present case.

If the shape and orientation of the molecule are 
substantially correct, then there will be good agreement 
for many of the large observed reflections but certain 
reflections will be seriously wrong. In terms of optical 
transforms the large reflections will correspond to intense 
areas of the transform of the individual molecule. However, 
the transform of the several molecules in the unit cell will 
be similar overall to the transform of the individual molecule 
but modulated by a fringe pattern. Reflections lying at 
the troughs of the fringes will be critically affected by 
small movements in the relative positions of the molecules; 
and these reflections will be ones showing the largest 
discrepancies, if the molecules are wrongly positioned in 
the unit cell.

Another way of approaching the situation is from the 
concepts of the Patterson function. In terms of a Patterson 
map the intermolecular vectors are wrongly identified but 
the intramolecular vectors are correct.
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'The existence of an apparently correct Fourier map is 
also explained by Pinnock as follows: "Fourier synthesis
is not a good test of a proposed structure: it always tends
to support the hypothesis on which it is based."

5.4-86 THE DERIVATION OP THE SECOND MODEL - THE MQLECULAR- 
LOCATION METHOD 

Thus, assuming that the basic shape of the molecule is 
correct, it is now necessary to correctly position it in the 
unit cell; the molecular-location method of Taylor and 
Morley (1959) was used for this purpose. As indicated 
above certain reflections are critically dependent upon the 
relative positions of the molecules in the unit cell. Such 
reflections may be identified since they lie 011 strong 
regions of the optical transform of the single molecule but 
are themselves small in magnitude. In Taylor and Morley's 
molecular-location method such a reflection - h,k - is chosen 
and the quantity JlG(h,lt)l - |F0 (h, k ) l j is evaluated at 
points covering the whole projected area of the unit cell. 
G(h,k) is the value of the calculated structure factor,
F (h,k), when the molecule is positioned at each of the 
points in the projected cell. (It is of course necessary 
to choose some reference point in the molecule, relative to 
which the molecule may be positioned over the unit cell).
The correct position in the unit cell for the reference point 
in the molecule is marked by a dip in the contour map of 
the function ||G-(h,k)/ - JF (h,k)j| . If several such maps
(using a number of different reflections) a.re superimposed, 
then the correct position should be unambiguously indicated.
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For our purposes however it is not necessary to evaluate 
the function ||Gr(h,k)l - JF (h,k)lj over all positions in the 
unit cell. Provided that the reference point is chosen 
such that it lies on the projection of 2-fold axis, it is 
only needed to evaluate the function along the line x = 0.
A reference point at the centre of the benzene ring was 
therefore selected.

Figure 5-6a gives the results obtained, in graphical 
form, for Taylor and Morley’s function evaluated along the 
x = 0 line, using only the 220 reflection. Two non-equiva­
lent points appear to be indicated, which we shall refer to 
as A(y *» -0.083) and B(y « 0.167)• A further graph was 
plotted, figure 5.6b, in which several other reflections 
were used as well as 220, these were: 730, 370, 620 and 640.
Troughs A and B are still present but B is now not so deep 
as A. There is also a further small trough, C, but this 
may be assumed to be spurious. Position B would appear to 
be less likely than A from the results of figure 5.6b. In 
fact, the optical transform produced, when position B was 
assumed, appeared quite wrong. The two molecules related 
by the diad at 0,0 were placed a good distance apart and 
the transform was heavily fringed. In addition, the residual 
remained high at position B and the agreement between Fq and 
Fc was poor-

However, at position A the two symmetry-related molecules 
overlap almost completely and their centres of gravity are 
quite close together. The heavy fringing present with 
position B was now found to be absent from the transform. 
Unfortunately, although the agreement between the structure 
factors was improved, the residual remained high (54).
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However, it was found that a small shift of the molecule 
from B to the point x - -0.107 produced a sharp drop in the 
residual to 39-5 tee -'o-ricr r v  p of f j ̂ , 3.7.

Accepting the molecule in its new situation, attempts 
were made to refine the structure. First, a difference map 
indicated that a shift was required in the position of the 
oxygen atom and a movement (deduced empirically) of 0.35& 
in the positive a-axis direction decreased the residual from 
39 to 36. A difference map then revealed the necessity for 
further movement of the oxygen atoms and also of the nitrogen 
atoms. Three cycles of minimum-residual refinement on 
these atoms alone produced some small adjustments in their 
position and a fall in the residual from 36 to 33°

Figure 5°8 shows the difference map corresponding to the 
structure at this point. The nitrogen atoms are in a sharp 
trough and it is evident that some movement in their position 
is required. The oxygen atoms are in a smaller hollow and
also appear to need shifting. However, when an attempt was 
made to refine these atoms by the minimum-residual method, 
they refused to move. It was evident that, if in particular 
the nitrogen atom, which was obviously in an incorrect 
position according to the difference map, could not be 
refined, then there must be something wrong with the model.

5*4°7 THE REFIHBMEHT OF THE FINAL MODEL - THE PROGRAM 
,BBHZEHETWIDDhEt 

It was not difficult to trace the source of the error 
in the model. The most obviously incorrect feature on the 
difference map (figure 5°8) is in the region occupied by the
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nitrogen atoms. The difference map and the corresponding 
Fourier map showed that the electron density should be 
strongly elongated along the b-axis. This elongation 
suggested that instead of being situated on either side of 
the b-axis (C^^) the nitrogen atoms were in fact positioned 
along the axis (C-N-U). The model was therefore altered to 
accord with this suggestion using bond lengths derived from 
the compound diazomethane

H \ C - U - U
H

(Tables of Interatomic Distances? 1958), which contains the 
simi3.ar C-U-U grouping. The residiial fell from 33 to 27* 

Using the cmm Fourier program, a difference map and a 
Fourier map were calculated for this new model. The Fourier 
map returned peaks corresponding to the nitrogen atoms in 
their new positions but the difference map indicated that 
some adjustment was still necessary. A new temperature 
factor of 4.9 was calculated from the program data - up to 
this point the tempers.ture factor of 4-5 derived from the 
Wilson plot had proved adequate.

Six cycles of minimum-residual refinement on the 
nitrogen atom positions alone, using inner reflections for 
which sin 0/\ < 0.5? brought the residual down from 27 to 
24. Figure 5.9 shows the difference map corresponding to 
the structure at this point. This map now appeared to be 
quite reasonable, although shifts are indicated in several 
atoms including the nitrogens. The low value of the 
residual and the fairly good agreement between the structure 

factors indicated that the model was basically correct and
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should refine easily.
Acting upon a suggestion by Dr I G- Edmunds it was 

decided to write a program for a minimum-residual refinement, 
which would treat the benzene ring as a rigid body - allowing 
it only to move along and rotate about the 2-fold axis 
keeping the relative position of the ring atoms fixed. This 
program, referred to as 'benzenetwiddle', allowed the atoms 
not contained within the benzene ring to refine normally.
The minimum-residual refinement program often seems to work 
best if some such rigid-body constraints can be applied.
At the suggestion of Kiss A Sutherland the program was written 
such that a difference map was produced at the end of the 
refinement. This facility is extremely useful as it is 
possible to keep a check on the progress of the refinement - 
a difference map being a much more critical test of the 
results than the single numerical value of the residual.

The final refinement now proceeded relatively quickly 
in four separate stages.

Stage 1: Three cycles of the benzenetwiddle program
were used, the benzene ring being allowed to move as 
a rigid body, as indicated above. The positional 
parameters of all the atoms not in the benzene ring 
were allowed to change freely (unless constrained by 
symmetry). The temperature factor for each atom 
was fixed at 4=9 and only reflections with sin 0/\
< 0.5 were used. The residual fell from 24 to 14? 

most of the change taking place in the first cycle!

Stage 2; A further three cycles of the benzene­
twiddle program were used this time taking in all
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reflections. Almost no change occured in the atomic 
parameters and the residual fell only by 0.1 *fo The 
difference map output at the end of the refinement 
indicated an increase in the temperature factor for 
the nitrogen atom, N2, as the only big feature.

Stage 3 : The benzenetwiddle program was now applied
again, this time using only reflections for which 
sin & / X  >  0.25= The isotropic temperature factors 
of all the atoms were allowed to vary independently. 
The residual for the outer reflections fell from 19=8 
to 14=5 in three cycles and the total residual fell 
to 12.6 (the structure factors being scaled on the 
outer reflections only).

Stage 4: For this final stage of the refinement the
benzene-ring atoms were now allowed to move freely, 
so that all the positional parameters and all the 
isotropic temperature factors of the atoms were 
varied independently. In six cycles of minimum- 
residual refinement only small changes of parameters 
were observed and the outer residual fell from 14=5 
to 13.8 and the total residual from 12.6 to 12.3 
At this point the refinement was stopped.

5.4.8 A DISCUSSION QF THE FINAL STRUCTURE OF THE (001) 
PROJECTION

The refinement was now essentially complete. The 
movements of the parameters were quite small and probably 
not significant. The agreement in the structure-factor
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data was quite good apart from 200 (j^0l = 69*3, l^cl “ 82.5) 
and extinction could easily cause this discrepancy-

Figure 5*10 shows the final difference map, in which 
only outer reflections, sin 0/X > 0.25, were included. The 
maximum height of the detail in the map is 0.6e/X^ and no 
atoms appear to lie on steep slopes which would indicate 
positional changes. One interesting feature in the ’butter­
fly 1 shape in the contours surrounding the nitrogen atom N2, 
which indicates an anisotropic temperature factor for this 
atom corresponding to a strong vibration perpendicular to 
the b-axis. This conclusion is confirmed by the final 
refinement of all the data in the next chapter. The 
positions of 04 (and 04^) and 0 (and 0̂ ') indicate that they 
lie close to the plane of the benzene ring; thus, the 
whole molecule is essentially planar. This conclusion was 
later found to be in agreement with the chemical data and 
was also confirmed by the final refinement.

The coordinates of the atoms in the molecule derived 
from the (001) projection are given in Table 5.1 below.
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TABLE 5.1

COORDINATES OF THE ATOMS IE THE (001) PROJECTION

X y B

C1(C1*) +0,0603 -0.2341 4.52
C2(C2*) +0.1207 -0.1185 4*75
C3(C3 ) +0.0603 -0.0085 3*78
04(C4*) +0.1108 0.1283 4*19
05 0 0.2022 5*05
o(o') +0.2135 0.1566 4*83
N1 0 0.3253 5*69
N2 0 0.4316 6.58
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CHAPTER 6

THE COMPLETION QE THE REFINEMENT OE THE STRUCTURE 
OF 2~DIftZ&INDANE-1 ,5-DIOHE

6.1 INTRODUCTION
The solution of the (001) projection, described in the 

previous chapter, enabled the x and y coordinates of all the 
atoms to be determined. It now remained to find the 
missing z parameter in order to specify the complete three- 
dimensional structure.

As has been noted in chapter 5 , the molecule appeared 
to be planar from an examination of the (001) projection; 
and it will be shown later that the molecule is in fact very 
nearly planar. It is indicated below that approximate 
values of the z parameters can be deduced from the x 
parameters knowing a rough value for the orientation of the 
molecularplane, Also, it will be shown that this approx­
imate orientation of the molecular plane can be found from 
the (001) pro jection of the benzene ring and a qualitative 
inspection of the hOl weighted reciprocal lattice.

Thus, it was possible to postulate a model for the 
( 1 0 0 )  projection of the structure. The ( 1 0 0 )  projection 
was refined (with some difficulty owing to the small number 
of measured reflections) starting from this model. A 
residual of 15 and a not unreasonable difference map was
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obtained for this projection. However, the y coordinates 
of the ( lOO) projection differed by as much, as 0.1 S. from 
those in the (001) projection.

It was realised that good values for all the parameters 
would be obtained only if all the available data was used 
together in the refinement. Accordingly, all the reflections? 
from the three projections (001), (010) and (100), that had 
been measured up to this point, were used in a least-squares 
refinement. However, it was found that the x parameters 
of two atoms had approximately the same value and appeared 
to be strongly correlated. These two parameters would not 
refine at the same speed as all the other parameters and 
each had a high standard deviation. The hkl data were 
added to the least squares refinement and this appeared to 
have the effect of ’unlocking' this correlation.

The least-squares refinement now proceeded quickly to 
a residual of 18.6 when movements of the atoms ceased.
Hydrogen atoms and anisotropic temperature factors were 
introduced and further refinement to a residual of 11.9 was 
obtained. The movements in the parameters at this point 
wTere much less than the standard deviation in the parameters 
and so the refinement was stopped. The difference maps, 
corresponding to the cross sections of the electron density 
taken through the atomic positions, also revealed no out­
standing features requiring explanation. The atomic 
coordinates obtained were taken to be those of the final 
structure.
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6 .2 THE DEDUCTION OF THE ORIENTATION OF THE MOLECULAR PhAEE 
FROM TI-IE hQl DATA

A small crystal^ approximately cubic in shape and of 0,16mm 
side, was cut from a larger one. The crystal was mounted on 
a Weissenberg camera and the hOl reflections were photographed 
using Hi-filtered Cufc* radiation. The intensities were 
recorded on two packs of five films (exposures 24 hours and 
120 hours) and they were measured and corrected in the same 
manner as the hkO data (see section 5*4-1). A total of 19 
reflections out of a total possible of 51 were measured. 
Unobserved reflections were given intensity values of one 
half the weakest reflection recorded.

Wo Wilson plot was made of the data, because the 
statistical inaccuracy in the small number of reflections 
would have given poor results. However, the unitaries 
corresponding to the observed reflections were calculated 
and a weighted reciprocal lattice was drawn - figure 6,1.

It was shown in chapter 5 that the benzene rings in 
each molecule in the unit cell are all similarly orientated 
- the planes of the rings lying parallel to the b axis.
It is possible to partl3r deduce the orientation of the ben­
zene ring from the final structure of the (001) projection, 
if the reasonable assumption is ma.de that the bond lengths 
of benzene are all 1.4&. The projected length of the C101  ̂
bond is 1.16S, which indicates that this bond is orientated 
at 33»7° to the hkO reciprocal-lattice plane. The C2C2^ 
distance gives an almost identical result and thus the 
plane of the benzene ring must also be orientated at 33*7° 
to the hkO reciprocal-lattice plane. If the molecule is 

assLimed to be planar, as has been indicated in chapter 5?



molecular
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then all the atoms of the molecule must lie in the plane of 
the benzene ring.

It was now necessary to determine the absolute orien­
tation of the molecular plane to the a and c axes and this 
can be done from an inspection of the hOl weighted reciprocal 
lattice. looking down the b axis along the plane of the 
molecule the atoms will appear arranged in an irregular row. 
The optical transform of such a row of atoms is a series of 
streaks perpendicular to the row direction. If, therefore, 
such a series of streaks can be located in the hOl weighted 
reciprocal lattice, then the row direction and hence the 
orientation of the molecLilar plane can be fixed.

Figure 6 .1 shows the presence of these streaks quite 
clearly— indicated by the dashed lines. The direction of 
the atomic row? also indicated on figure 6 .1 , is such that 
it cuts the obtuse (p) angle between the a and c axes.

No attempt was made to refine the (010) projection as 
the severe overlapping of the atoms and. the small number 
of measurable reflections would have mad̂ e this difficult.

6.3 THE SOLUTION OF THE (100) PROJECTION

6.3-1 THE DERIVATION OF A MODEL FOR THE PROJECTION AND THE 
COLLECTION OF THE DATA 

The orientation of the plane of the molecule of 
2-diazoindane-1 ,3-dione was found, as indicated above, to be 
at 33-7° to the hkO plane. The hOl weighted reciprocal 
lattice then showed that the plane cuts the angle 0 between 
the positive a and. c-axis directions. Simple geometry then
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shows that the fractional 2. coordinates of the atoms are 
given by

_ a sin(92.1 - 56*3)x 
c sin 5 6 - 3

the angle 5 6 .3° being the angle which the molecular plane 
makes with the c axis. Thus, the z parameters of the atoms 
in the molecule can be derived from the x parameters, using 
the equation above; and a trial model for the (1 0 0) pro­
jection can be found from these z coordinates and the y 
coordinates of the (0 0 1 ) projection.

A crystal, 0.204mm (needle axis) by 0.083mm by 0.074mm 
(rectangular cross section), was selected. The Okl X-ray 
reflections were photographed in the same manner as the hkO 
reflections (see section 5 *4 .1 ) using two packs of five 
films (200 hours and 24 hours exposure). The data were 
measured and corrected, again as in section 5 *4 .1 , except 
that an absorption correction was also applied. Unobserved 
reflections were again given a value of half that of the 
weakest reflection recorded.

The computer program, that was used for the absorption 
correction, was written bjr Miss A Sutherland of this depart­
ment. This program treats the data obtained by photographing 
zero layers of the reciprocal lattice by normal-beam, rotating- 
crystal methods. The cross section of the crystal perpen­
dicular to the rotation axis must first be measured; if the 
cross section is not uniform then some average area must be 
considered. This cross-sectional area is then sampled by 
a lattice consisting typically of several hundred points.
The reflections are considered in turn; and for each
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reflection the incoming and diffracted beams are represented 
by the bundle of rays, which are scattered at the points of 
the sampling lattice. The path lengths within the crystal 
for each of these rays and hence the absorption factors of 
the rays are then determined. The absorption correction 
for the particular reflection under consideration is then 
taken as the average of the absorption factors for all the 
rays. All the remaining reflections are treated similarly.

The difference between the maximum and minimum absorption 
corrections to the intensities was about 1 0 f i , corresponding 
to a difference of about 3$ in the structure factors.

Only a small number of reflections (29) could be 
measured despite the extremely long exposures used. The 
comparative shortness of the axes, which meant that there were 
few reflections (61) to be measured anyway, and the disinte­
gration of the crystal during exposure, with a conseqoient 
loss in scattered intensity, probably account for the small- 
ness of this number. A Wilson plot (see section 5-4-1) 
indicated an overall temperature factor of 3 * 9 for the 
projection and a scale factor of 4 * 3 for the data.

6.3*2 THE REFINEMENT OF THE (100) PROJECTION
A model of the (100) projection structure was found by 

calculating the y and z coordinates as indicated above.
These trial parameters were then used to calculate the 
difference map of figure 6 .2 , on which the structure is 
outlined. It will, be noted that the origin of the y 
coordinates is shifted one quarter of a unit cell translation 
from the origin used in the (0 0 1) projection, which is also
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that of the three-dimensional cell. The atoms of the 
benzene ring are no longer overlapped in this projection by 
atoms of a symmetry-related molecule and in theory their 
positions should be easier to determine. However, the atoms 
C5 and N1 are overlapped by the atoms of a symmetry-related 
molecule in this projection.

The (100) projection proved to be extremely difficult 
to refine mainly owing to the small number of reflections.
The parameters of different atoms often appeared to be 
strongly correlated, so that when one atom was moved this 
seemed to cause another atom to appear to be in an incorrect 
position.

If one isotropic temperature factor is allowed to each 
atom, then there are 21 independent parameters to be determined 
from the projection. Since there are only 29 measured 
reflections, the parameters are only slightly outnumbered 
by the reflections. In normal X-ray structure determinations 
the ratio of reflections to parameters is usually much 
greater. In theory, since the y parameters were known from 
the (001) projection, only 17 s and B parameters.need be 
determined. In practice, it was found necessary to alter 
the y parameters in order to get the best possible fit to 
the data.

The refinement was carried out using the benzenetwiddle 
program, described in section 5 .4 .7 , and the more-usual 
minimum-residual program. Difference maps proved useful 
at one point, where the expression given by Buerger (1960);-
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d(P0 ~
„ _____dr

6 “ 2po(0)p

was used to calculate shifts in atomic positions. The 
factor e is the amount the atom should move in the direction 
r, in which the slope, d(pQ - p )/dr, of the difference map 
is the steepest. The quantity P Q ( 0 )  is the peak electron 
density, which may he estimated from the corresponding 
Fourier map, and p is a constant which was calculated by 
substitution in the expression (also given by Buerger, 1960)

■n 2
P o ( 0 )  =  z ( ^ ) 2

The model calculated for the (100) projection gave a 
residual of 29.5 and a temperature factor of 4*9* The 
difference map of figure 6 . 2 indicated that adjustments 
were necessary to the positions of the C5, and F2 atoms 
in particular.

The first stage of the refinement was an attempt to 
achieve the same rapid progress towards the solution that 
was obtained for the final model of the (0 0 1 ) projection.
The minimum-residual program was therefore used with low- 
angle reflections (sin $ / \  <  0«52). The z parameters of 
all the atoms were first refined alone, using the benzene- 
twiddle program to vary the tilt of the benzene ring. Some 
refinement occurred mainly in the oxygen atom whose z 
coordinates changed by 0.06&.

The atoms C1, N1 and N2 were now refined by the 
minimum-residual program. The initial attempt was 
unsuccessful, producing unlikely nitrogen-nitrogen bond
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lengths (less than l2 ), probably owing to the overlap about 
the 05 and hi atomic sites. After several attempts it was 
found that the difference map could be smoothed in the 
region of the 0 5 , N1 and N2 atoms, using the minimum-residual 
approach, if this group of atoms was moved as a whole along 
the 2-fold axis, with the 05 atom being shifted twice as 
fast as the hi and 112 atoms. Shifts of 0.062 for the 
nitrogen atoms and 0 .12$. for the carbon atom were recorded. 
Some refinement of the y parameter of the benzene ring then 
seemed to be required by the difference map and a shift of 
0 . 0 6 2  was produced by the benzenetwiddle program.

Fourier and difference maps were calculated at this 
point using the cmm Fourier program. The difference map 
had improved considerably from that for the original model, 
although shifts still seemed to be required by the C5 , N1 
and N2 atoms. The residual had also fallen from 29*3 for 
the original model to 2 4 «7» and a new temperature factor 
of 5®4 was calculated.

Further attempts to refine the molecule using inner 
reflections and the minimum-residual program now proved 
abortive. Some shifts in atomic position were recorded 
but none were greater than 0 . 0 4 2 and the residual fell 
hardly at all.

The structure refinement now seemed to be 'sticking' 
and a second stage was reached when all the reflections 
were iised in conjunction with the minimum-residual approach. 
At first the benzene ring still continued to be treated as 
a, rigid body, using the benzenetwiddle minimum-residual 
program, but only quite small shifts (« 0 .0 2 2)could be 
obtained in any of the atomic parameters and the residual
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fell by only 1 fo in three cycles.
Thus the benzene ring atoms were now released from the 

rigid-body constraints and allowed to move freely. Six 
cycles of minimum-residual refinement brought about a fall 
of approximately 3$ in. "the residual and shifts in a number 
of atomic parameters of up to 0.042 per cycle. The total 
shifts however were quite reasonable the largest being those 
in the z parameters of the 04 and 03 atoms (*» 0 .1 2).

At this point the difference map was inspected and it 
was found that the most incorrect feature was in the region 
of the atom F2 , which was on the side of deep (l.8e/2 )̂
'hole '. The third stage of the refinement was an attempt 
to refine the parameters of this nitrogen atom by using 
difference maps, since the minimum-residual approach was 
obviously not working for this atom. A total shift of 
0 .0 9 6& in the y coordinate was calculated from two successive 
difference maps. After these shifts had been made, the 
difference map showed that the nitrogen atom was at the 
bottom of a somewhat shallower hole than before. This 
feature was corrected by raising the isotropic temperature 
factor for the nitrogen atom to 7 , which was approximately 
its value at the end of the refinement of the (0 0 1 ) pro­
jection.

Fourier maps and difference maps were calculated at 
this point using the cmm Fourier program. Although the 
residual was found to be as high as 20 fo, there were now no 
outstanding features on the difference map. It now seemed 
that the final stages of the refinement had been reached 
but that the residual would not fall as low as that for the 
(0 0 1 ) projection, probably owing to the poorer quality of the 

data.
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In this final stage of the refinement some small 
adjustments were made to the atomic parameters by the 
minimum-residual program, using all the reflections in the 
calculations. Initially, the positional parameters of all 
the atoms were allowed to vary freely. After three cycles 
of refinement the residual had dropped by 2 f o but a number 
of atoms, partictilarly 01 and 0 2 , appeared to have moved in 
incorrect directions, as judged from the difference map.
In addition, the agreement between the structure factors of 
the reflections 0 0 4 , 006 and 008 was not very good indicating 
that the z parameters of certain atoms must be incorrect. 
Since the difference map was considered to be a more 
stringent test of the refinement than the results from the 
minimum-residual program, those atoms, that appeared to be 
in incorrect positions, were removed, to their original 
sites. This effected some improvement in the 004 and 006 
reflections.

A further ten cycles of minimum residual refinement 
were tried this time allowing the isotropic temperature 
factors for each atom to vary independently. The residual 
fell by 3f<> to 16.7$. However, the atom C1 was moved In a 
direction opposite to that Indicated by the difference map.
A further five cycles of minimum-residual refinement were 
tried, starting from the atomic positions reached before the 
previous ten cycles of refinement, this time keeping the C1 

atom fixed in position. The residual fell to 15*5- The 
C1 atom was now released and a further five cycles of 
refinement were attempted. A residual of 15*2 was reached 
after some quite small changes in the atomic parameters.
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At this point the refinement of the (100) projection 
was stopped.

6.3.3 A DISCUSSION Of THE! FINAL STRUCTURE OF THE (100) 
PROJECTION

The difference map of figure 6*3 shows the state of the 
structure of the (1 0 0) projection at the end of the refine­
ment. Although some shifts in atomic positions are indicated, 
there are no major features requiring correction. The 
maximum difference density on the map is 1 „0e/^. Although 
a residual somewhat higher (1 5*2 ) than that of the (0 0 1 ) 
projection was obtained, the minimum-residual program was 
shifting the atomic parameters only by small amounts, which 
were probably not significant. A reasonable agreement 
between the structure factors was obtained. Thus, the (100) 
projection may be considered to be as fully refined as the 
available data made possible.

The final atomic parameters are given in table 6,1 with 
the y coordinates shifted w of a unit cell translation in 
order to bring them into line with the coordinates on the 
unit cell axes. The y coordinates obtained from the (001) 
projection are also given for comparison. Differences of 
up to 0 . 1 2  are obtained between the y coordinates of the 
(001) and (100) projections. Thus, the uncertainties in 
the atomic positions must also be about 0 .1  S., which is quite 
a high value for modern structure determinations.

Therefore, although the (001) and (100) projections 
appeared to be as fully refined as possible, the accuracy 
was low. This situation was due to the comparatively small
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number of reflections, particularly in the (100) projection, 
that could be measured. It seemed at this point that better 
results would be obtained if all the measured data (including 
the hOl reflections) could be used simultaneously to refine 
the atomic parameters. Accordingly, the least-squares 
refinement, described below, was used for this purpose.

TABLE 6.1

COORDINATES OE TI-IE ATOMS IE THE (100) PROJECTION

y0kl yhkO z

01 (C1 1 ) -0.2495 (-0.2341) 0.0459 5.32
C2(C21) -0.1268 (-0.1185) 0.1168 4.43
C3(C51) -0.0075 (-0.0085) 0.0560 5-38
C4(C41) 0.1289 (0.1283) 0.1033 5«42
C5 0.1905 (0.2022) 0 3-87
o(o1) 0.1589 (0.1566) 0.1628 6 . 3 0

HI 0.5227 (0.3253) 0 5-84
H2 0.4245 (0.4316) 0 8.44

4 THE LEAST--SQUARES REFINEMENT OP THE STRUCTURE

6.4-1 SHEARING'S LEAS T-SQUARES PROGRAM
The least-squares method of refinement seeks to minimise 

some function of the difference between the observed and 
calculated structure factors with respect to the parameters 
of the molecular structure. The most commonly used function is

E = £  W(|F I - If I )2 (6.1)u O
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where W(hkl) is a weighting factor for the hkl reflection. 
If , p0? 066 are the 11 parameters, occuring in / ,
whose values are to he determined for R to he a minimum 
then:

1^7 = 0 (j = 1, ... n) (6.2)

If ]P \ were a linear function of p., p9 ... p it wouldc I n
he possible, in the usual manner of the least-squares method, 
to derive from equations 6.2 and 6.1 a set of n simultaneous 
equations, the normal equations, whose solution would give 
the hest values of , p^ etc. Unfortunately, most crystal- 
lographic parameters are not linearly related to the IP̂ I 
values; hut, if the relationships are assumed to he linear 
over small ranges of the parameters, approximate corrections 
to the parameters, ê ... e , may he calculated from a set 
of a normal equations that may he written:

2  { 2  w 4 / -  -*=£-} e, = 2  wa 4 - £ l  (6 .3 )
1 = 1 hkl 8pi 1 hkl

where A = I F | - 13? I .'o' C'
The normal equations may he conveniently expressed in 

matrix notation as:

E  a. . e . = h . (6 o 4)
i J J

£ |P | & |pj
where a.. = S  W -rr—  (6.5)

hkl °pi

* l * cland h . = E  WA —  (6.6)
J hkl °pj



- 113 -

The least-squares computer program used for this work 
was written hy Dr G- Shearing, formerly of the Mathematics 
Department of the University of Manchester. It is only 
necessary to give a brief outline of the program here but a 
comprehensive description is given in the manual for the 
program, obtainable from the Atlas Computing laboratory of 
the University of Manchester.

Shearing's program will refine the following parameters:

(i) one or more scalefactors for the data,
(ii) the atomic coordinates,

(iii) an overall temperature factor,
(iv) the individual isotropic or anisotropic temperature 

factors of the atoms,
(v) the multiplicities of the atoms.

In addition the program deals with:-

(i) any type of symmetry,
(ii) anomalous scattering factors,

(iii) atoms in special positions,
(iv) any combination of Isotropic or anisotropic 

temperature factors.

Atomic scattering factors are calculated by linear inter­
polation from a table of values fed in with the data. The 
actual scattering data used here were taken from the results 
of Kanson et. al. (1964).

The weighting factor ¥ for each reflection may be fed 
in with the data or the user may add a routine to the program 
in order to calculate ¥ from some functional relation. If
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the estimated standard deviation of each |F(hkl)t due to 
random errors is o'(hkl), then the value of W which gives 
the lowest estimated standard deviation in the derived 
parameters is:

¥ = 1 /(h (hkl)

Often however a(hkl) is unknown and some function of F(hkl) 
is used to calculate weights for the data. The weighting 
function used here was one suggested by Rollett (1965)

¥ = 1:/(a + |FQ| + c |Pjp ) (6.7)

The constants a and c are approximately 2F . andJ m m
t is2/F respectively, where F . the smallest observed / max * ^9 m m  \

reflection and F "the largest. Shearing’s program outputs
<p

average values of WA" in zones of sin 0/\ and of A
correct weighting function like that of equo.tion 6*7 must

2be such that there are no systematic variations in WA from
zone to zone. Unobserved reflections, which were fed in as
one half the local minimum value of F , were given equal
weights, which may be adjusted to ensure constant values for 

2the average WA .
Often the least-squares matrix may be too large to 

be accommodated in the fast-access store of the computer.
In such a case certain off-diagonal elements of the matrix, 
which correspond to parameter pairs having a low correlation, 
may be ignored (the block-diagonal approximation).
Shearing’s program enables the full matrix or the block- 
diagonal approximation to be used and also allows the terms 
to be recalculated or retained each cycle. As the number



- 115 -

of parameters was reasonably small in this problem, the full 
matrix was used and recalculated for each cycle.

The output of the program consists of the corrections 
to the parameters, their refined values and their 

individual estimated standard deviations. Also output is 
the residual and the reflections data with refined scaling 
factors.

6.4.2 THE .REFINEMENT WITH THE PROJECTIONS DATA ALONE
For this first stage of least-squares refinement the 

parameter corrections were calculated using the Okl, hOl 
and hkO data,, Each set of projection data had its own 
scale factor which was refined independently. Reflections 
common to different sets of data were regarded as indepen­
dent observations.

An initial model for the structure was found from the 
coordinates obtained in the refinement of the (100) and (001) 
projections. The x and z coordinates were taken directly 
from these results and the y and B parameters were calculated 
as the weighted means of the results from both projections. 
(The weighting for this latter calculation was in the ratio 
of the number of observed reflections in each projection).

Initially, the coordinate parameters and one isotropic 
temperature factor for each atom were refined.

Ho weighting function was used for the first few 
refinement cycles with the aim of speeding tip the refinement. 
In five cycles the residual fell from 21.3 to 18.8 with 
shifts in coordinates of up to O.O5X at the beginning. 
However, it was noted that a small group of reflections had
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been fed in wrongly and correcting this mistake gave a drop 
of 2%  in the residual. Subsequent refinement showed that 
the effect of these incorrect reflections was quite small.

In the next stage of the refinement the reflections
were weighted by means of the weighting function of equation
6.7 with a = 2F . and c = 2/F . Unobserved reflectionsnun ' max
were given a weighting of 0.05 in the first five cycles and 
0.3 in cycles six to ten. The residual fell from 16.7 to 
15*9 in these ten cycles. Quite large coordinate shifts 
up to 0.1& were obtained in the first few cycles.

Although the refinement for most of the atoms appeared 
to have ceased at the end of the 10 cycles, quite large 
shifts were still being obtained in the x coordinates of the 
atoms 02 and 04. The estimated standard deviations for 
these two parameters (0.06 and 0 .0 5 )were several times larger 
than for the x coordinates of the other atoms. It was 
noted that the shifts for the two parameters at the end of 
the refinement, as well as being large (approximately y  the 
estimated standard deviations), were, on each cycle, appro­
ximately equal and always opposite in sign. Obviously the 
x parameters of the two atoms (which were nearly equal) 
were highly correlated. The effect is very similar to 
attempting to refine the coordinates of two nearly equal 
atoms for a projection in which they overlap.

Following this latter analogy the best way to 'unlock' 
these two atoms seemed to be to introduce extra data. 
Accordingly, the data from the hkl reciprocal-lattice plane 
were introduced into the refinement.
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6*4.3 TEE REFINEMENT AFTER THE INTRODUCTION 0? THE hid DATA 
The hkl reflections were photographed with the same 

crystal that was used for the hkO reflections. Two five- 
film exposures (24 hours and 120 hours) were made and the 
data were measured and sealed in the same way as the hkO 
intensities (see section 5*4.1).

A correction was made for the differences in estimated 
intensity due to the difference in spot shape, which occurs 
on opposite halves of Weissenberg photographs of upper 
layers of the reciprocal lattice (Phillips, 1954) - the spots 
being contracted on one half (Ic) and extended on the other 
(Ie). Reflections which could be measured on both halves 
of the film were averaged using the expression given by 
Phillips

lav = 2Ie Ic/(le + Ic)

Other reflections were corrected by means of the expression

/ *b1 = 1  meas (1 - If cos 0)

given by Rollett (1965) who attributes it to P G Owston.
The sign depends on whether the reflection is extended or 
contracted and the constant K is determined empirically 
(for this data If = 0.127)* The data were then corrected 
for the lorents and polarisation factors in the usual way.

The introduction of the hkl data had precisely the 
desired effect on the refinement in causing the x coordinates 
of the atoms C2 and C4 to refine rapidly. Three cycles 
were sufficient to achieve the situation in which their 
movements were negligible. In addition the estimated
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standard deviations of the two coordinates fell to the 
average value for the remaining x coordinates.

The same weighting function was used as before with 
the unobserved reflections again having weight of 0.3* In 
five cycles of refinement the residual fell from 20.5 to 
18,6 at which point the movements in the parameters were 
negligible,

Although the refinement had now ceased, the weighting
function required some adjustment. A number of further
cycles of refinement were calculated so that the weighting
could be adjusted empirically, until reasonable results were

2obtained for the average values of WA over the various
ranges of Eq and sin 0/x. The best results were obtained
by using the weighting function of equation 6.7 with
a = 2E . and c = 8/E and giving the unobserved reflections m m  1 max ^
a weighting of 0.9* ho significant refinement of the 
structure resulted from this process and a final residual 
of 18.4 was obtained.

6.4.4 THE STRUCTURE AFTER REFIUEMEUT WITH ISOTROPIC
TEMPERATURE FACTORS - THE BEST-PLANES AND CROSS- 
SECTIOH FOURIER PROGRAMS 

Although further refinement was achieved, when aniso­
tropic temperature factors were given to the atoms and 
hydrogen atoms were added, the structure parameters had for 
the moment ceased to refine. At this point it was of 
interest to examine the various features of the structure 
and several computer programs were written for the purpose.
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First a program was written to evaluate the bond lengths 
and angles. The program transfers the crystallographic 
atomic coordinates to a set of orthogonal axes by means of 
a transformation matrix L (Rollett, 1965)? enabling the 
simpler geometric relations for orthogonal axes to be used 
in the calculation of the bond lengths and angles. Thus:

?-o = \~XC (6 -8 )

where x and x represent atomic coordinates on orthogonal o —c
and crystallograrhic axes respectively.

The bond lengths and angles appeared to be reasonable 
except for the distance between the symmetry-related atoms 
C3 and 03̂  . This bond length had the value of 1 .512, 
which is rather long for a bond in a benzene ring (normal 
bond length « 1 .4-2) . However, this length shortened 
considerably in the later refinement to 1. 42&.

The second program to be written was one to determine 
the degree of planarity of the molecule and is referred to 
as the 'best-plane * program, since it calculates the mean 
plane through the atoms in the molecule. Again the atomic 
coordinates are transferred to orthogonal axes. Then the 
parameters A, B and C of the plane

Ax + By + A  = 1

are determined by a least-squares fit to the atomic coordinates 
on the orthogonal axes. The program then determines the 
direction cosines of the perpendicular to this plane and the 
perpendicular distances of the atoms on to the p3.ane.
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Since the "benzene ring could "be reasonably assumed to
be planar, the mean plane, passing through the six benzene-
ring atoms and parallel to the b axis, was calculated.
This plane lay at 56° to the c axis. The atoms 04 and 0
were at 0.052 and 0.15& respectively from the plane. Thus. 
since the uncertainty in the atomic positions was about 
0.02&, the C4 and 0 atoms would appear to lie well out of 
the molecular plane. However, the later refinement of the 
structure caused the two atoms to lie much closer to the 
plane.

Lastly, two programs were written to evaluate the
difference density on planes passing through the atomic
positions, using the values of (|F0i - ) output from
the least-squares program for the calculation. The three-

2dimensional difference density for the space group I— is 
given by

e ~ z f \
A oooo oopo - p0 = v 'L £ » A cos 2iTky
£=2n+l
OOOOOQ

+ 5  §  o' A sin 2lTky}

where A - [FQ(hkl) - F (hkl)] cos 2rr(hx + 12)

+ [F (hkl) - F (hkl)] cos 2 t t ( -  hx + lz)

One of the programs evaluates this difference density on 
the mean plane passing through the molecule. The second 
program evaluates the difference density on a series of 
planes perpendicular to the b axis and each passing through 
an atomic position.
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Figure 6.4 shows the difference density in the plane of 
the molecule, on the left-hand side of the diagram, and in 
the sections perpendicular to b taken throiigh the atomic 
positions, on the right-hand side. These difference maps 
show several interesting features.

First, the peak marked H indicates the presence of a 
hydrogen atom attached to the atom C2. It appears to lie 
in the plane of the benzene ring at about 12. from the atom 
02 and to be situated such that the C2-H bond bisects the 
external angle C1C2C3, all of which agrees with the most 
probable chemical configuration. There should also' be a 
similarly situated hydrogen atom attached to C1 but this 
does not show up in the difference map. However, there 
are several, strong, spurious features in this area of the 
map which may be obliterating the hydrogen peak.

The second interesting featiire of the difference maps 
is the indications of anisotropic temperature factors with 
a strong vibration perpendicular to the b axis, which are 
shown by the contours surrounding the atoms N1 and N2.
The effect on the contours can be seen quite clearly in both 
the map of the cross section in the molecular plane and the 
two maps of the sections perpendicular to b passing through 
the H1 and H2 positions. It will be remembered that this 
anisotropic temperature factor was observed for the atom F2 
in the final difference map for the (001) projection - 
figure 5®10.

One further feature that may be noted in the difference 
maps is the negative regions at the centres of both the 
benzene ring and the adjacent five-membered ring, which are
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surrounded by positive regions following the lines of the 
atoms. This effect is common in difference maps of 
aromatic rings and has been noted previously by Cruickshank 
(1956) in anthracene. Cruickshank explains the feature 
qualitatively as being caused by a tendency for the electrons 
in the aromatic ring to be channelled along the bonds. The 
difference maps still show the negative region even after 
anisotropic temperature factors have been added.

6.4.5 THE FINAL REFINEMENT WITH ANISOTROPIC TEMPERATURE 
FACTORS AND HYDROGEN ATOMS ADDED

In the last stage of refinement the anisotropic tempera­
ture factors of all the atoms were refined together with the 
coordinate parameters and the scale factors for the data. 
Although only the atoms N1 and N2 indicated strongly that 
their tenvoerature factors were anisotropic, it was felt 
that, since the number of atoms was small, it was reasonable 
to treat them all similarly.

In addition, hydrogen atoms were attached to the atoms 
C1 and C2 at a distance of 1.082. It was arranged that 
these two hydrogen atoms lay in the plane of the benzene 
ring; and were orientated such that the carbon-hydrogen bond 
made equal angles with the adjacent carbon-carbon bonds.
The hydrogen atoms were .given isotropic temperature factors 
corresponding to those possessed by the carbon atoms, to 
which they were joined, at the end of the refinement with 
isotropic temperature factors (C1 = 5-40, C2 - 4.89). The 
addition of the hydrogen atoms to the structure caoised a 
drop of 1.4$ in the residual.
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The succeeding refinement was carried out in a series 
of two-cycle steps and at the end of each step the hydrogen- 
atom positions were adjusted to take into account the move­
ments of the C1 and C2 atoms. However, no attempt was made 
to refine the positions of the hydrogen atoms or their 
temperature factors with the least-squares program.

The weighting scheme which had been found suitable for 
the isotropic refinement above was used. In this scheme 
the weighting function of equation 6.7 was applied, with
a = 2F . and c = 8/F and the unobserved reflections m m  max
having a constant weight of 0.9*

In the first two cycles of refinement the residual
fell rapidly from 17.0 to 13.4. The changes in the atomic
coordinates were quite small none being greater than 0.03$.
At the end of the two cycles the hydrogen atom positions
were adjusted and two further cycles of refinement were
carried out, in which the residual fell only to 13.3 with
little variation in the parameters.

At this point the structure-factor data were examined
and two reflections were found to have large discrepancies -
the reflection 002 (F = 87, F =113) from the Okl data ando * c
the reflection 20-2 (F - 170, F^ = 204) from the hOl data. 
Both of these reflections are similar in that they are large 
in magnitude and at least twice as great as the other 
reflections In the group in which they were measured. 
Extinction immediately suggests itself as a possible 
explanation; but this is unlikely as the correction is 
large and no other reflections seem to require a correction 
which approaches this size. It may be noted that the 002
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reflection occurs also in the bOl data with the larger 20-2
reflection and that here the agreement between 1 and Fc o c
(for 002) is quite good. Some error in the measurement of
these two reflections therefore seems likely and a possible
explanation is that these reflections were not accurately
scaled relative to the smaller reflections in the same group.

The values of F for these two reflections were there- o
fore raised to the corresponding valties of F^ at this point 
in the refinement. Although the residual now fell by 1-5$? 
the succeeding refinement was not greatly affected, since 
these reflections were very much downweighted.

The new positions of the hydrogen atoms were now 
recalculated and two cycles of least-squares refinement 
were carried out followed by a further readjustment in the 
hydrogen atom positions. A further two cycles were 
calculated and then the refinement was stopped. The 
residual was now 11.9$ and the movements of all the 
parameters were well within their estimated standard 
deviations•

Table 6.2 gives the final refined values of all the 
atomic parameters together with their estimated stand„ard 
deviations.

6.4.6 THE FIFAL DIFFERENCE SYNTHESIS
Although no further refinement by least-squares seemed 

possible, it was decided to calculate the difference maps
for this final structure to check for any remaining
discrepancies. Figure 6.5 shows, on the left-hand side,
the difference map for the section in the molecular plane
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and, on the right-hand side, the difference maps for the 
sections perpendicular to the b axis and passing through 
the atomic positions.

The contours indicating; anisotropic temperature factors 
for N1 and 1T2 have now disappeared, as would he hoped.
Still present, however, are the negative regions in the two 
rings surrounded hy the positive areas at the atomic 
positions.

The hydrogen atom H1, whose position was unlocated in 
the map of figure 6*4-, is in a fairly flat region of the map 
of figure 6*5* This feature would indicate that the 
position of this hydrogen atom is probably correct, since 
a wrongly positioned atom would produce a negative region 
in the map. The other atom H2 is on a slightly positive 
region, which could indicate that a lowering of its 
temperature factor was necessary. However, the accuracy 
of the data did not warrant refinement of the parameters 
of the hydrogen atoms.

Ho gross inaccuracies in the structure were however 
indicated by the difference syntheses in figure 6*5*
Thus no further attempts were made to refine the s true'bur e.



■125(1)-

TABLE 6 . 3

Final atomic parameters 
Atomic coordinates

atom X y z

Cl O.06184 -0.23695 0.04658
C2 0.12558 -0,12264 0.10221
c3 0,06170 -0.00926 0.05127
C4 0.10270 0,12409 O.07842
c5 0 0.19856 0

HI O 0.32597 0
N2 0 0.42920 0
0 0.21091 0.15823 O.I6080
HI 0.10807 -0.32698 0.08408
H2 0.22086 -0.12259 0.17971

Coordinate errors
atom 6-<x) ^ < y )

Cl 0.00084 0.00082 0.00167
C2 0.00089 0,00077 0.00177
c3 0.00069 0.00081 O.OOI36
c4 0.00075 0.00074 0 .00201

c5 0 0.00116 0

N1 0 0,00092 0

N2 0 0,00121 0
0 0,00058 0,00056 0,00115

Anisotropic temperature factors
atom foil b22 b33 bl2 bl3 fo23
Cl O.OI46 0.0106 O.O328 0,0021 0.0183 -0,0034
C2 0.0121 0.0111 0.0256 -0.0027 0.0054 0,0031
c3 0.0107 0.0109 0.0207 -0.0024 -0.0029 0.0059
c4 0.0103 0.0112 0,0278 -0.0021 -0.0090 0.0010
c5 O.OI4I O.OIO3 O.O448 0 -0.0324 0
N1 0.0168 0.0102 0.0282 0 0.0302 0
N2 0,0278 0,0121 O.O977 0 0.0134 0
0 0,0164 O.OI32 0.0222 -O.OO37 -0.0030 -0.0025
HI B=5 *4°
H2 B-4,89



TABLE 6.2 (continued)

Anisotropic temperature factor errors
atom G’Cbll) 6Xb22) ^<b33> 6"(bl2) <r(b!3> <r(b23>
Cl 0.0009 0,0007 0.0037 0,0013 0.0078 0.0041
C2 0.0008 0.0007 0.0025 0.0011 0,0047 0,0027
C3 0.0007 0.0006 0,0021 0.0012 0.0086 0,0021
C4 0.0008 0.0008 0,0032 0.0011 0,0047 0.0033
C5 0.0012 0.0009 0,0090 0 0,0086 0
N1 0,0012 0.0009 0,0049 0 0.0058 0
N2 0.0023 0.0012 0.0144 0 0.0142 0
0 0.0007 0.0006 0.0015 0.0012 0.0031 0,0022
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CHAPTER 7

A DISCUSSION OF THE STRUCTURE

7.1 BOND LENGTH AMD BOND ANGLE ERRORS
In a least-squares refinement, when relative weights 

and a full matrix are used, as in this case, the variance 
of a parameter p^ is given by

a2(p±) = (a-1 )±i (I) WA2)/(m - n) (7.1)

where m is the number of observations and n the number of
parameters and (a ).. is an element of the matrix inversen
to a.. (Rollett, 1965). Values of the est imated standard D
deviation cr(p̂ ) are output by Shearing's least-squares 
program for all the refined parameters (see table 6,2).

The variance in the bond length 1 between two atoms,
A and B, is given by

a2(l) = ct2(A) - 2 cov (A,B) + o 2(B) (7.2)

2 2where a (A) and a (B) are the variances in the positions of 
A and B respectively in the direction AB. The covariance 
between the atomic positions of A and B, cov(A,B), is zero 
if both atoms are unrelated. However, certain bond lengths
are evaluated in the present structure between atoms
related h y  a 2-fold axis and here,
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P Pcov(A.B) = - - a (A) = - a "(B) and hence

u 2(l) = 4o 2 (A) (7.3)

If the unit cell coordinates of atom A are x, y, z 
then for the general case of oblique axes the variance in 
the position of the atom A along AB is given by

o 2 ( A )  = a 2 (x) (|i)2 + ------

+ 2a(x) cr(y) |~ cov(x,y) + --------(7.4)

How cov(x,y), the covariance of the x and y coordinates, 
may be evalu^ate^from

cov(x,y) = (a“^) (EWA2)/(m - n) (7.5)

thif x and y are assumed to be the i and j parameters in the
least-squares refinement.

Thus, substituting the values for the estimated
standard deviations in the atomic coordinates output by

2Shearing’s program into equation 7.4? values of a  (A)
p(and cr B) may be determined. Then using these values in 

equation 7.2 the estimated standard deviation of each bond 
length may be found.

However, this is rather a long procedure, particularly 
since equation 7.5 requires the least-squares matrix to be 
set up and inverted for the bond-length calculation. 
Considerable simplification is justified in this case, 
where the cell is almost orthorhombic, since for an 
orthorhombic cell the cross terms of equation 7*4 are zero.
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In fact, Templeton (1959) shows that for oblique axes, when
the errors are reasonably isotropic, cov(x,y) = cos $ ' etc.
Thus, for the present monoclinic cell, cov(x,y) = cov(y,z) =
cos 90 = 0 and cov(x,y) = cos (88.9) ^ 0.

Also, since the coordinate errors (in angstroms)
appeared to be approximately the same, an average value
cr was assumed, this beinr the average of all the av
coordinate errors. This assumption considerably simplified 
the bond length and angle calculations for atoms related 
by symmetry or where one or both were on a symmetry element. 
Hence for two atoms in general positions the bond length 
error was found from

ct̂ A) = a2(B) - 3(a )2ci V

and a2(l) = 6(crgiv)2 

Bor two atoms related by the 2-fold axis

a2(A) - a2(B) = 2 ( a ) 2ci V

and a2(l) = 8(aav)̂

The bond angle errors were calculated from an expression 
given by Cruickshank and Robertson (1953)

ff2(p) = H a !  +  a 2 ( B ) ( - - U  _  n-qos 1  + _ L }
AB AB An.no BC^

+ (7.6)
BCr

2 2where a (A) and a (C) are the variances of A and C in the 
ABO plane perpendicular to AB and BC respectively and
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na (B) is the variance of B in the direction tangential to 
the circle through ABO. Where the bond AB lay across the 
2-fold axis the half length of the bond was used in place 
of AB in equation 7-5-

The estimated standard deviations in the bond lengths 
and angles are shown in figure 7*1.

7.2 BOND LENGTHS AMD BOND ANCLES
The bond lengths a.nd angles of the refined structure 

were calculated and compared with the values that might be 
anticipated for the structure proposed by Regitz and Heck.
The significance test suggested by Cruickshank and Robertson 
(1953) was used when comparing measured bond lengths and 
angles with theoretical values. If 81 is the difference 
between measured and theoretical values then if

61 < 1.645a the difference is not significant,
2.327a > 81 > 1.645a the difference is possibly significant, 
3.090 > 81 > 2.327a the difference is significant.
Theoretical- bond lengths were found from a table of covalent 
radii given by E.obertson (1953)*

The bond lengths in the benzene ring are all within the 
standard deviation of the usual bond length of 1.3948.
(Tables of Interatomic Distances). In the benzene ring 
however one angle, 010203? is possibly significantly different 
from the usual 120°.

The bond 0304 should have approximately a single 
carbon-carbon bond length of 1.548. and is certainly signifi­
cantly different at 1.4 7 8 . The resonance structure indicates
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that C4C5 should be intermediate in length between a single 
and a double carbon-carbon bond (1.54 and 1.33) but perhaps 
closer to the single bond length and it should be certainly
shorter than C3C4* However, this bond is nearer to the
double bond length, although it is certainly shorter than 
C3C4. Therefore, both C3C4 and C4C5 seem to be shorter 
than might be expected.

The 040 bond should be very close to the carbon-oxygen 
double bond length of 1.222; the actual value of 1. 26S is 
possibly significantly larger. The C5H1 bond should be 
intermediate between a single (1.472) and a double bond 
(1.272) and the actual length of 1.342 agrees with this 
suggestion. The N1H2 bond should be intermediate between 
a double and a triple bond (1.20 and 1.09) but it is in fact
equal to the triple-bond length.

Thus, not all bond lengths are entirely consistent with 
Regitz and Heck’s structure. However, a definite conclusion 
on this point would require better theoretical and experi­
mental. estimates of the bond lengths.

7.3 THE PLANARITY OF THE MOLECULE
The best-plane program was used to find the mean plane

passing through the atoms in the molecule. This mean plane,
olying parallel to the b axis, was orientated at 59.2 to the 

c axis (32.9° to the a axis). The deviations of each atom 
from the mean plane are given in the table below (in 
angstrom units)
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01(011 ) 0.008
C2(C21) 0.035
C3(C31) 0.024
C4(C41) 0.007
0(01 ) 0.015

The atoms not listed lie on the 2-fold axis and therefore 
in the mean plane. The directions of the deviations from 
the mean plane are shown in figure 7.1? where the open 
circles indicate atoms above the mean plane aaid full circles 
those below.

Cruickshank's significance test was applied to the 
above table of deviations assuming that the orientation of 
the mean plane is known absolutely. The average error in 
the atomic positions parallel to the a-c plane is 0.0142- 
Thus, one atom, 02, is situated at a distance from the mean 
plane which is significant and another atom, 0 3 ? is situated 
a distance which is possibly significant. It will be 
remembered that the bond angle of the benzene ring at 02 
was rather small, which would be expected if the benzene ring 
was slightly twisted there. Thus a slight twisting of the 
molecule seems to exist possibly caused by a reorientation 
of the bonds in order to attach the five-membered and six- 
membered rings together.

7-4 THE PACKING- OF THE MOLECULE
The molecules can be pictured as lying in planes which 

are parallel to the a-b plane of the unit cell. Each
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almost-planar molecule is orientated parallel to the b axis 
and at 32.9° to the a-b plane. Figure 7.2a shows the 
ap_oearance of one plane of molecules at height z = 0 viewed 
down the c axis. The molecule outlined by the dashes is 
at height z — 4- and shows the way in which the next plane 
of molecules is superimposed on the first.

The apparent contact points between the atoms of 
adjacent molecules in the plane are indicated by the dotted 
lines. The oxygen atoms of adjacent molecules appear to 
be in contact, although the separation of 3*312 is fairly 
large compared to the average Tan de Waal distance of 2.82 
(Robertson, 1953). The nitrogen atom N2 and the hydrogen 
atom H1 also appear to be in contact (2.842) and there is a 
possibility of a hydrogen bond existing between 01 and N2. 
However, this bond would be very weak since the C1-IT2 
distance is large (3*592). Also, the E1 and H2 atoms of 
adjacent molecules seem to be in contact but the probable 
distance of 2.762 cannot be given accurately because of the 
uncertainty in the hydrogen atom positions.

Figure 7.2b shows from the projection down the b axis 
how the sheets of molecules stack. The spacing of the 
molecular sheets seems to be governed by the usual separation 
obtained between the planes of aromatic molecules. The 
molecules are stacked so that the edges of the five and 
six-membered rings of adjacent molecules overlap. If the 
five-membered ring is assumed to have the same thickness as 
is usually obtained for an aromatic ring, then the perpendi­
cular distance between adjacent molecular planes would be 
about 3*42 (.Robertson, 1953); in fact, the actual distance 
is 3-362.
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7.5 THE THERML VIBRATION ELLIPSOIDS
The anisotropic temperature factor term can he written:

exp -(b^h2 + ^2 2^  + ^3 3-^ "̂12^  + ^2 3^  + (7-7)

The factors h^ etc. are refined and output by Shearing's 
least-squares program (see table 6.2). An alternative form 
of 7.7 is

exp -(B^h2 + B ^ k 2 + B ^ l 2 4- 2 B̂  ̂ hk + 2 B ^ ^ k l  4- 2B^hl)

or exp - (hTBh) (7.8)

where B is a matrix of the elements B^etc. and h is the 
column vector (h,k,l). The matrix B may be referred to 
orthogonal axes in the same way as the atomic coordinates 
in equation 6 .8 , again using the matrix L . Thus, a new 
matrix Y is produced where:-

Y = LB1T (7.9)

Rollett (1965) shows that the eigenvectors of Y are the
principal axes of the thermal vibration ellipsoid. Also,

thif is the i eigenvalue of Y, the root-mean-square
~ ~ Zvibration amplitude (U- ) z along the principal axis corres-

thponding to the i eigenvector is given by:

m 2b  = [,\./(2TT2) b  (7 .1 0)

A program was therefore written to determine the 
directions of the principal axes of the vibration ellipsoid 
for each atom and the corresponding r.m.s. vibration amplitudes.
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The values of h^ etc. are read In by the program and the 
matrix B set up; and Y is then determined from equation 7*9x 
The eigenvalues and the eigenvectors of Y were found, by 
Jacobi’s method (Eerriot, 1963)- In Jacobi’s method the 
off-diagonal elements of the matrix are progressively 
reduced to zero by means of a transformation ¥ YW, where 
¥ is an orthogonal matrix. When the off-diagonal elements 
are zero to within the working accuracy, then the diagonal
elements are the eigenvalues and the product   is
a matrix whose columns are the eigenvectors.

The values of (u11')2 were therefore found from the
eigenvalues using equation 7.10 and the coordinates of the
principal axes (referred to the orthogonal axes) were
determined from the eigenvectors of Y. The coordinates of
the principal axes were then transferred to the crystallo-

-Igraphic axes by means of the transformation matrix L
“  x.Table 7.1 gives the values of (u )2 for each atom.

The angles made by the corresponding principal axes with 
the positive directions of the crystallograwhic axes tire 
also given. As suspected there is a. strong vibration 
direction perpendicular to the b axis for the atoms E1 and 
N2 - the root-mean-square amplitudes are 0.37.2 and 0.56$. 
respectively.
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TABLE 7.1

Parameters of vibration ellipsoids 
atom rms amplitudes orientation of principal axes

(in % units) to crystallographic axes
(in degrees)
a b c

Cl °*35° 61 93 32
0.353 64 29 103
0.310 139 61 61

c z 0.391 101 103 161
0.359 54 144 88
0.331 143 133 71

c3 0.383 70 137 137
0,336 89 40 130
0.318 30 78 76

04 0.313 66 97 157
0.353 97 13 100
0.301 25 79 70

c5

0*m0

59 90 151
0.34I 90 0 90
O.174 32 90 61

N1 O.373 49 90 43
O.340 90 0 90
0,164 139 90 47

N3 0.558 85 90 7
0.359 5 90 97
0.361 90 0 90

0 0.394 35 131 107
0.379 80 48 137
O.343 57 57 52
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2 tt 0 1 .5 1 0 *61 0.90 0
2 10 0 5 .7 7 6*16 • 0 .3 8 0
2 12 0 1 .2 5 1 .3 5 • 0 .1 0 0
3 1 0 46 .49 44.06. 1 .64 180
3 3 I) 50 .1 8 48 .61 1.57 0
3 5 0 26 .68 22 .38 4.30 0
3 7 0 11 .32 10 .74 0.58 180
3 9 0 8 .5 3 8*05 0.46 0
3 11 0 1 .4 1 1 ,0 3 0.36 0
3 13 0 0 .74 0 .45 0 .29 0
4 0 0 14 .11 12.54 1 .57 0
4 2 0 16 .00 14 .78 1 .22 180
4 4 0 18 .53 17 .0 9 1 .44 0
4 6 0 11 .06 11 .22 • 0 .1 6 0
4 a 0 18 .44 18 .18 0 .26 1804 10 0 1 .5 1 1 .6 0 •  0.10 180
4 12 0 7 .0 9 5 .4 8 ■ 1 .60 0
5 1 0 22 .8 9 22 .70 o ; i 9 180
5 3 0 8 .9 8 6 * 86 2 .12 180
5 5 0 15 .23 15 .23 0.00 U
5 7 u 1 .5 7 2 .2 8 - 0 .7 1 180
5 9 0 7 ,0 9 8 .4 3 • 1 .3 5 180
5 11 0 1 .2 2 2 .0 2 - 0 .8 0 0
6 0 0 12 .89 12 .89 0.00 180
6 2 0 6 .9 9 6 .6 4 0 .35 .18Qft 4 u 4 ,3 9 4 .01 0.38 1BU
6 6 0 1 .5 7 1 .64 • 0 .0 6 0
6 -8 0 13 .40 13 .98 -0 .5 6 180
6 10 0 1 .3 1 0*80 0.51 0
6 12 0 0 .4 5 0 .38 0 .06 07 1 0 16.74 17 .03 -0 .2 9 180
7 3 0 1 .5 1 1 .9 6 -0 .4 5 0
7 5 0 13 .27 10.52 2 .76 180
7 7 Cl 5 .4 8 5 .2 3 0.26 180
7 9 0 1 .3 5 1 .51 • 0 .1 6 0
7 11 0 0 .7 7 0,87 • 0 .1 0 160
a 0 0 1 ,5 7 1 ,  83 • 0 .2 6 ■ 0
a 2 0 1 .5 7 2 .9 5 •1 .3 8 180
a 4 0 19 ,98 18.50 1 .47 180
a 6 u 1 .5 7 2 .0 2 • 0 ,4 5 180
8 e 0 1 .3 5 2 .6 6 •1 .3 1 180
a 10 II 0 .8 3 1 .0 9 • 0 .2 6 0
9 i 0 1 .60 2 .2 1 •0 .6 1 0
9 3 0 16.00 13*18 2 .82 1809 ft u 10 .97 9 .0 7 1 .89 1809 7 0 1 .2 8 2.05 • 0 .7 7 09 9 0 0 .80 0 .16 0 .64 0

10 0 p __5x8 7„ 5 .4 5 __ 0_,4£____0

h k I M I F c L F * lF c ,- p h a s e
10 2 0 4 .7 1 3*91 0 .8c 180
10 4 0 10 .5 6 9 .7 5 0 .8 3 180
10 6 0 1 .1 9 1 .4 1 • 0 .2 2 0
10 b 0 0 .64 2 .1 2 • 1 .4 7 180
11 1 0 1 .2 8 2 .2 8 • 0 .9 9 180
11 3 p 1 .1 9 0 .74 0.45 180
11 ft 0 0 .9 6 0 .7 7 0.19 180
12 0 0 0 .9 3 2 .0 2 - 1 .0 9 1B0
12 2 0 0 .8 7 0 .58 0 .2 9 180

0 0 2 106 .81 114 .57 - 7 . 7  6
0 0 4 6 .1 8 8 .5 1 • 0 ,3 3 180
0 0 6 2 .1 0 2 .5 7 • 0 .4 7 0
0 0 8 7 .4 4 4 .3 0 3 .1 3 180
0 0 10 1 .1 7 1 .6 6 - 0 .5 1 180
0 1 1 2 9 ,70 3 q . 82 • 1 .1 2 90
0 3 10 .90 1 1 .4 6 •0 .5 6 -90
0 1 ft 16 .27 14*82 1 .4 5 90
0 1 7 9 .1 7 7 .0 6 2.10 90
0 1 9 1 .8 ? 1 .6 8 0 .19 -90
0 2 0 40 .97 39 .00 1 .96 180
0 2 2 6 .8 3 6 * 22 0.61 180
0 2 4 1 .6 4 1 .8 2 • 0 .1 9 180
0 2 6 9 .0 7 9 .0 3 0 .05 180
0 2 8 2 .2 0 2 .4 8 •  0 .28 180
0 2 10 0 .9 8 0 .7 5 0 .23 180
0 3 1 3 2 .7 8 32 ,7 4 0 .05 90
0 3 3 1 2 .7 2 1 1 .2 ? 1 .4 5 90
0 3 5 2 .0 1 1,06 0.94 90
0 3 7 6 .5 0 3 .2 3 3.27 -90
0 3 V 1 .7 3 2 .2 0 •0 .4 7 -90
0 4 0 35.40 37 .2 7 • 1 .8 7 180
0 4 2 26 .4 2 2 1 .8 9 4.54 0
0 4 4 28 .57 26 .1 4 2.43 0
0 4 6 2 .2 4 1 .2 2 1 .03 180
0 4 B 2 .0 6 2 .4 8 •  0 .42 180
0 5 1 3 4 ,0 4 35 .9 6 • 1 .9 2 -90
0 5 3 1 .8 2 2*62 • 0 .8 o 90
0 5 ft 6 .5 5 6*28 • 1 .7 3 -90
0 5 7 2 .2 4 2 .20 0.05 -90
0 ft 9 1 .40 3 .0 4 • 1 .6 4 90
0 6 0 26 .24 2 5 .3 5 0 .89 0
0 6 2 1 .8 7 1 .9 2 • 0 .0 5 180
0 6 4 2 .1 5 2 .6 2 • 0 .4 7 .180
0 6 6 7 .3 4 6 .3 1 1.03 0
0 6 8 1 .7 8 1 .1 2 0.65 180
0 7 1 2 0 .6 2 .1 9 . 6 4 0.98 90
0 7 3 2 .1 5 2 .2 4 • 0 .0 9 -90
0 7 ft 2 .2 9 2 .9 5 • 0 .6 5 90
0 7 7 4 , 86 3 .6 9 1 .17 9U
0 8 0 16.60 17 .44 •0 .8 4 0
0 8 2 5 .7 1 5*80 • 0 .09 0
0 a 4 8 , 00 7 .6  2 0 .37 180
0 B 6 10 .99 6 .1 4 2 .85 180
0 8* b 1 .1 7 3 .0 4 -1 .8 7 180
0 9 1 12 .39 1 2 .2 5 0.14 -90
0 9 3 10 .71 9 .9 1 0 ■ 80 •  90
0 9 ft 2 .1 0 1 .3 1 0 , Bo -90
0 9 7 1 .40 0 .0 5 1.36 90
0 10 0 2 .2 9 1 .5 4 0,75 180
0 10 2 4 .5 4 3 .9 8 0.56 0
0 10 4 2 .0 6 1 .96 0.09 0
0 10 6 1 .50 1 .96 • 0 .4 7 180
0 11 1 2 .1 5 2 .8 5 • 0 .7 o -90
0 11 3 1 .9 6 3.1-8 • 1 .2 2 90
0 11 ft 1 .4 5 0 .69 0.56 •  9U
0 _ 1 2 Cl, . _  lx-8.7._ __ -1*59  „ ___0-



h k 1__ |F>]__IR-I F.-E- phase h k t IF.I lfcl
0 12 2 1.73 0 65 1.06 0 9 6

80 12 4 1.31 1 78 •0.47 0 9
0 13 1 ' 1.31 1 73 •0.4? -90 8 1
0 13 3 6.75 1 45 •0.70 -90 6 3
0 0 2 105.74 114 98 -6.04 0 6 5
0 0 4 6.66 6 92 •0.47 160 6 7
0 0 6 3.83 2 98 1.25 0 8 9
0 0 8 3.99 4 30 •0.31 180 7 2
0 0 10 2.03 1 64 0.39 160 7 4
2 0 -10 1.66 0 55 1.33 160 7 6
2 0 -6 3.91 0 00 3.91 0 7 6
2 0 -6 3.63 2 89 0.94 160 7 10
2 Q -4 71.17 69 76 1.41 0 6 1
2 0 -2 196.00 202 60 •6.60 0 * 6 3
2 0 0 67.69 76 05 -10.17 9 6 5
2 0 2 2.19 2 42 •0.23 0 6 7
2 0 4 3.05 4 30 •1.25 0 6 9
2 0 6 13.93 13 30 0.23 160 6 11
2 0 6 3.63 0 94 2.69 160 5 2
2 0 10 1.49 1 41 0.06 0 5 4
4 0 •  6 3*68 1 96 1.72 0 5 6
4 0 •6 32.54 31 21 1.33 0 5 6
4 0 -4 66.79 60 77 6.02 0 5 10
4 0 -2 15.95 19 66 0.06 0 5 124 0 0 15.95 12 91 3.44 0 4 1
4 0 2 2.62 4 15 • 1.33 180 4 3
4 0 4 20.62 16 38 1.64 160 4 5
4 0 6 6.13 6 73 1.41 0 4 7
4 0 6 3.52 3 05 0.47 0 4 9
6 0 -6 12*20 11 73 0.47 0 4 116 D •6 17.44 16 35 1.09 0 3 2
6 0 -4 3.03 3 21 0.63 0 3 4

0 -2 3.44 4 61 •1.17 0 3 66 0 0 13.22 12 90 0 .3 l 160 3 ft
6 0 2 6.60 7 90 0.70 160 3 106 0 4 18.93 17 13 1.80 0 3 126 0 6 3.99 3 13 0.86 0 2 16 0 6 2.74 1 72 1.02 160 2 38 0 -6 1.96 9 01 •3.44 0 2 56 0 -6 3.92 2 11 1.41 0 2 76 0 • 4 4.07 0 78 3.26 160 2 98 0 • 2 11.42 9 70 1.72 180 2 118 0 0 3.99 1 60 2.19 0 2 136 0 2 17.05 19 25 1.80 0 1 28 0 4 4.07 0 47 3.60 0 1 4

0 6 3.28 0 23 3.05 180 1 6
10 0 -6 2.11 0 55 1.56 180 1 eIQ 0 -4 3.28 3 28 0.00 180 1 1010 0 -2 3.75 2 74 1.02 0 1 1210 0 0 . 3.63 9 47 •1.64 0 0 110 0 2 3.68 2 03 1.64 160 0 310 0 4 3.13 1 64 1.49 0 0 512 0 -2 2.11 0 31 l.So 0 0 712 0 0 2.35 2 03 0.31 180 0 9
12 0 2 1.60 1 72 0.06 0 0 1112 1 1 1.65 0 89 0.96 90 -.0 1312 3 1 1.37 0 27 1.09 -90 •1 211' 2 1 2.60 1 71 0.69 90 •1 411 4 1 2.26 0 21 2.05 90 •1 611 6 1 1.37 i 37 0.00 -90 • 1 610 1 1 6.15 8 61 •2.46 90 •1 1010 3 1 3*08 1 64 1.44 90 •1 1210 5 2.73 2 32 0.41 -90 •  2 110 7 ’ 1 1.96 1 16 0.62 -90 •  2 39 2 1 9.16 10 80 •1.64 90 • 2 5
_2._ - —!»i2?___ I t * ’ . •2 7

2 .9 4  
2*26

16 .1 3
3 .3 9
3 .3 9  
3 .0 6
2 .3 9

11 .4 6
3 .3 9  
6 .4 9
3 .1 4  2.32 
2 .6 0

13 .2 6  
1 6 .6 6

3 .3 5
3 .1 4  
2 .1 9

1 1 .1 4
9 .9 1  12.10
3 .3 9
3 .0 1
1 .7 8  

46 .60
2 .3 9  11*62

14 .9 7
3 .3 9  
2 .6 0
1 .9 1  10,66
2 .6 7
3 .3 9  
3 .2 8  
2 .4 6
1 .9 0  

16 .1 3
7 .6 4
3 .0 1  

13 .12
3 .6 8
1 .7 8

41 .48
7 .6 6
8 .9 4

10 .4 6
3 .3 9
2 .7 326.98 

26 .84  
31 .97  
19 .9 5  
13 .94

3 .2 1
1 .9 8
9 .90

3 7 .4 9  
16 .686.66

3 .3 5
2 .7 3  
7 ,1 82$. 22 

17 .90

i1 
16
2 0 
2 
1

10
1
9
3
3
1

14
20

3
4 011
7

12
1
1
1

542
11
14

2
3
3
10

3
1
302

17
90

10
3
1

45
7
710
32

30
32
39
19122

1
9

39
19

9
30
7

2416

.50*09

.13
3221
05
98 
93 
91 
36 
96 
4964
90 
78 
42 
03 
96 
345265
91 
57
0306
73 
21 
83 
26 01
14
99 
49 
09 
63 
48 
46
15 
40
34 
87
35 
78
36 
99 
93
16 
01
53 
62
74
95
66 
23 
87 
71 
16 
68 
36 
02
96 
14
04 
74 
45

ft-Ft phase-1T4T -90'

__

1.16
0 .90
1 .0 3  
3 .14
1 .0 3  
0 .4 1  
0 .5 5
1 .4 4  

• 2 .8 7  
• 0 .8 2  
• 1 .1 6

1.16
• 1 .6 4•2,12
• 0 .0 7
•0.69
1.23

•0.21
2 .3 9

• 0 .7 5
1 .44
1 .4 4  
0 .75

• 5 .2 6
• 0 .3 4

0 .6 2
0 .14
1 .0 9

•0.21
• 1 .2 3

0 .0 7
• 0 .6 2
2.26

• 0 .5 5
1.96

• 0 .9 6
- 1 .0 3

1.64
2 .6 7
2 .2 6

• 0 .2 7
0 . 0 0

• 3 ,9 0
0 .27
0 .62
0 .27
0 .34
0.21

- 4 ,2 4
• 3 .9 0
• 4 .3 7
• 0 .1 4

1 .7 1
0.34
0 .27
0.34
1 .5 7
1 .30

• 0 .1 4
• 0 .6 2
2.60
0.14
0 .46

•0 .9 6

90
90

-90
90
90
90

-90
90
90

•  90 
90 
90

-90
90
90

-90
90

-90
-90

90
•  90 

90 
90 
90

-90
-90

90
•90
-90
-90
-90
-90
-90

90
90
90
90
90
90

-90
90

-90
-90

90
-90
-90

90
90
90
90

-90
90

-90
• 90 
-90

90 
-90  
-90  

90 
-90  
-90  

90 
90 

-90  
_90



13 S

h
•z

k I
' 9

IF .I
1 4 .8 3 - I S U12*37

^S“ffcJ3jhci
2 3 3  -90

•z 11 3 .8 8 0 55 2 .5 3 •90
-2 13 1 .8 5 1 *1 - 0 .0 7 -90
■ 3 2 4 4 .90 44 35 0.55 -90
•3 4 1 4 .6 3 14 08 0 .5 5 90
*3 6 2 .8 7 4 31 ■1.44 -90
•3 8 1 2 .7 8 10 11 2 .6 7 -90
■3 10 3.28. 4 65 • 1 .3 7 90
-3 1Z 2 .4 6 1 91 0 .5 5 90
•4 1 1 8 .11 15 38 2 .7 3 90
• 4 3 1 2 .8 3 11 07 0 .9 6 90
• 4 & 2 .80 3 06 • 0 .2 7 -90
• 4 7 3 .2 1 4 72 • 1 .5 0 90
•4 9 6 .7 7 5 67 1 .0 9 -90
•4 11 2 .8 0 1 50 1 .30 90
*5 2 8 .7 5 6 29 2 .4 6 90
• 5 4 15 .65 9 84 5.81V -90
•5 6 3 .2 1 1 *1 1 .64 •90
-5 8 3 .3 5 1 6» 1 .50 90

10 3.Q6 3 42 •0 .3 4 90•9 12 1 .8 5 0 21 1 .6 4 -90
• 6 1 32 .53 27 80 4 .6 5 90
■ 6 3 8 .5 4 4 24 4 .3 1 -90
■ 6 5 3 .2 1 1 57 1’.64 -9 0
*6 7 12 .10 9 16 2; 94 90>6 9 3 .1 4 1 44 1 .71 -90
• 6 * 11 2 .1 9 1 57 0 .6 2 •90
•  7 Z 15 .45 13 46 1*98 - 9 0
• 7 4 3 .2 8 2 39 0 .8 9 90
• 7 6 10 .32 10 05 0 .2 7 90
• 7 8 3 .2 1 4 24 - 1 .0 3 -90
•7 10 2 .3 9 - 2 73 • 0 .3 4 90
>8 1 3 .3 5 2 39 0 .9 6 90
*8 3 11 .8 7 8 95 2 .1 2 -90
■8 5 13 ,94 12 64 1 .3 0 90
• 6 7 3 .1 4 1 37 1 .70 90
-8 9 2 .3 9 1 30 1 .0 * -90■ 9 2 3 .3 5 2 80 0 ,55 -90•9 4 3 .2 8 0 34 2 .9 4 90•9 6 3 .0 1 3 96 • 0 .9 6 90-9 8 2 .3 2 1 30 . 1 .0 3 -90• 10 1 12 .90 10 11 2 .8 7 90

•  10 3 3 .  Q8 1 37 1 .7 1 -90
•  10 5 2*73 0 96 1 .7 8 -90
•10 7 2 .0 5 0 89 1 .16 90
•  11 2 2 .6 7 4 03 *1 .3 7 90
•  11 4 2 .3 2 1 16 1 .1 6 -90
•  11 6 1 .5 7 1 57 0.00 -90
■ 1Z 1 1 .9 1 3 42 • 1 .5 0 90■ 1Z 3 1 .5 7 0 82 0.75 90.

''f



”139™

TABLE OF ACCIDENTALLY ABSENT REFLECTIONS

h k i h k 1 h k 1 h k
0 10 0 0 5 9 10 0 -6 3 70 1 3 0 0 6 3 10 0 *■*4 3 i i
1 *3 0 0 6 4 10 0 - 3 3 13
3 8 0 0 6 8 10 0 0 1 10
3 13 0 0 7 3 10 0 3 1 13
3 11 0 0 7 5 10 0 4 0 11
3 13 0 0 8 8 13 0 “3 0 13
4 10 0 0 9 5 13 0 0 »1 10
5 7 0 0 9 7 13 0 3 - I 13
5 11 0 0 10 0 13 1 1 “3 11
6 6 0 0 10 4 13 3 1 “3 13
6 10 0 0 1 0 6 11 3 1 ”3 6
6 1 3 0 0 11 l 11 4 1 - 3 10
7 3 0 0 11 3 11 6 1 “3 13
7 9 0 0 i i 5 1 0 3 1 “4 5
7 11 0 0 13 0 10 5 1 ”4 7
8 o 0 0 13 3 1 0 7 1 ”4 11
8 3 0 0 13 4 9 4 1 -5 6
8 6 0 0 13 1 9 6 1 -3 8
8 8 0 0 13 3 9 8 1 -5 10
8 1 0 0 0 0 6 8 3 1 ”5 12
9 1 o 0 o 8 8 5 1 - 6 '5
9 7 0 0 0 1 0 8 7 1 - 6 9
9 9 0 3 o - 1 0 8 9 1 ~6 11

1 0 6 0 3 0 - 8 7 4 1 “7 4
10 8 0 3 0 - 6 7 8 1 - 7 8
11 l 0 3 0 3 7 10 1 - 7 10
11 3 0 3 0 4 6 1 1 - 8 l
11 5 0 3 0 8 6 7 1 - 8 7
13 0 0 3 0 10 6 9 1 “ 8 9
13 3 0 4 0 «8 6 11 1 ” 9 2

0 0 6 4 0 3 5 8 1 “9 4
0 0 1 0 4 0 8 5 10 1 ”9 6
0 1 9 6 0 "4 5 13 1 “ 9 8
0 3 4 6 0 - 3 4 3 1 ”1 0 3
0 3 5 6 0 6 4 9 1 - 1 0 5
0 3 1 0 6 0 8 4 11 1 - 1 0 7
0 3 5 8 0 - 8 3 3 1 "11 3
0 3 9 8 0 - 6 3 6 1 —11' 4
0 4 6 8 0 - 4 3 8 1 - 1 1 6
0 4 8 8 0 0 3 1 0 1 ” 1 3 1
0 5 3 8 0 4 3 13 1 - 1 3 3
0 5 7 8 0 6 3 1 1

h» 
J-* 
H"
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On the Validity of Babinet’s Principle for 
Fraunhofer Diffraction
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Abstract. Some misconceptions concerning Babinet’s principle are pointed out. 
The Fraunhofer diffraction patterns of complementary screens are not similar 
unless the detail in the screens obeys certain conditions, which are not easily 
fulfilled. Some examples of the diffraction patterns of complementary screens 
are given, illustrating the extent to which Babinet’s principle is valid in practice.

A  way in which the principle can be used to give the diffraction patterns of 
three-dimensional crystal-structure models is indicated.

1. Introduction
The authors’ interest in Babinet’s principle arose when an attempt was made 

to apply it in developing the use of optical-transform techniques [1, 2] in 
crystal-structure determination. In these techniques, a representation of the 
x-ray diffraction pattern is compared with the optical transform (the Fraunhofer 
diffraction pattern) of an opaque screen pierced by an arrangement of holes 
representing the projection of a possible structure. According to Babinet’s 
principle, it should be possible to replace the screen by a three-dimensional 
model of the structure and obtain the same transform; in practice the transform 
of the screen and of the model are different, although they have some features 
in common.

Few authors of1 text-books (except Ditchburn [3]) seem to be aware that there 
are any limitations to Babinet’s principle, and none produces any illustration 
of it. These limitations have, however, been pointed out by Boersch [4] and 
Hosemann and Joerchel [5]. It is the aim of the present paper to extend their 
ideas and to give some experimental illustrations of the principle, obtained by 
means of the optical diffractometer [6].

2. Babinet’s principle
Babinet’s principle is concerned with the diffraction patterns of complementary 

screens—screens in which the opaque parts of one correspond to the clear parts 
of the other and vice-versa; such screens are supposed to give identical diffraction 
patterns except for a small region in the centre. In fact, this statement is far 
wider than was given by Babinet [7], a free translation from his original statement 
being as follow s:

O.A. G



84 Validity of BabineVs principle for Fraunhofer diffraction

‘ ‘ Suppose that the eye observes a point source of light. If a small opaque 
object is placed just off the line of sight, the effect of this object is the same as 
that of a precisely similar aperture illuminated from the same source.” This 
statement has been extended over the years to include the concept of comple­
mentary screens, although it is obviously a special case.

A typical ‘proof’ of Babinet’s theorem applied to complementary screens 
states that the vector amplitude A x produced at any point in the diffraction 
pattern of one screen, when added to that, A z, produced at the same point in the 
diffraction pattern of the other, gives the amplitude, A 0, produced by the 
unscreened wave; since, for Fraunhofer diffraction, this amplitude is zero except 
for a bright spot at the centre, we have:

~t~ A q — A q 

= 0.
Thus A x =  —A 2 and |^4i|2=  \ A 2\2, giving equal intensities.

The fallacy in this ‘ proof ’ lies in the statement that A 0 = 0 except at the centre.

3. The diffraction pattern of a circular aperture
This fallacy can be explained by considering the two screens to have a circular 

boundary. It is often thought that the larger this aperture, the sharper the spot 
at the centre and thus the less the effect at other points (8). But in fact, as pointed 
out by Boersch [4], although the relative effect is less, the absolute effect increases 
with radius of aperture, as the following theory shows. The diffraction pattern 
of a circular aperture is given by the familiar relation:

A  =  27ra2J 1(2‘Trya)l(27rya)t (1 )

where y  is the distance from the centre of the pattern. The Bessel function 
J x{x) may be approximated by:

7  © cos (*"?")■ (2)
Hence

A * i J ( j ) C0S{27Tya~ r ) -  (3)

Therefore the peak height of the pattern is given b y :

Hence, as the radius of the aperture increases, the average peak height of the 
pattern at any point at a distance y  from the centre also increases, but only as the 
square root of the radius.

The effect of this result is illustrated in figure 1, which shows the diffraction
patterns of a hexagonal arrangement of discs enclosed in circular apertures of
increasing size.



(e) (/)
Figure 1. This shows the effect of placing a hexagonal arrangement of circular obstacles 

(a) in successively larger apertures (dotted lines). The corresponding optical 
transforms are respectively (c), (d ) and (e). The complementary screen (b) and its 
transform ( / )  are also given for comparison.

G 2
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4. Conditions for the validity of Babinet’s principle
This theory suggests the following conditions for the production of two 

complementary screens that will give similar diffraction patterns.
1. The two screens must obstruct approximately half of the total aperture. 

This condition assures that both diffraction patterns will be as strong as possible.
2. The fine detail in the screens must be small compared with the dimensions 

of the total aperture. This condition assures that the diffraction patterns will 
have appreciable intensity for values of y at which the intensity of the diffraction 
pattern of the total aperture is negligible.

3. The fine detail must be evenly distributed. This condition helps to 
assure that the second condition is reasonably effective at every point in the 
diffraction pattern.

These three conditions may be simply derived for centrosymmetric comple­
mentary screens in a centrosymmetric aperture. The condition that the two 
complementary screens have the same diffraction pattern is that over a large 
section of the pattern:

= (5)
A x and A 2 being defined in § 2. The quantity A 0 in the expression

4.+ ̂2 = ̂0 (6)
must be zero over a considerable area of the diffraction pattern. From equation 
(6) we may write:

]A2I2= A 2A 2*

= A XA X* +  A 0A *  -  2 Re (AXA 0* ). (7)

For centrosymmetric complementary screens in a centrosymmetric aperture:

|AI2=l^i2 + A(A-2A) (8)
Hence the condition that the diffraction patterns of the complementary screens
are similar, if any general centrosymmetric shape of aperture is assumed, is that

A Q — 2A 1^iO. (9 )

A x may be re-written:

A x=  cos (27r/rn . p) (10)
51 =  1

if the diffracting screen 1 consists of a centrosymmetric distribution of N  apertures 
each with scattering factor f n and position vector r n . The vector p is the position 
vector in the plane of the diffracting pattern.

A 0 and A x are two independent oscillating functions of p. Condition (5) 
can be satisfied for the largest number of values of p if

(a) l^olmaxj maximum value of A 0, and 2|^41|max are equal,
( b )  (A 0 — 2A x) oscillates through zero as frequently as possible.

Since |2l0|ma3C proportional to S , the area of the aperture enclosing the screens, 
and |2li|max is proportional to eS, the clear area of screen 1, then condition (a) 
implies that e =  -|, condition (1).

Condition (b) implies that A x must oscillate as rapidly as possible if we assume 
that A 0 is fixed. In general the oscillation of A x is more rapid for larger values of
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N y since the number of spatial frequency components in the diffraction pattern is 
increased. Also if the apertures are widely distributed, the oscillations of A 
are again more rapid since the average period of these spatial frequency components 
is decreased. It is obvious that condition (b) therefore corresponds to conditions
(2) and (3).

5. Experimental studies
Figure 2 shows two one-dimensional complementary screens (a), (h) and their 

Fraunhofer diffraction patterns (c), (d). It will be seen that the centres of the 
diffraction patterns are quite dissimilar, and that even at higher angles there is 
only a general similarity.

(a) (b)

i I 'H H  i i

A

^ 1

(c) (d)
Figure 2. Illustration of two coarse complementary screens (a) and (b) and their respective

optical transforms (c) and (d ).
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Figure 3 shows two two-dimensional complementary screens (a), (b) and their 
Fraunhofer diffraction patterns (c), (d). Here again the similarity is absent 
around the origin, but becomes clearer near the periphery of the diffraction 
patterns.

(c) (d)

Figure 3. Tw o complementary screens (a ) and (6), with detail finer than in figure 2, and
their respective transforms (c) and (d).

6. Complementary gratings
Complementary gratings are defined as gratings with the same periodicity 

but in which the scattering points in one correspond to absence of scattering 
points in the other. Such gratings can be produced by punching holes (figure 4 
(<z), (b)) and if both gratings contain approximately equal numbers of holes the
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correspondence of their diffraction patterns should be exact. Figure 4 (c), (d) 
shows that this result is very accurately fulfilled.

These gratings have some relation to the theory of homometric structures 
in crystallography (9).

(a) (b )

(c) id)

Figure 4. Tw o complementary gratings (a) and (6) and their respective transforms
(c) and (d).

7. The production of diffraction patterns from coarse screens
Since the main reason for the invalidity of Babinet’s principle is the presence 

of fringes (equations (1), (2)) in the diffraction pattern of a circular aperture, 
if these fringes could be eliminated, the principle would be better obeyed. In 
principle, fringes will not occur if the transmission function of the aperture is so



Figure 5. (a) represents an aperture whose diffraction pattern is near zero over a finite
angle in the transform (b). The hexagonal arrangement of obstacles in figure 1 (a) 
gives a transform in the zero region which does not contain any effect due to the 
aperture (c). (d ) shows the transform of the obstacles in a different orientation,
(c) and (d) may be combined to give the total transform of the obstacles, cf. figure 1 (f) .



Validity of Babinet's principle for Fraunhofer diffraction 91

adjusted that the diffracted intensity approaches zero asymptotically (apodization). 
Although it has not been found possible to prepare such an aperture, a one­
dimensional function can be represented (figure 5(a)) and fringes will be absent 
from its diffraction pattern over a finite angle (figure 5 (h)). By piecing together 
several diffraction patterns (figure 5 (c)) with the model in different orientations 
within the aperture a fairly good representation of the diffraction pattern of the 
model can be obtained (cf. figure 1 (a)).

On indique quelques idees erronnees concernant le principe de Babinet. Les figures 
de diffraction de Fraunhofer d’ecrans complementaires ne sont pas semblables si le detail 
dans les 6crans lffob&t pas a certaines conditions, qui ne sont pas facilement remplies. On 
presente quelques exemples de figures de diffraction d’ecrans complementaires, illustrant 
jusqu’a quel point le principe de Babinet est valable en pratique. On indique une fagon 
suivant laquelle on peut utiliser le principe pour obtenir les figures de diffraction de modeles 
tridimensionnels de structures cristallines.

Es wird auf die Gefahr von Fehlschliissen aus dem Babinetschen Prinzip hingewiesen. 
D ie Fraunhoferschen Beugungserscheinungen komplementarer Schirme sind nur dann 
gleich, wenn die Schirme im  Einzelnen gewisse Bedingungen erfiillen, die gar nicht leicht 
einzuhalten sind. Es werden einige Beispiele von Beugungserscheinungen an komple- 
mentaren Schirmen gezeigt, die den Umfang der Gultigkeit des Babinetschen Prinzips in 
der Praxis verdeutlichen.

Das Babinetsche Prinzip kann dazu benutzt werden, die Beugungserscheinungen von 
M odellen dreidimensionaler Kristallstrukturen zu bestimmen.
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