
Arithmetic and Control Components
for an Asynchronous System

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

in t h e Fa c u l t y o f S c ie n c e a n d E n g in e e r in g

1997

Jianwei Liu

Department of Computer Science

ProQuest Number: 10834095

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10834095

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

6
io

V0 ' nt3

\j

r t 8/ '

Table of Contents

1 Introduction n
2 Background 24

2.1 Introduction ... 24
2.2 Basic concepts ... 26

2.2.1 Delay models.. 26
2.2.2 Circuit classification... 26
2.2.3 Hazards and races... 27
2.2.4 Metastability and arbitration ... 27
2.2.5 Circuit specifications.. 28
2.2.6 Signalling protocols.. 29
2.2.7 Data representation... 30
2.2.8 Synthesis.. 30

2.3 Sutherland’s micropipelines .. 31
2.3.1 Event control modules.. 31
2.3.2 Event-controlled storage element..................................... 33
2.3.3 Micropipeline FIFO ... 34
2.3.4 Micropipelines with processing 35

2.4 The AMULET project... 35
2.4.1 AMULET1 chip .. 36
2.4.2 AMULET2e chip .. 37
2.4.3 AMULET3i .. 38

3 Adder design 39
3.1 Introduction ... 39
3.2 Carry arbitration .. 40

3.2.1 Two-way carry arbiter.. 41
3.2.2 Three-way carry arbiter.. 44
3.2.3 Carry arbiters with more than three ways 46

3.3 Parallel prefix computation .. 47
3.4 Implementation.. 49
3.5 Refinement of the Manchester carry chain................................... 53
3.6 Simplification of cany select adders ... 55

2

3.7 Adder design for AMULET3i ... 57
3.8 Circuit design.. 58
3.9 Layout design .. 61
3.10 Evaluation... 62

3.10.1 Performance 62
3.10.2 Power consumption .. 62
3.10.3 Silicon area ... 62

3.11 Summary... 64

4 Multiplier design 66
4.1 Introduction .. 66

4.1.1 Making each addition faster.. 68
4.1.2 Reducing the number of additions required................. 70

4.2 AMULET2e multiplier... 72
4.3 Multiply support for AMULET3i.. 75

4.3.1 Normal multiply ... 75
4.3.2 Long multiply... 75

4.4 Multiplier organization.. 76
4.4.1 First design iteration... 76
4.4.2 Encoding technique.. 77
4.4.3 Second design iteration .. 79
4.4.4 Sign extension 81

4.5 Circuit design.. 82
4.5.1 Booth mux cell design.. 82
4.5.2 4-2 Counter design ... 84
4.5.3 Pipeline register design .. 88
4.5.4 Partial product register design....................................... 90
4.5.5 Low power design .. 91

4.6 Layout design .. 93
4.7 Evaluation... 93

4.7.1 Performance ... 94
4.7.2 Power consumption.. 94
4.7.3 Silicon area ... 94

4.8 Summary.. 96

5 Four-phase pipeline control 97
5.1 Introduction .. 97
5.2 Data-validity scheme.. 98

3

5.3 Logic activation configuration .. 100
5.4 Decoupling degree... 101
5.5 ERU latch control circuit... 102
5.6 ERS latch control circuit ... 103
5.7 ERF latch control circuit ... 106
5.8 BRU latch control circuit... 107
5.9 BRS latch control circuit... 108
5.10 BRF latch control circuit 109
5.11 BAS & BAF latch control circuits... I l l
5.12 Interfacing... 114
5.13 Low-power design using dynamic logic..................................... 115
5.14 Simulation results .. 117
5.15 Discussion.. 118
5.16 Summary... 120

6 Four-phase control modules 121
6.1 Introduction .. 121
6.2 CALL modules ... 123

6.2.1 pCALL module ... 123
6.2.2 dCALL module .. 124
6.2.3 bCALL module .. 126

6.3 ARBITER modules ... 127
6.3.1 pARBITER module... 128
6.3.2 dARBITER module.. 130
6.3.3 bARBITER m odule... 131

6.4 JOIN modules 133
6.4.1 pJOIN module .. 133
6.4.2 dJOIN module .. 133
6.4.3 bJOIN module .. 134

6.5 FORK modules.. 135
6.5.1 pFORK module .. 135
6.5.2 dFORK module .. 135
6.5.3 bFORK module .. 136

6.6 SELA modules... 137
6.6.1 pSELA m odule... 137
6.6.2 dSELA m odule... 138
6.6.3 bSELA module... 138

4

6.7 SELB modules... 140
6.8 TOGGLE module .. 141
6.9 An example: a counter... 142
6.10 Arbiter modules revisited .. 143

6.10.1 eARBITER m odule................................... 143
6.10.2 fARBITER module ... 143

6.11 Modules with multiple input links.. 146
6.12 Summary.. 148

7 AMULET3i 149
7.1 Introduction .. 149
7.2 AMULET31 .. 150
7.3 AMULET3 ... 151
7.4 Execution un it... 154
7.5 Implementation... 155
7.6 Summary... 156

8 Conclusions 157
8.1 Contributions .. 157
8.2 Future work .. 159

8.2.1 Low power market .. 159
8.2.2 Mobile communication market 160

8.3 Asynchronous prospects... 161

Bibliography 162

A Adder schematics 170
B Adder layouts 176
C Multiplier schematics isi
D Multiplier layouts 196

5

List of Figures

2-1 A bundled data interface .. 31

2-2 Micropipeline event logic modules ... 32

2-3 Event-controlled storage element .. 33

2-4 Micropipeline FIFO ... 34

2-5 Basic micropipeline structure ... 36

3-1 Two-way carry arbiter .. 41

3-2 4-bit carry computation .. 42

3-3 Three-way carry arbiter ... 45

3-4 9-bit cany computation .. 46

3-5 Static implementation of a two-way cany arbiter 50

3-6 Pass-transistor based implementation ... 50

3-7 Direct implementation of a three-way cany arbiter 51

3-8 Modified implementation of a three-way carry arbiter 52

3-9 Manchester cany chain with buffers ... 54

3-10 Manchester cany chain without buffers ... 54

3-11 Cany select adder ... 55

3-12 New cany select adder ... 56

3-13 AMULET3i adder block diagram .. 57

3-14 Devices for dynamic circuits .. 58

3-15 Static Implementation of a three-way cany arbiter 59

3-16 New Implementation of a three-way cany arbiter 60

3-17 Physical layout of the adder datapath .. 63

4-1 Dot representation of 8 X 8 bit add and shift multiplication 67

4-2 A simple multiplier 68

4-3 A cany-save multiplier ... 69

4-4 AMULET2e multiplier organization...... .. 73

4-5 First version ... 78

6

4-6 Second version 80

4-7 Booth mux cell ... 83

4-8 4-2 Counter structure ... 84

4-9 4-2 Counter with enable control .. 86

4-10 4-2 Counter without enable control .. 87

4-11 Pipeline register .. 89

4-12 Partial product register ... 91

4-13 Physical layout of the multiplier datapath ... 95

5-1 Micropipeline stage structure ... 98

5-2 Three data-validity schemes ... 99

5-3 “Request-activate” configuration ... 100

5-4 “Acknowledge-activate” configuration .. 101

5-5 STG of the ERU latch control circuit ... 102

5-6 ERU latch control circuit ... 103

5-7 STG of the ERS latch control circuit ... 104

5-8 ERS latch control circuit ... 105

5-9 Asymmetric C-gate notation .. 105

5-10 STG of the ERF latch control circuit .. 106

5-11 ERF latch control circuit .. 107

5-12 STG of the BRU latch control circuit .. 107

5-13 BRU latch control circuit ... 108

5-14 STG of the BRS latch control circuit ... 108

5-15 BRS latch control circuit .. 109

5-16 STG of the BRF latch control circuit ... 110

5-17 BRF latch control circuit .. 110

5-18 Another “Acknowledge-activate” configuration I l l

5-19 STG of the BAS latch control circuit ... 112

5-20 STG of the B AF latch control circuit ... 112

5-21 BAS latch control circuit .. 113

5-22 BAF latch control circuit .. 113

5-23 STG of the Converter ... 114

5-24 Converter circuit ... 115

7

5-25 Test circuit ... 118

6-1 Four-phase control modules .. 122

6-2 PN of the pCALL module ... 124

6-3 pCALL circuit implementation .. 124

6-4 PN of the dCALL module .. 125

6-5 dCALL circuit implementation .. 125

6-6 PN of the sCALL module ... 126

6-7 sCALL circuit implementation ... 126

6-8 MUTEX circuit ... 127

6-9 PN of the pARBITER module .. 129

6-10 pARBITER circuit implementation ... 129

6-11 PN of the dARBITER module .. 130

6-12 dARBITER circuit implementation ... 131

6-13 PN of the bARBITER .. 132

6-14 bARBITER circuit implementation 132

6-15 pJOIN circuit implementation .. 133

6-16 dJOIN circuit implementation .. 134

6-17 bJOIN circuit implementation .. 135

6-18 pFORK circuit implementation ... 136

6-19 dFORK circuit implementation ... 136

6-20 bFORK circuit implementation ... 137

6-21 pSELA circuit implementation ... 138

6-22 dSELA circuit implementation ... 139

6-23 bSELA circuit implementation ... 139

6-24 Implementation of the SELB modules ... 140

6-25 TOGGLE circuit implementation 141

6-26 Speed-independent incrementer .. 142

6-27 PN of the eARBITER module .. 144

6-28 eARBITER circuit implementation ... 144

6-29 PN of the f ARBITER module ... 145

6-30 fARBITER circuit implementation ... 145

6-31 Tree arbiter ... 146

8

7-1 AMULET3i block diagram .. 150

7-2 AMULET3 block diagram ... 151

7-3 AMULET3 organisation .. 153

7-4 Execution pipeline organization .. 154

7-5 AMULET3 datapath structure ... 155

9

List of Tables

2-1 Characteristics of AMULET1 37

2-2 Characteristics of AMULET2e ... 38

3-1 Carry request .. 40

3-2 Two-way carry requests ... 41

3-3 Dual-rail code ... 42

3-4 (g, p) carry requests .. 43

3-5 The Brent and Kung carry code .. 44

3-6 Three-way cany requests ... 45

3-7 Simulation results of the three-way cany arbiter 61

4-1 Modified Booth algorithm ... 72

4-2 Simulation results on the Booth mux cell ... 83

4-3 Truth table for 4-2 Counters ... 85

4-4 Simulation results on the 4-2 Counter with enable control 88

4-5 Simulation results on the 4-2 Counter without enable control 88

4-6 Simulation results on the pipeline register ... 90

4-7 Simulation results on the partial product register 91

5-1 HSPICE simulation results ... 117

10

Abstract
This thesis describes arithmetic components (an adder and a multiplier) and

control components which have been designed and implemented for AMULET3i,

a commercial asynchronous embedded system chip incorporating the third

generation asynchronous ARM processor (AMULET3).

A novel carry arbitration scheme is proposed (and has been patented) for parallel

adder circuits. This new scheme provides an efficient encoding in which the carry

is generated by arbitrating several input carry requests, exploiting the associativity

of the carry computation. Post-layout simulation, in a 0.35 micron triple metal

CMOS technology, shows that the adder for AMULET3i takes 1.8 ns to complete

the computation of a 32-bit addition.

The multiplier design uses the modified Booth’s algorithm integrated with a new

encoding technique for adjusting the product result of an unsigned number

multiplication. An adjustment value is made on the least significant 32-bit

positions. Post-layout simulation, in a 0.35 micron triple metal CMOS technology,

shows that the multiplier for AMULET3i takes 11.2 ns (2.8 ns X 4 cycles) to

complete the computation of a 32-bit long multiplication in the worst case.

Organizing these arithmetic components efficiently into a four-phase asynchronous

pipeline is investigated and a set of speed-independent latch control circuits is then

proposed. Additionally, a set of control modules for four-phase micropipelines is

presented. These two sets of control components can be used to construct complex

and powerful asynchronous systems.

11

Declaration

No portion of the work referred to in the thesis has been submitted in support of an

application for another degree or qualification of this or any other university or

other institution of learning.

12

Copyright and the Ownership of
Intellectual Property Rights

(1) Copyright in text of this thesis rests with the Author. Copies (by any process)

either in full, or of extracts, may be made only in accordance with

instructions given by the Author and lodged in the John Rylands University

Library of Manchester. Details may be obtained from the Librarian. This

page must form part of any such copies made. Further copies (by any

process) of copies made in accordance with such instructions may not be

made without the permission (in writing) of the Author.

(2) The ownership of any intellectual property rights which may be described in

this thesis is vested in the University of Manchester, subject to any prior

agreement to the contrary, and may not be made available for use by third

parties without the written permission of the University, which will prescribe

the terms and conditions of any such agreement.

Further information on the conditions under which disclosures and exploitation

may take place is available from the Head of Department of Computer Science,

13

The Author

The author was awarded the degrees of B.Sc and M.Sc, both in Electrical and

Electronic Engineering, at Shenyang Institute of Technology and Harbin Institute

of Technology, China, in 1984 and 1987, respectively. Significant experience was

gained from involvement in 16-bit and 32-bit microprocessor, FPGA and ASIC

chip designs at the Northeast Microelectronics Institute, China, from 1987 to 1993.

He became interested in asynchronous design, VHDL design and formal

approaches to hardware design when at the Technical University of Denmark, as a

visiting scholar, from 1993 to 1994. He obtained an M.Sc degree in Computer

Science from the University of Manchester in 1995. This thesis reports the results

of the work undertaken during the AMULET project at the Computer Science

Department of the University of Manchester.

14

Acknowledgements

First and foremost, I am grateful to my supervisor, Steve Furber, who has been an

invaluable source of inspiration and continuous support in every aspect of this

work. I could not hope for a better supervisor.

During my PhD study, I have also been with the Cogency Technology, Inc., as a

VLSI design engineer. Thanks are due to Nigel Paver, Paul Day, Craig Farnsworth,

Dave Jackson and Warren Lien for their support. Again, special thanks go to Nigel

Paver for his commenting on the thesis structure and continuous support.

Thanks are due also to my adviser, Doug Edwards, for his encouragement and

support, and to Steve Temple, Jim Garside, Dave Gilbert, Phil Endecott, Oleg

Petlin and Julian Skidmore for their kind help. Thanks also to David Lloyd for his

commenting on a draft of this thesis, to John Bainbridge and Suck-Heui Chung for

discussions on the PETRIFY tool, and to Sun-Yen Tan for interesting

conversations in Chinese. The other members of the AMULET group are

acknowledged for their contributions at the regular Monday afternoon meetings.

I would also like to acknowledge with gratitude the grants from ORS and URS.

Last, but not least, I owe much gratitude to J0rgen Staunstrup, who brought me

into the world of asynchronous design when I stayed at the Technical University of

Denmark as a visiting scholar from 1993 to 1994.

15

Dedication

To

My parents

My wife

And my sons

Pengqi Liu and Shuhua Zhang

Li He

Dan Liu and Ying Liu

aw## - m
m # ? - m i
ffcftJL* - ft SHU

Introduction 1

The real world is asynchronous by nature. It is, thus, logical to build digital systems in an

asynchronous way, exploiting the potential advantages of this inherent property of

asynchrony to their fullest. However, synchronous design styles have been preferred and

have dominated digital systems for the last three decades. This is not surprising for two

reasons. Firstly, synchronous design is easier to understand and easier to implement,

which are attractive characteristics. Secondly, asynchronous design was usually

considered less disciplined and more anarchic, which frightens most designers away.

With the rapid development of synchronous digital systems, however, there is evidence

that we are beginning to hit some of the fundamental limitations of synchrony. It is

becoming ever more difficult to establish global synchrony within today’s chips, let

alone from chip to chip. It is becoming unacceptable for global synchrony to bum

increasing power, especially for power-sensitive applications where short battery life is

the bane of the users. It is becoming a huge task for a digital system to be maintained and

for its components to be replaced or reused. High noise emission and Electro-Magnetic

Interference (EMI) are also increasingly becoming concerns in mobile communication

applications.

Introduction 17

Asynchronous design [1] has made a come-back in recent years, showing a number of

advantages [2,3] over synchronous design. There are no clock related problems because

global synchrony has been removed. Performance can be better as it is based on the

average case rather than the worst case. Power consumption can be lower since power is

only consumed when needed. Large digital systems can easily be maintained due to the

high modularity and composability as each block can be designed without knowledge of

the timing characteristics of any of the other blocks. Also, the low noise emission and

good Electro-Magnetic Compatibility (EMC) of asynchronous systems are of potential

use in mobile communication applications since increasingly rigorous EMI compliance

specifications and testing can be more easily satisfied.

With asynchronous design becoming widely recognized after a world-wide resurgence of

interest, it seems that it is expanding beyond its initial area of interest (which was

primarily in academic research) into industry. However, there is still confusion

surrounding the claimed advantages as there are very few demonstrable chips available

to assess and therefore to endorse the asynchronous design methodology. The outcomes

for most claims are still to be answered, though some are obvious.

The AMULET (Asynchronous Microprocessor Using Low Energy Techniques) group

was established late in 1990, led by Professor Steve Furber, to investigate the claimed

advantages and the feasibility of designing large asynchronous systems. The objective is

to realize asynchronous microprocessors with lower power consumption and higher

performance than is currently available using synchronous design techniques. Rather

than adding to the theoretical work, an engineering approach was adopted and this has

contributed to the growing pool of asynchronous knowledge during the last seven years.

Introduction 18

The first milestone was AMULET1 [4-8] in 1994, an asynchronous implementation of

the ARM 32-bit RISC microprocessor [9,10]. It demonstrated the feasibility of building

an asynchronous system at the levels of complexity of current synchronous digital

systems with the resources and tools readily available to synchronous designers.

The second milestone was AMULET2e [11] in 1996, an asynchronous embedded system

chip which includes a significantly enhanced version of AMULET 1. Its performance and

power efficiency are competitive with the industry leading synchronous ARM designs.

The AMULET2e work established a path to the commercial exploitation of

asynchronous design.

AMULET3i, a commercial asynchronous embedded system chip for communication

applications, is currently under development. This will be a significant milestone: the

first fully asynchronous embedded system going into a commercially viable product.

The main objective of the work described in this thesis is to design high performance and

low power arithmetic components (an adder and a multiplier) and control components

for AMULET3i. An adder and a multiplier have been designed and implemented down

to the layout level; these are two basic arithmetic blocks which are critical to the

performance of the processor core. A set of control components for four-phase

micropipelines, namely the pipeline latch control circuits, have been proposed, which

can be used to organize arithmetic components efficiently into a micropipeline.

Additionally, another set of control components, namely four-phase control modules, is

also presented as basic building blocks. These two set of control components can be used

to construct complex and powerful asynchronous systems.

Introduction 19

Thesis overview

Due to the engineering nature of my PhD work, there is considerable detail which could

easily blur the picture of the basic ideas. Instead, only the key ideas and relevant

information are given here. Some engineering detail can be found in the circuit

schematics and layout, presented in the appendices. Background information for

asynchronous design is provided in chapter 2. The body of the work is divided into two

main parts. The first part includes the arithmetic components, the AMULET3i adder in

chapter 3 and the AMULET31 multiplier in chapter 4. The other part deals with the

control components, a set of four-phase micropipeline latch control circuits in chapter 5

and a set of four-phase control modules in chapter 6. Each chapter is self-contained.

Addition is one of the most important arithmetic operations performed frequently within

both general purpose and digital signal processing systems and an adder is therefore an

important arithmetic component. A novel carry arbitration scheme is proposed (and has

been patented [12]) for parallel adder circuits in chapter 3. This scheme provides an

efficient encoding in which the cany is generated by arbitrating several input cany

requests, exploiting the associativity of the cany computation. The new coding is a

logically redundant superset of the conventional carry process. Departing from this

general coding, certain modifications which reduce the redundancy can easily be made

where this simplifies the implementation. The proposed cany arbitration scheme not

only leads to high speed adders due to the reduction in the required layers of logic, but

also offers a regular and compact layout and uniform fan-in and fan-out loadings. To

demonstrate the feasibility and effectiveness of the new scheme, a 32-bit adder for

AMULET3i has been designed and implemented down to the layout level.

Introduction 20

Multiplication is another of the most common arithmetic operations. In chapter 4, the

multiplier design for AMULET3i is presented, in which attention is focused on CMOS

circuit design techniques. The AMULET3i multiplier can process two classes of

multiply instructions: a normal 32-bit result and a long 64-bit result; both types of

multiply instruction can also optionally perform an accumulate operation. A new

encoding technique has been employed to adjust the final result of an unsigned number

multiply operation. The design uses the modified Booth’s algorithm [13,14] and eight

bits are scanned at a time. A new 4-2 Counter with an enable control has been proposed.

High speed circuit design techniques including the “true single-phase clocking registers”

[15] are used. Some of this chapter is based on previous work by the author described in

his M.Sc thesis [16].

As the four-phase micropipeline design style [17-19] was adopted for AMULET3i, the

design of arithmetic components, the adder and the multiplier, are similar to clocked

designs in some ways. However there are some subtle differences between the two; this

is obvious in the multiplier design where the asynchronous nature has been exploited.

The fundamental difference lies in the control mechanisms, which are described in

chapter 5 and chapter 6.

The AMULET designs are based on Sutherland’s micropipelines [20], Although

micropipelines were originally conceived with two-phase control, most recent work uses

four-phase control mainly for performance reasons. The change from two-phase control

to four-phase control leaves many choices open regarding the organization of the

asynchronous pipelines. Chapter 5 explores these control schemes for asynchronous

pipelines and presents a set of pipeline latch control circuits. All of the proposed pipeline

Introduction 21

latch control circuits are speed-independent, which is verified using the FORCAGE tool

[21], Low power considerations and the use of dynamic logic are also discussed in this

chapter.

To ease the design of asynchronous systems based on four-phase micropipelines, a set of

basic control modules is required. Such a set is proposed in chapter 6. Arbiters, which

are non-trivial and tricky to implement, are also included. The specifications of these

four-phase control modules are carried out using Petri Nets [22]. These basic control

modules, together with the pipeline latch control circuits, can construct complex and

powerful asynchronous systems including forking or joining multiple pipelines. All of

the proposed control modules are speed-independent, which is verified using the

PETRIFY tool [23-26].

A brief description of AMULET3i is given in chapter 7 in the hope of providing the big

picture into which the components described in the previous chapters can be placed.

Conclusions are finally made in chapter 8.

Contributions

The main contributions made in this thesis are:

□ In chapter 3, a high performance, low power asynchronous 32-bit adder for

AMULET3i has been designed and implemented down to the layout level. The design

uses a novel carry arbitration scheme (which has been patented) exploiting the

associativity of the carry computation.

Introduction 22

□ In chapter 4, a high performance, low power asynchronous 32-bit multiplier for

AMULET3i has been designed and implemented down to the layout level. The design

employs the modified Booth’s algorithm integrated with a new encoding technique for

adjusting the product result of an unsigned number multiply operation.

□ In chapter 5, a set of speed-independent latch control circuits has been proposed

for asynchronous pipelines. These pipeline latch control circuits provide a framework

within which arithmetic components can be efficiently organized.

□ In chapter 6, a set of speed-independent control modules has been proposed. These

control modules provide basic building blocks which can be used to construct complex

and powerful asynchronous systems.

Introduction 23

Background 2

In this chapter, we highlight some aspects of asynchronous design. Asynchronous design

here refers to the design of digital circuits which operate correctly without relying on

global clocks for synchronization. It is not possible to offer a comprehensive overview

here; instead a brief introduction to the basic concepts is provided. The micropipeline

design style and the AMULET project are then overviewed, which are of interest here

because they form the background for the rest of the work described in this thesis. A full

treatment of other asynchronous design styles can be founded elsewhere [2,3].

2.1 Introduction

A binary digital circuit uses two distinct values, 0 and 1. This is an ideal model. In

reality, there are no true digital circuits, but only analog circuits which approximate to

digital behaviours. No matter how quick the transitions the digital signals make, there are

not only 0’s and l ’s but also undefined values between 0 and 1. These undefined values,

when they occur, may not be recognized or may be interpreted in different ways by a

digital circuit. As a result the digital circuit may behave unexpectedly. The period of this

time uncertainty of a transition can be interpreted as “delay”, and unexpected

phenomena in a digital circuit due to the existence of delays are called “hazards’. To

Background 24

avoid such hazards, we must wait and evaluate digital signals only at well-defined

reference points. Generally, digital design methodologies fall into two categories

according to how these reference points are defined. The synchronous design

methodology uses global clock signals as reference points, whereas the asynchronous

design methodology employs the elapse of time or local control signals as reference

points.

Historically, most early asynchronous designs used the elapse of time as reference

points, based on some real delay assumptions on circuit elements or wires. The design

process is much the same as synchronous design. It postulates many local clock signals

based on the elapse of time between the changes of circuit signals. These postulated local

clock signals are used to define reference points, which can be variable and controlled by

adjusting delays in circuit elements or wires. Though much effort has been expended

during the last three decades on this design approach, there are some fundamental

problems that are hard to deal with. As a result, this design style is viewed as less

disciplined and more anarchic than synchronous design, and this view has frightened

most designers away in the past and still generates an adverse reaction.

However, most current asynchronous designs have abandoned the old ad hoc method

based on real delay assumptions on circuit elements or wires. Instead, they use

unbounded delay assumptions, which means a circuit always operates correctly under

any distribution of circuit element delays or wire delays. Though this seems very

pessimistic, it resolves all the delay-related problems that would otherwise arise. At the

same time, the performance of a circuit is not compromised and even may be improved

since concurrent operations can easily be exploited. Another benefit is that the circuit

Background 25

correctness issue is separated from delays and as a result circuit verification becomes

easy, which is increasingly important for a complex system. Current asynchronous

design is very systematic and well disciplined.

2.2 Basic concepts

A few key concepts and a taxonomy of asynchronous design are introduced and defined

informally here; these are fundamental to the understanding of asynchronous design.

Formal definitions are beyond the scope of this thesis and can be found elsewhere.

2.2.1 Delay models

The bounded delay model assumes that there is an upper bound on the delay of a circuit

element or a wire.

The unbounded delay model assumes that there is no upper bound on the delay of a

circuit element or a wire.

2.2.2 Circuit classification

Timed circuits are circuits whose correct operation is dependent on the delays in circuit

elements and wires.

Speed-independent circuits are circuits whose correct operation is independent of the

delays in circuit elements, and wire delays are assumed to be zero.

Delay-insensitive circuits are circuits whose correct operation is independent of the

delays in both circuit elements and wires.

Background 26

Ouasi-delay-insensitive circuits are delay-insensitive circuits augmented with isochronic

forks.

(Isochronic forks are sets of interconnecting wires where the delay difference between

the branches is zero or negligible compared to the circuit element delays.)

2.2.3 Hazards and races

A static hazard is a single transition of a signal which should remain constant.

A dynamic hazard is a multiple transition of a signal which should change only once.

A function hazard is inherent in the specification of the logic function.

A logic hazard depends on the particular implementation of the logic function.

An essential hazard is inherent in the specification of the finite state machine.

A non-essential hazard (also called a race) depends on the particular state encoding.

A noncritical race is where all transient states settle to the same final state.

A critical race is where different transient states may lead to the different final states.

2.2.4 Metastability and arbitration

The metastabilitv problem [27] is the phenomenon of the unusually long delay in the

logic decision time between two values 0 and 1 for bistable systems such as flip-flops.

When two asynchronous inputs to a bistable system anive at very nearly the same time, a

discrete decision must be made from a continuous range of input possibilities. It is

fundamentally impossible to make this decision reliably within a bounded time. The

delay may theoretically be an indefinite amount of time [28-30]. Arbitration is the

mechanisms whereby a bistable system responds to either one input or the other.

Background 27

Though metastability is an inevitable problem, the resulting metastable states can be

resolved internally to maintain valid logic levels at the circuit interface using analog

circuit techniques. The mutual exclusion circuit (MUTEX) [31] has this property and is

used for making a non-deterministic decision between asynchronous calling requests.

It is worth noting here that the probability of failure of synchronous designs can never be

zero and it must be accepted that whenever an asynchronous signal is input there is some

chance of failure, though the probability can be made small with careful design

techniques. However, this is not the case in asynchronous designs; an asynchronous

circuit can be designed always to operate correctly, though it will require an unbounded

time to resolve in the worst case.

2.2.5 Circuit specifications

Generally speaking, there are two broad classes of asynchronous design specification

styles: state-based and event-based approaches.

Asynchronous finite state specifications are Huffman state machines [32,33] or extended

Huffman state machines such as Burst Mode state machine [34,35]. Huffman circuits

operate in fundamental mode, which assumes that only one input can change at a time,

and succeeding input changes must not occur until the entire circuit settles into be a

stable state. Relaxing the condition of only one input change in fundamental mode,

burst-mode circuits allow multiple input changes as a burst. Another operation mode is

called the input/output mode [36], which assumes that further external input changes can

be applied as soon as the expected outputs have responded the current inputs. Total state

specifications [37,38] are referred to as Muller state graphs. from which the semantics of

Background 28

event-based models are derived. Trace theory [39,40] is an abstract and formal

description of a Muller state graph.

Event specifications are referred to as Petri Net [22] specifications, and include I-nets

[41], Signal Transition Graphs (STG) [42,43], and Change Diagrams (CD) [21,44]. Petri

Net specifications are a mathematical formalism to describe the behaviour of systems

with concurrency, causality and conflicts between events.

I-nets are restricted Petri Nets in which interface signal names are assigned to transitions.

Signal Transition Graphs are interpreted Petri Nets whose transitions are labelled as

signal value changes. Similar to STGs, Change diagrams are interpreted Petri Nets, but

allow OR-type signal transitions and disengageable arcs for nonrepeating signal

transitions.

2.2.6 Signalling protocols

A handshake is a procedure where one signal (the request signal) makes a transition and

a second signal (the acknowledge signal) makes a transition as a response.

Links are sets of request and acknowledgement wires used for communications through

handshaking between different blocks.

The two-phase [20] protocol uses one handshake along a link for one transaction

between two blocks. As a result, rising and falling signal transitions are equivalent,

The four-phase [17-19] protocol uses two handshakes along a link for one transaction

between two blocks. There are variant schemes (see chapter 5) based on this protocol.

Background 29

2.2.7 Data representation

Bundled data [20] comprises a set of data wires and an associated control signal that

indicates the validity of the data. The data wires and the control wire are constructed

such that stable data are available at the receiver before the control signal makes an

indication of valid data. The relationship between the data and control delays required to

ensure correct operation is referred to as the bundling constraint.

Coded data systems hide timing information in the data itself. There are many ways to

encode data [45]. One well-known method is the dual-rail code [46] that requires two

wires to encode a single bit of data. A transition can occur on either one wire or the other

and not on both wires.

2.2.8 Synthesis

The type of specification usually determines the style of synthesis which can be used to

generate the asynchronous circuit. State-based and event-based specifications have

corresponding synthesis approaches: state-based and event-based synthesis. These two

synthesis approaches are often used to design controllable asynchronous modules. Once

a set of asynchronous modules is at hand, large asynchronous systems can be built up

from these modules. Syntax directed program translations for specifications using CSP

like programming languages [47] such as Tangram [48] are examples of this approach to

building circuits from a library of modules. Although state-based or event-based design

techniques can be applied directly to large asynchronous systems, they have not been

very successful and practical for VLSI applications. Note that some designs are

combinations of state-based and event-based design approaches.

Background 30

2.3 Sutherland’s micropipelines

Micropipelines were introduced by Ivan Sutherland in his 1988 Turing Award lecture

[20], and are a framework for building asynchronous pipelines. Micropipelines are

composed of a bounded delay datapath operated by an unbounded delay two-phase

control circuit.

Data passes on a bus from sender to receiver and is associated with a Request wire

indicating when the data is valid. There is an Acknowledge wire from the receiver to the

sender which indicates whether the data has been received, (see figure 2-1). The data

wires and the request signalling wire must be treated as a bundle; the data must reach the

receiver prior to the request event. Rising and falling transitions of request and

acknowledge wires are equivalent, carrying the same information.

Request

Data

Acknowledge

Sender Receiver

Figure 2-1: A bundled data interface

2.3.1 Event control modules

Figure 2-2 illustrates a basic set of event control blocks proposed by Sutherland which

can be “programmed” to build complex and powerful asynchronous systems. These

basic building blocks were designed using I-nets [41].

Background 31

♦
TOGGLE

1 F

SELECT
True False

rl rl gl
dl dl

C4

d r 13H-I

U d 5
d2 ^ d2
r2 i2 g2

Figure 2-2: Micropipeline event logic modules

The XOR gate acts as the OR function for events. A transition on either input results in a

transition on its output. For correct operation events must not arrive simultaneously on

both inputs. XOR modules are often called MERGE elements because they merge two

event streams into one.

The Muller C-gate acts as the AND function for events. A transition will occur at the

output only when there have been transitions at both of the inputs. Muller C-gates are

often called RENDEZVOUS elements because they make events at the output wait until

events have been received on both inputs.

The TOGGLE module steers incoming events to its outputs alternately; the first event to

arrive is issued to the output marked with a dot, the second to the unmarked output, and

so on.

The SELECT module steers incoming events to one of two outputs according to the

Boolean value of its diamond input. The Boolean value must be set up before the

incoming event that it steers, a requirement similar to the bundling constraint.

Background 32

The CALL module allows two processes to share a common resource, similar to a

procedure call in software. The calling processes must be mutually exclusive; if they are

not, they must access the call block through an arbiter.

The ARBITER module is used to control the interaction between two asynchronous

event streams. As the two streams can issue requests at any time, the arbitration logic is

inherently prone to metastability. The metastable states must be resolved internally to

maintain valid logic levels at the interface of the module.

2.3.2 Event-controlled storage element

Event-controlled storage elements are needed to build a complete micropipeline circuit.

Figure 2-3 shows an implementation of an event-controlled storage element and the

symbol used to denote it.

Capture J

Din

Capture
Done

> > —

Pass

Pass
Done

1 tC Pd

< K . ° UtPUt Din)tu
re

_P
as

s

Dou
t

fcr6
Cd P
.1..... 1

Figure 2-3: Event-controlled storage element

The input is initially connected to the output; it is transparent when empty and does not

behave as a storage element at all. An event on the “capture” wire flips the two switches,

and as a result a loop is formed containing two inverters, causing the data to be latched.

This loop is still connected to the output, which therefore carries the previously latched

Background 33

value and does not follow subsequent input changes. An event on the “capture done”

wire is issued after the switches have flipped. An event on the “pass” wire flips the other

switch and as a result the element is returned to the transparent state and ready for the

next coming transaction. Similarly, an event on the “pass done” wire is issued after the

switch has flipped.

2.3.3 Micropipeline FIFO

A micropipeline with no processing in it, which is simply a FIFO, can be built as shown

in figure 2-4. A data value can be entered into the FIFO from the left by signalling an

event on the Rin wire, whereupon it will ripple down the FIFO and eventually will be fed

out through the wire Rout.

< DELAY > DELAY

RoutRin

DoutDin

Ain Aout
-T DELAY >

Figure 2-4: Micropipeline FIFO

One of the elegant features of a micropipeline FIFO is its elasticity. Data can be inserted

into or removed from a FIFO at any rate bounded from zero to a maximum defined by

the throughput parameter. The maximum insertion rate at the input end and the

Background 34

maximum removal rate at the output end can be achieved at the same time. However, in

this condition, the percentage occupancy of the FIFO remains unchanged, and is

determined by how fast the request signal passes forward and the acknowledge signal

returns backward. If the request signal and acknowledge signal travel at the same rate,

which is the most common case for a micropipeline FIFO, the percentage occupancy is

only 50%.

Therefore, if we want to sustain high throughput for a long time, more FIFO stages

should be used than might be expected. This is why an asynchronous micropipeline

FIFO is often deeper than its synchronous counterpart for the same application.

2.3.4 Micropipelines with processing

The simple micropipeline FIFO can be extended to interpose processing logic between

micropipeline FIFO stages, as shown in figure 2-5. The operation of this micropipeline

with processing operates in a similar manner to the micropipeline FIFOs, The delay in

the request event path must match the logic processing delay in order to preserve the data

bundling convention.

More complex structures including forking and merging multiple pipelines can be built

with the aid of other event control modules.

2.4 The AMULET project

It is our belief that asynchronous designs should be justified not only on a theoretical

significance but also by their practical implications. This is also the motivation behind

the AMULET project.

Background 35

< DELAY > < DELAY

RoutRin

DoutDin

Ain Aout
-C DELAY > j DELAY >

Figure 2-5: Basic micropipeline structure

2.4.1 AMULET1 chip

In 1994 Professor Steve Furber’s AMULET group at the University of Manchester took

delivery of the AMULET 1 processor, the first asynchronous implementation of a

commercial processor architecture. The AMULET1 chips are code compatible with the

ARM 32-bit RISC processor.

The design used the two-phase micropipeline style and includes several novel features

such as the register locking mechanism [49], the instruction prefetching with its “colour”

management of non-determinism and the data dependent ALU operations [50]. The

chips were fabricated on two CMOS processes: a 1 pm process at ES2 and a 0.7 pm

process at GEC Plessey Semiconductors.

Table 2-1 shows a summary of the characteristics of the AMULET1 chips with those of

ARM6 for comparison. The chips demonstrate robustness to variations in temperature

and voltage supply. The AMULET 1 chip demonstrated the feasibility of building an

Background 36

asynchronous digital system at the levels of complexity of current synchronous digital

systems.

Table 2-1: Characteristics of AMULET1 [4]

AMULET 1 (a) AMULET 1 (b) ARM6

Process 1 jiim 0.7 jam 1 jam

Area (mm2) 5.5 X 4,1 3.9 X 2.9 4.1 X 2.7

Transistors 58,374 58,374 33,494

Performance 20.5 kDhry. 40 kDhry. 31 kDhry

Power 152 mW N/A 148 mW

MIPS/W 77 N/A 120

Conditions 5 volt, 20 °C 5 volt, 20 °C 5 volt, 20 MHz

2.4.2 AMULET2e chip

Two years later, the AMULET group took delivery of the AMULET2e embedded system

chip. AMULET2e is aimed at the embedded control market, and includes AMULET2 (a

significantly enhanced version of AMULET1), 4 Kbytes of RAM which can also be

configured to operate as a cache, a counter-timer for real-time reference, a flexible

memory interface and various configuration and control registers. The design includes

several novel features such as the load and register forwarding, branch target prediction,

and the “halt” mode. The design uses the four-phase micropipeline design style. The

chips were fabricated in a 0.5 jam triple metal CMOS technology.

Table 2-2 shows a summary of the characteristics of AMULET2e with those of ARM710

and ARM810 for comparison. AMULET2e is the first asynchronous processor whose

performance and power-efficiency are competitive with the industry-leading clocked

Background 37

ARM designs. One remarkable feature of AMULET2e is that the power consumption

drops to nearly zero with the “halt” function enabled.

Table 2-2: Characteristics of AMULET2e [11]

ARM7I0 AMULET2e ARM810

Process 0.6 pm 2LM 0.5 pm 3LM 0.5 pm 3LM

Area (mm2) 32 41 76

Transistors 570,295 454,000 836,022

Cache 8 K 4-way 4K 64-way 8K 64-way

MIPS 23 40 86

Power 120 mW 150 mW 500 mW

MIPSAV 192 250 172

Conditions 3.3 volt, 25 MHz 3.3 volt, 20 °C 3.3 volt, 72 MHz

2.4.3 AMULET3i

AMULET3i, an asynchronous embedded system chip which incorporates the third

generation asynchronous ARM processor (AMULET3), is currently under development.

Different from its predecessors, AMULET1 and AMULET2e, AMULET3i is aimed to

be a commercially viable product for communication applications. This will be a

significant step (see chapter 7).

Background 38

Adder design 3

In this chapter a novel carry arbitration scheme is proposed (and has been patented) for

parallel adder circuits. The proposed scheme provides an efficient encoding in which the

carry is generated by arbitrating several input carry requests, exploiting the associativity

of the carry computation. The new scheme not only leads to high speed adders due to a

reduction in the required layers of logic, but also offers a regular and compact layout and

uniform fan-in and fan-out loadings. To demonstrate the feasibility and effectiveness of

the proposed scheme, a 32-bit adder for AMULET3i has been designed. Post-layout

simulation, in a 0.35 micron triple metal CMOS technology, shows that it takes 1.8 ns to

complete the computation of a 32-bit addition.

3.1 Introduction

Addition is one of the most important arithmetic operations performed frequently within

both general purpose and digital signal processing systems. A problem with designing

high speed adder circuits is that the most significant bits of the result are logically and

physically dependent upon the carry output values from the least significant bits. The

consequence of this sequential dependency is that addition operations tend to be

relatively slow. This has been widely recognized, and adder design has been studied

Adder design 39

extensively for decades. Generally, the basis of adder designs is still either carry

generation and carry propagation [51-55] or carry selection based on all possible results

being available [56,57]. In recent years cany free additions achieved by employing

redundant number systems have received considerable attention [58,59]. In an effort to

develop adder circuits that are capable of operating at high speed a carry arbitration

scheme for parallel adders is proposed. The new scheme provides an efficient encoding

in which the carry is generated by arbitrating several input cany requests, exploiting the

associativity of the cany computation.

3.2 Carry arbitration

The interesting and difficult task in an adder circuit is the computation of the carry bits.

For an addition of two 1-bit numbers at and b -v the carry cf- can be evaluated as shown in

table 3-1. There are two general cases defined by the values of at and bt. The first case,

where there is a cany request, arises when both operand bits are equal. A 1-carry request

occurs if both inputs are 1, whereas a 0-cany request occurs if both inputs are 0. The

second case, where there is no carry request, arises when the operand bits have different

values. The letter u indicates there is no cany request. Cany computation is similar to the

logic behaviour when connecting wires at and bt together. If they have the same value,

then the result follows. If they are different, the result is undefined.

Table 3-1: Carry request

ci}, bi ci

00 0

1 1 1

0 1 u

10 u

Adder design 40

3.2.1 Two-way carry arbiter

One input pair may or may not make a cany request. If two input pairs (aif bt) and {cip bp

are considered together, they may issue carry requests at the same time. Therefore, there

is a need to arbitrate these two carry requests. Figure 3-1 shows a two-way carry arbiter.

The input pair (ab bj) can make a non-maskable carry request, where non-maskable

means that a cany request from the input pair (ai} bj) must always be granted service to

the output <y. The input pair (aj, bp can make maskable cany requests, where maskable

means that a cany request from the input pair (aj, bp may be masked by the input pair

{ab bj). Only when there is no non-maskable carry request from the input pair (a*, bj) is a

maskable cany request from the input pair (a^ bp granted service to the output c-r The

truth table required to implement two-way cany arbiters is illustrated in table 3-2.

—►--------—►--------
Two-Way ►Ci

—>-------—►-------
Cany Arbiter Op W;)

Figure 3-1: Two-way carry arbiter

Table 3-2: Two-way carry requests

bt aj, bj ci

0 0 0

1 1 1

0 1 (or 1 0) 00 0

0 1 (or 1 0) 11 1

0 1 (or 1 0) 0 1 (or 1 0) u

Adder design 41

The output carry c-t can be encoded using two wires (yt> wt) as shown in table 3-3.

Equations EQ-1 and EQ-2 satisfy table 3-2 and table 3-3.

Table 3-3: Dual-rail code

ci vf,

0 00

1 1 1

u 0 1 (or 1 0)

Vi = api + («; + bi)aj (EQ-1)

wt = apt + (at + bj)bj (EQ-2)

Figure 3-2 shows a 4-bit carry computation using two-way carry arbiters. The solid dots

represent two-way cany arbiters. The carry output values of the high order bits is

generated by arbitrating carry requests from their low order bits. High order bit carry

requests have priority over low order bit cany requests. For any carry output bits, there

must exist a path to every low order input operand bits, which reflects the fact that the

canies shall propagate across all the way of the word length of the operands.

carry output

Two input operands

Figure 3-2: 4-bit carry computation

Adder design 42

The proposed scheme is similar to but different from the scheme proposed by Brent and

Kung [52]. Firstly, the computation logic needed for carry generate g-t and carry

propagate p t in the Brent and Kung adders is not necessary in our scheme. This leads to a

reduction of the required layers of logic and hence high speed cany generation.

Secondly, only single-rail signals need to be routed instead of dual-rail signals if the

signals vt and wt are predicted to be equal (which indicates that the carry has been

generated, either a 1-cany request or a 0-cany request). This results in a reduction of

chip area, especially in the final row of the carry computation where more room is

needed to accommodate signals crossing from the least significant bits to the most

significant bits. Finally and more importantly, group adders in a carry select adder can be

eliminated using the modified implementation of carry arbiters as we will see later.

In fact, the Brent and Kung scheme can be viewed as a special encoding of our scheme

as shown in table 3-4. The two signal pairs (gj, pj) and (gj, pj) generated from the input

pairs (c/j, bj) and (cij, bj) can be seen as new input pairs. The new input pair (g,, pj) issues

a 0-carry request when they are both 0, a 1-carry request when gt is 1, and no cany

request when pt is 1. Note that gt and p t are mutually exclusive. In other words, the case

of (gj, pj) with the value (1, 1) is removed by the Brent and Kung encoding.

Table 3-4: (g,p) carry requests

gi> Pi (a* bj) gj,Pj(aj,bj) ci

0 0 (0 0) - - (- -) 0

10(1 1) 1

0 1 (0 1 or 1 0) 0 0 (0 0) 0

0 1 (0 1 or 1 0) 1 0 (1 1) 1

0 1 (0 1 or 1 0) 0 1 (0 1 or 1 0) u

Adder design 43

The carry request output q is encoded here as shown in table 3-5. Equations EQ-3 and

EQ-4 give the behaviour defined by table 3-4 and table 3-5.

Table 3-5: The Brent and Kung carry code

c i Vp Wi

0 0 0

1 1 1

u 0 1

Vi = gi + Pigj (EQ-3)

Wi-PiPj (EQ-4)

Equations EQ-3 and EQ-4 are the key ideas of the well known Brent and Kung adders. It

is clear that the computation logic for carry generate q and carry propagate jq is wasteful

except for understanding how the carries are generated and propagated. By encoding the

input pair at and to the carry generate q and propagate pt, the advantage in our scheme

of some signals being routed in single-rail form is lost because the dual-rail signals q

and pi are always required in the Brent and Kung scheme.

3.2.2 Three-way carry arbiter

A three-way carry arbiter is shown in figure 3-3. As before, the input pair (q, bj) can

issue a non-maskable carry request. The input pairs (ap bp and (ak, bp can both make

maskable carry requests at any time, possibly at the same time. However, the input pair

(<ap bp has priority over the input pair (ak, bk). Only when there is no non-maskable carry

request from the input pair (q, bj) is a maskable carry request from the input pair (q- bp

granted service to the output q. Only when there is no non-maskable carry request from

Adder design 44

the input pair (a^ bt) and no maskable carry request from the input pair (ap bp is a

maskable carry request from the input pair (ak, bp granted service to the output ct.

a;
bi
a;
bj.

—►--------—>--------

_►-------- Three-Way
—>------- Carry Arbiter
—►-------—>-------

C i

(v;» wf)

Figure 3-3: Three-way carry arbiter

The truth table required to implement three-way carry arbiters is shown in table 3-6.

Equations EQ-5 and EQ-6 give the behaviour defined by table 3-3 and table 3-6.

Table 3-6: Three-way carry requests

tZj, I?} ap bj ab h ci

00 0

1 1 1

0 1 (or 1 0) 00 0

0 1 (or 1 0) 11 1

0 1 (or 1 0) 0 1 (or 1 0) 00 0

0 1 (or 1 0) 0 1 (or 1 0) 11 1

0 1 (or 1 0) 0 1 (or 1 0) 0 1 (or 1 0) u

Vi = + (cii + biXcijbj + (aj + bj)ak) (EQ-5)

wt = afii + (cii + biXajbj + (aj + bj)bk) (EQ-6)

Figure 4 shows a 9-bit carry computation using three-way carry arbiters. The addition of

an n-bit binary number using three-way carry arbiters can be performed in a time

proportional to 0(log3n), and therefore is more efficient than using two-way carry

Adder design 45

arbiters where the computation time is 0(log2n). It is worth noting here that there is a

difference in complexity between two-way and three-way carry arbiters, which should be

taken into account when comparing them.

carry output

Two input operands

Figure 3-4: P-bit carry computation

The algorithm as shown in the above diagram is very elegant, and follows a very simple

rule:

t = 3\ while (q = u) {q = q_r; t = 3t;}

Here t is the number of input pairs of carry arbiters used, and is three for this case. In the

bottom line, the carries are computed just by looking at the three bits and hold either u or

the correct carries. In the top line, the cany computation covers more bits and reach the

point where all of the bit positions have been examined, therefore all of the carries are

generated.

3.2.3 Carry arbiters with more than three ways

Using the same approach, carry arbiters with any number of pairs of input signals can be

derived. Theoretically, it will be appreciated that a single carry arbitration circuit could

Adder design 46

be responsive to n pairs of input signals (n > 3). However, carry arbiters with more than

four ways are not usually of practical interest. Firstly, too many series transistors are

needed to implement these arbiters, which leads to inefficient CMOS designs. Secondly,

the arbiter cell layout can easily become too large for the bit pitch of a datapath.

The circuit which implements a 9-bit carry computation as shown in figure 3-4 can be, in

fact, considered as a nine-way carry arbiter, which is built up using three-way carry

arbiters.

Now it may be questioned why the new term “carry arbitration” has been introduced to

describe a circuit whose function is purely combinational. The introduction of this new

term serves to explain the idea, since it is difficult to use the conventional terms

“generate”, “kill” and “propagate” to describe the new coding.

In a sense, the new coding is a logic ally-redundant superset of the conventional carry

process. Departing from this general coding, certain modifications (which reduce the

redundancy) can easily be made where this simplifies the implementation as we will see

later in section 3.4.

3.3 Parallel prefix computation

In this section the verification of the adder design using the proposed scheme is earned

out formally by taking an n-bit addition using two-way carry arbiters as an example. Let

(an, an_j, a1) and (bn, bn_j, . . bj) be n-bit binary input operands with output carries

(cn> cn_j, . . cj), and let c0 be the initial input carry bit. We define an operator “o” [60]

here as follows:

Adder design 47

(a, b)o(a, br) = (ab + (a + b)b\ ab + (a + b)b')

Lemma 1: Let
K c p c ,)

(v;, w,) = i
l (ai,b i) o (v i_ v iv,_,)

where Cj = ajbj + (a3 + bj)c0.

if i = 1

if 2 < i < n

Then ct = vt = wz- for z = I, 2 n.

Proof. We prove the lemma by induction on i.

It is obvious that the above equation holds true for i = 1.

If i > 1 and c^j = vt_j = Wj-_7, then

O';, W|)= b^o iy^, Wi_j)

= («P bi)o(ci„i, Cm)

= OA- + (a* + 6;)cw , afii + (af + b^c^j)

= (cp q)

Thus, the equation holds true by induction.

Lemma 2; The operator “o” is associative.

Proof. For any three (a3, b3), (a2, b2) and (a7, bj),

[(a3, b3)o{a2, b2)]o(aj, bf) =

{{a3b3 + (a3 + b3)a2), (a3b3 + (a3 + b3)b2)]o(aj, b f =

(((a3^3 + (a3 + ^3)a 2)(.a 3^3 + (a 3 + ^3)^2) +

da3b 3 + (1a3 + b3)a2) + (a3b3 + (a3 + b3)b2))aj),

d a 3^3 + (a3 + ^3)a 2)(a 3^3 + (a3 + ^3)^2) +

d a 3^3 + (a3 + ^3)^2) + (a3^3 + (fl3 + ^3)^2))^/)) =

d(a3^3 + (a3 + b3)a2bf) + {a3b3 + {a3 + b3)(a2 + b2))af,

Adder design 48

((a3^3 + (a3 + b3)a2b2) + (a3^3 + (a3 + ^3)(a2 + ^2))^)) =

((a 3^3 + (a 3 + ^ 3)(a 2^2 + (a 2 + b 2) a j)) ,

(a3^3 + (a3 + b3)(a2b2 + {a2 + b2)bj))) =

(a3, b3)o{a2b2 + (a2 + b2)ah a2b2 + (a2 + b2)bj) =

(a3, b3)o[(a2, b2)o(ah bj)]

Thus, the operator “0” is associative.

This lemma provides the foundation for using tree structures to generate carries since the

signals and wt can be computed in any order from the given input values. This is the

key idea for the proposed scheme.

Lemma 3\ The operator “0” is not commutative.

This can easily be proved by inspection that (1, l)o(0, 0) ^ (0, 0)c>(l, 1). This lemma

implies that carry arbitration should perform in a prioritized way.

3.4 Implementation

Figure 3-5 shows a static CMOS implementation of a two-way carry arbiter. Note that

the outputs V; and W; are complemented signals. However, the arbiter is quite

symmetrical and implementing the next stage in inverse logic is straightforward. The

signals through two arbiters are naturally positive true, so no inverters are needed.

Figure 3-6 shows a pass-transistor based implementation of a two-way carry arbiter. This

implementation has an additional feature. The output v(- is zero if and only if the output

w{- is zero, and the output W; is one if and only if the output Vj is one. This provides

another view of the arbiter. When the outputs V; and Wf are different this means that there

Adder design 49

W;
jk

Figure 3-5: Static implementation of a two-way carry arbiter

are no cany requests from the inputs as described previously. Furthermore we can view

the output Vj- as the cany out generated with a one carry-in and the output w,- as the carry

out generated with a zero cany-in. The implementation in figure 3-5 does not distinguish

which is the cany out generated with a one cany-in and which with a zero cany-in, since

each output can be zero or one independent of the other output. The AND and OR gates

in figure 3-6 serve as an input conversion from (0 1) to (1 0). The signals after these two

gates, e.g., (oj, zj), take one of the three values (0 0), (1 1) and (1 0).

Figure 3-6: Pass-transistor based implementation

Adder design 50

Three-way carry arbiters and four-way carry arbiters may be advantageous if dynamic

CMOS techniques are used. Figure 3-7 shows a direct dynamic CMOS implementation

[61-63] of a three-way carry arbiter. Instead of using a global precharge control signal,

local incoming input signals are used for this purpose. The operation of the circuit is

such that the nodes nl and n2 are precharged high when the inputs a-L and b{ are low

during the reset phase of the control handshake and will conditionally discharge during

the evaluation phase in a self-timed design. The inverters are required for the next stage

and also served to maintain proper drive strength.

Figure 3-7: Direct implementation of a three-way carry arbiter

Figure 3-8 gives a modified version of the three-way carry arbiter by reducing the

redundancy of the new coding. We assume here that every input pair takes one of the

three values (0 0), (1 1) and (1 0), and (0 1) has already been transformed to (1 0) as

described previously. The output v; is the carry out generated with a one carry-in and the

Adder design 51

output W{ is the cany out generated with a zero cany-in if no cany requests issue from

input signals. This results in the elimination of group adders in a carry select adder (see

section 3.6) and is the main feature of our scheme.

However, the use of the modified implementation needs the input conversion from (0 1)

to (1 0). Fortunately this causes no problem; the conversion is simple. It consists of one

2-input NAND and one 2-input NOR gate per bit. For practical reasons, gates are

normally necessary anyway to isolate the signals from the main input buses. The

difference here is that NAND and NOR gates are used instead of inverters. If the two

input buses are designed using a precharged structure, the outputs from the NAND and

NOR gates are naturally low (as required in the dynamic implementation) when the

buses are precharged high. Furthermore, these NAND and NOR gates can be reused for

logic operations in an ALU design.

W :

a
lJ

bi

cti

Figure 3-8: Modified implementation of a three-way carry

Adder design 52

It could be questioned here whether there is a real difference between this new scheme

eliminating the value (0 1) compared with the Brent and Kung scheme which does not

use the value (1 1). How can we claim that the new arrangement without the formation of

generate and propagate terms has an advantage after adding initial NAND and NOR

gates? The answer lies in observing that the constraint of not using the value (1 1) is

inherent in the Brent and Kung scheme and therefore an initial formation of the generate

and propagate terms is required, whereas the constraint of not using the value (0 1) in the

modified implementation of the carry arbitration scheme is introduced as an optimization

rather than enforced. The optimization leads to the benefit of eliminating group adders in

a carry select adder (see section 3.6) and also results directly in a simplified circuit.

3.5 Refinement of the Manchester carry chain

One simple application of the new scheme is given in this section, where it is used to

refine the Manchester carry chain. In the next section, another application is given,

which is to simplify the design of carry select adders.

A wide variety of addition schemes and their implementations are available to serve

different performance/cost requirements. One of them is the well known Manchester

carry chain [31], which is often found in custom datapaths combined with the carry skip

scheme. However a problem with the Manchester carry chain is that too many pass

transistors are in series along the carry chain, which degrades the performance especially

in CMOS designs with a low supply voltage. To avoid this problem, buffers are usually

used to divide the carry chain into several sets of series pass transistors as shown in

figure 3-9.

Adder design 53

Figure 3-9: Manchester carry chain with buffers

Instead of using buffers to limit the number of pass transistors in series, the cany chain

can be rearranged using the part of the circuit in figure 3-6 based on the concept of carry

arbitration. Figure 3-10 shows a new cany chain in which the output of one set of series

pass transistors is connected to the control gate of the next stage. By so doing, we avoid

the series connection of pass transistors without any overhead. It is worth noting that a

double pass-transistor logic design style [64] should be used in order to exploit this new

cany chain fully.

Figure 3-10: Manchester carry chain without buffers

Obviously, this new implementation of the Manchester cany chain can be derived

directly from the truth table without any knowledge of the cany arbitration scheme. The

new implementation was found during the development of the carry arbitration scheme.

Adder design 54

3.6 Simplification of carry select adders

Figure 3-11 shows an adder design using the conventional carry select scheme [57]. The

inputs are divided into d-bit (or possibly variable width) groups. Two d-bit adders are

needed per group. One is an adder with a zero carry-in and the other with a one carry-in.

The carry generator is responsible for generating the boundary carries for all groups,

which are then used to select the appropriate sum using a multiplexer.

d-bit adder

d-bit adder

d-bit adder

d-bit adder

Figure 3-11: Carry select adder

Design decisions must be made to choose the appropriate group widths in order to

balance the worst case delays of both the carry generator and the group adders. If the

group adders are made too long, the decreasing delays in the cany generator are

exceeded by the increasing delays of the group adders. If the group adders are made too

short, the logical complexity of the carry generator increases and its delay determines the

total adder delay. Usually a mechanism for carry computation with low complexity, such

as the Manchester cany chain, is chosen in the group adders. So the group cannot be

made long (normally less than or equal to 8 bits) due to its linearly increasing delay. This

Adder design 55

leads to the increasing complexity of the carry generators. Carry generators designed

using conventional approaches consume much chip area and power as well as limiting

the ultimate performance that can be achieved.

If carry arbiters, modified according to the circuit in figure 3-6 or figure 3-8, are used as

elements to design the carry generator, the group adders can be eliminated as shown in

figure 3-12. The output vf- is the carry out generated with a one carry-in and the output w;

is the carry out generated with a zero carry-in if no carry requests issue from input

signals. Choosing the length of the group adders becomes unnecessary since the group

adders are not required at all. This results in a significant reduction of chip area,

especially when the groups are made long, since group adders also need a mechanism for

carry computation.

boundary carry

boundary carry

Figure 3-12: New carry select adder

The intermediate signals and wt in the carry generator are elegantly reused for

generating the two intermediate sums. If the signals v£- and wt are equal (meaning that the

carry has been generated), the final result is independent of the boundary carry since the

two intermediate sums are equal. If the signals and wt are different, the two

Adder design 56

intermediate sums with the signals v,- and wt as inputs are those with a one carry-in and a

zero cany-in, respectively. Therefore the boundary cany can choose one of these two

intermediate sum results to use as the final sum result. It is clear that these two

intermediate signals V; and W; have dynamic meanings, and this is the main feature of the

proposed scheme. It is worth noting that the cany generator itself is much simplified and

optimized by using the proposed scheme

3.7 Adder design for AMULET3i

A 32-bit adder for AMULET3i has been designed, using the architecture in figure 3-12,

to demonstrate the proposed scheme. The whole adder is visualized (but not divided) as

consisting of four 8-bit long groups. Figure 3-13 illustrates the block diagram for the

AMULET3i adder.

1st 2nd 3rd 4th 5th

t>
£>

4>
£>

7 - 0

£>
€>

3>
4>

1 5 - 8

O
f>

3>
O

c 15

2 3 - 1 6

t>
£>

c23

3 1 - 2 4

Figure 3-13: AMULET3i adder block diagram

Adder design 57

The AMULET3i adder compromises one row of conversion circuits containing 2-input

NAND and NOR gates and two rows of three-way carry arbiters to generate all the

intermediate signals vt- and w(*. Additionally, two extra three-way carry arbiters are

needed to compute the boundary carries. These operate in parallel with the XOR gates

(the 4th and 5th levels are mostly operating in parallel).

An efficient three-way carry arbiter design is the key to the whole adder design. The

dynamic implementation of a three-way carry arbiter as shown in figure 3-8 was initially

chosen since dynamic circuits offer the benefits of increased speed and lower switched

capacitance. However, dynamic circuits are sensitive to noise when both the NMOS pull

down and the PMOS pull up networks are in the off state. Additional devices as shown in

figure 3-14 are, in practice, incorporated into dynamic circuits to combat noise. There is

then the problem that the dynamic circuit with the additional device might demonstrate a

considerable performance disadvantage since the NMOS pull down network must

overdrive the additional device.

We look firstly at the static implementation of a three-way carry arbiter as shown in

figure 3-15 before moving on to an alternative implementation. In the case of this fully

3.8 Circuit design

or

t t

Figure 3-14: Devices for dynamic circuits

Adder design 58

complementary CMOS circuit, the size of the p-type transistors should be 2 ~ 3 times

greater than that of the n-type transistors to compensate for the typically 2 - 3 times

slower speed of the p-type transistors. As a result, this circuit consumes a large area and

is quite slow due to its large input capacitance. The problem can easily be solved by

making the size of all the p-typed transistors minimum. However, this change makes the

rise time of the circuit dramatically increase.

W;

a,i

Figure 3-15: Static Implementation of a three-way carry arbiter

The original idea of dynamic circuits can be reintroduced here but all the p-type

transistors are retained. Figure 3-16 shows a new implementation combining both static

and dynamic circuit properties. Two p-type transistors PI and P2 are introduced for

precharging. While this may seem like a foolish idea at first, it has some merit. Although

the new implementation is almost the same as the static implementation apart from the

Adder design 59

two extra p-type transistors at the circuit level, the operation of the two circuits is totally

different.

All the p-type transistors except these two precharge transistors are minimum sized in

the new implementation. The p-type transistors in the original static implementation

should be oversized by 2 ~ 3 times compared with the size of the n-type transistors to

keep the rise time in line with the fall time. The large input capacitance due to the

oversized p-type transistor therefore requires a previous stage with more drive strength.

This inevitably results in degraded performance and increased power consumption.

PI

Figure 3-16: New Implementation of a three-way carry arbiter

The new implementation behaves both statically and dynamically, thus having the

advantages of these two types of circuit. The transistors marked with an asterisk can, in

Adder design 60

fact, be eliminated. This very efficient carry arbiter circuit provides a firm foundation for

the realisation of a high speed AMULET3i adder.

The three-way carry arbiter shown in figure 3-16 was analysed using HSPICE on

extracted layout under the conditions of 3.3 volt supply voltage and 100 °C temperature.

The simulation results are given in table 3-7. The estimation of power consumption of a

circuit is difficult since it is a function of not only its inputs but also of their history. For

the sake of simplicity, the power consumption was measured under the assumption of

100% input activity.

Table 3-7: Simulation results of the three-way carry arbiter

delay power

typical process case 0.35 ns
72 jiW @ 100 MHz

153 pW@ 200 MHz

worst process comer 0.44 ns
71 jlW @ 100 MHz

148 iiW @ 200 MHz

3.9 Layout design

The technology on which the AMULET3i adder is based, is a 0.35 micron triple metal

CMOS process. The minimum drawn width is 0.4 micron.

The layout of the AMULET3i adder uses a full-custom style for the datapath, where the

circuit and layout are optimized. The bit pitch in the datapath is 82 A,. Data flow is routed

horizontally in metal3, while control flow is relayed vertically in metal2. Metal 1 is used

for local interconnections in cells. The global power rails use metall and metal3, and the

local power rails use metal2.

Adder design 61

3.10 Evaluation

An evaluation of the AMULET3i adder in terms of performance, power consumption

and silicon area is presented in this section.

3.10.1 Performance

The critical path covers one NAND/NOR gate stage, three three-way carry arbiter stages

and one multiplexer stage. The critical delay is about 1.8 ns under worst-case conditions

(Vclcl = 3.3V, Vm=0.1V, slow-slow process comer, at 100 °C temperature). This results in

a 460 MHz computational speed with a 20% engineering margin.

3.10.2 Power consumption

The estimation of power consumption is a difficult problem as it is a strong function of

the inputs and their history. A rough estimate of power consumption is given based on

some assumptions. It is highly unlikely that all data bits will change for every data value.

Based on the assumptions that half the data bits on average will change and that the

dynamic switching power is 90% of the total power, the power estimate of the datapath is

about 8 and 17 mW operating at 100 and 200 MHz (under typical process conditions),

respectively.

3.10.3 Silicon area

The silicon area of the datapath is 686 X X 2624 X (137.2 X 524.8 p,m2). Figure 3-17

shows the physical layout of the datapath of the AMULET3i adder, and illustrates its

regular structure.

Adder design 62

Figure 3-17: Physical layout of the adder datapath

Adder design 63

3.11 Summary

A carry arbitration scheme is proposed (and has been patented) for parallel adder

circuits. The proposed scheme provides an efficient encoding in which the carry is

generated by arbitrating several input carry requests, exploiting the associativity of the

carry computation. The new scheme not only leads to high speed adders due to the

reduction in the required layers of logic, but also offers a regular and compact layout and

uniform fan-in and fan-out loadings.

CMOS implementations of carry arbiters have been derived and modified. The meaning

of the modified version is twofold. If the intermediate signals V; and are equal, it

means that the carry has been generated. If they are different, it means that there are no

carry requests from the input signals. The intermediate signal vt can be viewed as the

carry out generated with a one carry-in and the intermediate signals W; as the carry out

generated with a zero carry-in.

A new implementation of a three-way carry arbiter has been developed, which behaves

both statically and dynamically, thus having the advantages of both static and dynamic

circuits.

Two applications of the scheme are given in this chapter. One is to refine the Manchester

carry chain. Another is to simplify carry select adders.

A high performance, low power asynchronous 32-bit adder with a reasonable hardware

resource has been developed for AMULET3i, demonstrating the feasibility and

effectiveness of the new scheme. It takes 1.8 ns to complete a 32-bit addition and

Adder design 64

occupies 137.2 jam X 524.8 jam of chip area in a 0.35 jam triple metal CMOS technology.

The power estimate of the datapath is about 8 and 17 mW operating at 100 and 200 MHz

(under typical process conditions), respectively.

It is worth noting that the proposed scheme is general and can be applied to both

asynchronous design and synchronous design. The new scheme was used in the adder

design for the ARM Piccolo DSP processor [65].

Adder design 65

Multiplier design 4

This chapter presents the design of a multiplier for AMULET3L Attention is focused on

CMOS circuit design techniques. We start with an introduction to basic algorithms for

multiplication. The asynchronous multiplier for AMULET2e is then reviewed, as this

formed the starting point for the design of the AMULET3i multiplier. Finally, the design

of an asynchronous multiplier for AMULET3i is developed which uses the modified

Booth’s algorithm integrated with a new encoding technique for adjusting the product

result of an unsigned number multiplication. Post-layout simulation, in a 0.35 micron

triple metal CMOS technology, shows that it takes 11.2 ns (2.8 ns X 4 cycles) to

complete the computation of a 32-bit long multiplication in the worst case.

4.1 Introduction

The general principle by which computers cany out multiplication is quite simple. The

multiplication of two 1-bit binary numbers is even simpler than addition since there is no

need for the cany to propagate. Consider the multiplication of two unsigned numbers

using the ordinary paper-and-pencil method. Figure 4-1 illustrates a dot representation

[66] for the multiplication of two 8-bit unsigned numbers. Roughly speaking, the number

of dots reflects the amount of hardware in a parallel multiplier or the processing time for

Multiplier design 66

a serial multiplier. The height of the dot diagram relates to the latency for carrying out

the multiplication. The paper-and-pencil method comprises two distinct steps. Firstly, all

the partial products are generated simultaneously, then they are added together

proceeding column-wise from right to left. Although conceptually simple, a direct

mechanical implementation of the paper-and-pencil method would lead to a very

inefficient design [67] due to the asymmetry between different columns.

Multiplicand • • # • • • • •
Multiplier • • • • • • • •

Figure 4-1: Dot representation of 8 x 8 bit add and shift multiplication

Looking row-wise, there is a degree of symmetry in terms of the number of dots, though

they have different weights in each row. It is thus desirable to proceed row-wise from top

to bottom for VLSI implementations, either sequentially or using parallel hardware. The

scheme derived from a straightforward application of the paper-and-pencil method is

essentially a process of repeated adds (conditionally adding the multiplicand to a running

partial product) and shifts. Therefore there are two basic approaches to improving the

speed of multiplication: making each addition faster, and reducing the number of

Multiplier design 67

additions required. An additional technique is to use an “early out” scheme [68], which

depends upon the operands presented.

4.1.1 Making each addition faster

A simple multiplier using the scheme derived from the paper-and-pencil method is

illustrated in figure 4-2. The multiplier and multiplicand are initially placed in registers A

and B, respectively; register P which holds the partial product is initially 0. Each

multiply step consists of replacing P with the sum of P and B (AND-gated by the least

significant bit of A), and then shifting P and A together one bit right at a time.

carry-out

I

1 shift right

p A

B

Figure 4-2: A simple multiplier

Obviously, the time necessary for carry propagation imposes the ultimate limit on the

speed of addition and thus multiplication. All the techniques for faster adders can be

used here to speed up multiplication. However, multiplication is a special case of

repetitive addition in which the intermediate results of all but the last addition are not of

any interest. So it is not necessary for the carries to propagate during every multiply step.

Instead, the carries generated during one step may be saved and used again in the next

Multiplier design 68

step with an appropriate shift. In this way, a partial sum and a partial (saved) carry

together present the partial product. Thus each multiply step needs only the time required

for a 1-bit addition since all the cany bits are passed from internal intermediate signals to

outputs. Only on the last step need the carries be propagated to completion instead of

being saved. A cany-save multiplier is illustrated in figure 4-3.

shift right
►

P2

Figure 4-3: A carry-save multiplier

Alternatively, redundant number systems [58] can be used to achieve addition without

carry propagation. Take the radix-2 redundant representation as an example, which has a

digit set {1, 0, 1} where 1 denotes -1. An n-bit redundant number Y = \yn_j>.. .,y^] has the
7 1 - 1

value y. x 2l , where y* belongs to {1, 0, 1}. This is similar to an unsigned binary
7 = 0

representation except that yt- can be 1. The key idea to avoid carry propagation when

adding two redundant numbers is to set the intermediate sum to 0 or 1 when there is a

negative carry from the next lower order position and to set the intermediate sum to 0 or

1 when there is a positive cany from the next lower order position. By so doing, there is

no need to know the lower order cany to obtain the cany as the intermediate sum and

cany from the next lower order position cannot both be 1 and -1 at the same time.

Multiplier design 69

It is worth noting that since the partial product has been replaced by a partial sum and a

partial carry, the carry-save scheme in effect employs a redundant concept. The

difference is that the carry-save scheme uses the digit set {0, 1, 2, 3} instead of {1,0, 1}

since the combination of a partial sum and a partial carry results in four values of

unsigned number.

4.1.2 Reducing the number of additions required

One way to reduce the number of additions required is to use multi-operand additions

(more than three operands), which can add many numbers simultaneously, instead of just

two or three at a time. A Wallace tree [69] is well known for its optimal computation

time. However, its implementation is often too expensive to justify the speed obtained.

Several tree or array structures derived from the Wallace tree have been proposed by

trading speed for regularity [70-72].

Another way to reduce the number of additions required is to skip over any contiguous

string of Is and Os in the multiplier, rather than form a partial product for each bit. The

original Booth’s algorithm [13] is based on this idea.

Taking a 32-bit two’s complement number as an example. A 32-bit signed word A =

(a3ja30 ... ai a0) can be expressed as:

30

A = - 2 31«31 + 2lat
i = o

The principle of the original Booth’s algorithm is to rewrite this number as:

30 31 31

A = - 2 31a31 + X 2 i a ; = X 2 ' > i - i - a i) = ~ L 2%
i = 0 i = 0 i = 0

Multiplier design 70

where a_j is a dummy bit that is equal to zero, and kt (= ci^j - a;) belongs to the digit set

of {1, 0, 1}. Thus, the original Booth’s algorithm may be viewed as a conversion of the

multiplier representation from a conventional code into a redundant code. The redundant

code is {1,0,1}, and the radix is two. The radix (r = 2b) determines how many bits (b) of

multiplier are retired in an iteration.

A redundant addition or carry-save addition scheme encodes the multiplicand using a

redundant representation, while the oiiginal Booth’s algorithm encodes the multiplier

using a redundant representation. It is worth noting that the radix of the algorithm and

the radix of the number representation are not the same concept.

A slightly different algorithm, called the modified Booth’s algorithm [14], considers

groups of bits of the multiplier rather than skipping over arbitrarily long strings. The

multiplier bits are divided into two-bit groups. Three bits are scanned at a time, two bits

from the present group and the third bit being the higher-order bit of the next lower-order

group.

The principle of the modified Booth’s algorithm is to rearrange a number as:

30 15 15

A = - 2 31a31 + ^ 2 za. = ^ 22z («2/_ i + a2i ~ ^ a2i+ i) = 2 ^ 2l^i
i - 0 i - 0 i = 0

where a_j is a dummy bit that is equal to zero, and kt (= a2i^ + a2i ~ 2a2i+1) belongs to

the digit set of {-2, -1, 0, +1, +2}. Thus, the modified Booth’s algorithm may be viewed

as a conversion of the multiplier representation from a conventional code into a

redundant code. The redundant code is {-2, -1, 0, 1,2}, and the radix is four. A radix 4

algorithm retires 2 bits of multiplier in an iteration.

Multiplier design 71

The modified Booth’s algorithm is described in table 4-1.

Table 4-1: Modified Booth algorithm

Group Action

0 0 0 0

00 1 +1

0 10 +1

01 1 +2

1 0 0 -2

101 -1

1 10 -1

1 1 1 0

The modified Booth’s algorithm is more commonly used than the original Booth’s

algorithm since VLSI implementations favour its fixed shift of the multiplier in each

iteration. The modified Booth’s algorithm halves the number of additions that have to be

performed compared with the simple paper-and-pencil method, therefore speeding up the

multiplication.

An additional technique that may be used to further reduce the number of additions is to

check in each multiply step whether the shifted multiplier register contains only Is or Os,

and, if so, to terminate the multiply process early. Note that the final result must be

correctly aligned.

4.2 AMULET2e multiplier

The AMULET2e multiplier has been described elsewhere [16], so only a summary is

presented here. Figure 4-4 shows the organisation of the AMULET2e multiplier.

Multiplier design 72

4-bits shift to right I b us ̂

8 least significant bits

ght \ iL i
A register

_ l

Bus B I 4-bits shift to leftf I 4-bitsCf
B register

Booth’s
Logic

V 1

8
a

Mle

Control
Logic

T

- -r H
Control signals

\

<

I

Booth’s
Mux

PI & P2 registers

Mid

Control circuit
i___

Datapath

0
4-2

Countera
S & C registers

Bus C Bus D

Figure 4-4: AMULET2e multiplier organization

Multiplier design

Q The AMULET2e multiplier is a 32-bit normal multiplier, which means that the

final result is the least significant 32 bits of the 64-bit product. One benefit from this sort

of multiplier is that both unsigned and signed number multiplications give the same

result. The AMULET2e multiplier does not detect overflow and leaves it to software

either to constrain the operands to ensure there is no overflow or to perform explicit

checks (as required by the ARM instruction set definition).

□ The AMULET2e multiplier uses the modified Booth’s algorithm. Two stages of

the Booth’s algorithm are performed in each cycle by shifting four bits at a time. The

AMULET2e multiplier employs an “early out” scheme, which depends on the operands

provided, hence achieving statistical speed improvement and saving power.

□ An iterative structure was chosen combined with a pipeline technique in the

AMULET2e multiplier to reduce the hardware cost by increasing hardware utilization.

The partial products in the AMULET2e multiplier remain at a fixed alignment to avoid

difficulty when selecting the final result in “early out” cases. Instead, the multiplicand

and multiplier shift left and right, respectively.

□ The AMULET2e multiplier uses the high speed, low power true single-phase

clocking (TSPC) methodology and pass-transistor logic style. Novel 4-2 Counters are

used which are symmetric with respect to their inputs and outputs. Transistors with small

size were favoured for low power.

□ The AMULET2e multiplier was designed in a 0.5 pm three metal CMOS process

technology. The layout is regular and compact with a datapath area of only 320 X 710

pm2. The working chip has a 6.5 ns multiplier cycle time [11].

Multiplier design 74

4.3 Multiply support for AMULET3i

AMULET3i supports two classes of multiply instruction: a normal 32-bit result and a

long 64-bit result. Both types of multiply instruction can also optionally perform an

accumulate operation.

4.3.1 Normal multiply

There are two normal multiply instructions, producing 32-bit results:

MUL

The MUL instruction multiples the values of two registers together, truncates the result

to 32 bits, and stores the result in a third register.

MLA

The MLA instruction multiples the values of two registers together, adds the value of a

third register, truncates the result to 32 bits, and stores the result into a fourth register.

Both instructions can operate on signed or unsigned numbers since only the least

significant 32 bits of the product result are stored in the destination register and the type

of the operands does not affect this value.

4.3.2 Long multiply

There are four long multiply instructions, producing 64 bit results:

SMULL & UMULL

Multiplier design 75

These two instructions multiply the values of two registers together and store the 64 bit

result in a third and a fourth register. There are signed (SMULL) and unsigned

(UMULL) variants. The signed variants produce a different result in the most significant

32 bits if either or both of the source operands is negative.

SMLAL & UMLAL

These two instructions multiply the values of two registers together, add the 64 bit value

from a third and a fourth register and store the 64 bit result back into those (third and

fourth) registers. There are again signed (SMLAL) and unsigned (UMLAL) variants.

These two instructions perform a long multiply and accumulate.

4.4 Multiplier organization

The target for the multiplier design for AMULET3i is a 2 times speed improvement

compared with the AMULET2e multiplier, with a reasonable area increase. Latency and

chip area were considered the most important parameters to be minimized. The

AMULET3i multiplier is not optimized for low power since multiplication instructions

are not very often used compared with other instructions for general purpose

applications. However, low power was kept in mind during the development of the

design.

4.4.1 First design iteration

The first design decision was to use the modified Booth’s algorithm, processing 8 bits at

a time. The reasons are twofold. Firstly, based on the evaluation of the AMULET2e

multiplier, this approach is likely to meet the speed target. Secondly, an 8-bit scheme,

Multiplier design 76

just having four cases (caused by early outs) to choose from, simplifies the product result

select compared with the eight cases arising from the “early out” scheme with 4 bits at a

time. This difficulty was avoided in the AMULET2e multiplier by shifting the

multiplicand left while the partial product remains fixed, since the most significant 32

bits of a product result can be thrown away. However, as the multiplier for AMULET3i

supports long multiply instructions, the difficulty cannot easily be avoided as the

multiplicand should remain fixed here while the partial products are shifted right.

The second design decision was to define an iterative structure for the AMULET3i

multiplier. It is possible to implement a fast parallel 32-bit multiplier, however, a

significant amount of hardware would be needed. On the other hand, serial multipliers

use less area but are quite slow. A serial/parallel iterative structure was chosen as a good

compromise for the AMULET3i multiplier.

The initial design is shown in figure 4-5. A 64 bit accumulate value can be used to

initialise one of the partial product registers PI and P2 (the most significant 32 bits and

the least significant 32 bits of an accumulate value are in P1L and P1H or P2L and P2H,

respectively). Multiplier data can be stored into the least significant 32 bits of either of

the partial product registers PI or P2. The most significant 32 bits of one of the partial

product registers PI or P2 is unused and should be initialised to 0. This initial version of

the design presents a minimum hardware requirement.

4.4.2 Encoding technique

As described previously, the multiplier for AMULET3i should support both unsigned

and signed numbers. In fact, the modified Booth’s algorithm can also be used with an

Multiplier design 77

Multiplicand

Booth Mux

4-2 counter

final result

Result select4-2 counter

P2L
P1L

 ►

shift 8 bits right per cycle

Figure 4-5: First version

unsigned system. For an unsigned number multiply operation, an extra action must be

performed to adjust the product result. The conventional equation of the modified

Booth’s algorithm for an unsigned number is, in the case of a 32-bit number, to rearrange

an unsigned number A = {a31a30 ... a; ag) as:

30 15 15

A = 231a31 + 2lat = (a2._1+ a2i- 2 a 2i-+1) + 232a31 = ^ 2 2lk(+ 232«31
i' = 0 i = 0 i = 0

where a_j is a dummy bit that is equal to zero, and (= a2j-i + a2i ~ ^Cl2i+l) belongs to

the digit set of {-2, -1, 0, +1, +2}. Obviously, an adjustment value (a multiplicand value)

Multiplier design 78

can initially be put into either register P1L or P2L to represent the term 232a31. However,

this cannot easily be done since one of the registers P1L and P2L is used for the most

significant 32 bits of an accumulate value and the other is used for a multiplier operand.

One observation is that one of the registers P1H and P2H is for the least significant 32

bits of an accumulate value and the other is left unused. The new idea introduced here is

to put an adjustment value in one of the registers P1H and P2H.

A signed or unsigned number can be expressed as:

30 15 15

A = 231«3j + £ 2 ‘a, = 2 2 2'-(&2j + &2; + 1- 2 6 2,. + 2) +<z0 = £ 2 2V flo
i - 0 i = 0 i = 0

where bo = 0, bt = at (1 < i < 31), and b32 = sign x a3]. The sign bit indicates that signed

numbers are used if it is 1 and unsigned numbers are used if it is 0. In this way, an

adjustment value can initially put into either register P1H or P2H to present the term a0.

4.4.3 Second design iteration

From figure 4-5, a multiply cycle should cover the delay of two 4-2 Counters, one Booth

mux cell and one register. In order to improve the speed, a common pipeline technique

can be used, as shown in the figure 4-6. Two additional pipeline registers are added to the

initial version. This does not cause a big increase in hardware since part of registers can

be merged efficiently into the preceding 4-2 Counter as we will see later in the circuit

design. However, the pipeline register causes a one clock cycle skew between the partial

products and the signals before the pipeline registers since the partial product registers

are shift registers. A multiplexer can be used before the partial product registers to solve

the skew problem as is frequently done in clocked designs. The alternative approach is to

Multiplier design 79

Multiplicand

Booth Mux

4-2 counter

Pipeline register

final result

4-2 counter

P2H V P2L
P1H P1L

shift 8 bits right per cycle

Figure 4-6: Second version

use gated registers (conditional clocking) for partial products. Only on the first cycle are

the partial registers disabled and the contents of the registers remains unshifted, therefore

the partial registers are naturally aligned with the incoming signals from the pipeline

registers after the first cycle.

The first approach (using a multiplexer) will suffer a hardware overhead, whereas the

second approach (conditional clocking) will violate the high speed true single-phase

Multiplier design 80

clocking methodology we will use in the circuit design as the clock signals for the

pipeline registers and the partial product registers have to be separated due to the gated

clock requirement for the partial product registers. The two above approaches were

heavily influenced by the clocked design methodology.

In fact, the skew problem can easily be solved within the asynchronous framework by

making the pipeline registers initially transparent. It will be seen that the first cycle time

must cover the whole path delay just as in the non-pipelined case. However, this does not

matter for an asynchronous design which can have variable cycle times. This is an

example of how nicely an asynchronous design can solve problems which can only be

solved with much effort in clocked designs.

Another change is that a final shifter for “early out” cases is not used since there is

difficulty in the layout stage. Though the number of tracks for buses is ten per bit pitch,

six buses must be reserved for global use and only four local buses are available for the

multiplier. As a result, the final result can be quickly shifted out instead.

4.4.4 Sign extension

Due to the two negative terms (-1 and -2) in the modified Booth’s algorithm, the sign bit

(the most significant bit) of the partial products has to be extended up to the most

significant bit of the expected result. This means that in a real circuit implementation the

sign bit has to be broadcast up to the most significant bit of the expected result and this

may cause both decreased circuit speed, since a heavy capacitance load arises from the

high fan-out of the sign bit, and increased layout area. The scheme presented below

avoids these drawbacks.

Multiplier design 81

Consider a number Aext of a k-bit signed partial product A = • •• aj ciq), which

must be sign extended by s bits. Its value is:

j + k - 2 k — 2

^ e x t = ~ ^ S + k l a k - l + X 2 U k ~ l + 2 / ^ l(li
Jfc-1 i — 0

The above equation can be rearranged as:

j + k — 1 k - 2

= E 2i+2̂ 1o -**_,)+ S2'fl|
k - l i = 0

From the equation, instead of direct sign extension, constant Is (the first term) can be

added at the most significant s+1 bit positions of the number Aext and the inverted ak_j

(the second term) replaces the original ak_j. All the constant Is of the partial products can

be pre-calculated as a adjustment value.

4.5 Circuit design

The true single-phase clocking (TSPC) methodology [15] and pass-transistor logic style

[73-77] were chosen for the circuit design in order to achieve high performance and low

power. One main advantage of the true single-phase clocking methodology is that the

clock skew problem of complementary phase or multi-phase clocking schemes is

avoided. Another advantage is its low power consumption as only one enabling signal is

required. Pass-transistor logic style is flexible for the design of arithmetic components.

4.5.1 Booth mux cell design

The modified Booth’s algorithm examines three bits of the multiplier at a time to

determine whether to add 0, +1, +2, -1, or -2 times the multiplicand. The Booth mux cell

performs this function, and it steers the appropriate multiplicand value to the output.

Multiplier design 82

Figure 4-7 shows the circuit of the Booth mux cell used in the AMULET3i multiplier.

Some effort was expended to ensure that only one path from the input to the output is on

at any time, minimising short circuit currents for low power reasons.

+1* -i* +2* -2*

i

i

i+1

+1 -7 +2 -2

Figure 4-7: Booth mux cell

The Booth mux cell was analysed using HSPICE on extracted layout under the

conditions of 3.3 volt supply voltage and 100 °C temperature. The simulated results are

given in table 4-2. The estimation of power consumption of a circuit is difficult since it is

a function of not only its inputs but also of their history. For the sake of simplicity, the

power consumption was measured under the assumption of 100% input activity.

Table 4-2: Simulation results on the Booth mux cell

delay power

typical process case 0.61 ns
41 pW @ 100 MHz

87 pW @ 200 MHz

worst process comer
0.72 ns

37 pW @ 100 MHz

78 pW @ 200 MHz

Multiplier design 83

4.5.2 4-2 Counter design

4-2 Counters [78-82] are used to speed up the partial product compression process. The

main advantage of 4-2 counters over the more familial* 3-2 counters (i.e., full adders) is

that their structure is analogous to a binary tree, which leads to regular layout and

improved speed. Logically, a 4-2 counter consists of two full adders as shown in figure 4-

8 and has four XOR gate delays. Since the Cout signal is independent of the Cin signal,

there is no propagation problem when several 4-2 counters are abutted into the same

row; this is the key idea behind 4-2 counters. A 4-2 counter is similar to but different

from a 5-3 counter. A 5-3 counter has three different weights for the outputs, while a 4-2

counter has two different weights for the outputs.

Ini In2 In3 ln4

■M,—
Cout Cin

3-2 counter

3-2 counter

Carry Sum

Figure 4-8: 4-2 Counter structure

With careful design, following the truth table as shown in table 4-3, one XOR gate delay

can be saved. Figure 4-9 and figure 4-10 show the new 4-2 Counter with and without

Multiplier design 84

enable control, respectively, A 4-2 Counter with enable control includes the functionality

of the pipeline register (see section 4.5,3), This inclusion is natural and without hardware

overhead; just two more n-type transistors are introduced.

The circuits use pass-transistor logic and borrow a common practice from analog designs

in which noise immunity is achieved by using quasi-differential signals. The interfacing

signals are singled-ended and internal signals are complementary.

Normally the enable signal is high and the circuit behaves statically. The sum and carry

delays are balanced for decreasing glitches; this is also desirable since both signals are

on the critical path. This is different from the case of adder designs where the carry delay

should be minimized since it is on the critical path and the sum delay is off the critical

path.

Table 4-3: Truth table for 4-2 Counters

The number o f inputs high Cin Cout Sum Carry

0 0 0 0 0

1 0 0 1 0

2 0 l/0(note) 0 0/1(note)

3 0 1 1 0

4 0 1 0 1

0 1 0 1 0

1 1 0 0 1

2 1 0/1 (note) 1 l/Q(note)

3 1 1 0 1

4 1 1 1 1

(note) — either Cout or Carry may be one or zero, but not both.

Multiplier design 85

P4

P2

P3

PI

- O

H r

HC 1-------

HC

J tft:

W(HL

Co

-{>—11

> ■

g a - J

C*3—,

nCo nCin Cin

I
■HC

——jn ~j|—̂ i

;

i
— < J P ” JJa— i i

< >

C DH

En

T

nPS

nPC

Figure 4-9: 4-2 Counter with enable control

Multiplier design

Co nCin CinnCo

P4

P2

nPC

P3

PI
_(jr |---------

T O -

Figure 4-10: 4-2 Counter without enable control

Multiplier design 87

The two 4-2 Counters were analysed using HSPICE on extracted layout under the

conditions of 3.3 volt supply voltage and 100 °C temperature. The simulation results are

given in table 4-4 and table 4-5. For the sake of simplicity, the power consumption was

measured under the assumption that one input is active.

Table 4-4: Simulation results on the 4-2 Counter with enable control

delay power

typical process case 1.10 ns
319 mW @ 100 MHz

644 mW @ 200 MHz

worst process comer 1.40 ns
302 mW @ 100 MHz

611 mW @ 200 MHz

Table 4-5: Simulation results on the 4-2 Counter without enable control

delay power

typical process case 0.97 ns
300 mW @ 100 MHz

606 mW @ 200 MHz

worst process corner 1.24 ns
285 mW @ 100 MHz

574 mW @ 200 MHz

4.5.3 Pipeline register design

Figure 4-11 shows the circuit of a pipeline register. The first enabled inverting stage

predischarges the node nl low and the second enabled inverting stage is opaque when

the enable signal En is high. At the time that En falls, the node nl is either pulled high

(input In low) through two pull-up transistors or remains low (input In high), and this

level is then stored into the dynamic node n2 through the second transparent inverting

stage when En is low. Normally the enable signal En is high. Since the signals Lt and nLt

Multiplier design 88

are initially high and low, respectively, which allows the input In to propagate down to

the node n2, the node n2 has static behaviour. It is obvious that the initially transparent

pipeline register not only solves the skew problem (see “Second design iteration” on

page 79), but also makes the node n2 static; otherwise some effort would have to be put

into ensuring that the node n2 was static rather than “floating”. There is no node in the

circuit that is in the floating state for an arbitrary long time. It is worth noting that one

enabled inverting stage required for a negative edge triggered TSPC register is merged

into the last stage of the previous 4-2 Counter.

Out

Figure 4-11: Pipeline register

The pipeline register was analysed using HSPICE on extracted layout under the

conditions of 3,3 volt supply voltage and 100 °C temperature. The simulation results are

given in table 4-6. For the sake of simplicity, the power consumption was measured

under the assumption of 100% input activity.

Multiplier design 89

Table 4-6: Simulation results on the pipeline register

delay
power

In —> En En —> Out

typical process case 0.0 ns 0.46 ns
58 mW @ 100 MHz

92 mW @ 200 MHz

worst process corner 0.0 ns 0.68 ns
44 mW @ 100 MHz

83 mW @ 200 MHz

4.5.4 Partial product register design

Figure 4-12 shows the circuit of the partial product register, which comprises three

clocked inverting stages. The first stage is transparent and the third stage is opaque when

En is high. On the other hand, the first stage is opaque and the third stage is transparent

when En is low. At the time that En is high, node nl in the second stage is predischarged

low. When En falls, the node nl is either pulled high or remains low, and this level is

then transfer into the third stage.

The partial product register also provides a direct load capability. Initially the node n2 is

made static high by the signal nZ, and it can then be conditionally discharge depending

on the signals D and Lt.

The partial product register was analysed using HSPICE on extracted layout under the

conditions of 3.3 volt supply voltage and 100 °C temperature. The simulation results are

given in table 4-7. For the sake of simplicity, the power consumption was measured

under the assumption of 100% input activity.

Multiplier design 90

En

Out
In

D

Figure 4-12: Partial product register

Table 4-7: Simulation results on the partial product register

delay
power

In —> En En —> Out

typical process case 0.19 ns 0.47 ns
39 mW @ 100 MHz

63 mW @ 200 MHz

worst process comer 0.23 ns 0.65 ns
31 mW @ 100 MHz

57 mW @ 200 MHz

4.5.5 Low power design

The multiplier for AMULET3i is not optimized for low power, however low power was

kept in mind during the whole process of design development.

Dynamic logic [83,84] is favourable for low power due to its lower switched

capacitance. However, a direct application of dynamic logic in an asynchronous design

Multiplier design 91

will cause a state-loss problem since an asynchronous design allows activity to cease for

an arbitrarily long time. Therefore low power designs often employ dynamic logic with

additional latches or charge-retention circuits to give pseudo-static behaviour. These

additions increase the cost and power consumption of the dynamic circuits, thereby

compromising their potential advantages. Circuits used for the AMULET3i multiplier

are dynamic logic without the above-mentioned encumbrances whilst still retaining

externally static behaviour.

The true single-phase clocking methodology has been adopted in the circuit design. The

reasons are threefold. Firstly, its dynamic logic which can be integrated with static

behaviour is desirable for both low power and high speed. Secondly, only one enabling

signal is required and the minimum size and number of transistors are needed in the

TSPC registers. Thirdly, it is easy to integrate some logic into a TSPC register to reduce

the hardware complexity and overall delay and therefore save power.

To minimize the physical capacitance for low power, transistors are made small

whenever this is possible. Cells for the AMULET3i multiplier usually comprise two

stages. The first stage contains transistors with the smallest size possible to minimize the

required area and power, whereas the second stage uses transistors with greater sizes to

ensure that they have the drive capability for their capacitive load.

Reducing the activity of nodes with a large capacitive load is another approach adopted

for low power. An early out technique is used, which not only gives a statistical speed

improvement but also saves power. Attention is also given to minimise short circuit

currents during the circuit design [85].

Multiplier design 92

4.6 Layout design

The layout design of the AMULET3i multiplier uses a full-custom style for the datapath,

where the circuit and layout of almost every transistor is optimized, and a standard cell

style for the control logic, where the layout is automatically placed and routed using

Compass Design Automation tools [86]. When the layout of a cell was complete, it was

verified against the corresponding schematic (LVS) and then simulated using HSPICE.

The full-custom style is used in order to exploit the regularity of the datapath by

designing only one “bit slice”. The height of the bit slice in the datapath design is 82 X

for the AMULET3i multiplier. The number of tracks available for buses is ten per bit

slice. Four tracks are for local routing and the other six for through buses. Data flow is

routed horizontally in metal3, while control flow is relayed vertically in metal2. Both

metal 1 and metal2 are used for local interconnect in cells. The global power rails use

metal 1 and metal3, and the local power rails use metal2.

The overall height and width of the standard cells for AMULET2e are 112 X and a

multiple of 8 X, respectively. This means that the connectors of a cell must have an 8 A.

spacing and a 4 X horizontal margin to either side of a cell. By taking into account

existing open vertical routing tracks inside the standard cells, the routing over cell

algorithm helps to reduce the final chip size.

4.7 Evaluation

An evaluation of the AMULET3i multiplier in terms of performance, power

consumption and silicon area is presented in this section.

Multiplier design 93

4.7.1 Performance

The critical path in the first pipeline stage includes one Booth mux cell, one 4-2 Counter

(with enable control) and one pipeline register and the critical delay is about 2.8 ns under

worst-case conditions (Vdd = 3.3V, V&s=0.1V, slow-slow process comer, at 100 °C

temperature). The critical path in the second pipeline stage includes one 4-2 Counter

(without enable control), one partial product register and one multiplexer for the final

result and the critical delay is about 2.6 ns under worst-case conditions.

The delays of the two pipeline stages are well matched. This results in a 300 MHz

computational speed with a 20% engineering margin.

4.7.2 Power consumption

The estimation of power consumption is a difficult problem since it is a strong function

of the inputs and their history. A rough estimate of power consumption is given based on

some assumptions. It is highly unlikely that all data bits will change for every data value.

Based on the assumptions that half the data bits on average will change and that the

dynamic switching power is 90% of the total power, the power estimate of the datapath is

about 40 and 82 mW operating at 100 and 200 MHz (under typical process conditions),

respectively.

4.7.3 Silicon area

The silicon area of the datapath is 2082 X X 3198 X (416.4 X 639.6 pm2). Figure 4-13

shows the physical layout of the datapath of the AMULET3i multiplier, and illustrates its

regular structure.

Multiplier design 94

Figure 4-13: Physical layout of the multiplier datapath

Multiplier design 95

4.8 Summary

A high performance, low power asynchronous 32 bit multiplier with a reasonable

hardware resource has been developed for AMULET3i. The design uses the modified

Booth's algorithm with 8 bits at a time with an iterative structure. An “early out” scheme

is employed.

The pipeline registers are made initially transparent to avoid the data skew problem

caused by introducing one pipeline stage. An new coding scheme is used to adjust the

product result of an unsigned number multiplication. An adjustment value is made on the

least significant 32-bit positions.

The true single-phase clocking methodology and pass-transistor logic style are chosen

for circuit design. A new 4-2 counter circuit has been incorporated.

The AMULET3i multiplier presents a minimum hardware requirement given

performance constraints and is designed for low power.

Post-layout simulation, in a 0.35 micron triple metal CMOS technology, shows that it

takes 11.2 ns (2.8 ns X 4 cycles) to complete the computation of a 32-bit multiplication in

the worst case. The power estimate of the datapath is about 40 and 82 mW operating at

100 and 200 MHz (under typical process conditions), respectively. The layout is regular

and compact with a datapath area of only 416.4 X 639.6 [xm2.

Taken individually, the characteristics above are not novel. What is new is the manner in

which the AMULET3i multiplier has been designed to combine elegantly all these

algorithm and circuit design techniques within an asynchronous framework.

Multiplier design 96

Four-phase pipeline control 5

This chapter explores the design of four-phase control schemes for asynchronous

pipelines. The study is focused mainly on the four-phase micropipeline design style

which uses conventional level-sensitive data latches. Low power considerations and the

use of dynamic logic are also discussed. All of the proposed pipeline latch control

circuits are speed-independent, and this has been verified using the FORCAGE tool [21].

Simulation results in a 0.35 micron triple metal CMOS technology are presented.

5.1 Introduction

Micropipelines were introduced by Ivan Sutherland in his 1988 Turing Award lecture

[20], and are a practical way to build asynchronous pipelines. Micropipelines are viewed

as being composed of a control circuit employing the two-phase handshake protocol and

a datapath using the bounded delay model.

The AMULET1 asynchronous processor, developed by Professor Steve Furber’s

AMULET group at the University of Manchester, used the two-phase micropipeline

design techniques. However its successors, AMULET2e and AMULET3i, abandoned

two-phase control in favour of four-phase control, mainly for performance reasons.

Four-phase pipeline control 97

The four-phase micropipeline design space may be roughly categorized by viewing

along three dimensions: the data-validity scheme, the logic activation configuration, and

the decoupling degree. These three dimensions have the possible values of: Early, Broad

or Late; Request-activate or Acknowledge-activate; Un-decoupled, Semi-decoupled or

Fully-decoupled, respectively. A three-character shorthand notation can therefore be

used to convey the category for a particular design. For example, the abbreviation ERF

would signify a circuit which employs the Early data-validity scheme, uses a Request

signal to activate combinational logic, and is Fully-decoupled.

5.2 Data-validity scheme

Figure 5-1 shows a general micropipeline stage structure. The latch control circuit

communicates with neighbouring pipeline stages on both its input link (Rin, Ain) and its

output link (Rout, Aout). The control link (E, D) connects with associated combinational

logic. In addition to these three handshake links, a latch control wire (Lt) is needed to

open and close the latch when low and high, respectively. The pipeline latches are

configured as transparent when empty and we will return to this later.

Data in

Rin * Rout

Ain < Aout
Controller

Figure 5-1: Micropipeline stage structure

Four-phase pipeline control 98

The four-phase micropipeline design uses two successive handshakes for completing one

communication process between neighbouring pipeline stages. There is a choice to be

made as to which edge (rising or falling) of each handshake signal indicates the validity

of data. This leaves us with three possible data-validity schemes, “early” [17,18],

“broad” [19] or “late”, which are depicted in figure 5-2. It is worth noting that all these

schemes take the micropipeline view that the sender of the data initiates the transfer.

t___ ' i
Rin '[\ ^

i t
t i
i i
i i

i
i

Ain ■ /
i i
i i
i i

i
i
i
iXXCS i

1 I
1 1
1 1

i
i
i

“Broad” % \ ti i
i i
i i i i

i
t

“Late” I I %

Figure 5-2: Three data-validity schemes

Initially, the Rin and Ain wires are both low. The “early” data-validity scheme uses the

rising edge of the Rin wire to indicate “data available” and the rising edge of the Ain wire

to indicate “data latched”. Then the Rin wire is returned low, whereafter the Ain wire is

also returned low. The first handshake from Rin high to Ain high is called the

“processing” or “evaluation” phase, during which the data remains valid. Data can

change after the first handshake. The second handshake from Rin low to Ain low is called

the “recovery” or “reset” phase, which is redundant and carries no meaning.

Four-phase pipeline control 99

The “broad” data-validity scheme uses the rising edge of the Rin wire to indicate “data

available” and the falling edge of the Ain wire to indicate “data latched”. Data must be

guaranteed valid throughout two successive handshake processes. No “evaluation” or

“reset” phases are distinguished.

The “late” data-validity scheme uses the falling edge of the Rin wire to indicate “data

available” and the falling edge of the Ain wire to indicate “data latched”. The first

handshake from Rin high to Ain high is called the “preset” phase, which is redundant and

carries no meaning. The second handshake from Rin low to Ain low is called

“processing” or “evaluation” phase, during which the data remains valid. Since the “late”

data-validity scheme is rarely used, we focus only on the “early” and “broad” data-

validity schemes and omit further consideration of the “late” scheme in this thesis.

5.3 Logic activation configuration

The rising edge of Rin, which indicates “data available” in both “early” and “broad”

data-validity schemes, is usually used to activate combinational logic. This common

arrangement is referred to as a “request-activate” configuration as shown in figure 5-3.

Data in

Rin > Rout
Controller

Ain < Aout

Figure 5-3: “Request-activate” configuration

Four-phase pipeline control 100

Instead of using the Rin wire, the “broad” data-validity scheme has the choice of using

the Ain wire to activate combinational logic as the data remains valid during the whole

handshaking process. This new arrangement is referred to as an “acknowledge-activate”

configuration as shown in figure 5-4, and provides an efficient framework for low power

design using dynamic logic (see section 5.13).

Data in

Rin > Rout

Ain < Aout
Controller

Figure 5-4: “Acknowledge-activate’’ configuration

5.4 Decoupling degree

Conceptually, the decoupling degree is used to describe how the input link interacts with

the output link. For the sake of discussion, three terms are defined here. The first

handshake is called “initiated” and the second handshake “completed”. “Suspended” is

between “initiated” and “completed”.

A micropipeline stage is said to be un-decoupled if it satisfies the following two

conditions: (1) a new communication coming along its input link cannot be “initiated”

until the current communication going along its output link has been “completed”, (2)

and it is “suspended” if the new communication along its output link has not been

“initiated”. A micropipeline stage becomes semi-decoupled by getting rid of the first

Four-phase pipeline control 101

condition, and it becomes fully-decoupled by also removing the second condition. A new

communication along the input link of a fully-decoupled latch control circuit may be

“completed” before the new communication along its output link has been “initiated”.

5.5 ERU latch control circuit

The specification of the latch control circuit is described using a Signal Transition Graph

(STG) which shows the causal relationships between the signal transitions. An STG for

an ERU latch control circuit is shown in figure 5-5. The dashed arrows indicate

dependencies that the environment (usually the neighbouring stages) must observe and

the solid arrows represent internal orderings; both must be maintained to ensure that the

corresponding circuit is speed-independent. The “tokens” drawn next to certain arcs

represent an initial “marking”. A particular transition can fire only when there is a token

on each of its input arcs and a token is placed on each of its output arcs after it fires.

/

A+ > Rout+

> Rout-

Aout-- Ain- <■ Lt-

Figure 5-5: STG of the ERU latch control circuit

The state graph may be derived from the STG and then an implementation from the state

graph, but in this simple case it may be seen by inspection that the circuit in figure 5-6 is

Four-phase pipeline control 102

an implementation of the STG in figure 5-5. There should be one closure and one

opening of the latch before one communication has been “completed” for this latch

control circuit. Thus the latch can only be closed when the next stage latch is open since

Aout must be low (the next latch is open) before Lt can go high. In the case when data is

inserted into the pipeline at a greater rate than it is removed from the pipeline, the

pipeline will eventually fill. A full micropipeline has alternate closed and open latches

(and therefore only alternate stages can be occupied), similar to master-slave latches in

synchronous designs. This effectively halves the asynchronous pipeline depth. Therefore

this design is not of practical interest, and it is used here only as a starting point.

D Ain

Aout Rout

Figure 5-6: ERU latch control circuit

5.6 ERS latch control circuit

An STG specification for an ERS latch control circuit [18] is shown in figure 5-7. It is

worth noting that an internal variable (A) is introduced on purpose. The variable (A) is

used to record when the input link is ready to proceed. It is expected that there will be

dozens of latched data and a buffer is to be needed to maintain reasonable drive strength.

This buffer reflects the need for the latch to close before the input link is “initiated”. It

could, perhaps, be argued that some delay should be built into the path from D to Rout.

Four-phase pipeline control 103

However, there is no need for the latch to close before Rout is signalled so long as the

data have propagated through the latch which is transparent when empty. This argument

reflects, in fact, the constraint of the bounded delay model. Therefore the delay from D to

Rout must be no shorter than the propagation delay through the latch for the correct

operation of the circuit, which is almost always satisfied with confidence.

/

> Rout+D+

Ain+

* Rout-D-

v - Ain- + Lt-

Figure 5-7: STG of the ERS latch control circuit

To obtain formally an implementation of an STG specification, the STG is first

transformed into the state graph by applying the underlying Petri net rules to construct

the reachability tree. The state graph should have the CSC (Complete State Coding)

property, then logic equations for the output variables can be derived. Figure 5-8 shows

an implementation of the ERS latch control circuit [18]. The notation used here for

asymmetric C-gates follows that used in previous work [18]. An input controls both

edges of the output when it is connected to the main body of the gate, it controls only the

rising edge when connected to the extension marked and it controls only the falling

edge when connected to the extension marked This notation is illustrated in figure 5-

9 which shows a possible transistor level implementation of an asymmetric C-gate.

Four-phase pipeline control 104

D

I
Ain

1
G> t> ►— Lt

Aout Rout

A
B —
C —

Figure 5-8: ERS latch control circuit

Z

Figure 5-9: Asymmetric C-gate notation

With the ERS circuit a new communication on the input link can be “initiated” before the

current communication on the output link has been “completed”, but it is “suspended”

until the new communication on the output link has been “initiated”. This means that one

communication should cover two “evaluation” processes and can therefore be performed

in a time proportional to the sum of the two processing logic delays.

Four-phase pipeline control 105

5.7 ERF latch control circuit

An STG specification for an ERF latch control circuit is shown in figure 5-10. Note that

the buffer falling delay from Lt high to Lt low is removed from the input link path. This

is significant since the buffer delay, especially in a wide datapath where the capacitive

loading is large, has an adverse effect on the handshake delays.

* Rout+D+

Aout+

Rout-D-

V - Ain- Aout-

Figure 5-10: STG of the ERF latch control circuit

The ERF latch control circuit is shown in figure 5-11. A new communication along the

input link can be “completed” before the new communication along the output link has

been “initiated”. The essence of a fully-decouped latch control circuit is to break the

sequential operational dependency between its input side and its output side in order to

allow them to run concurrently on either side. A clocked pipeline is, in some senses,

fully-decouped, but it should use an edge-triggered as one pipeline stage to isolate its

input flow from its output flow. It is obvious that asynchronous pipelines are more

efficient in terms of the number of latches required, especially when a wide datapath or a

deep pipeline is involved. It should be mentioned here that early asynchronous designs

[87] used edge-triggered latches, simply following the practice of the clocked design.

Four-phase pipeline control 106

D

ir

Ain

a

Q

0
= £ > -► Lt

Aout Rout

Figure 5-11: ERF latch control circuit

5.8 BRU latch control circuit

For the sake of comparison, an STG specification and implementation of a BRU latch

control circuit are shown in figure 5-12 and figure 5-13, respectively.

A+ > Rout+D+

Aout-Lt- «■- Ain-

Figure 5-12: STG of the BRU latch control circuit

Four-phase pipeline control 107

D Ain

Rout Aout

Figure 5-13: BRU latch control circuit

5.9 BRS latch control circuit

An STG specification and implementation of a BRS latch control circuit are shown in

figure 5-14 and figure 5-15, respectively. The BRS latch control circuit is very similar to

the ERS one. However, the buffer delay directly contributes to the input link delay in the

ERS latch control circuit, whereas the buffer delay is “invisible” from the input link and

moved into the output link in the BRS one.

/

D+

Lt+ «■

D-

AouU- Ain-

Figure 5-14: STG of the BRS latch control circuit

Four-phase pipeline control 108

D Ain

Rout Aout

Figure 5-15: BRS latch control circuit

The BRS latch control circuit has the same drawback as the ERS one: the pipeline cycle

time increases by twice the processing logic delay. It is of potential use only in FIFO

applications.

5.10 BRF latch control circuit

An STG specification of a BRF latch control circuit is shown in figure 5-16. For the input

link (D, Ain), the path from Ain low to D high is the critical arc since the evaluation

process is by assumption much longer than internal handshake transitions. Similarly, for

the output link (Rout, Aout), the path from Rout high to Aout high is the critical arc. By

now, an intuitive feel for fully-decoupling is that operations on these two critical paths

should not be dependent on each other. In other words, there is no simple loop that

contains these two arcs in the STG specifications. By so doing, two neighbouring

combinational logic functions can be performed in parallel at all times.

Four-phase pipeline control 109

> Rout+D+

> Rout-

r~
Lt-

Figure 5-16: STG of the BRF latch control circuit

Figure 5-17 shows an implementation of the BRF latch control circuit [19]. The

emphasis of asynchronous pipeline designs is on maximum allowable concurrency,

which was kept in mind during the development of these latch control circuits. Only

slight differences in STG specifications may lead to very different latch control circuits.

D Ain

Rout Aout

Figure 5-17: BRF latch control circuit

Four-phase pipeline control 110

5.11 BAS & BAF latch control circuits

By now, we may sense the key difference between the “early” and “broad” data-validity

schemes, which lies in the decision point on when to issue the acknowledge signal Ain.

For the “early” data-validity schemes, only after the data has been latched is the

acknowledge Ain issued. However for the “broad” data-validity schemes, the

acknowledge Ain can be issued before the data has been latched. The key idea of the

“broad” data-validity scheme is to make the first handshake as fast as possible and the

associated combinational logic is sidelined from the pipeline (see figure 5-4). The

request signal Rin is no longer entitled to activate the combinational logic since it may

return low independently of whether the evaluation phase is complete or not. Instead, the

acknowledge Am can take the job. It could, perhaps, be argued that the point of

activation of the combinational logic has been delayed and the performance will suffer.

However, firstly, the delay is marginal since the first handshake is fast. Secondly, if it is

still an issue, another arrangement can be made as shown in figure 5-18.

Data outData in

V /A

Rin Rout
Controller

Ain Aout

Figure 5-18: Another “Acknowledge-activate” configuration

Four-phase pipeline control 111

STG specifications for a BAS and a BAF latch control circuit are shown in figure 5-19

and figure 5-20, respectively. Implementations of a BAS and a BAF latch control circuit

are shown in figure 5-21 and figure 5-22, respectively. These two latch control circuits

are almost the same as their request-activate counterparts but have an extra input. They

can be used to exploit the advantage of dynamic logic for low power designs as we will

/

Rin+ > A+ - > /)+

Aout+

Rin- > Roiit-

\ Aout-

Figure 5-19: STG of the BAS latch control circuit

+► Rout+

/

+- A+ - > D+Rin+

* D- >■ Rout-Rin- * A-

\ - Ain-

Figure 5-20: STG of the BAF latch control circuit

Four-phase pipeline control 112

discuss in the next section. It should be noted here that up to now all the combinational

circuits presented earlier are assumed to be static by default. Some effort must be made

before dynamic circuits can be used.

Rin

I
Ain D1 ,

— J A
j— q -

r

h>T

+l:0
r i {

Lt

Rout Aout

Figure 5-21; BAS latch control circuit

Rin Ain D

Rout Aout

Lt

Figure 5-22; BAF latch control circuit

Four-phase pipeline control 113

5.12 Interfacing

There are occasions where it may be desirable to use both “early” and “broad” latch

control circuits. For example, the BAS or BAF latch control circuit for low power

designs using dynamic logic should be used together with other latch control circuits to

ensure that the end condition is satisfied, (see section 5.13).

To interface a “broad” latch control circuit into an “early” latch controller would appear

to be rather straightforward, since the “broad” scheme is more than sufficient to cover the

input specification of the “early” scheme. However there must be a converter when

interfacing an “early” latch control circuit into a “broad” one. An STG specification and

implementation of a converter are shown in figure 5-23 and figure 5-24, respectively.

/

A+D+ > Rout+

Lt+

D- > Rout-

Aont-v

Figure 5-23: STG of the Converter

It should be noted that a broad latch control circuit can be used for cases where the early

protocol is used. However, the operation of the circuit is totally sequential, which is

undesirable from the performance perspective. Therefore appropriate latch control

circuits should be used for particular application cases.

Four-phase pipeline control 114

D

V

Ain

A

□
D

-► Lt

Aout Rout

Figure 5-24: Converter circuit

With the Converter circuit a new communication along the input link is not subject to

being blocked and will be completed as long as it has been initiated. This property is

useful to ensure the end condition that we will discuss in the next section.

5.13 Low-power design using dynamic logic

The micropipeline design style configures the pipeline latches as transparent when

empty. The motivation for this comes from both performance and testability. First,

transparent latches steer the inputs directly to the outputs, thus reducing the latency of

the pipeline. Secondly, they make the datapath have a combinational behaviour in its

initial state, offering good testability of the datapath logic. However, this comes at a

price. Data and glitches can be broadcast down the pipelines, thus wasting power.

Four-phase pipeline control 115

Dynamic circuits can be used to localise the data flow to solve the above problem [88].

The obstruction of data flow is achieved since the dynamic logic is held during the

precharged phase. Additionally, dynamic circuits offer the benefits of increased speed

and lower switched capacitance. Therefore low power designs often employ dynamic

logic, especially in the datapath design.

However, there is a difficulty in directly using dynamic circuits in asynchronous designs

since the asynchronous control can stall in any state for any time. Leakage currents cause

the output of dynamic circuits to be valid for a short time; therefore evaluation cannot

begin until the output latch is free. The inputs must also be held stable until evaluation is

complete, so during evaluation both the input and the output latches are required by the

intervening dynamic logic, resulting in at most 50% of the logic being active at any time.

Although additional latches or charge-retention circuits can be used to make dynamic

circuits pseudo-static, these additions increase the cost and power consumption of the

dynamic circuits, thereby compromising their potential advantages.

The new idea introduced here is to observe that it is not strictly necessary for the output

latch to be free before evaluation begins; it is only necessary to know that it will become

free “soon”. Here “soon” is inteipreted as any period which is not subject to arbitrary

delay and is within the dynamic storage time of the output nodes. This relaxation of the

evaluation start time allows a significant improvement in the pipeline’s performance.

The dynamic logic begins evaluation when its enable (E) goes high and it indicates a

valid output on a “done” signal (D). When its enable is low it is precharged, and

precharge completion is signalled by the “done” signal going low. (see figure 5-4).

Four-phase pipeline control 116

For the BAS or BAF latch control circuit, the acknowledge wire Ain is indeed a

confirmation signal which indicates that the output latch will be free “soon”. “Soon” is

just the result of internal self-timed delays only, and is determined by the evaluate phase

(V) and the precharge phase (P) together with a few internal control delays. Here the

assumption is that the pipeline stage is connected to similar neighbours. We argue that a

stall can only occur between Rout high and Aout high on the arrow marked S in figure 5-

19 or figure 5-20. If this is true, the property is propagated back to the input, and hence,

by induction, along a pipeline of similar stages. Only the end conditions remain to be

checked. This condition is satisfied by using the Converter (see figure 5-24).

5.14 Simulation results

The latch control circuits have been laid out using 0.55 micron triple metal CMOS

technology and simulated using HSPICE operating at worst-case conditions (Vdd = 3.3V,

Vss - 0.1V, slow-slow process comer, at 100 °C) and driving a 32 bit latch. The

simulation results are shown in table 5-1.

Table 5-1: HSPICE simulation results

Parameter ERS ERF BRS BRF BAS BAF

FIFO Cycle Time 3.7 ns 4.4 ns 3.6 ns 4.0 ns 3.6 ns 4.0 ns

FIFO Response 8.6 ns 10.1 ns 8.0 ns 3.7 ns 8.0 ns 3.7 ns

Proc. Cycle Time 10.1ns 7.7 ns 10.0 ns 7.1 ns 7.0 ns 7.2 ns

Proc. Response 18.5 ns 10.2 ns 17.5 ns 3.8 ns 8.9 ns 3.9 ns

A micropipeline with no processing in it is a FIFO and its cycle time gives an upper

bound on the potential throughput. The response time is measured by stalling the output

Four-phase pipeline control 117

of a 3 stage pipeline until it is full, and then seeing how long it takes from releasing the

stall until the input starts moving. The corresponding results for a micropipeline with

processing in it are established by inserting combinational logic into the pipeline with an

evaluation time of 3.0 ns and reset time of 0.3 ns. The test circuit is shown in figure 5-25.

Data in Data Out

nGo

nLock

ControllerController Controller

Figure 5-25: Test circuit

5.15 Discussion

The simulation results show that the cycle times of the ERS and BRS latch control

circuits increase by approximately twice the processing delay, indicating both the

processing delay on the input side and that on the output side are included. The cycle

times of the other four latch control circuits just increase by the evaluation delay,

indicating the processing delay on only one side is included. Here we now see how the

different decoupling techniques have affected the resulting cycle times.

It is quite interesting that the BAS latch control circuit behaves in a “fully-decoupled”

way. This is due to the fact that the point when the combinational logic begins evaluation

has been moved in the acknowledge-activate configuration. This reflects the fact that the

Four-phase pipeline control 118

combinational logic is pulled out of the input link path and put aside. By so doing, the

handshake process of the input link is in fact isolated from that of the output link. The

change in the activation mechanism for the combinational logic makes the difference

between semi-decoupled and fully-decouped behaviours.

The response times of the BRF and BAF latch control circuits is a lot smaller than the

other four latch control circuits. The reason stems from the fact that when a confirmation

signal (Ain) goes high this propagates very quickly backwards up the pipeline, allowing

every pipeline stage to begin evaluation at almost the same time. For other latch control

circuits, each pipeline stage must wait to clear the interlock before the initiating action is

taken. Obviously, this is a very important factor in the performance of asynchronous

pipelines which has unfortunately been ignored in the past. The response time relates to

how fast a bubble [88] travels back up a pipeline. The detailed analysis of bubbles

making self-timed pipelines fast can be found in [89].

It seems that the BRS and BAS latch control circuits will give the best performance in

FIFO applications. However, it takes a long time to start moving after the full pipeline is

released. Therefore, the BRF and BAF latch control circuits are suitable for both FIFO

applications and pipelines including processing logic.

It is clear that the circuits using the broad protocol give better performance than those

employing the early protocol. Among latch control circuits described above, the BRF

and BAF latch control circuits are the best choice.

The BAF latch control circuits can be used to exploit the advantages of dynamic logic for

low power designs. However, the end condition (a stall can only occur between Rout

Four-phase pipeline control 119

high to Aout high) must be met. For the BAF latch control circuit, this condition can

easily be met by using the Converter circuit (see section 5.12).

All of the latch control circuit in this chapter are speed-independent, and were verified

using the FORCAGE tool.

5.16 Summary

The design of control schemes for asynchronous pipelines has been studied. The study

focused mainly on the four-phase micropipeline design style which uses conventional

level-sensitive data latches. A set of speed-independent latch control circuits has been

presented. Verification was carried out using the FORCAGE tool.

The BRF and BAF latch control circuits are the best choice for both FIFO applications

and pipelines including processing logic. The ERF, BRF, BAS and BAF latch control

circuits behave in the “fully-decoupled” way, where the cycle time increases by just one

evaluation time. The BRF and BAF latch control circuits give the good response time.

The circuits using the broad protocol give better performance than those employing the

early protocol. The acknowledge-activation configuration allows dynamic logic to be

easily exploited for low power design. Dynamic logic retains externally static behaviour

without additional latches or charge-retention circuits (allowing activity to cease without

loss of state), and hence power can be saved.

Four-phase pipeline control 120

Four-phase control modules 6

This chapter presents a set of control modules for four-phase micropipelines. Arbiters,

which are non-trivial and tricky to design, are also included. These control modules,

together with the pipeline latch control circuits described in the previous chapter, can be

used to construct complex and powerful asynchronous systems including forking or

joining multiple micropipelines. All of the proposed four-phase control modules are

speed-independent, and this has been verified using the PETRIFY tool [23-26j.

6.1 Introduction

In order to build asynchronous systems based on four-phase micropipelines, a set of

basic control modules is required. Such a set is proposed here and shown in figure 6-1.

The first element is the CALL module, which enables two processes to share a common

resource. The two calling requests must be mutually exclusive. If they are not, the

ARBITER module must be used instead. It is worth emphasizing that unlike in the

synchronous case, an asynchronous arbiter always operates correctly. The JOIN and

FORK modules are used to join and fork multiple control flows or pipelines,

respectively. The SELECT module comes with two versions: one with a control link and

one with a Boolean guard. The input Boolean guard must be prepared prior to the

Four-phase control modules 121

incoming handshakes on the input link and must remain stable during the handshaking

process (restricted and guaranteed by the environment). The SELECT module steers

incoming input handshakes to one of two outputs, depending on the handshake result

along the control link or the Boolean value. The TOGGLE module steers incoming

four-phase handshakes to alternate outputs. All of these four-phase control modules are

speed-independent, and this has been verified using the PETRIFY tool.

R1R1

A1 H Ro

R1

A1

A2

R2

Ri O

Sel R1

A1
SELB

A2

R2

Rc At A fR j

A1
SELA

A2

R2

Figure 6-1: Four-phase control modules

This set of control modules provides the basic building blocks, which can be used to

construct other control modules and asynchronous systems. The circuit implementations

presented here are not claimed to be optimal. It should be appreciated that optimizations

can be made if input constraints (determined by the environment) are known a priori to

designers. A CALL module is an example, where it is known that the two input requests

are mutually exclusive as a result of the environmental constraints. An ARBITER

module is more general as its input changes are unrestricted. However, the circuit

implementation of a CALL module is much simpler than that of an ARBITER module.

Four-phase control modules 122

The specifications of these control modules are described using Petri Nets (PN) [22]. The

PETRIFY tool then takes and manipulates this initial specification. It either generates

another PN which is simpler than the original description or synthesizes an optimized

speed-independent asynchronous circuit. The original specification may not satisfy the

requirement of Complete State Coding (CSC) [90] and may lead to different states with

the same binary value when encoding. To resolve this state coding conflict the PETRIFY

tool automatically inserts a new state signal. The rising and falling transitions of this new

state signal are inserted in such way that the synthesized circuit is optimized according to

a selected cost function.

6.2 CALL modules

The CALL module serves the role of the procedure call in software where a common

subroutine is shared. This section describes three types of CALL module: pCALL,

dCALL, and bCALL. The first two CALL modules use the four-phase early protocol,

while the last employs the four-phase broad protocol. The whole four-phase handshaking

process on one input link must be completed before the next process on the other input

link starts. Otherwise, the circuit will operate improperly.

6.2.1 pCALL module

A specification and implementation for a CALL module, called pCALL, are shown in

figure 6-2 and figure 6-3, respectively. The pCALL module allows concurrent processing

on the input link and resetting on the output link. However, the input and output links are

not allowed to reset in parallel, with the input link being first reset and the output link

following.

Four-phase control modules 123

Ro+ <■ R1+ «

Ao+

Ro- + Rl- R2-

A l- Ao- Ao-

Figure 6-2: PN of the pCALL module

R1
Ro

R2

A1

Ao
A2

Figure 6-3: pCALL circuit implementation

6.2.2 dCALL module

A specification and implementation for a CALL module, called dCALL, are shown in

figure 6-4 and figure 6-5, respectively. Like the pCALL module, the dCALL module

allows concurrent processing on the input link and resetting on the output link.

Four-phase control modules 124

Ro+ ^ *• Ro+

A2+ < Ao+

R l- Ro- Ro- R2-

A l- Ao- Ao- A2-

Figure 6-4: PN of the dCALL module

R1

R2 Ro

A1

Ao

A2

Figure 6-5: dCALL circuit implementation

Furthermore, concurrent resetting on both the input and output links are also allowed in

the dCALL module. The resetting on the output link can start even before that on the

input link. The output link has the property of self-resetting as soon as it has completed

the calling procedure; resetting of the output link does not depend on an input reset

request.

Four-phase control modules 125

6.2.3 bCALL module

The first two CALL modules described above use the four-phase early protocol. There

are occasions where it may be desirable to use the four-phase broad protocol, e.g., using

dynamic logic for low-power design (see “Low-power design using dynamic logic” on

page 115). A specification and implementation for a CALL module using the broad

protocol, called bCALL, are shown in figure 6-6 and figure 6-7, respectively. The circuit

is quite simple. It is worth noting that no processing or resetting phases are distinguished

Ro+ <--------- R1+ «---------- (•) ----------► R 2+--------- ► Ro+

Ao+ + A1+

Rl-

Ao- * A l-

A2+ + Ao+

> Ro-

A2- + Ao-

Figure 6-6: PN of the sCALL module

R1 Ro

R2

A1

A2 Ao

Figure 6-7: sCALL circuit implementation

Four-phase control modules 126

in the broad protocol. The bCALL module can also be used for cases where the early

protocol is used since the specification of the broad protocol is more than sufficient to

cover that of the early protocol. However, the operation of the circuit is totally

sequential, which is undesirable from the performance perspective.

6.3 ARBITER modules

The ARBITER module produces an exclusive grant to one of two asynchronous calling

requests. As discussed in section 2.2.4 (see “Metastability and arbitration” on page 27),

the ARBITER module is inherently prone to metastability. However, this metastable

problem only affects the performance of the ARBITER module, not its functionality

(only in the asynchronous case). Analog circuit techniques are used to keep the

metastable states internal while maintaining valid logic levels at the interface. The

mutual exclusion circuit (MUTEX) [31], as shown in figure 6-8, is such an analog circuit

which makes a non-deterministic decision between two asynchronous requests. It

comprises a cross-coupled NAND structure and a filter. The cross-coupled NAND

structure may go metastable when the two inputs switch high at very nearly the same

time. The filter conceals possible metastable states from the environment to maintain

valid logic levels at the interface.

G2R1

R2 J L G1

Figure 6-8:1VIUTEX circuit

Four-phase control modules 127

This section describes three types of ARBITER module: pARBITER, dARBITER, and

bARBITER, The first two ARBITER modules use the four-phase early protocol, while

the last employs the four-phase broad protocol.

6.3.1 pARBITER module

A specification and implementation for an ARBITER module, called pARBITER, are

shown in figure 6-9 and figure 6-10, respectively. The signals G1 and G2 are the outputs

of the MUTEX element and internal signals of the pARBITER module. The two

transitions (Roi— > Ao+) and (Ro- Ao-) are illustrated by the expressions (Ro+, Ao+)

and (Ro-, Ao-), respectively, for the sake of brevity. As shown in [44], logic synthesis can

produce speed-independent implementations only for specifications without conflicts on

non-input signals. However, there is a conflict between the signals G1 and G2 in this

specification and these two signals are internal (non-input) signals. We can get around

this difficulty by treating the signals G1 and G2 as additional inputs [44] whose changes

are restricted by the MUTEX element. The MUTEX element is considered to be part of

the environment for the pARBITER module. This design trick is not restricted to

conflicts on non-input signals and can also be applied to no-conflict cases. Well-defined

modules can be treated in the same way as the MUTEX element and their outputs (also

internal signals for a specification to be synthesized) are considered as additional inputs.

By so doing, efficient implementations can be derived for some cases which otherwise

may be difficult to synthesize.

The pARBITER module allows concurrent processing on the input link and resetting on

the output link. However, the input and output links are not allowed to reset in parallel,

Four-phase control modules 128

with the input link being first reset and the output link following. Note that the signals

G1 and G2 are often used to control a multiplexer to select the input data.

A1+ <■ * R2-

Gl- Ao- G2-

Figure 6-9: PN of the pARBITER module

A1

R1
R1 G1

Ro

R2 G2
R2

Ao
A2

Figure 6-10: pARBITER circuit implementation

Four-phase control modules 129

6.3.2 dARBITER module

A specification and implementation for an ARBITER module, called dARBITER, are

shown in figure 6-11 and figure 6-12, respectively. Like the pARBITER module, the

dARBITER module allows concurrent processing on the input link and resetting on the

output link. Furthermore, concurrent resetting on both the input and output links are also

allowed in the dARBITER module. The resetting on the output link can start even before

that on the input link. The output link has the property of self-resetting as soon as it has

completed the calling procedure; resetting of the output link does not depend on an input

reset request.

Specifications with more concurrent operations lead, in general, to complex circuit

implementations. This can bee seen from the development of the circuits above.

G2+ +

R1- + A1+ + * R2-

Gl- G2-Ao-

Ro-

Figure 6-11: PN of the dARBITER module

Four-phase control modules 130

A1

R1
R1 G1

Ro

R2
R2 G2

Ao

A2

Figure 6-12: dARBITER circuit implementation

6.3.3 bARBITER module

The first two ARBITER modules described above use the four-phase early protocol. A

specification and implementation for an ARBITER module using the broad protocol,

called bARBITER, are shown in figure 6-13 and figure 6-14, respectively. The

bARBITER module can also be used for cases where the early protocol is used since the

specification of the broad protocol is more than sufficient to cover that of the early

protocol. However, the operation of the circuit is totally sequential, which is undesirable

from the performance perspective.

Generally, specifications using the broad protocol, e.g. the bARBITER, often have

simpler circuit implementations than those using the early protocol.

Four-phase control modules 131

All the ARBITER modules described above are fair arbiters [91], which means that a

pending request on one input link must be granted after the granted request on the other

input link has completed.

G2+ ^

(Ro+, Ao+)

> R2-

Gl-

A2-

Figure 6-13: PN of the bARBITER

A1

R1
R1 G1

Ro

R2 G2
R2

A2 Ao

Figure 6-14: bARBITER circuit implementation

Four-phase control modules 132

6.4 JOIN modules

The JOIN module synchronizes and concatenates two input links to the output link, and

is used in organizing multiple control flows or pipelines. This section presents three

types of JOIN module: pJOIN, dJOIN and bJOIN. The first two JOIN modules use the

four-phase early protocol, while the last employs the four-phase broad protocol. As all of

the PN specifications in this section and the following sections are quite straightforward

they are omitted for the sake of brevity.

6.4.1 pJOIN module

Figure 6-15 shows a circuit implementation for a JOIN module, called pJOIN. The

pJOIN module allows concurrent processing on the input link and resetting on the output

link. However, the input and output links are not allowed to reset in parallel, with the

input link being first reset and the output link following.

A1
R1

A2
R2

a Ao

Ro

Figure 6-15: pJOIN circuit implementation

6.4.2 dJOIN module

Figure 6-16 shows a circuit implementation for a JOIN module, called dJOIN. Like the

pJOIN module, the dJOIN module allows concurrent processing on the input link and

Four-phase control modules 133

resetting on the output link. Furthermore, concurrent resetting on both the input and

output links are also allowed in the dJOIN module. The resetting on the output link can

start even before that on the input link. The output link has the property of self-resetting

as soon as it has completed the calling procedure; resetting of the output link does not

depend on an input reset request.

R 2 ►___________________

Figure 6-16: dJOIN circuit implementation

6.4.3 bJOIN module

The first two JOIN modules described above use the four-phase early protocol. A circuit

for an ARBITER module using the broad protocol, called bARBITER, is shown in figure

6-17. The circuit is simple, and is similar to a C-gate. A difference is that the signal Ro,

not Ao, is fed back internally in a C-gate.

The bARBITER module can also be used for cases where the early protocol is used since

the specification of the broad protocol is more than sufficient to cover that of the early

protocol. However, the operation of the circuit is totally sequential, which is undesirable

from the performance perspective.

Four-phase control modules 134

A1

R1
jR2

A2

Ao

\y$> Ro

Figure 6-17: bJOIN circuit implementation

6.5 FORK modules

The FORK module is often used when there are multiple destinations. It is worth noting

that the FORK module and the isochronic fork [92] discussed in section 2.2.2 are

completely different concepts that have no relation to each other. This section presents

three types of FORK module: pFORK, dFORK and bFORK. The first two FORK

modules use the four-phase early protocol, while the last employs the broad protocol.

6.5.1 pFORK module

Figure 6-18 shows a circuit implementation for a FORK module, called pFORK. The

pFORK module allows concurrent processing on the input link and resetting on the

output link. However, the input and output links are not allowed to reset in parallel, with

the input link being first and the output link following.

6.5.2 dFORK module

Figure 6-19 shows a circuit implementation for a FORK module, called dFORK. Like

the pFORK module, the dFORK module allows concurrent processing on the input link

Four-phase control modules 135

Figure 6-18: pFORK circuit implementation

and resetting on the output link. Furthermore, concurrent resetting on both the input and

output links are also allowed in the dFORK module. The resetting on the output link can

start even before that on the input link. The output link has the property of self-resetting

as soon as it has completed the calling procedure; resetting of the output link does not

depend on an input reset request.

Ri

Ai
<L

E> Rl

A l

R2

A2

Figure 6-19: dFORK circuit implementation

6.5.3 bFORK module

The first two FORK modules described above use the four-phase early protocol. A

circuit for a FORK module using the broad protocol, called bFORK, is shown in figure

6-20. The bFORK module can also be used for cases where the early protocol is used

Four-phase control modules 136

since the specification of the broad protocol is more than sufficient to cover that of the

early protocol. However, the operation of the circuit is totally sequential, which is

undesirable from the performance perspective.

A1
R1

R2
A2

Figure 6-20: bFORK circuit implementation

6.6 SELA modules

This section presents three types of SELA modules: pSELA, dSELA and bSELA. All of

these three SELA modules use a control link. The sSELA module serves the role of the

if-else statement in programming languages. The input request first issues a handshake

along the control link. If the returned value of the dual-rail acknowledge signal is true,

the handshake will proceed along the output link (Rl, Al); otherwise it goes along the

output link (R2, A2). The first three SELA modules use the four-phase early protocol,

while the last employs the four-phase broad protocol.

6.6.1 pSELA module

Figure 6-21 shows a circuit implementation for a SELA module, called pSELA. The

pSELA module allows concurrent processing on the input link and resetting on the

output link. However, the input and output links are not allowed to reset in parallel, with

the input link being first and the output link following.

Four-phase control modules 137

Rc I A f

R1

A1

A2

R2

Figure 6-21: pSELA circuit implementation

6.6.2 dSELA module

Figure 6-22 shows a circuit implementation for a SELA module, called dSELA. Like the

pSELA module, the dSELA module allows concurrent processing on the input link and

resetting on the output link. Furthermore, concurrent resetting on both the input and

output links are also allowed in the dSELA module. The resetting on the output link can

start even before that on the input link. The output link has the property of self-resetting

as soon as it has completed the calling procedure; resetting of the output link does not

depend on an input reset request.

6.6.3 bSELA module

The first two SELA modules described above use the four-phase early protocol. A circuit

for a SELA module using the broad protocol, called bSELA, is shown in figure 6-23.

Note that the acknowledge signals of the control link are dual-rail encoded, so they are

Four-phase control modules 138

AtRc

R1

A1

A2

R2

Figure 6-22: dSELA circuit implementation

able to convey a Boolean value and make the circuit implementation speed-independent.

The bSELA module can also be used for cases where the early protocol is used since the

specification of the broad protocol is more than sufficient to cover that of the early

protocol. However, the operation of the circuit is totally sequential, which is undesirable

from the performance perspective.

Rc I A f At

R1

A1

A2

R2

Figure 6-23: bSELA circuit implementation

Four-phase control modules 139

6.7 SELB modules

There are often cases where a boolean guard is known prior to incoming input

handshakes and remains stable during the process of handshaking. The SELB modules

are designed for those cases. Figure 6-24 shows an implementation of the SELB module

using the SELA module. This SELB module is still considered to be speed-independent

as long as the Boolean guard is well controlled by the environment.

Generally, most speed-independent circuits are robust, where robust means that multiple

input changes are allowed and the orders of input changes do not affect the behaviour of

the circuit. This property is certainly desirable to designers. However, if the input

changes of a specification are restricted by the environment and are known a priori to

designers, the circuit implementation could be much simplified and more efficient.

By taking the nature of Boolean guard into account, simple and efficient circuit

implementations of the SELB module can be derived; they are omitted here for the sake

of brevity.

1
Ri

Sel R1

A l 4—

«—Ai
SELB

A2

R2
Rc At A f

SELA

Figure 6-24: Implementation of the SELB modules

Four-phase control modules 140

6.8 TOGGLE module

The TOGGLE module produces communications alternately on its two outputs in

response to its input. The TOGGLE module is a useful building block and can be used to

construct other control modules or even asynchronous systems. However, the TOGGLE

module itself is the most difficult module to implement, though it appears to be quite

simple. Many circuit implementations had been derived and then verified not to be speed

independent. The difficult lies in the fact that circuit implementations tend to contain an

inherent race hazard.

Figure 6-25 shows a circuit implementation for the TOGGLE module using NOR gates.

Since the TOGGLE module is designed mainly as a basic building block for constructing

other control modules, there are no associated acknowledge signals to form input or

output links. Therefore, the environment must provide an input at a proper point only

after the outputs have responded the previous input changes. Analysis of this circuit

implementation has demonstrated that the operation is totally sequential, and races

cannot happen as there is only one enabled transition in every possible state.

Rx

Figure 6-25: TOGGLE circuit implementation

Four-phase control modules 141

6.9 An example: a counter

This section shows how an n-bit speed-independent counter is built using the TOGGLE

modules as the building blocks. The worse case settling time of this counter is large since

the carry may propagate from the low-order bit up to the high-order bit. However, only

two bits change per operation on average [93]; the typical case is much faster than the

worst case.

Figure 6-26 illustrates the diagram of the n-bit speed-independent counter. The carry

stops at a bit position where the internal state variable (see figure 6-25) is zero; this is

indicated by the transition along the Rx output of the TOGGLE module. If one bit stage

is one, the transition happens along the Ry output which is connected to the next

neighbour TOGGLE module. There are only two input states for the Completion

Detector: either all are zeros or only one of them is one. When a change from one input

state to the other is detected, it means the carry has completed its journey and the result is

generated. The result lies in the internal state variable of the TOGGLE modules.

Go

Rx[n]

Done

TOGGLE
Ry Rx

TOGGLE
Ry Rx

TOGGLE
Ry Rx

Completion Detector

Figure 6-26: Speed-independent incrementer

Four-phase control modules 142

6.10 Arbiter modules revisited

All of the arbiter circuits described in section 6.3 take the micropipeline view that the

request signal initiates the data transfer (this is called a push channel). However, arbiters

are often used in a bus structure, where the acknowledge signal initiates the data transfer

(called a pull channel). One undesirable property of push arbiters is that the output

request must wait whenever the MUTEX element goes metastable. Therefore the latency

is unbounded, which is quite serious in some applications requiring low latency. This

section presents two types of pull ARBITER module. The eARBITER modules use the

four-phase early protocol, while the fARBITER module employs the broad protocol.

6.10.1 eARBITER module

A specification and implementation of a pull ARBITER module, called eARBITER, are

shown in figure 6-27 and figure 6-28, respectively. The request signal Ro directly follows

the input requests and it is not necessary to wait until the output signals G1 and G2 of the

MUTEX element have been resolved when a metastable state occurs. The circuit has a

bounded request latency, which is important for applications requiring low latency. Note

that the place “p i” can accommodates two tokens, which the PETRIFY tool can deal

with. However, other tools based on STGs have restrictions for multiple token cases,

though a CD specification can describe this situation using OR-type signal transitions.

6.10.2 fARBITER module

A specification and implementation of a pull ARBITER module using the broad

protocol, called fARBITER, are shown in figure 6-29 and figure 6-30, respectively.

Four-phase control modules 143

R2+

(Ro+} Ao+)

A2+

Gl- Ao-

Figure 6-27: PN of the eARBITER module

A1

R1
R1 G1

Ro

R2
R2 G2

Ao
A2

Figure 6-28: eARBITER circuit implementation

Four-phase control modules 144

R2+

(Ro+, Ao+)

A1+ + A2+ * R2-

Gl- G2-

Figure 6-29: PN of the fARBITER module

A1

R1
R1 G1

Ro

R2
R2 G2

A2 Ao

Figure 6-30: fARBITER circuit implementation

Four-phase control modules 145

6.11 Modules with multiple input links

Up to now, all the modules presented have had at most two input links. There are often

cases where multiple input links are required. Circuit implementations for modules with

multiple input links can be derived following the procedure described in the previous

sections. However, they are most practically built by using the corresponding two input

link modules. This section examines the design of these modules with multiple input

links. The design of a four-phase early protocol arbiter with multiple input links is taken

as an example and discussed. The discussions can, in general, apply to other modules

with multiple input links.

Figure 6-31 shows a tree arbiter with eight input links, where the solid dots represent the

two input link arbiters. The following terms are defined for the sake of discussion. The

top arbiter is called the home node, the bottom arbiters are called the leaf nodes and the

arbiters between the home node and the leaf nodes are called the directory nodes. The

input links connected to the same leaf node form a leaf group. The input links connected

to the same directory node form a directory group. For an example, the input links il and

12 form a leaf group and input links i5, i6, i7 and i8 form a directory group.

out

home node

dl234 dmectoryjtodes

leaf nodes

i l i2 i3 i4 i5 i6 i7 i8

Figure 6-31: Tree arbiter

Four-phase control modules 146

Imagine a case where all eight asynchronous input requests arrive and one input request

(say, the input link il) is granted and the other seven input requests are pending. We are

interested in which input request will be granted and when after the granted input request

from the input link il is released.

All the ARBITER modules presented earlier are fair. In other words, a pending calling

request must be granted after a bounded number of other input requests are granted. The

bounded number is eight in this case. Seen from the home node, one input request from

the directory group {/5, i6, i7, i8} will be granted after the input request from the input

links il is released because of the fair nature of the home node. Therefore, those input

links should be put into different directory groups or different leaf groups if calling

requests from those input links are likely to compete for a common resource. This is the

first conclusion.

Suppose that sARBITER modules are used. The release of the calling request from the

input link il involves resetting all the nodes from the leaf node to the home node. All

these resettings are sequential and thus delay a grant for other calling requests. Supposed

that pARBITER modules are used. The situation will improve as the resetting of the

output link of the home node and the falling transition of the input link of the directory

node d.1234 can be in parallel. However, the circuit still waits for the falling transition of

the calling request from the input link il. This is unacceptable if the height of the tree

structure is high. Supposed that dARBITER modules are used. The problem will be

solved since the dARBITER module can reset the output link by itself as soon as it has

completed the calling procedure and resetting of the output link does not depend on its

input reset request (see “dARBITER module” on page 130). Therefore, dARBITER

Four-phase control modules 147

modules should be used to build an arbiter with multiple input links based on the tree

structure. If other types of arbiters are used, the response time will be degraded. This is

the second and also very important conclusion.

6.12 Summary

A set of control modules for four-phase micropipelines with different implementations

has been presented. Arbiters, which are non-trivial and tricky to design, are also

included. These control modules, together with the pipeline latch control circuits

described in the previous chapter, can be used to construct complex and powerful

asynchronous systems including forking or joining multiple pipelines. Also they can be

used to construct other four-phase control modules. All of the proposed control modules

are speed-independent, and this has been verified using the PETRIFY tool.

The design of an arbiter with multiple input links based on a tree structure has also been

discussed. The dARBITER modules should be used to build an arbiter with multiple

input links as their output links can be self-reset.

Petri nets have been shown to be an appropriate formalism for describing the behaviour

of asynchronous systems with concurrency, causality and conflicts between events.

Though most steps of the development of these control modules were processed by hand,

the PETRIFY tool played a key role and was used to synthesize various implementations

for comparison and analysis.

Four-phase control modules 148

AMULET3i 7

AMULET3i is an asynchronous embedded system chip which incorporates the third

generation asynchronous ARM processor (AMULET3). Different from its predecessors,

AMULET 1 and AMULET2e, AMULET3i is aimed to be a commercially viable product

for communication applications. This will be a significant step. A brief description of

AMULET3i and AMULET3 is given in this chapter in the hope of providing the big

picture into which the components described in the previous chapters can be placed.

7.1 Introduction

As we said previously, it is our belief that asynchronous design must be justified on its

practical significance rather than solely on a theoretical basis. The motivation behind the

AMULET project is to demonstrate this practical significance.

AMULET 1 demonstrated the feasibility of building an asynchronous system at the levels

of complexity of current synchronous systems. AMULET2e proved the competitiveness

of an asynchronous system compared with current synchronous systems, from both the

power perspective and the performance perspective. AMULET31 will, in turn, put the

asynchronous experience of the academic community into industrial practice.

AMULET3i 149

7.2 AMULET3i

AMULET3i is a commercial asynchronous embedded system chip, whose organization

is shown in figure 7-1. In addition to AMULET3 (the third generation asynchronous

ARM processor), AMULET3i contains 8 Kbytes of RAM (which can also be configured

Test
interface
controller

testAMULET3

Q.

8K byte
RAM

Control
registers

data
Memory
interface

address
A Z \7 \7

chip
selects
DRAM
control

MARBLE bus

Synchronous
peripheral
interface

DMA
controller asynchronous

synchronous

DMArq DMAak

Synchronous
peripheral
subsystem

peripheral
" l/Os

Figure 7-1: AMULET3i block diagram

AMULET3i 150

as a cache), a DMA controller, a MARBLE (Manchester AsynchRonous Bus for Low

Energy) bus [94], a flexible memory interface, a general synchronous peripheral

interface, an on-chip synchronous peripheral subsystem, and various configuration and

control registers. A test interface is also included to support the design for test strategy.

7.3 AMULET3

AMULET3 is the third generation asynchronous ARM processor. It implements the

ARM architecture version 4 and supports the Thumb instruction set [95]. Figure 7-2

shows the block diagram of AMULET3, which consists of five major blocks. The

FIQ IRQ

■N
i /

Prefetch

Decode &
Register read

Instruction fetch

Data access

Reorder &
Writeback

Data
transfers

Figure 7-2: AMULET3 block diagram

AMULET3i 151

detailed organization of AMULET3 is shown in Figure 7-3. (Note that figures 7-1, 7-2

and 7-3 are reproduced from the “Scoreboard” of the AMULET project with the kind

permission of Professor Steve Furber). The design includes several novel features.

Firstly, a Harvard architecture is used and the data interface is sidelined from the main

instruction flow. As a result, data transfer operations, especially multiple load and store

instructions, can be decoupled from purely internal operations. Another benefit of this

organization is that an interrupt can be dealt with in the Prefetch Unit rather than in the

Decoder Unit and treated as a predicted branch, giving a fast interrupt response. As

loaded values are reordered into the Register Bank and data aborts are allowed to be

delayed, there is significant speculation following a load or store instruction without

paying penalties for slow memory.

Secondly, instructions are allowed to execute out of order and a Reorder Buffer [96]

(borrowed from superscalar design techniques) is used to hold results to be written back

to the Register Bank in order. This reorder buffer is, in essence, an implementation of the

register renaming mechanism. Therefore, result forwarding (not only the last result as in

AMULET2e [11]) can be achieved in a deterministic and arbitration-free manner. It is

worth noting that two Thumb instructions are fetched per bus cycle, which is another

superscalar aspect of the design.

Finally, branch prediction and a halt mechanism are included. The halt mechanism is

straightforward in asynchronous designs and achieves a three to four orders of

magnitude power saving [11] in the idle state, whereas a synchronous design can only

approach this power efficiency by stopping the clocks with considerable effort.

AMULET3i 152

+4
BTC

branch/indirect PC address

indirect
PC value

instruction address

Imem Ctl Imem

instructions

CP CtlThumb

I decode PC
Br Add,

\ —
Reg. BankQ read Bank

lposr-/ncfexed indirect PC address

Cl

+4?
store data

Nr— link PC
data address

KDmem-
internal
results

B ase R Xpipe load data

Q writeR egs write
in order external results

Figure 7-3: AMULET3 organisation

AMULET3i 153

7.4 Execution unit

Figure 7-4 shows the block diagram of the Execution Unit. The ALU comprises a logic

unit and an adder unit. The design of the adder unit is presented in chapter 3. The design

of the multiplier is described in chapter 4. Multiplexers are used to implement the result

forwarding mechanism, and choose operands either from the Register Bank or from the

Reorder Buffer (which is also called the Queue).

Register Bank

Forwarding
From Queue

Multiplier
& Shifter

Immediates

Figure 7-4: Execution pipeline organization

AMULET3i 154

7.5 Implementation

Figure 7-5 shows an implementation oriented view of the AMULET3 datapath structure.

AMULET3i is designed using a 0.35 pm triple metal CMOS technology.

o^
C L

o o
CL H■O CD

Q.

« -o -►

x .9-

D)

Figure 7-5: AMULET3 datapath structure

AMULET31 155

7.6 Summary

A brief description of AMULET3i and AMULET3 has been given. AMULET3i is an

asynchronous embedded system chip, which is aimed to be commercially viable product

for communication applications. AMULET3 is the third generation asynchronous ARM

processor, which implements the ARM architecture version 4 and supports the Thumb

instruction set. Clearly, the adder and the multiplier, described in the chapter 3 and 4,

have directly contributed to AMULET3i. Two sets of asynchronous control circuits,

described in the chapter 5 and 6, have also contributed to AMULET3i, but this is not

clear in the pictures presented here.

AMULET3i 156

Conclusions 8

This thesis has presented engineering work on asynchronous design. The arithmetic and

control components were designed and implemented for AMULET3i, a commercial

asynchronous embedded system chip for communication applications. The arithmetic

components comprise an adder and a multiplier; these two are critical to the performance

of the processor core. The control components consist of a set of pipeline latch control

circuits and a set of control modules; all of these components are speed-independent.

Though the nature of the work is mainly engineering, there are some significant new

insights gained in the course of the work.

8.1 Contributions

A novel carry arbitration scheme was proposed (and has been patented) for parallel adder

circuits. The proposed scheme provides an efficient encoding in which the carry is

generated by arbitrating several input carry requests, exploiting the associativity of the

carry computation. The new coding is a logically redundant superset of the conventional

carry process. Departing from this general coding, certain modifications which reduce

the redundancy can easily be made where this simplifies the implementation. The new

scheme not only leads to high speed adders due to the reduction in the required layers of

Conclusions 157

logic, but also offers a regular and compact layout and uniform fan-in and fan-out

loadings. A high performance, low power 32-bit adder for AMULET3i has been

designed using the new scheme and implemented down to the layout level. It takes 1.8 ns

to complete a 32-bit addition and occupies 137.2 pm X 524.8 pm of chip area in a 0.35

pm triple metal CMOS technology. The power estimate of the datapath is about 8 and 17

mW operating at 100 and 200 MHz (under typical process conditions), respectively.

A high performance, low power asynchronous 32 bit multiplier with a reasonable

hardware resource has been developed for AMULET3i. A new encoding technique has

been used in the AMULET3i multiplier to adjust the product result of an unsigned

number multiply operation. An adjustment value is made on the least significant 32-bit

positions. A new 4-2 compressor with an enable control has been presented, together

with several other circuit design techniques including the use of true single-phase

clocking registers. The elegance of this multiplier is the manner in which the algorithm

and the circuit implementation are well matched within the asynchronous framework.

Post-layout simulation, in a 0.35 micron triple metal CMOS technology, shows that it

takes 11.2 ns (2.8 ns X 4 cycles) to complete the computation of a 32-bit multiplication in

the worst case. The power estimate of the datapath is about 40 and 82 mW operating at

100 and 200 MHz (under typical process conditions), respectively. The layout is regular

and compact with a datapath area of only 416.4 X 639.6 pm2.

A set of pipeline latch control circuits for four-phase asynchronous pipelines has been

proposed. These can be used to organize arithmetic components efficiently into a

micropipeline. All of the proposed pipeline latch control circuits are speed-independent,

and this has been verified using the FORCAGE tool. A four-phase micropipeline can be

Conclusions 158

configured either in a request-activated form or in an acknowledge-activated form. The

latter is the framework within which dynamic logic can be exploited for low power.

A set of control modules has been proposed in order to ease the design of asynchronous

systems based on four-phase micropipelines. Arbiters, which are non-trivial and tricky to

implement, are also included. All of the proposed control modules are speed-

independent, and this has been verified using the PETRIFY tool. These control modules,

together with the pipeline latch control circuits, can be used to construct complex and

powerful asynchronous systems.

8.2 Future work

There are some application areas where asynchronous designs are likely to demonstrate

advantages. Our philosophy is still to prove that the theoretical benefits are practically

realizable, and this is reflected in the engineering nature of work presented here.

There are two areas where asynchronous designs are attacking and are likely to win. The

first is the low power market where short battery life is the bane of the user and the

second is the mobile communication market where good EMC is required. Thus more

future work is expected in these two areas.

8.2.1 Low power market

The field of low power designs using traditional clocked design methodologies has been

plagued with fundamental difficulties. Global clock generation and distribution is

blamed for a significant portion of the total power consumption in a synchronous CMOS

circuit [97]. Though advanced power management can deal with clock gating and even

Conclusions 159

shut down clocks, this comes at a price in terms of increased complexity. However,

advanced power management is inherent within the asynchronous design methodology.

Power is only consumed when needed. There are many other arguments which suggest

an asynchronous design is a low power design. But the most convincing demonstration is

the AMULET2e work, which reduces power below that achievable in the industry-

leading clocked ARM designs.

It is worth noting that there is no single solution to the power consumption problem. A

design should consider power at all levels of the design hierarchy, including the

technology, layout, circuit, logic, design style, architectural and algorithmic levels [98-

103].

8.2.2 Mobile communication market

In the early 19th Century, the French mathematician Jean-Baptiste Fourier proved that

any reasonably behaved periodic function, g(t), with frequency/can be constructed by

summing a number of sines and cosines:

CO CO

g (t) = c + ^ ansin (2nnft) + ^ bncos (2nnft)
n = 1 n - 1

where c is a constant, an and bn are the sine and cosine amplitudes of the nth harmonics,

which decrease as n increases. From the above equation, it is clear that a synchronous

system produces “harmonic pollution” that aligns with harmonics of the clock, in

addition to “fundamental noise” that aligns with the clock frequency. However, periodic

operation is the fundamental property of synchronous systems and there is no way

around this. Fortunately, asynchronous systems are aperiodic and therefore do not

Conclusions 160

produce harmonic pollution (or produce negligible harmonic pollution). This very good

EMC is a unique advantage of asynchronous systems. It is worth noting that an

asynchronous system generates less fundamental noise compared with a similar

synchronous system as it produces broadband distributed current without the high

amplitude peaks. Recent work has shown that the magnitude of the current peak of a

synchronous system is 2.5 times that of a similar asynchronous system [104]. With

increasingly rigorous EMI compliance specifications and testing, good EMC properties

will demonstrate another meritorious aspect of asynchronous design.

8.3 Asynchronous prospects

“It is possible that all the renewed interest in asynchronous techniques will come to

nothing, though this seems unlikely. It is also possible that industry will suddenly see the

asynchronous light and switch completely to the new approach. This seems even more

unlikely! What seems more likely is that areas will be identified where asynchronous

approaches have really worthwhile advantages; these will be niches in otherwise

synchronous designs. ”

The above statement was made by Professor Steve Furber at a time shortly after the

AMULET group was established. It still remains true today. In the intervening years,

work in the AMULET group and elsewhere has moved asynchronous technology much

closer to commercial reality. The research described in this thesis is expected to

contribute to this movement, making the low power and EMC advantages inherent in

asynchronous technology more accessible to the designers of products which need these

benefits.

Conclusions 161

Bibliography

[1] Furber, S.B., “Computing without clocks”,
Proceedings of the VII Banff Workshop: Asynchronous
Hardware Design, Banff, Canada, 1993.

[2] Asynchronous Logic Home Page,
http://www.cs.man.ac.uk/amulet/async/index.html.

[3] On-Line Asynchronous Bibliography,
http://www.win.tue.nl/win/cs/pa/wsinap/async.html.

[4] Furber, S.B., Day, P., Garside, J.D., Paver, N.C., Temple, S. and
Woods, J.V., “The design and evaluation of an asynchronous
microprocessor”, Proceedings of ICCD 94, Boston, Massachusetts,
October 1994.

[5] Furber, S.B., Day, P., Garside, J.D., Paver, N.C. and Woods, J.V.,
“A Micropipelined ARM”, Proceedings of the IFIP TC 10/WG 10.5
International Conference on Very Large Scale Integration
(VLSI* 93), Grenoble, France, September 1993,
Ed. Yanagawa, T. and Ivey, P.A., Pub. North Holland.

[6] Furber, S.B., Day, P., Garside, J.D., Paver, N.C. and Woods, J.V.,
“AMULET 1: A Micropipelined ARM”, Proceedings of the IEEE
Computer Conference, San Francisco, March 1994.

[7] Paver, N.C., “The design and implementation of an asynchronous
microprocessor”, PhD thesis, University of Manchester, June 1994.

[8] Woods, J.V., Day, P., Furber, S.B., Garside, N.C., Paver, N.C. and
Temple, S., “AMULET 1: an asynchronous ARM microprocessor”,
IEEE Transactions on Computers, vol. 46, April 1997, pp. 385-398.

[9] Furber, S.B., “VLSI RISC architecture and organization”,
Marcel Dekker Inc., New York, 1989.

[10] Furber, S .B., “ARM System Architecture”,
Addison Wesley Longman Limited, New York, 1996.

[11] Furber, S.B., Garside, J.D., Temple, S., Liu, J., Day, P. and
Paver, N.C., “AMULET2e: An asynchronous embedded
controller”, Proceedings of Async’97, IEEE Computer Society
Press, April 1997.

162

http://www.cs.man.ac.uk/amulet/async/index.html
http://www.win.tue.nl/win/cs/pa/wsinap/async.html

Liu, J., “Digital adder circuits”,
UK Patent no. 9620526, November 1996.

Booth, A.D., “A signed binary multiplication technique”,
Quarterly Journal of Mechanics and Applied Mathematics,
vol. 4, June 1951, pp. 236-240.

MacSorley, O.L., “High-speed arithmetic in binary computers”,
Proceedings of the IRE, vol. 49, January 1961, pp. 67-91.

Yuan, J. and Svensson, C., “High-speed CMOS circuit techniques,”
IEEE Journal of Solid-State Circuits, vol. 24, February 1989,
pp. 62-70.

Liu, J., “The design of asynchronous multiplier”,
MSc thesis, University of Manchester, June 1995.

Day, P. and Woods, J.V., “Investigation into micropipeline latch
design styles”, IEEE Transaction on VLSI Systems, vol. 3,
June 1995, pp. 264-272,

Furber, S.B. and Day, P., “Four-phase micropipeline latch control
circuits”, IEEE Transaction on VLSI Systems, vol. 4, June 1996,
pp. 247-253.

Furber, S.B. and Liu, J., “Dynamic logic in four-phase
micropipelines”, Proceedings of Async’96,
IEEE Computer Society Press, March 1996.

Sutherland, I.E., “Micropipelines”, The 1988 Turing Award
Lecture, Communications of the ACM,vol. 32, June 1988,
pp. 720-738.

Kishinevsk, M., Kondratyev, A., Taubin, A. and Varshavsky, V.,
“Concurrent hardware: the theory and practice of self-timed
design”, John Wiley & Sons, Inc., New York, 1994.

Murata, T., “Petri nets: properties, analysis and applications”,
Proceedings of IEEE, vol. 77, April 1989, pp. 541-580.

Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L. and
Yakovlev, A., “Complete state encoding based on the theory of
regions”, Proceedings of Async’96, IEEE Computer Society Press,
March 1996.

Cortadella, J., Kishinevsky, M., Lavagno, L. and Yakovlev, A.,
“Synthesizing Petri nets from state-based models”,
Proceedings of ICCAD’95, November 1995, pp. 164-171.

Cortadella, J., Kishinevsky, M,, Kondratyev, A., Lavagno, L. and
Yakovlev, A., “Methodology and tools for state encoding in
asynchronous circuit synthesis”, Proceedings of ACM/EEEE
Design Automation Conference, 1996.

Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L. and
Yakovlev, A., “Technology mapping of speed-independent circuits
based on combinational decomposition and resynthesis”,
Proceedings of European Design and Test Conference, 1997.

Chaney, T.J. and Molnar, C.E., “Anomalous behavior of
synchronizer and arbiter circuits”, IEEE Transactions on
Computers, vol. 22, April 1973, pp. 421-422.

Couranz, G.R. and Wann, D.F., “Theoretical and experimental
behaviour of synchronizers operating in the metastable region”,
IEEE Transactions on Computers, vol. 24, June 1975, pp.604-616.

Kinniment, D.J. and Woods, J.V.,
“Synchronisation and arbitration circuits in digital systems”,
Proceedings of IEE, vol. 123, no. 10, October, 1976, pp. 961-966.

Horstmann, J.U., Eichel, H.W. and Coates, R.L.,“Metastability
behavior of CMOS ASIC flip-flops in theory and test”,
IEEE Journal of Solid-State Circuits,
vol. 24, February 1989, pp. 146-157.

Mead, C. and Conway, L., “Introduction to VLSI systems”,
Addison-Wesley, London, 1980.

Huffman, D.A., “The synthesis of sequential switching circuits”,
J.Franklin Institute, vol. 257, March/April 1954,
pp. 161-190/275-303.

Unger, S.H., “Asynchronous sequential switching circuits”,
Wiley-Interscience, John Wiley & Sons, Inc., New York, 1969.

Yun, K. and Dill, D., “Automatic synthesis of 3D asynchronous
state machine”, Proceedings of ICCAD, 1992.

Yun, K., Dill, D. and Norwick, S.M., “Synthesis of 3D
asynchronous state machines”, Proceedings of ICCD, 1992.

Lavagno, L. and Vincentelli, A.S.,
“Algorithms for synthesis and testing of asynchronous circuits”,
Kluwer Academic Publishers, 1993.

Muller, D.E. and Bartky, W.C., “A theory of asynchronous circuits”,
Annals of Computing Laboratory of Harvard University,
1959, pp.204-243.

Staunstrup, J., “A formal approach to hardware design”,
Kluwer Academic Publishers, 1994.

Ebergen, J.C., “Translating programs into delay-insensitive
circuits”, PhD thesis, Eindhoven University of Technology, 1987.

Ebergen, J. C., “A formal approach to designing delay-insensitive
circuits”, Distributed Computing, vol. 5, July 1991, pp. 107-119.

Molnar, C.E., Fang, T.P. and Rosenberger, F.U., “Synthesis of
delay-insensitive modules”, Proceedings of the 1985 Chapel
Hill Conference on Advanced Research in VLSI, 1985.

Chu, T.A., Leung, C.K.C. and Wanuga, T.S.,
“A design methodology for concurrent VLSI systems”,
Proceedings of ICCD, 1985.

Rosenblum, L.Y. and Yakovlev, A.V., “Signals graph: from
self-timed to timed ones”, International Workshop on
Timed Petri Nets, Torino, Italy, 1985.

Kishinevsky, M.A., Kondratyev, A.Y., Taubin, A.R, and
Varshavsky, V.I., “On self-timed behavior verification”,
Proceedings of TAIL 92, March 1992.

Verhoeff, T., “Delay-insensitive codes— an overview”,
Distributed Computing, vol. 3, 1988, pp. 1-8.

Sparsd, J. and Staunstrup, J.,
“Delay-insensitive multi-ring structures”,
Integration, the VLSI Journal, vol. 15, 1993, pp. 313-340.

Martin, A .J., “Programming in VLSI: from
communicating processes to delay-insensitive circuits”,
UT Year of Programming Series, Hoare, C.A.R., Ed.,
Addison-Wesley, 1990.

Berkel, K.V., “Handshake circuits: an asynchronous architecture for
VLSI programming”, volume 5, International Series on Parallel
Computation, Cambridge University Press, 1993.

Paver, N.C., “Condition detection in asynchronous pipelines”,
UK Patent no. 9114513, October 1991.

Garside, J.D., “A CMOS VLSI implementation of an
asynchronous ALU”, Proceedings of the IFIP Working
Conference on Asynchronous Design Methodologies,
Manchester, England, 1993.

Ling, H., “High-speed binary adder”,
IBM J.Res.Development, vol. 25, 1981, pp. 156-166.

Brent, R.P. and Kung, H.T.,
“A regular' layout for parallel adders”,
IEEE Transactions on Computers, vol. 31, 1982, pp. 260-264.

Oklodzija, V.G. and Barnes, E.R.,
“On implementing addition in VLSI technology”,
Parallel Distributed Computing, vol. 5, 1988, pp. 716-728.

Lynch, T. and Swartzlander, E.E.,
“A spanning tree carry lookahead adder”,
IEEE Transactions on Computers, vol. 41, 1992, pp. 931-939.

Quach, N.T. and Flynn, M.J., “High-speed addition in CMOS”,
IEEE Transactions on Computers, vol. 41, 1992, pp. 1612-1615.

Sklansky, J, “Conditional-sum addition logic”,
IRE Transactions on Electronic Computers, vol. 9,
1960, pp. 226-231.

Bedrij, O.J., “Carry-select adder”, IRE Transactions on
Electronic Computers,vol. 9, 1962, pp. 226-231.

Avizienis, A., “Signed-digit number representations for fast parallel
arithmetic”, IRE Transactions on Electronic Computers, vol. 10,
September 1961, pp. 389-400.

Srinivas, H.R. and Parhi, K.K., “A fast VLSI adder architecture”,
IEEE Journal of Solid-State Circuits,
vol. 27, June 1992, pp. 761-767.

Ladner, R.E. and Fischer, M.J., “Parallel prefix computation”,
J.ACM, vol. 27. 1980, pp. 831-838.

Uyemura, J.P., “Circuit design for CMOS VLSI”,
Kluwer Academic Publishers, 1992.

Shoji, M., “CMOS digital circuit technology”,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1988.

Weste, N.H.E. and Eshraghian, K.,
“Principle of CMOS VLSI design: a system perspective”,
Addison-Wesley, Massachusetts, 1988.

Suzuki, M. et al.,
“A 1.5 32-b CMOS ALU in double pass-transistor logic”,
IEEE Journal of Solid-State Circuits,
vol. 28, June 1993, pp. 1145-1151.

Turley, J., “ARM tunes Piccolo for DSP performance”,
Microprocessor Report, vol. 10, November 1996, pp. 17-20.

Bewick, G. and Flynn, M.J., “Binary multiplication using partially
redundant multiples”, Technical Report, CSL-TR-92-528,
Computer Systems Laboratory, Standford University, June 1992.

Omondi, A.R., “Computer arithmetic systems -
algorithms, architecture and Implementation”,
Prentice Hall International (UK) Limited, Cambridge, 1994.

Day, P., “A micropipelined multiplier”,
ACiD-WG/EXACT Workshop on Asynchronous Processing,
Veldhoven, Netherlands, December 1992.

Wallace, C.S., “A suggestion for parallel multipliers”, IEEE
Transactions on Electronic Computer, vol. 13,1964, pp. 14-17.

Harata, Y., Nakamura, Y., Nagase, H., Takigawa, M. and Takagi, N.,
“A high-speed multiplier using a redundant binary adder tree”,
IEEE Journal of Solid-State Circuits,
vol. 22, February 1987, pp. 28-34.

Hennessy, J.L. and Patterson, D.A.,
“Computer architecture, a quantitative approach”,
Morgan Kaufmann Publishers, Inc., San Mateo, California, 1990.

Zuras, D. and McAllister, W., “Balanced delay trees and
combinatorial division in VLSI”, IEEE Journal of Solid-State
Circuits, vol. 21, October 1986, pp. 814-819.

Wu, X. and Prosser, “Theory of transmission switches and its
application to design of CMOS digital circuits”,
Int. J. Circuit Theory Application, vol. 20, 1992.

Zhuang, N., and Wu, H., “A new design of the CMOS full adder”,
IEEE Journal Solid-State Circuit, vol. 27, May 1992, pp. 840-844.

Wang, J.M., Fang, S.C. and Feng, W.S., “New efficient designs for
XOR and XNOR functions on the transistor level”, IEEE Journal of
Solid-State Circuits, vol. 29, July 1994, pp. 780-786.

Pasternak, J.H. and Salama, C.A.T., “Design of submicrometer
CMOS differential pass-transistor logic circuits”, IEEE Journal
Solid-State Circuit, vol. 26, September 1991, pp. 1249-1258.

Yano, K., Yamanaka, T., Nishida, T., Saito, M., Shimonigashi, K.
and Shimizu, A., “A 3.8-ns CMOS 16xl6-b multiplier using
complementary pass-transistor logic”, IEEE Journal Solid-State
Circuit, vol. 25, April 1990, pp. 388-395.

Santoro, M., “SPIM: a pipelined 64 x 64-bit iterative multiplier”,
IEEE Journal of Solid-State Circuits,
vol. 24, April 1989, pp. 487-493.

Nagamatsu, M., Tanaka, S., Mori, J., Hirano, K., Noguchi, T. and
Hatanaka, K., “A 15-ns 32 x 32-b CMOS multiplier with an
improved parallel structure”, IEEE Journal of Solid-State Circuits,
vol. 25, April 1990, pp. 494-497.

Mori, J. et al., “A 10-ns 54 x 54 parallel structured full array
multiplier with 0.5-pm CMOS technology”, IEEE Journal of
Solid-State Circuits, vol. 26, 1991, pp. 600-606.

Goto, G, Sato, T., Nakajima, M. and Sukemura, T., “A 54 x 54
regularly structured tree multiplier”, IEEE Journal of Solid-State
Circuits, vol. 27, September 1992, pp. 1229-1236.

Gerosa, G, Gary, S. and Dietz, C., “A 2.2W 80MHz superscalar
RISC microprocessor”, IEEE Journal of Solid-State Circuits,
vol. 29, December 1994, pp. 1440-1454.

[83] Chandrakasan, A.P., Sheng, S. and Brodersen, E.W., “Low-power
CMOS digital design”, IEEE Journal of Solid-State Corcuits,
vol. 27, April 1992, pp. 473-484.

[84] Farnsworth, C., Edwards, D., Liu, J. and Sikand, S.,
“A hybrid asynchronous system design environment”,
Proceedings of the Second Working Conference on Asynchronous
Design Methodologies, London, May 1995.

[85] Veendrick, H.J.M., “Short-circuit dissipation of static CMOS
circuitry and its impact on the design of buffer circuits”, IEEE
Journal of Solid-State Circuit, vol. 19, August 1984, pp. 468-473.

[86] User Manual, Compass Design Automation Inc.,
San Jose, U. S. A.

[87] Meng, T.H.Y., Brodersen, E.W and Messerschmitt, D.G.,
“Automatic synthesis of asynchronous circuits from high-level
specifications”, IEEE Transactions on Computer-Aided Design,
vol. 8, November 1989, pp. 1185-1204.

[88] Greenstreet, M.R. and Steiglitz, K., “Bubbles can make self-timed
pipelines fast”, Journal of VLSI and Signal Processing,
vol. 2, November 1990, pp. 139-148.

[89] Greenstreet, M.R., “STARI: A technique for high-bandwidth
communication”, PhD thesis, Princeton University, 1993.

[90] Moon, C.W., “Synthesis and verification of asynchronous circuits
from graphical specifications”, PhD thesis, Unversity of California
at Berkeley, 1992.

[91] Martin, A.L., “Synthesis of asynchronous VLSI circuits”,
Technical Report, TR-93-28, Computer Science Department,
California Institute of Technology, 1993.

[92] Berkel, K.V., “Beware the isochronic fork”, Integration,
the VLSI Journal, vol. 13, June 1992, pp. 103-128.

[93] Garside, J.D., “Micropipeline structures”, ACiD-WG.EXACT
Workshop on Asynchronous Data Processing, the Netherlands,
December 1992.

[94] Bainbridge, W.J. and Furber, S.B., “MARBLE: a proposed
asynchronous system level macrocell bus”, Proceedings of the
Second UK Asynchronous Forum, England, July 1997.

[95] ARM Architecture Reference Manual,
Prentice Hall, Advanced RISC Machines Ltd. (ARM), 1996.

[96] Johnson, M., “Superscalar microprocessor design”,
Prentice Hall, Englewood Cliffs, New Jersey, 1991.

168

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

Dobberpuhl, D.W. et al.,
“A 200- MHz 64-b dual-issue CMOS microprocessor”,
IEEE Journal of Solid-State Circuit,
vol. 27, November 1992, pp. 1555-1565.

Liu, D. and Svensson, C., “Power consumption estimation in
CMOS VLSI chips”, IEEE Journal of Solid-State Circuits,
vol. 29, June 1994, pp. 663-670.

Liu, D. and Svensson, C., “Trading speed for low power by choice
of supply and threshold voltages”, IEEE Journal of Solid-State
Circuits, vol. 28, January 1993, pp. 10-17.

Nielsen, L.S., Niessen, C., Sparsp, J. and Berkel, K.V.,
“Low-power operation using self-timed circuits and adaptive
scaling of the supply voltage”, IEEE Transaction on VLSI Systems,
vol. 2, December 1994, pp. 391-397.

Burd, T., “Low-power CMOS library design methodology”,
MSc thesis, University of California, Berkeley, 1994.

Berkel, K.V., Burgess, R., Kessels, J.L.W., Peeters, A., Roncken, M.
and Schalij, F., “A fully asynchronous low power error corrector for
the DCC player”, IEEE Journal of Solid-State Circuits,
vol. 29, December 1994, pp. 1429-1239.

Chandrakasan, A.P., Burstein, A. and Broderson, R.W.,
“A low-power chipset for a portable multimedic I/O terminal”,
IEEE Journal of Solid-State Circuits,
vol. 29, December 1994, pp. 1415-1428.

“Cogency pushes asynchronous logic”,
Microprocessor Report, vol. 11, October 1997.

169

Adder schematics

This appendix contains the schematics of some of the cell library for the AMULET3

adder. Below is a list:

□ adder_datapath

□ adder_arbiter3

□ adder nor2

□ adder_xor2

□ adder_select

Appendix A 170

A.l adder_datapath

Appendix A 171

A.2 adder_arbiter3

\ I I I I i T I I I >

£>

1_J

O
D fNf

OOX5 OO _Q O

/ I 1 i - I _ _ _ _ _ _ _ _ I I- - - - - - - - i ■■■■■■_. t I \

Appendix A 172

A.3 adder_nor2

T7\

nGo

2 0 / 2,0 2 0 / 2,0
CM JD
C l

_Q
CL

2 0 / 2,0 2 0 / 2,0
bb

10/ 2,0 10/ 2,0

2 0 / 2,0 2 0 / 2,0
CM

CL Cl

2 0 / 2,0 2 0 / 2,0

nor

10/ 2,0 10/ 2,0

Txl

Appendix A 173

.4 adder xor2

\ i i i______ I I...... . i i /

xor I?xnor

10/ 2,0

“ ftW J 1 0 / 2 , 0

bb sumb

10/ 2,0

10/ 2,0

10/ 2,0

aa suma

10/ 2,0

10/ 2,0

V I I I I I I I

Appendix A 174

A.5 adder_select

s u m a y

n s u m y

s u m b y

n s y

s u m a x

10/2.10/2
n s u m x

s u m b x

10/2,10/2

s x

Appendix A 175

Adder layouts

This appendix contains the layouts of some of the cell library for the AMULET3 adder.

Below is a list:

□ adder_arbiter3

□ adder_nor2

□ adder_xor2

□ adder_select

Appendix A 176

B.l adder arbiter3

ifQQQQy

Appendix A 177

Appendix A

B.3 adder xor2

13HEHE

Appendix A 179

B.4 adder select

::......

WB3m$
yjlfe:'

• ̂ i .i jj.i-i.1 * .v.'*.t ...i .
i , . . W*VV. *

■i
— ----------------------

_ 5̂ >~5g55: •

Appendix A 180

Multiplier schematics

This appendix contains the schematics of some of the cell library for the AMULET3

multiplier. Below is a list of the following appendix sections:

□ AMULET3_Multiplier

□ multdatapath

□ multboothmux33

□ multrowl

□ multrow2

□ multrow3

□ multboothmux

□ multcnt42e

□ multcnt42c

□ multmuxe

□ multlatch

□ multdffa

□ multdffb

□ multdffc

Appendix A 181

C.1 AMULET3 Multiplier

o
Cl
o

-M
o

X)
-Mo
E

Appendix A 182

C.2 multdatapath

I I I

Appendix A 183

C.3 multboothmux33

Appendix A 184

C.4 multrowl

Appendix A 185

C.5 multrow2

Appendix A 186

C.6 multrow3

-<------------- e-

Appendix A 187

C.7 multboothmux

V I I I I I I I I I /

n M 2 ? M 2 ?nM 1

n P 4

P0C4:11

nP 3

N0C4:1)

nP 2

PTC4:1]

nP1

N T [4 :1]

/ — t i ' i i i i i i i r z S J

Appendix A 188

C.8 multcnt42e

Appendix A 189

C.9 multcnt42c

Appendix A 190

C.10 multmuxe

SelP

10/ 2,0 [l0/2,0

110/ 2,010/ 2,0

[l0/2,0

10/ 2,0 [10/ 2,0

10/ 2,0 [i0/2,0

SC

10/ 2,0 [10/ 2,0

10/ 2,0 [10/ 2,0

[i0/2,0

10/ 2,0 [10/ 2,0

PC a-
10/ 2,0 m/ 2.0

Appendix A 191

.11 multlatch

N O

FTd .
U L U o

CNCN
QD m

CD

Appendix A 192

C.12 multdffa

10/2, O'10/ 2,0

PY
10/ 2,0

iQY

5 /2 ,0 5 /2 ,0

bPY

5 /2 .0 > n 1

5 /2 ,0 |

10/ 2,0

10/ 2 .0"
PX

10/ 2,0 iQX -HnPX

5 /2 ,0 5 /2 ,0

1 0 /2 ,0]xpl

10/ 2,0

5/2 ,0

5/2 ,0

Appendix A 193

C.13 multdffb

OX fp LtX

10/ 2,0 10/ 2,0

5 / 2 , 010/ 2 ,0 10/ 2,0 iQYN
PY

5 / 2 ,0 5 /2 ,1

5 / 2 , 0

10/ 2,0 10/ 2,0

nRX 5 / 2 , 010/ 2,0 10/ 2,0
iQ X N PX

5 / 2 , (5 / 2 , 0

5 / 2 , 0

Appendix A 194

C.14 multdffc

10/ 2,03 /2 ,0

— ir
5 /2 ,0 5 /2 ,010/ 2,0 iQYN

Y5
5/2,1 5 /2 ,0 5/2,<

10/ 2 ,0"S/2,0 10/ 2,0

5 /2 ,f 5 /2 ,0
10/ 2,0 10/ 2,0

XS
5 /2 ,0 5 /2 ,0 5 /2 ,(5 /2 ,0

5 /2 ,0

Appendix A 195

Multiplier layouts D

This appendix contains the layouts of some of the cell library for the AMULET3

multiplier. Below is a list:

□ multboothmux

□ multcnt42e

□ multcnt42c

□ multmuxe

□ multlatch

□ multdffa

□ multdffb

□ multdffc

Appendix A 196

D .l multboothmux

Appendix A 197

D.2 multcnt42e

yr-r-f

Appendix A 198

D.3 multcnt42c

Appendix A 199

D.4 multmuxe

WVV

I W I & ; :
" " .V O W

Appendix A 200

D.5 multlatch

»w»̂

Appendix A 201

D.6 multdffa

"XvX

■

Appendix A 202

D.7 multdffb

Appendix A 203

D.8 multdffc

Appendix A 204

