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Abstract
This thesis describes arithmetic components (an adder and a multiplier) and 

control components which have been designed and implemented for AMULET3i, 

a commercial asynchronous embedded system chip incorporating the third 

generation asynchronous ARM processor (AMULET3).

A novel carry arbitration scheme is proposed (and has been patented) for parallel 

adder circuits. This new scheme provides an efficient encoding in which the carry 

is generated by arbitrating several input carry requests, exploiting the associativity 

of the carry computation. Post-layout simulation, in a 0.35 micron triple metal 

CMOS technology, shows that the adder for AMULET3i takes 1.8 ns to complete 

the computation of a 32-bit addition.

The multiplier design uses the modified Booth’s algorithm integrated with a new 

encoding technique for adjusting the product result of an unsigned number 

multiplication. An adjustment value is made on the least significant 32-bit 

positions. Post-layout simulation, in a 0.35 micron triple metal CMOS technology, 

shows that the multiplier for AMULET3i takes 11.2 ns (2.8 ns X 4 cycles) to 

complete the computation of a 32-bit long multiplication in the worst case.

Organizing these arithmetic components efficiently into a four-phase asynchronous 

pipeline is investigated and a set of speed-independent latch control circuits is then 

proposed. Additionally, a set of control modules for four-phase micropipelines is 

presented. These two sets of control components can be used to construct complex 

and powerful asynchronous systems.
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Introduction 1

The real world is asynchronous by nature. It is, thus, logical to build digital systems in an 

asynchronous way, exploiting the potential advantages of this inherent property of 

asynchrony to their fullest. However, synchronous design styles have been preferred and 

have dominated digital systems for the last three decades. This is not surprising for two 

reasons. Firstly, synchronous design is easier to understand and easier to implement, 

which are attractive characteristics. Secondly, asynchronous design was usually 

considered less disciplined and more anarchic, which frightens most designers away.

With the rapid development of synchronous digital systems, however, there is evidence 

that we are beginning to hit some of the fundamental limitations of synchrony. It is 

becoming ever more difficult to establish global synchrony within today’s chips, let 

alone from chip to chip. It is becoming unacceptable for global synchrony to bum 

increasing power, especially for power-sensitive applications where short battery life is 

the bane of the users. It is becoming a huge task for a digital system to be maintained and 

for its components to be replaced or reused. High noise emission and Electro-Magnetic 

Interference (EMI) are also increasingly becoming concerns in mobile communication 

applications.
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Asynchronous design [1] has made a come-back in recent years, showing a number of 

advantages [2,3] over synchronous design. There are no clock related problems because 

global synchrony has been removed. Performance can be better as it is based on the 

average case rather than the worst case. Power consumption can be lower since power is 

only consumed when needed. Large digital systems can easily be maintained due to the 

high modularity and composability as each block can be designed without knowledge of 

the timing characteristics of any of the other blocks. Also, the low noise emission and 

good Electro-Magnetic Compatibility (EMC) of asynchronous systems are of potential 

use in mobile communication applications since increasingly rigorous EMI compliance 

specifications and testing can be more easily satisfied.

With asynchronous design becoming widely recognized after a world-wide resurgence of 

interest, it seems that it is expanding beyond its initial area of interest (which was 

primarily in academic research) into industry. However, there is still confusion 

surrounding the claimed advantages as there are very few demonstrable chips available 

to assess and therefore to endorse the asynchronous design methodology. The outcomes 

for most claims are still to be answered, though some are obvious.

The AMULET (Asynchronous Microprocessor Using Low Energy Techniques) group 

was established late in 1990, led by Professor Steve Furber, to investigate the claimed 

advantages and the feasibility of designing large asynchronous systems. The objective is 

to realize asynchronous microprocessors with lower power consumption and higher 

performance than is currently available using synchronous design techniques. Rather 

than adding to the theoretical work, an engineering approach was adopted and this has 

contributed to the growing pool of asynchronous knowledge during the last seven years.
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The first milestone was AMULET1 [4-8] in 1994, an asynchronous implementation of 

the ARM 32-bit RISC microprocessor [9,10]. It demonstrated the feasibility of building 

an asynchronous system at the levels of complexity of current synchronous digital 

systems with the resources and tools readily available to synchronous designers.

The second milestone was AMULET2e [11] in 1996, an asynchronous embedded system 

chip which includes a significantly enhanced version of AMULET 1. Its performance and 

power efficiency are competitive with the industry leading synchronous ARM designs. 

The AMULET2e work established a path to the commercial exploitation of 

asynchronous design.

AMULET3i, a commercial asynchronous embedded system chip for communication 

applications, is currently under development. This will be a significant milestone: the 

first fully asynchronous embedded system going into a commercially viable product.

The main objective of the work described in this thesis is to design high performance and 

low power arithmetic components (an adder and a multiplier) and control components 

for AMULET3i. An adder and a multiplier have been designed and implemented down 

to the layout level; these are two basic arithmetic blocks which are critical to the 

performance of the processor core. A set of control components for four-phase 

micropipelines, namely the pipeline latch control circuits, have been proposed, which 

can be used to organize arithmetic components efficiently into a micropipeline. 

Additionally, another set of control components, namely four-phase control modules, is 

also presented as basic building blocks. These two set of control components can be used 

to construct complex and powerful asynchronous systems.
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Thesis overview

Due to the engineering nature of my PhD work, there is considerable detail which could 

easily blur the picture of the basic ideas. Instead, only the key ideas and relevant 

information are given here. Some engineering detail can be found in the circuit 

schematics and layout, presented in the appendices. Background information for 

asynchronous design is provided in chapter 2. The body of the work is divided into two 

main parts. The first part includes the arithmetic components, the AMULET3i adder in 

chapter 3 and the AMULET31 multiplier in chapter 4. The other part deals with the 

control components, a set of four-phase micropipeline latch control circuits in chapter 5 

and a set of four-phase control modules in chapter 6. Each chapter is self-contained.

Addition is one of the most important arithmetic operations performed frequently within 

both general purpose and digital signal processing systems and an adder is therefore an 

important arithmetic component. A novel carry arbitration scheme is proposed (and has 

been patented [12]) for parallel adder circuits in chapter 3. This scheme provides an 

efficient encoding in which the cany is generated by arbitrating several input cany 

requests, exploiting the associativity of the cany computation. The new coding is a 

logically redundant superset of the conventional carry process. Departing from this 

general coding, certain modifications which reduce the redundancy can easily be made 

where this simplifies the implementation. The proposed cany arbitration scheme not 

only leads to high speed adders due to the reduction in the required layers of logic, but 

also offers a regular and compact layout and uniform fan-in and fan-out loadings. To 

demonstrate the feasibility and effectiveness of the new scheme, a 32-bit adder for 

AMULET3i has been designed and implemented down to the layout level.
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Multiplication is another of the most common arithmetic operations. In chapter 4, the 

multiplier design for AMULET3i is presented, in which attention is focused on CMOS 

circuit design techniques. The AMULET3i multiplier can process two classes of 

multiply instructions: a normal 32-bit result and a long 64-bit result; both types of 

multiply instruction can also optionally perform an accumulate operation. A new 

encoding technique has been employed to adjust the final result of an unsigned number 

multiply operation. The design uses the modified Booth’s algorithm [13,14] and eight 

bits are scanned at a time. A new 4-2 Counter with an enable control has been proposed. 

High speed circuit design techniques including the “true single-phase clocking registers” 

[15] are used. Some of this chapter is based on previous work by the author described in 

his M.Sc thesis [16].

As the four-phase micropipeline design style [17-19] was adopted for AMULET3i, the 

design of arithmetic components, the adder and the multiplier, are similar to clocked 

designs in some ways. However there are some subtle differences between the two; this 

is obvious in the multiplier design where the asynchronous nature has been exploited. 

The fundamental difference lies in the control mechanisms, which are described in 

chapter 5 and chapter 6.

The AMULET designs are based on Sutherland’s micropipelines [20], Although 

micropipelines were originally conceived with two-phase control, most recent work uses 

four-phase control mainly for performance reasons. The change from two-phase control 

to four-phase control leaves many choices open regarding the organization of the 

asynchronous pipelines. Chapter 5 explores these control schemes for asynchronous 

pipelines and presents a set of pipeline latch control circuits. All of the proposed pipeline
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latch control circuits are speed-independent, which is verified using the FORCAGE tool 

[21], Low power considerations and the use of dynamic logic are also discussed in this 

chapter.

To ease the design of asynchronous systems based on four-phase micropipelines, a set of 

basic control modules is required. Such a set is proposed in chapter 6. Arbiters, which 

are non-trivial and tricky to implement, are also included. The specifications of these 

four-phase control modules are carried out using Petri Nets [22]. These basic control 

modules, together with the pipeline latch control circuits, can construct complex and 

powerful asynchronous systems including forking or joining multiple pipelines. All of 

the proposed control modules are speed-independent, which is verified using the 

PETRIFY tool [23-26].

A brief description of AMULET3i is given in chapter 7 in the hope of providing the big 

picture into which the components described in the previous chapters can be placed.

Conclusions are finally made in chapter 8.

Contributions

The main contributions made in this thesis are:

□  In chapter 3, a high performance, low power asynchronous 32-bit adder for 

AMULET3i has been designed and implemented down to the layout level. The design 

uses a novel carry arbitration scheme (which has been patented) exploiting the 

associativity of the carry computation.
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□  In chapter 4, a high performance, low power asynchronous 32-bit multiplier for 

AMULET3i has been designed and implemented down to the layout level. The design 

employs the modified Booth’s algorithm integrated with a new encoding technique for 

adjusting the product result of an unsigned number multiply operation.

□  In chapter 5, a set of speed-independent latch control circuits has been proposed 

for asynchronous pipelines. These pipeline latch control circuits provide a framework 

within which arithmetic components can be efficiently organized.

□  In chapter 6, a set of speed-independent control modules has been proposed. These 

control modules provide basic building blocks which can be used to construct complex 

and powerful asynchronous systems.
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Background 2

In this chapter, we highlight some aspects of asynchronous design. Asynchronous design 

here refers to the design of digital circuits which operate correctly without relying on 

global clocks for synchronization. It is not possible to offer a comprehensive overview 

here; instead a brief introduction to the basic concepts is provided. The micropipeline 

design style and the AMULET project are then overviewed, which are of interest here 

because they form the background for the rest of the work described in this thesis. A full 

treatment of other asynchronous design styles can be founded elsewhere [2,3].

2.1 Introduction

A binary digital circuit uses two distinct values, 0 and 1. This is an ideal model. In 

reality, there are no true digital circuits, but only analog circuits which approximate to 

digital behaviours. No matter how quick the transitions the digital signals make, there are 

not only 0’s and l ’s but also undefined values between 0 and 1. These undefined values, 

when they occur, may not be recognized or may be interpreted in different ways by a 

digital circuit. As a result the digital circuit may behave unexpectedly. The period of this 

time uncertainty of a transition can be interpreted as “delay”, and unexpected 

phenomena in a digital circuit due to the existence of delays are called “hazards’. To
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avoid such hazards, we must wait and evaluate digital signals only at well-defined 

reference points. Generally, digital design methodologies fall into two categories 

according to how these reference points are defined. The synchronous design 

methodology uses global clock signals as reference points, whereas the asynchronous 

design methodology employs the elapse of time or local control signals as reference 

points.

Historically, most early asynchronous designs used the elapse of time as reference 

points, based on some real delay assumptions on circuit elements or wires. The design 

process is much the same as synchronous design. It postulates many local clock signals 

based on the elapse of time between the changes of circuit signals. These postulated local 

clock signals are used to define reference points, which can be variable and controlled by 

adjusting delays in circuit elements or wires. Though much effort has been expended 

during the last three decades on this design approach, there are some fundamental 

problems that are hard to deal with. As a result, this design style is viewed as less 

disciplined and more anarchic than synchronous design, and this view has frightened 

most designers away in the past and still generates an adverse reaction.

However, most current asynchronous designs have abandoned the old ad hoc method 

based on real delay assumptions on circuit elements or wires. Instead, they use 

unbounded delay assumptions, which means a circuit always operates correctly under 

any distribution of circuit element delays or wire delays. Though this seems very 

pessimistic, it resolves all the delay-related problems that would otherwise arise. At the 

same time, the performance of a circuit is not compromised and even may be improved 

since concurrent operations can easily be exploited. Another benefit is that the circuit
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correctness issue is separated from delays and as a result circuit verification becomes 

easy, which is increasingly important for a complex system. Current asynchronous 

design is very systematic and well disciplined.

2.2 Basic concepts

A few key concepts and a taxonomy of asynchronous design are introduced and defined 

informally here; these are fundamental to the understanding of asynchronous design. 

Formal definitions are beyond the scope of this thesis and can be found elsewhere.

2.2.1 Delay models

The bounded delay model assumes that there is an upper bound on the delay of a circuit 

element or a wire.

The unbounded delay model assumes that there is no upper bound on the delay of a 

circuit element or a wire.

2.2.2 Circuit classification

Timed circuits are circuits whose correct operation is dependent on the delays in circuit 

elements and wires.

Speed-independent circuits are circuits whose correct operation is independent of the 

delays in circuit elements, and wire delays are assumed to be zero.

Delay-insensitive circuits are circuits whose correct operation is independent of the 

delays in both circuit elements and wires.
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Ouasi-delay-insensitive circuits are delay-insensitive circuits augmented with isochronic 

forks.

(Isochronic forks are sets of interconnecting wires where the delay difference between 

the branches is zero or negligible compared to the circuit element delays.)

2.2.3 Hazards and races

A static hazard is a single transition of a signal which should remain constant.

A dynamic hazard is a multiple transition of a signal which should change only once.

A function hazard is inherent in the specification of the logic function.

A logic hazard depends on the particular implementation of the logic function.

An essential hazard is inherent in the specification of the finite state machine.

A non-essential hazard (also called a race) depends on the particular state encoding.

A noncritical race is where all transient states settle to the same final state.

A critical race is where different transient states may lead to the different final states.

2.2.4 Metastability and arbitration

The metastabilitv problem [27] is the phenomenon of the unusually long delay in the 

logic decision time between two values 0 and 1 for bistable systems such as flip-flops. 

When two asynchronous inputs to a bistable system anive at very nearly the same time, a 

discrete decision must be made from a continuous range of input possibilities. It is 

fundamentally impossible to make this decision reliably within a bounded time. The 

delay may theoretically be an indefinite amount of time [28-30]. Arbitration is the 

mechanisms whereby a bistable system responds to either one input or the other.
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Though metastability is an inevitable problem, the resulting metastable states can be 

resolved internally to maintain valid logic levels at the circuit interface using analog 

circuit techniques. The mutual exclusion circuit (MUTEX) [31] has this property and is 

used for making a non-deterministic decision between asynchronous calling requests.

It is worth noting here that the probability of failure of synchronous designs can never be 

zero and it must be accepted that whenever an asynchronous signal is input there is some 

chance of failure, though the probability can be made small with careful design 

techniques. However, this is not the case in asynchronous designs; an asynchronous 

circuit can be designed always to operate correctly, though it will require an unbounded 

time to resolve in the worst case.

2.2.5 Circuit specifications

Generally speaking, there are two broad classes of asynchronous design specification 

styles: state-based and event-based approaches.

Asynchronous finite state specifications are Huffman state machines [32,33] or extended 

Huffman state machines such as Burst Mode state machine [34,35]. Huffman circuits 

operate in fundamental mode, which assumes that only one input can change at a time, 

and succeeding input changes must not occur until the entire circuit settles into be a 

stable state. Relaxing the condition of only one input change in fundamental mode, 

burst-mode circuits allow multiple input changes as a burst. Another operation mode is 

called the input/output mode [36], which assumes that further external input changes can 

be applied as soon as the expected outputs have responded the current inputs. Total state 

specifications [37,38] are referred to as Muller state graphs. from which the semantics of
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event-based models are derived. Trace theory [39,40] is an abstract and formal 

description of a Muller state graph.

Event specifications are referred to as Petri Net [22] specifications, and include I-nets 

[41], Signal Transition Graphs (STG) [42,43], and Change Diagrams (CD) [21,44]. Petri 

Net specifications are a mathematical formalism to describe the behaviour of systems 

with concurrency, causality and conflicts between events.

I-nets are restricted Petri Nets in which interface signal names are assigned to transitions. 

Signal Transition Graphs are interpreted Petri Nets whose transitions are labelled as 

signal value changes. Similar to STGs, Change diagrams are interpreted Petri Nets, but 

allow OR-type signal transitions and disengageable arcs for nonrepeating signal 

transitions.

2.2.6 Signalling protocols

A handshake is a procedure where one signal (the request signal) makes a transition and 

a second signal (the acknowledge signal) makes a transition as a response.

Links are sets of request and acknowledgement wires used for communications through 

handshaking between different blocks.

The two-phase [20] protocol uses one handshake along a link for one transaction 

between two blocks. As a result, rising and falling signal transitions are equivalent,

The four-phase [17-19] protocol uses two handshakes along a link for one transaction 

between two blocks. There are variant schemes (see chapter 5) based on this protocol.
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2.2.7 Data representation

Bundled data [20] comprises a set of data wires and an associated control signal that 

indicates the validity of the data. The data wires and the control wire are constructed 

such that stable data are available at the receiver before the control signal makes an 

indication of valid data. The relationship between the data and control delays required to 

ensure correct operation is referred to as the bundling constraint.

Coded data systems hide timing information in the data itself. There are many ways to 

encode data [45]. One well-known method is the dual-rail code [46] that requires two 

wires to encode a single bit of data. A transition can occur on either one wire or the other 

and not on both wires.

2.2.8 Synthesis

The type of specification usually determines the style of synthesis which can be used to 

generate the asynchronous circuit. State-based and event-based specifications have 

corresponding synthesis approaches: state-based and event-based synthesis. These two 

synthesis approaches are often used to design controllable asynchronous modules. Once 

a set of asynchronous modules is at hand, large asynchronous systems can be built up 

from these modules. Syntax directed program translations for specifications using CSP 

like programming languages [47] such as Tangram [48] are examples of this approach to 

building circuits from a library of modules. Although state-based or event-based design 

techniques can be applied directly to large asynchronous systems, they have not been 

very successful and practical for VLSI applications. Note that some designs are 

combinations of state-based and event-based design approaches.
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2.3 Sutherland’s micropipelines

Micropipelines were introduced by Ivan Sutherland in his 1988 Turing Award lecture 

[20], and are a framework for building asynchronous pipelines. Micropipelines are 

composed of a bounded delay datapath operated by an unbounded delay two-phase 

control circuit.

Data passes on a bus from sender to receiver and is associated with a Request wire 

indicating when the data is valid. There is an Acknowledge wire from the receiver to the 

sender which indicates whether the data has been received, (see figure 2-1). The data 

wires and the request signalling wire must be treated as a bundle; the data must reach the 

receiver prior to the request event. Rising and falling transitions of request and 

acknowledge wires are equivalent, carrying the same information.

Request

Data

Acknowledge

Sender Receiver

Figure 2-1: A bundled data interface 

2.3.1 Event control modules

Figure 2-2 illustrates a basic set of event control blocks proposed by Sutherland which 

can be “programmed” to build complex and powerful asynchronous systems. These 

basic building blocks were designed using I-nets [41].
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Figure 2-2: Micropipeline event logic modules

The XOR gate acts as the OR function for events. A transition on either input results in a 

transition on its output. For correct operation events must not arrive simultaneously on 

both inputs. XOR modules are often called MERGE elements because they merge two 

event streams into one.

The Muller C-gate acts as the AND function for events. A transition will occur at the 

output only when there have been transitions at both of the inputs. Muller C-gates are 

often called RENDEZVOUS elements because they make events at the output wait until 

events have been received on both inputs.

The TOGGLE module steers incoming events to its outputs alternately; the first event to 

arrive is issued to the output marked with a dot, the second to the unmarked output, and 

so on.

The SELECT module steers incoming events to one of two outputs according to the 

Boolean value of its diamond input. The Boolean value must be set up before the 

incoming event that it steers, a requirement similar to the bundling constraint.
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The CALL module allows two processes to share a common resource, similar to a 

procedure call in software. The calling processes must be mutually exclusive; if they are 

not, they must access the call block through an arbiter.

The ARBITER module is used to control the interaction between two asynchronous 

event streams. As the two streams can issue requests at any time, the arbitration logic is 

inherently prone to metastability. The metastable states must be resolved internally to 

maintain valid logic levels at the interface of the module.

2.3.2 Event-controlled storage element

Event-controlled storage elements are needed to build a complete micropipeline circuit. 

Figure 2-3 shows an implementation of an event-controlled storage element and the 

symbol used to denote it.

Capture J
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Done
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Figure 2-3: Event-controlled storage element

The input is initially connected to the output; it is transparent when empty and does not 

behave as a storage element at all. An event on the “capture” wire flips the two switches, 

and as a result a loop is formed containing two inverters, causing the data to be latched. 

This loop is still connected to the output, which therefore carries the previously latched
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value and does not follow subsequent input changes. An event on the “capture done” 

wire is issued after the switches have flipped. An event on the “pass” wire flips the other 

switch and as a result the element is returned to the transparent state and ready for the 

next coming transaction. Similarly, an event on the “pass done” wire is issued after the 

switch has flipped.

2.3.3 Micropipeline FIFO

A micropipeline with no processing in it, which is simply a FIFO, can be built as shown 

in figure 2-4. A data value can be entered into the FIFO from the left by signalling an 

event on the Rin wire, whereupon it will ripple down the FIFO and eventually will be fed 

out through the wire Rout.

<  DELAY > DELAY

RoutRin

DoutDin

Ain Aout
-T DELAY >

Figure 2-4: Micropipeline FIFO

One of the elegant features of a micropipeline FIFO is its elasticity. Data can be inserted 

into or removed from a FIFO at any rate bounded from zero to a maximum defined by 

the throughput parameter. The maximum insertion rate at the input end and the
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maximum removal rate at the output end can be achieved at the same time. However, in 

this condition, the percentage occupancy of the FIFO remains unchanged, and is 

determined by how fast the request signal passes forward and the acknowledge signal 

returns backward. If the request signal and acknowledge signal travel at the same rate, 

which is the most common case for a micropipeline FIFO, the percentage occupancy is 

only 50%.

Therefore, if we want to sustain high throughput for a long time, more FIFO stages 

should be used than might be expected. This is why an asynchronous micropipeline 

FIFO is often deeper than its synchronous counterpart for the same application.

2.3.4 Micropipelines with processing

The simple micropipeline FIFO can be extended to interpose processing logic between 

micropipeline FIFO stages, as shown in figure 2-5. The operation of this micropipeline 

with processing operates in a similar manner to the micropipeline FIFOs, The delay in 

the request event path must match the logic processing delay in order to preserve the data 

bundling convention.

More complex structures including forking and merging multiple pipelines can be built 

with the aid of other event control modules.

2.4 The AMULET project

It is our belief that asynchronous designs should be justified not only on a theoretical 

significance but also by their practical implications. This is also the motivation behind 

the AMULET project.
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Figure 2-5: Basic micropipeline structure 

2.4.1 AMULET1 chip

In 1994 Professor Steve Furber’s AMULET group at the University of Manchester took 

delivery of the AMULET 1 processor, the first asynchronous implementation of a 

commercial processor architecture. The AMULET1 chips are code compatible with the 

ARM 32-bit RISC processor.

The design used the two-phase micropipeline style and includes several novel features 

such as the register locking mechanism [49], the instruction prefetching with its “colour” 

management of non-determinism and the data dependent ALU operations [50]. The 

chips were fabricated on two CMOS processes: a 1 pm process at ES2 and a 0.7 pm 

process at GEC Plessey Semiconductors.

Table 2-1 shows a summary of the characteristics of the AMULET1 chips with those of 

ARM6 for comparison. The chips demonstrate robustness to variations in temperature 

and voltage supply. The AMULET 1 chip demonstrated the feasibility of building an
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asynchronous digital system at the levels of complexity of current synchronous digital 

systems.

Table 2-1: Characteristics of AMULET1 [4]

AMULET 1 (a) AMULET 1 (b) ARM6

Process 1 jiim 0.7 jam 1 jam

Area (mm2) 5.5 X 4,1 3.9 X 2.9 4.1 X 2.7

Transistors 58,374 58,374 33,494

Performance 20.5 kDhry. 40 kDhry. 31 kDhry

Power 152 mW N/A 148 mW

MIPS/W 77 N/A 120

Conditions 5 volt, 20 °C 5 volt, 20 °C 5 volt, 20 MHz

2.4.2 AMULET2e chip

Two years later, the AMULET group took delivery of the AMULET2e embedded system 

chip. AMULET2e is aimed at the embedded control market, and includes AMULET2 (a 

significantly enhanced version of AMULET1), 4 Kbytes of RAM which can also be 

configured to operate as a cache, a counter-timer for real-time reference, a flexible 

memory interface and various configuration and control registers. The design includes 

several novel features such as the load and register forwarding, branch target prediction, 

and the “halt” mode. The design uses the four-phase micropipeline design style. The 

chips were fabricated in a 0.5 jam triple metal CMOS technology.

Table 2-2 shows a summary of the characteristics of AMULET2e with those of ARM710 

and ARM810 for comparison. AMULET2e is the first asynchronous processor whose 

performance and power-efficiency are competitive with the industry-leading clocked
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ARM designs. One remarkable feature of AMULET2e is that the power consumption 

drops to nearly zero with the “halt” function enabled.

Table 2-2: Characteristics of AMULET2e [11]

ARM7I0 AMULET2e ARM810

Process 0.6 pm 2LM 0.5 pm 3LM 0.5 pm 3LM

Area (mm2) 32 41 76

Transistors 570,295 454,000 836,022

Cache 8 K 4-way 4K 64-way 8K 64-way

MIPS 23 40 86

Power 120 mW 150 mW 500 mW

MIPSAV 192 250 172

Conditions 3.3 volt, 25 MHz 3.3 volt, 20 °C 3.3 volt, 72 MHz

2.4.3 AMULET3i

AMULET3i, an asynchronous embedded system chip which incorporates the third 

generation asynchronous ARM processor (AMULET3), is currently under development. 

Different from its predecessors, AMULET1 and AMULET2e, AMULET3i is aimed to 

be a commercially viable product for communication applications. This will be a 

significant step (see chapter 7).
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Adder design 3

In this chapter a novel carry arbitration scheme is proposed (and has been patented) for 

parallel adder circuits. The proposed scheme provides an efficient encoding in which the 

carry is generated by arbitrating several input carry requests, exploiting the associativity 

of the carry computation. The new scheme not only leads to high speed adders due to a 

reduction in the required layers of logic, but also offers a regular and compact layout and 

uniform fan-in and fan-out loadings. To demonstrate the feasibility and effectiveness of 

the proposed scheme, a 32-bit adder for AMULET3i has been designed. Post-layout 

simulation, in a 0.35 micron triple metal CMOS technology, shows that it takes 1.8 ns to 

complete the computation of a 32-bit addition.

3.1 Introduction

Addition is one of the most important arithmetic operations performed frequently within 

both general purpose and digital signal processing systems. A problem with designing 

high speed adder circuits is that the most significant bits of the result are logically and 

physically dependent upon the carry output values from the least significant bits. The 

consequence of this sequential dependency is that addition operations tend to be 

relatively slow. This has been widely recognized, and adder design has been studied
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extensively for decades. Generally, the basis of adder designs is still either carry 

generation and carry propagation [51-55] or carry selection based on all possible results 

being available [56,57]. In recent years cany free additions achieved by employing 

redundant number systems have received considerable attention [58,59]. In an effort to 

develop adder circuits that are capable of operating at high speed a carry arbitration 

scheme for parallel adders is proposed. The new scheme provides an efficient encoding 

in which the carry is generated by arbitrating several input cany requests, exploiting the 

associativity of the cany computation.

3.2 Carry arbitration

The interesting and difficult task in an adder circuit is the computation of the carry bits. 

For an addition of two 1-bit numbers at and b -v the carry cf- can be evaluated as shown in 

table 3-1. There are two general cases defined by the values of at and bt. The first case, 

where there is a cany request, arises when both operand bits are equal. A 1-carry request 

occurs if both inputs are 1, whereas a 0-cany request occurs if both inputs are 0. The 

second case, where there is no carry request, arises when the operand bits have different 

values. The letter u indicates there is no cany request. Cany computation is similar to the 

logic behaviour when connecting wires at and bt together. If they have the same value, 

then the result follows. If they are different, the result is undefined.

Table 3-1: Carry request

ci}, bi ci

00 0

1 1 1

0 1 u

10 u
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3.2.1 Two-way carry arbiter

One input pair may or may not make a cany request. If two input pairs (aif bt) and {cip bp 

are considered together, they may issue carry requests at the same time. Therefore, there 

is a need to arbitrate these two carry requests. Figure 3-1 shows a two-way carry arbiter. 

The input pair (ab bj) can make a non-maskable carry request, where non-maskable 

means that a cany request from the input pair (ai} bj) must always be granted service to 

the output <y. The input pair (aj, bp can make maskable cany requests, where maskable 

means that a cany request from the input pair (aj, bp may be masked by the input pair 

{ab bj). Only when there is no non-maskable carry request from the input pair (a*, bj) is a 

maskable cany request from the input pair (a^ bp granted service to the output c-r The 

truth table required to implement two-way cany arbiters is illustrated in table 3-2.

—►--------—►--------
Two-Way ►Ci

—>-------—►-------
Cany Arbiter Op W;)

Figure 3-1: Two-way carry arbiter

Table 3-2: Two-way carry requests

bt aj, bj ci

0 0 0

1 1 1

0 1 (or 1 0) 00 0

0 1 (or 1 0) 11 1

0 1 (or 1 0) 0 1 (or 1 0) u
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The output carry c-t can be encoded using two wires (yt> wt) as shown in table 3-3. 

Equations EQ-1 and EQ-2 satisfy table 3-2 and table 3-3.

Table 3-3: Dual-rail code

ci vf,

0 00

1 1 1

u 0 1 (or 1 0)

Vi = api + («; + bi)aj (EQ-1)

wt = apt + (at + bj)bj (EQ-2)

Figure 3-2 shows a 4-bit carry computation using two-way carry arbiters. The solid dots 

represent two-way cany arbiters. The carry output values of the high order bits is 

generated by arbitrating carry requests from their low order bits. High order bit carry 

requests have priority over low order bit cany requests. For any carry output bits, there 

must exist a path to every low order input operand bits, which reflects the fact that the 

canies shall propagate across all the way of the word length of the operands.

carry output

Two input operands

Figure 3-2: 4-bit carry computation
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The proposed scheme is similar to but different from the scheme proposed by Brent and 

Kung [52]. Firstly, the computation logic needed for carry generate g-t and carry 

propagate p t in the Brent and Kung adders is not necessary in our scheme. This leads to a 

reduction of the required layers of logic and hence high speed cany generation. 

Secondly, only single-rail signals need to be routed instead of dual-rail signals if the 

signals vt and wt are predicted to be equal (which indicates that the carry has been 

generated, either a 1-cany request or a 0-cany request). This results in a reduction of 

chip area, especially in the final row of the carry computation where more room is 

needed to accommodate signals crossing from the least significant bits to the most 

significant bits. Finally and more importantly, group adders in a carry select adder can be 

eliminated using the modified implementation of carry arbiters as we will see later.

In fact, the Brent and Kung scheme can be viewed as a special encoding of our scheme 

as shown in table 3-4. The two signal pairs (gj, pj) and (gj, pj) generated from the input 

pairs (c/j, bj) and (cij, bj) can be seen as new input pairs. The new input pair (g,, pj) issues 

a 0-carry request when they are both 0, a 1-carry request when gt is 1, and no cany 

request when pt is 1. Note that gt and p t are mutually exclusive. In other words, the case 

of (gj, pj) with the value (1, 1) is removed by the Brent and Kung encoding.

Table 3-4: (g,p) carry requests

gi> Pi (a* bj) gj,Pj(aj,bj) ci

0 0 (0 0) - - ( - - ) 0

10(1 1) 1

0 1 (0 1 or 1 0) 0 0 (0 0) 0

0 1 (0 1 or 1 0) 1 0 (1 1) 1

0 1 (0 1 or 1 0) 0 1 (0 1 or 1 0) u
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The carry request output q  is encoded here as shown in table 3-5. Equations EQ-3 and 

EQ-4 give the behaviour defined by table 3-4 and table 3-5.

Table 3-5: The Brent and Kung carry code

c i Vp Wi

0 0 0

1 1 1

u 0 1

Vi = gi + Pigj (EQ-3)

Wi-PiPj (EQ-4)

Equations EQ-3 and EQ-4 are the key ideas of the well known Brent and Kung adders. It 

is clear that the computation logic for carry generate q  and carry propagate jq is wasteful 

except for understanding how the carries are generated and propagated. By encoding the 

input pair at and to the carry generate q  and propagate pt, the advantage in our scheme 

of some signals being routed in single-rail form is lost because the dual-rail signals q  

and pi are always required in the Brent and Kung scheme.

3.2.2 Three-way carry arbiter

A three-way carry arbiter is shown in figure 3-3. As before, the input pair (q, bj) can 

issue a non-maskable carry request. The input pairs (ap bp and (ak, bp  can both make 

maskable carry requests at any time, possibly at the same time. However, the input pair 

(<ap bp has priority over the input pair (ak, bk). Only when there is no non-maskable carry 

request from the input pair (q, bj) is a maskable carry request from the input pair (q- bp 

granted service to the output q. Only when there is no non-maskable carry request from
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the input pair (a^ bt) and no maskable carry request from the input pair (ap bp is a 

maskable carry request from the input pair (ak, bp  granted service to the output ct.

a;
bi
a;
bj.

—►--------—>--------

_►-------- Three-Way
—>------- Carry Arbiter
—►-------—>-------

C i

(v;» wf)

Figure 3-3: Three-way carry arbiter

The truth table required to implement three-way carry arbiters is shown in table 3-6. 

Equations EQ-5 and EQ-6 give the behaviour defined by table 3-3 and table 3-6.

Table 3-6: Three-way carry requests

tZj, I?} ap bj ab h ci

00 0

1 1 1

0 1 (or 1 0) 00 0

0 1 (or 1 0) 11 1

0 1 (or 1 0) 0 1 (or 1 0) 00 0

0 1 (or 1 0) 0 1 (or 1 0) 11 1

0 1 (or 1 0) 0 1 (or 1 0) 0 1 (or 1 0) u

Vi = + (cii + biXcijbj + (aj + bj)ak) (EQ-5)

wt = afii + (cii + biXajbj + (aj + bj)bk) (EQ-6)

Figure 4 shows a 9-bit carry computation using three-way carry arbiters. The addition of 

an n-bit binary number using three-way carry arbiters can be performed in a time 

proportional to 0(log3n), and therefore is more efficient than using two-way carry
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arbiters where the computation time is 0(log2n). It is worth noting here that there is a 

difference in complexity between two-way and three-way carry arbiters, which should be 

taken into account when comparing them.

carry output

Two input operands

Figure 3-4: P-bit carry computation

The algorithm as shown in the above diagram is very elegant, and follows a very simple 

rule:

t = 3\ while (q = u) {q = q_r; t = 3t;}

Here t is the number of input pairs of carry arbiters used, and is three for this case. In the 

bottom line, the carries are computed just by looking at the three bits and hold either u or 

the correct carries. In the top line, the cany computation covers more bits and reach the 

point where all of the bit positions have been examined, therefore all of the carries are 

generated.

3.2.3 Carry arbiters with more than three ways

Using the same approach, carry arbiters with any number of pairs of input signals can be 

derived. Theoretically, it will be appreciated that a single carry arbitration circuit could
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be responsive to n pairs of input signals (n > 3). However, carry arbiters with more than 

four ways are not usually of practical interest. Firstly, too many series transistors are 

needed to implement these arbiters, which leads to inefficient CMOS designs. Secondly, 

the arbiter cell layout can easily become too large for the bit pitch of a datapath.

The circuit which implements a 9-bit carry computation as shown in figure 3-4 can be, in 

fact, considered as a nine-way carry arbiter, which is built up using three-way carry 

arbiters.

Now it may be questioned why the new term “carry arbitration” has been introduced to 

describe a circuit whose function is purely combinational. The introduction of this new 

term serves to explain the idea, since it is difficult to use the conventional terms 

“generate”, “kill” and “propagate” to describe the new coding.

In a sense, the new coding is a logic ally-redundant superset of the conventional carry 

process. Departing from this general coding, certain modifications (which reduce the 

redundancy) can easily be made where this simplifies the implementation as we will see 

later in section 3.4.

3.3 Parallel prefix computation

In this section the verification of the adder design using the proposed scheme is earned 

out formally by taking an n-bit addition using two-way carry arbiters as an example. Let 

(an, an_j, a1) and (bn, bn_j, . . bj) be n-bit binary input operands with output carries

(cn> cn_j, . . cj), and let c0 be the initial input carry bit. We define an operator “o” [60] 

here as follows:
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(a, b)o(a, br) = (ab + (a + b)b\ ab + (a + b)b')

Lemma 1: Let
K c p c , )

(v;, w,) = i
l (  ai,b i) o ( v i_ v iv,_,)

where Cj = ajbj + (a3 + bj)c0.

if i = 1

if 2 < i < n

Then ct = vt = wz- for z = I, 2  n.

Proof. We prove the lemma by induction on i.

It is obvious that the above equation holds true for i = 1. 

If i > 1 and c^j = vt_j = Wj-_7, then

O';, W|)= b^o iy^, Wi_j)

= («P bi)o(ci„i, Cm )

= OA- + (a* + 6;)cw , afii + (af + b^c^j)

= (cp q)

Thus, the equation holds true by induction.

Lemma 2; The operator “o” is associative.

Proof. For any three (a3, b3), (a2, b2) and (a7, bj),

[(a3, b3)o{a2, b2)]o(aj, bf) =

{{a3b3 + (a3 + b3)a2), (a3b3 + (a3 + b3)b2)]o(aj, b f  =

(((a3^3 + (a3 +  ^3)a 2)(.a 3^3 + (a 3 +  ^3)^2) +  

da3b 3 + (1a3 + b3)a2) + (a3b3 + (a3 + b3)b2))aj),

d a 3^3 +  (a3 + ^3)a 2)(a 3^3 + (a3 +  ^3)^2) + 

d a 3^3 + (a3 + ^3)^2) + (a3^3 + (fl3 +  ^3)^2))^/)) = 

d(a3^3 + (a3 + b3)a2bf) + {a3b3 + {a3 + b3)(a2 + b2))af,
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((a3^3 + (a3 + b3)a2b2) + (a3^3 + (a3 + ^3)(a2 + ^2))^ )) =

( (a 3^3 +  (a 3 +  ^ 3)(a 2^2 +  (a 2 +  b 2) a j ) ) ,

(a3^3 + (a3 + b3)(a2b2 + {a2 + b2)bj))) =

(a3, b3)o{a2b2 + (a2 + b2)ah a2b2 + (a2 + b2)bj) =

(a3, b3)o[(a2, b2)o(ah bj)]

Thus, the operator “0” is associative.

This lemma provides the foundation for using tree structures to generate carries since the 

signals and wt can be computed in any order from the given input values. This is the 

key idea for the proposed scheme.

Lemma 3\ The operator “0” is not commutative.

This can easily be proved by inspection that (1, l)o(0, 0) ^  (0, 0)c>(l, 1). This lemma 

implies that carry arbitration should perform in a prioritized way.

3.4 Implementation

Figure 3-5 shows a static CMOS implementation of a two-way carry arbiter. Note that 

the outputs V; and W; are complemented signals. However, the arbiter is quite 

symmetrical and implementing the next stage in inverse logic is straightforward. The 

signals through two arbiters are naturally positive true, so no inverters are needed.

Figure 3-6 shows a pass-transistor based implementation of a two-way carry arbiter. This 

implementation has an additional feature. The output v(- is zero if and only if the output 

w{- is zero, and the output W; is one if and only if the output Vj is one. This provides 

another view of the arbiter. When the outputs V; and Wf are different this means that there
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W;
jk

Figure 3-5: Static implementation of a two-way carry arbiter

are no cany requests from the inputs as described previously. Furthermore we can view 

the output Vj- as the cany out generated with a one carry-in and the output w,- as the carry 

out generated with a zero cany-in. The implementation in figure 3-5 does not distinguish 

which is the cany out generated with a one cany-in and which with a zero cany-in, since 

each output can be zero or one independent of the other output. The AND and OR gates 

in figure 3-6 serve as an input conversion from (0 1) to (1 0). The signals after these two 

gates, e.g., (oj, zj), take one of the three values (0 0), (1 1) and (1 0).

Figure 3-6: Pass-transistor based implementation
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Three-way carry arbiters and four-way carry arbiters may be advantageous if dynamic 

CMOS techniques are used. Figure 3-7 shows a direct dynamic CMOS implementation 

[61-63] of a three-way carry arbiter. Instead of using a global precharge control signal, 

local incoming input signals are used for this purpose. The operation of the circuit is 

such that the nodes nl and n2 are precharged high when the inputs a-L and b{ are low 

during the reset phase of the control handshake and will conditionally discharge during 

the evaluation phase in a self-timed design. The inverters are required for the next stage 

and also served to maintain proper drive strength.

Figure 3-7: Direct implementation of a three-way carry arbiter

Figure 3-8 gives a modified version of the three-way carry arbiter by reducing the 

redundancy of the new coding. We assume here that every input pair takes one of the 

three values (0 0), (1 1) and (1 0), and (0 1) has already been transformed to (1 0) as 

described previously. The output v; is the carry out generated with a one carry-in and the
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output W{ is the cany out generated with a zero cany-in if no cany requests issue from 

input signals. This results in the elimination of group adders in a carry select adder (see 

section 3.6) and is the main feature of our scheme.

However, the use of the modified implementation needs the input conversion from (0 1) 

to (1 0). Fortunately this causes no problem; the conversion is simple. It consists of one

2-input NAND and one 2-input NOR gate per bit. For practical reasons, gates are 

normally necessary anyway to isolate the signals from the main input buses. The 

difference here is that NAND and NOR gates are used instead of inverters. If the two 

input buses are designed using a precharged structure, the outputs from the NAND and 

NOR gates are naturally low (as required in the dynamic implementation) when the 

buses are precharged high. Furthermore, these NAND and NOR gates can be reused for 

logic operations in an ALU design.

W :

a
lJ

bi

cti

Figure 3-8: Modified implementation of a three-way carry
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It could be questioned here whether there is a real difference between this new scheme 

eliminating the value (0 1) compared with the Brent and Kung scheme which does not 

use the value (1 1). How can we claim that the new arrangement without the formation of 

generate and propagate terms has an advantage after adding initial NAND and NOR 

gates? The answer lies in observing that the constraint of not using the value (1 1) is 

inherent in the Brent and Kung scheme and therefore an initial formation of the generate 

and propagate terms is required, whereas the constraint of not using the value (0 1) in the 

modified implementation of the carry arbitration scheme is introduced as an optimization 

rather than enforced. The optimization leads to the benefit of eliminating group adders in 

a carry select adder (see section 3.6) and also results directly in a simplified circuit.

3.5 Refinement of the Manchester carry chain

One simple application of the new scheme is given in this section, where it is used to 

refine the Manchester carry chain. In the next section, another application is given, 

which is to simplify the design of carry select adders.

A wide variety of addition schemes and their implementations are available to serve 

different performance/cost requirements. One of them is the well known Manchester 

carry chain [31], which is often found in custom datapaths combined with the carry skip 

scheme. However a problem with the Manchester carry chain is that too many pass 

transistors are in series along the carry chain, which degrades the performance especially 

in CMOS designs with a low supply voltage. To avoid this problem, buffers are usually 

used to divide the carry chain into several sets of series pass transistors as shown in 

figure 3-9.
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Figure 3-9: Manchester carry chain with buffers

Instead of using buffers to limit the number of pass transistors in series, the cany chain 

can be rearranged using the part of the circuit in figure 3-6 based on the concept of carry 

arbitration. Figure 3-10 shows a new cany chain in which the output of one set of series 

pass transistors is connected to the control gate of the next stage. By so doing, we avoid 

the series connection of pass transistors without any overhead. It is worth noting that a 

double pass-transistor logic design style [64] should be used in order to exploit this new 

cany chain fully.

Figure 3-10: Manchester carry chain without buffers

Obviously, this new implementation of the Manchester cany chain can be derived 

directly from the truth table without any knowledge of the cany arbitration scheme. The 

new implementation was found during the development of the carry arbitration scheme.
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3.6 Simplification of carry select adders

Figure 3-11 shows an adder design using the conventional carry select scheme [57]. The 

inputs are divided into d-bit (or possibly variable width) groups. Two d-bit adders are 

needed per group. One is an adder with a zero carry-in and the other with a one carry-in. 

The carry generator is responsible for generating the boundary carries for all groups, 

which are then used to select the appropriate sum using a multiplexer.

d-bit adder

d-bit adder

d-bit adder

d-bit adder

Figure 3-11: Carry select adder

Design decisions must be made to choose the appropriate group widths in order to 

balance the worst case delays of both the carry generator and the group adders. If the 

group adders are made too long, the decreasing delays in the cany generator are 

exceeded by the increasing delays of the group adders. If the group adders are made too 

short, the logical complexity of the carry generator increases and its delay determines the 

total adder delay. Usually a mechanism for carry computation with low complexity, such 

as the Manchester cany chain, is chosen in the group adders. So the group cannot be 

made long (normally less than or equal to 8 bits) due to its linearly increasing delay. This
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leads to the increasing complexity of the carry generators. Carry generators designed 

using conventional approaches consume much chip area and power as well as limiting 

the ultimate performance that can be achieved.

If carry arbiters, modified according to the circuit in figure 3-6 or figure 3-8, are used as 

elements to design the carry generator, the group adders can be eliminated as shown in 

figure 3-12. The output vf- is the carry out generated with a one carry-in and the output w; 

is the carry out generated with a zero carry-in if no carry requests issue from input 

signals. Choosing the length of the group adders becomes unnecessary since the group 

adders are not required at all. This results in a significant reduction of chip area, 

especially when the groups are made long, since group adders also need a mechanism for 

carry computation.

boundary carry

boundary carry

Figure 3-12: New carry select adder

The intermediate signals and wt in the carry generator are elegantly reused for 

generating the two intermediate sums. If the signals v£- and wt are equal (meaning that the 

carry has been generated), the final result is independent of the boundary carry since the 

two intermediate sums are equal. If the signals and wt are different, the two
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intermediate sums with the signals v,- and wt as inputs are those with a one carry-in and a 

zero cany-in, respectively. Therefore the boundary cany can choose one of these two 

intermediate sum results to use as the final sum result. It is clear that these two 

intermediate signals V; and W; have dynamic meanings, and this is the main feature of the 

proposed scheme. It is worth noting that the cany generator itself is much simplified and 

optimized by using the proposed scheme

3.7 Adder design for AMULET3i

A 32-bit adder for AMULET3i has been designed, using the architecture in figure 3-12, 

to demonstrate the proposed scheme. The whole adder is visualized (but not divided) as 

consisting of four 8-bit long groups. Figure 3-13 illustrates the block diagram for the 

AMULET3i adder.

1st 2nd 3rd 4th 5th

t>
£>

4>
£>

7 - 0

£>
€>

3>
4>

1 5 - 8

O
f>

3>
O

c 15

2 3 - 1 6

t>
£>

c23

3 1 - 2 4

Figure 3-13: AMULET3i adder block diagram
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The AMULET3i adder compromises one row of conversion circuits containing 2-input 

NAND and NOR gates and two rows of three-way carry arbiters to generate all the 

intermediate signals vt- and w(*. Additionally, two extra three-way carry arbiters are 

needed to compute the boundary carries. These operate in parallel with the XOR gates 

(the 4th and 5th levels are mostly operating in parallel).

An efficient three-way carry arbiter design is the key to the whole adder design. The 

dynamic implementation of a three-way carry arbiter as shown in figure 3-8 was initially 

chosen since dynamic circuits offer the benefits of increased speed and lower switched 

capacitance. However, dynamic circuits are sensitive to noise when both the NMOS pull 

down and the PMOS pull up networks are in the off state. Additional devices as shown in 

figure 3-14 are, in practice, incorporated into dynamic circuits to combat noise. There is 

then the problem that the dynamic circuit with the additional device might demonstrate a 

considerable performance disadvantage since the NMOS pull down network must 

overdrive the additional device.

We look firstly at the static implementation of a three-way carry arbiter as shown in 

figure 3-15 before moving on to an alternative implementation. In the case of this fully

3.8 Circuit design

or

t t

Figure 3-14: Devices for dynamic circuits
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complementary CMOS circuit, the size of the p-type transistors should be 2 ~ 3 times 

greater than that of the n-type transistors to compensate for the typically 2 - 3  times 

slower speed of the p-type transistors. As a result, this circuit consumes a large area and 

is quite slow due to its large input capacitance. The problem can easily be solved by 

making the size of all the p-typed transistors minimum. However, this change makes the 

rise time of the circuit dramatically increase.

W;

a,i

Figure 3-15: Static Implementation of a three-way carry arbiter

The original idea of dynamic circuits can be reintroduced here but all the p-type 

transistors are retained. Figure 3-16 shows a new implementation combining both static 

and dynamic circuit properties. Two p-type transistors PI and P2 are introduced for 

precharging. While this may seem like a foolish idea at first, it has some merit. Although 

the new implementation is almost the same as the static implementation apart from the
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two extra p-type transistors at the circuit level, the operation of the two circuits is totally 

different.

All the p-type transistors except these two precharge transistors are minimum sized in 

the new implementation. The p-type transistors in the original static implementation 

should be oversized by 2 ~ 3 times compared with the size of the n-type transistors to 

keep the rise time in line with the fall time. The large input capacitance due to the 

oversized p-type transistor therefore requires a previous stage with more drive strength. 

This inevitably results in degraded performance and increased power consumption.

PI

Figure 3-16: New Implementation of a three-way carry arbiter

The new implementation behaves both statically and dynamically, thus having the 

advantages of these two types of circuit. The transistors marked with an asterisk can, in
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fact, be eliminated. This very efficient carry arbiter circuit provides a firm foundation for 

the realisation of a high speed AMULET3i adder.

The three-way carry arbiter shown in figure 3-16 was analysed using HSPICE on 

extracted layout under the conditions of 3.3 volt supply voltage and 100 °C temperature. 

The simulation results are given in table 3-7. The estimation of power consumption of a 

circuit is difficult since it is a function of not only its inputs but also of their history. For 

the sake of simplicity, the power consumption was measured under the assumption of 

100% input activity.

Table 3-7: Simulation results of the three-way carry arbiter

delay power

typical process case 0.35 ns
72 jiW @ 100 MHz

153 pW@ 200 MHz

worst process comer 0.44 ns
71 jlW @ 100 MHz

148 iiW @ 200 MHz

3.9 Layout design

The technology on which the AMULET3i adder is based, is a 0.35 micron triple metal 

CMOS process. The minimum drawn width is 0.4 micron.

The layout of the AMULET3i adder uses a full-custom style for the datapath, where the 

circuit and layout are optimized. The bit pitch in the datapath is 82 A,. Data flow is routed 

horizontally in metal3, while control flow is relayed vertically in metal2. Metal 1 is used 

for local interconnections in cells. The global power rails use metall and metal3, and the 

local power rails use metal2.
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3.10 Evaluation

An evaluation of the AMULET3i adder in terms of performance, power consumption 

and silicon area is presented in this section.

3.10.1 Performance

The critical path covers one NAND/NOR gate stage, three three-way carry arbiter stages 

and one multiplexer stage. The critical delay is about 1.8 ns under worst-case conditions 

(Vclcl = 3.3V, Vm=0.1V, slow-slow process comer, at 100 °C temperature). This results in 

a 460 MHz computational speed with a 20% engineering margin.

3.10.2 Power consumption

The estimation of power consumption is a difficult problem as it is a strong function of 

the inputs and their history. A rough estimate of power consumption is given based on 

some assumptions. It is highly unlikely that all data bits will change for every data value. 

Based on the assumptions that half the data bits on average will change and that the 

dynamic switching power is 90% of the total power, the power estimate of the datapath is 

about 8 and 17 mW operating at 100 and 200 MHz (under typical process conditions), 

respectively.

3.10.3 Silicon area

The silicon area of the datapath is 686 X X 2624 X (137.2 X 524.8 p,m2). Figure 3-17 

shows the physical layout of the datapath of the AMULET3i adder, and illustrates its 

regular structure.
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Figure 3-17: Physical layout of the adder datapath
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3.11 Summary

A carry arbitration scheme is proposed (and has been patented) for parallel adder 

circuits. The proposed scheme provides an efficient encoding in which the carry is 

generated by arbitrating several input carry requests, exploiting the associativity of the 

carry computation. The new scheme not only leads to high speed adders due to the 

reduction in the required layers of logic, but also offers a regular and compact layout and 

uniform fan-in and fan-out loadings.

CMOS implementations of carry arbiters have been derived and modified. The meaning 

of the modified version is twofold. If the intermediate signals V; and are equal, it 

means that the carry has been generated. If they are different, it means that there are no 

carry requests from the input signals. The intermediate signal vt can be viewed as the 

carry out generated with a one carry-in and the intermediate signals W; as the carry out 

generated with a zero carry-in.

A new implementation of a three-way carry arbiter has been developed, which behaves 

both statically and dynamically, thus having the advantages of both static and dynamic 

circuits.

Two applications of the scheme are given in this chapter. One is to refine the Manchester 

carry chain. Another is to simplify carry select adders.

A high performance, low power asynchronous 32-bit adder with a reasonable hardware 

resource has been developed for AMULET3i, demonstrating the feasibility and 

effectiveness of the new scheme. It takes 1.8 ns to complete a 32-bit addition and
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occupies 137.2 jam X 524.8 jam of chip area in a 0.35 jam triple metal CMOS technology. 

The power estimate of the datapath is about 8 and 17 mW operating at 100 and 200 MHz 

(under typical process conditions), respectively.

It is worth noting that the proposed scheme is general and can be applied to both 

asynchronous design and synchronous design. The new scheme was used in the adder 

design for the ARM Piccolo DSP processor [65].
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Multiplier design 4

This chapter presents the design of a multiplier for AMULET3L Attention is focused on 

CMOS circuit design techniques. We start with an introduction to basic algorithms for 

multiplication. The asynchronous multiplier for AMULET2e is then reviewed, as this 

formed the starting point for the design of the AMULET3i multiplier. Finally, the design 

of an asynchronous multiplier for AMULET3i is developed which uses the modified 

Booth’s algorithm integrated with a new encoding technique for adjusting the product 

result of an unsigned number multiplication. Post-layout simulation, in a 0.35 micron 

triple metal CMOS technology, shows that it takes 11.2 ns (2.8 ns X 4 cycles) to 

complete the computation of a 32-bit long multiplication in the worst case.

4.1 Introduction

The general principle by which computers cany out multiplication is quite simple. The 

multiplication of two 1-bit binary numbers is even simpler than addition since there is no 

need for the cany to propagate. Consider the multiplication of two unsigned numbers 

using the ordinary paper-and-pencil method. Figure 4-1 illustrates a dot representation 

[66] for the multiplication of two 8-bit unsigned numbers. Roughly speaking, the number 

of dots reflects the amount of hardware in a parallel multiplier or the processing time for
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a serial multiplier. The height of the dot diagram relates to the latency for carrying out 

the multiplication. The paper-and-pencil method comprises two distinct steps. Firstly, all 

the partial products are generated simultaneously, then they are added together 

proceeding column-wise from right to left. Although conceptually simple, a direct 

mechanical implementation of the paper-and-pencil method would lead to a very 

inefficient design [67] due to the asymmetry between different columns.

Multiplicand • • # • • • • •
Multiplier • • • • • • • •

Figure 4-1: Dot representation of 8 x 8 bit add and shift multiplication

Looking row-wise, there is a degree of symmetry in terms of the number of dots, though 

they have different weights in each row. It is thus desirable to proceed row-wise from top 

to bottom for VLSI implementations, either sequentially or using parallel hardware. The 

scheme derived from a straightforward application of the paper-and-pencil method is 

essentially a process of repeated adds (conditionally adding the multiplicand to a running 

partial product) and shifts. Therefore there are two basic approaches to improving the 

speed of multiplication: making each addition faster, and reducing the number of
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additions required. An additional technique is to use an “early out” scheme [68], which 

depends upon the operands presented.

4.1.1 Making each addition faster

A simple multiplier using the scheme derived from the paper-and-pencil method is 

illustrated in figure 4-2. The multiplier and multiplicand are initially placed in registers A 

and B, respectively; register P which holds the partial product is initially 0. Each 

multiply step consists of replacing P with the sum of P and B (AND-gated by the least 

significant bit of A), and then shifting P and A together one bit right at a time.

carry-out

I

1 shift right

p A

B

Figure 4-2: A simple multiplier

Obviously, the time necessary for carry propagation imposes the ultimate limit on the 

speed of addition and thus multiplication. All the techniques for faster adders can be 

used here to speed up multiplication. However, multiplication is a special case of 

repetitive addition in which the intermediate results of all but the last addition are not of 

any interest. So it is not necessary for the carries to propagate during every multiply step. 

Instead, the carries generated during one step may be saved and used again in the next
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step with an appropriate shift. In this way, a partial sum and a partial (saved) carry 

together present the partial product. Thus each multiply step needs only the time required 

for a 1-bit addition since all the cany bits are passed from internal intermediate signals to 

outputs. Only on the last step need the carries be propagated to completion instead of 

being saved. A cany-save multiplier is illustrated in figure 4-3.

shift right
►

P2

Figure 4-3: A carry-save multiplier

Alternatively, redundant number systems [58] can be used to achieve addition without 

carry propagation. Take the radix-2 redundant representation as an example, which has a 

digit set {1, 0, 1} where 1 denotes -1. An n-bit redundant number Y = \yn_j>.. .,y^] has the
7 1 - 1

value y. x 2l , where y* belongs to {1, 0, 1}. This is similar to an unsigned binary
7 =  0

representation except that yt- can be 1. The key idea to avoid carry propagation when 

adding two redundant numbers is to set the intermediate sum to 0 or 1 when there is a 

negative carry from the next lower order position and to set the intermediate sum to 0 or 

1 when there is a positive cany from the next lower order position. By so doing, there is 

no need to know the lower order cany to obtain the cany as the intermediate sum and 

cany from the next lower order position cannot both be 1 and -1 at the same time.
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It is worth noting that since the partial product has been replaced by a partial sum and a 

partial carry, the carry-save scheme in effect employs a redundant concept. The 

difference is that the carry-save scheme uses the digit set {0, 1, 2, 3} instead of {1,0, 1} 

since the combination of a partial sum and a partial carry results in four values of 

unsigned number.

4.1.2 Reducing the number of additions required

One way to reduce the number of additions required is to use multi-operand additions 

(more than three operands), which can add many numbers simultaneously, instead of just 

two or three at a time. A Wallace tree [69] is well known for its optimal computation 

time. However, its implementation is often too expensive to justify the speed obtained. 

Several tree or array structures derived from the Wallace tree have been proposed by 

trading speed for regularity [70-72].

Another way to reduce the number of additions required is to skip over any contiguous 

string of Is and Os in the multiplier, rather than form a partial product for each bit. The 

original Booth’s algorithm [13] is based on this idea.

Taking a 32-bit two’s complement number as an example. A 32-bit signed word A = 

(a3ja30 ... ai a0) can be expressed as:

30

A = - 2 31«31 + 2lat
i = o

The principle of the original Booth’s algorithm is to rewrite this number as:

30 31 31

A = - 2 31a31 + X 2 i a ; = X 2 ' > i - i - a i) = ~ L 2%
i = 0 i = 0 i = 0
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where a_j is a dummy bit that is equal to zero, and kt (= ci^j - a;) belongs to the digit set 

of {1, 0, 1}. Thus, the original Booth’s algorithm may be viewed as a conversion of the 

multiplier representation from a conventional code into a redundant code. The redundant 

code is {1,0,1}, and the radix is two. The radix (r = 2b) determines how many bits (b) of 

multiplier are retired in an iteration.

A redundant addition or carry-save addition scheme encodes the multiplicand using a 

redundant representation, while the oiiginal Booth’s algorithm encodes the multiplier 

using a redundant representation. It is worth noting that the radix of the algorithm and 

the radix of the number representation are not the same concept.

A slightly different algorithm, called the modified Booth’s algorithm [14], considers 

groups of bits of the multiplier rather than skipping over arbitrarily long strings. The 

multiplier bits are divided into two-bit groups. Three bits are scanned at a time, two bits 

from the present group and the third bit being the higher-order bit of the next lower-order 

group.

The principle of the modified Booth’s algorithm is to rearrange a number as:

30 15 15

A = - 2 31a31 + ^ 2 za. = ^  22z («2/_ i + a2i ~ ^ a2i+ i) = 2  ^ 2l^i
i -  0 i -  0 i =  0

where a_j is a dummy bit that is equal to zero, and kt (= a2i^  + a2i ~ 2a2i+1) belongs to 

the digit set of {-2, -1, 0, +1, +2}. Thus, the modified Booth’s algorithm may be viewed 

as a conversion of the multiplier representation from a conventional code into a 

redundant code. The redundant code is {-2, -1, 0, 1,2}, and the radix is four. A radix 4 

algorithm retires 2 bits of multiplier in an iteration.
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The modified Booth’s algorithm is described in table 4-1.

Table 4-1: Modified Booth algorithm

Group Action

0 0 0 0

00  1 +1

0 10 +1

01 1 +2

1 0 0 -2

101 -1

1 10 -1

1 1 1 0

The modified Booth’s algorithm is more commonly used than the original Booth’s 

algorithm since VLSI implementations favour its fixed shift of the multiplier in each 

iteration. The modified Booth’s algorithm halves the number of additions that have to be 

performed compared with the simple paper-and-pencil method, therefore speeding up the 

multiplication.

An additional technique that may be used to further reduce the number of additions is to 

check in each multiply step whether the shifted multiplier register contains only Is or Os, 

and, if so, to terminate the multiply process early. Note that the final result must be 

correctly aligned.

4.2 AMULET2e multiplier

The AMULET2e multiplier has been described elsewhere [16], so only a summary is 

presented here. Figure 4-4 shows the organisation of the AMULET2e multiplier.
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Q  The AMULET2e multiplier is a 32-bit normal multiplier, which means that the 

final result is the least significant 32 bits of the 64-bit product. One benefit from this sort 

of multiplier is that both unsigned and signed number multiplications give the same 

result. The AMULET2e multiplier does not detect overflow and leaves it to software 

either to constrain the operands to ensure there is no overflow or to perform explicit 

checks (as required by the ARM instruction set definition).

□  The AMULET2e multiplier uses the modified Booth’s algorithm. Two stages of 

the Booth’s algorithm are performed in each cycle by shifting four bits at a time. The 

AMULET2e multiplier employs an “early out” scheme, which depends on the operands 

provided, hence achieving statistical speed improvement and saving power.

□  An iterative structure was chosen combined with a pipeline technique in the 

AMULET2e multiplier to reduce the hardware cost by increasing hardware utilization. 

The partial products in the AMULET2e multiplier remain at a fixed alignment to avoid 

difficulty when selecting the final result in “early out” cases. Instead, the multiplicand 

and multiplier shift left and right, respectively.

□  The AMULET2e multiplier uses the high speed, low power true single-phase 

clocking (TSPC) methodology and pass-transistor logic style. Novel 4-2 Counters are 

used which are symmetric with respect to their inputs and outputs. Transistors with small 

size were favoured for low power.

□  The AMULET2e multiplier was designed in a 0.5 pm three metal CMOS process 

technology. The layout is regular and compact with a datapath area of only 320 X 710 

pm2. The working chip has a 6.5 ns multiplier cycle time [11].
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4.3 Multiply support for AMULET3i

AMULET3i supports two classes of multiply instruction: a normal 32-bit result and a 

long 64-bit result. Both types of multiply instruction can also optionally perform an 

accumulate operation.

4.3.1 Normal multiply

There are two normal multiply instructions, producing 32-bit results:

MUL

The MUL instruction multiples the values of two registers together, truncates the result 

to 32 bits, and stores the result in a third register.

MLA

The MLA instruction multiples the values of two registers together, adds the value of a 

third register, truncates the result to 32 bits, and stores the result into a fourth register.

Both instructions can operate on signed or unsigned numbers since only the least 

significant 32 bits of the product result are stored in the destination register and the type 

of the operands does not affect this value.

4.3.2 Long multiply

There are four long multiply instructions, producing 64 bit results:

SMULL & UMULL
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These two instructions multiply the values of two registers together and store the 64 bit 

result in a third and a fourth register. There are signed (SMULL) and unsigned 

(UMULL) variants. The signed variants produce a different result in the most significant 

32 bits if either or both of the source operands is negative.

SMLAL & UMLAL

These two instructions multiply the values of two registers together, add the 64 bit value 

from a third and a fourth register and store the 64 bit result back into those (third and 

fourth) registers. There are again signed (SMLAL) and unsigned (UMLAL) variants. 

These two instructions perform a long multiply and accumulate.

4.4 Multiplier organization

The target for the multiplier design for AMULET3i is a 2 times speed improvement 

compared with the AMULET2e multiplier, with a reasonable area increase. Latency and 

chip area were considered the most important parameters to be minimized. The 

AMULET3i multiplier is not optimized for low power since multiplication instructions 

are not very often used compared with other instructions for general purpose 

applications. However, low power was kept in mind during the development of the 

design.

4.4.1 First design iteration

The first design decision was to use the modified Booth’s algorithm, processing 8 bits at 

a time. The reasons are twofold. Firstly, based on the evaluation of the AMULET2e 

multiplier, this approach is likely to meet the speed target. Secondly, an 8-bit scheme,
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just having four cases (caused by early outs) to choose from, simplifies the product result 

select compared with the eight cases arising from the “early out” scheme with 4 bits at a 

time. This difficulty was avoided in the AMULET2e multiplier by shifting the 

multiplicand left while the partial product remains fixed, since the most significant 32 

bits of a product result can be thrown away. However, as the multiplier for AMULET3i 

supports long multiply instructions, the difficulty cannot easily be avoided as the 

multiplicand should remain fixed here while the partial products are shifted right.

The second design decision was to define an iterative structure for the AMULET3i 

multiplier. It is possible to implement a fast parallel 32-bit multiplier, however, a 

significant amount of hardware would be needed. On the other hand, serial multipliers 

use less area but are quite slow. A serial/parallel iterative structure was chosen as a good 

compromise for the AMULET3i multiplier.

The initial design is shown in figure 4-5. A 64 bit accumulate value can be used to 

initialise one of the partial product registers PI and P2 (the most significant 32 bits and 

the least significant 32 bits of an accumulate value are in P1L and P1H or P2L and P2H, 

respectively). Multiplier data can be stored into the least significant 32 bits of either of 

the partial product registers PI or P2. The most significant 32 bits of one of the partial 

product registers PI or P2 is unused and should be initialised to 0. This initial version of 

the design presents a minimum hardware requirement.

4.4.2 Encoding technique

As described previously, the multiplier for AMULET3i should support both unsigned 

and signed numbers. In fact, the modified Booth’s algorithm can also be used with an
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Figure 4-5: First version

unsigned system. For an unsigned number multiply operation, an extra action must be 

performed to adjust the product result. The conventional equation of the modified 

Booth’s algorithm for an unsigned number is, in the case of a 32-bit number, to rearrange 

an unsigned number A = {a31a30 ... a; ag) as:

30 15 15

A = 231a31 + 2lat = (a2._1+ a2i- 2 a 2i-+1) + 232a31 = ^ 2 2lk( + 232«31
i' = 0 i = 0 i = 0

where a_j is a dummy bit that is equal to zero, and (= a2j-i + a2i ~ ^Cl2i+l) belongs to 

the digit set of {-2, -1, 0, +1, +2}. Obviously, an adjustment value (a multiplicand value)
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can initially be put into either register P1L or P2L to represent the term 232a31. However, 

this cannot easily be done since one of the registers P1L and P2L is used for the most 

significant 32 bits of an accumulate value and the other is used for a multiplier operand. 

One observation is that one of the registers P1H and P2H is for the least significant 32 

bits of an accumulate value and the other is left unused. The new idea introduced here is 

to put an adjustment value in one of the registers P1H and P2H.

A signed or unsigned number can be expressed as:

30 15 15

A = 231«3j + £ 2  ‘a, = 2 2 2'-(&2j + &2; + 1- 2 6 2,. + 2) +<z0 = £ 2 2V flo
i -  0 i = 0 i = 0

where bo = 0, bt = at (1 < i < 31), and b32 = sign x a3]. The sign bit indicates that signed 

numbers are used if it is 1 and unsigned numbers are used if it is 0. In this way, an 

adjustment value can initially put into either register P1H or P2H to present the term a0.

4.4.3 Second design iteration

From figure 4-5, a multiply cycle should cover the delay of two 4-2 Counters, one Booth 

mux cell and one register. In order to improve the speed, a common pipeline technique 

can be used, as shown in the figure 4-6. Two additional pipeline registers are added to the 

initial version. This does not cause a big increase in hardware since part of registers can 

be merged efficiently into the preceding 4-2 Counter as we will see later in the circuit 

design. However, the pipeline register causes a one clock cycle skew between the partial 

products and the signals before the pipeline registers since the partial product registers 

are shift registers. A multiplexer can be used before the partial product registers to solve 

the skew problem as is frequently done in clocked designs. The alternative approach is to
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Figure 4-6: Second version

use gated registers (conditional clocking) for partial products. Only on the first cycle are 

the partial registers disabled and the contents of the registers remains unshifted, therefore 

the partial registers are naturally aligned with the incoming signals from the pipeline 

registers after the first cycle.

The first approach (using a multiplexer) will suffer a hardware overhead, whereas the 

second approach (conditional clocking) will violate the high speed true single-phase
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clocking methodology we will use in the circuit design as the clock signals for the 

pipeline registers and the partial product registers have to be separated due to the gated 

clock requirement for the partial product registers. The two above approaches were 

heavily influenced by the clocked design methodology.

In fact, the skew problem can easily be solved within the asynchronous framework by 

making the pipeline registers initially transparent. It will be seen that the first cycle time 

must cover the whole path delay just as in the non-pipelined case. However, this does not 

matter for an asynchronous design which can have variable cycle times. This is an 

example of how nicely an asynchronous design can solve problems which can only be 

solved with much effort in clocked designs.

Another change is that a final shifter for “early out” cases is not used since there is 

difficulty in the layout stage. Though the number of tracks for buses is ten per bit pitch, 

six buses must be reserved for global use and only four local buses are available for the 

multiplier. As a result, the final result can be quickly shifted out instead.

4.4.4 Sign extension

Due to the two negative terms (-1 and -2) in the modified Booth’s algorithm, the sign bit 

(the most significant bit) of the partial products has to be extended up to the most 

significant bit of the expected result. This means that in a real circuit implementation the 

sign bit has to be broadcast up to the most significant bit of the expected result and this 

may cause both decreased circuit speed, since a heavy capacitance load arises from the 

high fan-out of the sign bit, and increased layout area. The scheme presented below 

avoids these drawbacks.

Multiplier design 81



Consider a number Aext of a k-bit signed partial product A = • •• aj ciq), which

must be sign extended by s bits. Its value is:

j  + k - 2  k  — 2

^ e x t  =  ~ ^ S +  k  l a k - l +  X  2  U k ~ l  +  2 /  ^ l(li
Jfc-1 i — 0

The above equation can be rearranged as:

j  + k — 1 k - 2

=  E 2i+2̂ 1o -**_,)+ S2'fl|
k - l  i = 0

From the equation, instead of direct sign extension, constant Is (the first term) can be 

added at the most significant s+1 bit positions of the number Aext and the inverted ak_j 

(the second term) replaces the original ak_j. All the constant Is of the partial products can 

be pre-calculated as a adjustment value.

4.5 Circuit design

The true single-phase clocking (TSPC) methodology [15] and pass-transistor logic style 

[73-77] were chosen for the circuit design in order to achieve high performance and low 

power. One main advantage of the true single-phase clocking methodology is that the 

clock skew problem of complementary phase or multi-phase clocking schemes is 

avoided. Another advantage is its low power consumption as only one enabling signal is 

required. Pass-transistor logic style is flexible for the design of arithmetic components.

4.5.1 Booth mux cell design

The modified Booth’s algorithm examines three bits of the multiplier at a time to 

determine whether to add 0, +1, +2, -1, or -2 times the multiplicand. The Booth mux cell 

performs this function, and it steers the appropriate multiplicand value to the output.

Multiplier design 82



Figure 4-7 shows the circuit of the Booth mux cell used in the AMULET3i multiplier. 

Some effort was expended to ensure that only one path from the input to the output is on 

at any time, minimising short circuit currents for low power reasons.

+1* -i* +2* -2*

i

i

i+1

+1 -7 +2 -2

Figure 4-7: Booth mux cell

The Booth mux cell was analysed using HSPICE on extracted layout under the 

conditions of 3.3 volt supply voltage and 100 °C temperature. The simulated results are 

given in table 4-2. The estimation of power consumption of a circuit is difficult since it is 

a function of not only its inputs but also of their history. For the sake of simplicity, the 

power consumption was measured under the assumption of 100% input activity.

Table 4-2: Simulation results on the Booth mux cell

delay power

typical process case 0.61 ns
41 pW @ 100 MHz

87 pW @ 200 MHz

worst process comer
0.72 ns

37 pW @ 100 MHz

78 pW @ 200 MHz

Multiplier design 83



4.5.2 4-2 Counter design

4-2 Counters [78-82] are used to speed up the partial product compression process. The 

main advantage of 4-2 counters over the more familial* 3-2 counters (i.e., full adders) is 

that their structure is analogous to a binary tree, which leads to regular layout and 

improved speed. Logically, a 4-2 counter consists of two full adders as shown in figure 4- 

8 and has four XOR gate delays. Since the Cout signal is independent of the Cin signal, 

there is no propagation problem when several 4-2 counters are abutted into the same 

row; this is the key idea behind 4-2 counters. A 4-2 counter is similar to but different 

from a 5-3 counter. A 5-3 counter has three different weights for the outputs, while a 4-2 

counter has two different weights for the outputs.

Ini In2 In3 ln4

■M,—
Cout Cin

3-2 counter

3-2 counter

Carry Sum 

Figure 4-8: 4-2 Counter structure

With careful design, following the truth table as shown in table 4-3, one XOR gate delay 

can be saved. Figure 4-9 and figure 4-10 show the new 4-2 Counter with and without
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enable control, respectively, A 4-2 Counter with enable control includes the functionality 

of the pipeline register (see section 4.5,3), This inclusion is natural and without hardware 

overhead; just two more n-type transistors are introduced.

The circuits use pass-transistor logic and borrow a common practice from analog designs 

in which noise immunity is achieved by using quasi-differential signals. The interfacing 

signals are singled-ended and internal signals are complementary.

Normally the enable signal is high and the circuit behaves statically. The sum and carry 

delays are balanced for decreasing glitches; this is also desirable since both signals are 

on the critical path. This is different from the case of adder designs where the carry delay 

should be minimized since it is on the critical path and the sum delay is off the critical 

path.

Table 4-3: Truth table for 4-2 Counters

The number o f inputs high Cin Cout Sum Carry

0 0 0 0 0

1 0 0 1 0

2 0 l/0(note) 0 0/1(note)

3 0 1 1 0

4 0 1 0 1

0 1 0 1 0

1 1 0 0 1

2 1 0/1 (note) 1 l/Q(note)

3 1 1 0 1

4 1 1 1 1

(note) — either Cout or Carry may be one or zero, but not both.
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The two 4-2 Counters were analysed using HSPICE on extracted layout under the 

conditions of 3.3 volt supply voltage and 100 °C temperature. The simulation results are 

given in table 4-4 and table 4-5. For the sake of simplicity, the power consumption was 

measured under the assumption that one input is active.

Table 4-4: Simulation results on the 4-2 Counter with enable control

delay power

typical process case 1.10 ns
319 mW @ 100 MHz

644 mW @ 200 MHz

worst process comer 1.40 ns
302 mW @ 100 MHz

611 mW @ 200 MHz

Table 4-5: Simulation results on the 4-2 Counter without enable control

delay power

typical process case 0.97 ns
300 mW @ 100 MHz

606 mW @ 200 MHz

worst process corner 1.24 ns
285 mW @ 100 MHz

574 mW @ 200 MHz

4.5.3 Pipeline register design

Figure 4-11 shows the circuit of a pipeline register. The first enabled inverting stage 

predischarges the node nl low and the second enabled inverting stage is opaque when 

the enable signal En is high. At the time that En falls, the node nl is either pulled high 

(input In low) through two pull-up transistors or remains low (input In high), and this 

level is then stored into the dynamic node n2 through the second transparent inverting 

stage when En is low. Normally the enable signal En is high. Since the signals Lt and nLt
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are initially high and low, respectively, which allows the input In to propagate down to 

the node n2, the node n2 has static behaviour. It is obvious that the initially transparent 

pipeline register not only solves the skew problem (see “Second design iteration” on 

page 79), but also makes the node n2 static; otherwise some effort would have to be put 

into ensuring that the node n2 was static rather than “floating”. There is no node in the 

circuit that is in the floating state for an arbitrary long time. It is worth noting that one 

enabled inverting stage required for a negative edge triggered TSPC register is merged 

into the last stage of the previous 4-2 Counter.

Out

Figure 4-11: Pipeline register

The pipeline register was analysed using HSPICE on extracted layout under the 

conditions of 3,3 volt supply voltage and 100 °C temperature. The simulation results are 

given in table 4-6. For the sake of simplicity, the power consumption was measured 

under the assumption of 100% input activity.
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Table 4-6: Simulation results on the pipeline register

delay
power

In —> En En —> Out

typical process case 0.0 ns 0.46 ns
58 mW @ 100 MHz

92 mW @ 200 MHz

worst process corner 0.0 ns 0.68 ns
44 mW @ 100 MHz

83 mW @ 200 MHz

4.5.4 Partial product register design

Figure 4-12 shows the circuit of the partial product register, which comprises three 

clocked inverting stages. The first stage is transparent and the third stage is opaque when 

En is high. On the other hand, the first stage is opaque and the third stage is transparent 

when En is low. At the time that En is high, node nl in the second stage is predischarged 

low. When En falls, the node nl is either pulled high or remains low, and this level is 

then transfer into the third stage.

The partial product register also provides a direct load capability. Initially the node n2 is 

made static high by the signal nZ, and it can then be conditionally discharge depending 

on the signals D and Lt.

The partial product register was analysed using HSPICE on extracted layout under the 

conditions of 3.3 volt supply voltage and 100 °C temperature. The simulation results are 

given in table 4-7. For the sake of simplicity, the power consumption was measured 

under the assumption of 100% input activity.
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Figure 4-12: Partial product register

Table 4-7: Simulation results on the partial product register

delay
power

In —> En En —> Out

typical process case 0.19 ns 0.47 ns
39 mW @ 100 MHz

63 mW @ 200 MHz

worst process comer 0.23 ns 0.65 ns
31 mW @ 100 MHz

57 mW @ 200 MHz

4.5.5 Low power design

The multiplier for AMULET3i is not optimized for low power, however low power was 

kept in mind during the whole process of design development.

Dynamic logic [83,84] is favourable for low power due to its lower switched 

capacitance. However, a direct application of dynamic logic in an asynchronous design
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will cause a state-loss problem since an asynchronous design allows activity to cease for 

an arbitrarily long time. Therefore low power designs often employ dynamic logic with 

additional latches or charge-retention circuits to give pseudo-static behaviour. These 

additions increase the cost and power consumption of the dynamic circuits, thereby 

compromising their potential advantages. Circuits used for the AMULET3i multiplier 

are dynamic logic without the above-mentioned encumbrances whilst still retaining 

externally static behaviour.

The true single-phase clocking methodology has been adopted in the circuit design. The 

reasons are threefold. Firstly, its dynamic logic which can be integrated with static 

behaviour is desirable for both low power and high speed. Secondly, only one enabling 

signal is required and the minimum size and number of transistors are needed in the 

TSPC registers. Thirdly, it is easy to integrate some logic into a TSPC register to reduce 

the hardware complexity and overall delay and therefore save power.

To minimize the physical capacitance for low power, transistors are made small 

whenever this is possible. Cells for the AMULET3i multiplier usually comprise two 

stages. The first stage contains transistors with the smallest size possible to minimize the 

required area and power, whereas the second stage uses transistors with greater sizes to 

ensure that they have the drive capability for their capacitive load.

Reducing the activity of nodes with a large capacitive load is another approach adopted 

for low power. An early out technique is used, which not only gives a statistical speed 

improvement but also saves power. Attention is also given to minimise short circuit 

currents during the circuit design [85].
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4.6 Layout design

The layout design of the AMULET3i multiplier uses a full-custom style for the datapath, 

where the circuit and layout of almost every transistor is optimized, and a standard cell 

style for the control logic, where the layout is automatically placed and routed using 

Compass Design Automation tools [86]. When the layout of a cell was complete, it was 

verified against the corresponding schematic (LVS) and then simulated using HSPICE.

The full-custom style is used in order to exploit the regularity of the datapath by 

designing only one “bit slice”. The height of the bit slice in the datapath design is 82 X 

for the AMULET3i multiplier. The number of tracks available for buses is ten per bit 

slice. Four tracks are for local routing and the other six for through buses. Data flow is 

routed horizontally in metal3, while control flow is relayed vertically in metal2. Both 

metal 1 and metal2 are used for local interconnect in cells. The global power rails use 

metal 1 and metal3, and the local power rails use metal2.

The overall height and width of the standard cells for AMULET2e are 112 X and a 

multiple of 8 X, respectively. This means that the connectors of a cell must have an 8 A. 

spacing and a 4 X horizontal margin to either side of a cell. By taking into account 

existing open vertical routing tracks inside the standard cells, the routing over cell 

algorithm helps to reduce the final chip size.

4.7 Evaluation

An evaluation of the AMULET3i multiplier in terms of performance, power 

consumption and silicon area is presented in this section.
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4.7.1 Performance

The critical path in the first pipeline stage includes one Booth mux cell, one 4-2 Counter 

(with enable control) and one pipeline register and the critical delay is about 2.8 ns under 

worst-case conditions (Vdd = 3.3V, V&s=0.1V, slow-slow process comer, at 100 °C 

temperature). The critical path in the second pipeline stage includes one 4-2 Counter 

(without enable control), one partial product register and one multiplexer for the final 

result and the critical delay is about 2.6 ns under worst-case conditions.

The delays of the two pipeline stages are well matched. This results in a 300 MHz 

computational speed with a 20% engineering margin.

4.7.2 Power consumption

The estimation of power consumption is a difficult problem since it is a strong function 

of the inputs and their history. A rough estimate of power consumption is given based on 

some assumptions. It is highly unlikely that all data bits will change for every data value. 

Based on the assumptions that half the data bits on average will change and that the 

dynamic switching power is 90% of the total power, the power estimate of the datapath is 

about 40 and 82 mW operating at 100 and 200 MHz (under typical process conditions), 

respectively.

4.7.3 Silicon area

The silicon area of the datapath is 2082 X X 3198 X (416.4 X 639.6 pm2). Figure 4-13 

shows the physical layout of the datapath of the AMULET3i multiplier, and illustrates its 

regular structure.
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Figure 4-13: Physical layout of the multiplier datapath
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4.8 Summary

A high performance, low power asynchronous 32 bit multiplier with a reasonable 

hardware resource has been developed for AMULET3i. The design uses the modified 

Booth's algorithm with 8 bits at a time with an iterative structure. An “early out” scheme 

is employed.

The pipeline registers are made initially transparent to avoid the data skew problem 

caused by introducing one pipeline stage. An new coding scheme is used to adjust the 

product result of an unsigned number multiplication. An adjustment value is made on the 

least significant 32-bit positions.

The true single-phase clocking methodology and pass-transistor logic style are chosen 

for circuit design. A new 4-2 counter circuit has been incorporated.

The AMULET3i multiplier presents a minimum hardware requirement given 

performance constraints and is designed for low power.

Post-layout simulation, in a 0.35 micron triple metal CMOS technology, shows that it 

takes 11.2 ns (2.8 ns X 4 cycles) to complete the computation of a 32-bit multiplication in 

the worst case. The power estimate of the datapath is about 40 and 82 mW operating at 

100 and 200 MHz (under typical process conditions), respectively. The layout is regular 

and compact with a datapath area of only 416.4 X 639.6 [xm2.

Taken individually, the characteristics above are not novel. What is new is the manner in 

which the AMULET3i multiplier has been designed to combine elegantly all these 

algorithm and circuit design techniques within an asynchronous framework.
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Four-phase pipeline control 5

This chapter explores the design of four-phase control schemes for asynchronous 

pipelines. The study is focused mainly on the four-phase micropipeline design style 

which uses conventional level-sensitive data latches. Low power considerations and the 

use of dynamic logic are also discussed. All of the proposed pipeline latch control 

circuits are speed-independent, and this has been verified using the FORCAGE tool [21]. 

Simulation results in a 0.35 micron triple metal CMOS technology are presented.

5.1 Introduction

Micropipelines were introduced by Ivan Sutherland in his 1988 Turing Award lecture 

[20], and are a practical way to build asynchronous pipelines. Micropipelines are viewed 

as being composed of a control circuit employing the two-phase handshake protocol and 

a datapath using the bounded delay model.

The AMULET1 asynchronous processor, developed by Professor Steve Furber’s 

AMULET group at the University of Manchester, used the two-phase micropipeline 

design techniques. However its successors, AMULET2e and AMULET3i, abandoned 

two-phase control in favour of four-phase control, mainly for performance reasons.
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The four-phase micropipeline design space may be roughly categorized by viewing 

along three dimensions: the data-validity scheme, the logic activation configuration, and 

the decoupling degree. These three dimensions have the possible values of: Early, Broad 

or Late; Request-activate or Acknowledge-activate; Un-decoupled, Semi-decoupled or 

Fully-decoupled, respectively. A three-character shorthand notation can therefore be 

used to convey the category for a particular design. For example, the abbreviation ERF 

would signify a circuit which employs the Early data-validity scheme, uses a Request 

signal to activate combinational logic, and is Fully-decoupled.

5.2 Data-validity scheme

Figure 5-1 shows a general micropipeline stage structure. The latch control circuit 

communicates with neighbouring pipeline stages on both its input link (Rin, Ain) and its 

output link (Rout, Aout). The control link (E, D) connects with associated combinational 

logic. In addition to these three handshake links, a latch control wire (Lt) is needed to 

open and close the latch when low and high, respectively. The pipeline latches are 

configured as transparent when empty and we will return to this later.

Data in

Rin *  Rout

Ain < Aout
Controller

Figure 5-1: Micropipeline stage structure
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The four-phase micropipeline design uses two successive handshakes for completing one 

communication process between neighbouring pipeline stages. There is a choice to be 

made as to which edge (rising or falling) of each handshake signal indicates the validity 

of data. This leaves us with three possible data-validity schemes, “early” [17,18], 

“broad” [19] or “late”, which are depicted in figure 5-2. It is worth noting that all these 

schemes take the micropipeline view that the sender of the data initiates the transfer.
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Figure 5-2: Three data-validity schemes

Initially, the Rin and Ain wires are both low. The “early” data-validity scheme uses the 

rising edge of the Rin wire to indicate “data available” and the rising edge of the Ain wire 

to indicate “data latched”. Then the Rin wire is returned low, whereafter the Ain wire is 

also returned low. The first handshake from Rin high to Ain high is called the 

“processing” or “evaluation” phase, during which the data remains valid. Data can 

change after the first handshake. The second handshake from Rin low to Ain low is called 

the “recovery” or “reset” phase, which is redundant and carries no meaning.
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The “broad” data-validity scheme uses the rising edge of the Rin wire to indicate “data 

available” and the falling edge of the Ain wire to indicate “data latched”. Data must be 

guaranteed valid throughout two successive handshake processes. No “evaluation” or 

“reset” phases are distinguished.

The “late” data-validity scheme uses the falling edge of the Rin wire to indicate “data 

available” and the falling edge of the Ain wire to indicate “data latched”. The first 

handshake from Rin high to Ain high is called the “preset” phase, which is redundant and 

carries no meaning. The second handshake from Rin low to Ain low is called 

“processing” or “evaluation” phase, during which the data remains valid. Since the “late” 

data-validity scheme is rarely used, we focus only on the “early” and “broad” data- 

validity schemes and omit further consideration of the “late” scheme in this thesis.

5.3 Logic activation configuration

The rising edge of Rin, which indicates “data available” in both “early” and “broad” 

data-validity schemes, is usually used to activate combinational logic. This common 

arrangement is referred to as a “request-activate” configuration as shown in figure 5-3.

Data in

Rin > Rout
Controller

Ain < Aout

Figure 5-3: “Request-activate” configuration
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Instead of using the Rin wire, the “broad” data-validity scheme has the choice of using 

the Ain wire to activate combinational logic as the data remains valid during the whole 

handshaking process. This new arrangement is referred to as an “acknowledge-activate” 

configuration as shown in figure 5-4, and provides an efficient framework for low power 

design using dynamic logic (see section 5.13).

Data in

Rin > Rout

Ain < Aout
Controller

Figure 5-4: “Acknowledge-activate’’ configuration

5.4 Decoupling degree

Conceptually, the decoupling degree is used to describe how the input link interacts with 

the output link. For the sake of discussion, three terms are defined here. The first 

handshake is called “initiated” and the second handshake “completed”. “Suspended” is 

between “initiated” and “completed”.

A micropipeline stage is said to be un-decoupled if it satisfies the following two 

conditions: (1) a new communication coming along its input link cannot be “initiated” 

until the current communication going along its output link has been “completed”, (2) 

and it is “suspended” if the new communication along its output link has not been 

“initiated”. A micropipeline stage becomes semi-decoupled by getting rid of the first
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condition, and it becomes fully-decoupled by also removing the second condition. A new 

communication along the input link of a fully-decoupled latch control circuit may be 

“completed” before the new communication along its output link has been “initiated”.

5.5 ERU latch control circuit

The specification of the latch control circuit is described using a Signal Transition Graph 

(STG) which shows the causal relationships between the signal transitions. An STG for 

an ERU latch control circuit is shown in figure 5-5. The dashed arrows indicate 

dependencies that the environment (usually the neighbouring stages) must observe and 

the solid arrows represent internal orderings; both must be maintained to ensure that the 

corresponding circuit is speed-independent. The “tokens” drawn next to certain arcs 

represent an initial “marking”. A particular transition can fire only when there is a token 

on each of its input arcs and a token is placed on each of its output arcs after it fires.

/

A+ > Rout+

> Rout-

Aout-- Ain- <■ Lt-

Figure 5-5: STG of the ERU latch control circuit

The state graph may be derived from the STG and then an implementation from the state 

graph, but in this simple case it may be seen by inspection that the circuit in figure 5-6 is
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an implementation of the STG in figure 5-5. There should be one closure and one 

opening of the latch before one communication has been “completed” for this latch 

control circuit. Thus the latch can only be closed when the next stage latch is open since 

Aout must be low (the next latch is open) before Lt can go high. In the case when data is 

inserted into the pipeline at a greater rate than it is removed from the pipeline, the 

pipeline will eventually fill. A full micropipeline has alternate closed and open latches 

(and therefore only alternate stages can be occupied), similar to master-slave latches in 

synchronous designs. This effectively halves the asynchronous pipeline depth. Therefore 

this design is not of practical interest, and it is used here only as a starting point.

D Ain

Aout Rout

Figure 5-6: ERU latch control circuit

5.6 ERS latch control circuit

An STG specification for an ERS latch control circuit [18] is shown in figure 5-7. It is 

worth noting that an internal variable (A) is introduced on purpose. The variable (A) is 

used to record when the input link is ready to proceed. It is expected that there will be 

dozens of latched data and a buffer is to be needed to maintain reasonable drive strength. 

This buffer reflects the need for the latch to close before the input link is “initiated”. It 

could, perhaps, be argued that some delay should be built into the path from D to Rout.
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However, there is no need for the latch to close before Rout is signalled so long as the 

data have propagated through the latch which is transparent when empty. This argument 

reflects, in fact, the constraint of the bounded delay model. Therefore the delay from D to 

Rout must be no shorter than the propagation delay through the latch for the correct 

operation of the circuit, which is almost always satisfied with confidence.

/

> Rout+D+

Ain+

* Rout-D-

v - Ain- + Lt-

Figure 5-7: STG of the ERS latch control circuit

To obtain formally an implementation of an STG specification, the STG is first 

transformed into the state graph by applying the underlying Petri net rules to construct 

the reachability tree. The state graph should have the CSC (Complete State Coding) 

property, then logic equations for the output variables can be derived. Figure 5-8 shows 

an implementation of the ERS latch control circuit [18]. The notation used here for 

asymmetric C-gates follows that used in previous work [18]. An input controls both 

edges of the output when it is connected to the main body of the gate, it controls only the 

rising edge when connected to the extension marked and it controls only the falling 

edge when connected to the extension marked This notation is illustrated in figure 5- 

9 which shows a possible transistor level implementation of an asymmetric C-gate.
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D

I
Ain

1
G> t> ►—  Lt

Aout Rout

A 
B —
C —

Figure 5-8: ERS latch control circuit

Z

Figure 5-9: Asymmetric C-gate notation

With the ERS circuit a new communication on the input link can be “initiated” before the 

current communication on the output link has been “completed”, but it is “suspended” 

until the new communication on the output link has been “initiated”. This means that one 

communication should cover two “evaluation” processes and can therefore be performed 

in a time proportional to the sum of the two processing logic delays.
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5.7 ERF latch control circuit

An STG specification for an ERF latch control circuit is shown in figure 5-10. Note that 

the buffer falling delay from Lt high to Lt low is removed from the input link path. This 

is significant since the buffer delay, especially in a wide datapath where the capacitive 

loading is large, has an adverse effect on the handshake delays.

* Rout+D+

Aout+

Rout-D-

V - Ain- Aout-

Figure 5-10: STG of the ERF latch control circuit

The ERF latch control circuit is shown in figure 5-11. A new communication along the 

input link can be “completed” before the new communication along the output link has 

been “initiated”. The essence of a fully-decouped latch control circuit is to break the 

sequential operational dependency between its input side and its output side in order to 

allow them to run concurrently on either side. A clocked pipeline is, in some senses, 

fully-decouped, but it should use an edge-triggered as one pipeline stage to isolate its 

input flow from its output flow. It is obvious that asynchronous pipelines are more 

efficient in terms of the number of latches required, especially when a wide datapath or a 

deep pipeline is involved. It should be mentioned here that early asynchronous designs 

[87] used edge-triggered latches, simply following the practice of the clocked design.
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Ain

a
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= £ > -► Lt

Aout Rout

Figure 5-11: ERF latch control circuit

5.8 BRU latch control circuit

For the sake of comparison, an STG specification and implementation of a BRU latch 

control circuit are shown in figure 5-12 and figure 5-13, respectively.

A+ > Rout+D+

Aout-Lt- «■- Ain-

Figure 5-12: STG of the BRU latch control circuit
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D Ain

Rout Aout

Figure 5-13: BRU latch control circuit

5.9 BRS latch control circuit

An STG specification and implementation of a BRS latch control circuit are shown in 

figure 5-14 and figure 5-15, respectively. The BRS latch control circuit is very similar to 

the ERS one. However, the buffer delay directly contributes to the input link delay in the 

ERS latch control circuit, whereas the buffer delay is “invisible” from the input link and 

moved into the output link in the BRS one.

/

D+

Lt+ «■

D-

AouU- Ain-

Figure 5-14: STG of the BRS latch control circuit
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D Ain

Rout Aout

Figure 5-15: BRS latch control circuit

The BRS latch control circuit has the same drawback as the ERS one: the pipeline cycle 

time increases by twice the processing logic delay. It is of potential use only in FIFO 

applications.

5.10 BRF latch control circuit

An STG specification of a BRF latch control circuit is shown in figure 5-16. For the input 

link (D, Ain), the path from Ain low to D high is the critical arc since the evaluation 

process is by assumption much longer than internal handshake transitions. Similarly, for 

the output link (Rout, Aout), the path from Rout high to Aout high is the critical arc. By 

now, an intuitive feel for fully-decoupling is that operations on these two critical paths 

should not be dependent on each other. In other words, there is no simple loop that 

contains these two arcs in the STG specifications. By so doing, two neighbouring 

combinational logic functions can be performed in parallel at all times.
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> Rout+D+

> Rout-

r~
Lt-

Figure 5-16: STG of the BRF latch control circuit

Figure 5-17 shows an implementation of the BRF latch control circuit [19]. The 

emphasis of asynchronous pipeline designs is on maximum allowable concurrency, 

which was kept in mind during the development of these latch control circuits. Only 

slight differences in STG specifications may lead to very different latch control circuits.

D Ain

Rout Aout

Figure 5-17: BRF latch control circuit
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5.11 BAS & BAF latch control circuits

By now, we may sense the key difference between the “early” and “broad” data-validity 

schemes, which lies in the decision point on when to issue the acknowledge signal Ain. 

For the “early” data-validity schemes, only after the data has been latched is the 

acknowledge Ain issued. However for the “broad” data-validity schemes, the 

acknowledge Ain can be issued before the data has been latched. The key idea of the 

“broad” data-validity scheme is to make the first handshake as fast as possible and the 

associated combinational logic is sidelined from the pipeline (see figure 5-4). The 

request signal Rin is no longer entitled to activate the combinational logic since it may 

return low independently of whether the evaluation phase is complete or not. Instead, the 

acknowledge Am  can take the job. It could, perhaps, be argued that the point of 

activation of the combinational logic has been delayed and the performance will suffer. 

However, firstly, the delay is marginal since the first handshake is fast. Secondly, if it is 

still an issue, another arrangement can be made as shown in figure 5-18.

Data outData in

V /A

Rin Rout
Controller

Ain Aout

Figure 5-18: Another “Acknowledge-activate” configuration
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STG specifications for a BAS and a BAF latch control circuit are shown in figure 5-19 

and figure 5-20, respectively. Implementations of a BAS and a BAF latch control circuit 

are shown in figure 5-21 and figure 5-22, respectively. These two latch control circuits 

are almost the same as their request-activate counterparts but have an extra input. They 

can be used to exploit the advantage of dynamic logic for low power designs as we will

/

Rin+ > A+ - > /)+

Aout+

Rin- > Roiit-

\ Aout-

Figure 5-19: STG of the BAS latch control circuit

+► Rout+

/

+- A+ -   > D+Rin+

*  D- >■ Rout-Rin- * A-

\ - Ain-

Figure 5-20: STG of the BAF latch control circuit

Four-phase pipeline control 112



discuss in the next section. It should be noted here that up to now all the combinational 

circuits presented earlier are assumed to be static by default. Some effort must be made 

before dynamic circuits can be used.

Rin

I
Ain D1 ,

— J  A
j— q -

r

h>T

+l:0
r i {

Lt

Rout Aout

Figure 5-21; BAS latch control circuit

Rin Ain D

Rout Aout

Lt

Figure 5-22; BAF latch control circuit
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5.12 Interfacing

There are occasions where it may be desirable to use both “early” and “broad” latch 

control circuits. For example, the BAS or BAF latch control circuit for low power 

designs using dynamic logic should be used together with other latch control circuits to 

ensure that the end condition is satisfied, (see section 5.13).

To interface a “broad” latch control circuit into an “early” latch controller would appear 

to be rather straightforward, since the “broad” scheme is more than sufficient to cover the 

input specification of the “early” scheme. However there must be a converter when 

interfacing an “early” latch control circuit into a “broad” one. An STG specification and 

implementation of a converter are shown in figure 5-23 and figure 5-24, respectively.

/

A+D+ > Rout+

Lt+

D- > Rout-

Aont-v

Figure 5-23: STG of the Converter

It should be noted that a broad latch control circuit can be used for cases where the early 

protocol is used. However, the operation of the circuit is totally sequential, which is 

undesirable from the performance perspective. Therefore appropriate latch control 

circuits should be used for particular application cases.
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Ain
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□
D

-► Lt

Aout Rout

Figure 5-24: Converter circuit

With the Converter circuit a new communication along the input link is not subject to 

being blocked and will be completed as long as it has been initiated. This property is 

useful to ensure the end condition that we will discuss in the next section.

5.13 Low-power design using dynamic logic

The micropipeline design style configures the pipeline latches as transparent when 

empty. The motivation for this comes from both performance and testability. First, 

transparent latches steer the inputs directly to the outputs, thus reducing the latency of 

the pipeline. Secondly, they make the datapath have a combinational behaviour in its 

initial state, offering good testability of the datapath logic. However, this comes at a 

price. Data and glitches can be broadcast down the pipelines, thus wasting power.
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Dynamic circuits can be used to localise the data flow to solve the above problem [88]. 

The obstruction of data flow is achieved since the dynamic logic is held during the 

precharged phase. Additionally, dynamic circuits offer the benefits of increased speed 

and lower switched capacitance. Therefore low power designs often employ dynamic 

logic, especially in the datapath design.

However, there is a difficulty in directly using dynamic circuits in asynchronous designs 

since the asynchronous control can stall in any state for any time. Leakage currents cause 

the output of dynamic circuits to be valid for a short time; therefore evaluation cannot 

begin until the output latch is free. The inputs must also be held stable until evaluation is 

complete, so during evaluation both the input and the output latches are required by the 

intervening dynamic logic, resulting in at most 50% of the logic being active at any time.

Although additional latches or charge-retention circuits can be used to make dynamic 

circuits pseudo-static, these additions increase the cost and power consumption of the 

dynamic circuits, thereby compromising their potential advantages.

The new idea introduced here is to observe that it is not strictly necessary for the output 

latch to be free before evaluation begins; it is only necessary to know that it will become 

free “soon”. Here “soon” is inteipreted as any period which is not subject to arbitrary 

delay and is within the dynamic storage time of the output nodes. This relaxation of the 

evaluation start time allows a significant improvement in the pipeline’s performance.

The dynamic logic begins evaluation when its enable (E) goes high and it indicates a 

valid output on a “done” signal (D). When its enable is low it is precharged, and 

precharge completion is signalled by the “done” signal going low. (see figure 5-4).
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For the BAS or BAF latch control circuit, the acknowledge wire Ain is indeed a 

confirmation signal which indicates that the output latch will be free “soon”. “Soon” is 

just the result of internal self-timed delays only, and is determined by the evaluate phase 

(V) and the precharge phase (P) together with a few internal control delays. Here the 

assumption is that the pipeline stage is connected to similar neighbours. We argue that a 

stall can only occur between Rout high and Aout high on the arrow marked S in figure 5- 

19 or figure 5-20. If this is true, the property is propagated back to the input, and hence, 

by induction, along a pipeline of similar stages. Only the end conditions remain to be 

checked. This condition is satisfied by using the Converter (see figure 5-24).

5.14 Simulation results

The latch control circuits have been laid out using 0.55 micron triple metal CMOS 

technology and simulated using HSPICE operating at worst-case conditions (Vdd = 3.3V, 

Vss -  0.1V, slow-slow process comer, at 100 °C) and driving a 32 bit latch. The 

simulation results are shown in table 5-1.

Table 5-1: HSPICE simulation results

Parameter ERS ERF BRS BRF BAS BAF

FIFO Cycle Time 3.7 ns 4.4 ns 3.6 ns 4.0 ns 3.6 ns 4.0 ns

FIFO Response 8.6 ns 10.1 ns 8.0 ns 3.7 ns 8.0 ns 3.7 ns

Proc. Cycle Time 10.1ns 7.7 ns 10.0 ns 7.1 ns 7.0 ns 7.2 ns

Proc. Response 18.5 ns 10.2 ns 17.5 ns 3.8 ns 8.9 ns 3.9 ns

A micropipeline with no processing in it is a FIFO and its cycle time gives an upper 

bound on the potential throughput. The response time is measured by stalling the output
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of a 3 stage pipeline until it is full, and then seeing how long it takes from releasing the 

stall until the input starts moving. The corresponding results for a micropipeline with 

processing in it are established by inserting combinational logic into the pipeline with an 

evaluation time of 3.0 ns and reset time of 0.3 ns. The test circuit is shown in figure 5-25.

Data in Data Out

nGo

nLock

ControllerController Controller

Figure 5-25: Test circuit

5.15 Discussion

The simulation results show that the cycle times of the ERS and BRS latch control 

circuits increase by approximately twice the processing delay, indicating both the 

processing delay on the input side and that on the output side are included. The cycle 

times of the other four latch control circuits just increase by the evaluation delay, 

indicating the processing delay on only one side is included. Here we now see how the 

different decoupling techniques have affected the resulting cycle times.

It is quite interesting that the BAS latch control circuit behaves in a “fully-decoupled” 

way. This is due to the fact that the point when the combinational logic begins evaluation 

has been moved in the acknowledge-activate configuration. This reflects the fact that the
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combinational logic is pulled out of the input link path and put aside. By so doing, the 

handshake process of the input link is in fact isolated from that of the output link. The 

change in the activation mechanism for the combinational logic makes the difference 

between semi-decoupled and fully-decouped behaviours.

The response times of the BRF and BAF latch control circuits is a lot smaller than the 

other four latch control circuits. The reason stems from the fact that when a confirmation 

signal (Ain) goes high this propagates very quickly backwards up the pipeline, allowing 

every pipeline stage to begin evaluation at almost the same time. For other latch control 

circuits, each pipeline stage must wait to clear the interlock before the initiating action is 

taken. Obviously, this is a very important factor in the performance of asynchronous 

pipelines which has unfortunately been ignored in the past. The response time relates to 

how fast a bubble [88] travels back up a pipeline. The detailed analysis of bubbles 

making self-timed pipelines fast can be found in [89].

It seems that the BRS and BAS latch control circuits will give the best performance in 

FIFO applications. However, it takes a long time to start moving after the full pipeline is 

released. Therefore, the BRF and BAF latch control circuits are suitable for both FIFO 

applications and pipelines including processing logic.

It is clear that the circuits using the broad protocol give better performance than those 

employing the early protocol. Among latch control circuits described above, the BRF 

and BAF latch control circuits are the best choice.

The BAF latch control circuits can be used to exploit the advantages of dynamic logic for 

low power designs. However, the end condition (a stall can only occur between Rout

Four-phase pipeline control 119



high to Aout high) must be met. For the BAF latch control circuit, this condition can 

easily be met by using the Converter circuit (see section 5.12).

All of the latch control circuit in this chapter are speed-independent, and were verified 

using the FORCAGE tool.

5.16 Summary

The design of control schemes for asynchronous pipelines has been studied. The study 

focused mainly on the four-phase micropipeline design style which uses conventional 

level-sensitive data latches. A set of speed-independent latch control circuits has been 

presented. Verification was carried out using the FORCAGE tool.

The BRF and BAF latch control circuits are the best choice for both FIFO applications 

and pipelines including processing logic. The ERF, BRF, BAS and BAF latch control 

circuits behave in the “fully-decoupled” way, where the cycle time increases by just one 

evaluation time. The BRF and BAF latch control circuits give the good response time.

The circuits using the broad protocol give better performance than those employing the 

early protocol. The acknowledge-activation configuration allows dynamic logic to be 

easily exploited for low power design. Dynamic logic retains externally static behaviour 

without additional latches or charge-retention circuits (allowing activity to cease without 

loss of state), and hence power can be saved.
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Four-phase control modules 6

This chapter presents a set of control modules for four-phase micropipelines. Arbiters, 

which are non-trivial and tricky to design, are also included. These control modules, 

together with the pipeline latch control circuits described in the previous chapter, can be 

used to construct complex and powerful asynchronous systems including forking or 

joining multiple micropipelines. All of the proposed four-phase control modules are 

speed-independent, and this has been verified using the PETRIFY tool [23-26j.

6.1 Introduction

In order to build asynchronous systems based on four-phase micropipelines, a set of 

basic control modules is required. Such a set is proposed here and shown in figure 6-1. 

The first element is the CALL module, which enables two processes to share a common 

resource. The two calling requests must be mutually exclusive. If they are not, the 

ARBITER module must be used instead. It is worth emphasizing that unlike in the 

synchronous case, an asynchronous arbiter always operates correctly. The JOIN and 

FORK modules are used to join and fork multiple control flows or pipelines, 

respectively. The SELECT module comes with two versions: one with a control link and 

one with a Boolean guard. The input Boolean guard must be prepared prior to the
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incoming handshakes on the input link and must remain stable during the handshaking 

process (restricted and guaranteed by the environment). The SELECT module steers 

incoming input handshakes to one of two outputs, depending on the handshake result 

along the control link or the Boolean value. The TOGGLE module steers incoming 

four-phase handshakes to alternate outputs. All of these four-phase control modules are 

speed-independent, and this has been verified using the PETRIFY tool.

R1R1

A1 H Ro

R1

A1

A2

R2

Ri O

Sel R1 

A1
SELB

A2

R2

Rc At A fR j 

A1
SELA

A2

R2

Figure 6-1: Four-phase control modules

This set of control modules provides the basic building blocks, which can be used to 

construct other control modules and asynchronous systems. The circuit implementations 

presented here are not claimed to be optimal. It should be appreciated that optimizations 

can be made if input constraints (determined by the environment) are known a priori to 

designers. A CALL module is an example, where it is known that the two input requests 

are mutually exclusive as a result of the environmental constraints. An ARBITER 

module is more general as its input changes are unrestricted. However, the circuit 

implementation of a CALL module is much simpler than that of an ARBITER module.
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The specifications of these control modules are described using Petri Nets (PN) [22]. The 

PETRIFY tool then takes and manipulates this initial specification. It either generates 

another PN which is simpler than the original description or synthesizes an optimized 

speed-independent asynchronous circuit. The original specification may not satisfy the 

requirement of Complete State Coding (CSC) [90] and may lead to different states with 

the same binary value when encoding. To resolve this state coding conflict the PETRIFY 

tool automatically inserts a new state signal. The rising and falling transitions of this new 

state signal are inserted in such way that the synthesized circuit is optimized according to 

a selected cost function.

6.2 CALL modules

The CALL module serves the role of the procedure call in software where a common 

subroutine is shared. This section describes three types of CALL module: pCALL, 

dCALL, and bCALL. The first two CALL modules use the four-phase early protocol, 

while the last employs the four-phase broad protocol. The whole four-phase handshaking 

process on one input link must be completed before the next process on the other input 

link starts. Otherwise, the circuit will operate improperly.

6.2.1 pCALL module

A specification and implementation for a CALL module, called pCALL, are shown in 

figure 6-2 and figure 6-3, respectively. The pCALL module allows concurrent processing 

on the input link and resetting on the output link. However, the input and output links are 

not allowed to reset in parallel, with the input link being first reset and the output link 

following.
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Ro- + Rl- R2-

A l- Ao- Ao-

Figure 6-2: PN of the pCALL module

R1
Ro

R2

A1

Ao
A2

Figure 6-3: pCALL circuit implementation

6.2.2 dCALL module

A specification and implementation for a CALL module, called dCALL, are shown in 

figure 6-4 and figure 6-5, respectively. Like the pCALL module, the dCALL module 

allows concurrent processing on the input link and resetting on the output link.
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Figure 6-4: PN of the dCALL module

R1

R2 Ro

A1

Ao

A2

Figure 6-5: dCALL circuit implementation

Furthermore, concurrent resetting on both the input and output links are also allowed in 

the dCALL module. The resetting on the output link can start even before that on the 

input link. The output link has the property of self-resetting as soon as it has completed 

the calling procedure; resetting of the output link does not depend on an input reset 

request.
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6.2.3 bCALL module

The first two CALL modules described above use the four-phase early protocol. There 

are occasions where it may be desirable to use the four-phase broad protocol, e.g., using 

dynamic logic for low-power design (see “Low-power design using dynamic logic” on 

page 115). A specification and implementation for a CALL module using the broad 

protocol, called bCALL, are shown in figure 6-6 and figure 6-7, respectively. The circuit 

is quite simple. It is worth noting that no processing or resetting phases are distinguished

Ro+ <--------- R1+ «---------- ( • ) ----------► R 2+--------- ► Ro+

Ao+ + A1+

Rl-

Ao- * A l-

A2+ + Ao+

> Ro-

A2- + Ao-

Figure 6-6: PN of the sCALL module

R1 Ro

R2

A1

A2 Ao

Figure 6-7: sCALL circuit implementation
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in the broad protocol. The bCALL module can also be used for cases where the early 

protocol is used since the specification of the broad protocol is more than sufficient to 

cover that of the early protocol. However, the operation of the circuit is totally 

sequential, which is undesirable from the performance perspective.

6.3 ARBITER modules

The ARBITER module produces an exclusive grant to one of two asynchronous calling 

requests. As discussed in section 2.2.4 (see “Metastability and arbitration” on page 27), 

the ARBITER module is inherently prone to metastability. However, this metastable 

problem only affects the performance of the ARBITER module, not its functionality 

(only in the asynchronous case). Analog circuit techniques are used to keep the 

metastable states internal while maintaining valid logic levels at the interface. The 

mutual exclusion circuit (MUTEX) [31], as shown in figure 6-8, is such an analog circuit 

which makes a non-deterministic decision between two asynchronous requests. It 

comprises a cross-coupled NAND structure and a filter. The cross-coupled NAND 

structure may go metastable when the two inputs switch high at very nearly the same 

time. The filter conceals possible metastable states from the environment to maintain 

valid logic levels at the interface.

G2R1

R2 J L G1

Figure 6-8:1VIUTEX circuit
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This section describes three types of ARBITER module: pARBITER, dARBITER, and 

bARBITER, The first two ARBITER modules use the four-phase early protocol, while 

the last employs the four-phase broad protocol.

6.3.1 pARBITER module

A specification and implementation for an ARBITER module, called pARBITER, are 

shown in figure 6-9 and figure 6-10, respectively. The signals G1 and G2 are the outputs 

of the MUTEX element and internal signals of the pARBITER module. The two 

transitions (Roi— > Ao+) and (Ro- Ao-) are illustrated by the expressions (Ro+, Ao+) 

and (Ro-, Ao-), respectively, for the sake of brevity. As shown in [44], logic synthesis can 

produce speed-independent implementations only for specifications without conflicts on 

non-input signals. However, there is a conflict between the signals G1 and G2 in this 

specification and these two signals are internal (non-input) signals. We can get around 

this difficulty by treating the signals G1 and G2 as additional inputs [44] whose changes 

are restricted by the MUTEX element. The MUTEX element is considered to be part of 

the environment for the pARBITER module. This design trick is not restricted to 

conflicts on non-input signals and can also be applied to no-conflict cases. Well-defined 

modules can be treated in the same way as the MUTEX element and their outputs (also 

internal signals for a specification to be synthesized) are considered as additional inputs. 

By so doing, efficient implementations can be derived for some cases which otherwise 

may be difficult to synthesize.

The pARBITER module allows concurrent processing on the input link and resetting on 

the output link. However, the input and output links are not allowed to reset in parallel,
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with the input link being first reset and the output link following. Note that the signals 

G1 and G2 are often used to control a multiplexer to select the input data.

A1+ <■ * R2-

Gl- Ao- G2-

Figure 6-9: PN of the pARBITER module

A1

R1
R1 G1

Ro

R2 G2
R2

Ao
A2

Figure 6-10: pARBITER circuit implementation
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6.3.2 dARBITER module

A specification and implementation for an ARBITER module, called dARBITER, are 

shown in figure 6-11 and figure 6-12, respectively. Like the pARBITER module, the 

dARBITER module allows concurrent processing on the input link and resetting on the 

output link. Furthermore, concurrent resetting on both the input and output links are also 

allowed in the dARBITER module. The resetting on the output link can start even before 

that on the input link. The output link has the property of self-resetting as soon as it has 

completed the calling procedure; resetting of the output link does not depend on an input 

reset request.

Specifications with more concurrent operations lead, in general, to complex circuit 

implementations. This can bee seen from the development of the circuits above.

G2+ +

R1- + A1+ + * R2-

Gl- G2-Ao-

Ro-

Figure 6-11: PN of the dARBITER module
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R1
R1 G1

Ro

R2
R2 G2

Ao

A2

Figure 6-12: dARBITER circuit implementation 

6.3.3 bARBITER module

The first two ARBITER modules described above use the four-phase early protocol. A 

specification and implementation for an ARBITER module using the broad protocol, 

called bARBITER, are shown in figure 6-13 and figure 6-14, respectively. The 

bARBITER module can also be used for cases where the early protocol is used since the 

specification of the broad protocol is more than sufficient to cover that of the early 

protocol. However, the operation of the circuit is totally sequential, which is undesirable 

from the performance perspective.

Generally, specifications using the broad protocol, e.g. the bARBITER, often have 

simpler circuit implementations than those using the early protocol.
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All the ARBITER modules described above are fair arbiters [91], which means that a 

pending request on one input link must be granted after the granted request on the other 

input link has completed.

G2+ ^

(Ro+, Ao+)

> R2-

Gl-

A2-

Figure 6-13: PN of the bARBITER

A1

R1
R1 G1

Ro

R2 G2
R2

A2 Ao

Figure 6-14: bARBITER circuit implementation
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6.4 JOIN modules

The JOIN module synchronizes and concatenates two input links to the output link, and 

is used in organizing multiple control flows or pipelines. This section presents three 

types of JOIN module: pJOIN, dJOIN and bJOIN. The first two JOIN modules use the 

four-phase early protocol, while the last employs the four-phase broad protocol. As all of 

the PN specifications in this section and the following sections are quite straightforward 

they are omitted for the sake of brevity.

6.4.1 pJOIN module

Figure 6-15 shows a circuit implementation for a JOIN module, called pJOIN. The 

pJOIN module allows concurrent processing on the input link and resetting on the output 

link. However, the input and output links are not allowed to reset in parallel, with the 

input link being first reset and the output link following.

A1
R1

A2
R2

a Ao

Ro

Figure 6-15: pJOIN circuit implementation

6.4.2 dJOIN module

Figure 6-16 shows a circuit implementation for a JOIN module, called dJOIN. Like the 

pJOIN module, the dJOIN module allows concurrent processing on the input link and
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resetting on the output link. Furthermore, concurrent resetting on both the input and 

output links are also allowed in the dJOIN module. The resetting on the output link can 

start even before that on the input link. The output link has the property of self-resetting 

as soon as it has completed the calling procedure; resetting of the output link does not 

depend on an input reset request.

R 2  ►___________________

Figure 6-16: dJOIN circuit implementation

6.4.3 bJOIN module

The first two JOIN modules described above use the four-phase early protocol. A circuit 

for an ARBITER module using the broad protocol, called bARBITER, is shown in figure 

6-17. The circuit is simple, and is similar to a C-gate. A difference is that the signal Ro, 

not Ao, is fed back internally in a C-gate.

The bARBITER module can also be used for cases where the early protocol is used since 

the specification of the broad protocol is more than sufficient to cover that of the early 

protocol. However, the operation of the circuit is totally sequential, which is undesirable 

from the performance perspective.
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\y$> Ro

Figure 6-17: bJOIN circuit implementation

6.5 FORK modules

The FORK module is often used when there are multiple destinations. It is worth noting 

that the FORK module and the isochronic fork [92] discussed in section 2.2.2 are 

completely different concepts that have no relation to each other. This section presents 

three types of FORK module: pFORK, dFORK and bFORK. The first two FORK 

modules use the four-phase early protocol, while the last employs the broad protocol.

6.5.1 pFORK module

Figure 6-18 shows a circuit implementation for a FORK module, called pFORK. The 

pFORK module allows concurrent processing on the input link and resetting on the 

output link. However, the input and output links are not allowed to reset in parallel, with 

the input link being first and the output link following.

6.5.2 dFORK module

Figure 6-19 shows a circuit implementation for a FORK module, called dFORK. Like 

the pFORK module, the dFORK module allows concurrent processing on the input link
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Figure 6-18: pFORK circuit implementation

and resetting on the output link. Furthermore, concurrent resetting on both the input and 

output links are also allowed in the dFORK module. The resetting on the output link can 

start even before that on the input link. The output link has the property of self-resetting 

as soon as it has completed the calling procedure; resetting of the output link does not 

depend on an input reset request.

Ri

Ai
<L

E> Rl

A l

R2

A2

Figure 6-19: dFORK circuit implementation

6.5.3 bFORK module

The first two FORK modules described above use the four-phase early protocol. A 

circuit for a FORK module using the broad protocol, called bFORK, is shown in figure 

6-20. The bFORK module can also be used for cases where the early protocol is used
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since the specification of the broad protocol is more than sufficient to cover that of the 

early protocol. However, the operation of the circuit is totally sequential, which is 

undesirable from the performance perspective.

A1
R1

R2
A2

Figure 6-20: bFORK circuit implementation

6.6  SELA modules

This section presents three types of SELA modules: pSELA, dSELA and bSELA. All of 

these three SELA modules use a control link. The sSELA module serves the role of the 

if-else statement in programming languages. The input request first issues a handshake 

along the control link. If the returned value of the dual-rail acknowledge signal is true, 

the handshake will proceed along the output link (Rl, Al); otherwise it goes along the 

output link (R2, A2). The first three SELA modules use the four-phase early protocol, 

while the last employs the four-phase broad protocol.

6.6.1 pSELA module

Figure 6-21 shows a circuit implementation for a SELA module, called pSELA. The 

pSELA module allows concurrent processing on the input link and resetting on the 

output link. However, the input and output links are not allowed to reset in parallel, with 

the input link being first and the output link following.
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Figure 6-21: pSELA circuit implementation

6.6.2 dSELA module

Figure 6-22 shows a circuit implementation for a SELA module, called dSELA. Like the 

pSELA module, the dSELA module allows concurrent processing on the input link and 

resetting on the output link. Furthermore, concurrent resetting on both the input and 

output links are also allowed in the dSELA module. The resetting on the output link can 

start even before that on the input link. The output link has the property of self-resetting 

as soon as it has completed the calling procedure; resetting of the output link does not 

depend on an input reset request.

6.6.3 bSELA module

The first two SELA modules described above use the four-phase early protocol. A circuit 

for a SELA module using the broad protocol, called bSELA, is shown in figure 6-23. 

Note that the acknowledge signals of the control link are dual-rail encoded, so they are
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A2

R2

Figure 6-22: dSELA circuit implementation

able to convey a Boolean value and make the circuit implementation speed-independent. 

The bSELA module can also be used for cases where the early protocol is used since the 

specification of the broad protocol is more than sufficient to cover that of the early 

protocol. However, the operation of the circuit is totally sequential, which is undesirable 

from the performance perspective.

Rc I A f At

R1

A1

A2

R2

Figure 6-23: bSELA circuit implementation
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6.7 SELB modules

There are often cases where a boolean guard is known prior to incoming input 

handshakes and remains stable during the process of handshaking. The SELB modules 

are designed for those cases. Figure 6-24 shows an implementation of the SELB module 

using the SELA module. This SELB module is still considered to be speed-independent 

as long as the Boolean guard is well controlled by the environment.

Generally, most speed-independent circuits are robust, where robust means that multiple 

input changes are allowed and the orders of input changes do not affect the behaviour of 

the circuit. This property is certainly desirable to designers. However, if the input 

changes of a specification are restricted by the environment and are known a priori to 

designers, the circuit implementation could be much simplified and more efficient.

By taking the nature of Boolean guard into account, simple and efficient circuit 

implementations of the SELB module can be derived; they are omitted here for the sake 

of brevity.

1
Ri

Sel R1

A l 4—

«—Ai
SELB

A2

R2
Rc At A f

SELA

Figure 6-24: Implementation of the SELB modules
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6.8 TOGGLE module

The TOGGLE module produces communications alternately on its two outputs in 

response to its input. The TOGGLE module is a useful building block and can be used to 

construct other control modules or even asynchronous systems. However, the TOGGLE 

module itself is the most difficult module to implement, though it appears to be quite 

simple. Many circuit implementations had been derived and then verified not to be speed 

independent. The difficult lies in the fact that circuit implementations tend to contain an 

inherent race hazard.

Figure 6-25 shows a circuit implementation for the TOGGLE module using NOR gates. 

Since the TOGGLE module is designed mainly as a basic building block for constructing 

other control modules, there are no associated acknowledge signals to form input or 

output links. Therefore, the environment must provide an input at a proper point only 

after the outputs have responded the previous input changes. Analysis of this circuit 

implementation has demonstrated that the operation is totally sequential, and races 

cannot happen as there is only one enabled transition in every possible state.

Rx

Figure 6-25: TOGGLE circuit implementation
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6.9 An example: a counter

This section shows how an n-bit speed-independent counter is built using the TOGGLE 

modules as the building blocks. The worse case settling time of this counter is large since 

the carry may propagate from the low-order bit up to the high-order bit. However, only 

two bits change per operation on average [93]; the typical case is much faster than the 

worst case.

Figure 6-26 illustrates the diagram of the n-bit speed-independent counter. The carry 

stops at a bit position where the internal state variable (see figure 6-25) is zero; this is 

indicated by the transition along the Rx output of the TOGGLE module. If one bit stage 

is one, the transition happens along the Ry output which is connected to the next 

neighbour TOGGLE module. There are only two input states for the Completion 

Detector: either all are zeros or only one of them is one. When a change from one input 

state to the other is detected, it means the carry has completed its journey and the result is 

generated. The result lies in the internal state variable of the TOGGLE modules.

Go

Rx[n]

Done

TOGGLE
Ry Rx

TOGGLE
Ry Rx

TOGGLE
Ry Rx

Completion Detector

Figure 6-26: Speed-independent incrementer
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6.10 Arbiter modules revisited

All of the arbiter circuits described in section 6.3 take the micropipeline view that the 

request signal initiates the data transfer (this is called a push channel). However, arbiters 

are often used in a bus structure, where the acknowledge signal initiates the data transfer 

(called a pull channel). One undesirable property of push arbiters is that the output 

request must wait whenever the MUTEX element goes metastable. Therefore the latency 

is unbounded, which is quite serious in some applications requiring low latency. This 

section presents two types of pull ARBITER module. The eARBITER modules use the 

four-phase early protocol, while the fARBITER module employs the broad protocol.

6.10.1 eARBITER module

A specification and implementation of a pull ARBITER module, called eARBITER, are 

shown in figure 6-27 and figure 6-28, respectively. The request signal Ro directly follows 

the input requests and it is not necessary to wait until the output signals G1 and G2 of the 

MUTEX element have been resolved when a metastable state occurs. The circuit has a 

bounded request latency, which is important for applications requiring low latency. Note 

that the place “p i” can accommodates two tokens, which the PETRIFY tool can deal 

with. However, other tools based on STGs have restrictions for multiple token cases, 

though a CD specification can describe this situation using OR-type signal transitions.

6.10.2 fARBITER module

A specification and implementation of a pull ARBITER module using the broad 

protocol, called fARBITER, are shown in figure 6-29 and figure 6-30, respectively.
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Figure 6-27: PN of the eARBITER module

A1

R1
R1 G1

Ro

R2
R2 G2

Ao
A2

Figure 6-28: eARBITER circuit implementation
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Figure 6-29: PN of the fARBITER module
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Figure 6-30: fARBITER circuit implementation
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6.11 Modules with multiple input links

Up to now, all the modules presented have had at most two input links. There are often 

cases where multiple input links are required. Circuit implementations for modules with 

multiple input links can be derived following the procedure described in the previous 

sections. However, they are most practically built by using the corresponding two input 

link modules. This section examines the design of these modules with multiple input 

links. The design of a four-phase early protocol arbiter with multiple input links is taken 

as an example and discussed. The discussions can, in general, apply to other modules 

with multiple input links.

Figure 6-31 shows a tree arbiter with eight input links, where the solid dots represent the 

two input link arbiters. The following terms are defined for the sake of discussion. The 

top arbiter is called the home node, the bottom arbiters are called the leaf nodes and the 

arbiters between the home node and the leaf nodes are called the directory nodes. The 

input links connected to the same leaf node form a leaf group. The input links connected 

to the same directory node form a directory group. For an example, the input links il and 

12 form a leaf group and input links i5, i6, i7 and i8 form a directory group.

out

home node

dl234 dmectoryjtodes

leaf nodes

i l  i2 i3 i4 i5 i6 i7 i8

Figure 6-31: Tree arbiter
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Imagine a case where all eight asynchronous input requests arrive and one input request 

(say, the input link il) is granted and the other seven input requests are pending. We are 

interested in which input request will be granted and when after the granted input request 

from the input link il is released.

All the ARBITER modules presented earlier are fair. In other words, a pending calling 

request must be granted after a bounded number of other input requests are granted. The 

bounded number is eight in this case. Seen from the home node, one input request from 

the directory group {/5, i6, i7, i8} will be granted after the input request from the input 

links il is released because of the fair nature of the home node. Therefore, those input 

links should be put into different directory groups or different leaf groups if calling 

requests from those input links are likely to compete for a common resource. This is the 

first conclusion.

Suppose that sARBITER modules are used. The release of the calling request from the 

input link il involves resetting all the nodes from the leaf node to the home node. All 

these resettings are sequential and thus delay a grant for other calling requests. Supposed 

that pARBITER modules are used. The situation will improve as the resetting of the 

output link of the home node and the falling transition of the input link of the directory 

node d.1234 can be in parallel. However, the circuit still waits for the falling transition of 

the calling request from the input link il. This is unacceptable if the height of the tree 

structure is high. Supposed that dARBITER modules are used. The problem will be 

solved since the dARBITER module can reset the output link by itself as soon as it has 

completed the calling procedure and resetting of the output link does not depend on its 

input reset request (see “dARBITER module” on page 130). Therefore, dARBITER
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modules should be used to build an arbiter with multiple input links based on the tree 

structure. If other types of arbiters are used, the response time will be degraded. This is 

the second and also very important conclusion.

6.12 Summary

A set of control modules for four-phase micropipelines with different implementations 

has been presented. Arbiters, which are non-trivial and tricky to design, are also 

included. These control modules, together with the pipeline latch control circuits 

described in the previous chapter, can be used to construct complex and powerful 

asynchronous systems including forking or joining multiple pipelines. Also they can be 

used to construct other four-phase control modules. All of the proposed control modules 

are speed-independent, and this has been verified using the PETRIFY tool.

The design of an arbiter with multiple input links based on a tree structure has also been 

discussed. The dARBITER modules should be used to build an arbiter with multiple 

input links as their output links can be self-reset.

Petri nets have been shown to be an appropriate formalism for describing the behaviour 

of asynchronous systems with concurrency, causality and conflicts between events. 

Though most steps of the development of these control modules were processed by hand, 

the PETRIFY tool played a key role and was used to synthesize various implementations 

for comparison and analysis.
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AMULET3i 7

AMULET3i is an asynchronous embedded system chip which incorporates the third 

generation asynchronous ARM processor (AMULET3). Different from its predecessors, 

AMULET 1 and AMULET2e, AMULET3i is aimed to be a commercially viable product 

for communication applications. This will be a significant step. A brief description of 

AMULET3i and AMULET3 is given in this chapter in the hope of providing the big 

picture into which the components described in the previous chapters can be placed.

7.1 Introduction

As we said previously, it is our belief that asynchronous design must be justified on its 

practical significance rather than solely on a theoretical basis. The motivation behind the 

AMULET project is to demonstrate this practical significance.

AMULET 1 demonstrated the feasibility of building an asynchronous system at the levels 

of complexity of current synchronous systems. AMULET2e proved the competitiveness 

of an asynchronous system compared with current synchronous systems, from both the 

power perspective and the performance perspective. AMULET31 will, in turn, put the 

asynchronous experience of the academic community into industrial practice.

AMULET3i 149



7.2 AMULET3i

AMULET3i is a commercial asynchronous embedded system chip, whose organization 

is shown in figure 7-1. In addition to AMULET3 (the third generation asynchronous 

ARM processor), AMULET3i contains 8 Kbytes of RAM (which can also be configured
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chip
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MARBLE bus
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DMArq DMAak
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peripheral
subsystem

peripheral 
" l/Os

Figure 7-1: AMULET3i block diagram
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as a cache), a DMA controller, a MARBLE (Manchester AsynchRonous Bus for Low 

Energy) bus [94], a flexible memory interface, a general synchronous peripheral 

interface, an on-chip synchronous peripheral subsystem, and various configuration and 

control registers. A test interface is also included to support the design for test strategy.

7.3 AMULET3

AMULET3 is the third generation asynchronous ARM processor. It implements the 

ARM architecture version 4 and supports the Thumb instruction set [95]. Figure 7-2 

shows the block diagram of AMULET3, which consists of five major blocks. The

FIQ IRQ

■N
i /

Prefetch

Decode & 
Register read

Instruction fetch

Data access

Reorder & 
Writeback

Data
transfers

Figure 7-2: AMULET3 block diagram

AMULET3i 151



detailed organization of AMULET3 is shown in Figure 7-3. (Note that figures 7-1, 7-2 

and 7-3 are reproduced from the “Scoreboard” of the AMULET project with the kind 

permission of Professor Steve Furber). The design includes several novel features.

Firstly, a Harvard architecture is used and the data interface is sidelined from the main 

instruction flow. As a result, data transfer operations, especially multiple load and store 

instructions, can be decoupled from purely internal operations. Another benefit of this 

organization is that an interrupt can be dealt with in the Prefetch Unit rather than in the 

Decoder Unit and treated as a predicted branch, giving a fast interrupt response. As 

loaded values are reordered into the Register Bank and data aborts are allowed to be 

delayed, there is significant speculation following a load or store instruction without 

paying penalties for slow memory.

Secondly, instructions are allowed to execute out of order and a Reorder Buffer [96] 

(borrowed from superscalar design techniques) is used to hold results to be written back 

to the Register Bank in order. This reorder buffer is, in essence, an implementation of the 

register renaming mechanism. Therefore, result forwarding (not only the last result as in 

AMULET2e [11]) can be achieved in a deterministic and arbitration-free manner. It is 

worth noting that two Thumb instructions are fetched per bus cycle, which is another 

superscalar aspect of the design.

Finally, branch prediction and a halt mechanism are included. The halt mechanism is 

straightforward in asynchronous designs and achieves a three to four orders of 

magnitude power saving [11] in the idle state, whereas a synchronous design can only 

approach this power efficiency by stopping the clocks with considerable effort.
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7.4 Execution unit

Figure 7-4 shows the block diagram of the Execution Unit. The ALU comprises a logic 

unit and an adder unit. The design of the adder unit is presented in chapter 3. The design 

of the multiplier is described in chapter 4. Multiplexers are used to implement the result 

forwarding mechanism, and choose operands either from the Register Bank or from the 

Reorder Buffer (which is also called the Queue).

Register Bank

Forwarding 
From Queue

Multiplier 
& Shifter

Immediates

Figure 7-4: Execution pipeline organization
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7.5 Implementation

Figure 7-5 shows an implementation oriented view of the AMULET3 datapath structure. 

AMULET3i is designed using a 0.35 pm triple metal CMOS technology.
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Figure 7-5: AMULET3 datapath structure
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7.6 Summary

A brief description of AMULET3i and AMULET3 has been given. AMULET3i is an 

asynchronous embedded system chip, which is aimed to be commercially viable product 

for communication applications. AMULET3 is the third generation asynchronous ARM 

processor, which implements the ARM architecture version 4 and supports the Thumb 

instruction set. Clearly, the adder and the multiplier, described in the chapter 3 and 4, 

have directly contributed to AMULET3i. Two sets of asynchronous control circuits, 

described in the chapter 5 and 6, have also contributed to AMULET3i, but this is not 

clear in the pictures presented here.
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Conclusions 8

This thesis has presented engineering work on asynchronous design. The arithmetic and 

control components were designed and implemented for AMULET3i, a commercial 

asynchronous embedded system chip for communication applications. The arithmetic 

components comprise an adder and a multiplier; these two are critical to the performance 

of the processor core. The control components consist of a set of pipeline latch control 

circuits and a set of control modules; all of these components are speed-independent. 

Though the nature of the work is mainly engineering, there are some significant new 

insights gained in the course of the work.

8.1 Contributions

A novel carry arbitration scheme was proposed (and has been patented) for parallel adder 

circuits. The proposed scheme provides an efficient encoding in which the carry is 

generated by arbitrating several input carry requests, exploiting the associativity of the 

carry computation. The new coding is a logically redundant superset of the conventional 

carry process. Departing from this general coding, certain modifications which reduce 

the redundancy can easily be made where this simplifies the implementation. The new 

scheme not only leads to high speed adders due to the reduction in the required layers of
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logic, but also offers a regular and compact layout and uniform fan-in and fan-out 

loadings. A high performance, low power 32-bit adder for AMULET3i has been 

designed using the new scheme and implemented down to the layout level. It takes 1.8 ns 

to complete a 32-bit addition and occupies 137.2 pm X 524.8 pm of chip area in a 0.35 

pm triple metal CMOS technology. The power estimate of the datapath is about 8 and 17 

mW operating at 100 and 200 MHz (under typical process conditions), respectively.

A high performance, low power asynchronous 32 bit multiplier with a reasonable 

hardware resource has been developed for AMULET3i. A new encoding technique has 

been used in the AMULET3i multiplier to adjust the product result of an unsigned 

number multiply operation. An adjustment value is made on the least significant 32-bit 

positions. A new 4-2 compressor with an enable control has been presented, together 

with several other circuit design techniques including the use of true single-phase 

clocking registers. The elegance of this multiplier is the manner in which the algorithm 

and the circuit implementation are well matched within the asynchronous framework. 

Post-layout simulation, in a 0.35 micron triple metal CMOS technology, shows that it 

takes 11.2 ns (2.8 ns X 4 cycles) to complete the computation of a 32-bit multiplication in 

the worst case. The power estimate of the datapath is about 40 and 82 mW operating at 

100 and 200 MHz (under typical process conditions), respectively. The layout is regular 

and compact with a datapath area of only 416.4 X 639.6 pm2.

A set of pipeline latch control circuits for four-phase asynchronous pipelines has been 

proposed. These can be used to organize arithmetic components efficiently into a 

micropipeline. All of the proposed pipeline latch control circuits are speed-independent, 

and this has been verified using the FORCAGE tool. A four-phase micropipeline can be
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configured either in a request-activated form or in an acknowledge-activated form. The 

latter is the framework within which dynamic logic can be exploited for low power.

A set of control modules has been proposed in order to ease the design of asynchronous 

systems based on four-phase micropipelines. Arbiters, which are non-trivial and tricky to 

implement, are also included. All of the proposed control modules are speed- 

independent, and this has been verified using the PETRIFY tool. These control modules, 

together with the pipeline latch control circuits, can be used to construct complex and 

powerful asynchronous systems.

8.2 Future work

There are some application areas where asynchronous designs are likely to demonstrate 

advantages. Our philosophy is still to prove that the theoretical benefits are practically 

realizable, and this is reflected in the engineering nature of work presented here.

There are two areas where asynchronous designs are attacking and are likely to win. The 

first is the low power market where short battery life is the bane of the user and the 

second is the mobile communication market where good EMC is required. Thus more 

future work is expected in these two areas.

8.2.1 Low power market

The field of low power designs using traditional clocked design methodologies has been 

plagued with fundamental difficulties. Global clock generation and distribution is 

blamed for a significant portion of the total power consumption in a synchronous CMOS 

circuit [97]. Though advanced power management can deal with clock gating and even
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shut down clocks, this comes at a price in terms of increased complexity. However, 

advanced power management is inherent within the asynchronous design methodology. 

Power is only consumed when needed. There are many other arguments which suggest 

an asynchronous design is a low power design. But the most convincing demonstration is 

the AMULET2e work, which reduces power below that achievable in the industry- 

leading clocked ARM designs.

It is worth noting that there is no single solution to the power consumption problem. A 

design should consider power at all levels of the design hierarchy, including the 

technology, layout, circuit, logic, design style, architectural and algorithmic levels [98- 

103].

8.2.2 Mobile communication market

In the early 19th Century, the French mathematician Jean-Baptiste Fourier proved that 

any reasonably behaved periodic function, g(t), with frequency/can be constructed by 

summing a number of sines and cosines:

CO CO

g (t) = c + ^  ansin (2nnft) + ^  bncos (2nnft)
n =  1 n -  1

where c is a constant, an and bn are the sine and cosine amplitudes of the nth harmonics, 

which decrease as n increases. From the above equation, it is clear that a synchronous 

system produces “harmonic pollution” that aligns with harmonics of the clock, in 

addition to “fundamental noise” that aligns with the clock frequency. However, periodic 

operation is the fundamental property of synchronous systems and there is no way 

around this. Fortunately, asynchronous systems are aperiodic and therefore do not
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produce harmonic pollution (or produce negligible harmonic pollution). This very good 

EMC is a unique advantage of asynchronous systems. It is worth noting that an 

asynchronous system generates less fundamental noise compared with a similar 

synchronous system as it produces broadband distributed current without the high 

amplitude peaks. Recent work has shown that the magnitude of the current peak of a 

synchronous system is 2.5 times that of a similar asynchronous system [104]. With 

increasingly rigorous EMI compliance specifications and testing, good EMC properties 

will demonstrate another meritorious aspect of asynchronous design.

8.3 Asynchronous prospects

“It is possible that all the renewed interest in asynchronous techniques will come to 

nothing, though this seems unlikely. It is also possible that industry will suddenly see the 

asynchronous light and switch completely to the new approach. This seems even more 

unlikely! What seems more likely is that areas will be identified where asynchronous 

approaches have really worthwhile advantages; these will be niches in otherwise 

synchronous designs. ”

The above statement was made by Professor Steve Furber at a time shortly after the 

AMULET group was established. It still remains true today. In the intervening years, 

work in the AMULET group and elsewhere has moved asynchronous technology much 

closer to commercial reality. The research described in this thesis is expected to 

contribute to this movement, making the low power and EMC advantages inherent in 

asynchronous technology more accessible to the designers of products which need these 

benefits.
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Adder schematics

This appendix contains the schematics of some of the cell library for the AMULET3 

adder. Below is a list:

□ adder_datapath

□ adder_arbiter3

□ adder nor2

□ adder_xor2

□ adder_select
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A.l adder_datapath
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A.2 adder_arbiter3
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A.3 adder_nor2
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.4 adder xor2
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A.5 adder_select
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Adder layouts

This appendix contains the layouts of some of the cell library for the AMULET3 adder. 

Below is a list:

□  adder_arbiter3

□  adder_nor2

□  adder_xor2

□  adder_select
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B.l adder arbiter3
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B.3 adder xor2
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B.4 adder select
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Multiplier schematics

This appendix contains the schematics of some of the cell library for the AMULET3 

multiplier. Below is a list of the following appendix sections:

□ AMULET3_Multiplier

□ multdatapath

□ multboothmux33

□ multrowl

□ multrow2

□ multrow3

□ multboothmux

□ multcnt42e

□ multcnt42c

□ multmuxe

□ multlatch

□ multdffa

□ multdffb

□ multdffc
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C.1 AMULET3 Multiplier
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C.2 multdatapath
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C.3 multboothmux33
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C.4 multrowl
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C.5 multrow2
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C.6 multrow3
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C.7 multboothmux

V I I I I ....................   I  I ............ I I I /

n M 2 ? M 2  ?nM 1

n P 4

P0C4:11

nP 3

N0C4:1)

nP 2

PTC4:1]

nP1

N T [4 :1 ]

/  —  t  i '  i i i i i   i i r z S J
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C.8 multcnt42e
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C.9 multcnt42c
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C.10 multmuxe

SelP

10/ 2,0 [l0/2,0

110/ 2,010/ 2,0

[l0/2,0

10/ 2,0 [10/ 2,0

10/ 2,0 [i0/2,0

SC

10/ 2,0 [10/ 2,0

10/ 2,0 [10/ 2,0

[i0/2,0

10/ 2,0 [10/ 2,0

PC a-
10/ 2,0 m/ 2.0
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.11 multlatch

N O

FTd .
U L U o

CNCN
QD m

CD
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C.12 multdffa

10/2, O'10/ 2,0

PY
10/ 2,0

iQY

5 /2 ,0 5 /2 ,0

bPY

5 /2 .0 > n 1

5 /2 ,0 |

10/ 2,0

10/ 2 .0"
PX

10/ 2,0 iQX -HnPX

5 /2 ,0 5 /2 ,0

1 0 /2 ,0 ]xpl

10/ 2,0

5/2 ,0

5/2 ,0
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C.13 multdffb

OX fp LtX

10/ 2,0 10/ 2,0

5 / 2 , 010/ 2 ,0 10/ 2,0 iQYN
PY

5 / 2 ,0 5 /2 ,1

5 / 2 , 0

10/ 2,0 10/ 2,0

nRX 5 / 2 , 010/ 2,0 10/ 2,0
iQ X N PX

5 / 2 , ( 5 / 2 , 0

5 / 2 , 0
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C.14 multdffc

10/ 2,03 /2 ,0

— ir
5 /2 ,0 5 /2 ,010/ 2,0 iQYN

Y5
5/2,1 5 /2 ,0 5/2,<

10/ 2 ,0"S/2,0 10/ 2,0

5 /2 ,f 5 /2 ,0
10/ 2,0 10/ 2,0

XS
5 /2 ,0 5 /2 ,0 5 /2 ,( 5 /2 ,0

5 /2 ,0
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Multiplier layouts D

This appendix contains the layouts of some of the cell library for the AMULET3 

multiplier. Below is a list:

□ multboothmux

□ multcnt42e

□ multcnt42c

□ multmuxe

□ multlatch

□ multdffa

□ multdffb

□ multdffc
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D .l multboothmux
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D.2 multcnt42e

yr-r-f
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D.3 multcnt42c
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D.4 multmuxe

WVV

I W I & ;  :
"  " .V O W
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D.5 multlatch

»w»̂
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D.6 multdffa

"XvX

■
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D.7 multdffb
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D.8 multdffc
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