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A bstract

In recent years much research has been devoted to the development of algorithms 

which model the shape and appearance of complex deformable objects. When com­

bined with algorithms which can locate an instance of these models in a unseen 

images, image interpretation can be successfully performed. The models are typi­

cally created during a training phase, which involves gathering statistics from a set of 

training images containing examples of the object class. In order to capture statistics 

about the objects shape and appearance, a set of consistent landmarks are placed 

on each training example. This is typically done manually, a process which is time 

consuming and one which introduces human error into the statistics of the model.

This thesis explores automatic methods for training models of shape and appear­

ance, task necessary if modeling techniques are to be employed by non-experts.

We tackle the problem using a feature based approach. In order to locate cor­

respondences between a pair of training images, we attem pt to locate features from 

the first image in the second. Some features have a greater probability of being cor­

rectly located than others. Features which have a high probability of being correctly 

matched are known as salient features. We develop two methods of evaluating the 

saliency of a feature resulting in a principled approach for automatically selecting 

which features to correspond.

Two approaches for training models automatically are developed. The first pro­

cesses the training images in a serial manner, the second method makes no assump­

14



tions about the ordering of the training examples. The second method is known as a 

parallel approach. We show that both methods can build models automatically which 

are more compact than models trained using a manually generated correspondence. 

We also conclude tha t robust automatic model building approaches require a parallel 

approach.
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Chapt er 1

Introduction

The work described in this thesis aims to locate a consistent set of landmarks across 

a set of training images where each image contains an example of a particular class of 

object. The motivation for this task lies in the popularity of model based schemes for 

interpreting images. Many of these schemes require a labeled set of training images 

in order to gather statistics about the shape and appearance of the object class. The 

labels define point correspondences between the training images. Typically the labels 

are provided by manually placing landmarks on consistent features in all training 

examples. Placing landmarks on all training images manually is both time consuming 

and error prone. More importantly this process requires knowledge of statistical 

modeling and hence prevents non-experts from taking advantage of this technology. 

This thesis explores algorithms which can automatically provide the correspondences 

across a training set of images necessary for building statistical models of appearance.

1.1 Statistical M odels of Shape and A ppearance

In recent years a great deal of research has been devoted to modeling the shape 

and appearance of specific object classes. Models of shape and appearance have
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C h a p t e r  1. I n t r o d u c t i o n

proved to be powerful tools for interpreting images, particularly when combined with 

matching algorithms which allow the identification of model instances within new 

images [79, 25, 17, 56].

Figure 1.1: Each row illustrates how a landmark can be used to repre­
sent a point correspondence across a number of images of the same object 
class

Models are typically built by gathering statistics from a labeled training set of 

images of the object class. The process of gathering the statist ics is called the training 

phase. Each training image has a number of landmarks where the i tk landmark in 

each image marks the position of the equivalent object feature. Figure 1.1 shows 

the position of one such landmark in several training images for different object 

classes. For rigid object classes with fixed 3D geometry 5 point correspondences 

are, in principle, sufficient to define the complete mapping between 2D projections. 

For more variable classes of object, such as faces, a much larger number of point 

correspondences may be required.

Once the model has been trained, search algorithms can be used repeatedly to 

locate further instances of the object class in a new image. Figures 1.2, 1.3 and

1.4 show examples of this for several object classes. Once the object is located, the 

information gathered about its shape and appearance can be used to interpret the

22



C h a p t e r  1. I n t r o d u c t i o n

Search start 1 iteration 6 iterations

12 iterations Search convergence

Figure 1.2: An example showing a statistical model of shape locating 
structures within the human brain.

object. For the example of a face, interpretation could involve any of the follow tasks:

•  face identification, identifying exactly who the person is.

• expression recognition, what expression is the person displaying? Are they 

happy, sad, angrv etc.

• pose estimation, what direction is the head facing?

• gaze estimation, what direction are the eyes looking?

All of these tasks can be solved if the shape and appearance of an unseen face is

23



C h a p t e r  1. In t r o d u c t i o n

Search start 2 iterations 8 iterations

14 iterations 20 iterations Search convergence

Figure 1.3: An example showing a statistical model of shape and ap­
pearance matching to an image of a human face.

accurately recovered.

The most time consuming and scientifically unsatisfactory part of building the 

models is the labeling of the training images as this is typically done manually. Man­

ually placing hundreds of points on every image is both tedious and error prone.

Typically it requires the system designer to select an initial subset of features, 

a task which is subjective but critical to the success of the system. This task is 

normally performed simply by selecting features which correspond to corners, edges
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C h a p t e r  1. I n t r o d u c t i o n

Search start 2 iterations

Search convergence

Figure 1.4: An example showing a statistical model of shape and ap­
pearance locating the position of the Femoral Articular Cartilage from a 
Magnetic Resonance image of a human knee.

or highly structured regions.

In this thesis we aim to develop principled methods which automatically calculate 

the correspondences necessary to build statistical models of an object’s shape and its 

appearance. This would make the process of building models largely automatic, 

eliminating the possibility of human error and ensuring the resulting models are well 

suited for their purpose. Further more, it would make statistical modeling a valuable 

tool for the much wider audience of non-experts.
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C h a p t e r  1 . I n t r o d u c t i o n

1.2 Approach

We tackle the problem using a feature based approach. The first problem we address 

is how to match a pair of images. We attem pt to locate features from the first image 

in the second. Some features have a greater probability of being correctly located 

than others. Features which have a high probability of being correctly matched are 

known as salient features. We develop two methods of evaluating the saliency of a 

feature resulting in a principled approach for automatically selecting which features 

to correspond. The first method is known as image feature saliency and computes 

feature saliency based on a single image example. The second called object feature 

saliency computes feature saliency from a number of training images for which a 

correspondence already exists.

Two approaches for training models automatically are developed. The first pro­

cesses the training images in a serial manner, the second method makes no assump­

tions about the ordering of the training examples. The second method is known as a 

•parallel approach. We show that both methods can build models automatically which 

are more compact than models trained using a manually generated correspondence. 

We also conclude th a t robust automatic model building approaches require a parallel 

approach.

1.3 O utline o f Thesis

C h a p te r  2 reviews statistical models of shape and appearance and their use in image 

interpretation. In particular we review point distribution models (PDM), active shape 

models (ASM) and active appearance models (AAM). It is the automatic construction 

of these types of models which is the main aim of this thesis.

C h a p te r  3 reviews current approaches to automatically computing correspon­

dences over image sets. We describe several approaches, concentrating on those most
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closely related to the method we chose.

C h a p te r  4 reviews a number of local feature descriptors and how they can be 

used to measure the similarity between various image regions.

C h a p te r  5 describes image feature saliency and how it can be used to select the 

most distinctive (salient) features from within an image. We compare these features 

with features selected manually to see how accurately they can be located in a second 

similar image. We also review literature tha t has benefited from the notion of saliency.

C h a p te r  6 describes object feature saliency. Like image feature saliency, object 

feature saliency can be used to locate the positions of the most distinctive features 

within an object. Unlike image feature saliency, object feature saliency examines 

multiple image examples for which a correspondence already exists to assess the 

saliency of a feature.

C h a p te r  7 describes a method for building models automatically from sequences 

of images. The approach is based on a tracking framework which utilises image 

feature saliency.

C h a p te r  8 describes an approach to building models from image sets. We show 

how globally inconsistent transforms calculated between all image pairs can be used 

in an iterative scheme which calculates the required globally consistent transform 

across the entire image set.

C h a p te r  9 describes a multi resolution extension to the method described in 

Chapter 8. We demonstrate tha t the multi resolution framework increases the sys­

tem ’s robustness to more extreme variation in the training images.

C h a p te r  10 contains a general discussion of the work presented in this thesis 

and possible directions of future research.
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C hapter 2

Interpreting Im ages w ith  

Statistical M odels

In this chapter we will look at a number of techniques in which shape and appearance 

can be modeled, and also how these models can be used by search schemes to locate 

new instances of the object in unseen images. We will concentrate on methods related 

to those used later in the thesis.

2.1 M odeling Shape

We are interested in interpreting objects, such as faces, whose shape can under go 

a wide range of deformations. A good model of object shape will encapsulate the 

object’s range of legal deformations in a compact manner, whilst not allowing illegal 

deformations. Cootes et al addressed this problem by proposing point distribution 

models (PDMs). PDMs are statistical models of shape variation trained from a set 

of example images of the object. The following sections describe the construction of 

a PDM. For detailed descriptions of the statistics of shape, the reader is referred to 

Dryden and Mardia [31].
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2.1.1 L abeling th e  train ing set

The PDM is a statistical model of the shape variations displayed in a training set. 

The training set consists of 2D images from a particular view of a 3D object. Before 

the statistics can be gathered, the shape displa3red in each training image must be 

described in a consistent manner. This is achieved by placing a consistent list of n 

landmark points in each training example. A particular landmark will annotate the 

equivalent feature in each training image, for example, landmark 3 might represent 

the position of the center of the left eye in all training images. The shape described 

by training image i can be represented by vector xp.

Xi =  ( x u x 2>. . . ,xn o y 1)ij2 , .>. ,yni)T (2 .1)

where (x j t yf) is the position of the j th landmark and n* is the number of landmarks 

in each image.

The choice of which features should be annotated is an im portant one. We require 

features which are easily identified in all examples of the object.

Bookstein [9] defines three principal types of landmarks:

• Type 1: discrete juxtapositions, this type includes points in space which three 

or more structures meet. An example of this type of landmark is the branching 

points of tree like structures.

• Type 2: maxima of curvature, these include the tips of extrusions and valleys, 

such as the end of the nose on a human face.

• Type 3: extremal points. Bookstein defines extremal points as points the def­

initions of which refer to information at diverse separated locations.
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This type includes evenly spaced radial intercepts, centroids, intersections of 

interlandmark segments and endpoints.

Figure 2.1 shows examples of face images annotated with landmarks.

Figure 2.1: Consistent landmarks placed on images of faces.

2.1.2 A lign ing th e train ing set

We require a PDM which encodes all face specific variation but not variation due 

to the face’s relative position in the image frame. Therefore variation due to scale, 

in-plane rotation and translation is not required in the model. For this reason the sets 

of points defining the shape are aligned, removing any such variation from the model. 

In order to do this the Generalised Procrustes Analysis method [40] is adopted. This 

method aligns each shape so that the sum of distances of each shape to the mean is 

minimised. Further details of the alignment procedure are given by Cootes et al [25].

2.1.3 M od eling  the shape variation

The Procustes Analysis results in a set of aligned training shape vectors, x x with a 

dimensionality of 2rq. The number of degrees of freedom in which the shapes can 

vary is typically much less than 2n/. This is because the ways in which the landmarks
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move between examples is highly correlated. For example, landmarks placed around 

the edge of the nose will always form roughly a ’U’ shaped configuration. A PDM 

uses Principal Component Analysis [61] in order to capture these correlations and 

therefore reduce the number of shape parameters. The approach is as follows:

The mean shape, x , is given by:

1 _ n t _

where n t is the number of training examples.

The 2ni x 2m  covariance matrix, S,  of the data is:

S  =  -  x){x i -  x ) T (2.3)
s — i  jL- p

The training shape data, a?,, form a cloud of points in a 2?ir D space. The eigen­

vectors, p jt and corresponding eigenvalues, Aj (j =  1, . . ,  , (2m -  1)), of S  represent 

a set of orthogonal axis which are aligned with the principal modes of variation of 

the cloud. The eigenvectors corresponding to the largest eigenvalues represent the 

most significant modes along which the shape can vary. The eigenvalue A j gives the 

variance along the j th component. Most of the shape variation can be represented 

by selecting a small number, ne, of these axes which explain the largest amount of 

variation. Often ne is chosen so the selected axes explain at least, say 95%, of the 

variance exhibited in the training set.

Any shape, x ,  in the training set can then be approximated by a weighted sum
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of the first n e eigenvectors and the mean shape:

x  x  +  P b s (2-4)

where P  =  (p1,p 2, ■ • -Pne) is the matrix of the first ne eigenvectors, and bs is a n e 

dimensional vector of weights, normally referred to as shape parameters.

The shape parameters, 6S, which best match the model to a particular shape 

vector, cc, can be calculated as follows:

bs =  P T (x — x)  (2.5)

bs defines a set of n e model parameters. By varying a combination of these 

parameters we can generate new instances of the object’s shape using equation 2.4. 

In order to prevent shapes which differ dramatically from those displayed in the 

training set, limits are applied to each of the shape parameters. The ith parameter, 

is typically given limits ±3a/A^. Figure 2.2 illustrates varying the 3 most significant 

modes for a PDM trained on examples of a human face.

2.2 M odeling A ppearance

The shape variation is only part of the object’s complete variation. The remaining 

variation can be encoded in a model of grey-level (or colour) appearance. Turk and 

Pentland [82] proposed a popular technique for modeling the grey levels of human 

faces known as eigenfaces. This technique aligned all the training images so they are 

normalised for translation, scale and in-plane rotation. The aligned images are repre­

sented as vectors and Principal Component Analysis (PCA) is performed, ensuring a 

low dimensional representation of the training data. This technique suffered because
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Mode 1

Mode 2

Mode 3

F ig u re  2.2: Effect of varying each of first three face shape parameters 
between ±3 s.d.

the correspondence between training examples did not account for the natural shape 

variability in faces, such as introduced by expression, pose and identity variation. 

This problem was addressed by Craw et al [27] by transforming each training image 

into a shape free space before PCA is performed. The resulting model is known as a 

shape-free region model In the following we explain how a shape-free region model 

is constructed and how it can be used to generate synthetic images.

2.2.1 N orm alising Shape V ariation

Given a labeled and aligned training set (Sections 2.1.1 and 2.1.2) we require fur­

ther processing to normalise for the natural variability of the object’s shape. In this

hi =  —3\/Ai hi — 0 hi — -\-2>-\f\i

<Q>
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procedure, we deform each training image to a standard shape. After deformation 

the landmarks for each training image coincide. This is achieved by using a warp­

ing algorithm to ’morph’ each training example to the mean shape as defined by a 

PDM (see equation 2.2). Generally piece-wise affine warping is used, although in 

certain circumstances a smoother alternative such as thin-plate splines as described 

by Bookstein is preferable [9]. Figure 2.3 shows the effect of warping three faces to 

the mean shape using a piece-wise affine warper (see Appendix A for further details 

of image warping). The resulting images are known as shape-free patches.

Figure 2.3: Example faces with extracted ‘shape-free’ patches.
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2.2.2 M odeling  Shape-Free V ariation

Because the shape-free patches are all of a standard shape, each patch can be repre­

sented as an np dimensional vector of grey levels as follows:

(2 .6)

where gi is the grey level intensity of the ith pixel in the shape-free patch and np is 

the number of pixels represented . For colour images a 3np element vector would be 

needed. A model of the shape-free patches can be constructed by applying Principal 

Component Analysis to the grey-level vectors of the form:

where g is the mean grey-level vector, P g is a m atrix of tg eigenvectors corre­

sponding to the largest eigenvalues and bg is the is a vector of grey-level parameters. 

tg is selected so tha t at least, say 95%, of the grey-level variance is described by the 

model. The eigenvectors selected in P g describe a set of orthogonal modes of grey- 

level variation. We can calculate the grey-level parameters, bg) for a given grey-level 

vector, gr, as follows

By varying elements of bg between a set of limits we can use equation 2.7 to

g «  g +  P gbg (2.7)

bs = pTs { 9 - g ) (2 .8 )
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reconstruct new shape-free patches. Figure 2.4 * show the effect of varying the three 

most significant grev-level parameters independently.

-3sd

Mode 1

Mode 2

Mode 3

Figure 2.4: First three modes of variation of a typical shape-free face 

model.

2.3 Com bined M odels of Shape and Appearance

In sections 2.1 and 2.2 we described how the shape and appearance of any training 

example could be summarised by the parameter vectors bs and bg. These described 

the shape and appearance in an independent manner. There may be, however, corre­

lations between the shape and appearance of an object. If these correlations could be 

learnt the specificity of the model would be improved. Edwards et al [34] proposed

‘This illustration was kindly provided by Dr. G Edwards
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a Combined Appearance Model The Combined appearance model applied a further 

PCA to the shape parameters and grey-level parameters. For each training image we 

generate a concatenated vector:

where W s is a diagonal matrix of weights for each shape parameter. This is 

necessary because the shape and grey-level parameters are measured in different 

units. We apply a PCA on the set of all b parameters to give us the combined model:

where Q  is a m atrix of t eigenvectors corresponding to the largest eigenvalues and 

c is the is a vector of combined appearance parameters which control both the shape 

and grey-level appearance of the model, t is selected so th a t a given proportion, say 

98%, of the to tal variance is described by the model.

Since the columns of Q  are orthogonal we can obtain c  from b using

Because of the linear relationship of the model we can express the shape and 

grey-levels directly as a functions of c

(2.9)

b re Q c (2 .10)

(2 .11)
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x X  +  P s W ^ Q g C (2 .12)

9 g +  P 9Q gc (2.13)

where

<3 = * (2.14)

An example image can be synthesised for a given c by generating the shape-free 

grey-level image from the vector g and warping it using the control points described 

by x .

2.4 Interpreting Im ages W ith  S tatistica l M odels

In order to interpret unseen images, we need to find the set of model parameters 

which best match the model to the image evidence. This set of model parameters 

then describes the object’s shape and/or appearance (depending on the nature of the 

model used), and can therefore be used to further interpret the image, for instance 

to classify the object.

In this section we describe two algorithms which aim to locate the model param­

eters tha t best represent the target object in a new image.
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A set of model parameters, c, can be thought of as an hypothesis for the true 

location of the object. In general the methods in this section define a fit function, 

F(c), which evaluates hypothesis c against an image, returning small values for ac­

curate hypothesis. A way of optimising the value of F(c)  is also an important part 

of the algorithm.

2.4.1 A ctive  Shape M odels

The Active Shape Model algorithm (ASM) provides a method of fitting a PDM to 

an image in order to get a description of the object’s shape. Many other methods for 

locating shape information exist [80, 41], but ASMs are widely used. The remainder 

of this section will provide a brief overview of the technique. For a more in-depth 

discussion see [23].

M odeling Local Im age Structure

The ASM combines the shape constraints implied by a PDM with a local search 

scheme which searches for each of the landmarks independently. During a training 

phase, a grey level profile model is built for each landmark.

For every landmark in each training image a grey level profile can be sampled in a 

direction perpendicular to the boundary on which the landmark lies (See Figure 2.5). 

After normalising the profiles we can calculate the mean, g } and the covariance, S  

for each landmark.

The quality of fit of a new sample profile, g s, is given by:

f(9s) = (9 S ~  g)TS ~ 1{gs -  g) (2.15)
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Figure 2.5: Grey-levels sampled around each landmark.

This is a Mahalanobis distance, thus small values imply a good match. This 

quality of fit measure is used during search to locate desirable positions towards 

which the landmarks should be encouraged to move.

S earch ing

Given an initial hypothesis for the approximate locations of the model points in the 

image frame, the following search scheme can be used to refine the hypothesis to fit 

the image evidence.

By choosing a set of shape parameters, b. we can define the shape of a model 

instance, x  = x  +  P b s, in the model frame. An instance, X , of the model is created 

in the image frame by defining the position, orientation and scale:

X  = TXuyuo,s(x) =  TXuytfi%s(x  +  P b s) (2.16)
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where TXt,ytj , s performs a scaling by s, a rotation by 9 and a translation by (x t , yt)- 

The initial approximation is formed by choosing values for bs, s, 6 and (xt,y t). An 

iterative scheme is used to repeatedly improve this initial hypothesis. The grey level 

models and Equation 2.15 are used to search around the current location of each 

landmark, X , seeking a better match. The search is in a direction normal to the 

boundary on which the landmark is suppose to lie (Figure 2.6). The best position 

for each landmark is placed in a adjusted shape vector, X \

Intensity, g

f(gj)

Figure 2.6: Locating the new positions for landmarks during an itera­
tion of ASM search. The search is done in a direction normal to that of 
the boundary on which the landmark is thought to lie.

X ' = (x[, x ’2, . . . ,  x'n, 2/i, 2/2> (2T7)

where (x', */') is the desired position of landmark i.
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The adjusted shape vector, is used to update the model in two separate stages. 

First a new pose, (xftJ y fti s', O’), is chosen to move the current model points, x ) as near 

as possible the their desired locations, X ' .  The remaining differences between the 

model points and their desired locations in the model frame are known as the residual 

displacements, 5 x f. Secondly, the model parameters, 6, are adjusted to minimise the 

residual displacements. It can be shown [25] tha t the optimum adjustments, 5b, to 

the models parameters, 6, are given by:

6b = P T6x' (2.18)

This has the effect of minimising the residual displacements. By applying limits 

(for instance ±3  s.d.) to b we ensure tha t the shape of the landmarks remains legal. 

Further iterations are calculated until the model parameters no longer change. At this 

point the algorithm has converged and if successful, the pose and model parameters 

describe the location of a solution. Figure 2.7 t shows an example of a successful 

ASM search.

The algorithm is best applied in a multi-resolution search framework, which leads 

to a faster and more reliable search [26, 19].

2.4.2 A ctive  A ppearance M odels

Active Appearance Models (AAM) provide a way of fitting Combined Appearance 

Models directly to an image. They differ from Active Shape Models by taking ad­

vantage of all the available image evidence, not just the shape constraints and local 

landmark profiles. The AAM was first introduced by Edwards, Cootes and Taylor 

[32]. Cootes et al [17] provide a more detailed account.

^This illustration was kindly provided by Dr. G Edwards

42



C h a p t e r  2 .  I n t e r p r e t i n g  Im a g e s  w i t h  S t a t i s t i c a l  M o d e l s

fg f*

Initial After 2 iterations

After 6 iterations After 18 iterations

Figure 2.7: Locating a face using the Active Shape Model search algo­
rithm.

Assuming a reasonably good starting position, fitting the AAM to a new image 

can be seen as an optimisation problem where we seek to minimise the difference 

between the image and the synthesised patch produced by the AAM. This difference 

can be represented by a vector Sg. Sg is defined as:

d9 = 9 i - 9 m  (2-19)

where g ul is a vector of grey levels sampled from the synthesised patch and g , is a 

corresponding vector of grey levels sampled from the image which lies directly under 

the current synthesised path.

Combined models of appearance are specific and will therefore not generate illegal
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instances. If we can reduce |d'p|2 sufficiently we would ensure that the image, g l, 

represents something similar to the model gm. |d'p|2 can be minimised by varying the 

model parameters c which we will assume for simplicity also contain scale, in-plane 

orientation and translation.

Place model in 
image

Observe pattern T ,
„ Update modelin ditference, 5g

Iterate to 
convergence

Figure 2.8: Overview of AAM search scheme.

The number of model parameters, c, is often sufficiently large that using a stan­

dard optimisation algorithm would be inefficient. The AAM algorithm takes advan­

tage of the fact tha t each attem pt to match the model to a new image is a similar 

optimisation problem and it is possible to learn something about it in advance. In 

particular there is a strong relationship between the spatial pattern of the errors Sg 

and parameter displacement from the true solution to the search Sc.

The relationship between Sg and the error in the model parameters, Sc , is assumed 

to be linear:
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Sc = A Sg  (2.20)

A  is found by performing multivariate linear regression [47] on a number of known 

model displacements, 5c, and the resulting difference images, Sg.

Given this relationship we can predict a set of model displacements from a differ­

ence image. This is the heart of the following iterative search procedure:

• evaluate the error vector Sg — g s ~  gm

• evaluate the current error E  = \Sg\2

• Compute the predicted displacement, Sc = A Sg

•  set k =  1

• let c' = c — kSc

• sample the image at this new prediction, and calculate a new error vector, Sg'

•  if \Sg'\2 < E  then accept the new estimate, c',

•  otherwise try at k =  0.5, k =  0.25 etc.

This procedure is repeated until no improvement is made to the error, 15g\2, and 

convergence is declared. Figure 2.8 provide an overview of this scheme and Figure 2.9 

illustrates some search examples.

2.5 R elated  m odeling techniques

Kass et al [51] introduced Active Contour Models (or ’snakes’) which are energy 

minimising curves. The energy of the snake has an internal term  and an external
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Original Start 1 iteration 5 iterations

Figure 2.9: Examples of AAM search. Original image on left. Iterations 
1,2,5 shown on right.

term. The internal term aims to impose smoothness on the curve and the external 

term encourages movement towards image features. They are a useful tool for locating 

general outlines, but since no model (other than smoothness) is included they are not 

the best solution for locating objects of a known shape.

Lades et al [55] describe Elastic Graph Matching. Elastic Graph Matching has 

been used for classifying hand gestures [80] and face recognition [94]. Objects are 

represented as labeled graphs, where the nodes represent local image information (the 

response of Gabor based filters). When a new image is presented to the system, the 

graph is overlaid and allowed to deform in order to minimise an energy function. The 

energy function is based on the graph deformation and the response of the Gabor 

filters at the new node positions. However they don't impose strong shape constraints
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Staib and Duncan [76] represent shapes using fourier descriptors of closed curves. 

The choice of coefficients affects the curve complexity. Point distribution models as 

described in Section 2.1 are much more general, for instance fourier models can only 

describe closed boundaries.

Sclaroff and Isidoro describe Active Blobs [72]. The approach is broadly similar 

to the Active Appearance Models, in tha t they learn the relationship between image 

error and parameter offset in a training phase. The main difference is tha t Active 

Blobs are derived from a single training image, whereas Active Appearance Models 

are derived from a number of training images.

A number of authors propose physically based models. T hat is to allow a proto­

type to vary according to some physical model. Bajcsy and Kovacic [4] describe a 

volume model of the brain tha t deforms elastically to generate new examples. Chris­

tensen et al [15] describe a viscous flow model of deformation which they also apply 

to the brain. The resulting algorithm is very computationally expensive. The modes 

of variation learnt from a training set are likely to be more appropriate that those of 

a physically based model.

2.6 Sum m ary

In this chapter we have motivated the need for techniques which can automatically 

or semi automatically provide a consistent set of landmarks across a set of images. 

We have described a number of modeling techniques, which are reliant upon a labeled 

set of training images and also a number of search schemes, which allow the models 

to be used directly for image interpretation.

The techniques presented in this chapter, particularly the Active Shape Models 

have proved extremely popular in a wide and diverse range of applications such as 

medical [22, 23, 21, 74, 75, 16], face recognition [35, 32], animal behavior [77] and
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industrial inspection.

Because of the success of these techniques research is being carried out in order 

to further improve their robustness [21, 20, 18, 33, 71]. Although much has already 

been achieved in this area, the sheer amount of new research indicates tha t we are 

yet to see the full potential of these modeling techniques.
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Chapter 3

A utom atic m odel building: A  

background

This chapter will review a number of schemes, previously published, which attem pt 

to locate correspondences automatically. Relatively few authors consider the problem 

of finding consistent correspondences across a training set of images without the use 

of some prior model. Other relevant work attem pts to find a transformation between 

a pair of images. It is possible tha t some of these schemes could be adapted for 

multiple images.

The papers reviewed in this chapter are categorised under three headings:

• Pair-wise schemes attem pt to locate a transformation between pairs of images.

•  Serial schemes process the training images in a serial manner (one after the 

other), generating a consistent transform across multiple images.

•  Parallel schemes optimise a correspondence across multiple images in a parallel 

fashion.
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3.1 Pair-w ise schem es

Algorithms which fall into this category are often known as image registration tech­

niques. Image registration requires finding an optimal transformation between an 

image pair, the source and target We review a number of image registration tech­

niques tha t are of relevance to this thesis.

Christensen [14] describes a technique for locating consistent transformations be­

tween a pair of images. Christensen notes that a fundamental problem with a number 

of pair-wise image registration techniques is tha t the estimated transform from image 

A to B is not equal to the inverse of the transformation estimated from image B  to 

A. This inconsistency means that the correspondence between images A  and B  is 

ambiguous. Rather than estimate the transformations from A  to B  and from B  to A  

separately, they are estimated jointly whilst enforcing a consistency constraint which 

ensures tha t the transformations are symmetric. If h(x) is the transformation from 

image A  to B  and g[x) is the transformation from image B  to A, then Christensen 

attem pts to calculate the transformations g and h by minimising a cost function that 

is a function of B(g(x)) — A(T) and A(h(x)) -  B(x).

Lester et al [58] describe a non-linear registration algorithm which allows for 

different types of viscous fluid model. They use prior knowledge of the object class to 

specify a number of inhomogeneity paradigms to help further constrain the problem. 

For each image region a fairly complex prior description of its properties is required. 

This includes information such as the importance of the region, if it is strongly or 

weakly deformable and also the deformation model (affine etc) of the region. Lester 

shows th a t this extra information helps create robust registration. Lester manually 

specifies the region information, an automatic system might attem pt to determine 

some of this information from the training set.

Hill et al [43, 44] present a method of corresponding the boundaries of two shapes. 

The algorithm approximates one of the boundaries by a sparse polygonal approxima-
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tion. The polygonal approximation is found by using an iterative scheme to select 

points with a high critical value. These points tend to lie on the apex of regions of 

high curvature. A matching sparse polygon is sought on the second boundary. It 

should have a similar shape and representation error to the first. This is achieved by 

optimising a cost function using a greedy algorithm.

3.2 Serial schem es

Serial schemes tend to start with a few training images which are registered manually. 

These few images are used to train a model. Further images are added to the model 

by first calculating a model to image mapping (i.e. putting the new training image 

in correspondence with the model). W ith only a few training examples in the model, 

the model often struggles to generalise to new training images. In this section we 

discuss strategies used to overcome this problem.

3.2.1 M ultid im ensional M orphable M odels

Jones and Poggio [48] describe flexible models of the shape and texture of a certain 

object class, known as Multidimentsional Morphable Models. The model is a linear 

combination of the shapes and textures displayed in a set of training images, which 

for a given set of parameters can be used to render a new image. In order to build 

the model it is necessary for a dense correspondence between all training examples 

to be known. Vetter et al [84] present a bootstrapping technique for automatically 

determining this correspondence between training examples. The idea behind the 

bootstrapping algorithm is to start with a small morphable model consisting of two 

training images and then to add to its representational power by repeatedly adding 

new images by setting them in correspondence with the model. In order to set a 

new image in correspondence with the model, they first fit the inadequate model to 

the image giving a rough correspondence. The correspondence is then refined further
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using an optical flow algorithm. Finally the new training image is added to the model, 

increasing its generality.

A further improvement is to instead of incorporating one new training image 

at every iteration, is to first train a morphable model from the correspondences 

obtained from all training images using optical flow. Since optical flow results in 

noisy correspondence fields, the model is trained using only the most significant 

modes of texture and shape variation. At each iteration the current model is used to 

match to each training image using optical flow to refine the correspondence, giving a 

new improved correspondence field which can be used to retrain the model. At each 

iteration the model retrains more and more modes of texture and shape variation. 

This improvement turns the serial scheme into a parallel scheme.

Results demonstrate the algorithm on human faces which display identity varia­

tion, but no pose, lighting or expression variation.

3.2.2 A rtifical V ariation

In the previous section we described how Morphable Models add new variation to 

the model by first fitting the inadequate model to a new training in and then using 

a second technique (optical flow in this case) to capture the variation the model 

couldn’t explain. This new variation is then added to the model. An alternative 

approach is to attem pt to add some artificial variation to the model before searching 

a new image. Adding artificial variation improves the model’s ability to generalise, 

allowing it to fit well to a training image it was previously unable to explain. This 

comes with a cost, if the artificial variation differs to th a t displayed in the object 

class, the model loses some of its specificity. This results in the model generating 

illegal instances.

A number of authors [66, 73, 50, 65] have proposed finite element methods. Finite 

element methods take a single instance of a shape and treat it as if it were made of a
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flexible material. The techniques of modal analysis give a set of linear deformations 

of the shape equivalent to the models of vibration of the original shape. However, the 

modes are somewhat arbitrary and don’t represent the real variations which occur in 

a class of shapes.

Wang et al [93] combined artificial variation with statistical information obtain 

from a training set. This was achieved by adding extra variation (artificial variation) 

to the covariance m atrix obtained from statistical analysis of the shapes displayed in 

a training set. The artificial variation is aimed to induce elastic modes of variation 

into the model. They showed that the statistical information improved an elastic 

model for non-rigid registration.

Cootes et al [24] extend the Active Shape Model algorithm (see Section 2.4.1) 

in order to improve its robustness when training on relatively few examples. They 

introduce artificial variation to the model which mimics elastic vibration modes. The 

approach generates these elastic modes when few training examples exist and changes 

smoothly to using more statistical modes of variation when the model is eventually 

trained on a large training set. Figure 3.1 shows some elastic modes applied to a 

neutral face.

3.3 Parallel schem es

Parallel schemes consider all the training images at once, and are not dependent on 

their ordering. Very few schemes consider training images in parallel because it often 

results in algorithms which are computationally complex.

Kotcheff et al [54] used direct optimisation to place the landmarks on a set of 

closed curves. They define a mathematical expression which measures the compact­

ness and the specificity of a model. This gives a measure th a t is a function of the 

landmark positions on the training set of curves. A genetic algorithm is used to ad-
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F ig u re  3.1: Elastic modes of variation applied to a neutral face.

just the point positions so as to optimise this measure. The approach seems promising 

when applied to boundaries of a number of object classes such as hands, resistors and 

heart ventricles. But it is not obvious how it could be extended to full 2D (region 

based) or 3D problems and still be tractable to compute.

Hill and Taylor [42] describe a parallel scheme for the autom atic landmark gen­

eration for Point Distribution Models. Landmarks are generated for a training set of 

pixellated 2D boundaries. The algorithm is a two-stage process in which a pair-wise 

corresponder is first used to establish an approximate set of landmarks on each of the 

example boundaries. The first stage can be represented as a binary tree as shown 

in Figure 3.2. The leaves are the original training set and each node is a pair-wise 

corresponder which computes the mean shape from its two child nodes. The mean
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shape of the entire training set is found at the root. A set of landmarks is placed 

011 this mean shape and then propagated back along the branches to the tree leaves 

giving approximate landmarks for each training shape. In the second phase the land­

marks are refined using an iterative non-linear optimisation scheme. This is achieved 

by attem pting to reduce the total absolute variance in the model whilst trying to 

explain as much of the variance using as few modes of variation as possible.

Brett et al [lljdescribe a framework similar to that of Hill,sf42] for 3D automatic 

landmark generation. They construct a binary tree of merged shapes as shown in 

Figure 3.2. A polyhedral-based pair-wise corresponder is used to merge the shapes. 

The approach is used to produce a set of landmarks upon examples of the left brain 

ventricle.

Mean
Shape

Mean
Shape

□ Pair-wise
Corresponder

Land­
marks

eg eg  , egt eg eg egs , eg eg

Training Set

Figure 3.2: Generating the Mean Shape and Approximate Landmarks

3.4 Sum m ary

We have reviewed several methods for computing a correspondence between 2 or 

more training images. The work which provides the closest answer to the aims of 

this thesis is tha t of Hill [42] and Jones’s Multidimentional Morphable Models. As
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already mentioned Hill’s work is applied only to the boundaries of a shape. We also 

require landmarks to represent the object’s internal deformations.

Morphable models require a full dense correspondence between all training exam­

ples and hence the use of optical flow to compute the correspondence. For Active 

Shape Models and Active Appearance Models only a partial correspondence is nec­

essary which is provided by landmarks. In this thesis we will explore feature based 

methods from automatic landmarking.
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Local Feature D escriptors

4.1 Introduction

This chapter reviews the various types of Local Feature Descriptors tha t are com­

monly described in the literature and how they can be used to measure the similarity 

between various image regions. Local Feature Descriptors allow the local image struc­

ture around a image pixel to be quantified in some form. Typically, applying a Local 

Feature Descriptor to an image will produce a feature vector, V x , for each point, aq 

in the image. Some feature descriptors can be applied at various scales, resulting in 

a feature vector, ^x,a,  for each scale, cr, at each point, x,  in the image.

Feature descriptors are typically used in vision applications at the lowest level to 

assess if two image regions have similar characteristics. The higher level architecture 

uses this information together with other information and constraints (possibly from 

a pre-trained model) to interpret an image in some way. Triesch et al used feature 

descriptors based on Gabor Wavelets to construct a model of the human hand and 

then to match the model to unseen images of hands. The feature descriptors are used 

in the elastic graph matching which allows the hand model to fit to an unseen image. 

Several authors have used feature descriptors to form models of the human face. These
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models have been used for a variety of tasks such as coding facial expressions [59], 

facial expression recognition [45], facial identity recognition [49] and pose estimation

[36]-

4.2 Feature Coding

Feature coding is the process of constructing feature vectors. There are many different 

ways in which to code features, but they can generally be grouped into one of two 

classes. Specific coding methods attem pt to enhance certain image structures such 

as corners, edges or blobs. Non-specific coding methods attem pt to provide a way 

of describing any type of image structure, they are not biased to enhancing one 

particular type of feature.

4.2.1 Specific Feature C oding m ethods

E dge detectors

Edges or object boundaries have long been recognised as an extremely important part 

of the structure of an image. Often the shape of the outline of an object is sufficient 

to identify it. Experiments have also shown tha t edges are im portant to the human 

visual system [2],

Edges appear in images as intensity discontinuities. An edge can be described by 

two independent values; its magnitude and its direction. Given an image function, 

f ( x ) ,  the gradient magnitude, s(a;), and direction, f ( x ) ,  are given by [5];

s(aO =  (A, +  A jA 2
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(p ( x ) = t a n  1(A2/A i)

where Ai and A 2 are the difference operators^ or a measure of the difference in 

grey levels in orthogonal directions. Numerous image operators have been suggested 

to calculate A x and A 2, Table 4.1 illustrates the three most popular [68, 69].

Method

Roberts

Prewitt

Sob el

Ai

0 1
-1 0

-1 0 1u
 

! 1 0 1
-1 0 1

-1 0 1

1 to 0 2

^—1 I 0 1

A,

1 0
0

1—1 1

1—1 1

I—1

0 0 0
-1 -1 -1

1 to 1
0 0 0

-1 I to -1

Table 4.1: Difference operators

The difference operators in Table 4.1 are all approximately first order gaussian 

partial derivatives in orthogonal directions.

Corner D etectors

Corner detectors are another important feature detector. Corners refer to point 

features which are the loci of two-dimensional intensity change, i.e. second-order 

features. They occur at points of occlusion, at structural discontinuities and also at 

various curvature maxima.

Corner detectors have commonly been used to interpret scenes containing man
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made objects with physical corners, such as in buildings, although they have been 

applied to more natural scenes.

Several approaches to the problem of detecting corners have been reported and 

they can be broadly divided up into two groups:

The first group consist of first extracting edges as a chain code, and then searching 

for points of high curvature [29, 1] or fitting polygons to the chains and searching for 

line segment intersections [46]. In this case the feature vector, v i would consist of 

the angle between the two edges which form the corner and the magnitude of their 

gradient.

The second group consists of approaches tha t work directly on a grey-level image. 

These techniques are based on the measurement of the gradients and the curvatures 

of the surface [92, 53, 30]. These measurements form the feature vector.

4.2.2 N on-sp ecific  Feature C oding M eth od s  

T em plate m atching

Template matching is one of the simplest methods of coding features. The feature 

vector is formed by sampling image grey levels from a grid placed directly over the 

image region to be coded. The scale of the feature can be set by changing the sampling 

rate between grid nodes. Figure 4.1 illustrates how tem plate matching can be used 

to construct a feature vector describing the features within and around the eye.

Gabor Transform

The Gabor transform is used to reveal local spectral information in an image. Gabor 

kernels take the form of a complex plane wave restricted by an elliptical Gaussian 

envelope function as illustrated in Figure 4.2. A 2D Gabor Kernel, Vfo is given by:
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Figure 4.1: An illustration of liow template matching is used to con­
struct a feature vector, a is the scale of the feature and x  is the centre 
of the feature.

k 2 k 2x 2
v k ( x ) =  ~̂ 2 exP(— 2^ 2~)[exP(i k x ) ~  e x p ( - a 2/ 2)] (4.1)

where k  is complex and determines wavelength and orientation of the frequencies 

to be extracted and a determines the ratio of window width to wavelength, i.e. the 

number of oscillations under the envelope function. This is further explained by Lee 

[57]

Lades et al [55] and Triesch et al [80] have both used Gabor-based filters in object 

recognition tasks. Because the response is dependent on the orientation of the filter, 

the convolution needs to be carried out at a number of angles, typically eight. This 

means tha t it is not ideal if speed is an important factor. Gabor filters are also used
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Figure 4.2: The real and imaginary parts of Gabor-based filters, 

in texture analysis [10, 37, 60].

G aussian Partial D erivatives

Gaussian Partial Derivatives are a set of operators which describe the differential 

structure of an image region (e.g. about a feature) in a way which is dependent on 

the chosen Cartesian coordinate system. This is done using a scaled set of differential 

operators. The zeroth order operator, on which the rest of the operators are based, 

is the normalised isotropic Gaussian. The higher order operators are generated from 

derivatives of the Gaussian, allowing one to study the differential structure of the 

image up to any order using a set of discrete convolution filters.

The normalised Gaussian Kernel is given by:

G(x\a)  =  1 p • e(~ 1i ^ ) (4.2)
\ 2'KGZ) 2

where a is the scale and D is the number of dimensions.

62



C h a p t e r  4 .  L o c a l  F e a t u r e  D e s c r i p t o r s

The first order Kernels are:

Gx{ x \a) =  £ G ( x ; a) Gy(x; a) =  ^ G ( x ; a)

The second order Kernels are:

Gxx(x-, a) =  J§tG(:e; c ) Gvy(x; a) =  ^zG(x\  a)

Gxy(x-a) =  J^G(a:;<7)

and so on.

The set of all such filters completely determine the local image structure at the 

given scale. Notice tha t each filter has a single parameter, a , defining the scale of the 

filter.

Typically, researchers have tended only to use up to second or third order filters. 

This is because increasingly higher order becomes more and more susceptible to image 

noise. In addition, using further orders increases the dimensionality of the feature 

vector, which results in a computationally complex algorithm.

Figure 4.3 illustrates all the resulting Gaussian derivative filters up to and includ­

ing the third order. Figures 4.4, 4.5 and 4.6 illustrate applying the Gaussian partial 

derivative kernels to an image at scales of 6, 4 and 2 standard deviations respectively. 

L x is the result of convolving the image with Gx, L y with Gy and so on. Convolving 

an image with a large scale filter results in a blurred image when compared with that 

of a small scale filter. Filters with a small scale reveal high frequency image structure 

and conversely filters with a large scale reveal low frequency image structure.

A feature vector, v xa, based on Gaussian partial derivatives up to the second 

order would have the following form:
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Figure 4.3: Gaussian partial derivative kernels up to and including the 
third order.

V X, a —

L ( x ; a) 

L x (a?, o ) 

L y ( x \  <r)

X X  ( ®  5 O’) 

Lyy(x ; <t)

- L i y  ( ® ) o ’)

(4.3)
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Original

Figure 4.4: Gaussian partial derivative images up to the th ird  order.
a = 6 pixels. The first row shows the 0th and I s* order, the second row
the 2nd order and the third row the 3rd order. See text for details.
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Original

X X X

Figure 4.5: Gaussian partial derivative images up to the third order.
a = 4 pixels. The first row shows the 0t/l and l s< order, the second row
the 2nd order and the th ird  row the 3rd order. See text for details.
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Original

Figure 4.6: Gaussian partial derivative images up to the th ird  order.
(7 =  2 pixels. The first row shows the 0th and 1st order, the second row
the 2nd order and the th ird  row the 3rd order. See text for details.
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By dividing by L(x;cr) gives a feature vector which is invariant to image bright­

ness,

Vxa ~
L ( x ; cr)

L x ( x \<j )

L y  (iC, CJ)

Lxx{pC\ O') 

L yy( x ; cr)

L x y  (®j O’)

(4.4)

C artesian D ifferential Invariants

The response of Gaussian partial derivatives depends on the choice of Cartesian 

coordinate frame. However, certain combinations of filter response can be shown to 

be independent of the choice of coordinate frame. These combinations are known 

as Cartesian differential invariants. Table 4.2 shows a canonical set of eight two- 

dimensional polynomial invariants to third order, expressed in tensorial manifest 

invariant index notation [78],

Invariant Order Manifest Invariant Notation

h 1 Li Li
h 2 L% LijLj
h 2 LuLjL j LijLi Lj
h 2 Cj LjfcLiLk
h 3 Cij(LjkiLiLkLi — LjkkLiLiLi)
h 3 LajLjLfcLp. — LijkLiLjLk
I 7 3 tij Lj hi L^Lf* Li
Is 3 LijkLiLjLk

T able 4.2: The set of 2D polynomial invariants to third order expressed 
in tensorial manifest invariant notation

Tensorial manifest invariant index notation is the most common notation used
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to express invariants. L{j is the result of applying a second order Gaussian filter 

Gij to an image, hence is a second order tensor. A polynomial invariant of the L 

terms can be constructed by expanding the Manifest Invariant notation using Einstein 

summation [52]. For example the second order invariant LiLijLj  expands as follows 

in two dimensions:

LiLijLj L XL XXLX LXL XyLy LyLyXL X “H LyLyyLy

L x$Lx2 +  <2iLxL XyLy “I- LyyLy2

Each subscript, i, j  etc is replaced with x, y and the result summed.

As well as the L  tensors, represents a constant tensor known as Epsilon or the 

Levi-Civita tensor. In D  dimensions Epsilon has D  indices and is defined as follows:

1 if (A .. A d ) is an even permutation of the natural order

—1 if (A .. A d ) is odd permutation of the natural order 

0 otherwise

Figures 4.7, 4.8 and 4.9 illustrate the responses of the Cartesian Differential Invari­

ants at scales of 6, 4 and 2 standard deviations respectively. Convolving an image 

with a large scale filter results in a blurred image when compared with tha t of a 

small scale filter. Filters with a small scale reveal high frequency image structure and 

conversely filters with a large scale reveal low frequency image structure.
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M rL .; hS1$ •; '* ;■#" -S’
* . *- ■ § ft i ' , £ ■' V̂>.: » ;*

f lK jP wO sj|. - . ..4; ; |
* t

1 <v Jfc SPiHl* y
LaLjLj L{jL{Lj îj LjkLiLfc
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Figure 4.7: Cartesian differential invariant images up to the th ird  order.
cr =  6 pixels. See text for details.
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Original -L j Li LiLij Lj

La Lj Lj Lij Lj Lj j kL { L k 6 i j ( L jk iL iL k L i  L j kkL iL iL {}

X
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\  /
L i j kL { L  j  L k

Figure 4.8: Cartesian differential invariant images up to the third order.
<7 =  4 pixels. See text for details.
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Original
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Figure 4.9: Cartesian differential invariant images up to the th ird  order.
<r =  2 pixels. See text for details.
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4.3 M easuring the Sim ilarity B etw een  two Fea­

tures

In section 4.2 we covered some of the more popular ways in which features can be 

coded as a feature vector, v xa. Here we discuss how to measure the similarity, Sy1v 2  ̂

between two feature vectors, v \  and v 2• This will allow us to compare features and 

to find good matches between features.

The main disadvantage with this method is tha t the similarity of two feature vec­

tors is only dependent on the relative direction. It assumes similarity is independent 

of the feature vector’s magnitude. This is often not satisfactory as the magnitude 

does represent something meaningful in the image structure.

4.3.2 Squared E uclidean D istance

The Squared Euclidean distance (also known as the sum of squares) is given by:

4.3.1 A ngle

The angle between feature vectors is the simplest measure of similarity. A similarity 

measure based on angle is given by:

(4.5)

5Vlv 2 =  («i -  ^ 2) • («i ~  v 2) (4.6)
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Unlike Angle similarity only identical vectors will give 8VxV.2 =  0.

4.3 .3  M ahalanobis D istance

The Mahalanobis distance is similar to the Euclidean Distance but allows extra in­

formation about the distribution from which V\ and v 2 were drawn to be included. 

The Mahalanobis Distance can be used as a measure of relative probability under the 

assumption of a gaussian distribution of covariance S.  The Mahalanobis distance 

between V\ and v 2 is given by:

8v iv 2 =  (vi -  v 2Y  S ~ l (v\ -  v 2) (4.7)

Figure 4.10 shows an example of where the Mahalanobis distance gives different 

results to the Euclidean distance.

Figure 4.10: Illustration of the differences between Mahalanobis dis­
tances and Euclidean distances. The ellipses represent the distribu­
tion from which and v 2 were drawn. The Euclidean metric claims 
8v i n  > 8v 2/jLi where as the Mahalanobis distance claims 8v {fi <
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4.4 Sum m ary

This chapter has described a number of different methods of coding features, both 

specific and non-specific. The notion of a feature vector has been introduced. Feature 

vectors are used heavily throughout the rest of this thesis.

The choice of which feature coding method to use is entirely dependent upon the 

task in hand. The following factors should be considered when making a decision:

• W hat is the type of feature to be coded, is it specific (i.e. a line or a corner) or 

non-specific?

• Is it required tha t the feature vectors are invariant to lighting or rotation?

• W hat is the amount of computational time available to calculate the feature 

vectors?

Section 4.3 described three measures of feature similarity. The Mahalanobis dis­

tance is the best metric if information about the distribution from which the feature 

vectors were drawn is available. In the absence of this information the Euclidean 

distance is a suitable alternative.
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Im age Feature Saliency

5.1 Introduction

We are working towards a feature-based method capable of automatically providing 

a dense correspondence across a set of images. We require the correspondence in 

order to build statistical models of the object, which can in turn  be used to interpret 

unseen images of similar objects. We will demonstrate our algorithms on images of 

the human face. Such images can be highly variable and contain many features. In 

order to calculate a correspondence between a pair of images, we could attem pt to 

locate every feature from the first image in the second, but this would be very time 

consuming because of the number of potential features. Alternatively however, we 

could locate a small number of features from the first image in the second, giving a 

partial correspondence. A dense correspondence could then be estimated using the 

partial correspondence together with some form of interpolation scheme. This gives 

rise to one im portant question; which subset of features should we use to find the 

partial correspondence?

The accuracy to which we can locate a feature from one image in a second varies 

greatly depending on its appearance. For example, Figure 5.1 shows a number of
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features from a human face, some of which are easily identifiable, others are less so. 

Feature (a) is clearly the left side of the left-hand eye. Feature (b), on the other hand 

could be from the forehead, the cheeks or the chin. We should choose the subset of 

features which have the greatest probability of accurately locating their true matches. 

In the case of faces, points around the eyes mouth and nose are likely to be suitable. 

These features are those least likely to be confused with other structure in the image.

We define Salient features to be those with the lowest probability of being mis- 

classified.

Figure 5.1: Several examples of features extracted from the central face.
Note that some of the features (a) are much easier to identify than others 
(b).

Many authors have faced the problem of which subset of features to use for the 

purpose of locating some form of correspondence. Lades et al [55] used vectors 

containing the responses of Gabor wavelets at different wavelengths to represent image 

features. An object was then represented by a set of these feature vectors extracted at 

the vertices from a sparse grid placed over the object of interest. The vertices of the 

grid are unlikely to fall over the most salient features, so when searching for the grid in 

a similar image only the vertices that happened to lie near salient features are found 

accurately. Triesch et al [81] tackles this problem by extracting the feature vectors 

from the vertices of a graph which is placed manually over the object. The vertices are
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chosen to coincide with heavily textured positions (i.e. salient features). Although 

this is an improvement over simply randomly selecting the features, guessing which 

features will be accurately located is still far from optimal.

In this chapter we explore ways in which the spatial position of salient features 

can be located automatically in a principled manner.

The aim is to locate salient features, those which are most likely to be found 

correctly in a subsequent image. Given only one example of the object, the best 

we can do is to attem pt to find those features which are significantly different to all 

other features in the image containing the object. Ideally, these features would occur 

exactly once in each example of the object. We define Image Feature Saliency to be a 

measure of how distinctive a feature is compared with the other features in the same 

image.

For every pixel in the image we construct a feature vector, which describes the 

structure of the image centered on the pixel at a particular scale a. The full set 

of vectors describing features at every pixel forms a multi-variate distribution in a 

feature space (see Figure 5.2). By modelling the density in this feature space we can 

estimate how likely a given feature is to be confused with other features. We observe 

tha t salient features lie in low-density areas of feature space.

The density estimate of feature space at which each feature vector lies corresponds 

directly to the feature’s saliency. The lower the density, the more salient the feature 

is, since there are few similar features with which it might be confused. A saliency 

map allows us to visualise the saliency measures of all the features in the spatial 

domain of the original image. An example of a saliency map is shown in Figure 5.2. 

The peaks of the saliency map correspond with the positions of the most salient 

features.

We will now describe how to compute image salient features in more detail. In the 

following sections we review previous literature which has benefited from the notion of
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v e c to r s

O riginal Im a g e F e a tu r e  S p a c e
E x trac t
f e a tu r e

E s t im a te
fe a tu r e
sa l ie n c y

Figure 5.2: An overview of Image Feature Saliency. Feature vector 
A indicates a salient feature as vector A has a low probability of being 
confused with other feature vectors.

saliency, describe a number of density estimation methods, how to construct saliency 

maps and select a subset of salient features from them. Finally results are presented 

which compare automatically selected salient features with features selected manually.

5.2 Saliency: A background

Many authors have shown that using the saliency of image features can improve the 

robustness in object recognition algorithms. In this section we will review a number 

of methods which benefit from the notion of saliency.

5.2.1 L ocating salient segm ents o f an o b je c t’s boundary

Turney et al [83, 64] tackled the problem of recognising an object from a partially 

occluded boundary image. Figure 5.3 shows an example problem. Turney uses a 

database of object geometry to extract boundary templates from every stable position 

of every expected object. A set of sub-templates which most differentiate the objects 

is found. These sub-templates represent the object’s salient features. Each of the

S a l ie n c y  M ap
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sub-templates is also given a saliency measure which indicates the degree to which 

the feature is salient.

Given a new scene containing a number of partially occluded object boundaries, 

matches are located between the sub-templates from the database and the object 

boundaries segments in the scene. Each match is given a matching coefficient which 

is a measure of the match between the sub-template and a boundary image segment. 

Merlin and Farber’s [63] generalised Hough transform is used to locate plausible 

centroids of an object. Each sub-template match increments an accumulator in Hough 

space by its matching coefficient weighted by the sub-tem plate’s saliency measure (i.e. 

matches with salient sub-templates are weighted more heavily). Object matches are 

local maxima in Hough space. This means tha t objects which are almost entirely 

occluded can be located so long as at least one distinguishing (salient) feature is 

visible. This is a good example of how incorporating the saliency of object features 

in recognition tasks can increase robustness.

Boundary Image

Template

F ig u re  5.3: Example of a boundary template and a boundary image 
containing one partially occluded example of the template.
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5.2.2 T he Local Feature Focus M eth od

Bolles et al [6] propose a method of locating partially visible two-dimensional objects. 

They locate interesting features such as holes and corners from CAD models of the 

objects of interest. These features are known as focus features. The system designer 

decides which features would make good focus features. A model is made for each 

object which consists of the relative geometry of the object’s focus features. For 

each focus feature a strategy is devised which lists its nearby features. Given a new 

scene all occurrences of the focus features are found and passed on to the hypothesis 

generation stage. The hypothesis generation stage locates clusters of focus features 

which correspond to an object model. They generate graphs whose nodes represent 

possible assignments between object features and image features. Two nodes are 

connected if their assignments are mutually consistent. A hypothesis for an object’s 

position is found by locating the largest set of mutually consistent clusters of nodes, 

or the largest fully connected subgraph (maximum cliques). By selecting more than 

one hypothesis they show it is possible to locate a number of occluded objects in poor 

quality images. Like Turney (Section 5.2.1), Bolles exploited the fact tha t it is not 

necessary to match every feature within an object in order to identify it, a subset of 

the most salient features in a legal configuration will often suffice. One of the main 

problems with this approach is tha t the training phase is not automatic and relies 

on considerable human interaction, for example in deciding which features are salient 

and should become focus features.

5.2.3 3D PO : A S ystem  for M atching 3-D  O b jects in R ange  

D a ta

Bolles and Horaud [7] extended Bolles and Cain’s Local Feature Focus method to 

locate instances of 3D objects in a cluttered scene. Instead of using the standard 

grey-scale intensity image they use a height image captured from a range sensor.
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The focus features used for 3D P0 were circular and straight edges. They at- 

tem pted to manually select focus features by evaluating the following properties:

• Uniqueness

• Cost of detection

• Expected contribution to the identification of the object identity and its position

• Likelihood of detection (is the feature often obscured?)

They note tha t the selection of further features for use in strategies is even more 

complex, as not only is it a function of the feature’s own characteristics, but also the 

characteristics of previously located features.

Although this work identified the importance of selecting the correct focus fea­

tures (salient features), they also realised how complex it is to do manually, even for 

relatively simple ridged objects. They recognised the need for autom ated methods of 

feature selection, which is the problem we address in this chapter.

5.2 .4  L ocating d istinctive  groups o f sym m etry  chords

Bailes et al [3] proposed a scheme for locating distinctive grey scale regions which lie 

inside an object boundary. The grey scale regions are represented by samples which 

lie on chords beginning and ending on the objects boundary as shown in Figure 5.4.

To limit the number of chords which exist only symmetry chords are used. In 

Figure 5.5 &ab is the angle between the boundary normal and the chord A B y the 

chord A B  is only a symmetry chord if 4>af, =  T ai).

A vector, g , is extracted from each chord which represents the grey levels along 

it. The grey levels are sampled at equally spaced intervals along the chord.
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Boundary points A

Symmetry chords

 ------------ Boundary points

Boundary points B

Figure 5.4: A rectangular ob­
ject and the group of symmetry 
chords used to represent the grey 
scales between the sets of bound­
ary points A and B.

O b a

Figure 5.5: The def­
inition of a symmetry 
chord AB.

Neighboring chords are then merged into groups if there is little variation in their 

grey level vectors. The mean g. and covariance matrix S  can then be calculated and 

used to determine a measure of distinctiveness for each group.

Bailes then goes on to describe how the distinct groups of symmetry chords can 

be used to achieve robust object recognition.

5.3 D ensity  E stim ation

Our definition of Image Feature Saliency relies on accurately estimating the proba­

bility density function from a set of samples (in our case, the features from all pixels 

in an image). Here we review the different approaches.

Density estimation is the construction of a probability density function from some 

observed data, in this case feature vectors. The different density estimation ap­

proaches fall into one of two categories. Parametric schemes assume that the data 

is drawn from a known parametric family of distributions. The data is used to es­

tim ate optimal values of the parameters of the distribution. For example, if it was
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assumed that the data comes from a normal distribution estimating the density of 

would involve finding estimates for the mean and covariance of the distribution. The 

nonparametric approach makes less rigid assumptions about the distribution of ob­

served data. Silverman [13] describes a number of non-parametric density estimation 

techniques based around placing kernels at each data point in detail. We consider a 

number of both parametric and non-parametric density estimation techniques in the 

following sections.

5.3.1 P aram etric M eth od s  

G aussian m odels

A frequently used approach is to approximate the density of feature space with a 

single multivariate Gaussian. An estimate of the local density p at point x  in feature 

space is given by:

p(x) = Q(x\pt\S)  =  (2T)~Y|JS'|- i e-(a?-/-£)T£' (x-fj,) ^

where N  is the dimensionality of the distribution, S  is the covariance matrix of 

the entire distribution and pL is the distribution mean.

The advantage of this method is tha t the complexity of calculating the density 

estimates for all feature vectors is of order n, where n  is the number of feature vectors 

in feature space. Figure 5.6(a) shows an example of data and a probability density 

function for which this approach is suitable.

This m ethod’s main weakness becomes apparent when considering the result 

of applying it to a distribution with a multimodal probability density function. 

Figure 5.6(b) shows a situation where the feature space is formed by two sub­
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distributions, the mean of which lies part way between them. Approximating this 

with a single Gaussian results in the distribution mean being the region of greatest 

density, which is clearly a bad approximation.

(a) (b)

Figure 5.6: Examples of density estimation using a single Gaussian. The 
crosses gives the data, the image gives the estimated gaussian probabilty 
density function, (b) shows an example where modelling the density with 
a single Gaussian gives inadequate estimation.

M ixture m odels

Mixture models attem pt to estimate the density of a distribution with a mixture of 

kernels, often Gaussian in form. The parameters for each kernel are first initialised 

using a simple scheme such as distributing the kernels evenly around the space. The 

parameters can then be optimised to fit the data using the Expectation Maximisation 

algorithm.

Expectation Maximisation (EM) is an iterative optimisation technique, originally 

proposed by Dempster, Laird and Rubin [28]. EM can be used as a method to 

optimise the parameters of a mixture of multi-variate Gaussians to best fit a data set 

[62]. The method proceeds from a starting set of parameters using two steps.
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• E x p e c ta tio n : Calculate the probability Pki tha t the sample X{ belongs to the 

Gaussian mixture model component k, Pu is given by:

_ wk.G(xi\iik-,i:k)

Phi 1 J

• M ax im isa tio n : calculating new estimates of the parameters (mean vector), 

Sjt (covariance matrix) and Wf, (mixing fraction), pkt E*. and Wk are given by:

Wk =  -■'YLPki (5.3)n  .i=i

1 'ST'Pkitti
to  =  (5-4)n , wki= l  h

s  =  1 y  ̂PkijXi ~  Pk){xi  ~  P>k)T , ,

L n  ' Wk

These two steps are repeated until the method converges to an optimal set of 

parameters. The local probability density estimation p at x  is then given by:

TLS
p(x) = ^ w kG(x\iMk- S k) (5.6)

fc=l

This approach suffers because it is necessary to select the number of kernels with 

which to model the da ta ’s density. It can also be difficult to choose the initial starting 

positions and parameters of the kernels. Poor initialisation can result in a bad final 

approximation. For low dimensional data, initialisation schemes resulting in good 

solutions can be employed, but for higher dimensional data  this becomes a more 

challenging problem.
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5.3.2 N onparam etric M eth od s  

K ernel M ethod

The Kernel method positions kernels (e.g. Gaussians) at all the samples in the 

distribution. The local density p at point a? in a distribution is estimated by summing 

the contribution from a mixture of kernels, in this case gaussians:

1 n
p(x) = — G (x \x i \h S )  (5.7)n i—Jn i=1

where n  is the number of samples in the distribution, X{ is the i ih sample from the 

distribution, S  is the covariance of the whole distribution and h is a scaling factor. 

Silverman [13] suggests a value for h given by:

h =
(D + 4 )

_N(D +  2)_
(5.8)

where D is the number of dimensions. This method gives an accurate estimation 

of the distribution’s density but is very time consuming to calculate for large n as 

the algorithm’s complexity is of order n.

Sub-sam pled K ernel m ethod

This method attem pts to approximate the Kernel method by placing gaussian kernels 

at a randomly selected ns of the original n  points. (5.8) suggests h increases as ns 

decreases. Evaluation of the probability density function is order n s (where ns < n), 

so can be much more efficiently calculated than the full kernel method, but this comes

87



C h a p t e r  5 .  I m a g e  F e a t u r e  S a l i e n c y

with some loss of accuracy.

(a) (b) (c)

Figure 5.7: Comparison of the density estimate obtained from several 
distributions, using the kernel method (a) and the random kernel method 
with 50% (b) and 25% (c) of the kernels. Each row shows a different set 
of raw data.

5.3.3 C om parison of D en sity  E stim ation  m eth od s

Approximating with a single Gaussian is fast but is not valid in situations where the 

data is not approximately normal.
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The Kernel method gives the best approximation but a t the cost of being compu­

tationally intensive. The Expectation maximisation algorithm and the Sub-sampled 

Kernel method both try  to approximate the Kernel method by using fewer Gaussians 

than samples. Expectation maximisation takes a long time in comparison to the Sub­

sampled Kernel method to achieve results similar to tha t of the Kernel method. A 

single iteration of the expectation step has the same complexity as the sub-sampled 

kernel method, i.e. n s. However, it is likely to give a better estimate of the density. 

The Expectation maximisation algorithm also has a number of issues regarding the 

initialisation of the kernels. For these reasons the Sub-sampled Kernel approach is 

used as the method of choice.

In Figure 5.7 we compare the density estimate obtained from several distribu­

tions, using the kernel method (a) and the Sub-sampled kernel method with 50% (b) 

and 25% (c) of the kernels (randomly selected).

5.4 Saliency M easures and Saliency M aps

The density estimate for each feature vector v x a leads directly to the saliency of the 

feature at scale a. The lower the density, the more salient the point. The saliency 

measure, s(a5|<r), of feature vector vxa  is given by:

s(aj|c7) =  - p ( v Xa) (5.9)

Thus a low p leads to a high saliency measure sxa-

A saliency map is a way of visualising the saliency measures for a particular scale. 

It is constructed by setting each pixel from the original image to the saliency of the 

feature vector centered at that point.
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We can efficiently obtain saliency maps for a number of scales by constructing a 

Gaussian image pyramid [12] and calculating a saliency map for the image at each 

level in the pyramid. Figure 5.8 illustrates saliency maps extracted from the first 3 

levels of a Gaussian image pyramid. The feature vectors contained the first, second 

and third order Cartesian differential invariants (see Section 4.2.2), making them 8 

dimensional.

Figure 5.8: The saliency maps extracted from the first 3 levels of a 
Gaussian image pyramid (fine to coarse scale going from left to right). 
Bright regions are the most salient.

t
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5.5 Selecting a subset of salient features

The spatial positions of the most salient features can be found by locating the peaks 

in each the saliency map. A peak is defined in this thesis as pixel which is higher than 

its 8 immediate neighbors. Selecting the n highest peaks often results in all salient 

features being clustered around a small area. To ensure th a t the features selected are 

distributed evenly across the object, the following algorithm is used:

REPEAT

Select the next highest peak in the saliency map

IF the peak is more than ^  pixel’s from any previously selected trough 

THEN Mark peak as a representing a salient feature 

ELSE

Discard peak 

ENDIF 

UNTIL no more peak’s

where L  is the level of the Gaussian image pyramid. L =  0 is the original image 

and L  = 1 is an image of half the size (quarter the area). p is the minimum separation 

in pixels of the salient features in the original image (L =  0). Figure 5.9 shows the 

salient features selected at the first 3 levels of a Gaussian image pyramid. The top 

row of images shows the highest 25 peaks. Note how clustered the selected features 

are. The bottom  row shows the result of the application of the above algorithm, the 

chosen points are distributed much better.

5.6 R esults

In order to quantify the usefulness of the selected salient features, we addressed 

the question “how successfully can we find the salient features in unseen images?” .
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Figure 5.9: The salient features selected from the first 3 levels of a 
Gaussian image pyramid (fine to coarse scale going from left to right).
The top row shows the 25 highest peaks, the bottom row shows the effect 
of applying the algorithm highlighted in Section 5.5.

We located the 20 most salient features (Figure 5.11(a)) and attem pted to locate 

these features in 188 unseen images of human faces. 1st, 2nd and 3rd order Cartesian 

Differential Invariants [38] were used in the feature extractor. Figure 5.10* shows 

a number of examples of the 188 images used. For each search the number of false 

positive matches was recorded. For example, if the true match is the third most likely 

match then two false positive matches would be recorded.

To provide a means of contrast we also selected 20 features by hand (Figure 5.11(b)) 

and 20 randomly selected features (Figure 5.11(c)), and repeated the test on these. 

The features that were selected by hand correspond with those which are typically

"The images used in this experiment were kindly provided by Dr Bob Nicholls, PITO, UK.
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Figure 5.10: Examples of the images used to obtain the results pre­
sented in Section 5.6

selected for the purpose of building statistical models of the human face.

The results of the tests are shown in Figure 5.12. The graph shows the percentage 

of successful searches according to the number of acceptable false positives. A search 

is said to be successful if the true match is found within, say, the 10 most probable 

matches (i.e. in this case the number of acceptable false positives is 10). It can be 

seen that, as expected, the randomly selected features are located least successfully. 

Locating hand selected features approximately doubles the performance compared 

to randomly selected features. Most importantly, the graph also shows that salient 

features are more likely to be accurately found than either randomly selected or hand 

selected features. The percentages shown in the graph are based on 11280 searches.

The time taken to calculate a saliency image of the mean face (approximately
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8500 pixels) using the Sub-sampled Kernel method with 100 kernels is approximately 

25 seconds on a Sun Ultra 2. The time is directly proportional to the number of 

kernels, so if 1000 kernels are used this increases to 250 seconds.

(a) (b) (c)

Figure 5.11: The most salient features (a), hand selected features (b) 
and randomly selected features (c). These are the features used in the 
results.

5.7 D iscussion

We have described how a probabilistic measure of saliency can be used to select 

those object features from a single example of the object which are least likely to 

generate false positive matches when searching a new image of the object. The 

salient features are selected by evaluating the Image Feature Saliency of every pixel 

in a single image. They are chosen semi-independently and are therefore not the 

optimum group. Finding the optimum group is an extremely complicated task, as 

stated by Bolles et al [6].

We have also presented quantitative results showing th a t salient features can be 

found with a greater degree of success in unseen object examples than randomly 

selected features or manually selected features.

We have applied the notion of saliency to improve the robustness of one object
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Salient features

Hand selected features

o 20

Random features

False Positives

Figure 5.12: Grapli illustrating the percentage of successful searches 
according to the number of false positives. The graph can be interpreted 
in the same maimer as a ROC curve, i.e. the closer the curve is to the 
top left, the better the result.

interpretation task, locating new instances of a human face. We also believe that 

other interpretation tasks can also benefit from the application of saliency.

The ideas presented in this chapter have been included in a number of conference 

and journal publications [85, 89, 88].
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O bject Feature Saliency

6.1 Introduction

In the previous chapter we showed that locating salient features using one training 

example results in features which can be found in unseen object examples more 

reliably than hand chosen features. When training on only a single example, we 

define a salient feature to be one which is significantly different to all others in that 

image. We call this Image Feature Saliency. However, this does not take account of 

how reliable the feature is, whether it occurs in all examples of the object or whether 

it varies in a way which could cause it to be confused with other object features. 

These factors can not be determined by considering just a single example. In this 

chapter we describe selecting salient features by analysing several image examples. 

We call a measure derived from a set of images Object Feature Saliency. Object 

Feature Saliency is a property of the object class rather than of a particular image.

As an illustration, consider Figure 6.1. Figure 6.1(a) shows a face image where 

the nostrils appear as black circular features. Saliency analysis on this image alone 

would choose the nostrils as salient features. Figure 6.1(b) shows a second face image 

with a slightly different pose. The head is tilted slightly forward, drastically changing

96



C h a p t e r  6 .  O b j e c t  F e a t u r e  S a l i e n c y

the appearance of the nostrils. In this second example the appearance of the nostrils 

could easily be confused with the appearance of many other features within the face. 

By considering both of these images it is possible learn more about, how the nostril 

varies. This information is useful for deciding if the nostril is a reliable salient feature.

Figure 6.1: An example of how features can vary, (a) shows the nostrils 
as dark circle regions, in (b) a slight change in head pose drastically 
changes the nostrils appearance.

In this chapter we present a new approach for locating salient features, which 

attem pts to model how each individual feature varies over a number of training 

examples for which a correspondence exists. We extract a feature vector describing 

a particular feature from all training examples. The set of feature vectors which 

describe the feature is then used to create a feature model. The saliency of the feature 

is determined by using the models for many features to calculate the probability of 

mis-classifying any one feature as any other feature.

In the following sections we define how the feature models are built and how the 

saliency measures are calculated from the feature models.

97



C h a p t e r  6 .  O b j e c t  F e a t u r e  S a l i e n c y

6.2 Building Feature M odels

In order to extract a feature vector representing the same feature in all training 

examples, we first establish a correspondence between all training examples. To this 

end, we place a set of consistent landmarks 011 each of the training examples and use 

them as control points for an interpolation scheme. Figure 6.2 shows some examples 

of such landmarks placed on faces. In our experiments these points have been placed 

by hand.

Figure 6.2: Examples of face images with common landmarks.

More formally, let Xj = f j i( x i \yi, yj)  be a mapping from points x t in image 

i to points Xj in image j ,  controlled by a list of control points and y 3. We 

adopted a piece-wise affine interpolator to define this mapping, although a thin-plate 

spline interpolator [8] would give a smoother answer at the expense of additional 

computational complexity. For further details 011 interpolation see Appendix A.

I11 order to define the features we wish to model, we calculate a mean face [32] 

based 011 the training examples. We then model one feature for each pixel in the 

mean face image. The approximate number of pixels in the mean face, 7ip, can be set 

according to the computational power available bv varying its scale.

Let Vik be the feature vector extracted around the k th pixel in the ith  image. The 

spatial position of the center from which the k th feature vector is extracted in image
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i is given by:

x ik  —  f i  ,m ean ( x k \lm e a m  ^ i) (6 .1)

where x k gives the position of the k th pixel in the mean face, U is the positions of 

the consistent landmarks from image z and Zmeon gives the positions of the consistent 

landmarks in the mean image.

The probability density function for feature ft, Pk(v), is then modelled using a 

multi-variate gaussian with mean f ik and covariance given by:

f t  =  (6.2)
Tli

(6  3 .

k n t -  1

where n t is the number of training examples.

The parameters fjik and T,k together define the feature model for feature ft.

6.3 C alculating a Feature’s Saliency

Given a probability density function, Pk{v), for each feature (in this case a Gaussian 

with mean p,k and covariance Dk) it is now possible to calculate a feature’s saliency. 

The saliency of feature ft, sk, is given by the probability of not mis-classifying feature
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k with any other object feature. Thus:

1 np
sk =  i  r (6-4)

where e(pk(v),pj(v)) is the probability of misclassifying feature j  with feature 

k- So in order to evaluate the saliency of an object’s features it is necessary to 

evaluate e(pk(v)>pj(v)). Pk{v) and pj(v)  will generally represent multidimensional 

distributions, but in order to understand the problems which arise when calculating 

t{.Pk{v),Pj(v)), we will first explain how to calculate e(pk{v),pj(v))  in the ID case. 

It will become clear tha t the analytic ID solution is difficult to extend to multiple 

dimensions.

C alculating e ( pk ( x ) , p j ( x ) )  in th e ID  case

Consider first the ID case. We wish to calculate e(pk(x),pj(x))> the probability of 

misclassifying a sample from distribution Pk{x) as being from pj (re). In the case where 

Pk(x) and Pj(x)  are Gaussians, an analytic solution using error functions exists.

In the one dimensional space, the probability of a sample x  being generated from 

the probability density function for feature k is given by:

'1 .

Pk[x) = 7 5 ^ ?  (6-5)

where and are the standard deviation and mean determined from the train­

ing set.

Assuming all features are equally likely, the Likelihood ratio test suggests classi-
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P(x)

(a) Gk =  CTj

p(x)

Xi pk X2 Pj
(b) ok <  (jj

e(pk{x) , pj {x) )

e{pj {x) , pk{x))

p{x)

p k Xi flj x 2
(c) CTk > CTj

Figure 6.3: Illustrates the areas which need to be calculated in order to 
evaluate e(pk(x).pj(x))  in the ID case. There are three cases depending 
0 1 1  the values of ak and <jj. Without loss of generality, assume p,k < pj.
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fying x  as class k if p k {x)  > Pj ( x ) .  This splits the space up into two or three regions, 

where the boundary points, x satisfy:

p k { x b) =  p j ( x b) (6 .6)

Figure 6.3 illustrates these regions. W ithout loss of generality we assume fj,k < jij. 

There are three situations depending on the values of ak and a:j. Taking logs from 

equation 6.6 results in a quadratic as shown:

where

e 2*k2
(x-ft 7)2

e 2<u

°±
Gi

(6.7)

( t  -  /.Aj) 2 (x -  fiky
2oy i n ( - )

(6 .8 )

ax2 +  6a; +  c =  0 (6.9)

f7i o'k;

b =

c --

U3

P'j
Gi

Gk‘
2 Pk

Gk

Solving the quadratic gives:

■b +  Vb2 -  4ac - b  -  \/b2 -  4ac (6.10)
Xi  =  -----------------   X2 =

2a 2 a
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e(pfc(a;),pj(:c)) can now be approximated in one of the three following ways, de­

pending on the value of <rfc and <jf

if a* =  <jj then

e(Pk{x),Pj(x)) =  i ( l  -  (6.11)

if (ik < o-j then

e(Pft(®),Pj(*)) =  1 +  i ( e r / ( ^ |™ ^ )  -  e r / ( ^ ^ fc)) (6.12)

if (jjt > <jj then

e(p*(®),Pj(®)) =  ^ (e r / (^ ^ ) -  e r f ( X̂ ^ k)) (6.13)

Thus, equations 6.11, 6.12 and 6.13 can then be substituted into equation 6.4 to 

obtain a measure of feature saliency.

Typically the dimensionality of the feature vectors is much higher than 1. W ith 

higher dimensions the misclassification regions become increasingly complicated vol­

umes, making e(pfc(aj),pj(a;)) hard to calculate. Also, to calculate the saliency mea­

sure for all features, e(p/c(x),pj(x)) must be evaluated approximately \ { n p)2 times. 

Because of the complexity of calculating e(pfc( x ) ip j ( x ) )  in high dimensional spaces 

and the large number of times it must be evaluated it is necessary to approximate 

e( Pk( x ) , Pj ( x ) )  for spaces with more than one dimension.
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Feature space, v

Figure 6.4: Illustration of how a multi-variate Gaussian classification 
can be approximated by a single dimensional problem.

A pproxim ating e(pk{v) , pj ( v) )  in m ulti d im ensional feature spaces

We approximate e(pk(v),pj(v))  by simplifying the problem to a single dimension,

where it can be solved using error functions as in Section 6.3. This process is illus­

trated in Figure 6.4. The first step is to construct a new one dimensional space. This 

is simply the axis which passes through the mean of both feature models p*(v) and 

P j ( v ) .  This axis is labelled u  in Figure 6.4 and is given by:

u =  fij +  a  Su (6.14)

Su =  (6 .15)
l / * j  -  M i l

The variance, cr*, along u  due to distribution Pk{v) is given by:
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a k2 =  6uT.Y:k.6u  (6 .16)

similarly

<7j2 =  5uT .Tij.Su (6.17)

where S j is the covariance matrix of feature model P j ( v ) .

Ufa (J,j> (7k and <jj now form a one dimensional problem which can be solved using 

error functions as shown in Section 6.3.

6.3.1 M onte Carlo trial

In order to determine if the ID approximation for e(pk(v),pj(v))  is a reasonable one, 

a Monte Carlo trail was carried out as a comparison.

Two 6 dimensional feature models were created, pa{v) and Pb{v), defined by;

na =  (0,0,0,0,0,0)T

s 0 =  I

n b =  (£ ,0 ,0 ,0 ,0,0)T 

S t  =  <J2I

where I  is the identity matrix.
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0.5
-H - Monte carlo e(pa,pb) 
-A - 1D approx e(pa,pb) 

Monte carlo e(pb,pa) 
_©_ 1D approx e(pb,pa)

0.4!

0.4

0.35

O)
03 0.25

0.15

0.1

0.05

Figure 6.5: Graph showing comparing the error in e ( pa ( v ) , p b { v ) )  and 
e ( p b ( v ) , p a { v ) )  for varying values of x {<j  = 1). Results were obtained 
using a Monte Carlo method and the ID approximation method.

e ( p a { v ) ,  P b { v ) )  and e ( p b { v ) , p a( v ) )  where calculated for various values of x  and then 

for various values of a 2 . To estimate the true values, e ( p a ( v ) ,  P b ( v ) )  and c ( p b { v ) , p a ( v ) )  

were approximated using a Monte Carlo trail. This involved generating 10000 random 

samples from both p a { v )  and Pb ( v ) .  The samples were then classified as belonging to 

p a { v )  or P b ( v ) .  A given sample S{ belongs to pa(v) if c(s;) is equal to 1, otherwise it 

belongs to pb{v), where:

1 if (si -  fia) TT,a l (sz -  /x0) -  ka < (Si -  Mb)7 ^6 H5* “  Mb) -  kb 

0 otherwise

(6 .18)
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0.35
Monte carlo e(pg,pb) 

- A -  1D approx e(pg,pb) 
Monte carlo e(pb,pa) 

_©_ 1D approx e(pb,pa)0.3

0.25

0.2
05

Q) 0.15

0.1

0.05

Variance of B

Figure 6.6: Graph showing comparing the error in e ( pa ( v ) , p b { v ) )  and 
t { P b { v ) , p a { v )) for varying values of a2 (x =  1). Results were obtained 
using a Monte Carlo method and the ID approximation method.

K =  /n (27rf |E fl*|) (6.19)

h =  /?j(27T2 |XJ6 21) (6.20)

where n = 6, the dimensionality of the feature models.

The Monte Carlo approximation of e(pa(v),pb(v)) and e(pb(v ) ,pa{v)) is given by:

T la

e (Pa(v) ,pb(v) )  = - ( n a - J ^ c ( s ai)) (6.21)
a _i
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1
t{Pb(v),pa{v)) =  — (Y 'c fsw )) (6.22)

Tif)

where n a and n b are the number of random samples from p a ( v )  and Pb(v)  respec­

tively, s ai is the ith random sample from p a { v )  and s bi is the ith random sample from 

Vb(v) .

Figure 6.3.1 shows the effect on e ( pa ( v ) , p b( v ) )  and e ( pb( v ) , p a ( v ) )  as x  is varied 

whilst a 2 remains constant. Figure 6.3.1 shows the reverse situation, a 2 is varied 

whilst x  remains constant. The Monte Carlo method should give a relatively accurate 

answer but is to slow to use in practice. The graphs show tha t the ID approximation 

scheme follows the same trends as the Monte Carlo method. This suggests tha t the 

ID scheme can give a satisfactory approximation.

6.3.2 C onstructing  a Saliency M ap

To recap, in order to compute Sk for each feature, the following steps are carried out:

• Approximate each features mean, n kJ and covariance, E*., using equations 6.2 

and 6.3.

• Estimate e ( p k ( v ) , p j ( v ) )  using the 1 dimension approximation as shown in Sec­

tion 6,3.

• Compute Sk using equation 6.4

Once the Saliency measure, Sk, of each feature has been found using equation 6.4, 

the result can be visualised by constructing a saliency map. As before this is done by 

taking the mean image of the object and at each pixel plotting the saliency measure
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corresponding to the most salient feature centered on tha t pixel. The resulting image 

indicates which areas of the object are the most salient.

Figure 6.7(b) shows an example of such a saliency image computed from feature 

models trained 011 approximately two hundred images of faces. Figure 6.7(a) shows 

the mean face with the peaks of the saliency image super-imposed.

(a) (b)

F igure 6.7: (b) is the saliency image obtained from approximately 100 
face images, white regions are most salient, (a) show the peaks of the 
saliency image superimposed onto a ’mean’ face

6.4 R esults

In order to quantify if the salient features selected using Object Feature Saliency 

are more useful than those selected using Image Feature Saliency (Chapter 5), we 

repeated the experiments from Section 5.6 with features selected using Object Feature 

Saliency.

We selected 20 features by applying Object Feature Saliency to a landmarked set 

of 100 face images. As in the previous results we attem pted to locate these features
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in a test set of 188 unseen images of faces. We recorded the rank of the correct match 

for each search. Note that none of the 100 training images were repeated in the 188 

test images.

(a) (b)

Figure 6.8: Salient features selected using Image Feature Saliency (a) 
and Object Feature Saliency (b). The Object Feature Saliency method 
used a training set of 100 images, the Image Feature Saliency used the 
mean image calculated from the same 100 training images.

Figure 6.8(a) shows the 20 features selected using Object Feature Saliency and 

Figure 6.8(b) shows 20 features selected using Image Feature Saliency). The Object 

Feature Saliency method used a training set of 100 images. The Image Feature 

Saliency method used the mean image calculated from the same 100 training images 

in order to measure saliency. Note that the Object Feature Saliency method has 

chosen not to select the corners of the mouth as salient features (unlike the Image 

Feature Saliency method), possibly because these features vary significantly with 

expression. Instead the Object Feature Saliency method has selected a feature at 

the center of the top lip, a feature whose appearance does not vary significantly with 

pose or expression variations.

Figure 6.9 shows the graph of success rate against false positives. It contains the 

previous search results from Section 5.6 together with the results obtaining using
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features selected with Object Feature Saliency. It can be seen the features selected 

using the Object Feature Saliency metric were found with a greater degree of success 

than features selected using Image Feature Saliency, by hand or randomly.

80

70 Object Salienc'

E 60

Image Saliency

^ 40 Hand selected points

Random points

False Positives

Figure 6.9: Graph illustrating the percentage of successful searches ac­
cording to the number of false positives. The graph can be interpreted 
in the same manner as a ROC curve, i.e. the closer the curve is to the 
top left, the better the result.

6.5 D iscussion

We have described how a probabilistic measure of saliency, calculated from a number 

of object examples, can be used to select those object features least likely to generate 

false positive matches in unseen images. This metric is known as Object Feature 

Saliency.

We have also shown th a t the salient features selected using Object Feature Saliency
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can be found with a greater degree of success in unseen object examples than either 

features selected using Image Feature Saliency (Chapter 5) or features selected by 

hand.

Object Feature Saliency is not used in the remainder of the thesis because of 

its dependence on having pre-defined correspondences between training examples. 

Despite this we believe it to be a useful metric which could be employed in many 

feature based systems.

The aim of this thesis is to explore methods of automatically building statistical 

models of shape and appearance. A central part of this task is obtaining robust 

correspondences between image examples, the subject of the previous two chapters. 

In the following chapter we describe an attem pt to build models automatically from 

image sequences, using salient features to find correspondences between frames.

Some of the ideas presented in this chapter were presented at the British Machine 

Vision Conference 1998 [86].
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C hapter 7

A utom atic m odels from Im age 

Sequences

This chapter describes a method for a automatically placing landmarks across an 

image sequence to define correspondences between frames. The marked up sequence 

can then be used to build a statistical model of the appearance of the object within 

the sequence.

This task is seen as a step towards the main goal of this thesis, which is to 

automatically build models from arbitrary image sets, not just sequences. Even so, 

being able to automatically build models from image sequences is still a task of great 

value. In the modern world video sequences are everywhere, in television broadcasts 

and security footage to name but two. The ability to automatically construct models 

of the objects featured in this footage would be of great use in the animation and 

computer graphics industry.

The approach adopted attem pts to take advantage of the fact tha t objects and 

their features often do not change significantly between frames. This is a constraint 

which is not available when considering arbitrary image sets. Thus automatic model 

building from image sequences is a more heavily constrained problem than automatic
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model building from arbitrary image sets and hence a slightly more tractable one.

V ideo
S e q u e n c e

* V ' t

Initialization (frame 1)

M anually
s e g m e n t

o b je c t

S e le c t  
l a n d m a rk s  v s

X.!

Key

M anua l
p r o c e s s e s

A u to m atic
p r o c e s s e s

Repeat 
for each 

frame
S e le c t  o n e  

m a tc h  
p e r  la n d m a rk

L a n d m a rk s  for 
V ideo  S e q u e n c e

S h a p e  a n d  
la n d m a rk  

m o d e ls

Tracking

constrain

update

Find c a n d id a te  
m a t c h e s  in 
n ex t  f r a m e

Figure 7.1: An overview of the track scheme

Figure 7.1 illustrates an overview of the method. This consists of two main stages, 

initialisation and tracking. The aim of the initialisation stage is to decide which 

features should be selected as landmarks. The tracking stage is then repeated for 

each subsequent frame in turn, attem pting to locate the position of each of the 

landmarks selected in the initialisation phase in the new frame. As the sequence is 

searched, we build a statistical model of each landmark feature together with a model 

of the overall shape of the landmarks. These models can then be used to improve the 

probability of getting correct matches in subsequent frames.

The following will explain, in detail, the initialisation and tracking stages.
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7.1 Initialisation

As shown in Figure 7.1 the initialisation phase consists of two steps, both of which 

are applied to the first frame of the sequence. The first step is the only one which 

requires human interaction. It requires the user to manually select a region of the 

object that they wish to model from the first frame of the sequence. W ithout this 

prior information the system has no way of knowing what it is in the sequence the 

user is interested in modeling. The segmentation need only be approximate, but it 

is im portant that the selected region is wholly within the object. The segmented 

region is used to select features with which to represent the object. The presence of 

background features would confuse subsequent tracking.

Figure 7.2 illustrates examples of good and bad segmentations.

Figure 7.2: Examples of good (a) and bad (b) segmentations. No 
ground should be included.

back-

The final step in the initialisation phase is to select a number of salient features, 

those which are most likely to be relocated correctly in subsequent frames. Image 

Feature Saliency (Chapter 5) is applied to the image features within the segmented 

region at a number of scales in order to select the n most salient features. The image
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features which lie outside of the segmented region are not included in the saliency 

calculation.

The result of this analysis is n  salient features within the selected region which 

are described by t7i&, s* and jci*., where is the feature vector of salient feature k 

in frame S& is the image pyramid level at which feature k was found to be salient 

(sk = 0 being the original image and s* =  1 being half the size of the original etc), 

and Xik =  (xikiVik) are the coordinates of feature k in frame i respectively.

7.2 Tracking: Locating the features in th e ith  frame

After the initialisation phase, the sequence is processed sequentially (frame by frame) 

by the tracking phase. In the following sections we describe how having tracked to 

frame n f  we locate possible matches for each feature in frame n j  +  1, how several 

hypotheses are then generated for the location of the object in frame rif T 1 and 

finally how shape constraints are applied to select the most probable hypothesis.

7.2.1 L ocating feature m atches

The following assumptions can be made about the object and its features between 

frames n /  and n j  T  1:

• The features will not move more than a given number, r, pixels between frames.

• The scale of the object and therefore features will not change significantly be­

tween frames.

•  The appearance of the object and therefore the features do not change signifi­

cantly between frames.
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These assumptions help constrain the search and reduce processing time. Only 

irr2 candidate pixels in each frame need to be considered in order to locate the best 

match for one particular feature.

A candidate pixel from frame rif +  1 has an associated feature vector, v. The 

quality of match, M k(v), of the k th salient feature from frame 1 and the feature 

vector, u, associated with a candidate pixel from frame rif +  1 is defined as:

Mk{v) = (v - v h)TS k l { v - v k) (7.1)

where v k and Sk  together are known as the feature model of the k th salient feature 

from frame one. v k and Sk  are defined as follows:

n f

v k
n f

(7.2)

C Sk
Sk = <

n f

if rif  = 1 

-  v k)2 + ArI )  if n f > 1

(7.3)

where Ca is the covariance matrix of all the feature vectors extracted from within 

the object boundary from frame one at pyramid level a  and ArI  is a regularising term 

to avoid singular m atrix inversion. The smaller M k(v), the better the match. M k(v) 

is linearly related to the log of the probability tha t v  comes from the distribution 

described by feature model k.
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By calculating Mk{v) for all candidates for a particular feature, A, a similarity 

image can be formed. This is done by plotting Mk(v)  in the image domain of frame 

rif +  1. We locate the m  best matches for each feature by locating the m  lowest 

troughs in its similarity image (small values indicates a good match). Figure 7.3 

shows an example of this.

(a) frame i (b) similarity (c) frame i +  1

Figure 7.3: Calculating a feature match in subsequent frames, (b) is 
the similarity image obtained whilst searching for the feature in (a) in 
the frame shown in (c). The troughs in (b) represent the matches, these 
are highlighted in (c). The circle in (c) represents the region searched.

7.2.2 Form ing and evaluating ob ject h yp oth esis

The shape of the object in a previously searched frame is represented by n salient 

features. In the previous section m  possible candidate matches for the location of each 

salient feature in frame rif + 1  were found. By selecting one candidate match for each 

salient feature we form an object hypothesis. Generating all possible combinations 

would result in m n object hypotheses for frame n / + 1. In order to reduce the number 

of object hypotheses, candidate matches which correspond to the largest similarity 

values, Mk(v),  are discarded (i.e. we remove the most improbable matches). The 

number of matches discarded depends on the computational power available.

Each hypothesis is given a probability of being correct, based on the evidence
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obtained from previous frames. The probability of a hypothesis being correct is 

equal to the probability of each feature being correct together with the probability of 

the shape formed by the salient features being correct. The shape formed by the n 

salient features, for a particular frame, i, is described by a 2n  element shape vector, 

x i} where:

Xi = { x n ,  , x iniyi u  ,y in)T (7.4)

The quality of fit of a shape vector, X{, in frame, n j  +  1, is given by:

M{xi)  =  (X i - x f H  l ( x i ~x ) (7.5)

where x  and H  are the mean and covariance m atrix of shape vectors from frame 

1 to n /  after they have been aligned using Procustes Analysis [39]. If rif = 1 then 

H  =  l a  where J  is a 2n by 2n identity matrix and cr is an estimate of the variance 

of the features between frames in pixels. M ( x i ) is also linearly related to the log 

probability th a t aq is drawn from the distribution shape vectors from frames 1 to nf.

It is assumed th a t features can be treated independently of one another and the 

global shape. A measure of the quality of a particular hypothesis, M(hk)> is thus 

given by:

n
M  (hr) = M( x hr) +  Mi(vhrk) (7.6)

Jfe=l

where hr is the r th object hypothesis, x/h, is the shape vector for hypothesis hr
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and V]lvk is the feature vector tha t hypothesis hr has selected to describe feature k. 

The hypothesis with the smallest M (h r) is selected as the most likely solution.

7.3 R esults

In order to test the method, four test sequences were processed and the correspon­

dence obtained from each used to build an appearance model. Each test sequence was 

of a human face reading out a single sentence. The sequences contain both expression 

and pose variation. Figure 7.4 shows frames from each of the four sequences. These 

sequences will also be used as test data in the chapters th a t follow.

Of the four sequences processed, only two of the sequences (sequence A and B) 

were successfully tracked from beginning to end. Figure 7.5 illustrates the modes of 

variation for an appearance model trained on the correspondences obtained from a 

successfully tracked sequence. As a comparison we also built two other models for 

each of the successfully tracked sequences. The first was trained using 25 hand placed 

landmarks , the second trained using only 4 landmarks placed on each corner of the 

smallest rectangle which could contain the face in each frame, essentially an Eigenface 

model [82]. This second model was used to examine the affect on the texture error if no 

shape normalisation is used. Figure 7.8 shows the positions for the landmarks for the 

hand placed model (a) and the automatic model (b). The positions of the landmarks 

used for the manually trained model were chosen by selecting landmark positions 

typically used when training appearance models of the face. The Figure 7.6 shows 

the modes for the manually trained model and Figure 7.7 show the modes for the 

eigen model. Note tha t the modes of the manually trained and automatically trained 

models appear very similar, and considerably ’sharper’ than the blurred modes of the 

eigen model. It is a good initial indication tha t the automatically generated model 

is of a similar quality to the manually trained model.

It is difficult to assess the results quantitatively without considering the applica-
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Sequence A

Sequence B

Sequence C

Sequence D

Figure 7.4: Example frames from each of the four sequences used in the 
results.
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Figure 7.5: The first 3 modes of variation of an Appearance model 
training using automatically generated landmarks from sequence A.

tion to which the model will be put. For effective coding (compression), we require 

that truncating the number of models modes has a minimal effect on the reconstruc­

tion error. We can thus compare models by how the reconstruction error varies with 

the number of modes.

For a particular number of model modes we find the best fit between the model and 

each training image. The texture error is defined as the root mean squared grey level 

difference between the original image and the model’s best fitting reconstruction. The 

shape error is the root mean squared difference between the original and reconstructed 

landmark positions in pixels. Figure 7.9 and Figure 7.10 shows how the reconstruction 

texture error and the shape error decrease as the model modes increase. The graphs 

show that both the texture error and shape error are reduced by training the model 

automatically, no m atter how many modes of variation are chosen from the model. 

The autom atic method can thus lead to a more compact model. Note that the eigen

122



C h a p t e r  7. A u t o m a t i c  m o d e l s  f r o m  Im a g e  S e q u e n c e s

-2.5 s.d. m ean +2.5 s.d.
M--------------------------------------------------------- ►
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Figure 7.6: The first 3 modes of variation of an Appearance model 
training using manually placed landmarks from sequence A.

model has the greatest texture error indicating that normalising with a shape model 

before computing texture also leads to a more compact model.

Examining an animation of the sequence with the landmarks for each method su­

perimposed also suggests the automatic method is preferable to the manual method. 

The animation of the manually selected landmarks clearly shows the landmarks jum p­

ing around erratically, not moving smoothly with the features they where intended 

to highlight. The automatically selected landmarks moved much more smoothly with 

the image features. The reason for the noise in the manually trained landmarks is 

due to human error in the marking up process. This is further evidence to suggest 

that landmarking image data is a highly error prone task.

An im portant conclusion drawn from these results is th a t models built from man­

ually placed landmarks are not a gold standard and can be improved upon using 

other methods.
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M ode 1
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S3 i+i S3
55 mS j

\H■ i+i
Figure 7.7: The first 3 modes of variation of an Eigenface model from 
sequence A.

Figure 7.8: Landmarks chosen manually (a) and automatically (b).

7.4 D iscussion

We have demonstrated one possible approach to automatically training appearance

models. The system both locates the most suitable features to use as model points,
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F ig u re  7.9: Compares the texture error of an automatically built model 
with that of an Eigenface model and a model trained using hand placed 
landmarks.

and tracks their correspondence across frames. We have shown tha t the method can 

be used to make models of the human face for image sequences automatically.

In long sequences, features which were salient in the first frame are not necessarily 

still salient in the 50th frame. For example, a salient feature may regularly become 

obscured. One possible solution to this would be to incorporate object saliencv 

(Chapter 6). When searching frame n j  + 1, instead of locating features which were 

salient in frame 1, we could locate features which were salient in frames nj  to, say, 

rif — 5. However, this would require additional work (eg using interpolation between 

points) to compute correspondences across the entire sequence.

The results presented in this chapter have used a relatively small number of land­

marks (25). We have observed tha t the coarse scale features are, in general, much 

more reliable than the fine scale features. The scheme could be extended to find a 

greater number of correspondences by adopting a multi-scale approach. Coarse scale

125



C h a p t e r  7. A u t o m a t i c  m o d e l s  f r o m  I m a g e  S e q u e n c e s

- © -  A u t o m a t ic  m o d e l  
- H -  H a n d  m a r k e d  m o d e l

c o

0.8

0.6

CO
0.4

0.2

10 15 20 25 30

Number of modes in the m odel

35 40 45

F ig u re  7.10: Compares the shape error of an automatically built model 
with that of a model trained using hand placed landmarks.

salient features would be found first, then the resulting coarse scale correspondence 

could be used to constrain a search for finer scale salient features. This would lead 

to a more accurate overall correspondence.

One of the most encouraging conclusions from this chapter is that automatic 

met hods of model building can result in models which are more compact than models 

training using manual methods. Models built using manually selected landmarks 

should not necessarily be viewed as a gold standard, as they may include a significant 

amount of human error.

However, if features move and change shape significantly between frames, false 

correspondences can result. Because it is not possible to determine whether a corre­

spondence is false the feature models can get corrupted. This is particularly damaging 

in the first few frames when the feature and shape models are only trained on rela­

tively few examples, so one bad example has a great effect. Once the models have
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become corrupt there is little chance of the tracker recovering in subsequent frames. 

This happened in the 2 sequences which could not be tracked correctly. These prob­

lems result because the scheme is a serial one. The improvements suggested above 

would help, but not overcome these problems. In order to overcome these problems 

we need to explore a new underlying framework, a parallel framework. This will be 

the subject of the following chapter.

Some of the ideas presented in this chapter were presented at the British Machine 

Vision Conference 1999 [87].
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C hapter 8

A utom atic M odels from Im age 

Sets

The previous chapter demonstrated tha t it is possible to build models from image 

sequences automatically, although not reliably. The reason for failure was identified 

as a break down in the tracking. Because the problem was tackled in a serial (frame 

by frame) nature and the feature models were trained on the fly, a bad correspon­

dence between a pair of frames would corrupt the shape and feature models seriously 

jeopardising the chances of tracking subsequent frames.

From these observations it seemed that a serial approach to automatic model 

building would never lead to robust results. This chapter looks at a new method 

which finds a correspondence between all image pairs. This is shown to make the 

system more robust to bad correspondences as there is no single chain which can be 

broken. The approach assumes no prior ordering of images in the set, so it is more 

generally applicable than relying on sequences of images.
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8.1 O verview

This chapter presents a method which, given a rough segmentation of the object in 

each training image, automatically returns a set of correspondences across the entire 

training set. The correspondences found can then be used to build appearance models 

of the object. The approach is first to find correspondences between pairs of images, 

then to use an iterative scheme to estimate consistent correspondences across the 

whole training set.

A set of salient points are found within each image, A, then the best correspond­

ing points in each of the other images, Ij, are found. The set of points in A and 

correspondences in Ij  define a mapping, Tji, from A L ?-(Thin plate splines are used 

to obtain a continuous mapping). However, because we may use a different set of 

points to find the mapping, Ij -A A> A j 3 there is no guarantee th a t Tji =  T J 1. In 

general, for three images Tkj{Tji) /  Tkt.

We seek to derive a set of new transformations between images, Gy, which are 

globally consistent, ie Gji = G~jl and Gkj{Gji) =  Gki­

ln practice the transformations are represented using the nodes of a grid. Placing 

this grid in every image creates a mapping from any image to another and back, 

hence, defining a globally consistent transform. The only errors being caused by the 

interpolation, or if the grid ’folds’. The new transformations, Gji, should be as close 

as possible to those derived from the correspondences Tji. An iterative scheme is 

presented in which the correspondences are used to drive the grid points towards a 

global solution.

The following sections describe how salient features are used to find robust cor­

respondences between image pairs, and how thin plate splines can then be used to 

define a continuous transformation (although globally inconsistent), Tji , between im­

age pairs. Then there is an explanation of how an iterative scheme can be employed 

to calculate a new transformation, Gy, which is globally consistent across the entire
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training set. This globally consistent transform provides the required dense corre­

spondences necessary to build an appearance model.

8.1.1 L ocating correspondences b etw een  im age pairs

The aim is locate a set of points in each image, A, and find the best corresponding 

points in all other training images, Ij .  Correspondences can be located by selecting 

features in image A and locating them in image I j .

Image saliency (Chapter 5) is applied to each of the training images in order to 

locate salient features in each image. Selecting salient features in image A increases 

the probability of calculating correct correspondences in image I j .

In order to select salient features in each image the object must be roughly seg­

mented so tha t salient background features are not selected. At present this seg­

mentation process is done manually by placing a bounding box roughly around each 

object.

The result of this saliency analysis is a set of salient features for each training 

image. Note th a t the salient features in one training image are likely to be different 

from the salient features in another training image, describes the spatial position 

and Sik the scale of the kth  salient feature selected from image A- CA is the covariance 

matrix calculated from all feature vectors extracted from training image A at scale s.

In order to locate a correspondence between pairs of images we need to locate the 

best match for each salient feature from image A in image I j .  In order to simplify 

this problem we make the following assumptions about faces:

• The object’s features will not move more than a given number, r, pixels between 

training examples, relative to their bounding box.

• The scale and orientation of the object and its features will not change signifi-
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cantly.

These assumptions help constrain the search and reduce processing time. Only 

7rr2 candidate pixels in a particular training image need to be considered in order 

to locate the best match for one particular salient feature. A candidate pixel has 

an associated feature vector, v. The similarity between the k th salient feature from 

image and a candidate vector, v, is given by:

S{vik,v )  = ( v - v ik)TC is l ( v - v ik) (8.1)

where v lk is the feature vector describing the k th salient feature in image /*. The 

smaller S(v ik, v), the more likely a match.

Figure 8.1 illustrates how a match for a salient feature from training image A is 

located in a second training image Ij.

(a) image i (b) similarity (c) image j

Figure 8.1: Calculating a correspondence between image / 7, (a), and Ij, 
(c). (b) is the similarity image obtained whilst searching for the salient 
feature from image Ix in image Ij.

By calculating the similarity, 5, for all candidates in image Ij, we can form a 

similarity image as shown in figure 8.1(b). We locate the best match by locating the
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lowest trough in the similarity image. Let m lJfc be the spatial position in image Ij 

of the best match to the kth salient feature from image /;. Let dijk be the similarity 

value, 5, of the match m  Note tha t is also linearly related to the log probability 

of the match m ^ .

8.1.2 C alcu lating th e spatial errors o f th e  m atches

For each salient feature, in image /,; we have located its position, in image

Ij and also a measure of probability, d^*, of the match being correct. The similarity 

image as shown in figure 8.1(b) contains further information regarding the errors in 

the spatial position of the match. Section 8.1.3 shows how this information can be 

used when calculating the pair-wise image transforms.

(a) im a g e  i (b) im a g e  j

Figure 8.2: T he spatia l errors associated w ith salient, feature m atches, 
(a) is a training im age w ith its salient features marked, (b) shows a second  
training im age w ith  the position  of the best m atches to the salient features 
in (a) shown. T he ellipses centered on each m atch in (b) represent the  
spatia l errors o f that m atch.

For each correspondence we calculate a 2D covariance m atrix which describes the
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spatial errors for the match. The covariance matrix is obtained by fitting a quadratic 

to the surface [67] of the similarity image.

A quadratic surface which fits a set of data points (#$, Vi, %i) is defined by

axf  +  bxiiji +  cy\ = z{ ~  z0 (8 .2 )

where a, b and c are constants defining the surface and z0 is the minimum z 

value in the data points. Given a set of data points {x^ y^Zi)  (sampled from around 

the best match in the similarity image) the quadratics constants a, b and c can be 

approximated by solving the following linear system

where

X b

\ c !
(8.3)

X  =

x\ x iy i  y{ 

x \ X2V2 v l

\  x l  XnVn v l  )

(8.4)

The covariance m atrix which represents the spatial error of a match, S m is given
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by

axf +  bxitji +  cyf =  ( x, — x~ iSA Xj (8.5)

By analogy with Mahalanobis distance

bb

2 U

(8 .6)

thus

- I *

¥
ac (8.7)

Figure 8.2 shows two training images. The salient features found in the left hand 

training image are shown and the positions of there matches in the second image 

are indicated on the right. The ellipses centered on each match represent the spatial 

errors of tha t match. Note tha t features which lie on edges or ridges have a small error 

perpendicular to the edge but a large error parallel to the edge. This indicates that 

the match should only be used to constrain a correspondence strongly in a direction 

perpendicular to the edge.
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8.1.3 Transform ation betw een  im ages

Let Xj — f i j{x i \y i ,y j )  be a mapping from points Xi in image A to points Xj in 

image I j ,  controlled by a set of control points and y  ■. For instance, we can use 

a thin-plate spline (see Appendix A) with control points y i and y j  to define this 

mapping.

The correspondences and associated spatial errors, can be used to define the 

continuous transformation, T^, between image A and Ij. Rohr et al [70] showed how 

anisotropic control point errors, such as those described above, could be integrated 

into a thin-plate spline [8], This means tha t matches will only constrain the spline 

strongly where the match was accurately located. Thus

Tji(xi)  =  f j i i x ^ S i . m i j )  (8 .8)

where Sj are the salient features in image £, and the corresponding matches 

in image j .  Figure 8.3 shows how the transformation Tji can be used to map a grid 

in image A onto image I j .

8.1 .4  C alcu lating th e  G lobal C orrespondence

So far a transformation, Tji, between image A and image Ij has been created. This 

transformation can be computed for all image pairs. However, there is no guarantee 

tha t Tji = T[j1 since different correspondence pairs may be used. In general, for 

three images At j (Tji) ^  IA . We seek to derive a set of new transformations between 

images, Gij which are globally consistent, ie Gji — G.W and Gkj{Gji) =  Gki.

Gji is represented using the nodes of a grid. Placing this grid on every image
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F ig u re  8.3: Transformation Tji has been applied to the grid in the left 
hand image in order to locate its position in the right hand image.

allows us to map from any image to another and back.

In order to calculate a globally consistent correspondence across the entire training 

set we employ an iterative scheme which uses Tji to refine Gij by adjusting the position 

of the grid nodes.

The scheme is first initialised with an approximation to the final global corre­

spondence. A rectangular grid is placed over each training image. The same grid is 

placed in all images but is scaled to the approximate size of the target in each image. 

Xj is the position of the grid nodes in image This grid is called the initialisation 

grid. Figure 8.4(a) shows an example of this approximate correspondence for a small 

training set. Note tha t if we choose to use Xj as landmarks at this stage, the re­

sulting appearance model would be equivalent to an eigen model [82], since no shape 

deformation is included.

One iteration consists of updating each set of grid points Xj in turn as follows. 

The pair-wise transformations Tji are used to project every Xj onto the ith image, 

from which we compute a weighted average. More explicitly, x 2 is updated using:
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(c)

Figure 8.4: Example of how the grid deforms to represent the underlying 
shape, (a) shows how the grid is initialised, (b) after one iteration and 
(c) after convergence.

Tit  Ti t

*5 =  </({*,}, {Tji}) =  (£  )-> vv7 G u g  (8.9)
3 =1

where n t is the number of training images and W j  is a diagonal matrix of weights, 

the pih element of which describes the confidence in the prediction of the position of 

the pth node of Xi = Tij(xj). If rrijik is the closest salient feature match to the ptk 

node of Xi then the confidence in the prediction is equal to 27r~ t |C ” 5\ exp{ - \dJlk).

After each iteration it is important to normalise the grid, Xi. This is because it is 

possible for the grid to move off the object slightly. If this is allowed to continue for a 

number of iterations the effect is magnified. In order to normalise x t we repropagate 

the initialisation grid from the first training example, r ,  onto all other examples, 

using the current Xi as the control points for the mapping. Xi then becomes this
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newly propagated grid. Mathematically, x x is normalised as follows:

xi <- f a { r \ x u Xi) (8 .10)

where r  is the initialisation grid for training example 1.

The whole process converges after a few iterations. Figure 8.4 shows how the x x 

deforms after each iteration. After one iteration the grids are no longer rectangular, 

and therefore an Appearance Model built from the grid nodes would capture some 

shape variation. This will make the model more compact than an equivalent eigen- 

model.

8.2 R esults

Figure 8.5: Modes of variation for a model trained on automatically 
generated correspondences.
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Figure 8.6: Modes of variation for a model trained on manually placed 
correspondences.

This scheme was used in an attem pt to build models automatically from the image 

sequences used in Section 7.3. One disadvantage of this approach in comparison to 

the tracking framework (see Chapter 7) is its computational complexity. The track­

ing framework only required correspondences to be calculated between neighboring 

frames, whereas the framework presented in this chapter calculates correspondences 

between all image pairs. More explicitly, if n t is the number of training images, the 

computational complexity of the tracking framework is of order n t compared with nj? 

for the pair-wise scheme. For this reason only 30 of the 50 frames were used from 

each sequence.

Figure 8.5 illustrates the modes of variation of a model trained using automatically 

generated correspondences, and Figure 8.6 shows the modes of a model trained using 

manually placed correspondences. Note that the modes for each model are of a similar 

quality. Figure 8.7 shows the modes of an Eigenface model, the modes are much more
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Figure 8.7: Modes of variation for a Eigenface model of the same data 
as models shown in Figures 8.5 and 8.6.

blurred because no attem pt is made to normalise the training images with respect to 

shape.

We analysed the compactness of the models using the techniques described in 

Section 7.3. That is we attem pted to use the model to reconstruct the training images, 

measuring the texture and shape error for increasing numbers of model modes. The 

shape error describes how well the reconstruction predicts the landmarks positions. 

The texture error describes the model’s ability to reconstruct the grey level value for 

each pixel.

Figures 8.8, 8.9, 8.10 and 8.11 show how the reconstruction texture error, (a), and 

the shape error, (b), increase as the model modes decrease for each of the sequences 

mentioned in Section 7.3. For a training set of 30 images, 29 modes reconstructs the 

training images exactly. As the number of modes is reduced the texture and shape 

reconstruction error increase. A compact model is one whose curve passes close to
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the origin. The graphs show tha t both the texture error and shape error are generally 

reduced by training the model automatically. The autom atic method thus leads to a 

more compact model in general for these training sets. The texture error for sequence 

D (Figure 8.11(a)), was of a similar quality the manually trained model. The only 

case where the reconstruction error was worse than the manually trained model was 

the texture error of sequence C (Figure 8.10(a)).

In summary, out of the 4 training sets tested, the automatically trained model 

was more compact for 2 of the training sets (sequences A and B) and for the other 2 

sets (sequences C and D) the automatic and manually trained models were of similar 

or worse quality. All models were an improvement over the Eigenface models.

8.3 D iscussion

This chapter has developed a new parallel approach to automatically training appear­

ance models. The system calculates globally inconsistent transformations between all 

image pairs. These transformations are used to drive an iterative scheme which calcu­

lates a globally consistent set of transforms. The globally consistent set of transforms 

are used to provide the correspondence necessary to build an appearance model.

This work should be considered as a general method in which to obtain globally 

consistent transforms from pair-wise transforms. The pair-wise transforms could be 

generated from other methods such as optical flow.

The results showed that for the 4 training sets, 2 (sequences A and B) resulted 

in models which where more compact than the manually trained models and 2 (se­

quences C and D) resulted in models which were of a similar or worst quality. All 

models were an improvement over the Eigenface models.

All the training sets resulted in a reasonable model, unlike the tracking scheme. 

The tracking scheme is a serial scheme which is susceptible to failures when bad
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correspondences are found early on in the tracking process. The parallel scheme 

presented in this chapter is much more robust to bad correspondences. This is because 

correspondences are found between all pairs of images, so bad ones (ones with large 

errors) are given less significance.

Sequence C and D had a large amount of pose variation in comparison to sequences 

A and B and this is thought to be the reason why the resulting automatic texture 

models did not out-perform the manual texture models. More explicitly sequences C 

and D did not obey the first assumption described in Section 8.1.1. This is a problem 

which is addressed in the following chapter.

Some of the ideas presented in this chapter were presented at the International 

Conference on Automatic Face and Gesture Recognition 2000 [90].
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F ig u re  8.8: Compares the texture error (a) and shape error (b) of an 
automatically built model with that of an Eigenface model and a model 
trained from hand placed landmarks. The models were build using 30 
frames of sequence A (Section 7.4).
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Figure 8.9: Compares the texture error (a) and shape error (b) of an 
automatically built model with that of an Eigenface model and a model 
trained from hand placed landmarks. The models were build using 30 
frames of sequence B (Section 7.4).
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Figure 8.10: Compares the texture error (a) and shape error (b) of an 
automatically built model with that of an Eigenface model and a model 
trained from hand placed landmarks. The models were build using 30 
frames of sequence C (Section 7.4).
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Figure 8.11: Com pares the texture error (a) and shape error (b) of an 
autom atically  built m odel w ith  that o f an Eigenface m odel and a m odel 
trained from hand placed landmarks. T he m odels were build  using 30 
frames o f sequence D (Section 7.4).
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A M ulti-resolution  fram ework for 

autom atic m odel building

The previous chapter presented an iterative scheme in which an initial approximation 

to the true globally consistent transform is improved using pair-wise transforms. 

Although this approach was an improvement over the tracking scheme presented in 

Chaper 7, it still had difficulty in corresponding image sets in which the features 

moved relatively large distances, for instance in face image sets displaying a large 

amount of pose variation. In section 8.1.1 we made the assumption th a t the object’s 

features will not move more than a given number, r, pixels between training examples. 

In image sets displaying a large amount of variation this doesn’t hold true, and 

matching fails. One solution is to increase r for th a t image set so the assumption 

does hold, but this drastically increases the computation time as the number of 

comparisons required for each match is equal to irr2 (see Section 8.1.1).

This chapter presents a multi-resolution framework which makes the system much 

more robust to extreme object deformations between training images without dras­

tically increasing the computation time.
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9.1 M ulti-resolution  framework

For each training image a Gaussian pyramid [12] is built (where level 0 is the original 

image and level Lmax is the coarsest level). The scheme presented in the previous 

chapter is executed on the coarse level images to get an approximate globally consis­

tent transform. At the coarse resolution we can search more of the image efficiently 

to obtain the correspondences between image pairs, allowing for larger deformations 

between images. This is because at a coarse resolution a search radius of r pixels 

covers a larger relative area than a search radius of r  pixels at finer resolutions. This 

is illustrated in Figure 9.1. Each of the finer resolutions are processed in turn taking 

the globally consistent transform and refining it further.

Level 3 Level 2 Level 1 Level 0

Figure 9.1: Illustrates how the size of the search area varies at different 
levels of a Gaussian pyramid for a constant search radius of r  =  10. Note 
the time taken to search each of these regions is the same.
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The following pseudo code further explains the multi-resolution framework.

1. Set Xi to the initialisation grid

2. Set L  — Lfnax

3. While L > 0

(a) For each image i

i. Locate salient features, s*, at level L  from training image i

ii. For each image j  ^  i

A. Predict the approximate positions, ra j - =  f ( s i \x i ,X j) ,  of each of 

the salient features, Si, for image i in image j

B. Search around predicted matches, m f ,  for better matches, m ^ , 

using equation 8.1

(b) Define the set of pair-wise transformations, using the salient fea­

tures, Si, together with their matches, as shown by equation 8.8

(c) Define a new globally consistent transformation, aq, using the iterative 

scheme defined in section 8.1.4

(d) If L > 0 then L  -*> (L — 1)

4. The final result is the globally consistent transform as described by aq

Figure 9.2 illustrates how the grid, as*, deforms as each resolution is processed for 

5 example training images.

If nr is the number of resolutions searched, the computational complexity of the 

multi-resolution algorithm in terms of the amount of acceptable feature movement in 

pixels, rv is n r ( 2(J/_1} )2. To achieve the same amount of feature movement searching 

at a single resolution the computational complexity is rp2. So using a multi-resolution 

framework reduces the computational complexity by a factor of 4(Wr~x).
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Figure 9.2: Example of how the grid deforms to represent the under­
lying shape during multi-resolution analysis, (a) shows how the grid is 
initialised, (b) after applying the algorithm at the coarsest resolution 
L =  Lmax, (c) after L = Lmax — 1, (d) after convergence.

9.2 R esults

We attem pted to use the multi-resolution scheme to automatically landmark 4 train­

ing sets used in Section 7.3. The multi-resolution scheme used Gaussian pyramid 

levels one, two and three (see Figure 9.1). As a means of contrast we also repeated 

the experiment using the single resolution frameworks at Gaussian pyramid level one, 

two and three.

For each training set five different sets of landmarks exist, they are listed below:
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•  Hand placed landmarks

• Automatic landmarks generated from multi resolution framework using Gaus­

sian pyramid levels one, two and three.

• Automatic landmarks generated from single resolution framework using training 

images from the first level of a Gaussian pyramid.

• Automatic landmarks generated from single resolution framework using training 

images from the second level of a Gaussian pyramid.

•  Automatic landmarks generated from single resolution framework using training 

images from the third level of a Gaussian pyramid.

Using these landmarks, 5 models were built for each of the training sets. We 

assessed the five models in the same way as in the previous two chapters (see Sections 

8.2 and 7.3). This involves measuring the shape and texture error incurred when 

reconstructing the training images with varying numbers of model modes.

The results showed th a t in all cases the multi resolution framework did at least 

as well as the best single resolution model. The most interesting result was with 

Sequence D (See Figure 7.4). Sequence D was the only training set in which the 

single resolution framework was unable to produce a model tha t was better than the 

one trained using manually placed landmarks (see Section 8.2). The multi resolution 

framework managed to produce an automatic model which has a smaller reconstruc­

tion error than the manually trained model, as shown in Figure 9.4. This is because 

the multi resolution framework was able to capture the large amount of pose variation 

displayed in sequence D.

Figure 9.3(a) illustrates the principle modes of variation of the manually trained 

model, (c) shows the modes of the automatically trained model, and (b) shows the 

modes of the eigen model. Note tha t the modes of the manually trained and auto­

matically trained model are of a similar quality when compared with those of the 

eigen model.
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9.3 D iscussion

This Chapter presents a multi-resolution extension to the approach described in 

Chapter 8. Gaussian image pyramids are calculated for each of the training im­

ages. The multi-resolution scheme attem pts to find a approximate globally consistent 

transform at the coarse resolution then uses the finer resolutions, in turn, to refine 

the transform.

Results have been presented comparing the multi-resolution framework to the 

single resolution method at multiple scales. For the training sets tested, the multi­

resolution framework did at least as well as any given single resolution framework. 

The multi-resolution framework out-performed the single resolution framework on 

training set D. Training set D displays the most pose and expression variation of 

all the training sets tested. This indicates that the multi-resolution framework has 

improved the approach’s robustness to the more extreme training set variations.

Some of the ideas presented in this chapter will be presented at the European 

Conference on Computer Vision 2000 [91].
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( C )

F ig u re  9.3: The 3 most significant modes of variation for an manually 
trained (a), an eigen model (b) and automatically trained model (c). The 
modes in all cases are shown to ±  2.5 standard deviations.
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- x -  Multi resolution 
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-A -  Pyram id level 2 
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20
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Figure 9.4: Compares the texture error (top) and shape error (bottom) 
of an automatically built model with that of a model trained from hand 
placed landmarks for sequence D.
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C onclusions

This thesis has described the development of automatic methods for training sta­

tistical models of shape and appearance. In this chapter we summarise the main 

achievements and conclusions of the research.

10.1 M easures of Feature Saliency

Chapters 5 and 6 developed two methods in which to measure a feature’s saliency. 

They are known as Image Feature Saliency and Object Feature Saliency. We showed 

how measures of saliency can be used to select those object features which are less 

likely to generate false positive matches in subsequent examples of the object. Below 

we summarise the main differences between the two measures of saliency.

10.1.1 Im age Feature Saliency

Image Feature Saliency is a measure of saliency based upon a single example image 

of the object class. Image Feature Saliency defines salient features as those which 

have a low probability of being misclassified with any other features within the single
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image containing the object. We presented quantitative results showing that salient 

features can be found with a greater degree of success in unseen object examples than 

either randomly selected features or manually selected features.

10.1.2 O bject Feature Saliency

Object Feature Saliency differs from Image Feature Saliency in tha t it considers 

how features vary over a number of training examples for which there is a known 

correspondence. Object Feature Saliency defines salient features as those which have 

a low probability of being misclassified with any other features within the object class. 

We showed tha t features selected using Object Feature Saliency can be found with 

a greater degree of success in unseen object examples than features selected using 

Image Feature Saliency.

Both saliency measures chose features semi-independently and they are therefore 

not the optimum group. Finding the optimum group is an extremely complicated 

task, future research could address this problem. We applied the notion of saliency 

to improve the robustness of one object interpretation task, locating new instances of 

a human face. We also believe tha t other interpretation tasks can also benefit from 

the application of saliency.

10.2 Serial Approaches to  A utom atic  M odel Build­

ing

In Chapter 7 we developed a serial (frame by frame) approach to automatically build­

ing models from image sequences. Although the approach did manage to successfully 

build autom atic models from 2 sequences, it failed of a further 2 sequences. Further 

improvements to the scheme could have been made, but we concluded tha t serial 

schemes to automatic model building are flawed. This is because serial schemes begin
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with a poorly training model of some sort, resulting in a high probability of comput­

ing a bad correspondence with first few training images. If bad correspondences are 

found early on in the sequence it will have the effect of corrupting the model, decreas­

ing the chances of locating correct correspondences in subsequent frames (or training 

images). For this reason we turned are attention to developing parallel schemes.

A positive conclusion drawn from the chapter was tha t is possible to build appear­

ance models automatically which are of a similar or better quality than appearance 

models built using manually corresponded training data. This highlighted the fact 

tha t models built using manually corresponded training data  should not be seen as 

perfect models, they include human errors. Automatically built models can eliminate 

human errors.

10.3 Parallel Approaches to  A u tom atic  M odel B uild­

ing

Chapters 8 and 9 develop a parallel scheme for automatically building models from 

image sets. The system calculates globally inconsistent transformations between all 

image pairs. These transformations are used to drive an iterative scheme that calcu­

lates a globally consistent set of transforms. The globally consistent set of transforms 

are used to provide the correspondence necessary to build an appearance model. A 

multi-resolution framework is presented which improves the approach’s robustness 

to extreme feature deformations. We used the parallel method to successfully build 

appearance models for all of 4 training sets. Moreover, the models were found to be 

more compact tha t the equivalent models built using a manually obtained correspon­

dence. This result adds further weight to our claim tha t parallel approaches are the 

correct way to tackle automatic model building.
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10.4 Future work

Results presented in this thesis have built models from a relatively small number of 

training examples, typically 25 to 50. This is because matching all pairs of train­

ing images is extremely time consuming. We would like to look at the effect each 

pair-wise match has on the overall global correspondence. If we could predict which 

combination of pairs of images have the most positive effect on the final global corre­

spondence we could limit, in a sensible way, which image pairs to match. This would 

result in our approach being applicable to much larger training sets.

This thesis has been primarily concerned with building models of frontal views 

of the human face. The parallel method developed in Chapters 8 and 9 is applicable 

to any object class from which an appearance model can be built. We would like to 

explore our parallel m ethod’s suitability to these other object classes. Other object 

classes include the profile of the human face, 2D slices through the human brain and 

circuit board resistors.

The iterative scheme presented in Section 8.1.4 is a general method in which to ob­

tain globally consistent transforms from pair-wise transforms. Throughout this thesis 

we have used feature vectors of Gaussian partial derivatives in order to compute pair­

wise transforms. We would like to experiment with different schemes which compute 

the pair-wise transforms such as optical flow and Gabor wavelets. We would like to 

explore the possibility of automatically selecting the best pair-wise correspondence 

scheme for a set of image data.

10.5 Final statem ent

Automatic model building is a difficult but not insurmountable task. This thesis has 

presented research resulting in a feature based multi-resolution parallel scheme. The 

scheme is capable of building appearance models of the human face which are more
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compact than models trained using a correspondence obtained manually.

i

L
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A ppendix  A

W arping Im ages

A .l  Interpolation

Suppose we have a pair of images with n  correspondences defined between them. 

The correspondences are represented by two sets of n control points, — { y ip} and 

%)j = {VjP} which describe the position of each correspondence in images I i  and I j  

respectively.

Suppose Xi defines a second set of points in image I i  who’s position in image I j  

(defined as Xj) is unknown. We would like to calculate the approximation position 

of Xj based on the set of control points y i and y j.

Let Xj = f  j i {x i\y i)y j)  be a mapping from points Xi in image Ii to points Xj in 

image 7j, controlled by a set of control points y i and y j.

Note th a t we can often break down f j t into a sum,

n

(A.l)
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where x  is an arbitrary point in image 1* and the n  continuous scalar valued 

functions f p each satisfy

This ensures ^

Below we will consider two forms of mapping /  ■*, piece-wise afhne and the thin 

plate spline interpolator.

A .1.1 P iece-w ise  Affine

The simplest warping function is to assume each f p is linear in a local region and 

zero everywhere else.

For instance, in the one dimensional case (in which each a? is a point on a line), 

suppose the control points are arranged in ascending order (yiP < y^p+i)).

We would like to arrange th a t f p will map a point x which is halfway between yip 

and yi(p+\) to a point halfway between yjp and yj(p+1). This is achieved by setting

We can only sensibly interpolate values of x  which lie in the region between the 

control points, [t/inS/in].

(A.2)

(z -  Vip)/(Vi(p+1) -  Vip) i f  x e  [yipi Iji(p+1)] and p < n 

f P(x) =  < (a; -  yip)/(y ip -  yi{p- x)) i f  x  e  [yi{p- i ) ,y ip\ and p >  1 (A.3)

0 otherwise
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In two dimensions, we can use a triangulation (eg Delauney) to partition the 

convex hull of the control points within each image into a set of triangles. To the 

points within each triangle we can apply the affine transform ation which uniquely 

maps the corners of the triangle from image I i  to their new positions in image I j .

Suppose y ilt y i2 and y i3 are three corners of such a triangle. Any internal point 

can be written:

* = Va + P( Va -  Vi) + t(s/<3 -  Vn)  ,A ^
=  Ctya + By a  + 7  y a

where a  =  1 — (/? 4- 7 ) and so a  +  (5 +  7  — 1. For x  to be inside the triangle, 

0 <  ck, /?, 7 <  1.

Under the affine transformation for a single point x ,  this point simply maps to

® =  f j i (x i\yn Vj) =  ®Vji +  @y j2 +  i v  js ( A -5 )

where point a: is a point in image I i  which lies within the triangle defined by 

control points y j2 and j/ -3.

To interpolate a set of points, Xi from image I i  we decide which triangle it belongs 

to, compute the coefficients a , /?, 7  giving its relative position in the triangle and use 

them to find the equivalent point in image Ij .

Note tha t although this gives a continuous deformation, it is not smooth.
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A. 1.2 T h in  P la te  Splines

Thin Plate Splines were popularised by Bookstein for statistical shape analysis and 

are widely used in computer graphics. They lead to smooth deformations, and have 

the added advantage over piece-wise affine in tha t they are not constrained to the 

convex hull of the control points. However, they are more expensive to calculate.

A .1.3 O ne D im ension

First consider the one dimensional case. Let U(r) =  ( 1- ) 2log(1-) ,  where a is a scaling 

value defining the stiffness of the spline.

The ID  thin plate spline is then

n

(A.6)

The weights WiP,ao,ai are chosen to satisfy the constraints /(y»p) =  Vjp^P-

If we define the vector function

m (x )  =  (U(\x -  3/ill), U(\x -  yi2\ , . . .  ,U { \ x -  yin|), 1, x)T (A.7)

and put the weights into a vector w i = (w\ }. . .  , wni a0, ai)

then (A.6) becomes

163



A p p e n d i x  A .  W a r p i n g  I m a g e s

fi(x )  =  w ^ u ^ x ) (A.8)

By plugging each pair of corresponding control points into (A.6) we get n linear 

equations of the form

V j q   ̂ I M j p U ( |Dig U i p \) + Q-o “h d l l / i q

p - 1

(A.9)

Let Upq =  UqP =  U(\yiq — yip|). Let Upp =  0. Let K  be the symetric n  x n matrix 

whose elements are {Upq}.

Let

Q i  =

/  l  JAi ^

1 Ui2

y 1 V in  J

(A.10)

K  Q , 

Q l  o2
(A.11)

where 02 is a 2 x 2 zero matrix.

Let X \  — (yji,V j2 , - . .  , 0 ,0)r . Then the weights for the spline (A.6) Wi

{wi, . . .  , wn, a0, cii) are given by the solution to the linear equation
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L xw  = X \

A. 1.4 M any D im ensions

The extension to the d~dimensional case is straightforward.

If we define the vector function

T \ Tu d{x) =  (C/(|a? -  y iY|), . . .  ,U { \ x -  y in|), l | a d )

then the d-dimensional thin plate spline is given by

/ ( x ) = W u d(x)

where W  is a d x (n +  d +  1) matrix of weights.

To choose weights to satisfy the constraints, construct the matrices

Q d  ~

1 1 j / D  

1

\  1 v J n  J

(A.12)

(A. 13)

(A.14)

( A .15)
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L d =  | K  Qd | (A.16)
Q d  Orf+i

where O^+i is a (d +  1) x (d +  1) zero matrix, and K  is a n  x n  m atrix whose pqth 

element is U (\yip -  y iq\).

Then construct the n  +  d +  1 x d matrix X d  from the positions of the control 

points in the warped image,

1 Vj 1 ^

X 's  = y jn

0 d

V -0 d )

(A.17)

The m atrix of weights is given by the solution to the linear equation

L Td W Td =  X 'd (A.18)

Note tha t care must be taken in the choice of a to avoid ill conditioned equations.
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