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Let F be a free group on 1, - -,&4. Consider the group F/[y,(F'), F]F" where p is
any prime number. A peculiar feature of this group is the occurrence of torsion in its
center, this means that the torsion elements in this quotient form a subgroup of the
abelian group v,(F')F" /[v,(F'), F]F". In this thesis we give a complete description
of this torsion subgroup in terms of generators and this is based on computing certain

connecting homomorphisms. Furthermore this description can be exploited to obtain
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a complete description of the torsion subgroup of F/[y,(F”), F] in terms of generators
of F as well. For the group F/[y,n(F'), F]F" where n > 2, we describe just rank 4

torsion subgroups of this group in terms of generators of F.
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Chapter 1

Introduction

The purpose of this thesis is to investigate the elements of finite order in certain free
central extensions of groups. To be more specific, we need to introduce some notions

first.

Let a and b be elements of a group G; then the commutator [a, b] = a~'b~1ab. The
left-normed commutator [ay,...., ¢,] is defined for n > 2 by setting [ay,- - -, ap] =
[[@1,: -+ @n-1], @an). f H and K are subgroups of G, then [H, K] is the subgroup
generated by all [h, k] with A in H and £ in K. In particular, the commutator subgroup
or derived group of G is G' = [G,G]. The lower central series of G is the chain of its

normal subgroups
G=m(G)272(G) 22 1(G) 2 11(G) 2 - -
where 7i41(G) = [7i(G), G]. The conjugate of a by z is a® = z~1az.

Let F be the free group on X = {21, 23,---, 4}, N 4 F a normal subgroup of F, the

1



Chapter 1. Introduction 2

subgroup N"” is the second term of the derived series of N and 4.N is the c-term of

the lower central series of the subgroup N (¢ > 2).

Consider the quotient

F/[v(N), FIN" (1.1)

Then we have an exact sequence of groups

1 — ¥(N)N"/[7(N), FIN" — F/[y(N), FIN" — F/y(N)N" — 1. (1.2)

Since 7.(N)N"/[y.(N), FIN" is in the centre of (1.1), our quotient is a central extension

of F/y(N)N".

For the last twenty three years such groups have been extensively studied by many

authors such as C.K.Gupta, Kuz’min, Stéhr and others.

A peculiar feature of this group is the occurrence of torsion in its center. This phe-
nomenon was studied in some detail in [2] , [13] and [14]). The original motivation for
these and other related investigations came from C.K. Gupta’s pioneering work on the
free centre-by— metabelian groups. Indeed, if ¢ = 2 and N = F’, the quotient (1.1)
turns into F/[F”, F), the free center-by-metabelian group of rank d, and the exact

sequence (1.2) turns into

1— F"/[F", F] — F/[F", F] — F/F" — 1.

In 1973 C.K. Gupta [1] proved that this group is torsion—free for d = 2 and d = 3, and

she discovered that if d > 4, then F/[F", F] contains an elementary abelian 2-group
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of rank C¢ (d choose 4) in its centre. Moreover, she proved that the elements

[[:v,l, Tiy)s [:.l:,3 , w“l]] [[:c,s, i), [.'l:,1 y T3 ]]

(260, 2is)s (271, 231)] [[2a0s i), lo5 s 23]

[[a:.,, i), [:z:'2 ,z,al]] [[.'c,,, T, [:cll y T3 ]]
where (1 < 4; < i3 < #3 < iy < d) form a basis for this torsion subgroup. This
remarkable and at the time surprising result initiated a series of investigations about
torsion in free central extensions (see , [2], [3], [4], [5], [6], [7], [8], (9], [10], [14] and [16] ).
While Gupta’s proof was purely group—theoretic, Kuz’min [4] introduced homological
methods for discussing this torsion subgroup, and the later papers on this subject make
extensive use of homological methods. Now when N = F’, the quotient (1.1) turns
into

F/lve(F'), FIF". (1.3)

It was pointed out, in ([2], Theorem 7.1) that the order of any torsion element in
F/[v.(F"), FIF" divides c if ¢ is odd and 2c if ¢ is even. Of course this does not
answer the question of whether or not there are any torsion elements in (1.3). Now, let
¢ = p,where p is a prime. In this case, Hannebauer and St6hr showed in [2] that the
group (1.3) is torsion—free for d = 2 and d = 3, and if d > 4, then F/[v,(F'), F|F"
contains an elementary abelian p-group of rank C§ in its centre, and the quotient
of F/[yp(F'), FIF" by its torsion subgroup is torsion free. In fact, Hannebauer and
Stohr proved that the torsion subgroup of F/[y,(F'), F]JF" can be identified with
H4(F/F', Z,), the fourth homology group of F/F' with coefficients in Z, = Z/pZ,
that is

1"

WF/yp(F'), FIF") = Hy(F/F', Zy). (L4)
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On the other hand, it has been shown in [13], that,

"

t(F/[ya(F"), FIF") 2 Hy(F/F', Z;) ® He(F/F', Zs) ® H(F/F,Z3)  (1.5)
Later on, in [14], when ¢ = p®, @ > 1, p is any prime and F is of rank 4, Stohr showed
that

H

tp(F/[vpa(F'), FIF") = Hy(F/F', Zp). (1.6)

It should be pointed out that the results 1.4, 1.5 and 1.6 are special cases of more
general results which have been shown in [2], [13], and [14]. Now, these results provide
a description of the torsion subgroups as an abst;act group in homological terms. On
the other hand, the problem of describing these subgroups in group theoretic terms,
[i.e. in terms of explicit generators], remained open except for the case p = 2 where
Guptass result applies. It would be desirable to have a complete description of these

torsion subgroups in terms of generators.

The main aim of this thesis is to give a full description of the torsion subgroup of
i

F/[1,(F"), FIF", and a partial description to the torsion subgroup of F/ [—ypa(F'), F\F

in terms of generators. The arrangement of this thesis is as follows.

In chapter 2, we introduce basic notions and some preliminary material required in
this research, such as the concept of complexes, connecting homomorphisms, relation
modules, symmetric powers. The homology of free abelian groups play an important
role in this work, so in this chapter we compute the homology of the free abelian group
with coefficients in the trivial G-module Z,,, where G is any free abelian group of a finite

rank. In section 2.4, we recall the notions and concepts of Lie rings, metabelian Lie
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powers and we give some general results concerning metabelian Lie powers, we recall
briefly some facts which explain the connection between the centre of F/[y.(F'), F]F"
and the metabelian Lie powers of the relation module, and we also introduce two
important chain complexes which play a crucial role in our computation. In the last
section of this chapter we introduce some elementary facts about binomial coefficients,
which will be used in our calculation. In the end of this section we briefly introduce

the notion of localization at a prime p.

M

In chapter 3 we exhibit the generators for the torsion subgroup of F/ [7,,(F' ), FIF

where p is any prime. The main result reads as follows.

If p is an odd prime, then the torsion subgroup of F/[v,(F'), F]F" is generated by

Wy(Zry, Zryy Tryy T7, ), Where Wy(24,, 24, 21y, Z4,) is given by:
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(')J7k)ell

(i’j1k)€12

(i’jvk)eI:’

4
(t,]vk)e-h

¢/

p—2p—2—i

II

i=0 k=~1

{ ([2r, %7 Tr, Try)s (20T, 2y 7 {"’nmnzrz]ja ["’"fr’"fﬁ”‘rs”‘r:]‘v [Zr,@rTr “’fa]k—l

J [[m'“z“'iiw’flz‘rz]a [m‘uw‘faxﬂ]i’[znz‘fs]j’ [:v1-4$73$1-1]k, [3743733711772]5_1]

[[x72 3:71 wT3 $74 ] ’ [w'r2z‘rl x'r{ ]i I [xﬁw'rl ]J ’ [zTZ z"l z'r:! ]k’ [z‘riz"'l z"':iz'r{ ]5_1]

([zr,2rzr 2], [:c,ax,.zzn]", [x,ax,,]j, [a:,.az,,,z,l]k, [z.,az,,zzﬁa:n]T"l]

([2r ZryTry@ry], [r, T, x‘m]i’ [‘”ﬂ“’n]j» (7,24, -""Ts]k’ [“’n“’n ‘”fs“"rz]i—ll

[[1‘71 T3 szwﬁ]! [w‘f] :1,'1-3371-4]", [131, zfs]j’ [x’Tl x‘l‘sxfz]k’ [x‘r] xfax‘mzﬂ]i_l]

{[zhmnxﬁmn],[mr2x74w,3]‘,[xrzw,,]j,[a:,za:nzﬂ]",[a:,,ga;ﬂ:c,-lz,s]’_"‘] )
( Y “/2

[[xTZ x'r] xfs]? [wTZ 3771 x73m74 ]5’ [$1-2$71 z‘r‘]i’ [x‘r?z‘rl ]]’ [z"’i‘x"'l xfs]k—l]

\

[[zrs2n2n ], [T 2m 2 xn].ii’ [x,-aa:ﬁxn]", [xrzx,,,]j, [3’13“7‘”1'1],‘“1]
[[zﬂx‘rsm‘n]v [zr,2r2r xTz]—ﬁ’ [xﬁx’raz‘fz]i’ [mna"rs]j’ [wnm,.aa:ﬁ]k‘l]
{

([Zr, Zr ], [:1:71:1:14:1:73:1:,-,]7", [z,1m74:c,,]i, [x‘n“’n]j, ["’nxn"’fs]k—l]

[[2r, 2 ry2,], [‘L'n“’fa“’rzxn]ﬁ, [a:ﬁa:fs:cn]", [‘”T:‘”‘rs]j’ [xnzra"’m]k—l]

| [[2r3r2n), [2r,27 2025 P, [2r,0n, 20 )'s [2r,20 ), (28,2 )]
([€r,@r @ry@r], [T, 2ry @y T 0, ), (27,80, @0, [P, [€ 1y Ty Ty @7, )2, [0y Ty 1, )]
[TrpZrsZry Ty, [TraZrg Try s )¥y [Ty T Py [T g Ty Ty By )y [Z g Ty 21, V]
(Zr,TryZry Try)y [Try By Ty Ty )5y [Ty @y T PPy [Ty Ty Ty oy )Y (B 0y Ty Ty )]
[Tr Ty Try Trs)y [TrgTry Try Ty )5y [T 1 @10 @y Py [Ty T Ty Ty )Ly (B Ty Ty )]
[2r T ry@r@ry )y (21273 B2 [Py [Brp Ty g Vs [Brg Ty T Ty [y [Ty g T Ty JF 1
([ZreTry@ry Ty, [TrpTry s [Py [T 1y Ty T 5 [Ty Ty Ty By [Py [Ty Ty g Ty BT

[@rs@r, @1y @0, ), (21587 @7 P, [€7, Ty zﬂ]j’ [ZrTry@ry “”72]" (#7527 “"’uzﬂ]k_l

~

\
[[a:72$71zf331-4], [zTinleszQ]k.‘.l’ [Z'-r] $73z72w‘r4]i’ [272z71x7'3x7'4]p-2—k—‘]

4 A/

[[z‘n m*sw‘rzxﬂ]? [z‘rgxﬂ xfsmlep_l_i» [mﬂ m‘rsx‘f?zn]i]

3

Y4
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where

n= ——7:750""'.10"“0’,_1 k—]v T2 = p—J-th-I::lC'+]C'p_ —i-j

p—1rp J+k i+j+k ki, — .1 rp-1
73 = fpCPHCILCI, = A5 O O CE s w = o

P""‘J
L={(,7,k):i#0,j+k#0, i+j+k<p-1}
L={(,k):k#0,i+j#0,j+k#p i+j+k<p,}
L={(i,j,k):i#0,i+j+k<p,i+k#p}
Li={(G,5,k):k#0,,i+j#0,i+j+k<p}

1<m<nm<n<ny<d; p=p—-i—j—k.

Our proof makes use of the approach developed in [2], which will be outlined in the first
section of chapter 3, where we also introduce some auxiliary results . In particular , we
outline the proof of a special case of the main result of [2], which gives a homological
description of the torsion subgroup of central extensions of type (1.1) where G =
F/N is p-torsion free. In fact, we simplify the original proof from [2] in this special
case by replacing a spectral sequence a,rgument‘ with an elementary dimension shifting
argument. This enables us to compute an isomorphism between the homology group
and the torsion subgroup explicitly as a dimension shifting isomorphism, and hence to
obtain the generators given in theorem 3.1.1. Also in this chapter we apply our method
to give another proof of Gupta’s result, (i.e. we compute the generators of the torsion
subgroup of (F/[F", F])). Furthermore, we prove that our result for p = 2 is consistent
with Gupta’s result (i.e. our elements generate the same group as her). In the end of
this chapter, we discuss briefly an important application to our main result, namely our
description of torsion can be exploited to obtain a complete description of the torsion
subgroup of F/[y,(F"), F] in terms of generators of F as well, using homomorphisms

introduced in {29].
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In chapter 4 we give an alternative proof to the following result, ([14]),Theorem 2).

Let G be a p-torsion—free such that H,(G, Z,) = 0 for all s > 5. Then

U F/[1pa(N), FIN") = Hy(G, Zp).

Again this provides a description of the torsion subgroup as an abstract group in
homological terms. Moreover, in chapter 3, our main result was about describing the
torsion subgroup of F/[y,(F"), F]F", where p is any prime, in terms of generators. A

1

similar result holds for the torsion subgroup of F/[vya(F'), F]F", where F is of rank

4, If the rank of F is greater then 4, then any four of the free generators z;,--:, =4

"

generate a rank 4 subgroup of F/[ypa(F’), F]F", and hence the rank 4 torsion elements
appear in all higher ranks. However, these elements form only a subgroup of the higher
rank torsion subgroup, and (1.5), for example, implies that the rank 4 torsion elements

form a proper subgroup of the rank 6 torsion subgroup, where p = 2 and a = 2. As in

chapter 3, we obtain the torsion elements by computing the isomorphism
Hy(F[F', Z,) — t(F[[ype(F), FIF"),

explicitly. The proof of this result makes use of the approach developed in [14] as
modified in the first section of this chapter. Here we consider two cases, the first
when p is any odd prime. In this case we find that the computation of the connecting
homomorphism is from a certain stage onwards very similar to the first one [i.e. the

one in chapter 3]. In the case where p = 2, the calculation is slightly different.

Throughout this thesis the notation and terminology are mostly standard and the
reader is referred to the book of P. Hilton and U. Stammbach : A course in Homological

Algebra.
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A list of symbols used, and their meanings is provided below.

Notation :

IR

S.e.S.

Kera

Ima

tA
G' =G, G]

Ga.b

YN

H,.(G,B)

H.(G)

G

1G

There exists
For all
Isomorphic to
Short exact sequence
Tensor product
Direct sum
Direct product
The kernel of the map a
The image of
Symmetric group of degree n
Torsion subgroup of A, where A is any abelain group
Commutator subgroup of G
G/G'

The e-th term of the lower central series of N; note that
v2(N)=[N,N] = N', the commutator subgroup of N
The n-th homology of G with coefficients in B
The integral homology of G
The ring of integers
Z/nZ
Group ring of G over Z

Augmentation ideal
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R : Integers localized at p
RG : Group ring of G with coefficients in R
A : Augmentation ideal of RG

The localized relation module

A" : The n—th symmetric powers of the module A
Gr(N) Associated graded group of a group N
[®1, -+ 2n] ¢ =[[®1,-* s Zn=1],2n], asimple commutator of

weight n > 2, where by convention [z;] = z,
and [z1, 23] is the commutator of z; and z;
LA : The free Lie ring on A
MA : The free metabelian Lie ring on A
Lastly, we explain the numbering system which we have used. Equations are numbered
by chapter, e.g. equation 3.2, while Theorems, Lemmas, etc., are numbered by chapter

and section, e.g., Theorem 3.2.1.

10



Chapter 2

Preliminaries and notations

Occasionally, well-known facts will be drawn from homological algebra without citing
special references; these however can easily be found, e.g. in Hilton and Stammbach

[17).

For convenience we shall write B ®¢ A, TorG for B ®zq A, TorZC respectively.

2.1 General notations and some basic facts

2.1.1 Complexes

Let S be a ring with 1, we begin with following definition.

Definition 2.1.1 A chain complex C of S-modules is a family {C; : i € Z} of S-

modules, together with S—-module maps d,, : C, — Cj,-1 such that each composite

11
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dyp—y0dy, : Cp, — Cy_3 is zero. The maps d,, are called the differentials of C . The
kernel of d,, is the module of n—cycles of C . The image of d,41 : Cpny1 — Cp is the

module of n—boundaries of C .

From this definition it is to easy see that every exact sequence is a complex. On the

other hand if F is any functor and C is a complex, then
F(C): - o — F(Cn) I F(Cpor) — -+

is also a complex. In particular, if C is an exact sequence, then F( C) is a complex.

Now if C and C' are complexes, a chain map f: C — C’ is a sequence of maps

Cn — C,, for all n € Z, such that the following diagram commutes

dnta d
— n41 s Cn - Cn—l —

1 fn+l l fn l fn—l

d:a+1 d,

' ' 1
— Gy = = Gy —

Remark 2.1.2:

1. 0 CImd,, 41 CKerd,, C C,,.

2. For any n, the n** homology module of C is defined by H,(C) = Kerd,,/Imdp1.

Thus C is exact if and only if all the homology groups of C vanish. As H, is really a
functor, we need to define its action on chain maps. If f : C — C' is a chain map,

we define

Hu(f): Ho(C) — Ho(C')

by z+Imdny1 — fa(2)+Imd,,,;.

12
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An S-module P is projective if if it satisfies the following universal lifting property:
Given a # : P — C and a : B — C where « is a surjective, then there exist
v : P — B such that ya = .

P

s 1B
B % C -0

Definition 2.1.3. A projective resolution of the left S-module B is a complex,
P:ww-—-nsP,—P_ 41— —Pp— P — Fp—0

with the following properties:

1. P, is a projective module for all n > 0.
2. H(P)=0Vi>1.

3. Ho(P)= B.

If we include the module B in the resolution in this case we will denote the resolution
by P

P:+ —P,—P,_1—-—Pp—P—PFPh—B-—-0

we notice that P is an exact sequence.

Now we briefly recall how the abelian groups Tor3(B, A) and H,(G, B) are defined

and calculated (where B is right S—module and A is left S—-module).

Given T = BQg is a functor from the category of S-modules to the category of abelian
groups, we now describe its left derived functors Torf(A, B) as follows.

13
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First we choose any projective resolution of A (this can be done, because it is well

known that every module has a projective resolution)

P:-v-—P—---—P—P— P —0.

By tensoring each module of P with B over S and taking the natural induced maps we

produce the following complex
BggP:---— B@gP,— -+— B®g A — B®g Fh — 0,

then we define TorS(B, A) = H,(B ®s P) =Ker(d, ® 1)/Im(dyn41 ® 1).

We notice that if A is projective module, then TorS(B,A) = 0 ¥n > 1 and for all

modules B.

That is because, as A is projective, it has resolution
Pive:0— Ppb—0

with Py = A is a projective resolution of A, hence Torf(A, B)=0Vn2> 1.

Let G be any group written multiplicatively. As usual, ZG denotes the integral group
ring of G. The underlying abelian group of ZG is a free Z-module with Z-basis
= {l.g : g € G}, where the rank (ZG) = |G|. A module over ZG will be referred to
simply as a G-module. The tensor product over Z will be denoted by ® instead of @z.
If B,C are G-modules, the tensor product B ® C can be endowed with a G-module
structure by defining (b® ¢).g = bg® cg (b € B, ¢ € C, g € G). This type of action
is called diagonal action. By forgetting the G-module structure of B, B ® C' becomes
G-module, using only the structure of C, by defining (b®¢).g =b®cg (b€ B, c€ C,
g € G). This type of action is called single action.

14
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Remark 2.1.4: The Z-tensor product of Z-free G-modules is a free G-module if at

least one of the tensor factors is G—free.

A G-module A is called trivial if ga = a, Va € A, Vg € G. the ring of integers Z will
always be regarded as a trivial G-module. By Z, we denote the quotient Z/pZ, which

is also viewed as a trivial G—module.

Definition 2.1.5. Let B be a right G-module, then the n** homology group of G with

coefficients in B, denoted by H,(G, B), is defined as follows

Take any G—projective resolution of the trivial G-module Z
P.ovw—P,— oo — Pp— P — Py —0,

by tensoring each module of P with B over ZG and taking the natural induced maps

we produce a complex of Z-modules
B®gP: — BRg Pn — B®G Pu-1-+— B®g Po — 0,

then we define the n** homology group of G with coefficients in B to be the abelian
group H,(G,B) = H,(B ®g P). In fact this definition describes how to compute the
homology of the groups via resolutions. If B = Z we get the integral homology, which

is denoted by H,(G).

Remark 2.1.6

1. H,(G, B) = Tor$(B, Z).
2. If B is projective, then H,(G, B)=0 Va > 1.

3. If B is a right G-module, then Ho(G, B) = B ®@¢ Z.

15
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2.1.2 Connecting homomorphisms

Since most of our work in chapters 3 and 4 involves computing rather complicated
connecting homomorphisms, we need to give here a list of useful results concerning
connecting homomorphism, so in chapter 3 will be able to develop or produce a method

of computing complicated connecting homomorphisms.

Theorem 2.1.7 : If 0 - C' — C £ C" — 0 is an exact sequence of com-

plexes, then for each n there is a connecting homomorphism

O : Ho( C") — Hn1( C).

In fact, 9, is computed as follows.

0 — C, — Cp — C, — 0
ld \d ld
0 — Cpy = Cpog — Chyy — 0

If 2" is a cycle in C;’, choose an element ¢, € C,, projecting onto P (¢n)d is an element

of C,_1. By commutativity,

(cn)d € Ker(Cpoqy — Chn_y) = Ime.

By exactness of the bottom sequence, there is unique ¢,_, € C,, with (c,_;)t = (¢s)d.

It follows that

" "o _
7 — 2z pld7L,

16
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The long exact homology sequence is of course linked to the connecting homomorpism,
and we use this long exact homology sequence quite often, so it is worth while to

mention it.

Theorem 2.18 : If 0 — C' - C % C” — 0 is an exact sequence of

complexes, then there is an exact sequence of modules

e Hy(C) 25 Hy(C) 25 Hy(C') S Haei(C') 25 Hyoy(C) = -,

Lemma 2.1.9:

If 0 — A" — A — A" — 0 is a short exact sequence of right S—-modules, then for

any left S—module C, there is a long exact sequence

.= TorS, (A", C) 2 TorS(A', C) — TorS(4, C) — TorS(4", C) — .....
..... —Tor$(A",C) — A'®sC — A®s C — A" ®5C — 0.

we observe that the functor (T'or) repairs the exactness we may have lost by tensoring.
Remark 2.1.10

(a). To any s.es. 0 — B’ — B — B” — 0 of right G-modules, there is a long

exact sequence,

= Hop1(G, B") 2 H,(G, B') — H,(G, B) — Hn(G, B") — ....

.. » Hy(G, B") — Ho(G, B') — Ho(G, B) — Ho(G, B") — 0.
(b). 0 — B' — B — B” — 0is a s.e.s. of right G-modules, where B is

17
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projective, then

Hoi1(G, B") 2 H,(G, B') Yn > 1.

The result just described is called dimension shifting,.

(c). Let

0—K-—P— ' —P— P —Z—0

be an exact sequence of right G-modules, with Py, Py,- - -, P, projective. Then the

following sequence is exact: 0 — Hy41(G, B) — K ®g B — P, ®¢ B.

(d). Let

K0—A—K,—---— K, —B—0.

If K is exact and Hi(G, K;) = O for k > 1 and i = 1,2,---,n; then Hi(G, A) &
Hiyn(G, B) for all k > 1, and the connecting homomorphism H,(G, B) — Ho(G, A)

can be computed as follows:

Take projective resolution
P — P, — - — Py— Z —0,

of the trivial G-module Z, then we form the double complex K ®¢ P:

18
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BRg Py — BQcP, «

1
K1®c Ph-1 — K1 ®c Py

— 1

K,®cPo —

|

AQeZ — A®gh

We start with any cycle in B ®s P, and then we have to go along the calligraphic

arrows up to A ®qg Z.

We conclude this subsection with two questions concerning the complex K.

Now suppose that K is not exact but the other condition remains unchanged.

Do we still have Hy(G, A) = Hyyn(G, B) ?

Can we still compute the connecting homomorphism H,(G, B) — Ho(G, A) ?

Under some additional conditions these questions have a positive answer, as we will

see in the beginning of chapter 3. Here we should mention that this kind of connecting

19
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homomorphism plays a crucial role in the proof of our main results.

2.2 Some specific modules and symmetric powers

2.2.1 Relation modules and augmentation ideal

For the material of this subsection we refer to [17].

The map ¢ : ZG — Z defined by

(Z mgy) e=) my

9€G 9€G
is called the augmentation map. This map is a ring homomorphism; its kernel is

denoted by /G, and is called the augmentation ideal. The exact sequence
0— I —ZG — Z —0
will be referred to as the augmentation sequence.
The short exact sequence
l1— N —F- 5 G—1, (2.1)
where N and F are free groups is known as a free presentation for the group G.

Now suppose that G is given by this presentation where F' is a free group with free
basis X = {z1,- -, zp}. The augmentation ideal I F turns out to be a free F-module
on the set {z — 1 : 2z € X} (see e.g., [17], Theorem 5.5). The group ring ZG carries

F-module structure via .

20
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Given such a presentation, the abelian group Ny, = N/N' carries, by conjugation, the
structure of an F'-module. Since N operates trivially, Ny, may be regarded as a right
G-module by defining rN'.g = (z~'rz)N' wherer € N,z € F , g € G with g = (),
which is called the relation module of G associated with (2.1). Now we turn to the
action: this action is well defined, indeed, let n € N, g € G and if z,y € F such that
(z)m = (y)* = g, then

Inz = y~ny(modN").

-
Now, the tensor product [F @ ZG becomes a right G-module by a single action. In

fact the module P = IF QF ZG is a free G-module on {(z; — 1)® 1;z; € X}. For it is

plain that

IF®F ZG @rex(z — 1)ZF ®F ZG

R

@eex(z — 1)ZF QF ZG)

%4

IR

@xEX(m - 1)ZG'

Furthermore the module P is contained in the exact Z-split G-module sequence
0— Ny = P-L IG — 0, (2:2)

which is usually called the relation sequence stemming from (2.1).

The embedding p is given by (RN')p = (n — 1) ® 1 for any n € N.

Now,if g€ G,n € N and f € F, where g = (f)x, then we have

[nN'glp=[/""nfNlu=faf-1®1 (2.3)

21
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as (f=1)(f"'nf-1)=0in IF ®F ZG, then from (2.3) we get,

[nN'glp = [faf-14(f-1)(faf-1)01
= (n-1)f®1
= (n-1)8(f)r
= (n-1)®g
(n-1)®1]9

[(nN")u).g

So we have got the following well-known result, (see e.g., [17], pp. 198-199, Theorem

6.3]).

Lemma 2.2.1 The map p : N,y — P given by (nN)u = (n — 1) ® 1 is G-module

embedding.
This embedding p is called the Magnus embedding and the Lemma is due to Magnus.

Finally the map ¢ : P — IG is defined by ((z — 1) ® 1)o = (z)7 — 1, which is also

compatible with the G-actian.

For our applications we consider the following special case. We put G = F/F’. This
means that G is a free abelian group with free basis {, b, -, b,}, where b; = z;F',
in this case the relation module is F'/F". It is (as a G-module) generated by the

commutators [y;, y;], where y; = 2;F', 1 <i<j<n:

F'[F" = {[2;, 2;)F" :1<i<j<n}

For simplicity, we write as follows F'/F" = {[2;, z;]: 1 <i < j < n}

22
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On the other hand F'/F" as a Z-module is generated by

{[zi,z;]l9:1<i<j<n,geG}.

Let us now write the Magnus embedding and the epimorphism ¢ in a form convenient
for our computation in chapters 3 and 4. The epimorphism P — IG defined by
e; — b; — 1, where ¢;, = z; — 1 ® 1 are the free generators of P, For the Magnus

embedding p: F'/F" — P will be as the following:
[2i, 5] — ei(bj — 1) — ej(bi — 1)

where b; are the free generators of the free abelian group G, and e; free generators of

P. This is because

a7tz lziz - 1)® 1 [(z7'27! - Daizj + (ziz; - 1)] @1
i J

= (:1:;'11';71 -1)®bib; + (ziz; —1)® 1

(27! = Daj' + (27" = 1] @ bib; + [(zi — 1)z + (35 - 1)]® 1

(@' -1 @bi+ (27" 1) @bibj + (i~ 1)@ bj + (z; — 1) ® 1

(1-2)®1+(Q-2;)®bi+(zi -1)®b; +(2z; -1)®1

= (z; -1)®(bj~1) = (z; - 1)® (b; = 1)
[((z: — 1) ®1](b; — 1) = [(z; — 1) ® 1](b; — 1)

= e;(bj -1)- ei(bi—1)

Before closing this subsection we recall the following basic results which are called the

reduction theorems for homology (see e.g. [17], p 213 and p 214).

Theorem 2.2.2 For n > 2 we have

Iln(c”v B) = Hn—l(Gs B® IG),
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where B ® IG is G-module with diagonal action.

Theorem 2.2.3. Let G = F/N with F free. For n > 3 and B is any G-module, we

have

Ho(G, B) & Hn_2(G, B® Nap).

2.2.2 Symmetric powers

In this subsection we record some well-known facts concerning symmetric powers.

For a free Z-module A, we denote the n*' tensor power of A by T%A. Now, the nth

symmetric powers of A is defined by
A" =T"Al{a1®  ®tn -1, @ €ny}
where p ranges over all permutations of {1,2,---,n} and ay,---,a, € A. In particular,
A2 =T?A/{a1 ®az — a2 ® a1}.

For ay,---,a, € A we write a, o - - - 0 a,, for the corresponding symmetric tensor in A",

If A is a G-module, A" will be regarded as a G-module with diagonal action.
We begin with the following facts from [2].

First the map:

n
aloagoo-‘oan———»Za;@(aloago---ocﬁ-o---oan) (2.4)
=1

extends to an embedding v, : A" — A ® A™"! of G-modules, where the a; are

arbitrary elements of A and the circumflex denotes that a; is omitted. We also have a
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projection, p, : A® A®~1 — A™ given by

(@1 ®(az0a30---0a,))pn =810a20--:0ay. (2.5)

It is clear that the composite of v, and py, is the nth multiple map on A™:

UnpPn = N.

Now for our examination of the G-module A™, we need to recall the following construc-
tion, from [14]. Let

0—B—AL.D—0

be a short exact sequence of Z-free G-modules. We identify B with its image in A.

Let K be the submodule of A" spanned by the elements
byo---bip10ai420---ay

where by, -+, bj41 € B, a42,--,a, € Aand n > 1 2 0. We put K*; = A" and

K} = 0. The submodules KJ* form a chain
0<K,_ <Kp,<-<Kg<KI;=A"
in A™ with quotients
K ,/kP = B'@ D™

which will be referred to as the (B, D)-filtration of A™.

In particular, K7?_; is the canonical image of B™ in A™ and K§ is the kernel of the
canonical epimorphism " : A® — D7, Specifically, the relation sequence yields a
finite filtration

0<Yl,<Yl,<---<Y<Y"{ =P
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with quotients Y2, /Y® & (Ny)' ® (IG)*~!, for the symmetric power of the free G-

module P, [ we notice here Y is the kernel of the epimorphism : P* — (IG)"].

Theorem 2.2.4 ([11] , Corollary 3.13). Let G be a group without n—torsion, A is a

free G-module. Then A" is a free G-module.
Also we need the following result.

Lemma 2.2.5 [[19], Lemma 2.3]. Let p be a prime, A a free SG-module. Suppose that
G is p-torsion free, and every prime ¢ # p is invertible in S, where S is a commutative

ring with 1. Then H(G, D ®s A¢) = 0 for every SG-module D,k > 1 and ¢ > 1.

2.3 Homology of free abelian groups

The homology of free abelian groups is very important topic in this work. However the
integral homology groups of free abelian groups are well-known (see e.g., [18], chapter
6). Nevertheless in this section we include the computation of these homology groups,
because some details will be needed later. Most of the following material of this section

is from [4] and [15].

To compute the homology of free abelian groups and also later on the connecting ho-
momorphism H4(G, Z) — t(*y,,NN"/'yp+1NN,' ®G Z), we need to recall the following

construction of the free resolution of the trivial G-module Z.

Let G be free abelian group of rank n, with free generators by, b, - +, b,. Let AP

be the k—fold exterior power of the free G-module P, where e, €2, -+, e, are free
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generators of P. For k > 1, AFP is a free G-module of rank C}, with free generators
e, Nei; A+ ANej, , (1 L4 <.+ <ip < n)in particular, A"P is a free G- module of
rank 1 with basis
e1A eg A A e,, we extend the definition of AFP to the cases k = 0, and k = 1 by
setting A'P = P, and A°P = ZG.
We define di. : AP — A¥-1P by
k ‘ A
(€iy A-eAeiy)dy =Z (—1)1_1(17,’]» —1)(ei; A e -A € A €i,)

i=1

and (e;)d; = (b; — 1), (here e?] indicates the omission of e;; ). It is easy to see that

didi._; = 0; therefore we obtain a complex of free modules,

0 — A"P Jn, An-1ptzt L pA2p B, p 4,70, (2.6)
If we supplement the complex (2.6) by the homomorphism ¢ : ZG — Z , we obtain a
free resolution (the Koszul complex) of the trivial module Z :
P:0— AP Ao An-lpli A2 B, p A 76 7 0,
A proof of this fact can be found in [18]. To simplify the notation we put A‘P = F;,
i=1,2,---, n, 50 P becomes as

P:0—P,dnp . p 2 pigG 7 0. (2.7)

By tensoring P with Z over G we get the complex

ZRcP:0—-Z®c P, 2. . Z20c P Z28c2G 2 Z®cZ —0
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As an application of this we get,

Hi(G,Z) = H (G, Z ®c P)-

On the other hand we note that, (P)0x € IG(Pg-1) which implies the induced differ-
entials on Z @g P are all zero maps. Hence Hy(G, Z) = Z ®g P . Since Py is a free

G-module of rank C}, Hx(G, Z) is a free abelian group of the same rank.

Likewise, by tensoring the complex P with Z, over G' we get,

Z,0GP:0—2Z,®c Py 2 2,06 P4 2,06 ZG 2 2,06 Z — 0 (2.8)

Again Z, is a trivial G-module, so as before the induced differentials on Z, ® P, are
all zero maps. Hence Hi(G, Z,) = Z, ®g Pk. Since Z, ®g Py is an elementary abelian
p—group of rank C}, Hx(G, Z,) is an elementary abelian p-group of the same rank. So

we have the following

Proposition 2.3.1 The homology group of the free abelian group G with coefficients

in the trivial G-module Z,, is an elementary abelian p-group of rank C7 (i.e. Hi(G, Zp)

> 70*F),

2.4 Metabelian Lie powers

Most of the material of this section are taken from [2]. For more general reference we

refer to [21], [22] and [24).
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2.4.1 Notation and some general results

In this subsection we shall collect some basic concepts and some general results con-

cerning metabelian Lie powers.

Suppose A(X) is a free associative algebra on a set X over S where S is a commutative
ring with 1, and let I be the two-sided ideal of .A(X) generated by the elements of
the form aa, a € A(X) and a(be) + b(ca) + ¢(ab), where a, b, ¢ € A(X). The quotient

algebra A(X)/I is called the free Lie algebra on X, and is denoted by £X .

Remark: Any a free Lie algebra over Z is called free Lie ring.

For an (additively written) free abelian group A, let X' be a free Z-basis on A. We
write LA for the free Lie ring over Z on X. The free abelian group A can be identified

with Z-submodule of LX spanned by A’. We define LA= LX. Now LA has a Z-module

decomposition

LA= n?} LrA
where £ A is spanned by the left-normed Lie monomials [z;,, -+, z;,] with z;,, -, 2;,, €
X.

Moreover, if A carries the structure of a right G-module, then the G-action on A
extends uniquely to G-action on LA turning the Lie powers LA into G-modules, and

the induced action is, in degree n, given by

[“’19 Az, -, an]-!] = [a'lg’ azg,-- -, ang] g € G, ag € A.

Now we turn our attention to another class of free Lie rings, consisting of soluble Lie
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rings of soluble length at most 2, called the free metabelian Lie ring M A on A which
is defined by

MA = LA/[[LA, LA], [CA, LA]).

(i.e. MA is isomorphic to LA factored out by its second derived ring). Like LA the
Z-span of X in MA can be identified with A, and also the lie ring M A is a graded

G-module MA =9 MFA, with

M™A = LPA/LAN[[CA, LA], [CA, CA].

It is known [see, e.g., [21]] that M™A is generated by the left normed commutators
[a1, az,- -+, an], a1, a2, -, an € A,

and these commutators are subject to relations

(). [a1, az, as, - -+, an] = —[az, a1, a3, -, an]

(ii). [a1, a2, a3y« -+, ap] + [a3, a1, az,- -+, @] + [a2, a3, @1, +, a,] =0

(iii). [@1,-- -, @i, Gigr, -+ @n) = @1, ¢, Gig1,8i50 0+, 85) , 3<i<n~1.

Moreover, if X’ is a totally ordered free Z-basis of A then the left normed commutators
{la1, a2, -, @,), a1, ag,+ -+, ay € Xya1 > a3 a3 < --- < @y}

form a free Z-basis for M™A. These facts can be found in the literature (for example

in [21]).

The following result describes an embedding of M™A into A ® A™~1.
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This embedding is essential since our results in chapter 3 and 4 depend at some stages

on this embedding.

Lemma 2.4.2. [[2], Theorem 3.1]. Let A be Z-free G-module, n > 2. Then the map

[a1, -, ap] — a1 ® (ago---0a,)—as®(aj0azo---0ay)

extends to an embedding ¢, : M"A — A ® A™"1.

As result of this Lemma we have the following corollary which is also from [2].

Corollary 2.4.3. There is a short exact sequence

0— M"AES A@ A™ 1 225 A" — 0, (2.9)

of G-modules.

Theorem 2.4.4. Let G be a group without n—torsion, A a free G-module. Then

M™A is a free G-module. (For the proof see e.g. [11], Theorem 3.11).

To say that a group G has a finite exponent m means that g™ = 1 for all g € G.
The next result,which is from [2], shows that each homology group Hy(G, M"Ng) is a

periodic abelian group of finite exponent, and gives an upper bound for the exponent.

Theorem 2.4.5. For any odd n > 3, Hi(G, M"Ny) k > 1is a periodic abelian group

of finite exponent dividing n and Ho(G, M™Ng,) is a direct sum of a free abelian group
and a periodic abelian group of finite exponent dividing n, and for any even n 2> 2,
Hi(G, M™N,) k > 1 is periodic abelian group of finite exponent dividing 2n and
Ho(G, M™Ngy) is a direct sum of a free abelian group and a periodic abelian group of
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finite exponent dividing 2n.

To obtain more precise information about the homology groups Hi(G, M"N,;), we
need to recall the following complex M from [2], which also plays a crucial role in our

computations.

Let n > 2 be a fixed integer and let

M0 MPN, 22 PNt 2 pr s, z6m 22,26 7, B0, (210)
where the differentials are given as follows :

&, is the composite of the augmentation map ¢ : ZG — Z and the projection Z — Z,.

&5 is the composite of ¥,, : ZG" — ZG ® ZG™ ' and 1 Q e™! : ZG ® ZG™" ! — ZG
(ZG ® Zn~! = Z@G); thus for ay, az,--+, ap € ZG, (a1 0+ 0 ap)é; =zn: (g a;e)a;, in
=1 J#*

particular for g1, -+, gp € G, (100 gn)bza=g1 + g2+ + gn-
03 is the composite of o™ : P* — (IG)" and the injection (/G)* — (ZG)™.
&4 is the composite of 1 @ p"~ ! : P ® N:b'l — P®P*'and p,: P® P""! — Pn.

65 is the composite of ,, : M" N, — Nab®N:b'1 and p®1: Nab®N:',,'1 — P®N:b'l,
where ¢, is defined by

[ma, ma, ..., mp] — My @ (20 ...... omy)—ma®(Mmyomgo ... omy)

where my, ma,...., m, € Ng.

Lemma 6.1 in [2], tells us that this complex is exact in dimensions 0, 1, 4 and 5 (i.e.
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Ho(M) = Hy(M) = Hy(M) = Hs(M) = 0).
We also need the following corollary.

Lemma 2.4.8. [[2], Corollary 6.2). The homology H;(M) (i=0,1,:--,5) of the chain

complex (2.10), has the following property:

Hi(G, Hi(M)) (k > 1) is a periodic abelian group of finite exponent dividing ((n—1)!)?

for some positive integer ¢.

To obtain a characterization of the torsion in the zero—dimensional homology group
of G with coeflicients in M"™N,;, we focus in the case when n is a prime or power of

prime.
We can now state the main result of [2].

Theorem 2.4.7. Let p be a prime, 0 : P — Z(G a homomorphism from the relation

sequence and o? : PP —s (ZG)P its pth symmetric power. Then there is a long exact

sequence
-+ — Hi41(G, MPNgp) — cokerHyiy3(0?) — Hypya(G, Zp) — Hi(G, MPNg)
— kerHp41(0?) — Hi43(G, Z,) — Hy-1(G, MPNy) — cokerHyyq1(a?) — - -+

(k=2,4,6,-- ) terminating at

.+ — cokerH3(a?) — Hy(G, Z,) — tHo(G, MPNay) —s kerHy(o?) — Ha(G, Zp).

If G has no p-torsion, then (ZG)? and PP are free G-modules. Consequently Hx(G,(ZG)P) =
Hi(G, PP) = 0 for k > 1. In particular, coker H3(0?) =kerH;(o?) = 0, and the exact-
ness of the sequence gives H4(G, Z,) = tHo(G, MPNgy).
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Now, for our computation in chapter 4, we need to modify another complex M.

First, from ([19], Lemma 2.1 (iv)), we have a 4-term exact sequence
o n .
0— (IGY" — (ZG)" Z5' (ZG)P"~' — cokernla_; — 0 (2.11)

where w,’i:_, is defined by

p”
(a10az0....0 apn)w,’;:_l =Z (ai€)ay o....0 é\; 0... 0 Qpn
i=1

where oy, - a, € ZG, the circumflex denotes that «; is omitted, and ¢ is the augmen-

tation map ZG — Z. In particular,

(1010---01)1:-1’,’,':_1 —p*(lolo---01)

pn pﬂ_]

((g1—1)o- --o(gz—l)olo---ol)w,'j:_l—->(p"—l)(g1—1)0---o(g¢—1)olo---01

for I < p™, and for [ = p™ we get

((g1—1)0---0(gpn —I)m0_; =0

Combining (2.10) and (2.11), we obtain the following complex M
"p:.. " n
M:0— M Ny &8 PoNZ -t & prm B 260" 25! 7GP"1 L cokernZn_, — 0.
(2.12)

where the differentials 85, 64, 63 are as in (2.10) and w;’:_l as it is defined above.

2.4.2 Central series of subgroups and metabelian Lie powers

The whole point of this subsection is to relate Lie rings associated with certain de-
scending series of subgroups of a free group to free Lie rings and free metabelian Lie
rings.
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Let F be a free group on a set X = {z1, 2, --z,} and G is given by

l1-N-F-G-1.

The subgroup N is free by Schreier’s theorem. We consider the lower central quotient
YeN/%c41 N of the free group N. This quotient (free abelian group) is generated by the
commutators of weight ¢ (i.e. generated by {[a1, az,- - ‘a;}7i41(N) : a; € N}. On the
other hand it carries, by conjugation, the structure of a F-module. Since N operates

trivially, it may be regarded as a right G-module by defining
[a1, a2, - ai]vig1(N).b; = [a1, az,- - -ai]"vis1(N)

where ay, az,-+-a; € N, b; € G, x; € F. The modules ¥;(N)/7i+1(N) are called the

higher relation modules.

Now we consider the family {7,(N)/¥n+1(N)}n>1. We introduce an additive abelian

group of the form
Gr(N) =& %(N)/1is1(N)

which is an associated graded group. We will turn this graded group into a Lie ring
by defining the commutator of two homogeneous elements av;41(N) € 7i(N)/7vit1(NV),

bYi+1(N) € 7;(N)/vj+1(N) as follows:
[a%i41(N), b741(N)] = [a, b}vit;41(N)

where a € 4;(N), b € v;{N). Using the following relations

[ab, cd] = [a, d)b[a, c]?[b, d][b, c]*

([a, 8], ¢*]{[c, a], 6] [[®, c], ab] =1
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the conditions of the Lie ring can be verified. Moreover, the graded Lie ring associated
with the subgroup N, is the free Lie ring on the free abelian group Ny = N/N' (see,

e.g. [22], chapter 4).

Let ny,-++, n. € N and let a; = n;N' (i = 1,2, -, ¢) be their images in the relation

module Ng. Forany c=1, 2, 3,--+ we have
YA N)/Ye+1(N) = LY(Nap),
as abelian groups, where the map is defined by
0:[n1,- s melyesr (V) — [ar, - ac
[for more details see, [22], chapter 4 and [21]].

Proposition 2.4.8 (Baumslag, Strebel, Thomson [23]). The map

[nl, M) nc][7c(N)» F] — [als MY ac] ® 1
extends to an isomorphism

7C(N)/[7C(N), F] E" Cc(Nub) ®c Z.
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( ¢
F
G 4

N )
vo N 7
73V 1
¢ ¢

YeN

H

{ [7CN’ F] ?

where H = 7o(N)/[7(N), F].

Now we focus in the metabelian case, because our main results are connected with the

metabelian Lie powers of the relation module.

Consider the quotient F/[y.N, FJN". As was mentioned in the introduction, this quo-

tient is characterized by the exact sequence
1 — 4(N)N"/[y.N, FIN" — F/[y.N, FIN" — F/7.(N)N" — 1

i.e. F/[v.N, FIN" is central extension of F/v,(N)N".
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First we consider the lower central quotient ¥.(N)N"/7c41(IV)N" of the free metabelian
group N/N". This quotient is generated by the left normed commutators of weight ¢
(i.e. generated by {[a;, az,-  ‘a;]¥e41(N)N" : a; € N}. On the other hand it carries,
by conjugation, the structure of a F-module. Since N operates trivially, it may be

regarded as a right G-module by defining
[a1, az,- - -acyisr (NIN"b; = [a1, a2, - -ac]*Yesr (NN
where ay, az,---a. € N, b; € G, z; € F.

Exactly as in the case of the higher relation module, we consider the following family

{7e(N)N" /1e41(N)N"}c>1. Again we introduce an additive abelian group of the form
GH(N/N") = & 7e(N)N" 7er1 ()N

which is an associated graded group. As before we will turn this graded group into a
Lie ring. Moreover, the graded metabelian Lie ring on the group N/N " is the free

metabelian Lie ring on the free metabelian group N/N”.

The next result is very important, so it may be justified to include the proof of this
result in this chapter. Here we should mention that Hannebauer and St6hr outline the

proof of this result in ([2], section 7).

Proposition 2.4.9. For any natural number n > 1, there is a G-module isomorphism

YANIN" J[7(N), FIN" 2 M*(Na) Q¢ Z.
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Proof. The normal subgroup N is free by Schreier’ theorem, then N/N" is a free

metabelian group. This implies that
Gr(N/N") = @2 %(N)N [7i41(N)N

is graded Lie ring on the group N/N". We notice that 7,(N)N ) [Ye+1(N)N " is the c—th
homogeneous component of the graded Lie ring Gr(N/N"). By Theorem 3.2 of [27],
there is an isomorphism between lower central quotients of free metabelian groups and

metabelian lie rings

7NN [7es1NN = M°Ng, (2.13)

as abelian groups. On the other hand, as we mentioned before, conjugation in F induces
onY(N)N /4.41(N)N the structure of F/N-module. Also M¢N, is G-module with
diagonal action. Moreover, it is easy to see that this isomorphism is compatible with

the G—action.

Trivializing the action on both sides in (2.13) gives

‘)’CNN /‘)’c+1NN

7 77 . 2.14
(YeNN" /741NN ").IG @19

M Ny @G ZZ Y NN [7.41NN QcZ =

For m € 4N, and (z) 7™ = g € G we consider

mye+1 NN (9-1) (MYe1 NN ).g(myepa NN )71
= 2 'mzyep 1NN m=ly. N N”

"
= - Imzm 'y, NN

= [13, m—l]7c+lNN .

Therefore (NN~ /741N N").IG = [F, %.NIN" /441 NN" = [7.N, FIN" [7.41NN .
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Thus we obtain

" n " "

NN [%41NN - NN (741NN
n ” — L
(¥NN" [v.41NN").IG (eN, FIN" [vc41NN

7NN /[y.N, FIN",

R

and by combining this with (2.14) we get
¥eNN [[YeN, FIN" = M®Nay ®G Z = Ho(G, MNyp).

2.5 Some other related topics

2.5.1 Binomial coefficients

We collect and introduce some results on binomial coefficients that are needed in our
calculation. Our conventions are the standard ones: the binomial coefficient C} = 0 if

n<Qork<Oorn<k.

Lemma 2.5.1. If a, (3, v are non-negative integers, wherea > y+fand f < a -7,

then C¢ C’;,H'ﬁ:C"’

o—y
v+8 a—’ycﬁ

n :
Lemma 2.5.2. Let n be any positive integer. Then ) (-1)'CP = 0.
i=0

Proof.

n
0=(1-1)"=C§ - C} +C} = C5 + ... (-1)"C2 =3 (-1)CP.
1=0

Most of the following observations are easily proved by induction, using the following
recursion.
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Let n be any natural number and i is integer where 0 < ¢ < n ,then

Crit+crt=cCny (2.15)

Lemma 2.5.3. Let j, k, n be fixed non—negative integers such that n —2-j-k > 0.
Then
n—2-j—k

Z (_1)j+k+ic;t—2—k—ic:z—l—k = (_l)n‘
=0

0 , .
Proof. Inductiononn—-2-j—k.Ifn—-2—j—k=0,then 3 (=1)i+F = (=1)i+k =
1=0
(=1)"2.

n-l—j—k L ki k
Induction step : Y, (—1)itk+HCp-t-kmiop-

(—1)HACP1k 1)k On=2ok Ok o (—1yitkton-3—kopoh oy
+(-12citenk 4+ (-rrent
(—1)J'+’°C]'.“1"’c + (—1)j+k+’C;'“2"‘(Ci"l‘k +Cpm1-k)
= +(_1)j+k+2c;z—3—k(cg—1—k + Cln—l-k) I

+()HCET G

1—ji—k —a—iek

= TR Cryignikeipiok L VTS (pyiskeignoa-keignet-k

= z

= amisiek o ]
= Y (—1yHkriep-izk=icp-l=k _ (—1) by induction

=0
‘ n-1—j-k . )
= (_1)J+kC]T,L-1—k Z (_1):C;1°1“J—k _ (_1)n
=0

= 0-(-1) bylemma 2.5.2.

—_ (_,1)n+l

This completes the inductive step and therefore the proof of the Lemma.
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Lemma 2.5.4: Let j, k, n be fixed non—negative integers, n —2 — 7 > 0. Then

n-2-j .
Z (—1)”"C’}‘“l(7;-"2"6';‘c = (—1)“0,':‘1.
i=k
Proof.
n-2-3 iin—1,n—2—i v oy Ak ktj+in—2—k—i m—1-k
L (snymertertich = ot L (D) AEARL O Ci— %)

(- 1)"(:',;"'1 by lemma 2.5.3.

Lemma 2.5.5. For a fixed natural number n, the integer Cf"“l is odd, for any

0<i<c2" - 1.

Proof. The proveis by induction on <. It is obviously true for ¢ = 0, 1. By induction

hypothesis, we assume that the Lemma is true for ¢ = m.

From (2.15) we have C2 ' = C2',; —C2'~1, by induction the second term in the right
hand side is odd, on the other hand the first term is even. Therefore C2 7 is odd.

This completes the induction.

2.5.2 Localization

Finally, in this subsection we introduce briefly the concept of localization.

By localization of the ring Z with respect to the prime p, we mean a subring of Q
consisting of those rational numbers which can be written as fractions whose denomina-

tors are relatively prime to p, and we denote it by R . If A is G-module its localization
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A ® R may be regarded as RG-module, where RG is the group ring of G with co-
efficients in R, and recall that tensoring with R, that is localizing at p, is an exact
functor on the category of abelian groups. Thus H(G, A®R) & Hi(G, A)QR for any
G-module A. From that we can deduce the following observation (see [19], lemma 2.4),
but before that we need to introduce the following notation: for any abelian group A,
we denote by ¢, A the subgroup of all those elements whose order divides some power

of p.
Lemma 2.5.6 t,Hy(G, A) 2 tHy(G, A® R) for any G-module A.

If A is any abelian torsion group, then A =@ A, where A, is a subgroup of A generated
P
by elements of order p*. Then A ® R &A,, in particular if A is of exponent ¢ where

(p,q) =1, then A® R =0.

For these reasons we will work over R instead of Z. The following notation will be
used. By A we denote the augmentation ideal of RG, and we write M for the localized

relation module (i.e. M = N, ® R).

Before closing this subsection, we should mention that the main source for this is ({25],

chapter 8).

For convenience of our further discussions, we introduce the following notation:

la,b, b, -, b]= [a, b"].

n
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Torsion in free central

extensions

For a group G and a free presentation
l1—-N—F-5G—1

let 7.N denote the c-th term of the lower central series of N. Consider the free central

extension

1 — v N.N J[yeN, FIN" — F/[y:N, FIN" — F/y.NN" — 1. (3.1)

The group F/y.NN" is torsion free for any normal subgroup N, see [28]. Hence, the

torsion elements form a subgroup of the kernel of (3.1).

In this chapter will give a description of this torsion subgroup where ¢ = p, p a prime

number. First we give a homological description to this torsion subgroup. Then for the
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case N = F' we give an explicit description to this torsion subgroup, in group theoretic

terms.

Now, by Proposition 2.4.9, we have

7NN [[7,N, FIN" 2 MPN,4 ®g Z = Ho(G, MPNy). (3.2)

Thus, questions about elements of finite order in F/[y,N, F|N " are equivalent to the
questions about torsion in the zero-dimensional homology group of G with coefficients
in MPNg,;. So we have transformed our problem to the problem of describing the torsion

subgroup of Ho(G, MPNgy).

3.1 Description of tHy(G, M?M) in homological terms

To obtain a characterization of the torsion in the zero-dimensional homology group of
G with coefficients in MPN,; where p is any prime, we use the complex M, which is

introduced in chapter 2,

M i MPN,, 25 po NPT B pr B, g B2, 26 B 7, 0. (3.3)
First, let us remind ourselves of the two questions which were raised in chapter 2, about

dimension shifting and computing connecting homomorphism.

Do we still have Hi(G, MPNy) = Hiya(G, Z,), k 2 17 and can we still compute the

connecting homomorphism Hy(G,Zp) — MPNg ®c Z 7.

Now we state an easy version of the main result of [2].
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Theorem 3.1.1: Let p be a prime and let G be a p-torsion—free group, given by a

free presentation 1 — N — F - G — 1 .Then there are isomorphisms

1. t(y,NN" [[y,N, FIN") 2 Hy(G, Z,).

2. Hi(G, MPM) = Hiy4(G, Zyp), k > 1, where M is the localization of the relation

module Ngp.
In order to outline a simplified version of the original proof given in [2], we need the
following results, which enables us to avoid using a spectral sequence argument.

Lemma 3.1.2 Let G be any group and let
0— AKX B—0, (3.4)

be a chain complex of G-modules, with the following properties,

1. ais injective and 6 is surjective.
2. Hj(G,K)=0,V j>1.

3. H;(G,Ker§/Ima) =0,V j > 1.

Then Hi(G,A) % Hiy(G,B), k > 1.

Proof. From the chain complex (3.4) we get this exact sequence

0— A% K2 K/Ima — 0, (3.5)
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where A is the natural epimorphism of K onto K/Ima. By Remark 2.1.10 (a), we get

a long exact homology sequence,

cor s Hipr(G, K) — Hiy1(G, K Jima) — Hiy(G, A) — Hi(G,K) —> -+ -.

By assumption the outside terms are zero for k > 1, then we get

Hi1(G, K/Tma) = Hi(G, A). (3.6)

On the other hand
0 — Keré/Ima — K/Ima — B — 0
is an exact sequence, and this gives long exact homology sequence,

-+ — Hiy1(G,Keré/Ima) — Hiy1(G, K /Ima) — Hi41(G, B) — Hi(G,Keré/Ima) — -

The outside terms are zero for & > 1

Hi41(G, K /Ima) = Hiyi (G, B), k21 (3.7)
Hence, from (3.6) and (3.7) we get , H(G,A) & Hi41(G,B), for k > 1, and this
completes the proof of the Lemma.

Corollary 3.1.3 Let G be any group and let
K0—ALEK, . .ok B—o,

be a chain complex of G—modules, with the following properties,

1. a is injective and §; is surjective.
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2. H(G,K;)=0,Y j>1land 1<i<n.

3. Hi(G,H(K))=0,Vj21.

Then HJ(G, A) ] Hj+n(GvB), ] Z L.

Proof. The claim follows by induction, namely by breaking the complex K into two

complexes.

0—A—K, —..-.— Ky — Iméy — 0,

0 — Imé; — Ky 2% B -0,
Applying Lemma 3.1.2 to the second complex we have

H,-_1+n(G,Im62) >~ H_H.n(G,B). (38)

By induction we get from the first complex the following

Hj(G,A) & Hj_1+n(G,Im62). (3.9)

Hence, (3.8) and (3.9) yields the desired isomorphism.

Lemma 3.1.4. Let G and K be as above, and let Kerd,, = Ima. Then H,(G,B)is

isomorphic to the kernel of the map: A®g Z — K, ®¢ Z.

Proof. From the complex K we obtain a short exact sequence

0— A5 K, — K,/Ima — 0.
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By applying the homology functor we get an exact sequence

0 — Hy(G,Ky/Ima) — AQgZ — Ko ®c Z (3.10)

Now we consider the following complex
00— K,/lma—-K,—,:+++—Ky— B—0, (3.11)

since Kerd,, = Ima, it follows that the complex (3.11) satisfies the hypothesis of Lemma

3.1.3, so we get

Hjyn_1(G,B) 2 Hj(G, Kn/Ima) j > 1, (3.12)
hence (3.12) and (3.10) gives that H,(G, B) is isomorphic to the kernel of the map
A®cZ — K, Q¢ Z,

which proves the lemma.

Remark 3.1.5. For an explicit computation of the connecting homomorphism
H,.(G,B)— A®¢ Z,

we consider the double complex K ®¢g P , where P is any projective resolution of the

trivial G-module Z, and by induction it is sufficient to do the computation when n = 2.

Suppose n = 2, then K has the form
0— A% K, 2% i, 2% B—o. (3.13)

where the chain complex (3.13) satisfies the hypothesis of Lemma 3.1.4.

We use the following diagram to compute the connecting homomorphism

H:(G,B) — A®c 2,
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B®cP, «— BQRchP

1
Ki@c P «— K1 Qc P,
T
K:8c2G +— K:Q®ch
1
ARcZ +— AQRgZG
As tensoring is a right exact functor, we get this exact sequence,
K1 ®c P - B®g Py — 0. (3.14)

Let z be a cyclein B®¢ P, , then by exactness of (3.14) we may lift 2 to g € (K1®¢ P;).
As we know, the inverse image 7 is not unique. But the crucial thing here is to get a right
one (i.e. an inverse image when we apply the homomorphism K, ®¢ P, — K; ®¢ P1,

to it we obtain an element belongs to Imé3 ).

Now we try to get a right choice: if § is non zero element in K;/Imé; ®g P;, then we

push to (7)d2 € (K1/Imé} ®¢ P,). By commutativity of this diagram

B ®c P — B ®g P,
T 1
K1/Imé3 0 P — K1/Imé&} ®g Py
(7)82 €Ker(K,/Imé; ®c P — B ®c P1) = Keré;}/Imé3 ®¢ P1. On the other hand
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from the commutativity of this diagram,

K1/Imé; ®c 26  —  K;/Imé} ®g Py
! T
Keré} /Imé3 ®g ZG «— Kerd}/Imé3 ®@g P
and from the injectivity of the map [Keré}/Imé3 @ ZG — K1/Imé3 @g ZG], we can
see that (7)0; is a cycle in (Keréj/Imé3 ®c Py). But from the hypothesis of lemma
3.1.4, we have Hy(G, Keré; /Imé3) = 0, thus (7)0; is a boundary in Keré/Imé; ®¢ P .
So there exists an element 2 € Kerd}/Imé; ®¢ P such that (z)d; = (7)d; modulo

Imé3.

Now it is easy to see that ( § — 2)d2 € Imé3. We choose( j — ) as an inverse image of
z. On the other hand, from the first diagram, we can lift ( 7 - 2)8; to y € K2 Q¢ P,

then we push to (y)d) € (K3 ®g ZG). The commutativity of this diagram,

K1062G — K,®ch
T T
K:062G — K;Qc P
implies that (y)0, € Ker(K,0¢ZG — K;1®cZG) , and by exactness we may lift (y)d;
to a € AQg ZG, then we push to (¢)dp € AQg Z, and this completes the computation

of the connecting homomorphism.

Now we proceed to our actual concern in this section, namely, to simplify the proof of

the main result of [2], which gives a homological description to the torsion subgroup of

"y

F/[1(F'), FIF".

51



Chapter 3. Torsion in free central extensions 52

Proof of Theorem 3.1.1. We consider the localized version of the complex M . Now,
by remark 2.1.4, P @ MP-1 is free, then by remark 2.1.6 part 2, Hi(G,P ® M?P~1) =
0, Vk > 1. Moreover, if G is p-torsion—free, then by Theorem 2.2.4, Hi(G, PP) =

H (G, RG?) = Hi(G,RG)=0, Yk > 1.

On the other hand, by Lemma 2.4.6, we have that Hi(G, H{(M)) (k 2 1, ¢ =
0,1,...,5), is a periodic abelian group of finite exponent dividing ((p — 1)!)? for some
positive integer ¢, and this number is relatively prime to p. Then as we localized at p,
Hi(G, Hi(M)) =0 for all k¥ > 1. Furthermore, as was mentioned in chapter 2, M is
exact in dimension 4 (i.e. Imés =Kerds). Consequently, Corollary 3.1.3 and Lemma

3.1.4, can be applied to the complex M, and we get
Hk(Gv MPM) £ Hk+4(Ga ZP) ) k 21
0— H4(G,Z,) = MPM @c R — PO MP-1 @g R,
where the sequence is exact, on the other hand the group P® MP~1 ®g R is free as an

R-module, therefore

t(MPM ®c R) C Hs(G, Zy),

but Hy(G, Zy) is a torsion group. Thus {(MPM ®cR) = Hy(G, Z,) and this completes

the proof of the theorem.

Enough background information is already available, thereby enabling us to establish

our first result concerning torsion elements in F/[y,F’, F|F".
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"

3.2 Description of t(F/[1,F, F]F") in terms of generators

From now on we will assume that G = F/F’, where F is the free group on X =
{z1,+ -+, 4}, d > 2. This means that G is a free abelian group of rank d, with free
generators {by, bz, -, by}, where b; = z;F'. We have already mentioned in chapter 2
that the homology of G with coefficients in the trivial G-module Z, is an elementary
abelian group of rank C¢. Consequently F/[v,(F'), F]F" is torsion—free for d < 3, and
for d > 4 its torsion subgroup is an elementary abelian group of rank C¥. In this case
we give a complete description to this torsion subgroup, in terms of generators, where

p is any prime.

3.2.1 Description of t(F/[y,F', F]F") where p is any odd prime

Let Wy(z1,, 1y, T55, T5, ), be as in the introduction. Then the main result of this chapter

reads as follows.

Theorem 3.2.1. Let p be any odd prime. Then the torsion subgroup of F/[v,F', F|F"is

generated by the elements Wy(z,,, 27, %7y, Tr, ).

Proof. The proof is by computing the connecting homomorphism
H4(G,Z,) — t(MPM ®c R)
where p is an odd prime number, R is the integers localized at p, and G = F/F'.
For computing the connecting homomorphism, we use the localized version of the dou-

ble complex M ®gP, where M is the chain complex (3.3) and P is the Koszul complex
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which is introduced in chapter 2. As we see in the proof of Theorem 3.1.1, M satisfies
the hypothesis of lemma 3.1.4. Then the theoretical justification of our computation
of the connecting homomorphism (which is outlined in Remark 3.1.5) can be applied

to the double complex M ®g P .

Now we consider the following diagram:

ZP®R — ZP®RG — Z,0P ZP®P2 — ZP®P3 — ZP®P4

T !
RG®R RG®P; «~ RGP

1 1
RGP ® R RGPQ@ P, «~ RG*QP;

T T

PP®R PPP —~ PPRP

AQR AQ RG — AQ®P

1 1
MPM ® R — MPM Q®RG

where A = P ®g MP~1; in this double complex we use ® instead of ®g.
We have to start in Z, ®¢ Py, and then we go along the arrows down to MPM Qg R.
The group Z, ®¢ P4 is free abelian with basis

{1®er, Ner, Neg, Ner31<m < --- <1y < d}.
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For simplicity, we consider the element

1®e; Aea AesNey . (3.15)

An inverse image of (3.15) in RG ®¢ Py is
1®e; Aexg Aes Aey (3.16)
By applying the homomorphism RG ®¢ Py — RG ®¢g P3, to (3.16) we obtain,

i (1)1 (b; = 1) @ (es A+ A& A+ - Aeg). (3.17)

i=1
In order to get an inverse image of (3.17) in RG? @¢ P3, we consider the element

(lolo:--01).(bj—1)=b;0b;0--- 0b;j—101l0---01.

By writing b; = (b; — 1) + 1, and expanding, we get
p—] . .
(lolo---ol)(bj—1)=)_ C¥(bj— 1P o1l
j=0
By subtracting (b; — 1)? from both sides, we get
p—-1

[(Tolo-- ol)(bj—1)— (b= 1)P] =) CE(b;—1)P~7 o1/,

=1

Note that all the binomial coefficients C;f' (j =1,2.-, p—1) on the right hand side

are divisible by p. Hence the expression
1
;[(1 olo---01).(b;—1)~(b;—1)7]

makes sense in our situation. We claim that

4
f, Y (1)t [(1olo--ol)(bi=1)— (i~ 1)P]® (ex A-- A& ---Neg) (3.18)

i=1
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is an inverse image of (3.17) in RG? ®¢ Ps. This is because (b; — 1)? is in the kernel of

the map RGP — RG, and the image of element (1010 ::.01) under this map is p.
R )
P

After applying the homomorphism RG?P®¢ P; — RGP®¢ P; to (3.18) and rearranging

the resulting element of RG? @¢g P,, we get:

':3 ; (=1)7{(ban = 1)P . (brn = 1) = (b1 = 1P . (b2n — 1)} @ €3y Aeay,  (3.19)
where 7 ranges over all permutations of {1,2,3,4} with 17 < 29 and 37 < 47.
In order to get an inverse image of (3.19) in PP®¢ P2, we consider the following element:

ey (b1 — 1) —ef (b — 1)+ [ex (b2 — 1) — e2 (b1 = 1)} € PP. (3-20)

Now,

eb—-1) = (e20e30+--0€3).(b1 = 1)

= egbioebyo---0eby —ey0eq0.--0ey.
By writing by = (b; — 1) + 1, and expanding, we get

B(bi—1) = 3 CPe™(by—1)oe}—eb
i=0 (3.21)

-1

P . .
= Y Cleh (b —1)oey

Similarly,

p—1 ) )
ef(bz—1)=) Cle{™ (bz—1)oe] (3.22)

=0

For the last term in (3.20) we have

[e1 (b2 — 1) — ez (by — 1))? =zp: (—1)'CPe; (by — 1)P" 0 €5 (by — 1)'. (3.23)
1=0
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In view of (3.21), (3.22) and (3.23) the element (3.20) can be rewritten as
p—1 . . p=1 _ ,
z:l CPel™ (b1 — 1)oey— ‘Z:l CPel™ (b -1)oe}

-1

+ pZ (—l)inel (b2 - 1)P—i o€, (bl _ 1),'

Again we note that all the binomial coefficients C? (i = 1,2,--+,p— 1), on these terms

are divisible by p. Hence the expression
1
;{e'z’n (bin — 1) — €f, (ban — 1) + [e1y (b2 — 1) — €24 (b1 — 1)]7},

makes sense. Remember that ey, (ba, — 1) — €2, (b1, — 1) = [Z2,, T1,]p Where p is the
Magnus embedding, therefore ey, (b2, — 1) —e€ay (b1, — 1) can be identified with [23,, 215].

Also we put [Z25, Z15] = [ J2p15- On the other hand we notice that
1
; Z (-1)”[6’2’" (bin—1)- ell’r; (b2y — 1)+ ]gnln] ® e3n A eqy (3.24)
n
is an inverse image of (3.19) in PP ®¢g P2, where

[e17 (bay — 1) — €2y (b1y — DIP = [229, 215)" = [ By

Applying the homomorphism P? ®g P, — PP @g P; to (3.24), we get

Z (_1)") %{eg" (bln - 1)(63'7 - 1) - e,;ﬂ (b27' - 1)(b3ﬂ - 1) + []gnln(b@n - 1)} ® €4n

! €Ty (b2n = 1)(bay — 1) = €5, (big = 1)(ban = 1) = [[1,(ban — 1)} ® €3y
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and this gives

4 )

e (b1 = 1)(b3 — 1) — €f (b — 1)(b3 — 1) + [[51(b3 — 1)} ® &4
—3{e§ (b1 — 1)(ba— 1) — €] (bs — 1)(b2 — 1) + []5;(b2 — 1)} ® €4
2{eB (b2 — 1)(b1 = 1) — eh (b3 — 1)(b1 = 1) + [[5x(b1 — 1)} ® &4
2el (b3 — 1)(b1 — 1) — €5 (b — 1)(b1 — 1) + [Jia(br - 1)} ® €2
—2{ef (b = 1)(b1 = 1) — f (bs = 1)(b1 = 1) + [[52(b1 = 1)} ® €3
21ef (by = 1)(b2 — 1) — €] (bs — 1)(b2 = 1) + []§1(b2 - 1)} ® €5
2l (b2 = 1)(bs = 1) — €5 (b1 — 1)(bs — 1) = [[51(bs — 1)} ® €3
—5{€f (b3 = 1)(ba — 1) — €5 (b1 — 1)(bs — 1) = [[5;(ba — 1)} @ €2
2{ef (ba = 1)(bs — 1) — €f (b1 — 1)(bs — 1) - [[};(bs — 1)} ® €2
31€5 (b3 = 1)(bs — 1) — €5 (b2 = 1)(ba = 1) — [[5(bs — 1)} @ &1

—51€5(ba = 1)(bs — 1) ~ € (b3 — 1)(bs — 1) — [[32(bs — 1)} ® &1

» (3.25)

{8 (bg — 1)(by— 1) — €f (b3 — 1)(b2— 1) = [J1s(ba = 1)} ® &1 |

\ p

but (3.25) is equal to the following:

L ByoBa = 1)+ [ Bsulba = 1)+ [ Bpu(br — 1)} @ 4
~1{[ Byo(ba = 1)+ [ Balbs ~ 1) + [ B(b2 = 1D} @
L Babr = 1) + [ Baolba = 1) + [ Ba-lbs - 1)} @ 2

L[ By(ba = 1) + [ Pelbr = 1) + [ By(ba = 1)} @ e

(3.26)

We notice that (3.26) belongs to Imés ®¢ P;, this means that (3.24) is a right inverse

image.
In order to get an inverse image of (3.26) in P ® MP~! ®¢ P;, we consider the element

(@[ BT)(bs—1)=[]21b3® [Jarbso -0 [ |zabs — [Jaa @ [ 157"
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By writing b3 = (b3 — 1) + 1 and expanding on the right hand side, we get

([ J21(bs = 1) + [ ]21)® ‘g: CP M )a1(bs — 1)P~1= 0 [ J3; — []21 ® [ J57*. Therefore we

obtain
[Taa(ba = 1) ® In(ba — 1P
(@[ E)Ga=1) = { +{lulba- 18 E €I oo = 110 Iy
HIu® ' O (Jaa(ba = 170 s
(3.27)
On the other hand, the element
(hatba= 1 5 €2 s~ 1p*~So ' - 1 2 7 { = 17"~

belongs to the kernel of (P ® MP~! — PP). By adding this element to (3.27) we

obtain, by using (2.15), the following:

p-1
[Jaa(bs = 1)® [Jar(bs = 1)~ + [Jas(bs — )® X CP Jar(bs — 1)P" ¥ o[ J3y.

i=1

Also, here we note that all the binomial coefficients C? (i = 1,2,-++,p—1) in the second

term are divisible by p.

Now we do the same thing for ([ ];3® [ ]?5').(b2 — 1) and ([ Jaz ® [ 133)-(b1 — 1). The
coefficients of the first term in each one of them is not divisible by p. Consider those

three terms :
[l21(bs = 1) ® [ J21(b3 — 1)P~?

+[ hia(b2 = 1) ® [ J1a(b — 1)1 (3.28)

+[ Ja2(by — 1) ® [ Ja2(by — 1)L
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By the Jacobi identity, we can write the element [ ]a2(b) — 1) ® [ ]32(b1 — 1)P~! as

[ Tua(b2 - 1)® 'fg CP [ Tus(ba = 1)P-173 o  Jau (b3 — 1)

= = | (3.29)
~[)a1(bs = 1)® EO CP™! ha(bz — 1)P~1= o[ Jo1(bs — 1)}
By substituting (3.29) into (3.28) we obtain
[istbz = DB % €7 Jralbs — 1P o [ Ia(bs — 1)
=1 (3.30)

—[lz1(bs - 1)® 3::: CP [ la(bz — 1)P~1= o [ |21 (b3 — 1)*

On the other hand, the element

p=2 ) .
[aabs - D)@ & CP™ [ hia(by = 1)P=1=¥ o[ Ja1(bs — 1)’
p=2 . .
~[hs(ba = D® L CF'[Jia(b = 1P~ o [Ian(bs — D+
belongs to the kernel of the map (P® MP~! — PP), and when we added to (3.30),

we obtain the element

-1
~[ l1s(b2 - 1)® PZ C?[ Jaa(by = 1)P"1=% o [ |2 (b3 — 1)'.

i=1

Note that all the binomial coefficients C*(i = 1,2, --,p — 1) are divisible by p .

As a result of our previous discussion, we note that the expression

{21 ® [157)(bs = 1) + ([1i3 ® [ 155 )(b2 = 1) + ([Ja2 ® [J32)(b1 — D)}+

r [J21(bs = 1) ® [Ja1(b3 = 1)P~2 o [J54" = []21 ® [Jaa(bs — 1)P~1~* o []3
+{]1a(b2 = 1) ® [Jia(bz = 1)P~2 o [J4* = [J13® [J1a(b2 = 1P~ o [Ji3

; f‘;: CI Y +Hlaa(br = 1) ® [Jaa(by = 1727 o [J54? = [J32 ® [Jaa(br — 1P~ o [

+[ Ja1(bs — 1) ® [ lia(b2 — 1)P~"1= o [ J1 (b3 — 1)’

—[ ha(bz — 1) ® [ la(bz — 1)P27% o [ Ja1 (b3 — 1)*+!

\
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makes sense. Moreover, it is not hard to see that the image of this expression under

the map

PR MP! — PP

is ;1,{[ 13,-(b3a = 1) + [ Ji5.(b2 — 1) + [ ]5;.(b1 — 1)}. We do the same thing for the rest of
the other terms in (3.26). Hence the following element (the sum of four symmetrical

terms) is an inverse image of (3.26), in P® MP~! @g P, :

(a1 ® (B - 1) + (N ® [1551)(b2 - 1)
+([ls2 ® [J32)(b1 - 1)

[Jai(bs = 1) @ [ (b3 — 1)P=2F o [ J51?
~[l21®[Jar(bs = 1P~ o [ J§y

+[ Jia(bz = 1) ® [ hia(bg — 1)P=2~# o [ JiE?

l | ¢ ® ey
p + fg cr1 —[h13® [J13(b2 — )P~ 1= o [ )i |
=0 +[ Ja2(b1 = 1) ® [ ]a2(by — 1)P=2-% o [ )42

—[ls2 ® [ ]s2(by — 1)1 o []5,
+[J21(bs = 1) ® [J1a(b2 — 1)P~1=7 o [ ]2, (b3 — 1)}

—[Jis(bz — 1) ® [J1a(bz — 1)P~27% o []1 (b3 — 1)+

(3.31)
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([Js2® [ 1B7")(ba = 1)+ ([ 24 ® [ 1557 )(bs — 1)
+([Jis® [ laa)(b2 — 1)

[ Js2(ba = 1) ® [ Jaa(bs — 1)P~2~F o [ ]34
—[ 122 ® [ Joa(bs = 1P~ 0 [ 15,
_1] +[ Jaa(ba = 1) ® [ Jaa(bs — 1)P~2~ o [ J5§
' Tg o +[] 1124 8;)[];[(’])3 . l)j-l:.:_[j’“ i+1 >

a3(ba — aa(bz — )P~ o I3
—[Jaz ® [ Jas(bz — 1)P"1"* o [Ji5
+[Ja2(bs — 1) ® [J2a(bs = 17717 o [Jaz(bg — 1)*

| —{J2a(bs — 1) ® []2a(b3 — 1)P=2=% 0 []32(bg — 1)+

}®€1

" (3.32)
(Jis @[ B3 = 1)+ ([Ja1 ® [ 157" )(ba - 1)
+([ 114 ® [ 114)(b3 — 1)
[ Jaa(b1 — 1) ® [ Jaa(bs — 1)P=2 o [ ] 3!
~[ i3 ® [ Jaa(br — 1P~ o[ J4
1 +[ Ja1(ba = 1) ® [ Ja1(bg = 1)P~2~F o [ J5}"

+ = 1 ¢ B ez
—[ a1 ® [ Jaa(ba = 1)P~ 1= 0 []a

+ z"z—jz crte '
=0 +[ J14(b3 = 1) ® [ J14(b3 — 1)7~2 o [ I3}
—[ha ®[ J1a(bs — 1)1 ~* o [ i,
+[Jaa(b1 — 1) ® [Ja1(bs — 1)P~1=F o [Jaa(by — 1)}

| —[ls1(ba = 1) @ []a(ba - 1)P=2=i o []43(b1 — 1)'*?

" (3.33)
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(ha® [ B = 1)+ ([Jea ® [1577)(61 - 1)
+([J21 ® [J21)(ba — 1)
[Ja(bz = 1) ® [ aa(bz = 1)P~2% o [ Ji}?
~[T1a ® [ Jaa(bz — 1P~ o [ i,

+[ Jaz(bs — 1) ® [ Jaa(by — 172 o [ 1}!

- _1_ y ¢ ® e3
NSy (2 ® [ Jaa(bs = 1P o [lag |
= +[ Ja1(bs = 1) ® [ ]21(ba — 1)P~ 2= o [ I3}

—[la1 ® [ Jar(ba — 1)P" 1= 0[]y
‘+[]14(b2 — 1) ® [Jaz(by — 1)P71= 0 []14(b2 — 1)}

| =[Jaa(b1 = 1) ® [Jaz(br = 17727 0 [Jug(bz — 1)+ |

" (3.34)

After applying the homomorphism P® MP~1 ®c P, — P ® MP~1®¢RG to (3.31),

(3.32), (3.33) and (3.34), we get
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{[J21(b3 = 1) ® []2a(bs — 172~ o [ 154" ~ [J21 ® [Jaa(bs — 1)P~ = o [J§
+a(b2 = 1) ® [lis(ba = 1P~ o [1i4! = [ ® [lua(ba — 1>~ 0 []i5
+[Js2(b1 — 1) ® [Js2(b1 — 1)P=2 o [J54" = []a2 ® [Js2(bs — 1)P~ 1~ o [,
+[]21(b3 — 1) ® [las(bz — 1)P~1* 0 [Ja1(b5 - 1)¢
~[h13(b2 = 1) ® [J1a(bz2 — 1)P~2* 0 [Jn(b3 — 1)**+'}.(bs — 1)
~{[Js2(bs = 1) ® [Jaz(ba — 1)7=27* 0 [J54" ~ [Ja2 ® [Ja2(ba — 1)P~1~F 0 [Jf
+[]24(bs — 1) ® [Jaa(bs — 1)P72" o [J5 = [124 ® [J2a(bs — 1)P~ 1 0 [J3,
+Haa(b2 = 1) @ [Jas(bz = 17727 o [T = [Jaa ® [Jaa(ba — 1P~ o ]33
+1a2(ba — 1) ® [J2a(b3 — 1)P717% 0 [Jsa(bg — 1)’
1 ”‘3 ey —[J24(b3 — 1) ® [J2a(bs — 1)P=2* o [ Ja2(bs — 1)*+}.(b1 — 1)
P iz +H{{Jas(br = 1) ® [Jaa(br = 1)P~2* o [ 3% —~ [Jaz ® [Jaa(bs — 1P~ 0 [Ji
+Ia1(bs = 1) ® [Jar(ba — 1P~ o [J3! = []1 ® [Jaa(bs = 1)~ o [ ]y
+[J14(bs = 1) ® [Jaa(bs = 1)P~2 0[]} ~ [J1a ® [Jaa(bs — 1)> 1~ o []3,
+{]43(b1 — 1) ® [Ja1(bs = 1)P77 o [Jag(bs — 1)*
~[J31(ba = 1) ® [Ja1(ba — 1)P2~ 0 [Jas(b1 — 1)+ }.(b2 ~ 1)
~{[T14(b2 ~ 1) ® [T1a(b2 = 1)P~2 o [J{4" — [114 ® [J14(b2 = 1)P~ 1~ o [,
Hlaz2(b1 = 1) ® [Jaabr = 1)P~2=F 0 [JiF! = [Jaz ® [Jaz(b1 = )P~ 0 [J42
+{J21(ba = 1) ® [Ja1(bs = 1)P=2 o [J5" = []22 ® [Jaa(ba = 1)P~ =¥ o []3;
+[J1a(b2 = 1) @ [Jaz(br — 1)P717% 0 [Jna(bz — 1)}

—[laz(br = 1) ® [Jaz(bs — 1)P=27% o [J14(by — 1)*+}.(b3 — 1)
(3.35)

Here we identify P ® MP~l®qc RG with P® MP-1,
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Now, the inverse image of (3.35), in (MPM Q¢ RG) is

p—-2

1 p-1
P ;C‘ ]

\

[[J21(bs = 1), [ 131", [J2a(bs = 1)P~2¥] (b4 — 1)
+([T1a(b2 = 1), (14", [N1a(b2 — 1)P~2~](ba ~ 1)
+{Is2(bs = 1), [ 157, [Jaa(bs — 1)P=2=](bs — 1)

H(J2a(bs = 1), [lna(b2 = 1)P71 7%, [Ja1(bs — 1)*](bs — 1)
~[[J32(b4 = 1), [J55", [Ja2(ba = 1)P=2=)(b1 - 1)
~[[J2a(bs = 1), [ 155", [J2a(bs — 1)P~27%}(b1 — 1)
~[[14a(bz = 1), [ 14", [Jaa(b2 = 1)P=2~](b1 — 1)

~[[Ja2(ba = 1), [T2a(bs — 1)P~1 7%, [Ja2(ba — 1)'](b2 - 1)
+([Jas(br = 1), [14" [aa(bs = 1)P=2=](b2 — 1)
+H[J31(ba = 1), {1547 [Jaa(ba = 1)P=2=](b2 — 1)
+{[T1a(bs = 1), [1i5", [ha(bs = 1)P=2¥](b2 — 1)

+([Jaa(b1 = 1), [J31(bs = 1)P717%, [Jaa(bs — 1)) (b2 - 1)
~[{uabz = 1), (154" [ua(bz — 1)P~2¥](b3 — 1)
~[[laz(bs = 1), [15" [Jaa(br = 1)P=2=](b3 - 1)
~[[21(ba = 1), {154 [J21(ba — 1)P=2=)(bs — 1)

—[[1a(bz = 1), [Jaz(by = 1)P=1=%, [J14(by — 1)) (b3 — 1)

> (3.36)

Our next goal is to write p times the element (3.36) as a linear combination of terms

with coefficients multiples of p, and this will be established in the following steps.

Step 1. In (3.36), we have four symmetric sums. Looking more closely at the first

three terms in each sum we find some similarity between each two terms, for example

the first term in the first sum and the third term in the fourth sum.
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Now, we collect the similar terms together and we consider them simultaneously,

’f crt [[ Jo1(b3 = 1), {1547, [Jaa(ba - 1)”'2"‘] (bs - 1) | (3.37)
#=0 - [[]21(b4 = 1), (158, [Jaa(ba - l)p_2-i] (b3~ 1) |
'f cr! - [[]32(b4 — 1), [158", [Jaa(bs = 1)""2_"] (b -1) 1 (3.38)
i=0 + [[]32(b1 = 1), {1587, [Ja2(b1 - 1)"'2"‘] (bg—1) |
T o J + [[asCb = 1, 0" aotor = P27 o2 = 1) | (3.39)
=0 [ — [[ Jaa(bz — 1)’[]:;31» [Jaa(b2 - l)p_z_i] (b1 -1) )
pZ—Z cr1y [[]14(62 - 1)’[]'%1'1’[]14(1’2 - 1)’,—2-':] b= 1) ) (3.40)
20| 4 [[aaBs = 1), [ Uaatbs = 1P~2] (b2 = 1)
3fcraJ [[h1a(b2 = 1), [J35% Uaa(bz = 1727 (b4 = 1) 1 (3.41)
=0 | [[Jus(Ba = 1), [, Unsba = 1)7=2=] (b2 = 1) |

i+1 -2~ W
li"’ = - [[]24(1?3 - 1)»[]?3 y[J24(b3 — 1)P~2 ] (b1-1) > (3.42)
1=0 + [[]24(51 - 1), []121-1»[]24(1’1 - 1)p—2_’] '(b3 - 1) J

The terms in (3.37) can be rewritten as
([J21(bs — 1)ba, ([12104)*, ([J21(bs — 1)ba)?P~2~]

= ~[[Jaa(bs = 1), [ 1ot [ Jaa (s = 1)77277] | (3.43)

crt
%

~[[Jaa(ba = 13, ([Tz163)+*, ([ Joa(ba = 1)bs)p=271]

+[[ J21(ba = 1), [ 1547, [ a1 (ba — 1)P=271]
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By writing by = (bgy — 1)+ 1 and b3 = (b3 — 1) + 1, we obtain from (3.43), the following

([J21(b3-1)(ba-1), ([J21(bs-1) + [J21)***, ([J21(b3-1)(ba-1) + [)21(b3-1))P~2~%]
+[[121(b3-1), ([J21(ba-1) + [122)+1, ([ J21(b3-1)(b4-1) + [J21(b3-1))?~27]
’f C}"l J —([[]21(ba - 1),[]§T1,[]21(63 - 1)P-2-1] |
i=0 ~[[121(b4-1)(b3-1), ([J21(b3-1) + [J21)**Y, ([Jaa(Ba-1)(b3-1) + [J21(ba-1))P~2~7]

—[[121(54-1), ([J21(b3-1) + [J21)**Y, ([ J21(b4a-1)(ba-1) + [ J21(ba-1))P~27]

+[[J21(ba — 1), [ 1531, [J21(bs — 1)P~2-7]

(3.44)

Now our aim is to write (3.44), as a linear combination of terms with coefficients

divisible by p. We simplify notation by setting

[l21 = a2, [J21(bs = 1) = @213, [J21(ba = 1) = @214, [Jar(bs — 1)(ba — 1) = az134
[lis = @13, [ha(bz — 1) = @132, [l1a(bs — 1) = @134, [Jra(ba — 1)(bs — 1) = @324
(ls2 = as2, [Js2(b1 — 1) = ag21, [Js2(bs — 1) = a324, []a2(br — 1)(bs — 1) = a3214
[las = @as, [Jaa(br — 1) = asz1, [laa(bz — 1) = @43z, [Jaa(by — 1)(b2 — 1) = agan2
[la = aqr, [laa(bs = 1) = ans, [Jar(bz = 1) = @arz, [Jaa(bs — 1)(b2 - 1) = aq132

[J24 = a24, []24(b3 — 1) = @243, [J24(b1 — 1) = @241, [J24(b3 — 1)(b1 — 1) = @243

Using these notations, (3.44) turns into
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p=2 —[a213, aﬂ' » @513

[a2134, 4214, (a214 + agl)‘, (ag134 + a213)p-2-i]
+[a2134, @21, (a214 + @21, (62134 + a213)P~2"7]
+az13, 6214, (8214 + 021)', (82134 + 0213)P~ 2]

+[a2]37 a2y, (a214 + a21)i, (0,2134 + a’213)p—2_i]

2—:]
5 o) |
= ~[a2134, az3, (e213 + a1}, (82134 + 0214)77%]
~[az134, a21, (a213 + 21, (02134 + a214)P 7]
—[a214, @213, (a213 + a2 )‘, (@2134 + a2“)p—2-—i]

~[az14, @21, (a213 + a21)}, (62134 + 6214)P~277)

141 -2t
+[‘1214’a‘2‘; NSV

After expanding, (3.45) can be written as a sum of two terms, A + B, where

4

p—2 i p—-2-i
p—1 p—2~1 J+1 k p—2—i—k
ZO 20 3:0 Ct C'—]C [‘12134’“214"121 10513, 09134 )
1=0 3= =|
p=2 4 P2 p—1 v p—2-i i+l1-7 k p—2—i—
+ Z;EO kZ:O CT™CL_;Cx [a2134, @3] ’%14’“213:“2134
t=0 5= =
2 EPET o p-2mi 1 imj ok p=2—i—k
+ Eo Zo kZO Ct™C}_;Ck [a213, a3y, a7, 0313, ahyag
1=0 j=| =
P22 AP i pe2-i il B p=2-i-
+ ZO 20 kZO ! Cf—jck [a213,a51 ~ "1214"‘213"12134
1=0 5= =
p—2
-1 p—2—1
- ZO C? ' ans, a5}, ahy 7]
1=

p—1 v p—2—1 k+1 -k 2
Cct=Ct_Ct [a2134, 313 5 837" G314 O5134
p—1 i —2—i i+1—k _k p—2—i
¢ Ciz—kC;') faz134, a'z"f » @213y “214’ abi3q
i
-1 p—2— k+1 k
Y ¥ cricict Hazia, ek, abr¥, 0y, aBrs

k=
t i .

p—1rv p—2—1 i+l-k k p—2—1i
> CICiCy [a214, a5} ¥, k13, a14r ahis

P2 p~1 p—=2—-1
+ 3 Cf [“214»“21 NCSvaN

=0
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p—2—i . . . _2_‘-].]

J
—2—i .
? P-2-t—J] \

(3.45)

gl
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In order to collect the similar terms, we rearrange A and B, as the following
p—1p—2 p-2 ; )
p—1 I+J—1 p—1l—i—j k p=1-i—j—k
2. Z Cirin1 €7 Cy [02134»a214s“21,4213s“2134 ]
=1 )=
z+J+k<P-
p—2p—1p=-2 . . ; ,
itj=1 p=1-i—-j J i k p-l—i—j—k
+ ZO Z:lkE a+,-1 C;s1 Cy [‘12134,a21,a§14a“213"12134 ]
1=0 j=1 k=0
i+j+k<p-1
p—1p—2p-1 i . .
i+j=1 ~p=1=i—j i gl gk=1 p=i—j—k
y + 21 chz Pei1 707 CR [a213, %14, 6315 8313 » @1zs ) (3.46)
i=1 7=l
i+j+k<p
p=2p-1 p—1 . . .
z+] -1 2 2 1 k=1 ,p=i=j—k
+ Zo 21 Z CH., 1 C Ci- 1 (@213, @31, @414, 8513 5 O5134 )
1= J= =
i+j+k<p
- ctZ j-1 [a213"'21v“213 -]
{ =1 )
’ 3\
p=2p-2p-1 , .
k+j-1 ~p-1-j— k J ot p—1=i=j—k
- XX Ck.q.,.. C; G [a2134,a213,a21,a214, 42134 ]
1=0 7=0 k=1
i+i+k<p-1
p—2p~1p=-2 ,
-1 k+j—1 —1-j—k J ok i p=1—i—j—k
- ): PP C;fﬂ 1C Cp J [a2134,a21,a213,a’214,a2134 ]
=0 7=1 k=0
i+j+k<p-1
p=1p-2 p-1 ; ;
k+i—-1 p-l i- k J i1 p—i—j—k
-2 2 E Ck+, 1G5 Ci *lag14, aby3, ahy, a5nd, abyag T p
i=1 j=0 k=
i+j+k<p
I~ - k+j-1 -1-j—k -1 _p—i—j—k
_Z E Ck.,., 1G24 Cp i=F lagia, @y, 513, ah3d,s Biaa 7
i=1 j=1 k=0 -1
i+j+k<p
p—1—j
+ 2 C¥- 1[“21%“21»“214 ]
\ j=1 P
(3.47)
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From (3.46) and (3.47), we obtain

¢ 1 \
i+5—-1 p=1—i—j 3 J k —1—i=j—k
+ .;k < C+J"1 C; Ck [a2134, 84145 @31+ 35135 5134 ]
L ) y 4
70
i+j-1 p—=1—i=j 7 i k p—-l—i—j—k
+ ,+,§c< C.+;-1 Ci-1 Ci [a2134, a3y, @414, 0513, aD134 ]
i+)+k<p
) 7#0
i+j-1 p—1—i—j k=1 —i—j—k
+ ,+§k< CriL, Ci77 el [“213»“21«“21’“213’“21 ]
i+j+k<p
0, k£0
l+]—1 p-—l-—z j { k—1 —i—j—k
+ " é:k( Clri G5 CkC 7 [az13, @by, 04 abrs s Bpay 0¥
i+j+k<p
k#0, j#0
!\ k+5#p J
p-1 k+j=1 Ap=1-j— k I p—1—i—j—k
- " §k< Ck+; 1C 6} [‘12134,‘1213,%1,‘1'214,%134 ]
i+3+k<p
k#0
k+j—1 —1-j—k k p—1—i—j—k
- i+ ‘%-:k< Ck+z IC i Cp i- [‘12134a“21’%13,“214’“2134 ]
e g} 14
7#0
) k+j-1 p % b k 1 k
- _1- p—imjm
- +§k< Ck+] 1C - [a214,a213,a21,a214,a2134 ]
-+ sp
1#0, k#0
p=1  k+i-1 —1—j—k k 1 p—i—j—k
- " ,_z‘_:K Ceria1Ci5 Cp i- [“214’“21v“213a“214s“2134 ]
i+3+k<p
i#£0, 7#£0
U\ i+j#p

(3.48)

Using the Jacobi identity to relate some terms to others in (3.48), enables us to collect

coefficients of similar terms, and then we get terms with coefficients divisible by p.

N . k ﬁ—l - _ . .
[a2134, @145 @91 0513, Qo134), Where p=p— i — j — k.

1. crh et ler

2. -CPii_ 1Ck+’ ' P agiaa, ahyg, ahy, @iy, OBl

3. (Crh, C'H_ criTiocrl LCEHL CPT1 M) 49134, 0, 014, 0y BBray)-
4. (C¢+;— CH—J 1C —t—J+Ck+]~1 CHJ—I Cp— - )[azlaa“%147“%17“’2‘531'“?134],

here we have two cases,
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a. If p # 0, then by Jacobi identity [a213,agu,agl,a’z‘l'al,agla]
= [az134, aéwaév agl3’ag;:314] - [a2134,a§13, a{;l,agwagf;,]
b. If p = 0, then we get
(Cliia CiH 71 4+ €2 CF 7 ) ans, Gy 0y, 053 7]
5. C,.H 1 C;tjl_le T [0213,a21,¢1214,a§131,a2134] again we have two cases.

a, If p # 0, then 5 becomes:

I gl k _ oP7}

—1—imj [a2134, 6215 @145 8313, 5134]
C t+] IC, t—)
t+] IC k-1

—1
~[a2134, “’513’ ‘7'21 ’ "'214’ a2134

b. If p = 0, we get

t+J -1 -1-—t—j]

i
C,H_] C;- [a213, a3y, @314, G513

ki1 Ap—l—j—k j i1 B :
6. Ck+_7 G2 =1 PR a9y, )y, abis, abd, aB,134), again we have two cases.
a. If p # 0, then we have

i J gk Pl
kti—1 p—l ik (22134, 8314, %y, 05135 05134]
Ck +ia1Cioi - G . .
I gl gk gPm
—[a2134, 4%y, ah14, @513, 65134
b. If p =0, we get

- p—1-i —i—j i-1
C;- -4 [“214"‘21»“213 »@314)

By Lemma 2.5.1 C¥;, Cit{™ = CPZ}1_;C?7)~". Then using the Jacobi identity
we get from 5(b) and 6(b) the following:
P et p—1—1 i p-1-i—j

. XY CpLi 0 [‘1213,“'214s‘121v“213 ]

i=1j=1
i+j<p-1
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Now we collect the coefficients of similar terms, and we start with the coefficient of

i J k -1
[a2134, @314, @31, 0313, “z134]-

From 1, 4(a) and 6(a) we get

- -1 -] -1 J U
Clpﬂ_ Ct+J C'p i-j +C;+J Ct+2 CP i=j

i

k+j-1 p-1-j-k k+j-1p-1-j—k
+CL_CHTICE +CE L T

-1

Cf’_;l lct-H I{Cp— —i=j +C”'1 t—J}

e LA

= t+J —1op-i-j p—l—J-k k+j

(p-1)! n (p=1)!(k-+5)
= TRG-Dp—i—7-F) T G-F=-9-1)i(p—i—5—RIGH!

— (p=1)! k+j
= e {1+ 7 }

- p(p—1)!
JRHI=1)(p—i—j-k)!(p—k-J)

_ p—1 ~k+j ~p—1—k—j
= = Ckri G G

From 2, 4(a) and 5(a), the coefficient of [a134, a%,3, @}y, @h14, Toray] i

-CPi lckﬂ 1op-1-k=i _ cr

G G

k+j-1 p—l—J -k i+7-1 P—l"l"
Ck+]- C CiZ C+]-1C C

]

Ck+J lck-l—]-l{cp—] —k-j + C —j—k} _ t+] lcp— —-i= {CH‘J -1 C;t{-l}
k45— —k~j 1-i—j ~itj
= —Chpl_crTieri el cryTl e

— (p—1)! _ (p=1)!(i+4)
= FAGE=1)(p=i—7-F) _ (== k—1)(p—i—7-F) 5!

- (p=1)! i+]

- J(k=1){p—1i-j—k)! {1 + P""'J}
_ p(p—1)!

= TF—Di(p—i—7-F(p—i—3)

— —1 pvit+j pp~1-i=j
= ~ o e Cit e
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From 3, 5(a) and 6(a) the coefficient of [a2134,ag],a§14,a§13,a§1—;4] is

i+j-1~p-1—i—j J+k 1 p—-1-j—k
C'+.1-1C C C]+k— C Ci

p-1 H’J ~1op=1-i=j p-1 J+k-l p=1-k—j
+Ct+]— C C -1 CJ'H‘- C C'-l

Cl+J lct+,1 I{Cp— —i=-] +Cp:]—l—]} ;J+I: ) J+k I{Cp—-]—j—k_i_c‘_l —k-—]}

= Crr.

i+j—1p—i=-j p~1  ~j+k—=1 - p—j—k
- 1C Ci - Cl1Ciy T C

7

Finally from 4(b) and 7 the coefficient of [ag13, @} 4, a{;l,azm ] is

- i+j— -1 —1-1 i4j—
= Czp+Jl 10 AL C]’j_]_iC}’ ' CI+J IC ]
= crlfctT roHT et

= CP ity orml_ o

= plp=1)
11 (p—1—i=3)(p—1~7)

pél l+]

- T i

Therefore, as result of this we obtain

4 3\
k+j p-l ~k—j : J ok p-1
o p—k—J)Clc-l-J Cym G [@2134, @314, @315 0513, G5 134]
i+j+k<p
i#0
p—1 vitj p—l i—j P : J k-1
< T‘L‘;Czﬂc Ci [a213, a5134, @514, @215 8513 ] y
1+J+k<p
J4k#p, k#0
it+j J p=l—i—j
+ 2 ,‘%Czﬂ L Ci7 [anz, abyy, @y, ah53 ™)
14)<p
. i#0 /

and this gives the following:

k+j p—l —k—j : J .k p-1
it iThep, PR J)C"+JC Ci- [a2134, 6414, 031, @313, 05134]
t+y+k<p

i#0 (3.49)
+iop=1-i=j k=1
+ (—L;Cz+ CiHCY (2213, 3134) @5y @h14) 813 ]
-+J+k<p !
J+k#p, k#£0
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Exactly by same computation we obtain from (3.38), (3.39), (3.40), (3.41) and (3.42)

the following five summands:

( 3
p—-1 ~k+j p—l k-3 1 J k p—1
" ,%( rp_.hjckﬂ G G [a3214, @454, @35 65915 85514]
i+j+k<p
¢ L (3.50)
i+ p-l-i—j P i i k=1
+ (_L—;_ — L Cl Cy (@321, 65314, 8424, 632, 832, |
t+]+k<p p=i-j) i+
\  J+k#p, k#0 )
( )
p—1 ~k+j p—l —k— ] J ok p—1
k< b=y Chs O O (04321, @g) @3, 0, W]
T 4
e L (3.51)
p—1vit] p—l i—j ¥ ! J k=1
+ X I_Lip_._] Cly € Gy (@431, @f321, B30, 03, 0431 ]
i+3+k<p
\ J+k#p, k#0 J
( p
1 ~k+j ~p—1-k—j k -1
i+ +k< Z_ij-, Ck+g Gy G [“14327‘1142’“14’“143, 01432
i+j+k<p
¢ b (3.52)
1 vitj p-l i—J P i J k=1
+ (—Lj_ — Ch CCE (@143, @l 432, @Yz, 014, 2143 ]
1+J+k<p p—i—y +i
\ Jtk#Ep, k#0 )
( )
Ckti P-l —k—j ] J ok 7-1
+ +k< (—P_jp_ E=; Ck+; Ci- [@1324, @134, @135 67325 A3 324]
Ty p
¢ b (3.53)
p=1ity p- l—t-J' P 1 7 k=1
+ _Z '(,,—.‘z,‘)-_‘;;C.HC ¥ (@132, al324, @134, @13, 0132 |
i+i+k<p
\  J+k#p, k#£0 J
4
p—1 ~k+j ~p—1—k—j i i kP l
" Z:,K (,,—_;;L.,;Ck.{.j C,m Cty [a2431, ab43, ad4, 0341, a3 ]
i+i+k<p
¢ b (3.54)
1vitj —i—j P § j k=1
+ —Lj. — CY L CTCEC (@241, @3 431, Gh43, @24, G547 |
=+J+k<P (p=i=i) it
\ J+k#p, k#0 )
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By substituting (3.49), (3.50), (3.51), (3.52), (3.53) and (3.54) into (3.36) we obtain

. r N
[@2134, @h145 a%p %13, a§;;4] + (03214, @24, “gz, a1, ‘1—5;114] W
i+ fkep V1) +aasi2, Ghag, @ls, ahiny, Bang] + [01432, 84, 0, aga, 0y
7 { +a1324, @iq, 013, kg, F334] + (02413, Ahgs, “%4, ahq15 ahais] J
! 5
[a213, agl:w 140 “%1’ “'.’51_31] + [aza1, “2214’ @4 aéz’ as']
1), +j§v < T2\ +laast, 6Ba12s Bhszr g, a§5'] + [0143, Fgaz, 0lazr aly, ab) | }
P j:l:;p { +a1s2, Bhas, 0iae, 0557 ada) + (0201, 05413, 043, 034, 052 )
. 3
[[121(b3 = 1), [1a(ba = 1P, [J2a(b3 — 1)*](ba — 1)
"i? crty¢ —[[132(ba = 1), [J2a(bs = 1)P=2=%, []32(ba — 1)](b1 — 1)
=0 +{{[1aa(b1 = 1), [Ja1(ba — 1)P=1=%, [Laa(br — 1)*](b2 — 1)
{ | —[[Taa(b2 = 1), [Jaz(b1 - 1)P=1=4 [14(bz — 1)](b3 — 1) J

(3.55)

= _ p—1 ~k+) Fp-1—k—j = _ p—1itj p—1—i—j
where, 7, = Zp_—ll:_—TickH C;rCly and ¥, = G:}%jjc.q.j G :

Now when j = k = 0 the coefficient ¥, is not divisible by p, and when i = j = 0, the
coefficient 7, is also not divisible by p. So it is convenient to rewrite (3.55), as the

sum of two summands

{ 3
‘ J Lk p—1 i J ok p—1
[a2134, @by 4, ady, 05,3, 02134] + [a3214, Gg45 @35, @321 a5314)
, : 51 . i -1
> MY +aa312, @hag,s €3, a§31’a2312] + (1432, @425 a{4,a’1‘43,a’1’432]
s+i+k<p
i#0, k450 L 7 ;g 7
J -1 k p—1
‘ (21324, @434, @13, a3z, a¥554] + [a2013, Gha3, @34, a541, 45503
P ] J k=1 7 1 J k-1
(@213, 65134, th14, @3y, 0513 | + @321, 5214, @hoy, @3y, 0337 ]
7 ; i k=1 7 ] J k=1
" 72 (@431, a3y 2, @, €3, Ag3y ) + (@143, @F 432, @142, @14, 0733 ]
i+3+k<p
k#0, i4j#0 _ . ) = . .
. P k=1 _J P J o k=1
J+k#p [@132, @394 i34, 4735 5 @3] + [0241, @B 433, @3, @245 0357 ] )

(3.56)
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4 N
i+1 ~2—i
[a2134, 0435, abras ]+[a3214,a324,a§214 ‘]
p=2 p—1
p— -2 i+1 p—2—i
,~§0 ¢ +lagam, aiy, aizi '] + [o1432, 0383, abas ]
i+1 p—2—i i+1  p—2—i
+la1324, aihy, alzq '] + [02a13, 4583, 6555
k+1  p-2-k k+1 ~k
“[“213%“2?%’“3134 ]—[‘1321%“3;1 aazu ]
p—2
p—1 k k+1 ,p—2-k
1 + ,c;o C¥ — (4321, agd; ,“4321 ] — [a1432, 013, 0f33; )
;< = > (3.57)

k+1  p—2-k k+1 p-2-k
—[01324,‘113'2 a“faz-t ] - [02413#12;"1 ’05413 ]

[[21(b3 = 1), [J1a(b2 = 1)P=1=% []21(b3 — 1)'](bs — 1)
N PS oot —[[132(ba — 1), [J2a(bs — 1)P=1=¢, [ ]aa(bg — 1)](by — 1)
=0 +{[Jas(bs — 1), [Jaa(ba — 1)P71%, [1aa(bs — 1)*](b2 — 1)

| —[[11a(b2 = 1), [la2(br = 1771, [J1a(bz — 1)'](b3 — 1)

\ J /

k+j3 —1-k-j 1 p~1vits P— —t—J
where M= Ck+] C C,p_l and Y2 = mCH'J C C

Step 2. Our aim in this step is to write p times the element (3.57), as a linear
combination of terms with coefficients multiple of p. In order to do so, we consider the

following terms:

3—:2 o [[J21(8s = 1), [}1a(b3 = 1)P=1=%, [1oa(b3 — 1)'].(ba — 1) (3.58)
=0 ~[a3214, 051, a55 ]

Z gt ] Ml D [l - 1P, [aa(ba = 1)%(b1 = 1) (3.59)
i=0 +lazar, aih), B2
pf cr? [[las(b1 = 1), [Jsa(ba = 1)P=1~%, [ Jas(bs — 1)7].(bz — 1) (3.60)
=~ p—2-1

i+1
—[a1432, @133, @} g35 ']
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"2’:2 crt ~[[T1a(bz = 1), [Jaz(br — 1>, [J1a(b2 — 1)')-(b3 - 1) (361)
i=0

p—2—1
+la2134, 0511, @51 ']

We start our computation in these terms with (3.58), where the computation in the
first term of (3.58) is exactly as before, and for the second term we apply the Jacobi

identity to each component of this term. Hence, from (3.58), we obtain

p—2

2

1=0

p—2

2

1=0

4 3\

[@2134, 1324, (21324 + @132)P~ 277, (@2134 + G213)]

(2134, @132, (@1324 + 0'132)”-2—‘9 (a2134 + 0213)‘]

v

p-1 iy :
Ci™ 0 [a213, a1324, (@1324 + @132)P~ 27, (2134 + @213)']

[a2134, @132, (21324 + G132)P~27%, (a2134 + a213)7]

\ _[a’213’ a’l,:;zl_., a%la] )
( 3
(a2134, @213, (4213 + @132)', (@2134 + 01324)P727]

[a2134, @132, (@213 + a132)", (@2134 + a1324)P~%71]
criy
[a1324, @213, (G213 + @132)°, (@2134 + B1324)P 2]

[a2134, @132, (2213 + a132)*, (@2134 + 1324)P 727
\ P

After expanding, (3.62) can be written as a sum of two terms, C' + D, where

{

C =X

-2 § p—2—i

Ty oot
1_03_.0 k=0
-2 4 p—=2—i

—i J+1 i=j ok p=2—i—k
[az2134, 6374, 6317, 6513, 08154 ]

p—1 p=-2—1 i+l—y k p—2—-i—k
+ ZO Eo kzo Ci C:-JC [a2134, a3 »‘1214’%13’“2134 ]
=0 5= =
p—2 § p—2-i

- -2- —2—i—k
+ ZO ZO kZ:O CP IC'_]CP 2 1[a:2]3, a214 ’ azl ) a’2‘13, a21 i ]
1=0 1= =

p—2 i p—2-i . .
p—1 p—2—t i+1— k p—2—i—-k
+ Zo 20 kzo i Cz—JCk (@213, a3 “214"1213, ‘12134 ]
1=y 7= =

[az13, 5%, a7 7]

p—=2
-5 ot
i=0
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4 3

p—2 1 p—2—i

p—1,p—2-i i+1-j k —i—k
XX Xy ctey Ci [az2134, 0513 s 0a, G134, Vang ')
1=07=0 k=0

p—2 i p-2-i
p=1 p—2~1 J+1 7k p=2~i—k
2 > X CFC C' [02134,‘1132s“213’02134’“1324 ]

P=2 4 p2-i p—1,p—2—1 i+l-j k p—2—i-k
> E > CiCy Ci [a1324, 0513~ @5y, hyaq, 6350 ¥
t=07=0 k=0
p— i p—2—i
-1, p—2-i Jj+1 p—-2—-i—k
Y Y CPICET C maa, ain 0513, 0134, aFars *]
{ 1=07=0 k=0 J

In order to collect the similar terms, we rearrange C and D, as follows

i+j-1 P l—t -J k

Z Z Z C.+J 1C Cy [a2134,a1324,a132,a2134,a213]
i=1 j=0k=
i+j+k<p
Plr2rC? i+j-1 p-1-i~j k
El 20 > Ca+J 1G5 Cy [a2134,a132,a1324,a2134,a213]
= J_
1+J+k<l’"‘
p=2p-1p-1

i+j—-1 1—i—j k
PIDDD Cz+;—1C Cto [“213,01324""132’“2134"‘213
=0 7=1 k=1
i+j+k<p
p—2p~1p-2 .. — .

i+j=1  p-1—i=j P k i J=1
T T T el [213, %32, 63241 @134) 3013 ]
=0 j=1 k=0
i+j+k<p-1

p— .
-1 —-1—

1 - ¥ CP [ans, 6l 7, ads) r (3.63)

=0
PP p—1—i—k rritk=1 P 1k
2 x X Colliik C0 Cy (42134, @313, T3z, @134 0F32d]
i=1 j=1 k=0
:'+j+k_<_P

p—1 p—1—i—k ~itk—-1 P J k i—1
X OkZO Colimik € CiT" azi34, 6732, %13, 01224 09134
=1 )= =
i+j+k<p-1
r2plecl ik rritk—1 i B k-1
_ ik ik : -
Eo 'Zl kZ Cp— 1—i— C]-l Cit57" la1324, @913, 613y, G134, 07324]
1= J: =
i+i+k<p
p—2p—2p-1
p—1 p—1—i—k ~itk—1
,Z; ZOkE Cpoaiek €5 AR [01324,‘1132,“213,“2134:“1324]
1=0 3= =1
U ijik<p-1 )

Now using the Jacobi identity to relate some terms to others, this enables us to collect

the coefficients of similar terms,

i+i—1 p—1—i—j k P gzl ai
Cz+3 1Cj Cia [a2134, af324, Y32, 85134, GH13)-
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p—1 p=1—i~k ~itk-1 J K -1 _k
2. Cp—l—i—k Cj—l Cy [@2134, @%y3, @735, @3734) GT324)5

a. If k # 0, then by Jacobi identity [az134, 63,3, @¥a2, Gb1aq, €Fana]

— k P i-1 J P k-1
= [a2134, @13245 Q1325 051345 0%13] + [@1324, 6913, @F59, 02134, “1324

b. If k= 0,we get

p—1 p—1- —-i=j _i—1
Cp_l__.,-C [a2134,a213a4132 » 32134

i+j—1 p—1—i—j p—1 p—1—i—k ~it+k—-1 P k i—1 J
3. (Cl+J—1 C Ok +Cp— —i—k Cj Cy )[a2134’a’l’32’01324’a2134$a213]

a. If k # 0, then by Jacobi identity [a2134, 32, a¥3245 G5724> G313
- k P i-1 P J i k-1
= [a2134, @13245 @135 5134 8213] + (613245 @32, G213 B21345 a1324]

b. If k = 0, we consider two cases,

(i). I 5 # 0, we have by the Jacobi identity

J p—i—J i-1
(cr- [a2134, @343, 6733 ™7 a5134

1

itj—-1 p-1 p—1-1
45— IC Cp—l—i Cj ) i i1
—t— — .
+[azs, 613,71 6313, Gh134]
(ii). If j = 0, then we have

p p—t _i-1
(Cp + O )[“2134’“132’“2134 = C7la2134, af37, a3734]  (3.64)
p—1 1—i—k :+k 1 i+j=1p—1—i—j J P ] k-1
4. (CPZ i, CILIT77Cy C,_H G CEL T ) [a1324, 63, 6352, 1345 B1324] -
'+J 1p=1—i—j k
Cz+] 1C Ct [a213,a132,a1324,a2134,a213]

a. If k£ # 0, we have

7 J i k-1
cP- C’ i+i—1 C”’ —iej [@1324, @739, @13, B134) 41324)
|+]—1

i P i k—1
—[a1324, 6213, 07325 93134 a1324]
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b. If k = 0, we get

i+5-1 p—i—J i Jj-1
C:-H 1C [a213, 013,77, 03134, @313 ]

p=1=ti—k ~it+k—1
. CF -1—:-kC Cio [a1324,a132,a213,a2134,a1324]

7. — Cf_l [a213, a5 3, ad,5], this term cancels with 5(b) when i = 0.

Now we collect the coefficients of similar terms, and we begin with the first term.

From 1, 2(a) and 3(a) the coefficient of [a2134, a%324, @h3g, G5124> Thy3) i8

i+j—1 p—l—z—] p—1 p—l—:-—k i+k—1
Cz+J IC C +C —1—i—k C C

i+j—1,p=1-i—j P— p—=1=i—k ~it+k—1
+Ca+3 16577 C + Cpl1-i=k Cj Ci

Ccrr

" ICt+J—l(CI;:—l—:—J +Cp— —t—_])+ p-.l_z . Ca+k I(Cp— -l—k+C;—1—i—k)

= Crr.

i+j—1 p—i—j p—1 i+k—1,p-i-k
i+j- IC Ck +C “1-i—k Ck Cj

— plp=1)!
TRG=1)(p—i—;= B+ k)

= Zcricricitt

(3.65)

From 2(a), 5(a) and 4 the coefficient of [a1324,agls,a?m,a%w‘,alf&g] is
p—~1 p—l t—k ~itk-1 i+5j—1p—1—i—j
C —1—i—k C Ck C‘l+]—IC C

T

p—1 p—1—i—k t+k 1 t+.1—1 p-1 1-i—j
+C, 1ok €34 Cy C_H_ C;Iy G}

p—1 p—1—-i—-k k- 1 +Ic— 1 !+J-l p—1—i~j p—1—i—j
Crol ik CE R e it - el L TN T + ¢ )

_ p—1 p=l—i=k ~it+k _ i+j~1 yp—i—j
- Cp— —t—k Cj—] Ck t+J lC C

= 0
(3.66)
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. D j z k=11":
From 3(a), 5(a) and 6, the coefficient of (1324, a%3,, 3,3, 04134, a7524] i8

crr

1

:+J—l p—1-i—3 p-1 p—l—z-k i+k—-1
i+5— IC C + C l—t—kC C

p—1 i+j—1p—1—i—j p—1 p—1—i—k ~it+k—1
+CE Ot +Ch i kCh Cih

crr

A lcp—l :—](C:+J—1 +Ct+] 1)+ ::ll ik Cp—l—'—k(ct+k—l+cs+k-l)

= cr-l Cp—l—t—JCzﬂ +CP—

p—1~i—k fritk
45— k CJ Ck

1=t~

p(p—1)!
TR (p—1—i1—5—F)(p—1~7)

- p i+j+k vk+i
- p-—z-—] Cl+]+ka Cl

(3.67)
From 2(b) and 3(b)(i), the coefficient of [az134, aly3, @53 *, ab73,) is
= Ccrj ety el e v et e
= el et ok, o
= Croi_Crt ert, (3.68)
— p(p—1)!
= i!j!(‘p—i—jjl
- EC,_H 101+J -1
Also, if p=1i+ 7, in 2(b), we get
ct- Llaziza, ‘1%131 012)1-314- (3.69)
From 3(b)(i) and 5(b), the coefficient of [az13,a%5; 7, @134, @1 ] is
= Chl,CciH Tt yorl e e, o
= Cﬁ;jl_l(CJz}j -1 + Cz+] 1) + Cp— Cp—l {
= Crrl, Citi v erny ot (3.70)
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_g_

—imj j=1 j i i-1
But, [a213,a33; 77, 04134, 0373 ] + (02134, @Yy3, 0132 7, aid] = [a2134,a132 ’“213’“2134'

Therefore from (3.68) and (3.70), we get

P + Cini i1
C.+,- ¢ . [“2134""1]32 7, 6%13+6134) (3.711)

From (3.64), (3.65), (3.66), (3.67), (3.69) and (3.71), we obtain the following:

==y j+k kP ]
Xy &HC " CP 1T anz4, dhspar ahay, ah1dy, ada)
1=17=0k=1
i+j+k<p

p—2p—2p— . = . .

t+j+k ki P J k=1
0 Ok Y o C,+,+kck+, Ci'[a1324, 01325 0913, Gh134 G1324)
1=035=0k=1

< ititk<p *

p~—2p— PP .
i+ —-i= =1

212 EC;+J- ¢z J [02134,‘111’32 7, a%13 @3134]

1=1;=1

i+j<p-1

p—1
-1 p—1—

21 C;—l [‘121341“213’“2134 J]"’ Z ct [“2134’“132"‘2134]
J:

\

and this gives

7 A

p=1p-2p-1 P P ' ]
p—1 p—i itk k p =1 af
> r X O CTaCy [a2134, 6324, a5y, G5134» 03]
i=1 3=0 k=0
t+i+k<p
< p—2p—2p-1 Cp_ C;+J+kck+i P J a,'. ak_I] (3 72)
+ Z:ozmcz p—i—j) ~ititk“k+i i [@1324, 6132, 83135 @h134) @1324] '
1=0)=0k=
i+j+k<p
p—1 1-j
+ ’21 cr (02134, a3, A5 104
\ = ‘

Now, by similar computation the terms (3.53), (3.54), (3.55), give the following respec-

tively

p—l p—i vtk k 1
- X XY HCOIC kC [a3241,a2431,a243,a3241,a324]

p— i+i+k ki P J ] k-1
' 'Eo Zokzl p—i—j Cl+J+kck+: Cit'agas1, ahaz: Ghpes G241, 92331] ( (3-73)
1=0 j=0 k=
i+j+k<p-1

l -J
E 1 [‘13241 ’ “324’ “3241 ]
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rlr=drcl p=1,1p~i ~jtk k 1
PIDID "'EECt—IC xCi [‘14312,“3142,‘1314’“4312,“431]
=1 5=0 k=0

i+j+k<p

-1 i+j+k k4t 7 J i k-1
\+ 22X o ~CPriniC Cit(as1az, @814 ahay, Gimas a31aa) ¢ (3.74)
Py e e S ) R S AL AL ’
i+i+k<p, k£
1_
+ E 1[“4312a“431a“4312
\ J—l 7/

p=1p=-2p—

-1
21 ZOE: “'21; :p—lc kC]+ [‘11423,‘15213,“421’“1423,‘1142]
i=1 j=l

i+j+k<p
p—2 p =2 p-

’ P 1 ¥ 1+ + k+l 4

t+J+kSp—

g

(3.75)

1-j
Z i [‘11423’ “142’ a0

By substituting (3.72), (3.73), (3.74) and (3.75) into (3.57), we obtain

4 3
k 7 i-1 k P i-1
[@2134, a%324, 0139, A57345 @%13] — (33241, 05431, @343, A334715 B3]

i+j+k<p k 7 i=1  _J k P i-1
£0, j+k£0 [@4312, 05142, 05145 G3120 @3] — (01423, @513, @1, 413235 01 4]

P J ] k=1 ¥ J i k-1
< s [@1324, 6132, 83135 @h1345 A1324) — (024315 GB4gs G245 Ah2415 03531
Y4
i+3+k<p P 7 ] k-1 7 J 1 k-1
[a3142, a314, Q1> Th3125 BG3142] — [@4213, @415 @142, @423 @213
k#0

L~

. -1—" . ‘
=l o 01324, 834, ¥aps '] + (02013, Bhgzy A s ']
2
=1

1

—[a1324, “132’“1324 ] - [agq3, ‘1241’“24-13 ]
(3.76)

= -1 i+ itj+k qvkti
where 73 = 2. CP7) CH_,CC'J and 7, = C,+J+ka+J,- Citt.

p—i—J

Now when i + k& = p the coefficient of the first term does not divisible by p, also when

i = 7 = 0 the coefficient of the second term does not divisible by p. So we decompose
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(3.76) into two summands

( \ 3
ka24>aBag, a1k, ad kP i-l oj
Pz—:lPZ—:QPZ': ) [a2l347 Q7324 @132, 9134, 0213] - [a3241, k431, 0043, At 0324]
73
i=15=0k=1 k b3 -1 F & 5 -1
i+j+k<p . [0'431% 3142+ A314> A43125 0,431] - [a1423, 331358015 81323 a142] )
i+kzp |
' 3
e [a' ai aj a ak3) ] - [a' a_p aj al akl ]
4 PZ PZ 13245 4132+ %213, €2134, €1324 2431 Q3435 G045 32415 B3431 }
Y4
1=07=0k=1 7 j . ko1 5 ; ' -
i+j+k<p [@3142, 6514, @31, G312, A51a2) — [@4213, @Y1 @) 4gy Al 423y G4515)
i+5#0 J
(3.77)
' Y
o aitl - _i-1
Pil oP- 1 [a2l34y a’1)324, 1112134] - [a3241 , “3431’ G324
i—-1

i=1 p—t  i-1 p—t _i-1
[a4312, 31425 ay312] — [@1423, a1, a1523]

-k k-1 p—k k-1
p-1 [@1324, @735, @1 304] — [@2431, 043 s @333
+ ¥ crt ’ » (3.78)
k=1

p~k k-1 p—k k-1
[a3142, 6514 > 03142 — [@4213, a%51 » @457

S

i -1 i 1
[@1324, G, @55pg '] + [G2413, B3, a5y ']

pean
p—1—i ]

=1 : I ) :
{ —[a1324, @32, 61354 '] — (@213, @by, G043 )

-1 j+k 1 i+j+k vk+i
where 13 = [ CT CT ici and 74 = gy Crr O R

Now, it is easy to see that (3.78) can be rewritten as

-1 p—~t _i—1 p—i _i-1

1% p—1 [a2131, 6324, 63734] — [@3241, G431 Q3241

. z cr (3.79)
i=1 p=ti  _i-1 p—i i1
' [a4312, 68142, @5312] — (01423, af13, a1523]

Step 3. Our final move is to write

-1 p—i  _i—-17_ p—t _i—1
4 -1 [a2134, @334, @134 — [a3241, 684315 @3241)
> Ch ‘
i=1 p=t i—-1 P—

[a4312, @515, a4512] — (1423, ‘14213’ a1423

as a linear combination of terms with coefficients a multiple of p. By the Jacobi identity
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we get from (3.79) the following
4 Y

p—=1—j5 _J
[a2134, 63324 75 @3134]

+[a1324, (#2134 — a4123)’°°1'j, (—a1324 ~ 02134)j]
1222

p-1 . .
? .2% CT™ 1 +[a2134, (2134 — a4123)P~177, (—a1394 — anza)’]
J=

v~

+[aq123, —0'175214-js (@4123 + a1324)7]

+as123, (a4123 — az134)P 179, —al 53]

\ Iy

This gives the following
( h'
i

[@2134, aT354 7, @h134)

+[a1324, a2134, (62134 — @4123)P~ 279, (—a1324 ~ a2134)]

1722 | +@1324, ~ 4123, (2134 — @4123)P 727, (— 1324 — G2134)7)

. 3y ’ ’ ’ b (3.80)
7=0 +[a2134, —G4123, (@2134 — @4123)P~ 277, (—a1324 — G2134)’]

+[aa123, -—af;zl[j, (@4123 + @1324 )]

+{as123, — 02134, (@a123 — 62134)P~ 277, —@153)

From (3.80), we obtain

p—2 . ,
-1 1
L % Eo cy [a2134,a’1’3214 7, a2134]
J:
1722 o . .
2. 5 'Zo CP ™ a1324, 42134, (2134 — @a123)P 277, (~@1324 — @2134)’]
7=

SE R k+i P10 oP=2-3 prl-j=k ok i j—i
Zo'zo kZO (1) Cj C/CY [@1324, ab134 » 841321 @324 92134]
J—_’ 1= =

S -

Changing the order of summation, so that ¢ runs from 0 to p — 2, for fixed ¢, k

runs from 0 to p — 2 — %, and for ¢ and k fixed, j runs from ¢ to p — 2 — k, then

k+j P10 p—2—] p-1-j—k _k i J—i
(=1)F+ Cj CiCy [@1324, aB1a4 » 04132 G1324) G3134)
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p=2p—-2-i p-=2

-1 —2—7 ik .
=3 X Z ( DEHCEICICE™ 7 Ya1024, 051 ", 0132, Glsaal]
=0 k=0 1=t
p—2p—2—1 . K
=71’ A kZO ((-1)rC? 1)[“1324aag1al4 ' k»afmzsa‘lszq] by Lemma 2.5.4,
1= =
p—2p—2—-1 ,
-1 —1—i—k .
= “lp Zo kzo CP™ ' [a1324, @134 " @f1325 Biz2al
= =

p=2 . ,
Zo cr !a1324, —a4123, (@2134 — @4123)P 277, (—a1324 — G2134)7]
j=

S -

p-2 j ..
-1 -2- k —-2-j—k i -
119 Z_: ; kzo (—1)t1+iCy CJCZ J[‘1132‘““41"23’ 5134 > Biazar G3134)-

Again by changing the order of summation we get

p=2p—2-ip—2~-k R . s .
- -2- k41 p-2-i—k i -
=3 2 Z L (—LFHHCETICICE T w1324, 055, 05154 7T B3240 @134
=0 = —l
_ 1 A eIk 1\e+14+5 0P=10i P21 k+1 p—2-j—k aimi ]
=7 Z kzo (X (-1 i Cilk )@a1324, 4123, 05134 s 013245 @9134
1=0 k= =t

p—2p-2—t p-2-k

-1 —2- —2—jmk i
= -1 Z;) kEO (T (-Dk+HicE” cicy ar324, a5, B1an 0 =%, aang, adTad]
1=0 k= 1=t

p—=2p—2—i . -
= -3 ; E ((=1)PCP™Yarazs, aizh, h1as * 1 @iagg, afaq] by Lemma 2.5.4,

—2p—2-
-1 p—-1 k+1 _p—=2—i-k
=3 E E Ci [@1324, €423, 65135+ Biaaal

By the Jacobi identity we get from (2) and (3) the following

—2-
15 —2-ik
‘}‘, Z Z 1[“2134’“5123’“2134 ' ,“ig'}q (3.81)

On the other hand when k£ = 0 in (2), we get
152
T Z cr™ "a1004, 05134 ,a1324] (3.82)
i=0
and also when £ = p—2 — ¢ in (3), we get
152

- CP Narzoe, afras ' @ind) (3.83)
=0



Chapter 3. Torsion in free central extensions

87

p=2 , .
4. 1'% C?7 M anas, —aa123, (62134 — @4123)P 7277, (— 1324 — a2134)]
&

1—01—0 k=0
Changing the order of summation we get :

p—2-k

p=2p—2-i j ]
-1 —2— k+1
=3 2 X (L (FUFmermioicr ?laz1s4; agss

j=i
p—2p—-2-1 p-2-k

P— 2-j - _ —_ce
=1 SRR (- — 1 CE CICE E [ag134, i rg

p—2-j—k

2134

p—2—-j—k

=-1 TS (S (~1MCPCICE agias, akth, @B

i_O k=0 i=t
p—2p—2—1

i =i
» 013245 99134)

i J—
» @43245 @3734)

i j=i
1 213245 '12134]

~ ik »
=-1 Z E ((—1)PCP™")az134, ffs, AB1as * " lager Gh1ag] by Lemma 2.5.4,

1 p~2p—2_‘ p-1 k41 p-2—i—k
? 20 kEO C?™ [an134, aqip3, Ahizy T+ 0lhzza]-
1= =

p—2
}:0 C? aar23, — Bz » (Gar23 + 1324)]
7=

=2
—1-jp-1 1-
=3 ZOZ (—1)P1=iCET L aarzs, g 7 @iz, Glsaal-
J= =

3 I

Changing the order of summation we get :

p—2p=-2

o i .
=',1; Z:O ¥ (-1)P1=iCPTICT_aa123, 1524 75 G123, 61324)
1=0j=1¢
- - 1-
=3 Zo (Z (~1)P1=iC?T CY_ ) aar23, By 7, G199, @ 334)
= j=t
=y -1 -1-j i
= 'Zo (=1)PC?™ [aa123, 6324’ , @123, @1324] by Lemma 2.5.4,
1=

—-1-1 _;
= 1 Z Cp [a4123,a’1"324 t»afmal-

L}
1 22 -t 2-j _gi
6. 1 3 CT ' [aa123, — 02134, (€4123 — €2134)P 777, —ay55]
5
_ g R L+l+]C’P 101’—3-’] k+1  p—2—j—k
=2 L T ( 1) [a4123, 43154> G123

1=0 k=0
p—-2 p—-2-

-1 vp—-2— —2—j—k
= Z ( Z ( 1)k+1+]cp 1Cp 2 J)[a4123’a2fé4s‘12123]

P k=0 =0

87
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k —2—j—k _j
=-1 kZO (=1)P~ 2[“41%7“2?34"’3123 I8, ah12s]

- k
=% >; [aa123, 035}, afiiz5 ).

Now from (4) and (3.81), the coefficient of

k41  p—2-k—i i s P
[a2134,a4i“23,a2134 ', aia4] s Cta (3.84)

On the other hand when ¢ = 0 in (4) we get terms that cancel with terms of (6).

From (3.82) and (1), the coefficient of
[‘12134’“'1)5214_1."1%134] is Cfﬂ (3.85)

From (3.83) and (5), the coefficient of [a1324,a§1_213_", a}324] i8

Czp_ Ca+1 =Ch, (3.86)

From (3.84), (3.85) and (3.86), we obtain

p—2p —2—3 ,
k41 p=2—k—i
Z }: C1+1 [@2134, a5123, ‘11324’ a2134 ]

z—l k=0
-2

1-
+ Z C?, 1lanas, alsg ! ahya]
1 p p=1-i i
+3 _Z%) C?1[01324, 5105 "5 @4

1=l

and this gives

1 k+1 —k—1
_ 1 cr H[aziza, afis, @ianas 02134 ]
=0 k=-1 (3.87)

1 —1—i
.z :+1CI[J [“1324"‘2123 » @324]
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Finally, from (3.56), (3.77) and (3.87), we get

i J ok p—1 i J ok p—-1
[@2134, @514, @3y, 6513, adiaq] + [a3214, Tho4s als, a%1, a3314)

i 7 ok Pl i i gk oPl
iritFp1 T\ +lagziz, dha, a4z, afsy, alza] + [a1432, 0142, 0145 0§43, G50

1#£0, k+3#0 . . - , . -
i J ok -1 [ J .k -1
\ +[a1324, @134, 013, @32, @l 394) + [@2413, Gdg3, a%4s 4541, a3

4

7 ; i k=1 P i Jj k-1
(@213, 08,1345 G414, @315 @513 ] + [@321, a9y 4, Ah24, @35, 35

p : i k=1 P i gl gkl
ik V2 +[assr, alzz, ahaz, al3, a3 + [0143, 68432, @142, @] 45 0743 ]

k#0, i+5#0 - . : = . .
. k-1 _J P J k-1
{ J+k#p | +a132, 613941 @ia4: 0137 » 13) + (0241, 06513, Ghas, @34, 02347 )

( 3

Y5 9
i+j+k<p k P =l ] k P gi=l i
i+k#p, i20 [@4312, a5142, 0514, @312, @aa1] — [@1423, 4513, Blia15 01323, 9142
( h'

P J . k=1 P J i k-1
[@1324, al32, @313, @41340 @1324) — [G2431, 0Dz, GB245 T2415 C2531)

k P i-1 k P i-1 _J
[@2134, @324, @} 32, Q37345 @213 — [@3241, G54315 QG435 B33415 B34 f

Vs §
i+j+k<p P J ; k-1 P J i k=1
Ek#0, i+§£0 L [a3142, 6814, @431 > W31y B31dn] — (04213, @G15 @425 Al 4235 G4213) J

p—2p—2—1

1 k 1-i
‘201:2 ,.Hcp {[a2134,a4;’213,a1324,a2134 ]+[01324’“4123 a‘1324]}
1= =_

u ithst—1

(3.8)

where,
1 = s RGO Ty = A erf et ey
73 = z+kCP_le Ci+kv T4 = p-}—J C,+J+kC,‘ciJ‘:+ka+‘; = t-il-lcp—l
L={(G.j,k):i#0,j+k#0, i+j+k<p—1}
L= {Gyjyk) ik £0,i4+j#£0,j+k#p, i+j+k<p,)
ILi={(jk):i1#0,i+j+k<p,i+k#p}
Li={(i,j,k): k#0,,i+j#0, i+j+k<p}

1<n<m<m<n<d; p=p—it—-j—-k
Finally the image of the element (3.88) in MPM Q®g R is the image of

1®eirAeaANesAey
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under the connecting homomorphism Hy(G, Z,) — Ho(G, MPM). On the other hand
tHo(G,MPM) = t,,Ho(G,M?F;b), but tHo(G,M”F;b) is an elementary abelian p-
group, this means that the torsion subgroups of both Ho(G, MPM) and Ho(G, MPF,;)

are the same. Applying the isomorphism MPF’, @ R — v,(F')F" [[v,(F"), F]F",

we obtain
{ ‘71 3
i J ok p—1 ] J ok p-1
[a2134, Gh14, @)y, 6513, aB13y) (3214, G245 639, @32, a5314]
: J ok p—1 1 J ok p-1
. ‘n [@4312, Gl3q, @3, a3y, Ali3y5] (1432, @h4z, 0145 043, a¥ 33
(‘137k)ell
i J ok p—1 i J ok p~1
[@1324, @} 34) @3, @Fay, Ah324) [a2413, a3, 0245 G341, @hg13)
Y2
P i j k-1 7 t J k=1
[a213, 651345 Gh140 315 €573 | (@321, 68914, B24, @32, 05377 ]
P : J k=1 P : j k=1
. [@431, @432, Gazs O3, @43;'] (@143, @F 430, G142, G4 @143 ]
('7.71k)€I2
B gio gk=1 gi P il k=l
| [@132, 68354, @h245 4135 » @3] [a241, Ahgy3, Aha3, G4y G541 ) ’
( R L
k P i-1 J k P i-1
[@2134, @§a24, @T33, @5134) @13] (02341, 05431, @43, @241, T324)
(1,5,k)EI3 k P i-1 J k P i-1 i
| (04312, 88142, @514, Gi312> @331] (04123, 0213, 0521, @423, Al ) )
\ Y4
B J ] k=1 P J i k-1
I J [@1324, @F39, G313, G134, @1324) (@231, 0Bz, @24, Q415 03531
(i.4,k)El4 P J ] k-1 7 J i k-1
| [a3142, 65,4, 0331 4312, 3142] [a2413, 8515 G421 B1a23) B4 13]
p—2 p—2—i . .
k41 ; p—2—k=—1i p=1—-1 ¢ w
'Ho kl'Il {la2134, a3, @i3245 05134 '] [@13245 6l 123 "5 Ol324]}
\ 1= —_—

J
(3.89)

The theorem follows by replacing the a’s in the above expression by their definitions

as given on p 58.
Next we illustrate our main result by considering the following special situation.
If p = 3, then the generators of the torsion subgroup of F/[y3(F"), F]F" are,
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I+k=1

. . k= , —d . . —
;c-gOTHj(;g [zi, @i, 2i0), [@0, 2iy @i 20,274, [ 2,23 ) [23,20, 1, (23, 20,407 7)

J+k#3

i+j+k<3

4 3\

([Zins Tiy» Tig Tiy s [Tig, Tig» Tiy )y [z 20, 1[4y, T4y, @i )]
[[ig, Ziyy %4y i), [%igy Tigs iy s [ xiz]ja [Zi5, izs xil]k]
([Zies Tig» Tiy o Tir ]y [Tigs Tiy» Tig)s (i, Tis 1 [y, 45, 24 1]
(iys Tiys Tig, Ty )y [iys Tigs i)y [Zins @il 1, [y Ziy » g K]

[[zﬁ 3y Lizy Tipy .’B."], [IE,“ sy Tizy mig]v [.’E,‘l 9 zi;]j7 [min Tiyy a:"2],‘]

{ [[ziga ZigsTiay xil]v [xigv Tigy mig]v [xig'; zi4]j1 [xizv Tigy zf;[]k]

¢ \

([0, 23, ), (20 24 "L'i4]2—i_jv [z, 2, xi4]i’ [z, @i K, [zi,2;, wis]k-l]
(i ziy 24|, (i3 20,23 ""'iqlz-i-ja (zi "”iz‘”h]i’ [ziaxizlj’ (@is2i, xix]khll
(i ziy 2], (207352 wiz]z_i-js [z:, .7:;31:;2]‘, [xkzia]ja EZR:2N xin]k-l]

B 4 \

[[xil Ty :L‘,’,], [wilxisxiz mi4]2_i_j1 [xt'l J:;S:tg‘]i, [xilxia]j7 [xil xiazﬁ]k—l]

([ziy2i, xil]’ [zizwi.: Tiy $i3]2—i—jv [1':'2 xhxis]i’ [zith]j’ [z, i, zil]k.—l]

4

([i,2i, iy 24,], [xixxiswiz‘”h]k» [ziyzi, z;2]3, [z:, 25, wia]j’ [zi2i, xis‘”t’;]i_l]

[[xisxith zil]’ [xizxiq xiszh]kv [Iith xis]Sv [zia zizmt}]jv [‘Tiazi:zﬁzil ]i—l]
Y 9

i£0,i+k#£3 [[3:,‘,1:,‘3 Tiy ziz]’ [ziy2i, Tig zfz]k’ (‘risxl'l zﬁ]sv [2:54 TiaTiy ]j’ [xigxia Tiy xt’g]i-ll

1+3=1

.

[z iy ip i, ], (@0, @iy 23|29, [0y 33, 24,V [0, 24y i 24, )]
[[:1:,'2:1:,'4 TizTi ]’ [$52$i4 zia];!_i_jv [:Biazizmiq ]j’ [mismizmhzi] ]z]

([is @iy iy 24, ], [z:;2:, xi«]Q_i_ja [zi, @iy @i ]j’ [zi, T3y 25, wiz]i]

L [[xﬁzizzixmis]’[ziq"“'izxilpni-j’[milxiam'}]j’[mixzﬁmizzis]i] )
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1-i ([zi,2iy iy ziy ), [2ig 20, 24, zia]kﬂw [, ziazhzh]" [z, i 3!'33’1'4]1—‘-"] }
?
end » )
i=0,i [[17,'11:,'3:1:,'2$,'4], [zha’hxiewis]z "[xilzisxizz&]']
itkE—1

where 8 = Ts’:?l_ﬁ':" and v = 51%5,7

By writing these terms explicitly and rearranging them we obtain, after applying the

isomorphism Ho(G, M3F.,) — ¥3(F')F" [[y3(F"), F]F", the following ,
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( y (1)

([iny Tiys Tig, iy )s [Tigs iy s Tig)]y [Tins zi:]i’ [Tizy iy “"is]j]
[zigs Tigs Tiy» Bi, )5 [Ziay Tig» Ti)s [Tig, Tig )y [%ig0 T4y 70, )]
[[zi4a TizsTiyy miz]’ [ziqa Tizy xig]! [371'4 ’ xig]i’ [(b'," s Tigy zi1]j]
[y Zigs Tigs Tig)s [Ziys Bigs i) (i, @il Iy [y Ziys @i P ]
[[wh 1) Iiav zig 1) 1'3'4], [xil b a"igv xi4]v [xil 4 xis]i’ [zil k4 .’E,’s, x‘:]j]
=1 . , . . . . , . RNy . .19
Uiz Tigs Tigo iy |y [Bigs Tigs Tis)s [y Tif |y (245 iy i, ]
[y, Zig, iy, zi, )5 [Ty iy, Tigs 3{4]‘, [ziy, 25, ziz]j’ [z, ziy :l:,'3]]
(i) Zigs Tigs Ty ), [@igs Bigs Tigs T )5 [ Bigs iV [@55 Tig, 24, )]

[[misv Ly Tiyy ‘Tig]v [.’171'4 s Tig9Tipy mi;]i7 [ziaa iy, 1“54]]" [tC,", Tizy .'l?;']]]

L [[xi4 y&igy Tiqs mig], [zil’ TigsLips wia]iv [$i1’ Tipy zﬁ]j’ [mi1$zi4$ zig]]

(20,26 2i5), [2igzi, ) (w2 20, 1, (2020 2ig 2, JF, [0, 20, 2447
(252323, ], [2ia i, |y (20520, 20, 1 (230 Ti iy 23, J¥ [0, i3, 1]
(26 %ia i |y (2,20 )y (20,020 1 [0, i iy i 1B, [ 20y 2, )]
(@320, Tig ), [2i 20, Vs (20 2iy 23 1, (20,20, @iy @i 1, [0, 20,4 )]
(i, 2in2i, ], (20,20 ) [0y @i @i, s (24, @i T4y 24, ), [a:.-l:tgsa:,-z]i]
RS (RN NN N N N AL

(23,21, iy 84, ), 20, 2i i 1, [0, @iy 20, w0, ), (20,20, @, 1 (20,24, Tig 20, 1)
(@i 25 iy @iy ), [ZigTig i} (205 B0y iy 23 )F, (@00 Tig @i, I, (2020, 20, 24, 1]

([zi,ziyziy x4, ), [2i, %3 24, ]j’ [ziy2iy @i, xiz]k’ [ziaziaxil]iv [zi 2y 7iy xiz]zl

| (i@ i), [#ien 2P, 200020265 [0 50w, (20202025 )7

(@i, 23y iy @i, ) [Ti, 2050, 240,y [[20, 24, Ty 20 ) H [0, i Tiy 24, ), (23,24, B0, Big ], (24,63, T4, T35 ]
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Because our main result do not cover the case p = 2, we consider this case separately

in the following subsection.

3.2.2 Description of ¢(F/[F", F]) in terms of generators

In this subsection we do the computation when p = 2. It should be pointed out that
C.K. Gupta in [1], computed generators of the torsion subgroup of F/[F", F]. Using
homological methods, Kuz’'min in [4] obtained the same generators. However, our
computation is different. Furthermore, in the end of this computation we prove that
our generators are the same as Gupta’s generators. The main result of this section

reads as follows.

Proposition 8.3.1. The torsion subgroup of F/[F", F] is generated by the elements,

[[$i2’ Ti1sTig, xi4]a [xi;;’ Tigs xi]]] [[ziu Tizy wiz]’ [xisy Tigs Tiygy zi:]]
[[x,'a,.’t.'l,ib,fz,.’th],[3:5‘,23,'3,:11,'1]] [[ziz’zila$i4]9[mi47$iﬂzinzi3]]
(60 s 81 210021y 23] (233,213,202, 2il] |

([Ziss Tisy 20, ], (%4 Tis 5, )] ([, Tiys xiz]’ [miv Tiys mia]]

| i iy zi]s [3igs @i s @i )] ([2igs Tigy i)y [Tigs Tigp 2 )]

where (1< 4§ <ip<iz<ig<d).

Proof. The proof is by computing the connecting homomorphism,
H4(F/F ,Z3) — t(M?M ®gR)

where R is the integers localized at 2.
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For computing the connecting homomorphism, we use the double complex M ®¢g P,

with P as before and the complex M as the following ¢

M: 00— MAM —PQM — P? - RG?* — RG — Z; — 0.

Here it should be pointed out that by [[12], Lemma 3.1] the complex M is exact.

Consider:
Z;0 P4
1
RG®P3s «— RG®P
T
RG?® P, —~ RG?’QPs
T
PP, — PP
1
ARRG «— AQP
I
MM @ R — MM ® RG
where A = P ®g M, in this double complex we use ® instead of ®q.
Now we start our computation by the following element
l1®eiAeaAezsNhey € 2y ® Py (3.90)
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An inverse image of (3.90), in RG ®¢ P, is

1Re ANea Aes A ey (3.91)

By applying the homomorphism RG ® Py — RG ® P3 to the (3.91) we obtain

24: (~1)*(bi — 1) ® (e1 A oo € At A €4) (3.92)

i=1
In order to get an inverse image of (3.92), in RG? ®¢g Ps, we consider the element

(1o1).(b;—1)=bjob;—101.

By writing b; = (b; — 1) + 1, and expanding, we get

(1o1).(bi—1) = (b — 1) o (b; — 1) + 2(b; — 1) o 1.

By subtracting (b; — 1)? from both sides, we get

[(1o1).(b;—1)—(b; = 1)’ =2(b; = 1)o1.

Hence the expression

Ao 1) (b: = 1) = (b = 177,
makes sense in our situation. We notice that
1< . A
2 S (1Mo 1) (bi— 1) = (bi = 1)*] @ (e1 A A € ... Aes), (3.93)
i=1

is an inverse image of (3.92), in RG? ®¢ Ps. This is because (b; — 1)? is in the kernel

of the map RG? — RG, and the image of (10 1) under this map is 2.

After applying the homomorphism RG? @ P3 — RG? ®¢g P,, to (3.93), we obtain
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Hby—1)2.(by— 1) = (by = 1)%.(b2— 1)} @ e3 A eg
+3{(b1—1)%.(b3—1)— (b3 —1)%.(l1 - 1)} @ es A ey
+%{(b4 - 1)2 . (bl - 1) - (b] - 1)2 . (b4 - 1)} ® €2 A €3 (394)
+3{(b2=1)2.(ba—1) = (b4 —1)%. (b — 1)} @ e1 A €3
+3{(ba—1)%.(bs—1)— (b3 —1)*.(bsy— 1)} R e1 Ae2

+3{(bs = 1)2. (b2 = 1) = (b2 —1)*. (b3 — 1)} ® e1 A &4

In order to get an inverse image of (3.94) in P2®¢ P;, we consider the following element
in P%

2e2(b1 —1)oeg
e(br—1)~ef(ba—1)+[er(ba—1)—ez(by —1))? = —2e; (by — 1) o€

—2e;(bg —1)oex(by — 1)
Hence the expression
2l =1 = (b= )+ (ex (b2 = ) = ea (b = 1))
makes sense. Moreover, this term
SldGi =1 =l (b= 1) + [ Bl ®esnes

is an inverse image of 2{(b2 - 1)?.(b1 — 1) — (b1 — 1)2.(b2 - 1)} ® e3 A eg in P2 Qg P,

under the homomorphism P2 @g P, — RG? ®¢ P;.

Similar considerations for the first tensor factors of the remaining terms in (3.94) imply

that the following is inverse image of (3.94) in P2 ®g P,
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Hed(h-1)-e2(b2-1)+[}})}®esNnes
+i{ef(bs—1)—ef(br—1)+[1}:} @ ez Aey

+i{ef(bi—1)—el(ba—1)+[]%} Qe Ae3

(3.95)
+3{ef(ba—1)—ef(b2—1)+[15s} @e1Aes
+3{ef(bs~1)—ef(bsa—1)+[1]s} @ e1 ez
+3{ed(ba— 1) —ef(ba3—-1)+[13} ®er1ney

After applying the homomorphism P? ®g P, — P? ®¢ P; to (3.95), we get
3 B1(bs = 1)+ [ RBslba = D) + [BBp-(b1 — 1)} ® &4
=3 {0 %-(ba= D)+ [Bg(bs = 1)+ [Vda-(b2 - 1)} @ & (3.96)

+3{[ .01 = 1) = [1a.(bs = 1) = [ 1%1.(bs— 1)} @ ez

F3{{Va(ba— D+ [34:(01 = 1) = [15-(ba = 1)} ® €3
In order to get an inverse image of (3.96), in P ® M ®g P;, we consider the element

([l]21 ®[]21)-(b3 = 1) = [ Ja1b3 ® [ Ja1bs — [ ]21 ® [ Jaa.
By writing b3 = (b3 — 1) + 1 and expanding we get

b3 — 1 b3 —1
()21 ® [ Jar)-(bs — 1) = Uas(be = )8 L8 =) . (397)

[J21(b3 = 1) ® [Jo1 + [ J21 ® [ J21 (b3 — 1)
On the other hand the element

[Jaa(bs = 1) ® [ ]21 = [ Jo1 ® [ Ja1(b3 — 1)

belongs to the kernel of the map (P ® M — P?). By adding this element to (3.97),
we obtain
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[J21(b3 = 1) ® [ J2a(b3 = 1) + 2[ J21(b3 = 1) & [ ]an,

here we note that the coefficient of the second term is divisible by 2.

We do the same thing for ([ J13®[ J13).(b2—1) and ([ ]32®[ J32).(b1 = 1). The coefficients

of the first term in each one of them is not divisible by 2, so we collect them together

[121(b3 = 1) ® [ Jo1(bs = 1) + [ Jas(b2 — 1) ® [ J13(b2 — 1)

(3.98)
+[ Ja2(b1 — 1) ® [ Ja2(b1 — 1)
By the Jacobi identity, we can write [ J2(by — 1) ® [ Ja2(d1 — 1) as follows.
[Jis(b2 = 1) ® [ J1a(b2 — 1) + [ J1a(b2 = 1) ® [ Ja1(b3 — 1) (3.99)
[Jo1(bs = 1) ® [ l1a(bz = 1) + [ J21(b3 = 1) ® [ Jar (b3 — 1)
By substituting (3.99) into (3.98), we obtain
2[ J21(b3 = 1) ® [ Ja1(bs — 1) + 2[ J13(b2 — 1) ® [ ]aa(b2 — 1) (3.100)

[ J1a(bz = 1) @[ ]21(bz — 1) + [ J21(b3 = 1) @ [ J13(b2 — 1)

Again the element [ J33(b2 — 1) ® [ ]21(b3 — 1) — [ ]21(b3 — 1) ® [ J13(b2 — 1) belongs to
the kernel of the map (M ® M — M?), and when we added to (3.100), we get terms

with coefficients divisible by 2, namely

2[J21(b3 = 1) ® [ J21(b3 — 1) + 2[ J13(b2 — 1) ® [ J21(b3 - 1)

+2( Jia(bs — 1) ® [ J1a(bz — 1)
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100

Asa

[(CINE

result of our previous discussion the expression

3\

[ (a1 @ [Ja1)-(55 = 1) + (10 ® [ Jia)-(ba = 1)+ ([ Joz ® [ Ia2)-(b1 = 1)

[Jor(bs — 1) ® [ o1 = [ 121 ® [ Jas(b3 - 1)

[ha(be—1)®[ i3~ [113® [ hia(b2 — 1) e (3.101)

[Ja2(b1 = 1) @[ Jaz = [ ]a2 ® [ Ja2(b1 — 1)

[ ha(bz — 1) ®[Ja1(bs — 1) = [ J21(b3 = 1) ® [ 13(b2 = 1)

makes sense. Moreover, (3.101) is an inverse image of

S {UBa(bs — 1)+ [Ba(ba = 1) + [ Bt - 1)

under the homomorphism P M — P2,

Similar consideration for the first tensor factors of the remaining these terms in (3.96)

then

imply that

[ (U1s2® [ 1o2)-(bs = 1) = ([ 24 ® [T24)-G50 — 1) — ({ 1o @ [ Jaa)-(bz = 1)

—[Ja2(ba = 1) ® [ ]a2 + [ Ja2 ® [ Jaa(bs — 1)

23 b3 = 1) © [ a4 — 124 © a3 = 1)
~[lasbz = 1) @[ Jaz+ [ Ja3® [ Jaa(bz — 1)
‘ [ Jaz(bs = 1) ® [ a2(ba — 1) = [ Js2(ba = 1) ® [ Jaz(b3 — 1)
' ([Ja3®[l43)-(b1 = 1) = ([ 13 ® [ 113)-(bs = 1) = ([ a1 ® [ Jaa).(b3 ~ 1)
[l43(b1 = 1) ® [ 4z = [ Jas ® [ las(b1 — 1)
"'%4 [l13(ba = 1) @[ 13 = [ 13 ® [1a(bs = 1)

—[Jar(bs = 1) ® [ Ja1 + [ Ja1 ® [ ]aa(b3 — 1)

—[laa(b1 = 1) ® [ ]31(ba — 1) + [ 131(bs — 1) ® [ Jaz(br — 1)

100
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[ (@[ tbr= D+ (28 (1)1~ )= (I @ [ 1) D) |
[la(ba =) ® [l = [ ® [Jaa(b2 — 1)
+% 1 —[J2a(br = 1) ® [J24 + [ J24 ® [ J2a(b1 - 1)  ®es
—[l21(ba = 1) ® [Jo1 + [ ]o1 ® [ J2a (b4 - 1)
‘ [Jaz(b1 ~ 1) ® [ laa(b2 — 1) — [ Jaa(bz — 1) ® [ Jaz(b1 — 1)

is a well-defined element of P® M ®¢ P; and that it is an inverse image of (3.96) under

the homomorphism P ® M ® P, — P? ®¢ P;.

After applying the homomorphism P M ®g P, — P ® M ®c RG, (here we identify

P® M ®c RG with P ® M), we obtain
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[J21(bs = 1) ® [J21 = [ a1 ® [ Jar (b3 - 1)

J —[ha(b2 = 1) @[ 13+ [ J1s ® [ Jra(b2 - 1)

+[ Ja2(b1 = 1) ® [ Jsz — [ Jaz ® [ Ja2(b1 — 1)

|+ J1a(b2 = 1) ®{ Jar(bs = 1) = [ Jo1(ba — 1) ® [ J1a(b2 — 1) |

( —[132(bs — 1) ® [ ]z + [ ]32 ® [ ]a2(ba — 1) \

 (bs — 1)

+[J24(b3 = 1) ® [ ]2a = [ 124 ® [ ]24(b3 — 1)
14 , (by - 1)
—[Jaz(b2 = 1) ® [Jaz + [ Jaz ® [ Jas(bz — 1)

{ —[J2a(bs = 1) ® [ ]2(bs — 1) + [ ]32(bs — 1) ® [ Ja2(bz — 1) )

f [las(br — 1) @[ Jas — [ Jaa ® [ Jaa(b1 — 1)

[T

+ ia(ba = 1)® [ iz = [ 13 ® [ J13(bs — 1)
+ ¢ q (b2 - 1)
—[Jaa(bs = 1)® [ ]aa +{ Jar ® [ Jar (b3 — 1)
| +H[ 14301 = 1)@ []13(ba = 1) = [ ]13(ba = 1) ® [ ]aa(br — 1) |
X 1

[Jaa(bz = 1)@ [Jaa = [Jaa ® [ Jaa(b2 = 1)
N ~[loa(br = 1)@ [ Joa + [ J2a ® [ ]24(b1 — 1) (55 - 1)
~[labs—1)®[laa+[]21®[Ja1(ba - 1)

‘ —[J2a(br = 1) @ [ Jaa(b2 — 1) + [ Jar(b2 — 1) ® [ ]24(b1 — 1) )

(3.102)

The inverse image of (3.102), in M2M @¢ RG (again we identify M2M ®¢ RG with

M?2M) is
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+([ Ja(b2 — 1), [ J21 (b3 - 1) ]
{ ~[[1a2(bs — 1), [132 ] + [ J24(b3 — 1),[J2a ] = [[Jaa(b2 = 1),[ a3 ] }

+ (bl - 1)
~[[ J2a(b3 = 1), [ Ja2(bs — 1) ]

N ([Jaa(b1 = 1), [Jas ] + ([ J1a(ba — 1), [}13 ] = [[Jar(b3 = 1), []ar ] }(bz 1
+{[ Jas(b1 = 1), [ J13(ba = 1) ]

N { [[Jaa(b2 — 1), [Jar ] = [[J2a(b1 = 1),[]24 ] = [[J22(ba = 1), [J21 ] }
=[[ J2a(b1 = 1), [ Jaa(b2 = 1) ]

| [ (B = 1), [ ] = [thi(be = 1), Cha ]+ [[sabr = 1), LJsa } (bs— 1)

=

(bs - 1)

J
(3.103)

Our aim is to write

{ [[J2a(bz = 1),[J21 ] = [ hha(bz = 1), [J13 ] + [[132(b1 — 1),{]a2 ] }(b 1)
+[[ J13(b2 = 1), [ Jar (b3 = 1) ]

N —[[1a2(ba = 1),[Ja2 ] + [[J24(b3 = 1), [J24 ] = [[Ja3(b2 — 1), []as ] (b= 1)
—([ Joa(b3 = 1), [ J32(bs = 1) ]

([Jaa(br — 1), [Jas ] + [[T1a(ba = 1), []13 ] = [[Jas(bs = 1),[]a1 ] w
+¢ (b2 —1)
\ +([ Jas(by = 1), [ J13(ba = 1) ] )
[ 0062 = 1)U ] = [t = 100 1= (s = Dl ] |

—([ J2a(br = 1), [ Jaz(b2 — 1) ]

+ < (b3 —1)

4

as a linear combination of terms with coefficients divisible by 2.

Notice that
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([J22(8s — 1), [Ja1)-(6 — 1) 2([ J21(b3 — 1), [J21(bg — 1)]
21(03 s 121.(04 =3 +l[]a1(bs — 1)(bs — 1),[]21(bs — 1)] (3.104)

=[[121(bq = 1), []21])-(b3 — 1)
—[[]21(b4 = 1)(b3 — 1),[]21(bs — 1)]
By substituting this, and similar expressions for the other corresponding terms

(=[[ha(b2 = 1),[ )13 ]-(bs = 1) + [ J13(bg — 1), [J13)-(bz = 1) - - - -+ etc) into (3.103) we get
that this element is the sum of
2{[J21(b3 = 1), [J21(ba = 1)] + 2[[ Ja1(ba — 1), [Jaa(b2 — 1))
1
3\ +2lJs2(br = 1), [Ja2(ba = 1)] + 2{[ Jaz(bs — 1), [Jaz(b2 — 1)] (3.105)

+2[[1aa(b1 = 1), {laa(bz = 1)] + 2[[ a1 (b2 — 1), [Jar (b3 — 1)]

| [[J21(bs — 1)(84 = 1), [J21(ba — 1)] = [[]21(ba — 1)(b3 — 1), {]21(b3 — 1)) ‘
+[[1a1(b2 — 1)(bs — 1), [J31(b2 = 1)] = [[J31(b4 — 1)(b2 — 1), []31(b4 — 1)]
+([1a2(br — 1)(bs — 1), [Js2(bs — 1)] = [[J32(ba — 1)(b1 = 1), [Ja2(b1 — 1)]
+[[}42(b1 — 1)(b3 = 1), [la2(b1 = 1)] = [[la2(bs ~ 1)(b1 ~ 1), [la2(bs - 1)]
+{[Jas(Br = 1)(ba = 1), [Jas(b2 = 1)] = [[Jaa(b2 = 1)(b1 = 1), [Jaa(br — 1)]
H{[laa(bz — 1)(bs = 1), [Jaa(b3 — 1)] = [[14a(b3 — 1)(b2 — 1), [laa (b2 — 1)]

+{[Tas(b2 = 1), [Jar(bs — 1)].(ba - 1)

[[l42(b3 = 1), []s2(bg — 1)].(b1 - 1)

~[[Jas(br = 1), {]a1(ba — 1)].(b2 — 1)

+{[Ja2(br — 1), (Jar(bz — 1)]-(b3 - 1)

(SRR

(3.106)

Our next goal is to write 2 times the element (3.106), as a linear combination of terms
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with coefficients divisible by 2. In order to do that we consider the following terms

[[l1a(bz — 1), [T21(bs = 1)].(bs — 1) = [[Jsa(ba — 1)(bx — 1), [Jsa(b1 — 1)]
+{[Jaz(bs — 1), [Js2(ba = 1)]-(b1 = 1) + [[Jaa(b1 = 1)(b2 — 1), [Jaa(b2 — 1)]
~[[1a3(b1 = 1), [J13(bs — 1)].(b2 = 1) + [[]ax(ba — 1)(b3 — 1), Jas (b3 — 1)]
H[Jaz(br = 1), [Jaar(b2 = 1)].(b3 — 1) + [[J2a(b3 — 1)(bs — 1), []2a(ba — 1)]

from these terms we obtain

2([T1a(bz = 1), [J21(bs = 1)(bs — 1)] + [[J13(b2 — 1)(bs — 1), []21(b3 — 1)(bs — 1)]
=[(J1a(bz = 1)(bs = 1), [l1a(bz — 1)] = [[Ja1(bs — 1)(ba — 1), [Ja1(b3 — 1)]
+2[[la2(bs — 1), [Js2(ba = 1)(b1 = 1)] + [Jaz(bs — 1)(b1 — 1), [Jaz(bs — 1)(bs — 1)]
+([[Jaz(bs — 1)(b1 — 1), [Jaz(bs — 1)] + [[Js2(br — 1)(bs — 1), []a2(bs — 1)]
+2[[Jaa(br — 1), [Ja1(b2 — 1)(bs — 1)] = [[Jas(bs — 1)(bz — 1), [Ja1(bz — 1)(ba — 1)]
+[[Jas(bz — 1)(b1 = 1), [Jas(br — 1)] + [[Jaa(b2 — 1)(ba — 1), [Ja1(ba — 1))
+2[[l42(b1 — 1), [Jaa(b2 = 1)(b3 — 1)] + [[Ja2(b1 — 1)(b3 = 1), [Jas(bs — 1)(bz — 1)]

+[[Ja2(b1 = 1)(ba — 1), [Jaa(bs — 1)] + [[Jaa(b3 — 1)(b2 — 1), [Jaa(b2 — 1)]
(3.107)
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By substituting (3.107) into (3.106), we get

4 '

2[[Tas(b2 = 1), [J21(b3 — 1)(ba = 1)] + 2[[ Ja2(bs — 1), []s2(bs — 1)(b1 — 1)]
=2[[Jaa(br — 1), [J1(b2 — 1)(ba — 1)] + 2{[Jaz(bs — 1), [Jas(b2 — 1)(b3 — 1)]
+2[[J21(63 — 1), []21(b3 — 1)(ba — 1)] + 2[[Ja2(bs — 1)(b4 — 1), []32(bs — 1)]

+2[[Jaz2(b1 — 1)(bs = 1), [Jaz(br - 1)]
+[{J13(b2 = 1)(bs = 1), []21(bs — 1)(bg — 1)]
+[[laz(bs — 1)(b1 — 1), [Jaz(bs — 1)(ba — 1)]
~[[Jaa(br — 1)(b2 — 1), [Js2(b2 — 1)(ba — 1)]

+[[Jaz2(bs — 1)(b3 — 1),{]aa(bs — 1)(b2 - 1)]

N -

(3?108)

Using the Jacobi identity it is easy to see that the sum of the last four terms in (3.108),

is equal to zero. Therefore (3.108) becomes

([T1a(b2 = 1), [J21(bs = 1)(ba = 1)} + ([ Ja2(b3 — 1), [J32(bs = 1)(b1 — 1)]
—[[Jas(br = 1), [Ja1(bz = 1)(bs = 1)] + [[Jaz2(b1 — 1), [Jar(b2 — 1)(b3 — 1)]
+{[J21(bs — 1), [J21(bs = 1)(bs = 1)] + [ ]a2(b1 — 1)(bg — 1), []32(b4 — 1)}

+[[Jaz2(br — 1)(b3 — 1), [Jaz(bs — 1)]

and this can be rearranged as

—[[)a2(b1 = 1), [J21(b3 = 1)(bg — 1) + [[Ja3(b2 — 1), [Ja2(b1 — 1)(bs — 1)]]

+[Jaz(b1 = 1), [J21(b3 — 1)(ba — 1)] ~ [[Jaa(b1 — 1),[]31(b2 — 1)(bs — 1)]

(3.109)
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Finally from (3.105) and (3.109), we obtain

7 3

([121(b3 = 1), [J21(ba = 1)] + [[Ja1(ba ~ 1), []as(b2 — 1)]
+ [[Js2(b1 = 1), [Js2(ba = 1)] + [[Taz(b3 — 1), [Jaz(bs — 1)]
) + [[Tas(br = 1), [las(b2 = )] + [[1a1(d2 — 1), [Jas(bs — 1)} (-
— [[Js2(br = 1), [J21(bs = 1)(bs — 1) + [[Jaa(b2 — 1), []az(b1 — 1)(ba — 1)]

|+ ((Jaa(br = 1), [Jaa(bs — 1)(ba — 1)] = [[Jas(br = 1), [Jaa(b2 = 1)(ba — 1)] |
(3.110)

and the image of this element in MAM ®¢ R is the image of 1 ® e; A ez A ez A eg un-
der the connecting homomorphism H4(G,Z2) — Ho(G, MAM). On the other hand
tHo(G, MAM) = t,Ho(G, F,,AF.,), but tHo(G, F,,AF.,) is an elementary abelian p-
group, this means that the torsion subgroups of both Ho(G, MAM)and Ho(G, F.,AF,,)
are the same. Therefore the theorem follows by applying the isomorphism Ho(G, F.,AF,,) —

F"|[F", F]..

We close this subsection by proving that our results for p = 2 are consistent

with Gupta’s result.

Now, we start with Gupta’s element, and we try to convert it to our element, for the

case p = 2.

Gupta’s element is

[l2i1, 2ils 251, 271)] [[250s 2i)s [0, 23]
[l zia), 251, 231]] [l i), 257, 23]

(2605 2al,[271, 23Y] [[260r 235 [o7 s 23]
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For simplicity, we consider

[le1, 2al, [a5", 23] [[oa, @), 277, 23]
[l21, 2a), 237, 5] [le, zal, 27, =37

[[31, :174],[3:'2'1, 351]] [[‘E?’ 33]1[‘”;1’ 3:1]}

For b;,b; € G, we have

[z, z;].(bibj)™Y = [z, z;]@=) 7 z; iz, z5)(zi ;)"

= T zj.z"-—l z;l

-1 -1
i 2%

[z
this means that (3.111) is equal the following
[[zl, z2), [z3, $4](“3’“’-1] [[xg, z4), [21, xg](’l’ﬂ)'ll

[[z1, z3), [4, :cz](”‘”)_l] [[x4, z2), 71, 973](”’”3)_1]

[[xla z4], [22, $3](I213)—l] [[:52, z3), [21, $4](’:1”4)—1]

z; mjzglxi'l

(3.111)

Using the fact that [[ s bl ,]”_l] =[[,1%,[,]] modulo [F", F], and applying the isomor-

phism

F'[[F", F] — FAFy @6 Z
we obtain the following

[[)12b3b4, [134] + [[]34b1b2, [ )12]
+ ([ ]13bab2, [ Jaz] + ([ 1a2b1b3, [ )13]

+ [[ 1146203, [123] + [[]23b164, [ ]14]
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By writing b; = (b; - 1)+ 1 (¢ = 1,2,3,4), Gupta’s element becomes as the following

[[14s, []12(b3 — 1)(bs = 1)] + [[ 143, [Jr2(bs — 1)] + [[azs [Jr2(bs — 1)]
+[[J21, {Jsa(bs = 1)(b2 = 1)] + [[J21, [Jaa(br — 1)) + [[J21, []34(b2 — 1)]
+{[l24, [113(bz — 1)(bs — 1)] + [[J24, [ 1a(bz = 1)] + [[]24, []13(b4 — 1)]
+[[ 113, [J2a(b1 = 1)(b3 — 1)] + [[}13, []24(b1 = 1)] + [[J13, [J24(b3 — 1)]
+[{Js2, [Tra(bz = 1)(b3 = 1)} + [[]s2, [Ja(bz — 1)] + [[Jaz, [}14(b3 - 1)]

+[[}1a, [Ja2(ba = 1)(b1 = 1)] + [[]14 [Ja2(bs = )] + [[]14, [Ja2(62 - 1)]

(3.112)

Using the Jacobi identity it is easy to see that (3.112), becomes as follows

[[lzr1r, [arar(b2r = 1)(b3r = )] + [[J2r1r, [Jar1r(b2r — 1)(bar — 1)]
X, +[{J2rtrs [Jirar(bar = 1]+ [[Jzr1r, [Jar1r(bar — 1)]
+([)2r175 [J3r2r(bar = )] + [ 12717, [J2rar(bar — 1)}
+[[13, (l21(bs — 1)(b3 — 1)] + {113, [l1a(bz2 — 1)(b3 — 1)] + [[13, [J22(ba — 1)]
+{(h3, [T1a(b2 — 1)} + [[]13, [J2s(bs — 1)] + [[]13, [ Jaa(bz — 1)]
+[(24, (l12(b3 = 1)(ba = 1)] + [(J24, [J2(br = 1)(bs = 1)] + [[J24, [J12(b3 = 1)]

+{[ 1245 [123(b1 = 1)] + [[ 124, [J14(b3 = 1)] + [[]24, [ 14a(b1 — 1))

—

(3.113)

where J is the subgroup of S4 generated by ((1234)).

For the absence of the space we put

([121(63 = 1), [Jaa(b2 = 1)(b3 — 1)]7 = [[Jar1+(b3r — 1), [Jar1r(b2r — 1)(b3r — 1)]

and we mean the same thing for the similar cases. Using the fact that the action is

trivial, we can rewrite (3.113) as follows
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[[121(bs = 1), [Jas(b2 = 1)(b3 = 1)}7 + [[J21(bs — 1), [Jas (b2 — D)7
+{[121(b4 — 1), [J13(b2 = 1)(b4 = 1)]7 + [[]21(ba — 1), []ra(b2 — 1)]7
> (1) +{[J21(b3 = 1), {Jas(bar = 1)]7 + [[J21(b3 — 1), [Jaa]7
e H{2a(8a = 1), [ra(ba = Dlr + [[Jaa(ba = 1), [halr
+[[]21(bs — 1), [J23(bs = D)7 + [[J21(ba = 1), []a3]7
+{[J21(b3 — 1), [la2(bs — D)7 + [[Ja1(bs — 1), [Jac) 7

+[[]13(ba = 1), [J12(bs — 1)(bs = 1)] + [[]13(ba — 1), [Jr2(bs — 1)]
+[[J13(b2 — 1), [Jar(bs ~ 1)(b2 — 1)] + [ ]aa(b2 — 1), [Jar(bs — 1)]
+[J13(bs — 1), [lr2(bs — 1)] + [[]13(ba = 1), [ln2] + [[J1a(b2 — 1), [Jar(b2 — 1)]
+[[h1s(b2 = 1), [Jar] + [[]13(ba — 1), [Js2(ba — 1)] + [[]a3(ba — 1), []32]
+([ra(b2 = 1), [Jas(bz = 1)] + [[Jra(b2 — 1), []as]
+{[124(b3 — 1), [J21(ba — 1)(b3 — 1)] + [[J24(b3 = 1), [J21(bs — 1)]
+[[Joa(br = 1), [J32(ba = 1)(b1 = 1)] + [[J24(b2 — 1), [Ja2(bs — 1)]
+[{J2a(bs = 1), [Ja1(bs — 1)] + [[J2a(bs — 1), {]2] + [[J24(b1 = 1), []s2(b1 = 1)]
H{{l24(b1 = 1), [Js2] + [[124(bs — 1), [Jar(b3 = 1)] + [[J2a(b3 = 1), []aa]

+[{J2a(br = 1), [Jaa(b1 — 1)) + [[J24(b1 — 1), []a4]

(3.114)
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By rewriting (3.114) we obtain the following decomposition,

(

[021(bs — 1), [Jax(b2 = 1)(bs = 1)] + [[13(b2 — 1), [Jaa(bs — 1)(b2 — 1)] ‘
+[{Ja1(bs — 1), [lua(b2 — 1)(ba = 1)] + [[41(b2 = 1), [Jaa(bz — 1)(ba — 1)]
+[(Js2(ba — 1), [J21(b3 — 1)(ba — 1)] + [[J24(63 — 1), {J21(b4 — 1)(b3 - 1)]
H{[la1(bs — 1), {liz2(bs — 1)(b3 — 1)] + [[13(ba — 1), [Ja2(bs — 1)(bs — 1)]
+[[J43(b1 = 1), [Jaa(ba — 1)(b1 — 1)] + [[43(b2 — 1), [Jar(ba — 1)(b2 — 1)]

| Hls2(01 = 1), [Jaa(b2 = 1)(b1 = 1)] + [[J2(bx — 1), [Ja2(ba — 1)(ba — 1)] |

( 3\

[[121(bs = 1), [Jaa(bs = 1)] + [[Jza(bs — 1), [Jaa] + [[Jaa(b3 — 1), []1]
+[[J21(ba — 1), [J13(ba = 1)] + [[J21(8a — 1), (]3] + [[Jra(ba — 1), [}12]
+[[J21(bs — 1), [1a2(bs ~ 1)] + [[]21(bs — 1), []az] + [[142(b3 — 1), ]z1]
+[{J21(ba = 1), [}23(bs — 1)] + [[]21(ba = 1), [J2a] + [[Js2(bs = 1), []21]
Hlhaa(bs — 1), [zolby — D]+ [aa(b1 = 1), Uzal + [Tsa(b1 = 1), [Lea
N +[[Jaa(b2 = 1), []s1(b2 = 1)] + [[Jas(b2 = 1), [Is1] + [[Ja3(b2 ~ 1), [ ]3] |
+[[laa(br — 1), [J24(br = 1)] + [[]43(b1 = 1), [Toa] + [[]24(b1 — 1), []a4]
+[[Jaa(bz = 1), [Jaa(b2 = 1)] + [[1a3(b2 = 1), [laa] + [[Jar(b2 = 1), []aa]
+[[Js2(br = 1), [laz(br — 1)] + [[J32(b1 — 1), [Ja2] + [[J2a(b2 — 1), []s2]
+{{132(ba = 1), [J31(ba = 1)] + [[]a2(ba — 1), {]a1] + [[]13(ba — 1), {]a2]
+{[Jax(bs = 1), [a2(bs — 1)] + [[Jar(b3 — 1), [Jaz] + [[124(b3 — 1), []a1]

+([J13(b2 = 1), [laa(b2 = 1)] + [[Ja3(b2 = 1), [Jaa] + [[Jas(b2 — 1), []=1] |
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[ {5 = 1), JeaCbz = D] + [tz = D, LIsaCb2 = 1] |
+[(Jas(br — 1), [Tea(Ba — 1)] + [[J1a(bs — 1), [Js2(ba — 1)]
+[[Js2(b1 — 1), [la2(bs = 1)] + [[]24(b3 — 1), []21(63 — 1)]
+[[Js2(ba — 1), [J21(ba — 1)] + [[]24(b1 — 1), []s2(bs — 1)]
+[{J21(ba = 1), []13(b2 = 1)] + [[Jaa(b2 = 1), []a1(ba — 1)]
H[Js2(ba — 1), [J21(bs — 1)] + [[J2(b1 — 1), [Jas(bs — 1)] |
+{[Ja1(bz = 1), [Ja1(ba = 1)] + [[Jaa(bs — 1), []12(bs — 1)]
+{[lar(bs = 1), [Jr2(bs = 1)] + [[Jar (b2 — 1), []aa(b2 - 1)]
+[[T13(ba = 1), [T12(b3 = 1)] + [[J1a(bz — 1), [Jar(b3 — 1)]
+[[J13(ba = 1), [T12(ba = 1)] + [[J13(b2 = 1), [Jas(b2 — 1)]
+[[J24(bs — 1), [Ja1(bs — 1)1 + [[J2a(br — 1), [Js2(b2 — 1)]

[ +{[J2a(bs = 1), [Jas(bs = 1)] + [[J2a(b1 = 1), []34(b2 = 1)] |

+ 9

Again, using the fact that the action is trivial, we can easily see that the middle
summand is zero. On the other hand from the first and the last summand we obtain

the follows
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Mot = 1. [eaCbs = 1)k = 1))+ [sab ~ 1), ot = Db = 1] |
+[[J24(b1 ~ 1), [Taa(b2 ~ 1)(ba — 1)] + [[J24(b1 = 1), []s2(b1 — 1)(bs - 1)]
+{{Jas(br — 1), [J2a(ba — 1)(b1 — 1)] + [[Ja(b2 = 1), []12(bs — 1)(ba — 1)]
+[[Jas(bz — 1), {Js1(ba — 1)(b2 = 1)] + [[Jaa(b2 — 1), []a1(ba = 1)(b3 — 1)]

+[[J23(br — 1), [Jaa(b2 = 1)] + [[Jaa(bs — 1), [J32(b1 — 1)]
+{[la1(bs = 1), []23(ba = 1)] + [[]24(b3 — 1), [Jas (b3 — 1)]
+[[Ja2(ba = 1), [1a1(b2 = 1)] + [[Jar(b2 — 1), [Jaa(b2 — 1)]
+[[Tar(b2 = 1), [J31(ba = )] + [[T13(ba — 1), []12(b4 — 1)]
+{[la1(bs = 1), [12(b3 — D] + [[]13(ba — 1), []12(b3 — 1))
+{[a1(bz — 1), [la2(bs — 1)] + [[]13(b2 — 1), {]as(b2 — 1))
+{[J21(bs = 1), [T13(b2 = 1)] + [[Jas(bz — 1), [Jsa(bs — 1)]
+[1s2(bs = 1), [T21(b3 = 1)] + [[Js2(b1 — 1), [Jaa(br — 1)]
H(Ja1(bs — 1), [Th2(ba = 1)] + [[Jra(b2 — 1), [Jaa(bs = 1)]

+[[J24(b3 — 1), [J21(b4 = 1)) + [[J24(b2 — 1), [Jaa(b1 — 1)]

b (3.115)
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From (3.115), we obtain

N

| [[123(b1 — 1), [J12(bs — 1)(ba — 1)] + [[J24(b1 — 1), {J12(b3 — 1)(ba — 1)]
+[[143(b1 = 1), [T1a(b2 — 1)(bs = 1)] + [[]4a(b2 — 1), [Js2(b1 — 1)(ba — 1)]
+{[J23(b1 — 1), [J21(8a — 1)] + [[Ja1(ba — 1), [Ja3(b2 — 1)]
+[[Jar(bs = 1), [la3(b2 — 1)] + [[Jas(b2 — 1), []as(bs — 1)]

) +{[Is2(b1 — 1), [Jaz(br — 1)] + [[Jas(b1 — 1), []r2(bs — 1)] r (3.116)
+[(Jaz2(bs — 1), [Jar(b2 — 1)] + [[J24(bs — 1), [J21(ba — 1))
+{[Jaz(b1 = 1), [Ja1(ba = 1)] + [[J24(b1 = 1), [1aa(b1 — 1)]
+([Is1(b2 = 1), [Js2(ba — 1)] + [[Ja2(ba — 1), []21(bs — 1)}

+{[la1(b3 — 1), [ J12(ba = )] + [[]13(b2 — 1), [Jar(b3 — 1)]

\

We obtain from (3.116), the following

3\

([J23(bx — 1), [fr2(bs — 1)(ba — 1)] + [[J24(b2 — 1), []r2(bs — 1)(b4 — 1)]
+[[laa(br — 1), [J1a(b2 = 1)(ba — 1)] + [[Jaa(bz — 1), [Ja2(b1 — 1)(ba — 1)]
+[[121(b3 = 1), [J21(ba — 1)] + [[Jaa(br — 1), [Jas(b2 — 1)]
+({la2(b1 = 1), [Js2(ba = 1)] + [[Jaz(bs — 1), [1a2(b1 — 1)]
+([Ja1(b2 = 1), [Jaa(br = 1)] + [[J13(b2 = 1), [Jaa(b3 - 1)]

+{[la2(b1 = 1), [Jaa(b3 = 1)) + [[Jaa(b3 — 1), [12(bs — 1)] J

and this gives

[[123(61 = 1), [Ja2(bs ~ 1)(ba = 1)] + [[]24(b1 = 1), []12(bs — 1)(b4 — 1)]
+[[Jas(bs — 1), [l13(b2 — 1)(ba = 1)] + [[Jaa(b2 — 1), []s2(br — 1)(bs — 1)]
+[{121(bs = 1), [J21(bs = 1)] + [[l4a(br — 1), [Jaa(b2 — 1)]
+[{J2(b1 — 1), [Js2(ba = 1)] + [[142(b3 — 1), [Jaz(b2 — 1)]

+([1a1(ba = 1), [la1(bz = 1)] + [[Jas(bz = 1), [Jas(b3 — 1)]

which is exactly (3.110), [i.e. our element when p = 2].
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3.2.3 Applications

We conclude this section with an interesting application of the main result.

\J

First we consider the following quotient
F/lv(F'), F) (3.117)

where F as before and ¢ > 2 is a positive integer. For ¢ = 2 and ¢ = 3, (3.117) coincides

"

with F/[y.(F'), F]JF", the object of study in this thesis, and for ¢ > 4 the latter is a
homomorphic image of the former. In fact, (3.117) is the free-by—(nilpotent of class

¢ — 1)-by-abelian group, and we have an exact sequence

1 — 1 F)/[1(F'), F] — F[l(F'),F] — F/7(F) — 1. (3.118)

While F/.(F') is torsion-free, elements of finite order do occur in y.(F')/[v.(F"), F],
see [11], [16], [3]. In the case where ¢ = p, p a prime, Stéhr proved in [11] that there is
an isomorphism

t (v(F')/ 19 F'), F1) & Hy(F/F', Zy),

i.e. the elements of finite order form an elementary abelain p—subgroup of rank C¢ of
the centre of (3.118) where ¢ = p. It turns out that our main theorem can be exploited
to obtain generators for this torsion subgroup in terms of generators of F. Recall that

by Proposition 2.4.9 there is an isomorphism

" e

1o(F)F" [[yp(F'), FIF" % MP(F,) ®c Z,
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and, by Proposition 2.4.8

7p(FI)/[7p(FI), F)= ‘CP(F;b) ®c Z.

We shall exhibit a homomorphism
MP(F,)®c Z — LP(F,,) ®c 2

which maps the torsion subgroup of M?(F,,) ®g Z isomorphically onto the torsion
subgroup of LP(F,,) ® Z. The key ingredients for this construction are recent results

from [29], which we explain now.
Let A be a Z-free G-module, and let p be a prime.

On the one hand, we have the natural projection homomorphism,
vyt LP(A) — MP(A)

of the p-th free Lie power of A onto the p-th free metabelian Lie power of A. On the

other hand, Bryant and StShr proved in [29] that the map

1
[al’ Az, - 'a'p] h— ;’ (Z [a13a21’9 . 'apT]_ Z [a'29a'l1n - 'apﬂ]> (3-119)
T *

where ay, ---a, € A, and 7 and 7 range over all permutations of {2, ---, p} and {1, 3, -, p},

extends to a G-module homomorphism
¥p : MP(A) — LP(A)

and the composite
MP(A) 2o £p(A) 2 MP(A) (3.120)
amounts to multiplication by (p — 2)! in MP(A) (i.e. ¥p vp = (p— 2)!).
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It should be pointed out that it is by no means obvious that (3.119) is a correctly defined
map, as it involves the coefficient %. The correctness of (3.119), however, follows easily
from a result of Wall, [Lemma 1 on page 677 in [30]], and in [29] Bryant and Stéhr
exhibit an explicit expression of the element on the right hand side of (3.119) as a liner

combination of Lie elements with integer coefficient.
Now let A = F,. Then tensoring (3.120) with Z gives over G,
MP(Fyy) 86 22 L7(Fyy) @6 225 MP(F,,) @6 2,

where the composite ¥, v, ® 1 is also multiplication by (p — 2)!. Since the torsion
subgroups of both M?(F,,) ®¢ Z and L?(F,;) ®c Z are finitely generated elementary
abelian p-groups, it follows that the restriction of ¥, ® 1 to t{(MP(F,,) ® Z ) maps
this torsion subgroup isomorphically onto the torsion subgroup of L?(F.,) ®¢ Z, as

required. Finally, in view of (3.119) we can summarize our discussion as follows

Theorem 3.2.3. Let p be any odd prime. Then the torsion subgroup of F/[v,(F"), F]
is generated by the elements (Wp(Zr,, Zryy Try, Tz, ) ). Where (Wy(Zr,, Zry, Try, 27, )) 28

in Theorem 3.2.1, and % is the composite of the isomorphism

1" Hn

T F)F" [y F'), FIF" — MP(Fy) @6 Z,
the homomorphism %, ® 1 and the isomorphism

LP(F,y) ®c Z —vp(F')/[7,(F'), F).

117



Chapter 4

Further investigation of torsion

in free central extensions

Let G be a group that is given by a free presentation
l1—- N —F —G—1

where F is a free group on z,,- - -, 24, and let 7pn N denote the p"—term of the lower
central series of N. As was already mentioned in chapter one, R. Stohr in [14] has
shown that, if G has no elements of order p and H,(G,Z,) = 0 for all s > 5, then
the torsion subgroup of the central extension F/[ypn(N), F]JN” can be identified with
the fourth homology group of G with coefficients in Z,. Furthermore, for p = 2 and
n = 2, R. Stéhr in [13] obtained a complete description to the torsion subgroup of

F/[74(N), FJN" in the case where G is any group without elements of order 2. He
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obtained the following isomorphism.;

t(F/[14(N), FIN") 2 Hy(G,Z;) ® He(G, Zs) ® Ho(G, Zy).

We start this a chapter with an alternative proof to the first result, which gives a homo-
logical description of the torsion subgroup of F/[ypn(N), FIN ", under the homological

finiteness condition on G that H,(G,Z,) = 0 for all s > 5.

4.1 Description of ¢(F/[y,»(N), F]N") in homological terms

In this section we will assume that the group G has no elements of order p. This enables

us to appeal to Lemma 2.2.5.

We begin this section by one of the main results of [14], which provides us with infor-
mation about torsion elements in F/[y,n(N), F]N ". However, our proof of this result

differs from that in [14].

Theorem 4.1.1, ([14], Theorem 2). Let G be a p-torsion—free group such that

H,(G,Z,) =0 for all s > 5. Then tHo(G, MP"M) = Hy(G,Z,).

In order to give an alternative proof to this result we need some technical results. For

that we need to introduce the following notation.

Let f(z) = 3°; miz* be a polynomial with non-negative integer coefficients. For any
G-module B, we set

FHWG, B) = Heyi(G, B)®™
where Hyy;(G, B)®™ is the direct sum of m; isomorphic copes of Hy4;(G, B).
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For any integer ¢ > 2 we define the Kuz’min polynomials fc(”) by the following recursion ¢,

0 if ¢ # 0,1 mod p,
z? if c=p,
9 = 5
xf(f)l if c¢=1mod p,
zzf(f)p + fep if ¢ =0 mod p with ¢ > p.

Proposition 4.1.2, [Modification of the main result of [20]]. Let K be an RG-module
whose underlying abelian group is a free R-module. Then, for any ¢ > 2 and k£ > 1,

there is an isomorphism

Hi (G, K ® &%) = fPHL(G, K ® Z,).

The following Lemma shows that the non—zero Kuz'min polynomials fc(p) have the
property that the term of lowest degree occurs with coefficient 1. In order to state this
Lemma, we let 0,(n) denote the sum of the base p digits of the natural number n, €,(n)

the number of non-zero base p digits of n, and we put ,(n) = 20,(n) — €5(n) + 1.

Lemma 4.1.3. ([20], section 7). For any n > 2, the term of lowest degree in the

Kuz’min polynomial £ is z%(").

In particular, by Proposition 4.1.2 we have that H(G, K ® AP") is a direct sum of
Hi2(G,K ® Zy) (since 6,(p™) = 20,(p") —€p(p™)+1=2:1-1+41 = 2) and possibly

some higher dimensional homology groups Hyy(G, K ® Zp) with s > 2.
We also need the following result from [14].

Lemma 4.1.4, [[14], Lemma 3.5]. Let K be an R-free G-module such that each
of the homology groups Hi(G,K’), k > 1, has a finite filtration whose quotients are
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isomorphic to sections of some homology groups Hi4,(G,Zp) where s > 3o for some
fixed integer so > 2. Then Hy(G, K ® Z,) has a finite filtration whose quotients are

isomorphic to sections of some homology groups Hi4,(G,Z,) where s > s — 1.
Now we can prove the following observation.

Lemma 4.1.5. Let A be an R-free G-module such that each of the homology groups
Hi(G,A), k > 1, has a finite filtration whose quotients are isomorphic to sections
of some homology groups Hiy,(G,Z,) where s > 2 . Then Hy(G,M™ @ A) has a
finite filtration whose quotients are isomorphic to sections of some homology groups

Hyy4(G,Z,) where t > 4.

Proof. The proof is by induction on n. If n = 1, by theorem 2.2.3, we obtain
H(G,M ® A) & Hp42(G, A)

and by our assumption Hi4+2(G, A) has a finite filtration whose quotients are isomorphic
to sections of some homology groups Hi4+(G, Z,) where t > 4. Thus Hy(G, M ® A) has
a finite filtration whose quotients are isomorphic to sections of some homology groups

Hyy4(G,Z,) where t > 4.

For the induction step we consider the following exact sequence, where A is an R—free
G-module

0—M"QQA— P"@A— P"/M"® A — 0.
From that we get a long exact homology sequence,
— Hp41(G,P"® A) = Hi 1 (G, P /M™"® A) — Hi (G,M"® A) — Hi(G,P"® A) —
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By Lemma 2.2.5, the outside terms are zero for £ > 1. Then we get

Hy(G,M"® A) = Hp i (G, PP /M™Q A), VEk 2 1.
On the other hand P*/M™ ® A has a finite filtration whose quotients are isomorphic
to (MIQ@ A" )® A (i=0,1--.,n—1). Here we have two cases:

(1) If n - i > p, then by Proposition 4.1.2 we get the following isomorphisms.

Hepn(G,Mi@A™iQA) & fPH L (GM®ARZ,)

OHit14s(G M Q@ AR Zp), 8> 2.

IR

By induction Hyy14,(G, M ® A) has a finite filtration whose quotients are isomorphic
to sections of some homology groups Hi414s4+:(G, Zp), where t > 2. Hence by Lemma
414, Hp414.(G, M "TRA® Z,) has a finite filtration whose quotients are isomorphic to

sections of some homology groups Hi41454:(G,Zp), where t > 1.

(2) If n — i < p, then by definition of the Kuz’'min polynomials it is enough to consider
the case n — ¢ = 1, because if 2 < n — i < p, then the Kuz’'min polynomials become

zero polynomials and this shows that Hyy1(G, M'® A ® A) = 0.

Now, if n — ¢ = 1, then by the Reduction Theorem 2.2.2, we obtain

His1 (G, M™ 1@ A® A) X Hiyo(G, M™1 ® A).

Again, by induction, Hi4o(G,M™ ! @ A) has a finite filtration whose quotients are

isomorphic to sections of some homology groups Hyi245(G,Zp), where s > 2.
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In either case we can conclude that Hi(G, M*®A) has a finite filtration whose quotients
are isomorphic to sections of some homology groups Hi44 (G, Z,), where 2o > 4, and

this completes the proof of the Lemma.
Towards achieving our goal in this section, we shall need the following Lemma.
Lemma 4.1.6. The chain complex

0— MP"M 2 po M-t & prt B, APt g

satisfies the hypothesis of the Lemma 3.1.4.

Proof. Lemma 2.2.5, implies That Hi(G, P?") = H(G,P ® M?"~1) = 0. On the
other hand Lemma 6.1 in [2), tells us that M?P"M 2% P M#"-1 24, P is exact (i.e.
ker 84 = imés). For the other conditions, it is sufficient to prove Hi(G, ker §3/imés) = 0

for all £ > 1.
Now the free G-module PP" has a finite filtration
0<MP = Kb, | <KD, ,<.. <K§ <K? =p"

with K}’:I/I(f’" > M*® AP"~i, Therefore to show Hi(G,kerd3/iméby) = 0, it is enough
to show

H(G,M™ @ AP""™) =0 Vk>1, m<p"* -2,

On the other hand, by Proposition 4.1.3, we get

H(G,Mm@ Ar-my = () gyG,M™ @ Z,)

@Hk-}-s(Gv M™Q® Zp)’ $2>2
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By Lemma 4.1.5, Hi4,(G,M™ @ Z,) has a finite filtration whose quotients are iso-
morphic to sections of some homology groups Hiy((G,Zp), where t > 4. By as-
sumption, the homology groups Hy,:(G,Z,) are trivial for all ¥ + ¢ > 5. Hence

Hy(G,M™ @ AP"-™) =0 for all £ > 1.

Now we proceed to the our actual concern in this section, namely, to give an alternative

proof to the main result of [14].

Proof of the Theorem 4.1.1. In view of Corollary 3.1.4, and Lemma 4.1.6, the

complex

0— MP"M 2 pg MP"-1 B prt B, AP,
gives the following exact sequence

0 — Hy(G,AF") — MP"M @ R —P @ MP" 1@ R

On the other hand H3(G,AP") & fBHy(G,Z,) =® Ha4s(G,Z,), s > 2. But by
assumption Hi(G,Z,) = 0 for all k¥ > 5. Thus Hz(G,AP") & Hy(G,Z,), and the exact

sequence turns into
0 — Hy(G,2,) — MP"M @R —P @ M""~1 @ R.
Since P ® MP"~1 ®g R is a free R-module, tHo(G, MP"M) = H,(G, Z,).

This completes the proof of the theorem.
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4.2 Torsion subgroups of (F/[y»(F),F]F") and their de-

scription in terms of generators

Our principal objective in this section will be to obtain results similar to those in section

2 of chapter 3.

Consider the quotient F/[ypn(F"), F)F", where F is a free group on {z1,-+,z4}. This
quotient turns out to be torsion—free when d < 3, and if the rank of F is greater
than 4, then any four of the free generators z,,- - -, z4 generate a rank 4 subgroup of

F/ [7pn(F'), F]F", and hence the rank 4 torsion elements will occur in all higher ranks.

To be more explicit, we illustrate the following case: if p = 2, and n = 2, then as a

consequence of the main result of [13] we have

"

t(F/[ya(F'), FIF") & Hy(F/F',22) ® Ho(F|F ,Z4) ® Hy(F/F',Z).

From that we do at least have the following

1. F/[y52(F'), F]F" is torsion-free for d < 3.
2. If d = 4 or 5, then t(F/[yp2(F"), F]F") = Hy(F/F',Z,).

3. f d > 5, then any 4 of the free generators z,,- -, x4 generate a rank 4 subgroup

of F/[v4(F"), F]F", hence the rank 4 torsion elements appear in all higher ranks.

We return to the general case. As an obvious consequence of the proof of theorem

M

4.1.1, one can get torsion elements in MP"M ®g R & ypu(F')F" /[ypn(F"), FIF",
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where the second term is the kernel of [F/[y,n(F), F]JF" — F/ypn(F')F"]. In this
section we describe these torsion elements in group theoretic terms, where p is any
prime and n > 1. Moreover, if d = 4, then we give a complete description of all torsion
elements in F/[y,n(F"), F]F", otherwise we describe just rank 4 torsion elements in

this subgroup. The motivation of this investigation came from [14].

In order to state the main result of this section we need to introduce the following ele-
ments Wyn (2, , T, T5y, Tr, ) Where these elements are obtained from Wy(z,,, Zry, Try, T, )
by replacing p by p™ (in commutators and coefficients), p is odd prime. Also we need

Wan(Zry, Trps Trgy Ty ), where Won(zy,, 5y, Tryy &ry) =
7 - 3 61
[[$13$71 sza"n]’ ["L'Tzwnxn]ia [wT2$Tl ]j’ [:E,—,:CT, xTa]k]v [xTzw‘rl x‘raz‘u]z—l]
[[-"«'1-31772-"771 m‘fq]’ [.’):,,.3.1:1»2:1,‘“]", [mfaz‘fz]j’ [mfamfaxﬁ]k’ [.1:13371-2:8-,-12:“]5—1]
([Zr, 21y @0, Try)s [BryTry Ty} [Ery @0 (27, 20y 2, ), [zﬂ:c,sxﬂx,,]i'l]

Im A ,

Giken [Zr, @0, TryTry)s [TryZry Ty [ (27,80 )7, (20,0, Ty JF, (27,8, @y zn]i 1]

([#r2ryTr,20,], [z,,z,,sxn]", [x,lxm]j, [zrles“"rn]k» [z,,la:fazhz,.‘]z'l]

\ [#rs2r @2, [:1:72:074:573]*, [.’c,.zzn]j, [a"‘rzxﬂmn]ka [m‘rzznmfazn]i_l] J

“ 62
([2r, 20, Tz, ), [Xrp @7 Ty 9”74157 [@ry@ryZr ) [y @ry V, [Ery @y 0y K]

[[Zrs2r2n ), [TrTrn2y, ‘”n]as [:cmz,,z:c,.‘]", [z‘ram‘f:]j$ ["’m"’fzxﬁ]k—ll

[[zﬂz‘faxﬁ]’ [zﬂm‘fswﬁ xTsz [mﬂxfsx‘rz]i’ [a’ﬂz’fa]js [a:,‘xmzﬂ]"‘l]

Im A !

("j”‘)e?2 ([zri2r 2], [2r 2, m,azfz]i, (L% 2 x,.s]‘, [Zr,21 ]j’ (%727, x?z]k—ll

[[x‘rl $73z72]’ [z‘rl w73x72x74 ]5’ [$71z73m74]‘.’ [m'rl m‘fa ]J’ [zTIwTSZTQ]k-I]

{ [T Y S ]i’ [:1:.,2.'1:,.4.'):,3]", [m,zx,,]j, [3:1.2.1:,4:17,1]“‘1]
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3

[zr 2 2r2s,]; [“"‘r:zfsa"rzwn]k’ [z, 'T‘rsmleﬁ’ ["""rz“"rlzfamn]i-lv [zr2n “"‘ra]j]

I ) [[xfazrgxnz‘n]a [x‘rzm’r‘xfam‘f]]k’ [z’rgx‘r. $73]§’ [a’-raz‘rzxnzn]i-xv [z'rsz‘rzxn]j]

Gkl (@721, 2ry @), [Try By @y T3y ), [Ery @ gy ]5‘ [©ry @1y Zry 21, ), [E 1y T 7, 27, )]

L [2ryZr2r Zry), [y 27y T ry Ty ]k’ [z ]§’ [z7,27 zfa“’h]“» [zr,@r 2 ]]] J

N

[[x‘rl x‘raz'rz]’ [m‘nmfszﬁzn]kv [x‘rzxﬁ :c.,s]j, [.'L‘,..‘,:z:.,.l z‘ra"”ﬂ]i’ ['T"z m‘faz'rz]ﬁ_l]

I1 [[zﬂwfnxfs]’ [xfaznzfazﬂ ]k’ [zfs‘r‘rzxn]'j’ [zfsz‘l’zzﬂmﬁ]i’ [:1:.,4:1:7,:0,,.3]-2-_1]

@ikl | [Bn2ren], [nansnnlh) [Entnenl, [2nonnenl, [Enenen 1]

\ (272, 2n], [1:,-?2:,.4:1:.,31:,.1]", [z 27, x‘rz]j’ [xnxnxfzzfa]i? [zfzzﬂzﬂ]i_l] J

M= 2" . , .
I [([znznznzr] (2T 2nTs,) +1’[xﬁzraxnzn]"[znxnzrawﬂlz

i=1 =

—2-k-i]w1

n

-2

H] [#r2n2r@r], [2n2rTne, |7 "1, 202 o2, ]2
=

2n—2 . .
| (NN N O i 0 Lt S 0 8 il

=

and,
&y = i[(2n-1)12n-1
1 = R ik (27— —F) *
— 27 —1)1(2n1? - (2nr-1)Y(27-1)
8 = kU(E-1)1(27) ! (i+k)’ by = k(27 1)) (2n —i—j)

n—1 n_ n-1_1_¢ n_ 2" =1 _(_1)¢
2 C.? 1’ w2___g2 :+ll '!C? 1’ O1‘=C (-1)

W = gwm; i 3

?1={(i,j,k):i;e0, i+i+k<2, k+j#0}

D= {3, k) ik £0, j+k£27, i+j+k <27, i4 ] #0)
Ta= {(h, k)i £ 0, i4+j+k <2, i+k#27)
Ta= {( g k) i+ R £0, i+j+k<2,i+j#0)}

1< <mn<n<ny<d;2=2"-i-j-k.

53

Theorem 4.2.1. Let F be a free group on z,- -, 24 (d > 4), then the following
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statements hold.

1. If pis an odd prime, then the elements Wyn(24,, 2r,, Zry, Z5,) generate an elemen-

tary abelian p—group of rank C§ in F/ [7,,n(F'),F]F'".

2. The elements Win(2,,,%,;,%r,,%,,) generate an elementary abelian 2-group of

rank C¢ in F/[yga(F"), F]F".

Proof. The proof is by computing the connecting homomorphisms
Hy(G,Z,) — t{(MP"M ®g R),

!
where G = F/F [i.e. free abelian group], this computation enables us to describe
these torsion elements in terms of generators. In order to compute these connecting

homomorphisms, we need to recall the following homomorphism from [19],
7r£:_1 :RGP" — RGP"!

where p is any prime number, and w;’:__ , is defined by

"
(mpoazo0....0 apn)w;’:_l =Z (046)a1 0 ....0 &; 0... © apn
i=1

where o, - - apn € RG, the circumflex denotes that ¢; is omitted, and ¢ is the aug-

mentation map RG — R. In particular,

(lolo---ol)w;’:_l-»p"(]olo...ol)
N, s D —

" pn-1

((gl—l)o---o(g,—l)olo---ol)w;’:_l—r(p"—l)(gl—l)o---o(gl—l)olo---ol
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for I < p*, and for | = p"™ we get

((g1=1) 0+ o(gpn — L))7l0_, = 0.

On the other hand, it follows from ([19], Lemma 3.1) that cokerw;,’:_l is a direct sum

of cyclic p—groups. The order of the element

(lolo---01) +Im7r§:_1
.

pr=—1
. n . . .
in cokern},_; is p", whereas the orders of the remaining generators are < p". Hence

we have an exact sequence
0—2Z, — cokenr,’f,’.':_l _— cokerwz,':_l ® Zpn-1 — 0 (4.1)
where the embedding Z, ————»cokerfr;’::_l is given by

1 ’__)pn-l (10 lo«+e 0 1) +Im1r£:_1-
Nttt ottt/

pn-1

Furthermore, in view of the proof of ([19], theorem 2) the map Z, ——>coker1r;:_l
induces an injective map in homology (i.e. the map Hx(G,Z,) — H, k(G,cokervr::_l)

is injective).
Therefore the image of Z, @ P4 in <:oker7r,’,’,':_1 ®¢ P4 gives us a non—trivial cycle.

Now for this computation, we can use the double complex M ®gP, where P is the
Koszul complex (projective resolution of the trivial G-module Z), and M was as in

chapter 2, i.e.
pﬂ
M:0— MM - P@MP" = PP - RGP Z5' RGP"~! - cokern®n_, — 0.
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All tools are now at hand, and we can now start our computation, first we consider
the double complex M ®cP, and we follow a method analogous to the one described
in Remark 3.1.5. Our starting point is the abelian group cokern'::_, ®c Py, where we
choose a cycle which is the image of the given generator of the abelian group Z, ®g P4,

and we go along down to M?"M ®cR .

Here we consider two cases, one when p is any odd prime, and the other one when

p=2.

4.2.1 The computation when p is any odd prime and n > 1.

First we do the computation when p is any odd prime and n is any natural number
greater than 1. In the double complex M ®gP, we put coker = cokerw;,’:_l, RGP"-1 =

B, P® MP"~1 = A and MP"M = C. Now, we consider the following diagram:
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coker ® Py
[}
T
RGP”"@P, — RGP Q®P;
1
P"®@P —~ PFQP
T
ARG «~ AQP~P
1
CO®R «C ®RG
The element
[P"1(1olo---01) +Im7r;,’:_1] ® €1 Aez AesAeq € pleoker @g Pi.
e !
p"-1
An inverse image of this in RGP"~1 ®¢ Py is
" 1(lolo---01)®ey Aey AesAey. J (4.2)
—_————

pn-1

By applying the homomorphism RG?"~! @g Py — RGP?"~1®¢ P; to (4.2), we obtain

4
Y (1) (1olor s 01)(bi— 1)@ (e Arer & Aer Ae) (4.3)

i=1

By computation analogous to the computation after step (3.13) in chapter 3, we obtain
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an inverse image of (4.3) in RG?" ®¢ Ps, and this inverse is

4
% S (-1 (lelo - 01)(bi=1) = (b = 1)’ @(es A~ €A Neg) (4.4)
i=1

After applying the homomorphism RG?P" ®g P3 — RG?" ®g P; to (4.4), and rear-

ranging the result, we get
1 n n
;; 2 (=1){(b2r = 17" - (bar = 1) = (b1r = 1)”" - (bar — 1)} @ €3r A €ar (4.5)
T
where 7 ranges over all permutations of {1,2,3,4} with 17 < 27 and 37 < 47.

An inverse image of (4.5) in PP ®q P, is

1 ' N ” n
; Z (=1)"[e}; (brr = 1) - 611’1- (bar — 1) + [ 5r1,] ® €3r Aear (4.6)

After applying the homomorphism PP" ®g P, — PP" ®@¢ P, to (4.6), we get

M Bi(bs = 1)+ [ [5(ba = 1)+ [15.(b1 = 1)} ® eq
{155 -(ba = 1)+ [Bglba— D+ [ f5(ba~ 1)} ® &
[ a-(br = 1)+ [151-(ba— 1)+ [[54-(ba = 1)} @ &3

—L{{a(ba— 1)+ [J5-(bs = 1)+ [ B (ba - 1)} @ €3

(4.7)

We notice that (4.7) is very similar to (3.17) (just replacing the power p in the com-
mutators by p”). Thus our final inverse image in M?” M ®g RG can be obtained from

(3.84), by replacing the p’s in the commutators and in coefficients by p™ as follows
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] i gk oP=] i od kBl
[a2134, ab14, a3;, A543, 05134] + [a3214, @424, 632, @521, 5514

] i ok P-1 i i ok Pl
Gimern +aaa12, €z, ad3, 631, Gha10) + (01432, 6442, 614, 0143, 07332]
W 1

i ol k. Pl i ol gk g7l
+[a1324, 01345 613, G732, 61324) + (02413, @dys, a2y, 8341, G5413)
P gl gkml I A

[a213, @2134) Gh145 42158213 ] + [‘1321 1 332149 @324+ @323 A391 ]

ha B i i gk=l 5 i i k=1
+ i’ j%):elﬂ +laa31, ad3 2, @liag, al3, ag3y | + [0143, 07432, @1 425 0145 0733 )
Jk)EIS

] i gk-l o3 ] i oJ k=1
+@132, 61334, @134, 0137 5 03] + [G241, 05413, Gh4sy 0245 0347 )

k P giml i k P i-1
+ b [a2134, 8§34, @135, @5734, A3y3] + [a2341, 05431, g3, 524y G34)
(i K)ETD koGP giml g k. gP gi=l g
| [a4312, 51425 @145 Ciaiay @43 ) + [Ga123, GG13) 0fp15 01423, G140

P 4 k=1 P IT k-1
n B [a1324, 6} 32, G313, 1345 O1334] + [G4231, @hy3, Af24, AB241, A543
(i, k)ely W

P ooal g k=1 B0 i k-1
{ [a3142, 5145 G315 Gha12, @3142] + [G2413, 6%y 5 0425 01423, G415 J
pt—1p—1-i¥n

—2—k- -1-
+ .ZO kz: X {[a2134’ a{:i"213? a1324’ a21 ] + [a1324, ‘14123 s 01324]}
= -

(4.8)

where,

G"Eﬁfﬁ f+;10£+kcg:_"l—l—k—j’ G%——t':ﬂ ;;+:-lc;j+icp2-1-1-i-j
Bs = B C? -‘c;u;*cz*’: Bi = g ChimCiyit Cht
—_ 'llcp -1 ﬁ:p"—i—j—k
P ={(i,5,k):i#0, j+k#0,i+j+k<p"}
I3 ={(5,5,k): bk #0, j+i#0, j+k#p", i+j+k < p*}
3={(,4,k):i#0, i+tk#p" i+j+k<p}

I ={(i,j,k): K #£0, j+i#0, i+j+k<p'}.
Finally the image of the element (4.8) in MP"M ®¢ R is the image of

[p"(lolo---ol)+Imnln_]®er Aez Aes A ey
%,—/

pr=1
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under the connecting homomorphism H4(G ,cokern p,,_l) —— Ho(G, MP" M). As before
going from Ho(G, MP"M) to Ho(G, MP"F,;) does not effect the result, then applying
the isomorphism Ho(G, MP"F.,) — ypn(F )F" [[ypn(F"), F]F", and then replacing
the a’s by their definitions as given on p58 we obtain our desired element, and this

finishes the proof of statement 1.

4.2,.2 The computation when p =2 and n is any natural number.

Due to the even powers, the computation turns out to be slightly different from the

other cases, so we do it in some detail. Consider the element

"1 (lolo---ol)4+Imnin_,]®e1 Aez Aez Aeg € 2" cokern2n_; @a Py.
N —
2n=1

An inverse image of this in RG?"~1 @g P, is

2n_1(1010--~ 01)®€1/\62/\€3/\e4.

Applying the homomorphism RG?"~! @ Py — RG?"~1 @ P3 we obtain

4
27 ST (<1)* (1olo-- o) (bi— 1)@ (€1 A--- 6 A--- Aeq) (4.9)

i=1
Exactly as before, we can write an inverse image of (4.9) in RG?" ®¢ Ps, and this
inverse image is:

%24:( (1o o1)(bi=1) = (b; = 1)"|@ e A--- & A+ Neg  (4.10)
1=1
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After applying the homomorphism RG?" ®¢ P3 — RG?" ®¢g P, to (4.10), we obtain
302 =) (b1 = 1) = (b1 = 1)*" . (b~ 1)} @ e3 A e
+%{(b1 1) . (ba—=1)—(b3—1)2".(b1-1)} ®ea A ey

+%{(b4 - 1)2" . (b] - 1) - (b] - 1)2" (b4 —_ 1)} ® € A €3

(4.11)
+%{(b2 - 1)2" . (b4 - 1) - (b4 - 1)2" . (bg - 1)} ®e Nes
+3{(bs = 1)?" .(b3—1) — (b3—1)*" .(bs— 1)} ® e1 A €3
+%{(b3 - 1)2" . (bz -1)- (bg - 1)2" . (b3 - 1)} e Aey
An inverse image of (4.11) in P?" @g P, is:
H (-1 —ef"(ba=1)+[ )3} ®esNneq
+3{el" (-1 - (-1 +[1}3} Qeaney
+3{ed - —ef" (a-1)+ (51} Qe Nes (4.12)
+3{ed" (by-1)—ef" (ba-1)+[)%} ®er1Ae3
+3{ed" (bs-1)-ed" (ba-1) +[ ]} ®er1 Az
+3{ed" (ba—1)—eF" (ba-1)+[152} Qer1 hey
After applying the homomorphism P?" ®g P, — P?" ®¢ P to (4.12), we get:
HB (s - )+ [ 1352 - 1)+ [132.(b1 - 1)} @ eq
+3{-[15-(ba— 1) = [1B5.(bs — 1) = [ |35.(b2 - 1)} ® & (4.13)

+3{[ 15— 1) = [135.(ba = 1) = [ 31 (b3 — 1)} @ €3

+3{{ (b - 1)+ [)Z5.(bs = 1) = [ )3 (bsa— 1)} R €3

At this point, we could not get an inverse image of (4.13), just by replacing the p’s
in (3.31), (3.32), (3.33), (3.34) (in the commutators and in the binomial coefficients)
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by 2%, as we did in the last computation. However, the steps in the computation of
inverse image of (3.26) may be followed to produce an inverse image of (4.13), and this

inverse image in P ® M?"~! is the sum of the following four terms:

' @ [ )bz = 1)+ ([hs ® [B57)(b2 = 1) + ([Js2 ® [1327")(b1 — 1) ‘
[l1(bs = 1) ® [Ja1(bs — 1)2" =2 o [J5}"
—[l21 ® [Jar(bs — 1)F* ¢ o [ 14,

~[Ja1(b2 — 1) ® [Jaa(b2 — 1)2"~2=F o [ 154!

% ‘ N 2%:-2 1y +[1a1 ® [Ja1(b2 — 1)7" "1~ o [ J3, | (@ €4
=° +{Ja2(b1 = 1) ® [Ja2(by — 1)2" =277 o []3551

~[Jaz ® [Ja2(br — 1)1 o [ ],
+[ha(bz = 1) ® [lha(bz — 1)2"~27% o []J31(b3 — 1)**+?

—[)21(b3 = 1) ® [Jaa(bz — 1)*"~*~F o [J21(bz — 1)} ) )

3\

[ (= [1327)(bs = 1) = ([J24 ® [1337)(b3 = 1) = ([laa ® [1337")(b2 = 1)
' —[Ja2(ba = 1) ® [Is2(bs — 12" 2= o [J5}7 ‘
+{]32 ® [Js2(ba = 1)*" 717" 0[5
[Jaza(bs = 1) ® [Jaa(bz — 1)*"2 o [J3f!
2] L% o —[Ja2 ® [Jaa(bs = 1)*" =¥ o [Ii | (®e1
~[aa(bz = 1) @ [Jas(b2 ~ 1) o [J58!
+[Jas ® [Jas(bz = 1)¥" "1~ o [Ji5
+(Jaz2(bs — 1) ® [Jaz(bs — 1)¥"~27 o [Jaz(bg — 1)"*!

—[Ja2(ba = 1) @ [Jaz(bs — 1)2"=1=F 0 []35(bg — 1)}
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3

r (Nas ® (135701 = 1) = ([hia ® [157)(ba = 1) ~ ([Jar ® [ 151 7")(b5 ~ 1)
' [Jaa(b1 — 1) ® [Jaa(br = 1)*"~2=F o [ 13 ‘
~[l43 ® [Jas(br — 1)*" "1 o []i5
—[laa(bs — 1) ® [Jaa(bs = 1)*" "2~ o [Jif!
Y 1o ® [Jur(bs = 1"~ 0 [J | (%«

= +la1(bs = 1) ® [Jan(bs — 1)2"~2=% o [J5f"
~[Ja1 ® [Jar(ba = 1)*"~1~* o [J§
~[laa(br = 1) ® [Jaa(b1 — 1)¥" =27 o [J31(bs — 1)"*!

| HIsi(ba = 1) @ [laa(by = 1)*" "1 o [[aa(bg = 1) |

N =

\ /

( (o (0570 = 1) + (24 ® (13701 = 1) = (I @ [157)(bs — 1) ‘
' [Jai(bz = 1) ® [Jaa(b2 — 1)*" 2% o 3 \
~{a1 ® [laa(bz — 1)*" 1 o [ Iy
—[Jaz(b1 = 1) ® [Jaz(bs = 1)*" =¥ o [ I}
‘ 45 e | +[1az ® [Jaz(b2 = 1)1 o [Jiy | | ® €3

~n(ba = 1) @ [Jaa(ba = 1?2 o [
21 ® [Jaa(bs = 1P~ 0 [J5
~[24(b1 = 1) ® [J24(b1 = 1)*"~2" 0 [Jqa (b — 1)+

[ Hlaa(b2 = 1) ® [J2a(br = 1)*"1 o [Jaa(bs ~ 1)

N =

\ p. 7

After applying the homomorphism P® M?"~1 ®c P, — P ® M?"~! ¢ RG, we get
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[l21(b3 — 1) ® [J21(bs — 1)"~2F o [ ]33
—[l21 ® [Jaa(bz — 1)1~ o []3,

~[Js1(b2 = 1) ® [Jaa(bz — 1)2"~2=% o [J5i1

n_ —1)2"-1-i o[
% 222 " H a1 @ [Jaa(b2 - 1) s ‘  (ba— 1)
= +Ja2(61 = 1) @ [Jsa(y = 1)"~277 o [Ji4?

—[Js2 ® [Js2(b1 = 1)1 o []5,
+[ha(bz = 1) ® [ha(bz — 1)2""27F o [Ja1(bs — 1)*+!

| —[l21(bs = 1) ® [Jaa(b2 = 1)*" =" o [Jan (b3 — 1)* ]

~[Js2(ba = 1) ® [Jza(ba — 1)2"=2=F o []551
+[]a2 ® [Ja2(bs — 1)1 0 [,

+[])a2(bs — 1) ® [Jaz(bs — 1)2"~27F o [ 54"

n 3 )2 -l-i o [
% 222 o7 ] [Ja2 ® [la2(b3 — 1) [Jaz | L (b - 1)
$=0 —[laa(b2 = 1) ® [Jas(b2 — 1)*"~2=% o [Ji§"

+[Jaz ® [Jaa(bz — 1)2" "1 0 [Jis
~[J24(bs — 1) ® [J24(b3 — 1)7"=2=% 0 []a2(bg — 1)i*?

| +l]s2(6a = 1) ® [J2a(b3 — 1)Z"~1 o [J3a(ba — 1) |
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[ b= DO lleth - Do [
~[J43 ® [Jaa(br = 1)*""'~* o [Iis
~[Jaa(bs = 1) ® [Jaa(bs — )*" 2~ o [ I3
% 2&3’ =y +[]a1 ® [Jaa(bs — 1)2""1"0 [‘]f'u | by 1)
=0 +{]31(b4 = 1) ® [Jaa(bs = )"~ o [ 13!
~[la1 ® [Jsa(bs = 1)*"~ 1= 0 [ I3,
~[laa(br = 1) ® [laa(br — 1)¥"~2 o [Jay (bg — 1)+

| HIa1(ba = 1) ® [Jaa(br — 1)1 o [Ja1(bs — 1)

[laa(bz — 1) ® [Jaa(ba — 1)2"~2F o [ Jii?
=[Ja1 ® [Jar(bz = 1)""1¥ o ],

—[la2(b1 — 1) ® [Jaa(br = 1)~ o [ 31

. —1)2"-1-ig [ ]s
% 222 s +{142 ® [Ja2(b2 - 1) (a2 | f(ba -1)
i=0 ~[l1(ba = 1) ® [J2a(bg — 1)2"2= o [ 154

+[J21 ® [Jar(ba = 1)*""1¥ 0 [J5,
~[J2a(b1 = 1) ® [J2a(br — 1)7"=2 o []sa (b2 — 1)'+!

Haa(b2 = 1) @ [Jaa(by = )71 0 [Jaa(by — 1)* |

\

Therefore an inverse image of this element in M?"M ® RG is
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[[J21(bs — 1), (15, [J2a(ba — 1)2"~2](by - 1)
=[[)a1(b2 = 1), [ 15, [1aa(b2 — 1)2"-2=¥](bs — 1)
+[[Js2(b1 — 1), [153, [1s2(b1 — 1)?"~2=¥)(bs — 1)
+[[J1a(bz — 1), [Ja1(bs — 1)+, [Jra(bs — 1)2"~2¥](by — 1)
—[[J2(ba — 1), [155*, [Js2(ba — 1)?"=2=%)(b1 — 1)
+[[ ]42(bs — 1), [ 153", [Jaz(bs — 1)?"~2=%)(by — 1)
~[[1aa(b2 — 1), [15%*, [Jas(bz — 1)?"=2=F)(by — 1)
_;_ 2"2‘:2 ey —[[124(bs — 1), [ Ja2(bs — 1)+, [J2a(bs — 1)**~2=%](b1 - 1) | (414)
=0

|

+[aa(br = 1), [13", [aa(br = 1)¥"=2=7) (b — 1)
~[Uar(bs = 1), (134", [Jaa(bs — 1)2"~27¥](b2 — 1)
+[[J31(ba = 1), (157 [Jaa(bs = 1)2"=2=4](ba — 1)
~[[Jas(b1 = 1), [Ja1(ba = 1)1, [Jas(by ~ 1)*"~2~*)(b2 - 1)
+{[Jaa(b2 = 1), [15}", [Jaa(b2 — 1) -2=](b5 - 1)
=[[Jaz(bs = 1), [15", [Jaa(br = 1)7"=2=](b3 ~ 1)

~[[Taa(ba = 1), {15, [a(ba = 1) =2¥](b5 ~ 1)

—[[J24(br = 1), [Jar(b2 — 1)+, [J2a(by — 1)2"~2=](b3 - 1) J

As before, our first aim is to write 2 times the element (4.14) as a linear combination of

terms with coefficients multiple of 2. By computation similar to the one in chapter 3,

we obtain from (4.14) (using notation already introduced in chapter 3) the following:
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’ _ _ 5
(02134, G145 0y, 0513, 2524] + (3142, @by, 0y, ahrg, 0270)
irilReam 5190 (00214, Glgy, 0y, 0y, ‘123114] + [a4231, Giz1, gy s ‘1?53.11]
7o [@4312, a3, ais, af31 ‘1?5112] + [a4132, @iy, ain k12, a?falz]
\
[a213, ‘1?134» 145 ‘lgl ) ‘1151_31] + [aa14, azm, @125 a?;l, “':;1—41]
1 I iribR<an b2 [‘1321702214’“524’“:1;2’ azn') + [a423,a§231,a§21, “iz’af:;sl] ( !
2| o (@431, a?:mv g, g, a§5"] + [aar2, 02123’ @13, 641, 0415 ] )
:
f [[l13(b2 — 1), [J21(bs — 1)+, [J1a(bz — 1)*"~2=%].(bg — 1)
2"232 =y —[[J2a(bs = 1), [Jsa(bs = 1)1, [J2a(b3-1)2"~27%).(bs — 1)
=0 ~[[Jaa(b1 = 1), [J31(bg — 1)+, [Jaa(br = 1)¥"=2=](b2 - 1)
. | ~[[24(b1 = 1), [Jax(b2 = 1)+, [Jaa (b2 — 1)*"2~"].(b3 — 1) |

(4.15)

< k[(27-1)Y]2"
and é; = t!]!k!(2"£(t—1—2)]!(2"—J—t)

In (4.15) when j = k = 0, 6, is not divisible by 2, moreover, when j = ¢ = 0 the integer

62 is also not divisible by 2. By rewriting (4.15) we get the following summands:
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4 4

i oF ok 3-1 i o ok a2-1
[a2134, @414, @3, a5)3, ad1a4] + [az142, @12, @3y, A514s a3142)

614 1a i§ ok 3-1 i3 ok 3-1
a Aqq, @ a + |aq231, @ A0y Q a

irj R an [a3214, 044, ady 0551, ad314) + (4231, @y, @Yy, A3, 0453:]

§#0,j+k£0 , ) 5 _ . =

ik 3-1 i ok 2-1

< \ (4512, @Y39, @d3, G531, €4315) + [@a132, @413, 6%y, 0512, @4135)

4

2 i d k=1 b i i k-1
[@213, 631345 @%145 €31, 6513 | + (@314, 631425 03125 @31, 0314 ]

] i G k=1 3 i3 k-1
" 020 +lasz1, adyy 4, ahoy, ady, abnl] + [auas, 025y, ahgy, 0y, b5
i+j4+k<2n
k#0, 5+k#£27 = . . = , .
jaah ¥ k-1 2 J k-1
j+i%0 k +[adar, ads12: Qhags ad3, 431 ) + (04125 65123, 813, 0%, 0412 )

(4.16)

and

L i 2m—1-i
[@2134, ahyq, a3y34 '] + [a3142, @412, 05,53 ']

n_1

-1
2n~1 1 2m—1-i ' 2m—1—i
2 Cig +as214, @4, @3014 '] + [@4231, @Y1, @43y ')

it ot |

L ;2
+[a312, @iy adary '] + [@4132, alyz, agy3z )

?m_1-k ko 2n-1-k
[a2134, 6413, 03138 ~*) + [as142, af14, 03155 7]

2n_1
- 271 ko 2n-1—k kL 2"—1—k
k;l Cie-1 [as2145 @32y 5 3014 ") + [a4231, Agas, G423,

A
-~

(IR

[a4312, @1, 43315 ] + [aa123, afig, 135 %]
[[ha(bz = 1), [Jaa(bs = 1)+, [J1a(by — 1)2"=2=%].(bs - 1)
2'52 o1, —[[]z2a(bs — 1), [Js2(ba — 1)+, [ Jaa(b3—1)2"~2").(by — 1)

=0 —[[Jaa(br — 1), [Ja1(ba — 1)***, [laa(br — 1)?"~2=%].(b; - 1)

{ —~[[J24(b1 — 1), [Jar(b2 — 1)i+1,[J24(b1 — 1)?"~2=].(b3 — 1) )
(4.17)

K[(27-1)y)2n—1
and 6 = .!J!k!(zr!(-.-,)11)!(2"-]-{)'

if(27-1)Y2n-!?

where §; =

Our next goal is to write 2 times the element (4.17) as a linear combination of terms
with coefficients multiple of 2. Again by computation similar to the one in chapter 3,
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we obtain from (4.17) the following:
( | TR
i J k-1 32 i J k-1 2
R [@1324, %134, @913, OT3245 0F32] — [a2431, Gh241, @24, G351, 0345
3
i+j+kg2n ; j k=1 32 ] i k=1 3
i£0, k£0 { —[a4312, 5142, @314, 04313, 6331 ] — [62413, 123, GF12, G55135 GFa1]
( = - 3
k ' L k i LY
- (@132, a5 3045 h134) @313, @132 | — (0243, @3431,5 ABa15 Gh24) @553 ] L
+Y b
i+j+k<2n k ; j 3 k 1
1< i+k#0 | —[@431, a§312, @4142, 0314) 0351 | - [‘1241’“2413a“412&“412»“24 ] }
2
k2" k -1-k
m_q —[az134, b1, 3134 ] + [asaar, by, 320" 7]
+2 3> G
k=1 1<k
+{a1324, 0§34, 03334 ]
k2" k 1-k
i 21 +[az413, a3, 03413 7] — [a1324, afgp, adazy 7]
k=1 E 2n=1-k k. 2"-1-k
{ ~[aza13, 654y, 3415 ~*] = [aaar2, afay, alsry J
(4.18)
where,

2 (212 %o (2r-1)Em)
b3 = Ki=1)1(2)(i+k) b4 = ttkIE-1)(2r—i-j)

We notice that 83 is not divisible by 2, when i + k = 2", Moreover, é4 is not divisible

by 2, when ¢ = j = 0. So we decompose (4.18), into two summands

4
i i k=1 32 i i k=1 3
P [a1324,0213«“213,“1324,‘1132]"[02431703241v“324"‘2431,“243]
3
i#£0,i+5+k<2n ; j k-1 3 i J
i+k£2n, k£0 —[@4312, a%142, 0%14» G4312, @Fa1] — (02413, G193, @12y 930135 0341
k i i 2- k i i 3
I (@132, AT324) @134 @135 @1y | — (@243, Q5431 , Ahggy 5 Bhpg, 0553 ]
+Y b -
] J 2-1 k ] J
~[aa3, af313, G142, 14, 0431 ) — [@241, 03413, @123, @125 0247 ]

i+j+k<2n
i+k#0, i+#£0

2n-1
+ ¥ CcE
k=1

{ [a2134, @13, @314 ~*] + [as241, 684, adpy' k]} )
(4.19)

and
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i 21— i 2" —1mi
1 233 any [@1324, @134, 1324 '] = [82431, @241, 03431 ]
2 Zl Cia .
= i 2n—1—i ' 2n—1—i
—[a4312, 88142, 4312 '] — (02413, G193, 62433 ') J
4 3
k -1k k -1-k
1 3= gng ) (6132, 0f24, 6353 ~*) — (0243, aga1, 0355 %]
+; X Ci > (4.20)
k=1 k 21—k k no1-k
~la431, 05120 0357 ] = (0241, 0f3, 03 )
4 h'
21—k k. g2"=1—k
1 & ang +Haza13, 0843, 03473 "] — [@1324, @3, 01534 )
+3 X Gy o
k=1 k on —k
-[‘12413,0241,“2413 *] - laaaiz, afa, adags - ]J
n_1)i(2n—1 n_1\i(on—1
where 83 = —(2-12 by = —Lo-uetT)
G- DIE ) AGRIE=1)(2n—i=])
From (4.20), we obtain
2" 1-i
1 25t ang [a1324, G134, @324 ~*] = [a2431, Ahoa1, 03431 ']
2 L Cio
i= i 2" —1-i i 271~
—[a4312, @3149, @4317 ~*] — (02413, @123, 02433 '] (4.21)

2n—1
+3 kz_:l CH7M{2[02a13, 6ky3, 62475 ] — 2la1324, akag, aZazy ~F]}

From (4.19) and (4.21), we obtain the following two summands:

n_ i 2" —1—1 1 n—1—1
122! [@1324, @hy345 A1324 ]—[a2431,a3241,a2431 ]

=Y o (4.22)

= ; m—1—i ] pLI
=1 -[44312"‘514%“4312 ']—[02413,43123,“2413 ]
and
( _ _ 3
i J k-1 32 i J k-1 2
s [@1324, @5134s 413, @1324, 0332] — [@2431, B%241, Gh24) A33315 0343)
3
1#0,i+5+k<2n i i k=1 2 i i k=1 3
i+k#2n, k#£0 —[@4312, @h142, @314> @315, 0%31) — [@2413, G123, @12, 833135 9341
k ; i 3-1 k ; i 2-1
(@132, A¥3245 @5134) 4213, 4132 ] = (@243, @3 431, G32415 @345 A543 ]
< +Z b4 _ -
i+j+k<2n k ; j 2-1 k ; F] 2-1
i+k#£0, i47£0 —[a431, afa12, @h142, 0314, 0431 | — (0241, 08413, Cl123, @hyg, @34 |
k on k 1-k
21 ~lana4, §13, 63154 7] + [azann, ahas, 6355 "]
+ Z Cy
k=1 2"-1-k -1-k
[a2413,a'§43,a2413 ]“[“132470’132’“1324 ] J
\

(4.23)
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by rewriting (4.23), we obtain

( _ _ 3
k J i-1 32 k J -1 2 l
s —[@2134, k324, 0313, 51345 0Fsa] + (3241, 05431, ada4, 05241, 0345] |
3 -
i+j+k<en k i -1 .3 k i i-1 32
J iR %0 +[a3142, ad312, 03145 827345 031] + (04123, 63413, 6%12, G123, G301 )\
- - 3\
k : J 2-1 k i J 2-1
(@132, §304» @314, Gh13, G132 | — (0243, 63431, @441, 04, 0253
£ b - 0
i+j+k<2n k i J 3-1 k i J 2-1
| i+k£0, i+5#0 —[a431, 312, Oh142) 0314 @831 | — (0241, 03413, B3, G2, 927 | | )
(4.24)
From (4.22), we get
n_ 2"=1-j _j 2—1-j5 j
1°=2 ony —[a2134, 61334 7, a%134] + (3201, 83431 7 Ghpa1)
= 2. C; (4.25)
2 = -1-j i -1-j i
+[az142, @431z 7 @h149] + [@4123, 82413 75 @Y123)

Our final goal is to write

n_ i S M=1~j J

222 c2"-1 —[a2134, @133 75 ah134) + [a3241, 02437 75 0h04)
J L.

=0 -1-j j ?o1-j j

J +[az1a2, @31y 75 a314] + [a0123, 85413 7, @Yy3)

as a linear combination of terms divisible by 2.

Now, the computation in step 3 in our main result, can be applied to the following

terms:

n_ Mmo1-j j Mo1—j g

222 -1 —[02134, ay3z5 75 6%134] + [a3241, @431 75 B3241]
J

= mo1-j ] ™_1—j j

i=o +az142, @431y 75 @Raa0] + (04123, @2413 75 @h123)
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to produce the following

2n—2 )
2(27=1-1-4) ~27-1 —1—i ¢
> T Ci " Ma2134, 01334 5 ah1a4]

1=0

=2 an i M—1—i ¢
_E (C; = (=1)")[a1324, @413 "> i324]
1=l

n__ N __ Dy
2"-227 -2~ " gmik

on k+1 i
C¥'[a2134, 64723, 62134 » @h324]

=1 =0

Hence (4.25) becomes as the following:

m-2 )
gn=1_1- - n_1—1 :
.):0 7+——11 ACF N aga4, 62554 ) hiad]
1=
1 7S ane i 2Melmi § 4.26
2 'Zo (C; — (=1)")[a1324, 64133 ~*» @i324] (4.26)
=

TR gn1 gny k+l _27—2—i—k i
- —2-1- t

& kEO #7507 7 a2134, 043y 69134 » @324]

1= =

However, by Lemma 2.5.5, the integer C’?"‘l isodd (0 < ¢ < 2" —1), thus the coefficient

n__1—1 . . 0 .
of [a1324,a§1231 ', al394) is even, and we can write the coefficient as

CF 1 (-1) = 204 (4.27)
for some integer ;. From (4.26) and (4.27) we obtain
232 (2r—i-1-i) ~2n—1 2" —1-i ¢
.20 T C; (a2134, a1324 5 @5134]
1=
=2 M—1—i i 4.98
'z‘b @i[a1324, G133 5 @304] (4.28)
1=
M —227 -2
2n—l ~on—t k+1 27—2—i—k i
'—21 :L_: 0 [a2134, @573, @3134 ™% @iaa4]
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Thus from (4.16), (4.24) and (4.28), we obtain the following:

,

;i ok 2-1 i § ok 3-1
[a2134, G314, 03, 6513, aZ1a4] + [a1324, 34, A3, aTa2, A1 324)

ii ok 3—1 i i ok 2-1
i FR<an 819 [a3214, Ghgas @hps @, 03204) + [02413, Ghas, 034, 05ar, a3515]
j+k3£0, 120 , ) = . . =
i ik o2~ i i ok p2-1
[@4312, @liag, @43, afay , adaia] + [an132, a3, 0y, 0510, ad13s)
2 i 3 k=1 3 i o k-1
(6213, 031345 @%145 0915 G573 | + (8132, @324, 0134, 013, 0137 |

2 i gl gkl ] i G k-1
+ 2 8 (@321, 032145 Ah4> 052, 0327 | + 0241, @313, Aha3, 024, a3 ]

i+j+k<2n
J *tcﬁ::;fo (@431, a?sw 3z ""13’ afs-lll + [a412, 02123, afusa ail ) “ﬁl-zl]
- —_ '
4 > p —[a2134, @354, aém* “;;4’ “?32] + [as241, 65451, “%24’ “gz"}l ) ‘7'243]
4 _ -
,:.:;-;ﬁsf;o +as142, a§312, “éw @7da ‘1231] + [a4123, a8 413, “ﬁw “fﬁzla’ ‘1241] )
- = 3\
+ > 5 [@132, a§ 3045 ab134 0%13, 0?521 ] — [a243, 68431, ab341, “%24’ “3231]
4 - =
,;Ziﬁﬁii;o ~[a4z1, af312, @142, “gw “2511] — [a241, 88413, Gl123s “ﬁlza “34;111 )
+ 2:';22":;20_' L2 CF"anias, ahis, adisd 7%, afad

an—2 , 2n—2
n=1_1.4 2"l 2Nl . . 2"—1—¢ ]

+ 2 L—r___l1+1 Ci " azizs, aiazg 5 ahzal+ _):% a;[a1324, 64133 5 @land]
1=

. 1=0
(4.29)

Finally, the image of the element (4.29) in M?"M ®¢gR =2 Hy(G, M?"M) is the image
of

on-1 (lolo--- ol)+Im7r§:,1]®ell\ezl\eal\e4
| S —

2n-1

under the connecting homomorphism Hy(G, cokerr2,_,) — Ho(G, M?"M). Applying

the isomorphism Ho(G, M?"F.,) — yan(FYF" [[y2n(F"), FIF", we get

147




Chapter 4. Further investigation of torsion in free central extensions 148
4 ¢ - _ AN 61 )
i J ok 2-1 i J .k 2-1
[@2134, ab14, @31, 0513, a3134) (01324, Glags 0135 @F3p5 O324)]
. d ok o3-1 i o3 ok a2-171 %
I A \ 3214, @lgy, ady, adyy 5 a3214] (02413, G4z, 634, 05415 G5415)
(i)Jlk)ell . = . =
] ik a2-1 ] i ok a2-1
[a4312, alzg, a3, a3, a4315] [aa132, aly3, 64y, @y, ag132)
\ 52
2 i o3 k-l 2 i 3 k=1
[a213, 83134, @b145 31, @313 ] (@132, a324, alae, 013, 0132 ]
{ 2 PG k=1 ] i i k=11 %
II N (0321, 3214, 0424, 855, @531 ] (0241, 03413, G4, B34, 0301')
(i,5,k)EI2 - = .
2 i J k=1 2 i J k=1
{ (@431, 63319, Bagy 33, a431 ) [@a12, 6% 123, @hy3, @315 04T ]
{ 5a ¢
k i -1 3 k j o i-1 3
I [@1234, A§3045 413, 057340 0d32] (@241, aB431, Gh2y, 03341, G343
S A j i-1 3 j i-1 3
(15:.k)€ls [a3142, afznn @145 Co134> agm] {24123, a'2°413, ‘1{112’ 04123, “341]
A
k i J 2-1 k i J 2-1
1l (@132, @§ 3545 @h134) @213, @132 ) (@423, 54315 A32415 O3245 G3g3 )
LA ; i 3-1 ; i 2-1
Gik)els | [aa1, a1z, @140, @314, 033 ] (@421, 05413, Q1235 0105 0347 ]
2" -227 -2 . R 2n=1 _on_3
k+1 2"—2—i—k _i =0
) IT [e2134, 04753, 05,34 s Giaq] ™=
i=1 k=0
2n—2 . 2n=1124) 42T 2 .,
n_1- @ =1-9) ;32 m—1-i ;
'no {la2134, 07334 ~"sahyze] ! [a1324, a4135 " @1324]%'}
\ 1=l /
(4.30)

Hence the last part of the theorem follows by replacing the a’s in the above expression

by their definitions as given on p 58.
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