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Abstract
Methods of calculating bound state molecular electronic wavefunctions are 
discussed, and applied to MoOj", Rh2(0 2CH)4, MnCl2, and CrCl2. The 
Stieltjes Tchebycheff moment imaging technique for calculating photoion­
ization cross sections using conventional LCAO-MO programmes is de­
scribed.
These methods are applied to calculating the partial channel photoioniza­
tion cross sections of the open shell diatomic molecules NO and 0 2, and 
to the closed shell systems H20 , C2H2) and N20 . These results are com­
pared to reported Xa calculations, and found to be in considerably superior 
agreement with experiment.
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Chapter 1

Molecular Orbital Theory

The purpose of this chapter is to give a brief outline of the methods used in this 

research to calculate molecular wave functions. More detailed expositions may 

be found in many standard text books [1,2].
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1.1 The Schrödinger Equation

The fundamental equation of quantum chemistry is the time independent Schrodinger 

equation [3], given here in the nonrelativistic form.

H is the Hamiltonian operator for the system and E the total energy. Within 

the Born-Oppenheimer approximation [4], in which the nuclear and electronic 

wave functions are assumed to be separable and the nuclei fixed in space, the 

Hamiltonian operator can be written in atomic units as

Vi =  the Laplacian operator for electron i

Zm =  the atomic number or nucleus M

r,, =  the distance between electrons i and j

R\i, =  the distance between nucleus M and electron i

RiM = the distance between nucleus L and nucleus M

and the sums i j  run over ail the electrons in the system, and M,L over all nu­

clei. This is an eigenvalue equation where ♦ , the molecular wave function, is the

ff* ( l ,2 ,3 ,. . .n )  =  £ * (1 ,2 ,3 ,.. .n) ( 1.1)

( 1.2)
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eigenfunction of H and E its eigenvalue. Complete solution of the Schrodinger 

equation, because of the interaction term between the electrons, presents an in­

tractable problem for systems of any complexity. In order to obtain approximate 

solutions the orbital approximation, in which the electrons move independently 

of one another in one electron spin orbitals, is employed. The wave function 

may then be written as

*  =  A /A [M l)M 2 )M 3 )M < ) -M « ) l (1.3)

where A is the antisymmetrizer with respect to electron interchange, M is a 

normalization factor and the &’s are the one electron orbitals. A convenient 

way of writing the antisymmetrized wave function is in the form of a Slater 

determinant.

* = ~ r=
y/ni

Ml) Ml) ••• ¿»(1) 
M2) M2) ... M 2)

(1.4)

Mn) M») . . .  <t>n (n)
which is often written as

* - 1 M i ) M 2 ) . . .* .(» )  I t 1-5)

or in the closed shell case

♦  =  U i (1) M 2) - .  M « - l ) * ? ( n ) l  (L6)

where

M l )  =  M ri)a (l) [1.7a]
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and

* i(2 )- lM r 2)0(2) [1.76|

a and 0 being the one electron spin functions with eigenvalues Ms  = 1/2 and 

Ms = -1 /2  respectively, and the ip, describe the spatial distribution of an 

electrons in the spin orbital <Pi.

Provided that the orbitals in 1.6 are orthonormal the electronic energy of 

the system is given by

n/2 n/2
E  =  2 ^  h a +  £ ( 2

iszl l , /= l
[1.8)

w here , in a to m ic  u n its

h a  =  j  t f ( i ) A ( i ) * ( i W [1.9a]

J i i =  / ̂ ( l ) ^ ( l ) ^ - ^ ( 2 ) 0 , ( 2 ) d V , d V 2
J  '12

[1.96|

K i j  =  [  0 ? ( 1 ) ^ ( 1 ) — * ( 2 ) * J ( 2 ) d W ,  
y ^i2

[l.9c |

an d  h is th e  one e lec tro n  p a r t  of th e  H am ilto n ian

A ‘ "  2 5
[1.9d|

4
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1.2 The Hartree Fock Method [5,6]

The variation theorem states that the best approximate wave function is that 

which produces the minimum energy. In order to optimize the n electron wave 

function, 4 , the total wave function must be minimized with respect to an 

arbitrary variation in the wave function. This requirement together with the 

requirement that one electron orbitais remain orthonormal leads to the Hartree 

Fock equations, given here for a closed shell system.

F it i =  u t i |110)

where the Fock operator F is defined by

n/2

Fi =  MO + E l 2-* -  * 0  
1=1

11-11«]

J i t A i) -  /  (2)r-rt(2M »4*>(i)J 1̂2
[1.116|

W A V  =  /  ( 2 ) 7 - * / ( W * ( i )J 1̂2 [1-lM

This is a pseudo eigenvalue equation where the Fock operator depends on its 

own eigenfunctions, because of the Coulomb (Ji) and exchange (A\) operators. 

Thus the equations must be solved iteratively until self consistency is achieved. 

As a result of their spherical symmetry the equations may be solved numerically 

for atomic systems but for molecular systems this is difficult computationally.
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1.3 The Roothaan Equations [7,8]

Roothaao and Hall independently suggested expanding the molecular orbitals 

as a sum over basis functions

lU2l
it

By a similar method to that used above (1.2) this leads to the best orbitals, 

of this form, which are solutions of equation (1.13).

where

and

“ €»*s>p) -  o
p

[1.13]

[1.14a]

s „  = /  x ; ( D x ,( iw [1.146]

\Fnp — u Sm \ — 0 [1-151

In order for these equations to have non-trivial solutions the secular deter­

minant must be zero. This gives the eigenvalues which on substitution into 

equation [1.13] yield the basis function coefficients. These equations must also 

be solved iteratively. With a set of m basis functions m molecular orbitals are 

defined. In the closed shell case with 2n electrons the n lowest roots of the
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secular determinant correspond to the occupied orbitals. The remaining (m-n) 

are unoccupied (or virtual) orbitals which describe the motion of an electron 

moving in the field of the 2n electrons in the n doubly occupied molecular or­

bitals, whereas the first n orbitals describe the motion of an electron in the field 

of 2n-l electrons.

In the limit of a complete basis the Roothaan orbitals are identical to those 

obtained by numerical solution of the Hartree Foclc equations, the Hartree Fock 

limit.

The development outlined above applies only to closed shell molecules. Much 

work has been done on the method of extending this treatment to open shell 

molecules, whose wave functions usually cannot be expressed in terms of a single 

determinant. These methods usually involve constraining the molecular wave 

function to transform as a representation in the molecular point group and often 

also involve an equivalence restriction. This makes the singlet paired electrons 

of the molecular core occupy orbitals with the same spatial form, although 

electrons of different spin experience different potentials due to the presence of 

the open shell. This is known as the Restricted Hartree Fock method (RHF). 

Removal of this restriction is known as the Unrestricted Hartree Fock (UHF) 

method and is computationally more expensive.

By a suitable modification of the Hartree Fock operator over which the (n-
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m) unoccupied orbitals are constructed or canonicalized, these orbitals may be 

made to describe an electron excited from one of the ground state orbitals to 

an orbital higher in energy, without any change on the orbitals describing the 

remaining (2n-l) electrons. Such orbitals are described as improved virtual 

orbitals (IVO’s).

1.4 Basis Functions and Basis Sets.

There are two kinds of basis functions in general use, Slater type functions 

(STF’s) [9] and Gaussian type functions (GTF’s) [10]. STF’s vary as exp(~(r), 

where (  is the orbital exponent, and r the radial distance from the centre on 

which the function is based. Integrals involving STF’s on two or more centres 

have to be solved numerically, a process which is computationally very expensive 

for functions of this type.

The use of Gaussian type functions was originally suggested by Boys [10|. 

These functions vary as e x p (-(r2) and have the advantage that the product of 

two functions on different centres can be expressed as another Gaussian on the 

line connecting the two centres. Integrals involving only this type of function 

are much quicker to evaluate than similar integrals involving STF’s and so the 

use of GTF's is computationally advantageous. However, these functions do not

8



describe the motion of an electron very well. STF's have a cusp at the nucleus 

where the derivative is non-zero, whereas GTF’s have a derivative of zero at the 

nucleus. This cusp is essential for a good description of the wave function in 

this region. GTF's also decay asymptotically, whereas the wave function decays 

exponentially, as do STF’s. Hence many more GTF’s have to be employed than 

STF’s in order to give results of the same quality.

The resulting increase in basis set size has been overcome by contraction of 

the large number of original GTF’s (primitives) into a smaller set of Gaussian 

type orbitals (GTO’s). Within each GTO the coefficients of each GTF is fixed 

but the coefficient of each GTO in an MO is variationally determined. Care 

must be taken in the contraction process so as not to lose variational flexibility.

Two major schemes have been used to determine the contraction coefficients. 

In the first a set of GTF’s are contracted to fit an STO (27], usually by a least 

squares fit to the STO, and in the second the coefficients are varied so as to give 

the lowest total energy while retaining flexibility in the valence region [28].

9



1.5 The Core*Valence Method

The exact Hartree Fock procedure demands the evaluation of a large number 

of integrals, of the ~>rder of the number of basis functions raised to the fourth 

power, which demands large amounts of computer time. The reduction of this 

number without a loss of accuracy in the final results would give a considerable 

computational advantage. One such method suggested by Campbell, Hillier and 

Saunders [11] is the use of the core-valence approximation. This approximation 

is based on the recognition that there are basically two kinds of basis functions 

used in the construction of molecular orbitals, core and valence basis functions. 

Core basis functions are localized near a nucleus wherev  valence basis functions 

extend over the whole molecule.

As the core basis functions change so rapidly over a small region where 

valence basis functions on a different centre are approximately constant the 

charge density, (p^a0 ), involving a core basis function p, on centre A, and a 

valence basis function a, on another centre B, depends mainly on the core basis 

function. In the core valence approximation core valence overlap distributions 

are expanded in terms of a mono-centric basis centred at the core.

The basis set for each core valence distribution is a  function of the core 

orbital only. The zeroth order generator, p°, for a given core basis function is

10



spherically symmetric and is a sum of Gaussian's for a Gaussian basis set. It is 

related to the core orbital by eqn 1.16.

p = p V W [1.16]

A first order basis consists of the set p°, xp°,yp° and zp°. The second

quadratic terms. The core valence distribution is then approximated by (1.17), 

where Ap,  is determined by requiring that the lower moments of the core valence 

distribution and the approximation be equal.

In the calculations reported in this thesis px a B are only approximated if 

A jt B. Integrals involving pAz B are evaluated exactly if the second charge 

distribution in the integral [pAaB\pc bD\ involves a core or a valence orbital on 

A. Integrals involving an overlap charge density arising from core orbitals on 

different centres p^q8 are set to zero. So two electron integrals involving core 

basis functions p and q and valence basis functions a,b and c are approximated

order basis set consists of the first order terms supplemented with additional

[1.17]
9
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as ;

[pAaB\qc bD) = ^ A ; M p ^ \  [l. 18a]
<74

| A fl|6°c*l =  X X b ' M  [U861
a

Thus as well aa the normal four function integrals a new class of integrals 

involving \ptt\ql] and [pa\bc\ must be evaluated. However in a large system the 

total number of integrals and thus the computational time varies as Nj4lence. So 

a substantial saving at the integral stage, and also during the iteration process 

owing to the reduction in the length of the integral tape, which has to be read 

at each iteration, is achieved by the use of this approximation.

1.6 The Correlation Problem and Configura 

tion Interaction

The Hartree Fock method is based on the assumption that each electron moves 

independently of the instantaneous positions of all the other electrons in the 

molecular system, and the best orbitals constructed using this assumption are 

used to construct the wave function. These orbitals describe the motion of 

an electron in the average field of all the other electrons in the system. This 

produces an energy which is higher than the exact energy owing to neglect of the

12



instantaneous interactions between the electron pairs. The correlation energy is 

defined as the difference between the solution of the non-relativistic Schrodinger 

equation and the restricted Hartree Fock limit.

The correlation energy is small compared to the total energy of the system 

but, as the energy of most chemical processes is the difference between the en­

ergies of two states of quite similar energy, it is of similar magnitude to most 

reaction energies and so is not negligible. For example, different states of a 

molecular system may have different amounts of correlation energy. Thus the 

experimental ordering of these states may be different to the Hartree Fock pre­

dicted ordering (ionization potentials etc.), a point which has to be considered 

when using the Hartree Fock method to interpret experimental results.

An expensive computational technique exists which permits the calculation 

of correlation energies. This is the Configuration Interaction method [12], in 

which the wave function, ♦ , is written as the sum of a series of configurations,

including the ground state HF determinant, which are generally taken as 

linear combinations of Slater determinants, constructed by replacing occupied 

orbitals in the ground state RHF wavefunction with virtual orbitals.

Since a large number of configurations can be generated from a moderately

[1.19]
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sized basis set the number of configurations contributing to the series must be 

restricted. It is thus important to select those configurations which make a large 

contribution to the correlation energy.

1.7 Koopman’s Theorem [13]

Koopman’s theorem states that the binding energy of an electron in a closed shell 

molecule may be approximated to by the negative of its Hartree Fock ground 

state orbital energy. This very useful theorem means that it is possible to obtain 

estimates of the ionization potentials of a molecule from its ground state wave 

function without any calculation of the wave functions for the various ionized 

states of the system. As a result of this great saving in computational labour it 

is widely used, though such estimates must be treated with some caution. An 

assumption involved in its proof requires that the molecular orbitals in the ion 

be the same as those in the molecular ground state, the sudden approximation.

This is clearly not the case. Upon ionization, if there are 2n electrons ini­

tially, the remaining electrons move in the field of (2n-2) electrons, rather than 

(2n-l) as in the ground state, and reorganize, or relax, so as to minimize the en­

ergy of the ionic system. This will tend to make Koopman’s theorem ionization 

potentials greater than experiment. Upon ionization there is also usually a de-

14



crease in the correlation energy of the system, as the number of electrons within 

the molecular system decreases. This increases the magnitude of the ionization 

potential. The fact that the two errors, relaxation <■• '1 correlation, are of oppo­

site sign and so tend to cancel out explains the often startlingly good agreement 

of Koopman’s theorem estimates and the experimental ionization potentials.

Allowance for relaxation effects may be made by use of the ASCF  Method. 

This involves calculating ionic state wave functions of equal quality to the 

ground state wave function, and the IP’s may then be obtained from the dif­

ference between the ground state energy and the energies of the various ionic 

states, thus accounting for much of the relaxation energy. In cases where re­

laxation is very great the ASCF Method and Koopman’s theorem can produce 

different orderings of the ionization potentials.

1.8 Rydberg States and Quantum Defects.

A photon may not be sufficiently energetic to ionize an electron from a given 

orbital but may be of the correct energy to excite an electron to a Rydberg 

orbital, yielding a Rydberg state [14]. Such orbitals are very diffuse and extend 

far from the molecular core. At such distances the molecular potential is effec­

tively that of a  unipositive centre, as the remaining electrons, in comparatively

O'"
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constricted ground state orbitals, shield the nuclear charges. The spacing of 

the energy levels of the hydrogen atom bears similarities to such a molecular 

situation, as in both cases the electron under consideration is, in effect, moving 

in the electric field of a unipositive centre.

The energy required to excite the atomic hydrogen electron into a given 

Rydberg orbital is

where R is the Rydberg constant, n the principal number of the Rydberg orbital 

under consideration and IP< the ionization potential of the atomic orbital i from 

which the electron is excited. Thus there exists a series of states, progressively 

more closely spaced in energy, and the energy required to excite an electron to 

one of these states converges onto the ionization potential of the orbital from 

which the electron is excited as n increases.

The energy required to excite an electron from molecular orbital i to a given 

Rydberg orbital with principal quantum number, n, is given by a modification 

of Eqn. 1.19.

5„|Z is the quantum defect [15) and arises from the interaction of the Ry-

En = I  Pi -  R /n2 [1.19|

EH = I P i - R / ( n - S n,x)2 [ 1.20|

16



dberg electron with the other electrons in the system and with the molecular 

framework. The quantum defect is a function of several variables. As the prin­

cipal quantum number, n, increases the orbital becomes more diffuse. Thus 

the quantum defect must be dependent on the principal quantum number n, 

but this dependence has been found to be small and is mostly ignored. Other 

factors, x, which affect the quantum defect include the angular momentum of 

the excited electron and the direction in which the Rydberg orbital is oriented 

with respect to the molecular framework. Thus ns, np and nd orbitals all have 

different quantum defects and the quantum defects for npo and np t orbitals are 

significantly different, as are those for nd<r, ndt and ndi orbitals.

Knowledge of the ionization potentials and quantum defects make it possible 

to estimate excitation energies for transitions which have not been measured 

experimentally. Such estimates will be compared with IVO values and the 

available experimental values for several small molecules in this thesis.

The values of the quantum defects have been derived from experimental 

excitation energies for many small molecules by Lindholm [15].

17



1.9 Population Analysis

It can be helpful in interpreting a molecular wave function to partition the 

electronic population, either from the total wave function or a spin orbital, 

between the various atoms in the molecule. In this report the scheme due to 

Mulliken [16] will be used. The gross atomic population of atom a, consisting 

of a sum of contributions from each spin orbital, is defined as

«• =  E  «i -  E ** E  K i + E  } [ « i l
i i It V

Where N, is the number of electrons on orbital i, the sums over ¡t and v are 

sums over basis functions, with ¡i on atom a and v on all other atoms on the 

molecule. S/tv  is the overlap integral between basis functions it and v and C„i 

is the coefficient of the n’th basis function in the i’th orbital.

1.10 Localized orbitals [17]

Hartree Fock canonical molecular orbitals often extend over the whole molecule 

and thus bear little relation to the conventional picture of specific bonds. How­

ever the electron distribution is related to the square of the wave function rather

18



than to individual spin orbitals, and while a given set of spin orbitals will deter­

mine a wave function, the converse is not true. A new set of normalized orthog- 

onalized orbitals may be generated from the canonical orbitals, without change 

in the wavefunction, by means of an unitary transformation. However there 

are an infinite number of possible transformations and so an infinite number of 

possible orbitals. Just as the Hartree Fock canonical orbitals are appropriate 

for interpretation of the photoelectron spectrum other orbitals may be useful 

for different interpretative purposes.

The method of Edmiston and Rudenberg [17] for the generation of localized 

orbitals is based upon the minimization of inter orbit interactions. When this 

is minimized the charge density of different orbitals must be separated as much 

as possible. This means that, as far as is consistent with the wave function 

the orbitals are localized as much as possible. Conversely, this means that the 

total intraorbital Coulomb energy is maximized. When localized orbitals are 

generated using this method the resulting orbitals bear a close resemblance to 

the conventional picture of molecular charge distribution arising from lone pair 

and bonding orbitals.

19



1.11 The Xa Approximation

The Hartree Fock pseudo eigenvalue equations contain different exchange terms 

for each of the Hartree Fock orbitals. Slater [18] suggested replacing each of 

these different terms by a weighted mean. When this weighted mean is calcu­

lated for a free electron gas the result is

The expression was obtained by writing the wave functions as a Slater de­

terminant, calculating the total energy for a  wave function in this form, then 

the spin orbital <t, was varied so as to minimize the total energy, resulting in 

the Hartree Fock equations. The exchange term was then replaced by its av­

erage and this was replaced by its statistical equivalent. However the process 

of variation and replacement by the statistical average is not a commutative 

procedure. Gaspar, Kohm and Sham [19| made the replacement by the statis­

tical approximation in the formulae for the total energy and then varied this 

to obtain the one electron equation. This resulted in a value for the exchange 

correlation only two thirds as big as that which Slater had obtained:

[VWttU)!«' = - 3 |^ t ( l ) l *  = V„t (l) [1.22J

where

11.23]
• t
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( 0 1) ) = - 2 ( £ p,(1)I* [1.241-

These discrepancies led to the introduction of a variable coefficient, a, in 

the approximate exchange term with a = 1 being led to by Slater’s calculation, 

and a  = 2/3 by the derivation of Gaspar, Kohm and Sham.

[1.25|

As a originates in the introduction of an approximation into the one electron 

operator, and the energy expression explicitly contains a,, a cannot be deter­

mined variationally. Such an attempt would in any case fail as the calculated 

total energy does not show a minimum with respect to a. The larger the value 

of a employed the lower the total energy. Hence an arbitrary criterion has to 

be found by which the value of a can be determined.

Schwarz [20,21] has performed a series of calculations in which two values 

of a have been found for isolated atoms. The first of these is a^/, which is the 

value of a such that (Exa) is exactly equal to (Eh f )•

The second of these values is a¥t- This is the value of a  for which the Virial 

Theorem (V =  —2T) is exactly satisfied when the X a  spin orbitals calculated
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using a ,t are substituted into the Hartree Fock expressions for the kinetic and

potential energies. It may be seen from the values of ahj ,  avt and d{Exa )/d a  

given by Schwarz that the difference in (£*«,) when ahf and avt are used will 

be very small.

1.12 Significance of the Xa  One Electron Eigen 

value [22]

Hartree Fock eigenvalues are finite differences between the energy of the system 

with orbital i occupied and unoccupied, keeping all other orbitals unchanged. 

However using the X a  approximation changes the meaning of the eigenvalues. 

The X a  eigenvalues are no longer finite differences between the energies of two 

states but are found to be related to the total energy of the system by eqn 1.26b.

The i’th orbital eigenvalue within the X a  scheme, e,JO, is thus the derivative

< * /=  {&.t(i =  l ) ) - (£«*(«• =  0)) [1.26a]

9{E, a) 
£,*0 =  dm [1.266]
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of the total energy with respect to the occupation number, n,, of the i’th orbital.

This difference, arising from the approximation to the exchange integrals, 

explains the observation that the two sets of eigenvalues agree most closely if 

or is assumed to be unity, whereas the eigenfunctions agree most closely if a is 

smaller than unity but greater than two thirds.

1.13 The Slater Transition State [22]

Owing to the difference in definition of the Hartree Fock and X a  eigenvalues 

there is no equivalent to Koopman’s theorem relating the X a  orbital eigenvalues 

to the ionization potentials. Hence it would seem necessary to perform the X a  

equivalent of ASC F  calculations in order to obtain ionization energies. This 

involves taking the difference of two large quantities in order to obtain a small 

quantity, a  process which cannot be guaranteed to lead to high accuracy.

Slater suggested the transition state concept which overcomes this difficulty. 

Here the total energy is expanded in a Taylor series about a hypothetical state 

which has an occupation number of one half in the orbital, k, from which ion­

ization is occuring. It is then found that the difference in energies between 

the ground and ionized states is approximately the negative of the k’th orbital
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eigenvalue where orbital k baa an occupation number half an electron less than 

it had in the ground state, the so called Slater Transition State.

I k  at - t k( 1/2) [1.27J

Thus a transition state calculation will often give a better approximation 

to the orbital ionization potential than Koopman’s Theorem, as the transition 

state allows the orbitals to change from the ground state, so that there is a 

relaxation effect included within the X a  estimates of the ionization potentials.

1.14 The Scattered Wave Model [23]

The X a  approximation as such only saves computational cost in the calculation 

of the exchange integrals. A far more approximate method, which includes the 

X a  approximation is the multiple scattering model ( MS Xa )  [23]. In this model 

the molecule is divided into three different types of regions, atomic (Region 1), 

interatomic (Region 2) and extramolecular (Region 3), shown for a diatomic 

system in Figure 1.1 . Inside each region the one electron equation is solved;
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The potential within each atomic region and the extramolecuiar region is 

expanded in a series of spherical harmonics

However the potential is then approximated to by the first term of the ex­

pansion, giving a spherically symmetric potential.

In the interatomic region the potential is generally set to a constant volume 

average.

The fact that there now exists a spherically symmetric potential in regions 1 

and 3 means that the one electron equation can be rapidly solved within these 

regions. The constant potential within region 2 makes the solution especially 

simple here.

In both the atomic and extramolecuiar regions the solutions of the one elec-

L =  ( l,m )  [ 1. 29]

L

tron equations consist of a set of radial functions and spherical harmonics, and 

such solutions can be found for any value of the one electron eigenvalue. How-



ever for localized orbitals the radial functions in the extramolecular region must 

decay exponentially at large distances from the molecule.

In the intersphere region, because of the constant potential, the solution of 

the one electron equation consists of a set of ‘outgoing waves’ from each atomic 

region and of ‘incoming waves’ from the extramolecular region. Again solutions 

may be found for any value of the one electron eigenvalue.

As a solution to the one electron equation in each of the regions may be 

found for any arbitrary value of the energy the orbital energies are found by 

requiring that the various wave functions and their derivatives match at each of 

the interfaces between the different regions of space. This results in a secular 

determinant, the zeros of which have to be found by numerical methods, giving 

the orbital eigenvalues.

This numerical evaluation of the determinant at a large number of points 

is one of the chief computational problems of this method. If the scanning 

points are not close enough it is possible to skip a root resulting in an excited 

state wave function. Whenever this happens serious numerical instability may 

result as the wave function oscillates from one configuration to another between 

iterations, and if convergence results, it is equally likely to be onto an excited 

state as onto the ground state. If, in order to avoid this problem the energy 

mesh is very fine, the time required for the calculation may become as great as
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for an ab-initio calculation.

It has been found necessary to scan the converged molecular potential after 

the calculation has been completed using an exceedingly fine energy mesh to 

check that no eigenvalues have been missed.

1.15 Deficiences of the MSXa Method

It has been found that in a number of cases the MSXa method fails to give satis­

factory results, e.g. molecular geometries. These deficiencies can be attributed 

to the muffin tin approximation rather than to the X a  approximation. At the 

start of an iteration the potential, V,ni, is spherically symmetrical within each 

of the atomic spheres. After the iteration the final potential, Vj in, is not. This 

nonspherical potential is then spherically averaged to give and is used on 

the succeeding iteration. So there is never true self consistency, rather the con­

vergence criterion is that the averaged final potential be the same as the initial 

potential. It is in fact impossible for true self consistency to be achieved as the 

very nature of a chemical bond is a nonspherical electron distribution around 

a nucleus. So the muffin tin approximation basically ignores the existence of 

chemical bonds.
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Thus the muffin tin approximation which is the chief simplification of the 

MSXa method is also its chief theoretical deficiency. Many attempts have been 

made to overcome this deficiency while retaining the essential features of the 

method but most have not developed owing to an increase in the complexity of 

the treatment required outweighing the proposed advantages.

Only two improvements have proved satisfactory. The actual nonspherical 

charge density of the system can be used in the energy equations instead of the 

averaged charge density ¡24). This is a mathematically very complex procedure 

which produces good results, e.g. the equilibrium bond distance of Nj is cor­

rectly predicted whereas the standard model predicts a value several times too 

large. However the computational complexity has led to this method being but 

seldom employed.

The alternative method involves simply permitting the touching spheres to 

overlap. Johnson (25] first gave a formal justification of the procedure for ‘small 

overlap’. This allows the existing MSXa programmes to be used unchanged, 

merely a change in the input data is involved. Most of the intersphere charge is 

concentrated just outside the muffin tins and a slight increase in their size, giving 

sphere overlap, takes this charge within the spheres, where it is better treated. 

Slater [26] pointed out that the muffin tin approximation is reasonable, if each 

sphere contains enough electrons to neutralize the nucleus contained within.
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This is precisely what the overlapping spheres method does. The charge within 

the overlap region is counted twice but, provided that this is not a large volume, 

the errors introduced are not large.

The problem then arises of assigning radii to the various spheres. By varying 

the sizes of the spheres individually it is possible to produce significant changes 

in the calculated quantities. This kind of totally arbitrary situation is unsat­

isfactory especially as the energy of the system continually decreases as the 

overlap increases. The criterion now used to determine the sphere radii is to 

vary the overlap until the virial theorem is satisfied.

The method of overlapping spheres is not necessarily as large an improve­

ment as it may seem. Besides the above disadvantages it has a serious time 

penalty. If the calculation is carried out as originally suggested, several differ­

ent ground sta te  calculations are required until a set of sphere radii have been 

found, the corresponding wave function of which satisfies the virial theorem. 

This requires a great increase in computational effort. Furthermore as the over­

lap increases the time required to find the eigenvalues of the secular determinant 

increases. This may mean that the time required for an overlapping sphere cal­

culation is greater than for a large scale LCAO calculation. Because of this 

time problem the practice has grown of performing only one calculation, with a 

sphere overlap of approximately 20%, an entirely arbitrary procedure, though
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it is often found that overlaps in this region do provide the desired values of the 

sphere radii.

There is one final problem with the overlapping sphere method. Overlaps 

of this magnitude are not really allowable as being ‘small overlaps’ and the 

multiple scattering equations no longer really hold.

The M SX a  method has two main advantages compared to the LCAO 

method. The first is its saving in computational time compared to the LCAO 

method in a given molecule. The second is that by use of the Slater transition 

state concept it is much easier to get estimates of ionization potentials contain­

ing some relaxation than from LCAO calculations. Once a converged ground 

state molecular potential has been calculated it takes few iterations to converge 

a transition state calculation. To converge a ASCF calculation can be a difficult 

task as, for all except the highest ionized states of a given symmetry, the wave 

function tends to fall through to the highest state.

Despite the theoretically unsatisfactory nature of the multiple scattering 

method it does provide answers to real problems without input of experimental 

parameters, answers which are often in better agreement with experiment than 

those produced by ab-initio methods.
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Chapter 2

Molecular Electronic 

Structure Calculations

In this chapter the results of two MO-SCF calculations on the MoOj-  ion will 

be compared. Both employ the same basis set but one involves the use of the 

core valence approximation scheme. The two sets of results will be shown to 

be in good agreement demonstrating the utility of the approximation. The 

results of an MSXa calculation upon this system will also be reported. Calcu­

lations are then reported, employing the core valence approximation upon the 

dirhodium tetraformate system. Finally MSXa calculations on the CrC^ and
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MnClz molecules are reported and used to interpret the photoelectron spectra 

of these systems.

2.1 Calculations on the Molybdate Ion

In the following sections ab initio MO SCF, core valence approximation MO 

SCF and Multiple Scattering X a  calculations are presented for the molybdate 

anion. The core valence approximation MO SCF results will be shown to be 

in close agreement with the results of the ab initio MO SCF calculations. The 

MSXa calculations lead to the same ordering of the ground state orbitals as the 

ab initio calculations, and while there are slight differences in the ordering of 

the predicted ionization energies, both schemes yield a similar interpretation of 

the photoelectron spectra of the molybdate ion.

2.1.1 Ab Initio and Core Valence MO-SCF Calculations

The ground state wave function of the MoOj-  ion was computed within the 

restricted Hartree Fock scheme employing a (16sl2p8d/6s3p2d) Gaussian basis 

set (1] on the molybdenum centre and a  (9s5p/4s2p) Gaussian basis set [2] on the 

oxygen centres. The calculation was performed with the oxygen nuclei arranged
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tetrahedrally around the molybdenum centre with an interatomic separation 

determined experimentally for the NagMoO« crystal (Ra/ o- o = 1.97A) [3]. 

The total energy and orbital eigenvalues of the outermost seven orbitals are 

presented in Table 2.1.

Also presented in Table 2.1 are the results of a calculation employing the 

core valence approximation. This calculation employed the same basis set and 

molecular geometry as the ab initio calculation. All contracted basis functions 

consisting entirely of Gaussian functions with exponents greater than 1.0 were 

treated as core type functions, giving 23 core basis functions and 42 valence basis 

functions. As shown in Table 2.1 the orbital eigenvalues of both the ab initio 

and core valence calculations are very similar and the total energies differ by 

only 0.07eV. The ab initio calculation required 367 seconds and the core valence 

334 seconds for integral evaluation on a CDC 7600. The calculations required 

5.8 and 5.9 seconds per SCF iteration respectively. Despite the slightly longer 

SCF time required for the core valence calculation, use of the approximation 

resulted in little loss of quality in the results and a small saving in the total 

calculation time.

Designating a further molybdenum s and three equivalent p functions as 

cores, giving in 27 core functions and 38 valence basis functions, results in a 

further reduction of the integral evaluation time to 326.9 seconds and the time
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per SCF cycle is reduced to 5.5 seconds. This procedure is not justified as some 

of the exponents of the Gaussian functions involved are quite small ( at 0.3) and 

inaccuracies result. Not only is the resultant total energy in error by 0.3eV but 

the 7ai orbital is now the highest occupied orbital instead of the l t i . However 

the calculations show that for systems with a large number of core orbitals, 

significant savings may be made in the time required for integral evaluation.

Consideration of an isolated ionic system is unphysical as these systems ex­

ist in crystalline form, surrounded by other ions which provide a stabilizing 

electrostatic field. This stabilization is most important for the outer valence 

orbitals, which in the isolated ion calculations are bound by only 1.5eV. The 

electrostatic potential at the molybdenum and oxygen nuclei were calculated 

by a programme based on the formulae given by Tosi [4]. The charges on the 

molybdenum and oxygen centres were those given by the Mullilcen population 

analysis of the wave function calculated for the isolated ion, Qmo — +1.82947e 

and Qo =  -0.95737e. The resultant electrostatic potentials were reproduced 

by surrounding the molybdate system with point charges representing the sur­

rounding sodium, molybdenum and oxygen atoms and by four supplementary 

charges which were chosen so that the potential at the central molybdenum and 

oxygen sites, on which the basis functions were placed, were the same as calcu­

lated for the molybdenum and oxygen site in the crystal. The orbital eigenvalues 

of the seven outermost orbitals of this calculation are given in Table 2.1, where
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it may be seen that the surrounding charges stabilize each of the orbitals by 

almost the same amount.

While it is possible to compare the orbital eigenvalues directly with the 

photoelectron spectrum by use of Koopman's theorem, ASCF calculations have 

been carried out for the seven outermost orbitals so as to allow for electronic 

relaxation upon ionization. The calculated relaxation energies and ionization 

energies are presented in Table 2.2.

2.1.2 MSXa Calculations

For comparison purposes the results of an MSXa calculation are also given 

in Table 2.1. In this calculation each atomic centre was surrounded with a 

sphere which touched, but did not overlap, the sphere surrounding its nearest 

neighbour. A sphere also surrounded the entire system. The sphere radii were 

RMo = 2.6357au, Ro =  1.0907au and Rea<<r- 4.8171au, and were chosen from 

the ratio of Slaters atomic radii for molybdenum and oxygen. The a values 

of Schwarz were employed in the atomic spheres and a weighted average (a =

0.73606) in the intersphere and outer sphere. Partial waves up to I = 4 on the 

outer and molybdenum spheres and I = 2 on the oxygen sphere were employed.

This calculation yielded the same ground state configuration as the ab initio
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calculation but the eigenvalues in Table 2.1 cannot be compared directly with 

the photoelectron spectrum. Slater Transition State calculations were carried 

out in order to obtain predictions of the ionization energies. As the transition 

state allows for orbital relaxation, these transition state energies, given in Table 

2.2, are comparable with the ASCF ionization energies listed there.

2.1.3 Discussion

The X-ray photoelectron spectrum of Na^MoO^ measured by Calabrese and 

Hayes (5| is reproduced in Figure 2.1. It consists of three peaks, centred at 1.0,

7.5 and 23.5eV binding energy. The first of these peaks, (I), is discounted by 

Calabrese and Hayes as arising from impurities in their samples. The experi­

mental peak, [II], with a maximum at 7.5eV extends over 8eV and is skewed to 

low binding energy. This peak arises from the overlap of two peaks centred at 

5.0 and 7.9eV binding energy.

Both the ASCF and MSXa calculations predict the appearance of three 

groupings of orbitals in the PCS; a low binding energy grouping arising from 

the l t i ,  8t2, and 7ai orbitals, another grouping arising from the 2e and 6t2 

orbitals between two and five electron volts to higher binding energy, and a 

third group arising from the 6t2 and 6ai orbitals to at least ten electron volts 

higher binding energy.
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The most important result of this work is the demonstration of the accuracy 

of the core valence approximation in calculations involving large systems. This 

approximation will now be employed in the investigation of the Rh2(0 2CH)4 

molecule, a  much larger system in which the time saving owing to this approx­

imation will be more significant.

2.2 Rhodium Tetraformate Calculations

Hartree Fock SCF MO calculations employing the core valence approximation 

were performed on Rh2(02CH)4 based upon the structural parameters deter­

mined by Cotton et al [6] for Rh2(0 2CCHj)4.2H2O (Rrh- ri, = 2.39A, R c-o  

= 1.27A, R/ui-o =  2.04A and Rc - H -  1.08A). The (17sllp8d/6s3p2d) basis 

of Huzinaga [1] was employed on the rhodium centres, the (7s3p/2slp) basis on 

the oxygen and carbon centres, and a Slater type function (( = 1.2) expanded 

as four Gaussian type functions on the hydrogen centres. The basis functions 

corresponding to the carbon and oxygen Is, rhodium l-4s, 2p, 3p and 3d orbitals 

were treated as core functions. This resulted in 42 core basis functions and 72 

valence basis functions. This calculation will be referred to as calculation A.

A second calculation, calculation B, employed the same basis set except 

for the functions corresponding to the rhodium 4d orbital. In calculation A
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the three Gaussian basis functions comprising the 4d basis function (exponents 

1.83, 0.71 and 0.25) had coefficients of 0.37, 0.51 and 0.29 respectively. These 

resulted from the minimization of the energy of an isolated rhodium atom. In 

calculation B the three exponents were unchanged but their coefficients were 

altered to 0.3, 0.3 and 0.3. This results in an extension of the 4d basis function 

further from the rhodium centre, so bonding between the metal and oxygen 

centres may be better described.

A third calculation, calculation C, in which the rhodium basis was as in 

calculation B was also performed. In this calculation each oxygen and carbon 

s basis function consisted of three Gaussian functions, and each p function of 

four Gaussian functions. These were obtained by least squares fitting of the 

best Slater type orbitals found for the isolated atoms. While this is expected to 

increase the total energy of the system as the oxygen and carbon Is core orbitals 

are better described in the original basis (five Gaussians instead if three), bond* 

ing in the system may be better described, as the oxygen and carbon 2s and 

2p basis functions consist of two and three Gaussian functions in calculation A 

and B, but consist of three and four functions in calculation C.

The current results are compared with those reported subsequently by Nakat- 

suji et al |7| , which employed a basis set in which each atomic orbital was rep­

resented by three Gaussian functions giving a (15sl2p6d/5s4p2d) basis in the
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rhodium centres, a (6s3p/2slp) basis on the carbon and oxygen centres, and 

a contracted Gaussian type basis [unction consisting of three Gaussian type 

functions on the hydrogen centres. Comparison of this basis set with that em­

ployed in calculation C, which of the current series of calculations most closely 

approaches it, shows that calculation C employs a better basis set on all lig­

and centres. The quality of rhodium s and d basis functions in the current 

calculations is at least as good as that of Nakatsuji et al. However, a  (12p/4p) 

contraction is employed by Nakatsuji et al on the rhodium centres whereas an 

(llp /3p ) contraction is employed in the present calculations. As this is the 

sole point of superiority in the basis set of Nakatsuji et al, it is believed that 

the results of calculation C are of at least equal quality to those subsequently 

reported.

2.2.1 Computational Results

The total energies and charges on the various atomic centres given by Mulliken 

population analysis for each calculation are presented in Table 2.3. The small 

change in rhodium basis between calculations A and B yields a total energy 

lower by 0.23eV, confirming that basis B does permit a better description of 

the system. In calculation C the total energy increases very substantially, as 

expected, because the carbon and oxygen Is basis functions are not of similar
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quality to those employed in calculations A and B. In the minimal basis set 

calculations reported by Nakatsuji et al each basis function consisted of a con* 

traction of three Gaussian type functions. As the core orbitals on the rhodium 

centres are better represented in the present calculations , it is thought that the 

total energy obtained by Nalcatsuji et al, which was not reported, is consider­

able more positive than even that of calculation C, which employs the basis set 

closest to that reported by Nakatsuji et al.

From Table 2.3 it is clear that the charge distribution obtained from the 

Mulliken population analysis is extremely sensitive to small changes in basis 

set. The small change in total energy between calculation A and B is accom­

panied by a decrease in charge on the rhodium centres of 20%. Moving from 

calculation B to C, in which the ligand valence orbitals are better described, 

the charges on the carbon and oxygen centres become more negative, whereas 

the charges on the rhodium and hydrogen centres, where the basis set has re­

mained unchanged, become more positive. This indicates that the new ligand 

basis functions in calculation C are being used to a greater extent than those 

which they replace in calculation B, displacing rhodium basis functions in the 

process rather than necessarily providing a greatly improved description of the 

valence electron distribution. However, the increase in the positive charge on the 

rhodium centre is only 15% of the decrease in this charge obtained by employing 

the slightly modified 4d basis function in calculation B.
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The orbital eigenvalues and percentage contribution of metal basis functions 

to each of the outer valence orbitals, obtained by Mulliken population analysis, 

are presented in Table 2.4 for calculation C, which should best describe these 

orbitals, and the metal bonding properties of all orbitals with more than 9% 

metal character is indicated. Five orbitals are metal dominated, giving, in order 

of increasing energy, but metal character is spread through many other

orbitals, including one a orbital of 49% metal character.

The calculated orbital configuration is found to be sensitive to basis set 

change. Considering orbitals of more than 40% metal character calculation A 

gives a metal bonding configuration of and calculations B and C

6*mt*a6a. Despite the presence of two orbitals with a bonding character in 

these configurations Boys localization reveals that there is actually only one 

bond between the two metal centres, which is of a bonding character. All 

other orbitals localize on separate metal atoms to give atomic d like orbitals, 

indicating that there is no overall 6 or i  contribution to bonding.

The molecular orbital coefficients of the valence metal basis functions con­

tributing to the 4aig and Sati molecular orbitals in calculation C are presented 

in Table 2.5, where they are compared with the coefficients of the correspond­

ing basis functions in the highest occupied molecular orbital in the calculation 

of Nakatsuji et al, which is the only molecular orbital of Rh-Rh a bonding
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character reported by these authors.

2.2.2 Discussion

Despite the short experimental distance between the rhodium atoms the cur­

rent calculations agree with both MSXa [8| and other LCAO calculations in 

predicting the existence of only a single bond between the two rhodium cen­

tres. However the various calculations provide rather different descriptions of 

the electron distribution within the system.

The most striking illustration of these differences is the large difference in 

overall atomic charges between the calculations reported by Nakatsuji et al and 

the results of calculation C with which they are most comparable. The discrep­

ancy is largest in the case of the hydrogen centres. The current calculations 

produce charges on the hydrogen centres between 400 and 500% greater than 

those quoted by Nakatsuji et al, whilst the largest difference between the two 

sets of calculations for the other atomic centres is in the region of 30%. The 

comparatively large difference in hydrogen centre charge between calculations 

A and B, where the only difference is a slight modification in the rhodium ba­

sis, indicates that differences in rhodium basis sets between the current series 

of calculations and those of Nakatsuji et al may account for the large differ­

ences in the respective hydrogen charges. Values are also given in Table 2.3 for
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overall atomic charges given by the MSXa calculations of Norman and Kolari 

(8|. They have been obtained from the published charges in the various atomic 

spheres as well as in the intersphere and outer sphere regions, by allocating the 

intersphere and outer sphere charge to the various spheres in proportion to the 

charge contained in a given set of symmetry equivalent spheres. When this is 

done the charge on the rhodium centres is found to be of almost equal magni­

tude but opposite charge to that yielded by LCAO-MO calculations, implying 

a very different charge distribution indeed.

It is possible that the current calculations are not in fact comparable with 

those of Nakatsuji et al [7], who report that the optimum calculated bond length 

was 2.28A, instead of the experimental value of 2.39A employed in the current 

calculations. It is not clear from the report of Nakatsuji et al whether the 

reported results apply to calculations performed with a rhodium distance of 

2.39A or 2.28A, and this alteration in the bond length could affect the calculated 

electronic structure.

From the report of Nakatsuji et al [7] it appears that their calculations re­

sulted in a set of pure metal orbitals, with a bonding configuration tSn 'S 'i7, 

unlike the current results which yield two orbitals of metal a bonding character. 

Nakatsuji et al report the coefficients of various basis functions in their sole 

a bonding orbital, and it may be seen in Table 2.5 that neither of the two a
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bonding orbitals resulting from the current calculations are very similar to that 

reported by Nakatsuji et al, both having less metal character and correspond­

ingly more ligand character than those reported by Nakatsuji et al. Furthermore 

the report of these authors includes an orbital energy diagram for the molecular 

orbitals pertinent to the metal-metal bond in which the five occupied orbitals 

have eigenvalues between -5 and -9eV, a situation which is not reported in 

the current calculations which yield orbital energies of less than -12.5eV for all 

occupied orbitals.

The MSXa calculations of Normal and Kolari yield eigenvalues of between 

-6 and -9.7eV for orbitals of large metal character, but these figures are not 

comparable to those yielded by the various LCAO-MO calculations owing to the 

rather different meanings of the orbital eigenvalues in the two computational 

schemes.

The spread of metal character in significant quantities through a large num­

ber of rbitals is a feature shared by the current results and those yielded by 

MSXa calculation. Indeed, if orbitals of 40or more metal character are included, 

the MSXa calculation yields a metal-metal bonding configuration of SaioSt'S*, 

although when all the bonding and antibonding contributions are summed, the 

result is an excess of two metal-metal bonding electrons over antibonding elec­

trons, both of a character, as results from the LCAO-MO calculations.
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The prediction of the existence of only a single bond between the metal 

centres leaves the short metal-metal distance in this complex somewhat puzzling. 

There may well be merit in the suggestion advanced by Norman and Kolari [8) 

that the bridging carboxylate ligands constrain the metal atoms to a shorter 

separation than they otherwise prefer, and that the weaker the metal-metal 

bond (in this case single) the more likely it is to be affected by ligand preferences.

While this investigation has demonstrated the utility of the core valence in­

tegral approximation scheme, and produced interesting results as to the order 

of the metal-metal bond, it has also shown the great sensitivity of the calculated 

electron distribution to small changes in basis set when a minimal basis is em­

ployed. Therefore a  detailed description must await the results of calculations 

performed with a much larger and more flexible basis set.

2.3 Calculations on MnC^ and CrCl2

The transition metal dihalides, MX2 are amongst the simplest molecular systems 

in which d orbitals participate in the bonding, and are also amongst the simplest 

transition metal complexes to have been studied by photoelectron spectroscopy 

(PGS) to date. In this section an attempt will be made to interpret the PES of 

CrCl2 and MnCl2 [9| by the use of spin unrestricted X a  calculations. This is
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found to be a far from straight forward task, and in order to arrive at a definitive 

interpretation it will be found necessary to compare the current results with 

the spin restricted and spin unrestricted X a  results of Berkowitz et al [10] for 

MnCl2, published while the present results were being prepared for publication, 

and the Cl and ASC F  results of Lee et al [9] for both CrCfo and MnCl2.

Comparison of the spin unrestricted X a  results reported here with the spin 

restricted results of Berkowitz et al will illustrate the great importance of the 

consideration of spin effects in molecules where several different spin states are 

expected to be close in energy. It will be shown that the spin unrestricted X a  

transition state calculations are of much better quality than the ASCF cal­

culations but do not correlate as closely with the PES as the Cl calculations 

reported by Lee et al. However both the Cl and spin unrestricted X a  calcu­

lations lead to the same interpretation of the PES whereas it is impossible to 

gain an understanding of the PES on the basis of the ASCF results.

The most important point to emerge from the present work is the extreme 

utility of the use of radiation sources of different energies in the measurement 

of PES. In the present case the availability of both He(I) and He(II) spectra 

shows which bands in the PES are associated with ionization from orbitals with 

metal character. This, in combination with calculations, leads to a correct 

interpretation of the PES. This interpretation is rather different to that offered
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by Berkowitz et al for MnCl2 on the basis of the He(I) PES alone.

2.3.1 MSXa Calculations

MSXa calculations of the (round state electronic structure of MnCl2 and CrCl2 

were carried out employing muffin tin potentials together with calculations of the 

valence ionization potentials using the transition state method. The calculations 

were carried out using overlapping spheres with radii determined by the method 

suggested by Norman [ll|, which gave an increase of 28% over touching sphere 

radii in the case of MnCl2 and 25% in the case of CrCl2. The Mn-Cl bond 

length employed was 2.2lA[12j and the Cr-Cl bon f length was 2.35A, the value 

given by an ab-initio calculation on CrCl2 [13],

In both cases the molecular symmetry employed was D,»;,. The outer 

sphere was placed externally tangential to the two chlorine spheres. The calcu­

lated total energy for MnCl2 was -2069.178au, with a virial theorem ratio of

0.999995, and for CrCI2 -1962.576au, with a value jf the virial theorem ratio of

1.000013. The atomic exchange parameters (a,<) employed were those obtained 

by Schwarz. For the intersphere region a weighted average of the atomic ex­

change parameters was employed, the weights being the number of electrons in 

the neutral atoms. Spherical harmonics up to 1 =  4, 4, and 2 were employed on 

the outer, metal and chlorine spheres respectively. All calculations were carried
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2.3.1 MSXa Calculations

MSXa calculations of the ground state electronic structure of MnCI2 and CrCl2 

were carried out employing muffin tin potentials together with calculations of the 

valence ionization potentials using the transition state method. The calculations 

were carried out using overlapping spheres with radii determined by the method 

suggested by Norman [ll|, which gave an increase of 28% over touching sphere 

radii in the case of MnCl2 and 25% in the case of CrCl2. The Mn-Cl bond 

length employed was 2.2lA|l2] and the Cr-Cl bor 1 length was 2.35A, the value 

given by an ab-initio calculation on CrCl2 [13].

In both cases the molecular symmetry employed was D«,*- The outer 

sphere was placed externally tangential to the two chlorine spheres. The calcu­

lated total energy for MnCl2 was -2069.178au, with a virial theorem ratio of

0.999995, and for CrCl2 -  1962.576au, with a value of the virial theorem ratio of

1.000013. The atomic exchange parameters ( a ,() employed were those obtained 

by Schwarz. For the intersphere region a weighted average of the atomic ex­

change parameters was employed, the weights being the number of electrons in 

the neutral atoms. Spherical harmonics up to 1 =  4, 4, and 2 were employed on 

the outer, metal and chlorine spheres respectively. All calculations were carried

by Berkowitz et al for MnCI2 on the basis of the He(I) PES alone.
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out within the spin unrestricted formalism. These spin unrestricted calculations 

resulted in the following ground state configurations for MnCl2 and for CrCl2:

MnCl2 = |core. 8crJ \ 8 e *  l 2 \ l o \  t 7ff‘ 1 15* J 2 t * l f \  9 c lg ] 3x* t

CrCl2 = |core. \ 9 a \  i 7<xi ]  I 2x* \ 2x* 1 4 \ 4xJ |  15* ] 3x* 11

To examine the charge migration occurring upon ionization a population 

analysis of the MSXa orbitals resulting from the ground state and transition 

state calculations was carried out. The quantities Q"(A) and QL* [14] give re­

spectively , the gross population associated with the group of symmetry equiva­

lent atoms A in orbital n, and the corresponding charge loss occurring at atoms 

A accompanying ionization from orbital n. These values together with the cal­

culated ionization energies arranged in order are given in Table 2.6 for MnCl2 

and Table 2.7 for CrClj .

2.3.2 Discussion

Four main regions are evident in the He(I) p.e. spectrum of MnCI2 of which 

three show clearly in the He(II) p.e. spectrum (fig. 2.2). The position of the 

peak maxima and the relative intensities of the various peaks are given in Table 

2.8. In the He(II) spectrum band C has increased greatly in intensity relative 

to band b, and band A has also increased, although to a much lesser extent.
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It is known that the relative cross sections for metal 3d ionization compared to 

chlorine 3p ionization are greater for He(II) than for He(I) radiation. Thus the 

large increase in the intensity of band C relative to band B indicates that it 

arises from predominantly metal ionization. The increase in band A intensity 

also indicates some metal contribution to this band.

Spectra bearing marked similarities to those of MnCI2 are obtained for CrCI2 

(fig. 2.3). Here only three main regions can be identified, the band correspond­

ing to the relatively weak MnCI2 peak D being either nonexistent or unresolved. 

The position of the peak maxima and relative intensities of the various bands 

are given in table 2.9. Here too, bands A and C increase in intensity relative 

to band B when comparing the He(I) and He(II) p.e. spectra. This increase 

affects bands A and C much more equally than the similar increases in the case 

of MnCl2 and indicates that both bands again arise from predominantly metal 

ionization.

The results of the spin unrestricted MSXa calculation on the ground states 

of both MnCl2 and CrCl2 demonstrate spin splitting of considerable magnitude 

not only in the eigenvalues of the valence orbitals but also in their composi­

tion. These effects are also present in the transition state eigenvalues presented 

in tables 2.6 and 2.7, and are much more marked for gerade levels, to which 

contributions from metal a and d orbitals are possible than for ungerade lev-
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els, which are mainly chlorine 3p composition. The spin restricted cellular X a

calculation of Berkowitz et al for MnClj yields a very different ground state to 

that produced by spin unrestricted calculations, one in which there is only one 

partly occupied level, the 3t9 level.

MnCb = |core.&7* 7a\ 2*g 4jt* IS* 3*g |

The current results for MnClî clearly associate the first band in the p.e. 

spectrum with ionization from the 3xg orbital, with the ionization from the 9ag 

orbital predicted to lie at 0.54eV higher binding energy. As the experimental 

separation between bands A and the first maximum in band B is only 0.76eV, 

assignment of the 9og ionization to band B is possible. However, the 9ag or­

bital is mainly metal in character, even more so than the 3*t  orbital, and the 

low energy component of band B decreases slightly in intensity in the He(ll) 

spectrum. This is contrary to the behaviour expected of the band contained 

a contribution from a mainly metal ionization at its low energy edge, so it is 

unlikely that ionization from the 9ffg orbital is contained in this region of the 

spectrum. For this reason band A is assigned to ionization from both the 3irg 

and 9trg orbitals.

The experimental results show a gap of 1.2eV between peaks B and C. No 

such gap is present in Table 2.6 owing to the large amount of spin splitting in 

the computational results. However, it is possible to interpret the experimental
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results with the aid of the calculations. Peak C shows a large increase in inten­

sity in the He(II) spectrum which can only be rationalised on the basis of the 

current results by including ionization from the 1 Sa orbital under this peak. If 

the calculated ordering of the ionization energies is correct peak C must also 

include ionization from the Sag orbital and from the 2jt9 majority spin orbital 

component, while peak B must be assigned to ionization from the 2ng minority 

spin, 4x. and la % mainly chlorine orbitals.

This assignment has only been rendered unambiguous by the availability of 

both He(I) and He(II) p.e. spectra. If only He(I) spectra had been available 

it would have been possible to assign ionization from the 9a g majority spin 

orbital to peak B and very difficult, unarbitrarily, to decide where the division 

between ionizations which contributed to peaks B and C lay. Berkowitz et al [10] 

have also reported spin unrestricted transition state cellular MSXa calculations 

on the valence ionization energies of MnCIj, which lead to the same orbital 

occupancies and ordering of binding energies as the present calculations, and 

to a much smaller interval between the calculated ionization energies of the 3irg 

and 9ag majority spin orbitals (table 2.6). However, their assignment of the 

He(I) p.e. spectrum of this system was based on spin restricted transition state 

calculations. Thus peak A was assigned to ionization from the partly occupied 

3jt9 and fully occupied 18g levels, peak B to the 4jt, ,  2rg and 7am levels and peak 

C to ionization from the &ag orbital. From the extra information supplied by the
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He(II) p.e. spectrum it is clear that this is a  most unsatisfactory interpretation.

The present results also provide a superior interpretation of the p.e. spectra 

than that provided by the LCAO-MO Koopman’s theorem and A SC F  calcula­

tions of Lee et al [9), which both predict that all predominantly metal ionizations 

have higher binding energy than ligand ionizations, although the gap is reduced 

in the ASCF calculation. Configuration interaction calculations reported by the 

same authors lead to an interpretation in which band A arises from ionization 

from the 3irg orbital, band C from the 15, orbital and band B from all the ligand 

orbitals together with the 9ag orbital. However, consideration of all the experi­

mental evidence leads to an assignment which is identical to that deduced above 

except for ionization from the 2t9 majority spin orbital. This is assigned to peak 

B instead of peak C as the degree of spin splitting in the Cl calculation is much 

smaller than in the MSXa calculations reported here. Both the LCAO calcu­

lations and the MSXa calculations predict a  large degree of orbital relaxation 

upon ionization from metal orbitals and the Cl calculations predict a number of 

ionic states corresponding to ionization energies in the range 16-18eV, having 

contributions from the Koopman’s theorem configuration arising from lSa ion­

ization. For this reason Lee et al [9] have assigned peak D as satellite peak, an 

assignment followed here in place of the immediately obvious assignment of this 

peak to ionization from the &79 majority spin orbital, which would leave three 

ionizations under peak C, in which there is indeed evidence of three separate
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maxima.

Assignment of the p.e. spectra of CrCl2 is not as easy. Corresponding to the 

low binding energy peak A, which on intensity grounds must contain ionization 

from a predominantly metal orbital, transition state calculations predict that 

the orbital with the lowest ionization potential is the 3rg orbital, which is of 

high metal character. As there is an interval of l.leV between the calculated 

3xg i.p. and the next lowest calculated i.p., almost exactly the gap between 

the experimental peaks A and B, peak A is assigned to ionization from the 3w 

orbital alone.

The experimental results (Table 2.9) clearly demonstrate the presence of 

two separate peaks originating from metal ionization. As the 3x, ionization has 

already been assigned to peak A, peak C must include ionization from the 16t 

orbital. This assignment is less satisfactory than in the case of MnCl2 in which 

the calculated 16s ionization energy lies within 0.5eV of the first maximum in 

peak C. In the case of CrCl2 the calculated lSt  ionization energy at ll.leV , is 

only 1.5eV higher in energy than the calculated 3t,  ionization energy, whereas 

the experimental separation hetween the two peaks containing metal ionizations 

is 4.1eV. Furthermore, the calculated 16t  ionization energy lies to lower binding 

energy than the 7<r, level, a level which is of predominantly ligand character. 

In the case of MnCl2 the corresponding peak was assigned to ionization from
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both Sag spin orbitals as the peak displays three separate maxima and the or­

bitals concerned had substantial metal contributions. However, for CrCl2, these 

orbitals are calculated to have smaller metal contributions, peak C shows only 

one maximum, is less intense than the ligand peak in the He(II) spectrum and 

is very similar in intensity to peak A in the He(II) spectrum. As peak A has 

already been assigned to ionization from a predominantly metal orbital contain­

ing two electrons, peak C is assigned to ionization from the 16, orbital alone 

and peak B to ionization from the remaining, predominantly ligand, orbitals.

As was the case for MnClj, the X a  calculation, in placing several ligand 

levels between the calculated binding energies of the two mainly metal orbitals, 

provides a more plausible interpretation of the experimental results than either 

Koopman’s theorem or A SC F  calculations, which predict a low b.e. grouping 

of ligand ionizations and a higher b.e. grouping of ionizations from the mainly 

metal 3vg and 1 Sg levels. Configuration interaction calculations [9), although 

yielding a different ordering of calculated binding energies, yield results similar 

to those of the MSXa calculations: with the lowest calculated p.e. being that 

of the 3xg majority spin orbital, and the calculated binding energy of the 16g 

orbital lying amongst various ligand levels; and lead to the same interpretation 

of the experimental spectra.

These calculations have permitted a plausible interpretation of the p.e. spec-
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tra of both CrCl2 and MnCl2, elucidating the similarities between the spectra of 

the two molecules, and extending the series of transition metal dichlorides stud­

ied by Berkowitz et al [10], while correcting the unsatisfactory interpretation 

reported of the He(I) p.e. spectrum of MnCl2 on the basis of spin restricted 

cellular X a  calculations. The comparison of spin restricted and unrestricted 

calculations for MnCl2 shows particularly clearly the importance of spin effects 

in such open shell molecules, and the unsatisfactory assignment of the p.e. spec­

trum proposed by Berkowitz et al [10], the dangers of relying excessively upon 

such calculations. Berkowitz et al report that the gerade ligand levels have non­

vanishing metal d character which increases for the minority spin orbitals from 

MnCl2 to NiCl2, and decreases in that order for majority spin orbitals. The 

current calculations do not show that trend extending to CrCl2.

The most important point illustrated by the current calculations is the ex­

treme utility of the availability of p.e. spectra obtained at different photon 

energies, which provide an empirical but useful guide to the location of bands 

containing contributions from metal ionization in the p.e. spectrum. Without 

this empirical information an incorrect assignment would have resulted from 

calculations with the 16g ionization being assigned to band B in the p.e. spec­

tra  of both CrCl2 and MnCI2, a  band which the intensity data reveal to be 

mainly ligand in character.
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ĉ»y OP

59



Table 2.1

Orbital Energies(au) of the Outermost Molecular Or­
bitals of the M o0 24~ Anion

orbital energy (au)
orbital isolated ion core isolated ion pseudo-lattice MS-Xa

valence approx ab initio ab initio
6a! -0.83561 -0.83558 -1.19500 -0.783
6 t2 -0.82528 -0.82525 -1.18502 -0.778
7t2 -0.16068 -0.16069 -0.52034 -0.324
2e -0.15292 -0.15290 -0.51128 —0.ÓÍ9
7a, -0.07657 -0.07609 -0.43225 -0.281
8 t, -0.06725 -0.06719 -0.42829 -0.268
It, -0.05183 -0.05204 -0.41534 -0.25

E=-4273.52315au E=-4273.53061au

Table 2.2
Calculated Ionization Energies for the M0 O4 Anion

ASCF pseudo-lattice calc MS-Xa calc
B.E.(eV) AE relax(eV) Transn state energy(eV)

It, 10.71 0.59 9.82
8t2 11.06 0.59 10.29
7a, 10.77 0.99 10.66

2e 13.40 0.51 15.31
7t2 13.51 0.65 13.02

6 t2 31.63 0.62 24.23
6ai 31.90 0.62 24.35
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Table 2.1

Orbital Energies(au) of the Outermost Molecular Or­
bitals of the MoOj- Anion

orbital energy (au)
orbital isolated ion core isolated ion pseudo-lattice MS-Xa

valence approx ab initio ab initio
6 a, -0.83561 -0.83558 -1.19500 -0.783
6 t2 -0.82528 -0.82525 -1.18502 -0.778
7tj -0.16068 -0.16069 -0.52034 -0.324
2e -0.15292 -0.15290 -0.51128 -0.019
7a, -0.07657 -0.07609 -0.43225 -0.281
8t, -0.06725 -0.06719 -0.42829 -0.268
It, -0.05183 -0.05204 -0.41534 -0.25

E=-4273.52315au E=-4273.53061au

Table 2.2
Calculated Ionization Energies for the M0 O4- Anion

ASCF pseudo-lattice calc MS-Xo calc
B.E.(eV) AE relax(eV) Transn state energy(eV)

It, 10.71 0.59 9.82
8 t2 11.06 0.59 10.29
7a, 10.77 0.99 10.66

2e 13.40 0.51 15.31
7t2 13.51 0.65 13.02

6 t2 31.63 0.62 24.23
31.90 0.62 24.35
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Table 2.3

Calculated Total Energy and Charge Distribution in
Rh2(0 2CH)4

Calc Energy(au)

A -10118.0575050
B -10118.0659941
C -10112.1092152

LCAO [7]

MSXa [8 ] -10127.0066

Rh O C

+1.0258 -0.5009 +0.2741
+0.8086 -0.4583 +0.2901
+0.8374 -0.4744 +0.2740
0.70 -0.36 +0.30

to -0.37
-0.73 -0.17 +0.67

H € ? '( 0 *îi)(au)
+0.1715 -20.5089
+ 0.2222 -20.5324
+0.2560 -20.2668
+0.05
to +0.07
+0.04
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Table 2.4

Calculated orbital eigenvalues and metal contributions
in Rh2(0 2CH)4

O r b i ta l O r b i ta l m e t a l meta/ — meta/
e n e rg y c o n tr ib u t io n bond ing

au (%) c h a ra c te r

2a „ -0.9068 5.3
2 bu -0.9016 8 .8
2e„ -0.8816
3c, -0.7674 27.9 JT*
3a,, -0.7575 4.9
262. -0.7496 24
2 a2. -0.74601 16.6 0 *

36i, -0.74597 2 .2
162, -0.7423 33.3
2e, -0.6824 13 jr
4c, -0.6819 7
I61. -0.6733 83.3
la 2, -0.6570
5e, -0.6529 62.8 JT*
3e? -0.6198 77.7
4a,, -0.6084 57.8 a
262, -0.6063 60.4 XV

4 6,, -0.5985 28.6 6 ,2 ^ 2
3a2, -0.5427 9.5 a*

362u -0.5388 6 .2
5a,, -0.5096 48.6 a
4e, -0.4981 5.3
5c, -0.4843 3.5
6 c, -0.4791 2 .0
la ,. -0.4683
26,, -0.4651 16.7
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Table 2.5

MO coefficients o f metal-metal a bonding orbitals of 
Rh2(0 2CH)4 obtained from MO-SCF calculations.

Present Results 
4a„ 5ai,

Ref 7

Rh 4dj2 0.520 0.398 0.644
5s 0 .012 0.238 0.284
4p* 0.044 0.066 -0.121 (5px)

Max Coeff in carboxylate 0.167 0.224 0.071

Table 2.6
Electronic structure and ionization energies of MnCl2 

calculated by the MS-Xa method.

o rb i ta l IP co lc ( 'V ) Q "(M n) Q * ( C l ) Q L n( M n ) Q L n(C l) I P a(eV )
3>r, Î 10.3 40 60 28 72 10.6

9 a ,  Î 10.9 80 20 52 48 10.6
43T„ 1 10.9 3 97 9 91 11.3
4jt„ Î 11.1 3 97 12 80 11.3
2 ff, 1 11.1 7 93 13 87 11.6

7<r. i 12.2 17 83 21 79 11.9
7<t.  Î 12.7 19 81 24 76 12.2

15, Î 13.1 100 0 53 47 12.9
8a j  1 13.3 27 73 28 71 13.6
2 tt, Î 13.4 66 34 51 49 13.3
8a j  Î 15.0 44 56 38 62 15.0

0 IPs calculated by transition state cellular MS-Xa method [10].



Table 2.7

Electronic structure and ionisation energies of CrCb 
calculated by the MS-Xa method.

o rb i ta l IP cau (eV ) Q n( C r ) Qn(ci) Q L n( M n ) Q L n(CI)
3 M 9.6 73 27 26 74
47T, [ 10.7 2 98 9 91
4jt,  ì 10.8 2 98 8 92
2 jt,  I 10.9 6 94 11 89
15, Î 11.1 100 0 41 59
2 jt,  Î 11.5 30 70 23 77
7<r. i 11.6 13 87 18 82
7ff„ Î 11.9 15 85 16 84
8*, 1 12.7 23 77 21 79

Î 13.7 35 65 23 77

Table 2.8
Experimental vertical ionization potentials on MnCl2

observed IP Relative Intensity Ref 10
eV He(I) He(II)

A 11.03 22 39 11.06
B 11.79 100 100 11.85

12.05 12.06
12.36 12.37

C 13.58 (13.79) 16 117 13.61
13.95

D 14.46 7 7 not present
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Experimental vertical ionization potentials of CrCb
observed IP Relative Intensity

Table 2.9

eV He(I) He(II)
A 9.97 15 47

11.09
11.79

B 12.14 100 100
12.75
13.27

C 14.07 25 52
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Chapter 3

The Calculation of 

Photoionization Cross 

Sections

In the previous chapter the variation in intensity of various bands with the 

energy of the ionizing radiation in the PES of MnClj and CrCl2 has provided 

information which proved critical to the correct assignment of the origin of the 

bands in the PES. It is clear tha t if it were possible to calculate the intensities
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ot various band in a PES from ab-initio principles a very useful criteria for 

verifying assignments based upon the calculated binding energies of the various 

molecular orbitals would be available. The fact that these intensities vary with 

the energy of the ionizing radiation would then also provide am additional check 

upon these assignments.

The degree of interaction between an electronic system and electromagnetic 

radiation of a given energy, E, is expressed by a  cross section, <r(E). There 

are different cross sections for different processes e.g. for photoabsorption and 

photoionization. This report will only be concerned with photoionization cross 

sections. Again there are various kinds of photoionization cross section; <r«0((E) 

measures the total cross-sectional area presented by the system to electromag­

netic radiation of energy E for all processes leading to photoionization. A knowl­

edge of <7(o((E), together with the branching ratios for production of the molec­

ular ion in its various electronic states, leads to the cross sections for production 

of the various ionic states of the molecule. These are known as partial photoion­

ization cross sections. In the course of calculation these partial cross sections 

may be built up from contributions from various all electron states, of different 

angular momenta which all leave the molecular ion in the same state e.g. an 

electron may leave a r  orbital as a <r, it or 6 wave.

The calculation of photoionization cross sections is a very difficult compu­
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tational problem, as the integrals involved require not only the ground state 

wavefunction but a wavefunction for all the electrons on the ionized state. The 

inclusion of the continuum photoelectron in the final state wavefunction, which 

gives rise to the computational difficulties, has encouraged the development of 

various approximate schemes for the calculation of photoionization cross sec­

tions. Crude approximations such as assumimg that the molecular photoioniza­

tion cross section may be approximated to by the sum of atomic contributions 

[1], or that the continuum electron may be described as a plane wave have been 

employed [2]. While providing interesting results, especially at high photon en­

ergies, these methods are very inaccurate at low photon energies where many 

interesting effects arising from the molecular potential [3,4), and the interaction 

of the motion of the nuclear framework with the ejected electron [5,6], are ob­

served. Two more sophisticated approximate methods for calculating photoion­

ization cross sections, the MS-Xa [7| and Static Exchange Stieltjes-Tchebycheff 

moment imaging methods [8-11], have recently been developed and show great 

promise. The calculations reported in subsequent chapters were all performed 

within the Static Exchange Stieltjes Tchebycheff scheme and compared with 

MS-Xa results where these are available.
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3.1 Oscillator Strengths and Photoionization 

cross sections [12,14]

Classically electrons were supposed to lie at equilibrium positions within elec­

tronic systems and to perform forced oscillations when exposed to electromag­

netic radiation of the appropriate frequency. However electrons are statistically 

distributed, with a distribution given by |V’|3, rather than being fixed point 

charges, and it is this distribution which is distorted by electromagnetic radia­

tion. To the various frequencies, w„ which can cause distortion of the electronic 

distribution corresponds a portion of |^ |2, called the oscillator strength, /<. In 

the continuous region of the spectrum, where all frequencies can interact to 

some extent with the electronic distribution, the spectral density of oscillator 

strength, is used.

Consider a hypothetical one electron classical system, constrained so as to 

interact with electromagnetic radiation at only one frequency. At that frequency 

the oscillator strength will be unity. Such a one electron system, in reality, inter­

acts with radiation over a wide spectrum of frequencies, but the total oscillator 

strength must still sum to unity. For a system with n electrons the total os­

cillator strength distribution, over all possible discrete transitions and over the 

continuous region of the spectrum, for all electrons, must sum to n, the number
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of electrons. That is

(All channels j and all discrete transitions of channel j )

This is known as the Thomas-Reiche-Kuhn rule.

As the magnitude of the various discrete oscillator strengths is related to 

the strength of the interaction of electromagnetic radiation with the electronic 

system at different frequencies, the spectral density of oscillator strength in the 

continuous region of the spectrum is related to the photoionization cross section, 

which corresponds to the probability of ionization of the system by radiation of 

different frequencies. This relationship [13| is given by

<t(w) = 1.098 X 10- “ cm2eV
dk,

The oscillator strength for a transition to an excited state, i, from the ground 

state, separated by an energy difference of E<, is defined as

l i  = \ E i \  < >  |2

where is the total electronic wavefunction for the i’th excited state 

♦o is the ground state electronic wavefunction,

It is the dipole moment operator.

Alternative expressions for the oscillator strength, in terms of the matrix ele­

ments of the electron velocity and accelleration, exist [12]. However only the
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dipole form will be employed in the results reported here.

The rotationally unresolved, fixed nuclei, photoionozation cross section for 

photoionization from the ground state, ♦o.i* given by [14]

° (E)  = H r I < *»m *« > I2

where V e  includes a representation of the motion of the continuum electron 

with energy E. It is the difficulty of providing this representation which has 

caused the development of the various approximate schemes detailed below.

As with the oscillator strength alternative expressions exist for the photoion- 

ization cross section. If accurate wave functions are used for both the ground 

and final states, these expressions will lead to the same value of the cross sec­

tion. However only approximate wave functions are available and thus these 

expressions lead to different values of the cross section [14]. All cross sections 

reported in this work were calculated using the dipole expression for the cross 

section.
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3.2 Angular Effects in Photoelectron Spectra

[15]

In general the strength of a peak in a photoelectron spectrum is not only de­

pendent upon the energy of the exciting radiation but also upon the precise ge­

ometry of the spectrometer employed. This is because electrons do not emerge 

isotropically from the system but have an angular dependence given by

for polarized light, where d<r,(E) is the cross section for emission from orbital i 

at photon energy E into the solid angle dfl. The asymmetry parameter /J,(E) 

for the i’th molecular orbital is a function of photon energy only. The second 

order Legendre polynomial, P;j(0), is given by

Pj(8) = 1/2(3cos20 -  1)

where 8 is the angle between the plane of polarisation of the exciting radiation 

and direction of the photoelectron.

In order that the differential cross section, dtr/dQ, never be less than zero, 

0i cannot lie outside the range -1  < 0 < 2. As the form of the asymmetry 

parameter may be different for different orbitals, i, it is clear that values of the 

ratios of the cross sections of different molecular orbitals, at a given photon
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energy, obtained by comparing the areas of different photoelectron peaks (or an 

arbitrary photoelectron spectrometer, may be completely false. However P2(^) 

is zero, thus eliminating the dependence upon the asymmetry parameter, for two 

magic angles, 54*44' and 180*-54*44'. Results from spectrometers operating 

at these ’magic angles’ permit the correct evaluation of the relative intensities 

of different peaks in the spectrum. Such geometries have not been standard in 

the past, so many experimental results are not useful in the investigation of the 

variation in intensity of photoelectron peaks with photon energy.

3.3 Factors affecting photoionization cross sec­

tions

Three main factors produce strong effects upon the form of the various cross 

section vs. energy curves considered in this thesis. These are Autoionization 

effects, Shape Resonance effects and Nuclear Motion effects.

3.3.1 Autoionization [3,4,15]

There are two main processes which may lead to ionization from a system in its 

electronic ground upon absorption of a photon. The first, direct ionization, is
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comparatively fast.

AB + h v - A B + + e~(E,8)

Direct ionization can occur at all photon energies greater than the lowest ion­

ization threshold.

The second, Autoionization, proceeds by way of absorption of a photon 

leading to an excited bound electronic state of the system, followed by emission 

of an electron. As the excited bound state has a finite lifetime autoionization 

takes substantially longer than direct ionization.

AB +  Av -*  AB* -  AB+ + e~(E, 8)

Autoionization can only occur at photon energies which are equal to the differ­

ence in energies between one of the excited electronic bound states of the system 

and the initial state. At these energies the interaction between the two possible 

modes of photoionization can produce dramatic effects upon the various partial 

channel photoionization cross sections and upon the asymmetry parameters.

Various features in the partial channel photoelectron cross sections of the 

molecules considered on this thesis will be interpreted in terms of autoionization 

effects. These autoionizations will be ascribed mainly to the formation of an 

excited electronic state arising from promotion of an inner valence electron to a 

Rydberg orbital and subsequent decay of this Rydberg state to yield an ionized 

state with a vacancy in a higher orbital.
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Autoionization may occur in any many electron system and cannot therefore 

be described as a molecular effect.

3.3.2 Shape Resonances[3,4,8-ll]

Shape resonances occur when, owing to the shape of the molecular potential, 

an ejected electron is temporarily trapped in the vicinity of the molecule. The 

formation of such a ‘quasi bound state’ generally causes an increase in the 

photoionization cross section owing to the increased overlap of the ionized and 

the ground state wave function. As the effect arises from the shape of the 

molecular potential it is called a shape resonance.

An illustration of this effect, in which the potential barrier arises from the 

presence of a cage of nuclei, is to be found in the ionization of an electron from 

the sulphur 3s orbital in SF«. A low energy photon may be of greater energy 

than the gap between the ground state of SF« and the SF«"(3«~‘ ) ion. However 

a photoelectron originating in the sulphur 3s orbital experiences a potential 

barrier as it escapes the sulphur centre owing to the fluorine cage, and the 

associated charge distribution, surrounding the sulphur centre. This potential 

barrier may be higher than the kinetic energy of the photoelectron. Thus for a 

range of low photon energies the photoelectron may be trapped in the vicinity 

of the molecule and so is subject to a time delay before leaking through the
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potential barrier. This time delay alters the dipole matrix element between the 

ground state and the ionized state, and thus the partial photoionization cross 

section, relative to photon energies where the kinetic energy of the photoelectron 

is greater than the potential barrier.

In the above analysis the barrier giving rise to the resonance has a simple, 

readily appreciated physical cause. Such an explanation is not readily avail­

able for the many resonant phenomena which have been observed in the much 

smaller molecules considered in this report. However it has b> ;n shown that a 

potential barrier also explains these cases [3,4]. The outgoing wave associated 

with the photoelectron has contributions of high angular momenta for certain 

channels and energies. These high angular momentum components can add a 

centrifugal term to the effective potential acting on the photoelectron, which, 

together with the attractive term arising from the positively charged molecular 

ion, can give rise to a barrier in the effective potential. This barrier temporarily 

traps the photoelectron in the vicinity of the molecule and thus enhances the 

partial channel photoionization cross section at these photon energies [4]. This 

mode of analysis is naturally associated with MS-Xa type calculations, in which 

the photoelectron is represented by y, set of partial waves of different angular 

momenta [7|.

While this analysis provides a good explanation of the origin of shape res-
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onances it is difficult to relate to the results of calculations employing finite 

square integrable basis sets, such as those reported in this thesis. Instead a 

paradigm, based upon the relevant methodology, has been developed. In this 

paradigm the photoionization cross section in the region of a shape resonance is 

enhanced by contributions from transitions to valence states which lie above the 

photoionization threshold. As the valence states are confined to the vicinity of 

the molecule their overlap with the ground state is large. Transitions between 

ground and valence states otter bave large oscillator strengths, larger than for 

those for transitions to Rydberg states. As the oscillator strength is related to 

photoionization cross sections this is enhanced over the range of photon energies 

for which the valence state can contribute.

It is clear that the correct location of the higher valence states of the 

molecule, either above or below the appropriate photoionization threshold, is of 

great importance both in the interpretation of the experimental measurements 

and for the accuracy of any attempt to calculate photoionization cross sections. 

In some cases this can cause severe problems. The static exchange calculation 

on the ( l x '1) channel of C2H2, reported in chapter 5, predicts a maximum 

in the lx , —► ifcxÿ contributions, yielding a maximum in the calculated ( lx ^ 1) 

photoionization cross section. This calculated maximum does not agree with 

the experimental measurements. Manual deletion of the contributions to the 

lx ,  —* k fg pseudospectrum in the region of the spurious maximum resulted in
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computational results which then agreed well with the experimental results.

Such problems have also been reported by other workers for i  — t* con­

tributions. Meaningful results have been reported in these cases both by the 

rather ad hoc method of manually deleting pseudospectral contributions deemed 

spurious and by alteration of the operator over which the pseudospectrum is 

constructed so as to force all the spurious contributions to lie below threshold 

[16,17].

3.3.3 Nuclear Motion Effects [5,6]

In the calculation of the molecular wavefunctions reported in this work it was 

assumed that the positions of the nuclear centres were fixed in space. Such 

is not the case. Atomic nuclei in molecular systems are subject to continual 

vibrational motion. Clearly such motion must affect the details of the molecular 

potential from moment to moment. As shape resonances are dependent upon 

the molecular potential it would seem likely that nuclear motion might be a 

significant factor to be included in any attempt to calculate accurate partial 

channel photoionization cross sections.

Dehmer, Dill and Wallace [5], in calculations within the the MS-Xa scheme 

upon the (3<r~1 channel of N*, showed that both the position and max­
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imum value of a  shape resonance within the partial cross section of this chan­

nel could be strongly dependent upon the value of the internuclear separation 

used on the calculation. Thus, as different vibrational states sample internu­

clear distances, the forms of the various vibrationally resolved partial channel 

photoionization cross sections leading to a given final electronic state may be 

different.

The Franck Condon principle asserts that nuclear and electronic motions 

are independent and so may be treated separately. The Franck Condon factors, 

which describe the distribution of vibrational states in the molecular ion after 

photoionization are therefore constants rather than functions of photon energy. 

The above work suggested that this was not the case in the vicinity of a shape 

resonance, where the distribution of vibrational states in the molecular ion may 

differ dramatically from the Franck Condon distribution, so demonstrating the 

coupling of nuclear and electronic motions.

Experimental verification was swiftly found in the case of CO where the dis­

tribution of vibrational states did indeed diverge dramatically from the Franck 

Condon distribution in the vicinity of a shape resonance [6]. However when 

experimental da ta  became available for the (3<t~1)X 2E+ channel of N2 it was 

found that the MS-Xa calculations had substantially overestimated the magni­

tude of the deviation.
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The effects of variation of internudear separation may be interpreted very 

simplistically in terms of the virtual orbital paradigm, employed above in the in­

terpretation of shape resonances, by considering the effects of this variation upon 

the molecular orbitals formed by the interaction of two hydrogen atoms. At 

large distances there is comparatively little interaction between the two atoms 

so the resulting bonding and antibonding orbitals differ little in energy, neither 

between themselves nor with respect to the Is orbitals of atomic hydrogen.

As the internudear distance decreases the degree of interaction increases and 

the difference in energy between the bonding and antibonding orbitals increases. 

Thus, the case of CO, where the resonance is ascribed to contributions from the 

<7 antibonding valence virtual orbital, and where the MSXa calculations show 

that as the internudear distance is decreased the resonance moves to higher 

photon energy, may also be understood within the virtual orbital paradigm.

3.3.4 Cooper Minima

Cooper minima occur when the radial matrix element connecting the ground 

state radial wavefunction and the continuum wavefunction changes sign, as to 

change sign it must go through a zero. As the energy of the continuum electron 

increases the nodes in its radial wavefunction become more closely spaced. If 

such an electron comes from an atomic orbital with at least one node, there
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must exist an energy at which the radial matrix element changes sign and hence 

the partial channel photoionization cross section goes through a minimum. This 

is not a molecular effect as such, and as none of the systems investigated in this 

thesis are large enough to exhibit this feature, will not be further considered 

here.

3.4 Computational Methods

3.4.1 The Geliue Intensity Model [1]

This model assumes that at high enough photoelectron energies the interaction 

of a photoelectron with the molecular ions electric field can be ignored. At such 

energies the kinetic energy associated with ejected valence photoelectrons can 

be regarded as essentially constant so the dependence of the partial cross section 

upon photon energy in ignored. At such energies the de Broglie wavelength of 

the photoelectron is smaller than the average molecular orbital size, so the major 

contributions to the cross section arise from regions where the molecular orbital 

wavefunction is varying rapidly, i.e. in the vicinity of nuclei This suggests that 

it should be possible to express molecular orbital photoionization cross sections
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as a sum of atomic terms:

where i applies to molecular orbitals and a to atomic contributions. Gelius 

assumed that:

where the sum over v runs over all atomic orbitals on atom a and P„i is the 

gross atomic orbital population of the atomic orbital <t>v in the i’th molecular 

orbital. This leads to the equation:

where the summation over runs all atomic orbitals on all centres and the <7„’s 

come from experiment or calculation, and the PVi from Mulliken population 

analysis.

While this method can produce results useful at high photon energy its 

fundamental assumption that molecular effects can be ignored makes it useless 

at low photoelectron kinetic where features such as shape resonances occur.



3.4.2 Plane wave [2], Orthogonalised Plane Wave [2] and

Coulomb Wave Models [17].

The most obvious method of attempting to calculate molecular partial photoion* 

ization cross sections, in which the outgoing electron is explicitly treated, is the 

plane wave model. In this model the photoelectron is described by a  planewave, 

which is the solution of the Schrodinger equation for a free electron. A ground 

state wavefunction is constructed in which each electron is described by a one 

electron orbital. The final state wavefunction is constructed by replacing the 

orbital of interest with a plane wave while freezing all other orbitals in their 

ground state form. Thus photoionization cross sections calculated using this 

method take account neither of the field of the molecular ion in which the pho- 

toelectron is moving nor of the effects of relaxation of the ground state orbitals 

as the photoelectron escapes. The momentum form of the formula for the pho­

toionization cross section is employed and, as the plane wave is an eigenfunction 

of the momentum operator, the integral reduces to an overlap integral between 

the plane wave and the initial molecular orbital which is comparatively easy to 

evaluate.

Such a plane wave is not necessarily orthogonal to any of the occupied or­

bitals. In the Orthogonalised Plane Wave Method (OPW) the overlap formula 

used for the photoionization cross section in the Plane Wave method is modi­
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fied by the addition ot terms which correct this oonorthogonality. At low energy 

the OPW correction to the cross section calculated by the Plane Wave Method 

can be very substantial, as great as an order of magnitude in the case of the 

( lb f ')X 2 Bi and (Saf’ jA2 Ai channels of H20  at 16.75eV. As well as allow* 

ing for orthogonality the OPW method permits the calculation of asymmetry 

parameter, 0(E), which vary with the photon energy whereas the plane wave 

method yields a constant value of 0 =  2. However the OPW method requires 

greater computational expenditure than the PW method.

Both the PW and OPW methods produce results which are quantitatively 

inaccurate at low photon energies. In the case of the (lbj-1) X2 Bi channel 

of H20  OPW calculations yield a partial photoionization cross section value 

of 1.28Mb at 21.2eV photon energy whereas (e,2e) measurements yield a value 

of 5.8.mB. It is generally the case that PW and OPW calculations result in 

photoionization cross section profiles which rise to a  maximum at a photon 

energy between 1.5 and 2.5 times greater than the ionization threshold. This 

does not conform with the general form of experimental results.

A superior method, the Coulomb wave method [18], employs hydrogen like 

continuum functions to replace the ground state orbital from which ionization 

and occurred in the final state wavefunction. Thus the effect of the molecular ion 

resulting from the photoionization process and carrying a unit positive charge is
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allowed for to some extent. Again different value of the calculated cross section 

are obtained dependent upon whether the Coulomb Wave is orthogonalised to 

the occupied molecular orbitals or not. At high energies the results of Coulomb 

wave calculations approach those of Plane Wave calculations. However at low 

photon energies both orthogonalised and nonorthogonalised Coulomb wave cal­

culations yield results in significantly better agreement with experiment than 

PW and OPW calculations. In the case of the (lbJ"l )X2 Bi channel of H2O 

orthogonalised coulomb wave calculations yield a maximum of 4 MB at 16eV, of 

same the order and at similar photon energy to the experimental results, unlike 

the OPW calculations.

3.4.3 The MSXa Method

The MSXa method for calculating bound state wavefunctions has been extended 

by Dill and Dehmer [7| to treat unbound electronic states of molecules in the 

independent electron approximation. The advantage of this method is that the 

‘Muffin Tin Potential’, with a local approximation to the exchange potential, 

can be readily solved to give photoionization cross sections for any given pho­

toelectron kinetic energy. Calculations have also been reported [19] in which 

the ground state potential is generated by a standard Hartree Fock LCAO-MO 

calculation, and is then employed in the construction of the final state multi-
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pie scattering continuum functions. These calculations are open to the same 

objections as the bound state MSXa method; arbitrary choice of sphere radii, 

unphysical potentials and truncation of the number of partial waves in which 

the wavefunction is expanded, although this truncation is reported not to be 

a serious problem [20|. The photoionization cross sections calculated by this 

method, while permitting interpretation of experimental results, have proven 

not to be in as good agreement with the form or the magnitude of the exper­

imental results as those obtained by the Stieltjes-Tchebycheff moment theory 

technique. However, because of its computational cheapness, this method has 

permitted detailed exploration of the coupling of nuclear and electronic motions 

in the vicinity of a shape resonance [5,6], and while again not in good agreement 

with experiment as to magnitude , has predicted and explained experimental ef­

fects not previously described. This method also has the considerable advantage 

of permitting the calculation of the various molecular asymmetry parameters, 

0i(E), with more accuracy than the calculated cross sections, whereas the meth­

ods employed to obtain the results presented in this thesis, at present, permit 

no calculation of the asymmetry parameters.
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3.4.4 The TDHF or RPA Method

Effects such as channel interaction cannot be accounted for by simple Hartree 

Fock type approaches, although these do include exchange terms. An approach 

which can represent such effects is the Random Phase Approximation (RPA) or 

Time Dependent Hartree Fock Approach (TDHF), in which solutions of the time 

dependent Schrodinger equation are approximated. Such calculations have been 

reported, in combination with the Stieltjes-Tchebycheff moment theory analysis, 

outlined below, for N2 [21] and HjO [22| by Langhoff and coworkers. One 

problem with this method is that the resulting excitation energies and oscillator 

strengths generally do not correspond to a single final state configuration with 

a unique photoionization channel. Williams and Langhoff [22] have reported 

techniques for determining partial channel photoionization cross sections from 

TDHF spectra by removal of channel interaction terms. This calculation [22] 

employed a small basis set and yet produced results, which, while not in as good 

agreement with experiment as the calculations on H ;0  reported in chapter 5, 

are somewhat similar in form and magnitude.



3.4.5 The Iterative Schwinger Method

Lucchese, Watson and McKoy [23] have recently reported calculations in which 

the static exchange equation for the final state wavefunction has been solved by 

use of a combination of numerical single centre expansion and variational basis 

set techniques. This method can be used iteratively to improve the quality of 

the calculated photoionization cross sections. This method appears to be that 

which currently most closely approaches the exact solution of the Schrodinger 

equation for the continuum case. It is therefore encouraging that the results 

reported in this thesis agree very closely with those of Lynch et al [24], calculated 

using an iterative Schwinger technique, for the 2a% — kag photoionization cross 

section contribution of Cj Hj , both showing two separate resonance features, 

whereas those of Machado et al [25], employing a smaller basis set, show no 

such structures.

3.5 The Static Exchange Method

Use of the independent particle model with exchange (the Hartree Fock method) 

is well established in bound state calculations. It is natural to seek a means of 

employing the same methods and programmes in photoionization calculations. 

Such calculations using the Hartree Fock potential are termed Static Exchange
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calculations, as the potential contains both a static or local potential, and an 

exchange or nonlocal potential. It will be seen in chapters 4 and 5 that the use of 

converged ground state HF potentials, constructed with a good quality basis set, 

to generate IVO’s using a large supplementary basis set, without iteration, as the 

ground state orbitals are frozen and the potential modified only by removal of an 

electron from the appropriate orbital, leads to good estimates of the difference 

in energies between the various excited states.

These IVO’s, where T labels the channel under consideration, are ob­

tained by solution of a one electron equation of the form

(Ar -<F) t f  = °

where the ef correspond to the discrete energies for excitation and 

hr = T  + V + V r

is the static exchange Hamiltonian. Here T and V are the kinetic and nuclear 

potential operators and Vp is the appropriate non-local channel potential. This 

is written in the form

W = I > a tJ i - b t K i )
i

where J< and K< are the usual Coulomb and exchange operators and the sum­

mation over i runs over the occupied orbitals in the ground state.

The calculation of the appropriate potentials, determined by the set of (a,;b, )
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over which the IVO’s are canonicalized , so that there is no interaction between 

the various excited wavefunctions constructed by including one of the IVO’s in 

the place of a ground state orbital, is often a difficult problem for molecules 

of high symmetry. Such potentials have been published for closed shell linear 

molecules and for the open shell molecule O2 [26].

Such potentials were calculated for the various excited states (2E+ ,2E~, 2II, 2A) 

and possible excitations to these states (ground state orbital —► ko, kit, k5 ) for 

NO. This necessitates the expression of these states in terms of complex orbitals 

before producing potentials in terms of real orbitals, in which the relationship, 

derived from the work of Rose and McKoy [28] is useful.

< x+ x+ |x+ x+ >= <  x+ x+ |x_x_ > +2 < x+ x_|x+ x_ >

The ground state HF potential can be generated using a much smaller ba­

sis set than is required to represent the excited orbitals, as the description of 

such orbitals requires large numbers of very diffuse basis functions. Hence it 

is only necessary to introduce the diffuse functions of the supplementary basis 

set when the IVO’s are being constructed. The MO coefficients of these diffuse 

basis functions in the occupied orbitals, from which the Coulomb and exchange 

operators are constructed, are zero. Thus the only new two electron integrals 

which have to be calculated are those involving two or three of the old basis 

functions and one or two of the supplementary diffuse basis functions.
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Although the impression is gained from the calculated excitation energies 

ftr , reported below, that this method leads to good absolute values of the exci­

tation energies, this is not the case. The often excellent agreement between the 

calculated and experimental excitation energies is due to the use of the experi­

mental ionization potential € r  , rather than the calculated ionization potential, 

in producing excitation energies from the orbital eigenvalues. € | \

i f  =  t r  +  i f

Such calculations, as well as producing bound Rydberg orbitals, produce 

orbitals canonicalized over the same operator with positive eigenvalues, known 

as pseudostates. Unfortunately these cannot be linked with continuum orbitals 

of the same energy as these IVO’s are square integrable (L 2), and Kronecker 

delta function normalized. Continuum orbitals are not square integrable and 

are Dirac delta function normalized in the energy coordinate.

It is however possible, in principle, to obtain approximate moments of the 

oscillator strength distribution, 5(-Jfe), using only the above pseudostates to 

calculate the oscillator strengths [28,9-11].

7,r = ftf|<*SW >|a

$(-*) = D*.r)-*7f

The dipole moment integrals required to calculate such oscillator strengths may
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be read from the dump tape of the ATMOL programme used in tbe current

calculations.

While, in the limit of a  complete basis set, these moments converge onto 

the exact moments, basis sets are not in (act complete and it will be seen in 

the calculation reported below for 0 2, H20  and C2H2 that inadequacies in the 

ground state and supplementary basis set do affect the calculated cross sections.

If reasonable approximations to the moments of the oscillator strength distribu­

tion can be calculated then the problem of extracting the photoionization cross 

section is basically that of extracting a weight function, p(x), from its first 2n 

moments uk:

3.6 Principal Representations [9,10].

Approximating to these integrals by a numerical quadrature gives
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where the x, and A* are the Gaussian quadrature points and weights associated 

with the function p(x) and are said to provide a principal representation of the 

defining moments [29],

It is also useful to consider representations in which one quadrature point is 

fixed at a  specified point, b. As this point is fixed an additional set of n points 

and weights are required in order to solve the 2n moment equations giving n +1 

quadrature weights and points.

(¿<(&)*<(&))
i= 0

and z0(6) =  b.

The dependence Ai(b) and x,(b) does not mean that the and x< are 

actually functions of the prespecified point, a, but rather imply that they are 

dependent on where b is placed.

3.7 Stieltjes Histograms [29].

Solving the set of 2n linear equations directly is extremely difficult but it is 

possible to find the x, and x<(b) by use of the properties of polynomials whose 

roots are at these points, and such methods are outlined in the next section. 

Thus far an n point approximant to the i/*, which in the case under consideration

96



are already approximate coming from an N point pseudospectrum, has been

described.

The advantage of the principal representations is that, if the approximate 

£>* are reasonably close to the exact vk it is possible to obtain estimates of the 

values of the function p(x) at a number of points as follows. Given the A, and 

Xi then

where c < y  < d and r» , < y < r , . +i

Thus it is possible to construct a histogram representation of the integral, 

known as the Stieltjes histogram, for which the midpoint at each point of in­

crease, ‘/2 [£ *  A* + +1 -4f] give good approximations to the integral at

the points of increase x*. Hence it is possible to obtain an approximation to 

p(x) either by interpolating the midpoints with a smooth analytical fit and 

differentiating as

or in histogram form, from the slopes of the straight line segments joining sue-

Then it is reasonable to suppose that
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cessive midpoints o! the vertical steps of /  p(x)dx.

i  I j+ l — Xi

p(x) = 0 

p(z) = 0

x i + i >  X >  Xi  

0 < x < Xi 

Xn < X

In the current case the number of quadrature weights and points, or the order 

of the principle representation, must be less than the number of pseudostates 

defining the approximate spectral moments. As the order of the representation 

increases, the distribution of weights and points comes to resemble the original 

pseudospectrum of excitation energies and oscillator strengths.

Machado et al [25] have published the discrete pseudospectrum obtained for 

the Iff, -* nSg/k6g excitation/ionization of C2H2, together with the 6th, 9th 

and 12th order energies and oscillator strengths, being the principal represen­

tations, at these orders, of the approximate spectral moments generated from 

the discrete pseudospectrum. They are reproduced in Table 3.1. The 6 and 9 

point representations are quite smooth but the 12 point fit includes some of the 

irregularities of the original pseudospectrum of oscillator strengths.

The corresponding 9 point histogram representation of the integral of the 

spectral density of oscillator strength is reproduced in Fig. 3.1a, and a graph 

of the derivative of the polynomial, fitting the midpoints of the steps of this
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histogram, in Fig. 3.1b. It may be seen in Fig. 3.1a that the midpoints of 

the steps of the Stieltjes histograms of orders 3 to 8 also lie on, or close to, the

polynominal fitting the midpoints of the steps of the 9 point histogram.

The Stieltjes data points obtained by finite differencing of the cumulative 

histograms of order 3 to 9 are also shown in Fig. 3.1b and fit the polynominal 

derivative well, illustrating the stability of the method, which smoothes the 

pseudospectra, provided it is not taken to too high order.

The method of obtaining the quadrature points and weights of the Stieltjes 

histogram are now outlined.

It is assumed that the basis set is large enough so that the first 2ri moments

dospectrum, where n is very much smaller than the number of pseudostates N,

3.8 The Stieltjes Imaging Procedure [8 ]

of the photoionization cross section can be determined accurately from the pseu­

* = 0 ,2 n -  1

Transforming to the inverse energy coordinate gives
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i E  =  - d u / / E ~ 2 =  - d u / u 2 =  - u ~ 2 i u

In order to invert these moments to give cr(E) the gaussian quadrature points 

and weights A, associated with the positive definite kernel cr(u)tj_2are re­

quire!, and are defined by the moments v*.

It is known that the are the roots of the n’th order polynomial in w, P»(w) 

, which is orthogonal over the kernel defined above [8]. Any three consecutive 

Pn(u) are related by the recursion relations

As any polynomial of degree m, with only positive exponents, can be ex­

pressed as a sum of the Pn(u), and as P»(w) is orthogonal over the kernel to all 

f\(w) where i is less than n, then /’„(w) must be orthogonal over the kernel to 

all polynomials with only positive exponents of lesser degree. So

pm(w) =  (W -  0m)Pm- i(w) -  7m Pm-2 M

and

Pi(w) =w  -  ß\

P o H  =  1
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Use of the recursion relation gives

J  (<r(w)w-2)wm -lPm_i(w) du -  7 m J (<r(w)u~2)wm“2Pm_2(w) du = 0

using the above metioned orthogonality to remove the term in 0m

Let

Then

therefore

also

Iki = J  (<t(w)w-2 )w*P,(w) du

An—l,m — 1 — 7m A n —2,m —2 0

An — l,m —1 
7m -  j

2m—2

— 0  — / m,m — 1 — A n A n —l,m —1 “  7m A n—l.m — 2

a I m .m - l  An—l,m -2  A n,m -1 A n - l ,m -2
• • •Pm — 7  ~  7 m  r  — » ~  r

'm  —l . m  —1 ' m - l . m - 1  ' m - l , m - l  ' m - 2 , m - S

The recursion relationship also gives

A,m — ffc+l.m — 1 ~  ßm ^k.m  — 1 7m A ,m —2 Jfe =  m,2n -  1 -  m

and

A,o= C*

/», 1 = ^+ 1  -  0i<?*
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With these relationships it is possible to solve for and &, allowing com­

putation of Ik,2 and so on. Hence the values of Pm(h;) may be obtained. The 

values of may be computed from the recursion relationship [8|

+  (« -  pm)P L -A  «) -  7 ^ : . ^ )

The ability to calculate Pm(w) and P'm(u) for any value of w allows the roots 

of Pm(w) to be found by a Newton Raphson iterative numerical procedure, 

where the position of a root may be calculated to any desired accuracy. The 

correspondency weights are then [8]

A f»—1,»-1
‘ =  P i M P . - i M )

These may then be converted back from the inverse energy coordinate to yield 

the weight and energies, (A,, £<), from which the Stieltjes values of the pho­

toionization cross section may be computed.

3.8.1 The Tchebycheff Imaging Procedure [8]

As detailed above it is also possible to construct representations in which one 

point, b, is preset. This is termed Tchebycheff imaging. As well as the weight 

at the fixed point, b, the other weights and quadrature points have to be deter­

mined. These, for the desired order fit, are given as the zeros of the polynomial 

orthogonal over the kernel (o(u)u~2(u -  w»)) . A similar development to the
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above is follwed using the new kernel and modified moments computed as

dk =  Ck+1 -  UbCk

The weights are then given as [8|

The weight associated with the predetermined point b is given for an n point 

Tchebycbeff fit, as

The results presented in this thesis used these formulae, implemented by the 

method of finite differencing, in a programme made available by V.R.Saunders.

It should be noted that the results of an n point Stieltjes procedure are 

equivalent to the results of an n+1 point Tchebycheff procedure, as one point 

in the Tchebycheff procedure is predetermined.

A), — Co ~  A*
1=1

where

At —

The Tchebycheff value for the photoionization cross section is then

*(£6)=  E
dAj l dAb 1 
dE„ + 2 dE„ =  2
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3.9 Overview

The appropriately constructed discrete pseudospectrum of excitation energies 

and oscillator strengths coming from an L2 calculation contains information 

about continuum states of the molecular system. This information cannot be 

extracted directly, but is obtained via a smoothing process, Stieltjes-Tchebycheff 

moment imaging, through the properties of the principal pseudostates. This is 

illustrated in Fig. 3.2, taken from Ref. 29. In Figs. 3.2a and 3.2b oscillator 

strengths which might arise from two independent calculations on the same 

system are shown. Also shown is the curve of the "actual” continuum oscillator 

strength for this system. The distributions in Figs. 3.2a and 3.2b show no 

relationship to one another or to the cross section. However, calculation of the 

principle pseudostates results in smooth distribution, shown in Fig. 3.2c, which 

is much more closely related to the actual oscillator strength. The actual values 

of the oscillator strength distribution may then be obtained by Stieltjes imaging.
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Table 3.1

VARIATIONAL AND MOMENT-THEORY SPECTRA FOR l»u-» «fi./fcS. EXCITA- 
TION/IONIZATION OF C,H,

Variational 
apectrum* Aej(»V)//j

Moment-theory apectrak 1 , (eV)/F(

» *  6 « « 0 » •1 2

9.91/0.1147 10.03/0.1756 9.92/0.1171 9.91/0.1148
10.55/0.0653 11.87/0.4983 10.71/0.1819 10.57/0.0776
10.86/0.0359 15.52/0.8242 11.76/0.2638 11.05/0.0897
11.06/0.0616 22.92/0.6744 13.78/0.5442 11.83/0.2327
11.82/0.2361 43.08/0.8994 18.05/0.7525 13.73/0.5398
13.72/0.5402
17.98/0.7237
19.48/0.0337
27.56/0.4679
82.48/0.0193
47.49/0.2616
53.13/0.0028
67.35/0.0003
92.40/0.0613

107.50/0.0173
187.93/0.0189
214.97/0.0071
458.42/0.0000

124.84/0.0960 27.62/0.4831
47.20/0.2686
93.67/0.0792

193.60/0.0275

18.01/0.7471
22.55/0.0197
27.75/0.4733
47.26/0.2649
79.01/0.0237

101.38/0.0599
198.84/0.0246

* Value* in the static-eaehan(e approximation

D Moment-theory epectra ' <n •  6,9, and 12.
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Fig. 3.1

'  (*) Cumulativa Stialtjai hiato*rama for lvu -* *6„ photoionization of C,H,:
------9 th-order hiatogram < :/«* *' V obtainad from ^ x -*  the calculated
Peeudo-apectrum of Table Al; •, cumulative hiitogram midpoint« > f°*
■ * 3 -9 ;........ , leait-aquarea polynomial (l/£) fit to hiatogram midpoint«, (b) Stieltjee
approximation« to liru -* k 6 g photoionization of Cj Hj : ------- , derivative d F / d £  of
«omuUtive fit ahown in Fig. Al (a); •. Stieltjaa daU poinU obtainad from flnite-differ- 
Wc*a of cumulative hi« to grama for n = 3—9.
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Fig. 3.2

Energy
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Chapter 4

Photoionization Cross 

Section Calculations for 

Open Shell Diatomic 

Systems

In this chapter the methods described in the previous chapter are applied to 

the open shell diatomic systems NO and Oj. Because of the outer open shell
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these calculations are more complex and challenging than similar calculations 

for closed shell diatomic systems. It will be seen that the static exchange ap­

proximation coupled with the Stieltjes-Tchebycheff moment imaging technique 

provides results for these systems which are as encouraging as those obtained for 

closed shell molecules. No new method will be required to interpret the results 

obtained, which can be adequately understood in terms of contributions from 

atomic 3d pre-Rydberg orbitals, and of resonances arising from contributions 

from valence virtual orbitals, as were previous calculations [1|.

A. Nitric Oxide Calculations [8]

4.1 Introduction

Many calculations have been reported for closed shell systems which have pro­

vided an understanding of the variation of partial channel photoionization cross 

sections with photon energy. Prior to the calculation reported in this section 

only one calculation employing the static exchange approximation together with 

the Stieltjes-Tchebycheff moment imaging technique had been reported for an 

open shell system; O2 by Gerwer et al [2,3]. This calculation was suggested 

by reports of experimental measurements which showed strong structure in the
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(2t" , ).Y, E+ and (5<7_1)63IT partial channel photoionization cross sections of 

NO and by the desire to compare the calculated partial channel photoionization 

cross sections for the partially occupied outer * orbital of NO and O2.

The different experimental measurements, both (e,2e) [4| and synchrotron 

[5,6] of the partial channel photoionization cross sections of NO agree substan­

tially, and the various features in the experimental results can be understood in 

the light of the present results. The calculation will also be found to be useful in 

distinguishing between two sets of synchrotron measurements of the photoion­

ization cross section of a photoelectron peak assigned to the (4<r—1 Jc3 TI state 

[5,6|, and in deciding which of these sets is more reliable.

In the case of NO, ionization from a closed shell orbital, because of the 

presence of an open shell, produces more than one ionic state of the molecular 

ion. For ionization from a type molecular orbitals only two ionic states result, 

both of the same spatial symmetry but of different spin, which both require 

the same one electron operator in construction of the pseudospectra describing 

excitation and ionization. Ionization from a r  type molecular orbital in general 

produces several molecular ionic states, of different spatial symmetry as well as 

of different spin. In the work of Gerwer et al on O2 [2] a one electron operator 

averaged over all the possible excitations from the It,  orbital was employed 

in the investigation of ionization from this orbital. In this work the correct
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i 'nr

operator will be employed (or each of the NO (l* -1 ) excitation series. It will 

be seen that these yield results which are very similar for each of the ( l r -1 ) 

ionic states, justifying the use of averaged operators in the O2 calculation of 

Gerwer et ai.

4.2 Theoretical and Computational Details

The ground state wavefunction of nitric oxide within the Hartree Foclc approx­

imation is:

* = |l<722<723ff24ff2lff4&r22»1|JV2n (4.1)

Such a wavefunction was constructed with the Hartree Fock scheme employ­

ing the (9s5p/5s3p) Gaussian basis set of Dunning [7], supplemented with a d 

polarization function (£ = 0.8) on each nucleus. The calculation was performed 

at the ground state internudear separation (R/vo =  2.173au) (8). This wave- 

function yielded a ground state energy of — 129.269au, to be compared with the 

best available Hartree Fock scheme value of -129.295au [9|.

The separated channel approximation yields 18 distinct one electron dipole 

allowed series corresponding to individual excitation of the four highest lying
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molecular orbitals. These series are designated:

(2¡r- 1 far)2E+ (2T-l Jfe5r)JII (2x-1 fc5)2A

(5<7_ l fcx)2E+ (5<r-1Jtr)2E - (5ff-‘Jfe<r) 2n  (5<t- , *t ) 2A

(1 » -, *<t)2E+ ( l jr - ‘fcT)2E - ( U - ‘ ife<T)2A
(4.2)

( u - ‘ ife»)2n

( l * - 1fcfi)2E+ (lx~ 1*5)2E - (1t- 1*5)2A

(4<7-, *t )2E+ (4<7-1Jfc»)2E - (4<T-l JfecT)2n  (4<r-‘*»)2A

Because of the open 2x shell in nitric oxide some of the above channels are 

comprised of two or more subchannels associated with various distinct molecular 

NO+ ions. The construction of many electron pseudospectral wavefunctions 

and corresponding static-exchange potentials must be considered for the various 

subchannels.

For excitation and ionisation from the singly occupied 2x molecular orbital 

the resulting core configuration can give rise to  only the ground state of NO+, 

( 'E + ), corresponding to an ionization energy of 9.27eV (15). Consequently 

the construction of the excited lur, lor, and kS molecular orbitals is relatively 

straight forward.

For excitation and ionization of the 5<r and 4(7 molecular orbitals the re­

maining core gives rise to *11 and 1II molecular ionic states .Each of the doublet 

pseudospectral wavefunctions of different spatial were constructed so that the 

spin function associated with the 2jt molecular orbital remained the same as in
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the ground state wavefunction. In the static exchange approximation this dou­

blet will carry all the intensity from the JII ground state, and the other linearly 

independent doublet will have zero transition moment from the ground state.

For excitation and ionization from the It molecular orbital the remaining 

core gives rise to six ionic states, 1,SE+, 1,SE~, and 1,8 A states. Each of the 

three core configurations of different spatial symmetry were coupled with virtual 

orbitals of <r, t ,  or 5 symmetry to give the final doublet states of equation (4.2). 

Again the appropriate doublet state was constructed which contained the total 

intensity from the ground state.

It is important to note that elimination of the excited orbital from a symme­

try adapted wavefunction describing one of the above channels does not lead to 

a pure ionic spin state, so the wavefunction implies a choice of static exchange 

potential and virtual orbitals appropriate to a core configuration consisting of 

an average of singlet and triplet states.

For each of the individual cases (equation 4.2), the appropriate virtual or­

bitals, must be obtained from solution of the one electron equation of the 

form

( A r ~ i f ) ^ i = 0 H-3)

where «, corresponds to the continuum or discrete energies for ionization and
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excitation respectively and

hr = T  + V + V r (4.4)

is the static exchange Hamiltonian. Here T and V are the kinetic and nuclear 

potential operators, and Vj- is the appropriate non-local channel potential. The 

latter are written in the form

V r =  5 3 ( 2 a r ^  A-i) (4 .5)
i

where J, and K, are the usual Coulomb and exchange operators and the coeffi­

cients a«, b, must be determined for each case. These coefficients are chosen so 

that no interaction occurs within each class of doublet wavefunction (equation 

4.2) which arise from the coupling of an ionic core configuration of a given spa­

tial symmetry with a virtual orbital of a particular symmetry. The values of a, 

and bj used are listed in Table 4.1.

In the calculation of these virtual orbitals a large supplemental basis of Gaus­

sian functions as well as the ground state basis was employed. The supplemental 

basis functions employed in the calculations reported here are given in Table 

4.2. Several calculations were performed until the calculated (2x-1 ) l E+ partial 

cross section 9 point profile remained stable with respect to increase in the size 

of the supplemental basis, resulting in a basis which was very nearly linearly 

dependent.

For both the bound and continuum states, transition energies (ef) and



oscillator strengths (/,r ) were obtained from the pseudospectra of equation (4.3)

and

(4.6)

(4.7)

Here the experimental ionization energy is used for cr , $ r is the occupied 

orbital of the active electron in the channel T, ft is the dipole moment operator, 

and the values of /if are given in Table 4.1. For the continuum states the spectra 

of equations (4.4, 4.5) are then employed in the Tchebycheff technique in the 

construction of the photoionization cross sections.

Before discussion of the results it will be helpful to describe the various 

orbitals of the NO molecule [10]. The 1(7 and 2a orbitals are comprised of the 

oxygen and nitrogen Is atomic orbitals respectively. The 3a orbital is a bonding 

combination of 2s atomic orbitals with some p character and is centered towards 

the oxygen end of the molecule. The 4(7 molecular orbital is a nonbonding 

combination of the nitrogen 2s atomic orbital and an oxygen sp hybrid. The 

5(7 molecular orbital is a weakly bonding combination of sp hybrids centered 

towards the nitrogen end of the molecule. The lx molecular orbital consists of a 

bonding combination of px type atomic orbitals centered towards the oxygen end 

of the molecule, whereas the 2* molecular orbital is an antibonding combination 

of px type atomic orbitals shifted towards the nitrogen end of the molecule. The
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6c valence virtual orbital is a strongly antibonding combination of sp hybrid 

atomic orbitals with equal contributions from atomic orbitals centered on each 

nucleus. Transitions between each of the occupied ground state orbitals and the 

6c valence virtual orbital are dipole allowed and these transitions may appear 

either as interlopers in the calculated excitation series or above threshold giving 

rise to resonances. Strong contributions may also appear above threshold from 

transitions to atomic 3d pre-Rydberg orbitals.

4.3 Computational Results

4.3.1 2;r Orbital IP =  9.27eV (X‘E+) [15]

The static exchange excitation spectrum of the 2x orbital is presented along 

with quantum defect estimates [llj and the available experimental values [12] 

in Table 4.3. There is excellent agreement between the defect estimates and the 

experimental values except for the first members of each of the 2x —* kc  series 

and the 2w —* kpn series. In particular the quantum defect estimate of the 

energy of the 21 -* 3sc excitation is 0.5eV greater than the experimental value 

whereas the calculated value is within O.leV. This suggests that the Zso orbital 

is not purely Rydberg in character but contains an admixture of the 6c(pa*) 

valence virtual orbital. However the oscillator strength of this excitation is weak,
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suggesting that the 2x -» 6a(a‘ ) intravalence excitation will also contribute 

above threshold. The deviation of the calculated 2* —» 3px excitation energy 

from the experimental value is only noticeable because of the generally excellent 

agreement of the calculated values, defect estimates and experimental values, 

excluding the cases given above, demonstrating the Rydberg nature of these 

excitations.

The corresponding partial channel components are shown in Figure 4.1. Of 

these the ka component is weakest overall, being almost negligible except at low 

energies, where it possesses a weak maximum. This is assigned to contributions 

from the 6a(po*) valence virtual orbital lying 3eV above threshold. The shape 

of the 2x —» ka component is very similar to that of the lx , -* ka,, component 

although defining an area slightly less than half as great, in molecular oxygen 

[2], as is expected from the occupation numbers of the orbitals.

Both the 2x —• kv and 2x —► k5 components display two maxima, the first 

narrow and at low energy, and the second, above 20eV, very broad and only 

decaying slowly towards high energies. The high energy features are similar to 

those which appear in the corresponding lx , —* kx , and lx , —» kS, channels in 

Oj, previously ascribed to contributions from relatively compact pre-Rydberg 

atomic 3p and 3d orbitals. The (2x_1) *E+ partial channel cross section is also 

shown in Figure 4.1. This also displays two separate maxima, the strongest cen-
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tered at 13eV, arising from maxima in ail three open channels, and the weaker, 

centered at 28eV, which is quite broad, arising from the fcx and k5 channels. 

Owing to the large number of pseudoetates employed and the low order of the 

fitting parameter (6 in all cases) the features in Figure 4.1 are considered phys­

ically meaningful rather than artifacts of the imaging procedure. Furthermore 

the results presented here are the final results of a series of calculations in which 

the number of supplementary basis functions was progressively expanded until 

the (2jt-1 )>Y1E+ partial cross section was stable with respect to any further 

expansion of the basis set.

The (e,2e) data of Brion and Tan [4] is also presented in Figure 4.1. These 

results show a maximum centered at 28eV, as predicted by the calculation, but 

there is a substantial quantitative disagreement between the two curves in this 

region. At higher energies the calculation follows the form of the experimental 

results but always provides an underestimate of the magnitude of the partial 

cross section. It is possible that there is some channel coupling with lx  ion­

ization in the resonant region since it will be shown that the calculation yields 

values for the various (lie-1 ) partial cross sections which are greater than the 

experimental values in this region, and as a calculation employing a basis set 

of similar flexibility yields excellent agreement with experiment for the corre­

sponding ( l r~ l )X 2n j  partial cross section in O2.
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In Figure 4.2 the computational results are presented for the more structured 

region of the partial cross section together with all the available experimental 

data, consisting of synchrotron measurements [5| and the (e,2e) data [4] pre­

viously mentioned. Of these only the (e,2e) measurements extend to energies 

above 32eV. All the experimental results agree as to the position and inten­

sity of the maximum at 28eV. However the three lowest energy data points in 

the (e,2e) measurements are in substantial disagreement with the synchrotron 

measurements in the same energy region. Brion and Tan obtained absolute 

values for the partial cross sections by multiplying the total photoabsorption 

cross-section by the branching ratio for a given state at the various energy data 

points [4|. As mentioned in their paper this assumes that the ionization effi­

ciency is unity. Since that assumption was believed to be questionable below 

20eV photon energy two data  points at which branching ratios and total pho­

toabsorption cross-sections were measured did not have partial cross-sections 

tabulated. If partial cross-sections are calculated at these points (18eV and 

19eV) assuming an ionization efficiency of unity, the resulting values are off the 

scale in Figure 4.2, whereas the synchrotron data at these energies show no such 

tendency, thus indicating tha t the ionization efficiency is indeed less than unity 

at these energies. The disagreement between both sets of synchrotron data 

and the (e,2e) data between 20eV and 22eV also suggests that the ionization 

efficiency may be significantly less than unity at energies up to 24eV.
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Three calculated curves are plotted in Figure 4.2, obtained using 9 point 

(curve A), 6 point (B), and 4 point (C) imaging procedures. The 9 and 6 point 

curves are fairly similar, the 6 point curve being a flattened version of the 9 

point, both displaying two maxima centered at the same energies, the second of 

which is in the same position but weaker than the experimental maximum. This 

near stability of the profiles, while changing the fitting parameter from 9 to 6, 

indicates that there may be a sufficiently large number of pseudostates present to 

justify the use of the 9 point imaging procedure, a situation which does not apply 

in some of the other calculations presented in this thesis (e.g., H20, Chapter 5). 

The 4 point fit completely smoothes the maximum at 29eV and instead has a 

weak maximum at 19eV, arising from the the two maxima present in both the 6 

and 9 point fits. The smoothness and mutual agreement of the 6 and 9 point fits 

and their dissimilarity to the 4 point fit, together with the 4 point fit’s removal 

of the high energy maximum present in the experimental data, indicates that 

the 4 point fit represents an over smoothing of the pseudospectral results.

The synchrotron data show a weak maximum at 18.5eV and a very sharp 

intense peak at 17eV [5]. The sharp maximum at 17eV is assigned to the 

autoionization of the 5o —* 4p<7 or 5<r —► 4pir excitations converging on the B 1 II 

state of the ion. These are calculated to lie at 17.09eV and 17.06eV respectively 

and are experimentally located at 17.01eV and 17.06eV [12|. Since the present 

calculation employs the static exchange approximation, such effects cannot be
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reproduced by it. The weak maximum near 19eV is also not reproduced in the 

present calculation (6 and 9 point). Several excited states arising from the 4a 

orbital lie in this region [13] (Table 4.6) and autoionization from these states 

provides a possible explanation (or this maximum. Unfortunately there are no 

measurements (or photon energies lower than 16.5eV, so confirmation of the 

predicted low energy maximum must await further experimental work.

The results of an MSXa calculation of the outer valence partial photoion­

ization cross sections of NO are also available [14]. For the (2x~1) 1E+ channel, 

these show a gradual rise to a maximum at 19eV followed by a steady decline, 

very similar in form to the 4 point fit, though somewhat weaker. The maxi­

mum is attributed to a resonance in the a channel, the magnitude of which is 

diminished by the effects of averaging over different values of the internuclear 

distance, thus allowing for the effects of vibrational motion. These results show 

no evidence of the broad experimental maximum at 29eV. In view of the ex­

cellent agreement between experiment and the present results above 20eV, and 

the position of the maximum in the ktr channel at 12eV photon energy, the 

interpretation of the maximum at 19eV suggested by the X a  results appears 

somewhat dubious.

Calculations have recently been reported in which the photoionization cross 

section for this orbital has been obtained from the direct solution of the e +
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N 0+ collisional equations at the static exchange level [26]. These have not 

shown the initial peaks reported here in the 2x -* kx and 2x —> k& profiles, nor 

the resulting initial peak in the partial channel cross section. They have however 

supported the presence of a broad shoulder between 20 and 30 eV reported here.

It has been suggested that these features a t low photon energies in these pro­

files are spurious, arising from instabilities in the Tchebycheff imaging technique 

of deficiencies in the basis set. This does not appear to be the case. Calculations 

with different basis sets, performed during the current research, have all shown 

two separate structures in these profiles. Moreover, partial cross sections ob­

tained using 4, 6, and 9 point fits (Fig. 4.2), all show an initial maximum. The 

effect of lowering the order of the fit, if these initial features were spurious and 

arose from too high an order fit, would be to remove these maxima. The oppo­

site happens. It is the high energy shoulder that is diminished. This suggests 

that the initial maxima, proof of whose existence or nonexistence must await 

further experimental measurements, is a genuine feature of the partial channel 

cross section as calculated by the Tchebycheff technique.

4.3.2 5<t Orbital IP =  16.56eV (bsII ) [15]

The static exchange excitation spectrum of the 5a orbital for excitations leading 

to the 65n state of the NO+ ion, together with quantum defect estimates and
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the available experimental values (12), is presented in Table 4.4. There is general 

accord between the various values for the ka excitations. The low values of 

the oscillator strength calculated for the ksa and kda excitations, compared 

to those of kjxr series, explains the experimental observation of only one ka 

Rydberg series, the kpa excitations. There is little evidence of contributions 

from the 6a{a’ ) valence virtual orbital other than the strength of the 5a —> 

3pa excitation, so a strong contribution from this excitation is expected above 

threshold.

Excitation of a a electron to a kv type Rydberg orbital can result in any 

one of three possible states of the excited system, 2E+, 2E-  and 2 A, as there 

are three ways in which the angular momentum of the excited electron may 

be coupled with that of the residual ion. Excitation to each of these three 

states is dipole allowed as the ground state of the molecule is of 2il symmetry. 

The canonicalization required for a kn orbital is slightly different for each of 

these states. As a result corresponding orbitals belonging to each of these three 

different states have different eigenvalues and eigenvectors.

In Table 4.4 the three different calculated excitation energies and oscillator 

strengths for each 5a -» kit excitations are listed. Except for the 5a —* 3pit set 

of excitations, all the excitations of each set are calculated to lie extremely close 

together, and to have oscillator strength ratios of almost exactly 1:1:2. This
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confirms that the excited orbitals in a given set are very similar, i.e. the excited 

electron does not couple strongly with the electrons in the residual molecular 

ion, and the oscillator strength ratios are to be expected from the multiplicity 

factors used (table 4.1). It is therefore unsurprising that the quantum defect 

estimates are in such good agreement with the calculated values. As the calcu­

lated values within a given set of excitations lie close together, it would appear 

that experimental resolution may not be fine enough to resolve the three cases 

even for the 5tr —* 3pr set. The kdr excitations are much weaker than the kpr 

excitations explaining the experimental observation of only the kpr series.

The corresponding ko and kr  contributions to the (5<x—1 )6*il partial cross 

section are presented in Figure 4.3. As expected there is a strong resonance 

in the ko channel attributed to contributions from the 6o(om) valence virtual 

orbital. Above the resonance the ko contribution decays rapidly and makes 

little contribution compared to the kr  channel. The kr  channel, as expected 

form other studies, is weak compared to the resonant channel but is very broad, 

extending to high energies. The two contributions are combined to yield the 

(5x_1)6sIl partial cross section in Figure 4.4 which is presented along with the 

(ixr-1 ).^1!! partial cross section and the available experimental data for the 63il 

ion.

The ko resonance is still clearly visible but the kr  contribution dominates at



high energies. The same canonicalizations are employed for construction of the 

pseudospectra regardless of whether the final state of the ion is singlet or triplet. 

A total (5<t—1) 1*3n partial cross section is constructed using the appropriate 

ionization energy (singlet or triplet) and this is then multiplied by one quarter 

to yield the (5<r—1JX1 IT, and by three quarters to yield the (5<7~l)h9n, partial 

channel cross sections. Thus it is not surprising that the calculated singlet and 

triplet partial cross sections presented in Figure 4.4 are identical in form, with 

the singlet shifted to higher energy because of its higher ionization energy and 

being one third as strong as the triplet.

Agreement between the calculated curve and the experimental results is 

excellent, especially at higher energies where the calculated curve follows the 

form of the experimental curve almost exactly, and lies just above the bounds 

on the error bars.

Similar calculations for ionization from the corresponding 3at  orbital in 0 2 

[2,3] have yielded ka% and Jkx, contributions very similar in form to those pre­

sented here for the 5<r orbital in NO, predicting a resonance 3eV above threshold 

in the ka% contribution. However the calculated cross section is substantially 

stronger than the experimental cross section, unlike the present case. As a re­

sult of this discrepancy, and the occurrence of the resonance near threshold, 

in the region of vibrational and autoionization structure, Gerwer et al. could
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not claim full experimental verification. The present results lend support to 

the prediction of a resonance, and the better quality results obtained here are 

attributed to both superior ground state and supplemental basis sets.

The calculated curve for the (5<t~ l )63n  partial cross section gives an es­

pecially clear example of one of the less immediately evident properties of the 

imaging process. That is, at a given energy, the result obtained from the imag­

ing of a set of pseudostates is not necessarily the same as the sum of the results 

of the imaging of two (or more) mutually exclusive but complete subsets of this 

set of pseudostates. In particular the calculation predicts that the resonance 

will show a sharp maximum followed by a narrow shoulder before the decline. 

[BHowever, summation of the ka and kx  contributions in Figure 4.3 does not 

yield the identical profile. For example, <r[22eV,(5<r- I )6s Il] = 9.0Mb by imag­

ing all the pseudostates at once, but is 7.9Mb by separate imaging followed by 

summation of the ka and kit contributions. At 25eV photon energy this or­

dering is reversed. However, the two different curves will both define the same 

area

The X a  calculation of Wallace et al [14] also predicts a resonance in this 

channel near 24eV, and has ka and kx contributions similar to the present 

results. However, calculations at the equilibrium internuclear distance do not 

yield results as encouraging as those presented here, showing a very narrow
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resonance with a maximum of 12Mb compared with an experimental maximum 

of 7.6Mb. Averaging over nuclear motion widens and diminishes this resonance 

yielding better results, though still not as good as those presented here, which 

were calculated at the equilibrium internuclear distance. From the results of 

this and other X a  calculations it seems possible that the introduction of some 

form of averaging over nuclear motion would diminish the present, and already 

satisfactory, results and yield even better agreement with experiment.

Multiplet specific static exchange calculations have recently been reported 

for both ionic states arising from this orbital [24]. In these different poten­

tial operators were used for singlet and triplet states and so resonance peaks 

were calculated at different photoelectron kinetic energies in the two multiplet 

channels. The experimental confirmation [25| of this effect is somewhat unsatis­

factory at present, as reported measurements of the cross sections for the v=0,l 

vibrational states of the triplet and singlet ions were normalised upon the data 

of Southworth et al [5], The data of Southworth et al contains the contributions 

of all vibrational states, yet the measurements of Morin et al [26|,for only the 

first two vibrational levels of the triplet ion, are 2Mb greater at the resonance 

peak.
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4.3.3 17r Orbital IP =  16.lieV (as£+) [12,15]

Ionization of an electron from the It orbital can result in any one of six states of 

the NO+ ion; a 3E+ , u>3A, b'aE- , ¿ ‘E- , ui*A, and B '1 E+ . The calculated 

Rydberg series together with the quantum defect estimates and the available 

experimental data for excitations leading to the u>3A state of the ion are given 

in Table 4.5. As expected the calculated excitation series divide naturally into 

so, pa, do, pit, dir and dS series. Unfortunately experimental values are only 

available for the to  series, but there is general agreement between the three 

sets of figures. The largest discrepancy is for the It —» 3so excitation, for 

which the calculated and experimental excitation energies are quite close to­

gether but there is a large discrepancy between the two values and the quantum 

defect estimate. This discrepancy together with the comparatively large oscil­

lator strength suggests that this transition may be of mixed Rydberg/valence 

character, and could be better designated as I t - •  3«<t/6<7(<7*). The other ex­

citation series 9how no sign of being anything other than purely Rydberg in 

character. Parallel excitation series leading to the other (It - 1) ion states have 

been calculated and of these the I t —> kso series are presented in Table 4.5.

The corresponding ko, k* and kb contributions to the u;3 A partial cross 

section together with the (It -1 )w 3 A partial channel cross section are presented 

in Figure 4.5. The major contribution comes from the kb profile while the kir
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profile is broad and flat extending to high energy. The ktr profile displays a 

monotonic decline giving no indication of the presence of a resonance in the 

channel. All profiles given on Figure 4.5 were obtained using a 6 point imaging 

procedure.

The effects of alteration of the fitting parameter are explored in Figure 4.6, 

where 9, 6, and 4 point profiles for the ( lx -1 )u>3A partial cross section are 

plotted. Both the 6 and 4 point fits are very similar in form and magnitude, 

whereas the 9 point fit displays series of oscillations. This is because too high a 

fitting parameter has been employed and the pseudospectrum is not adequately 

smoothed. This contrasts with the results for the (2x~l )X  'E + partial channel 

where the 9 and 6 point fits are in good agreement and the 4 point fit is over 

smoothed. Similar results have been obtained for all the other (lx -1 ) channels. 

The 6 point profiles obtained for all the states which result from ionization from 

the lx orbital are presented in Figure 4.7. Despite the different final states 

the form of all the curves is very similar. The same set of pseudostates were 

constructed for the 3E+ and 3 E” channels and the two profiles are almost 

identical. The (lx~ 1)ui3A profile, despite the pseudospectra for this channel 

being eigenfunctions of different operators than those of the (lx - l )a3E+ and 

6,3E~ channels, is almost identical to the o 3E+ profile multiplied by two and 

shifted by the appropriate amount. The singlet profiles are just one third of the 

appropriate triplet profiles, again shifted by the difference in ionization energies.
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All the (I*-1 ) profiles have been summed to yield a total (Iff-1 ) photoion­

ization cross section, presented in Figure 4.8, which shows a monotonic decline 

from an initial maximum. In both form and magnitude it is very similar to 

the (Iff-1 ) pbotoionization cross section in 0 2, and is slightly less than twice 

as strong as the total (Ser- 1 ) photoionization cross section which has a binding 

energy in the same region.

Brion and Tan [4] have published (e,2e) measurements of the photoionization 

cross section for the sum of states whose ionization potential lies between 14 and 

20 eV, i.e. all the states originating from 5<r ionization and all states originating 

from Iff ionization expect the B' *E+. The experimental data together with the 

calculated curve obtained by summation of the calculated partial channel cross 

section for each of these states is presented in Figure 4.9. Both the experimental 

and theoretical curves show an initial maximum near 22eV photon energy fol­

lowed by a monotonic decline. The calculated initial maximum is greater than 

the experimental maximum by as much as 6Mb but because of its more rapid 

decline moves into better agreement at higher energies. However even at 31eV 

the calculated curve lies as much as 3Mb above the experimental curve.

Even though no experimental data is available for purely Iff derived states 

the fact that synchrotron measurements are available for the (¡fcr-1)6sn state 

permits an estimate of the inaccuracy of the calculated Iff cross section below
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38eV. From 23 to 32eV photon energy the (5cr—1 )63n partial cross section is 

always less than 1Mb greater than the experimental data. It therefore seems 

reasonable to assign an error of no more than '/aMb to the (fxx-1 ) A1 II partial 

cross section. Since the total cross section presented in Figure 4.9 is as much 

as 6Mb greater than the experimental results, it is clear that the various lx 

derived cross sections are overestimates. Dividing the total overestimate among 

the various (lx -1 ) states contributing to the profile in Figure 4.9 on the basis 

of their spin and symmetry degeneracies suggests that the magnitude of the 

overestimates for each of these partial channel may be bounded by the following 

limits: o sE+ : 1Mb, u ;s A  : 2Mb, V 3 Z ~  : 0.34 Mb and IV 1A  : 0.67 Mb. On 

this basis it would seem reasonable to set a bound on the error in the B' *E+ 

profile, which is not included in the above estimates, of 0.33Mb.

While some of the overestimate may be accounted for by channel coupling 

it is clear that this cannot account for the total overestimate. The calculated 

(2x~l ) 1E+ photoionization cross section is 1 ‘AMb less than the corresponding 

experimental measurements at 29eV photon energy, whereas the overestimate 

at this energy in Figure 4.9 is 5Mb. The overestimate may arise from the neglect 

of vibrational motion or from the neglect of electronic relaxation effects.

By the same argument the underestimate at high energies probably arises 

in the calculation of the (lx~ 1) partial cross sections. While channel coupling
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has been suggested as a contributor to the overestimate at low energies this 

suggestion cannot be advanced with regard to the {2x~l )X  'E + state at these 

energies, as the calculated total curves in Figures 4.1 and 4.9 are both under­

estimates at high energies. Here it is possible to deduce that the total ( It- 1) 

partial channel photoionization cross section in Figure 4.8 is too great at max­

imum and declines too rapidly to yield a slight underestimate at high photon 

energies.

4.3.4 4a Orbital IP =  21.7eV (c*II) [15]

Ionization potentials for this orbital are still a  matter of some controversy. Ini­

tially Edqvist et al [12] assigned the (4<r-1 )c3n ionization to a weak peak at 

20.41eV and the (4<x-1 )B 1 n  to a much stronger peak at 21.72eV. The triplet: 

singlet intensity ratio was measured as 0.1:1 instead of 3:1 as expected on the 

grounds of spin multiplicity. Both peaks showed little vibrational structure, 

whereas a weak peak centered at 23.3eV possessed a broad vibrational mani­

fold and was assigned to the (l» -1 )!?'1E+ ionization. The anomalous intensity 

ratios led Lefebvre-Brion [16| to suggest that the (4ff_1)c*II ionization corre­

sponded to the narrow intense peak at 21.7eV and the (4<r-1 )B 1Ü ionization 

was assigned to the broad manifold at 23.3eV. It was further suggested that 

the single configuration description was better for the triplet state than for the
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singlet state, which was alleged to interact strongly with the (&71 I t3 2it2) con­

figuration. It was then discovered that the line initially assigned to the triplet 

ionization was in fact spurious. In the resulting higher resolution spectrum the 

manifold at 23.3eV was resolved into a fairly regular vibrational progression, 

similar to those of the other (It- 1) states, and the peak at 21.7eV was only 

partially resolved. It was then suggested that the 21.7eV peak resulted from 

ionization to both the (4<7- l )c3II and (4cr—1)JB 1I1 states lying very close to­

gether and an argument based on the intensity of the peaks was produced to 

support this view. [15]

The minimal basis set configuration interaction calculations of Thulstrup at 

al [17) yielded results which agreed with Edqvist a t al [15] as to the ordering 

at the ionic states below 20eV. However no (It- 1) 1 £+ state was found and it 

was suggested that the peak at 23.3eV could arise from the (4a~l )B  *E+ state.

No Rydberg series leading to the 23.3eV peak have, as yet, been reported but 

Rydberg series leading to the 21.7eV peak have been reported by several authors 

[18,19]. Sasanuma et al [19] concluded that either the energy levels of the ionic 

states corresponding to the B 1I1 and c3II states lie close together, within the 

0.02eV limit of experimental resolution of their machines, or that Rydberg series 

converging on the B 1II state were too weak for them to observe. What is clear 

from the studies of the photoelectron spectra and Rydberg series, which all find
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little vibrational structure, is that the 4a orbital in NO is largely nonbonding 

in character.

Given that experimental data exists for the partial photoionization cross sec­

tions of both peaks between 20 and 24eV [5,6] and for the total photoionization 

cross section of these two peaks [4] it would seem that the present calculations 

have the potential to finally end the controversy surrounding the assignment. 

Unfortunately it will be seen that this not the case. Instead the limits of the 

current data and of the static exchange approximation will be highlighted.

All authors agree that the peak at 21.7eV includes the (4a- 1 )c5n state. 

Calculated, quantum defect estimates and experimental values for the excitation 

energies of the series leading to this state are given in Table 4.6. Agreement 

between all three sets of figures is quite satisfactory, although the oscillator 

strength distributions of the 4a —» kea series is rather irregular. The strongest 

calculated series is the kda series and there is little evidence of contributions 

from the 6a valence orbital. No reliable experimental values are available for 

the kta  series, which is understandable upon comparison with the strength of 

the kda series. The n’th member of the to  series is calculated to lie very close to 

the (n-l)’th member of the kda series, which may also be a factor in the failure 

to locate this series experimentally.

The calculated ka and kit contributions to the (4a- , )csII partial cross sec-
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tioD are presented in Figure 4.10. The main feature is a resonance in the ka chan­

nel which is attributed to contributions from the 6a(<7*) orbital above threshold. 

At higher energies the kn contribution dominates, as is usual in the partial cross 

section of a type orbitals which possess a resonance in the ka channel [1|. Also 

given in Figure 4.10 is the (4<r~1)c3IT partial cross section and a total (4cr—1) 

triplet plus singlet cross section calculated assuming both states have the same 

ionization energy, together with the two sets of synchrotron measurements for 

the peak at 21.7eV binding energy. The measurements of Gustafsson and Levin­

son [6] are more than 50% greater than those of Southworth et al [5], but both 

sets of data are in reasonable agreement as to the presence of a resonance.

The agreement between the calculated curves and the two sets of experi­

mental data as to the position of the resonance is quite encouraging. There 

is good agreement between the calculated (4<7—1 )c3 TI curve and the experi­

mental measurements of Southworth et al, but is also reasonable agreement 

between the calculated total (4<r—1) curve and the measurements of Gustafsson 

and Levinson. Since both experimental measurements refer to the same peak, 

this does not permit assignment of the states contributing to the peak. The 

(e,2e) measurements of Brion and Tan [4] for the cross section of both the 21.7 

and 23.3eV peaks are presented in Figure 4.11, and compared with a  calculated 

curve obtained by assigning both 4a derived states to the 21.7eV peak and the 

(l» -1 ) f l '1E+state to the 23.3eV peak. Both the experimental curve and the
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theoretical curve have maxima very close together but the theoretical curve is 

substantially stronger than the experimental curve. Referring back to Figure

4.10 it can be seen that the measurements of Gustafsson and Levinson for the 

strength of a single peak are stronger than those of Brion and Tan for the inten­

sity of two peaks. The results of Brion and Tan are therefore incompatible with 

those of Gustafsson and Levinson, but compatible with those of Southworth et 

al. In view of this it seems probable that the results of Southworth et al and of 

Brion and Tan for the peak at 21.7eV binding energy are reasonably accurate 

and those of Gustafsson and Levinson unreliable.

The experimental measurements of Gustafsson and Levinson for the 23.3eV 

peak are presented in Figure 4.12, together with the partial cross section, for the 

(4<r-l ) B 1n  and ( l » _1) f l ' 1E+ states, calculated assuming that they have an 

ionization potential of 23.3eV. There is a maximum in both calculated curves in 

the same region as the experimental maximum. Superficially, the experimental 

results appear to be in much better agreement with the (1*-1 ) £ ' IE+ profile 

than with the (4<r_ l )B 1II profile. However it has been shown that Gustafsson 

and Levinson’s results are not reliable for the peak at 21.7eV and it seems 

doubtful that they are any more reliable for the 23.33V peak. For the 21.7eV 

peak the experimental results were as much as 60% greater than the apparently 

reliable results of Southworth et al in the resonance region. If the results of 

Gustafsson and Levinson were also too great by a factor of 60% in the case of the
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23.3eV peak then the true experimental values would be scattered inconclusively 

in the region between the two calculated curves. A further three 'experimental1 

points are plotted in Figure 4.12. These were obtained by subtractions of the 

measurements of Southworth et al for the photoionization cross section of the 

21.7eV peak from the measurements of Brion and Tan for the photoionization 

cross section of the 21.7 and 23.3eV peaks. These three points lie suggestively 

close to the (4<r-1 ) f l1II curve. However manipulation of the data in this manner 

is not strictly justified as errors must be treated as cumulative, and no error 

bars are given in the data of Brion and Tan. Furthermore, it was previously 

estimated that the calculated (lir-1 ) ^  *E+ partial cross section could be as 

much as l/3M b greater than the physical cross section. This would place the 

(lT-1)fl', n+ profile very close to the (4<r_1)B 1Il profile.

Certain approximations which may not be justified have been made in calcu­

lating these cross sections. Firstly the calculations have been performed at the 

ground state internuclear separation. It has been shown that in X a  calculations 

the intensity of a calculated resonance in the c  channel is often greatly reduced 

by inclusion of the effects of vibrational motion, e.g. the ionization from the 

5o orbital in the present case. No such investigation have as yet been carried 

out within the static exchange Stieltjes Tchebycheff scheme. However in view 

of the consistently good agreement between calculation and experiment for the 

cross section of outer valence a type orbitals it is expected that these effects

140



These calculations have also employed the frozen core approximation. This 

approximation is not necessarily justified, especially for ionization from inner 

valence orbitals at low photoelectron kinetic energies. This effects of configu­

ration interaction have also not been considered i.e. it has been assumed that 

photoionization of an electron from the 4a orbital will result only in a Koop- 

mans hole type singlet or triplet configuration. However it has been shown that 

in many molecules a large portion of the intensity in inner valence ionization is 

carried by states of the two hole one particle type. A broad structure is found in 

the 26 — 36eV binding energy region which is inexplicable in terms of a single 

configuration picture. The partial photoionization cross section of this structure 

has been measured by Brion and Tan and is very similar in form to the curve 

obtained for the (c*II +  B  1II +  B ' *E+ ) partial cross section, suggesting that 

it contains significant contributions from ionization from the 4<r and/or hr or­

bitals. Furthermore at high energy this peak is up to 50% as strong as the peaks 

assigned to the (c3II + B ‘ II +  B ' *II+ ) states. It therefore seems unlikely that 

the inclusion of such effects would fail to have a strong impact on the calculated 

(4<r~l ) photoionization cross section. In Figure 4.11 a second set of data points, 

obtained by addition of the measurements of Brion and Tan for the intensity of 

this broad structure to the measured intensity of the (c*II + B 1II + B' 'I l+ ) 

states is plotted. While better agreement between calculation and experiment is

will probably be weaker than is the case in X a  calculations.
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dow obtained below 44eV photon energy it is clear that the calculated curve is 

now an underestimate in the high energy region, where it has already been con­

cluded that the calculated ( lx -1 ) profiles probably provide an underestimate.

Because of the reasons given above it does not seem that this calculation 

contributes significantly to the decision of the correct assignment of the two 

photoelectron peaks under consideration. However it does seem clear that the 

experimental data of Gustafason and Levinson is unreliable. Definitive mea­

surements of the partial cross section of the 23.3 and 21.7eV peaks at higher 

energies would be of great interest.

The rectification of the various computational inadequacies is expected to 

lower the intensity of the total (4<7_1)[csn  +  fi' lIl] curve in Figure 4.10, bring­

ing it into reasonable agreement with the experimental data of Southworth et 

al [5|. If the experimental data of Gustafsson and Levinson [6] is in error for the 

23.3eV peak by the same factor that it is for the 21.7 eV peak, and the above fac­

tors are taken into account it is expected that the (lx~l )fl '1n + profile would 

be more closely in agreement with the correct experimental results than the 

(4x“*)fl1II profile. Thus the present results tend to be more compatible with 

the assignment of both 4x derived states to the same peak at 21.7eV binding 

energy and the (lx-1)B' *n+ state to the peak at 23.3eV, rather than the as­

signment of the two 4(7 derived states to different peaks in the photoelectron
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spectrum.

4.3.5 Total Photoionization Cross Section

The total calculated photoionization cross section of NO, obtained by direct 

summation of the various calculated partial cross sections is presented in Figure

4.13, along with the experimental measurements of Brion and Tan [4|. Both 

curves are of the same general form showing a flat maximum extending from 20 

to 25eV photon energy followed by a slow decline. However the magnitude of 

the calculated maximum is substantially greater than that of the experimental 

maximum. There is some slight cancellation of errors taking place with the cal­

culated 2ir partial cross section being less than the corresponding experimental 

measurements, the (5<T~l )63n partial cross section very close to the available 

experimental measurements and the total (4<7- 1 )[c3II + B ln] + ( l r -1 )BME+ 

is a t worst 1Mb greater than the experimental measurements below 30eV. It 

is clear from the preceding discussion that the overestimate of the total cross 

section near maximum must arise from an overestimate of the magnitude of the 

various lx  cross sections below 40eV.

Above 40eV the calculated total cross section is less than the experimental 

cross section. As the states resulting from ionization of the 3<r molecular orbital 

are not included in the calculation whereas they are included in the experiment
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strictly similar quantities are not being compared. Therefore a second set of 

‘experimental’ points are plotted in Figure 4.13, consisting of the measured 

total cross section of Brion and Tan less the measured intensity of the 3<r derived 

states. The calculated cross section is still less, by up to 2Mb, than the ‘adjusted’ 

experimental data. This underestimate has two major contributions. Firstly the 

underestimate at high energies of the total (4<r“ l )[csII + fl *11] +(1t- 1)B' ‘E+ 

intensity together with the associated many electron transition peaks. Secondly 

the underestimate at high energies of the total 5<r and lx (14-20eV binding 

energy) peaks. FVom the behaviour of the (fxr-1 )63II partial cross section in 

the region for which experimental data is available and from calculations for 

closed shell diatomic molecules it seems likely that the calculated cross sections 

of the 5<r derived states will continue in good agreement with experiment at high 

energies. Therefore the underestimate at high energies must arise chiefly in the 

various calculated lx partial cross sections. There is also a smaller contribution 

from the underestimate of the (2x-1 )J f1E+ partial channel photoionization 

cross section. As a total is presented in Figure 4.13 in which the effects of 

channel coupling should cancel out, it is clear that the calculation is not by any 

means exact.
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from the underestimate of the (2j ~1)X  *E+ partial channel photoionization 

cross section. As a total is presented in Figure 4.13 in which the effects of 

channel coupling should cancel out, it is clear that the calculation is not by any 

means exact.
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B Oxygen Calculations

4.4 Introduction

Molecular oxygen, like nitric oxide, has a partially filled outer orbital above a 

closed shell. Differing from nitric oxide by possessing an extra electron in the 

partially filled molecular orbital and by possessing a  centre of inversion it is 

expected to display the same trends in its partial photoionization cross sections 

as can be seen in the shift from N2 to NO.

The static exchange Stieltjes Tchebycheff calculation of Gerwer et al [2,3] 

of the various partial cross sections of molecular oxygen yielded results which 

were in quite reasonable agreement with the available (e,2e) measurements [20]. 

However the published profile for the (lr- 1).Y2n , partial channel photoioniza­

tion cross section consists of a  slow rise to a maximum followed by a monotonic 

decline, unlike the highly structured profile reported here for the corresponding 

(2x~1)X IE'f  state of NO. This unstructured maximum is also present at the 

same energy in the (e,2e) measurements but is more than 30% stronger than 

the calculated maximum.

This lack of structure in the theoretical results has prompted the recalcular
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tion of the ( )-V partial channel photoionization cross section of molec­

ular oxygen employing a basis set of comparable flexibility to that employed in 

the calculations on nitric oxide.

4.5 Theoretical and Computational Details

The ground state wavefnnction of molecular oxygen within the Hartree Fock 

approximation is

♦  »  |l<7* la 2.  2a* 2*1 3a] lx j  1t* |X sE ;  (4.8)

Such a  wavefnnction was constructed within the Hartree Fock scheme em­

ploying the (9s5p/5s3p) Gaussian basis set of Dunning [7] supplemented with 

a polarization function (£ =  0.97) on each atomic centre. The calculation 

was carried out at the ground state internuciear distance (Ro0 = 2.282au) (2,3) 

and yielded a ground state energy of —149.6365au compared with the Hartree 

Fock limit of —149.666au [2,3]. This is somewhat lower than the energy of — 

149.634au obtained by Gerwer et al [2| employing the (10s5pld/3s2pld) basis 

of Dunning.

The separated channel approximation yields three distinct dipole allowed 

series corresponding to individual excitation of the l*t  orbital. These series are
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designated

( lr ;‘*<r.)»II., (I*;1 **.)»£-, (U -‘* i.)sn . (4.9)

The supplemental basis set used to describe the excited and continuum or­

bitals is given in Table 4.7, and allows the construction of 105,, 19r, and 25<r, 

orbitals. This is somewhat larger set than that of Gerwer et al whose supple­

mental basis set permitted the construction of 95,, 16ar. and 23(7, orbitals.

For each of the individual cases (Equation 4.9) the appropriate virtual or­

bitals are obtained from solution of the one electron equation (Equation 4.3) 

using the formulae for the static exchange potentials derived by Gerwer et al 

[2|. These orbitals were then employed in the Tchebycheff imaging procedure 

to construct the (lir~, ).Y3na partial channel photoionization cross section.

4.6 Computational results for the lng orbital 

IP =  12.07eV [22]

The calculated 1 t t  —► kam and ¿5, excitation series are given in Table 4.8, where 

they are compared with quantum defect estimates and experimental values. The 

calculated excitation series and oscillator strengths are virtually identical with
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those of Gerwer at al despite the difference in basis sets.

The corresponding contributions to the ( 1 ^ 1)X 2I10 photoionization cross 

section, obtained using the 6 point fitting method are presented in Figure 4.14. 

The far, contribution is of similar magnitude and form to that obtained by 

Gerwer et al and is similar to the 2 r  -» ko contribution in NO (Figure 4.1) but 

less than twice as great.

The for, contribution displays two separate maxima, the lower energy max­

imum being weaker and narrower than that at higher energy. The high energy 

maximum is similar to the corresponding 2s -* for profile in NO, being twice 

as strong as the corresponding NO contribution and shifted by 5eV to higher 

photon energy even though the difference in ionization energies is only 2.9eV. 

The lower energy maximum is shifted by 3.5eV to higher photon energy, is of 

similar intensity to the corresponding maximum in NO but has widened, sub­

stantially smoothing the minimum between the two maxima which is a much 

more prominent feature of the 2 r  —* k j  contribution in NO.

The kS% contribution consists of a gradual rise to a  very broad maximum. 

This is very similar to, but slightly stronger than, the corresponding profile in 

the results of Gerwer at al. This profile differs considerably from the corre­

sponding 2* -* kS profile in NO in lacking a low energy maximum. The single 

maximum present is slightly more than twice as great but much broader than

148



the 2t —► kb contribution in NO. It is also shifted to lower energy compared to 

the high maximum in the corresponding NO contribution.

The three contributions have been combined to yield the (ljr“ 1).^2!!, par­

tial channel photoionization cross section, which is compared with the calcula­

tion of Gerwer et al and the available experimental data [20,23) in Figure 4.14. 

Clearly the present results are in much better agreement with the experimen­

tal data and show much more structure than the results of Gerwer et al. The 

partial cross section is, as expected in the light of the above discussion, rather 

different from the corresponding (2w~1 ) X 1E+ partial channel photoionization 

cross section in NO. Both display two maxima, a narrow low energy maximum 

and a broad high energy maximum. However in the case of NO the narrow low 

energy maximum, arising from contributions on the k* and kb contributions, 

is stronger than the higher energy maximum whereas in the case of O2 the low 

energy maximum arising from kr% contributions is weaker than the high energy 

maximum.

Two sets of experimental data are presented in Figure 4.14; the (e,2e) mear 

surements of Brion et al [20| and the synchrotron measurements of Gustafsson 

[23]. The (e,2e) coincidence measurements show an unstructured maximum 

with some scatter, whereas the synchrotron measurements show a more struc­

tured maximum, consisting of a maximum followed by a plateau, in the same
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position as the maximum in the coincidence measurements. This structured 

maximum is almost exactly reproduced, both in position and intensity by the 

present calculation.

Comparison of the present results with those of Gerwer et al shows that 

the improvement in the present results originates in the greater strength of 

the l t 9 -* and more particularly the lir0 -* Jfejr,, contributions near 25eV 

photon energy. In view of the similarity of the S,  supplemental basis in both cal­

culations it is indicated that the rather more flexible valence basis set employed 

in the construction of the ground state wavefunction is a significant factor in 

the increased contributions to the partial channel cross section.

These results illustrate the need for sufficiently flexible valence and con­

tinuum basis sets to be employed in this type of calculations. The excellent 

agreement with experiment obtained in the present case indicates that in the 

case of the l r g ionization of 02 the separated channel static exchange approxi­

mation does not lead to any appreciable error in the calculated photoionization 

cross section.

150



4.7 Discussion

The results presented in this chapter for molecular oxygen have demonstrated 

the great importance of the employment of very flexible ground state and sup­

plemental basis sets in the calculation of photoionization cross sections. The 

employment of such a basis set has been shown to lead to extremely good 

agreement between the calculated partial channel cross section of the outermost 

l r ,  orbital of 0 2 and the corresponding experimental results. The basis set 

employed in the NO calculation covers the same exponent range as that em­

ployed in the 0 2 calculation but, because of the absence of a centre of inversion 

in the NO molecule, a much larger pseudospectrum is obtained. In the inves­

tigation of the effect of variation of basis set on the calculated partial channel 

cross section it was found that the calculated {2x~l )X  'E 4, cross section pro­

file was extremely sensitive to the presence, or otherwise, of supplemental basis 

functions on each atomic centre with exponents (£ =  0.1) which classify these 

functions as valence rather than Rydberg in nature. For this reason the results 

reported here for NO, which are the final results of a series of calculations, 

include in the supplemental set several basis functions with high exponents.

Because of the similarity of the basis sets employed in the NO and 0 2 calcu­

lations, it would be expected that the results obtained in the NO calculations, 

at least for the outermost 21 orbital, would be as good as those obtained for
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the ltg  orbital of 0 2. This is not the case. While qualitative agreement is 

obtained for the (2x-1 )X *E+ partial cross section there are quite large quanti­

tative disagreements between the calculated and experimental photoionization 

cross section. This implies that the approximations used in the calculation are 

not as valid for NO as for 0 2. As it has been shown tha t the total lx  photoion­

ization cross section is an overestimate at low photoelectron kinetic energies the 

possibility of some channel coupling is indicated.

Because of the partially filled outer shell in NO, ionization from the lx 

molecular orbital leads not only to distinct spin states of the ion but to different 

symmetry states, unlike ionization from the a molecular orbitals. Photoioniza­

tion cross sections computed for each of these individual states were found to 

be very similar once allowance was made for the different ionization energies 

and for the spatial and spin degeneracies, thus justifying the use of an average 

operator by Gerwer et al in their calculations on the corresponding lx ,  orbital 

in 0 2.

It b  found that the main features of the 2x and lx  photoionization cross 

sections may be explained in terms of transitions to  atomic 3d pre-Rydberg 

orbitab. While almost equal contributions to the (2x~l ) X 1E+ partial channel 

cross section come from k j  and kS contributions, the kr  contribution to the 

various ( lx -1 ) partial cannel cross sections b negligible.
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Excellent agreement between theory and experiment is found for the (5o~ l )b 9fl 

channel, with a strong resonance in the far contribution. A similar but weaker 

resonance is found in the (4o-1 )c*Il partial channel and is assigned to contribu­

tions from the 6o  valence virtual orbital. The 2» -* far and 1» —» far contribu­

tions are very much weaker than the 5o -* ko contributions. This is presumably 

because the 5a  and 6<r orbitals are localised in the same region of space. Inves­

tigation of the photoionization of the 4o molecular orbital has not proved to be 

as satisfactory as would have been expected from the results obtained for the 

outer valence orbitals, suggesting that the approximations employed may not 

be as satisfactory for the inner valence orbitals as for the outer valence orbitals.

In particular the description of inner valence ionization by a  Koopmans hole 

type state is known to be unsatisfactory. Furthermore, strong relaxation effects 

are expected for inner valence ionization and so the static-exchange approxi­

mation may not be valid particularly near the threshold. MSXa calculations 

suggest that the effects of nuclear motion may be important, an effect which 

has been ignored in these calculations. However good results obtained in many 

static exchange type calculations with the internuclear separation fixed at r, 

indicate that the neglect of nuclear motion effects may not be as important for 

calculations employing this methodology as for MSXa type calculations.

The excellent results reported here obtained employing the static-exchange 

approximation and the Stieltjes-Tchebycheff imaging procedure are very en-
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couraging. Possibly the most important result of these calculations has been 

the demonstration of the superiority of the results obtained using this method,as 

opposed to those obtained by the use of the MSXa method. The most striking 

demonstration of this superiority is the (2 t~ l )X  'E + partial channel photoion* 

ization cross section, for which the present results explain the main features 

while the MS-Xa results do not resemble the experimental results at all.
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Table 4.1

Static-exchange potentials and multiplicity factors on 
NO *’b
Core Ionic State r\* 4a lx* lx* 5a 2x* 2x* Ar

23T*—► k<T 1/1 1/1 1/1 1/1 0/0 0/0 1
‘E+ — Jfcx* 1/1 1/1 1/1 1/1 0/0 0/0 1

-> Jfco*» 1/1 1/1 1/1 1/1 0/0 0/0 2

5a—► ita(2Il) 1/1 1/1 1/1 */»/—1 •A/'A ‘A/'A 2

i.»n -  *x*(*E+) 1/1 1/1 1/1 '/*/-! -'A/'/* *A/'A 1
-  ibx*(*E-) 1/1 1/1 1/1 ‘A/-1 •A/*A -‘A/-'A 1
— Itx»(+2A) 1/1 1/1 1/1 'A/-1 ‘A /-‘A 'A/'A 2

r lx*—+ Jfca(*E+) 1/1 •A/0 •A/0 1/1 •A/'A 'A/'A 1

i’*E+, ‘’»E- -  Arx»(*n) 1/1 ’A/0 •A/0 1/1 'A/'A 'A/'A 1

k -  M**(*A) 1/1 •A/0 •A/0 1/1 'A/'A 'A/'A 2

lx*-* Ara(*A) 1/1 •A/0 •A/0 1/1 ‘A/'A 'A/'A 2
1,3 A -  *x*(*II) 1/1 *A/3 •A/-1 1/1 'A/l 'A/0 2

-*W**(*E+) 1/1 %/3 •A/-I 1/1 ‘A/l 'A/0 2
- - « • * ( * E -) 1/1 *A/3 •A/-1 1/1 'A/l 'A/0 2

4 Values of the coefficients af /fcf occuring in equation (4.5).
4 The la  — 3a orbitals remain doubly occupied, hence <  =  = 1-
* Multiplicity factors in equation (4.7).
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Table 4.1
Static-exchange potentials and multiplicity factors on
NO *’b
Core Ionic State r\« 4a lx* lx» 5 a 2x* 2x» Af

2jt1'—► ka 1/1 1/1 1/1 1/1 0/0 0/0 1
‘E+ —► frx» 1/1 1/1 1/1 1/1 0/0 0/0 1

1 —* ko*1 1/1 1/1 1/1 1/1 0/0 0/0 2

5a— fca(2II) 1/1 1/1 1/1 */*/—1 'A/‘A 'A/'A 2

>.»n < -  kx'fE*) 1/1 1/1 1/1 'A/-1 -'A/'A A/'/» 1
-+kx’(* E-) 1/1 1/1 1/1 7*/-l *A/’A -'A/-'A 1
-  *x»(+2A) 1/1 1/1 1/1 ‘/»/-l ia/-'a 'a/ v* 2

■ lx»— Jba(2E+) 1/1 7«/0 7«/0 1/1 'A/'A 'A/'A 1
-  Jbx»(2II) 1/1 7«/0 *A/0 1/1 *A/*A ‘A/'A 1

[ -  k6n(2A) 1/1 *A/0 3A/0 1/1 *A/*A 'A/'A 2

lx»— ka(2A) 1/1 %/o JA/0 1/1 'A/'A 'A/'A 2

i ,S  A -  Jfex»(2n) 1/1 *A/3 •A/-1 1/1 'A/l 'A/0 2
’ ¿A -* 6 * » (2 E+) 1/1 *A/3 •A/-1 1/1 •A/l 'A/0 2

' -  W*»(2E-) 1/1 *A/3 *A/-1 1/1 'A/l 'A/0 2
a Values of the coefficients af /6[ occuring in equation (4.5).
* The la — 3a orbitals remain doubly occupied, hence a \ — — 1.
e Multiplicity factors in equation (4.7).
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Table 4.2.

Supplemental Gaussian basis functions used 
in NO static exchange calculation.
Location Type Number Exponent ra

Nitrogen s 3 1.2—0.12
P 2 0.96—0.16
d 3 0.44—0.13

Oxygen s 3 1.7—0.15
P 3 1.3—0.11
d 3 0.44—0.13

Center of Mass s 11 0.44—0.001
P 11 0.44—0.001
d 11 0.44—0.001

• A geometric series variation is employed in the indicated ranges, except 
that for nitrogen-and oxygen, the functions close to those already present 
in the ground state basis are not included.
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Table 4.3
Calculated 2 n  S tatic Exchange Spectrum in NO: IP =  9.27 eV
(X‘E+) [15]

Calculated values Quantum Defect Estimates* Experimental Values* Assignments
f< «.(«V) «(•V)

2 t  — K  t o  Jn  — JE+ &= 0.28
5.5* 0.004014 6.27 5.48 2 *  — S t o

7.52 0.000001 7.72 7.78 2 r  — i t o

5.45 0.000002 8.45 8.45 2 r  — 5 t o

5.74 0.000002 8.75 2 r  —• 8 t o

5.26 0.000154 8.20 2x h o

2.05 0.0002SS 2.00 2 r  —  8 t o

2.22 0.000426

2» — K ps Jn - 2 £ + t  -  0.62
8.S7 0.005662 6.72 6.61 2» — Spe
5.05 0.000722 8.05 8.02 2» — 4 p o

5.54 0.000260 8.54 8.55 2» - • i p o

5.72 0.00015» 8.72 2 r  —  6p o

2 r  — K i o *n - 6 = 0.21
7.80 0.001861 7.52 7.56 2 t  —» i d o

5.55 0.000767 8.52 8.52 2» — 4d o

5.62 0.000525 5.68 8.65 2 t  — 5d o

5.52 0.000512 8.86 2 r  — 8d o

2#  —* K f w * n -  *n t  = 0.75
6.62 0.005665 8.66 6.42 2* — i p *

8.01 0.001212 7.27 7.27 2 r  — 4p»
8.55 0.000465 8.51 8.51 2» — 5pr
6.72 0.000257 6.77 2» — 6 p r

2.05 0.000465
2.26 0.000086

2* — K i r ’n -  Jn

o©II•o

7.82 0.000062 7.78 7.78 2ir — 5d r

8.45 0.000045 8.45 8.45 2 r  — 4 d r

8.74 0.000028 8.75 2 r  — 5d r

8.22 0.000028 8.62 2 r  — 6d r

2 W —  K d 6 sn — 6 =  0.08
7.75 0.001706 7.67 7.82 2 r  — i d i

8.40 0.000888 8.58 8.52 2 r  — 4 d i

8.72 0.000420 8.71 8.71 2e — 5d i

8.20 0.000582 8.88 2» — 6d i

2.12 0.001056

a) Values of the quantum defects obtained from R et I t

b) Experimental values obtained from R et 12
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Table 4.4
Calculated 5a Static Exchange Excitation Spectrum in NO IP
16.56eV (b»n) [15]

C alculated  Value« Q u a n tu m  D efect E s tim a te 4 E x p er im e n ta l Value«*
«((•»■) W « * ) «((•V )

b - i a #  3 n  — 3 n 6 m 0 3 7
i d . i t 0.000870 1838 6 #  — 3sm
15.14 0.000348 16.08 6 #  — Asm
15.7» 03 0 0 1 8 8 16.72 6 #  — 6sm
15.04 0.000110 18.02 6 #  — 8«#
15.27 0.000008

s .  — k f  3 n  — 3 n < m 0.87
18.57 0.081385 14.05 14.00 / s tr o n g 6 #  — 3 pm
15.33 0 3 2 1 8 0 8 1638 16.82 6 #  — Apw
163 8 0.000000 163 8 15.82 6 #  — 6 pm
15.08 0.005882 18.08 6# — 6 pm
15.32 03 1 2 3 1 2

s .  — 88» 3 n  — 3 n 6 ■  0.21
1 4 3 4 0.000015 1431 6m — 3 dm
15.55 0.000012 16.81 6m — 4 dm
1 6 3 8 0.000008 163 7 6m — 6 dm
18.18 030 0 0 0 2 18.16 6m —• 6 dm
1831 0.000078

■ a - i . .  3 n  — , 3 A 1 ■  0.7
1 4 3 6 0 304278
1 8 3 6 030 4 5 7 8 1 8 3 8 18.03 /a a ro n f 6m — 3 pw
18.88 0.008578
1 6 3 4 03 0 1 6 8 0
15-31 0.001675 1631 16.28 6m —• Apw
1 5 3 2 0.008272
1 5 3 4 0.000708
1 5 3 8 0.000717 16.82 16.82 6m — 6 pm
1 5 3 8 0.001488
1 8 3 8 0.000402
1 8 3 8 0.000402 183 8 6m -  6pw
1 8 3 8 0.000828

8» — M >  * n  — * E + ,  * E ~ , 3 A < -  0 .0
15.11 0 3 00007
1 5 3 8 0.000001 16.06 6m — 3d*
15.08 0.000021
15.74 0.000006
15.78 0.000001 16.71 6* - •  4dw
15.78 0.000013
1 8 3 8 03 0 0 0 0 8
18.08 0.000001 18.02 6m - •  5d*
18.05 0.000008
183 1 0.000004
183 1 0.000002 18.18 6m — 8 d r
1831 0.000008

6m ~hpm 3 n  — 3 m — A * n )  ( i p - i o . a j . v )  i  -  o .7 i
15.74 0.026008 15.78 16.84 6* — 3p#
17.08 0.008844 17.08 17.08 6# - •  4pm
1 7 3 8 0.004128 1 7 3 8 17.68 6m — 6pm
1 7 3 4 0.002868 1 7 3 8 6m — 4p#
1 8 3 0 0 3 0 6 1 1 5 1 7 3 8 6m — 7p#

6 # — *pw 3 n — 3 A (— /41n )  < m 0.78
15.72 0.004046 16.68 16.40 6* — 3 pw
17.07 0.001888 17.01 17.01 6m — 4pw
1 7 3 0 0.000818 1 7 3 8 17.68 6m — 5p*
1 7 3 4 0.000845 1 7 3 2 6# — 8p*
18.08 0.000717 1 7 3 7 6* — 7p*

») Daf.cl. fro. R«». II
b) Exp.rla.atal Valuta Iron Raf. 12
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Table 4.5
Calculated la static exchange excitation spectrum in NO IP =  17.337eV
(w’A) [12,15]

Calculated Values Q u a n tu m  Defect E s tim a te s !11) E x p erim e n ta l V alues!12)
u • iW

1»  — As# 2 n  — 2a<— 8a) 1 m 1.0
13.73 0.088313 13.84 13.83
15.80 0.001333 15.83 18.11
15.63 0.000402 18.48 18.48
15.33 0.000284 18.78
17.03 0.004141 18.88

1#  — 6p# 2 n  —• 2 A 4 m0.68
14.88 0.000080 14.78
13.14 0.000038 18.10
15.53 0.000011 18.80
16.87 0.000013 18.88
17.14 0.000388

i . - w .  J n  — i » o . 2 i
16.88 0.0388888 16.88
18.43 0.008870 18.34
18.78 0.004834 18.74
16.86 0.003878 18.88
17.38 0.001878

As >1(11 men* a

1« — 3«# 
I*  — 4 s#  
1« — 5s# 
1# — «s# 
1# — Ts#

1# — 3p# 
1# — 4p# 
1# — 5p#
1« — If#

i »  — kpm * n  -  J n  i  -  o.t s
14.86 0.001031 16.84 1# — i
16.14 0.000831 16.04 \w — •
16.63 0.000148 16.68 1« — I
16.87 0.000084 16.84 1# — <
17.13 0.000213

i #  — 6 4n 2 n  — 3 11 4 m 0.0
16.00 0.000464 16.82 l#  — ;
16.63 0.000238 16.48 l*  — -
16.83 0.000184 16.78 1» — i
17.00 0.000137 16.8« i#  — <

1# —  6 d i 2 n  — 2 E + , 3 E ~  4 m 0.08
16.66 0.036748 16.74 i #  — i
16.46 0.014470 16.46 i#  —
16.78 0.008184 16.77 i#  — i
16.86 0.006606 16.88 l*  —• i
17.26 0.018484

1# — 6 s# 2 n  -  2 E + ( -  8 e + ) IP  m 16.100«V 4 m 1.0
12.67 0.030377 12.71 12.60 i#  — ;
14.76 0.000671 14.80 14.72 i #  —•
16.37 0.000228 16.26 l#  — i
16.67 0.000123 16.68 i#  — i
16.88 0.001831 16.73 i#  —

1# — 6s# 2 n  -  2 E ~ ( -  3 E “ ) # m 1.0 IP  ■  18.06eV
14.43 0.034846 14.64 14.68 1» — !
16.61 0.000643 16.63 17.08 1# —•
17.24 0.000266 17.20 17.77 1» — 1
17.62 0.000136 17.60 1» —• i
17.74 0.002166 17.87 1# —

1# — 6 s# 2 n  -  2 E “ (— * E " ) 6 m 1.0 IP  m 18.4l7eV
14.80 0.036688 16.01 1# — !
16.88 0.000867 16.80 16.88 1» —
17.61 0.000262 17.67 1» — 1
17.80 0.000140 17.87 1» — 1
18.11 0.002188 13.04 1» —

1# — 6 a * 2 n -  2 A ( - ! A ) 4 m 1.0 IP  ■  18.61eV
14.88 0.072686 16.11 16.28 1» —*
17.07 0.001332 17.00 17.14 1» —
17.70 0.000681 17.88 1 9 —
17.88 0.000286 17.87 1» —
18.20 0.004467 18.18 1» —
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Table 4.6
Calculated 4(7 Static Exchange Excitation Spectrum IP =  21
( c  *n) [is]

C alculated Value* Q u a n tu m  D efect E atlm ates* E x p erim e n ta l Values* A ssignm en ts

«<(•*) u «<(•*> «<(•*>
4#  — fca# 2n — 2n 1 a  0 4 7

11.30 0.000047 10.42 10.30* 4# — 3s#
20.30 0.002100 20.20 4# -  4<#
20.01 0.001120 2 0 4 0 4# — 6a#
21.20 0 4 0 0 0 2 7 21.10 4# — 4a#
21.40 0.000000

4 #  — kpm *n — 3n 1 a  0.00
10.27 0 4 0 0 0 0 2 10.17 10.10 4# — 3 pm
2 0 4 4 0 4 0 0 0 0 0 20.47 20.40 4m — 4pm
21.02 0.000020 2 0 4 0 2 0 4 7 4m — 6pm
21.20 0 4 0 0 0 1 0 2 1 4 4 4m — 4pm
2 1 4 2 0 4 0 0 1 1 0

4 # — kdm 2n — an 1 ■  0.21
20.07 0.000002 1 0 4 7 20.00 4m —  3d#
2041 0 4 0 1 0 1 2 20.77 20.70 4# —  4 dm
21.14 0.001020 21.10 4m — 6 dm
3 1 2 4 0.001200 2 1 4 1 4m — 4dm
21.00 0.000000

4*  — kpw 2n — 3 A « a  0.76
10.14 0.000000 1 0 4 0 1 0 4 0 4m — Bpw
20.40 04 0 0 0 1 1 20.40 20.40 4m — 4pw
20.00 0.000004 2 0 4 7 2 0 4 7 4m — 6pm
21.24 0.000002 2 1 4 0 4m — 4pm
21.40 0 400001

4 »  —  M v 3 n - a A < m 0 .0
2 0 4 0 0.000000 2 0 4 1 2 0 4 1 4m — 3d*
2 0 4 0 0 4 0 0 4 0 0 2 0 4 7 2 0 4 6 4#  — Urn
21.10 0.000201 2 1 .10 21.10 4m —’ 6 dm
2 1 4 7 0.000240 2 1 4 4 21.30 4m -  0dm
21.70 0.000774 21.44

a) Values of the quantum defect from Ref. 11
b) Experimental excitation energies from Ref. 19
c) Single value given in Ref. 12
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J

Supplemental Gaussian basis functions used in 0 2 static 
exchange calculations.

Table 4.7

Symmetry Location Type Number Exponent Range0

oo

d 9 0.53—0.005
0„/jr„ 0/0 s 2 0.52—0.16

0/0 P 2 0.39—0.12
0/0 d 3 0.44—0.13
c.m. P 11 0.44—0.001

0 A geometric-series variation is employed in the indicated ranges.

Table 4.8
Calculated I n ,  Excitation Spectrum in 0 2 IP =  12.07eV

Calculated Values Quantum Defect Estimates* Experimenatel Values* Assijn ments

‘ .(•V) fi «((•V)

(!*»)*£» — (»P®«) 3n u
8.55 0.00000 8.45 i t ,  — Sp<7u
10.1« 0.00844 10.50 9.97 /s tronf I t ,  — 4(ks„
11.00 0.00555 11.19 10.98 lirf — 5p<su
11.41 0.00288 11.51 11.5« i t ,  — «p<Tu

11.03 0.00189 11.68 11.54 I t ,  — 7p<T«
11.92 0.00485

(«»») — (np»B)
9.42 0.00270

\ W'  W v r
9.54 9.Sl/weak 1», — Spx,

10.82 0.0007« 10.84 10.4« 1 * ,  —  4 p t u

11.55 0.00052 11.54 11.56 1», — 5px„
11.59 0.00017 11.59 11.54 i t ,  —  «pe»
11.85 0.00054 11.75 11.62

11.22 0.00015 10.55 i t ,  — 5/5«
11.65 0.00052 11.65 i t ,  -» 4/5«

a) Quantum Defects from Ref. 11
b) Experimental Values from Ref. 22

A
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Fig. 4.5

C alcu la ted  con trib u tio n s to , and to ta l ( l jr -> )u ,s A  p a rtia l channel photoionir.a- 
tion cross section of NO.
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Fig. 4.8

C alcu la ted  to ta l pho to ionizationcross section for ionization from  the  
of NO.
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C alcu la ted  pbotoion ization  cross section for all ionic s ta te s  of NO w ith ionization 
energies betw een 14 and 20eV.
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Chapter 5

The Calculation of the 

Partial Photoionization 

Cross Sections of Closed 

Shell Polyatomic Systems

In this chapter the results of a series of calculations on progressively larger 

polyatomic systems are reported. These comprise water, acetylene, and ni-
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trous oxide. Comparison of the results of the first two molecules with sub­

sequently published results clearly show the importance of employing a good 

quality supplemental basis set in the construction of the pseudospectra used 

in the Tchebycheff imaging procedure. The basis set employed in the nitrous 

oxide calculations, having been selected with the above results as a guide, is 

considered to be the best possible within the approximations used.

The results obtained for the outer valence orbitals indicate that the static 

exchange approximation leads to good results where the ionic state may be de­

scribed by a single particle hole configuration, and where autoionization effects 

are not important. This calculation should encourage the application of these 

methods to large molecular systems and to those containing second row atoms.

A. HoO Calculations

5.1 Introduction

The physical and chemical properties of the water molecule, being vital to life 

are topics of perennial scientific interest. A large amount of data concerning 

this molecule has recently become available [1-4], Attempts have been made
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to calculate the variation in intensity of the various photoelectron bands with 

photon energy, approximating the ejected electron with plane waves [5,6|, plane 

wave orthogonalized to the occupied orbitals [5,6|, and Coulomb waves [5,7]. 

Both the plane wave and the orthogonalized plane wave calculations yield results 

which are an order of magnitude too small, and while the results of the Coulomb 

wave calculation are in as good agreement with the experimental data near the 

threshold as the results presented here, at higher energies where the present 

results are in excellent agreement with experiment, the coulomb wave results 

are quite poor.

The availability of reliable experimental data and the failure of approximate 

methods to provide a good understanding of this data has stimulated attempts 

to apply more sophisticated theoretical techniques on this comparatively simple 

molecular system. The results of a TDHF calculation which employed a rather 

small basis set together with the Stieltjes-Tchebycheff imaging procedure have 

been reported by Williams and Langhoff [8]. This yielded surprisingly good 

results for the various partial cross sections, though yielding partial cross section 

components rather dissimilar to the present calculations, and yielded excitation 

series of much poorer quality than those reported here.

Subsequent to the publication of the present results [48], the results of a 

similar calculation by Diercksen et al employing a larger basis set became avail-
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able [9|. Because of the larger basis set employed, that calculation is of a higher 

quality than the present results and so throws light upon basis set effects in 

such a small system. It should be noted that Diercksen et al performed four 

separate calculations and that only one of these was finally considered to con­

tain a satisfactory ai basis. Finally an investigation employing the X a  method 

has been undertaken by Roche et al [10| which produced results very similar to 

those for the corresponding orbitals in the atomic oxygen.

5.2 Theoretical and Computational Details

The ground state wavefunction of water within the Hartree-Fock approximation

is:

|la*2a?1^3«?16?prUi (5.1)

Such a wavefunction was constructed within the Hartree-Fock scheme employing 

the (9s5p/5s3p) Gaussian basis of Dunning [11] supplemented with a d polar­

ization function on the oxygen nucleus, and the (4s/3s) basis of the same author 

on the hydrogen centres. At the ground state internuclear separation (R(O-H) 

= 1.8089au, (HOH) =  104.52*) [12| this yielded an energy of -76.033au, to be 

compared with an estimated Hartree-Fock limit of -76.066 ±  0.003au [13].

The separated channel approximation yields twelve distinct one electron
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dipole allowed series corresponding to individual excitations of the four highest 

lying filled molecular orbitals. These series are designated

For each of these cases the singly excited orbital , constructed employing 

the large supplemental basis given in Table 5.1, is obtained from solution of the 

one electron equation of form

From this operator it is clear that when ionizing from a given molecular 

orbital all excited orbitals, regardless of symmetry, are constructed over the 

same operator. This is not the case with molecules of higher symmetry and is a 

consequence of the absence of any degenerate irreducible representations from 

the C2,  point group.

The excited orbitals so produced yield the pseudospectra employed in the 

Tchebycheff procedure to give the results detailed in the next section.

(2or, *6,)1B1 (2afl *62)1B2 (2af1*o,)l /l, 

(1 b^lkai)l B2 (lft2 A, 

(3arl *6i)‘B, (3a^l kb2)l B2 (3a^1 jfca,)‘A, 

( I b ^ k a ^ B ,  ( l b i l kat)l B2 ( l b ^ k b ^ A i

(5.2)

(5.3a)

where
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5.3 Computational Results

5.3.1 lbt Excitation I.P. =  12.61eV X2B, [14]

The static exchange excitation series presented in Table 5.2 divide naturally 

into several different series. For the lbi -» kai excitations there is reasonable 

agreement between the static exchange results, quantum defect estimates, and 

experimental results [3] for low quantum numbers. The 16i -* 3«Ui, is found 

to be the strongest of the discrete 16i excitations, as in other calculations. 

The results of the static exchange calculation of Diercksen et al [9), are in 

much better agreement with the quantum defect estimates for high quantum 

numbers, reflecting the much larger basis set used, though not in such good 

agreement with the two experimental values as those presented here. The results 

of the time-dependent Hartree-Fock calculation of Williams and Langhoff are in 

much poorer agreement with the experimental values than either of the static 

exchange calculations, reflecting the use of a very small basis set without truly 

diffuse functions suitable for describing Rydberg states. The oscillator strength 

distributions of both static exchange calculations agree reasonably well and the 

comparatively high oscillator strength of the lfti —► 3sui transition has led 

Diercksen et al [9] to suggest that this transition has some intravalence 4a i 

character.
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Two further ai excitation series are given, kpdi and kdai. Both these series 

are shorter than those of Diercksen et ai, because of the larger basis set used, 

and as with the ksai series, the early members are in good agreement with the 

experimental and defect estimate values. No TDHF results were presented for 

these or any of the remaining lb] excitation series.

The remaining excitation series, kpbi, kdbi, and kda?, behave similarly 

to the kpat and kdai series: having a first member in good agreement with 

experiment, whereas the remaining members are not in such good agreement 

with the experimental or defect estimate values. All the series are shorter than 

those of Diercksen et al., which overall are of rather better quality.

The three contributions to the lb j partial cross section are presented in Fig­

ure 5.1, and the partial cross section is compared with the available experimental 

data in Figure 5.2. The kb] and ka? profiles are almost identical, a result con­

firmed by Diercksen et al, and just over half as strong as the kai profile, a ratio 

which may be rationalised by regarding the lb t orbital as a pure oxygen 2p, 

orbital, with transitions to > and d,ta \ , da? and db\ orbitals. However at 

low energies, all the components are slightly greater in magnitude than those of 

Diercksen et al. The static exchange results present an interesting contrast to 

the TDHF results [8|, where the maximum in the ka, profile is approximately 

10% greater and considerably more peaked than the present results. Owing to
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the small basis set used in the TDHF calculation it was impossible to image the 

kbt and kbj components separately, but a sum was obtained. This sum is con­

siderably larger than that obtained in either of the static exchange calculations, 

but cancels the rapid decline in the kai component to produce a partial cross 

section virtually identical to the present results above 40eV.

Several different sets of experimental data are presented in Figure 5.2: the 

(e,2e) measurements of Tan et al [2j, which extend to high energy; and three 

sets of synchrotron measurements which are inconsistent at low energies [1,4,49], 

At high energies the (e,2e) data and the calculation agree almost exactly, while 

at lower energies, the calculated partial cross section is significantly greater 

than the experimental curve. It is interesting to note that while the calculated 

curve of Diercksen et al is greater than the (e,2e) measurements a t all except 

one experimental point, the discrepancy at low energies is less than that of 

the present results, yielding rather better overall agreement with the (e,2e) 

measurements. The synchrotron radiation measurements of Thiesdale et al [1] 

are in good agreement with the coincidence measurements -|2] above 26eV, as 

are the results of Thorntom et al.

Below this energy, they fill a gap in the coincidence data between 18 and 

22eV. Despite some scatter in the synchrotron measurements of Truesdale et al, 

there is general agreement with the (e,2e) measurements between 22 and 26eV.
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However, the two low energy (e,2e) data points, which show the presence of a 

maximum in the (16fl ) 2f?i partial cross section disagree with the low energy 

synchrotron measurements of Truesdale et al which show no such maximum, 

while the results of Thornton et al, although also showing a maximum, disagree 

with both (e,2e) data and the synchrotron data of Truesdale et al as to the form 

and magnitude of the partial cross section curve in this region. Finally the low 

energy synchrotron data of Dutit et al [4] is shown. This data is not in good 

agreement with any of the other measurements; but as these are not magic angle 

results, and since angular effects are large for this orbital [10|, these results may 

be discounted.

Both static exchange calculations agree as to the position of the maximum 

while differing by approximately 12% as to its magnitude; and as the calculation 

of Oiercksen et al employs a larger basis set, it represents the results of the static 

exchange method more accurately. The TDHF calculation of Langhoff and 

Williams [8] also shows a maximum, arising mainly from the kai profile, but to 

somewhat lower energy. The results of an X a  calculation are also available[10|. 

This shows a monotonic decline from threshold with no maximum, and is only 

in the most general agreement with experiment even at high energies.
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5.3.2 3a, Excitation I.P. =  14.73eV 2A,[14]

The static exchange excitation series for this orbital are given in Table 5.3. These 

series, as in the case of the 16, orbital, are shorter than those of Diercksen et 

al [9], and while the early members of each series are in general agreement with 

the experiment and the defect estimates, later members are not in such good 

agreement as those of Diercksen et al.

Most of these series are clearly Rydberg in nature although Diercksen et al 

have assigned some intravalence character to the 3a, -> 3«a, transition on the 

basis of its high oscillator strength. The only other candidate for intravalence 

character on the basis of the present results is the 3a, -> 3p62 transition, which 

is the second strongest calculated excitation from this orbital, and the differences 

between the calculated, defect estimate and experimental value of this excitation 

appear to suggest some intravalence character. It is interesting to note th a t 

while both static exchange calculations are in better overall agreement with the 

experimental results than the TDHF calculation of Langhoff and Williams [8), 

the static exchange calculations predict that the 3a, -* 3pft2 excitation will be 

stronger than the 3a, —► 4p62 excitation, whereas the TDHF calculation predicts 

the opposite result and hence is in better agreement with the experimental 

results on this point.
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The k a ,, kbt and kb2 contributions to the partial cross section are given 

in Figure 5.3. Of these, the kai profile is the largest component of the partial 

cross section at energies above its maximum in both static exchange results, 

although somewhat stronger in the present calculation. The TDHF calculation 

has its kai maximum at a higher energy, near 28eV, and is somewhat stronger 

than either of the static exchange results, by a factor of as much as 2 at high 

energies where it is the only important contributor to the partial cross section in 

the TDHF calculation. The kbi contribution has a maximum to slightly higher 

energy than the kai, and becomes the second most important contribution to the 

partial cross section at high energy in both static exchange calculations. This 

profile is somewhat more irregular than that of Diercksen et al, presumably as 

a consequence of the larger supplementary basis set yielding more pseudostates 

for the imaging process.

The TDHF results [8] are in complete disagreement with the static ex­

change results for this component, yielding a completely negligible contribu­

tion at higher energies. As noted by Diercksen et al |9| the 3oi —» kax and 

3ai —» 3kbx profiles are virtually identical to the corresponding lbi profiles as 

a result of the mainly oxygen 2p nature of both orbitals. This is not the case 

for the kb2 component, which has a maximum, assigned by Diercksen et al to 

the presence of the 262(<x*) valence orbital, near 17eV in both static exchange 

calculations. At high energies this component makes the smallest though not
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negligible contribution to the partial cross section. This is not the case with the 

TDHF calculation where the lb j component shows a steady decline from the 

threshold and makes a negligible contribution at high energies.

The three components are combined in Figure 5.4 to yield the (3aJ"l )2Ai 

partial cross section which is compared to the same sets of experimental data 

as the previous orbital. The coincidence data of Tan et al [2], while in good 

agreement with the calculated curve at high energy, is, as in the case of the 

lbi partial cross section, exceeded by the calculated curve at low energies. The 

synchrotron data of Truesdale et al [1| is in reasonable agreement with the 

(e,2e) measurements, though showing some scatter, and displays a minimum 

at 20eV not reproduced by the calculation. The measurements of Thornton et 

al [49) are in agreement with the other experimental results at higher energies. 

The measurements of Dutit et al [4] are greater than those of Truesdale et al, 

presumably owing to angular effects, but also show a minimum at 20eV. Two 

low energy coincidence points lie on the calculated curve near the predicted 

maximum . The maximum in the calculation of Diercksen et al, while in the 

same position, is approximately 12% lower bringing better overall agreement 

with the mass of the experimental data.

At higher energy the present results are slightly less than the (e,2e) mea­

surements while those of Diercksen et al are slightly greater. The corresponding
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TDHF partial cross section is almost identical to the present results except that 

the maximum is shifted to 2eV lower photon energy. The MSXa [10] result is al­

most identical to the MSXa result for the (16fl )2Bi partial cross section, shows 

no maximum, and is considerably weaker than the present result, especially at 

higher energies.

5.3.3 lb2 Ionization I.P. =  18.55eV B 2B2 [14]

The calculated static exchange excitation spectrum of the lb2 orbital is given 

in Table 5.4.

The 1 i2 -» 3«a,/4ai excitation is the strongest calculated excitation for the 

molecule and would appear to have some intravalence character on the basis of 

its strength. All the other series appear to be wholly Rydberg in nature with the 

possible exception of the lh2 —* 3p62 excitation which has been suggested to have 

some intravalence character by Diercksen et al [9] because of the discrepancy 

between the calculated value and the defect estimate, a discrepancy which also 

exists in the present calculation.

As in the previously discussed cases these series are shorter than those of 

Diercksen et al, and are not in such good agreement with the defect estimates 

for the higher members of each excitation series, again illustrating the effects of
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an improved basis set.

The three components of the partial cross section are shown in Figure 4.5 

and are very similar to the results of Diercksen et al [9], except for the kai corn- 

ponent, which shows a maximum in the present results instead of a monotonic 

decline.

The TDHF calculation [8| produces components very different to the static 

exchange calculations, with the Icai component dominating at high energies and 

the sum of the kb2 and ka2 components decaying monotonically from threshold.

The three components contributing to the partial cross section are combined 

to yield the partial cross section for the channel, presented in Figure

5.6. The calculated cross section shows an initial maximum which is approx­

imately 80% greater than the experimental data before decaying very rapidly 

to yield good agreement with the experimental data above 30eV. Unlike the 

previously discussed channels the various sets of experimental data are in quite 

good agreement, except for one data point of Thornton et al (49]. Interestingly 

the synchrotron data of Dutit et al |4] fits quite smoothly with the trends shown 

in the other experimental data. The MSXar calculation (10] predicts a very low 

asymmetry parameter for this channel near threshold, so angular effects are not 

expected to be as large as for other channels.
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This smooth joining of the data of Dutit et al and the other experimental 

data, which is not repeated in the case of the (3oJ*1)2Ai and (1 6 f ')2d i chan­

nels, where the asymmetry parameter is predicted to be larger near threshold 

[10], confirms that the results of Dutit et al contain angular effects.

The calculation of Diercksen et al [9] shows no maximum in the lb2 partial 

cross section but a steep decline from the 22eV moving into close agreement 

with experiment above 30eV. The TDHF calculation for this channel is also 

greater than the experimental data near threshold but is less at high energies. 

This is the channel for which the MSXa calculation produces the best results 

showing a maximum just above threshold in good agreement with experiment 

and is also in good agreement with experiment at high energies.

Diercksen et al [9] have suggested that there is channel coupling between the 

(162 ‘ ) 2fl2 and the (16f‘ )2Bi channels to account for the maximum between 

18eV and 20eV in the ( l i“ 1) ^ 2#! partial cross section data of Dutit et al 

[4]. As this maximum is not shown in more recent experimental measurements 

this suggestion is not confirmed. As all the calculated partial cross sections 

are greater than experiment near threshold it is not possible to account for the 

larger discrepancy between calculation and experiment for the (16^1) 2fl2 cross 

section on this basis.
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5.3.4 2a, Excitation IP =  32.3eV 2At[l4]

The 2ai excitation series are presented in Table 5.5, and can be seen to be in 

reasonable accord with the defect estimates, being generally weak and showing 

little evidence of any intravalence character. Again these series are slightly 

shorter and not in such good agreement with the defect estimates as those of 

Diercksen et al [9j.

The three contributions to the (2of l ) 2Aj partial cross section are shown in 

Figure 5.7. All are broad and unstructured, and are very similar to the results of 

Diercksen et al. The components are combined to yield the ( 2 a f ') 2Ai partial 

cross section which is compared with the available experimental data [2| in 

Figure 5.8. General accord is evidently achieved between the two sets of results.

MSXa calculations yield results for this channel which are virtually identical 

to those for the atomic oxygen 2s orbital [10], and which are very similar to, 

though somewhat weaker than, the present results.

5.3.5 Total Valence Photoionization Cross section

The calculated total valence photoionization cross section is compared with the 

available experimental results in Figure 5.9 .
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The large discrepancy between calculation and experiment at low energy 

arises from the overestimate of all the partial channel cross sections in this energy 

range. It has its most significant contribution from the large overestimate of the 

( l i ,  l ) 2Bi partial cross section. The results of the static exchange calculation 

of Diercksen et al [9] are very similar to the present calculations, though in 

slightly better agreement at low energies, and the overestimate of the valence 

photoionization cross section again arises mainly from the ( 16̂ "1 ) 2 partial 

channel.

The TDHF calculation of Langhoff and Williams [8j produces the best agree­

ment between calculation and experiment at low energies, although an overes­

timate arising from the ( l h j1)2^  partial channel is again present. However, 

at high energies this calculation produces a comparatively large underestimate, 

arising from the same channel.

5.4 Discussion

The calculated excitation series divide naturally into kai, ka?, kbt and kb2 

series, subdivided into s, p and d type series in accord with experimental results 

[3|. The excitation energies are in general accord with experimental values, 

but in some cases the high calculated oscillator strengths and the discrepancy
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between the calculated, quantum defect and experimental excitation energies 

suggest that there may be contributions from the virtual valence 4ai and 2bj 

orbitals. The outer valence partial cross sections also display maxima near 

threshold arising from the kai and kb? contributions which may also contain 

contributions from these valence virtual orbitals.

The effects of changing the order of the fit in the Tchebychejf imaging pro­

cedure have been explored and 6 and 9 point fits are presented, along with 

stick representations of the discrete pseudospectra, for the three outer valence 

orbitals in Figures 5.10 to 5.12. The 9 point fits are more irregular than the 6 

point fits, showing maxima where the density of pseudostates is greatest.

The main feature of each partial cross section in the 6 point fits, a maximum 

several electron volts from threshold followed by a decline, is also present, though 

somewhat more irregularly, in the 9 point fits. The close relationship between 

the details of the profiles obtained from the 9 point imaging technique and 

the density of the pseudostates indicates that the results obtained employing 9 

points are not smoothed adequately.

These results have been confirmed by the recent calculation of Diercksen et 

al [9], where a larger basis set was employed. As a result of the use of a larger 

basis set, the main deficiency of this calculation, the large overestimate of the 

magnitudes of the respective maxima, has been partially remedied. The extent
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of the remaining discrepancy in the (lhj"1) 2^  channel is unclear as there is 

a conflict between the (e,2e) data and the latest synchrotron data in the 16eV 

to 19eV energy range (Figures 5.2 and 5.4) for the ( li;-1)2^  and (3afl ) 2Ai 

channels.

A large discrepancy remains in the larger calculation in the (lh^ 1)2 B2 chan­

nel, which has been suggested to arise from coupling with the (16J" ‘ )2Si chan­

nel. The present results do not lend support to this suggestion.

It is interesting to note that the TDHF calculations of Langhoff and Williams 

[8], while yielding reasonable agreement with experiment at low energies for the 

( l ij '1) 2£ i and (3aj’1) 2i4i channels also overestimate the magnitude of the 

initial maximum in the ( l i j 1) 2^  channel. Furthermore, the partial channel 

cross section components given by the TDHF calculations are not, in general, 

very similar to those given by the static exchange calculations.

As the TDHF calculation used a very small basis, a close comparison of 

the results of the two methods is precluded. However, the initial results of 

the TDHF calculation are in as good overall agreement with experiment as the 

static exchange results.

The MSXar calculations [10] have yielded results, which, at energies greater 

than lOeV above the appropriate threshold, are in almost as good an agreement
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with experiment as the present results, as well as yielding asymmetry parameters 

for each channel. No initial maxima are present in the (16f1) 2B\ or (3 a f‘ ) 

partial cross sections, whereas these are the main features in the experimental 

results and, although somewhat overestimated, are present in all the Stieltjes- 

Tchebycheff results. The present results lend themselves to interpretation in 

terms of contributions from the valence virtual orbitals falling in the discrete 

spectral interval, while the MSXa results lead to an interpretation of the results 

as those of a perturbed oxygen atom.

C2H2 Calculations

5.5 Introduction

As the simplest alkyne, the photoabsorption, photoexcitation of acetylene has 

been a topic of interest for many years. Its bonding was discussed by Mulliken 

in 1935 [16], and many early LCAO-MO-SCF calculations were carried out on 

it [17,18|.

Experimentally a number of measurements of photoionization efficiencies [19- 

21) and of total [22,23] and partial channel [24| photoionization cross sections
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have been reported at low energies. These measurements have indicated the 

presence of a double peaked structure in the total photoionization cross section 

in the region of 15eV, arising from ionization from the It.  orbital. Quantum 

defects for the Rydberg series have been published by Lindholm [25].

There have been several ab-initio investigations into the excited electronic 

states of acetylene which have located the l E+ state formed by excitation of a 

I t.  electron to the It,  valence virtual orbital above the ionization threshold of 

the I t.  orbital [26,27]. Semiempirical calculations have placed this state just 

below the ionization threshold [31].

Much new data has become available recently. The photoelectron spectrum 

of acetylene has been remeasured, using four different types of radiation, and 

the relative partial cross sections at these energies measured and calculated by 

Cavell and Allison [28]. Ionization potentials from their work will be used in 

these calculations and it should be noted that these differ slightly from the 

employed in the calculations of Langhoff et al [24,29).

The many-body calculations of Cederbaum et al [30] indicate that the in­

dependent particle picture is a good paradigm for the outer valence orbitals of 

acetylene.

Unwin and co workers [32] have investigated the changes in the intensities of
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the various vibrational transitions accompanying ionization of a ltr, electron as 

the photon energy changes. These intensities have also been measured by Kreile 

et al [33| at a number of points, as well as 0 paramaters for the various final 

vibrational states at these energies. Langhoff and co workers have published 

experimental and theoretical partial cross sections for the valence orbitals of 

acetylene, calculated within the static exchange approximation [24,29].

Results are presented for the four outermost orbitals of acetylene, obtained 

by the Stieltjes-Tchebycheff imaging technique within the static exchange ap­

proximation. These results are very similar to those of Langhoff et al. However, 

it will be suggested that despite the seeming plethora of results, both experi­

mental and theoretical, definitive measurements have not yet been made and 

further calculations are required before a good understanding of the photoion­

ization dynamics of acetylene is achieved.

5.6 Theoretical and Computational Details

The ground state wavefunction of acetylene within the Hartree-Fock approxi­

mation is:

|loa21 ^ 2 o » , 2l x : i ‘E+ [5-4]
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Such a wavefunction was constructed within the Hartree-Fock scheme employing 

the (9s5p/5s3p) Gaussian basis set of Dunnings [11] on each carbon nucleus, 

supplemented with a d polarization function (f =  0.8,GTF), and the (4s/3s) 

basis of the same author, supplemented with a p polarization function ({ = 

0.4,GTF) on each hydrogen centre, at the ground state internuclear separation 

(Rcc =  1.204À, Rch  = 1-058À) [12).

This wavefunction yielded a ground state energy of -76.8379au, to be com­

pared with a near Hartree-Fock limit value of -76.8450au [34|. A large sup­

plemental basis set, given in Table 5.6, was used to construct virtual orbitals

A
to describe photoexcitation and ionization by solution of the static exchange 

Hamiltonian:

The a f  and if  are those previously published by Langhoff et al for closed 

shell molecules belonging to the point group Z?ooa with minor corrections and 

are listed together with the multiplicity factors, /if , in Table 5.7.

The pseudospectrum of transition energies and oscillator strengths («;,/<) 

obtained from these orbitals is used in the Tchebycheff moment of analysis as 

previously described, to yield the partial channel cross sections of the orbitals 

under consideration.

[5.5]
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It must be emphasised that the IP’s used in the construction of the pseu­

dospectra are taken from the spectra published by Cavell and Allison [28]. These 

are slightly different to the values employed in the previous work on acetylene 

using the Stieltjes-Tchebycheff moment imaging technique |24|. This is expected 

to change the position of the calculated Rydberg series slightly, but major dif­

ferences can only arise from basis set differences.

Before discussing the results it will be helpful to describe the occupied va­

lence orbitals and virtual valence orbitals.

The 2<rg orbital is strongly carbon-carbon bonding, and is of mainly s char­

acter. The 2(7» orbital is a carbon-carbon antibonding but strongly carbon - 

hydrogen bonding sp hybrid. The 3(7, orbital is a carbon-carbon bonding orbital 

which is also carbon-hydrogen bonding and is of almost pure p character. The 

\it% orbital arises from a bonding combination of carbon 2p atomic orbitals. 

The valence virtual orbitals consist of the lx ,, 3<7m, 4(7,, and 4(7. orbitals. The 

1x, (x*) orbital is an antibonding combination of carbon 2p atomic orbitals. The 

3a. orbital is both carbon-carbon and carbon-hydrogen antibonding, and is of 

mainly carbon s character, whereas the 4(7,, and 4(7. orbitals are sp hybrids, 

the first of which is mainly carbon-hydrogen antibonding , whereas the second 

is mainly carbon-carbon antibonding [17].

The dipole selection rules allow transitions of the type g «-* u in a molecule
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It must be emphasised that the IP’s used in the construction of the pseu­

dospectra are taken from the spectra published by Cavell and Allison [28]. These 

are slightly different to the values employed in the previous work on acetylene 

using the Stieltjes-Tchebycheff moment imaging technique [24]. This is expected 

to change the position of the calculated Rydberg series slightly, but major dif­

ferences can only arise from basis set differences.

Before discussing the results it will be helpful to describe the occupied va­

lence orbitals and virtual valence orbitals.

The 2og orbital is strongly carbon-carbon bonding, and is of mainly s char­

acter. The 2(7, orbital is a carbon-carbon antibonding but strongly carbon • 

hydrogen bonding sp hybrid. The 3<r, orbital is a carbon-carbon bonding orbital 

which is also carbon-hydrogen bonding and is of almost pure p character. The 

I t,  orbital arises from a bonding combination of carbon 2p atomic orbitals. 

The valence virtual orbitals consist of the It,, 3(7,, 4<t9, and 4(7, orbitals. The 

1t, ( t*) orbital is an antibonding combination of carbon 2p atomic orbitals. The 

3<r, orbital is both carbon-carbon and carbon-hydrogen antibonding, and is of 

mainly carbon s character, whereas the 4<r,, and 4(7, orbitals are sp hybrids, 

the first of which is mainly carbon-hydrogen antibonding , whereas the second 

is mainly carbon-carbon antibonding [17j.

The dipole selection rules allow transitions of the type j  «  u in a molecule
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of Doonsymmetry. While there will be strong transitions from the 2a% and l r ,  

orbitals to the valence virtual orbital, which may fall either in the discrete 

spectral interval or the continuum, no such transition is possible for the 2o9 or 

3oa orbitals.

The Ijg  virtual orbital as the lowest lying of the valence virtual orbitals, 

and in molecular nitrogen and carbon monoxide lies in the discrete spectral 

interval. In these cases its presence perturbs the kn continuum profiles, leading 

to unphysical results unless special procedures are used [35,36].

As the position of the lx . -* 1t, ( x -* r*) transition is not yet certain, 

difficulties arise which will be discussed under the appropriate heading.

At this stage it can be said that strong contributions are expected, in the 

Rydberg series or partial cross sections of all orbitals, in the ka channels , 

as valence virtual orbitals exist of the appropriate symmetry types (g and u) 

for dipole allowed transitions from the occupied orbitals. These orbitals are 

calculated to lie above the r* virtual orbital [17].

203



5.7 Computational Results

5.7.1 2a , orbital I.P. =  23.65eV [28]

The calculated discrete excitation energies and oscillator strengths for this or­

bital are given in Table 5.8 along with quantum defect estimates. There is good 

agreement between both sets of excitation energies except for the first member 

of the p r . series.

The oscillator strengths are weak and there is no evidence of the appearance 

of any intravalence transitions in the discrete spectral interval. In this context 

it should be noted that the results of Machado et al [29], while agreeing with 

regard to the excitation energies once allowance is made for the difference in 

ionization potential used, show a very different pattern of oscillator strengths. 

The results given here for the oscillator strengths are an order of magnitude 

less then those of Machado et al, thus lending little support to their suggestion of 

contributions from the 3<tw (<t* ) to the discrete interval. The calculated oscillator 

strengths for the piru series are approximately twice as great as those of Machado 

et al, illustrating the great sensitivity of the calculated oscillator strengths to 

small changes in the basis set.

As no indication of intravalence character has been found in the discrete

204



excitation series, it is expected that a resonance or resonances, shall appear in 

the 2a g —• k a % profile, owing to contributions from the 3a% and 4a% valence 

virtual orbitals in the continuum. The 2at  -*  k a % and 2<rg -*  k ir . profiles are 

shown in Figure 5.13. The far. profile shows two maxima, one approximately 

6eV above threshold and the stronger approximately 18eV above threshold.

The minimal basis set calculations of McLean [17] yield a difference of 23eV 

in the eigenvalues of the 3<rs and 4<r, orbitals, suggesting that these two or­

bitals could give rise to two distinct features in the partial photoionization cross 

section. The energy separation between the two maxima shown here is 13eV 

suggesting that the first of these maxima be tentatively attributed to the 3<7, 

and the second to the 4<r, valence virtual orbitals lying in the photoionization 

continuum. However, the results of Machado et al quoted above lend no support 

to this assignment.

While the form of ifejr, components in the present results and those of 

Machado et al [29| are fairly similar, the reported kam component is much 

smoother, rising very rapidly to a broad maximum extending from 30eV to 

40eV. In general, the lower the number of spectral moments used in the imag­

ing process, the smoother the resulting profile. A six point fit was used for 

the three profiles obtained for this channel. There are enough pseudostates to 

justify this choice, but it seems that those of Machado et al [29] may have been
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obtained using a lower order fit. The 2crg — k r% profile is, as expected, weak 

and flat, extending to high energies where it dominates the partial cross section.

The two components are combined in Figure 5.14 to yield the partial cross 

section (or the 2og channel. This still shows clearly the two maxima arising 

from the a% virtual orbitals. Again the results of Machado et al are smoother 

and the comments made above about the order of the fit apply.

The recently published results of Lynch et al [52], obtained by solving the 

static exchange Hamiltonian (eq. 5.5) using scattering functions, without any 

smoothing techniques, produces a photoionization cross section profile for this 

ionization very similar in form to the current results. This confirms the pres* 

ence of separate contributions from the 3<tm and 4<rm valence virtual orbitals, 

and demonstrates that the use of the 6 point Tchebycheff procedure is fully jus­

tified. It is therefore suggested that the results of Machado et al [24,29] for this 

ionization show no structure either because of over smoothing, due to too low 

an order fit, or because the various ground and supplemental basis set deficien­

cies have stronger effects for this ionization than for any of the others presented 

here.

At present no experimental data are available for this channel, and according 

to the results of Cederbaum et al [30], the 23.65eV line carries only 60% of the 

total intensity involved in the 2ag ionization. A further 25% is calculated to
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manifest itself in a satellite peak at 28.9ev, shown quite clearly in the results of

Cavell and Allison [28].

5.7.2 2<t„ orbital I.P. =  18.75eV B 2E„[28]

The calculated discrete excitation energies and oscillator strengths for this or­

bital are given in Table 5.9, along with quantum defect estimates. It can be seen 

that there is only moderate agreement between the two sets of 6gures, which 

suggests some perturbation owing to intravalence contributions.

The oscillator strengths are moderately strong for the two d series, but weak 

for the t(Tg series. There is little evidence of the appearance of a transition to 

the 4<7j(n/<7*) valence virtual orbital in the oscillator strength distributions of 

either of the two a series, but the 2<r, -* 1 transition appears below the 

commencement of the dng Rydberg series with a very high oscillator strength. 

This suggests that a shape resonance can be expected near threshold in the 

2a% —► kog channel.

It is instructive to compare the excitation energies with those of the pub­

lished static exchange calculation on acetylene [24,29], The dvg series are in 

reasonable agreement both with regard to position and intensity, although dis­

agreeing by 0.13eV as to the position of the 2a% —► intervalence transi-
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5.7.2 2a u orbital I.P. =  18.75eV B JE„[28]

The calculated discrete excitation energies and oscillator strengths for this or­

bital are given in Table 5.9, along with quantum defect estimates. It can be seen 

that there is only moderate agreement between the two sets of figures, which 

suggests some perturbation owing to intravalence contributions.

The oscillator strengths are moderately strong for the two d series, but weak 

for the 8<7g series. There is little evidence of the appearance of a transition to 

the 4 <jg(n/<7*) valence virtual orbital in the oscillator strength distributions of 

either of the two a series, but the 2<r. —► 1 i g transition appears below the 

commencement of the d ig Rydberg series with a very high oscillator strength. 

This suggests that a shape resonance can be expected near threshold in the 

2<r. -> kog channel.

It is instructive to compare the excitation energies with those of the pub­

lished static exchange calculation on acetylene [24,29|. The dxg series are in 

reasonable agreement both with regard to position and intensity, although dis­

agreeing by 0.13eV as to the position of the 2<r. —* l t g(j*) intervalence transi-

manifest itself in a satellite peak at 28.9ev, shown quite clearly in the results of

Cavell and Allison (28).

207



tioD, which Langhoff et al place at 15.54eV [24].

The recent calculations of Hayaishi et al [21], placed the 2<r, -» lirg excita­

tion at 16eV with an oscillator strength of 0.429. Their measurements of the 

photoionization efficiency led them to suggest that this excitation autoionizes 

strongly into the ( lx " 1 )Â 2n« channel. More interesting at this point are the 

two Rydberg ag series, tag anddug.

Langhoff et al report only an s a g Rydberg series, as their supplemental 

basis does not contain any dog type basis functions. They find an intravalence 

interloper at 17.7eV with an oscillator strength of 0.1551, which is assigned to 

the 4<7,(n/<7*) valence virtual orbital. No such interloper is present in the results 

presented here.

In the published calculation, the supplemental basis set contained 23<t9 basis 

functions, whereas the calculations reported here have 37ag pseudostates, both 

of s and d type, and the ground state basis is larger, so the interloper can 

be dismissed as a spurious artifact of a  poor basis. However the discrepancies 

between the quantum defect estimates and the static exchange results are very 

similar to those in the results of Langhoff et al.

The corresponding static exchange profiles are shown in Figure 5.15. The kag 

profile has a  maximum just above threshold which is attributed to contributions
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from of the \ag valence virtual orbital, and decays quite rapidly. The kvg 

profile is has a minimum near threshold, and, compared to the kag profile, is 

weak and flat, extending to high energy where its contribution dominates. The 

two components are combined in Fig. 5.16 to yield the calculated partial cross 

section of the 2a, orbital. The initial maximum due to contributions from the 

iag(n/a*) orbital is still present. These results are in no better agreement with 

experiment than those of Langhoff et al [24,29].

An explanation of the discrepancy must be sought. It is clear that the error 

must originate in the kag component as this dominates the partial cross section 

at low energies. Langhoff et al have suggested that this discrepancy may arise 

from spurious contributions to the threshold 2a, -» kag cross section from 

the \og(nl<j*) valence virtual orbital [24] which, within the static exchange 

approximation at the ground state internuclear distance, lies in the discrete 

spectral interval. In view of the failure of this calculation to locate this transition 

in the discrete spectral interval, this suggestion is no longer tenable.

It is instead suggested that there may be significant coupling between the 

nuclear and electronic motion at low kinetic energies for 2a , ionization. This 

has been found to be a common effect of shape resonances and produces non 

Franck-Condon distributions among the final vibrational states of the ion over 

a comparatively wide energy range. For the 3og —► ka, channel of N2, Dehmer
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et al [37,38] have shown that the position of the <r, shape resonance is very 

sensitive to the internuclear separation. At shorter internuclear distances the 

shape resonance moves to higher energy, is broadened and weakened. At longer 

internuclear distances the resonance moves to lower energy, becomes consider­

ably more intense, but is very narrow. This change in the resonance position 

may be rationalised by consideration of the nature of the cr,((7*) orbital in N2.

As the internuclear distance decreases, the energy of the antibonding <7,  

orbital increases because of the increased internuclear repulsion, whereas as the 

internuclear distance increases, the energy of the orbital decreases. The effects 

of the variation of the internuclear distance upon the energy of a virtual <rg 

orbital would be expected to be the reverse of that for a <7, virtual orbital.

As the 2(7, orbital is carbon-carbon antibonding, removal of an electron 

from it results in a shortening of the carbon-carbon internuclear distance. If 

this lowered the energy of the resonance slightly, it would be removed from the 

continuum. This would result in a diminishment of the kag contribution near 

threshold while leaving this channel unchanged at higher energies.

An alternative explanation involves coupling between the 2a% -* kag and 

I t,  —* k tg channel. In the I t ,  partial cross section is an interval between 19eV 

and 24eV where the calculated partial cross section is less than the experimental 

results. The calculated 2<t,  partial cross section is greater by approximately the
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same amount within the same energy range.

5.7.3 t o ,  orbital IP = 16.75eV A 2E+[28]

The calculated excitation spectrum of the 3ag orbital is given in table 5.10 along 

with quantum defect estimates, with which the calculated values are in general 

agreement, and some recent experimental values. The calculated values are 

very similar to those published by Langhoff et al [24| once allowance is made for 

their use of the adiabatic ionization potential instead of the vertical ionization 

potential, which shifts all the excitation energies by 0.35eV to higher energy.

It should be noted that the npo, series is moderately strong and the npr. 

series is weak, and that, because of a common quantum defect, estimates have 

both series overlapping. The experimental excitation energies are taken from 

the recent photoionization efficiency measurements of Hayaishi et al [21]. These 

measurements show a series of small sharp peaks owing to the autoionization of 

these Rydberg states into the (ljr"‘)J(2n , channel. There is only one series, 

some of whose states show some vibrational resolution into a v1 =  m and a 

v' = m +  1 peak, confirming that the defect estimates are correct in predict­

ing common excitation energies for both Rydberg series, indeed the calculated 

values presented here for both series are very close except for the n = 3 mem­

bers. The oscillator strengths presented alongside the experimental values are
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those calculated by Hayaishi at al and confirm the trends in oscillator strength 

distributions shown in the present results.

The experimental values are not a t first sight in good agreement with the cal­

culated excitation energies. However the two values available for the v' = m + 1 

series are in much better agreement with the calculation. The difference be­

tween the experimental values of the v' = m series and the calculated values are 

of the some order as the difference between the adiabatic and vertical ionization 

potentials. However the v' = m series is much stronger than the v' = m + 1 

series, which is not what would be expected if the v1 = m series was converging 

on the adiabatic threshold and the m + 1 series on the vertical threshold.

The corresponding profiles are presented in Figure 5.17. There is evidence 

of a shape resonance just above threshold arising from the 3<r, orbital, but, as 

noted by Langhoff et al [24] there is no evidence of a separate feature arising from 

the 4<7, orbital, contrary to the 2og results. It has been suggested [24,29) that 

the 4<rm (<r*) virtual orbital is too oscillatory to result in a separate discernible 

feature in the partial cross section, but this objection also applies in the case 

of the 2aa orbital. The Jfeir, profile extends to high energy where it dominates 

the partial cross section but its large contribution near threshold is somewhat 

unusual.

The two components are combined in Figure 5.18 to yield the 3<ra partial
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cross section which is compared with the available experimental results. While 

there is general agreement in the form of the results, there are large discrepancies 

at high energies, which suggests that the fcff, profile is an overestimate, as the 

calculated cross section is greater than the experimental values at all energies.

This partial cross section is much stronger than the corresponding results 

for the 3ag and 5a orbitals in N2 [39] and CO [40]. In both cases the da 

component and the partial cross section have a maximum several electron volts 

away from threshold whereas here there is steady decay away from the maximum 

at threshold.

5.7.4 Itr„ orbital IP =  11.43eV X 2IItt[28]

The calculated Iff. static exchange excitation spectrum is given in table 5.11 

along with the available experimental data and quantum defect estimates. There 

are two ka9 Rydberg series, an s and a d series, both moderately strong and 

both in general agreement with the defect estimates. There is no evidence of 

the presence of any intravalence transitions. This is in conflict with the results 

of Langhoff et al, who, as in the case of the 2a% orbital, report the presence of 

an interloper at 10.4eV, assigned to the Iff, —* 4a9(am) transition. This is again 

assigned to deficiencies in their basis set.
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Particularly noteworthy is the total absence of the It,  -♦ lxg(jr*) intrava­

lence transition. This type of transition is well known from previous calculations 

as being somewhat of a problem in the static exchange method. These have often 

placed the corresponding transition in the continuum whereas experiment has 

shown it to lie in the discrete spectral interval. In these cases it has been com­

paratively easy to remove the spurious contribution in the k* photoionization 

channel and to achieve physically meaningful results. However the excitation 

spectrum of acetylene is very complex and a full assignment is not yet available. 

In particular the position of the l E+ -* -* **) peak has not yet been

experimentally resolved.

The configuration interaction calculations of Kammer [26] have yielded an 

excitation energy greater than 13eV for this transition and also for the corre­

sponding non linear states, as have those of Buenker and Peymerimhoff [276]. 

A different conclusion is reached by the HAM/3 semi-empirical calculations of 

Asbrink et al [31], which yield an excitation energy of lOeV. The authors suggest 

that this corresponds to a very strong experimental band at 9eV, to which a 

number of dipole forbidden transitions have been assigned. The static exchange 

results for the 2<r, orbital, in which the transition to the lx# orbital lies 3eV 

below the ionization threshold suggests that the HAM/3 assignment may be

correct.



Perhaps the best evidence is the data presented in Figure 5.19. Here two 

partial cross sections are presented for the It.  orbital. The larger of these has 

been obtained directly from the static exchange results whereas the smaller has 

had contributions from the It.  -» 1t; (t*) transition removed. It can be seen 

that the smaller is in much better agreement with the experimental data than 

the larger, indicating that the 1E+ valence state does indeed lie below threshold. 

However this inference depends upon the reliability of the experimental results 

of Langhoff et al [24], who report that their measurements were taken close to 

the magic angle, and claim that their partial cross section measurements are 

accurate to within 10%. However earlier experimental results, while showing 

the same general form as those of ref. 24 have yielded It.  partial cross sections 

approximately twice as large in magnitude, which would agree well with the 

unaltered static exchange results [23|. Unfortunately these earlier measurements 

do not seem to be magic angle results, and the calculations of Kreile, Schweig 

and Theil [33] indicate that these effects are non negligible at all energies.

In Figure 5.20 the cross sections of the three channels, ka, kir, k6 contribut­

ing to the I t,  partial cross sections are shown. The kn profile has been obtained 

by deleting all spurious contributions from the * E ^  -*  1 £ Î ( t  —► t *) transition 

and is negligible at all energies compared to the kS contribution to the partial 

cross section. The kat  channel contribution shows evidence of the appearance 

of the 4ffg(<x*) valence virtual orbital just above threshold, and even at high en­
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ergies makes a significant contribution to the partial cross section. The partial 

cross section is dominated at all energies shown by the k5g component which 

bas a maximum just above threshold before decaying rapidly.

In figure 5.21 the modified static exchange partial cross section is shown, 

along with the experimental data, on a larger scale so as to permit more detailed 

comparison of the two sets of results. At energies greater than 17eV there is 

reasonable agreement between the two sets of results. However between 19.5 

and 23eV the experimental measurements are an almost constant 2mB greater 

than calculation. This has already been suggested to arise from coupling with 

the 2<t( channel.

Below 17eV photon energy the partial cross section displays its most inter­

esting structure, a deep minimum followed by a maximum. As the minimum is 

so deep compared with the partial cross section, whatever process is taking place 

must be of the same overall symmetry as the dSg channel, i.e. 2II,. Machado et 

al [29] have published the I t,  -» k6g pseudospectrum obtained on their calcula­

tions on acetylene. As their supplemental 6g basis is larger than that used here, 

resulting in 18 pseudostates instead of 14, it is expected that if the present basis 

is deficient rather different results would be produced by using these results in 

the Tchebycheff analysis. Figure 5.9 also shows the curve obtained using the kSg 

pseudospectrum of Machado et al together with the present kag pseudospectra
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in the Tchebycheff analysis. The two sets of results are virtually identical.

All results presented for this orbital were obtained using the 6 point Tcheby­

cheff procedure. Four and five fits have also been obtained, and while there are 

differences in detail they are in essential agreement with the six point results. 

Attempts to obtain higher order results have not been successful, resulting in 

a series of very rapid oscillations even at high energies. This is a result of an 

insufficient number of pseudostates. The maximum order fit that can be used in 

a given case depends on the number of pseudostates, and, in any case should be 

much less than half the number of pseudostates. In this case a 6 point fit is the 

highest order fit which gives converged results. However the imaging process is, 

in essence, a smoothing process, and especially at low order, tends to smooth 

away all detail.

While it seems unlikely that these features arise by direct photoionization 

the possibility cannot be dismissed. In this context it is interesting to note 

that the static exchange results, combined with the 6 point Tchebycheff imag­

ing procedure, which has proved of the greatest utility in similar investigations, 

represents an almost exact smoothing of the experimental results between 13 

and 17eV. That is, the area defined by the calculated curve and the experimen­

tal minimum is almost equal to that defined by the calculated curve and the 

experimental maximum.

217



Various attempts have been made to rational be the observed features in 

terms of autoionizations. Langhoff et al suggest two plausible candidates for the 

observed maximum, the 2(7. -» 1t, ( t*) transition at 15.54eV and the 2<7, —* 

4<7a(n/<7*) transition at 17.68eV [24|. Thu work has shown that the second of 

these u a spurious artifact of the basis set while leaving the a -* t* transition, 

with an oscillator strength of 0.792, directly under the observed maximum, and 

thu transition u of the correct symmetry to interact with the It,  -+ kag and 

It,  -* kSg channels. Thu suggestion has been repeated by Hayabhi at al 

[21] as an explanation of the increase in the photoionization efficiency in this 

energy range, and their calculations yielded an oscillator strength of 0.429 for 

the 2(7. -* I t,  excitation. Indeed this autoionization does give a very plausible 

explanation of the greater magnitude of the experimental results compared to 

the static exchange results in the 15.5 -17eV region. However, if thu explanation 

u used an explanation must be sought for the deep minimum.

Various reports [50,51] have appeared to suggest that the direct partial pho­

toionization of the I t.  orbital, without any autoionization effects, if such a 

quantity were considered physically meaningful, would have the magnitude of 

the experimental partial cross section at the deepest point of the minimum, and 

that 'he two maxima on either side of the minimum arise entirely from autoion­

ization effects. That thu is not the case b suggested by the static exchange 

cross section which closes the top of the minimum.
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K mie et al [33] have published the results of MSXa calculations for the 

*na ionization. These also show no minimum near 14eV and, contrary to the 

present results, are dominated by contributions from the It,  -* k tg channel 

near threshold.

More sophisticated techniques are required to elucidate whether the exper­

imental data can be understood in terms of the static exchange formulation, 

or whether improvements such as a one electron picture with relaxation are 

sufficient, or whether consideration of electron correlation will be required

5.7.5 Total Photoionization Cross Section

The calculated total photoionization cross section of C2H2 obtained by the 

direct summation of the partial cross sections is given in Figure 5.22 where it 

is compared with the experimental data of Unwin et al [32]. The calculated 

results are in general agreement with the experimental data except in the 13- 

17eV region where the previously discussed features in the (lT~1)A’2Ilm partial 

cross section contribute. The experimental measurements show a sharp peak 

corresponding to the opening of the (3aJi )A2L* channel in agreement with 

calculation, but only has a shoulder at the onset of the (2<r7l )fl2£ i  channel 

instead of a separate maximum as predicted in the static exchange results. 

At higher energies the experimental results fall away more rapidly than the
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theoretical results, a detail which can be partially accounted (or by the exclusion 

of the 2ffg channel from the experimental results while the channel is included 

in the computational results. As the calculation is of the static exchange type 

autoionization effects have not been considered. These would be expected to 

smooth the sudden peaks caused by the opening of a new channel, in particular 

the (2rT~* channel, and have already been postulated as an explanation

of the observed maximum at 15.5eV.

The experimental cross section measurements can be adequately understood 

on the basis of the static exchange results except in the energy range 14-17eV.

5.8 Conclusions

The partial cross sections of the outer and inner valence orbitals as well the total 

photoionization cross section of acetylene have been calculated and compared 

with the available experimental data General agreement has been found al­

though several problems remain. Shape resonances arising from a type virtual 

orbitals embedded in the continuum have been found in the calculated cross 

sections of all the a orbitals considered whereas the lx , partial cross section is 

dominated by the k8a channel at low energies. The calculated excitation ener­

gies have been in reasonable agreement with the available experimental values
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and the oscillator strengths similar to the results of other calculations.

The static exchange calculation of Langhoff et al has found strong intrava­

lence interlopers in the kir ,  excitation series of the 2tr% and l r s orbitals [24], and 

has suggested that the disagreement between theory and experiment in the case 

of the (2a~l )B 2E+ channel arises from spurious contributions from the 2<r, -* 

4o9 excitation to the 2<7. —» kag partial channel near threshold. The present cal­

culations, employing a more complete supplemental ot  basis show no evidence 

of this interloper which appears to be an effect of a more contracted ground 

state basis, (10s,5p/4s)/[3s,2p/2sj instead of (9s,5p,ld/4s,lp)/[5s,3p,ld/3s,lp|, 

and the smaller supplemental basis. However the calculated cross sections of 

the present calculations generally agree well with those of Langhoff et al [24,29], 

showing that once a reasonable supplemental basis set is employed the form 

of the resulting cross sections are fairly stable to increase in the basis set size, 

while the excitation series, which are important in the interpretation of these 

cross sections, are still very sensitive to basis set effects.

However, for the (2<7“ l ) 2E+ channel the resulting partial cross section has 

been found to be similar in magnitude to the results of Langhoff at al [24] 

structure has been found in the present calculations, not present in the smooth 

profile reported by Langhoff et al, which is supported by recent calculations

152].
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For the (2<7~l )f l2E* channel, a maximum in the theoretical results just 

above threshold attributed to the 4<rv(n/cr*) orbital has not been supported 

by the experimental results. These results show that previous suggestions that 

this excitation lies in the discrete spectral interval [24] are not tenable and it is 

instead suggested that the effects of vibrational motion may be very important 

in this channel. Here the results of Lynch et al [52] are ion close agreement 

with the various moment theory calculations of the partial photoionization cross 

section. However it should be noted that, while the results of Machado et al 

[24| show no minimum in the kxg contribution, the present results and those of 

Lynch et al are in agreement as to the form of this contribution.

The (3<r~l )A 2E+ partial channel results show a shape resonance just above 

threshold arising from the 3<r,(<r*) orbital, a conclusion confirmed by the ex* 

perimental measurements. The photoionization cross section profile of Lynch et 

al for this channel are similar to the various moment theory results.

The most interesting results are those for the ( lx " l )X 2II, channel. At high 

energies there is good agreement between theory and experiment, although a 

discrepancy of approximately 1.5Mb between 19 and 24eV suggests the possi­

bility of some channel coupling. Below 19eV the experimental results show a 

deep minimum followed by a maximum, whereas the calculated curve follows an 

average path through these two features. On the basis of the present calculated
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excitation series it is possible to assign the maximum to the autoionization 

the ( I t,  «- 2<7, )* i l ,  state. The results of Lynch et al are similar in form to the 

present results for ionization from this orbital , indicating that the static ex­

change method does not lead to the interesting double peaked structure shown 

in the experimental results [24]. The report of these workers [52] also calls 

into question the location of the It,  —* It * transition below the photoioniza­

tion threshold suggesting that if the normalization of the experimental results 

of Langhoff et al [24] is incorrect, then curves calculated with the It,  —» I t,  

transition present above threshold become as accurate as the current results 

are compared to the currently available data. While it is possible to assign the 

maximum at 15.5eV to autoionization effects none of the present computational 

results rationalise the sharp minimum at 13.5eV.

Nitrous Oxide Calculations

Nitrous oxide, N2O, is isoelectronic with carbon dioxide for which calculations 

of the partial channel photoionization cross sections have been reported [47]. 

Experimental studies of the total and partial channel photoionization cross sec­

tions of this molecule by (e,2e) spectroscopy [44] and by synchrotron radiation 

[59,60| suggest that it would be desirable to extend the series of theoretical 

studies of the photoionization processes of larger molecules. The measurements

223
JOHN RYLANDb 

UNIVERSITY 
LIBRARY OF



" 'V

of Carlson et al [60] extend to higher photon energy than those of Truesdale et 

al [59|, and so are plotted upon the various graphs of calculated partial channel 

cross sections presented below. Carlson et al [60] also report MSXa calculations 

of these cross sections , which show different features depending upon whether 

the ground state or transition state potential is used.

5.9 Theoretical and Computational Details

Within the Hartree-Fock approximation the ground state of nitrous oxide is [45) 

is

( l<r22<r23<x24<725<r26<72ljr47<r22*4 )A* 2+ (5.6)

The basis set employed was the (9s5p/5s3p) set of Dunnings [11|, supple­

mented with additional d functions of exponent 0.8 on the nitrogen atoms and 

0.97 on the oxygen atom. A Hartree-Fock wavefunction constructed using this 

basis set at the experimental equilibrium geometry (N-N length = 2.13 a.u., 

N-0 length =  2.2378 a.u., NNO angle = 180 degrees) [12], yields a molecular 

energy of -183.7214au compared with a Hartree-Fock limit of approximately 

183.7567au [45].

One-electron excitation and ionization of the outer valence electrons gives

224



many-electron eigenstates which can be written symbolically in the forms

(2» - ,H 1n,(2*-,fc»),E+(2!r -1jfci)ln

(i» - ,jkff)In,(i»-,jfc»)IE+,(u -1w)1n

,(6<T-lJt(T)1E+,(6<r-l*)r)1n

(5.7)

Within the static exchange and frozen core approximations these are the 

only states which have non-vanishing oscillator strengths from the,Y1E+ ground 

state of N2O.

Virtual orbitals, are constructed for each of the individual channels 

of equation 5.7 by solution of the one-electron equation previously described, 

using the supplementary basis set of Table 5.13. The coefficients a,/b, have 

been published by Orel et al [46] and Padial et al|47] for the case of a molecule 

belonging to point group Doo/i- The appropriate operators for a linear molecule 

without a centre of inversion (Coo,) maY be easily derived from these values 

and for reference are given in Table 5.12.

A qualitative description of the orbitals whose cross sections are under con­

sideration here will help clarify these photoionization cross sections. The 2x 

orbital is a non bonding orbital with little central atom character. It consists 

almost entirely of end atom p basis functions in an anti-bonding combination. 

The 7(7 orbital is N-N bonding and N-0 antibonding. It is composed of sp
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hybrids mainly localized on the terminal nitrogen atom. The l r  orbital is a 

bonding orbital extending over the entire molecule. Finally the 6er orbital is an 

anti bonding orbital extending over the entire molecule. The unoccupied virtual 

valence orbitals are the 37t(t*), 8cr(cr*), and 9<r(<r*) orbitals [53|.

It is helpful to interpret the pseudospectra in terms of transitions into com* 

pact intravalence states and more diffuse Rydberg states with a lower oscillator 

strength. The orbital is the lowest lying valence virtual orbital and so

it is anticipated that it will contribute mainly to the discrete excitation series, 

whereas the ia  and 9a are higher lying. Therefore a large number of resonance- 

like features arising from transitions into ka orbitals which lie in the continuum 

are expected to appear in the partial channel photoionization cross sections of 

N20 .

5.10 Theoretical Results

5.10.1 2x(n) Orbital (IP =  12.9eV) [56]

The 2v —» ka excitations of Table 5.14 form a weak Rydberg series which are in 

good accord with the experimental values [54] and defect estimates, except for 

the first members of the 2* -* nea and 2* -* npa series. However the calculated
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oscillator strengths of these transitions do not suggest contributions from the 

valence virtual a * orbitals. The quantum defects used have been obtained by 

fitting the experimental data so the exact agreement between experiment and 

defect estimates is hardly surprising.

The 2* —► ko  cross section (Fig. 5.23) commences with a broad maximum 

which may be due to the presence of the 8o  and 9<7(<r*) virtual orbitals in the 

continuum rather than in the discrete series. The profile is very similar to the 

big -* ko% profile of C 02 [47), though shifted to 2eV lower photon energy after 

allowing for the  difference in ionization energy.

The 2t -► kit excitation series (Table 5.14) are expected to contain a strong 

2j  -* 3jt(jt* ) or n -* r* transition. It is known from previous static exchange 

calculations that such strong intervalence transitions can spuriously perturb 

the photoabsorption and ionization spectrum, cf N2 [55], and C02 [47|. Several 

methods have been employed in the attempt to overcome this problem including 

altering the static exchange Hamiltonian so as to force the perturbing state to 

fall in the discrete region of the spectrum [55|, orthogonalizing the basis set 

to the intervalence state [55] and manual deletion of the pseudostates carrying 

spurious intensity from the Tchebycheff imaging process.

The uncorrected results of the calculation are shown in Figure 5.24. The 

2jt —► njr profile is curve B and the total 2t profile is curve A. It can be
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seen that the total profile is dominated by the 2x -> nx transitions at low 

energies leading to unphysical values of the total cross section at these energies. 

When the pseudostates carrying spurious intensity are deleted from the imaging 

process curve C results, also presented as in Figure 5.23, which is broadly similar 

to the lx -* nx , profile in COj [47].

The 2x —* k j  discrete excitation series of Table 5.14 form a Rydberg series 

perturbed by the 2x -* 3x transition whose intensity is distributed among 

several states some falling in the discrete region but most in the continuum. 

If all the intensity from this transition had appeared in the discrete region the 

expected 2x —► nx profile would be broad and flat extending to high energy, 

and this is indeed the result which is finally obtained. This profile is again very 

similar to the lx , -* nx, profile though the maximum is shifted to substantially 

lower photon energy. This may well be inaccurate but is a consequence of the 

rather crude method of dealing with the intervalence transition.

The 2x —► nb discrete excitations of Table 5.14 form a weak Rydberg series 

in close agreement with the quantum defect estimates though no experimental 

assignments are available at present. The corresponding 2x —► nS continuum 

of Figure 5.23 contains a strong maximum which is approximately 75% greater 

than the corresponding 1 x, —* n /5 , profile of CO2. This is presumably an effect 

owing to the removal of the centre of inversion. The maximum can be given a
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2p -* kd designation whereas in C 02 the 5, orbitals have a kf designation.

The three components of Figure 5.23 are combined in Figure 5.25 where 

the calculated vertical electronic (2ir~1)A2II partial channel cross section is 

compared with the available experimental results [44,60|. Evidently there is 

excellent quantitative agreement between theory and experiment at a!! energies. 

The maximum in the partial channel photoionization cross section from 18 to 

21eV arises from the 2jt —» nti channel.

MSXa calculations [60| do not agree as well with experiment below 45eV 

photon energy, as to  form or magnitude, as the present results. They do, how­

ever, display an initial maximum about two thirds as great as the experimental 

maximum.

5.10.2 7<t Orbital (IP = 16.4eV [56])

The la —♦ ka discrete excitations of Table 5.15 form a weak Rydberg series in 

reasonable agreement with experiment and quantum defect estimates, except 

for the first member of the ns<7 series. Except for this transition there is no 

evidence of the appearance of transitions to 8<t or 9a(a*) intervalence orbitals, 

so it is anticipated that these will fall above threshold, Figure 5.26, yielding an 

initial maximum in the la —* ka profile. This is indeed the case confirming
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the appearance of the 8a and 9a states in the continuum. This profile is very 

similar to the 3<r, -* kag profile in C 02 though the resonance is 75% greater 

and the profile decays much more rapidly.

The 7<r —► k t  discrete transitions (Table 5.15) form a weak Rydberg series 

which, except for the first few members, are in good accord with both defect 

estimates and experiment. These members are perturbed by the 7<r —* 3t 

intervalence transition which appears at 10.4eV. Thus no special procedures 

were required in order to obtain a meaningful la  -* k* profile. As expected 

from the presence of this intervalence transition in the discrete excitation series 

this profile is broad and flat to high energy. This profile is almost identical to 

the 3*7» -* k jg profile of C 02.

The two components of Figure 5.26 are combined in Figure 5.27 to yield 

the vertical electronic ( la -1 )A2E+ partial channel cross section which is com­

pared with (e,2e)[44| and synchrotron [60| measurements. The theoretical and 

experimental results agree very well above 30eV, but at lower photon energies 

the calculated profile follows the shape of the (e,2e) results while being up to 

30% less intense. A minimum in the synchrotron results at 25eV is not shown 

in either the (e,2e) results or the present calculations. MSXar calculations [60], 

however, placing the resonance in the ka contribution above 30eV,do predict a 

minimum, although overall agreement with experiment is not as good as in the
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present calculations.

5.10.3 Iff Orbital (IP =  18.22eV [50])

The Iff —> ko discrete excitations series of Table 5.16 is comprised of two weak 

series (iff, pa) and a stronger series (da). While the da series is in good accord 

with the defect estimates, the iff and pa series are somewhat perturbed. A 

strong transition at the commencement of the iff series suggests the appearance 

of the 8a  valencelike orbital in the discrete interval rather than in the continu­

ous area of the spectrum. The corresponding continuum profile in Figure 5.28 

is weak extending to high energy with a very weak maximum at 22eV which 

may be attributed to the appearance of the 9ff(ff*) orbital in the continuum. 

This maximum is approximately half as strong as the corresponding maximum 

appearing in the 2ff —* ka  profile where both the 8<r and 9a orbitals appear 

above threshold. The curve is slightly more intense than the Iff, —► kag in COj 

where a similar intensity ratio between the Iff, -* ka% and Iff, -» kirg curves 

is also observed.

The Iff —» kff discrete excitations (Table 5.16) are in reasonable accord with 

the defect estimates and there is no evidence of the appearance of the Iff -» 3ff 

intervalence transition in this series. The corresponding cross section, Fig 5.28, 

obtained without the use of any special techniques, also shows no sign of the
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presence of this transition unless the small maximum near threshold is attributed 

to it. However, in Figure 5.24 the presence of this transition in the 2» -» kr 

continuum results in an extremely large initial maximum of 70Mb, whereas 

the value of the maximum in this case is only 2Mb. Overall the cross section is 

negligible compared to the Is  -> kS sections in the range of energies considered. 

This is comparable to the case of CO2 where the l s a -* k t9 cross section is 

also negligible unlike the hrg -> k t% cross section. However no intervalence 

transition of the type *■—►»* is possible for the I s .  orbital as the I s ,  -* 2s ,  

transition is dipole forbidden owing to the higher symmetry of C 02.

The Is  —< kdb discrete excitations form a moderately strong Rydberg series 

in reasonable agreement with the defect estimates. The corresponding cross sec­

tion contribution, Fig. 5.28, displays a large initial maximum which dominates 

the partial cross section at all the energies under consideration, as is the case 

with C 02.

The three components of Figure 5.28 are combined in Figure 5.29 to yield the 

vertical electronic ( l s _1)fl2Il partial channel cross section which is compared 

with the available experimental data. While there is reasonable agreement be­

tween the theoretical and experimental values at high energies there is a very 

large discrepancy at low energies, where the calculation overestimates the partial 

channel cross section.
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There are two major sources of error in this calculations. Firstly, the sep­

arated channel approximation, which predicts a single photoelectron peak for 

each occupied orbital. In fact N20  has a very rich photoelectron spectrum, with 

many bands above 20eV ¡44,56,57']. Of particular relevance are the satellite peak 

at 19.5eV detected in the high resolution work of Potts and Williams [55], and 

the weak peak centered at 24eV. The first of these, in ‘.':e (e,2e) values quoted, 

is apparently included in the &r data, which may account for the small discrep­

ancy between theory and experiment at all energies in the 6tr partial channel 

cross section. The calculations of Domcke et al [58] have assigned these peaks 

to many electron transitions involving the lx orbital. In Figure 5.29, as well 

as the ( lx -1 )fl2II(e,2e) measurements the points corresponding|the sum of the 

(lx -1 )£ 2II intensity and the intensity of the 24eV satellite peak are plotted. 

As can be seen, the sum, except at the very lowest energies, is greater than the 

theoretical curve.

Secondly, the theoretical curve is the vertical partial channel cross section 

and the effects of vibration, in both the ground and final state, are ignored. This 

approximation may produce bad results for the lx  orbital as the photoelectron 

band arising from this orbital has the largest vibrational envelope. It has been 

shown in the case of N2 [37,38|, that averaging over various bond lengths, so 

allowing somewhat for the effects of vibration, instead of just using the ground 

state equilibrium bond length, can result in the removal of resonances while
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leaving the partial channel cross section unchanged at other energies.

The MSXa results [60] are the reverse of the current results, underestimating 

the cross section between 23 and 48 eV. When the ground state potential is used, 

instead of the transition state potential, a minimum is produced at 30 eV. While 

neither the present nor the MSXa calculations agree well with experiment the 

present results are definitely superior above 30 eV.

5.10.4 6<r Orbital (IP =  20.1eV [56])

The 6a -+ ko discrete excitation series of Table 5.17 form a weak Rydberg 

series in moderately good agreement with experiment and defect estimates, 

although the discrepancy between the defect estimate and the calculated value 

for the 6<7 —» 3ta  excitation is suggestive of some intravalence contribution. 

However , contributions from the valence virtual a orbitals are also expected 

above threshold so the corresponding cross section should have a large initial 

maximum owing to intervalence contributions above threshold. This is indeed 

the case (Figure 5.30), confirming the appearance of the 8a and ) orbitals 

in the continuum with this static exchange potential.

It is interesting to compare this profile with the corresponding 4ag —► kau 

profile in COj [47]. There the resonance, arising from the 4ag —► 4<t,  transition,
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is centered approximately 13eV above threshold, whereas in N20  the resonance 

occurs just above threshold. This shift arises from the removal of the centre 

of inversion in N20 . Here the 8a and 9<7 orbitals can have components of all 

angular momenta, whereas in C02, with respect to the centre of mass, the 

5<7g(<7*) contains s and d contributions, and the 4<rm(<r*) orbital contains p 

and f contributions. A particular orbital in C02 can only have transitions to 

one of the a* valence like virtual orbitals, whereas in N20  an electron in any 

orbital can be excited to either of the valence like 8a or 9a orbitals. Also, 

in C 02, there is a separation of approximately 15eV between the S r, orbital, 

which appears near threshold, and the 4a% orbital, which appears higher in the 

continuum. In N20  the 8a and 9<r orbitals occur close together, just above 

threshold. The result is that there is just one type of partial cross section 

profile possible for a type orbitals in N20 , an initial maximum at threshold, 

arising from a —► a* contributions, followed by a shoulder arising from increasing 

a  —► j* contributions, and then a monotonic decline. In C 02 two profiles are 

possible, the one described above for <r. type orbitals, and another, which is 

a maximum situated at about 15eV above threshold followed by a monotonic 

decline for at type orbitals.

The 6a —> lev discrete excitations (Table 5.17) form a weak Rydberg series 

perturbed by an intervalence transition, and so in only moderate agreement with 

experiment and defect estimates. This interloper is assigned to the 6a -* 3>r
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transition and the resulting 6a -* kv continuum profile (Figure 5.30) is broad 

and weak, dominating the total cross section at high energy.

The two components of Figure 5.30 are combined in Figure 5.31 to yield 

the vertical (6<7-1 )C2!C+ partial channel cross section which is compared with 

(e,2e) [44] and synchrotron [60j measurements. Good agreement is obtained 

with the calculated curve. At lower photon energies the calculated curve almost 

exactly divides the two sets of experimental measurements.

MSXa calculations [60] place the resonance in the Vo contribution, resulting 

in a sharp peak in this contribution, at 35eV. This results in two minima, near 

28 and 38eV photon energy. Below 55eV photon energy the MSXa results 

are always less than the experimental results. Thus the present results are 

considerably superior to the MSXa results.

5.10.5 Total Cross Section

The total photoionization cross section, obtained by summation of the partial 

cross sections, is displayed in Figure 5.32, where it is compared with the (e,2e) 

[44] measurements. While the theoretical curve is in qualitative agreement with 

the experimental measurements, there are substantial numerical discrepancies. 

At energies greater than 26eV the calculated values are smaller than the mea­
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sured values. Potts and Williams [57] have assigned the 5a and 4a  IP’s values 

of 33.7 and 37.3eV respectively. As the calculations reported here are only con­

cerned with the outer valence (&r, lx, 7a, 2 k )  orbitals, it is expected that the 

sum of these partial cross sections, if exactly calculated, would fall below the 

actual value of the total cross section to the high energy side of 33eV.

Nitrous oxide has an extremely rich spectrum with a series of bands running 

almost continuously from 23 to 41eV [56]. The calculations of Domcke at al [56) 

reveal that several satellite peaks, involving the 4<7 and 5a orbitals, occur to 

the low energy side of the main 5<r band. The band centred at 28.7eV has been 

assigned to transitions involving the 4<7 and 5<r orbitals and so the underestimate 

of the total cross section between 26 and 33eV may be understood as originating 

partially in the neglect of the inner valence orbitals in the calculation. There 

is another satellite peak centered at 24eV, of which the main component arises 

from the h  orbital [58]. At the energy range in question the calculated lx cross 

section is less than the experimental value for the B2 IT state plus the intensity 

of the 24eV transition. Thus the neglect of the effect of the 4<r and 5a  orbitals 

combine with the underestimate of the lx  cross section to give an underestimate 

of the total cross section in the region 26 to 33eV.

It is evident from the graphs of the partial cross sections that the over­

estimate of the total cross section between 20 and 26eV originates with the
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calculated In cross section, which, below 26eV very substantially overestimates 

the partial cross section. In this energy range all the other orbitals under consid­

eration have calculated partial cross sections which are in very close agreement 

with experiment or slight underestimates. This results in a slight diminishment 

of the overestimate of the total cross section.

Overall the total cross section has a very simple structure. The calculation 

shows a rise to a maximum, arising from the superposition of the maxima of the 

various channels, followed by a monotonic decline where the declining tails of the 

various channels overlap. The experimental results do not extend to low enough 

energy to confirm the existence of an initial maximum. A shoulder experimental 

results, owing to the increased contributions of the various satellite peaks, is an 

effect which is not reflected in the theoretical results.

In these calculations the effects of autoionization from a discrete excitation 

series to an underlying continuum have been ignored. From the good agreement 

between the various calculated partial channel cross sections and experiment this 

does not seem to be a serious deficiency in these calculations.

MSXa calculations [60] upon this molecule have once again demonstrated 

the superior accuracy of the Stieltjes Tchebycheff moment imaging technique 

for calculating partial channel photoionization cross sections.
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5.11 Conclusions

The Stieltjes Tchebycheff moment imaging technique, using the static exchange 

and frozen core approximations, permits the calculation of photoionization cross 

sections using conventional molecular orbital techniques. Thu means that it is 

possible to account for various prominent features in the partial cross sections in 

terms of contributions from valence virtual orbitals. In particular various reso­

nances may be attributed to intervalence transitions, which lie in the continuum 

instead of the discrete spectral interval. Close agreement has generally been ob­

tained between the theoretical partial channel cross sections and experimental 

result. The calculations reported here have demonstrated that the use of a large 

and flexible supplementary basis set, as well as a good ground state basis set, 

is of the greatest importance. In the case of C2H2 such basis set deficiencies 

let to the location of spurious intravalence transitions [24,29], which influenced 

the interpretation of the experimental results. Even when such dramatic results 

have not ensued, the values of the calculated cross sections have been affected 

by such deficiencies. Thus the computation«.! cost of providing adequate basis 

sets would appear to be a major factor hindering the wider use of this technique.

The MSXa  method has been widely used to calculate photoionization cross 

sections. While permitting interpretation of the experimental results, MSXor 

calculations generally are not in as close agreement with experimental mea-
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surements as the moment imaging results. Such results are often very different 

in form to the experimental or moment theory partial channel photoionization 

cross sections.

While remaining useful in the exploration of the photoelectron dynamics 

of small molecules, it is, at present, difficult to forsee an extension of static 

exchange Stieltjes Tchebycheff moment imaging calculations, as reported in this 

thesis, to large molecules, as a result of the approximations employed.

Both the frozen core approximation, and the neglect of electron correlation 

effects, in the transition metal dihalide calculations reported in chapter 2,led 

to incorrect assignments of the photoelectron spectrum. It seems unlikely that 

these approximations could fail to introduce sufficient uncertainty into the calcu­

lated photoionization cross sections of large molecules, as to render assignments, 

based upon arguments arising from the detailed values of the calculated cross 

sections, dubious.
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Table 5.1

Supplemental Gaussian basis functions used in H20  static-
exchange calculations.

Location Type Number Exponent Range“

1f 5 7 1.6 -  0.00625
Oxygen \

1 P 6 1.6 -  0.0125
\l d 5 0.2 -  0.0125

Hydrogen |
6 1.6 -  0.0125

[ p 6 0.4 -  0.0125

a) A geometric series variation was employed in the indicated range, but no
exponent present in the ground state basis set is duplicated.

247



Table 5.1

Supplemental Gaussian basis functions used in H20  static-
exchange calculations.

Location Type Number Exponent Range4
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If s 6 1.6 -  0.0125

Hydrogen <
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exponent present in the ground state basis set is duplicated.



Table 5.2

Calculated lb t Excitation Spectrum in H20

IP = 12.61eV [14]
Calculated Values Quantum De- Experimental Values[3| Assignments

u(eV) fi
fect Estimates(25]

u ('V ) ti(eV)

Ibi -► nsai
7.44 0.02200 7.30 7.44/strong Ibi -* 3sai
10.60 0.00027 10.60 10.64/weak Ibi -► 4sai
11.65 0.00074 11.56 Ibi -* 5sai
12.32
12.52

0.00854
0.00096

lbj -* npai
9.95 0.00528 10.04 10.00 Ibi -* 3pai
11.41 0.00216 11.36 11.37 Ibi ~* 4pai
12.10 0.00954 11.87 11.89 Ibi —* 5pai

11.04 0.00521 11.10 10.99 lb, — 3dai
11.16 0.00489 11.12 3d ai

11.90 0.00012 11.76 11.73 Ibi -» 4dai
11.98 0.00143

Ibi -* npbi
10.16 0.00073 10.04 10.17 Ibi —* 3pbi

11.61 0.00072 11.36 11.43 Ibi — 4pbi

12.34 0.00964

Ibi -* ndbi
11.14 0.00390 11.10 11.06 Ibi 3dbi

11.98 0.00023 11.76 11.77 Ibi —► 4dbi

Ibi -► ndaì 
11.08 0.00546 11.10 11.06 Ibi -► 3da2

11.91 0.00009 11.76 Ibi —» 4da2

12.21 0.01463
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Table 5.3

Calculated 3at Excitation Spectrum in H20
IP =  14.73«V [14]

Calculated Values Defect Estimates[25] Experimental Values[3|

e,(eV) U M«v) MeV)

3a, -* nsa,
10.00 0.08603 9.42 9.85/0.09
12.82 0.01244 12.72 12.90/weak
13.79
14.43

0.00538
0.01048

13.68 14.2 /weak

3a, -» npa,
12.25 0.00018 12.16
13.66 0.00116 13.48
14.23 0.00359 13.99

3a, —* nda,
13.16
13.27

0.00951
0.00191

13.22

14.01
14.21

0.00035
0.00359

13.88

3a, -* npb.
12.12 0.00160 12.16
13.62
14.44

0.00103
0.01134

13.48

3a, -» ndb.
13.27 0.00463 13.22
14.10 0.00018 13.88

3ai —► npb?
11.52 0.03101 12.16 12.5/medium
13.36 0.00523 13.48 13.5/strong
14.03
14.63

0.02275
0.02652

13.99

3a, —» ndb2
13.08 0.02985 13.22
14.00 0.00026 13.88
14.17 0.00075 14.19

Assignments

3a, -* 3sai 
— 4sai 
—» 5sa,

3 ai -*  3pai
— 4pa,
— Spa,

3 a , —* 3da, 

-»  4da,

3a, -» 3pb4, 
— 4pb,

3a, —> 3db, 
-* 4db,

3a, —► 3pb2 
— 4pb2 
-* 5pb2

3a, -  3db2 
—* 4db2 
—* 5db2



Table 5.4

Calculated lb 2 Excitation Spectrum in H20

IP = 18.55eV [14]
Calculated Values Defect Estimates[25| Experimental Values[3] Assignments

*<(eV) f, « W )

11̂  —* nsa.
13.45 0.17112 13.24 13.8/strong lb 2 —* 3 î ®i (4o i )
16.57 0.04559 16.54 16.9/medium 4sai
17.61 0.03090 5sat
18.30 0.00104 6sai
18.47 0.01443

lb 2 -» Dpai
lb 2 -* 3pai15.97 0.01089 15.98

17.38 0.00084 17.30 4pa,
18.05 0.01728

lbî —» ndai
l b 2 —♦ 3doi16.96 0.01125 17.04

17.11 0.00000
4dai17.84 0.00091 17.70

18.01 0.00549

lb 2 — ndao
l b 2 —► 3 da217.01 0.00908 17.04

17.84 0.00011 17.70 4daj

18.13 0.01803

l b j  —► npbo
15.78 0.01250 15.98 l b 2 —» 3 p ij

17.34 0.00726 17.30 4pb2
5 p b 217.89 0.02290 17.81

18.01 0.00155

l b 2 —► nd b 2
16.95 0.02347 17.04 l b 2 —► 3dbj 

4db2
17.82 0.00004 17.70
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Table 5.5

Calculated 2ai Excitation Spectrum in H20

IP =  32.3eV 2A x (14]
Calculated Values Defect Estimates[25| Assignments

{ i(eV) U £i(eV)

2a! -* usai
27.52 0.00523 26.89 2at -» 3soi
30.29 0.00125 30.19 2ai —► 4soi
31.28 0.00021 31.15 2ai -*5soi
31.91 0.00020 31.56 2at -* 6«ai
32.18 0.00239

2at -* npai
29.58 0.00179 29.63 2a! -* 3poi
31.01 0.00131 30.95 2ai — 4pai
31.66 0.00006 31.46 2ai -* 5poi

2ai -* ndai
30.59 0.00052 30.69 2ai -* 3d«i
30.73 0.00008
31.48 0.00004 31.35 2at -* 4dai
31.64 0.00054

2ai -* upbi
29.51 0.00222 29.63 2ai -* 3p6i
31.05 0.00145 30.95 2ai — 4p6t
31.93 0.00026 31.46 2ai -» 5p6i

2a( —* ndbi
30.76 0.00019 30.69 2ai -* 3dbt
31.54 0.00018 31.35 2ai -> 4d6i

2ai -* npb2
28.35 0.00696 29.63 2ai -* 3pi2
30.79 0.00174 30.95 2ai —* 4pi2
31.47 0.00000 31.46 2ai -* 5 pi2
31.98 0.00233 31.71 2ai -* 6p62

2ai -* ndb2
30.46 0.00125 30.69 2ai -» 3dbj
31.44 0.00038 31.35 2ai —* 4dbi
31.64 0.00023 31.66 2ai —* 5di2
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Table 5.6

Supplemental Gaussian basis furnctions used in C2H2
S ta tic  E xchange C a lc u la tio n s

Location Type Number Exponent Range

Carbon Atoms s 2 0.89 — 0.28
P 2 0.64 — 0.21
d 3 0.44 — 0.14

Hydrogen Atoms s 1 ().34
P 2 0.22 — 0.12
d 3 0.44 — 0.14

Centre of mass s 7 0.085 -0.0025
P 7 0.064 -  0.0018
d 7 0.076 -0.0023

Table 5.7
Static-exchange potentials and multiplicity factors in C2H2

2 o 9

I t J  —» kog 1/1
l * ï  — kv] 1/1
î*; -  u ; 1/1
3o9 —  ko. 1/1
3<7g  -* k * l 1/1
2o, - *  kog 1/1
2o, — kv] 1/1
2ag - *  ko. 0 .5 /  -  1
2og — kill 0 .5/  -  1

2f f . 3* a

1/1 1/1
1/1 1/1
1/1 1/1
1/1 0 .5/  -  1

1/1 0 .5/  -  1
0.5/  -  1 1/1
0.5/  -  1 1/1

1/1 1/1
1/1 1/1

I jtJ l » î M r

0.75/0 0.75/0 4
1.25/ -  3 1.25/5 4
0.75/1 0.75/1 8

1/1 1/1 2
1/1 1/1 4

1/1 1/1 2
1/1 1/1 4

1/1 1/1 2

1/1 1/1 4
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Table 5.8

2af Static Exchange Excitation Spectrum in C2H2

(IP= 23.65eV 2E+)

Present Results Assignments DefectEstimates[25]
e,(eV) ii e,(eV)

(2<7g- , ) , E+ - (np<rm) 1EJ" 6 =  0.7
21.10 0.00075 2a g — 3pa% 21.08
22.43 0.00004 2a 9 — 4p<7, 22.40
22.93 0.0 2a g —■ 5pa, 22.91
23.32 0.00002

(n p r .)  *11, 5 =0.7
21.32 0.00107 2ag -* 3px. 21.08
22.50 0.00054 2ag — 4px, 22.40
22.96 0.00028 2ag -* 5p*. 22.91
23.26 0.00038 2ag —» 6pT, 23.17
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Table 5.9
2ctu Static Exchange Excitation Spectrum in C:H

(IP =  18.75eV )

PretentResults Ateignmentt DefectEstimates[2&\
i,(eV) /. u [ * v )

-  ( n w r ^ E f 8 =0.95
15.81 0.00691 2c% —  3*<7g 15.51
17.40 0.00355 2a% — \»Og 17.29
1797 0.001"2 —  5ta g 17.92
18.44 0.00195

8 =  0.50
16.91 0.06865 2a% — 3do g 16.57
17.77 0.02542 2<7m — 4 da g 17.64
18.15 0.01412 2ff, — 5 dO g 18.08
18.53 0.02518

( 2 0 ‘EJ — (nd*g) ' l l . 8 =  0.06
15.67 0.79206 2a % -  lxtf(T*)
17.45 0.04191 2-7, — 3dig 17.18
18.00 0.01281 2 — 4 dr g 17.87
18.30 0.00958 — 5dtg 18.19
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Table 5.10

3a ,  Static Exchange Excitation Spectrum in C2H2.

(IP =  10.75eV A 2E+ )

Present Results Defect Estimates\25) Experimental fleiui<s[4l) Assignments

U('V) Si U(eV) ti(eV)

(3 (njxr,)1^ S =  0.7
-/0.1623 3fft  -* 3p<r.14.06 0.177017 14.18

15.49 0.069311 15.50 15.3/0.0514 3<t 9 — 4p<r,
16.01 0.036342 16.01 3(7, -* 5p(7.
16.31 0.040345 16.27 3(7, -* 6p(7,

14.52
(npfrml'n,

0.023214
5 =0 .7  

14.18 (14.35)14.12/0.0104 3(7, -* 3pj.
15.63 0.008885 15.50 (15.28) 15.28/0.0030 3(7, -* 4pjr,
16.07 0.004307 16.01 15.74 3(7, -* 5pir„

16.38 0.005764 16.27 16.0 3(7, -> 6p?r.
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Table 5.11
l 7r„ Excitation Spectrum in C2H2 (IP =  11.43eV X‘I1U)

Present Results Experimental Reiu/ii(41| Assignments
(i{eV) fi u(eV)

( l» - l )l E+ — (nMr,)an .
8.34 0.19226
10.04 0.03256
10.64 0.01343
11.08 0.04266
11.20 0.00243

(ndff,)1!!.
9.60 0.11298
10.45 0.03784
10.83 0.01588

(ndjra)l E i
9.84 0.14250
10.54 0.07482
10.88 0.05057
11.26 0.11047

(I»"1) 1*#  -* (n d i,)1!!»
9.94 0.11806
10.58 0.06685
10.90 0.04872
11.30 0.10945

8.16 Iff« “* 3«7,
9.93 It.  -* 4sat
10.57 It,  -* S sO g

10.87 It,  - » 6sog

9.24 It,  -► 3d o t

10.31 It,  -* I d a ,

10.74 It,  -* b i o .

9.27 It,  - » U r t g

10.32 It,  — M u ,

10.75 It,  -► b d n .

10.96

9.98 It, - 3  d i g

10.59 It, - .4  d b g

10.88 It, ~ b d b g

11.06

Defect £iii'mofej[25| 
u(eV)

6  = 0.95 
8.19 
9.97 
10.60 
10.90

S = 0.50 
9.25 
10.32 
10.76

6 = 0.06 
9.86 
10.55 
10.87

6 =  0.0 
9.92 
10.58 
10.89
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Table 5.12

Static-Exchange Potentials and Multiplicity Factors in
N20°’a

r 6ff I s , Iffy 7ff 2 s , 2Sy Mr
6ff -» ko 1 / - 1 1/1 1/1 1/1 1/1 1/1 2
6<r —» kwj 1 / - 1 1/1 1/1 1/1 1/1 1/1 4

I t ,  -<■ ko 1/1 0.75/0 0.75/0 1/1 1/1 1/1 4
1», -* kvj 1/1 0.25/ -  3 1.25/5 1/1 1/1 1/1 4
IS , ^  k b ¡¡y 1/1 0.75/ -  1 0.75/3 1/1 1/1 1/1 8
7 <r —» ko 1/1 1/1 1/1 1 / - 1 1/1 1/1 2
7ff —» ktt 1/1 1/1 1/1 1 / - 1 1/1 1/1 4

2 s , —* ko 1/1 1/1 1/1 1/1 0.75/0 0.75/0 4
2 s ,  -*  fcs, 1/1 1/1 1/1 1/1 0.25/ -  3 1.25/5 4
2 s ,  -»  k b j g 1/1 1/1 1/1 1/1 0.75/ -  1 0.75/3 8

a) values of the coefficients a{ \b f  in eqn.(5.5) b) T he Iff -  5ff orbitals remain 
doubly occupied here o£=  b£= 1

Table 5.13
Supplemental Gausian basis functions used in N20
Static Exchange Calculations

Location Type Number Exponent Range1
Terminal s 2 0.39 — 0.12
Nitrogen P 2 0.30 — 0.09

d 3 0.45 — 0.14
C entral s 10 0.39 — 0.001

Nitrogen P 9 0.30 — 0.0016
d 10 0.45 — 0.0024

Oxygen s 3 0.53 — 0.09
P 2 0.4 — 0.12
d 3 0.54 — 0.17

a) A geometric Series variation is employed in the indicated ranges, but no 
oxponents already present in the ground s ta te  basis set is duplicated.
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Table 5.14

2?r Excitation Spectrum in NjO (IP = 12.9eV)
Present Results Experimental Results[54j Defect Estima

ti i 'V ) fi «i(«v ) e,(eV)

(2x) *E+ -* («««t)1 n
8.73 0.00440 9.50/strong 9.49
11.43 0.00002 11.38 11.38
12.06 0.00001 12.05 12.05
12.38 0.00001 12.36
12.79 0.00001

(2t)»E+ - (nfw)*n
10.70 0.02596 10.37
11.80 0.01061 11.66
12.23 0.00529 12.17
12.47 0.00009 12.41

(2t )*E+ - (n<fcr)l n
11.03 0.00209 10.97/weak 10.97
11.87 0.00117 11.88 11.88
12.25 0.00077 12.27
12.49 0.00660 12.48

(2*)1E + - (npx)‘ E+
10.25 0.13554 10.54/strong 10.69
11.63 0.05578 11.77 11.78
12.15 0.02801 12.23 12.22
12.42 0.02057 12.45
12.83 0.06644

(2x)‘E+ - (ndx)1E+
11.47 0.00232 11.28/strong 11.28
12.09 0.00155 12.01
12.41 0.00314 12.33

(2x)‘E+ - (ndi)1!!
11.34 0.00237 11.39
12.02 0.00128 12.05

12.34 0.00092 12.36

12.76 0.00204 12.52

90HN *rnjw°:
• imiWi . : IT Y
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Table 5.15

"y  Excitation Spectrum  in N ; 0  (IP = 16.4eV)

Present Results Experiment*! Results 54' Defect Estimates 54
€.I«V| 1. M*V) e.leV)

i *
12.41 0.06193 1237/strong 13,00
15.CC 0.02078 14.89 14.89
15.60 0.01201 15.53 15.55
15.89 0.00997 15.86
16.03 0.00224 1602
16.30 0.02678 

|7ir); E* -
13,93 0.00189 13.90/roedium 13.89
15.19 0.00000 15.16 15.17
15.67 0.00004 15.71 15.67
15.96 0.00340 15.92

(7<r|1E+ -  (rxdc)l Z+
14.72 0.01977 14.62/weak 14.64
15.47 0.00983 15.44 15.45
15.81 0.00511 15.80 15.80

(7<y)1E* -  (np»)111
10.38 0.14842
13.76 0.00466 14.02/medium 14.02
15.12 0.00304 15.16 1522
15.64 0.00159 15.71 15.69
15.92 0.00010 15.93
16.31 0.00563 

(7<r)*E+ -  (nd»)1!!
15.01 0.00258 14.84/strong 14 84
15.59 0.00136 15.53 15.52
15.90 0.00223 15.84
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Table 5.16

l7r Excitation Spectrum in N20  (IP =  18.22eV)
Present Results Defect Estimates[54|

M«v) U M«v)

(br)‘E+ -  (niff)1!!
13.95 0.29598 14.82
16.77 0.00032 16.71
17.39 0.00002 17.37
17.71 0.00006 17.68
18.08 0.00016 

(l* )1E + -.(n p ff)1n
16.07 0.00102 15.69
17.14 0.00085 16.99
17.57 0.00071 17.49
17.81 0.00327 17.72

(U )‘E+ -  (miff)1!!
16.35 0.05538 16.34
17.20 0.01439 17.22
17.59 0.00464 17.60
17.84 0.00025 17.80

(lff)1E+ —► (npir)1E+
15.77 0.00025 15.90
17.04 0.00018 17.06
17.52 0.00015 17.52
17.79 0.00015 17.76
18.17 0.00933

(ljr)1E + - * H ir)1E+
16.79 0.00104 16.65
17.42 0.00087 17.34
17.73 0.00118 17.66

(ljr)‘E+ -  (mfS)1!!
16.61 0.08816 16.71
17.33 0.04682 17.37
17.67 0.03142 17.68
18.06 0.06572
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Table 5.17

6o Excitation Spectrum in N20  (IP = 20.10eV)
Present Results Experimental Results(54) Defect Estimates[54|

MeV) U ii(eV) i t (eV)

-
15.89 0.06132 16.68
18.70 0.00889 18.57
19.30 0.00494 19.23
19.61 0.00434 19.54
20.03 0.01321

(6<r)l E+ - (np<T)l E+
17.83 0.00123 17.56/weak 17.55
18.98 0.00004 18.87 18.85
19.43 0.0000 19.38 19.35
19.70 0.00370 19.60

(6<r)1E+ - (nda)1 E+
18.30 0.01842 18.27/medium 18.20
19.12 0.00900 19.11 19.08
19.49 0.00481 19.49 19.46
19.72 0.00067 19.66

(6<7)1E+ - (npw)1 n
15.45 0.40029
17.56 0.00001 17.72/weak 17.76
18.87 0.00031 18.96 18.92
19.37 0.00022 19.42 19.38
19.65 0.00001 19.62
20.04 0.00336

M » E + - (ntisr j1 n
18.5118.70 0.00597 18.55/strong

19.30 0.00250 19.25 19.20
19.61 0.00209 19.56 19.52
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Fig- 5.2

C a lcu la ted  ( I6¡"1 H i  pi
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Fig. 5.3
h a n n e lp h o to io n iw ttio n  cross

C alcu la ted  co n trib u tio n s
section  o! H 20 .

to the 13-7* ) * *  Partia"



Fig. 5.4

C alcu la ted  (3 a ~ ‘ )2.4 | p a rtia l chaonel photo ion ization  cross section of H 20 .

data from Ref. 1 ■

data from Ref. 2 » 

data from Ref. 4 Q
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F i g  5 . 6

C alcu la ted  (16^ ' ) 2U¿ p a r t ia l  channel p lio tu ionizalion  cross se ctio n  oí 11 - < »
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Fig. 5.

C a lc u la t e d  p s e u o s p e c tra , 9  a n d  6  p o in t  fits to  th e  ( a o r * ) 2 / » , p a r ia l 
p h o to io o iz a t io n  cro ss  s e ctio n  o f  H 2Q .  '  '  P c h a n n e l
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Fig. 5.13

Calculated contributions to the (2cr~‘ )2E + partial channel photoionization cross
section of C 2 H
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\ C a lc u la t e d  (2 <t - , ) 2 I : +  p a r t ia l  c h a n n e l p h o to io n ir -a t io n  cro ss  s e c tio n  in  C 2H 2 .
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F ig . 5.15

C a lcu la ted  co n tr ib u tio n  to  th e  photoion ¡ra tion  cross section of
(^2^2-



Fig. 5.16



Fig. 5.17

C a lc u la t e d  c o n t r ib u t io n  t o  th e  ( 3 < 7 - ' M * E +  p a r t ia l  c h a n n e l p h o to io n iz a t io n  

c ro ss  s e c tio n  in  C 2 H 2 -
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Calculated (íVr  ̂ ).4 Î.J p a r tia l < liaiiiiH |»liotoioiii/.ation cross ho tim i in < \ , | | ? 

d a ta  for lief 24 o
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Fig. 5.19
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Fig. 5.20

Calculated contribution to  the (ljr~ * )X 2n« partial channel photoionization
cross section of C 2H2 .
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F ig .  5 .2 1  C a lc u la t e d  6  p o in t  l i r « ' ) . Y 2 n .  p a r t ia l  c h a n n e l p h o to io n ir .a t io n  cross 
s e c tio n  in  C 2 H 2 .

d a ta  from  Ref. 24 à



Fig. 5.22
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F ir 5.23

C alculated contributions to the ( 2 » - * ) ^ ^  partial channel photoionir.ation
cross section in N jO .
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Fig. 5.26

Calculated contributions to  the partial channel photoioniration cross section for
ionization from the 7o o rbital of N2O.
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Fig. 5.27

Calculated partial channel photoionization cross section for ionization from the
7a o rbital of N20 .
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Fig. 5.28

C alcu la ted  co n tr ib u tio n s  to  th e  p a rtia l channel p ho to ion iza tion  cross section for 
ion ization  from  th e  lir o rb ita l of N20 .
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Fig. 5.29

Calculated partial channel photoionization cross section for ionization from the
lir orbital of N2O.
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Fig. 5.31

C a lc u la te d  p a r tia l channel cross section for ion isation  from  th e  (Vr o rb ita l of

n 2 o .

d a ta  from  Ref.44 
d a ta  from  R ef.60 f
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Fig. 5.32

Calculated total photoionization cross section of NzO.

d a ta  from  Ref.44 o
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