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SUIMMARY

E—————pa——

The method of characteristics is used to‘solve the
flow of a relaxing gas about a wedge of small angle. The
results are presented in a concise similarity form that
permits accurate extrapolation. A comparison is made
with experimentally observed flows in CO2 and N2O. The
aVaiiable analytic techniqueé, valid for very weak wave
flows, are described and a comparison between the method
of charaéteristics and the method of matched expansioné

is presented.
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NOTATION

The use of subscripts and superscripts

The subscript °© will be used to denote a freestreem variable.
The subscripts f and e will be used to denote variables in the frozen
and equilibrium states respectively.

The subscript & will be used to denote quantities relating to the
alpha-shock and the alpha~gas.

The subscript o will be used to denote quantities at the wedge tip,

immediately downstream of the alpha-shock.

The subscript w will be used to denote specific quantities on the
wedge surface and the subscript { will refer -to quantities as
predicted by the linear theory presented in section (l), Chapter 5.

In Chapter 5, section (4) the subscript ch will be used to denote

variables on a negative characteristic.

Quantities with combinationsof these subscripts have obvious meanings.
For instance, ™m¢,, denotes the frozen freestream Mach number.

The subscript e when not used in combination with the ¢ subscript
will refer to the equilibrium state downstream of the shock wave at
infinity.

The superscript * will be used to denote a critical quantity (defined
in section (4), Chapter 1).

_ Subscripted quantities with special meanings are defined in the following

list of notation

{’ pressure

R density

T alpha-gas temperature

Tos ‘vibrational temperature

Te characteristic temperature of vibration
a sound speed

v velocity magnitude

: %, % components of velocity

3: Xn, ¥n components of velocity

m Mach number '

Mro component of Mach number normal to shock wave at

infinity
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Notation (contd.)

vibrational energy

value of the equilitrium vibrational energy
at temperature T.

maximum value of QE-cﬁ on a positive characteristic.

" maximum value of (F-«) in the shock wave at infinity.

value of<§?~°§ immediately downstream of the alpha-
shock in a partly dispersed shock wave at infinity

real gas entropy

alpha-gas entropy

relaxation frequency per unit density.

relaxation frequency per unit density at the
characteristic temperature of vibration.

gas constant per unit mass of gas
specific heat at constant pressure of the alpha-gas
specific heat at constant volume of the alpha-gas.

vibrational specific heat

Cha
Cvd

(Céa. <+ Cwy b\
(v + cub)

Prandtl-Meyer funcfion

flow deflection relative to 'y = 0
wedge angle

shock angle relative to y = o
velocity potential

Mach angle .
shock curvature at wedge tip
fringe shift

fringe spacing

source light wavelength

width of shock tube working section
Gladstone~Dale constant

(Cpar cuvib)
eV,
g\%:_}% (Chagler 5 )
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Notation (contd.)

far-field shock wave development distance
shock wave develépment distance

far-field alpha-shock decay distance
relaxatibn distance on wedge surface

rectangular Cartesian coordinates.

rectangular coordinates with x, measured
normal to the shock wave at infinity

"
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X, ¥y coordinates on a:flow fringe
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INTRODUCTION

The assumption of Classical Gasdynamics,‘that the variations of
fluid properties can be described by a set of equations derived considering
the fluid to be everywhere in instantaneous equilibrium, is only Jjustified
when the chgracteristic times for the adjustment of the molécular energy
states are very much smaller than the time taken by the fluid to encounter
significant changes in its environment. When this equilibrium assumption

'is not true the full hon-equilibrium processes occurring must be studied.

We shall consider a gas consisting of molecules with energy ¢ontri-
butions from their translational, rotational'and'vibrationai motions and
shall neglect any effects due to dissociation, electronic excitation, etc.
In particular we shall be concerned only with vibrational non-equilibrium
(which leads to ‘vibrational relaxation) and shall treat the rotational and
translational modes as if they are everywhere in mutual thermodynamic
equilibrium. The justification for this'step'lies in the fact that the
latter two modes require relatively few collisions to attain eéuilibrium
so that any non—equilibriuﬁ is exhibited only in flows with a correspond-
ingly small characteristic time. This is equivalent to saying that non-
equilibrium phenomena in the translational and rotational modes need only
be considered in regions of high gradients, for instance in the viscous
interior of shock waves. ‘These regions are necessarily thin in comparison
with the vibrational relaxation zones in which we are interested and can be
treated as discontinuities in the flow. To the same approximation, we can
assume that the vibrational modes remain ¥frozent' through such discontinuities
which are then completely akin to shock waves in an ideal éas énd are deter-
mined by the 'frozen' shock relations with a specific heat ratio of 7/5‘(for

all diatomic and linear molecules).

-1 -



Intuitively, we expect all non-equilbirium flows to proceed towards
an equilibrium state; in particular, we can assign to the vibrational energy
an equilbirium value which is determined by the local translational and.
rotational temperature. The flow through the frozen shock wave therefore
creates a departure from equilibrium iﬁ the vibratioral eneréy which is the
initial 'driving force' for the flow in the relaxation region downstream of
the frozen shock. The rate'equation, which is the additional equation we
need when we introduce the enefgy in the vibrational mode as an extra variable,

determines the manner in which the non-equilibrium process proceeds.

Let us consider the one-~dimensional steady flow of a relaxing gas
through a shock wave (which includes both the frozen shock and the accompany-
ing relaxation region). The flow ahead of the shock wave is assumed to be
in equilibrium. Johannesen (1961) has shown how these flows may be treated
by interpreting the governing equations as those of ideal gas flow (with
constant specific heats) with heat subtraction equal to the rate at which
energy enters the vibrational modes. This allows one to define the artificial
but extremely useful alpha~gas which has all the ideal gas properties. With
this representation it is quite clear that the appearance of the initial
discontinuity or alpha-~shock is dictated solely by the frozen Mach number in
the undisturbed gas. If this Mach number is less than or equal to 1 then
there can be no alpha-shock so that all changes in the thermodynamic quantities
proceed smoothly towards an equilibrium state. Such shock waves are called
fully dispersed while those that include the initial discontinuity are called

partly dispersed. Since the minimum value of the &quilibrium Mach number is 1

(this value corresponds to no disturbance in the gés) fully dispersed waves
are possible for the frozen Mach number range 1 2 m.> Jrgg o Physically,

in this range, any convective effects, which tend to steepen the wave, can

be balanced solely by the diffusive mechanisms of the relaxation (see

Lighthill (1956)).
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Fully dispersed shock waves can be produced experimentally in the
shock tube and some of the early (though widely scattered) results were
obtained by Griffith and Kenny (1957). Since then much work of prédominantly

~academic interest has been done in determining the structure and appropriate
relaxation times forvthese waves but it is only recently thaf Hodgson énd
Johannesen (1971) have shown that shocks of the strengths expected in sonic

bangs are fully dispersed.

If we seek to generalize the results of the one-dimensional flow to

’ consider relaxing gas flows with shock waves in any multi-dimensional
phyéical coordinate space then we meet with considerable difficulty. For

the flows are eiceedingly cbmplicated when more than 3 space coordinates

are considered. For instance, if we wish to invéstigate a steady relaxing
gas flow over a three-dimensional body surface then it is by no means clear
what form the solution at large distances from the body will take without
first solving for the whole flow. If the body curvature is rapidly varying J
over a typical gés relaxation length and the body is of suitable dimensions
then the flow may never reach an equilibrium state. Indeed the confluence
of many elpha~shocks may dictate that the solution at large distances from
the body is not continuous. It is interesting to observe, however, that
despite the intricate nature of three-dimensional steady and unsteady super-
sonic non-equilibrium flows, the necessary numerical characteristics methods
for their solution are available (see Sauerwein (1966)) and await only the
advent of larger and faster computer systems to be put into practice. Two-
dimensional non-equilibrium flows are still difficult to deal With. In
particular, we can isolate from the whole class of possible flows 2 analogous
simple flows where the final wave motion is one-dimensional an@ under known
conditions is either fully dispersed or partly dispersed. That is, we can
consider the relaxing, steady gas motion of a supersonic stream over a wedge

surface of small angle or correspondingly, the‘one~dimensionai unsteady wave
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motion due to an impulsively started piston advancing into a gas at rest.

The analogies in the gas motion in the (x, y) and (k, t) planes are
well known (for instance, the piston path in the (x, t) plane ‘corresponds®
to the upper wedge surface in the (x, y) plane). The two flows are
governed by similar sets of partial differential equations but whereas the
unsteady flow equations are always hyperbolic, this is only true for the
steady flow when the gas velocity is locally supersonic. We can specify
the unsteady flow with 2 parameters namely the piston Mach number and )
vibrational specific heat; for the steady flpw we need both the wedge angle,
vibrational specific heat and the freestream Mach number. Nevertheless,
the basic features of the two flows are very similar and caq‘be understood
by regarding.the steady flow y coordinate as being 'time-likéi. In particular
very strong similarities exist in the very weak wave analyses for the two
flows (see Blythe (1969)). This will be our justification for referring to
analytic work on the unsteady problem when discussing the two-dimensional
steady flow analysis. The initial (small 'time') flow in both cases is
frozen, for large 'time' the resulting gas motion must be achievgd by
balancing non-linear convective steepening with the diffusive effects of
viscosity and relaxation. The shock wave here is therefore fully dispersed‘

‘or partly dispersed depending on whether the relaxation effects are

sufficient in themselves to counteract any steepening.

We shall consider two-dimensional steady supersonic relaiing gas
flows over thin wedges where the far-field flow is either a fully dispersed
or partly dispersed shock wave motion, The corresponding unsteady flows
have also been investigated iq this Department by C.G. Dain . We choose
the weak wave solutions and ensure that the wedge angle is less than the
maximum wedge angle that permits supersonic flow in the tip region. In
studying this flow we shall employ rectangular Cartesian coordinates

with origin at the tip and x-axis aligned with the freestream. The shock
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wave at the wedge tip_must instantaneously deflect the flow through the
wedge angle and must therefore be a frozen shock wave inclined at the
appropriate wave angle. In order to classify later remarks we shall refer
to any soiutions that retain all terms in the appropriate governing inviscid
equations as 'exact'. The conditions at the wedge tip are therefore known
exactly and the flow near the tip may be considered frozen to a first
approximation. At infinity (which is defined as both x »@ and y = « ) we
expect the balance set up between the opposing f&roes of convection and
diffusion to maintain a shock wave of COnsﬁant width and direction with
equilibrium conditions occurring both upstream and downstream. Since all:
streamlines far downstream relative to the shock must be parallel to the
wedge surface we can conclude that the shock wave at infinity resides at
the equilibrium wave angle corresponding to a flow deflection equal to the
wedge angle. The solution at infiﬁity is also‘knpwn exactly by integrating
the conservation, rate and state equations normally through the non-

equilibrium wave interior.

The frozen shock wave at the tip decays with distance from the wedge
surface and the equilibrium shock angle is therefore less than the'correspond-.
ing frozen shock angle. We therefore have the possibility of the normal
frozen Mach number at infinity being greater than, equal to or less than 1,
In the latter two cases thé shock wave is fully dispersed while in thg
former it is partly dispexrsed.

Far downstream, although equilibrium conditions prevail and both
pressure and flow angle are uniform throughout, the same is not true of any
of the other flow variables (excebt, of course, the deﬁérture from equi-
librium). This non-~uniformity is referred to in the literature as an
'entropy layer' (see Sedney, South and Gerber (1962)) which is essentially
a result of the entropy changes along the decaying alpha-shock., This
interpretation is correct only for strong shocks; for weak shocks we shall

show (see Chapter 2, section (4)) that the contributions to the total entropy
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from the non-equilibrium processes in the relaxation region are much larger
than the contributions due to non-equilibrium within the alpha-shock. This
necessarily implies that the 'entropy layer!'! extends over the whole down-
stream flow whereas the layer in which the other flow variables are non-

uniform has a smaller thickness based on'the alpha-shock decay length.

Although the basic features of this flowfield are well known no
generally applicable analytic solution has yet been presented and on closer
inspection the problem is indeed complex, The questions Qe wish to answer such
as the determination of the shock wave development and alpha-shock decay
distances necessarily extend the analysis to distances which are far from the
wedge surface. The characteristics of fhe flow are no longer straight
lines as in the ideal case but have directions that are dependent on the iocalv
properties of the fluid. Analytic attempts based on Lin's (1954) perturbation
procedure in characteristic cooxrdinates by Clarke (1965) and Lick (1967) have
failed to achieve the necessary balance between non-linear an@bdiffusive
effects at large distances and give essentially the same resu1£é as the linear
theory for the alpha-shock decay. The method of matched asymp%otic expansions
(see, for instance, Ockendon and Spence (1969)) though producing a uniformly
valid solution has been applied to only very weak wave flows and consequently
throws no light, for example, on how non-linear effects modify the alpha-—shock
decay for waves that have nearly their maximum fully dispersed wave strength.
We can perhaps indicate the nature of the problem by mentioning that even for .
the linear perturbation no general expiicit inversion of the exact transformed

equations has yet been found,

The problem must therefore be investigated numerically if any accuracy
is desired and the 3 main methods availgble for solving hyperbolié relaxing
gas flows are the method of characteristics, the method of integral relations
and the finite difference method. Dejarnette (1966) has employed the finite
difference technique of Lax to compute hypersonic non-equilibrium.flows past

bodies of prescribed profile, The equations include an artificial viscosity
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term which 'smooths out'! the alpha-shock but predicts the correct variation
of conditions across it. The shock relations are therefore ﬁnnecessary.

The calculations must proceed from a known data line (the conditions on
which must be determined by some alternative method) and there is some
initial instability. It is also found that a stability criterion must be
applied generally throughout the flow. This requires that any new computed
point does not lie outside the zone of influence predicted by the character-
istic lines emanating from the known points. Dejarnette finds that the
closer the finite difference grid is made to align itself with the cha?acter-
istics the more accurate the results for a given mesh size. Comparisonh with
the work of Sedney, South and Gerber (1962) (who use the method of character-

istics) is found to be good except near the initial data line,

The method of integral relations has been applied by South (1964)
to non-equilibrium flows past wedges and cones. . The method consists of
dividing the region between the body surface and alpha-shock wave into as
many sections as the reqﬁiied accuracy demands. Usually 3 sectors are
sufficient for good .agreement with characteristics results. The equations
of motions are written in divergence form and flow variables are approximated
across the strips by polynomials whose degree is determined by the number of
sectors. This is sufficient to reduce the complicated set of partial
differential equatioris to a system of ordinary differential equations which
can be solved numerically. Certain inconsistencies arise from the fact that
the approximate differegtial equations are not equivalent to the correct
x-momentum and streamline rate equation at the body surface. These exact
equations can, however, be used to correct the sgrface vibrational energy
and gas speed but must not be used as replgcements for equations in the
approximate system as this causes numerical instability. The step size on
the body surface must be small enough to ensure that the necessary inte-

grations will converge to sufficient accuracy but must also be controlled
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by a stability scheme related to the characteristic directions in the flow.

The method of characteristics (which will be discussed in détail in
Chaptier 1 and Chapter 2) is well recognised as the most accuraté, though
somewhat more lengthy numerical scheme for flows of hyperbolic nature.

There is no need, of course, for any referénce to stability criteria
(providing mesh lengths are not chosen inordinateiy large) and one has the
advantage of being able at first hand to controllfhe signal propagation in
the gas. Our application of the method is also self starting, given the
conditions at the tip, in that we determine the flow variables near the tip
by a characteristic mesh scheme with iteration to the desired accuracy. The
emphasis throughout will be on the use of exact éesults where possible,
particularly ‘in relation to the solution at infinity and initial tip
gradients, Chapter 1 and Chapter 2 deﬁl essentially with a description of
the method of characterisﬁics employed and its application in detail to a
specific, though representative example. Chapter 3 deals with the analysis;
of the results of several flows which when appropriately scaled reveal
approximate similarity curves. Chaptér 4 applies the method to experimentally
observed flows of 002 and N20 past a thin wedgé. Chapter 5 gives an .account
of the main analytic procedures for investigating the flow together with an |
example calculated by the:method of matched asymptotic expansions and checked
by characteristics. The application of Whitham's rule to shock decay in

relaxing gas flow is also investigated.

The similarity curves which we present can be hopefully extended to
flows of gases with very small vibrational specific heat (for example, air
at room temperature) where numerical methods aré necessarily inaccurate., The
results are then of significance to the decay of sharp pressure signals

superimposed on sonic bang profiles by atmospheric turbulence (see Crow (1969)).
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GOVERNING EQUATIONS AND
ASYMPTOTIC SOLUTION.



INTRODUCTION

In Chapter 1 we shall be concerned with givinglthe major mathe-
matical background necessary for solving the problem. Consequently
section (1) presents the governing equations and boundary cqnditions
together with the necessary characteristic form of the eéuations. Section (2)
then discusses the various types of mesh scheme available as well as the
checks needed to assess the progress of the calou;ations.. Section (3)
gives the exact solution at infinity. The characteristics solution must
approach this at large distances from the wedge surface. Section (4) isolates
those parameters on which the flow depends and determines the relations that
must hold between them for fully dispersed or partly dispersed shock waves
to exist at infinity.

SECTION (1)

Governing equations and boundary conditions

The equations governing the flow of an inviscid;4non-heat-conduoting,

supersonic relaxing gas in fwo-dimensional Cartesian coordinates are

Séx‘((“) -+ ,2} (QV) = o

Continuity:

du 24 I A
x~momentum: A ek T Y 2y T ¢ oo

2V v L 2b
y-momentum: “4 o v Y3y = T e oy
Energy H c*‘—r - & @ i vz = cowg tuw b

X2 > —
'Rate : - = ¢ ¢ &E-o)
State : b= ¢ RT

To solve this system of equations we must also specify the dependence of
énd.§ on the other thermodynamic variables. The equilibrium vibrational
energy is a function of the gas temperature only so that

F - = (T).



The same is approximately true for the relaxation frequency, hence
§ = &7
For the functional form of the temperature dependence for a general diatomic

‘gas and for CO, see Johannesen et al. (1967).

We shall also have recourse to the streamline’equations. Denoting
distance along a streamline by { and distance normal to a streamline by =~

these equations are

1 2 A e = O
Continuity: ¢ e ¥ Ve T "
| : - 12
< ~momentum: V' 3¢ ¢ e
0 S 1
7 —momentums n R rY4
—— \ -
Energy. : Cra | « = « 3 V4 = s banic
- 2= - -
Rate : V e = ¢&& <
State : b= g RT

We shall apply these sets of equations to the steady flow of a uniform relaxing
gas stream about a 'Ehin wedge'of angle 6,. We take the origin of the rectangu-
laxr Cartesian coordinates at the wedge tip and x-axis parallel to the free-
stream direction, Dehoting the freestream quantities by the subscript co we

employ the following system of non-dimensionalization

o= __}’.o'; (: (q,% T = To%

L — A
“w = (RT«Q‘.O\-. s = R3 = Rlos

1-e»

cre = R % ¢ - ¢

f
2?7 s> 8>
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The 'hatted' quantities denote the non-dimensional variables.

The equations of motion in non-dimensional form are therefore

(Cartesian coordinates)

3 ~ A~
. . . _b_ L‘\ &) - A v = O
Continuitys: 3% { >3 (% ) .

. 25 ~ 28 _ L 2k
x~-momentums “ Y vV 2§ ~ 6 >3
y-momentum: “w >z T v agl = - "; Y

~ ..L_~ .
Energy 3 Ga T « & XV T comitunb
~ A ~ A
~n 25 v ?-f- = K (; - f)
Rate : “w 3% ¢ >y (J -
A ~
State : ‘}> = ¢ T
(Streamline coordinates) A
Continuity: A 2 T
A
~ NV _ L 2%
£ —momentums Vo2 T T °¢
* (S}

N —momentums: N

] A
IS N —
i -t <S° -t V = oWt Tawic
Energy : Cpa o :

Rate : >e
State : ‘l’ = ¢Q |

We notice that the non-dimensionalized equations are exactly the same as the
dimensional equations except for the absence of the factor R in the equation
of state. It is understood that, unless specifically stated otherwise, from
now on all variables are non-dimensionalized. The ‘'hats?® will therefore be

dropped for convenience,
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The characteristic form of the equations of motion (that is, the
form in which the system of partial differential equations reduces to a
system of ordinary differential equations along specified directions) is
most easily derived from the equations of motion in streamline coordinates.
For the full derivation see Der (1963). The essential results are that there
are 3 characteristic directions and the differential equations applying along

them (or compatibility relations) are

dy ,
on L. = €on (9"/‘“) (the negative characteristic) *
or C”
Sk L de = TN dE- dy
RV G Vsl Sin (©4m)
&y = & €an (O~ ) the positive characteristicy *
b e L - DeEE-D dy
0V Eanm V3 Siapn S (®-)
on ﬁ = &an (9) (the streamline)
G ~d A s = ? §(;_€5 dj

TV Swa 6

To complete this system we have the energy and state equations, valid

everywhere in the flow, That is
— —
Cra Vv & « _,-!; Y% = constant

and +=(—F‘

% If we consider ideal gas flow and write the compatibility equations
in terms of the Prandtl-Meyer function-* then (v = 8) is constant on a C~
and (v + 6) is constant on a C*. This explains the rather awkward
terminology.
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If we choose Y—S' = 7/5 9 Cpa = 7/2 then the above set of equations
are valid for the‘flow of any linear gas mélecule foxr which thé single rate
equation is an adequate description of the relaxation process (for appli-
catipns of the rate equation to relaxation processes in 0o 5 COp and N0

see respectively Zienkiewicz and Johannesen (1963), Johannesen et al. (1962)

and Bhangu (1966)).

The assumptions that the gas flow is iﬁviscid and non-conducting
are justified everywhere except on the wedge surface and in the interior
of the alpha-shock wave. The effect of viscosity on the body surface is to
modify the body contour by the appropriate displacement thickness whichlwe
shall neglect over the relaxati&n distances considered along the wedge
surface (for an estimation of this thickness see Bardsley and Mair (1952)).
The omission of a. viscosity term in the equations for the flow through the
alpha~shock necessitate the introduction of the frozen shock relations as
extra boﬁndary conditions, ‘These relations are essentially the conservation
equations applied across:the thin region of translational and rotational

non-equilibrium. They are (see Liepmann and Roshko (1967) Pe85)e

Y > . 2

b= |- ﬁ(“f..““qs;“))

T = \ - 2 (- ’3 c‘\‘&»s‘“" ¢-f_\) <Y§ “\g,,‘m ﬁb_§+\>
(‘(—{-'\‘l) Mf‘w“‘w ¢-§

Q = *,/‘T‘ , S = ?oo s

—\]'1‘-.: V‘& “+ Qc?a(-l"‘—r)

- X

(YP').‘ ee=V
S = Sap + -Qoge b + 3. <



and
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Lan © - 2 cot g ( "\:'oo S "")
(M’.’;., ( e+ Cr2p) + 2 )

The boundary condition to be applied at the wedge surface is
eﬂew

This set of characteristic equations and boundary conditions can
be used to solve the flow of any relaxing gas over a wedge surface providing
a suitable functional dependence on the temperature for both & and EE is

known.

We, however, are primarily concerned with the application of the
characteristics method to weak wave relaxing gas flows and in particular

in describing the shock wave development'process. We therefore assume that

S <= = c
aa T o= 7). e

These are good approximgtions only for very weak wave flows. They

do, however, give our results far more generality without impeding in any

”way our methods for representing the shock wave development process. If,

indeed, more accurate results are required, then it is a simple matter to
insert the appropriate functional relationships for & and EE into the
computer program. The general structure of the program as developed with
the assumptions above would remain unchanged.

—t

To ascertain the variations of ¢ and <w, through the flows we shall
be considering, we make use of Fhinney's (1964) expressions fox'.gz and =
valid for a diatomic gas. They are (reverting in this section to dimensional

quantities) -
le\3
— 73t (( )= l)
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where T, denotes the characteristic temperature of vibration of the molecule

and §‘ is the relaxation frequency at this temperature.
Differentiating the expressidn for § &gives

( L 8 (T°)-\3 )( f
3 - By

If we take T = I , that is Sy = 0.72R then for a
2 4T
shock wave that is just fully dispersed we have = = 0,026, The

fl

%
®

i)eroenta.ge va.rié.tion in § through the shock wave is therefore about 1l per
cente.

Similarly differentiating the expression for & twice gives

A Cwip _ (2 (-1‘1;?)&} - <Q:" l) - (E)(Q-’;-\— \)) g)
’ T

e

Cuy ( e':?‘c -1 )
If we take T, = T, and d_‘_"__r = 0,026 then we get a 1.6 per cent
'2—' o

variation in <. through the shock wave.

For linear triatomic molecules like COp and NoO (for which the
maximum value of <, is 4R) the percentage variations in § and <wp are
d
probably larger because :r‘__l‘ for shock waves that are just fully dispersed
-~}

increases as <w,, increases.

The assumptions of constant § and < do allow us to consider many
different gas flows from one characteristics calculation. For instance, a
calculation for a value of <., equal to 1R represents all different gas flows
with freestream temperatures at which C.vlb equals 1R. In the following
sections, therefore, it will be understood.that these assumptions have"been

incoxrporated into the governing equations.
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SECTION (2)

Characteristic mesh schemes, checks and starting processes for

non-equilibrium relaxing gas flows

The choice of the correct characteristic mesh scheme to employ is
extremely important because not only may it save computing time and there-
fore cost but it hay also considerably improve the accuracy of the calcu~
lations. The choice should therefore be based on a sound knowledge of the
physics of the flow and in particular on the role played by the character-

istics in controlling thelsignal propagation into the gas.

Because the wedge angle is small, the attached frozen shock wave
at the tip is weak and so a negative characteriétic may be aligned approxi-
mately in the same direction. In this way we see that the gradients of the
thermodynamic quantities along the negative characteristics are much smaller
than the gradients along the positive characteristics which cut through the
relaxation region along directions where the flow changes are rapid. Hence !
'a suitable grid scheme woul@ involve large step lengths along the negative
characteristics and compératively small step lengths along the positive
characteristiocs. The di:ectian of signal propagation into the gas must be

recognized by building up the mesh scheme along the negative characteristicse.

If we examine the characteristic compatibility relations given in
section (1) then we see that the coordinates enter these equations only in
conjunction with the‘departure from equilibrium, The negative characteristic
compatibility relation is for instance

é;_k - d0 = . (\(('“) e@_ “3 d‘j—
Q—V' Eanmpa ~r? (Qk/q/\ Sin (9-\-/0\3

(here gf has been put equal to 1).
This indicates that the step lengths should be chosen approximately

inversely proportional to the departure from eqpilibrium. This is naturally
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in accord with the idea that the closer the gas is to equilibrium the largexr
the step lengths we can employ. If we write the non-equilibrium term in the
above compatibility relation in terms of x instead of y and use the rate

equation we get

s
46 - DB ces
d -
> 'V'"Sivs/»\ %(e‘(‘/k)

The changes in the flow are therefore intimately reiated to the
changes in the vibrational energy along the streamlines. The most important
streamline to consider is the wedge surface, from which signals are propagated
‘into the whole flow. If we choose step lengths on the wedge surface with
equal changes in the vibrational energy then we aré dividing the total signal
on the wedge surface into smaller signals distributed evenly_over each stepe.
This‘is the key idea in the formumlation of our mesh scheme and will be

developed in more detail in Chapter 2.

For non~equilibrium flows all 3 characteristics ﬁust be employed so
that this immediately offers a choice of mesh scheme. For instance, one coﬁld
employ either a streamline based mesh or a Mach line based mesh (figs.1(a),
1(b)). The streamline baséd method has the advantage of following fluid
elements so that any conservation checks can be applied 1ocal;y instead of
over the whole flowfield. Both these methods rely on 2 input points but 3 -
input point methods have been developed by Sedney (see the review on non-
equilibrium characteristie calculations by Sedney (1970)) due to his finding
unexplained inaccuracy in the Mach line based and streamline based scheme;.

At first the errors were attributed to the linear interpolation thatAis necessary
in these schemes. Consequently a 3 point non-iterative network was devised
with error of second order in step length (fig. 1(c¢)). This s5hemé was

developed from expansions about the centre 0 of the characteristic mesh in

terms of the mesh lengths and seemed to correct the deficiencies in the Mach
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line based network. However, this method proved unstable in calculating
axisymmetric flows. As a remedy, a 3 point iterative scheme was introduced
with interpolation along the previous Mach data line, (fig.1(d)). This
method apparently corrected all the instabilities in the non-iterative
mnethod for axisymmetric flows and was successful for plane flows. The
sourcé of error in the Mach line based scheme is not now apparent sinqe the

3 point iterative method also employs linear interpolation.

The present characteristic calculations make use of the Mach line
based network and no insgtabilities of thé type attributed by Sedney hafe
been found despite the comparatively large step sizes used. Wood,
Springfield and Pallen (1964) have used the same fype of network to compute
hypersonic relaxing gas flows and Johannesen, Zienkiewicz and Bird (1967)
have used the streamline bgsed scheme to determine the complicated unsteady
flow behind a reflected partly dispersed shock wave. Neither group has

reported any difficulty.

In his review Sedhe& (1970) advocates a method for starting the
caloulations that assumes a region of frozen flow at the body fip. This
starting process is not advisable. One is impressing a region of uniform
flow just where the fléw gradient on_the body surface is a maximum., This

’creates a weak discontinuity (that is one with first and higher order
derivatives discontinuous) which can propagafe out along a negative character-
istic and by ref}ections influence the whéle flow, Even if this has little
effect on the accuracy one still has to decide~how big this initial region
should be, The accuracy of the calculations must to some extent be dependent
on the starting process and this would mean that using this simple starting
process would compel one to employ a far smaller step size than that required.
The calculation procedure can quite easily be started by using the wedge tip
gradients, series expansions for small values of the coordinates, or by an

iterative method employing the characteristics (see Chapter 2, section (1)).
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In some calculations errors have been directly attributable fo
the use of the real gas entropy as a dependent variable. Conservation
checks of mass, momentum and energy épplied by Feldmann and Widawsky (1962)
to their computations of hypersonic. non-equilibrium flows revealed sub-
stantial errors. The authors concluded that certain errors were inevitable
and that corrections to the computed results must be made. Powers and
O'Neill (1963) applied the mass conservation check to real gas hypersonic
flow calculations and found similar large errors. They attributed these
inaccuracies to the strong entropy gradients existing in the hypersonic
flow and consequently modified their method by determining the local entropy
from the equation for conservation of mass instead of by lineaxr interpolation
between 2 known points. This procedure, of course, reduces any errors in
the mass conséfvation check since this is applied directly in the progran.
Perhaps a better test on any possible improvements in the calculations
would have been to employ a momentum or enexrgy conservation checke. Wood,
Springfield and Pallen (1964) were also conscious of employihg entropy as &
dependent wvariable in the:démpatibility relations for their hypersonic

relaxing gas flow calculafions.

In the present calculations the compatibility relations are employed
in their simplest form with pressure and flow angle. The real gas entropy
is never required since the alpha-gas model is used. The calculations are
extensively checked. The convergence of the method is assessed by the use
of different step sizes in a representative example and in ever& caloculation
checks are made to ensure that the integrated conservation equations are
satisfied to a good approximation. Foxr steady flows the integrated energy
equation can be incorporated directly into the program so that a mass and
momentum check is sufficient. In a Mach line based scheme these laws cannot,
however, be applied over a single mesh length (this is possiﬁle with a

streamline based scheme). Only the integrated- effects over a whole character-



istic data line can be déetermined. A typical result is shown 1n'ﬁ.g.1(e).
The characteristic @ata lines (which are the negative characteristics
emanating from the wedge surface) are labelled with values according to
their x-~coordinate on the wedge surface. A closed coptour is taken which
comprises the wedge surface, characteristic data line and.alpha-shock. )

Thc incoming mass and x-~momentum are readily evaluated and denoted by mass,.
and x~-momentum ,, . The symbols mass and momentum refer to the integrated
mass and x-momentum flux around the rest of the contour. In such checks
there are 2 sources of error. There is the error in the chacécteristic
calculations and the error in the step by step integration around the contour.
These 2 errors may cancel as in fig.l(e). One source of error is then
dominant, probably that in the characteristic calculations, In the early
stages of thelérogram development thesé checks were of great assistance in

eliminating errors.

SECTION (3)

Exact solution at infinity and projection of the solution
along the Mach lines and streamlines

In oxrder to assess»the progress of the characteristic calculations
we need to haﬁe some idea of the asympéotic nature of the solution, TFor
this particular flow we are fortunate in being able to determine this
solution as accurately as we wish because, as has already been described,
for large x and y we expect a shock wave at the equilibrium shock angle.
The position of +this shock wave in relation to the origin of coordinates

at the wedgeltip is, however, unknown. By a straightforward application
of the conservation, rate andvstate equations along a direction normal to
this shock we can completely determine the non~equilibrium structure of the

interior to any desired acoﬁracy. In particular we shall find an exact
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expression for the maximum departure from equilibrium which holds for
both fully dispersed and weak partly dispersed waves. Thié can be
related (for very weak waves) to a gradient of the vibrational energy
and hence to a wave thickness. The structure of the shock. wave, once
found, can be projected along any direction in the flow. Of_particular
interest are the Mach line and streamline directions, the former because
the characteristic results are printed out along the Mach lines and the
latter because any true diagram relating to the wave propagation is best

observed along the streamlines.

We are interested in solutions where the shock wave at infinity
may be partly'dispersed és well as fully dispersed so we must include the
possibility of a discontinuity or alpha-shock éppearing if the normal
frozen Mach number is greater than 1. This alpha-shock can be treated
by applying the frozen shock relations to obtain the jump conditions across
it. The structure of the relaxation region.can then be found by applyingf
the inviscid conservat;on, rate and state equations through the wave just

as for a fully dispersed wave,

Iwae define

"~ fan O ( (Ye") Moo .'L) ‘

{\, o = 2
n, = ( 1 — aat;,ﬁ

+an Ow ( ( YQ*OM::D* l)
N, =

L

Then for the weak solution the equilibrium shock angle can be written

explicitly as (see Appendix 1).
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This is somewhat simpler than that given by Mascitti (1968).

Having found the appropriate wave angle as above, if MgwS\m,
? 1 then we determine the jump conditions across the alpha-shock by
using the frozen shock relations for a shock_ wave inclined at angle ¢¢_
to the horizontal.

That is, for instance

= -+ »“\‘#c"
b l ch) ( ~Gws )

The structure of the relaxation region can now be determined by solving
the conservation, rate and state equations. If we have MgSw™ be = |
then we can apply the following analysis immediately. The equations are,
denoting the normal velqcity as W4, and coordinates along and normal +to

the shock as y, and x, respectively (see fig.1(f)).

Mass : Rra = “neo

Momentum 3 Preshn = |+ We

Energy s c‘.,_—-v e+ 3 UL B Clat T * T ux.,
Rate : Un -‘:—i\ = ¢ ( ;__‘-> |

State : b=o T

The assumption of constant specific heats gives
S = 4 + Gy (T- \)

The conservation equations of mass and momentum give ( eliminating w«, )

Y o=l u, — ——-—“e'"° 3,1

The conservation equations of energy and mass give (eliminating “=)

he
m—— \ “V\Q — . L.
Coal + = =+ 2 o= = Cpa =+ o 'ﬂL— “nw 362
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From the equation of state

- ka
T= ¢

=

U+ull) _ 4w
e frowm 3.\ 3.3

Q
Hence eliminating T from 3.2 gives

(Q*“:“) ‘1‘.‘1°> L SRe | e Tow fu
Cya e — e__v' “* o <4 o = = 4 > L: ~eo
That is,

T W U\:u ! — Lo >
e ()0 B (b a)e e o aen e b

Inserting this expression into th_e rate equation gives (after
eliminating 44 by the mass conservation equation) '
[ A'e e )
WUa w0 ( C-P‘-({*’ “:ao) ;lv\-\., ( <p )) I L) ( (Q\\(T‘ l) -+ Cvﬂ._ﬁm
> | -+ " Spa X :
R ' {3 " °

u"‘” v 'u-
("'-‘ CPq.)— ‘r* - : Mo)

Eliminating T by 3.3 gives a first order differential equation for

the density through the4 wave, Viz.

hneo ' a i+ A Unw ’ ‘L'_._g_\__..?_‘_’) .
U_k_q_ cp é q,‘»\ 9.\.\ (--—c?.‘)) o - ( (c . -\-U\.

Cwvip M‘:\Q C?“ B3 M~ > U

(‘I— ? . Q"-
G‘Vd"‘ Cwiyp - 'a"_ u.::p )



- 24 -

Multiplying both sides of the equation by Q gives

Uno ( Cpa (.\«- u':\‘,,\)e + A ure (';'_',-'.C@«)) El_f'.

dx

Qs ((cvu, ( e+ Uk:.‘,)-t- c‘,; C l*'&:m}\ ?
- ( Cuidh Uree = Uneo ( 'zL. - “l"\) )

- (( cpa+ Cav) - J:'_“:aa7e"‘>

That is
% - d 2 (= (cpa+cnpr ;.umhe + Ccv\\* Cra) (v iRe) p - (enbrpa) WReo+ “"‘"’)
dx.‘ Uno (c,?,,_(l-q—u“.c)e — l%&oa (:.' C?q)> 3.4

For a fully dispersed wave we can write the above equation more
concisely by noticing that

iﬂ-.—.o

dxn

when Q-la.ndQ - (,_

Hence the quadratic in e in the numerator of 3.4 must factorize.
That is

Q“' — Ccvn= c?‘l)("" U\tbv

( Spar c'vﬂ. -« :}_v\:“o> ?

(cpvcpa) UXeo = T Wnee

= (o= (omo0
(epar cup + iu’-.‘:..) ( ) <Q>

Hence
_ ( evibw cyp a.) Thoo = % Reo (-‘C‘-*‘) MCm oo
ke ( cpa~ cup + T uG:,.,S ( (\(,_-l)«v\::....,w 2)
where
- An
Menoo = Acco

This, of course,is exactly what we would expect from a direct

application of the equilibrium oblique shock equations.

The density distribution through a fully dispersed wave can therefore
be written as

3 (- (gm ) (cpavam~ & ) 5
daca Un o ( R Cera (1e ) = i (9“‘?"‘ » 3 o
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We see that if

(2 cpa— \\)_ Wreo do
<pa ( L+ M‘:w> then L 3N

R

Hence we must always have

b

U < <pa
Qq- u'.‘(“':) Acpa=\

-~

That is Menw & 1 if the wave is to be fully dispersed.

Equation 3.5 can be solved analytically though not explicitly for [

in terms of x, . For approximations to equation 3.5 see Lj_ghthill(l956).

For our purposes it is sufficient to integrate 3.5 numerically
using a Simpson integration formula. To avoid difficulties at the wave
end points where %i‘f‘,"" is large equation 3.5 is int'egz'ateq. from the
inflexion point which is. aga.:.n found numeri?ally, though to high accuracy,

by maximizing 3.5.

If jl:he shock wave is partly dispersed then 3.5 is applied through
the relaxation region once the jumps across the alpha~-shock have been
determined. The analogous equation to equation 3,5 for the velocity
has been given by Hodgson and Johannesen (1971). Their work, however,
is mainl& concerned with estimating fully dispersed wave widths for the

| strengths expected in sonic bangs and they give an analytic exp?ession

for the wave thickness.

Of importance in later calculations is the maximum value of the
departure from local equilibrium of the vibrational energy in the shock
wave at infinity. We shall denote this quantity as (- )maxeoWe
sha.li need this in Chapter 2 when we define a suitable variable to
describe the shock wave development process. The exact value of

( =< Jmaxe can be found as follows.



.
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From the energy equation and the assumption of constant vibrational

specific heat we can write

(&~ cﬂ = '%_ (u«*“too)-r Cepar ann)(T= 1) 3.6

From the momentum equation, dividing by p gives

(\ + Wa eo>

¢

R
The equation of state gives T = -%:' So

T~ ~ = L*’ u..\,,,.,\

A

Y
By conservation of mass we get
. L a—
A Aco
That is
T = Civ U\?\'q,w “Un u\-:\-

“Anoco

'Eenge substituting into equation 3.6 for T,

An

t W L
(6-—— 6‘\ = = (\Av\ U\na@} Q‘sa*&nk} (('*“ eoy“\n— N — \} '3°7
Differentiating with respect to x. gives

-L—-—C\ ) = A:f." -2 (CPA*CV\‘D5 - Craronn) (1vuFo) dun

d xv\ - w“ Ax'\ dxh

“UAnon
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If we define ( ;"-4'34.-0 as the departure from equilbirium of

the vibrational energy immediately downstream of the alpha-shock in a
( ; - f)M\tOO

partly dispersed shock wave at infinity, then assuming that
(this restricts the result to weak partly dispersed

> (&- 6‘)4,-0
shock waves) we have that (F-s) = ( E_" S Jmaxeo when
w, = (e cpa) (e o)
Unce ( 2 (cpaxr cor) = 1)
Subgtituting back into 3.7 gives
> -~
(epar oe) (eimd L 4 Wl = (cpuv o)

<?-‘.)no~xw = 5
L wh (2leparan ) - ﬂ

(_Gfo.-b- Cf\nb)‘- ( {+ q.:'”v‘h

c‘—
WTu (2 Ceperen) 1Y -
— Cerar o) (cpareun) (1vatn)
Wneo (a Cepa+r cup) - | 3.‘-
ad - e
- (c.?a't' cvu-\s (l"' '-lvsao) - —‘i U\:‘., - Q_c\,*-«- C-\s)
2 ke (2 (epawcus)-0)
Putting T PR gives
C—- 3 L Yerfee (Spar <vu.-\sk— 2 xg mgneo (Cpar ‘-""°X“"~*"~“"")"‘(-‘?*"’ "“S—
o-) . -
maxso 2 4 wnee (2 Copar e =1 )

In Chapter 3 we shall simplify this expression by use of the

small wedge angle expansions.
The solution as a function of x, can be projected along the Mach

lines or streamlines by expressing x . in terms of coordinates measured

along these directions in the following manner,



In the coordinate frame of reference ( Xa , 4, ), the positive

characteristic directions are given by
W

A—‘d—:\ = awn ( i - ¢¢_—/A.+ 9)

dxaw
The variations of all the flow variables are known as functions of x,

so that by choosing suitable increments in the distance through the wave

we can find the C* trajectories from

- 4’&"/"*’ 93 dxn

\

pi=l

. &‘én = eQ.V\ (
Similarly the C~ and streamlines from
éu&“ = &aw( !-?‘_ - P * At 9‘) dot a
and A‘su = ban K :2"- = ¢e, - 9\ dxn respectively

The solutions at infinity along the Mach lines and streamlines can
therefore be built up step by step. The solutions can be iterated by
choosing mean values of the gradients once a first approximation has been

found.

SECTION (4)

The (6w , ™fw , ¢vib ) space for fully dispersed and
partly dispersed shock waves at infinity

To determine the flowfield we must first be able to specify which

parameters control the flow.

The freestream pressure and relaxation frequency per unit density
do not affect the physical nature of the flow field and just scale the
coordinates, This fact is recognized by inoluding these quantities in
the non-dimensionalization of the cooi'dinates. Certainly to determine

the conditions at the wedge tip we need the frozen freestream Mach number
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and the wedge angle.

Examination of the terms in the non-dimensionalized compatibility
relations reveals that the only parameter unspecified is the vibrational
specific heat, cwwpy . If we make the assumption of a constant but different
vibrational specific heat for each flow we consider (that is if we fix the
vibrational specific heat at its freestream value) then the 3 parameters

that we must specify are Ow , Miwo and cuvib o

We notice that we have made no assertion as to the nature of the gas
except that the gas molecules be linear. The freestream temperature is
defined impliocitly by the vibrational specific heat. For instance, if we
caloulate a set of flows with <vis = 1.0 then these calculations are valid

for those gas flows with a freestream temperature for which <wb = 1,0,

‘Next ﬁe, would like to know for what Va,lue;s of these parameters the
flow over a wedge will be fully dispersed; partly dispersed or just fully
dispersed at infinity. We have mentioned that if the normal frozen Mach
number at infinity ( mf.,.; ) is less than or equal to 1, then the shock.
wave at infinity is fully dispersed. We can therefore recast the problem
by inquiring the relationship between the parameters that would give' the

required normal frozen Mach number at infinity.

The relationship between ©., , M¢o 9 Cvib vand. 4’& is given by

the equilibrium oblique shock relation

A cok bo (“"20 :%‘2_ S';';Léc-' \)

‘tc\v\ 9w =
( Mo ?(-(-i (Ye+ “41¢e3 “~ 9\.)
vhere Y. = Cepar ‘_"‘____53
e

( Cvd ' Cuidp )

If we rewz;ite this expression in terms of the normal frozen Mach
.number Mg, instead of wave angle ¢¢ then we shall be able to enforce

the conditions stated above more easily.
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Since Menw = Mg Son e eliminating Q. gives
N7
tun Ow = J - “‘“”" Ye ﬂ{“é _ ‘3

C\f“"\(*\ ‘:(Yef\-.’z."-%;‘-:\+2>

Simplifying this gives

— o \/M-.?”— "\2:» ( \(" M:E~no" Yc)
EC\V\ ew b v

If we put "“¢neo = 1 then we extract the relationship between the 3
parameters for shock waves at infinity that are just fully dispersed.

That is

A St (Ye-Ye)

o (Yt ) - R(rg-v)

£an O,

These curves are plotted in fig.l(h) for vibrational specific heats
of 0.5 , 1; 2 and 3., Regions to the left of these curves are shock wave..

flows that are fully dispersed at infinity.

We are now in a position to define the flows we wish to compute.
Naturally we want flows at constant Mach number and wedge angle as well
as at constant vibrational specific heat so that we can ascertain the
individual effects of the parameters. We therefore choose sets of flows
at constant wedge angle and constant Mach number that *cover' the region
for which fully dispersed and partly dispersed éhook waves at infinity
exist. We can only hope to compute a rep¥esentative sample of all the
possible flows; to this end we choose frozen Mach numbers of 1.4 , 2.6
and 3.8. The flows that we have computed in this manner are registered in

fig. 1(h).
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The properties of the ( ©,, , M;_ ) curves will be discussed

as followse.

The maximum wedge angle that will give a certain
normal frozen Mach number at infinity

The relation between Ow y ™o, <wib is

ey Jh?o— M;_-:.g ( Vg Mmoo = \(1.3
Mln ( M‘.E..'Y-f (‘k_“") - 2‘({ ”2'“’0 -« 1Y<)

<€an 9,,, =

Taking C<v» as fixed (i.e. Y, fixed) and ™m4n. fixed and

differentiating w.r. &b, Mseo &glves

d Eanby

( Y4 M:n; s(c.) ( e e (M};Y‘f (Ye+v) - 2y ME».."' Ry, )
d mee” ’

= 4 (" M) Y5 e (yert) ) X
-2

-4
M;:‘“ ( M‘?“’_ M?"w) - ('\1{;‘(@(‘[{“) "27{' "F:-p"' 1‘(3

This expression 1is zero when

P ' L 23
‘v\éeo Y¢ (Ye""‘) - 2;74“‘?'\“ T Ay, — ’I‘C{-('It"")<"‘?’oo- M-z-:.o\ = O

T

(excluding M =0 awd Mg, = J ¢

This gives
> o - -
M-foo ( ¢ (\(@*‘)’ 2\({_ (\re-\»l)) = 2\(6#’\{“”«— 2\(¢— 27_? (‘(‘*‘)“'G""
. That is

> &“;-aw?'flf_-* 2Y <
\(4 (‘(q_-t' \)
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This gives the freestream frozen Mach number at which the maximum

deflection occurs through a shock wave at infinity of fixed strength.

For frozen flow (i.e. at the wedge tip) this gives

o} w\;,\“’ Y—f + 2

M‘- =
oo
Qs+ v)
<7 o
where Meno = ._M"_
Agco

The deflection itself can be easily found by substituting the
expression for the Mach number into the equation for tan 6 .

dO..,
For Mach numbers greater than this value the gradient dMsuo is

negative so that as Mg,—> 2 O, - O o The situation
for Mach numbers less than this value is slightly more complicated. As
Mo —P 1 the wedge angle O,, decreases until the flow behind the
frozen shock é.t the tip becomes subsonic. if 6 1s decreased still
further then the frozen shock becomes detached (see fig.l(g))e For smallexr
angles still the constfa.nt strength curves intersect. This is because for
fixed Mach number' and wedge angle there are 2 splutions for the wave angle
and hence 2 wave strengths. For Mach numbers near unity these strengths
are very nearly the same (since the wave angles are approximately equal)

and hence appear as solutions in what for la.rger Mach numbers is essentially

a weak solution domain.

Having established the regions of the ( O, "¢{o ) Plane where the
flows at infinity are fully dispersed, just fully dispersed 61’ paxrtly
dispersed we are in a position to define a 6ritical quantity which will have

great importance in the presentation of the results in Chapter 3.
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Definition of a critical gquantity

The critical value of one of the parameters 6,, , ™Mg, and
S 1s the value that it takes, for constant values of the other two

parameters, at the maximum fully dispersed wave strength at infinity.

The corresponding critical value of any flow quantity is the
value that it takes at the same point in the ( Ow , Mg 4, <wb )
space.

Critical values will be supei'scripted with a *,



N, known point
U, unknown point

I, interpolated point

s, streamlijne

FIGURE 1(d). 3 POINT ITERATIVE MESH
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FIGURE 1(f), EQUILIBRIUM-SHOCK COORDINATE SYSTEM
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CHAPTER 2

GENERAL FLOW MESH SCHEME AND.
DECAY AND DEVELOPMENT PROCESSES



INTRODUCTION

Chapter 2 introduces the reader to the flow with a discussion
in great detail of the flow given by 6,, = 2.00°, Mioo = 1.49 and
Sy = 2.12. Section (1) gives details of the starting process and
general mesh scheme and section (2) goes on to discuss the variations
on the wedge surface and alpha-shock as weli as the wave development
process. Errors are assessed by calculations done with smaller step
sizes and accurate diagrams of the characteristic mesh and shock wave
development are ﬁresented. Section (3) deals with the very interesting
distinction between real gas and alpha-gas entropy layers in the equi-
librium flow far downstream fiom the shock wave. The order of magnitudes
of the entropy productions on the wedge surface and at infinity are
estimated in terms of the wedge angle. Section (4) utilises the first
order wedge tip gradients to describe the initial shock wave development

and alpha-shock decay. A simple solution for the pressure'On the wedge

surface is also given.

SECTION (1)

. Starting process and general mesh scheme
The flow that we shall use as the main example to illustrate the

essential shock wave development processes is representative of the fully
dispersed wave flows computed (see fig. 2(a)). It incorporates all the
important, general features of the computer program as well as being

applicable to the shock tube flow of CO2 at 600°K.

In the last chapter the justifications for employing a thermo-.
dynamically controlled step size on the wedge surface were given. Here

we shall give a detailed description of how this idea is put into practice.
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The flow quantities at the wedge tip are easily obtained by use
of the frozen shock relations with the flow deflection equal to the
wedge angle. The flow boundaries are the a.lphé.-shock, aocross which the
frozen shock relations are valid, and the wedge surface where the flow
direction is ‘specified. In order to extend the calculations away from
the wedge tip, an initial data line must be established. This can be
done extremely accurately by employing small coordinate expansions in the
tip vicinity but we shall employ a starting scheme that relies solely on
the characteristics and which can be iterated to the desired accuracy.
The convergence of this iteration scheme is checkeq analytically by

extracting the ;‘irst order tip gradients from the first approximation.’

The characteristic relations given in Chapter 1 are

dp ~ do = T QD ¢ (E=o) dy -
Qv‘b&«v\j& 'V'3 &m//\ Sn.»\. (9-(-};.)

SP _ de = —YeDeE- dy on o

e'\r’hn}* : -V.\" S\;\)A S\-\\ (9-—/&)
d de = g@— 6.) d}
— ~ s © e
dp = — VIV on a streamline

These relations are employed in finite difference form with error of
order the mesh length squared. The necessary iterations are accomplished
by using the mean values of the coefficients fof the differentials between
successive mesh points. If no linear interpolation is employed then the
error term is reduced to the order of th; mesh length cubed (see Sedney
(1970)).

For instance, between points 1 and 2, the negative characteristic

relation is written as
Bam b)) o (£.-98) = =00 (E- oD (.- )
Q\\F"‘tqv\f\‘ "\f'-‘" S:v\/A| Siw (9‘-«-/4\)

\
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in the first approximation and as

o) | (6,-8) - =Ge=Dew (Fn= en)(3a-3)
B Vo fanpa s, "\7:3 S phy S iw (Qn."'ﬂu.>

in a second approximation, where suffix 12 represents the average of the

quantity .at points 1 and 2.

The frozen shock relations, valid across the alpha-~shock, are
employed exactly. From these relations the changes in pressure along
. the alpha-shock can be related to the corresponding changes in flow angle

by the differential relation

A%,-:_ (._k de

dp _ 4p d#
where de = d(ﬁ. 30

b Y .

—_— = S A

3o T Qeeny THetmRE
and 40  _  (yer)) e £al® sinT P _ _2 tas®

ie (“ﬁo&'l*\ ¢ \) C l=+ e“‘\.h9> Simap ( I+ Caw® )

The equations of state and energy are applied exactly throughout the

whole flows

With reference to fig. 2('b) we first locate point 1 by assuming
that this point determines a certain fraction of the total change in
vibrational energy on the wedge surface. We evaluate the physical
distance from the tip by the rate equation

de = 'j‘(&:—é-)d‘x'
N <wn» O

((?-6‘)
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Applying this to the starting triangle gives:

Vo @By ( °'-"’~°—°>

Q" (go"' °’o>

x‘-b‘-o

To find x, we must specify ( =— <, ). The total change in
vibrational energy on the surface is given approximately by
= (M) - =
where Te denotes the equilibrium temperature far downstream behind

the equilibrium-shock.

Since the difference between T, and T, is small in relation to

To = 1 we can write
T G

We therefore specify the change in vibrational energy per step aIbng

the wedge as equal to
'51—0 Q;°— r’)

The fraction 1/50 is chosen because this gives gocd accuracy as well

as being amenable for use on the computer. The first physical step length

is therefore given by

< -%o = V?c:;_:

The first approximation to the thermodynamics and geometry in the
‘bria.ngle 012 is to assume that the flow is uniform. A second approxi-
mation to the conditions at point 2 can be found by solving the negative

characteristic relation along the line 12 in conjunction with the shock

relation between pressure and flow angle.

That is we solve simultaneously the equations

(t,:: *03 <+ QG,_-B,A = _‘é('f"3 eb Eo"’ (03 (‘3‘--‘3‘)
Qb Vg E«V\ﬂc —\/“'03 S;"»/v\o. S (49,*}&0)
and

G-t - () o) = o




The geometry is given by

M = (xl'xo) Sim (¢o"’ 9°>
S vw (9‘,*)-&0) Con O\, Sin (/4,,- b+ e°>

and (1,_"’2—03 Q"xt’?‘h

=

Sy Mo : Co<O,, S (/A,,- b, + e.,)
where z is a distance coordinate along the alpha-shock. Hence solving

for $a.- \ao gives

(Pa-®o) = () 0o(@e==) sin $om 02)

Zo =X -3 . = ! , do
( 2 O) ’Vo S\K/U\. ( ?bv:b‘“\j&o -+ d{;).)

= X4 Po (So-50) con CBom B,)

- s\'h ° [ (¢0-0° A Y ¢ d-g
V. ( RN ) VoS, °"(“’~‘°°3(drjo\

i
!

Since for weak waves @, = Mo+ O (6o) the above expression is
approximately equivalent.to the analytically derived wedge tip gradient

(see section (4)).

Having determined the pressure at point 2 all other quantities can
be derived from the | shock relations. A second approximation to the thermo-
dynamics at point 1 (notice, however, that the value of the vibrational
energy at point 1 has already been fixed) can be determined by employing
the positive .characterist‘ic relation betweep points 1 and 3. The con-
ditions at point 3 are found by linear interpolation between points 0 and
2. That is if R is the interpolating constant such that .

R Cham o) = (o= 3e)

then

(’?t'_\i"z‘ R C4a- o) - (9‘_ 93) = &e-0 qo(?'g- ) (51-Y43)
Qo Ve ’::cw\j.ko _\7;3 S'\'v\/A, S 9*0“' 99)
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But ©,= O, so the above equation becomes

(*’ %)" k({’z S?) R (9:."' 9°>’__'=' Q(.,,-l) f.(g‘,— “.,) (‘.S\.'":SD
Q" t““/’“' —\703 S\\X/Ao Sin (/Ab“’eo}

From the negative characteristic relation between points 1l and 2

(9,,—9,) = — M_. — Qf“)fo(;-' ‘oX:;,_—:sD

Q;V;?'(-:Q'\)J\o V: S|‘V\/A° S\ w (8°+/4°)

substituting for ( e, - Qa) into the positive characteristic relation

above gives

Quopd= 2R Camde) | GedeeE-ed (189) |, RED pol&-=)(amY))

Qo’\?—:b‘*“ﬁo 'Vs 5‘\“/\» S (ﬂo ©,) ’\73 S\\»\/Ao s (S, "'f's.
Since )
. h - (Qr"éo) Sl.v\j.l\g__
&r29) 5 (ot $5- &)
g -y _ _ Qeﬂ"eb s C 950-8.,)
\ 3 =

S (/Ao'!' ¢o“’ 9°)

and 3:-'\5\ =

2,-€0) < _
& - ‘) sin (& 9‘5 where L - —

S v (/.Ao-\— 90— ¢°> cose.?,
we get »‘

( D ( 2sinpo (ha=bo)
(-2 ) Sva (e ¢ 0a) ((Za-Zo)

“+ Qo V e““}'\" (Y‘(' )POQGD ‘)S“‘ (ég-o"\
V& Sl“\/‘-\o Sw (/Ao"'eo) XN (/Ac"'c#o 83

-— e P

_ o 8VS Eanpe Qen) pelEem w0 s (dam0))
——

Vo S\v\/Af, S v\ (}u\,-\- So) S:;"\ (/b\.'\' 450-9,)
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| For weak waves Sbo = Mo+ o) (90) so that approximately
(we have

Gui=%) ' Chazbl)
(:a‘_ 80\3 - <y>(¢%‘9;) (Z;"z°3

This is again the same result as given by the first order gradients. We
can conclude, therefore, that the starting iteration process is likely

to be rapidly convergent.

o obtain further approximations we proceed around the triangle
in the same manner as before but employ fhe average values for the
coefficients in the compatibility and shock relations. The iterations
are continuéd until the pressure is 'correct' to 9 decimal places. The

linear interpolation used between points O and 2, however, invalidates

any precise statement of the accuracy.

Once the conditions at points 1 and 2 in the starting triangle.have
been determined the qalculations can proceed as follows. With reference
to fig. 2(c¢) we find the physical coordinates of point 4 just as we located
point 1 in the first triangle. That is we have

M G»a»9x¢<Eﬂ+~‘5{>

u-4.— 3L‘ =

gl (E‘,—'o—‘)
whére S 4= = - L
=% ~ % 50

~

In fig. 2(c) points 4, 5 and 6 are typical of the different types of mesh
point in the characteristics network. Points 4 and 6 lie on the flow
boundaries and are called body and shock points respectively. The mesh
structure at these points is shown more closely in figs. 2(d) and 2(f).
The boundary condition on the wedge surface necessitates the use of only 2
of the 3 characteristics in determining the unknown point. At the aipha—

¢ shock the shock relations together with thé'compatibility relation along
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the negative characteristic are sufficient to deteimine the - shock point.
The major portion of the flow consists o£ points like 5 which are called
field points (see fig. 2(e)). The pressure and flow deflection at the
unknown point U can be found by solving the ¢ and ¢~ relations on the
characteristics through the known points N, but the streamline relations
(with linear -interpolation between the two known points) must also be used

to find the remaining thermodynamic quantities at U.

The solution is built up in layers along the negative chaz-acter;i.stics.
The first mesh point is a body point, followed by several field points and
terminated with a shock point. Ea.ch' step along the wedge surface has the
same change in vibrational energy. From the rate equation the mesh leizgths

along the wedge surface are given by
V - Gny B de-
¢ G— )

For fixed values of de, du —® oo as o b = o It is therefore

clo(.=

found convenient to terminate the thermodynamically controlled step size
when 90 per cent of the c;ha.nge in vibrational energy on the wedge surface
has taken place.. The physical step size is then approxima.teiy 10 times its
initial value. The calculations progress further downstream with a

constant, though adjustable, physical step length on the wedge surface.

For wave flows that are fully dispersed at infinity, the shock points
overshoot at a finite distance from the wedge surface. That is they iterate
to pressures on the alpha-shock slightly beléw l. The calculations can,
however, be extended further downstream »'by computing up to the positive
characteristic through the last shock point with the pressure greater than
l. A comparison between the solutior; at infinity and the characteristics
can then be carried out along this last positive characteristic. Such a
comparison is given in fig.2(g) for the flow Z—E‘ =1, M, = 2,6, = 1,
This procedure is sufficient to deal with wave flows which are partly
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dispersed (here the program is terminated when - the pressure Jjump across
the alpha-shock overshoots its value at infinity) and just‘o? nearly
fully dispersed. For weaker wave flows the shock wave development
distance can be many times the alpha-shock decay distance so that a new.
procedure is required to extend the calculations further abbve the

wedge surface.

A typical case is illustrated in fig.‘2(j). This represents the
flow B, = 2.00° ( g':g = 0.6)y Mt = 1,49, <nb = 2,12, The pressure
profiles are taken along the dashed lines. The wave development distance
is approximately 2 times the alpha~shock decay length. Supposé that .
point 1 in fig. 2(h) is the shock point where the pressure first over-
shoots. Then we must extend the mesh above this point. We realize that
if the flow at infinity is fully dispersed then the limiting direction of
the decaying alpha-shock musf be that of the freestream Mach line.

Hence as soon as the pressure overshoots we equate all the thermodynamic
variables to their freestream values. Since the last shock mesh 1eﬁgth

is rather large, facility is made for interpolating points like 2 so that
approximately equal steps along the negative characteristics are maintained.
The same procedure is used for all successive shock points though the
computation of one more shock location (point 4) is all that is necessary.
‘This is because the freestream characteristic (between points 1 ahd 4) has
very nearly the same direction as the flow negative characteristic (between
pbints 3 and 4) so that point 4 extends the mesh sufficiently to investigate

the whole fully dispersed shock wave development.

We have, however, impressed slight discontinuities into the flow but
these are not regarded as serious because they can only propagate into the
flow along the positive characteristics. The main signals are channelled

along the negative characteristics and the reflections along the positive
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characteristics are weak in comparison. The propagation of these dis-
continmuities into the flow will mean that iterating to the previous
accuracy is not possible. We can only sensibly iterate down to the

magnitude of the discontinuity inserted.

To illustrate the improvements obtained we can again refer to
fige 2(j). With the previous method we could have extended the calcu-
lations to a distance above the wedge of about 40. We can see that at
fhis distance the shock wave is not fully developed. The modified method
extends the calculations as far from the wedge surface as we wishe. In
particular at a distance.of about 100 from'the wedge surface the agree-
ment between the characteristics solution and the solution at infinity

is remarkably good.

SECTION (2)

Decay and development processes in the flow

In this section we shall deal with the methods adopted to extract
all the relevant properties of the flow from the numerical characteristics
results. In particular, we are interested in the modifications in‘alpha-
shock propagation and shock wave devglopment due -to non~linear effects.
The vériatioﬁs on the wedge surface, where simple solutions can be con-

structed, are also studied.

To illustrate the general nature of the flow (throughout this
section we refer to the flow B, = 2,00°, M, = 1.49 , cuy = 2.12)
the reader should see figs. 2(k) and 2 (i). The former is a scaled drawing
of the actual characteristic mesh in a coordinate system thet follows the
initial frozen shock path. The physical (x, y) coordinate system involves
distances that are both very large and very small (in each coordinate) on

the same characteristic and hence is unsuitable. For the coordinaté



system chosen we have

N - 4

—

3
X = * €an @,

The initial frozen shock path is the line JX, = O and the angle <

corresponds to the angle

13 -1 tan 4 , tan $o
= “tan
(tana + tan ¢,)

in the physical coordinate system. For instance when 4= -E;:- y B= ¢. .
This drawing clearly indicates how the bending of the negative character-
istics (and consequently of the alpha-shock) modifies the location of the
flow prope}'ties .over large distances from the wedge surface. Notice how
the physical step length along the wedge surface increases as do the
shock mesh lengths further out in the flow. It is also interesting to
observe how the characteristics are in fact 'self correcting'. That is
they converge in regions of coméar abively large gradients so reducing the
step length. This effect can be seen by tracing the last few negative
characteristics in the diagram. This diagram does not shc'»'r the whole
flowfield; the characteristics are traced to the point where the alpha-

shock is repla.{ced by a freestream Mach line.

Fig. 2(i) shows the departure from equilibrium of the vibrational
energy, - < s plotted along the negative characteristics emanating
from the wedge surface. This is a very effective way of showing (in a
qualitative manner) all the decay ‘processes in the flow. The development
of the equilibrium core (where® = &) can be traced simply and the decay
of S - on the wedge surface can be seen from the variations on y = O.
The maximum value of the departure from equilibrium is always embedded in
the relaxation region so that tracing the path of the maxima gives

essentially the shock wave trajectory. The approach of the maximum to
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its ultimate value at infinity (which we denote by (F=6)mareo )

determines the rate at which the shock wave develops. The decay of the
alpha~-shock is also adequately expressed by following the variations

where the negative charaoteristics terminate. Notice how the alpha-

shock reaches zero strength before the maximum value of the departure

from equilibrium has reached its asymptotic value at infinity. This is

true for all the computed flows which are fully dispersed at infinity and

is far more apparent as the wave strength is decreased. The non-uniformities
in the flow variables far downstream but near the wedge surface are not
exhibited on this graph (since all the flow far downstream is in equi-

librium) but will be discussed in section (3)..

The. quantitative results for these decay processes are best analysed
| by first normalizing quantities and then plotting on a logarithmic scale.
We shall represent all decay processes by use of the departure from equi-l )
librium <~ and shall normalize this qua.ntity for the specific process;
under discussion in the following ways. To illustrate the shock wave

development we plot G 65«-« - &~ %Momoo against y. In this
(6_"" G'Bo - (9"— G'Ba-msoo

expression (&-< )max represents the maximum value of €-o along a posa.t:Lve

characteristic and (- & )paxe.o i8 the corresponding quantity at

infinity. Since initially the maximum of S~ is located at the alpha-
shock, this expression varies between 1 and O. The alpha-shock decay is
represented by plott:.ng ;"‘ 2 _ against y (for fully dispersed waves at

infinity) and by plotting (F- e = G- Sdeo against y (for partly

dispersed shock waves at infinity). Here (§-e& ), represents the
departure from equilibrium at the alpha-shock and (=& ), .o is the
corresponding value at infinity. The approach towards the equilibrium

state on the wedge surface (and hence the appropriate relaxation distance)

is investigated by plotting -LC"Z:_M— against x. Suffix w refers to

s‘} o
quantities along the wedge surface.
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For each decay process in this example the accuracy of the
calculations made.with'steps corresponding to 1/50th of the total o
variation on the surface is checked by usiné steps corresponding to
1/lOth and 1/250th of the © wvariation. By ploitting all the results
in the above manner we shall be able to define precisely what we mean
by development and decay distances which have, of necessity, been employed

rather vaguely in the previous text.

The results for the 3 main decay processes are displayed in f£igs.2(1),
2(m) and 2(n). Base e logarithms will be employed in mathematical expressions.
If we refer to fig. 2(1) we see that to & very 'good approximation the decay
on the wadge surface is exponential. This is found to be generally true
for all the flows computed so that we shall be able to give an analytical
expression for the rate of decay fromfthe tip giadients given in section (4).
The effect of inaccuracies is clearly exhibited by comparing the calculations
made with 1/10th the total variation of o per step with those having
1/25Oth of the total o~ variation per step. Notice, however, that these
inaccuracies are only apparent when the flow aiong the surface is very
nearly in‘equilibrium.f We would expect, in fact, the numerical results on
the wedge surface to'be_the most accurate since essentially we are integrating

the streamline equations along a known boundary.

In fig. 2(m) the alpha-shock decay is plotted and on the same graph
the linear decay rate is exhibited (see Chapter 5). This enables us to
diétinguish the non-linear effects which clearly cause a slower ratg of
decay. The linear theory is reasonably'accurate'near the tip but fﬁrther
out in the flow the results are best represented by a rather smaller,
constant rate of decay. These conclﬁsions are justified with calculations

for 3 different step sizes. Deviations from the line establishing the

slower rate of decay are shown to be due to inaccuracies in the calculations
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rather than to a renewed 'speeding up' of the decay process. We can
explain the two rates of decay physically by recognizing the fact that

the linear theory takes into consideration only those negative character-
istice that originate at distances infinitesimally c¢lose to the wedge tip.
This is a good approximation only for extremely weak wave flows. The
modification that results for stronger wave flows is that all or the
majority of the negative characteristics originating from the wedge surface
must be taken into account. The characteristics that originate further
downstreanm caxry'smallef disturbances into the flow so that we might

expect a slowing down in the decay of the élpha—shock (which is controlled
by these signals). To determine the.character of the alpha—shock decay we
have only ?9 fix the 2 lines that signify the 2 decay rates. The first
line always passes through the point where Eéé}f%i =1landy =0 and
its gradient is known analytically from the tip gradients which are estab-
lished in section (4). We shall call this the initial line. The second
line can be located by specifying its gradient and ordinate of intersection
with y = O, We shall call this second line the far-field line. The alpha-
shock decay distance will then be defined as the abscissa of the ordinate
on the far-field line for which %é;ff;%* = 0.01l. For instance for
this example the decay distance would be 42.

Fig. 2(n) gives very much the same kind of results for the wave
development. There'are 2 characteristic rates of decay but the far-field
line is not predicted as accurately as it was for the alpha-shock. This
is principally because the calculations are extended to much greater
distances from the wedgelsurface but also because exact boundary conditions
on the alpha-shock are not available. Nevertheless the convergence of the
calculations for smaller step sizes is clearly established and deviations
from the far-field line justly attributed to errors. Notice that the

inaccuracy in the last point on the graph computed with l/SOth of the s
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variation per step is only 2 per cent. Fig. 2(n) also iilustrates rather
more precisely some of the features present in fig. 2(i). The separation
of the inflexion point in the vibrational energy from the alpha-shock and
the slower wave development are now clearly defined. The characteristic
features of these graphs can be interpreted in the same meanner as those
for the alphé-shock. We shall define the development distance as the
abscissa of the ordinate on the far field line for which §§?L£>=9‘= 1l.1.
(F- Pnaxeo

This definition ensures that the characteristics shock wave profile has
essentially the same shape and width as the shock wave at infinity. With
the above definition, for this example the development distance is 80,

Reference to fig.2(j) shows that this is quite a realistic distance in_

terms of comparison of shock wave shape with that at infinity.

-

SECTION (3)

Entropy gradients in the equilibrium flow far downstream
from the shock wave

The term entropy will be émployed as in the previous text when
referring to the real gés entropy. In the high Mach number flows computed;
by Sedney, South and Gerber (1962), the appearance of entropy gradients
faﬁ downstream was attributed to the initial gradieﬁts resultiﬁg from the
streamlines having passed through a strong but decaying alpha-shock. A
linearized analysis by Lee (1964), using the frozen flow at the wedge tip
as reference state, shows that indeed all the gradients in this t‘entropy

. layer' are proportional to the alpha-shock curvature (except, of coursé,

for the pressure and flow deflection which are uniform in,this'region).

Entropy is produced across the alpha-shock and in the non-equilibrium
relaxation region 6f the flow. For the strong shock flows discussed by

Sedney et al. the former is no doubt the dominant mechanism; for weak wave
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flows, however, the entropy jumps. across the alpha-shock are of third
order in the alpha-shock strength. We shall show that the major contri-
butions to the entropy production arise from the gas relaxation and in
particular from the departure from equilibrium in the vibrational energy

initiated by the alpha-shock. On the wedge surface this effect is of second

order in the alpha-shock strength.’

We shall define the 'en}ropy layer' as the region far downstream
over which the entropy is non—uniform; This layer has a thickness which
is comparable to the shock wave developmentrdistance because essentiélly
it is a manifestation of the wave development process. We shall define
the 'alpha-gas entropy layer'! as the region far downstream over which
other thermodynamic variables than the entropy are non-uniform. This
layer has a thickness which is of the same magnitude as the alpha-shock
decay distance, which for very weak wave flows is much less than the shock

wave development distance.

To examine the situétion precisely we nee& to know the magnitudes of
the entropy productions dﬁe to relaxation and due to the irreversible
processes éccurring within the alpha-shock. On the wedge surface there
is an entropy jump across the alpha-shock followed by a continuous entropy
production due to relaxation. Far downstream there is no entfopy production
because the gas is in equilibrium. There must also be an entropy increase

through the shock wa&e at infinity. This is due solely to relaxation
effects (when the shock wave is fully dispersed) but can be calculated
without any knowledge of the non-equilibrium processes by using the equi-
librium shock relations. We can then make an interesting physical check on
the mechanism of entropy p?oduction by showiﬁg that the integrated entropy
production due to the relaxation processes occurring within the shock wave
is asymptotically equal to the entropy jump given by the equilibrium shock

relations,
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The increment in real gas entropy due to a small cha.nge of

vibrational energy is given by (see Vincenti and Kruger (1965))

de = (2, =)

v d
Since.
E - :—-eo + Cnd (T- ‘)
and 6 = S 4+ Sud (_rvtb-' |

the above expression can be written as

d¢ = cub (( &- 6‘3 de

Cevv+ & 5 ) (b & o= :-.-.,)

The entropy change across a weak alpha-shock wave is given by (see
Liepmann and Roshko (1967))

3
As = Y“(Yfﬂn‘;‘f on + O (o3)
la (Wt ) =

The contribution from the gas relaxation on the wedge surface, however,

is given by

- o
(c,\\’-\— - - ;—'N\( Cv\k*““';aox

S = S"oo

CV\¥ 3.1

From this expression we can construct an approximate analytic solution.

We assume that

=

(FE-e)= E-=), e =Zw (see fig. 2(1))
where ., is the relaxation distance on the wedge surface. We shall

use the rate equation in the form
Vde = ?G:“ 6.) dx
Cos Ow
substituting these expressions for (= -e) and do into 3.1 gives

Sus RKeae 2

e G-<) dx

A S = Cuib
V a0 (CV\&a-\' = ;;\(Cv\\* & ':-”3

Se ‘° =0
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' 3
Neglecting terms in the integrand of O( B, ) gives

g=s -1 4 -~ =X 2o¢
ds¢ = ks g"@- S e = dx
SeSo, .\7—0 Co.’,ew Amo
Hence a : Rk
oos. = eEdm, (1-e =)

) P
Writing (=6 ), = < (T, - 1) gives

—_— > 29:
Svn o CTom1) Sy (l- e §W>
2L N, con Ow /

S-S =

" As x =~b® co the entropy production on the wedge surfaée tends to
the value
e ™S
Curvd eo ( (o' l} iw

— o2

For Gy = 0(1) this expression is O( ©” ) and hence much larger than
the entropy production term across the alpha~shock which is 0O( 9\3 )e For

an actual comparison see fig. 2(o). Notice that 3.2 implies that

(s—s _ Lew =
cay - @)

The entropy jump across the shock wave at infinity is approximately
the same (it is in fact slightly smaller) as that across the :f.‘rozen shock
at the tip. The overall flow deflection is the same and differences in
the two contributions can only arise due to the differences between the
equilibrium and frozen values in the coefficient of 6. The ‘'entropy
layer' must therefore involve a transition from an entropy .v'a.lue on the
wedge surface which is of order 6:,' to a value at infinity which is of
ordex 63 . ’.['his implies that the entropy layer thickness is of the same
magnitude as the development length of the shock wave. By determining
the streamline trajectories in the flow and then integrating expression 36l

along them we can calculate the entropy variations far downstream. This
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is done in fig.2(s) and supports our physical arguments.,

The mechanism for the entropy production is known; in particular
we can calculate the entropy production across the shock wave at infinity
either by integratiﬁg 3.1 through the wave interior and finding the

asymptote or by simpiy applying the conservation equations across the

f

non-equilibrium regione. !

If we choose the former we get
2 o

_ ng (@] (cv.p-v - ':-..b(cﬂs-\-o--;.,)

- C‘w

(taking the freestream entropy as zero)

S = Cuib

An upper bound for this expression is

o Kl
Covb \ e ")M&xw L

where L is a streamline wave thickness.

If we calculate the entropy préduction from the conservation

equations we get

. s . 2 .
S = Ye (YQ-H) Mc.o; ew‘ - O (Bw ) 3e4
VA (“:op"\.;

The results of Chapter 3 show that we can write

3

(E‘—- 6-3“ " ve (Ye (‘(e'\j.‘f ‘?(Y’-""S—m:; ew - O(gz)
“ B (Miem V) (Ayelyey'- ‘)

Hence if we insert this expression into 3.3 and compare with 3.4 we

see that we must have ( for cuny << | )
)
L ~ S0,

which has physical justification (see Hodgson and Johannesen (1971)). An
exact comparison between the two methods for calculating the entropy Jjump

is shown in fig.2(p)e.
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Alpha-gas entropy

The significance of the alpha-gas entropy lies in the fact that it
is directly related to those thermodynaﬁic properties of the fluid which
are the same for both the real gas and the alpha-gas. The real gas
temperature and velocity changes, for instance, are related to changes in

the alpha-gas entropy by the energy equation. That is,

. [ 3
Spal ¥ =+~ TV = constant

Differentiating gives
@»*AT* do « VIV = O

Dividing by T,

fl

c_?‘.(d-_.“-_‘r) -+ (—_-\;:)d_\f = - c‘:r_ clS«.

The ;lpha-gas entropy increments can be either positive or negative
depending on whether the vibrational energy is decreasing or increasing.
For the flow of a relaxing gas through an expansion, the alpha-gas entropy
increases while in shocg wave relaxation regiogs the opposite is true.

The changes in the reél gas entropy, howgver, can never be negative and

in non-equilibrium regions the entropy always increases.

The alpha-gas entropy productiohs along the wedge surface and through
the shock-wave at infinity have the same magnitude (see figs. 2(0), 2(p))e.

Approximate values (which are upper bounds) are respectively

\ = '_\l":_ (Se- T \ = O(GJ)

ond. \ - :::» ( Fem Foo) \ = O(Qw)
(we are assuming that any variations in temperature far downstream are small
compared to the total temperature jump across the floﬁl Any contributions
to the total alpha-gas entropy production on the wedge surface from alpha-gas
entropy jumps across the alpha shock are negligible since these are 2

orders of magnitude in the wedge angle smaller. The small entropy jumps
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across the alpha-~shock are important, however, in explaining the formation
of the alpha-gas entropy layer. Here we are considering differences in
quantities which have equal magnitude (namely the alpha-gas entropy
productions at infinity and along the wedge surfa.ce.) and consequently

any 'small' effects are not negligible.

Inspection of fig.2(q) shows that the alpha-gas entropy layer
thickness is comparable to the alpha-shock decay distance. The contri-
bution towardé the total élpha—gas entropy ﬁroduction on the wedge surface
by the frozen shock at the wedge tip is 0.000056. This has the right sign
but is not wholly sufficient to account for the variations of the alpha-
gas entropy far downstream. We observe, however, that the alpha-gas entropy
production jhtegral depends on the local temperature which is slightly
higher at the tip because of the relatively strong alpha—éhock there.

This effect woul@ tend to increase the alpha-gas entropy production on
streamlines near the wedge surface. We can justify these assumptions
rather better by showipg.that the rate of approach_of the alpha-gas entropy
to its equilibrium value far downstream but high above the wedge surface

is similar to the rate.of decay of the alpha-shock measured in terms of
the temperature. This comparison is given in fig. 2(x). fT}_is the
temperature-immediatelyVdownstream.of the alpha-shock. The variable S,

_ denotes the value of the alpha-gas entropy on the wedge sufface. The
variable S4e denotes ﬁhe equilibrium value of thedlpha-gas entropy far

downstream but high above the wedge surface.

The alpha-gas entropy is related to the pressure and density by the
relation

\

- Y
Sa = 4‘3 \9@" 0— -—Qo} QQ‘?-%O + constant

Far downstream the pressure is constant so that variations in alpha-gas
entropy correspond to variations in density.-. Similarly from the equation

of state the density vaxiations are related to the temperature variations:
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and so on. The alpha-gas entropy layer therefore has the same thickness

- a8 the temperature, density and velocity layers which exist far downstream.
The thickness of these layers is comparable to the alpha-shock decay
distance. The real gas entropy layer which measures the relative magni-
tude of the non-equilibrium on successive streamlines extends over the

whole flowfield.

SECTION (4)

First order wedge tip gradients and their use in providing
analytic expressions for the initial decay and development
rates; solution on the wedge surface

The sﬁock wave development and élpha;shock decay have been investi-
gated in téims of their initial and far-field decay rates. No general
expression for the far-field decay rates is at present available but the
first order wedge tip gradients are well knpwn (see Capiaux and Washington
(1963)). We shall adapt these so that they give analytic expressions for

"the initial decay and‘development processes.

If z is distance coordinate along the alpha-shock and Kg denotes the
alpha-shock curvature then the pressure gradients at the wedge tip axe

given by

(3;\1) - - () 05 (So-we) 4.1
¢, Vo ( @sTMe * gV ot (¢ ) Siw o (ﬁ):)
and

), - @), e

- with
Ke = (32). &s (#.-62)

3.
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The gradients we require are

(&-’-— &)
(‘z° & - .
J j- (F-=e ) , for the wedge surface decay
oL
2oq 5222
( s - ) ; for the alpha-shock decay

J (#eg T2 dem )

dy

for the partly dispersed wave
b alpha-shock decay

d ( _eoa’ ("“") (f-auuwo)

(Fr)o =

, for the shock wave development

dy .

These gradients can be evaluated at the tip in the following manner. From

the energy equation we have

C‘\m.—r - & « TV = constant
l —
Differentiating and substituting dT = b d= gives
S dsE 4+ de + VANV = O 4e2
Cv\"

By employing the rate equation for de and eliminating Y 9V in terms

of -— ‘S(;’ A’P wve get

Cpe d(e‘—6‘3+ .K_E_s_-:fl(l-\- cm*’)d-ﬁ - J?-di’ = O

Cwvid
Utilizing the expression for the pressure gradient along the wedge surface

(equation 4.1) gives

Cwnd

(- "3 ) g ‘ b Qf")b(;" €°> ( Cha
32 o ( e T8 -\/ Cosj.A,,-v Q,,V Co€(¢> e}sw\/u,( \\}
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Hence the gradient we require on the wedge surface is

d (%«& g_-:i)o ‘ | ( d(F-)
dx (;- 6.3’ d= °

c o () e e (82

Veast | T (g oV ac(Ben) sim52))

The initial wave developrhent and alpha-shock decay gradients can be found
in a similar manner. In particular we notice that initially the maximum
departure from equilibrium always occurs on the alpha-shock. Hence we

need only to :find (‘\—(5—-—?——1‘)0 « Referring to equation 4.2 we have

%
-C_}_?:A;* Ac".‘. V&—V-S O
Cwid

Along the alpha-shock dJs= O so0 we have

Che d(F-e) o« AV = O

b
4 - ok 2
Since dz = $ 49 then

Cuid d=
But -
P)
. KS - 5‘5 Cos (ﬁbc“eo
d¥
&).
Hence
e (dlm) | zar (), s (e (7).
Cwvib dz ° ) :
) %o
Inserting dz = S fo gives

‘:k:.(é(z-c)> o @), s (o0 (55
cvib d‘S . S'm¢ (_%)

The initial alpha-shock decay and wave development rates can therefore

be obtained from the above expression by noticing that



- 58 -

d 40}%§Ef§a _ L d (5-o)
d 3 - Q?—ewo J\é

and

d £ %;.‘?{:*:‘;S‘Z‘i’:::f ' “ RIGE)
( (6-_,3) E- ‘5'«“») '

dy o

In the next Chapter we shali use these expressions to give a precise

evaluation of the initial decay rates.

Simple solution on the wedge surface

The characteristic results indicate (see next Chapter, but for a
specific example in fig.2(1)) that to a very good approximation the
departure from local equilibrium of the vibrational energy along the wedge
surface decays exponentially with distance. We therefore assume that the;‘

departure from equilibrium is given by =

F-a) = (F-. ¢ ™
The relaxation distance ™. is given by the tip gradients discussed

ébove. It is

b

——i ?" ((.“, b \) - Qrg- D) Lc,a

x, < W, 0sBw pa ( @3 jnot Q’V" Coe(d’.“e.) SD‘\‘;MOGEQ\,)°>

In order to derive a solution, however, we must make another assumption.
This is because the aséumption introduced ébove can be shown (see section
(1) of Chapter 3) to be a degenerate form of the rate equation. The
variations of pressure, density, temperature and velocity along the wedge

surface are given approximately by

R e =
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“Bn
Mfw

e = <Q«2::T‘_ (i q*) O
T - ( e! "‘w in"_)&") Ow

Mc.o" \3 > M,‘ - \)

-\
, ¥
(W&s)® (% V)*

awd ‘ve. - _\7" - (

The percentage variation in fhe pressure is largest aﬁd it is
this quantity for which we seek a solution. Consequently, we cannot
assume that the velocn.ty is constant because then the strea.ml:.ne momentum
equation implies that the pressure should be constant (see section (1)
of Chapter 1 for the streamline equations). The percentage variations
in the density and temperature are similar; we assume that the density
is ‘constant. The streamwise momentum equation_can then be integrated

and gives
b-be = g (VT

The temperature is obtained from the equation of state. That is

- X
T T

The energy equation is
L ~r™> = L~
c‘,;r'-« s +« 3 = Chpa + S o+ 2 Voo

since F e Few (T then

m—— ™

C”("-\ “+ Cwvidb (T—l) + s“-—"?- -+ Ji—\_fzr_ c.),a.-o- .-Jl;'\/—,o

That is

— _— > \ g >
LC*a_-P Cv“’. \ ++ s =& < 3,;'\7' = C.‘,o,-\- Cv\s-‘- 2. Vo .

Eliminating the velocity and temperature by the use of the equation of

state and integrated streamline momentum equation gives
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S i

Collecting terms gives

b (- 1) - @D ke Caeed- 1 05)

Inserting the expression for (s— o ) gives

_N_._
* = —.Q‘c (&- 6‘)0 e ™ -~ 9°(C"“‘" Cwid =~ V1o + 1—-%_-1.))

(C“bﬁ C\,‘.) (Cv\%"‘ Cva_)

This solution is plotted in fig. 2(t) where it is compared to the
linear theoxry (sée section (2) Chapter 5). It is seen to be a closer

approximation to the characteristics results.

As i =D O the pressure tends to the value

9\0 (C—\aa* Cop = Vo + J,-. (-\Iab_v-‘.))

Q—v-\ -+ Cvu.)
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CHAPTER 3

RESULTS FOR FLOWS WITH c<vip = 0.5, 1, 2
AND 3 ; APPROXIMATE SIMILARITY REPRESENTATION.
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INTRODUCTION

Chapter 3 presents all the results of the numerical computations.
Specifically we are interested in the variations on the wedge surface,
the alpha-shock decay and the shock wave development. Consequently, a
section is devoted to the detailed representation of each of the above
physical phenomena. The results are plotted, where possible, in concise
similarity form by scaling with respect to critical quantities. For the
alpha-shock variations we can employ the weak wave linear theory (see
Chapter 5) to give alternative scalings. Section (4) assumes that the
similarity exhibited in sections (1), (2) and (3) is exact and pursues
the consequences. This leads to simple scaling laws for obtaining critical

quantities: of interest at any Mg, oF <Sviv

SECTION (1)

Results for the variations along the wedge surface

A critical quantity (indicated by a‘* sﬁperscript) has been defined
in section (4) of Chapter l. In this Chapter these quantities will be
employed as scaling factors which permit a concise representation of the
numerical results in similarity form. The nature of the similarity will

be discussed in section (4).

For all the computed flows, we have found that to a good approxi-
mation the variation of the departure from equilibrium along the wedge

surface is exponential. We shall therefore write

— ' - =
(g‘-u¢:3 = (§:~ a:)o e Stw 1.1
where 3Qv is the relaxation 1length on the wedge surface. An anélytic

expression for X,, can be obtained from the wedge tip gradients given
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in section (4) of Chapter 2. That is

:-_q-\ Cwe
mp el e (e, Ged(E I
w dw V,ces8,, Sra (co;).,-v Po Vo cok (#,-0.)s u'vs‘}o (3_91;)‘3 .

We can explain the dependence on <.3 physically by realizing that if
Cen << 1 then it is essentially & that relaxes (with very little

change in & ) but that for <.w>> 1 the opposite is true. Since the

alpha-gas entropy layer effects are smaell we can say that o —> s

on the wedge surface as *x~> e« , The small angle expansion for Qs——_s-l‘

is
TE- o= cuy (Tom)

= Curvd (‘(;-l§ V“\.;.» ew

e T
Hence =_ A . Ow ' o
(5-=) . ) « O(o~ *6},‘7

E- <\
This form is plotted in fig. 3(a) and compared with exact results from

- &) (9::)

the characteristics solution. We can therefore write

— ‘ I
C o~ S5 Tl (Ye“) e (-‘\;.5-!) Ow
= - 6‘)° (VALY (‘(4-\) o (N:."_l){ Ow

R

\‘-G (‘(«."3

Ye (Y{--\) 1.3

N

The quantities =,- << and <2 — =, measure the amounts by which < and
&= respectively have relaxed. It is plausible to assume, therefore, that
at any station on the wedge surface (excepting the tip) the ratio of the

amounts by which o and = have relaxed is a oconstant determined by the
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value the ratio takes as xX~v e , That is

Hence
—_ - - Qe=ve) ) B
d (6‘ c') (l -~ 76(Y¢-\) s
From the rate equation de = ‘\7%«?9.., (F)dx 5o

substituting above for de gives

d(s-e) o« — S (“ (remwe) | (&- &) duc
V s Ov Yg Cret)
Assuming that to the approximations made R= Q" ’ '\T=_V', and

integrating we get

- ‘_,_Xz__ew ( - lf(;"_c)) >
—~3 =~ cos Ye(Ma=t
LG‘ 6"§ = Le"' ‘30 (< °
from which
— ) = Qo ( \ Swb
X T Cpa
VD “’)ew 104

This is (é.s we shall see) a reasonable approximation to 1.'2 since the

term involving (Y -l ) is small,

We can also show that X., should have the form given by equation
l.4 by requiring l.l to be compatible with the rate equation. That is

substituting l.1 infto the rate equation we get
X
3 - X
de - £ (= <), e v d
V<wsO,

%

Integrating (assuming ¢ = Ro » V="V,) gives

e

—~—

Po (;-%o Xw

—V-o cos gw

+ constant
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when X ~» cO s —-P o so that

constant = e

When X = O e w e, . Hence
7o - &
hd -Vo ¢os O, (E‘— 61,)

- L((... (= -=d

Np ¢os B, Q;G. - <o)
= ?0 { - Cwuid
WV, cosBw cpa

This also implies that o relaxes in the same manner as - with the

same relaxation length.

The exact expression for X, given in 1.2 is plotted in figs.3(d)
and 3(c) and shows excellent agreement with the characteristics results.
The variations with the wedge angle are essentially due to the term
containing (Y- ) in 1.2 and hence are absent in thé above approximate
derivations. We can simplify l.2 by writing it as a power series in the
wedge angle. That is we express all variables in power series of the
wedge angle with the freestream as reference state, substitute into 1.2
and take successive approximations. This gives (for the first approxi-

mation)

_——

XX nd - cpe
w Veo (Cosj;\»-\"\/ “h)“obs‘“j*o(4 \

This is the value predicted by linear theory (see Chapter 5, section (2)).

Since s .\V\?JAQ = a‘_ ) co S"_ju\ oo = g“-?»" ‘)
d Ye Mz
o (méem )™
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. Cwih
o (HA R D T R )
w 4 Cha
Y& Moo

2 (M{w-IB

The critical value of this quantity is Jjust its wvalue at the critical
-Mach number.,

That is, (denoting the value of X pred:.c’ced"by lineaxr
theory with the additional suffix 1)

Cvib
— i Je—1i i a
R G e =
- — M -1 )
— % ¥ -Evo
O‘-wq_ MGGD Cv\\:
Cpa
A& (%o = )
CV\k
Moo l =+ QM-‘X “““ Spa
= = e Q(nﬁ, )
Mfoo

Lo oG e (G2

Cpra.

A ( ‘v‘b \) ("2—05" ‘3

M
The bracket multiplying ﬁ;i is close to 1. For our calculations
we can assess the deviation from 1 by choosing =1,
and Mfww = 3,8. We then have

Hwe
Hence approximately
e

- (s
';_C:",_ *\?-o

The comparison between this rule and the characteristics is given in
fig. 3(a). i

- 1.4

In particular we expect this rule to be most accurate for
Mio = Mg >> 1 and

Cvib << 1.

This example illustrates
a simple but approximate similarity when quantities are scaled with respect
to their appropriate critical values.

For the cases treated in the next

-
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sections no general analytic expressions are as yet available and it is
difficult to decide on the exact nature of the similarity. In particular,
any deviations from the assumed similarity curve may be attributed to

errors in the characteristic calculationse.

To illustrate rather more clearly the dependence on Oy, we expand
the expression for Xy to first order in Oy. We employ the small angle

expansions

- M ew -+ O(e:
Ro | + s D)
=
"o = Mim = (Qe)RrD) iy, « OC0)
- Qé»"‘)"

b, - Mo + M9w+ O(e:)

A (Rt
= YeMe, Q‘*)M{m- 4 (Ew ‘) 3
bo |~ @f—_fs;e b Yevn ( T >a + O(ey )

(see Liepmann and Roshko (1967) p. 93 and p.389)
Substituting these expressions into l.2, expanding and neglecting

terms of order 61:-' gives

%~ Yo "ée Cos Bry - e | Q4-3%(w»(74-'3-‘@(7#‘7) 3
(- S || Y el Yo 226

Hence Xy decreases with increasing ©y. Reference to fig. 3(c) shows that

this expression is sufficient to account for the variation of relaxation

distance with wedge angle.
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SECTION 2

Results for the alpha-shock decay
A logarithmic plot of the variations along the alpha-shock has

been given in section (2) of the last chapter. It was explained there
that we could fix the initial and far-field decay rate lines on the
graph simply by knowing their gradients and the intercept of the far-
field line on the line y = O, In this section we shall be concerned
withplotting these 3 quantities and in particular we shall illustrate
the essential non-linear features by compa.rison.with the linear theory .
(see Chapter 5) for the weak alpha-shock decgy. This theory predicts

a single decay rate given by

-3‘ -l = Q‘.F-‘) cV‘b ! M'Gb
ae 2 Y"’L Cha Q\z—“_\)'\.

where Ta’a 2 represents the linear decay distance.

- We shall represent the initial and far-field line gradients in
terms of decay distances represented by S'd_ ° and '3'4 respectively.
The intercept of the far-field line on the line y = O we shall denote by
the symbol \)a, . With this notation the equations to the initial and

far-field lines are

: : 3
(£ _ & S
-2,
— 3 ) .
and (6‘-— % _ NG Pt respectively for
QF" "bo N e ‘

fully dispersed. shocks at infinity and

@"‘ ‘3 - C-_" 656.00 e_ Sao
G- °'§o - @"’ S)a

— = S
and k‘f"‘%— C?’“"d.co _ Q“(“S"’*a.}
C;—‘\o e ‘Baeo

for partly dispersed shocks at infinity.
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The variation of the far-field decay distances with respect to
the parameters O, ., "¢ and cwb are illustrated in figs.3(e)
and 3(f). TFig. 3(e) indicates how 3, varies with @, and < . The
decay distance decpeases as ¢, increases. The linear decay distances
(which are independent of 9y) are plotted on éhe same graph and are good
approximations only for E%g << l. The non-linear effects are clearly
.exhibited in the sharp rise of the curves to a maximum when &y = Gx .

In fig. 3(f). the variation with €, and m¢ is shown. The curves are very
- much similar in shape with the maximum corresponding always to critical
conditions. The Mach number dependence for large Mach numbers is weak;

the linear theory predicts the same effect, essentially due to functional

_‘v.\..'fgi. Ky
(G O™

relationshipé like
It is clear that if an exact similarityAscaling with respect to
the critical values exists then in particular it must scale the linear
results which represent the limits to the cuxrves as %f’-b O. This means,
of course, that we can just scale qﬁantities on the linear results and
get an equivalent similarity representation. This procedure is prefeﬁ-
able because the linear scalings are known exactly. Indeed fig.3(j)
indicates that there is considerable scatter in the critical values. This
scatter is partly accounted for by inaccuracies in the characteristics
results. More accurate calculations with l/éSOth of the véiiation of «
per step (for the cww = 3 flows) indicate that the decay distances
increase above the values calculated with l/SOth of the variation of <
per step. The results are still scattered, however, but this could be
due to the calculations still not being sufficiently accurate or possibly
due to the calculations not having progressed fér enough (because of
computer time restrictions). We must emphasise, however, that these

' *
inaccuracies are only present for the computed flows with &y = Oy. All

other calculations ére_adeqnately represented with the larger step size.
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Fig. 3(g) shows the quantities ba plotted against gi{f. In both
figs. 3(g) and 3(j) the similarity representation is good except for
Oy = 9::,. In fig. 3(g) more accurate calculations indicate that the
scatter is due, in part, to errors in the characteristics results.
Notice that it is not necessary to scale the quantity ba because all

results tend to O as 2:: =—> O. The linear scalings are represented in

fig. 3(h).

We shall investigate the initial decay distances (Y«o ) by use of
the wedge tip gradients. Linear theory predicts no ©, dependence and

so in fig. 3(i) would give the line 2{‘—.—" = 1, We can see, however,

L Y4
that there is quite a marked variation both with 6y and <wb , especially
for the frozen Mach number of l.4. The appropriate wedge tip gradient
has already been derived in section (4) of Chapter 2. Confining our

attention (for the moment) to fully dispersed wave flows at infinity we

< )
5" T Es.

d
_ - C_*’_'h 92 Vo (Ia COS<Q$O"9°!

have

Coa ’ ¥o~ ?{(\;'_ "f°?:\é335(¢0'9‘b i—k) S‘;‘(bo
°
®
Ca 37 .
- - c__’g — 0> Vo _ dT cos(@-00)
MO BT - TR - pepietiee) | S0 Ty,

If we expand this expression as a power series in the wedge angle then
we expect to recovexr the linear decay rate in the first approximation.

The first approximation is

S = o = ()
Jao Q'Q'..- ‘j - Q"\‘(:»" l\"‘- Y.; Nm (""(' 3
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SRS
2 Ve Qo) ( (Fe) >

17(-6 ‘“}w C\“ "‘:«D

- Cud Q(__D Mg oo s
Cpa 1\(4{ Q\z;__ ‘)1.

From fig. 3(i) we see that the initial decay distances vary linearly

: : —_ =\
with ©ye It is therefore sufficient to expand oo

to O (6y).
The small angle expansions that we shall need are,

S T @t |
Vo = Ve - Y= O (83)

S

¢, = o ov Q) mEs B oz
M e cel)

bo = |+ 11&'% Ou + Yemle [LeDrfem 4C%s) ) g7+ O(sd)
Q“:»"'B 4. (l“\z“- l)

TN.o= |\« @f‘bm}; Ow '(ﬁé_—_t\,.\:_” (G!é*)w., A (AT V)
CFa-)* = XG0

- st e Yol OCR)

The cOefficient of e, can be found from (_“L (—%— \)
LO

o= O
Carrying out the necessary algebraic manipulations finally gives

U ) Mg | ML [ .
‘340 <pa aY{ Q\{» ]) < \ Q" ]3/3.( (5 3‘(,& Y;) 8

i/, b ey .
or S_ A _ R pa Yg (MEwm I} | — ‘;'\‘Geo - ( _":.‘(.'.‘?(5'-3\({)_‘, ¢ B,
<o b (Yf“l) M.FQ Q\f»— ! g

IWe can see from this that there is no possibility

of the critical scaling being a similarity scaling if the ©

term is not negligible. This is quite clearly the case when ’
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*
the frozen Mach number is l.4 and O, comparatively large (notice that

* . _
Oy does have a maximum near M¢w =-1l.4). In scaled form

Seo | — N%Oh.( = (s- 37;.) - Y.F> )

Vo MNeas "g
& l - sz_53h< 'é- S'S‘(é)-r ‘(.F) Sw

[}
The gradient of the line with 'é_:!;’* as independent variable is

__f__.!h_ ( "““(s “3ve) n) O,
\ - N'—ii'?h. (%(_553\({)* Y() Sw

* .
For Mgo = 1l.4, Snb = 3 and 6y = 4.4° the gradient is then - 0.34(6)
and compares favourably with the characteristics results plotted in

fig. 3(1) °

For partly dispersed shock wave flows at infinity the initial

-decay distance is given by

G‘-— ‘)

-\

S0 T (a—«—\ E Daw)

Hence

Initial decay distance for partly dispersed wave:
Initial decay distance for fully dispersed wave

Q;""%o— t" ‘30..»
C‘:" ‘Bo

We shall now expand this quantity in terms of ©y. We have already shown

that (section (1))

— v - ‘x O ~
Q - %o = - "QL?\(;@}:;; a4 - O (e\”’)
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The temperature ratio across the alpha~shock at infinity is

2 CY@-‘) ( “}-na;"' ‘) ( Y¢ "\:-a°“ ‘)

Q.G-k IS" m"_?.,cb

The normal frozen Mach number at infinity can be expanded as

- 4
Ye ~  Te Metl e _\QW_‘_ Ve et mTew - [Yet! mew
N Yo T m-) Ye almm1) \ * @ ot )

~ O(ew)

2
Nenw =

We shall write this as

"—Z"» = \ C‘(ew—ew)-.-'c,(e - O, )-\- 0(9 8:3

where c, = Te Mol "~:oo L+ 2‘1« B* e*lZM!op Yat! mew O(e:a.)
. W 2 (m&-V) A(nia) 4..@.., l)

awd Cr = Ne Q‘-n},.\;‘-w (Ya-ﬂ Me oo - o (ew)

e l(ﬁ—:ao"\) 4 Q _I)

Inserting this expansion into the expression for (a.oo. and expanding

2
to 0(8y - 9:;) gives

Taw = | v tufx) < (0w-8)+ E("Sh (oD o) e )Q" )

Hence

€ N = Do zngfﬂ(@m@,ﬁym)@w )

To a first approximation we can write
(?-— 6‘34"". = g‘f‘:'% ' ,(ev-"e\v*)cwb O Q—- 9-_;}(9 -e%)
Q——_ %° ~m ~ ( ew hd w
. Clv&;@f:fﬁkeé'm ew
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¥ B _
Neglecting terms of O (9\»/ I- -é— 3 above means that
w .

\(_f \(vc‘” V"\c.ob
U e T (meaoO)E

so that

E3= - (- E)EE- 0@ )

But

(Yot 1) (WewmD ™

e T
Hence

L;-’-._ 6'34» B * _ D

E 9. Q“‘ o )~ O (-%)
This gives -

C_-—- % - (—-— ()“w ~ ew

Qc.—' ‘-)b. Ow

We notice that the critical value of this quantity is 1 so that it c¢an

" be regarded as a scaled quantity. For the moderate and high Mach number
Bao

o
ao

approximate similarity rule. The function is plotted in fig. 3(i) and

flows (where is nearly 1), the above expression can be used as an

compared with the available characteristic results.

SECTION (3)

Results for the fully dispersed and the partly d:.spersed
shock wave development

We shall analyze the results for the shock wave deveiopment in
the same way as for the alphg-shock decay. That is we shall specify the
gradients of the iﬁitial and far-field lines and the intercept of the far-field
line with y = O. The initial and far-field development distances (inverse
gradients) will be represented by the symbols 4, and g respectively. The

intercept on y = O will be denoted by L o With this notation the equations
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to the initial and far-field lines are

3
Q?’ anax - (:‘- sbmaxao = e_ 3
(T e = (F- Darnne
_ _ - (3-%)
and Q-——- 6‘\1-@.% —_ %" A“\“"“’ — e_ S respectively.

C—— ‘30 - (_a S)maxnocs
Here (-« )pax is the maximum value of the departure from equilibrium
on the positive characteristics refl'ected from the alpha-shock. Initia.lly
this maximum always occurs at the alpha-shock itself so that the initial
~lshock wave development gradients are the initial 'alpha-shock decay

gradients scaled by the factor
(F- Do
LE'-’ 650 - G“'"’)Mo.xeo

A simplified expression for (F-e ). has been given in section (1). The
exact value of (-« )u., Was found in section (3) of Chapter 1., Here

we shall expand this in terms of the wedge angle.

The exact value is

@"" ‘-‘3 (< "\p‘..co (cra-\—cv.s-\ 1‘!{-"'\&-:. (cpa+ "‘q("’“* Coib- 6 @"“ C"‘b )
uo.xeb o § Ye h.;...b ( =S (‘\-0." c’““w - ! ) A

The normal frozen Mach number at infinity has the expa.nsion

YéMEno = Yo v ROy R, & ~ O (8 3

vhexe b\ = Ye ( Ht'L\} M:.-Gb
R a Q\‘ﬂ—c_ ]X‘A_
and Ry = YelyerD) min [ Nexlomds
X Qv\;"w— B A Mew— ‘3

(These coefficients are perhaps most easily obtained by comparing

" Ve Mew Ye.i“\e.oo Yerl M "-._P 3
¥€- = l <+ mxg QV\ _\) < py (__’__]3 gw O(ew)
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given in Liepmann and Roshko (1967) p.389 with

pe = 1 T (Bem)
= v 2 (RewrROZ)« 0(3) )

We might expect (- ), .. to be 0(ow) because we could define a

streamline wave thickness at infinity by

— -_ {
QQ - =) (.l‘.)
-
inflexion point

This is approximately equal to (by using the rate equation)

Vao(Fe-zd) O (< Ouw)
QE--— s-)maxoo @" G-Swwmoo

¢ [«V2Y 3
Since the wave thickness is O ( gw) (see, for instance, Hodgson

and Johannesen (1971)) then (S« ), .. is o(ey)
Inserting the expansion for M., into the exact expression for (F-¢)paxao
gives

( ( Ye+ RO+ h,_e‘:-s‘- (c,‘,“w Conbm \T— X (‘{c" R\O\, + k,_&:,') (cpa~ Q‘\D(&‘,Qﬁcﬂ\—s,efq-t cms)

.

& (\(,-«- R\ Ow ’RLS\Z'B (:.(q,“-.c...g_\\.

o
In the numerator the coefficient of ©,, is

\(: (qu_* Cv\b—\s’ - AN (C-‘,“* C\nt) (de* C\f\‘:" \) - LC};d.-\' Cv.b\‘-

it

Q\""* c"""’\» ( Yo 2y \) -~ Q\,Q-t C».\.,B(Zs(;_-ly;: + yr

o

i

The coefficient of ev', is

‘A Ye R, ( Cha ¥ 'c.,\;o-\ SL - 2 k‘ ( Cha -+ cws) ( <pat c\..\,-—\)

o 2k (Copar ) (Qed Copar an)—ve ) )
= 0
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The coefficient of 8, is |
(cra~ v - IT C htf 2Ye kx) — 2ka (cpa~ cv.\) (Cpa+ b= \>
- Q\’“"’ c\.‘s—ﬂ ( ¢ epax cwn=1) ( Ri+ 2veRe ) - 2Ra (cb%*Cv\\33
= Qba-r <‘n\;-13‘. R+ Ry Ccrar - V) (2ve Copan c.,.\,—\)-a.(c,.ﬂn%
- (epav e 1Y RS

Hence the expression correct to 0(6y) for (&-«),. . . is

- > ‘(:Q(e-!-l)-hﬂtoo 9"
Q‘:- Ano.xoo = QCV‘* b \\ 4 (f'\cln"’l w

2ve (2 (epaveny) —1)

etV (Yo e '= 1) mE, O

8 (#mTw- 1) ((2velreY'-n)

Expressing this in similarity form gives

CE— ‘»nmw . Cw >
CER W ﬁ 93\

We could anticipate such a rule by noting that

-
| — e - o0w
N¢ :

That is shock waves at infinity having the same normal frozen Mach

number (and hence the same value of (& & ) ) have approximately the

MARK 0O

o » )
same ratio of ‘e'vé e This similarity representation is plotted in

fig. 3(k) together with the numerical results.

"Fig. 3(0) shows the initial shock wave development distances scaled

with respect -'bo the critical developmént distances. These are just the
(;:"%o - (;-"A»omoo
Léz"' "")o

The results for ™mgw = 2.6 and 3.8 fall on to a.single curve but the

initial alpha-shock decay distances multiplied by
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results for mg, = l.4 fall on different curves depending on the vibrat—
jonal specific heat. The same behaviour was exhibited by the initial alpha-
shock decay distances where the functional dependence was explained by
expanding the appropriate tip gradient to first order in Oy. . It is

sufficient, therefore, to consider ‘the scaled behaviour of

(&- "'32"" (;— 6‘3“1&00 [‘
&E- ),

Scaling with respect to the critical values gives

( | — g&——s"inmxoo

(E;"' G‘)o

(= &)

G0

max 2nd (T-€), gives

Employing the small angle expansions for (s—<=)

- g ~ 1 (<) -
(\ G‘-—c‘ naxeo ( YelMew l\“-(‘(cﬁc—l)‘— D) "‘":‘-eoQ\-Fv‘ D) ﬁ' had )
(=)o - \— }*4 (Vi—\cvn\ (M-;Q-D “Ew (:'-‘Ie.(‘lc-'\-r’ V)
Q — %w} ( I — Ye (e ‘\ (‘le(}c'l\ “\ "‘\c.o ("{ao‘ ‘3 8“‘ )

@‘30 14 (‘(f I) Curh (*\co“) "‘f» ("‘(‘cYC"\—‘)

From the expansion for the normal frozen Mach number at infinity we have

1Y
1
L CNe-Ne) (M- ,3 2

O =
e Ye (Mev V) M2
. 1[.‘_
= L cuid C‘(cﬂ)(\r;-— l) (Mg \3
\(¢ (\{g,* \) M—;:OO
Hence
(‘.__ 6.3‘_“ } &\len}(vc-t\(wdqe-ﬁ'—l) Q“é» ) (9w>
(\ (— G o (\ - A= (2‘l¢.(‘l¢."‘§ - \) (""C-o"‘)"

- “é—::"“?x:"“’% (1 = QD)) (v e Y ¥ Ras O™ )
A= (2yelye-'Y -l) (< "‘)‘"
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Ow
or = 0 is

1l.35. This compares well with the results plotted in fig. 3(o0). To get

For an = 1, m¢, = 3.8 the value of this expression on

the gradients of the lines for Mo = l.4 we have only to add the gradient
just derived to the gradient found in the last section for the initial

alpha-shock decay distances. Values of "3: are plotted in fig. 3(p)e.

The shock wave development distance has been defined in section (2)
of Chapter 2. We shall represent it with the symbol 3, . Fig. 3(1)
illustrates the variation of 9y ﬁth Oys % and meo . There is very
little variation with < and the main dependence. is on &w and ™t »
The result of scaling these distances with respect 'Eo fhe critical
distances is shown in fig. 3(m). The results fall very nearly on to a
single curve; the scatter that we db get is where we expect it - for
%’é« le Here the shock waves are very weak and very wide at infinity in
comparison to their width on the wedge surface. The development distance
is also comparatively large and these effects combine to make the ;zompu-
tations long and costly; One is forced, therefore, to terminate the calcu~
lations at a stage where the far-field line is tenuously predicted. One
can state, however, that the values ploited are underestimates to the
true development distances. From section (2) of Chapter 5, for very weak
waves, the analytic estimate for the development distance is given by
T = Flmm,cs)ed
'We shall tentatively assume that this holds for all %w!:-‘ < 1l. Im
our similarity form this is .
B BN
w = (@
This function is plotted in fig. 3(m) and exhibits the qualitative 6w

dependence reasonably well.

Fig. 3(n) shows the variations of the critical shock wave development

distances with frozen Mach number and vibrational specific heat. The Mach
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number and vibrational specific heat dependences are very similar to
those of the linear theory for alpha-shock decay (see fig. 3(h)). More
will be said about the nature of the dependence on Mg, , Swd and Oy

in section (4).

Fig. 3(q), which is similar to fig. 3(m), illustrates the variation
of the far-field scaled shock wave d.evelopment. distances. The very weak
wave theory (see section (2) Chapter 5) predic'xts that these distances
should also vary like €y . In fig. 3(r) the far-field critical develop-
ment distances are plott'ed and compared to the corresponding far-field
elpha-shock decay distances whibh are approximately a factor of 2 g:gater
(note, however, that the critical alpha-shock decay distances are subject
to the error mentioned in section (2)). Fig. 3(8) compares the scaled '
far-field alpha-shock decay and shock wave development distances. By use
of fig. 3(r) (determine the absolute values) we see that for gf,‘. > |

- - © — —_
Yy and y, have approzimately the same magnitude. Tor 5?3 <<\ y Y78 «

The values of b can be found using the plotted values of 3 and 5y .
We choose to plot 3, (instead of $ ) for convenience in the mnalysis that
follows in the next section. We shall also need estimates ofg‘,in

Chapters 4 and 5.

SECTION 4
Discussion of general similerity and extrapolation of results .

We have seen in the previous 3 sections how the scaling of quantities
with respect to. their critical values has giv'en‘ some kind of similarity
representation. In some cases, however, this approach has failed (see
figs. 3(;:—) and 3(%)). To precisely analyze the nature of the similarity
from the governing equations and wedge boundary cond'i-bion‘ is a formidable

task. Simplifications have to be made; in particular, Blythe (1969) has



given similarity scalings for the very weak wave case. ' We shall
tentatively assume, however, that (in the appropriate cases) the
characteristic results are indications of an exact similarity and

shall pursue the consequences.

First we shall consider the far-field alpha-shock decay
distances which are plotted in fig. 3(#). We shall assume that an
exact similarity does exist so that we can write

— 9 -
EX G

%
a

«l

In particular this must scale the linear wvalues (which are the limiting
O.
values as gw—o O ) so that
-
SBae ~/
B [ (o)
34 LS
Hence the linear values can be used as scaling factors so that
~ iy
3« _ L ( e:‘)
3 ~7
a< o _(4 ( (o) )

The analytic form for the linear decay distances has been given in -

|

section (2). Therefore,

¢ -‘,—. 7 Bw
T o AN ha e ) -\L( ™

Ja . ;
(‘!4-'3 S MLoo ‘\za (o 3

Unfortunately we can say nothing about the nature of the fﬁnction

_\-(:a_ ( %::) becg.use the linear theory gives no indication of
even the initial variation with ©y. This expression does show, however,
how the critical values vary with Mg, and <vib . Examination of
fig. 3(r) reveals that these dependences are qualitatively correct.
The inaccuracies found in the determination of the critical quantities

in section (2) forbid a more precise statement.

If, however, we next consider the shock wave development then the

weak wave analysis given in Chapter 5, section (2) furnishes an initial
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dependence on all 3 parameters. In Chapter 5, it is shown that, for

'very weak waves, the development distance is a multiple of

B

< (»oe O O

e e
{ € oo

t

where B = £ o) ) Mfeo

- &
(e 22y ( ===
‘v 2L

haad
M~

4
and C = fent) meoo
po ( M‘:.‘,—\) (M“,E»" \Bt .

On the evidence presented in fig. 3(;) we assume an exact similarity

exists and write

SEEN ™~ O
- (=
This 'implies in general that
— — — O. n
Ty = Sy lmemyoon) T, ( éj;:) &
Vhere N can take any value and Wy, %™ Yy, are unknown functions.
This equation indicates that for similarity of the type under discussion
to exist the dependences on the flow parameters must be separable into
distinct functional relationships. .If, as above, scalings are taken
with respect to critical values at O = 9: then it is the Ow dep’éndence

that must be separable: the ML and <Swmd dependence can be coupled

in any manner.

The expression above must agree with the weak wave analysis in the

‘Qimit 91:-‘ - O. Hence we must have
N = 2
— Sw 3}
\3\;( 5:*3 > 1 a5 i“ - O
W

2
\(é'. Cwid (M:b-\ *

Qc“'ﬁ (6'«4- Cv\\) (Cycd'ka) *\an

-‘3‘,‘ (“‘” ? c.;g) o«
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Therefore

— —_— — : -2,
\3: = 3Oy (“Foo‘c““y‘jm.(\) O .

3 ¥ -2
\(E Cv\¥ (“:-»-\)1 gw

Q[.,_-A- \31- ( Cvay CV\L) (C‘G_* Cv\% 'W(S.o

9‘;" ~ 2 Cuvid (Ye."‘) (‘(-F"l) (M&,—\}i

from section (3).
Ye (Ye*V) mw '

But

Substituting gives

< N (mTe- ) E P
© Cvtb Mé”
., ~ i
= X Q“‘-Gco-\\ -~ @) (\(‘-\(_‘_)

Crih me o
That this dependence is qualitatively correct can be seen by °

examining fig. 3(r). Of major importance is the dependence on G which
enables us to extend the results to any vibrational specific heat of
interest. We can assess the accurac& of this prediction by testing
whether at constant m™Mgew | Ea; Cv\'$ = constant. This calculation

is made in Table 1 which verifies the rule especially when we remember

TABLE 1-
Cvid = 0.5 1.0 2.0 3.0
M"G@ = 104 63.5 61.0 5500 53.0
2.6 84.5 84.0 79.0 75.0
3.8 89.5 86.0 82.0 790

that only the simplified form has been used. For more accurate verifi-
' 4
cation the results in Table 1 should be divided by Yo (miw-1)*
If this is done then we get the results in Table 2 which are a considerable

improvement over those in Table 1,
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TABLE 2
CSund = 005 1.0 200 3.0
Mo = 1.4 34.6 34.6 3340 33.0
2.6 19.3 20.1 20.3 20,2

3.8 13.4 13.6 13.9 13.7

For crude assessments, however, the simple rule is adequate and will
be used in estimating the development distance in Chapter 5 for a flow
with <&.»wW = 0,05,

The same arguments can be applied to the far-field shock wave
development distances. The analysis in section (2) of Chapter 5 indicates
"bha'b these have the same "™4{w and cviv dependence as the shock wave
development distance (in the very weak wave limit). Consequently the
critical values must have the same dependence as presented above for the
‘development distance’s." These results mean that we can evaluate the
whole shock wave development process for any <o ;3 the whole alpha-

shock décay process can be extrapolated using the known linear scalings.
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CHAPTER 4

COMPARISON OF EXPERIMENTAL RESULTS WITH
THE SOLUTION BY CHARACTERISTICS.
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INTRODUCTION

In section (1) we shall describe the experimental apparatus.
Section (2) goes on to deal with the factors influencing the production
of the desired steady flow and section (3) provides a method for deter-
mining the theoretical fringe pattern so that comparison o[a.n be made

between theory and experiment.

SECTION (1)

Experimental arrangement
The Manchester University Mark 2 shock tube was used in experiments

to produce, the flow described in the previous Chapters; The shock tube
is shown schematically in fig. 4(a). The high pressure section and first
part of the low pressure section are of cylindrical cross section of

12 in. (0.305m) diameter. At a distance of 19% tube diameters from the
diaphragm station an area change scoop is used to gradually accelerate
the shock into a rectangular duct on;.‘ dimensions 2 in. (51mm) by 8 in.
(204mm) which continues to the end of the working section. The cross
sectional area then increases abruptly to 12 in. (0.305m) diameter
circular in a dump chamber. ' The working section is filled with windows

of dimensions 2 in. (5lmm) by 12 in. (305mm).

The shock tube is first evacuated using rotary pumps to a pressure
of about |6'N/m2 and then diffusion pumps reduce this further to below
162 N/mz. These very low pressures are checked with Pirani gauges. The
working gases used in the experiments were CO, and N20. These gases have
very similar therxﬁodynamic propér’cies but the former has a relaxation
frequency per unit density a.pproximately l/ 6th the value of the latter

(see Johannesen et al. (1962) and Bhangu (1966)). Particular attention
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was paid to the purity of the gas which was slowly passed through a
molecular sieve capable of reducing the dew point tp 173?K. This
effectively eliminates the water vapour content of the comﬁercial gas
used. This is especially important in the case of CO2 where COo=-Hy0
collisions are known to be highly effective in providing energy exchange
between the translational and rotational modes and vibration. For N2O
a crude comparison of photographéd runs with dry and undried gas
suggested that perhaps the effects of water vapour are less serious in
this case. Nevertheless the same precautions were takén as for COp. In
the experiments in which a pure gas was essential, the leak rate was s

fraction of O.l1 N/'m2 per minute. The leak fimes were about 5 minutes,.

The gas pressure in the low pressure section was measured on an oil
manometer connected directly to the tube. The shock Mach num£er was
found by timing the passage of the shock between 2 platinum film tiﬁing ‘
elements placed 14 in. (0.356m) apart. The signal from the last timing
station, after havingibéen passed through a suitable‘delay, was also used

to triggef a short duration spark light source which illuminated the

- working section.

A wedge model was made (see fig. 4(b)) which was supported in the
working section on 2 stings secured from the dump chamber. The wedge
incidence was variable to such an extent that the upper face could be
inclined to the freestream flow (which is defined as the uniform section
of flow behind the initial shock wave) at ény angle between 0° and 59 .
The wedge chord was sufficiently long to ensure that there was no
inferaction between the expansion from the wedge trailing edge and the.
shock wave at the wedge tip (see fig. 4(c¢)), but short enouéh to eliminate
the probability of choking in the upper channel for the freestream Mach

numbers to be used. The more serious problem of choking in the channel
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beneath the wedge surface was avoi&ed by insefting a plate of thickness

% in. (12.7mm) and width 8 in. (0.204m) into the rectangular section of
the shock tube. This ﬁlate merged smoothly with' the area change and
entered the working section to a position just below the wedge tip.

This ensured that the expansion from the plate corner did not affect the
flow on the upper surface of the wedge. The boundary layer on therplate'
separates at the corner as shown in fig. 4(0). From previous experiments
using the plate to study expansions we were fairly certain that the
channel formed between the lower surface of the wedge and separated
boundary layer would be diverging (this was also a factor which influenced
the choice of wedge chord). There is then no possibility of sonic flow
in the low§r channel for supersonic freéstream flow. It was also possible
to raise the wedge tip higher above the plate in order to minimise any
interference to the flow above the wedge caused by the plate boundary

layer.

The mechanicél mefhods for measuring the small angles of incidence
of the upper wedge face to the freestream flow were checked by an optical
method. Parallel light was reflected by a plane mirror mounted in the
working section on to brightly polished slip gauges placed on the upper
surfaces of the wedge and plate. The inclination of the mirror to the
plate was adjusted until rays of light from the plate and wedge surfaces
were reflected out of the working section on to a screen. The angle
betwegn the beams emerging from the wcirking section is twice the incli-
nation of the upper wedge face to the horizontal. The separation of the
slip gauge images on the screen is fherefore simply related to the wedge
incidence. By measuring the separation for several distances of the
screen from a fixed reference station, one can eliminate the necessity
for determining the virtual position of intersection of the two beams..

These measurements were taken at the two outside edges of the wedge and
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at a middle section. The 3 values so obtained for the wedge incidence
were then aﬁeraged. This method was in good agreement with the mechanical

methods.

Two sets of experiments were made. The first set were to ascertain
‘whether there was enough running time (which is defined as the duration
of uniform flow behind the initial shock wave) for the initially unsteady
flow over the upper wedge surface to settle down into the expected steady
configuration shown in fig. 4(c). To do this a conventional 2 mirror
Toepler Schlieren system was employed with a parallel ;ight beam passing
perpendicularly through the working section. Both vertical and horizontal
knife edges were used. The working section was focussed on to a camera
plate. To accurately evaluate the.density distributions within the flow
a second set of experiments was made employing a Mach Zehnder interfefo-
meter with a 4 in. (0.102m) square field of view. These experiments are

described in sections (2) and (3).

SECTION (2)

Running conditions and choice of gas

In this section and section (3) non-dimensional quantities will be

hatted.

The schlieren runs were made with N, és the driver gas and NoO as
the driven gas. In these experiments the purity of the gas was not
important.

The starting flow is well illustrated by the schlieren plates 1,
2 and 3. The wedge tip was placed 1/5th in. (5.1lmm) above the plate
edge and no special attention was paid to the léading edge thickness
‘which was about O.2mm. In the second set of experiments the wedge tip

had to be raised to about 9mm from the plate edge in order to clear
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the plate boundary laye: and the wedge tip was sharpened to 0.04mm.
Pe;formance calculationé for the running of the tube were based on
earlier experiments in fhe department using the plate to study expansions,
In plates 1, 2 and 3 the upper wedge surface is inclined at 3° to the
freestream flow the the ratio of area at the wedge trailing edge to

area at the wedge tip is 0.95. To avoid choking the freestream Mach
number must be above 1l.25., Higher freestream Mach numbers imply higher
shock Mach numbers and a reduced running time. Crudely the running time

can be expressed as

LAw

fea M
%;) s Ae

where Lay is the distance from the termination of the area change to the

Ag, =

working section, Ms is the initial (equilibrium) shock Mach number and

suffixes 1 and 2 refer to conditions ahead of and behind the shock.

The formation of the steady flow about the wedge is, however,
" intimately related fo’thé time taken for propagation of pressure pulees
befween wedge surface and working section roof. This is clearly illus-~
trated in plates 1, 2 and 3. These pressure disturbances travel at
the frozen gas sound speed 9g, so that an estimate of the time for the

formation of the steady oblique pattern would be a multiple of
Aee = _bww

QAga
where Ly, is the distance from the wedge surface to the working section

roof. We can write this expression as
L 3 L
At kww '&\" bww (c (u)"
F ag,  \Tea a1 s '5‘“

Atg
An important consideration is how Aeg varies with incident shock Mach

number. According to the above model we can write

Aee  _ (YeyR bww g \w :
Qe \(-f- Law a1 %“&
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Using Rees (1968) results for equilibrium flow ratios for normal shocks
we can show that this expression increases with increasing'Mach number.
This suggests that experiments should be confined to low freestream Mach
numbers. Experimepts carried out with initial shock Mach numbers of
about 4 (corresponding to freestream flows of about Mach 2) gave unsatis=-
factory results because of interference from the secondary contact surface
-(caused by the area change) before the flow was steady. The best results
were obtained with initial shock Mach numbers of about 3 (as in plates 1
to8 ) corresponding to freestream flows of about Mach 1l.7. The running
times are then in the region of SOO/AS. Plate 4 shows the flow initiated
by a shock of Mach number 2.9 250 8 after it passed over the wedge tip.
Plate 5 showé the same flow 420/~s affer the initial shock wave passed
over the wédge tip. In ideal gas flows over wedge surfaces it is well
known that any apparent thickening of the shock wave is due to sidewall
boundary layer interaction. In our experiments, however, there is the
additional shock thickening due to relaxation. These two effects are
highly coupled because the relaxation effects ease'the pressure gradients
through the shock and Qonsequently render any shock-boundary layer inter-
action less severe. in plates 1 to 5 the ‘bluntness effects are clearly
visible from the expansion along the separation bubble near the wedge tip.
Of particular interest is the reflected wedge tip shock which still seems

to be in the process of forming in both plates 4 and 5.

Having established that the flow would not choke and selected a
suitable Mach number range for which the observed flow was steady, a second
set of experiments was made using an interferometer to eva;uate the density
distributions. It was decided that the undisturbed fringes should be
vertical (by aligning them with the vertical face of the plate) so that
the thickness of the boundary layers on the plate and working section roof

could be estimated.’ The boundary layers on the working section windows would



- 90 -

- presumably have similar thicknesses. This could be impdrtant in gauging
the effects of shock~-boundary layer interaction on the expected two-
dimensional flow over the uppér wedge surface. TFiltered light of wave~
length 442.5 ne. and bandwidth 4 ww.was used so that the whole density

flowfield could be evaluated.

The flow coordinates have been non-dimensionalized in the following

manner

z:x QZT.,JL z 3: _ LRTQ\-';‘- { ;i
3 ) Q“?Loo 3 - "“’ :f«: 3
In the shock tube, for fixed initial MachAnumber, it is most convenient
to vary %«, (by changing the pressure in the low pressure section) or

§ . ('by changing the gas). To vary T,, would involve heating or
cooling the low pressure gas prior to the passage of the initial shock.
Ideally one would like to be able to choose a pressure for which the
shock wave development length is less than the distance bgiween upper
wedge surface and working section roof. This value of the pressure,
however, must not scale the relaxation length so dratically that density
measurements are difficult to make. The working section windows can
withstand an excess pressure of just 1 atmospherq and the fringe shift‘
across the flow also depends on freestream pressure. Theée factors must
be taken into consideration &nd optimized. The gases 002 and N,O were
chosen because their similar thermodynamic properties (but differing
relaxation frequencies) enables one to scale the flow dimensions without
changing the freestream pressure. These gases also have large vibrational
specific heats at moderate temperatures (the characteristic temperature
of vibration of the bending modes for 002 is 959°K. The bending mo@es

for N,0 have a characteristic temperature of 847°K).

The results of Chapter 3 indicate clearly how the flow wave develop-

ment distence decreases with increasing vibrational specific heat. One
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therefore has the chance with these gases of being able to investigate
the portion of flow of interest within the confines of the working
section. The value of 93 also increases as &b increases (for
constant freestreém Mach number) so that one can use wedge angles of a

few degrees, with a measurable fringe shift across the fldw.

Thermodynamic data referring to vibrational specific heats and-
flow changes across normal shock waves (in CO, and No0) were obtained
from Rees (1968). Data on vibrational relaxation frequencies were found

from Bhangu (1966) (for N,0) and Johannesen et al. (1962) (for CO,).

The first runs were with N20 in the low pressure section at a
pressure of 2.30 kN/m2. The upper face of the wedge was set at 2° incidence
and the déiver section was filled to a pressure of 140 kN/hz with Npo. The
initial shock Mach number was measured as 2.92 corresponding to an
equilibrium Mach 1.68 flow over the upper wedge surface. The vibrational

specific heat, relaxation frequency per unit density, pressure and

temperature in the freestream were calculated as 2.,28R, 5.3 x 106 s"l

amagat-l, 21.8 kN/ha and 583°K. These conditions correspond to a fully
Ow

dispersed wave flow at infinity with g X 0.,5. The results of

Chapter 3 indicate that in this instance the development distance is
approximately 60mm whereas the distance avéilable in the working section

is only 30mm. This flow is shown in plate 6. The second set of runs

were with 002 as the driven gas. The starting conditions were almost
identical to those when N,O was used. The initial shock Mach number

was measured as 2.92. The vibrational specific heat, relaxation frequency
per unit density, pressure and temperature in the freestream were calculated
s 2.19R, 0.89 x 10° s™! amagat™, 22.4 kN/m2 and 597°K. The value

of the gas constant per unit mass was taken as 189J/(<g°K (both No0 and

002 have the same molecular weight). ¥For this flow the development
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distance is 320mm. The relaxation regions are also correspondingly
magnified. Comparison of plz_a.tes 6 and 7 amply illustz;a.'b'e' the scaling
function of the relaxation frequency. Plate 8 shows the N,O flow with
an Yinfinite fringe'! setting. Here fringes correspond to cénsta.nt density

contourse.

These flows will be discussed in more detail in the next section
where a comparison is made with a theoretical 'prediction of the density
distribution.by the method of character:lfstics. The theory assumes that
the flow is perfectly two-dimensional, that the wedge tip has no bluntness

and that viscous effects can be neglected.

.

SECTION (3)

Method for finding the fringe system from the computed
density field; comparison of theory and experiment for
2 gas flows

The method of characteristics (with 1/5Oth of the variation of &
per step) was used to compute the theoretical density field for the shock -
tube runs in CO, and NpO described in the last section. These computations
gave the density at the mesh points along the negative characteristics and

from this information the fringe system can be found as follows.

Let the undisturbed fringe spacing be 4 and assign to each 'free-
stream fringe a number given by its x coordinate *Xg, . The locus of a
freestream fringe through the non-equilibrium regions of flow is conse-
quently assigned the same number as the freestream fringe. The fringe
shift along the locus is measured as the number of freestream fringes that
the locus is displaced from ‘t;he freestream fringe with the same number.
This is a local quantity and will be denoted by AN(X:%) . The

relation that must hold along the locus of a fringe is therefore
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ANCGoyYw d = = terg 3.1

The fringe shifts are, however, related to the density field by the

Gladstone-Dale law so that

Af\/(_hc.,‘}) = \2\-—;}: (Q(x)"é")“’gob)

3¢2
where D is the width of the shock tube working section. K is the
Gladstone-Dale constant for the light of wavelength X and Ro is the
density of the gas at N.T.P. We employed light of the same wavelength
as Johennesen et al. (1962) (who give P}\I-{- equal to 209.2 for COp) and

Bhangu (1966) (who gives 35 equal to 240 for Np0).

We therefore evaluate the density field in terms of fringe shifts
from 3,2 and then satisfy 3.1 directly. In order to obtain a solution
j
to 3.1 we must assume that the changes between neighbouring mesh points

are linear. Then at each mesh point on a negative characteristic in

the flow we test whether the quantity

AN (x, 3))& d - X+ Neoo

is positive or negative and if it is positive at one mesh point and
negative at its neighbour then it must be zero inbetween. Let suffifx 5
indicate the 3 thmesh point from the wedge surface along a negative

characteristic. Then fringe coordinates Q< g Y ¢ ,). must satisfy

(AN_(*"S“)':) xd -+ °‘4m) (AN_(“Jm?s«D*d =t e *"4'“3 0
and

X, = owy = (BNGG 59 Jxd — o o spew ) (Sgm= k)
(Awv (+G1, ‘33,\31(:1- Wi\ = AN(%',,‘-S-Dxd - \x.\‘,y
«3_9‘_ = '33 _ (Av(xyy L,y .\)xd o) o+ Xgraw) (Y =9)
( ANCGar 3950 )% d =554 - AN(acg,and«-ocj)
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These equations furnish the locus of. the freestream fringe with X coordinate

X¢rc0 « The process can then be repeated to-determine all fringes.

FPor ease of observation the experimental and theoretical fringe
patterns were magnified by a factor of 10.l. The first results we
compare are for NoO. Fig. 4(d) shows what a fringe would look like at
'infinity' (in this case at approximately 60mm above the wedge). TFig. 4(e)
&lves a more detailed comparison between theory and ezperiment. Of
particular importance here are the effects of the wedge bluntness which
can be seen by observing plate 6 near the wedge tip. Bardsley (1951)
and Bardsley and Mair (1952) have studied bluntness effects in ideal gas
flows. Their results indicate thaf boundary layer separation at the body
nose will .not occur if the Reymnolds number based on the leading edge
thickness is below 1000. In our experiments this Reynolds number was
calculated as 200, Even so, close examination of plates 6 and 7 does
indi cate an expansion region downstream of the wedge tip; Sha>p (1959)
has given a characteristics calculation of the flow of an ideal gas over

a separation bubble.

For blunted wedge ideal gas flow'the bow shock decays to an
oblique shock giving a flow deflection paraliel to the wedge surface.
Moreover, for the supersonic flow, disturbances are propagated along the
Mach lines so that to any straight portion of the body there corresponds a
uniform section of the shock. If one compares the detached shock with
the oblique shock from a perfectly sharp wedge with tip liﬁed with the
blunt wedge face then the shock due to the blunt wedge will lie above
that due to the sh;rp one, The situation when the gas is relaxing,
though more complicated is qualitatively the same. The shock displacement
. due to bluntness is apparent in fig. 4(e) where the theoretical shock

locations (see fringe 1) lie below those due to experiment. The fringe
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shift is also larger initially than one would expect. Fringes 3 and 4
give good agreements between theory and experiment but fringe 5 is not
80 good. This could be due to the shock wave still being unsteady. The
photographs were taken 300 ;s after the initial shock passed over the
wedge tip. This time is sufficient fqr a disturbance from the wedge to
propagate 4 times between wedge surface and working section roof. The
running time is about 600}&5 « This effect could also be due to shock-
boundary la&er interaction on the working'section roof. The thickening

of the boundary layer can be seen quite clearly in plate 6.

Fig. 4(f) gives the same comparison for COo. Because the relaxation
frequency ié about 1/'6th of that forvN20 the relaxation effects take place
over corréspondingly magnified distances. The same effects are discussed
for N,0 are present here (see fringe 1) but the interaction of the shock
wave with the side window boundary layers is much more clearly exhibited.
MCCabe (1966) has studied such three-dimensional interactions in ideal
supersonic gas flows:roﬁnd wedges. The interaction is the more severe
the steeper the pressure gradient and hence is shown better in fig. 4(f)
since the alpha—shock has not yet decayed. The region of the interaction
spreads with distance from the wedge surface. This is possibly the reason'
why the fringes are not visibly discontinuous at the alpha~shock. MCCabe
finds that the shock strength is maintained during the interaction so that
comparison of fringes 2, 3 and 4 gives reasonable agreement between theory
and experiment for the alpha~shock decay. The variations within the

relaxation region are also predicted with reasonable accuracy.

In conclusion the agreement between the theory and experiment has been
shown to be qualitatively good. Any discrepancies between theory and

experiment have been due to limitations in the experiment's being able
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to faithfully reproduce the desired flow. We are confident that the
theory gives a more exact evaluation of the flow than experiment and

consequently the bulk of our results are numerical.
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CHAPTER 5

ANALYTIC PROCEDURES FFOR WEAK WAVE RELAXING GAS FLOW
OVER A WEDGE.
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SECTION (1)

~ INTRODUCTION

‘So far a numerical solution, together with certain restricted
analytic results, has been presented. In sections (1) and (2) we
shall discuss in more detail ‘the analyfic approximation schemes that
are available for solving weak wave relaxing gas flows over wedge surfgces.
The comparison made in section (3) between the numerical method of
characteristics and the analytic method of matched asymptotic expansions
gives some idea of the accuracy involved. However, because the character-
istic calculations cannot be extended to extremely weak wave flows (for
reasons of cost) the comparison is perhaﬁs not as good as i% could be.
Section (4) investigates the application of Whitham's rule to the decay
of alpha-shocks in relaxing gases. In particular this rule furnishes
the variation in alpha-shock angle with distance from the wedge surface.
We start in section (1) with all variables in dimensional form. We can
then discuss, without confusion, the’length scales introduced into the

flow when the gas is relaxing.

A review of non-linear wave propagation has been given by Lick
(1971). Here we shall be specifically concerned with the flow of a

relaxing gas about a thin pointed wedge.

If we consider the two-dimensional supersonic ideal gas flow about
a pointed wedge of infinite chord then since there are no length scales
in the problem the flow must be conical and consequently uniform down-

stream of the shock. If, however, the gas is relaxing then we introduce a

\
time scale into the problem given by b ® (the relaxation time).
. b‘w
The gas consequently relaxes over a distance (measured in the freestream
direction) L = =2 which furnishes the basic length
(“-Eoo

scale in the flow. However, if we wish to characterize the whole flow
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then we must introduce additional length scales Ly and Lz based on the
shock wave width at infinity and shock development distance respectively.
For weak wave flows we shall show in section (2) that L, =0 <}‘é—w];> and
-L3 =0 (1‘%.) « The thermodynamic: variables and the velocity are non-
dimensiogglized as in section (1) of Chapter 1. If we non-dimensionalise
the coordinates with respect to IL; and assume a power series represent-
ation for each of the thermodynamic and veloc;ty variables then we expect
the approximations obtained by substitution of the power series into the
governing equations to be valid only neaxr the wedge surface. The first
approximation in such a scheme made by neglecting terms of 0(8,2 ) gives
the well known linear solution. This solution has been obtained by Chu
(1958) and Clarke (1960); the results were generalized by Vincenti (1962)
"to0 the ca;é where the freestream is not in equilibrium, Explicit exact
solutions to the linear problem can be obtained along the leading Mach
line (which is the linear approximation to the alphsa-shock) and along the
wedge surface. Generally, however, the solution is not explicit but
approxima£ions thatéiz render it so have been made by Moore and Gibson
(1960) and Sussman and Baron (1967). The correct equilibrium flow far
downstream is predicted though the alpha-gas ehtropy layer is uniform
since in this approximation the flow is irrotational. Lee (1964) by
employing a linear perfurbation about the frozen flow at the wedge .tip
was able to investig@fe the variations through the alpha-gas entropy

layer in certain restricted cases..

The equivalent approximations have also been tried in character-
istic coordinates. Lin's (1954) linear characteristic perturbation method
gave a uniformly valid solution to the ideal gas flow over aerofoil
sections whereas the straightforward linear theory was correct only near
the aerofoil. The same procedure, however, does not give a uniformly

valid solution when the gas is relaxing (see Clarke (1965), Lick (1967)
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énd Chu (1970)). An asymptotic analysis of the far-field behaviour of

the solution (Clarke (1965)) shows that the width of the relaxation region
grows like the square root of the distance from the wedge surface. The
straightforward linear analysis exhibits the same type of deficiency in
the far-field solution (Moore and Gibson (1960)). This is due to not
including in the first approximation fhose non-linear te;ms which grow

.to first order over large distances. An analysis by Romberg (19704} gives
a set of corrected first order equations in characteristic coordinates,

though no solution is given.

.

To gain any insight into the far-field flow we must non-dimension-
alize the coordinates with respect to the length scales Lo (> coordinate)
and Ly (Y coordinate). Lp is derived from the known solution at
infinity. L3 is'fbund by considering when the linear solution is incon-
sistent with the Ly scale. The solution in the far-field can be obtained
by the method of matched asymptotic expansions (see Van Dyke (1964)).
Having located where the non-uniformity in the linear ('outer') solut;on
arises, we define new coordinates of.o(l) in this region. The thermo-
dynamic énd velocity Qariables are honpdimensionalized in the same way
as before and the séme'power series representation is used though the
coefficients are now written as functions of the new coord;nates. The
power series are substituted into the governing equations and coefficients
of O, are equated to zero. Physically, this procedure re-estimates the
magnitude of the gradients in the flow. The linear theory assumes that
x and y derivatives are of the same order and hence is not a wvalid
approximation in the far-field; the'new procedure correctly assumes that
fhe Y derivatives are an order of magnitude smallei in the wedgé angle

than the x derivatives.

Solutions by the method of matched asymptotic expansions for the
near and far-field flow have been obtained by Ockendon and Spence (1969)
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for the one-dimensional unsteady case and by Blythe (1969) who treats
both the one-dimensional unsteady and two-dimensional steady problems.

We have mentioned that the steady and unsteady flows are closely related.
It will be sufficient here to regard the piston Mach number in the
unsteady case to correspond to the wedge angle in the steady case and "
the y coordinate to be 'time-like'., Ockendon and Spence give an analysis
in terms of 2 small parameters. For simplicity they consider small values-
of the vibrational specific heat. For small times they find that the
flow is essentially linear but for intermediate and large times non-
linear effects are important unless the wave is very weak ( %:‘5"“‘ > .
With this restriction the flow is linear except in the far-field at times
of the order of the inverse piston Mach number squared where Burgers's
equation i‘s valid. Blythe (1969) derives essentially the same results as
Lick ‘(1969) who h;a.s solved the same problem by the method of multiple
scales., This method dispenses with the neéd. for matching by assuming
from the outset a generalized perturbation expansion in several stretched

coordinates. For example for steady two-dimensional supersonic flow of

& relaxing gas we would expand the pressure as

SN
%-‘3 i 9:, %“(3‘.;“1----“N-\}'}.)%\.--v 3~—\)

Awo

where we assume
A\ n
Xn = ew i a wd YIn= ew \3

Subs{:itution of expansions like these into the governing equations of

motion give the usual linear solution in the f.irst approximation and

Burgers's equation for the far-field flow (where 4 = O( l/ef)}in the

third approximation. This is providing that the shock wave is weak enough

for non-linear effects to be important only in the far-field. To ensure
k3

that the expansions are wuniformly valid the ratios \:f-‘ sne L2 30

must remain of 0(1) as €, —> O. The requirement for this is that (Van

Dyke 1964) "each approximation shall be no more singular than its

predecessor - or vanish no more slowly -~ as Oy —® O for arbitrary values
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of the independent variables. The same shall be true of all derivatives",
This method has also been successfully applied by Chong and Sirovich
(1971) to steady supersonic two-dimensional flows governed by the Navier

Stokes equations.

Romberg (1970b) has applied the method of matched asymptotic
expansions to the one-dimensional unsteady flow of a binary mixture of
relaxing gases created by an impulsively started piston. In particular
he gives numerical results for air (considered as a mixture of oxygen
and nitrogen) in the form of constant time profiles. Care must be taken
in interpreting the results given by the compqéite expansion. One cannot
use this expansion to correct for non-linear effects in regions where 6ne
supposes initially that the linear theory is valid. For instance, the
composite expansion will inevitébly smooth out the transition from outer
to inner solution. We therefore might well expect that the composite
expansion does not exactly reproduce the linear variations on the alpha-
shock but ‘we cannot attribute these small delwations to non-linear

effects because the non-linear solution is continuous.

In section (2) we shall give the mathematical results for the
- two-dimensional steady linear flow and non-linear far-field flow. These
reéults are essentially‘the same as for the corresponding one-dimensional
wnsteady case treated by the authors mentioned above. In section (3) we
shall apply these results to a particular example which is checked by
characteristics. The example chosen must be a very weak wave flow in
order that Burgers's equation describes'the non-linear flow but we shall

also make the vibrational specific heat small so that we can check extra-

polations of the numerical results with the approximate analysié.
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SECTION (2)

Linear solution and far-field non-linear solution

The linear theory for the flow of a relaxing gas about a wedge
is well xnown and we shall only extract those results that are pertinent.
We shall employ rectangular Cartesian coordinates with origin at the
wedge tip and x -axis in the freestream direction. The upper wedge face
makes an angle O, with the x -axis and all variables are non-dimensional-
ized as in section (1) of Chapter (1). If ey is very small (to be qualified
later) then we ‘can expand all the thermodynamic varia'bles in power series
‘'with the freestream quantities as reference state. Z'E‘or.insta.nce we can
expand the pressure as

- ® @ - .

where the coefficients {:; (le 12,300 ) are functions of *x and y.

If we substitu'be expansions like fhese into the governing equations
given in section (1) of Chapter 1 and neglect terms of 0(63) (assuming Y
all gradients are O(1l) in the disturbed flowfield) we get"a. system of
linear partial differential equations. Transforming to the 'shock

orientated' coordinate system given by

€ - w- Ty
n = JM_;,;\ 9

" and making use of the fact that to i:he above approximation the flow is
irrotational by defining a potential ¢P such that
u\\ = (f): and V= ?S‘t;
or in the new coordinates ,
b [~ .
uw = ¢k ond v, = Mo~ 1 (‘¢:-‘¢€ )
we can derive the potential equation
V., L4 Q"\e -\3 P ' P
C a, o0 - © —
Cpar ch ( "'i‘é ™ 4’@.( - 1 qb "
(see Der (1961))
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The boundary conditions for the velocity components are

sy Vi —% ©O as A —~b oo

LM
v" = \ on 4= O
which in terms of a potential axe

gb" —> O as a -> oo

= By o
\/"‘F-o" (¢:"'¢f )-l on | =0
With these boundary conditions the potential equation can be solved by

Laplace transform so that if

F -

Then we get

i
where A= (Spar cup)

owd —
(Nfu— 1) ‘
This transform is too difficult to invert in general but ‘exact! results

are available on the shock (f = 0) and on the wedge surface (1 =0).

On £ = O one gets

: \ _ A(k- ‘3’2. (see Der (1961))
= @ —_— P . ’
Pe e & 2.1

and on q = O (with the usual notation for Bessel functions)

. (3D
P A - = 3 G-
¢i‘"\[:—;~j:\e- | Io(_l—:€)

| g — Q’_“_’Du

N

——

- = d-1)
\/hz;-l < Io < —D: Q) do
(see Clarke (1960)) “o

In this linearized theory )(’l = — Y "\?» U, so that the pressure can
easily be found from the velocity perturbation.

An approximate solution to the linear problem can be obtained by
expanding the transform ¢! in powers of (b -1). If we use the matching

techniques of Sussman and Baron (1967) we get
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P = e e (" 0(83\ z@w)* o-¥)
were 1l = GoO)n

mis tnverts os
b - 'Q«zl-av‘*émr T, (a ()

S R (AT (NG

= 63381 ¢ e (1 (10%9““’@%%
W

k

1("6@ ‘)

2.3

The first 2 terms were obtained by Moore and Gibson (1960) and correspond
to the solution of the telegraph equation

A b P b

A Pug~ Pee v 2Pug = 0
The extra terms are added to assess the accuracy of the solution to the

-1
telegraph equation. This solution is valid for ' = O ((é';) )

The far-field behaviour of the linear theory can be obtained by
applying the method of steepest descents to the Laplace inversion integral.

This gives (Clarke (1965))

b ! -/
A, = ¢Q = "'2(“;;_‘)4; C*‘—Gc.< :LC’o D O(J——) 2.4
where _ L
£ = x- @¥e-2Ny

We can derive the thickness of this wave by using the gradient at the

inflexion point Ef = 0. The value we get is
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L [2G-Da
A, = =z A
If we assume that % << 1 then we obtain for the structure
of the shock wave at infinity
. o (e ) |
wmm (Ve e (GRS )

(see Lighthill (1956)) where %/ is a coordinate measured in the freestream
direction. If we estimate the thickness of this shock wave as before by
using the gradient at the inflexion point' x! = 0 we get

2 "
R (mew=1)* Qe-1) Voo coib
Qc’*‘ ‘(Q‘qﬁo (w\:oo—\) ew

A, =

.-

If we assume oy << |

- + _
3 (M“-w“ ‘) Q(‘-l)a-’\lw cwvib
Q“* ‘) Me "‘\:-oo Sw

then we get

Aa =

<+
8 Vg ews (nZe O
lg- Yg_ *’\:..co ew

which is the same expression as obtained by Hodgson and Johannesen (1971).
Comparing A\ and A-,_ we see that the linear theory is necessarily

invalid when

—_— 2 2
.l / 26‘01 > g (M:.o-—\)‘- (‘(‘_—l) -v“ Cv\%

%_ s
k A Q{‘-& \} \(C M‘:Q (“‘?&“) ew
or 1 > [CGx 16 (M;,;o_‘)s&‘_‘)‘\'-\-,-: < *JLA
2@ (et Ny e (n7sV) 0%
2. L Z'.
- % 16 Qe-1) Y& (mo-D) cud
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8. _\ ) -
The above equation is O ( Ev:; 0. ) If "éé << | (which

from section (2) of Chapter 3 is the condition that linear theory be
a good approximation at the alpha-shock) then the above expression is

o(e;%).

The fundamental assumption made in deriving the linear results was
that the gradients were 0(1). This is inconsistent with the linear

solution itself. For instance, for large y
ow L
% vy
When y = 0(6&2) this gradient is 0(6,) and linearization can no longer be

‘justified.

In accordance with the method of matched asymptotic expansionsnew
coordinates of O(1) in the region of non-uniformity are defined. That is
-é:. = Ow €
a; = 8sa

The thermodynamic variables are expanded in power series of the wedge angle
as before. These expansions are substituted into the exact governing
equations written in terms of the new coordinates ('inner coordinates!')

-and co_efficient’s of the wedge angle set equal to O.

Taking the first approximation gives

v 2
du, > —! ..2_‘
—_— - 1 - -+ — = (o]
2% ARCILNET 2E: ‘
?—"}—" -~ YeM™Meo B_'\M = o]
°F. °t: :
-— - - = O
ag‘.' "\-:.5" ° . ?

owd 'b‘—g,—- 1 = O
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These equations are not linearly independent (see Moran and Shen
(1966) who encountered a similar problem) and hence no solution can be
obtained from them. For waves propagating in one direction, however,

they can be integrated to give (on simplification)

“B
P = = Ve ™Mew U,
b}

vl = * — \/VV\:—”-\ “‘

_rl = - G%—V:q\ s 206

awd v = - M:.co U,

Hence once 4, is found the remaining variables are calculated from the

relations for equilibrium flow,

Taking the next approximation and substituting the above relations

gives finally

du, GerDnde 2 D N
P 2 1 = = a % i
LA a.(n;—,,-\)*(m‘&ﬁ** 2. Ad> 2¢,
Ity
where the coefficient of 5E§L has been written in a form appropriate for

comparison with the linear theory. The above equation is Burgers's
equation for two-dimensional steady'supersonic flow. For the one-.

dimensional unsteady case see Ockendon and Spence (1969), Blythe (1969)

and Lick (1967).

Initial conditions for the solution of Burgers's equation are

(as supplied by the linear theory)

———

w, —b ©O an E.,-06 = o ,
\ -

w, =b — .

' V=B X D
\ ¥

ond W= - — c-r-(-c. < = .
FRVOEaY G| ° W2 °
Bpa
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If we make the transformation

V mdo -1 @y

EC\ = - E <
‘then Burgers's equation becomes
a“\\\ (:((_‘,() M'cq:o a\-\“ L ) ? Au
S sy % g = 2. 1‘- - =
3 3€ E N

. T ~
L2 2 (mam) (Mo
and the boundary conditions reduce to those of the one~dimensional

unsteady case.
If we define

@-0
8= a3t
and C = C{O-"'B f“\:\-oo N
‘ 2 (=) (mZist)
then the solution is (see Ockendon and Spence (1969))
- E«.l u
o,u\)(t,(ﬁ._. >C’lj\e.r-§»c( >

wy = ( l
‘ erfc (Q?_;.‘-C'L;>//2—B-{

or o, ._._‘___‘__(l_*_; exh (€ (€rtca )) {,{c( ) 2.7
RV - R AN erfe (- (g+c13/\/ ?:1
As 1. =Y. oo

\

U, -
' N/
The same result can be derived (see equation 2.5) by approximating the

-1
(v b 5CErten))

conservation equations in the limit O . < 1,

We can therefore estimate the formation time by comparing .wave thicknesses
velocity profile, We can

based on gradi'ents at the mid-point in the 4,

do this by noticing that when

.= - 1
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o)

wy, = 2= both for thé asymptotic solution
(q.-> e ) and for the solution of Burgers's equation.
1
For the asymptotic wave thickness we get

4B (at constant q: ) 2.9(a)
S _ \

Taking the derivative with respect to?of the solution for u, gives
[}

_cas
?_\Ll L gl e endt

o 2 2.9(1)

-4
T

Hence the wave thickness for the solution of Burgers's equation is

(«®/ c)
1 e g (j Q: (Cr-('(, )@31 )l

If 9. = constant x'%z then the denominator is independent of B or C.

209(0)

Hence the formation distance is given by

fl = constant x -é-%-z
W

v(hich is a multiple of the estimated distance for the breakdown of the
linear theory. The constant can then by chpsen t0 ensure that the
denominator is sufficiently close to 1 that the asymptotic wave thickness

is reached.

Expression 2.9(c) is, however, much more important because it does
indicate the manner in which the shock wave approaches its asymptotic state.

VWhen the results for the wave development were determined from the

characteristics solution (Chapters 2 and 3) we plotted maximum departures
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‘from equilibrium in the vibrational energy (along positiw}e character-
istiocs) against y. For weak waves this procedure is approximately

equivalent to plotting maximum departures from equilibrium a;long fhe
streamlines. To see this let F(x,y) = constant and G(x,y) = constant

be the equations to a positive and negative characteristic respectively.

Then ;
39 ¥E- O \dE\ 2@E-o) el
> < S \3e|  de 7 wWel de

The moduli are used for conveniencee.

If - is a maximum on the streamline then

(- &
2<
A=-&) Wdel 2@ & 4 &l '
— — 1. = 2,10
or 1Fl de T leel = ©

Clearly if we consider the surface
c-e = [ (F &)
then it must appear as a sharp ridge at the origin extending in decreasing

height to a rounded ridge at infinity. We cannot therefore 'have any local

' mexime of - . Hence we cannot have > F\ and \»> &\
simultaneously zero (except at the foot of the ridge and at infinity).

. WdEl G\ to satispieq 1o 5o
ince - iz X = 2.10 can only be satisfied if T"\3F\
R (S- <) . . .
and "\-.a—é-\'—- are close to O but of opposite sign,A maximum of

& ~-< on. the streamlines therefore corresponds closely to a maximum of
s~-s on the positive characteristics. Furthermore, the maxima them-

selves must be nearly equal.

Since maximum values of <-—< on the streamlines can be related
t0 maximum values of the gradient in vibrational energy by using the

rate equation, then our procedure is approximately equivalent to plotting

Sw

maximum gradients on streamiines against y.  For — << 1 a maximum

oW
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gradient in one thermodynamic variable corresponds to a maximum gradient
in any other thermodynamic¢ variable because all variabies are simply
related by equations 2.,6. Moreover in this limit, and close to equi-

" librium, inflexion points in the velocity ( sey ) profil.e occur when the
velocity takes the mean of its values at either end of the wave. We can
therefore use equation 2.9(b) to derive an analytic estimate for the
far-field shock wave development rate. This estimate is applicable to

the work in section (3) of Chapter 3 for -g‘-zr‘{. << 1,

If we subtract from 2.9(b) its asymptotic value we get

C o O -\ -4
\ - e S
36 — <
L ( er —-—.—:3 231;}
2mIe 1 fe ERVACY L

Taking the logarithm and differentiating with respect to q; gives

a L < < A

-— C . a——

C 1 -
- _— — _'L 83 . - .
g8 efe T ) ¢ ArBal 2

As 1 ;——b oo the gradient tends to the constant value

L WP "
- ¢ or — £ Ow i taking gradients with respect
63 8 % ' " to y.

This lends support to our interpretation of the numericael results.

We can compare this result to our numerical results for weak wave
flows. Notice, however, that in this limit ( 'g:‘;’, << | ) it is
the numerical results that are necessarily inaccurate because calculations
must be stopped (for reasons of cost) before one can predict with
certainty the direction of the far-field line. ‘I‘he\ weakest wave flow
for which we have numerical results is glverf by -Z—% = 0,2, Mg, = 3.8,
€wy = 1.0. With natural base logarithms the gradient is -17 x 15 %. The
anglytic fa:r—fie;l.d estimate is =5.4 x 10"4. We have mentioned before that

inaccuracy (or perhaps more specifically ‘incompleteness') in’the numerical

results leads to underestimations of the true development distances. In
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the above case the analytic result predicts a development distance about

3 times the value derived from the characteristics.

In the next section we shall compare these results in detail with

a numerical caloculation by characteristicse.

SECTION %

Comparison of the method of characteristics with the method
‘of matched asymptotoc expansions for the flow Oy = O. 019°
Mioo = 2.6 and _cvid y = 0.050,

In this section we shall compare the numerical method of character-
istics wit? the analytic method of matched asymptotic expansions by
inspecting weak shock wave profiles at constant y. The essential
mathematical results have been given in section (2). The flow we have
chosen has 9¥. = 0,2; numerical computations for flows much weaker than

this are extremely costly.

To gain some idea of the length scales involved in this flow we
shall extfapolate the'rqsults for the computed flows with larger values
of the vibrational specific heat. This will also serve as a useful check
on our similarity representation. The flow dimensions we are interested
in are the wave development distance (which we shall represent as the

distance fa which éf = mex 1.1), the width of the non-
& - ‘)naxw

equilibrium region on the wedge surface (we shall choose the distance
for which 90 per cent of the change in (§;-65 has taken place) and the

asymptotic wave width.

For Cuvidb = 1,0 and Mg = 2.6 the wave development distance
defined in the above manner is 84, If we use the result of section (4)

Chapter 3 that the critical development distance varies inversely with
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Cvib then for c<cvib = 0.05 we get

I = 1680

If we use fig. 3(m) with .9% = 0,2 then
Sa

Hence 9. = 3 x 104.
v
The results of section (1) Chapter 3 give the width of the non-

equilibrium region on the wedge surface as approximately equal to 7.

The asymptotic shock wave thickness as given by the expression in

‘section (2) for <v. << 1 is approximately 60.

In fig. 5(a) the linear pressure profile on the wedge surface
obtained from expression 2.2 is compared to the pressure profile calcu=-
lated by characteristics. The linear theory overestimates the pressure
drop, though the variation with distance is predicted reasonably well.

In section (4) of Chapter<§§ however, we showed how a very much more
simplified solution gave more accurate results. Fig. 5(b) compares the
linear theory and characteristics on the alpha- shock. The linear results
are giveﬁ by expression 2.1l. We can see that the linear theory is reason-
ably accurate even for large y ( = 1000). This is to be expected since
we have alrea@y established in Chapter 3 that non-linear effects on the

alpha-shock are small for very weak waves.

Expression 2.3 gives minimal gains in accuracy over the solution to
the telegraph equation (represented by the first 2 terms)."Wezcan expect
this solution to be a valid approximation to the linear theory for
y =OQ(b-1)-2) i.e. for y = 10,000. This solution is plotted in figs.5(c),
5(d) and 5(e) and checked with characteristics results. The agreement is
initially very good but fal;s off with increasing distaﬁce from the wedge

surface. The solution does give, however, a good qualitative representation
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of the initial wave development process. In fig. 5(e) we see how this
solution approaches the asympotic representation of the linear theory.
In fig. 5(d) non-linear effects in the geometrical location of flow
properties are clearly exhibited, though in this case they are not
serious. For stronger sh&ck wave flows it is fhis type of non-uniformity
which necessitates the use of an intermeﬁiate expansion with 4 scaled on
Yfou |

For large y the linear solution grows in width like Jy and is
centred on the equilibrium characteristic . The matched expression 24;
corrects for this by relocating the wave trajectory and by including a
first approximation to the non-linear terms which ultimately balance the
diffusive effects of the relaxation. This solution is plotted in figs.
5(e), S(f)‘and 5(g). The agreement with the characteristics is very
good and fhe asymptbtic ;epresentation (given by expression 2.%) is
compared to an exact integration of the conservation, rate and state
equations in fig. 5(h). A comparison of fig. 5(g) with fig. 5(h) shows
that for y = 40,000 the wave is almost fully developed. This agrees

very wel} with the extfapolated estimate from the characteristics results.

" We can represent these results by a single composite expansion
valid over the whole flowfield. We can construct these composite
expansions in many'ways.(see Van Dyke (1964)). In this case a simple
one to choose is .

Ue = Yo+ wl — L],
where suffix ¢ represents the composite expansion, suffixes o and i
represent the outer (linear) and immer (non-linear) solutions, and a3,
represents the inner solution expressed in outer variables (—E-,n,) and

expanded to 0(@y). In this case

_ o erfe ( 3 )
Lwid, aSnd 1 | =2 L)

which is just the asymptotic represcentation of the linear solution
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given by expression (2.4). Hence the composite solution is given by
adding together the solution of Burgers's equation and the approximate
linear solution and subtracting the asymptotic linear solution. For
instance, by inspecting fig. 5(c¢) we see that the composite solution
is virtually the same as the approximate linear solution. For large ¥y
(see fig. 5(e)) the composite solution reduces to the solution of
Burgers's equation. For intermediate distances (see fig. 5(d)) the
composite expansion smooths out the otherwise abrupt change from outer

t0 inner expansion.

We can see quite clearly by examining fig. 5(d) at the alpha-shock
how the composite expansion represents a ;lower decay rate than that
given by linear theory. It is quite wrong to interprét this as a true
non-linear effect (see Romberg (1970b)). It is merely a consequence of
the smoothing out process inherent in representing the results by a

composite expansion.

In conclusion the method of matched asymptotic expansion gives
reasonable agreément with the method of characteristics, the approach
to a final asymptotic state being 6orrectly predicted. In this example,
non-linear effects, though small, were present fo¥ intermediate .
distances. For much weaker flows we expect these effects to be absent

and consequently the analyticé representation to be that more accurate,
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SECTION (4)

The use of Whitham's rule in weak wave relagxing gas flows

Whitham (1958) gave a simple rule for determining the motion of
a shock wave through a region of non-uniform area or flow when disturb-
ances are propagated predominantly along one set of characteristics.
The rule is to solve the characteristic compatibility relation in con-
junction with the shock wave equations. ILick (1966) has shown how a
more general approach to shock expahsion theory incorporates Whitham's

rule at the shock front.

We shall be concerned in this section with applying Whitham's
rule to the decay of weak alpha-shoéks in relaxing supersonic two-
dimensional steady flows over wedge surfaces. Lick's approach (which
is successful for area-change interactions) of using the equation which
is strictly wvalid only alﬁng a minor characteristic as an approximation
valid throughout the flow fails here because the pertinent relation to
be applied at the shoék‘is that along tﬁe maj&r (negative) characteristic,
On the line given by,‘

C S L tan (o4w)

dot
we have .
b . do - (redeG-Ddy
where
° °

Writing the characteristic relation in terms of partial derivatives .

therefore gives

2} '
S (B - (1) - menes
Q\Th“j‘ %‘ L -\73$ t‘ujA S (Q*IA)




- 117 -

|
or, since I:—" = CoEQe-«}/Q

( -b ‘ob(aw)v %3 <98 Cab@v«)* a—e): -’Q.g-b?'c-"‘)

Q‘V bampu VS i i (Oeu)

If we apply the same characteristic relation along the alpha-shock

44

for which ITx = tan g then we get
L (Bt W) (et B - zsee
Q‘V(:wym 1 "\735-(-\/\ $|.\¢?

-

In doing this we have neglected terms like

%\—‘,’Tbkﬂ ( Cok (Bru) — cok ?‘3 Tx which are small
(i.e. 0(0y) provided the alpha-shock is very weak. Physically, only
those characteristicé wi'xic,h are close to the wedge tip are responsible
for the alpha-shock decay. This suggests that a first approximation to
the development of the alpha-shock may be made by solving

9b_ 4o = - N o(E-<) dy

-
g
RV Caigm VLM sk @

along the alpha-shock together with the shock relations which we can
write as | '
Y= v (8)
Voo V) et
This gives the differential equation for the variation in flow deflection

along the shock as

d .
do [ . Fxd _ - ~e=De(e) (5(9) - Foo) 4.\
&y ¢ (OYV(OY” aws(6) Y $0n 1 Ll0) 51t $(6)
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This equation is best integrated humerically; basically we expect the
results to be equivalent to a perturbation about the freestream in
characteristic coordinates. Clarke's (1965) results show that such

a perturbation scheme gives identical results to the linear theory at
the alpha-shock if the linearized characteristics are replaced by tbe
more exact ones. We would therefore expect Whitham's rule to give
essentially the same decay rate for the thermodynamic variables as
‘predicted by linear theory. This conclusion is supported by fig. 5(i)
which compares Whitham's rule with linear theory and characteristics for
a weak wave flow with 'g% = 0.2, If we linearize Whitham's rule with
the freestream as reference state and expansion parameter 6,then we get

(from 4.1)

. K
%S (ve vy = = @e-1) cos i ©

- .

-~ e
Vb 1—//\.00 ("‘f»"‘)
That is ’
é_? - — LY.("'3 Cuvid M€ oo g
= : -
¥ ' 2 v cpa (Wi DT

Integrating and applying the boundary condition © = &y, on y = O gives

— Qe-D)eus mpo g
9 = 9\'\/ e 2 Y%cva (Ras T'I‘l-

which is identical to the expression for the élpha—shock decay given

by linear theory.

The exact formulation of Whitham's rule does, however, give the
. : 5
variation of shock angle ¢ with distance y. Fig. #(j) compares Whitham's
rule with characteristics. The agreemeht is quite reasonable and we

might expect similar results for even stronger alpha-shocks.

If we denote variables on a negative characteristic which has
coordinates ( Xw , “., ) on the wedge surface with subscript ch

and define
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‘+ dy
o= TETR g.j Gaw (Bt 1 1)

w

-\i - 9
then we can expand variables from this characteristic in power series
like '
N7 - -
P o= 2 CD) « 3. () v 0 (D~

for ¢ <<¢ (

If the alpha-shock wave is very weak (%- << 1) then the value of ‘Y-

on the alpha-shock is very small. Then, following Whitham (1958),
substituting expansions like the boné above into the goyerning equations
and putting Y = O gives as a first approximation to the variations along

the alpha-shock |

1’ = %ck (\ZB = ( -+ Z’_:f'l) ( M}‘oo“"‘vqb.{:— \3 - etc.
with
-—-—l—-——‘ a._.k_"k -~ 99{‘% = - Q{-F"b_?‘-k ( ;cl\-r s . k\
-_— -1 ~ - . .
R Venbanpmer, 7T > VA Stmpmen St (ch*ﬂcq

This set of equations constitues Whitham's rule. We also obtain a set

of linear equations relating the suffix 1 quantities to the suffix ch-
quantities. These relations determine the gpadient functions at the
alpha-shock wave in terms of the shock wave curvature. We might therefore
try to improve the first approximation by"usir'zg the gradients to estimate
the variables on the characteristic more accurately. However y €Xamin-

ation of fig. 5(i) shows that this procedure results in a negligible -

improvement.
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Chou and Chu (1971) have investigated the decay of weak alpha-
shock waves in axisymmetric non-equilibrium flow by a systematic
perturbation scheme in semicharacteristic coordinates. The solution
proceeds by Laplace transform which can only be inverted (in our
notation) for W << | in which case the results reéduce to: Whitham's
rule in the limit of frozen flow. We have seen here, however, how
Whitham's rule can be applied to the non-equilbrium.flow to good
approximation for ¥ << | and how the variation of shock angle with
distance is correctly predicted. Chou and Chu compare their theoretical
results with the experimental determination of the variation of alpha-
shock angle with radial distance, aﬁd find excellent agreement. A
direct application of Whitham's rule to the non-equilirium flow must
give the same results as the first simplified approximation in the per-
turbation analysis and is érobably sufficient for adequate comparison

with experiments of the type cited by the above authors.

CONCLUSIONS

The method of characteristics has been used to solve the two-
dimensional steady, supersonic flow of a relaxing gas about a thin wedge.
The essential non-linear effects in the shock development and alpha-
shock decay have been established and represented in an approximate
similarity form with the critical values as scaling factors. The
consequences of assuming this similarity to be exact have been investi-
gated and lead to simple scaling lews which enable critical shock develop-
ment and alpha-shock decay distances to be found for any ™m¢, Or <uip o
The characteristics results have also been compared with experimental

flows and with analytical results valid when gﬂg << l. Both comparisons

%
are favourable.
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The flow over a wedge surface is perhaps the most éimplified
two-dimensional problem. that one can study but nevertheless when the
gas is relaxing the problem is difficult and no generally applicablg
analytic solutions are available. The present numerical calculations,
however, can quite easily be extended to flows over pointed two-
dimensional bodies of any prescribed'shape'providing that subsonic flow
at the body tip does not occur. The same numerical method could also
be applied to flows of binary relaxing gas mixtures over wedge surfaces
by including an extra rate equation. Flows of this nature are possibly
important in determining the separate effects of Op and No on wave

propagation in the atmosphere.

The work presented has been restricted by the time available.
There remain areas where further work is necessary to establish the
accuracy of our results and the validity of our conclusions. The
precise analogies between the numerical results for the ong-dimensional
unsteady and the two-dimensional steady flows also need to be investi-
gated. Certainly some crude comparisops between the 2 sets.of results
show remarkable similarity. Fully dispersed wave flows at infinity in
the wedge problem are also possible for hypersonic freestream Mach
numbers. There is then the rather interesting problem of applying both

the weak-wave and hypersonic approximations simultaneously.

We can also hope that these results provide a stimulus for renewed
analytic attacks on the problem. The essential characteristics of the
solution have been given and these should provide a satisfactory basis

for further approximation schemes.
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APPENDIX 1

The relationship between the wedge angle, equilibrium Mach

number, vibrational specific heat and shock wave angle is given by

-EQV\ ew = 2¢°‘c¢e Cl“\:ooS'n-?'d.,,-—- D
Q«l"m (Yﬁ,-r cos:..¢‘§ + ,z,)

Dividing by Sim*de and noting that
S\V:’-éb - ‘ou‘-—b‘fe = L+ ‘°‘5‘L¢~c we ge'l:

Eunb, = 2 cokde ("‘:'o"\ - "-°“—1—QS¢)
( (( \{(_'*nf\?(:ﬂ:'\" Q) (“\‘ C"e"d’w.)"' a"‘"‘Goa)

0

Cross multiplying and collecting powers of <ok ¢e gives

.

oo w T (CreInlew ) colPdy — (nZa- V) cobde

- e_ﬁ.;‘:_g_":'( (wg-t)v\\:.,,* 2) = O

This is a cubic equation in cok$,. The standard trignometrical

method of solution gives

2 -l-i' Zv\} LI
C°E¢Q_ = ‘—(.:—'-\-,: - ‘—t LYY Cos 'L COS-\ 4-( 27 = —S"'\"\b) “+ FRYY
a = 3 3 e — -—-3-3
. Q—Z(‘J 4+ A \>
— '\'l-
3

where
tuw ©
{\o- = an Pw (Q,‘—lv "“‘-:db-\‘ ')_) ,

AN - l"‘ Mz.oo N
Lanld
N = M;_ >~ ( (Yc*\) e 2—»

and 1 = O, 1\, 2
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If we let ©,; —> O then for the weak solul‘bion we expect

i
cok ¢e_ - Q:\'z—o‘ l31

and for the étrong solution

Putting €y = O in the solution for <ot <b‘ g:wes

cok (ﬁ._—b o

Cok c#,_ (4‘ (w«.c-—l)} cog '\S cos (,o) - :".:.é’ So

when 3 = O

ok P = (4- (*«»"‘3} cos (7) (e ‘\

Hence 3-—- O corresponds to the weak soltition,
When é e |

- A
T O e
cobde = G (“‘:ab-‘§§ cos (%"‘ ‘-‘3\3

Hence 3 = 1 corresponds to no physical solution since

When y= X

A —— —
coede = (Femd) s (B0 )

Hence é = 2 corresponds to the étrong solution.
Mascitti (1968) has given a similar solution in terms of
The solution presented here for co& ¢¢ involves rather

coefficients in the cubice.

Pe < © 9r19¢>—

Sl"\'\;¢.4_

simpler
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