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SUMMARY

The method of characteristics is used to solve the 

flow of a relaxing gas about a wedge of small angle. The 

results are presented in a concise similarity form that 

permits accurate extrapolation. A comparison is made 

with experimentally observed flows in CO2 and NgO. The 

available analytic techniques, valid for very weak wave 

flows, are described and a comparison between the method 

of characteristics and the method of matched expansions 

is presented.
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NOTATION

The use of subscripts and superscripts

The subscript will be used to denote a freestream variable• 
The subscripts f and e will be used to denote variables in the frozen 
and equilibrium states respectively*

The subscript A will be used to denote quantities relating to the 
alpha-shock and the alpha-gase .

The subscript o will be used to denote quantities at the wedge tip, 
immediately downstream of the alpha-shock»

The subscript w will be used to denote specific quantities on the 
wedge surface and the subscript { will refer to quantities as 
predicted by the linear theory presented in section (1), Chapter 5*

In Chapter 5, section (4) the subscript ch will be used to denote 
variables on a negative characteristic*

Quantities with combinations of these subscripts have obvious meanings * 
For instance, denotes the frozen free stream Mach number*

The subscript e when not used in combination with the subscript 
will refer to the equilibrium state downstream of the shock wave at 
infinity* .
The superscript * will be used to denote a critical quantity (defined 
in section (4), Chapter 1)*

Subscripted quantities with special meanings are defined in the following 
list of notation

V pressure
?

T

density
alpha-gas temperature

Tc

vibrational temperature
characteristic temperature of vibration

ex sound speed
velocity magnitude

components of velocity
• un

AX

xn, yn components of velocity 
Mach number
component of Mach number normal to shock wave at 

infinity



Notation (contcL. )

vibrational energy
value.of the equilibrium vibrational energy 

at temperature T.
maximum value of on a positive characteristic,
maximum value of («=- in the shock wave at infinity.
value of immediately downstream of the alpha­

shock in a partly dispersed shock wave at infinity

real gas entropy
alpha-gas entropy
relaxation frequency per unit density.
relaxation frequency per unit density at the 

characteristic temperature of vibration.
gas constant per unit mass of gas
specific heat at constant pressure of the alpha-gas 
specific heat at constant volume of the alpha-gas.
vibrational specific heat ■

ck

(g ba 4* bl
(Cv** Cwt) .

Prandtl-Meyer function
flow deflection relative to y « o
wedge angle
shock angle relative to y - o
velocity potential
Mach angle «
shock curvature at wedge tip 
fringe shift 
fringe spacing 
source light wavelength 
width of shock tube working section 
Gladstone-Dale constant



Notation (contd.)

far-fieId shock wave development distance 
shock wave development distance 
far-field alpha-shock decay distance 
relaxation distance on wedge surface

rectangular Cartesian coordinates

rectangular coordinates with x^ measured 
normal to the shock wave at infinity

x, y coordinates on a flow fringe
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INTRODUCTION

The assumption of Classical Gas dynamics, that the variations of 

fluid properties can be described by a set of equations derived considering 

the fluid to be everywhere in instantaneous equilibrium, is only justified 

when the characteristic times for the adjustment of the molecular energy 

states are very much smaller than the time taken by the fluid to encounter 

significant changes in its environment. When this equilibrium assumption 

is not true the full non-equilibrium processes occurring must be studied.

We shall consider a gas consisting of molecules with energy contri­

butions from their translational, rotational and vibrational motions and 

shall neglect any effects due to dissociation, electronic excitation, etc. 

In particular we shall be concerned only with vibrational non-equilibrium 
(which leads to vibrational relaxation) and shall treat the rotational and 

translational modes as if they are everywhere in mutual thermodynamic 

equilibrium. The justification for this step lies in the fact that the 

latter two modes require relatively few collisions to attain equilibrium 

so that any non-equilibrium is exhibited only in flows with a correspond­

ingly small characteristic time. This is equivalent to saying that non­

equilibrium phenomena in the translational and rotational modes need only 

be considered in regions of high gradients, for instance in the viscous % 

interior of shock waves. These regions are necessarily thin in comparison 

with the vibrational relaxation zones in which we are interested and can be 

treated as discontinuities in the flow. To the same approximation, we can 

assume that the vibrational modes remain 1 frozen1 through such discontinuities 

which are then completely akin to shock waves in an ideal gas and are deter­
mined by the ’frozen’ shock relations with a specific heat ratio of ?/$ (for 

all diatomic and linear molecules).

— 1 —
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Intuitively, we expect all non-equilbirium flows to proceed towards 

an equilibrium state; in particular, we can assign to the vibrational energy 

an equilbirium value which is determined by the local translational and 

rotational temperature. The flow through the frozen shock wave therefore 

creates a departure from equilibrium in the vibrational energy which is the 

initial ’driving force’ for the flow in the relaxation region downstream of 

the frozen shock. The rate equation, which is the additional equation we 

need when we introduce the energy in the vibrational mode as an extra variable, 

determines the manner in which the non-equilibrium process proceeds.

Let us consider the one-dimensional steady flow of a relaxing gas 

through a shock wave (which includes both the frozen shock and the accompany­

ing relaxation region). The flow ahead of the shock wave is assumed to be 

in equilibrium. Johannesen (1961) has shown how these flows may be treated 

by interpreting the governing equations as those of ideal gas flow (with 

constant specific heats) with heat subtraction equal to the rate at which 

energy enters the vibrational modes. This allows one to define the artificial 

but extremely useful alpha-gas which has all the ideal gas properties. With 

this representation it is quite clear that the appearance of the initial 

discontinuity or alpha-shock is dictated solely by the frozen Mach number in 

the undisturbed gas. If this Mach number is less than or equal to 1 then 

there can be no alpha-shock so that all changes in the thermodynamic quantities 

proceed smoothly towards an equilibrium state. Such shock waves are called 

fully dispersed while those that include the initial discontinuity are called 

partly dispersed. Since the minimum value of the equilibrium Mach number is 1 

(this value corresponds to no disturbance in the gas) fully dispersed waves

are possible for the frozen Mach number range I % m^> Physically,

in this range, any convective effects, which tend to steepen the wave, can 

be balanced solely by the diffusive mechanisms of the relaxation (see

Lighthill (1956))•
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Fully dispersed shock waves can be produced experimentally in the 

shock tube and some of the early (though widely scattered) results were 

obtained by Griffith and Kenny (1957)• Since then much work of predominantly 

academic interest has been done in determining the structure and appropriate 

relaxation times for these waves but it is only recently that Hodgson and 

Johannesen (1971) have shown that shocks of the strengths expected in sonic 

bangs are fully dispersed.

If we seek to generalize the results of the one-dimensional flow to 

consider relaxing gas flows with shock waves in any multi-dimensional 

physical coordinate space then we meet with considerable difficulty. For 

the flows are exceedingly complicated when more than 3 space coordinates 

are considered. For instance, if we wish to investigate a steady relaxing 

gas flow over a three-dimensional body surface then it is by no means clear 

what form the solution at large distances from the body will take without 

first solving for the whole flow. If the body curvature is rapidly varying 

over a typical gas relaxation length and the body is of suitable dimensions 

then the flow may never reach an equilibrium state. Indeed the confluence 

of many alpha- shocks may dictate that the solution at large distances from 

the body is not continuous. It is interesting to observe, however, that 

despite the intricate nature of three-dimensional steady and unsteady super­

sonic non-equilibrium flows, the necessary numerical characteristics methods 

for their solution are available (see Sauerwein (1966)) and await only the 

advent of larger and faster computer systems to be put into practice. Two­

dimensional non-equilibrium flows are still difficult to deal with. In 

particular, we can isolate from the whole class of possible flows 2 analogous 

simple flows where the final wave motion is one-dimensional and under known 

conditions is either fully dispersed or partly dispersed. That is, we can 

consider the relaxing, steady gas motion of a supersonic stream over a wedge 

surface of small angle or correspondingly, the one-dimensional unsteady wave 
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motion due to an impulsively started piston advancing into a gas at rest.

The analogies in the gas motion in the. (x, y) and (x, t) planes are 

well known (for instance, the piston path in thé (x, t) plane 'corresponds' 

to the upper wedge surface in the (x, y) plane). The two flows are 

governed by similar sets of partial differential equations but whereas the 

unsteady flow equations are always hyperbolic, this is only true for the 

steady flow when the gas velocity is locally supersonic. We can specify 

the unsteady flow with 2 parameters namely the piston Mach number and 

vibrational specific heat; for the steady flow we need both the wedge angle, 

vibrational specific heat and the freestream Mach number. Nevertheless, 

the basic features of the two flows are very similar and can be understood 

by regarding -the steady flow y coordinate as being 'time-like'. In particular 

very strong similarities exist in the very weak wave analyses for the two 

flows (see Blythe (1969)). This will be our justification for referring to 

analytic work on the unsteady problem when discussing the two-dimensional 

steady flow analysis. The initial (small ' time' ) flow in both cases is 

frozen, for large 'time' the resulting gas motion must be achieved by 

balancing non-linear convective steepening with the diffusive effects of 

viscosity and relaxation. The shock wave here is therefore fully dispersed 

or partly dispersed depending on whether the relaxation effects are 

sufficient in themselves to counteract any steepening.

We shall consider two-dimensional steady supersonic relaxing gas 

flows over thin wedges where the far-field flow is either a fully dispersed 

or partly dispersed shock wave motion. The corresponding unsteady flows 

have also been investigated in this Department by C.G. Bain . We choose 

the weak wave solutions and ensure that the wedge angle is less than the 

maximum wedge angle that permits supersonic flow in the tip region. In 

studying this flow we shall employ rectangular Cartesian coordinates 

with origin at the tip and x-axis aligned with the freestream. The shock 
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wave at the wedge tip must instantaneously deflect the flow through the 

wedge angle and must therefore be a frozen shock wave inclined at the 

appropriate wave angle. In order to classify later remarks we shall refer 

to any solutions that retain all terms in the appropriate governing inviscid 

equations as 'exact *. The conditions at the wedge tip are therefore known 

exactly and the flow near the tip may be considered frozen to a first 

approximation. At infinity (which is defined as both x and y -» ) we

expect the balance set up between the opposing forces of convection and 

diffusion to maintain a shock wave of constant width and direction with 

equilibrium conditions occurring both upstream and downstream. Since all 

streamlines far downstream relative to the shock must be parallel to the 

wedge surface we can conclude that the shock wave at infinity resides at 

the equilibrium wave angle corresponding to a flow deflection equal to the 

wedge angle. The solution at infinity is also known exactly by integrating 

the conservation, rate and state equations normally through the non­

equilibrium wave interior.

The frozen shock wave at the tip decays with distance from the wedge • 

surface and the equilibrium shock angle is therefore less than the correspond­

ing frozen shock angle. We therefore have the possibility of the normal 

frozen Mach number at infinity being greater than, equal to or less than 1. 

In the latter two cases the shock wave is fully dispersed while in the 

former it is partly dispersed.

Far downstream, although equilibrium conditions prevail and both 

pressure and flow angle are uniform throughout, the same is not true of any 
of the other flow variables (except, of course, the departure from equi­

librium) . This non-uniformity is referred to in the literature as an 

• entropy layer* (see Sedney, South and Gerber (1%2)) which is essentially 

a result of the entropy changes along the decaying alpha-shock. This 

interpretation is correct only for strong shocks ; for weak shocks we shall 

show (see Chapter 2, section (4)) that the contributions to the total entropy 



from the non-equilibrium processes in the relaxation region are much larger 

than the contributions due to non-equilibrium within the alpha-shock. This 

necessarily implies that the 'entropy layer1 extends over the whole down­

stream flow whereas the layer in which the other flow variables are non­

uniform has a smaller thickness based on the alpha-shock decay length*

Although the basic features of this flowfield are well known no 

generally applicable analytic solution has yet been presented and on closer 

inspection the problem is indeed complex* The questions we wish to answer such 

as the determination of the shock wave development and alpha-shock decay 

distances necessarily extend the analysis to distances which are far from the 

wedge surface* The characteristics of the flow are no longer straight 

lines as in the ideal case but have directions that are dependent on the local 

properties of the fluid* Analytic attempts based on bin's (1954) perturbation 

procedure in characteristic coordinates by Clarke (19&5) and Lick (1967) have 

failed to achieve the necessary balance between non-linear and diffusive 

effects at large distances and give essentially the same results as the linear 

theory for the alpha-shock decay. The method of matched asymptotic expansions 
(see, for instance, Ockendon and Spence (19&9)) though producing a uniformly 

valid solution has been applied to only very weak wave flows and consequently 

throws no light, for example, on how non-linear effects modify the alpha-shock 

decay for waves that have nearly their maximum fully dispersed wave strength* 

We can perhaps indicate the nature of the problem by mentioning that even for . 

the linear perturbation no general explicit inversion of the exact transformed 

equations has yet been found*

The problem must therefore be investigated numerically if any accuracy 

is desired and the 5 main methods available for solving hyperbolic relaxing 

gas flows are the method of characteristics, the method of integral relations 
and the finite difference method* Dejamette (1966) has employed the finite 

difference technique of Lax to compute hypersonic non-e qui librium flows past 

bodies of prescribed profile* The equations include an artificial viscosity 
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term which •smooths out’ the alpha-shock but predicts the correct variation 

of conditions across it. The shock relations are therefore unnecessary. 
The calculations must proceed from a known data line (the conditions on 

which must be determined by some alternative method) and there is some 

initial instability. It is also found that a stability criterion must be 

applied generally throughout the flow. This requires that any new computed 

point does not lie outside the zone of influence predicted by the character­

istic lines emanating from the known points. Dejamette finds that the 

closer the finite difference grid is made to align itself with the character­

istics the more accurate the results for a given mesh size. Comparison with 
the work of Sedney, South and Gerber (1962) (who use the method of character­

istics) is found to be good except near the initial data line.

The method of integral relations has been applied by South (1964) 

to non-equilibrium flows past wedges and cones. . The method consists of 
1 

dividing the region between the body surface and alpha-shock wave into as 

many sections as the required accuracy demands. Usually 5 sectors are 

sufficient for good agreement with characteristics results. The equations 

of motions are written in divergence form and flow variables are approximated 

across the strips by polynomials whose degree is determined by the number of 

sectors. This is sufficient to reduce the complicated set of partial 

differential equations to a system of ordinary differential equations which 

can be solved numerically. Certain inconsistencies arise from the fact that 

the approximate differential equations are not equivalent to the correct 

x-momentum and streamline rate equation at the body surface. These exact 

equations can, however, be used to correct the surface vibrational energy 

and gas speed but must not be used as replacements for equations in the 

approximate system as this causes numerical instability. The step size on 

the body surface must be small enough to ensure that the necessary inte­

grations will converge to sufficient accuracy but must also be controlled
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by a stability scheme related to the characteristic directions in the flow.

The method of characteristics (which will be discussed in detail in 

Chapter 1 and Chapter 2) is well recognised as the most accurate, though 

somewhat more lengthy numerical scheme for flows of hyperbolic nature. 

There is no need, of course, for any reference to stability criteria 
(providing mesh lengths are not chosen inordinately large) and one has the 

advantage of being able at first hand to control the signal propagation in 

the gas. Our application of the method is also self starting, given the 

conditions at the tip, in that we determine the flow variables near the tip 

by a characteristic mesh scheme with iteration to the desired accuracy. The 

emphasis throughout will be on the use of exact results where possible, 

particularly *in relation to the solution at infinity and initial tip 

gradients. Chapter 1 and Chapter 2 deal essentially with a description of 

the method of characteristics employed and its application in detail to a 

specific, though representative example. Chapter 5 deals with the analysis 

of the results of several flows which when appropriately scaled reveal 

approximate similarity curves, Chapter 4 applies the method to experimentally 

observed flows of CO^ and past a thin wedge. Chapter 5 gives an -account 

of the main analytic procedures for investigating the flow together with an 

example calculated by the method of matched asymptotic expansions and checked 

by characteristics. The application of Whitham’s rule to shock decay in 

relaxing gas flow is also investigated.

The similarity curves which we present can be hopefully extended to 

flows of gases with very small vibrational specific heat (for example, air 

at room temperature) Where numerical methods are necessarily inaccurate. The 

results are then of significance to the decay of sharp pressure signals 

superimposed on sonic bang profiles by atmospheric turbulence (see Crow (1969)).



CHAPTER 1

GOVERNING EQUATIONS AND 
ASYMPTOTIC SOLUTION.
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INTRODUCTION

In Chapter 1 we shall be concerned with giving the major mathe­

matical background necessary for solving the problem. Consequently 

section (1) presents the governing equations and boundary conditions 

together with the necessary characteristic form of the equations. Section (2) 

then discusses the various types of mesh scheme available as well as the 
checks needed to assess the progress of the calculations. Section (5) 

gives the exact solution at infinity. The characteristics solution must 
approach this at large distances from the wedge surface. Section (4) isolates 

those parameters on which the flow depends and determines the relations that 

must hold between them for fully dispersed or partly dispersed shock waves 

to exist at infinity.

SECTION Cl)

Governing equations and boundary conditions

The equations governing, the flow of an inviscid, non-heat-conducting, 

supersonic relaxing gas in two-dimensional Cartesian coordinates are

Continuity: 

x-momentum: 

y-momentum: 

Energy : 

Rate :

State : • V *

To solve this system of equations we must also specify the dependence of 
and J on the other thermodynamic variables. The equilibrium vibrational 

energy is a function of the gas temperature only so that
2= = ( ”) .



The same is approximately true for the relaxation frequency, hence 
= $ Ct)

For the functional form of the temperature dependence for a general diatomic

gas and for COg see Johannesen et al. (1967)*

We shall also have recourse to the streamline equations. Denoting
distance along a streamline by I and distance normal to a streamline by &

these equations are

Continuity:

-momentum:

* -momentum:

Energy

Bate

State

t % - % - £

v?--i % 

% ■ -

We shall apply these sets of equations to the steady flow of a uniform relaxing 

gas stream about a thin wedge of angle 0^. We take the origin of the rectangu­

lar Cartesian coordinates at the wedge tip and x-axis parallel to the free- 

stream direction. Denoting the freestream quantities by the subscript °© we 

employ the following system of non-dimensionali zation
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The •hatted* quantities denote the non-dimensional variables*

The equations of motion in non-dimensional form are therefore

(Cartesian coordinates)

Continuity:

x-momentum:

y-momentum:

Energy

Rate

State

(Streamline coordinates)
i

Continuity: 5

-momentum:

a. —momentum:

Energy

Rate

Co

State

We notice that the non-dimensionalized equations are exactly the same as the 

dimensional equations except for the absence of the factor R in the equation 

of state® It is understood that, unless specifically stated otherwise, from 

now on all variables are non-dimensionalized. The •hats1 will therefore be 

dropped for convenience.
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The characteristic form of the equations of motion (that is, the

form in which the system of partial differential equations reduces to a 
system of ordinary differential equations along specified directions) is 

most easily derived from the equations of motion in streamline coordinates.
For the full derivation see Der (196$)• The essential results are that there 

are 3 characteristic directions and the differential equations applying along 

them (or compatibility relations) are

✓the negative characteristic\ *
'or C" /

4*4 x
T" a éraw (G* j

on ^the^ositive characteristic^ *

- (Yf -%) ? T Cr- «d

(the streamline)

d 0

? 0s— 4
e

To complete this system we have the energy and state equations, valid

everywhere in the flow* That is
« constant

and

* If we consider ideal gas flow and write the compatibility equations 
in terms of the Prandtl-Meyer function -V then (v - 0) is constant on a C 
and (^ + 0) is constant on a C+* This explains the rather awkward 
terminology*
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If we choose ' 5 , * V 2 then the above set of equations

are valid for the flow of any linear gas molecule for which the single rate 

equation is an adequate description of the relaxation process (for appli­

cations of the rate equation to relaxation processes in Og , COg and NgO 

see respectively Zienkiewicz and Johannesen (1965) > Johannesen et al# (1962) 

and Bhangu (1966)).

The assumptions that the gas flow is inviscid and non-conducting 

are justified everywhere except on the wedge surface and in the interior 

of the alpha-shock wave# The effect of viscosity on the body surface is to 

modify the body contour by the appropriate displacement thickness which we 

shall neglect over the relaxation distances considered along the wedge 
surface (for an estimation of this thickness see Bardsley and Mair (1952))# 

The omission of a viscosity term in the equations for the flow through the

alpha-shock necessitate the introduction of the frozen shock relations as 

extra boundary conditions# These relations are essentially the conservation 

equations applied across the thin region of translational and rotational 
non-equilibrium# They are (see Liepmann and Roshko (1967) p#8$)#

- i x

(( Yf * l)
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4*4 E oiw O
( ( Y+*

( s 4>^ —2 cot

The boundary condition to be applied at the wedge surface is

6 « ôw

This set of characteristic equations and boundary conditions can 

be used to solve the flow of any relaxing gas over a wedge surface providing 
a suitable functional dependence on the temperature for both and 3. is 

known.

We, however, are primarily concerned with the application of the 

characteristics method to weak wave relaxing gas flows and in particular 

in describing the shock wave development process. We therefore assume that

4 18 1

and "TZL = I jt )

These are good approximations only for very weak wave flows. They 

do, however, give our results far more generality without impeding in any 

way our methods for representing the shock wave development process. If, 

indeed, more accurate results are required, then it is a simple matter to 

insert the appropriate functional relationships for and into the 

computer program. The general structure of the program as developed with 

the assumptions above would remain unchanged.

To ascertain the variations of and through the flows we shall 

be considering, we make use of Phinney’s (1964) expressions for and 

valid for a diatomic gas. They are (reverting in this section to dimensional 

quantities) .
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where Tc denotes the characteristic temperature of vibration of the molecule 

and is the relaxation frequency at this temperature.

Differentiating the expression for ? gives 
f - ?)

If we take T =- , that is = 0.72R then for a
2 j-r

shock wave that is just fully dispersed we have — — 0.026. The

percentage variation in through the shook wave is therefore about 11 per 

cent.

Similarly differentiating the expression for twice gives

variation in through the shock wave.

0.026 then we get a 1.6 per cent

For linear triatomic molecules like COg and ^O (for which the 

maximum value of is 4^) the percentage variations in ÿ and are 
At probably larger because zr for shock waves that are just fully dispersed ' «O 

increases as increases.

The assumptions of constant and <vib do allow us to consider many 

different gas flows from one characteristics calculation. For instance, a 

calculation for a value of equal to 1R represents all different gas flows 

with freestream temperatures at which Cvtb equals 1R. In the following 

sections, therefore, it will be understood that these assumptions have' been 

incorporated into the governing equations.
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SECTION (2)

Characteristic mesh schemes, checks and starting processes for 
non-equilibrium relaxing gas flows .

The choice of the correct characteristic mesh scheme to employ is 

extremely important because not only may it save computing time and there­

fore cost but it may also considerably improve the accuracy of the calcu­

lations* The choice should therefore be based on a sound knowledge of the 

physics of the flow and in particular on the role played by the character­

istics in controlling the signal propagation into the gas.

Because the wedge angle is small, the attached frozen shock wave 

at the tip is weak and so a negative characteristic may be aligned approxi­

mately in the same direction* In this way we see that the gradients of the 

thermodynamic quantities along the negative characteristics are much smaller 

than the gradients along the positive characteristics which cut through the 

relaxation region along directions where the flow changes are rapid* Hence 

a suitable grid scheme would involve large step lengths along the negative 

characteristics and comparatively small step lengths along the positive 

characteristics• The direction of signal propagation into the gas must be 

recognized by building up the mesh scheme along the negative characteristics*

If we examine the characteristic compatibility relations given in 
section (1) then we see that the coordinates enter these equations only in 

conjunction with the departure from equilibrium* The negative characteristic 

compatibility relation is for instance

Ai + de =

(here J has been put equal to 1)*

This indicates that the step lengths should be chosen approximately 

inversely proportional to the departure from equilibrium* This is naturally 
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in accord with the idea that the closer the gas is to equilibrium the larger

the step lengths we can employ* If we write the non-equilibrium term in the 

above compatibility relation in terms of x instead of y and use the rate 

equation we get
l h 1® = -

AX- “ 0,(6^)

The changes in the flow are therefore intimately related to the 

changes in the vibrational energy along the streamlines* The most important 

streamline to consider is the wedge surface, from which signals are propagated 

into the whole flow. If we choose step lengths on the wedge surface with 

equal changes in the vibrational energy then we are dividing the total signal 

on the wedge surface into smaller signals distributed evenly over each step* 

This is the key idea in the formulation of our mesh scheme and will be 

developed in more detail in Chapter 2*

For non-equilibrium flows all 5 characteristics must be employed so 

that this immediately offers a choice of mesh scheme. For instance, one could 
employ either a streamline based mesh or a Mach line based mesh (figs.1(a), 

1(b)). The streamline based method has the advantage of following fluid 

elements so that any conservation checks can be applied locally instead of 

over the whole flowfield* Both these methods rely on 2 input points but 5 
input point methods have been developed by Sedney (see the review on non­

equilibrium characteristic calculations by Sedney (1970)) due to his finding 

unexplained inaccuracy in the Mach line based and streamline based schemes* 

At first the errors were attributed to the linear interpolation that is necessary 

in these schemes. Consequently a 3 point non-iterative network was devised 
with error of second order in step length (fig* 1(c))* This scheme was 

developed from expansions about the centre 0 of the characteristic mesh in 

terms of the mesh lengths and seemed to correct the deficiencies in the Mach 
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line based network. However, this method proved unstable in calculating 

axisymmetric flows• As a remedy, a 3 point iterative scheme was introduced 

with interpolation along the previous Mach data line, (fig.1(d) ). This 

method apparently corrected all the instabilities in the non-iterative 

method for axisymmetric flows and was successful for plane flows. The 

source of error in the Mach line based scheme is not now apparent since the 

3 point iterative method also employs linear interpolation.

The present characteristic calculations make use of the Mach line 

based network and no instabilities of the type attributed by Sedney have 

been found despite the comparatively large step sizes used. Wood, 

Springfield and Fallen (1964) have used the same type of network to compute 

hypersonic relaxing gas flows and Johannesen, Zienkiewicz and Bird (1967) 

have used the streamline based scheme to determine the complicated unsteady 

flow behind a reflected partly dispersed shock wave. Neither group has 

reported any difficulty.

In his review Sedney (1970) advocates a method for starting the 

calculations that assumes a region of frozen flow at the body tip. This 

starting process is not advisable. One is impressing a region of uniform 

flow just where the flow gradient on the body surface is a maximum. This 

creates a weak discontinuity (that is one with first and higher order 

derivatives discontinuous) which can propagate out along a negative character­

istic and by reflections influence the whole flow. Even if this has little 

effect on the accuracy one still has to decide how big this initial region 

should be. The accuracy of the calculations must to some extent be dependent 

on the starting process and this would mean that using this simple starting 

process would compel one to employ a far smaller step size than that required. 

The calculation procedure can quite easily be started by using the wedge tip 

gradients, series expansions for small values of the coordinates, or by an 

iterative method employing the characteristics (see Chapter 2, section (1)).
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In some calculations errors have been directly attributable to 

the use of the real gas entropy as a dependent variable. Conservation 
checks of mass, momentum and energy applied by Feldmann and Widawsky (1962) 

to their computations of hypersonic non-equilibrium flows revealed sub­

stantial errors. The authors concluded that certain errors were inevitable 

and that corrections to the computed results must be made. Powers and 

O'Neill (1965) applied the mass conservation check to real gas hypersonic 

flow calculations and found similar large errors. They attributed these 

inaccuracies to the strong entropy gradients existing in the hypersonic 

flow and consequently modified their method by determining the local entropy 

from the equation for conservation of mass instead of by linear interpolation 

between 2 known points. This procedure, of course, reduces any errors in 

the mass conservation check since this is applied directly in the program. 

Perhaps a better test on any possible improvements in the calculations 

would have been to employ a momentum or energy conservation check. Wood, 

Springfield and Fallen (1964) were also conscious of employing entropy as a 

dependent variable in the compatibility relations for their hypersonic 

relaxing gas flow calculations.

In the present calculations the compatibility relations are employed 

in their simplest form with pressure and flow angle. The real gas entropy 

is never required since the alpha-gas model is used. The calculations are 

extensively checked. The convergence of the method is assessed by the use 

of different step sizes in a representative example and in every calculation 

checks are made to ensure that the integrated conservation equations are 

satisfied to a good approximation. For steady flows the integrated energy 

equation can be incorporated directly into the program so that a mass and 

" momentum check is sufficient. In a Mach line based scheme these laws cannot, 

however, be applied over a single mesh length (this is possible with a 

streamline based scheme). Only the integrated- effects over a whole character-
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istic data line can be determined. A typical result is shown in fig. 1(e). 

The characteristic data lines (which are the negative characteristics 

emanating from the wedge surface) are labelled with values according to 

their x-o oordinate on the wedge surface. A closed contour is taken which 

comprises the wedge surface, characteristic data line and alpha-shock. ' 

The incoming mass and x-momentum are readily evaluated and denoted by mass,^/ 

and x-momentum . The symbols mass and momentum refer to the integrated 

mass and x-momentum flux around the rest of the contour. In such checks 

there are 2 sources of error. There is the error in the characteristic 

calculations and the error in the step by step integration around the contour 

These 2 errors may cancel as in fig.l(e). One source of error is then 

dominant, probably that in the characteristic calculations. In the early 

stages of the program development these checks were of great assistance in 

eliminating errors.

SECTION (3)

Exact solution at infinity and projection of the solution 
along the Mach lines and streamlines

In order to assess the progress of the characteristic calculations 

we need to have some idea of the asymptotic nature of the solution* For 

this particular flow we are fortunate in being able to determine this 

solution as accurately as we wish because, as has already been described, 

for large x and y we expect a shock wave at the equilibrium shock angle. 

The position of this shock wave in relation to the origin of coordinates 

at the wedge tip is, however, unknown. By a straightforward application 

of the conservation, rate and state equations along a direction normal to 

this shock we can completely determine the non-equilibrium structure of the 

interior to any desired accuracy. In particular we shall find an exact 
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expression for the maximum departure from equilibrium which holds for 

both fully dispersed and weak partly dispersed waves. This can be 

related (for very weak waves) to a gradient of the vibrational energy 

and hence to a wave thickness. The structure of the shock wave, once 

found, can be projected along any direction in the flow. Of particular 

interest are the Mach line and streamline directions, the former because 

the characteristic results are printed out along the Mach lines and the 

latter because any true diagram relating to the wave propagation is best 

observed along the streamlines.

We are interested in solutions where the shock wave at infinity 

may be partly dispersed as well as fully dispersed so we must include the 

possibility of a discontinuity or alpha-shock appearing if the normal 

frozen Mach number is greater than 1. This alpha-shock can be treated 

by applying the frozen shock relations to obtain the jump conditions across 

it. The structure of the relaxation region can then be found by applying 1 

the inviscid conservation, rate and state equations through the wave just 

as for a fully dispersed wave.

If we define

2.

( l~

Then for the weak solution the equilibrium shook angle can be written 
explicitly as (see Appendix 1).
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This is somewhat simpler than that given by Masoitti (1968) •

Having found the appropriate wave angle as above, if

> I then we determine the jump conditions across the alpha*shock by 

using the frozen shock relations for a shock wave inclined at angle 

to the horizontal.

That is, for instance 

b = l r

The structure of the relaxation region can now be determined by solving 
the conservation, rate and state equations* If we have £ I

then we can apply the following analysis immediately* The equations are, 

denoting the normal velocity as n* and coordinates along and normal to 

the shock as and xA respectively (see fig* 1(f))*

Mass :

Momentum :

Energy :

Rate :

State •

The assumption of constant specific heats gives 
cP = ^06 Cvv^ c "T- 0

The conservation equations of mass and momentum give ( eliminating )

The conservation equations of energy and mass give (eliminating ^)

——“ l ’Aw* — I _
X * X V*" = 5*2

\ -
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From the equation of state

Hence eliminating T from 5.2 gives

That is,

Inserting this expression into the rate equation gives (after

eliminating by the mass conservation equation)

Eliminating T by 5*5 gives a first order differential equation for

the density through the wave, viz.
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A"Multiplying both sides of the equation by gives

C CV* C '*** ’AX«o') “ C|>*') Xx v

That is

5.4

For a fully dispersed wave we can write the above equation more 

concisely by noticing that

- O when ç - 1 and

Hence the quadratic in p in the 

That is

numerator of J.4 must factorize

Hence

where ,

This, of course,is exactly what we would expect from a direct 

application of the equilibrium oblique shock equations.

The density distribution through a fully dispersed wave can therefore

be written as
e* (?- (

' 3.5
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We see that if

o - cP°-~

- ^TÔT^) then ~
Hence we must always have

AOO 
\

That is ^Aeo 1 if the wave is to be fully dispersed.

Equation 5*5 can be solved analytically though not explicitly for p 

r in terms of x A . For approximations to equation 5,5 see Lighthill(1956),

For our purposes it is sufficient to integrate 5*5 numerically 

using a Simpson integration formula. To avoid difficulties at the wave 

end points where a p is large equation 5*5 is integrated from the 

inflexion point which is. again found numerically, though to high accuracy, 

by maximizing 5.5.

If the shock wave is partly dispersed then 5*5 is applied through 

the relaxation region once the jumps across the alpha-shock have been 

determined. The analogous equation to equation 5*5 for the velocity 
has been given by Hodgson and Johannesen (1971)* Their work, however, 

is mainly concerned with estimating fully dispersed wave widths for the 

strengths expected in sonic bangs and they give an analytic expression 

for the wave thickness.

Of importance in later calculations is the maximum value of the 

departure from local equilibrium of the vibrational energy in the shock 
wave at infinity. We shall denote this quantity as ( & )max«> We

shall need this in Chapter 2 when we define a suitable variable to 

describe the shock wave development process. The exact value of 

( ) max co can be found as follows.
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From the energy equation and the assumption of constant vibrational

specific heat we can write

3.6

From the momentum equation, dividing by p gives

1 *

The equation of state gives T = $ o

?
By conservation of mass we get

That is

Hence substituting into equation 5®6 for T,

Differentiating with respect to gives
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If we define ( ? as the departure from equilbirium of

the vibrational energy immediately downstream of the alpha-shock in a 

partly dispersed shock wave at infinity, then assuming that
> ( êF- (this restricts the result to weak partly dispersed

shock waves) we have that ( <5~”‘ when

' t

aw 2> (

Substituting back into 5*7 gives

(»- *_ i - 
"L C>A* Cv* ““ O

^»«o ( X ( ~ 1 ‘

Putting gives

'**AXeO

yT~ O.Yf.

In Chapter 5 we shall simplify this expression by use of the 

small wedge angle expansions.

The solution as a function of x A can be projected along the Mach 

lines or streamlines by expressing x * in terms of coordinates measured 

along these directions in the following manner.
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In the coordinate frame of reference ( ), the positive

characteristic directions are given by

The variations of all the flow variables are known as functions of xA

so that by choosing suitable increments in the distance through the wave
we can find the C+ trajectories from

Similarly the C~ and streamlines from

and

( Z - ***'>

= î ' 4*6 * ® respectively

The solutions at infinity along the Mach lines and streamlines can 

therefore be built up step by step. The solutions can be iterated by 

choosing mean values of the gradients once a first approximation has been 

found.

SECTION (4)

The (e», » ^.o , ) space for fully dispersed and
partly dispersed shock waves at infinity

To determine the flowfield we must first be able to specify which

parameters control the flow.

The freestream pressure and relaxation frequency per unit density 

do not affect the physical nature of the flow field and just scale the 

coordinates. This fact is recognized by including these quantities in 

the non-dimensionali zation of the coordinates. Certainly to determine 

the conditions at the wedge tip we need the frozen freestream Mach number 
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and the wedge angle*

Examination of the terms in the non-dimensionalized compatibility 

relations reveals that the only parameter unspecified is the vibrational 

specific heat, cv»b . If we make the assumption of a constant but different 
vibrational specific heat for each flow we consider (that is if we fix the 

vibrational specific heat at its freestream value) then the 3 parameters 

that we must specify are and cv* •

We notice that we have made no assertion as to the nature of the gas 

except that the gas molecules be linear* The freestream temperature is 

defined implicitly by the vibrational specific heat* For instance, if we 

calculate a set of flows with » 1*0 then these calculations are valid 

for those gas flows with a freestream temperature for which ■ 1*0*

Next we would like to know for what values of these parameters the 

flow over a wedge will be fully dispersed, partly dispersed or just fully 

dispersed at infinity* We have mentioned that if the normal frozen Mach 
number at infinity ( ) is less than or equal to 1, then the shock

wave at infinity is fully dispersed* We can therefore recast the problem 

by inquiring the relationship between the parameters that would give the 

required normal frozen Each number at infinity*

The relationship between and is given by

the equilibrium oblique shock relation

% = —g______
C C * A

where w «
Q ^*4 •*' )

If we rewrite this expression in terms of the normal frozen Mach 

number instead of wave angle then we shall be able to enforce 

the conditions stated above more easily.
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Simplifying this gives

If we put = I then we extract the relationship between the J

parameters for shock waves at infinity that are just fully dispersed.

That is

t <x*\.

These curves are plotted in fig. 1(h) for vibrational specific heats 

of 0*5 ,1,2 and J* Regions to the left of these curves are shock wave 

flows that are fully dispersed at infinity.

We are now in a position to define the flows we wish to compute. 

Naturally we want flows at constant Mach number and wedge angle as well 

as at constant vibrational specific heat so that we can ascertain the 

individual effects of the parameters. We therefore choose sets of flows 

at constant wedge angle and constant Mach number that 1 cover1 the region 

for which fully dispersed and partly dispersed shook waves at infinity 

exist. We can only hope to compute a representative sample of all the 

possible flows ; to this end we choose frozen Mach numbers of 1.4 , 2.6 

and J.8. The flows that we have computed in this manner are registered in 
fig. 1(h).
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The properties of the ( 0^ , ) curves will be discussed

as follows e

The maximum wedge angle that will give a certain 
normal frozen Mach number at infinity

The relation between is

ew - - % ~ -------------------
nff ^ixoo "4"

Taking Cv%v as fixed (i.e. fixed) and fixed and

differentiating . r. L . f «o gives

-- = ( Sff Y«) ( C^Yf (.W) - ax< )

This expression is zero when

Cv-e* Ù ^Ye - c Xe* Ù = O

(excluding *Xf<o « 0

This gives

( Yf " ^Yf - - %Tf

That is
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This gives the freestream frozen Maoh number at which the maximum

deflection occurs through a shock wave at infinity of fixed strength.

For frozen flow (i.e. at the wedge tip) this gives

where = -------

The deflection itself can be easily found by substituting the 

expression for the Mach number into the equation for tan 6W .

For Mach numbers greater than this value the gradient is
negative so that as ° . The situation

for Mach numbers less than this value is slightly more complicated. As

—1> 1 the wedge angle ©w decreases until the flow behind the

frozen shook at the tip becomes subsonic. If 6W is decreased still ' 

further then the frozen shock becomes detached (see fig. 1(g)). For smaller 

angles still the constant strength curves intersect. This is because for 

fixed Mach number and wedge angle there are 2 solutions for the wave angle 

and hence 2 wave strengths. For Mach numbers near unity these strengths 

are very nearly the same (since the wave angles are approximately equal) 

and hence appear as solutions in what for larger Mach numbers is essentially 

a weak solution domain.

Having established the regions of the ( ) plane where the

flows at infinity are fully dispersed, just fully dispersed or partly 

dispersed we are in a position to define a critical quantity which will have 

great importance in the presentation of the results in Chapter 3»
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Definition of a critical quantity

The critical value of one of the parameters 6W , and

is the value that it takes, for constant values of the other two 

parameters, at the maximum fully dispersed wave strength at infinity.

The corresponding critical value of any flow quantity is the 

value that it takes at the same point in the ( )

space. '•

Critical values will be superscripted with a *.
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FIGURE 1(f). EQUILIBRIUM-SHOCK COORDINATE SYSTEM
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CHAPTER 2

GENERAL FLOW MESH SCHEME AND. 
DECAY AND DEVELOPMENT PROCESSES
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INTRODUCTION

Chapter 2 introduces the reader to the flow with a discussion 
in great detail of the flow given by 0^ - 2.00°, ■ 1*49 and

* 2.12. Section (1) gives details of the starting process and 

general mesh scheme and section (2) goes on to discuss the variations 

on the wedge surface and alpha-shock as well as the wave development 

process. Errors are assessed by calculations done with smaller step 

sizes and accurate diagrams of the characteristic mesh and shock wave 

development are presented. Section (3) deals with the very interesting 

distinction between real gas and alpha-gas entropy layers in the equi­

librium flow for downstream from the shock wave. The order of magnitudes 

of the entropy productions on the wedge surface and at infinity are 

estimated in terms of the wedge angle. Section (4) utilises the first 

order wedge tip gradients to describe the initial shock wave development 

and alpha-shock decay. A simple solution for the pressure On the wedge 

surface is also given.

SECTION (1)

Starting process and general mesh scheme

The flow that we shall use as the main example to illustrate the 

essential shock wave development processes is representative of the fully 

dispersed wave flows computed (see fig. 2(a)). It incorporates all the 

important, general features of the computer program as well as being 
applicable to the shock tube flow of COg at 600°K.

In the last chapter the justifications for employing a thermo­

dynamically controlled step size on the wedge surface were given. Here 

we shall give a detailed description of how this idea is put into practice
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The flow quantities at the wedge tip are easily obtained by use 

of the frozen shock relations with the flow deflection equal to the 

wedge angle. The flow boundaries are the alpha-shock, across which the 

frozen shock relations are valid, and the wedge surface where the flow 

direction is specified. In order to extend the calculations away from 

the wedge tip, an initial data line must be established. This can be 

done extremely accurately by employing small coordinate expansions in the 

tip vicinity but we shall employ a starting scheme that relies solely on 

the characteristics and which can be iterated to the desired accuracy. 

The convergence of this iteration scheme is checked analytically by 

extracting the first order tip gradients from the first approximation» '

The "characteristic relations given in Chapter 1 are

on a streamline

These relations are employed in finite difference form with error of 

order the mesh length squared. The necessary iterations are accomplished 

by using the mean values of the coefficients of the differentials between 

successive mesh points. If no linear interpolation is employed then the 

error term is reduced to the order of the mesh length cubed (see Sedney 

(1970)). '

For instance, between points 1 and 2, the negative characteristic 

relation is written as
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in the first approximation and as

+ (A - -G^-dfv-u C

in a second approximation, where suffix 12 represents the average of the

quantity at points 1 and 2»

The frozen shock relations, valid across the alpha-shock, are

employed exactly. From these relations the changes in pressure along

. the alpha-shock can be related to the corresponding changes in flow angle

by the differential relation
de

where dO dd ©

The equations of state and energy are applied exactly throughout the

whole flow#

With reference to fig. 2(b) we first locate point 1 by assuming 

that this point determines a certain fraction of the total change in 

vibrational energy on the wedge surface. We evaluate the physical 

distance from the tip by the rate equation
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Applying this to the starting triangle gives

To find x t we must specify ( ). The total change in

vibrational energy on the surface is given approximately by

where Te denotes the equilibrium temperature far downstream behind 

the equilibrium-shock»

Since the difference between Te and T o is small in relation to

To - 1 we can write
-%. CT*.) -

We therefore specify the change in vibrational energy per step along 

the wedge as equal to

The fraction ^/50 is chosen because this gives good accuracy as well 

as being amenable for use on the computer* The first physical step length 

is therefore given by

The first approximation to the thermodynamics and geometry in the 

triangle 012 is to assume that the flow is uniform* A second approxi­

mation to the conditions at point 2 can be found by solving the negative 

characteristic relation along the line 12 in conjunction with the shock 

relation between pressure and flow angle*

That is we solve simultaneously the equations

C K- + (ex- C

and
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The geometry is given by

_ ÇXi-OCo^ ( ^O“ Op)

S .V (©o^o) 4^ Gw G^

S'^o <O^W ( yAp- ÿo -r ©o')

where z is a distance coordinate along the alpha-shock* Hence solving 

for - ^>p gives

CVx - __ - "" C ÿp-

- C 9^

Since for weak waves » yAo + 0 (6O) the above expression is 

approximately equivalent • to the analytically derived wedge tip gradient 

(see section (4))«

Having determined the pressure at point 2 all other quantities can 

be derived from the shock relations. A second approximation to the thermo­

dynamics at point 1 (notice, however, that the value of the vibrational 

energy at point I has already been fixed) can be determined by employing 

the positive characteristic relation between points 1 and 5. The con­

ditions at point 5 are found by linear interpolation between points 0 and 
2. That is if k is the interpolating constant such that

k. C fx- •* Cl»- !•)
then

Cy*-ô«%)hi-'jQ 

~VO S*vyAo S’ IV* LjA^ ©o')
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But 0t * 0 „ so the above equation becomes

From the negative characteristic relation between points 1 and 2

(©x - 0.) = —
cxf-0 f°(%- 3 Z)

S i'-yAo s ivx (

substituting for ( ©x .. G<, ) into the positive characteristic relation

above gives

k x"
**V^ $îv\yuio S >A

Since

S (yuD* ©o—
whereand 3^-^. «

we get
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I For weak waves

I we have

CK-

(eo^

___ !—
<zx-z»^

so that approximately

This is again the same result as given by the first order gradients. We 

can conclude, therefore, that the starting iteration process is likely 

to be rapidly convergent.

(Do obtain further approximations we proceed around the triangle 

in the same manner as before but employ the average values for the 

coefficients in the compatibility and shock relations. The iterations 

are continued until the pressure is 'correct' to 9 decimal places. The 

linear interpolation used between points 0 and 2, however, invalidates 

any precise statement of the accuracy.

tOnce the conditions at points 1 and 2 in the starting triangle have 

been determined the calculations can proceed as follows. With reference 

to fig. 2(c) we find the physical coordinates of point 4 just as we located 

point 1 in the first triangle. That is we have

f in fig. 2(c) points 4, 5 and 6 are typical of the different types of mesh 

point in the characteristics network. Points 4 and 6 lie on the flow 

boundaries and are called body and shock points respectively. The mesh 

structure at these points is shown more closely in figs. 2(d) and 2(f). 

The boundary condition on the wedge surface necessitates the use of only 2 

of the 5 characteristics in determining the unknown point. At the alpha­

shock the shock relations together with the compatibility relation along 



— 41 —

the negative characteristic are sufficient to determine the shock point. 

The major portion of the flow consists of points like 5 which are called 

field points (see fig. 2(e)). The pressure and flow deflection at the 
unknown point U can be found by solving the C+ and C” relations on the 

characteristics through the known points N, but the streamline relations 
(with linear interpolation between the two known points) must also be used 

to find the remaining thermodynamic quantities at U.

The solution is built up in layers along the negative characteristics 

The first mesh point is a body point, followed by several field points and 

terminated with a shock point. Each step along the wedge surface has the 

same change in vibrational energy. From the rate equation the mesh lengths 

along the wedge surface are given by 
j ~\7~ Ovv d®*ox =- ---- —:-- —------

For fixed values of 4e- , 4^ —oo as cr- ' It is therefore

found convenient to terminate the thermodynamically controlled step size 

when 90 per cent of the change in vibrational energy on the wedge surface 

has taken place. The physical step size is then approximately 10 times its 

initial value. The calculations progress further downstream with a 

constant, though adjustable, physical step length on the wedge surface.

For wave flows that are fully dispersed at infinity, the shock points 

overshoot at a finite distance from the wedge surface. That is they iterate 

to pressures on the alpha-shock slightly below 1. The calculations can, 

however, be extended further downstream by computing up to the positive 

characteristic through the last shook point with the pressure greater than 

1. A comparison between the solution at infinity and the characteristics 

can then be carried out along this last positive characteristic. Such a 

comparison is given in fig.2(g) for the flow » 1, = 2.6, cvib ■ 1.

This procedure is sufficient to deal with wave flows which are partly 
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dispersed (here the program is terminated when • the pressure jump across 

the alpha-shock overshoots its value at infinity) and just or nearly 

fully dispersed. For weaker wave flows the shock wave development 

distance can be many times the alpha-shock decay distance so that a new 

procedure is required to extend the calculations further above the 

wedge surface.

A typical case is illustrated in fig. 2( j). This represents the 
Gflow ©tv « 2.00° ( 0.6), ^<0 » 1.49, ■ 2.12. The pressure

profiles are taken along the dashed lines. The wave development distance 

is approximately 2 times the alpha-shock decay length. Suppose that 
point 1 in fig. 2(h) is the shock point where the pressure first over­

shoots. Then we must extend the mesh above this point. We realize that 

if the flow at infinity is fully dispersed then the limiting direction of 

the decaying alpha-shock must be that of the freestream Mach line.

Hence as soon as the pressure overshoots we equate all the thermodynamic 

variables to their freestream values. Since the last shock mesh length 

is rather large, facility is made for interpolating points like 2 so that 

approximately equal steps along the negative characteristics are maintained. 

The same procedure is used for all successive shock points though the 

computation of one. more shock location (point 4) is all that is necessary. 

This is because the freestream characteristic (between points 1 and 4) has 

very nearly the same direction as the flow negative characteristic (between 

points 3 and 4) so that point 4 extends the mesh sufficiently to investigate 

the whole fully dispersed shock wave development.

We have, however, impressed slight discontinuities into the flow but 

these are not regarded as serious because they can only propagate into the 

flow along the positive characteristics. The main signals are channelled 

along the negative characteristics and the reflections along the positive 
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characteristics are weak in comparison. The propagation of these dis­

continuities into the flow will mean* that iterating to the previous 

accuracy is not possible. We can only sensibly iterate down to the 

magnitude of the discontinuity inserted.

To illustrate the improvements obtained we can again refer to 

fig. 2(j). With the previous method we could have extended the calcu­

lations to a distance above the wedge of about 40. We can see that at 

this distance the shock wave is not fully developed. The modified method 

extends the calculations as far from the wedge surface as we wish. In 

particular at a distance of about 100 from the wedge surface the agree­

ment between the characteristics solution and the solution at infinity 

is remarkably good.

SECTION (2)

Decay and development processes in the flow

In this section we shall deal with the methods adopted to extract 

all the relevant properties of the flow from the numerical characteristics 

results. In particular, we are interested in the modifications in alpha­

shock propagation and shock wave development due to non-linear effects. 

The variations on the wedge surface, where simple solutions can be con­

structed, are also studied. ‘

To illustrate the general nature of the flow (throughout this 

section we refer to the flow <0^ « 2.00° , « 1.49 , * 2.12)

the reader should see figs. 2(k) and 2 (i) • The former is a scaled drawing 

of the actual characteristic mesh in a coordinate system that follows the 

initial frozen shock path. The physical (x, y) coordinate system involves 

distances that are both very large and very small (in each coordinate) on 

the same characteristic and hence is unsuitable. For the coordinate
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system chosen we have

The initial frozen shock path is the line ■ 0 and, the angle 

corresponds to the angle

b -l tan < . tan io
P = tan u- .. -.—-( tan * + tan )

in the physical coordinate system. For instance when 4 = , p » W® .

This drawing clearly indicates how the bending of the negative character­
istics (and consequently of the alpha-shock) modifies the location of the 

flow properties over large distances from the wedge surface. Notice how 

the physical step length along the wedge surface increases as do the 

shock mesh lengths further out in the flow. It is also interesting to 

observe how the characteristics are, in fact ’self correcting’. That is - 

they converge in regions of comparatively large gradients so reducing the 

step length. This effect can be seen by tracing the last few negative 

characteristics in the diagram. This diagram does not show the whole 

flowfield; the characteristics are traced to the point where the alpha­

shock is replaced by a freestream Mach line.

Fig. 2(i) shows the departure from equilibrium of the vibrational 

energy, , plotted along the negative characteristics emanating

from the wedge surface. This is a very effective way of showing (in a 

qualitative manner) all the decay processes in the flow. The development 

of the equilibrium core (where ^ » ^ ) can be traced simply and the decay 

of -e- on the wedge surface can be seen from the variations on y * 0. 

The maximum value of the departure from equilibrium is always embedded in 

the relaxation region so that tracing the path of the maxima gives 

essentially the shock wave trajectory. The approach of the ma-nri mum to 
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its ultimate value at infinity (which we denote by («—) 

determines the rate at which the shock wave develops. The decay of the 

alpha-shock is also adequately expressed by following the variations 

where the negative characteristics terminate. Notice how the alpha­

shock reaches zero strength before the maximum value of the departure 

from equilibrium has reached its asymptotic value at infinity. This is 

true for all the computed flows which are fully dispersed at infinity and 

is far more apparent as the wave strength is decreased. The non-uniformities 

in the flow variables far downstream but near the wedge surface are not 

exhibited on this graph ( since all the flow far downstream is in equi­

librium) but will be discussed in section (5)» *

The.quantitative results for these decay processes are best analysed 

by first normalizing quantities and then plotting on a logarithmic scale. 

We shall represent all decay processes by use of the departure from equi­

librium er- 6- and shall normalize this quantity for the specific process 

under discussion in the following ways. To illustrate the shock wave 
development we plot (f— against y. In this

<sr)o — (cP — ..

expression )max represents the maximum value of «- along a positive 

characteristic and ( )maXeo is the corresponding quantity at

infinity. Since initially the maximum of is located at the alpha­

shock, this expression varies between 1 and 0. The alpha-shock decay is 

represented by plotting 6/2^^ against y (for fully dispersed waves at 

infinity) and by plotting—— against y (for partly
(s'- — Cy — o“) a.00

dispersed shock waves at infinity) • Here ( & )^ represents the

departure from equilibrium at the alpha-shock and ( is the

corresponding value at infinity. The approach towards the equilibrium 
state on the wedge surface (and hence the appropriate relaxation distance) 

is investigated by plotting - against x. Suffix w refers to

quantities along the wedge surface.
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For each decay process in this example the accuracy of the 
calculations made with steps corresponding to ^/5Oth of the total c 

variation on the surface is checked by using steps corresponding to 
1/10th and l/250th of the variation* By plotting all the results 

in the above manner we shall be able to define precisely what we mean 

by development and decay distances which have, of necessity, been employed 

rather vaguely in the previous text.

The results for the 3 main decay processes are displayed in figs.2(1), 

2(m) and 2(n). Base e logarithms will be employed in mathematical expressions. 

If we refer to fig* 2(1) we see that to a very good approximation the decay 

on the wedge surface is exponential * This is found to be generally true 

for all the flows computed so that we shall be able to give an analytical 
expression for the rate of decay from the tip gradients given in section (4). 

The effect of inaccuracies is clearly exhibited by comparing the calculations 
made with ^/10th the total variation of er per step with those having 

l/250th of the total variation per step* Notice, however, that these 

inaccuracies are only apparent when the flow along the surface is very 

nearly in equilibrium. We would expect, in fact, the numerical results on 

the wedge surface to be the most accurate since essentially we are integrating 

the streamline equations along a known boundary.

In fig* 2(m) the alpha-shock decay is plotted and on the same graph 

the linear decay rate is exhibited (see Chapter 3). This enables us to 

distinguish the non-linear effects which clearly cause a slower rate of 

decay. The linear theory is reasonably accurate near the tip but further 

out in the flow the results are best represented by a rather smaller, 

constant rate of decay* These conclusions are justified with calculations 

for 3 different step sizes. Deviations from the line establishing the 

slower rate of decay are shown to be due to inaccuracies in the calculations 
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rather than to a renewed ’speeding up’ of the decay process. We can 

explain the two rates of decay physically by recognizing the fact that 

the linear theory takes into consideration only those negative character­

istics that originate at distances infinitesimally close to the wedge tip. 

This is a good approximation only for extremely weak wave flows. The 

modification that results for stronger wave flows is that all or the 

majority of the negative characteristics originating from the wedge surface 

must be taken into account. The characteristics that originate further 

downstream carry smaller disturbances into the flow so that we might 

expect a slowing down in the decay of the alpha-shock (which is controlled 

by these signals). To determine the. character of the alpha-shock decay we 

have only to fix the 2 lines that signify the 2 decay rates. The first 
line always passes through the point where S—~ = 1 and y = 0 and

(e o

its gradient is known analytically from the tip gradients which are estab­

lished in section (4)» We shall call this the initial line. The second 

line can be located by specifying its gradient and ordinate of intersection 

with y « 0. We shall call this second line the far-field line. The alpha­

shock decay distance will then be defined as the abscissa of the ordinate 

on the far-field line for which * 0.01. For instance forQr- crjo 
this example the decay distance would be 42.

Fig. 2(n) gives very much the same kind of results for the wave 

development. There are 2 characteristic rates of decay but the far-field 

line is not predicted as accurately as it was for the alpha-shock. This 

is principally because the calculations are extended to much greater 

distances from the wedge surface but also because exact boundary conditions 

on the alpha-shock are not available. Nevertheless the convergence of the 

calculations for smaller step sizes is clearly established and deviations 

from the far-field line justly attributed to errors. Notice that the 
inaccuracy in the last point on the graph computed with ^/50th of the
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Variation per step is only 2 per cent. Fig. 2(n) also illustrates rather 

more precisely some of the features present in fig. 2(i). The separation 

of the inflexion point in the vibrational energy from the alpha-shock and 

the slower wave development are now clearly defined. The characteristic 

features of these graphs can be interpreted in the same manner as those 

for the alpha-shock. We shall define the development distance as the 
abscissa of the ordinate on the far field line for which ÇçZ-SiÙn** = 1.1. 

This definition ensures that the characteristics shock wave profile has 

essentially the same shape and width as the shock wave at infinity. With 

the above definition, for this example the development distance is 80.
Reference to fig.2(j) shows that this is quite a realistic distance in. 

terms of comparison of shock wave shape with that at infinity.

SECTION (3)

Entropy gradients in the equilibrium flow far downstream 
from the shock wave

The term entropy will be employed as in the previous text when 

referring to the real gas entropy. In the high Mach number flows computed 
by Sedney, South and Gerber (1962 ), the appearance of entropy gradients 

far downstream was attributed to the initial gradients resulting from the 

streamlines having passed through a strong but decaying alpha-shock. A 

linearized analysis by Lee (1964), using the frozen flow at the wedge tip 

as reference state, shows that indeed all the gradients in this • entropy 

layer1 are proportional to the alpha-shock curvature (except, of course, 

for the pressure and flow deflection which are uniform in this region).

Entropy is produced across the alpha-shock and in the non-equilibrium 

relaxation region of the flow. For the strong shook flows discussed by 

Sedney et al. the former is no doubt the dominant mechanism; for weak wave 
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flows, however, the entropy jumps across the alpha-shock are of third 

order in the alpha-shock strength. We shall show that the major contri­

butions to the entropy production arise from the gas relaxation and in 

particular from the departure from equilibrium in the vibrational energy 

initiated by the alpha-shock. On the wedge surface this effect is of second 

order in the alpha-shock strength. '

We shall define the ’entropy layer’ as the region far downstream 

over which the entropy is non-uniform. This layer has a thickness which 

is comparable to the shock wave development distance because essentially 

it is a manifestation of the wave development process. We shall define 

the ’ alpha-gas entropy layer’ as the region far downstream over which 

other thermodynamic variables than the entropy are non-uniform. This 

layer has a thickness which is of the same magnitude as the alpha-shock 

decay distance, which for very weak wave flows is much less than the shock 

wave development distance.

To examine the situation precisely we need to know the magnitudes of 

the entropy productions due to relaxation and due to the irreversible 

processes occurring within the alpha-shock. On the wedge surface there 

is an entropy jump across the alpha-shock followed by a continuous entropy 

production due to relaxation. Fer downstream there is no entropy production 

because the gas is in equilibrium. There must also be an entropy increase 

through the shock wave at infinity. This is due solely to relaxation 

effects (when the shock wave is fully dispersed) but can be calculated 

without any knowledge of the non-equilibrium processes by using the equi­

librium shock relations. We can then make an interesting physical check on 

the mechanism of entropy production by showing that the integrated entropy 

production due to the relaxation processes occurring within the shock wave 

is asymptotically equal to the entropy jump given by the equilibrium shock 

relations.



- 50 -

The increment in real gas entropy due to a small change of
vibrational energy is given by (see Vincenti and Kruger (1965))

Js = (°"

V»b /

Since. 
(T-

and -e cwC I )

the above expression can be written as
\ full ( «=- er )

The entropy change across a weak alpha-shock wave is given by (see 

Liepmann and Roshko (196?))

The contribution from the gas relaxation on the wedge surface, however, 

is given by

«s-*»

From this expression we can construct an approximate analytic solution. 

We assume that
(f - ^) * (F~ (see fig. 2(1))

where DC* is the relaxation distance on the wedge surface. We shall 

use the rate equation in the form

Co$ Gw 
substituting these expressions for ( ) and » into 5.1 gives

DC* DC

Xao
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Neglecting terms in the integrand of 0( ) gives

Hence
S- So =

Writing ( <s-- 6- )o « (To - 1) gives

S- S*

As x —1> «> the entropy production on the wedge surface tends to

the value

For = 0(1) this expression is 0( Gw ) and hence much larger than

the entropy production term across the alpha-shock which is 0( )• For 

an actual comparison see fig. 2(o). Notice that 5.2 implies that

Qs-s-T )
The entropy jump across the shock wave at infinity is approximately 

the same (it is in fact slightly smaller) as that across the frozen shdck 

at the tip. The overall flow deflection is the same and differences in 

the two contributions can only arise due to the differences between the 

equilibrium and frozen values in the coefficient of The 1 entropy 

layer’ must therefore involve a transition from an entropy value on the 
wedge surface which is of order 6^ to a value at infinity which is of 

order . This implies that the entropy layer thickness is of the same 

magnitude as the development length of the shock wave. By determining 

the streamline trajectories in the flow and then integrating expression 5.1 

along them we can calculate the entropy variations far downstream. This
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is done in fig.2(s) and supports our physical arguments*

The mechanism for the entropy production is known; in particular 

we can calculate the entropy production across the shock wave at infinity 

either by integrating 5.1 through the wave interior and finding the 

asymptote or by simply applying the conservation equations across the 

non-equilibrium region* 1

If we choose the former we get 
e“w 5=

** * *~QO

(taking the freestream entropy as zero)

An upper bound for this expression is

3.3

where L is a streamline wave thickness*

If we calculate the entropy production from the conservation

equations we get

The results of Chapter 5 show that we can write

Hence if we insert this expression into 5*3 and compare with 5*4 we 
see that we must have C

1L — -Q-y w
which has physical justification (see Hodgson and Johannesen (1971)). An

exact comparison between the two methods for calculating the entropy jump

is shown in fig*2(p)*
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Alpha-gas entropy

The significance of the alpha-gas entropy lies in the fact that it 

is directly related to those thermodynamic properties of the fluid which 

are the same for both the real gas and the alpha-gas. The real gas 

temperature and velocity changes, for instance, are related to changes in 

the alpha-gas entropy by the energy equation. That is,

• -y i _xl **- <s- * y/ =- constant

Differentiating gives

cU + vjv - o

Dividing by T, 
° ~ = ds*

The alpha-gas entropy increments can be either positive or negative 

depending on whether the vibrational energy is decreasing or increasing. 

For the flow of a relaxing gas through an expansion, the alpha-gas entropy 

increases while in shock wave relaxation regions the opposite is true. 

The changes in the real gas entropy, however, can never be negative and 

in non-equilibrium regions the entropy always increases.

The alpha-gas entropy productions along the wedge surface and throu^a 

the shock-wave at infinity have the same magnitude (see figs. 2(o), 2(p)). 

Approximate values (which are upper bounds) are respectively

1 I - O Ce J)

| \ = O ( ©w)
(we are assuming that any variations in temperature far downstream are small 

compared to the total temperature jump across the flow). Any contributions 

to the total alpha-gas entropy production on the wedge surface from alpha-gas 

entropy jumps across the alpha shock are negligible since these are 2 

orders of magnitude in the wedge angle smaller. The small entropy jumps 



- 54 -

across the alpha-shock are important, however, in explaining the formation 

of the alpha-gas entropy layer. Here we are considering differences in 

quantities which have equal magnitude (namely the alpha-gas entropy 

productions at infinity and along the wedge surface) and consequently 

any 1 small1 effects are not negligible*

Inspection of fig*2(q) shows that the alpha-gas entropy layer 

thickness is comparable to the alpha-shock decay distance. The contri­

bution towards the total alpha-gas entropy production on the wedge surface 

by the frozen shock at the wedge tip is 0*000096. This has the right sign 

but is not wholly sufficient to account for the variations of the alpha­

gas entropy far downstream* We observe, however, that the alpha-gas entropy 

production integral depends on the local temperature which is slightly 

higher at the tip because of the relatively strong alpha-shock there* 

This effect would tend to increase the alpha-gas entropy production on 

streamlines near the wedge surface. We can justify these assumptions 

rather better by showing that the rate of approach of the alpha-gas entropy 

to its equilibrium value far downstream but high above the wedge surface 

is similar to the rate of decay of the alpha-shock measured in terms of 

the temperature. This comparison is given in fig. 2(r). '"T*. is the 

temperature immediately downstream of the alpha-shock. The variable S*w 

denotes the value of the alpha-gas entropy on the wedge surface. The 

variable denotes the equilibrium value of the alpha-gas entropy far 

downstream but high above the wedge surface.

The alpha-gas entropy is related to the pressure and density by the 

relation

+ constant

Far downstream the pressure is constant so that variations in alpha-gas 

entropy correspond to variations in density. . Similarly from the equation 

of state the density variations are related to the temperature variations 
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and so on. The alpha-gas entropy layer therefore has the same thickness 

as the temperature, density and velocity layers which exist far downstream. 

The thickness of these layers is comparable to the alpha-shock decay 

distance. The real gas entropy layer which measures the relative magni­

tude of the non-equilibrium on successive streamlines extends over the 

whole flowfield.

SECTION (4)

First order wedge tip gradients and their use in providing 
analytic expressions for the initial decay and development 
rates; solution on the wedge surface

The shock wave development and alpha-shock decay have been investi­

gated in terms of their initial and far-field decay rates. No general 

expression for the far-field decay rates is at present available but the 
first order wedge tip gradients are well known (see Capiaux and Washington 

(1965)). We shall adapt these so that they give analytic expressions for 

the initial decay and development processes.

If z is distance coordinate along the alpha-shock and Ks denotes the 

alpha-shock curvature then the pressure gradients at the wedge tip are 

given by

with

and

4.1
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The gradients we require are

for the wedge surface decay

for the alpha-shock decay

for the partly dispersed wave 
alpha-shock decay

for the shock wave development

These gradients can be evaluated at the tip in the following manner. From

the energy equation we have

Differentiating and substituting

constant

gives

Hr h- VdV O 4.2

By employing the rate equation for 4<s* and eliminating in terms

we get

Utilizing the expression for the pressure gradient along the wedge surface

(equation 4.1) gives
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Hence the gradient we require on the wedge surface is

The initial wave development and alpha-shock decay gradients can be found 

in a similar manner. In particular we notice that initially the maximum 

departure from equilibrium always occurs on the alpha-shock. Hence we

need only to find
' l °

Referring to equation 4*2 we have

V 4V = O

Along the alpha-shock o so we have

Since

5^ à * "V d."V = O

d 1/
4^. “ dÿ then

But

Hence

Inserting gives

The initial alpha-shock decay and wave development rates can therefore

be obtained from the above expression by noticing that



and

In the next Chapter we shall use these expressions to give a precise 

evaluation of the initial decay rates.

Simple solution on the wedge surface

The characteristic results indicate (see next Chapter, but for a 

specific example in fig. 2(1)) that to a very good approximation the 

departure from local equilibrium of the vibrational energy along the wedge 

surface decays exponentially with distance. We therefore assume that the 

departure from equilibrium is given by

QF- = Qf- e."

The relaxation distance ^x-w is given by the tip gradients discussed 

above. It is

In order to derive a solution, however, we must make another assumption 

This is because the assumption introduced above can be shown (see section 

(1) of Chapter 5) to be a degenerate form of the rate equation. The 

variations of pressure, density, temperature and velocity along the wedge 

surface are given approximately by
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The percentage variation in the pressure is largest and it is 

this quantity for which we seek a solution* Consequently, we cannot 

assume that the velocity is constant because then the streamline momentum 
equation implies that the pressure should be constant (see section (1) 

of Chapter 1 for the streamline equations)• The percentage variations 

in the density and temperature are similar; we assume that the density 

is constant* The streamwise momentum equation, can then be integrated 

and gives

~ V ° * x %» cv--v

The temperature is obtained ftom the equation of state. That is

The energy equation is

-T «■ Hr =- C^OL A- o

since 5? « •* ( » — V j then '

That is

C
\ — i — —i.

Eliminating the velocity and temperature by the use of the equation of 

state and integrated streamline momentum equation gives



Collecting terms gives

inserting the expression for ( f ) gives

This solution is plotted in fig. 2(t) where it is compared to the 

linear theory (see section (2) Chapter $)• It is seen to be a closer 

approximation to the characteristics results*

As x. -b co the pressure tends to the value
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CHAPTER 5

RESULTS FOR FLOWS WITH Ovib - 0,5, 1, 2
AND 5 ; APPROXIMATE SIMILARITY REPRESENTATION
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INTRODUCTION

Chapter 5 presents all the results of the numerical computations» 

Specifically we are interested in the variations on the wedge surface, 

the alpha-shock decay and the shock wave development. Consequently, a 

section is devoted to the detailed representation of each of the above 

physical phenomena. The results are plotted, where possible, in concise 

similarity form by scaling with respect to critical quantities. For the 

alpha-shock variations we can employ the weak wave linear theory (see 

Chapter 5) to give alternative scalings. Section (4) assumes that the 

similarity exhibited in sections (1), (2) and (3) is exact and pursues 

the consequences. This leads to simple scaling laws for obtaining critical 

quantities- of interest at any .

SECTION (1)

Results for the variations along the wedge surface

A critical quantity (indicated by a * superscript) has been defined 

in section (4) of Chapter 1. In this Chapter these quantities will be 

employed as scaling factors which permit a concise representation of the 

numerical results in similarity form. The nature of the similarity will 

be discussed in section (4)*

For all the computed flows, we have found that to a good approxi­

mation the variation of the departure from equilibrium along the wedge 

surface is exponential. We shall therefore write

_  ‘ _ as
(j^* — <5* j 5 (er — tf*) * Q, 1.1

where is the relaxation length on the wedge surface. An analytic

expression for can be obtained from the wedge tip gradients given
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in section (4) of Chapter 2. That is

We can explain the dependence on physically by realizing that if

Cv»v I then it is essentially that relaxes (with veiy little

change in ? ) but that for l the opposite is true. Since the

alpha-gas entropy layer effects are small we can say that —o

on the wedge surface as «.-*><*> . The small angle expansion for («=-<«-)

is

Hence

fig. 3(a)This form is plotted in and compared with exact results from

the characteristics solution. We can therefore write

C X e “*) 0 0^
^T* Gw

1.5

The quantities % and «< — measure the amounts by which and

respectively have relaxed. It is plausible to assume, therefore, that 

at any station on the wedge surface (excepting the tip) the ratio of the 

amounts by which «- and a- have relaxed is a constant determined by the



value the ratio takes as .0 e That is

Hence

From the rate equation
substituting above for J

-vc&e* 
gives

Assuming that to the approximations made ç and

integrating we get

from which

— -I

vo 1.4

This is (as we shall see) a reasonable approximation to 1.2 since the

term involving ( ) is small

We can also show that should have the form given by equation

1.4 by requiring 1.1 to be compatible with the rate equation. That is 

substituting 1.1 in^o the rate equation we get

____ L- ( -- A e_~

Integrating (assuming ç « , *V = ) gives

+ constant
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when X °o so that

constant »

When dc. * o Hence

This also implies that «■ relaxes in the same manner as s^«s- with the

same relaxation length»

The exact expression for given in 1.2 is plotted in figs.3(b) 

and 3(c) and shows excellent agreement with the characteristics results» 

The variations with the wedge angle are essentially due to the term 

containing (y^-i ) in 1.2 and hence are absent in the above approximate 

derivations » We can simplify 1.2 by writing it as a power series in the 

wedge angle» That is we express all variables in power series of the 

wedge angle with the f reestream as reference state, substitute into 1.2 

and take successive approximations » This gives (for the first approxi­

mation)

This is the value predicted by linear theory (see Chapter 5, section (2))»

Since



The critical value of this quantity is just its value at the critical 

Mach number. That is, (denoting the value of predicted by linear

theory with the additional suffix l)

The bracket multiplying is close to 1. For our calculations

we can assess the deviation from 1 by choosing = 1 , - 1.4
and - J.8. We then have = 1.04 ( —) •

Hence approximately

J
The comparison between this rule and the characteristics is given in 

fig. 3(d). In particular we expect this rule to be most accurate for

o % > > l and 1. This example illustrates

a simple but approximate similarity when quantities are scaled with respect

to their appropriate critical values. For the cases treated in the next 
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sections no general analytic expressions are as yet available and it is 

difficult to decide on the exact nature of the similarity. In particular, 

any deviations from the assumed similarity curve may be attributed to 

errors in the characteristic calculations.

To illustrate rather more clearly the dependence on 0w, we expand 

the expression for Xw to first order in 0*. We employ the small angle 

expansions

(see Liepmann and Roshko (1967) p. 95 and p.589)

Substituting these expressions into 1.2, expanding and neglecting 
terms of order 0^" gives .

Hence xw decreases with increasing 0W. Reference to fig. 3(c) shows that 

this expression is sufficient to account for the variation of relaxation 

distance with wedge angle.
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SECTION 2

Results for the alpha-shock decay

A logarithmic plot of the variations along the alpha-shock has 

been given in section (2) of the last chapter. It was explained there 

that we could fix the initial and far-field decay rate lines on the 

graph simply by knowing, their gradients and the intercept of the far- 

field line on the line y = 0. In this section we shall be concerned 

with plotting these 3 quantities and in particular we shall illustrate 

the essential non-linear features by comparison with the linear theory . 

(see Chapter 5) for the weak alpha-shock decay. This theory predicts 

a single decay rate given by 

where represents the linear decay distance.

We shall represent the initial and far-field line gradients in 

terms of decay distances represented by and A respectively

The intercept of the far-field line on the line y = 0 we shall denote by 
the symbol b* . With this notation the equations to the initial and

far-field lines are

and respectively for

fully dispersed, shocks at infinity and

for partly dispersed shocks at infinity.
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The variation of the far-field decay distances with respect to 

the parameters and cv^ are illustrated in figs.5(e) 

and 5(f)* Fig. 5(e) indicates how varies with 0W and • The 

decay distance decreases as increases. The linear decay distances

(which are independent of 0W) are plotted on the same graph and are good 

approximations only for The non-linear effects

exhibited in the sharp rise of the curves to a maximum when

are clearly
*@w = @w *

In fig. 5(f) the variation with 6# and is shown. The curves are very 

much similar in shape with the maximum corresponding always to critical 

conditions. The Mach number dependence for large Mach numbers is weak; 

the linear theory predicts the same effect, essentially due to functional 

relationships like x

It is clear that if an exact similarity scaling with respect to 

the critical values exists then in particular it must scale the linear 
0

results which represent the limits to the curves as —> 0. This means
Gw

of course, that we can just scale quantities on the linear results and 

get an equivalent similarity representation. This procedure is prefer­
able because the linear scalings are known exactly. Indeed fig.5(j) 

indicates that there is considerable scatter in the critical values. This 

scatter is partly accounted for by inaccuracies in the characteristics 
results. More accurate calculations with ^/250th of the variation of ta­

per step (for the « 3 flows) indicate that the decay distances 
increase above the values calculated with ^/50th of the variation of «s' 

per step. The results are still scattered, however, but this could be 

due to the calculations still not being sufficiently accurate or possibly 

due to the calculations not having progressed far enough (because of 

computer time restrictions). We must emphasise, however, that these 

inaccuracies are only present for the computed flows with 8# = ©w* All 

other calculations are adequately represented with the larger step size.
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Fig» 5(g) shows the quantities h^ plotted, against . In both 

figs. 5(g) and 5(d) the similarity representation is good except for 

Gw " 0w« In fig. 5(g) more accurate calculations indicate that the 

scatter is due, in part, to errors in the characteristics results.

Notice that it is not necessary to scale the quantity b* because all
%, results tend to 0 as 0. The linear scalings are represented in 

fig. 3(h).

We shall investigate the initial decay distances ( ) by use of

the wedge tip gradients. Linear theory predicts no 0W dependence and 
y

so in fig. 5(i) would give the line “1. We can see*, however,

that there is quite a marked variation both with Gw and cviW , especially 

for the frozen Mach number of 1.4* The appropriate wedge tip gradient 

has already been derived in section (4) of Chapter 2. Confining our 

attention (for the moment) to fully dispersed wave flows at infinity we

have

4.6

If we expand this expression as a power series in the wedge angle then

we expect to recover the linear decay rate in the first approximation. 

The first approximation is



From fig. j(i) we see that the initial decay distances vary linearly 

with 9We It is therefore sufficient to expand % to O (9W)

The small angle expansions that we shall need are,

Carrying out the necessary algebraic manipulations finally gives

IWe can see from this that there is no possibility

of the critical scaling being a similarity scaling if the 6W 

term is not negligible. This is quite clearly the case when 
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the frozen Mach number is 1.4 and Ow comparatively large (notice that

Gw does have a maximum near = 1*4) • In scaled form

'<LO
* 
do

0VV
The gradient of the line with as independent variable is

For « 1.4, = 5 and Gw « 4*4° the gradient is then - 0.54(6)

and compares favourably with the characteristics results plotted in 

fig. 3(1).

For partly dispersed shock wave flows at infinity the initial 

decay distance is given by

Hence

Initial decay distance for partly dispersed wave
Initial decay distance for fully dispersed wave

(?- «do

We shall now expand this quantity in terms of 0W. We have already shown 

that (section (1))
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The temperature ratio across the alpha-shock at infinity is

The normal frozen Mach number at infinity can be expanded as

We shall write this as

where

Inserting this expansion into the expression for and expanding
/ 4K 2to 0(6w - Gy) gives

Hence

To a first approximation we can write



- 73 -

Neglecting tenus of O ( o- above means that

Hence

This gives

We notice that the critical value of this quantity is 1 so that it Can

be regarded as a scaled quantity, 
flows (where is nearly 1), 

approximate similarity rule. The 

For the moderate and high Mach number 

the above expression can be used as an 
function is plotted in fig. 3(i) and

compared with the available characteristic results.

SECTION (3)

Results for the fully dispersed and the partly dispersed 
shock wave development •

We shall analyze the results for the shock wave development in 

the same way as for the alphq-shock decay. That is we shall specify the 

gradients of the initial and far-field lines and the intercept of the far-field 

line with y - 0. The initial and far-field development distances (inverse 

gradients) will be represented by the symbols and *5 respectively. The 
intercept on y » O will be denoted by t . With this notation the equations
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to the initial and far-field lines are

respectively,

Here («-—«s’ )max is the maximum value of the departure from ëquilibrium 

on the positive characteristics reflected from the alpha-shock• Initially 

this maximum always occurs at the alpha-shock itself so that the initial 

shock wave development gradients are the initial alpha-shock decay 

gradients scaled by the factor

A simplified expression for )o has been given in section (1) • The 

exact value of )***«» was found in section (5) of Chapter 1* Here 

we shall expand this in terms of the wedge angle»

The exact value is

The normal frozen Mach number at infinity has the expansion

where

Y4 ^k<o * 'TV * Gw O

(These coefficients are perhaps most easily obtained by comparing

Ye^eco
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given in Liepmann and Roshko (1967) p.58^ with

We might expect (<r- er to be 0(9w) because we could define a

streamline wave thickness at infinity by

inflexion point

This is approximately equal to (by using the rate equation)

Since the wave thickness is (see, for instance, Hodgson

and Johannesen (1971)) then («r-e- is O(e^)

Inserting the expansion for into the exact expression for ( «■- <5- )max 00

gives

o
In the numerator the coefficient of 6* is

The coefficient of 8^ is
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The coefficient of 0^ is

Hence the expression correct to O(^) for ( e-- is

Expressing this in similarity form gives

«ST A

We could anticipate such a rule by noting that

That is shock waves at infinity having the same normal frozen Mach 

number (and hence the same value of (?- «• have approximately the
- same ratio of • This similarity representation is plotted in Vw .

fig. 3(k) together with the numerical results.

Fig. 3(o) shows the initial shock wave development distances scaled 

with respect to the critical development distances. These are just the

initial alpha-shook decay distances multiplied by - 
(5-- g-)o

The results for = 2.6 and 3.8 fall on to a single curve but the
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results for « 1.4 fall on different curves depending on the vibrat­

ional specific heat. The same behaviour was exhibited by the initial alpha­

shock decay distances where the functional dependence was explained by 

expanding the appropriate tip gradient to first order in 8w* • It is 

sufficient, therefore, to consider the scaled behaviour of

Scaling with respect to the critical values gives

From the expansion for the normal frozen Mach number at infinity we have

Hence
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For CvA * 1, = 5.8 the value of this expression on ■ 0 is

1.55* This compares well with the results plotted in fig. 5(o). To get 

the gradients of the lines for « 1.4 we have only to add the gradient 

just derived to the gradient found in the last section for the initial 
alpha-shock decay distances. Values of 8X6 plotted in fig. 3(p).

The shock wave development distance has been defined in section (2) 

of Chapter 2. We shall represent it with the symbol % . Fig. 3(1) 

illustrates the variation of with 8#, cv* and . There is very 

little variation with and the main dependence is on ©w and ^ao .

The result of scaling these distances with respect to the critical 
distances is shown in fig. 3(m). The results fall very nearly on to a 

single curve; the scatter that we do get is where we expect it - for 
Gw gg « 1. Here the shock waves are very weak and very wide at infinity in 

comparison to their width on the wedge surface. The development distance 

is also comparatively large and these effects combine to make the compu­

tations long and costly. One is forced, therefore, to terminate the calcu­

lations at a stage where the far-field line is tenuously predicted. One 

can state, however, that the values plotted are underestimates to the 

true development distances. From section (2) of Chapter 5, for very weak 

waves, the analytic estimate for the development distance is given by 
  Ç— / \ -x 3---- % ) ©w

0^ We shall tentatively assume that this holds for all 1. In

our similarity form this is

V = (S)

This function is plotted in fig. 3(m) and exhibits the qualitative 6w 

dependence reasonably well.

Fig. 3(n) shows the variations of the critical shook wave development 

distances with frozen Mach number and vibrational specific heat. The Mach 
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number and vibrational specific heat dependences are very similar to 

those of the linear theory for alpha-shock decay (see fig. 3(h)). More 

will be said about the nature of the dependence on and 6*

in section (4).

Fig. 3(q), which is similar to fig. 3(m), illustrates the variation 

of the far-field scaled shock wave development distances. The very weak 

wave theory (see section (2) Chapter 5) predicts that these distances 
should also vary like 5^ • in fig. 3(r) the far-field critical develop­

ment distances are plotted and compared to the corresponding far-field 

alpha-shock decay distances which are approximately a factor of 2 greater 

(note, however, that the critical alpha-shock decay distances are subject 

to the error mentioned in section (2)). Fig. 5(s) compares the scaled 

far-field alpha-shock decay and shock wave development distances. By use 
of fig. j(r) (determine the absolute values) we see that for ©w* % 1 

ÿ and ÿA have approximately the same magnitude. For « I ,

The values of b can be found using the plotted values of 3 and . 

We choose to plot (instead of ) for convenience in the analysis that 

follows in the next section. We shall also need estimates of S* in 

Chapters 4 and 5.

SECTION 4

Discussion of general similarity and extrapolation of results

We have seen in the previous 3 sections how the scaling of quantities 

with respect to their critical values has given some kind of similarity 

representation. In some cases, however, this approach has failed (see 
figs. 3(3^) and 3(%)* To precisely analyze the nature of the similarity 

from the governing equations and wedge boundary condition is a formidable 
task. Simplifications have to be made; in particular, Blythe, (1969) has 
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given similarity scalings for the very weak wave case. We shall 

tentatively assume, however, that (in the appropriate cases) the 

characteristic results are indications of an exact similarity and 

shall pursue the consequences.

First we shall consider the far-field

distances which are plotted in fig. 5 (y) .

alpha-shock decay

We shall assume that an

exact similarity does exist so that we can write

in particular this must scale the 

values as gw —t> O ) so that

linear values (which are the limiting

Hence the linear values can be used as scaling factors so that

The analytic form for the linear decay distances has been given in «

section (2) Therefore

Unfortunately we can say nothing about the nature of the function

because the linear theory gives no indication of

even the initial variation with 8^. This expression does show, however

how the critical values vary with and • Examination of
fige 3(r) reveals that these dependences are qualitatively correct. 

The inaccuracies found in the determination of the critical quantities 
in section (2) forbid a more precise statement.

If, however, we next consider the shock wave development then the 
weak wave analysis given in Chapter 5, section (2) furnishes an initial 
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dependence on all 5 parameters. In Chapter 5, it is shown that, for

^ery weak waves, the development distance is a multiple of

%

where B =

'and C «

On the evidence presented in fig. 3($?) we assume an exact similarity

'exists and write

r>
At 
S

(This implies in general that

where can take any value and 0X6 unknown functions.

This equation indicates that for similarity of the type under discussion 

to exist the dependences on the flow parameters must be separable into 

distinct functional relationships. If, as above, scalings are taken 

with respect to critical values at 6# then it is the 6W dependence

that must be separable: the and dependence can be coupled 

in any manner.

'The expression above must agree with the weak wave analysis in the

limit — 0. Hence we must have

K s — 2»

_ £
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Therefore

But ~ from section (j).
*Y< (^<*0

Substituting gives

That this dependence is qualitatively correct can be seen by 

examining‘fig. j(r). Of major importance is the dependence on Mt> which 

enables us to extend the results to any vibrational specific heat of 

interest. We can assess the accuracy of this prediction by testing 

whether at constant » constant. This calculation

is made in Table 1 which verifies the rule especially when we remember

TABLE 1

0.5 1.0 2.0 5.0

ss 1.4 65.5 61.0 55.0 53.0

2.6 84.5 84.0 79.0 75.0

3.8 89.5 86.0 82.0 79.0

that only the simplified form has been used. For more accurate verifi­

cation the results in Table 1 should be divided by

If this is done then we get the results in Table 2 which are a considerable 

improvement over those in Table 1.
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TABLE 2

Cvi e■ 0.5 l.o 2.0 5.0

^OD » 1..4 54.6 54.6 53.0 53.0

2..6 19.5 20.1 20.5 20.2

3<,8 15.4 15.6 15.9 13.7

For crude assessments, however, the simple rule is adequate and will 

be used in estimating the development distance in Chapter 5 for a flow 

with Cvi\» ■ 0.05*

The same arguments can be applied to the far-field shock wave 
development distances. The analysis in section (2) of Chapter 5 indicates 

that these have the same and dependence as the shock wave

development distance (in the very weak wave limit). Consequently the 

critical values must have the same dependence as presented above for the 

development distances. These results mean that we can evaluate the 

whole shock wave development process for any ; the whole alpha­

shock decay process can be extrapolated using the known linear scalings.



FIGURE 3(a).SIMILARITY CURVE FOR INITIAL DEPARTURE 
FROM EQUILIBRIUM. —, = ©J .
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* 3- Cv'b « 3
& » M • ' 4*

△ » **■{•» ". A. C TH *a^„ * 2. C
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FIGURE 3(d). SIMILARITY REPRESENTATION OF THE VARIATIONS 
OF THE RELAXATION DISTANCE ON THE WEDGE 
SURFACE. — approximate similarity rule .
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FIGURE 3(k). SIMILARITY CURVE FOR THE MAXIMUM DEPARTURE FROM 
EQUILIBRIUM IN THE SHOCK WAVE AT INFINITY,
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CHAPTER 4

COMPARISON OF EXPERIMENTAL RESULTS WITH 
THE SOLUTION BY CHARACTERISTICS.
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INTRODUCTION

In section (1) we shall describe the experimental apparatus• 

Section (2) goes on to deal with the factors influencing the production 

of the desired steady flow and section (3) provides a method for deter­

mining the theoretical fringe pattern so that comparison can be made 

between theory and experiment*

SECTION (1)

Experimental arrangement

The Manchester University Mark 2 shock tube was used in experiments 

to produce, the flow described in the previous Chapters* The shock tube 

is shown schematically in fig* 4(a) • The high pressure section and first 

part of the low pressure section are of cylindrical cross section of 

12 in* (0*30$m) diameter* At a distance of 194 tube diameters from the 

diaphragm station an area change scoop is used to gradually accelerate 

the shock into a rectangular duct of dimensions 2 in* (51mm) by 8 in* 

(204mm) which continues to the end of the working section* The cross 

sectional area then increases abruptly to 12 in* (0*305#) diameter 

circular in a dump chamber* The working section is filled with windows 

of dimensions 2 in* (51mm) by 12 in* (305mm)*

The shock tube is first evacuated using rotary pumps to a pressure 

of about Io'n/h^ and then diffusion pumps reduce this further to below 

1N/m^. These very low pressures are checked with Pirani gauges. The 

working gases used in the experiments were COg and N^O. These gases have 

very similar thermodynamic properties but the former has a relaxation 
frequency per unit density approximately ^/6th the value of the latter 

(see Johannesen et al* (1962) and Bhangu (1966))* Particular attention 
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was paid to the purity of the gas which was slowly passed through a 
molecular sieve capable of reducing the dew point to 175°K. This 

effectively eliminates the water vapour content of the commercial gas 

used. This is especially important in the case of COg where COg-EgO 

collisions are known to be highly effective in providing energy exchange 

between the translational and rotational modes and vibration. For N2O 

a crude comparison of photographed runs with dry and undried gas 

suggested that perhaps the effects of water vapour are less serious in 

this case. Nevertheless the same precautions were taken as for COg. In 

the experiments in which a pure gas was essential, the leak rate was a 

fraction of 0.1 N/m^ per minute. The leak times were about 5 minutes.

The gas pressure in the low pressure section was measured on an oil 

manometer connected directly to the, tube. The shock Mach number was 

found by timing the passage of the shock between 2 platinum film timing . 

elements placed 14 in. (0.556m) apart. The signal from the last timing 

station, after having been passed through a suitable delay, was also used 

to trigger a short duration spark light source which illuminated the 

working section.

A wedge model was made (see fig. 4(b)) which was supported in the 

working section on 2 stings secured from the dump chamber. The wedge 

incidence was variable to such an extent that the upper face could be 

inclined to the freestream flow (which is defined as the uniform section 
of flow behind the initial shock wave) at any angle between 00 and 50 • 

The wedge chord was sufficiently long to ensure that there was no 

interaction between the expansion from the wedge trailing edge and the 

shock wave at the wedge tip (see fig. 4(0)), but short enough to eliminate 

the probability of choking in the upper channel for the freestream Mach 

numbers to be used. The more serious problem of choking in the channel 
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beneath the wedge surface was avoided by inserting a plate of thickness 

in. (12.7mm) and width 8 in. (0.204m) into the rectangular section of 

the shock tube. This plate merged smoothly with* the area change ajad 

entered the working section to a position just below the wedge tip. 

This ensured that the expansion from the plate corner did not affect the 

flow on the upper surface of the wedge. The boundary layer on the plate 

separates at the corner as shown in fig. 4(c). From previous experiments 

using the plate to study expansions we were fairly certain that the 

channel formed between the lower surface of the wedge and separated 

boundary layer would be diverging (this was also a factor which influenced 

the choice of wedge chord). There is then no possibility of sonic flow 

in the lower channel for supersonic freestream flow. It was also possible 

to raise the wedge tip higher above the plate in order to minimise any 

interference to the flow above the wedge caused by the plate boundary 

layer.

The mechanical methods for measuring the small angles of incidence 

of the upper wedge face to the freestream flow were checked by an optical 

method. Parallel light was reflected by a plane mirror mounted in the 

working section on to brightly polished slip gauges placed on the upper 

surfaces of the wedge and plate. The inclination of the mirror to the 

plate was adjusted until rays of light from the plate and wedge surfaces 

were reflected out of the working section on to a screen. The angle 

between the beams emerging from the working section is twice the incli­

nation of the upper wedge face to the horizontal. The separation of the 

slip gauge images on the screen is therefore simply related to the wedge 

incidence. By measuring the separation for several distances of the 

screen from a fixed reference station, one can eliminate the necessity 

for determining the virtual position of intersection of the two beams. 

These measurements were taken at the two outside edges of the wedge and 
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at a middle section. The 3 values so obtained for the wedge incidence 

were then averaged. This method was in good agreement with the mechanical 

methods.

Two sets of experiments were made. The first set were to ascertain 

whether there was enough running time (which is defined as the duration 

of uniform flow behind the initial shock wave) for the initially unsteady 

flow over the upper wedge surface to settle down into the expected steady 

configuration shown in fig. 4(c). To do this a conventional 2 mirror 

Toepier Schlieren system was employed with a parallel light beam passing 

perpendicularly through the working section. Both vertical and horizontal 

knife edges were used. The working section was focussed on to a camera 

plate. To accurately evaluate the density distributions within the flow 

a second set of experiments was made employing a Mach Zehnder interfero­

meter with a 4 in. (0.102m) square field of view. These experiments are 

described in sections (2) and (3)•

SECTION (2)

Running conditions and choice of gas

in this section and section (3) non-dimensional quantities will be 

hatted.

The schlieren runs were made with Ng as the driver gas and NgO as 

the driven gas. In these experiments the purity of the gas was not 

important.

The starting flow is well illustrated by the schlieren plates 1, 
2 and 3» The wedge tip was placed ^/5th in. (5«lnnn) above the plate 

edge and no special attention was paid to the leading edge thickness 

which was about 0.2mm. In the second set of experiments the wedge tip 

had to be raised to about 9mm from the plate edge in order to clear
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the plate boundary layer and the wedge tip was sharpened to 0.04mm. 

Performance calculations for the running of the tube were based on 

earlier experiments in the department using the plate to study expansions 
in plates 1, 2 and 3 the upper wedge surface is inclined at 3° to the 

freestream flow the the ratio of area at the wedge trailing edge to 

area at the wedge tip is 0.95» To avoid choking the freestream Mach 

number must be above 1.25, Higher freestream Mach numbers imply higher 

shock Mach numbers and a reduced running time. Crudely the running time 

can be expressed as

where is the distance from the termination of the area change to the 

working section, Ms is the initial ( equilibrium) shock Mach number and 

suffixes 1 and 2 refer to conditions ahead of and behind the shock.

The formation of the steady flow about the wedge is, however, 

intimately related to the time taken for propagation of pressure pulses 

between wedge surface and working section roof. This is clearly illus­

trated in plates 1, 2 and 3* These pressure disturbances travel at 

the frozen gas sound speed so that an estimate of the time for the 

formation of the steady oblique pattern would be a multiple of

where is the distance from the wedge surface to the working section 

roof. We can write this expression as

An important consideration is how varies with incident shock Mach

number. According to the ab

Ate 1 Ye V U,
atp. J L»

ove model we can write

- ( — V
/ \ V** /
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Using Rees (1968) results for equilibrium flow ratios for normal shocks 

we can show that this expression increases with increasing Mach number. 

This suggests that experiments should be confined to low freestream Mach 

numbers. Experiments carried out with initial shock Mach numbers of 
about 4 ( corresponding to freestream flows of about Mach 2) gave unsatis­

factory results because of interference from the secondary contact surface 

(caused by the area change) before the flow was steady. The best results 

were obtained with initial shock Mach numbers of about 3 (as in plates 1 

to8 ) corresponding to freestream flows of about Mach 1.7. The running 

times are then in the region of 600y* s. Plate 4 shows the flow initiated 

by a shook of Mach number 2.9 250 s after it passed over the wedge tip. 

Plate 5 shows the same flow 420y& s after the initial shook wave passed 

over the wedge tip. In ideal gas flows over wedge surfaces it is well 

known that any apparent thickening of the shock wave is due to sidewall 

boundary layer interaction. In our experiments, however, there is the 

additional shock thickening due to relaxation. These two effects are 

highly coupled because the relaxation effects ease the pressure gradients 

through the shock and consequently render any shock-boundary layer inter­

action less severe. In plates 1 to 5 the bluntness effects are clearly 

visible from the expansion along the separation bubble near the wedge tip. 

Of particular interest is the reflected wedge tip shock which still seems 

to be in the process of forming in both plates 4 and 5*

Having established that the flow would not choke and selected a 

suitable Mach number range for which the observed flow was steady, a second 

set of experiments was made using an interferometer to evaluate the density 

distributions. It was decided that the undisturbed fringes should be 

vertical (by aligning them with the vertical face of the plate) so that 

the thickness of the boundary layers on the plate and working section roof 

could be estimated. The boundary layers on the working section windows would 



- 90 -

presumably have similar thicknesses. This could be important in gauging 

the effects of shock-boundary layer interaction on the expected two­

dimensional flow over the upper wedge surface. Filtered light of wave­

length 442.5 and bandwidth 4 ^.was used so that the whole density 

flowfield could be evaluated.

The flow coordinates have been non-dimensionalized in the following

manner

in the shock tube, for fixed initial Mach number, it is most convenient 

to vary (by changing the pressure in the low pressure section) or

<0 (by changing the gas). To vary TM would involve heating or 

cooling the low pressure gas prior to the passage of the initial shock. 

Ideally one would like to be able to choose a pressure for which the 

shock wave development length is less than the distance between upper 

wedge surface and working section roof. This value of the pressure, 

however, must not scale the relaxation length so dratically that density 

measurements are difficult to make. The working section windows can 

withstand an excess pressure of just 1 atmosphere and the fringe shift 

across the flow also depends on freestream pressure. These factors must 

be taken into consideration and optimized. The gases COg and NgO were 

chosen because their similar thermodynamic properties (but differing 

relaxation frequencies) enables one to scale the flow dimensions without 

changing the freestream pressure. These gases also have large vibrational 

specific heats at moderate temperatures (the characteristic temperature 

of vibration of the bending modes for COg is 959°K. The bending modes 

for NgO have a characteristic temperature of 847°K)•

The results of Chapter 5 indicate clearly how the flow wave develop­

ment distance decreases with increasing vibrational specific heat. One 
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therefore has the chance with these gases of being able to investigate 

the portion of flow of interest within the confines of the working 
section. The value of 9^ also increases as increases (for

constant freestream Mach number) so that one can use wedge angles of a 

few degrees, with a measurable fringe shift across the flow.

Thermodynamic data referring to vibrational specific heats and 

flow changes across normal shock waves (in COg and ^O) were obtained 

from Rees (1968). Data on vibrational relaxation frequencies were found 

from Bhangu (1966) (for NgO) and Johannesen et al. (1962) (for COg)#

The first runs were with NgO in the low pressure section at a 
pressure of 2. JO KN/m2. The upper face of the wedge was set at 2° incidence 

and the driver section was filled to a pressure of 140 kN/m^ with Ng. The 

initial shock Mach number was measured as 2.92 corresponding to an 

equilibrium Mach 1.68 flow over the upper wedge surface. The vibrational 

specific heat, relaxation frequency per unit density, pressure and 
temperature in the freestream were calculated as 2.28R, 5*3 % 10^ 

amagat"\ 21.8 kN/m^ and 583°K. These conditions correspond to a fully 

dispersed wave flow at infinity with rv % 0.5. The results of 

Chapter J indicate that in this instance the development distance is 

approximately 60mm whereas the distance available in the working section 

is only JOmm. This flow is shown in plate 6. The second set of runs 

were with COg as the driven gas. The starting conditions were almost 

identical to those when NgO was used. The initial shock Mach number 

was measured as 2.92. The vibrational specific heat, relaxation frequency 

per unit density, pressure and temperature in the freestream were calculated 
as 2.19R, 0.89 x 10^ s"1 amagat~\ 22.4 kN/m^ and 597°K. The value 

of the gas constant per unit mass was taken as 189J/ kg°K (both NgO and 

COg have the same molecular weight). ^or this flow the development
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distance is 520mm. The relaxation regions are also correspondingly 

magnified. Comparison of plates 6 and 7 amply illustrate the scaling 

function of the relaxation frequency. Plate 8 shows the ^0 flow with 

an infinite fringe* setting. Here fringes correspond to constant density 

contours»

These flows will be discussed in more detail in the next section 

where a comparison is made with a theoretical prediction of the density 

distribution by the method of characteristics. The theory assumes that 

the flow is perfectly two-dimensional, that the wedge tip has no bluntness 

and that viscous effects can be neglected*

SECTION (3)

Method for finding the fringe system from the computed 
density field; comparison of theory and experiment for 

2 gas flows
The. method of characteristics (with 1/50 th of the variation of e- 

per step) was used to compute the theoretical density field for the shock " 

tube runs in COg and NgO described in the last section* These computations 

gave the density at the mesh points along the negative characteristics and 

from this information the fringe system can be found as follows*

Let the undisturbed fringe spacing be d and assign to each free­

stream fringe a number given by its x. coordinate . The locus of a 

freestream fringe through the non-equilibrium regions of flow is conse­

quently assigned the same number as the freestream fringe* The fringe 

shift along the locus is measured as the number of freestream fringes that 

the locus is displaced from the freestream fringe with the same number. 

This is a local quantity and will be denoted by • The

relation that must hold along the locus of a fringe is therefore
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6 V ( X ) 'j.') % d e: ÛG — dffco

The fringe shifts are, however, related to the density field by the 

Gladstone-Dale law so that

' A Ç© 5.2

where D is the width of the shock tube working section. K is the 

Gladstone-Dale constant for the light of wavelength X and is the 

density of the gas at N.T.P. We employed light of the same wavelength 

as Johannesen et al. (1962) (who give equal to 209.2 for COg) and 

Bhangu (1966) (who gives equal to 240 for NgO).

We therefore evaluate the density field in terms of fringe shifts

from 5*2 and then satisfy 5.1 directly. In order to obtain a solution
/

to 5-1 we must assume that the changes between neighbouring mesh points

are linear. Then at each mesh point on a negative characteristic in

the flow we test whether the quantity

is positive or negative and if it is positive at one mesh point and

negative at its neighbour then it must be zero inbetween. Let suffix 
indicate the ^mesh point from the wedge surface along a negative

characteristic. Then fringe coordinates > y must satisfy
(. A} ") X d 4. Afroo") C ’ 'Jj-.i') * —x j,j + <" O

= x- _ ( y a - xj

( ÀW (-541, d- ~ A/V(X), 4. Xj )

( -Xj4t -
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These equations furnish the locus of the freestream fringe with X coordinate 

. The process can then be repeated to determine all fringes •

For ease of observation the experimental and theoretical fringe 

patterns were magnified by a factor of 10.1. The first results we 

compare are for ^O. Fig. 4(d) shows what a fringe would look like at 

•infinity* (in this case at approximately 60mm above the wedge). Fig. 4(e) 

gives a more detailed comparison between theory and ezperiment. Of 

particular importance here are the effects of the wedge bluntness which 

can be seen by observing plate 6 near the wedge tip. Bardsley (1951) 

and Bardsley and Mair (1952) have studied bluntness effects in ideal gas 

flows. Their results indicate that boundary layer separation at the body 

nose will .not occur if the Reynolds number based on the leading edge 

thickness is below 1000. In our experiments this Reynolds number was 

calculated as 200. Even so, close examination of plates 6 and 7 does 

indicate an expansion region downstream of the wedge tip. Sharp (1959) 

has given a characteristics calculation of the flow of an ideal gas over 

a separation bubble.

For blunted wedge ideal gas flow the bow shock decays to an 

oblique shock giving a flow deflection parallel to the wedge surface. 

Moreover, for the supersonic flow, disturbances are propagated along the 

Mach lines so that to any straight portion of the body there corresponds a 

uniform section of the shock. If one compares the detached shock with 

the oblique shock from a perfectly sharp wedge with tip lined with the 

blunt wedge face then the shock due to the blunt wedge will lie above 

that due to the sharp one. The situation when the gas is relaxing, 

though more complicated is qualitatively the same. The shock displacement 

due to bluntness is apparent in fig. 4(e) where the theoretical shock 

locations (see fringe 1) lie below those due to experiment. The fringe 
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shift is also larger initially than one would expect» Fringes 3 and 4 

give good agreements between theory and experiment but fringe 5 is not 

so good. This could be due to the shock wave still being unsteady. The 

photographs were taken JOO after the initial shock passed over the 

wedge tip. This time is sufficient for a disturbance from the wedge to 

propagate 4 times between wedge surface and working section roof. The 

running time is about 600 . This effect could also be due to shock­

boundary layer interaction on the working section roof. The thickening 

of the boundary layer can be seen quite clearly in plate 6.

Fig. 4(f) gives the same comparison for COg* Because the relaxation 
frequency is about ^/6th of that for NgO the relaxation effects take place 

over correspondingly magnified distances. The same effects are discussed 

for HgO are present here (see fringe 1) but the interaction of the shock 

wave with the side window boundary layers is much more clearly exhibited. 
McCabe (1966) has studied such three-dimensional interactions in ideal 

supersonic gas flows round wedges. The interaction is the more severe 

the steeper the pressure gradient and hence is shown better in fig. 4(f) 

since the alpha-shock has not yet decayed. The region of the interaction 

spreads with distance from the wedge surface. This is possibly the reason 

why the fringes are not visibly discontinuous at the alpha-shock. McCabe 

finds that the shock strength is maintained during the interaction so that 

comparison of fringes 2, J and' 4 gives reasonable agreement between theory 

and experiment for the alpha-shock decay. The variations within the 

relaxation region are also predicted with reasonable accuracy.

In conclusion the agreement between the theory and experiment has been 

shown to be qualitatively good. Any discrepancies between theory and 

experiment have been due to limitations in the experiment’s being able
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to faithfully reproduce the desired flow* We are confident that the 

theory gives a more exact evaluation of the flow than experiment and 

consequently the bulk of our results are numerical.
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CHAPTER 5

ANALYTIC PROCEDURES FOR WEAK WAVE RELAXING GAS FLOW 
OVER A WEDGE.
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SECTION (1)

INTRODUCTION

So far a numerical solution, together with certain restricted 

analytic results, has been presented. In sections (1) and (2) we 

shall discuss in more detail the analytic approximation schemes that 

are available for solving weak wave relaxing gas flows over wedge surfaces 

The comparison made in section (3) between the numerical method of 

characteristics and the analytic method of matched asymptotic expansions 

gives some idea of the accuracy involved. However, because the character­

istic calculations cannot be extended to extremely weak wave flows (for 

reasons of cost) the comparison is perhaps not as good as it could be. 

Section (4) investigates the application of Ehitham's rule to the decay 

of alpha-shocks in relaxing gases. In particular this rule furnishes 

the variation in alpha-shock angle with distance from the wedge surface. 

We start in section (1) with all variables in dimeasional form. We can 

then discuss, without confusion, the length scales introduced into the 

flow when the gas is relaxing.

A review of non-linear wave propagation has been given by Lick 
(1971). Here we shall be specifically concerned with the flow of a 

relaxing gas about a thin pointed wedge.

If we consider the two-dimensional supersonic ideal gas flow about 

a pointed wedge of infinite chord then since there are no length scales 

in the problem the flow must be conical and consequently uniform down­

stream of the shock. If, however, the gas is relaxing then we introduce a 
J_  time scale into ihe problem given by a "S (the relaxation time).
\*>X«o

The gas consequently relaxes over a distance (measured in the freestream 

direction) L^ * which furnishes the basic length

scale in the flow. However, if we wish to characterize the whole flow
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then we must introduce additional length scales Lg and Lj based on the 

shock wave width at infinity and shock development distance respectively* 

For weak wave flows we shall show in section (2) that Lg = 0 ( — ) and
/L \ 7

Lx ® 0 [ —1. ] . The thermodynamic, variables and the velocity are non- 

dimensionalized as in section (1) of Chapter 1* If we non-dimensionalise 

the coordinates with respect to L^ and assume a power series represent­

ation for each of the thermodynamic and velocity variables then we expect 

the approximations obtained by substitution of the power series into the 

governing equations to be valid only near the wedge surface* The first 
approximation in such a scheme made by neglecting terms of 0(6^ ) gives 

the well known linear solution* This solution has been obtained by Chu 
(1958) and Clarke (1960); the results were generalized by Vincenti (1962) 

to the case where the freestream is not in equilibrium^ Explicit exact 

solutions to the linear problem can be obtained along the leading Mach 

line (which is the linear approximation to the alpha-shock) and along the 

wedge surface* Generally, however, the solution is not explicit but 

approximations that to render it so have been made by Moore and Gibson 

(1960) and Sussman and Baron (1967) * The correct equilibrium flow far 

downstream is predicted though the alpha-gas entropy layer is uniform 

since in this approximation the flow is irrotational • Lee (1964) by 

employing a linear perturbation about the frozen flow at the wedge tip 

was able to investigate the variations through the alpha-gas entropy 

layer in certain restricted cases.

The equivalent approximations have also been tried in character­
istic coordinates. Lin’s (1954) linear characteristic perturbation method 

gave a uniformly valid solution to the ideal gas flow over aerofoil 

sections whereas the straightforward linear theory was correct only near 

the aerofoil* The same procedure, however, does not give a uniformly 

valid solution when the gas is relaxing (see Clarke (1965), Lick (1967) 
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and Chu (1970) ) • An asymptotic analysis of the far-field behaviour of 

the solution (Clarke (19^5)) shows that the width of the relaxation region 

grows like the square root of the distance from the wedge surface. The 

straightforward linear analysis exhibits the same type of deficiency in 
the far-field solution (Moore and Gibson (i960))* This is due to not 

including in the first approximation those non-linear terms which grow 
to first order over large distances* An analysis by Romberg (1970a) gives 

a set of corrected first order equations in characteristic coordinates, 

though no solution is given.
*

To gain any insight into the far-field flow we must non-dimension- 
alize the coordinates with respect to the length scales Lg ( x. coordinate) 

and coordinate) * Lg is derived from the known solution at

infinity* is found by considering when the linear solution is incon­

sistent with the Lg scale* The solution in the far-field can be obtained 

by the method of matched asymptotic expansions (see Van %rke (1964))» 

Having located where the non-uniformity in the linear (•outer1) solution 

arises, we define new coordinates of 0(1) in this region* The thermo­

dynamic and velocity variables are non-dimensionali zed in the same way 

as before and the same power series representation is used though the 

coefficients are now written as functions of the new coordinates • The 

power series are substituted into the governing equations and coefficients 

of 0# are equated to zero* Physically, this procedure re-estimates the 

magnitude of the gradients in the flow* The linear theory assumes that 

x and y derivatives are of the same order and hence is not a valid 

approximation in the far-field; the new procedure correctly assumes that 

the y derivatives are an order of magnitude smaller in the wedge angle 

than the x derivatives*

Solutions by the method of matched asymptotic expansions for the 
near and far-field flow have been obtained by Ockendon and Spence (1969) 
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for the one-dimensional unsteady case and by Blythe (1969) who treats 

both the one-dimensional unsteady and two-dimensional steady problems • 

We have mentioned that the steady and unsteady flows are closely related. 

It will be sufficient here to regard the piston Mach number in the 

unsteady case to correspond to the Wedge angle in the steady case and 

the y coordinate to be ’ time-like ’. Ockendon and Spence give an analysis 

in terms of 2 small parameters. For simplicity they consider small values • 

of the vibrational specific heat. For small times they find that the 

flow is essentially linear but for intermediate and large times non­
linear effects are important unless the wave is very weak ( 1 .

With this restriction the flow is linear except in the far-field at times 

of the order of the inverse piston Mach number squared where Burgers’s 

equation is valid. Blythe (1969) derives essentially the same results as 

Lick (1969) who has solved the same problem by the method of multiple 

scales. This method dispenses with the need for matching by assuming 

from the outset a generalized perturbation expansion in several stretched 

coordinates. For example for steady two-dimensional supersonic flow of 

a relaxing gas we would expand the pressure as
m * \

— ^2 Gw V is 1 ) *3. > 1 • - — y
where we assume

Substitution of expansions like these into the governing equations of 

motion give the usual linear solution in the first approximation and 
Burgers’s equation for the far-field flow (where = 0( ^/©^Jin the 

third approximation. This is providing that the shock wave is weak enough 

for non-linear effects to be important only in the far-field. To ensure 
Va that the expansions are uniformly valid the ratios r— x \ 3 - . »VA- I 

must remain of 0(1) as 6W —» 0. The requirement for this is that (Van 

Lyke 1964) "each approximation shall be no more singular than its 

predecessor - or vanish no more slowly - as ©w 0 for arbitrary values 
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of the independent variables. The same shall be true of all derivatives". 

This method has also been successfully applied by Chong and Sirovich 

(1971) to steady supersonic two-dimensional flows governed by the Navier 

Stokes equations.

Romberg (1970b) has applied the method of matched asymptotic 

expansions to the one-dimensional unsteady flow of a binary mixture of 

relaxing gases created by an impulsively started piston. In particular 

he gives numerical results for air (considered as a mixture of oxygen 

and nitrogen) in the form of constant time profiles* Care must be taken 

in interpreting the results given by the composite expansion. One cannot . 

use this expansion to correct for non-linear effects in regions where one 

supposes initially that the linear theory is valid* For instance, the 

composite expansion will inevitably smooth out the transition from outer 

to inner solution* We therefore might well expect that the composite 

expansion does not exactly reproduce the linear variations on the alpha- 
■ V1shock but we cannot attribute these small deaaarations to non-linear 

effects because the non-linear solution is continuous.

In section (2) we shall give the mathematical results for the ... 

two-dimensional steady linear flow and non-linear far-field flow* These 

results are essentially the same as for the corresponding one-dimensional 

unsteady case treated by the authors mentioned above. In section (3) we 

shall apply these results to a particular example which is checked by 

characteristics. The example chosen must be a very weak wave flow in 

order that Burgers’s equation describes the non-linear flow but we shall 

also make the vibrational specific heat small so that we can check extra­

polations of the numerical results with the approximate analysis *
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SECTION (2)

Linear solution and far-field non-linear solution

The linear theory for the flow of a relaxing gas about a wedge 

is well known and we shall only extract those results that are pertinent. 

We shall employ rectangular Cartesian coordinates with origin at the 

wedge tip and x. -axis in the free stream direction. The upper wedge face 

makes an angle 0W with the x -axis and all variables are non-dimensional- 

ized as in section (1) of Chapter (1). If @w is very small (to be qualified 

later) then we can expand all the thermodynamic variables in power series 

with the freestream quantities as reference state. For instance we can 

expand the pressure as
V “ * S- 6^-r . . . . .

where the coefficients ) are functions of % and y.

If we substitute expansions like these into the governing equations 
2given in section (1) of Chapter 1 and neglect terms of 0(6w) (assuming

all gradients are 0(1) in the disturbed flowfield) we get a system of 

linear partial differential equations. Transforming to the ’ shock 

orientated’ coordinate system given by

and making use of the fact that to the above approximation the flow is 

irrotational by defining a potential such that

and vx =

or in the new coordinates 
vi “ J 1 ( 

we can derive the potential equation

(see Der (1961))
O
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The boundary conditions for the velocity components are

m. t vx —O as 1 — b

= I on » o

which in terms of a potential are
cj>^ —o O as % —b co

V^nT ' ( ) - 1 onQ-0

With these boundary conditions the potential equation can be solved by

Laplace transform so that if '■

Then we get

where

C^«o — ù 

C^N»-
This transform is too difficult to invert in general but 1exact1 results 

are available on the shock (£ « 0) and on the wedge surface ( y - 0) » 

On £ ■ 0 one gets

(see Der (1961))
2.1

and on /[ = 0 (with the usual notation for Bessel functions)

(see Clarke (i960))

so that the pressure canIn this linearized theory = — Yf x 
easily be found from the velocity perturbation.

An approximate solution to the linear problem can be obtained by 
expanding the transform in powers of (b -1). If we use the matching 
techniques of Sussman and Baron (1967) we get
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where

This inverts as

The first 2 terms were obtained by Moore and Gibson (i960) and correspond

to the solution of the telegraph equation 
1 ft . P ,
A "*■ = °

The extra terms are added to assess the accuracy of the solution to the 

telegraph equation. This solution is valid for \ 1 c. O

The far-field behaviour of the linear theory can be obtained by 

applying the method of steepest descents to the Laplace inversion integral» 

This gives (Clarke (1965))

where

We can derive the thickness of this wave by using the gradient at the

inflexion point £ « 0» The value we get is
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If we assume that

-J "VÂT
1 then we obtain for the structure 

VZVV

of the shook wave at infinity

(see Lighthill (1956)) where x/ is a coordinate measured in the freestream 

direction. If we estimate the thickness of this shock wave as before by 
using the gradient at the inflexion point xV » O we get

If we assume Cv^ 2. «i ( then we get

△a Cr"V oo Cvi k
\) 7 e 8 w

"Ye 0vv

which is the same expression as obtained by Hodgson and Johannesen (1971)*

Comparing Ax and 6 %, we see that the linear theory is necessarily

invalid when

or 'V^ cJ7^ A
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/ V ,The above equation is 0 [ J • ' (which

from section (2) of Chapter 5 is the condition that linear theory be 

a good approximation at the alpha-shock) then the above expression is 

o(e^).

The fundamental assumption made in deriving the linear results was 

that the gradients were 0(1) • This is inconsistent with the linear 

solution itselfe For instance, for large y
\

When y - O(©^) this gradient is 0(9w) and linearization can no longer be 

'justified.

In accordance with the method of matched asymptotic expansions new 

coordinates of 0(1) in the region of non-uniformity are defined. That is

11 =
T

The thermodynamic variables are expanded in power series of the wedge angle 

as before. These expansions are substituted into the exact governing 

equations written in terms of the new coordinates (1 inner coordinates1 ) 

and coefficients of the wedge angle set equal to 0.

Taking the first approximation gives
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These equations are not linearly independent (see Moran and Shen 

(1966) who encountered a similar problem) and hence no solution can be 

obtained from them. For waves propagating in one direction, however, 

they can be integrated to give (on simplification)

Hence once is found the remaining variables are calculated from the 

relations for equilibrium flow.

Taking the next approximation and substituting the above relations

gives finally

where the coefficient of has been written in a form appropriate for

comparison with the linear theory. The above equation is Burgers's 

equation for two-dimensional steady 'supersonic flow. For the one­

dimensional unsteady case see Ockendon and Spence (1969), Blythe (1969) 

and Lick (1967)•

Initial conditions for the solution of Burgers’s equation are

(as supplied by the linear theory)
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If we make the transformation

• then Burgers’s equation becomes

and the boundary conditions reduce to those of the one-dimensional 

unsteady case.

If we define

then the solution is (see Ockendon and Spence (196?))

or

As % ; -b oo

The same result can be derived (see equation 2.5) by approximating the 

conservation equations in the limit < l.
®w

We can therefore estimate the formation time by comparing wave thicknesses 

based on gradients at the mid-point in the velocity profile. We can 

do this by noticing that when
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both for the asymptotic solution

( ^ . -b ) and for the solution of Burgers’s equation*

For the asymptotic wave thickness we get

4B (at constant ) 2.9(a)
0 “

Taking the derivative with respect toC of the solution for gives

2.9(b)

Hence the wave thickness for the solution of Burgers•s equation is

2.9(c)

. . B« constant x —9 0^If Q; then the denominator is independent of B or C.

Hence the formation distance is given by

= constant x B

which is a multiple of the estimated distance for the breakdown of the 

linear theory. The constant can then by chosen to ensure that the 

denominator is sufficiently close to 1 that the asymptotic wave thickness 

is reached.

Expression 2.9(c) is, however, much more important because it does 

indicate the manner in which the shock wave approaches its asymptotic state 

When the results for the wave development were determined from the 

characteristics solution (Chapters 2 and 5) we plotted maximum departures 
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from equilibrium in the vibrational energy (along positive character­

istics) against y. For weak waves this procedure is approximately 

equivalent to plotting maximum departures from equilibrium along the 

streamlines. To see this let F(x,y) «» constant and G(x,y) * constant 

be the equations to a positive and negative characteristic respectively#

Then

-» <, = \ V» <Sr\

The moduli are used for convenience#

If is a maximum on the streamline then

or 2,10<s^ Id - O

Clearly if we consider the surface

then it must appear as a sharp ridge at the origin extending in decreasing

height to a rounded ridge at infinity# We cannot therefore have any local 
_  (ar— Cf — <s^

maxima of . Hence we cannot have F\ and G-\

simultaneously zero ( except at the foot of the ridge and at infinity) •

Since % 2.10 can only be satisfied if \>F\
(S’-

and — are close to 0 but of opposite sign. A maximum of

or on the streamlines therefore corresponds closely to a maximum of

«• on the positive characteristics. Furthermore, the maxima them­

selves must be nearly equal.

Since maximum values of on the streamlines can be related

to maximum values of the gradient in vibrational energy by using the 

rate equation, then our procedure is approximately equivalent to plotting 

maximum gradients on streamlines against y. r For l a maximum
y w
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gradient in one thermodynamic variable corresponds to a maximum gradient 

in any other thermodynamic variable because all variables are simply 

related by equations 2.6. Moreover in this limit, and close to equi­

librium, inflexion points in the velocity ( ) profile occur when the

velocity takes the mean of its values at either end of the wave. We can 

therefore use equation 2.9(b) to derive an analytic estimate for the 

far-field shock wave development rate. This estimate is applicable to 
the work in section (5) of Chapter 5 for Sj < l. 

. vw

If we subtract from 2.9(b) its asymptotic value we get

Taking the logarithm and differentiating with respect to gives

As i —1> 00 the gradient tends to the constant value

- c£ or — taking gradients with respect
8B St ' . toy.

This lends support to our interpretation of the numerical results.

We can compare this result to our numerical results for weak wave 

flows. Notice, however, that in this limit ( ! ) it is
VW

the numerical results that are necessarily inaccurate because calculations 

must be stopped (for reasons of cost) before one can predict with

certainty the direction of the far-field line. The weakest wave flow 
o

for which we have numerical results is given by —= 0.2, ^4*» “ 3*8,
ACvi^ « 1.0. With natural base logarithms the gradient is -17 x 15”^. The 

analytic far-field estimate is -5.4 x 10""^. We have mentioned before that 

inaccuracy (or perhaps more specifically ’incompleteness’) in’the numerical 

results leads to underestimations of the true development distances. In 
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the above case the analytic result predicts a development distance about 

5 times the value derived from the characteristics•

In the next section we shall compare these results in detail with 

a numerical calculation by characteristics»

SECTION 3

Comparison of the method of characteristics with the method 
of matched asymptotoc expansions for the flow 6W = 0*019^, 

1*4co ■ 2*6 and » 0.050* •

In this section we shall compare the numerical method of character­

istics with the analytic method of matched asymptotic expansions by 

inspecting weak shock wave profiles at constant y. The essential 

mathematical results have been given in section (2) * The flow we have 

chosen has — = 0*2; numerical computations for flows much weaker than
Gw 

this are extremely costly.

To gain some idea of the length scales involved in this flow we 

shall extrapolate the results for the computed flows with larger values 

of the vibrational specific heat* This will also serve as a useful check 

on our similarity representation* The flow dimensions we are interested 

in are the wave development distance (which we shall represent as the 

distance fœ which Ç« 1.1), the width of the non­

equilibrium region on the wedge surface (we shall choose the distance 

for which 90 per cent of the change in has taken place) and the

asymptotic wave width*

For « 1.0 and ■ 2.6 the wave development distance

defined in the above manner is 84* If we use the result of section (4) 

Chapter 3 that the critical development distance varies inversely with
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then for cVtv> » 0.05 we get

5* - 1680

If we use fig. 3(m) with - 0.2 then

Hence m oc 3 % 10^.

The results of section (1) Chapter 3 give the width of the non* 

equilibrium region on the wedge surface as approximately equal to 7*

The asymptotic shock wave thickness as given by the expression in

section (2) for 1 is approximately 60.

In fig. 5(a) the linear pressure profile on the wedge surface 

obtained from expression 2.2 is compared to the pressure profile calcu­

lated by characteristics. The linear theory overestimates the pressure 

drop, though the variation with distance is predicted reasonably well.
2.in section (4) of Chapter however, we showed how a very much more 

simplified solution gave more accurate results. Fig. 5(b) compares the 

linear theory and characteristics on the alpha- shock. The linear results 

are given by expression 2.1. We can see that the linear theory is reason­

ably accurate even for large y ( % 1000). This is to be expected since 

we have already established in Chapter 3 that non-linear effects on the 

alpha-shock are small for very weak waves.

Expression 2.3 gives minimal gains in accuracy over the solution to 

the telegraph equation (represented by the first 2 terms). ‘We ;can 

this solution to be a valid approximation to the linear theory for 
y =0()(b-l)~^) i.e. for y % 10,000. This solution is plotted in figs.5(c), 

5(d) and 5(e) and checked with characteristics results. The agreement is 

initially very good but falls off with increasing distance from the wedge 

surface. The solution does give, however, a good qualitative representation 
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of the initial wave development process. In fig. 5(e) we see how this 

solution approaches the asympotic representation of the linear theory. 

In fig. 5(d) non-linear effects in the geometrical location of flow 

properties are clearly exhibited, though in this case they are not 

serious. For stronger shock wave flows it is this type of non-unif ormity 

which necessitates the use of an intermediate expansion with 3. scaled on 
Vow

For large y the linear solution grows in width like Jy and is
7 

centred on the equilibrium characteristic . The matched expression 2^ 

corrects for this by relocating the wave trajectory and by including a 

first approximation to the non-linear terms which ultimately balance the 

diffusive effects of the relaxation. This solution is plotted in figs. 

5(e), 5(f) and 5(g) • The agreement with the characteristics is very
• ggood and the asymptotic representation (given by expression 2.5) is 

compared to an exact integration of the conservation, rate and state 

equations in fig. 5(h). A comparison of fig. 5(g) with fig. 5(h) shows 

that for y % 40,000 the wave is almost fully developed. This agrees

very well with the extrapolated estimate from the characteristics results

We can represent these results by a single composite expansion

valid over the whole flowfield. We can construct these composite 

expansions in many ways (see Van Dyke (1964))* In this case a simple 

one to choose is
<A c = W o * C —

where suffix c represents the composite expansion, suffixes o and i 

represent the outer (linear) and inner (non-linear) solutions, and 

represents the inner solution expressed in outer variables Q & J and

expanded to 0(6w). In this case

which is just the asymptotic representation of the linear solution
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given by expression (2.4)• Hence the composite solution is given by 

adding together the solution of Burgers’s equation and the approximate 

linear solution and subtracting the asymptotic linear solution* For 

instance, by inspecting fig* 5(c) we see that the composite solution 

is virtually the same as the approximate linear solution* For large y 

(see fig* 5(e)) the composite solution reduces to the solution of 

Burgers’s equation* For intermediate distances (see fig* 5(d)) the 

composite expansion smooths out the otherwise abrupt change from outer 

to inner expansion*

We can see quite clearly by examining fig* 5(d) at the alpha-shock 

how the composite expansion represents a slower decay rate than that 

given by linear theory* It is quite wrong to interpret this as a true 
non-linear effect (see Romberg (1970b))* It is merely a consequence of 

the smoothing out process inherent in representing the results by a 

composite expansion*

In conclusion the method of matched asymptotic expansion gives 

reasonable agreement with the method of characteristics, the approach 

to a final asymptotic state being correctly predicted* In this example, 

non-linear effects, though small, were present for intermediate » 

distances* For much weaker flows we expect these effects to be absent 

and consequently the analytic representation to be that more accurate.
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SECTION (4)

The use of Whitham's rule in weak wave relaxing #as flows

Whitham (1958) gave a simple rule for determining the motion of 

a shock wave through a region of non-uniform area or flow when disturb­

ances are propagated predominantly along one set of characteristics. 

The rule is to solve the characteristic compatibility relation in con­

junction with the shock wave equations. Lick (1966) has shown how a 

more general approach to shock expansion theory incorporates Whitham’s 

rule at the shock front* *

We shall be concerned in this section with applying Whitham’s 

rule to the decay of weak alpha-shocks in relaxing supersonic two­

dimensional steady flows over wedge surfaces. Lick’s approach (which 

is successful for area-change interactions) of using the equation which 

is strictly valid only along a minor characteristic as an approximation 

valid throughout the flow fails here because the pertinent relation to 

be applied at the shock is that along the major (negative) characteristic.

On the line given by
■ '

- tan (0+/A)

we have

where

doc

Writing the characteristic relation in terms of partial derivatives .

therefore gives
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or, since

*V^Sv*y* S<h

If we apply the same 

for which

characteristic relation along the alpha-shock

« tan. / then we get

^DC

3g ~ ? C «y
s<k^ ,

which are small

In doing this we have neglected terms like

Cot ( — CO L

(i.e. 0(©w) provided the alpha-shock is very weak. Physically, only 

those characteristics which are close to the wedge tip are responsible 

for the alpha-shock decay. This suggests that a first approximation to 

the development of the alpha-shock may be made by solving

* a e = -

along the alpha-shock together with the shock relations which we can 

write as
4 = t , 

"v „ V(ey' etc. '

This gives the differential equation for the variation in flow deflection 

along the shock as
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This equation is best integrated numerically; basically we expect the 

results to be equivalent to a perturbation about the freestream in 

characteristic coordinates. Clarke’s (1965) results show that such 

a perturbation scheme gives identical results to the linear theory at 

the alpha-shock if the linearized characteristics are replaced by the 

more exact ones. We would therefore expect Whitham’s rule to give 

essentially the same decay rate for the thermodynamic variables as 

predicted by linear theory. This conclusion is supported by fig. 5(1) 

which compares Whitham’s rule with linear theory and characteristics for 
a weak wave flow with Si * 0.2. If we linearize Whitham’s rule with 

®w
the free stream as reference state and expansion parameter 6wthen we get

(from 4*1}

That is

■ a. Yf" ,')1"

Integrating and applying the boundary condition 0 = 6W on y » 0 gives

G - C a

which is identical to the expression for the alpha-shock decay given 

by linear theory.

The exact formulation of Whithorn’s rule does, however, give the 
g

variation of shock angle / with distance y. Fig. j) compares Whitham’s

rule with characteristics. The agreement is quite reasonable and we 

might expect similar results for even stronger alpha-shocks.

If we denote variables on a negative characteristic which has 
coordinates ( ) on the wedge surface with subscript ch 

and define
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4%

cl?)

then we can expand variables from this characteristic in power series 

like

for [

If the alpha-shock wave is very weak < l) then the value of

on the alpha-shock is very small. Then, following Whitham (1958), 

substituting expansions like the one above into the governing equations 

and putting * 0 gives as a first approximation to the variations along 

the alpha-shock -,

t " ~ I* etc.

with

This set of equations constitues Whitham’s rule. We also obtain a set 

of linear equations relating the suffix 1 quantities to the suffix ch 

quantities. These relations determine the gradient functions at the 

alpha-shock wave in terms of the shock wave curvature. We might therefore 

try to improve the first approximation by using the gradients to estimate 

the variables on the ; characteristic more accurately. However, examin­

ation of fig. 5(i) shows,that this procedure results in a negligible 

improvement.
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Chou and Chu (1971) have investigated the decay of weak alpha­

shock waves in axisymmetric non-equilibrium flow by a systematic 

perturbation scheme in semicharacteristic coordinates. The solution 

proceeds by Laplace transform which can only be inverted (in our 

notation) for 4'^ \ in which case the results reduce to> Whitham’s 

rule in the limit of frozen flow. We have seen here, however , how 

Whitham’s rule can be applied to the non-equilbrium .flow to good 

approximation for * < i and how the variation of shock angle with 

distance is correctly predicted. Chou and Chu compare their theoretical 

results with the experimental determination of the variation of alpha­

shock angle with radial distance, and find excellent agreement. A 

direct application of Whitham’s rule to the non-equilbrium flow must 

give the same results as the first simplified approximation in the per­

turbation analysis and is probably sufficient for adequate comparison 

with experiments of the type cited by the above authors.

CONCLUSIONS

The method of characteristics has been used to solve the two­

dimensional steady, supersonic flow of a relaxing gas about a thin wedge. 

The essential non-linear effects in the shock development and alpha­

shock decay have been established and represented in an approximate 

similarity form with the critical values as scaling factors. The 

consequences of assuming this similarity to be exact have been investi­

gated and lead to simple scaling laws which enable critical shock develop­

ment and alpha-shock decay distances to be found for any _ or cvl^ . 

The characteristics results have also been compared with experimental 

flows and with analytical results valid when << 1. Both comparisons 
are favourable.
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The flow over a wedge surface is perhaps the most simplified 

two-dimensional problem. that one can study but nevertheless when the 

gas is relaxing the problem is difficult and no generally applicable 

analytic solutions are available. The present numerical calculations, 

however, can quite easily be extended to flows over pointed two­

dimensional bodies of any prescribed shape providing that subsonic flow 

at the body tip does not occur. The same numerical method could also 

be applied to flows of binary relaxing gas mixtures over wedge surfaces 

by including an extra rate equation. Flows of this nature are possibly 

important in determining the separate effects of Og and Ng on wave 

propagation in the atmosphere.

The york presented has been restricted by the time available. 

There remain areas where further work is necessary to establish the 

accuracy of our results and the validity of our conclusions. The 

precise analogies between the numerical results for the one-dimensional 

unsteady and the two-dimensional steady flows also need to be investi­

gated. Certainly some crude comparisons between the 2 sets. of results 

show remarkable similarity. Fully dispersed wave flows at infinity in 

the wedge problem are also possible for hypersonic freestream Mach 

numbers. There is then the rather interesting problem of applying both 

the weak-wave and hypersonic approximations simultaneously.

We can also hope that these results provide a stimulus for renewed 

analytic attacks on the problem. The essential characteristics of the 

solution have been given and these should provide a satisfactory basis 

for further approximation schemes. .
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* characteristics. ---- , linear theory.
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APPENDIX 1

The relationship between the wedge angle, equilibrium Mach 

number, vibrational specific heat and shock wave angle is given by

©XV 3 Cot

Dividing by S in* and noting that

cote <2* ta we get*

Cross multiplying and collecting powers of < <£< gives

c ■* Cotcj>

va. O

C -

This is a cubic equation in The standard trignome tri cal

method of solution gives

where
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If we let 9W —0 then for the weak solution we expect 
Qvceer 0 and for the strong solution

Putting 6W « 0 in the solution for < otr gives

when

Hence » o corresponds to the weak solution. 
Vf keA c l

Hence J = I corresponds to no physical solution since o

When i X

• °
Hence - 2 corresponds to the strong solution.

Mascitti (1968) has given a similar solution in terms of

The solution presented here for involves rather simpler 

coefficients in the cubic»
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FIGURE 2fj) SMOCK WAVE DEVELOPMENTS-
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