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PREFACE

None o7 the work described in thig thesis has been
oresented to another university in suovport of an application
for a higher degree.

A1l the author's research experience since first
cradunting has been gained in the Physics TNevnartment of
the Uriversity of Manchester Institute of Secience and

Technology. The following anpointments have been held:-

October 1964 4o October 1966 - SRC Research Studentship.

October 1966 to the time of writing — Temporary
Demonstrator.
A paper, written jointly with Professor H Lipson, has

been published describing part of the work:

"On the validity of Babinet's Principle for Fraunhofer
Diffraction", Optica Acta, 1968, 15, 8%-91.
A further vaver, written Jjointly with Dr G Harburn and

Profegsor C A Taylor, has also been »ublished during the

course of the work:

"Gas-phase Laser as a Source of Lirht for an Cptical

Diffractometer™, Nature, 1965, 205, 1095-1006.




ABSTRACT

The thesis is divided into two main sections. In the
first section (chavters 1-4 inclusive) is described how
three~dimensional optical ftransforms can be obtained from
three-dimensional models and used in the solution of crystal
structures. In the second section {chavters 5~7 inclusive)
the solution of +the crystal structure of 2—diazoindanem1,%—
dione is discussed. It was originally intended to link
both halves of the work by using three-dimensional optical
tranaformne in the solution of the structure of 2-diszoindane-
1,3-dione. However, the structure was gsolved by conventional
methods before this new ftechnigue could be develoved.

Chavter 1 outlines the conventional optical-trangform
techrnigue of solving crystal structures using two-dimensional
diffraction screens to give corresvondings sections of the
recivrocal solid. Ways in which the complete three-
dimensional optical transform could be used are indicated
and Harburn's method of obtaining non-central sections of
the recivrocal golid is outlined. Also discussed is the
suggestion by Harburn, on which this work is based, that
three-dimensional optical transforms could be formed from
diffraction patterns 5f three-dimensional models utilising
Babinet's principle.

Babinet's principle is examined critically in chapter 2
and the very restricted conditions under which it is

applicable are laid down. It is shown that transforms of




three~-dimensional models cannot be obtained in the way that
Harburn supposes, because the diffraction pattern of the
aperture of the diffraction instrument must always swamp
the pattern given by the model.

Chavter 3 discusses how the difficulties associated with
Babinet's principle might be overcome using the technioue
known as avodisation. The use of two-dimensional apodising
screens is described but rejected on theoretical and
experimental grounds. Then the application of apodising
apertures is exnlored and they are fournd to give satisfactory
results.

Chanter 4 then gives examples of the aprplications of
the avodising-averture method of producing optical transforms
of three-dimensional models. Other pogsible usges of the
method are elso discussed.

In Chavter 5 the initial steps in the solution of the
atructure 2-diazoindane-1,%-dlione are described. The
chemical interest in the structure is first outlined and
the derivation of the unit cell and the space grouv is
described.  The solution of the (001) projection of the
molecule ig obtained using = combination of opticel methods
and Fourier methods followed by a rigid-body minimum-residual
refinement.

Chanter 6 describes the completion of the structure
refinement. The solution of the (100) vrojection is
cbtained using the minimum-regidual refinement method and
difference maps. Then, all the available data is used in
a least-squrres refinement of the complete structure. The
resulting structure is examined critically using difference

maps .
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Tinally in Chapter 7 the refined structure is examined
in detail. Bond lengths and angles are calculated and
combared with the values that micsht be anticipated and the
degree of vlanarity of the molecule iz exanmined. The
vacking of the molecules ig discussed and lastly the vara-

meters of the thermal vibration ellipsoids are derived.
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PART 1
TEHREE~DIMENSIONAL OPTICAL TRANWSFORMS FROM THREE-
DIMENSTONAL ATCMIC MODELS USING

BABINET'S PRINCIPLE




CHAPTER 1

THE OPTICAL-TRANSFORM METHOD AND ITS EXTENSION

70 THREE DIMENSIONS

The optical-transform method is now a well known
technique in X-ray crystal-structure determination and it
is not proposed to give an exhaustive description of it here.
However certain theoretical and practiecal aspects, that are
necessary to present a coherent and logical introduction to
this work, will be outlined. In addition, the notation to
be used will be introduced. Further information concerning
the optical-transform method can be obtained from the standard
works on the subject - Lipson and Taylor (1958) and Taylor and
Lipson (1964) - and, from a concise but comprehensive review

article, Lipson and Taylor (1965).

1.1 THE ANATOGY BETWEEN X-RAY AND OPTICAL DIFFRACTION

Consider a parallel beam of monochromatic coherent
radiation striking a body of some material which will both

transmit and scatter the radiation (fig.l.la). If o and s

are unit vectors representing the incident and scattered beams
respectively, then the wave scattered by an incremental volume
dV at a distance r from some arbitrary origin 0 is given in

amplitude and phase by




Fig11b




aG(s) = p(g).dv.expfg%i r.(s - SO)]

The quantity p(r) is the scattering density of the material
at the element. If we now write 8 = g - g0 then the total

scattering by the whole volume in the direction g is given by

¢(8) = [y o(x) exol2lE r.glav (1.1)

It will immediately be seen that equation 1.1 has the
form of a Fourier-transform relationship; that is, G(§) is
the Fourier transform of p(z). G(8) is a complex function
which can be visuvalised as a "solid" reciprocal in nature
to the scattering body p(r) and existing in “reciprocal space",
that is, S space. The term "reciprocal space" results from
the inverse relationship between functions and their Fourier
transformg; fine detail in the diffracting material, or "real
space", is represented by large distances in reciprocal space.

Figure 1l.1b is a vector diagram of the scattering process.
No assumptions have so far been made about the amplitudes of
s and S, but it is convenient to make these 1/), where )\ is
the wé;;length of the radiation, so that the dimensions of
reciprocal space are independent of A; then S = g_gigg’ where

A
20 is the scattering angle and

a(g) = 'rv o(r) exp(2ni r.8)dv (1.2)

The reciprocal-space variable 3, usually referred to
simply as the reciprocal vector, has the dimensions of
reciprocal length. If the incident beam is fixed but 8 is
allowed to take on all values, then the locus of the end of

the vector § is the surface of a sphere of radius 1/\, the
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sphere of reflection (fig.l.2). If the direction of the
incident beam is now allowed to take on all possible

values, it can be seen that the end of the reciprocal-lattice
vector will occupy all points within a sphere of radius 2/i,
the limiting sphere. The reciprocal solid may only be
explored at points within this sphere (Lipson and Taylor
1958).

It will be noted that so far no mention has been made
about the nature of the scattering material or the radiation.
We shall, however, be concerned with the scattering of X-rays
by electrons in crystals and of light waves by diffraction
screens (under Fraunhofer conditions); although the mechanism
of scattering is different, the above theory may be applied
equally well to each. Since optical diffraction is usually
carried out using two-dimensional screens, the analogy with
three-dimensional X-ray scattering is often missed; however,
even a strictly two-dimensional diffraction screen would
produce a three-dimensional reciprocal solid, variable in
two dimensions and constant along the other dimension.

One difference between optical and X-ray diffraction is
extremely important. For X-rays diffracted by the atoms in
a crystal, the relevant part of the reciprocal solid and the
limiting sphere are of the same order of magnitude, since
the wavelength of the radiation is about the same size as
the atomic spacings. However, with the diffraction equip-
ment used by the author the diffraction screens have
dimensions about 104 times the wavelength of light and there-
fore the relevant detail in the reciprocal solid is much
smaller (10"4 times) thgn the limiting sphere. In addition,

the incident beam is fixed during observation of the optical
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diffraction patterns and the diffraction angle 6 is quite
small (~ 10-3rad.). The total result is that, effectively,
only a small cross—section of the reciprocal solid is
observed, where it intersects the sphere of reflection; the
cross-gsection appears planar because of the large radius of
the sphere.

In the case of X-ray diffraction we shall normally only
consider scattering by crystals whoée lattices are perfectly
ordered in three dimensions. The reciprocal solid is the
familiar reciprocal lattice. Bach reciprocal-lattice point
represents a sampling of the continuous reciprocal solid
obtained from a single unit cell of the real structure
(Lipson‘and Taylor, 1958). We may therefore write the

familiar X-ray scattering equation as

G(S) = PF(hkl) =

) Fn exp[Zni(th + ky, + lzn)] (1.3)

M=

1

The summation is taken over the N atoms of one unit cell and

th

Pn is the scattering factor for the n'" atom with coordinates

X Yy and B expressed as fractions of the unit cell trans-
lations a, b and c. The indices h, kK and 1 can assume
whole number values only; they denote integral multiples of

. . . * % * .
the reciprocal unit cell translations a., b and ¢ and specify

the reciprocal-lattice points.

1.2 OPTICAL-TRANSFORM METHODS IN TWO DIMENSIONS

The similarity between X-ray diffraction and optical
diffraction forms the basis of the optical~transform method

of solving crystal structures. In this method X-ray data

are compared with the optical diffraction pattern of a




representation of a possible sitructure. The representation
of the structure is made by punching holes at atomic positions
in an opaque card; it is only necessary to punch the projec-
tion of one unit cell of the structure (Hanson, Lipson and
Taylor, 1953). The Fraunhofer diffraction pattern, or
optical transform, is then formed, usually by means of an
optical diffractometer (Hughes and Taylor (195%), Taylor and
Thompson (1957)). The X-ray data are presented in the form
of the relevant reciprocal-lattice section, drawn on trans-
parent paver, and weighted at each reciprocal-lattice point
with a black disc whose area is proportional to the X-ray
amplitude at that point. (It is found convenient to use
unitary structure factors rather than simple structure
factors for the data). If the weighted reciprocal-lattice
net is superimposed on a photograph of the optical transform
of a trial structure the agreement may be tested and possible
adjustments to the model suggested.

As was indicated above, the two-dimensional diffraction
screen is a representation of a crystal structure projected
onto a plane, and it has a transform which is constant in one
dimension. The optical transform observed is a cross section
of the transform perpendicular to the constant direction.

What fraction of the total three-dimensional X-ray data can

we compare with this optical transform therefore? The central
section of the X-ray reciprocal solid (or lattice) parallel

to the plane of projection of the structure is the relevant
part. This may be shown simply if we let O'SXSySZ be an
orthogonal set of axes in reciprocal space parallel to the

axes 0xyz in real space. Equation 1.2 may be rewritten




G(SX,S 'Sz) =

y

fff p(x,y,2) exp[Zni(xSX + ySy + XSX)] dx dy dz
Xyz

The complex amplitude distribution on the O'SXSy plane

(SZ = 0) is given by
G(SX,Sy) =

J[] elx,y,2) explomi(xs_ + ySy)] dx dy dz
Xy %

ice. G(Sg,8y) =

fj[f p(x,y,z) dz) exp[2ni(xSX + ySy)] dx dy (1.4)
Xy 2
The term in curly brackets represents the projection of the
real-space scattering density on to the Oxy plane. Therefore
from equation 1.3 we can see that the transform of the
projection of the scattering density in real space on to the
Oxy plane is equal to the amplitude distribution on the

parallel O'sty plane in reciprocal space.

1.3 THREE-DIMENSIONAL OPTICAL TRANSFORMS -~ HARBURN'S METHOD

The optical~transform method is therefore essentially
limited to two dimensions ~ projections in real space and
corresponding sections in reciprocal space. However, as
crystal structures are attempted which are more and more
complex, this and other purely two-dimensional methods prove
frequently inadequate. The usual reason for failure is that

overlapping atoms in projection make interpretation of




two—-dimensional electron density or Patterson maps difficult.
Thus is has frequently been found necessary to use the full
amount of information in the three-dimensional data and to
use three-dimensional visualisations of the structure.

Many of the standard two-dimensional methods, for example,
Patterson techniques [Buerger (1959)71, have been readily
extended to three dimensions. Three~dimensional weighted
reciprocal lattices have been found to give useful information
also (Iball and Mackay (1962))}. Professor C A Taylor has
therefore suggested that it might be valuable to attempt to
extend the optical-transform method to three dimensions and
a technigque of producing diffraction patterns, representing
non~central sections of reciprocal space, was evolved by
Harburn and Taylor (1961) (also Harburn 1961). The basis of

this method may be seen by rearranging equation 1.3, that is

N
G(8) :n‘%:1 Fh exp[2w1(hxn + ky + 1zn)]
applying it here to diffraction of light by screens, so that
Fn is the scattering factor of an aperture. We may rewrite

the equation as

[<p]

(€]

f
nM=

1 ‘.'Pn exp[Zni(hxn + 1<:yﬂ)] exp(ZTrilzn) (L.5)

If 1 = O this reduces %o

!
]
-
li

i C

Ry explami(ix + ky)) (1.6)

Equation 1.6 indicates that the zero layer of the
reciprocal lattice (the central section of the reciprocal

solid) may be represented by a two~dimensional mask equivalent




to the projection of the crystal structure. Equation 1.5
shows that, if 1 is not zero (a non-central section), we may
still use the same mask but the phases of the light passing
through each hole must be changed from zero to 2ﬂlZn-
Harburn produced these phase changes by rotating mica plates
placed over each hole in the mask, which was illuminated by

circularly polarised light.

1.4 THREE-DIMENSIONAL OPTICAL TRANSTORMS USING BABINET'S

PRINCIPLE
Harburn and Taylor have also suggested a further method
of producing three~dimensional optical transforms. The
following quotation from Harburn (1961) outlines the idea:
"Babinet's theorem states that, except at the centre,
the intensity distributions in the Fraunhofer diffraction
patterns of two complementary screens are the same;
complementary screens have their clear and opaque areas
interchanged. Utilizing this principle a trial structure
could be represented in the parallel beam of a diffracto-
meter by a model with small spherical balls representing
the atoms and, except for the zero order, the optical
transform of such an arrangement would be the same as
that for a mask prepared in the conventional manner.
If the various practical difficulties were overcome
it would be possible, in theory, to build up the three-
dimensional transform from a series of pictures taken with
the model rotated a small amount about a chosen axis
between exposures.”

The optical transform is in each case a central section

i of the reciprocal solid; and we can scan the whole of the




gsolid by rotating the section. This is somewhat analogous
to taking a rotation photograph in X-ray crystallography.

The attempt to achieve three-dimensional optical traps—
forms in this way forms the first part of this thesis. It
was realised early in the work that, in addition to practical
difficulties, certain theoretical obstacles lie in the way of
achieving the desgsired results. As will be shown in the
following chapter, the view of Babinet's principle taken by
Harburn and Taylor is misleading. It should be added that

the same view 1s quite generally held to be correct.

1.5 NOTATION USED IN FRAUNHOFER DIFFRACTION WORK

The notation used up to this point is that commonlj
applied to X-ray crystallography and, although it can be
useful in considering optical transforms, it is inconvenient
to apply in the case of simple Fraunhofer diffraction of light.
Figure 1.3 illustrates the notation to be used in discussing
Babinet's principle (Chapter 2), and apodisation and its
application to producing three-dimensional optical transforms
(Chapter 3). The diagram is an idealised optical system of
an optical diffractometer.

00001 defines the common optic axis of the two lenses
L1 and Lg, OO and O1 being the focal points of L1 and L2
respectively. Cxyz defines an orthogonal set of axes at
0, 0Oz lying along the optic axis. O1§'n' defines a two-
dimensional set of axes at 01, in a plane perpendicular to

the optic axis. If a diffracting object is placed between

L1 and L2 and illuminated by a monochromatic point source at
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Oo’ a Fraunhofer diffraction pattern is produced in the
Of'n' plane.

The Fourier-transform relation between a two-dimensional
screen, with transparency distribution T(x,y), and its

diffraction pattern may be written
A(E',n") =

[[ o(x,y) exp[%%i(xg' +yn')] ax dy (1.7)
Xy

where p is the focal length of the lens L2. It is usual to

simplify this relation by writing

E=§%' and mn =n' so that

PA PA
A(g;n) =
[ T(x,y) expl2ni(xg + yn)] ax dy (1.8)
Xy

The similarity between the Fourier transform relationships
in equation 1.8 and 1.2 can easily be seen. If the screen,

and hence its diffraction pattern, has circular symmetry then

we can write

A(p) = [ 2(r) JO(Zer) 2mr Ar (1.9)
g
where p2 = §2 + n2 and r2 = x2 + y2. BEquation 1.9 is in the
form of a Hankel trangform relation and it is useful when

considering apodisation.

We have already seen that if we have a three-dimensional

transparency distribution

e
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A(gs'ﬂ) =

[[ {] ™(x,y,2) dz} expl2mi(xg + yn)] dx dy (1.10)
Xy %

the quantity in curly brackets represents the projection of

™x,y,2) on to the plane z = O.

1.6 SUMMARY

The purpose of the work described in the first part of
this thesis may now be summarised. Many crystal-structure
determinations are now carried out in three dimensions and
therefore an extension of the optical~transform method to
three dimensions could prove useful. One possible approach
to achieving this aim has been suggested: that is to put
actual three-dimensional models in the aperture of an optical
diffractometer and photograph their diffraction patterns.
We should expect {0 see optical transforms which correspond
to those from a punched mask representation of a projection
of each model. Babinet's principle indicates that this
latter result should be wvalid; the following chapter examines
this principle carefully and shows that the anticipated result

does not in fact occur.
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CHAPTER 2

BABINET'S PRINCIPLE

2 BABINET'S PRINCIPLE

While attempting to apply Babinet's principle in
producing optical transforms of three~dimensional objects, as
outlined in the previous chapter, the author was forced to
look very closely at the limitations on the principle. This
chapter is concerned mainly with the conclusions drawn from
this investigation (see also Lipson and Walkley (1965)).
Babinet's principle (Babinet (1837)) is an interesting example
of an idea which has been changed almost out of recognition
by the reinterpretations of later investigators; in addition
a number of fallacies have become associated with it and these
are pointed out. Although Babinet's principle is applied to
both Fresnel and Fraunhofer diffraction the discussion is

mostly concerned with the latter.

2.1 INTRODUCTION TO_BABINET'S PRINCIPLE

Let us examine an account of Babinet's principle which
might be given in the average textbook in optics. We
consider a two-dimensional screen containing a large aperture
and illuminated by a point source S of monochromatic light

(fig. 2.1). At some point P, on the far side of the screen




Fig.21
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from the light source, we obtain a diffraction pattern of

the aperture in the screen. Let us suppose that the wvector
amplitude is Ao at P. The large aperture in the screen is
then covered by another screen, containing a number of smaller
apertures, giving a diffraction pattern with vector amplitudeg
A1 at P. This latter screen is then replaced by another in
which the opague portions correspond to clear portions in the
first screen and vice-versa. (The two screens are said to

be complementary). If the second screen gives amplitude

A, at P, then by the vector addition property of light:-

A = A

o R (2.1)

It A, =0 over most of the diffraction pattern then
e = jaf (2.2)

and therefore the diffraction patterns of the complementary
screens will appear identical, having equal intensity
distributions.

Equation 2.1 is given in many modern textbooks as a
statement of Babinet's principle; however it is often
regarded to be the statement that complementary screens
produce identical diffraction patterns, i.e. equation 2.2.
The difficulty arises because it ig implicitly assumed that
the two expressions are egquivalent. Equation 2.1 is of
course absolutely correct within the limits of Kirchhoff's
diffraction theory but, as we shall see, complementary screens
only rarely produce similar diffraction patterns. We shall

in the following regard this latter statement as representing

|
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Babinet's principle (although incorrect) since it is the
traditional physical idea associated with the prineciple.
Equation 2.1 holds for both Fresnel and Fraunhofer
diffraction. (In the case of Fraunhofer diffraction S and
P may be considered to be at large distances from the screen).
A number of textboocks, e.g. Meyer (1949) and Sommerfeld (1954),
recognise that for Fresnel diffraction the quantity AO will
have large values over most of the points P not in the
geometric shadow of the surrounding aperture (that is,
effectively over the whole pattern). Hence the Fresnel
diffraction patterns of complementary screens are not
equivalent and Babinet's principle cannot be applied. For
Frgunhofer diffraction, however, most optiés textbooks assume
that complementary screens produce identical diffraction
patterns (see, for example, Michelson (1927), Sommerfeld
(1954), Meyer (1949), Andrews (1960), Longhurst (1962), and
Jenkins and White (1957)).  The usual justification is that
AO is very small except for a small region near the centre
of the pattern. (This particular idea is refuted in section
2.5.) However, complementary screens produce comparable
Fraunhofer diffraction patterns only under certain limited
conditions and the major part of this chapter is devoted to
demonstrating this fact.

It is convenient to consider here one possible objection
to the above consideration of Babinet's principle. It would
be reasonable to consider a situation where there was no
limiting aperture to the complementary screens. This would
mean that there is no contributioﬁ'Ao and hence 1A1|2 =
]A2|2 for the whole pattern. However this would not

represent any physically real system. It is always necessary
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to limit the extent of the diffraction screens if only to

ensure coherent illumination over their total area (Taylor

and Thompson (1957)).

2.2 HISTORICAL DEVELOPMENT OF BABINET'S PRINCIPLE

It has already been stated that Babinet's principle is
a concept which has altered considerably from its original
form. It is interesting to trace this development, as it
sheds some light on how and when the various misconceptions
have arisen.

Babinet's original paper (Babinet 1837) is concerned
with an explanation of the occasional appearance of haloes
surrounding the Sun and Moon. He interprets this phenomenon
as being due to light diffracted by small spherical water
droplets of roughly uniform size in the atmosphere.

Babinet states the principle thus (in translation):

"Given a point of light producing its normal image at
the back of the eye, if, outside the line joining the
point and the eye, but fairly near to this line, we
place a small opaque obstacle, the effect of this
small opaque body will be exactly the same as that of
a precisely similar aperture illuminated by incident
light, so that to the extent that the globule would
seem necessarily to produce opacity, in reality it
produces illumination.®

Babinet does not justify this statement beyond giving
an explanation of the presence of light in the shadow of an
opaque body in terms of half-period zones. It will be noted
that the statement is quite vague and there is of course no

mention of the idea of complementary screens.
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The phenomenon that Babinet describes, of the diffraction
of light by collections of small opaqgue bodies, had heen
previously observed by a number of investigators of whom
Babinet mentions Newton and Young. Young (1845) used the
effect in the device known as "Young's Briometer" (see 2.6)
t0 measure the diameters of thin fibres and small particles.

Babinet does not connect his statement with either Fresnel
or Fraunhofer diffraction, although the phenomenon he describes
obviously belong to the Fraunhofer class. Sommerfeld (1954)
gtates that initially Babinet's principle was applied only
to Fraunhofer diffraction. It is more probable, however,
that the distinction had not been clearly drawn at that time
between Fraunhofer and Fresnel diffraction.

Verdet (1869) describes a particular illustration of the
principle. He derives the Fraunhofer diffraction pattern of
a number of parallel threads of the same diameter (as in
Young's Eriometer) and shows that this is the same as the
diffraction pattern of its complementary screen (without using
this terminology). He does not state whether he intends
the principle to apply to Fresnel diffraction also, although
he clearly distinguishes between the two types of diffraction
in his book.

Magcart (1889) extends the concept of Babinet's principle
beyond the simple idea of the similarity of the diffraction
patterns of complementary screens, as described by Babinet
and Verdet. He first defines the meaning of the term
"complementary screens" (using this terminology) and gives
an equation similar to 2.1 to describe the relation between
their diffraction patterns. However he applied this

equation only to Fresnel diffraction.
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Drude (1902) also introduces an equation corresponding
to 2.1, apparently applying it only to Fraunhofer diffraction.
He defines Babinet's principle ag follows:

"The diffraction patterns which are produced by two
complementary screens are identical excepting the
central spot, which corresponds to the diffraction
angle zero."

This statement is shown to be incorrect in the general
case in section 2.5.

The statements associated with the above authors do not
mean that they are necessarily the originators of these ideas.
However it is possible to trace the evolution of Babinet's
principle through them. It can be seen that by 1902 all the
ideas now associated with Babinet's principle had been
gathered. The concept began with the simple qualitative
statement by Babinet and was then generalised, with the
additional concept of complementary screens, into equation
2.1, and applied to both Fraunhofer and Fresnel diffraction.
The additional idea was also accumulated that the Fraunhofer
diffraction patterns of complementary screens are identical

except for a small region at the centre.

2.5 EXPERIMENTAL INVESTIGATION OF BABINET'S PRINCIPLE.

A simple illustration of the workings (or non-workings)
of Babinet's principle, as applied to Fraunhofer diffraction,
is now given. Figures 2.2a and 2.2b show two simple comple-
mentary screens and figures 2.2¢ and 2.2d are their respective
diffraction patterns. It can be seen that both transforms

look very similar overall but that a point-~to-point comparison




(a)

IT11

Fig.2.2
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reveals considerable differences. A further example is
given in figure 2.% where two more-complex complementary
screens are used. Figures 2.3%¢c and 2.3%d are the diffraction
patterns of 2.%a and 2.%b respectively. Again we have the
overall similarity between the two patterns and the point-to-
point differences.

If we were to examine both sets of transforms on the
points of a superimposed lattice, where the lattice points
coincided with features on one or other of the patterns, we
should find that the number of points of correspondence
(positions of equal intensity) was greater for figures 2.%c
and 2.3d than for 2.2c and 2.2d. This illustrates a general
property of complementary screens that the more complex are
the screens (i.e. the finer the detail), the more nearly
do their diffraction patterns correspond. This is shown
theoretically in the next section.

The screens of 2.2 and 2.3 have been carefully constructed
to ensure that the clear areas of each pair of complementary
screens are equal. This is also another necessary condition
to obtain similar diffraction patterns. Figure 2.4 illustrates
a case in which the diffraction patterns of the complementary
screens are very different because the clear areas are not
equal (see section 2.5)«

After examining figures 2.2 and 2.3 and many other pairs
of complementary screens the author was forced to conclude
that Babinet's principle does not hold with any great accuracy
in the general case. In fact, figures 2.2 and 2.3 are rather
favourable examples since the differences in the two diffrac-
tion patterns are often greater. If, therefore, Babinet's

brinciple does not hold in the general case, are there any

special conditions under which it does hold? The author
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arrived at the following conditions, under which Babinet's
principle is most nearly obeyed, hy a trial and error
process, when examining various types of complementary
screens:

(1) The two screens must each obstruct approximately_

half the total aperture.

(2) The detail in the screens must be small compared

to the dimensions of the aperture.

(3) The detail must be evenly distributed throughout

the aperture.

Of all the optics textbooks referred to by the author
only Ditchbwn (1963) seems to be aware of these limitations.
Hosemann and Bagchi (1962) do point out some of these
limitations, although their work is concerned mainly with

disordered structures and is not a textbook in optics.

2.4 THEORETICAL INVESTIGATION OF BABINET'S PRINCIPLE

We may derive these conditions theoretically at least
for the quite general case of centrosymmetric complementary
screens in a centrosymmetric aperture. We have seen above
that the condition for the diffraction patterns of complemen-

tary screens to be the same at any point is that
2 2
lad = = qal

(equation 2.2) will hold. This will be so if Ay, =0 in

equation 2.1, i.e.

AO = A1 + A2

However AO depends on the shape of the aperture and in
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general will be zero at a very limited number of points.

(The conditions under which it is zero over a large number
of points will be explored in Chapter 3). It is possible
to derive a further condition on the complementary screen
function, which will result in similar diffraction patteruns.

From equation 2.1 we may write

|A2l2 = A"
I VY VR W VR W S W
ad® = fag?+aa-aa” -an” (2.3)
If at any point equation 2.1 holds then
A~ aa - A = 0 (2.4)

We may simplify this expression by considering a centro-

symmetric aperture and centrosymmetric screens, then:

* *
AO = Ao and A1 = A1
and equation 2.4 becomes
A(a) - 24,) = O (2.5)

If we ignore the solution Ao = 0 then equation 2.5 becomes

A - 28, = O (2.6)
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We may write A1 ag:

Il M=

Ay o=

. £, cos(2wrh . p) (2.7)

1
if the diffracting screen 1 consists of a centrosymmetric
arrangement of N apertures wach with scattering factor fn
and position vectort‘n. The vector p is the position vector
in the plane of the diffraction pattern.

AO and A1 are two independent oscillating functions of
p. From equations 2.6 and 2.7 therefore, equation 2.2 can

be satisfied for the largest number of values of p if:

(a)

'Aolmax’ the maximum value of A , and 21Aﬂ max
are approximately equal,

(v) (Ao - 2A1) oscillates through zero as frequently

as possible.

Since |A is proportional to S, the area of the

o'max

aperture enclosing the screens, and |A is proportional

d max
to eS8, the clear area of screen 1, then condition (a) implies
that ¢ = + (condition (1) above).

Condition (b) implies that A1 must oscillate as rapidly
as possible, if we assume that Ao is fixed. In general the
oscillation of A1 is more rapid for larger values of N, since
the number of spatial frequency components in the diffraction
pattern is increased. Also, if the apertures are widely
distributed, the oscillations of A1 are ggain more rapid
since the average period of these spatial frequency components

is decreased. Thus condition (b) implies conditions (2) and

(3).
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Hosemann and Bagchi (1962) derive similar theoretical
conclusions but only for one particular set of complementary
screens in one particular aperture (a square lattice of
holes - or round obstacles -~ inside a square aperture).

The above treatment given by the author is therefore more

general.

2.5 BABINET'S PRINCIPLE FOR TARGE APERTURES.

It has been indicated above that a number of authors
(for example Drude (1902), Jenkings and White (1957), and
Michelson (1927)) put forward the idea that the Fraunhofer
diffraction patterns of complementary screens are identical
except for a small region near the centre (the image of the
source) . Other authors extrapolate from this and suggest
that for very largegpertures the source image is very small
(see Tonghurst (1962) and Meyer (1949)) and hence conclude
that better approximations to similarity are obtained for
large apertures. This can simply be disproved by actually
performing the experiment.

Figure 2.4a illustrates a hexagonal arrangement of
diffracting obstacles which are placed in successively
larger apertures (dotted circles). Figure 2.4b shows the

complementary screen. Figures 2.4c¢, d and e respectively

" show the diffraction patterns of 2.4a for each aperture.

Figure 2.4f is the diffraction pattern of the complementary
screen 2.4b. There is a vague similarity between 2.4f on
the one hand and 2.4c, d and e on the other (they have the
same hexagonal symmetry). Astthe aperture size is increased

however, the diffracted light from the aperture increasingly

dominates the whole pattern and the similarity decreases.
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This result can be shown theoretically. Let us consider
the case of a circular aperture whose diffraction pattern is

given by the familiar relation derived by Airy:
Alp) = 2ma”J, (2mpa)/(2mpa) (2.8)

where a is the radius of the aperture and p is the distance
from the centre of the diffraction pattern. Now the Bessel

function J1(z) may be approximated by
~ 2 -
J(z) =~ /(%) cos(z - %m)

(Handbook of Mathematical Functions) for large values of gz,
the error being of the order of L Substituting in

equation 2.8 we obtain
Mp) ~ 7=/ (2) cos(ampa - 4m) (2.9)

Therefore the peak height of the pattern is given by the

modulus of the right hand side of equation 2.9
Ml ey~ o= /(&)
max mp p

Hence, as the radius of the aperture increases, the average
peak height of the pattern at any point at a distance p from
the centre of the pattern also increases (as the square root
of the radius). Therefore the diffraction pattern of any
obstacles placed within this aperture will increasingly be
swanmped as the size of the aperture is enlarged. The author
derived this result after performing the experiments of

figure 2.4 but later found that it had already been noted by
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Boersch (1951), who did not illustrate it experimentally

however.

2.6 YOUNG'S ERIOMETER

The device known as Young's eriometer is often quoted in
textbooks as an example of Babinet's principle (Ditchbum
(1963) and Longhurst (1962)). Unfortunately this assertion
is extremely suspect.

The device consistg of a plate drilled with a number of
small holes on the circumference of a circle of about 20cm.
diameter. At the centre of the circle is a larger hole of
about 2mm diameter. The back of the plate is illuminated
by an extended monochromatic source, usually a sodium lamp.
If the central hole is now viewed through a glass plate
sprinkled with fine particles of the order of 10um. diameter,
a diffraction pattern is seen, which has the appearance of
the familiar Fraunhofer diffraction pattern of a circular
hole. The pattern is in fact that which would be produced
by a hole which has the average diameter of the powder
particles.

It is possible to line up the dark rings of the pattern
with the ring of small holes surrounding the central aperture
and hence deduce the angular diameter of each dark ring.
These results may then be used to calculate a value for the
average diamter of the powder particles.

The explanation usually given in optics textbooks of

the diffraction pattern is that, because of Babinet's principle,

the random arrangement of powder particles produces the same

pattern as the complementary random arrangement of apertures.
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The explanation then shows that the diffraction pattern of a
random arrangement of similar holes is the same as that of a
single hole, multiplied N times in amplitude, where N is the
total number of holes.

This illustration of Babinet's principle appears to be
perfect with no interference from a limiting-aperture
diffraction pattern. Unfortunately, the explanation is wrong
at two points. First the diffraction pattern of a random
array of holes does not have the appearance suggested (Stone
1963), particularly at points near the centre of the pattern.
Secondly, the diffraction patiern that is observed is not a
Fraunhofer diffraction pattern in the normally accepted
sense. It can be simply shown that, with the experimental
arrangement given above, good coherence is obtained only
between points separated by a few particle diaméters (i.e.
not over the whole area of the glass plate containing the
particles). The calculation is that which is normally
used to derive the degree of coherence between points in the
mask plane of the optical diffractometer (TPaylor and Thompson,
1957) . The particles are therefore scattering independently
and the diffraction pattern is that of an individual particle,
multiplied N times in intensity. No interference pattern
duve to a limiting aperture is observed, as this would have
dimensions of such a size that it would be incoherently

illuminated.

2.7 CONCLUSIONS CONCERNING BABINET'S PRINCIPLE

The main conclusion that can be drawn is that Babinet's

principle does not hold generally. The principle is only

true for a limited class of complementary screens, unless a
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particular type of limiting aperture is used (see Chapter 3).
However, the equation

AO = A1 + AZ

which is sometimes regarded as an expression of Babinet's
principle, is true, but it has no great physical significance
if it does not imply that complementary screens have identical
diffraction patterns.

The conditions that must be obeyed by complementary
screens are that they must each obstruct about one half the
total aperture and must consist of fine detail evenly spaced
over the screen. Increasing the size of the limiting
aperture does not improve the similarity between the two
diffraction patterns, as is often supposed. The most
frequently quoted example of Babinet's principle, Young's
eriometer, is not a straightforward application of the
principle, as the diffracting mask (the powder particle
distribution) is not coherently illuminated.

These restrictions on Babinet's principle are not
generally appreciated, although some of them have been pointed
out by other workers. For this reason it was felt necessary
to treat the subject fully before continuing with the main
subject of this thesis, the application of Babinet's principle

to the production of transforms of three-dimensional objects.
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CHAPTER 3

3 THE APPLICATION OF APODISATION IN OBTAINING OPTICAL

TRANSFORMS OF THREE-DIMENSIONAL OBJECTS

The work outlined in the previous chapter indicates
that there is no sinmple way to obtain the required optical
transform of a three-dimensional crystal-structure model.
If we were to place such a model directly in the aperture
of an optical diffractometer, the diffraction pattern of
the model would in general be completely distorted by the
light diffracted (AO) from the aperture of the instrument.
Therefore the obvious conclusion is that AO must be made
zero, or negligible, over the major part of the diffraction
pattern of the model; and thus, in some way, the trans—
mission characteristics of the aperture must be altered to
produce this effect. A somewhat analogous problem, that
of reducing the "diffraction ripple" surrounding images
formed in optical instruments, has been solved by the
technigque known as "apodisation'; the author was led to
explore the possibilities of using apodisation to eliminate
the diffraction ripple represented by the quantity Ao.

The first attempt to use apodisation with two-~dimensional
apodising screens was unsuccessful and the reasons for its
failure are discussed. The second attempt, using apodising
apertures, did succeed and some examples of its use are

given.
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3.1 APODISATION

Most optical instruments are assessed on thelr
ability to resolve two equally bright objects; however,
there are circumstances in which the instrument is required
to separate two objects one of which is much fainter than
the other. In such a case the ring system, or more
generally the pattern of diffracted light that surrounds
the brighter image, can obliterate the faint image.
Examples may be found in agtronomy ~ the observation of the
companion of Sirius by Sinton (1952) -, in spectroscopy -
the observation of faint satellite lines or lines of rare
isotopes = and in many branches of optics, particularly
microscopy, where the resolution of high contrast detail is
required.

A method of spatial-frequency filtering has been
developed to suppress the side maxima or 'feet' of the main
image and this is known as 'apodisation' (from the greek o,
to take away and moso(, Ffoot). It may be easily shown that
the form of the transmission function of the spatial-
frequency filter must be such that its Fourier transform
consists of one single maximum (in practice it is possible
to achieve only an approximation to this).

The most general type of apodisation - two-dimensional
apodisation ~ is achieved by placing an absorbing screen
with rotational symmetry in the aperture of an instrument.
The radial transmission function of such a screen is, in
general, entirely real and decreases gradually from the
centre outwards. The Fourier transform of the screen will
approximate to a peak function (in two dimensions), although

the width of the peak must of course be finite. The
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actual function in the transform plane is given by equation

1492~

Alp) = [ 2(r) JO(2nrp)2nrdr
T

T(r) being the transmission function of the apodising
screen. We may write the reverse Hankel (Fourier) trans-

form equation to equation 1.9 as:

™(r) = [ alo) JO(anp)Enpdp (%3.1)
p

It may appear, at first sight, that equation 3.1 implies
that we can choose some suitable approximation to a peak
function for A(p) and, hence, calculate the necessary
apodising screen function T(r). However, the Hankel
transform of any bounded function for A(p) will transform
to an unbounded function T(r), and of necessity T(r) must
be bounded by the instrumental aperture; thus, A(p) cannot
be chosen a priori. Therefore an indirect solution to the
problem must be sought.

One approach is that of ILansraux and Boivin (1961) who,
instead of assuming T(r) to be any general function of r,
limit themselves to all possible linear combinations of n
basic functions fp(r). T(r) is then a function of n
parameters which are the coefficients ap of the linear

combination

n 1

T(I‘) =
p

™Mt

. apfp(r)- (3.2)
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The basic functions fp(r) are chosen so that their Hankel

transforms U (p) are known analytically, thus

n 1
A(p) =

P

M

apwp(p) (3.3)
o

A condition, maximising the diffracted energy within a
circle of some arbifrary radius Pm? and by implication
producing apodisation, is then applied to equation 3.3;

and a system of linear equations is obtained, which may be
solved for aj ... Gy eee By g hence T(r) is completely

determined.

Lansraux and Boivin choose

£(x) = (1 - 4x%)P (3.4)
_ nhAp+i ()
hence, y(p) = % —EéF%fT~— (3.5)
J_(mp)
vhere, ]\p(p) = 2I'(p + 1) zﬁ:;%—

T being the factorial function and Jp(x) the Bessel function
of order vp. Figure 3.1a illustrates some of the results
of Tansraux and Boivin for the function T(r) and figure 3%.1b
gives the corresponding values of A(p) (actually A(p)z)
compared with the results for a uniform (unapodised) pupil,
The scale for A(p)2 is plotted linearly for small values of
p and then logarithmically for larger values.

The values of A(p) were computed by the author and
compare well with the published graphs of Lansraux and

Boivin. Equation 3.3 was reduced by means of equation 3.5

to a summation with terms of the type prp(wp)/np (bp constant).

An Atlas—autoco@te library program, which ewyaluates Jo(x) and
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J1(X) by means of a polynomial approximation, was made use
of and higher order Bessel funcitions were calculated by

means of the recurrence relation.

Jp(x) = (2(p - 1)/X)Jp _q (=) - I - 5 (x)

(Handbook of Mathematical Funections)
In certain circumstances circularly-symmetric apodising

screens are ﬁnnecessary ~ for example, in the observation

of spectral lines. This particular case requires apodi-
sation only in directions perpendicular to the length of

the line; and the requirement may be satisfied by an
absorbing screen whose transmission function T(x) varies
parallel to one axis in its plane and is constant along

the perpendicular axis. Expressions for T(x) have been

calculated by Dossier et al. (1950) in the form,

n
Mx) =
P

a._cos(2pmx) (3.6)
o P

i

using a method similar to that described above for two-
dimengional screens. Screens of this type are known as
'one-dimensional apodising screens'.

A further more-restricted case of apodisation is that
produced by placing an aperture of the type shown in figure
3.62 in the instrument. The apodisation is now only
obtained along a single line, figure 3.6b (the Fraunhofer
diffraction pattern), and could be used, for example, in
spectroscopy if there is a point source or in the problem
of resolving two stars, if their relative orientations are
known. The form of the contour of such an aperture is

given by the one-dimensional apodisation functions of Dossier.
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Apodising screens with non-uniform absorption are
made by evaporating chromium on to glass. The glass plate ‘
is placed behind a suitable mask and moved during evaporation
according to the type of screen; the one-~dimensional screen
is moved back and forth (Jacquinot,1950), and for screens
with circular symmetry the plate is rotated (Giacomo et al.,
1964). Apodising apertures can be cut from an opaque
screen under a binocular microscope (Dossier et al.,1950)
or made by photo-engraving on thin metallic sheets (Huet)
1960).

The above description of apodisation is of necessity
brief and incomplete. However, further information may be
obtained from a comprehensive review of the whole subject

by Jacquinot and Roizen-Dossier (1964).

3.2 THE APPLICATION OF TWO-DIMENSIONAL APODISATION TO

PRODUCE OPTICAL TRANSFORMS OF THREE-~DIMENSIONAL
OBJECTS

3.2.1 Theoretical considerations

Apodisation, therefore, appears to offer a way of
eliminating the troublesome diffraction contributions from
the aperture when we attempt to observe the optical trans-
form of a three-dimensional object.

Let us consider what would happen if we place a two-
dimensional apodising screen (transmission function Ta(r))
in the aperture of an optical diffractometer together with
a model representing a crystal structure. The total

transmission through the aperture may be written,
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T,o= T (r) -1 (x, ¥) (3.7)

where Tm(x, y) is the transmission function of the two-
dimensional screen complementary to the projection of the
model. The transform of the apodising screen approximates
to a peak function and we write this as A(p). If the

transform of T is Am(g, n), then

Ay = alo) - A (6 n) (3.8)

Thus the total diffraction pattern consists of the
pattern of the screen complementary to the model (with a
negative phase), plus a peak-like function at the origin;
if the apodising screen is somewhat larger than the model,
the width of the peak function will be negligible and it
will overlap little of the diffraction pattern of the
model. An undistorted diffraction pattern of the model
should now be visible with a bright spot at the centre.

However, this view is simplified since we have
implicitly assumed that the model will be uniformly

illuminated and, of course, the presence of the apodising

sereen will ensure that this is not so; but, if the model
is small compared to the dimensions of the screen, then the
differences of illumination over the area of the model will
also be small.

Another way of looking at this difficulty is by means
of the idea of the convolution of two functions (Bracewell,

1965). Equation 3.7 should really be written as a product
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£ Ta(r)['l‘ - Tmi(xi Y)]

=
i

thus:

o= T (r) - T, (r) T (x, ¥) (3.9)
Therefore equation 3.8 becomes:

Ay = a(e) - alo) * A (g, ) (3.10)

The second term on the right hand side of equation 3.10
represents a convolution product. If A(p) were a true peak

function, then
A(p) * Am(gy ﬂ) = Am(E, ”n)

and equation %.10 reduces to the ideal case of equation 3.8.
When, however, the width of A(p) is finite but small
compared to the spatial frequencies in Am(g, n), then the
effect will be to produce a slight blurring (or smoothing)
of the function Am(g, n); the result may be compared to the
scanning of a spectrum by the slit of a spectrophotometer,
producing a representation of the spectrum with a slight
loss of resolution. The condition on the width of A(p) of
course implies that the diameter of the apodising screen is
large compared to the extent of the model.

Summing up, therefore, provided that the apodising
screen is large compared to the model, we shall see a
transform corresponding to that desired of the model with
perhaps a slight loss of detail; and at the centre of the

pattern there will be a narrow bright peak.
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3e2e2 PRACTICAL CONSIDERATIONS

The author, having deduced that the method was feasible,
sought a simple experimental demonstration of this fact.
The primary difficulty is that of making a two-dimensional
apodising screen simply. To use the method of Glacomo
unfortunately requires a comparatively elaborate piece of
apparatus. However, diffraction screens with continuous
transmission functions have been made in optical-transform
work by a technique similar to the method of reproducing_
newspaper photographs using half-tone screens (Harburn et
al.»1965); the apodising screen of figure 3.2a was made
with this idea in mind. The screen iS. actually a photo-
graphic negative of a drawing of a large number of dots on
the points of a two-dimensional lattice; the diameters of
the dots (apertures) decrease in size with increasing

distance from the centre, to reproduce the function

™(r) = 0.068 + 0.290(1 = 4r°) + 0.571(1 = 41°)2
+ 0.156(1 ~ 4r2)3 + 0.414(1 - 4r2)4  (3.11)

(T3 of fig. 3.1a). (An order-of-magnitude calculation
suggested that this function would be adequate for the
purpose). The representstion is very approximaté as only
eleven hole sizes were used in successive circular zones.
The diameter of the screen was 3cm.

As a test object the familiar hexagonal arrangement of
obstacles was used, figure 3.2b - actually, 1/16in. balls
stuck to a glass plate and in the form of a hexagon of
0.23cm. side. If the photographic plate ofi%@odising screen
énd the glass plate with the obstacles were placed directly

in to the optical diffractometer, differences in phase




f7#
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across the aperture would be introduced due to non-uniformity
in their thicknesses. Therefore the screen and the obstacles
are immersed in cedar-wood o0il contained in a tank having

an optical flat as its base.

The optical_transférm of the screen plus the obstacles
is given in figure %.2c and may be compared with the ideal
result in figure 3.2d. The transform is recognisable in
broad detail but the finer detail is not reproduced.

The author was encouraged by the relative success of
this rather crude apodising screen and concluded that a
continuous—tone screen would give much better results. It
should be stated here that this conclusion was based on very
approximate order-of-magnitude calculations which later
proved inadequate.

It was decided to try to make continuous-tone apodising
screens by a photographic method rather than to use the
experimentally more difficult chromium-deposition method
of Giacomo. (The lack of a large enough vacuum—-evaporation
plant was a major disincentive to using this method).

Therefore, the author made the piece of apparatus,
illustrated in figure 3.3a, to produce these photographic
apodising screens and it is in fact an optical analogue of
Giacomo's apparatus. The photographic plate is mounted on
a large (7in. o0.d.) bearing and rotated beneath a stationary
mask (a photographic reproductiom) of the type shown in
figure 3%.3b. While it is rotated, a light source above
the apparatus is used 1o expose the plate. The magk is
attached to the bottom side of a perspex sheet, and slots
(not shown) cut into the sheet and the baseplate enable the

lateral position of the mask to be adjusted. The exact form
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of +the stationary mask may be found empirically, using first
of all a standard mask to produce a known (e.g. linear)
intensity distribution across the photographic plate and
megsuring the resulting density distribution.

It is important that the rotation axis of the photo-
graphic plate be colinear with the centre of the mask.

This alignment was carried out by replacing the photographic
plate by a card with a number of parallel lines drawn on it;
when this is rotated, a series of concentric rings is
observed and the centre of the mask may be easily made to
coincide with the rotation axis, which is at the centre of
the rings.

The rotational speed of the photographic plate must
also be chosen carefully. If a single exposure is broken
up into a number of short exposures (using the same intensity),
the amount of blackening produced is not the same as that
produced by the continuous exposure; this effect is known
as "intermittency failure".  Webb (1933) has shown, however,
that if the flash rate is high enough the blackening produced
will be that given by the equivalent continuous exposure.

For this reason it is necessary to rotate the plate rapidly
and a speed of 1500 r.p.m. was chosen.

The development of the photographic plate is perhaps
the most critical part of the process. The temperature of
the developer, its concentration and degree of agitation,
and the development time, must be carefully controlled to
get reproducible results.

The photometric measurements were made using a rather
crude densitometer built by Hinde (1951), replacing the

original selenium photo-voltaic cell with a modern silicon
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type (Ferranti MS2BE) to increase the sensitivity. A heat
filter was added, gince the silicon cell is very sensitive
to infra—-red radiation, and also a gpectral filter, of the
type used in the optical diffractometer, to simulate the
normal working conditions of the apodising screen.

A 35mm. photographic enlarger was used as a source of
light; this was convenient since the intensity could be
adjusted by means of the variable aperture on the lens.
This method of illumination was unsatisfactory for two
reasong: first the output of the light source was not
stabilised; secondly strict parallelism of the light
striking the mask and photographic plate was not achieved,
therefore the distribution of intensity across the plate
was incorrect. The second of these defects was alleviated
by ma$king the separation between the mask and the plate
as small as possible (~ Fin.) and?ﬁistance of the light
source as large as possible. It was hop&d to correct these
drawbacks after a few preliminary trials of the apparatus.

The function

™(r) = 0.105 - 0.057(1 - 4r2) + 0.777(1 - 4r2)2
- 0.047(1 - 4r°)? (%.12)

was used as an initial test of the apparatus. This function
gives slightly improved apodisation to the function of
equation 3.11 and has a smaller range of values of T(r),
hence it can be more easily reproduced in an apodising
screen. The expression was calculated by Jacquinot and
Roizen-Dossier (1964), who adopted a critesion of apodisation
slightly different to that of 3.11.

The actual range of the intensity transmission function

2
(T(r) ) to be reproduced is therefore about 50:1 and this
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requires a reasonably high-contrast photographic plate.
Kodak B4 plates were chosen but no special care was teken
over the choice of processing chemicals, those readily
available were used for this preliminary trial. The
plates were developed after exposure in Kodak D16%, a normal
to high-contrast developer mainly intended for photographic
paper, and this was diluted 1 part to 3 of water and
maintained at 20°C during processing. The comparatively
dilute state of the developer and the consequently extended
development time assists even blackening over the whole
plate. During development the surface of the plate was
stroked regularly with a soft brush to remove the products
of the reaction, which would otherwise accumulate, slowing
the development and producing uneven blackening. The
platew were rinsed for 30 seconds in a 2% acetic acid
solution after development and fixed in Ilford IF9 fixer
(actually an X-ray f£ilm fixer) for 10 minutes. They were
then washed in running water for 30 minutes and rinsed in
filtered water containing a wetting agent before being
dried.

As indicated above the plates were calibrated using a
mask which gave a uniform decrease of illumination along
the radius. A series of calibration plates were made with
various total exposure times and a continuous curve of the
intensity transmission function against time was plotted.
It is then a simple matter to deduce the form of the mask,
fig. 3.3b, which is required to obtain the correct function
T(r) (or T(r)z), from the curve.

Although several short-cuts were taken for this

preliminary trial of the apparatus, quite a reasonable

reproduction of the desired function was obtained in the
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apodising screen. Pigure 3.4a shows the theoretical
function (T(r)z) and the experimental fit of the apodising
gcreen function. Since only relative values of the trans—
mission function of the apodising screen could be obtained,
it was necessary to artificially fit the experimental points
to the theoretical curve and this was done by arranging that
oﬁe of the experimental values (r = 0.2) should lie on the
theoretical curve.

The fit for low values of r is not very good and this
is due to a faint ring pattern at the centre of the screen,
probably caused by the axis of rotation of the photographic
plate not being coincident with the centre of the stationary
mask. However, the fit over most of the screen is quite
reasonable.

Again the familiar test object was used of a hexagonal
arrangement of diffracting obstacles - Fin. discs on a
hexagon of 0.47cm. side. The apodising screen was 8cm.
in -diameter so that the obstacles lay within the region for
which T(r) > 0.9 of the maximum transmission. Both the
screen and the obstacles were immersed in cedar-wood oil
as before. Figure 3.4b shows the diffraction pattern of
the screen plus the obstacles. There is a very intense
maximum at the centre, as might be expected, and the six
main peaks of the diffraction pattern of the obstacles
show up cleariliy. Yet the result is disappointing since
the interference effect of the surrounding aperture is
still clearly visible as the ripple pattern on the main
peaks of the transform of the obstacles; obviously some
improvement is required in the amount of apodisation achieved.

Comparing this result with that of the half-tone screen, no

great improvement can be observed, although it must be taken

|
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into account that, there, the diffracting obstacles occupied

relatively twice as much of the area of the screen.

3.2.% NUMERICAL INVESTIGATION

The inadequacy of the apodising screen could be
explained in one of two ways, either the mcreen was not a
good»enough approximation to the theoretical function, oxr
the theoretical function did not give sufficient apodisation.
This question could obviously be decided by calculating the
optical transform of the theoretical screen and comparing
it with that of the hexagonal obstacle-arrangement. It was
decided not just to do this for one particular screen but
to choose several screens, with varying degrees of apodisation,
and to compare their performances.

The problém of calculating the optical transforms of
two-dimensional apodising screens has been dealt with in
section 3.1 and the same program could be easily adapted
for use here. The transform of the hexagonal arrangement
of obstacles is the same as that of its complementary screen

of holes. From equation 1.8 we have
A(E, m) = [[ T(x, y) expl2ni(xg + yn)] dxdy
Xy

The transform of the ohstacles may therefore be written as

the summation,
A(§, m) = 25 f explemi(x & + y,n)] dxdy (3.13)
Xnyn

where X and y, are the positional coordinates of the six

obstacles (holes) and f is the scattering Factor for each.
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Thus,

5 J4(2mpa)

£ = 2ma Ty

Since the arrangement is centrosymmetric,

A(E, n) = 22 £ cosl2n(xg + yn)] (%3.14)

*nin

where the summation is taken over a centrosymmetric half
(three obstacles). The values of A(§, 1) were calculated
from eguation 3.14 by means of a simple computer program
written by the author.

For the purposes of the calculation it was assumed
that the hexagonal arrangement of obstacles consisted of
discs of 1mm. diameter on a hexagon of 0.23cm. side which,
if we use the normal scale of optical transform work
(1/6cm. = 13), represents a benzene ring of side 1.4K;
distances in the transform can therefore be given as 3—1.
The sizes of the apodising screens were adjusted so that
the obstacles lay just within the region in which T(r) > 0.9
of the maximum transmission.

The results of the calculation are given in figure 3.5.
The apodising screen functions that were used are those of
figure 3.1, T  being the uniform (unapodised) pupil and T1,
T2 and T3 being unapodised functions in order of increasing
degree of apodisation. The graphs represent cross-sectiong
through the modulus of the transform of each screen (full
lines) compared with the modulus of the transform of the

obstacles (dotted lines). The cross-section of the

transform of the obstacles is taken through one of the six

main peaks.
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The most striking feature of these results is the
slow rate of fall of the peaks of the transforms of the
apodising screens as we progress from the least to the most
effective screen. The reason for this is not difficult to
see. As we increase the effectiveness of the apodising
screen, the function T(r) falls off more rapidly, hence the
size of the screens must be increased (and thus their
relative diffracting power is also increased) so that the
obstacles remain within the region T(r) > 0.9.

The function used for the experimental screen gives
results very similar to the last screen (TB) of figure 3.5
and this can be seen to be barely adequate. Thus the
experimental screen would seem to give a result which is not
too far from theoretical expectations. Evidently an
apodising screen function T(r) must be used which will give
a greater degree of apodisation. Unfortunately, such a
function would give a degree of apodisation which is
excessive for normal optical applications and therefore it
has not been calculated by previous workers, as far as can
be ascertained from the literature. There seems to be no
reason, however, why such functions should not be calculated

by the present methods.

3.2.4 QOBJECTIONS TO THE METHOD

Although the first experimental trial of +the method
was not clearly successful, it is still theoretically
feasible. In addition we can expect better results for
models larger (i.e. with more atoms) than the simple benzene

ring. If the models are larger and the apodising screen
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is enlarged, so that the models remain within the region
?(r) > 0.9, then the large peaks of the screen transform
will move closer to the centre and away from the region of
interest, say 0,258 ' o 2.08°' (see figure 3.5). It
might also be possible to slightly relax the condition
™r) > 0.9 to obtain a better result.

Yet, although the method is feasible, there are certain
experimental difficulties which make it awkward to use in
practice. The new function T(r), which is required to
give improved apodisation, would almost cerbainly have a
larger difference between the maximum and minimum values of
™(r). Thus the range of contrast of the photographic
reproduction would be greater and therefore more difficult
to control. Also, if the screens were to be so much
larger (~ 5x) than the extent of the model, so that it
would lie within the region T(r) > 0.9, then either the
models must be made very small or the screens very large.
Very small models (say 1cm. across) would entail difficulties
in construction and this would clash with the essential
features of optical methods - speed and simplicity.

Large screens would require equally large (say 3Ocnm.
diameter) optical flats for the oil~immersion process and

these would be prohibitively expensive.

3.3 THE APPLICATION OF APODISING APERTURES TO PRODUCE

OPTICAL TRANSFORMS OF THREE-DIMENSIONAL OBJECTS

3.5.1 INTRODUCTION

Two-dimensional apodising screens would seem to offer

a way of obtaining optical transforms of three-dimensional
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objects but the method is rather cumbersome in practice.
However, while examining the optical transforms of various
apodising apertures, the author came upon a much simpler
method and the idea of using two-dimensional screens was
dropped in favour of this.

Apodising apertures, that give apodisation along a
gingle line in thelr transforms, have dlready been mentioned
in section %.1. Figure %.6a is an example of such an
aperture and figure %.6b is its optical transform. The
striking feature of this optical transform is that, not only
is there apodisation along a horizontal line through the
centre of the transform, but the intensity appears to be
zero also over two symmetrical fan-shaped regions, of which
this line is the bisector. The angle of the fan may be
altered by adjusting the relative dimensions, length to
breadth, of the aperture; in the example shown the ratio
is 3:1, which gives an angle of about 110°. The equation

of the aperture contour may be written
T(x) = 0.413 + 0.499 cos(ggﬁ) + 0.087 cos(ﬁgﬁ) (3.15)

which is a 'stretched!' version of a function (equation 3.6)
given by Dossier et al. (1950).

The application of these apertures to producing optical
transforms of three-dimensional objects is quite simple.
Suppose, for example, we place the usual hexagonal arrange-
ment of obstacles within the aperture of the diffractometer,
together with the apodiging aperture of figure 3.6a. In
the fan-shaped regions of the optical transform the

contribution (AO) from the apodising aperture is wery small

and we shall be able to see that part of the optical trans-




Fig.3.6
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form of the obstacles that lies in this region, figure 3.6c.
Now, if the aperture is rotated until it is perpendicular

to its original orientation, the remainder of the obstacle
transform may be observed, figure 3.6d. If photographs

are taken with the aperture in both positions, a composite
photograph, figure 3.6e, may be assembled of the total
optical transform of the obstacles. This compares extremely
well with the transform of the complementary screen in

figure %.6f.

The advantages of this method over that using two~
dimensional apodising screens are immediately apparent.
first, it obviously works experimentally! Secondly, the
apertures may be made much more easily than the photographic
absorbing screens (methods of making the apertures are
discussed later). Thirdly, we have no problems with
uneven illumination over the area of the model. Fourth,
the screens need not be immersed in cedar-wood oil - a rather
awkward procedure. The only disadvantage of this method,
compared to the two-dimensional screen method, is that the
complete transform of the three-dimensional object cannot
be viewed, or photographed, at any one instant; however,

a possible way of overcoming this problem is suggested in

the next chapter.

3e%.2 NUMERICAL RESULTS

It is obviously of some interest to compare the
numerical results for the apodising qualities of the aperture

of figure 3.6h with the results for two-dimensional screens
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obtained in section 3.2.2. In order to do this it is
necessary to calculate the distribution of amplitude in
the diffraction pattern of the aperture, i.e. figure %.6b.
It is quite simple to calculate the amplitude distri-
bution along the line in the pattern for which the aperture
ig designed to give apodisation. If we write the contour

function of the aperture as:

1

. 2, cos(prnx) (3.16)

n
Mx) =

™Mt

P

where a,, and bp are constants (see equation 3.15), then,

along the & axis of the optical transform, we may write the
amplitude distribution in the form of a Fourier-transform

integrali~
1
A(E) = Zfl T(x) exp(2mx€) dx
This may be reduced, since T(x) is even, to:

A(E) = 4fi T(x) cos(2mxg) dx

21 is the horizontal distance between the tips of aperture

of figure 3.6a. Vhen the integral is evaluated we obtain:
n~1a rein(4nl(b, + &))
A(§) = 7$[ b+ 2
=20 p

Sin(4vl(bp - E))j

+ ' (3.17)
by, -~ & A

Obviously A(E) may easily be calculated from equation 3.17,
by hand or with a simple computer program, provided that

care is taken at the discontinuities, i.e. when £ = bp.
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The two-dimensional transform is much more difficult
to evaluate; the amplitude distribution is given by the
two-dimensional Fourier-transform integral:

1 TMx)

A(E, n) = f exp oni(xE + yn) dx dy (%3.18)
-1 =P (x)

We may reduce this to.

1 T(x)
ME, ) = 4f

o0

cos(2nx§)¢¢$(2TFy0)dXdy (3.19)
Integrating over vyequation 3.19 may be written!

A(E, n) = #% i-sin(2nT(x)n) cos(2mxg) dx (%.20)
The author could find no analytic solution to the integral
of equation %.20 and therefore a numerical method of inte-
gration was sought.

When considering numerical methods of integrating
equation %.20,two conflicting requirements are evident.

In the apodised region the values of A(E, n) will be very
small and therefore high accuracy must be sought. However,
as we must evaluate the integral at a large number of
values of § and n, a very efficient method is needed.
Obviously simple numerical-integration methods such as the
trapesoidal rule and Simpson's rule are not suitable.

The numerical-integration method known as "Gaussian
quadrature" (Lanczos, 1957), which gives high accuracy with
a minimal number of sampling points, was therefore applied.
Effectively, a Legendre polynomial is fitted to the function

to be integrated and the area under this curve is then
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found. In practice, if we wish to integrate the function;

b
I = [ £(x) ax (3.21)

1

we replace this by the summation;;

I = B8 5 yop(x)

2 -4 * i
where Xy is a function of the position of the ith zero of
the Legendre polynomial of order n and Wy is a function of
the differential of this polynomial at the position of the
ith zero. Both the positions of the ith zero and the values
of the differential of the polynomial are tabulated for
various values of n (Handbook of Mathematical Functions,
also Kronrod,1965), thus Wy and X; may be determined and
hence the value of the integral. It will be noted that the
sampling points x; are not equally distributed along the
interval a to b, as with the trapesoidal rule and Simpson's
rule, and it may be shown that the increased accuracy
resultg from relaxing this condition.

In using Gaussian quadrature, it is necessary to
decide upon the minimum number of sampling points necessary
to achieve the desired degree of accuracy. There are
analytical methods of estimating this gquantity but the
usual procedure employed is to actually perform the inte-
gration several times, increasing the number of sampling
points on each occasion; the process is halted when the
changes in the value of the integral, as the number of

sampling points is increased, are less than the maximum-

allowable error.

|
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The function to be integrated in equation 3.20 is
gsinusoidal in form. The average period of the function
dedreases as & and m are decreased; therefore, it is
obviously not sensible to use the same number of sampling
points for all values of & and n. However, if we examine
the function to be integrated, we can see that the maximum
number of zeroes of the function is the integral part of
(21g + 20 m + 1), where T, is the maximum value of T(x) in
the range x = 0 to 1. If we now divide the function into
a number of equal ranges, where the number of ranges is
given by the number of zeroes in the total range, we shall
be approximately dividing the function into a number of half
periods of a sinusoid. It is then a simple matter to
estimate the number of Gaussian sampling points necessary
to integrate one half period of a sinusoid.

A test program was written to evaluate the integral of
sin(x) in the range x = 0 to 1 by Gaussion quadrature. It
was found that seven sampling points were necessary to
achieve a result accurate to 11 significant figures - the
full decimal accuracy of the store of the Atlas computer.
An Atlas-autocode program was then written by the author
to evaluate the integral of eguation %.20. The function
was divided into ranges as indicated above for each value
of & and n and Guassian quadrature with seven sampling
points was performed in each range and the total for all
ranges was then found. It was arranged that these totals
for various values of &, n should be output on a lineprinter
in the form of a map of results, so that contours could be
directly drawn, in an exactly similar way to the normal

procedure for crystallographic electron density maps.
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If we examine the function to be integrated in
equation 3.20, it 1s obvious that care must be exercised

when n = O. Here we have that?*

1
A(E, m =0) = 4f T(x) cos(2nxE) dx
0

which is the simple one-dimensional case of the amplittude
distribution along the line for which apodisation is
required, as discussed above, and an analytic solution is
possible - equation 3.17. However; a step was included
in the program to perform this integration numerically so
that the results could be compared with those obtained by
evaluating the analytic solution of equation 3.17. The
agreement was perfect, at least up to the 6th decimal place
of the normalised values of A(E, n), and may have been
better as the results of the analytic integration were not
calculated any more accurately. Thus a further check was
made on the accuracy of the results (and of the program).
For the purposes of the calculation, it was assumed
that the size of the aperture was such that it would just
enclogse the obstacles, arranged in the form of a hexagon,
used in the numerical calculation for the two-dimensional
apodising screens in section 3.2.3%; thus, a direct
comparison of the two methods may be made from the results.
The actual dimensions of the aperture were 1.7cm.(10.2g) by
O.57cm.(3.4ﬁ). Figure 3.7 shows the results of the inte-
gration in the form of a contour map of the function log1o
[Ag(g, n)J, the contours being at unit intervals (42 = 1071).
The results are normalised to give a value of A(E, m) = 1

at the centre of the map (i.e. 1og1O(A2(E, n)) = 0). As
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with the transforms of figure 3.5 the scale is given in
ﬁ"1. Figure 3.7 compares well with the optical transform
of the apodising aperture in figure %.6b - a further
indication of the validity of the numerical results. The
existence of the large region of very low intensity is also
confirmed - the lowest contour shown represents an intensity
of 1074 of the intensity at the centre of +the pattern.

However, it is difficult to assess the worth of the
apodising aperture from figure 3.7 and to compare its
usefulness with that of the two-dimensional screens. In
figure 3.8 it has been supposed that the apodising aperture
has been used to obtain the optical traensform of the
obstacles in the form of a benzene ring -~ placing the
aperture in two orientations at right angles. - The
modulus of the scattered light from the screen, which
overlaps into the apodised region (i.e. within the sector
of angle 900), is then plotted for both orientations.
Thus, figure %.8 shows the total interference pattern of
the light from the apodising aperture for the simple benzene-
ring transform; these resulits may now be directly compared
with the results for two-dimensional apodising screens in
figure 3.5. The contours of the central peak correspond
to unit intervals on the vertical scale of the graphs of
figure 3.5, while the remaining contours correspond to
intervals of 0.1 units.

A comparison of the results for the best screen in
figure 3.5 and the results of figure %.8 reveals that only
at a small number of points is the performance of the

aperture inferior and that it is generally superior over
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most of the optical transform. Furthermore, since
accurate reproduction of the aperture function is much
simpler than that of the two-dimensional function, we should
expect the experimental results of the aperture method to
compare even more favourably. Again, as with two-~dimensional
screens, we may anticipate better results for models with a
larger number of atoms.

Before leaving this discussion of the evaluation of
the theoretical transforms of apodising apertures, it may
be noted that further investigations in this direction
might be useful. Only one ?articular contour function has
been tried and further func%ions may give better results.
This particular function is in fact the most effective one,
quoted by Dossier et al. (1950), for one-dimensional
apodisation. Again, the relative dimensions, length to
breadth, have been chosen empirically and ideal dimensions
might be deduced theoretically. The author has not
pursued this investigation; first, because the present
aperture is suffiecient for the purpose; and secondly,
because the numerical integration program uses a considerable
amount of computer time and the investigation would require

frequent use of this program.

%+.3+% PRACTICAL DETAILS

Apodising apertures are clearly an effective way of
obtaining optical transforms of three-dimensional objects
and examples of theilr use are degscribed in the next chapter.
It is therefore convenient to introduce here some practical

details of the method.
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Frequent use has been made of the large optical
diffractometer described by Taylor and ILipson (1957),
since it enables larger structure models to be made.
It hag an aperture of 38cm. compared with the 13cm. of the
more usual diffractometer. Differences in the size and
the design of the large and the small diffractometers
result in differences in experimental technique and these
are pointed out when n8cessary.

Two methods of manufacturing the apodising apertures
have been used. Large apertures, suitable for use with
the big optical diffractometer, are made by plotting the
required function on graph paper and then cutting it out.
Smaller apertures, suitable for use with the normal-size
diffractometer, are made in thin copper sheets by the
photoetching process of Harburn, Taylor and Yeadon (1965).
Printed-circuit board, consisting of a thin sheet of copper
laminated to a plastic backing, is coated with an ultra-
violet sensitive emulsion. A photographic plate, of a
reproduction of the aperture in black, is then used to
make a contact print on to the sensitised surface of the
board. The region of the emulsion exposed to the ultra-
violet radiation is hardened, while the unexposed region
may be easily dissolved away, enabling the underlying copper
to be attacked by an etching solution, leaving a representation
of the aperture in the copper sheet. The plastic backing
may then be removed by soaking in potassium cyanide solution.

Photography of the optical transforms using apodising
apertures is not straightforward, since the transform of

the apodising aperture is so much brighter (particularly at
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the centre) than the transform of the obstacles. The
diffraction vatterns of figure 3.6 were produced using the
technique of overexposing the film and then underdeveloping
it, thus enhancing the faint detail. However, this method
is not very satisfactory and obviously a stop is necessary
to block out the diffraction pattern of the aperture.
Figure 3.9a shows an example of such az stop for use with
the aperture of figure 3.6a. The angle of the clear seg-—
ments is 1000, although in theory it need only be 900;
however, a certain amount of overlap is advisable to allow
for experimental errors. The overall diameter of the stop
is about O.5cm. The width of the central portion depends
on the size of the apodisging aperture - it must be large
enough to block the central maximum of the diffraction
pattern of the aperture but small enough not to obscure
relevant detail in the diffraction pattern of the three-
dimensional model - it is typically 0.Z2mm. such stops
are made by the photoetching process described above.

One rotational movement and two non-parallel trans-
lational movements in the plane of the diffraction pattern
are required to make the stop coincide with the transform
of the apodising aperture. The stop is mounted on a
cylindrical cap, which fits snugly on to the focussing
drum of the diffractometer (figure 3.9b) and gives the
necessary rotational movement. (The reader may find it
uséful to refer to the details of the construction and use
of the optical diffractometer given by Taylor and ILipson,
1964 and Hughes and Taylor,1958). Translational movements
of the optical transform of the aperture can be made, in

the case of the small diffractometer, by adjusting the
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inclination of the mirror which reflects light received
from the lenses to the focussing drum. However, the
large optical diffractometer does not have such a mirror
and a cross-slide arrangement is used to translate the
stop; the focussing drum is then mounted on the cross-
dide as shown in Figure 3.9c.

The normal type of camersa for taking photographs of
optical transforms is unsuitable here, since the spring-
loaded platform in the camera, that holds the film against
the focussing drum during exposure, displaces the drum
slightly and hence also displaces the stop. A light-weight
single—-exposure camers is therefore used, figure 3.9b,
having a brass block held in by an elastic band to push the
film against the stop.

One difficulty that may be mentioned here is the
problem of the accurate fitting-together of the photographic
prints representing the two halves of the optical transform
of the three-dimensional object. No really satisfactory
method of orientating the two halves hag been found but a
reasonable fit may be obtained, if there are details in the
transform common to both halves, that can be made to overlap.
It is always advisable to ensure that such common detail
exists when taking the photographs. Uneven shrinkage
(i.e. non-isotropic) of the photographic paper during
processing also causes matching difficulties, but this can
be overcome if the main shrinkage axis of the paper is made
to coincide with a prominent direction in the tramsform for
both component parts of the photograph.

The complete trénsform of the three-dimensional model

may be scanned either by rotating the aperture or by rotating




- 57 -

the model. In practice it is found simpler to rotate the
aperture, since movement of the model may easily upset its
alignment.

Using these experimental techniques outlined above,
quite accurate optical transforms may be obtained from three-
dimensional models. Figure %3.10 illustrates such a result.
The transform is that of a mask representing the structure
decanamide (Brathovde and Lingafetter, 1958). Figure 3.10a
shows the optical transform of a distribution of discs fixed
to an optical flat representing the 010 projection of the
gtructure; figure 3.10b shows the corresponding optical
transform of a punched-mask representation. The two

transforms are almost identical.

3.4 SUMMARY

The main conclusions of this chapter may now be stated.
Apodisation clearly offers a way of eliminating the
contribution (AO) from the ingtrumental aperture to the total
diffraction pattern, if we attempt to observe the optical
transform of a three~dimensional model. The use of two-
dimensional apodising screens is feasible but apodising
apertures give better results.

The next chapter is devoted to illustrating examples
of possible applications of both the apodising aperture
method and optical transforms of three-dimensional objects

in general.




(o)

Fig.3.10
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CHAPTER 4

OPTICAL TRANSFORMS OF THREE~-DIMENSIONAL CRYSTAL-~-STRUCTURE

MODELS OBTAINED USING APODISING APERTURES

This chapter is mainly devoted to illustrating and
exploring the possible applications of optical transforms
of three-dimensional molecular-structure models, obtained
by the apodising aperture method. The factors influencing
the building of suitable crystal-structure models are first
discussed; then, examples of transforms are given.
Finally, future possibilities of using and improving the

method are mentioned.

4,1 THE MANUFACTURE OF SUITABLE CRYSTAL-STRUCTURE MODELS

The most important factor to be considered, when
building simple molecular-structure models, is their scale.
The size of the models must obviously be such that they are
easily accommodated within the aperture of an optical
diffractometer. Furthermore, if an apodising aperture of
the type shown in figure 3.6a 1s also to be included within
the aperture of the diffractometer, the largest dimension of
the model must be less than one third the distance between
the tips of the apodising aperture. The lower limit on the
size of the model is set purely by the difficulties in

constructing it; very small balls are difficult to drill
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accurately and small, thin bonds between the balls distort
easily. The scale that is normally used for punched-mask
representations of structures in smaller diffractometers is
1/6cm. = 1K; making 'ball and bond' models to this scale
would be difficult and time-consuming(attributes incompatible
with optical methods of structure solutioﬂ. In fact, ball
and bond models on any scale, sultable for use with the
combination of an apodising aperture and the smaller type of
diffractometer, must have a maximum diameter of about 4cm.
Making such models would present a number of practical
difficulties, unless there are only a few atoms in the
structure. However, the scale normally used with the large
diffractometer in this department, that is ifcem. = 1R, ig
much more promising; components for building models to this
scale can be obtained commercially (Beevers, 1965). Beevers
molecular models have been used, together with the large
optical diffractometer, to produce the optical transforms
illustrated in this chapter.

One difficulty, encountered with ball and bond models,
is that light is diffracted from the bonds as well as from
the balls, and so distortions of the optical transform are
inevitably produced. A solution, that has been suggested
to the author, would be to use transparent bonds and %o
immerse the model in a liguid, whose refractive index matches
that of the bond material. ' However, so that phase
distortions need not be introduced in the illuminating and
diffracted beams at the liquid-air interface, two of the

sides of the container for the liquid must be optical flats.
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Quite large optical flats would be needed (~ 40cm. diameter),
if Beevers models with transparent bonds are to be used, and
such flats would be prohibitively expensive.

Fortunately, if the bonds are thin compared to the ball
diameter, the effect is small in the author's experience -
only fainter details near the edge of the pattern are
seriously affected. The wire normally used for bonds with
Beever's models is 0.040in. diameter and this is rather
thick; therefore, the models used had bonds made from
0.022in.diameter wire. With wire of this latter diameter
and the 6.9mm. diameter balls used in Beeverks)models, for
a typical carbon-carbon single bond, the ratio of the ball
to bond scattering is about 30:1 in amplitude. In order to
fit the 0.022in. bonds in to the 0.040in. holes in the balls
vlastic sleeves were placed over both ends of each bond,
which was then cememted into position with 'Araldite'. This

assembly process is very tedious but there seems to be no

reason why, in future experiments, the models could not be
built much more quickly, if balls with holes of the correct
size were used.

Having chosen the scale of the model a further factor
must be considered and that is the suiltability of the ball
diameter for this particular scale. The useful extent of
the optical diffraction pattern of an arrangement of gsimilar
balls in a model is governed by the size of the individual
ball, since the transform of the arrangement is modulated
by the function representing the transform of each ball.
Thus, the limit of the useful extent of the diffraction

pattern is the point at which the transform of the ball
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becomes zero for the first time. Ideally, all the X-ray
diffraction data should be represented in the optical
transform; therefore, the first zero of the optical trans-
form should not correspond to a point nearer to the origin
than the edge of the limiting sphere for the X~ray data
(see section 1.1).

We may write the amplitude digtribution in the

diffraction pattern of a ball of radius a as

5 J1(2nap)

A(p) = 2ma“ Srep

The first zero of the pattern occurs when
2rrap = %.83%2

(the second zero of the Bessel function Ji(X))'
Rearranging this expression we may write the distance of

this zero point from the origin of reciprocal space as

o - 3832

2ma

Now if the scale of the model is such that mem. = 13 then:-

o = 3.8%2 m 3—1

21a,

If this value of p corresponds to the edge of the limiting

sphere then:-

- 2 _ 3.8%32 m
P N T T 2ma (4.1)
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where A is the wavelength (in ﬂ) of the radiation used to
give the X-ray diffraction pattern, which we are simulating
optically. Thus, from eguation 4.1 we may write the
maximum value of the radius of the ball, that would enable
all the X-ray pattern to be simulated optically, as

Box = §4§%%—Qi (4.2)
For the Beevers models where m = 1, if A = 1.5418 (CuKao
radiation), then the maximum diameter of the balls that may
be used can be deduced from equation 4.2 to be 9.4mm; thus,
the actual diameter of 6.9mm. is guite adequate under these
conditions. (In the case of the smell optical diffracto-
meter, where m = 1/6, it is interesting to note that the
corresponding maxinum diameter of the apertures that may be
used is 1.57mm.).

The diameter of the balls is also partly influenced by
the problem of 'overlap'. In certain projections of most
models one or more pairs of aktoms overlap and the corresponding
optical transform is partly incofrect, since the double
scattering is not properly represented. The use of small
balls helps to reduce the probability of overlap occuring.

Overlap has not been an important problem in any of the
examples examined by the author. Obviously, whether or not
the difficulty is serious, depends partly on the structure
of the model and partly on the particular area of the trans-

form being considered.
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4.2 EBXAMPLES OF OPTICAL TRANSFORMS OF THREE-DIMENSTONAL

MODELS

When we wish to examine the optical-transgform corres—
ponding to a particular projection of a molecular-structure
model, it is necessary to orientate the model so that the
plane of projection is perpendicular to the optic axis of
the optical diffractometer. The device shown in figure 4.1
wags constructdd by the author for this purpose.

The base of the device is a simple carriage which moves
along, and may be clamped to, the rail shown, which in turn
is fixed across the aperture of the diffractometer. The
horizontal disc with the circular scale, together with the
remainder of the gtructure fixed on top of the disc, is
connected by means of a ball bearing to the carriage and may
rotate freely in the plane of the disc. The model is
clamped in the structure above the disc; and the two
perpendicular rotations (shown in figure 4.1) given by this
structure, enable the orientation of the model to be adjusted.

The direction of the optic axis of the optical diffracto-
meter at points between the lenses of the instrument is
clearly marked by the light beam, if a large bright source
is used. The orientation of the model, with respect to the
optic axis, can easily be determined from the shadow cast by
.the model in the bean. Thus, using the device in figure 4.1,
the required projection of the model may be made perpendi-

cular to the optic axis as follows:-




Fig.4.1
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(1) An axis in the model, parallel to the required
plane of projection, is marked with a straight
piece of wire. The orientation of the model
ig then adjusted, using the two perpendiculsr
rotations, until the marking wire remains
parallel to the axis of rotation of the ball
bearing, when the model is rotated on the

device about this axis.

(ii) The bar supporting the device is then rotated
about its length, until the rotation axis of
the ball bearing (and hence the marking wire)
ig perpendicular to the optic axis. This is
done by placing a straight piece of capillary
tube on the horizontal disc and rotating the
rail, until the beam of the diffractometer
shines straight down the bore of the tube.
(It is usual to repeat this procedure for
several non-parallel positions of the tube

on the disc to obtain a 'best fit!').

(iii) The model is then rotated on the bearing axis
until the desired projection is reached, as
seen from the shadow cast by the model in

the beam of the diffraciometer.

The above procedure may be applied in any general case.

However, in spegceific cases, it may be possible to orientate

the model much more simply.
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4.2.1 CORONENE

Coronene (Robertson and White, 1945) was selected as a
first example of the method of obtaining optical transforms
of three-~dimensional crystal-structure models. The bond
lengths and angles were idealised for the model actually
made, figure 4.2, so that each bond length was 1.4cm. and
each bond angle 120°. Since, in addition, the molecule is
planar, the model ig quite easy to construct.

Figure 4.3 shows, on the right-hand side, the optical
transforms of the model in three different orientations.

On the left-hand side of figure 4.3 are given the optical
transforms of the punched masks corresponding to each
prosition of the model. The three orientations of the model
are obtained by rotating it about the axis in the molecular
plane as indicated in figure 4.2. Transforms 4.%a and

4.3b correspond to the model viewed perpendicular to the
molecular plane. In transforms 4.%c¢c and 4.%3 the molecule
is rotated 30° out of this plane and for 4.3e and 4.3%f, 60°
out of the plane.

Comparison of the two corresponding sets of transforms
provides a critical test of the apodising aperture method.
If account is taken of the difficulty of obtaining equivalent
exposure levels for corresponding transforms, then the two
sets can be seen to be reasonably comparable. The intense
détail near the centre of the pattern is always reproduced,
but the fainter detail near the edge of the pattern is
sometimes suppressed and sometimes enhanced (see particularly

figures 4.%a and 4.%b). This effect is probably caused by




Q'S\,rotation axis

Coronene

Fig.4.2




(b)

o X o o

i



- 66 -

the interference of light scattered from the bonds. The
scattering function of the bonds, along a perpendicular to

the length of each bond, will fall off much more slowly

than that of the balls; and thus, at the edge of the

optical transform the scattering from the bonds may not be
negligible compared to that from the balls. However, over
most of the region of interest, the suppression of the fainter
detail is usually not so great that it cannot be made visible
by increasing the exposure a little. This procedure would

be reasonably satisfactory in structure-solution work by
optical~transform methods, since we are usually more interested
in the presence or absence of detall rather than the absolute
intensities of wvarious parts of the pattern. In this
connection it may be noted that the normal fall-off in
intensity of the optical transform towards the edge also
distorts the relative levels of the detail in the pattern;
however, in a similar way this may be allowed for and it is

usually not disadvantageous.

4.2.,2 BIBYDROXYDURYLMETHANE

In contrast to the esséntially planar structure of
coronene the second example, bihydroxydurylmethane (Chaudhuri
and Hargreaves, 19%6), is truly three-dimensional (see
figure 4.4). Again an idealised model of the structure was
made with all bond angles 120° and all bond lengths 1.43
(apart from those bonds linking the benzene rings to the
central carbon atom which were made 1,54ﬂ). Great care was
taken to make the relative orientation of the planes of the

benzene rings as near as possible to the structure found by




Bihydroxydurylmethane

Fig. 4.A
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Chaudhuri and Hargreaves. The inaccuracies, introdw ed
by the approximations made in building the model, make this
model such that it might correspond to a trial structure.

. Figure 4.5a is the optical transform of the projection
of the molecule corresponding to the h0l data, which are
given in the superimposed weighted reciprocal lattice.

The agreement is quite good. This projection of the model
corresponds well with the final structure obtained, as can
be seen from a comparison of the shadow projectionwith a
drawing of the final structure (as obtained by Chaudhuri
and Hargreaves).
Figure 4.5b is the optical transform of the projection

£ the model corresponding to the hk0 data. The agreement
with the superimposed weighted reciprocal lattice is poor,
although the correct symmetry is present in the pattern.
The fit of the shadow projection of the model in this
orientation with the final structure is not very good, since
the inaccuracies in the model tend to show up badly in this

projection.

4.2.3 A HYPOTHETICAL DISORDERED STRUCTURE

In recent years, there has been considerable interest
in using optical-transform techniques in investigating
various types of disordered structures and, in particular,
fibre structures (e.g. Stern, 1966). Quite crude models
are often useful for these structures; for example,

Taylor (1965) has used collections of orientated springs to

simulate the structure of a fibre and has produced optical
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transforms from photographic reproductions of this model.
Obviously, the apodising aperture technigue could be
used to obtain optical transforms directly from such models,
without the need for the intermediate photographic process.
Figure 4.6 shows such a model consisting of roughly parallel
strings of balls, which might represent the grouping of
one-dimensionally ordered polymer molecules in a Tibre.
The balls are threaded on wires fixed to a Dexion framework.
The transform of the model is a series of parallel
streaks, figure 4.7. The spacing between the streaks is
proportional to the repeat distance between the balls on
each wire. The diffuseness of the pattern along the streaks
is due to the lack of order in the spacings between the

strings of balls.

4.3 CONCLUSTIONS CONCERNING THE USE OF THE APODISING

APERTURT METHOD AND ITS FUTURE POSSIBILITIES

The preceding examples show that the method of using
one-dimensional apodising apertures to obtain the diffraction
patterns of models of molecular structures can produce
reasonably good results, although some inaccuracies may
occur due to light scattered from the bonds in the model.
Possibly, the primary source of error is in the actual
construction and orientation of the model, particularly if
some complex three-dimensional structure is involved. This
suggests that the method might be used at very early stages
of structure solution, when rough three-dimensional details,
for example the position and orientation of atomic groups,

are being determined. Later detailed refinement could be
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carried out in projection using more conventional optical
methods.

Although no attempt has been made by the author to
congtruct an actual three-dimensional optical transform, as
suggested by Harburn (see section 1.4), this is now quite
feasible. The amount of work involved would be similar to
that when constructing a three-dimensional Patterson map.

The application of the method to disordered siructures,
as in section 4.2.%, would also be quite useful. Simple
ideas aboul rough structural details can easily and gquickly
be tested. In addition, it is possible to simulate
structures, in which there is rotational disorder, by
building,medels which actually rotate in three-dimensions.

Posgibly the most useful improvement to the apodising-
aperture method would be to eliminate the necessity of a
double exposure to obltain a complete transform. If the
apodising aperture was oscillated between the two mutually
perpendicular orientations, at which the two photographs of
the transform are taken, then the model transform would be
continuously scanned. If, in addition, this motion was
linked to a corresponding motion of the stop in the trans-
form plane, only the transform of the three-dimensional
model need bhe seen. It would, of course, be impossible to
clamp a film against this moving stop, to photograph the
complete transform as it 1s scanned, but a re-imaging system
could overcome this problem.

In conclusion, one possible indughrial use of the
apodising aperture method may be noted. Redman (1968) has

described how the dimensions of machined products, such as
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fuel cans for nuclear reactors, may be checked by examining
the optical transform of the actual three-dimensional object.
He envisages simply putting the object in the aperture of a
diffractometer to obtain a transform, but the use of apodising

apertures would certainly give better results.




EART 2

THE CRYSTAL AND MCLECULAR STRUCTURE OF 2-DIAZOIN-
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CHAPTER 5

2-DIAZQINDANE-1,%3~-DIONE: PRELIMIVARY INVESTIGATION AND THE

SOLUTION OF THE (001) PROJECTION

5.1 INTRODUCTION

The preceding chapters have described the search for a
method of obtaining optical transforms of three-dimensional
molecular-structure models so that complete three-dimensional
optical transforms could be formed. At the beginning of the
investigation it was hoped that, when this new optical
approach was developed, it would be possible to apply it in
solving an unknown crystal structure. Accordingly, X~ray
diffraction data were collected for the structure 2-diazoin-
dane-1,3-dione. However, the problem of obtaining optical
transforms of three-dimengional objects proved somewhat
intractable at first and, before the method was sufficiently
developed, it was found that the structure could be solved
conveniently by conventional methods.

It was decided, before the structure was investigated,
that it would be useful to try to achieve the solution by
purely physical means (and in particular by optical methods)
without recourse to any chemical information apart from the
empirical formula C9N202H4. Such déterminations have been
attempted successfully in the past (Crowder et sl., 1959).
While this approach is quite instructive, suggesting ways of

tackling problems where the information is wrong or incomplete,
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it does lengthen the process of structure solution, Ags in
the present case, if the full information about the confor-
mation of the molecule is not known and if few clues can
therefore be deduced about its likely mode of packing, the
derivation of a trial structure suitable for refinement can
be extremely time-consuming. About half the atoms in the
molecule could be located by purely physical informatlion;
however, it was found necessary to use chemical information
on the likely conformation of the molecule as a source of

'inspiration' to locate the remaining atoms.

5.2 THE CEEMICAL SIGNIFICANCE OF 2-DIAZOINDANE-1,3-DIONE

The previously unknown compound 2-diszoindane-~1,3-dione
was discovered almost simultaneously by Holt and Wall (1965)
and Regitz and Heck (1964) using different synthetic routes.
It is interesting in that it is one of the Ffirst diazo-
diketones to be prepared and the very first of the type
2-diazo 1,3 dione. It is also related to the 1,3 indanone
compounds which are used as anti-tremor agents.

Regitz and Heck give the structure of 2-diazoindane-1,3%-

dione as a resonance of the two extreme forms
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The synthesis of Holt and Wall involved a novel type of
cyclisation reaction and it is of some interest to check the
structure of the substance,obtained by them, by X-ray
diffraction. In addition the resonance structure proposed

by Regitz and Heck may be confirmed.

5.3 PRELIMINARY INVESTIGATION (UNIT CELL AND SPACE GROUP)

A sample of the substance (m.p.105-106°C) was provided
by Dr G Holt in the form of colourless needle crystals,
which had been recrystallised from hot water. These crystals
proved suitable for X-ray examination without further treat-
ment.

It was found that under exposure to the atmosphere and
X~rays the substance changed into some unknown form, becoming
brownish in colour. The X-ray reflections from the crystals
became gradually weaker, as this process continued, until
after a period of several weeks no sharp reflections could
be obtained at all. The crystals also had an annoying
tendency to drop out of the mounting adhesive, when exposures
were being made, and this effect may well have been connected
with the change in structure. It was found that a thin
coating of shellac over the crystal and its mounting slowed
the change and prevented it dropping off.

Since the end faces of the crystal, perpendicular to
the needle axis, were small and not usually well-shaped, it
was impossible to deduce the crystal form, The cross
section, perpendicular to the needle axis, apveared to be a

parallelogram with angles near 900 (often almost square).
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The crystals were soft and it was difficult to cut them
without producing distortion; thus, the preparation of
suitable specimens for X-ray examination was extremely
tedious.

An X-ray investigation of the crystals revealed that
the symmetry was monoclinic and that the unique (b) axis
lay perpendicular to the needle axis of the crystal and
along one of the diagonals of the cross section. The two
remaining axes (a and ¢) were chosen such that c lay along
the needle axis and, since 8 was almost 900, a lay along the
other diagonal of the cross section. The unit-cell sides
- measured”from rotation photographs about all three axes -
and the B angle - measured on a Weissenberg photograph of

the hOl layer of the reciprocal lattice - were found +to be:

a = 9.678%
b = 10.55%
¢ = 7.938
8 = 92.1°

The following conditions for reflection were deduced
from the systematic absences on Weissenberg photographs of

the hOl, h1l and h2l layers .of the reciprocal lattice:

hkl: h + k 4+ 1 = 2n
hOl: L = 2n (h = 2n)
0k0: (k = 2n)

Two possible space groups are indicated I% (centrosymmetric)
and Ic (non-centrosymmetric). It may be noted that these
two space groups correspond to C% and Cc, which are the forms
in which they are given in International Tables for X-Ray

Crystallography Vol.1. The (001) projections of the two
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gpace groups have the two-dimensional symmetries cmm
(centrosymmetric) and cm (non-centrosymmetric) respectively.
A statistical test may therefore be applied to the hkO data
to determine whether there is & centre of symmetry vresent
in this projection, and thus, whether one ig present in the
three-dimensional structure.

Wilson (1949, 1950) has examined theoretically the
distribution in reciprocal space of the intensities of the
X-ray reflections from a crystal with a unit cell containing
a reasonably large number of atoms. The atoms are assumed
to have approximately equal weights and to be arranged at
random. Wilson shows that the distributions resulting from
centrosymmetric and non-centrosymmetric crystals are quite
different. If P(I)8I is the proportion of the intensities
lying between I and I + 8I, then for a non-centrosymmetric

crystal we have:-

1P(I)6I _ exp(—SI/S)éI

and for a centrogymmetric crystal:-

~p(1)sT = exp(= I/28)81
1 (on8T)?

S is a distribution parameter which depends on the particular
set of reflections being considered; for general hkl

reflections from a primitive lattice we have:
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where the summation is taken over all the atoms in the unit
cell. From these results Howells et al. (1952) have shown
that the fraction N(z) of the reflections, whose intensities
are equal to, or less than, a fraction z of the local average
intensity, is given, for a non-centrosymmetric crystal, by

the function:

N(z) = 1 - exp(- z)

and, Tor a centrosymmetric crystal, by the function:

N(z) = erf(%z)%

These expressions form the basis of the zero moment (or N(z))
statistical test for determining the presence or absence of
a centre of symmetry in a crystal structure; figure 5.1
shows both functions (continuous lines).

Figure 5.1 also shows the experimental points (dotted)
for the N(z) distribution of the hk0O data, obtained using
the method suggested by Lipson and Cochran (1966). The
reflections are first grouped into three ranges of sin 8
containing approximately equal amounts of data, rejecting
very low-angle reflections (sin 6 < 0.2) and the OkO and
h00 reflections. The average intensity (I av.) in each
range of sin 6 1s then determined. The data within each
sin 8 range are divided into subsets such that the intensities
within each subset are less than, or equal to, some specific
fraction of the average intensity (I av.). The numbers of
reflections in corresponding subsets in each sin 8 range are

then summed together and expressed as fractions of the total
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number of hkO reflections. These fractions are the experi-
mental values of N(z) for each range of z.

The points in figure 5.1 lie much closer to the centro-
symmetric distribution curve than the non-centrosymmetric
curve. The space group may thus be deduced with reasonable
confidence to be I%.

Figure 5.2a gives the symmetry diagrams for the space
group I%. It will be noted that, although thc space group
is centrosymmetric, a centre of symmetry is not chosen as
the origin, but the point at the intersection of the 2-fold
axlis and the c-glide plane is used. Figure 5.2b showg the
symmetry diagrams for cmm, the symmetry of the special
projections (001) and (100), used in the structure deter-
mination. The origin for the projection (100) is shifted
7 of a lattice translation along the b axis relative to the
origin of the three-dimensional space group. It will be
observed that in conbrast to the three-dimensional space
group the two-dimensional space group cmm hag a centre of
symmetry at the origin.

The density of the crystal was measured as 1.35gm cm_3
by flotation in zinc ilodide solution, the density of the
solution being determined with a specific-gravity bottle.
Then, using this value for the density and the cell dimensions
given above, the number of molecules per unit cell may be
calculated to be 3.82, which gives 4 as the nearest integer.
The space group I% has 8 general positions and it is there-
fore evident that the molecule of 2-diszoindane-1,%-dione
must be specially situated with respect to the symmetry

elements in the unit cell. In fact, there is a 2-fold axis
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in the molecule which follows the line of the C-N-N group

and relates the two halves of the moliecule; and this 2-fold
axis in each molecule is coincident with a 2~fold axis in the
unit cell. A knowledge of the structure would have enabled
this deduction to be made at once, but, as indicated above,
this information was not available and so the conclusion

was arrived at by a roundabout method.

5.4 THE SOLUTION OF THE (001) PROJECTION

5.4,1 THE COLLECTION AND PROCHEHSSING OF THE hkQ DATA

A crystal of length 0.63mm (needle axis) and cross
section 0.099 by 0.073mm was selected. The X-ray intensities
were measured using a Unicam Welssenberg camera with Ni-
filtered CuKa radiation. Two packs of five films were used
with exposure times of 120 hours for films 1 to 5 and 24 hours
for films 6 to 10. The tube current was not stabilised but
averaged 15ma and the votential across the tube was kept at
approximately 40KV.

The intensities were measured visually against an
arbitrary scale of spots which varied linearly in intensity
from x = 1 (just visible) to x = 20. The sets of values
for each particular reflection, obtained from several films,
were scaled together by a method described by Darlow (1960).
Empirical scale factors for s%aling from the n - 1th film
to the n™® film were calculated as 8 = (Z)xn B 1)/(Z)xn),
including only intensities measured on both films. A1l the
values of Sn were averaged (except for Ss’ which connects

the two packs) with weights proportional to Z}Xn.
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Now, since the intensity, X0 of a spot on the nth
film can be measured to an accuracy of + 1, the intensity
of this spot scaled up to the most heavily exposed film is
given by In = Cn(xn + 1), where c, = 81082 ceeee S A
mean value for the intensity for several spots on adjacent
films, each spot being weighted by the reciprocal of the
accuracy of the measurement, is given by Iobs. = (Z&Xn)/
Z}1/Cn). This latter expression is extremely easy %o
calculate.

Measurements were made of 45 independent reflections
out of a maximum possible of T75. Each unobserved reflection
was given an intensity of 0.5 of the Ffaintest spot recorded.

No absorption correction was applied to the data. The
maximum error due to absorption was less than 1% and, neither
the accuracy of the data, nor that of the available absorption-
correction computer nrograms, justified taking this step.
However, the usual Lorentz and polarisation corrections were
applied to the data and the values of IFOl, the observed
structure factor (on an arbitrary scale), were calculated.

An overall temperature factor (B) and a scale Ffactor (X)
were then found by the familiar method due to Wilson (1942).

Wilson has shown, for a reasonably random atomic distribution,

that:
| 7,l° 2y 2B . 2
ln(—Wg‘_‘) = -~ In(K°) - =5 sin~6 (5.1)
= i A
j J

where, lFo’ 1s the local average value of )Fol at a given

value of sin 8, fj is the scattering factor of the jth atom
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in the unit cell, and X is such that ;Fca = KIFOE . PFrom

the straight-line graph of ln(lfOIQAEjsz) against sin°g, B

may be calculated from the gradient and K from the intercept.

Figure 5.1b shows the Wilson plot derived from the hkO data

by the technigue described by Buerger (1960). The reflections

are divided into a number of ranges at equrl intervals of
2

sin~ 9. The average intensity in each range is then found,

counting zero intensities and extinguished reflections as
2
J
is calculated for each reflection and the average found in

points present but having zero intensity. Similarlylajf

each sin29 range. Then, the average values of 1n( Fo 2/
Zﬁfjg) can be found for each range, and also the average
values of sin28 within the ranges; and both quantities are
then used as coordinates for the points on the Wilson plot.

Values of 4.5 for B and 3.2 for K were obtained from the

hkO data.

5.4.2 SUMMARY OF THE PROGRESS OF THE REFINEMENT OF THE (001)

PROJECTION

As was indicated above, the solution of structure of
2-diazoindane-1,%-dione was attempted initially without any
prior knowledge of its conformation. However, it was found
necessary to use some of the chemical information about the
gtructure in order to proceed with the refinement. Two
incorrect modelg were proposed before the final correct
structure was deduced.

From the weighted reciprocal lattice of the hkO data a

benzene ring was identified in the structure and the

I
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orientation of this ring could be determined. The benzene
ring was placed in what was later found to be an incorrect
position in the unit cell. Then, using the chemical
information on the probable conformation only as a guide,
the remainder of the atoms in the molecule were positioned
one by one from the peaks on successive Fourier maps.

This first model of the structure proved to have a substan-
tially correct conformation but to be wrongly positioned in
the unit cell. The reasons why such a reasonably convincing
model could be derived and yet be incorrect are guite inter-
esting and are discussed in section 5.4.5.

A second model was deduced merely by changing the
vogition in the unit cell of the molecule derived for the
first model. However, this model also proved to be incorrect
as the positions of the two nitrogen atoms were wrong.

A final correct model, with the nitrogen atoms repositioned,
was proposed. This model then refined rapidly using a
minimun-residual program, which enabled certain rigid-body

constraints to be applied to the molecule.

5.4.3 THE cmm FOURTER PROGRAM AND THE MINTMUM~RESIDUAL

PROGRAM USED IN THI REFINEMENT.

Before discussing the refinement of the (001) projection
in detail it is convenient to mention here two of the
computer programs which were used extensively.

The first of these calculates structure factors and
Fourier maps for the two-dimensional space group cmm and

was adapted from one written by Miss A Sutherland of this




department. Structure factors are computed from atomic

parameters fed into the program using the expression

Fc(h,k) = Z)jfj 8 cos(2rhx) cos(2nky)

(h + X = 2n)

the summation being taken over all equivalent positions in
the unit cell. The scattering factors are calculated from

the expression

2 2
£, = . - a. + B, - b. + C,
5 AJ exp( 8 5% ) ; exp( 5% ) ]

(x = sin 6/))

given by Forsyth and Wells (1959), who tabulate values of
Aj, aj, Bj’ etc. for all atoms.
Fourier maps are computed from the expression

00 00
p(x,y) = JA'[F(OO) + 4h21§ 11&?0(}1,1:) cos(2nhx),

cos(2rmky)]

where K, the scaling factor, is calculated as
K = ZIFYDIR)

Difference maps (FO - FC) and maps from the calculated
structure factor (Fo) may also be computed and output
simultaneously with FO maps. Reflections for which
K\FO\ > SIFcb are rejected from the computation, as having
obviously indeterminate phases.

One interesting feature of the program is that reflections

may be divided into two groups having wvalues of sin 6 less
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than, or greater than, some specified value. Reflections
in either the inner or the outer groups may be used alone to
give Fourier and difference maps. Low-~angle reflections
are subject to extinction effects and may also be most in
error, if the hydrogen atoms are not located; it is thus
often useful to reject them in the final stages of a refine-
wment. High-angle reflections are more sensitive to
positional and temperature-factor changes and are often
used on their own in the final refinement stages; but

they may be rejected in the initial stages as their very
sensitivity maskes their phases difficult to determine.

One other useful feature enables the value of B, the
overall temperature factor, to be recalculated as the
refinement progresses. Values of EHFC\ﬂleOI for wvarious
ranges of sin29 are output by the program. Now, since we

may write

KF, = T exp(- B sinze/he)
c
then
Z|E |
c _ B .2
1n(ET_F_O|_) = In(K) + )\2 sin~8

Thus, in a similar manner to the Wilson plot, values of B
and K may be determined from a graph of ln(ZHFC\AE\FO\)
against sin28.

The second program, used extensively in the refinement,
was a minimum-residual refinement program (Bhuiya and
Stanley, 1963%). The method attempts to refine the structure
merely by reducing the residual factor, R = ZXKQ\FOI - IFC\)/

E”KFOI, which measures the agreement between the observed and




- 84 -

calculated structure factors. Each parameter of each atom
is taken in turn and varied step by step over a discrete
range of values. That value of the varameter, which gives
the minimum value of R, is accepted as the refined estimate
of the parameter. When all the parameters of all the atoms
have been wvaried, the process is usually repeated, this time
restricting & 1little more the range of variation of the
parameters.

Several changes were incorporabted into the standard
minimum-residual refinement program. As in the Fourier
program it was arranged that the reflections be divided into
"inner' and 'outer' groups. It was supposed that the inner
refilections, when used alone, would allow a more rapid
initial refinement of the gtructure. The outer reflections
would be useful in the final stages for accurate positional-
parameter refinement and the refinement of the tempersiture
factors. In addition, certain rigid-body constraints were
applied to the movement of the benzene ring as described

below.

5.4.4 THE DERIVATION OF THE FIRST MODEL

As a first step towards the solution the weighted
reciprocal lattice of the hkO data was drawn (figure 5.3%a).
The black discs represent unitary structure factors,
|U(hk)| = IFO(hk)lﬁEjfj. The most striking feature of the
weighted reciprocal lattice is the presence of the six strong
peaks that are circled. These peaks are the characteristic
indication of a benzene ring in the structure of the molecule,

which is a distinct possibility since there are nine carbon
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atoms in all, Assuming that there is in fact a benzene
ring, it is evidently tilted about an axis parallel to the
b axis. A benzene ring parallel to the hkO plane would
give six strong peaks all lying on the large circle in
figure 5.3a; only two of the pesks lie on this circle (%he
benzene circle), and the remaining peaks are displaced from
the circle and disposed symmetrically on either side of the
b axis.

The angle of tilt of the benzene ring may be determined
by a method given by Taylor and Lipson (1964). (The method
can in fact be used to locate any general orientation of a
benzene ring relative to a reciprocal-lattice plane). The
centres of gravity of the six peaks in the reciprocal lattice
are marked - A1, Ag, A3 ceo A6 ~ and these points are joined

to the origin O (see figure 5.3b). Then points B,, B, s«s

17 72

B6 are marked on the 1ineé OA1 etc. such that OBt is inversely
proportional to OA1 and so on. Perpendiculars to the lines
OA1 etc. are drawn at B1, B2 oo B6 and these then delineate
the projected shape of the benzene ring. The method relies
upon the inverge relation between the benzene-ring dimensions
and the dimensions of its transform (see section 1.1).

Using Taylor and Lipson's construction, the tilt of the
benzene ring about the b axis with respect the hkO plane was
calculated as 25°. Unfortunately, the optical transform of
a benzene ring tilted in this way was found not to give a
very good fit with the weighted reciprocal lattice; in fact,
a slightly greater tilt seemed to be reguired. Transforms
of benzene rings, tilted by various amounts in the range
250—400, were tried and the one having a tilt of 35° seemed

to give the best fit. (It may be noted that in the fully

refined structure the tilt was found to be 32° - a striking
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example of the accuracy obtainable by optical methods).

It has already been noted that, since there are eight
general positions in the unit cell and only four molecules,
the molecules must be specially situated with respect to the
symmetry elements. Six of the nine carbon atoms in the
molecule are taken up by the benzene ring and obviously this
ring must also be specially situated. The most likely
position for the benzene ring is such that each 2-fold axis
in the space group, parallel to b, lies in the plane of the
ring and relates the two halves. A1l the benzene rings on
the 2~fold axes are then related to each other by the centres
of symmetry and the screw axes and are all in parallel
orientation; the parallel orientation is confirmed by the
clarity of the six peaks in the weighted reciprocal lattice.
In addition, it can be concluded that at least one of the
remaining carbon atoms must lie on the 2-fold axis.

In the (001) projection, symmetry cmm (figure 5.2b),

a palr of 2-fold axes project on to the line x = 0 and
another pair on to the line x = 4. Therefore, on the line
x = 0 in the projection there will be two benzene rings
symmetrically orientated about this line and related to each
other by the rotation diad at 0,0. Bimilarly two benzene
rings are orientated about the line x = + and related by

the diad at +,+.

The position of the benzene ring along the 2-fold axis
now needed to be found; at first sight this would appear to
be & simple one-parameter vroblem. The molecular-location
method, described in section 5.4.6, was tried but gave no
clear indication (probably owing to the difficulty in selec-

ting the correct reflections).
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However, two pieces of information suggested (unfortunately
guite wrongly) a likely site for the benzene ring. First,
pairs of benzene rings, such as those related by the diad at
0,0, would give regularly spaced fringes in the transform
running perpendicular to the b-axis. Yet, the hkO weighted
reciprocal lattice does not show evidence of strong fringing.
This would suggest that the two benzene rings are close
together and probably overlapping. Secondly, the length of
the ¢ axis, 7»93%, is such that the planes of these two
benzene rings are 3,68 apart. This distance i1s about the
normal spacing (3.43) of aromatic rings, when stacked on top
of each other; again, this suggests that the benzene rings
are overlapping.

While this evidence, zbout the positions of the benzene
rings, was by no means conclusive (and not even really
circumstantial), in the absence of anything better it was
decided to initially accept it as correct. A Fourier
synthesis was calculated from the hkO data using phases
found from a trial model, in which the two benzene rings
were exactly superimposed, and thus, situated such that the
centre of the rings was at 0,0. Figure 5.4 shows the
resulting electron-density map (one guarter of the total
projected area of the unit cell). The peaks of the two
superimposed benzene rings are returned strongly and other
peaks appear (indicated by question merks) which could be
possible atomic sites.  The residual of 49% seemed quite
prromising, considering only half the atoms in the molecule
have been included in the model, and a not unreasonable

agreement between the structure factors was obtained.
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Thus, although the model was based on somewhat insub-
stantial foundationg, it secemed probable that it was near
to the cerrect structure and was worth attemeting to refine.
Atoms were placed at the positions suggested by the Fourier
map and agreement between the optical transform of this new
model and the weighted recivrocal lattice was sought.
However, it was found that the fransform of the benzene ring
so dominated the weighted reciprocal lattice, that the extra
detail introduced into the optical transform, when other
atoms were added to the model, avpeared to be relatively
insignificant.

At this point an impasgse had been reached and, although
a conesiderable amount of information had been gathered about
the structure by purely physical methods, it was decided to

seelk guidance on the conformation of the molecule from the

chemical evidence. This information on the chemical
structure was given as O
N2
ég

Owing to a misunderstanding, it was not realised that the

two nitrogen atoms were supposed to be linked in a chain:

C-N-N. The evidence from the Fourier maps apnreared to
N

s

suggest that the nitrogen atoms were linked thus: C\‘1
N

and so this latter configuration was adopted, until
it later became evident that it was wrong.

Using the information now available about the structure
it was possible to assign atoms to certain peaks on the

Fourier map of figure 5.4 and to calculate further Fourier




maps, putting additional atoms into the model, until all

the atoms were located. A slight variation of this procedure
was actually adopted. At each stage an optical transform
was made of the trial structure and only those reflections,
which corresponded to strong features on the optical trans-~
form, were used to calculate the Tourier maps; thus, only
reflections with well-determined phases were used.

Figure 5.5 shows the Fourier map obtained when all the
atoms were located. It should be noted that the benzene-
ring peaks are of double height, since there are two such
rings superimposed, belonging to the two molecules related
by the diad at 0,0. Although this Fourier map appears to
be not unreasonable in that the peaks appear in the correct
places, are fairly well-rounded and of the right order of
height, other evidence suggests that the model is quite wrong.
First, although all the other atoms have been added, the
residual, now 51, has slightly worsened from that obtained
with the original model, in which only the benzene ring was
located. Secondly, the agreement between the observed and
calculated structure factors is nol very good; for example,
for one particular reflection (220) we have Fc = 50 and FO = 4,

Attempts were made to refine this struéture using
optical methods, structure-factor graphs and error mavs
without success. While attempting to use structure-factor
graphs to refine the structure, it was realised that only a
drastic modification could correct the discrepancy in the 220
reflection, involving the movement of a number of atoms over
considerable distances. Thus, it was realised correctly
that the only way that the apparently reasonable Fourier map

of figure 5.5, agreeing roughly with the known chemical
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structure, could be reconciled with the other indications
that the structure was wrong was to assume that the model
was basically correct but that it was in the wrong position

in the unit cell.

5.4.5 AN EXPLANATION OF THE DERIVATION OF THE FIRST MODEL

An exactly similar situation was found by Pinnock et al.
(1956) in a structure published by Klug (1950). The reasons
advanced by Pinnock for Klug's result hold equally well in
the present case.

If the shape and orientation of the molecule are
substantially correct, then there will be good agreement
for many of the large obhserved reflections but certain
reflections will be sgeriously wrong. In terms of optical
transforms the large reflections will correspond to intense
areas 0f the transform of the individusl molecule. However,
the transform of the several molecules in the unit cell will
be similar overall to the transform of the individual molecule
but modulated by a fringe pattern. Reflections lying at
the troughs of the fringes will be critically affected by
small movements in the relative positions of the molecules;
eand these reflections will be ones showing the largest
discrepancies, if the molecules are wrongly positioned in
the unit cell.

Another way of approaching the situation is from the
concepts of the Patterson functiorn. In terms of a Patterson
map the intermolecular vectors are wrongly idéntified but

the intramolecular vectors are correct.
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The existence of an apparently correct Fourier map is
also explained by Pinnock as follows: "Fourier synthesis
is not a good test of a provosed structure: it always ftends

to support the hypothesis on which it is based."

5.4.6 THE DERIVATION OF THE SECOND MODEL - THE MOLECULAR-—

LOCATION METHOD

Thug, assuming that the basic shape of the molecule isg
correct, it is now necessary to correctly position it in the
unit cell; the molecular-location method of Taylor and
Yorley (1959) was used for this purpose. As indicated
above certain reflections are critically dependent upon the
relative vositions of the molecules in the unit cell. Such
reflections may be ldentified since they lie on strong
regions of the optical transform of the single molecule but
are themselves small in magnitude. In Taylor and Morley's
molecular~location method such a reflection - h,k - is chosen
and the quentity JiG(h,k)l - !Fo(h,kﬂl ic evalusted at
points covering the whole projected area of the unit cell.
G(h,k) is the value of the calculated structure factor,
Fc(h,k), when the molecule is positioned at each of the
points in the vrojected cell. (It is of course necessary
to choose some reference point in the molecule, relative to
which the molecule may be vogitioned over the unit cell).
The correct position in the unit cell for the reference point
in the molecule is marked by a dip in the contour map of
the function hG(h,kﬂ - PFo(h,kﬁi . If several such maps
(using a humber of different reflections) are superimposed,

then the correct position should be unambiguously indicated.
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For our purvoses however it is not necessary to evaluete
the function “G(h,k)l - JFO(h,k)y over all positions in the
unit cell. Provided that the reference point is chosen
gsuch that it lies on the projection of 2-fold axis, it is
only needed to evaluate the function along the line x = O.

A reference point at the centre of the benzene ring was
therefore selected.

Figure 5.6a gives the results obtalned, in graphical
form, for Taylor and Morley's function evaluated along the
x = 0 line, using only the 220 reflccition. Two non-equiva-
lent points appear to be indicated, which we shell refer to
as A(y = -0.083) and B(y »~ 0.167). A further graph was
plotted, figure 5.6b, in which several other reflections
were used as well as 220, these were: 730, %70, 620 and 640.
Troughs A and B are still present but B is now not so deep
as A. There is also a further small trough, C, but this
may be assumed to be spurious. Position B would appear to
be less likely than A from the results of figure 5.6b. In
fact, the optical transform produced, when position B was
assumed, appeared guite wrong. The two molecules related
by the diad at 0,0 were placed a good distance apart and
the transform was heavily fringed. In addition, the residual
remained high at position B and the agreement between FO and
Fc was poor.

However, at position A the two symmetry-related molecules
overlap almost completely and their centres of gravity are
quite close together. The heavy fringing present with
position B was now found to be absent from the transform.
Unfortunately, although the agreement between the structure

factors was improved, the residual remained high (54).
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However, it was found that a small shift of the molecule
from B to the point x = -0.107 produced a sharp drop in the
residual to 39, avr~  tre oaricr rrp of Tic. 5.7,

Accepting the molecule in its new situation, attempts
were made to refine the structure. First, a difference map
indicated that a shift was required in the position of the
oxygen atom and a movement (deduced empirically) of O.35@
in the positive a~axls direction decreased the residual from
29 to %6, A difference map then revealed the necessity for
further movement of the oxygen atoms and also of the nitrogen
atoms. Three cycles of minimum-residual refinement on
these atoms alone produced some small adjustments in their
position and a fall in the residual from %6 to %3.

Figure 5.8 shows the difference map corresponding to the
structure at this point. The nitrogen atoms are in a sharp
trough and it is evident that some movement in their position
is reguired. The oxygen atoms are in a smaller hollow and
also appear to need shifting. However, when an attenpt was
made to refine these atoms by the minimum-residual method,
they refused to move. It was evident that, if in particular
the nitrogen atom, which was obviously in an incorrect
position according to the difference map, could not be

refined, then there must be something wrong with the model.

5.4.7 THE _REFINEMENT OF TEE FINAL MODEL - THE PROGRAM

' BENZENETWIDDLE'

It was not difficult to trace the source of the error
in the model. The most obviously incorrect feature on the

difference map (figure 5.8) is in the region occupied by the
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nitrogen atoms. The difference map and the corresponding
Fourier map showed that the electron density should be
strongly elongated along the b-axis. This elongation
suggested that instead of being situated on either side of
the b-axis (Ci:i) the nitrogen atoms were in fact positioned
along the axis (C-N-N). The model was therefore altered to

accord with this suggestion usging bond lengths derived from

the compound diazomethane

H
C-N-N

/
H

(Tables of Interatomic Distances, 1958), which contains the
similar C-N-N grouping. The residual fell from 3% to 27.

Using the cmm Fourier program, a difference map and a
Fourier map were calculabted for this new model. The Fourier
map returned peaks corresponding to the nitrogen atoms in
their new positions but the difference map indicated that
some adjustment was still necessary. A new temperature
Tactor of 4.9 was calculated from the vrogram data - up to
this point the temperature factor of 4.5 derived from the
Wilson plot had proved adequate.

Six cycles of minimum-residual refinement on the
nitrogen atom positions alone, using inner reflections for
which sin 8/A < 0.5, brought the residual down from 27 to
24. Figure 5.9 shows the difference map corresponding to
the structuré at this point. This map now appeared to be
qulte reasonable, although shifts are indicated in several
atoms including the nitrogens. The low value of the

residual and the fairly good agreement between the structure

factors indicated that the model was basically correct and
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should refine easily.

Acting uvpon a suggestion by Dr I G Edmunds it was
declded to write a program for a minimum-residual refinement,
which would treat the benzene ring as a rigid body - allowing
it only to move along and rotate about the 2-fold axis
keeping the relative position of the ring atoms fixed. This
program, referred to as 'benzenetwiddle', allowed the atoms
not contained within the benzene ring to refine normally.

The minimum-residual refinement program often seems to work
best if some such rigid-body constraints can be applied.

At the suggestion of Miss A Sutherland the program was written
such that a difference map was produced at the end of the
refinement. This facility is extremely useful as it is
possible to keep a check on the progress of the refinement -

a difference map being a much more critical test of the
results than the single numerical value of the residusl.

The final refinement now proceeded relatively guickly

in four separate stages.

Stage 1: Three cycles of the benzenetwiddle program
were used, the benzene ring bheing allowed to move as
a rigid body, as indicated above. The positional
varameters of all the atoms not in the benzene ring
were allowed to change freely (unless constrained by
symmetry) . The temperature factor for each atom
was fixed at 4.9 and only reflections with sin 8/\

< 0.5 were used. The residuval fell from 24 to 14,

most of the change taking pnlace in the first cycle!

Stage 2: A further three cycles of the benzene-

twiddle program were used this time taking in all
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reflections. Almost no change occured in the atomic
parameters and the residual fell only by 0.1% The
difference map output at the end of the refinement
indicated an increase in the temperature facbor for

the nitrogen atom, N2, as the only big feature.

Stage 3: The benzenetwiddle program was now applied
again, this time using only reflections for which

sin 8/) > 0.25. The idgotropic temperature factors
of all the atoms were allowed to vary independently.
The residual for the outer reflections fell from 19.8
to 14.5 in three cycles and the total residual fell
to 12.6 (the structure factors being scaled on the

outer reflections only).

Stage 4: For this final stage of the refinement the
benzene-ring atoms were now allowed to move freely,
so that all the positioral parameters and all the
isotropic temperature factors of the atoms were
varied independently. In six cycles of minimum-
residual refinement only small changes of parameters
were observed and the ocuter residual fell from 14.5
to 13.8 and the total residual from 12.6 to 12.3

At this point the refinement was stopped.

5.4.8 A DISCUSSION OF THE FINAL STRUCTURE OF THE (001)

PROJECTTION
The refinement was noW essentially complete. The
movements of the parameters were guite small and probably

not significant. The agreement in the structure-factor
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data was quite good apart from 200 (ﬁFOQ = 69.3, IFCl = 82.5)
and extinction could easily cause this discrepancy.

Figure 5.10 shows the final difference msp, in which
only outer reflections, sin /% > 0.25, were included. The
maximum height of the detail in the map is O.6e/g2 and no
atoms appear to lie on steep slopes which would indicate
positional changes. One interesting feature in the ‘'‘butter-
fly' shape in the contours surrounding the nitrogen atom N2,
which indicates an anisotropic temperature factor for this
atom corresponding to a strong vibration perpendicular to
the b-axis. This conclusion is confirmed by the final
refinement of ail the data in the next chapter. The
positions of G4 (and C4$) and 0 (and Oi) indicate that they
lie close to the plane of the benzene ring; ‘thus, the
whole molecule is eésentially planar. Thie conclusion was
later found to be in agreement with the chemical data and
was also confirmed by the final refinement.

The coordinates of the atoms in the molecule derived

from the (001) projection are given in Table 5.1 below.




-
pEN—

CONTOUR INTERVAL 0.2e/A

Fig.5.10




~ 98 -

TABLE 5.1

COORDINATES OF THE ATOMS IN THE (001) PROJECTION

X Yy B
NGRS +0.,060% ~0.23%41 4.52
c2(cal) +0.1207 -0.1185 4.75
o3(csl) +0.0603 ~0.0085 5.78
ca(cal) +0.1108 0.128% 4.19
5 0 0.2022 5.05
o(oh) +0.21%5 0.1566 4.8%
Nt 0 0.3253% 5.69

N2 0 0.4%16 6.58
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CHAPTER 6

THE COMPLETION OF THE REFINEMENT OF THE STRUCTURE

OF 2~DIAZAINDANE-1,3-DIONE

6.1 INTRODUCTION

The solution of the (001) projection, described in the
previous chapter, enabled the x and y coordinates of all the
atoms to be determined. It now remained to find the
missing & parameter in order to specify the complete three-
dimensional structure.

As has been noted in chapter %, the molecule appeared
to be planar from an examination of the (001) projection;
and it will be shown later that the molecule ig in fact very
nearly planar. It is indicated below that approximate
values of the z parameters can be deduced from the x
parameters knowing a rough value for the orientation of the
moldcularplane. Also, it will be shown that this approx—
imate orientation of the molecular plane can be found from
the (001) projection of the benzene ring and a gualitative
inspection of the hOl weighted reciprocal lattice.

Thus, it was possible to postulate a model for the
(100) projection of the structure. The (100) projection
was refined (with some difficulty owing to the small number
of measured reflections) starting from this model. A

residual of 15 and a not wnreasonable difference map was
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obtained for this projection. However, the y coordinates
of the (100) projection differed by as much as 0.12 from
those in the (001) projection.

It was realised that good values for all the parameters
would be obtained only if all the available data was used
together in the refinement. Accordingly, all the reflections,
from the three projections (001), (010) and (100), that had
been measured up to this point, were used in a least-squares
refinement. However, it was found that the x parameters
of two atoms had approximately the same value and appeared
Tto be strongly correlated. These two parameters would not
refine at the same speed as all the other parameters and
each had a high standard deviation. The hkl data were
added to the least squares refinement and this appeared to
have the effect of 'unlocking' this correlation.

The least-squares refinement now proceeded quickly to
a residual of 18.6 when movements of the atoms ceased.
Hydrogen atoms and anisotropic ftemperature factors were
introduced and further refinement to a residual of 11.9 was
obtained. The movements in the parameters at this point
were much less than the standard deviation in the parameters
and so the refinement was stopped. The difference maps,
corresponding to the cross sections of the electron density
taken through the atomic positions, also revealed no out-
standing features requiring explanation. The atomic
coordinztes obtained were taken to be those of the final

structure.




- 101 -

6.2 THE DEDUCTION OF THE ORIENTATION OF THE MOLECULAR PTLANE

FROW THE hOl DATA

A small crystag approximately cubic in shape and of O.16mm

gside, was cut from a larger one. The crystal was mounted on

a Weissenberg camera and the hOl reflections were photographed

using Ni-filtered CuK« radiation. The intensities were
recorded on two packs of five films (exposures 24 hours and
120 hours) and they were measured and corrected in the same
manner as the hkO data (see section 5.4.1). A total of 19
reflections out of a total possible of 51 were measured.
Unobserved reflections were given intensity values of one
half the weakest reflection recorded.

No Wilson plot was made of the data, because the
statistical inaccuracy in the small number of reflections
would have given poor results. However, the unitaries
corresponding to the observed reflections were calculgted
and a weighted reciprocal lattice was drawn - figure 6.1.

It was shown in chapter 5 that the benzene rings in
each molecule in the unit cell are all similarly orientsted
~ the plenes of the rings lying varallel to the b axis.

It is possible to partly deduce the orientation of the ben—
zene ring from the final structure of the (001) projection,
if the reasonable assumptbn is made that the bond lengths

of benzene are all 1.4%. The projected length of the C1C1
bond is 1.168, which indicates that this bond is orientated
at 33.7° to the hkO reciprocal-lattice plane. The C2c2’
distance gives an almost identical result and thus the

plane of the benzene ring must also be orientated at 33.70

to the hkO reciprocal-latiice plane. If the molecule is

assumed to be planar, as has been indicated in chapter 5,

1




Fig.6.]
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then 211 the atoms of the molecule must lie in the plane of
the benzene ring.

It was now necessary to determine the absolute orien-
tation of the molecular plane to the a and ¢ axes and this
can be done from an inspection of the h0l weighted reciprocal
lattice. Tocking down the b axis along the plane of the
molecule the atoms will appear arranged in an irregular row.
The optical transform of such a row of atoms is a series of
streaks perpendicular to the row direction. If, therefore,
such a series of streaks can be located in the hOl weighted
reciprocal lattice, then the row direction and hence the
orientation of the molecular plane can be fixed.

Figure 6.1 shows the presence of these streaks quite
clearly-—indicated by the dashed lines. The direction of
the atomic row,also indicated on figure 6.1, is such that
it cuts the obtuse () angle between the a and c¢ axes.

Vo attempt was made to refine the (010) projection as
the severe overlapping of the atoms and the small number

of measurable reflections would have made this difficult.

6.3 THE SOLUTION OF THE (100) PROJECTION

6.3.1 THE DERIVATTON OF A MODEL FOR THE PROJECTION AND THE

COLLECTION OF THE DATA

The orientation of the plane of the molecule of
2-diazoindane~1,%-dione was found, as indicated above, to be
at 33.70 to the hkO plane. The hO0l weighted reciprocal
lattice then showed that the plane cuts the angle B between

the positive a and c-axis directions. Simple geometry then
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shows that the fractional 2 coordinates of the atoms are

given by

a sin(92.1 -~ 56.3)x
sin 56.3

Q

the angle 56.30 being the angle which the molecular plane
makes with the ¢ axis. Thus, the z parameters of the atoms
in the molecule can be derived from the x parameters, using
the equation above; and a trial model for the (100) pro-
jection can be found from these z coordinates and the y
coordinates of the (001) projection.

A crystal, 0.204mm (needle axis) by 0.083mm by 0.074mm
(rectangular cross section), was selected. The 0kl X-ray
reflections were photographed in the same manner as the hkO
reflections (see section 5.4.1) using two packs of five
films (200 hours and 24 hours exposure). The data were
measured and corrected, again as in section 5.4.1, except
that an absorption correction was also applied. Unobserved
reflections were again given a value of half that of the
weakest reflection recorded.

The computer program, that was used for the absorption
correction, was written by Miss A Sutherland of this depart-
ment. This program treats the data obtained by vhotographing
zero layers of the reciprocal lattice by normal-beam, rotating-
crystal methods. The cross section of the crystal perpen-
dicular to the rotation axis must first be measured; if the
cross section is not uniform then some average area must be
congidered. This cross-sectional area is then sampled by
a lattice consisting typically of several hundred points.

The reflections are considered in turn: and for each
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reflection the incoming and diffracted beams are represented
by the bundle of rays, which are scattered at the points of
the sampling lattice. The path lengths within the crystal
for each of these rays and hence the absorption factors of
the rays are then determined. The absorption correction
for the particular reflection under consideration is then
taken as the average of the absorption factors for all the
rays. A1l the remaining reflections are treated similarly.
The difference between the maximum and minimum absorption
corrections to the intensities was about 10%, corresponding
to a difference of about 3% in the structure factors.
Only a small number of reflections (29) could be
measured despite the extremely long exposures used. The
comparative shortness of the axes, which meant that there were
few reflections (61) to be measured anyway, and the disinte-
gration of the crystal during exposure, with a consequent »
loss in scattered intensity, probably account for the small-
ness of this number. A Wilson plot (see section 5.4.1)
indicated an overall temperature factor of 3.9 for the

projection and a scale factor of 4.3 for the data.

6.3.2 THE REFINEMENT OF THE (100) PROJECTION

A model of the (100) projection structure was found by
calculating the y and z coordinates as indicated above.
These trial parameters were then used to calculate the
difference map of figure 6.2, on which the structure is
outlined. It will be noted that the origin of the y
coordinates is shifted one quarter of a unit cell translation

from the origin used in the (001) projection, which is also
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that of the three-dimensional cell. The atoms of the
benzene ring are no longer overlavped in this projection by
atoms of 2 symmetry-related molecule and in theory their
positions should be easier to determine. However, the atoms
C5 and N1 are overlapped by the atoms of a symmetry-related
molecule in this projection.

The (100) vrojection proved to be exiremely difficult
to refine mainly owing to the small number of reflections.
The parameters of different atoms eften appeared to be
gtrongly correlated, gso that when one atom was moved this
seemed to cause another atom to appear to be in an incorrect
rosition.

I one isotropic temperature factor is allowed to each
atom, then there are 21 independent parameters to be determined
from the projection. Since there are only 29 measured
reflections, the parameters are only slightly outnumbered
by the reflections. In normal X-ray structure determinations
the ratio of reflections to parameters is usually much
greater. In theory, since the y parameters were known from
the (001) projection, only 17 z and B parameters need be
determined. In practice, it was found necessary to alter
the y parameters in order to get the best possible fit to
the data.

The refinement was carried out using the benzenetwiddle
program, described in section 5.4.7, and the more-usual
minimum-residual program. Difference maps proved useful

at one point, where the expression given by Buerger (1960):-
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d(py = pg)
¢ = dr
2p,(0)p

was used to calculate shifts in atomic positions. The
factor ¢ is the amount the atom should move in the direction
r, in which the slope, d(po - pc)/dr, of the difference mav
is the steepest. The quentity pO(O) ige the peak electron
density, which may be estimated from the corresponding
Fourier map, and p is a constant which was calculated by

substitution in the expression (also given by Buerger, 1960):

3
p,(0) = Z(§)2

The model calculated for the (100) projection gave a
residual of 29.3% and a temperature factor of 4.9. The
difference map of figure 6.2 indicated that adjustments
were necessary to the positions of the CH, N1 and N2 atoms
in particular.

The first stage of the refinement was an attempt to
achieve the same rapid progress towards the solution that
was obtained for the final model of the (001) projection.
The minimum-regidual program was therefore used with low-
angle reflections (sin 8/ < 0.52). The z parameters of
all the atoms were first refined alone, using the benzene-
twiddle program to vary the tilt of the benzene ring. Some
refinement occurred mainly in the oxygen atom whose z
coordinates changed by 0.06%.

The atoms C1, N1 and N2 were now refined by the
minimum-residual »program. The initial attenpt was

unsuccessful, producing unlikely nitrogen-nitrogen bond
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lengths (less than 1R), probably owing to the overlap about
the C5 and N1 a*tomic sites. After several attempts it was
found that the difference map could be smecothed in the
region of the C5, N1 and N2 atoms, using the minimum-residual
approach, if this group of atoms was moved as a whole along
the 2-fold axig, with the C5% atom being shifted twice as
fagt as the N1 and N2 atoms. Shifts of 0.062 for the
nitrogen atoms and 0.128 for the carbon atom were recorded.
Some refinement of the y parameter of the benzene ring then
seemed to be required by the difference map and a shift of
0.06% was produced by the benzenetwiddle progran.

Fourier and difference maps were calculated at this
point using the cmm Fourier vrogram. The difference map
had improved considerably from that for the original model,
although shifts still seemed to be reguired by the C5, N1
and N2 atoms. The residual had also fallen from 29.3 for
the original model to 24.7, and a new temperature factor
of 5.4 was calculated.

Further attempts to refine the molecule using inner
reflections and the minimum-residual program now proved
abortive. Some shifts in atomic vosition were recorded
but none were greater than 0.048 and the residual fell
hardly at all.

The structure refinement now seemed to be 'sticking'
and a second stage was reached wher all the reflections
were used in conjunction with the minimum-residual approach,.
At first the benzene ring still continued to be treated as
a rigid body, using the benzenetwiddle minimum-residual
program, bult only quite small shifts (~ 0.0ZR)COuld be

obtained in any of the atomic narameters and the residual
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fell by only 1% in three cycles.

Thus the benzene ring atoms were now released from the

rigid-body constraints and allowed to move freely.

Six

cycles of minimum~residual refinement brought about a fall

of approximately 3% in the residual and shifts in a number

of atomic parameters of up to 0.04% per cycle.

The total

shifts however were quite reasonable the largest being those

in the z parameters of the C4 and €3 atoms (~ 0.11).

At this point the difference map was inspected and it

was found that the most incorrect feature was in the region

of the atom N2, which was on the side of deep (1.8e/ﬁ2)

'hole '.

The third stage of the refinement was an attempt

to refine the parameters of this nitrogen atom by using

difference maps,
obviously not working for this
000963 in the y coordinate was
difference maps. After these

difference map showed that the

bottom of a somewhat shallower

gince the minimum-residual approach was

atom. A total shift of

calculated Trom two successive
shifts had been made, the
nitrogen atom was at the

hole than before. This

feature was corrected by raising the isotropic temperature

factor for the nitrogen atom to 7, which was approximately

its value at the end of the refinement of the (001) pro-

jection.

Fourier maps and difference maps were calculated at

this point using the cmm Fourier program.
residual was found to be as high as 20%,

outstanding features on the difference map.

Although the
there were now no

it now seemed

that the final stages of the refinement had teen reached

but that

the residual would not fall as low as

that for the

(001) projection, probably owing to the vpoorer quality of the

data.
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In this final stage of the refinement some small
adjustments were made to the atomic parameters by the
minimum-residual program, using all the reflections in the
calculations. Initially, the positional parameters of all
the atoms were allowed to vary freely. After three cycles
of refinement the residual had dropved by 2% but a number
of atoms, particularly C1 and C2, appeared to have moved in
incorrect directions, as judged from the difference map.

In addition, the agreement between the structure factors of
the reflections 004, 006 and 008 was not very good indicating
that the z parameters of certain atoms must be incorrect.
Since the difference may was considered to be a more
stringent test of the refinement than the regults from the
minimum-residual programn, those atoms, that appeared to be

in incorrect positions, were removed to their original

aites. This effected some improvement in the 004 and 006
reflections.

A further ten cycles of minimum residual refinement
were tried this time allowing the isotropic temperature
factors for each atom to vary independently. The residual
fell by 3% to 16.7%. However, the atom C1 was moved in a
direction opposite to that indicated by the difference map.
A further five cycles of minimum-residual refinement were
tried, starting from the atomic positions reached before the
previous ten cycles of refinement, this time keeping the C1
atom fixed in position. The residual fell to 15.5. The
C1 atom was now released and a further five cycles of
refinement were attempted. A residual of 15.2 was reached

after some quite small changes in the atomic parameters.
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At this voint the refinement of the (100) projection

was stopped.

6.3.% A DISCUSSION OF THE FINAL STRUCTURE CF THE (100)

PROJECTION

The difference map of figure 6.3 shows the state of the
structure of the (100) projection at the end of the refine-
ment. Although some shifts in atomic positions are indicated,
there are no major features requiring correction. The
maximum difference density on the map is 1~Oe/32u Although
a residual somewhat higher (15.2) than that of the (001)
projection was obtained, the minimum-residual vrogram was
shifting the atomic parameters only by small amounts, which
were probably not significant. A reasonable agreement
between the structure factors was obtained. Thus, the (100)
projection may be considered to be as fully refined as the
available data made possible.

The final atomic parameters are given in table 6.1 with
the y coordinates shifted 4+ of a unit cell translation in
order to bring them into line with the coordinates on the
unit cell axes. The y coordinates obtained Trom the (001)
projection are also given for comparison. Differences of
up to 0.18 are obtained between the y coordinates of the
(001) and (100) projections. Thus, the uncertainties in
the atomic positions must also be about 0»1@, which is gquite
a high value for modern structure delberminations.

Therefore, although the (001) and (100) projections
appeared to be as fully refined as possible, the accuracy

was low. This situation was due to the comparatively small




‘\ ~ . ‘| o ,’ - = “. '.."‘. /\’.. "._
/y 4 + ’

CONTOUR INTERVAL  0-5e/A%

Fig.63




- 111 -

number of reflections, particularly in the (100) projection,
that could be measured. It seemed at this point that better
results would be obtained if all the measured data (including
the hOl reflections) could be used simultaneously to refine
the atomic parameters. Accordingly, the least-sguares

refinement, described below, was used for this purpose.

TABLE 6.1

COCRDINATES OF THE ATOMS IN THE (100) PROJECTION

Jok1 ko z
ci(c1h) ~0.2495 (~=0.2341) 0.0459 5,32
co(c2l) ~0.1268 (-0.1185) 0.1168 4.43
¢3(c51) ~0.0075 (-0.0085) 0.0560 5.38
ca(cal) 0.1289 (0.128%) 0.10%3 5,42
c5 0.1903% (0.2022) 0 3.87
o(o") 0.1589 (0.1566) 0.1628 6.%0
1 0.3227 (0.3253) 0 5.84
N2 0.4243 (0.4316) 0 8.44

6.4 THE LEAST-SQUARES REFINEMENT OF THE STRUCTURE

6.4.1 SHEARING'S LEAST-SQUARES PROGRAM

The least-squares method of refinement seeks to minimise
some function of the difference between the observed and
calculated structure factors with respect to the parameters

of the molecular structure. The most commonly used function is

, 2 -
Ro= 2 w(E| - 1¥ ) (6.1)
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where W(hkl) is a weilghting factor for the hkl reflection.
If Pys Pny oee P, are the n parameters, occuring in IFC],
whose values are to be determined for R 1o be a minimum

then:

O

%} = 0 (j=1, ... n) (6.2)
If \FC\ were a linear function of p,, p, ... p it would
be possible, in the usual manner of the least—squeores method,
to derive from equations 6.2 and 6.1 a set of n simultaneous
equations, the normal eguations, whose solution would give
the best values of Pyr Py ete. Unfortunately, most crystal-
Jographic parameters are not linearly related to the lFJ
values; but, if the relationships are assumed to be linesr
over small ranges of the parameters, approximate corrections

to the parameters, €y +ee €, DAY be calculated from a set

n
of a normal equations that may be written:

n ) AF) 22\ 27 |
S n oy == Sle. = L WA —== (6.3)
i=1 nkl %Py dpy i hil op 5

where A = |F | - \Fc\u
The normal eguetions may be convenienitly expressed in

nmatrix notation as:

5 -
z a;485 = bj - (6.4)
- ¥ R - R
where .. = 24 < g (6.5)
ij nel 9Py P
dF |
and by o= T WA < (6.6)
J hlkl P
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The least-squares compuber program used for this work
was written by Dr G Shearing, formerly of the Mathematics
Department of the University of Manchester. It is only
necessary to give a brief ocutline of the program here but a
comprehensive description is given in the manual for the
program, obtainable from the Atlas Computing Laboratory of
the University of lManchester.

Shearing's program will refine the following parameters:

(i) one or more scalefactors for the data,
(ii) the atomic coordinates,
(iii) an overall temperature factor,
(iv) the individual isotropic or anisotropic temperature
factors of the atoms,

(v) the multiplicities of the atoms.
In addition the program deals with:-

(i) any type of symmetry,
(ii) anomalous scattering factors,
(iii) atoms in special positions,
(iv) any combination of isotropic or anisotronic

temperature factors.

Atomic scattering factors are calculated by linear inter-
polation from a table of values fed in with the data. The
actual scattering data used here were taken from the results
of Hanson et. al. (1964).

The weighting factor W for each reflection may be fed
in with the data or the user may add a routine to the program

in order to calculate W Ffrom some functional relation. If
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the estimated standard deviation of each |F(hkl)} due to
random errors is o(hkl), then the value of W which gives
the lowest estimated standard deviation in thé derived

parameters is:
_ 2
W = 1/0c°(hkl)

Often however o(hkl) is unknown and some function of F(hkl)
is used to calculate weights for the data. The weighting

function used here was one suggested by Rollett (1965)
o
W o= t/(a + 'Fo\ + c]Fof ) (6.7)

The constants a and ¢ are approximabely 2Fmin and

is
regpectively, where T lthe smallest observed

2/® min )

max

reflection and Fmax the largest. Shearing's program outputs
average values of WA2 in zones of sin 8/% and of Foa A
correct weighting function like that of eguation 6.7 must
be such that there are no systematic variations in WA2 from
zone to =zone. Unobserved reflections, which were fed in as
one half the local minimum value of FO, were given equal
welghts, which may be adjusted to ensure constant values for
the average Waz. N

Often the least-squares matrix aij may be too large to
be accommodated in the fast-access store of the computer.
In such a case certain off-diagonal elements of the matrix,
which correspond to parameter pairs having a low correlation,
may be ignored (the block-diagonal approximation).
Shearing's program enables the full matrix or the block-

diagonal approximation to be used and also allows the terms

to be recalculated or retained each cycle. As the number




of parareters was reasonably small in this »roblem, the full
matriy was used and recalculated for each cycle.

The output of the progran consists of the corrections
€4 to the parameters, their refined values and their
individual estimated standard deviations. Also output is

the residual and the reflections data with refined scaling

Tactors.

6.4.2 THE REFINEMENT WITH THE PROJECTIONS DATA ATONE

For this first stage of least-squares refinement the

varameter corrections were calculated using the 0kl, hOl

and hkO data, fach set of projection data had its own
scale factor which was refined independently. Reflections

common to different sets of data were regarded as indepen-
dent observations.

An initial model for the structure was found from the
coordinates obtained in the refinement of the (100) and (001)
»rojections. The x and 7 coordinates were taken directly
from these results and the y and B parameters were calculated
as thé weighted means of the results from both »irojections.
(The weighting for this latter calculation was in the ratio
of the number of observed reflections in each projection).

Initially, the coordinate varameters and one isotropic
temperature factor for each atom were refined.

No welghting function was used for the first few
refinement cycles with the aim of speeding up the refinement.
In five cycles the residual fell from 21.3 to 18.8 with
shifts in coordinates of up to 0.0Sﬁ at the beginning.

However, it was noted that a small grouv of reflections had
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been fed in wrongly and correcting this mistake gave a drop
of 2% in the residual. Subsequent refinement showed that
the effect of these incorrect reflections was quite small.
In the next stage of the refinement the reflections
were welghted by means of the weighting function of equation

6.7 with a = 2F and ¢ = Z/Fmax' Unobserved reflections

min
were given a weighting of 0.0% in the first five cyclesg and
0.3 in cycles six to ten. The residual fell from 16.7 to
15.9 in these ten cycles. Quite large coordinate shifts
up to 0.1% were obtained in the first few cycles.

Although the refinement Tor most of the atoms appeared
o have ceased at the end of the 10 cycles, quite large
shifts were still being obtained in the x coordinates of the
atoms C2 and C4. The estimated standard deviations for
these two parameters (0.06 and 0.05)were several times larger
than for the x coordinates of the other atoms. It was
noted that the shifts for the two parameters st the end of
the refinement, as well as being large (approximately + the
estimated standard deviations), were, on each cycle, appro-
ximately equal and always opposite in sign. Obviously the
% parameters of the two atoms (which were mnearly equal)
were highly correlated. The effect is very similar to
attenpting to refine the coordinates of two nearly equal
atoms for a projection in which they overlap.

Following this latter analogy the best way to 'unlock'
these two atoms seemed to be to introduce extra data.
Accordingly, the data from the hki1 reciprocal-lattice plane

were introduced into the refinement.
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6.4.3 THE REFINGMENT AFTER THE TNTRODUCTION OF THE hkil DATA

The hkt1 reflections were photographed with the same
crystal that was used for the hkO reflections. Two five-
film exposures (24 hours and 120 hours) were made and the
data were measured and sealed in the same way as the hkO
intensities (see section 5.4.1).

A correction was made Tor the differences in estimated
intersity due to the difference in spol shape, which occurs
on oppoegite halves of Weissenberg photographs of upper
layers of the reciprocal lattice (Phillions, 1954) ~ the spots
being contracted on one half (Ic) and extended on the other
(Ie). Reflections which could be measured on both halves
of the film were averaged using the expression given by

Phillips
Tav = 2TIe Ic/(Ie + Ic)

Other reflections were corrected by means of the expression
I = I meas (1 ¥R cos o)

civen by Rollett (1965) who attridbutes it to P ¢ Owston.

The sign depends on whether the reflection is extended or
contracted and the constant K ig determined empirically

(for this data XK = 0.127). The data were then correccted

for the Lorentz and polarisation factors in the usual way.

The introduction of the hkl data had precisely the

desired effect on the refinement in causing the x coordinates
of the atomg C2 and C4 to refine rapidly. Three cycles

were sufficient to achieve the situation in which their

movements were negligible. In addition the estimated
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standard deviations of the two coordinates fell to the
average value for the remaining x coordinates.

The same weighting function was used as before with
the unobgserved reflections again having weight of 0.3. In
five cyvecles of refinement the residual fell from 20.5 to
18.6 at which point the movements in the parameters were
negligible.

Although the refinement had now ceased, the weilghting
function required some adjustment. A number of further
cycles of refinement were calculated so that the weighting
could be adjusted empirically, until reascnable resulils were
obtained for the average values of WA2 over the variousg
ranges of FO and sin 6/A. The best results were obtained
by using the weighting function of equation 6.7 with

a=2F . and c = 8/Fma

min and giving the unobserved reflections

X
a welghting of 0.9. No significant refinement of the
structure resulted from this process and a final residual

of 18.4 was obtained.

6.4.4 THE STRUCTURE AFTER REFINEMENT WITH ISCTROPIC

TEMPERATURE FACTORS - THE BEST-PLANES AND CROSS-—

SECTION FOURIER PROGRAMS

Although further refinement was achieved, when aniso-
tropic temperature factors were given to the atoms and
hydrogen atoms were added, the structure parameters had for
the moment ceased to refine. At this point it was of
interest to examine the various features of the structure

and several computer vrograms were writiten for the purpose.
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First a program wag written to evaluate the bond lengths
and angles. The program transfers the crystallographic
atomic coordinates to a set of orthogonal axes by means of
a transformation matrix L (Rollett, 1965), enabling the
simpler geometric relations for orthogonal axes to be used

in the calculation of the bond lengths and angles. Thus:

. x, = LE, (6.8)

where X and X represent atomic coordinates on orthogonal
and crystallogravhic axes respectively.

The bond lengths and angles avpeared to be reasonable
except for the distance between the symmetry-related atoms
0% and C3'.  This bond length had the value of 1.51%,
which is rather long for a bond in a benzene ring (normal
bond length = 1.4%). However, this length shortened
congiderably in the later refinement to 1.42%.

The second program to be written was one to determine
the desgree of planarity of the molecule and is referred to
ag the 'best-plane' program, since it calculates the mean
plane through the atoms in the molecule. Again the atomic
coordinates are transferred to orthogonal axes. Then the
parameters A, B and C of the plane

AX + By + Cz =

are determined by a least-squares fit to the atomic coordinates
én the orthogonal axes. The program then determines the
direction cosines of the perpendicular to this plane and the

perpendicular distances of the atoms on to the plane.
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Since the benzenhe ring could be reasonably assumed to
be planar, the mean plane, passing through the six benzene-
ring atoms and parallel to the b axis, was calculated.

Thig plane lay at 56° to the ¢ axis. The atomg C4 and O
were at 0.05% and O.15g,respectively from the plane. Thus,
gince the uncertainty in the atomic positions was about
O“OZX, the C4 and O atoms would appear to lie well out of
the molecular plane. However, the later refinement of the
structure caused the two atoms to lie much closer to the
plane.

Lastly, two programs were written to evaluate the
difference density on planes passing through the atomic
vositions, using the values of (\FO\ - tFC\) output from
the least-squares program for the calculation. The three-—
dimensional difference dengity for the space group I% is

given by

0 00
120 % A cos 2mky

A sin 2mky)

where A = [Fo(hkl) P (hk1l)) cos 2m(hx + 12)

o

i

+ [FO(Ekl) FC(Hkl)] cos 2rn(~ hx + 1z)

One of the programs evaluates this difference density on
the mean plane passing through the molecule. The second
vrogram evaluates the difference density on a series of
planes perpendicular to the b axis and each vassing through

an atomic position.




- 121 -

Figure 6.4 shows the difference density in the plane of
the molecule, on the left-hand side of the diagram, and in
the sections vervendicular to b taken through the atomic
pogitions, on the right-hand side. These difference maps
show several interesting features.

First, the pesk marked H indicates the presence of a
hydrogen atom attached to the atom CZ. It appears to lie
in the plane of the benzene ring at about 18 from the atom
€2 and to be situated such that the C2-H bond bisects the
external angle C1C2C3, all of which agrees with the most
probable chemical configuration. There should also be a
gimilarly situated hydrogen atom attached to C1 but this
does not show up in the difference map. However, there
are geveral, strong, spurious features in this area of the
map which may be obliterating the hydrogen peak.

The second interegting feature of the difference maps
ig the indications of anisotropic temperature factors with
a strong vibration perpendicular to the b axis, which are
gshown by the contours surrounding the atoms N1 and N2.

The effect on the contours can be seen gquite clearly in both
the maplof the cross section in the molecular plane and the
two maps of the sections perpendicular to b passing through
the N1 and N2 positions. It will be remembered that this
anisotropic temperature factor was observed for the atom N2
in the final difference map for the (001) projection -
figure 5.10.

One further feature that may be noted in the difference
maps is the negative regions at the centres of both the

benzene ring and the adjacent five-membered ring, which are
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surrounded by positive regions following the lines of the
atoms. This effect is common in difference maps of

aromatic rings and has been noted previously by Cruickshank
(1956) in anthracene. Cruickshank explains the feature
qualitatively as being caused by a tendency for the electrons
in the aromatic ring to be channelled along the bonds. The
difference maps still show the negative region even after

anisotronic temverature factors have been added.

6.4.5 THE FINAL REFINEMENT WITH ANTSOTROPIC TEMPERATURE

FACTORS AND HYDROGEN ATOMS ADDED

In the last stage of refinement the anisotropic tempera-
ture factors of all the atoms were refined together with the
coordinate parameters and the scale factors for the data.
Although only the atoms N1 and N2 indicated strongly that
their temnerature factors were anisotropic, it was felt
that, since the number of aitoms was small, it was reasonable
to treat them all similarly.

In addition, hydrogen atoms were attached to the atoms
01 and C2 at a distance of 1.088. Tt was arranged that
these two hydrogen atoms lay in the nlane of the benzene
ring and were orientated such that the carbon-hydrogen hond
made equal angles with the adjacent carbon-carbon bonds.

The hydrogen atoms were given isotropic temperature factors
corresponding to those possessed by the carbon atoms, to
which they were joined, at the end of the refinement with
isotrovic temperature factors (C1 = 5.40, C2 = 4.89). The
addition of the hydrogen atoms to the structure caused a

drop of 1.4% in the residual.




The succeeding refinement was carried out in a series
of two-cycle steps and at the end of each step the hydrogen-
atom positions were adjusted to take into account the move-
ments of the C1 and C2 atoms. However, no attempt was made
to refine the vositions of the hydrogen atoms or their
temperature factors with the least-squares progran.

The weilghting scheme which had been found suitable for
the isotropic refinement above was used. In this scheme
the weighting function of equition 6.7 was applied, with
a =2F . and ¢ = &/F and the unobgserved reflections

mirn max
having a constant weight of 0.9.

In the first two cycles of refinement the residual
fell rapidly from 17.0 to 13.4. The changes in the atomic
coordinates were quite small none being greater than 0.0SX,
At the end of the two cycles the hydrogen atom positions
were adjusted and two further cycles of refinement were
carried out, in which the residual fell only to 1%.3 with
little variation in the parameters.

At this point the structure-factor data were examined
and two reflections were found to have large discrepancies -
the reflection 002 (FO = 87, F, = 113) from the Okl data and
the reflection 20-2 (FO = 170, Fc = 204) from the R0l data.
Both of these reflections are similar in that they are large
in magnitude and at least twice ag great as the othser
reflections in the group in which they were measured.
Extinction lmmediately suggests itself as a possible
explanation; but this is unlikely as the correction is
large and no other reflections seem to require a correciion

which approaches this size. It may be noted that the 002
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reflection ocecurs also in the hOl data with the larger 20-2
reflection and that here the agreement between FO and FC
(for 002) is quite sood. Some error in the measurement of

these two reflections therefore seems likely and a possible

explanation is that these reflections were not accurately

gscaled relative to the smaller reflections in the same group.

The values of FO for these two reflections weire there-

fore raised to the corresponding values of FO at this point
in the refinement. Although the residual now fell by 1.5%,
the succeeding refinement was not greatly affected, since
these reflections were very much downweighted.

The new pogitions of the hydrogen atoms were now
recalculated and two cycles of least-squares refinement
were carried oul followed by a further readjustment in the
hydrogen atom positions. A further two cycles were
calculated and then the refinement was stopped. The
residuval was now 11.9% and the movements of all the
parameters were well within their estimated standard
deviations.

Table 6.2 gives the final refined values of all the
atomic varameters together with their estimated standard

deviationsg.

6.4.6 THE PINAL DIFFERENCE SYNTHRESIS

Although no further refinement by least-squares seemed
vossible, it was decided to calculate the difference maps
for this final structure to check for any remaining
discrepancies. Figure 6.5 shows, on the left-hand side,

the difference map for the section in the molecular plane
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and, on the right-hand side, the difference maps for the
sections pervendicular to the b axis and passing through
the atomic positions.

The contours indicating anisotropic temperature factors
for N1 and N2 have now disappeared, as would be hoped.
3til1l present, however, are the negative regions in the two
rings surrounded by the positive areas at the atomic
pogitions.

The hydrogen atom Hi, whose position was unlocated in
the map of figure 6.4, is in a falrly flat region of the map
of figure 6.5. This feature would indicate that the
position of this hydrogen atom is probably correct, since
a wrongly positioned atom would vroduce a negative region
in the mavp. The other atom H2 is on a slightly pogitive
region, which could indicate that a lowering of its
temperature factor was necessary. However, the accuracy
of the data did not warrant refinement of the yarameters
of the hydrogen atoms.

No gross inaccuracies in the structure were however
indicated by the difference syntheses in figure 6.5.

Thus no further attempts were made to refine the structure.




atom
c1
c2
c3
C4
cs
N1
N2

H1
Hz

atom

atom
C1
c2
c3
C4
cs
N1
N2

H1
HZ

Atomic coordinates

~125(i)=

TABLE 6.2

Final atomic parameters

X y 4

0,06184  -0,23605 0.04658

0.12558 ~0,12264 0.10221

0,061%70 =0,00026 0,0512%

0,10270 0,12409 0,07842

o 0,19856 0

0 0.32597 0

0 0.42020 0

0,21001 0.15823 0.16080

0.10807 -0.32698  0,08408

0,22086 ~0,12259 0.17971

Coordinate errors
€(x) s(y) 6 (z)

0,00084  0,00082  0,00167

0.00089 0,000%7 0,001%%

0,00060 0.00081 0.00136

0.00075 0.00074 0.00201

0 0.00116 0

0 0,00002 0

0 0,00121 0

0,00058 0,00056 0,00115
Anisotropic temperature factors

b1l b2z b33 b12 b13 b23
0,0146 0.,0106 0,0328 0,0021 0,0183 -0,0034
0.0121 0,0111 0,0256 -0,0027 0,0054 0,0031
0,0107 0,0109 0,0207 -0,0024 =0,002Q0 ©0,0059
0,0103 0,0112 -0,0278 -0,0021 -0,0090 0,0010
0.0141 0,0103 0,0448 o0 -0,0324 O
0.0168 0,010z 0,0282 © 0,0302 ©
0,0278 o0,0121 0,0077 © 0,0134 ©
0,0164 0,0132 0,0222 -0,0037 -0,0030 =0,0025
B=§,40

=4.89




Anisotropic temperature

atom €(bil)

Ci
CZ
c3
C4
cs5
N1
N2
0

0,0009
0,0008
0,0007
0,0008
0,0012
0,0012
0,0023
0.0007

=125(it)=

TABLE 6.2 (continued)

s(b22)
0,0007
0,0007
0,0006
0,0008
0,0009
0,0009
0,0012
0.0006

s(b33)
0,0037
0,0025
0,0021
0,0032
0,0090
0,0049

0.0144
0.0015

factor
6(b12)
0,0013
0,0011
0,0012
0,0011
0

0

0

00,0012

exrrors

o (b13)
0,0078
0,0047
0,0086
0,0047
0,0086
0,00588
0,0142
0,0031

o (b23)
0,0041
0,002%7
0,0021
0,0033

00,0022
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CHAPTER 7

A DISCUSSION OI' THE STRUCTURE

7.1 DBOND LENGTH AND BOND ANGLE ERRORS

In a least-squeares refinement, when relative weights
and a full matrix are used, as in this case, the variance

of a parameter Py is given by

o%(p,) = (ah), @ wd)/(n - n) (7.1)

where m is the number of observations and n the number of

_1)

parameters and (a ig an element of the matrix inverse

ii
to 24 5 (Rollett, 1965). Values of the estimated standard
deviation c(pi) are output by Shearing's least-squares
program for all the refined parameters (see table 6.2).

The variance in the bond length 1 between two atoms,

A and B, is given by

62(1) = o9(a) - 2 cov (A,B) + 6°(B) (7.2)

where 02(A) and 02(3) are the variances in the positions of
A and B respectively in the direction AB. The covariance
between the atomic positions of A and B, cov(A,B), is zero
if both atoms are unrelated. However, certain bond lengths
are evaluated in the present structure between atoms

related by a 2-fold axis and here,
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cov(A,B) = .= dg(A) - 02(B) and hence

i

2( 167 (4) (7.3)

c“(1)

I

If the unit cell coordinates of atom A are x, ¥y, 2
then for the general case of oblique axes the variance in

the position of the atom A along AB is given by

0?(a) = o%(x) B2 4 e
+ 20(x) o(y) é% é% cov(x,y) + —mem—- (7.4)

Now cov(x,y), the covariance of the x and y coordinates,

may be evalugatedfrom

cov(x,y) = (7)) (D07)/(n - n) (7.5)

if x and y are assumed to be the 1 and jth parameters in the
least-squares refinement.

Thus, substituting the values for the estimated
standard deviations in the atomic coordinates output by
Shearing's program into equation 7.4, values of cz(A)

(and GQB) may be determined. Then using thege values in
equetion 7.2 the estimated standard deviation of each bond
length may be found.

However, this is rather a long procedure, particularly
since equation 7.5 requires the least-squares matrix to be
set up and inverted for the bond-length calculation.
Considerable simplification is justified in this case,
where the cell is almost orthorhombic, since for an

orthorhombic cell the cross terms of equntion 7.4 are zero.
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In fact, Templeton (1959) shows that for oblique axes, when
the errors are reasonably isotropic, cov(x,y) = cos B% etec.
Thus, for the vresent monoclinic cell, cov(x,y) = cov(y,z) =
cos 96’: 0 and cov(x,y) = cos (88.@) ~ 0.

Also, since the coordinate errors (in angstroms)
appeared to be approximately the same, an average value
0, Was assumed, this being the average of all the
coordinate errors. Thig gssumotion considerably gimplified
the bond length and angle calculations for atoms related
by symmetry or where one or both were on a symmetry element.
Hence for two atomeg in general vositions the bond length

error was found from

o (A) 02(B)==3(0av)2

6(o )2

and 02(1) -

il

For two atomg related by the 2-fold axis

GQ(A)

li

o%(8) = 2(0_ )"

8(a_)?

and 02(1) -

Il

The bond angle errors were calculated from an expression

given by Cruickshank and Robertson (195%)

o
2 a”(4a) 2 | 2 cos B 1
o (B) = T4 4 gR(B)( - +
AB? AR AB.BC O ga

>
+ Q“L%l (7.6)
BC

5)

where UZ(A) and 02(0) are the variances of A and ¢ in the

ABC plane pervnendicular to AB and BC resvectively and
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02(3) is the wvariance of B in the direction tdangential to
the cirvele through ABC. Where the bond AB lay across the
2-fold axis the half length of the bond was used in place
of AB in equation 7.5.

The estimated standard deviations in the bond lengths

and angles are shown in figure T.1.

7.2 BCND TENGTHS AND BOND ANCTES

The bond lengths and angles of the refined structure
were calculated and compared with the values that might be
anticivated for the structure vroposed by Regitz and Heck.
The significance test suggested by Crulckshank and Robertson
(1953) was used when comparing measured bond lengths and
angles with theoretical values. If 81 is the difference
between measured and theoretical values then if

81 < 1.6450 the difference is not significant,
2.%27g > 81 > 1.645¢ the difference is possibly significant,
3.090 > 81 > 2.%270 the difference is sicnificant.
Theoretical bond lengths were found from a2 table ol covalent
radii given by Robertson (1953%).

The bond lengths in the benzene ring are all within the
standard deviation of the usual bond length of 1.3942
(Tables of Interatomic Distances). In the benzene ring
however one angle, C1C2C%, is possibly significantly different
from +the usual 120°,

The bond C3C4 should have approximately a single
carbon~-carbon bond length of 1.54X and is certainly signifi-

cantly different at 1.47&. The resonance structure indicates
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that €485 should be intermediate in length between a single
and a double carbon-carbon bond (1.54 and 1.3%33) but perhavs
closer to the single bond length and it should be certainly
shorter than C3C4. However, this bond is nearer to the
double bond length, although it is certainly shorter than
C3C4A. Therefore, both C3C4 and CACH seem to be shorter
than might be expected.

The C40 bond should be very close to the carbon-oxygen
double bond length of 1.228;  the actual value of 1.26% is
vossibly significantly larger. The CHN1 bond should be
intermediate between a single (1.478) and a double bond
(1.272) and the actual length of 1.344 agrees with this
suggestion. The N1N2 bond should be intermediate bhetween
a double and a triple bond (1.2C and 1.09) but it is in fact
equal to the ftrivle-bond length.

Thus, not all bond lengths are entirely consistent with
Regitz and Heck's structure. However, a definite conclusion
on this point would require better theoretical and experi-

mental estimates of the bond lengths.

T.% TR PLANARITY OF THE MOLECULE

The best-plane program was used to find the mean plane
rassing through the atoms in the molecule. This wean plane,
lying parallel to the b axis, was orientated at 59.2O to the
¢ axis (32.90 to the a axis). The deviations of each atom
Tfrom the mean vlane are given in the table below (in

angstrom units)
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c1(c1h) 0.008
a2 (coh) 0.0%5
e3(c3) 0.024
ca(cal) 0.007
ool 0.015

The stoms not listed lie on the 2-fold axis and therefore

in the mean plane. The directions of the deviations from
the mean nlane are shown in figure 7.1, where the onen
circles indicate atoms above the mean plane and full circles
those below.

Cruickshank's gsignificance test was applied to the
above table of deviations assumine that the orientation of
the mean plane 1s known absolutely. The averagse error in
the atomic positions parallel to the a-c plane is 0.014R.
Thug, one atom, €2, ig situated at a distance from the mean
plane which is significant and another atom, C3, is situated
& distance which is possibly significant. It will be
remenbered that the bond angle of the benzene ring at C2
was rather small, which would be expected if the benzene ring
was slichtly twisted there. Thus a slight twisting of the
molecule seems to exist possibly caused by a reorientation
of the bonds in order to attach the five-membered and six-

nembered rines together.

7.4 THT PACKING CF THEL MOLECULE

The molecules can be pictured as lying in planes which

are parallel to the a-b plane of the unit cell. Kach
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almost-planar molecule ig orientated parallel to the b axis

and at 32.90

to the a-b plane. Pigure 7.2a shows the
apoearance of one plane of moleculeg at height z = 0 viewed
down the c axis. The molecule outlined by the dashes is
at heieht z = + and shows the way in which the next vplane
of molecules is suverimvosed on the first.

The apnarent contact points between the atoms of
adjacent moleculegs in the plane are indicated by the dotted
lines. The oxygen atoms of adjacent molecules appear to
be in contact, although the sevparation of 3.31ﬁ igs feirly
larse compared to the average Van de Waal distance of 2.8
{Robertson, 1953). The nitrogen atom N2 and the hvdrogen
atom H1 alsoc avpear to be in contact (2.843) and there is a
vossibility of a hydrogen bond existing between C1 and K2.
However, this bond would be very weak since the C1-N2
distance is large (3.59&). Also, the H1 ard H2 atoms of
ad jacent molecules seem to be in contact but the nrobable
distance of 2.76& cannot be given accurately because of the
uncertainty in the hydrcgen atom positions.

Figure 7.2b shows from the projection down the b axis
how the sheets of molecules stack. The snacing of the
molecular sheets seems to be governed by the usual sevaration
obtained between the nlanes of aromatic molecules. The
molecules are stacked so that the edges of the five and
six~-membered rings of adjacent molecules overlap. If +he
five-membered ring is assumed to have the same thickness as
is usually obtained for an aromatic ring, then the perpendi-
culer distance between adjacent molecular nlanes would be
about 3.48 (Robertson, 1953); in fact, the actual distance
is 3.36%.




Imermolecular distances in A

(@)

(b)
Fig.7.2
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7.5 THE THERMAT, VIBRATION ELLIPSOIDS

The anisotropic temperature factor term can be written:

- 4 + - -+ + %) '] I L l

The factors b11 ete. are refined and output by Shearing's

least-squares prosram {see table 6.2). An alternative form

of 7.7 is

exp —(B,.h% + B..k° + B..1° 4 2B, .hk + 2Bkl + 2B, .hl)

XY 117 20 % 12 o5t 1%

or exp - (QTBQ) (7.8)

where B is a matrix of the elements B11etc. and h is the

column vector (h,k,1). The matrix B may be referred to
orthogonal axes in the same way as the atomic coordinates
in equation 6.8, again using the matrix L. Thus, a new

matrix V is produced where:-

v = 13LT (7.9)

Rollett (1965) shows that the eigenvectors of V are the

principal axes of the thermal vibration ellivsoid. Also,

if ki is the ith eigenvalue of V, the root-mean-square

L'Iz.il_

vibration amplitude (W)*® along the principal axis corres-

ponding to the ith eigenvector is given by:

1
2

@)F = 0y /(n?)? (7.10)

A vprogram was therefore written to determine the

directions of the princival axes of the vibration ellipsoid

for ecach atom and the corresponding r.m.s. vibration amplitudes.



- 134 -

The values of b11 etec. are read in by the vrogram and the
matrix B set up; and ¥V iz then determined from eguation 7.9+
The eigenvalues and the eigenvectors of V were found by
Jacobi's method (Eerriot, 1963). In Jacobi's method the
off-diagonal elements of the matrix are nrogressively

reduced to zero by meang of a transformation WH1VW, where

W ig an orthogonal matrix. When the off-diagonal elements
are zero to within the working accuracy, then the diagonal
elements are the eilgenvalues and the product W1W2 seess 18

2 matrix whose columns are the eigenvectors.

The valueg of (;E)% were therefore found from the
eigenvalues using ecuation 7.10 and the coordinates of the
orincipal axes (referred to the orthogonal axes) were
determined from the eigenvectors of V. The coordinates of
the princival axes were then transferred to the crystallo-
grarhic axes by means of the transformation matrix LHq.

Table 7.1 gives the wvalues of (u2)% for each atom.
The angles made by the corresponding principal axes with
the vositive directions of the crystellogravhic axes are
2lgo given. As suspected there is a2 strong vibration
direction verwendicular to the b axis fcr the atoms N1 and

N2 ~ the root-mean-sguare amolitudes are 0.572 and O.SGR

reasnectivelyv.
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TABLE 7.1

Parameters of vibration ellipsoids

atom rms anmplitudes orientation of principal axes
(in & units) to crystallographic axes

(in degrees)

a b c
c1 0.350 61 93 32
0.253 64 29 102
0,210 139 61 061
c2 0.201 101 103 161
0.259 54 144 88
0,221 142 123 71
c3 0,283 70 127 137
0,226 89 40 130
0.218 20 %78 46
C4 0.313 66 97 157
0.252 97 13 100
0.201 25 79 70
C5 0.429 59 90 151
0.241 Q0 o 00
0,174 32 90 61
N1 0.372 49 90 43
0,240 Q0 © 90
0.164 139 90 47
N2 0.558 8 90 7
0.359 5 90 97
0,261 g0 o 90
) 0.204 35 121 107
0.279 80 48 137

0.243 57 57 52
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2.24 1.22 1.03 180
2,06 2448 ep.42 180
J4.04 38,960 #1,92 =90
1.82 2+62 #p,8¢ 90
. 6,85 8428 =1.73  «9D
2,24 2,20 0,05 =9u
1,40 3.04 1,04 [-]1]
26,24 28,35 0.89 0
1.87 1492 =p,0% 180
2.45 - 2462 =0,47 180
7.34 831 1,00 0

5,48 .1,6¢0 0
22.70 0.19 180
6e86 2,12 180
15,23 0.00 [']
2.28 “0.7% 180
8:43 »1,35 180
2'02 -0.80 [}
12,89 0.00 180
6064 0.3% 189
4,03 0.38 180

IFel R-Fe pha h_k IRl IRl R-F _phase
39,02 1,00 180 10 2 0 4.7 391 0.8¢ 180
37,29 =2.98 180 ° 10 4 ¢ 10,58  9.75  0.83 180
25.36  0.03 0 10 6 0 219 1.4 =0.22 0
;7.44 .0.93 0 e & 0 D.64 2¢12 =1.47 180
1054 0,03 180 11 1 0 1.28 2,28 =0,99 180
T60  =0.37 0 11 3 ¢ 1.19 074 0.45 180
6%‘43 .G.Sé v 13 > 4 0.96 077 0,19 180
16.71  1.44 180 12 0 0.93 2,02  =1.09 180
11486 3.7 0 12 2 0.47 0438 0.29 180
17.86  =0.93 9 v 0 106,81 11457  =7.7 0 W
23.29  1.22 v o 8.48 8,51 0,33 180
.65 1.70 180 0 2.10 2.57  *0.47 0
051 08.45 180 0 7.44 4.30 3.13 180
TBe04 =946 o 0 1 1.17 1,68  =0,51 180
3.94  =g.27 0 1 29,70  3p.82 w112 90
42,84  5.32 0 1. 10.90 11.45  0.56 =90
14479 .1.28 180 1 16.27 14.82 1.45 90
061 0.96 0 1 917 7406 2.%0 90
6:16 0,38 i 1 i1.87 1468 0,19 =90
1:3%  +0.10 o 2 40.97 39.+00 1,96 180
44,86 1.64 180 2 6.83 8.22 0.61 180
48,61 1.57 0 2 1.64 1.82  =0,19 180
22.38 4,30 0 2 9.07 9.03 0.05 180
10.74 0.58 180 2 2,20 2+48  ef,28 180
8.05 0.48 0 2 1 0.98 047% 0.23 180
103 0.38 0 3 32.78 32474 0.05 (1]
0445 . 5,29 0 3 12.72  11.27 1.45 90
12,54 1.%7 0 3 2.901 1.08 0.94 90
14,78 1.22 180 3 6.50 3023 3.27 =90
17.09 1.44 v 3 4.723 2,20 =0,47 =90
11422 . ®0,.%¢ 0 4 35.40 37,27 =1.87 180
18,18 0,26 180 4 26.42 21,89 4,54 0
1460 *0,10 180 : 20.57  26.14 2.43 0
4
5
5

4 .0,

390 038 a0 1,78 1.12 .65 180
080 0.51 0 20,62 .19.64 0.98 90
0.38 0.06 0 2.1% 2024, *0,09 =90

17403  =0.29 180 2.29 2499 0,63 90
1496 0,45 0 4,86 3:69 1.17 9u

10,52 2,76 180 16,60 17.44 =084 0
8,23 0.26 180 5.74 5,80 0,09 ]
1+51 =0,16 0 8,00 7462 0.37 180
0.87 =0,10 180 a 10.99 8414 2.8% 180
1.83 0.26 0 1.17 3.04 =1,87 180
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(Reprinted from Nature, Vol. 205, No. 4976, pp. 1095-1096,
March 13, 1965)

Gas-phase Laser as a Source of Light for an
Optical Diffractometer

THE commercial availability of gas-phase lasers giving
a continuous output in the visible region of the spectrum
solves a problem that has been troubling users of optical
diffractometers for some time. It is sometimes necessary
to study a region of a diffraction pattern which is so far
removed from the centre that it subtends an angle which
is large compared with that subtended by the detail to be
resolved. If, for example, the distance between the region
to be studied and the centre is 100 times the size of the
detail to be resolved, itis clear that 2/100 is the maximum
bandwidth that can be tolerated. The usual combination
of mercury-vapour lamp and interference filter often gives
too wide a band because of both the high-pressure broaden-
ing of the spectral lines and the problems of narrow-band
filtering without undue reduction in effective source
brightness. If the output of a helium-neon laser is focused
on the pinhole of the diffractometer the necessary bright-
ness is easily obtained with an extremely small bandwidth.
Using a laser with an output of about 3 mW, photographie
exposures are comparable with those for a 250-W compact-
source mereury-vapour lamp in conjunction with a 70-A
bandwidth interference filter, even though the film is
appreciably less sensitive to the laser wave-length, (6328 &)
than to the usual mercury—yellow wave-length (5780 A).

A striking illustration of the improvement in resolution
of detail that can be obtained by using the laser is shown
in Fig. 1. Harburn, Yeadon and Taylor have developed a
method for controlling the effective phase of the light
passing through different regions of a half-tone trans-
parency used as a diffracting mask (unpublished work).
This. involves translation of a half-tone sereen through a
vector distance of one-half the diagonal of one of the square
elements of the screen; the recquired pattern is then
observed, not as usual around the zero order of the
diffraction pattern of the screen, but around one of the
first-order peaks. Since the screen is very fine the first-
order peak is at a distance from the centre which is large
compared with the detail to be resolved, and hence the
method as originally reported® suffers greatly from the
effect of wave-length spread.

In Fig. 1, o is & mask of holes. Its diffraction pattern,
which is a continuous funection involving only phases 0
and 7 sinee it is centrosymmetrical, was photographed and
a half-tone mask prepared representing the pattern in
both amplitude and phase. An image of the original
object can then be observed in the appropriate region of



sueqly 8 “PYT “0D ® WSWY WUSL] A ummng Al U pajng

§®;
3

T
O U UMOYS § J0MOS O ¥ Posn § JASe[ AP UM
uonN[osdI U JUIWIAOIdWI J[qBIIPISUGd NI, IqISIA AMBIP
s1 peads YSud-oaem ap o onp sedd Ap p uonesuop
dY) pPE ¢ W UMOYS § UOPBUIWN[[I [BUONUIAUOD Suisn
ddewnt N[, Sew Juo)Jey AP P uwrPed uondRIPP IP



OPTICA ACTA, 1968, vor. 15, no. 1, 83-91

On the Validity of Babinet’s Principle for
Fraunhofer Diffraction

H. LIPSON and K. WALKLEY

Physics Department, University of Manchester Institute of Science
and Technology, Manchester 1, England

(Received 17 February 1967)

Abstract. Some misconceptions concerning Babinet’s principle are pointed out.
The Fraunhofer diffraction patterns of complementary screens are not similar
unless the detail in the screens obeys certain conditions, which are not easily
fulfilled. Some examples of the diffraction patterns of complementary screens
are given, illustrating the extent to which Babinet’s principle is valid in practice.

A way in which the principle can be used to give the diffraction patterns of
three-dimensional crystal-structure models is indicated.

1. Introduction

The authors’ interest in Babinet’s principle arose when an attempt was made
to apply it in developing the use of optical-transform techniques [1, 2] in
crystal-structure determination. In these techniques, a representation of the
x-ray diffraction pattern is compared with the optical transform (the Fraunhofer
diffraction pattern) of an opaque screen pierced by an arrangement of holes
representing the projection of a possible structure. According to Babinet’s
principle, it should be possible to replace the screen by a three-dimensional
model of the structure and obtain the same transform; in practice the transform
of the screen and of the model are different, although they have some features
in common.

Few authors of text-books (except Ditchburn [3]) seem to be aware that there
are any limitations to Babinet’s principle, and none produces any illustration
of it. These limitations have, however, been pointed out by Boersch [4] and
Hosemann and Joerchel [5]. It is the aim of the present paper to extend their
ideas and to give some experimental illustrations of the principle, obtained by
means of the optical diffractometer [6].

2. Babinet’s principle

Babinet’s principleis concerned with the diffraction patterns of complementary
screens—screens in which the opaque parts of one correspond to the clear parts
of the other and vice-versa; such screens are supposed to give identical diffraction
patterns except for a small region in the centre. In fact, this statement is far

wider than was given by Babinet [7], a free translation from his original statement
being as follows:

0.A, G



84 Validity of Babinet’s principle for Fraunhofer diffraction

‘“ Suppose that the eye observes a point source of light. If a small opaque
object is placed just off the line of sight, the effect of this object is the same as
that of a precisely similar aperture illuminated from the same source.”” 'This
statement has been extended over the years to include the concept of comple-
mentary screens, although it is obviously a special case.

A typical ‘proof’ of Babinet’s theorem applied to complementary screens
states that the vector amplitude 4; produced at any point in the diffraction
pattern of one screen, when added to that, 4,, produced at the same point in the
diffraction pattern of the other, gives the amplitude, 4, produced by the
unscreened wave; since, for Fraunhofer diffraction, this amplitude is zero except
for a bright spot at the centre, we have:

Al +A2=A0
=0.

Thus 4,= — 4, and |4,[>=|4,[?, giving equal intensities.
The fallacy in this ¢ proof ’ lies in the statement that 4,= 0 except at the centre.

3. The diffraction pattern of a circular aperture

"This fallacy can be explained by considering the two screens to have a circular
boundary. Itis often thought that the larger this aperture, the sharper the spot
at the centre and thus the less the effect at other points (8). Butin fact, as pointed
out by Boersch [4], although the relative effect is less, the absolute effect increases
with radius of aperture, as the following theory shows. The diffraction pattern
of a circular aperture is given by the familiar relation:

A=2wa%],(2nya)[(2nya), (1)

where y is the distance from the centre of the pattern. The Bessel function
J,(x) may be approximated by:

T, (%)~ J (%) cos (x— %'n’) . 2)
Az%J(%) cos (ZWyaH%w) (3)

Therefore the peak height of the pattern is given by:

Ml ] (5)- ()

Hence

Hence, as the radius of the aperture increases, the average peak height of the
pattern at any point at a distance y from the centre also increases, but only as the
square root of the radius.

The effect of this result is illustrated in figure 1, which shows the diffraction
patterns of a hexagonal arrangement of discs enclosed in circular apertures of
increasing size.

T
=




© ()

Figure 1. This shows the effect of placing a hexagonal arrangement of circular obstacles
(a) in successively larger apertures (dotted lines). The corresponding optical
transforms are respectively (c), (d) and (¢). The complementary screen (b) and its
transform (/) are also given for comparison.
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4. Conditions for the validity of Babinet’s principle

This theory suggests the following conditions for the production of two
complementary screens that will give similar diffraction patterns.

1. The two screens must obstruct approximately half of the total aperture.
This condition assures that both diffraction patterns will be as strong as possible.

2. 'The fine detail in the screens must be small compared with the dimensions
of the total aperture. This condition assures that the diffraction patterns will
have appreciable intensity for values of ¥ at which the intensity of the diffraction
pattern of the total aperture is negligible.

3. The fine detail must be evenly distributed. This condition helps to
assure that the second condition is reasonably effective at every point in the
diffraction pattern.

These three conditions may be simply derived for centrosymmetric comple-
mentary screens in a centrosymmetric aperture. The condition that the two
complementary screens have the same diffraction pattern is that over a large
section of the pattern:

|41* = 14" (5)
A, and A4, being defined in §2. The quantity 4, in the expression
A, +A,=4, (6)

must be zero over a considerable area of the diffraction pattern. From equation
(6) we may write:

[4p)2= A, 4,*
=A, A%+ AgA* —2Re (4, 4,*). (7)
For centrosymmetric complementary screens in a centrosymmetric aperture:
|4 =14, + 4o(4o — 24;) (8)

Hence the condition that the diffraction patterns of the complementary screens
are similar, if any general centrosymmetric shape of aperture is assumed, is that

Ay—24,~0. 9)
A, may be re-written:
N
A= > F,cos (2mir, .p) (10)
n=1

if the diffracting screen 1 consists of a centrosymmetric distribution of NV apertures
each with scattering factor f,, and position vector r,. The vector p is the position
vector in the plane of the diffracting pattern.

A, and A4, are two independent oscillating functions of p. Condition (5)
can be satisfied for the largest number of values of p if

(@) }4o|max> the maximum value of 4y, and 2|4, |, are equal,
(b) (Ay—24,) oscillates through zero as frequently as possible.
Since |4} max is proportional to S, the area of the aperture enclosing the screens,
and |4|;.. is proportional to €S, the clear area of screen 1, then condition (a)
implies that €=}, condition (1).
Condition (b) implies that 4; must oscillate as rapidly as possible if we assume
that 4, is fixed. In general the oscillation of 4, is more rapid for larger values of

e
¢
1Y
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N ysince the number of spatial frequency components in the diffraction pattern is
increased. Also if the apertures are widely distributed, the oscillations of A
are again more rapid since the average period of these spatial frequency components
is decreased. It is obvious that condition (b) therefore corresponds to conditions
(2) and (3).

5. Experimental studies

Figure 2 shows two one-dimensional complementary screens (a), (h) and their
Fraunhofer diffraction patterns (c), (d). It will be seen that the centres of the
diffraction patterns are quite dissimilar, and that even at higher angles there is
only a general similarity.

(a) b

I 'HH 1

© (o)

Figure 2. Illustration of two coarse complementary screens (a) and (b) and their respective
optical transforms (c) and (d).
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Figure 3 shows two two-dimensional complementary screens @, (b) and their
Fraunhofer diffraction patterns (c), (d). Here again the similarity is absent
around the origin, but becomes clearer near the periphery of the diffraction
patterns.

© (d

Figure 3. Two complementary screens () and (6), with detail finer than in figure 2, and
their respective transforms (c¢) and (d).

6. Complementary gratings

Complementary gratings are defined as gratings with the same periodicity
but in which the scattering points in one correspond to absence of scattering
points in the other. Such gratings can be produced by punching holes (figure 4
(<z), (b)) and if both gratings contain approximately equal numbers of holes the
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correspondence of their diffraction patterns should be exact. Figure 4 (c), (d)
shows that this result is very accurately fulfilled.

These gratings have some relation to the theory of homometric structures
in crystallography (9).

(© id)

Figure 4. Two complementary gratings (¢) and (6) and their respective transforms
(¢) and (d).

7. The production of diffraction patterns from coarse screens

Since the main reason for the invalidity of Babinet’s principle is the presence
of fringes (equations (1), (2)) in the diffraction pattern of a circular aperture,
if these fringes could be eliminated, the principle would be better obeyed. In
principle, fringes will not occur if the transmission function of the aperture is so



Figure 5. (a) represents an aperture whose diffraction pattern is near zero over a finite
angle in the transform (b). The hexagonal arrangement of obstacles in figure 1 (a)
gives a transform in the zero region which does not contain any effect due to the
aperture (c). (d) shows the transform of the obstacles in a different orientation,
(¢) and (d) may be combined to give the total transform of the obstacles, cf. figure 1 (7).
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adjusted that the diffracted intensity approaches zero asymptotically (apodization).
Although it has not been found possible to prepare such an aperture, a one-
dimensional function can be represented (figure 5(«)) and fringes will be absent
from its diffraction pattern over a finite angle (figure 5 (4)). By piecing together
several diffraction patterns (figure 5 (¢)) with the model in different orientations
within the aperture a fairly good representation of the diffraction pattern of the
model can be obtained (cf. figure 1 (a)).

On indique quelques idées erronnées concernant le principe de Babinet. Les figures
de diffraction de Fraunhofer d’écrans complémentaires ne sont pas semblables si le détail
dans les écrans n’obéit pas & certaines conditions, qui ne sont pas facilement remplies. On
présente quelques exemples de figures de diffraction d’écrans complémentaires, illustrant
jusqu’a quel point le principe de Babinet est valable en pratique. On indique une fagon
suivant laquelle on peut utiliser le principe pour obtenir les figures de diffraction de modéles
tridimensionnels de structures cristallines.

Es wird auf die Gefahr von Fehlschliissen aus dem Babinetschen Prinzip hingewiesen.
Die Fraunhoferschen Beugungserscheinungen komplementiirer Schirme sind nur dann
gleich, wenn die Schirme im Einzelnen gewisse Bedingungen erfiillen, die gar nicht leicht
einzuhalten sind. Es werden einige Beispiele von Beugungserscheinungen an komple-
mentiren Schirmen gezeigt, die den Umfang der Giiltigkeit des Babinetschen Prinzips in
der Praxis verdeutlichen.

Das Babinetsche Prinzip kann dazu benutzt werden, die Beugungserscheinungen von
Modellen dreidimensionaler Kristallstrulkturen zu bestimmen.
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