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ABSTRACT

This thesis considers the problem of on-line updating
of a power system control centre data base using telemetered
information. The approach adopted to solve the problem is
State Estimation, in which statistical techniques are used to
reduce the level of uncertainty existent in the original data.

The thesis contains two contributions to the subject:
the first one is related to the development of an improved ver-
sion of a static state estimator which uses as criterion the sum
of the moduli of the estimate residuals; the second is the devel-
opment of a class of tracking state estimators based on the com-
bination of non-quadratic static algorithms, including the one
referred to above, with a procedure for the prediction of the
system state based on time-series techniques. The main objective
of both developments was to obtain estimators with an acceptable
performance in the presence of gross measurement and topological
errors.

The results of a comprehensive comparative study of the
performance of the developed algorithms against previously avail-

able methods is also presented.
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LIST OF PRINCIPAL SYMBOLS* AND ABBREVIATIONS

WLC weighted least squares

BDS bad data suppression

QSR quadratic-square root

PLC piece-wise linear criterion

LP linear programming

FDSE fast decoupled state estimator (WLS)
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r.h.s. right hand side
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z measurement vector
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h(e) nonlinear vector valued function relating state
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shunt susceptance
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E {1} expected value
N (u,a) normally distributed random variable with mean p

and standard deviation a

(*) underlined symbols represent vectors or matrices



M number of measurements

N number of states

sub /superscripts

k time interval
i iteration counter
p, active, reactive variables

m measurement number






Modern society depends largely on electricity for industrial
production, transport, home comfort, leisure, medical care etc.
Interruptions in the power supply, even of a small duration, can
cause serious economic losses, discomfort and even put life at
risk. Also the quality of the electrical energy delivered, measured
by deviations of voltage and frequency from nominal values, should
attain certain standards in order to make possible the safe use of
sophisticated electrical and electronic devices available nowadays
in industry, business in general and at home. These requirements
have to be met in the most economic way and with a minimum of
environmental deterioration.

The achievement of a reliable supply of electricity is obtained
by measures taken both at the planning and operating stages. In
the system planning, some spare capacity should be allocated in
order to allow the system to cope with future eventualities. This
reserve margin represents a large investment in extra equipment
and has to be limited. Therefore, regardless of the strength
planned into a power system, part of the task of maintaining a
high level of reliability is performed in its day-to-day operation.

A basic function for ensuring a secure operation of the
power system is the close monitoring of the current state of
operation. As a result of the system's growth in size and com-
plexity and interconnection with neighbouring systems, a large
amount of telemetered data should be gathered in order to assess
the system operation condition at some instant of time. Process
control digital computers have been used in the last two decades
to help the operators in handling these data. This function re-

quires some sort of data processing algorithm which can also be



used to "clean up" the inherent error introduced by the tele-
metering system, before it can be displayed to the operator
and used by other application programs. One possible approach
in the development of such algorithms is the use of the tech-
nique called State Estimation.

The first works in power system state estimation were
published in 1970 and contained the results of three independent
groups: The MIT group(79'80'81), the BPA group(22'55' 56)

and the AEP group(27).

From then on the subject has called
the attention of many researchers from universities, research
centres and industry. Reference (78), published in 1974 con-
tains a review of most of the work produced in the early years
of these studies. In Britain, CERL has performed some invest-
igation on the subject with views of application to the CEGB
system”36'49,73*. Some of those methods nave been implemented
in practice with reported acceptable performance (33)

At UMIST an extensive research effort in power system
state estimation has been carried out . This
work has covered the subject from an initial assessment of its
applicability to the development and improvement of new algorithms.
The work was oriented towards the development of general methods,
which could be used in any power system, rather than particular
versions only suitable to specific applications. Another pre-
occupation in these studies was the development of efficient
algorithms in terms of storage and computing time requirements,

which involved the use of advanced programming techniques, for

instance sparsity. As major results of this work, efficient algo-



rithms for static state estimation, including facilities for detection
and identification of gross measurement errors and network
topology determination, were produced”11' 517,

The work reported in this thesis is a natural extension of
the one referred to above. From co-operation between the
research group at UMIST and industry, it was understood that
to have the previously developed algorithms implemented effic-
iently in a process control computer for real-time operation,
it would be necessary to make them operate in a dynamic mode,
i. e. to make the algorithms able to continuously update a data
base with information obtained from consecutive scans, using as
much information from the past as possible, in order to reduce
time requirement and improve the redundancy of the available
information.

In the first step of the project, a comparative study
between two available approaches to the problem, namely dynami‘c(22
and trackingisz) estimation, was carried out in order to assess
which one would be the most adequate. The dynamic approach,
which has already been analysed in reference (58), was found
to have inadequate theoretical background and serious computational
difficulties. The second one, which extends the static state
estimation technique to the time varying case, has the advantage
of simplicity and previously accumulated experience and, therefore,
was the one chosen. A fast decoupled algorithm reported in
references (12) and (51) and a co-ordination technique suggested
in (51) together with a static incremental model developed using
time-series techniques, were used to develop a first tracking state

estimator.



In parallel with this work, an investigation on a newly
proposed estimation method using linear programming”8” was
carried out. The method presented potential advantages in
detection and identification of gross measurement and topological
errors in the tracking mode of operation, but large storage
and computing time requirements. As a resultof this work a
new algorithm was developed which has a much better com-
putational performance. This algorithm was later extended to
operate in the tracking mode.

The presentation of the material studied in the research
project is organised as follows: Chapter Il analyses the bene-
fits of using state estimation in a modern energy control centre;
Chapter Il defines the power system problem in the framework
of a general estimation theory and compares the different possible
approaches to the problem; Chapter IV presents a review of the
existent static estimation algorithms which are used as basis for
the algorithms developed in this work; in Chapter V the improved
version of the estimator using linear programming is presented;
Chapter VI describes the two developed tracking state estimators
and their interface with related programs; Chapter VIl presents
the result of simulation studies performed to compare the devel-
oped algorithms with the ones previously available; in Chapter
VIIl a summary of the main results obtained in the research pro-
ject is presented together with some suggestions for further

research.






In this chapter the advantages in using state estimation
as a data processing scheme in a modern power system control
centre are discussed. The discussion is mainly based on the
effectiveness of state estimation in helping security monitoring
and enhancement. A general description of the basic functions
performed by the state estimator as well as its interface with

other components of the on-line software are also presented.

2.1 INTRODUCTION

In the daily operation of a power system a series of control
actions are required to achieve prespecified standards of quality
and continuity of supply and economy. These actions may be
taken at local level, i.e. power plants, substations, etc., or at
a central site. Local control usually only needs information
obtained locally and has a specific task, such as regulation,
switching, protective relaying, etc. Centralised control is
usually associated with functions in which an overall view of the
system is required. Two separated centralised control systems
have been in use for a relatively long time: supervisory control
and generation control. The first one is primarily concerned with
simple alarm functions (overloads, overvoltages, etc.), equipment

status and facilities to remotely actuate station equipment.



Generation control is used for the automatic control of the
generator's output in order to meet the continuous changes
in demand.

In the small and isolated power systems of the past, super-
visory and generation control were performed by the operators,
both at the control centre and remote stations, communicating
among themselves by telephone. As a result of the power systems'
growth in size and complexity and interconnection with other
systems, the amount of information needed at the dispatch centre
increased considerably. Speed, accuracy and reliability in trans-
mitting the information also became major requirements. This
new context forced the introduction of remote telemetering and
hardware in the control centres to process, store and display
information and send back control actions automatically or with
help from the operators.

Traditionally, the supervisory and generation control
functions each had its own central and remote hardware. Gener-
ation control was initially performed using an analogue system
which eventually has evolved to a full digital system. Somewhere
in this evolution, an optimising control level (economic dispatch)
was introduced in the initially regulatory type only generation
control. Similarly supervisory control evolved from a hardwired
and mimic board type of equipment to digital computer driven
CRT's.

The type of equipment and philosophy pictured above were
the ones used in most electricity companies around the world by

the mid-sixties. By that time, motivated by serious operational



problems, which in some cases have produced blackouts lasting
for several hours, power system engineers in the United States
started the study of a more comprehensive and effective type
of centralised control based on system engineering techniques.
The key feature of this new approach is the introduction of
the concept of system security which lead to the so-called
security control”~33".

The implementation of security control requires an integ-
ration of the conventional supervisory and generation control,
a large and more sophisticated data acquisition and processing
system and the inclusion of new facilities directly related to the
assessment and enhancement of system security. A more power-
ful and complex computer system both in hardware and software
terms will also be required. The investment needed to implement
this type of control may be justified, apart from its ability in
reducing the probability of occurrence of blackouts, by savings
in operation costs and in delaying, or even eliminating, the
addition of new equipment, as it allows the power system to be
operated more closely to its full capacity”3,77~. This new
philosophy in power system control spread rapidly around the
world and today a large number of companies have, or are going
to have in the near future, control centres designed according

(33 34)

to these new concepts



2.2 BASIC CONCEPTS ON SECURITY CONTROL* 26'32'33,34' 39)
The power system operation may be characterised by three

sets of constraints: load, operating and security constraints.

The load constraints are a set of equations describing the

behaviour of system components. The operating constraints

are a set of inequalities representing operating limits on system

variables. The security constraints are associated with minimum

levels of reserve that the system should maintain in order to cope

with eventualities. They reflect all load and operating constraints

associated with emergencies.

Depending on the fact that the above constraints are satis-
fied or not, the power system operation may be categorised in
four operating states: normal, alert, emergency and restorative.
A system is in the normal state if all the constraints are satisfied.
If any of the security constraints are violated, the system goes
into the alert state in which a disturbance may cause the violation
of an operating constraint, i.e. an emergency condition. The
restorative state is associated with the period in which actions
are taken to bring the system from the emergency to the normal
state.

System security is the ability of the power system to undergo
a disturbance without getting into an emergency condition. The
objective of the security control is to keep the system in the
secure region, i.e. in the normal state, by shifting generation

and other actions whenever security constraints are violated.



2.3 BASIC CONFIGURATION OF A CONTROL CENTRE SOFTWARE®*26<32)
In Figure 2.1, a basic software configuration for an energy
control centre designed using the concepts of system security is

presented. The main components of this configuration are:

i. Data Acquisition System Its main function is to interface the
communication channels with the control computer. It handles
logical information about switch status and digitalised values of
analogue variables (voltages, power flows, etc.). It also per-
forms some limit and error checking, conversion to engineering

units, etc.

ii. Raw Data Processing This is the function responsible for
the production of an updated model of the power system and
the present operating state. The first task is performed by
the network configurator*51,7®'51”, which processes the status
information and the second one by some processing scheme (e.g.

state estimation) for the analogue measurements.

Mi. Security Monitoring and Analysis The security monitoring
function checks whether the present operating point satisfies

load and operating constraints. If so, the ability of the system
to undergo a specified set of disturbances is tested by the con-
tingency evaluation function. |If at least one contingency may
bring the system to the emergency state, the security constrained

optimisation is activated to find a secure operating point.



Figure 2.1 Basic configuration of a security-control oriented software



iv. Automatic Generation Control and Dispatch The present
values of individual busbar loads obtained from the raw data
processing module are projected into the near future by the
short-term forecasting and the best allocation of generation
determined by the economic dispatch function, subject to con-
straints imposed by security considerations. The results of
the dispatch are then used for setting the closed loop automatic

generation control.

v. Supervisory Control This is essentially a manual type of
control associated with switching facilities of circuit breakers,

start-up and shut-down of generators, etc.

vi. Emergency and Restorative Control Most of the control in
the emergency and restorative state is performed by the operator.
Techniques for automatic control in those states are only now

becoming available~83".

vii. Man-Machine System This is responsible for the interface
between the operator and the computer control via CRT's dis-

plays and keyboards.

2.4 DATA ACQUISITION AND PROCESSING SCHEMES

The amount, type and place of acquisition of data necessary
to perform security monitoring, as well as the way in which the
data is going to be processed before use by security related

functions, are matters that have raised many discussions. At



least three basic schemes have been put forward by power system

(26).

engineers

i. Measurement of selected quantities which allow the
direct monitoring of some key facilities.

ii. Measurement of a minimum set of quantities enough
to perform an on-line load flow which would allow
the monitoring of all system components.

iili. Measurement of a larger number of quantities (redundant
set) followed by a systematic data processing method in
which uncertainties inherent to the measurement system

are taken into account.

A disadvantage of the first scheme is that the monitoring
is incomplete. A facility which is not considered important
under one operating condition may become important in another.
It also does not produce a complete and consistent set of initial
conditions for functions like security analysis, for instance.

The second scheme corrects to some extent the shortcomings
of the first one. However, it also has some inconveniences.
First of all, it restricts the choice of measurement type and
location to the set required by the load flow. Secondly, it
cannot be performed if some data is missing. A third and major
problem is that if one data is incorrect, the result of the cal-
culation will certainly be seriously affected and probably will

be useless.
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The third scheme overcomes all the above problems
associated with the first two by the use of redundant inform-
ation and statistical techniques to compensate for the noisy,
erroneous and missing data. It also has the advantage of
allowing a cross-checking of the network configurator results.
The processing module of this scheme is called the State
Estimator.

Although apparently requiring a more expensive d*ta
acquisition system (due to the need of redundancy), state
estimation, in fact, may become more economical than the two
other methods for the same level of reliability on the results.
This is so because the other two schemes not making use of
the correlated information existent among measurements, have
to rely on multiplicity and high accuracy in each individual

data point.

2.5 THE STATE ESTIMATION APPROACH

The state estimator is a computer program designed with
the objective of systematically processing raw telemetered data
received through the data acquisition system in order to produce
a consistent and reliable estimate of the current power system
operating point. It works in close association with the network
configurator from which it receives the model of the network and
measurement system and returns information regarding inconsist-
ency in that model for further analysis. The final results of
the state estimator and network configurator are then used by
the other functions implemented in the control centre (see Figure

2.1).



The information received by the state estimator contains

a certain amount of error. Such error may be classified as:

i. Measurement noise: the 'normal' error associated with
the data acquisition process. It results from the limited
accuracy of transducers, TP's and TC's, conversion and

communication equipment.

ii. Cross measurement error: caused by a partial or total
meter-communication failure or by observations taken during

transients.

iii. Topological errors: the result of an unreported change
of circuit breaker or switch status or by a failure in the
network configurator which produce wrong information about

the connectivity of the network.

iv. Parameter errors: represents the uncertainty in the

values of the system parameters.

The measurement noise usually has a magnitude comparable
to the uncertainties in the operating constraints against which

the results of the estimation will be checked(4g).

Therefore,
its influence on the accuracy of the estimation is not so import-
ant. However, it introduces a certain degree of inconsistency

in the data which should be removed before it is transferred

to other application programs.
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Parameter errors have a significant influence only in the
early stages of operation of a real-time system, when data
previously used for off-line studies is checked against on-line
information. After a period of 'debugging' this kind of error
will become very small and eventually disappear.

Cross measurement error and topological error, usually
called bad data ' are the main source of troubles in power
system state estimation. Firstly, because if these errors remain
undetected they will certainly affect substantially the accuracy
of the estimation. Secondly, because the unpredictable nature
of these errors make detection and identification a very labor-
ious task.

The nature of the errors above suggests a multiple stage
approach to the state estimation problem. Filtering techniques
developed in the fields of control engineering and statisticsi25 82)
are well suited for the treatment of measurement noise. However,
they usually fail in the presence of bad data. These types of
error are better dealt with by a combination of pre-filtering
logical checks on the income raw measurements and post-filtering
statistical tests on the results of the filtering stage(49’50’73)

In Figure 2.2 a basic state estimation scheme, and its
relationship with the network configurator, is shown. The raw
measurements obtained from the data acquisition system goes
into a pre-filtering stage in which simple logical checks (e.g.

sum of power flows entering a node) are made.}

(&) In this thesis both gross measurement and topological errors
will be often referred to indiscriminately as bad data. A specific
reference to one or another type of error will be made whenever

a clear distinction becomes necessary.



analogue status
measurements information

exit flow of information

Figure 2.2: Basic state estimation scheme



If large discrepancies are found, bad data may be spotted at
this stage and consequently some measurements may be discarded
or a re-run of the network configurator performed. In the
filtering stage, algorithms based on statistical techniques fit
the mathematical model in the real-time measurements. In the
post-filtering stage, statistical tests are performed in order to
ascertain whether the fitting was adequate. If not, it means
that bad data was still present in the input data. A process of
detection and identification of bad data is then started and
usually ends, as in the prefiltering stage, with the detection
of some erroneous measurements or changes in the network con-
figuration.

The scheme shown in Figure 2.2 represents only one run
of the state estimator. As the power system operating point
changes in time, consecutive state estimations are required.
These estimations are performed at pre-specified periods of time
or when a major change in the system operating condition takes
place. In this context some form of interaction between the con-
secutive runs of the estimation is desired in order to ease the
overall task. The network configurator, or part of it, is run
only when a change in configuration takes place or an error in

the present configuration is detected.

2.6 APPLICATIONS AND ADVANTAGES OF STATE ESTIMATION
The implementation of the security control, as described
before, requires the use of advanced functions like contingency

evaluation and security constrained optimisation. These functions



use complex numerical techniques like fast load flow and optima
isation methods to analyse and correct on real-time the power
system operating point. A reliable, consistent and complete
data base containing a description of the present state of the
system, as well as the correct network configuration, is a
fundamental requirement for the success of these functions.
State estimation is the most efficient way of updating this data
base in real-time. Its ability to cope with measurement noise,
detection and identification of gross measurement and topological
errors and the flexibility of producing good results, even if
some data is missing, represents a great advantage over other
approaches.

In the on-line environment the state estimator will also
help the task of producing equivalents of the neighbouring system,
which requires for its calculation the values of the voltages at
border busbars. The economic dispatch also benefits from the
results of the state estimation using the estimated values of the
individual load busbars projected to the near future.

State estimation also has off-line applications. One of them,
which was indicated earlier in this chapter, is related to the
'‘debugging!l of system parameter errors, bias type errors due
to meter miscalibration, etc., using a modified state estimation
program and data obtained on-linel21”~. Another off-line applic-
ation is the determination of the optimal meter location in order
to facilitate the on-line task of the state estimator”6<<'61”~. This
last application is very important as it can produce considerable

savings in meter and communication hardware.



2.7 CONCLUSIONS

Security control is at present an established design philosophy

for energy control centres. This type of control requires a
reliable real-time data base. Among the many ways of updating
this data base, state estimation has been gaining more acceptance
due to its advantages in terms of reliability, flexibility and even
economy. An initial reluctance to the use of the new technique
has been steadily disappearing, due mainly to the research effort
put into the development of state estimation algorithms with more
acceptable computer requirements. The increased use of state
estimation in the power industry can be observed in a recent

(34)

published survey of control centres around the world

21



CHAPTER Il

STATIC, DYNAMIC AND TRACKING STATE ESTIMATION

DEFINITIONS AND COMPARISON OF FORMULATIONS
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In this chapter the power system state estimation problem
is formulated within the framework of the general estimation theory.
The difficulties in obtaining suitable models, which would enable
the use of standard techniques, is outlined and simplified models
are indicated. This formulation, together with some practical
operational requirements, is used to define and compare the three
approaches available for the problem, namely static, dynamic and

tracking state estimation.

3.1 INTRODUCTION

The first studies related to estimation problems go back to
the sixteenth century. Gauss first used the least-squares method
for the study of planet and comet motion using telescopic observations
in 1795i . More recent important contributions to the subject were
introduced by Fisher, Kolmogorov and Wiener. The general framework
of estimation theory was established mainly in the work of Kalman
in which the recently introduced state space formulation was used.
The basic ideas of the so-called "Kalman filter" are contained in
reference” . These techniques have been largely tested with
success in practical applications mainly in the aerospace industry.

A very basic formulation of the estimation problem can be
stated as: "infer the properties of a system from a set of obser-
vations". In a more particular and useful formulation the "prop-
erties" of interest are summarised in a set of variable components
of a state vector. The observations are also arranged in a vector
of information or, more adequately in the case of physical systems,

measurements. The estimation problem is then restated as: "obtain



the best estimation of the state vector from the available measure-
ments". The word "best" appears in the above definition to account
for the general impossibility of finding an exact solution for the
problem due to the presence of errors in the measurements. The
problem thus defined is called the state estimation problem.

A solution for the state estimation problem is obtained by
minimisation of some function of the error in the estimates. The
function mostly used since the early days of estimation is the sum
of the squares of the errors. However, other functions can be
used depending on the particular objective of the estimation. If
statistics of the measurement errors are known, estimators can be
derived by optimising corresponding statistics of the estimates.

In most cases the estimators obtained by the two approaches are
identical, the only difference between them being on the prop-
erties attached to the solution.

In the power system industry, state estimation theory has
found several applications. The particular interest in this thesis
is focused on the estimation of the so-called "static state" which
defines a power system operating point in the "quasi-static" mode
of operation”35”. In order to obtain efficient and reliable estim-
ation methods, the general estimation techniques should be adapted
to the power system problem due to facts like absence of adequate
models, high dimensionality, eventual large errors in the measure-

ments, etc.



3.2 STATE-TRANSITION MODELS
FOR DYNAMIC SYSTEMS* 25' 82' 92)

A basic step in the development of state estimation
algorithms is the establishment of an adequate model for the pro-
cess being observed and for the observations themselves. These
models must contain a description of the time evolution of the
state vector (if time varying) from initial conditions, including
a definition of the statistics associated with eventual random dis-
turbances in the state. The model of the observations must show
a relationship between the measured variables and the state at
the instant in which the measurements are taken as well as the
statistics of the measurement error. State space models are now-
adays almost universally used in system engineering applications
and therefore they will be adopted in this thesis. As all the
algorithms developed in this work are directed for use
in digital computers, the discrete time formulation is the most
adequate for the development of the models.

An adequate model for the purposes of this chapter, in

a relatively general form, is given by

*k+i = KV k) + (8.1)

ik = k) +* (3.2)

where
k = time interval
k = state vector (nxl)

= measurement vector (mxl)



w , vA» = random vectors representing uncertain processes for

which statistics are usually known

uk = known (deterministic) input
h = non-linear vector valued functions
50 = uncertain initial state vector

The model given by (3.1) and (3.2), although corresponding
to many important practical situations, introduces certain problems
in the derivation of the estimation algorithms. The usual approach
is to initially use a simpler model and, after the derivation of the
estimator equations, to extend them to more general cases if neces-
sary.

A very commonly used model for estimation purposes is obtained

from the previous one by the introduction of two simplifications:

a. linearisation of and h

(82)

b. assumption that w. and v. are "white processes"

i.e. processes in which no correlation in time exists.

The new model, in which the explicit dependence on the

input u”~ is dropped for simplicity, is then given by:

(3.3)

(3. %0

where 47 and are (nxn) and (mxn) matrices respectively.
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The first and second statistics of w”, and x” are

assumed to be known and given by

Etvr} = 0 (3.5)
Q if k=j
EtwAvI} = - (3.6)
0 if k*j
Ecns = o (3.7)
R if k=j
v7)= 1 (3.8)
0 if  k*j
g &= & (3.9)
0 -0 —o0X%!IT>=PF, (3.10)

where xQ represent the true but unknown value of the initial
state and (3, P and are (mxm), (nxn) and (nxn) covariance

matrices, respectively.

3.3 THE ESTIMATION PROBLEM®*25'82'92)

As already stated in the introduction to this chapter, the

state estimation problem is concerned with obtaining the "best"

estimation of the vectors x~ (k =1,2,... ) from measured values
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of ~ (k =1.2.... ). According to the specific time in which
the estimation is required and the amount of information available,

three different problems can arise:

a. Filtering: estimate from zZz~, 0 £ k S K
b. Prediction: estimate x~+A from Z»~, 0 £k i K, .ii 0

c. Smoothing: estimate x~, 0 £ Ai K, from zZ~, 0 £k S K

In this thesis, the main problem analysed is of the filtering
type. However, prediction techniques will also be used as an
auxiliary tool in obtaining a reliable estimation (see Chapter VI).

An extension of the state estimation problem arises when
some parameters of the model have also to be estimated. These
parameters are treated as extra state variables and the problem
thus defined is called an identification problem. In this thesis
no identification problem will be studied but some comments about
a possible application of this technique will be made in section 3.4.1.

The presentation of the state estimation methods will follow
a sequence in which the degree of difficulty increase': it will start
with the time invariant state vector and will end up with the solu-

tion of the problem given by (3.1) and (3.2).

3.3.1 STATIC STATE ESTIMATION

In this section the state vector is assumed to be time
invariant. It is also assumed that no previous estimation (x” is
available. Therefore, a certain degree of redundancy is required

in order to allow the choice of a "best" estimate. In the linear
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case the problem can be modelled by (3.4), (3.7) and (3.8),

which will then assume the form

Z =HXx +v (3.11)
E(v) =0 (3.12)
E{V V'} = R ‘313)

The solution to the above problem is usually obtained by

the minimisation of the Weighted Least Squares (WLS) criterion

J=(Z-HX)TR1(Z-Hy) (3.14)

The optimality condition on the WLS criterion is given by

= 2HT R"1 (Z- Hx) =0 (3.15)

the solution of which gives the estimator

« 10T -1
X =A 1 H1 R Z (3.16)
A = HT R_1 H (3.17)

In the above derivation the statistic information about
the measurement error, given by (3.12) and (3.13), is not neces-

sarily used. Matrix R*can be chosen by simple "engineering



judgement" of the accuracy of metering equipment. However, if

(3.12) and (3.13) are used, some important properties can be

attached to the solution. For instance, it can be shown! that

(3.16) and (3.17) yield an unbiased estimate of x and that A 1 is

the covariance matrix of the estimation error, i.e.

E {x} =x (3.18)

E {(x-x) (x-x)T>

1
>

-1 (3.19)

Moreover, if v is Gaussian, i.e. it has a normal distribution of

probabilities, then (3.16)—(3.17) is a maximum likelihood estimator.

The non-linear problem defined by (3.2) can be solved

using the results of the linear case by linearisation of h(x) around

some point xQ as follows:

Z = H(x ) (x-x,) +V (3.20)
H (xQ) ghg())(() (3.21)
- -0

If a linearisation point x” close to the solution is not

available, then the solution can be obtained by an iterative pro-

cess where the result of each estimation is used as the linearisation

point for the next estimation.



(24)

Many iterative procedures are available in the literature The

one which seems to be preferred is the Gauss-Newton method which

is given by:
X (3.22)
A(x") = HT (x*) R 1 H(x") (3.23)
where i is the iteration counter.

3.3.2 STATIC STATE ESTIMATION USING A PRIORI ESTIMATES
Consider the same problem proposed in the previous section
but suppose that before the present set of measurements was avail-
able, a state estimation was performed (a priori estimate). Let x
be the result of this estimation and P the associated error covariance
matrix. The a priori estimate can be considered an extra set of
observations and an estimator derived from (3.16) and (3.17), pro-
vided the following substitutions are made

X n p
[z] - (3.24)

where ¥is the nxn unity matrix. The new estimator will then be

given by:

x = xg + (P ¢ A)'l HT R_1L <2- (3.25)



and the associated error covariance matrix is

E ((x - x)(x - x)T} = (P + A) (3.26)

If various sets of measurements Z. and associated error
covariances R., j = 1,2/eee/ and an initial estimate as defined
by (3.9) and (3.10) are available, then the estimator given by

(3.25) and (3.26) can be generalised in a recursive form as:

(Z - H x.) (3.27)

(3.28)

The same linearisation technique used in the previous
section can be applied to the above estimator for the non-linear
model. In order to truly minimise the WLS criterion in this case
it would be necessary to use an iterative scheme like (3.22) and
(3.23) in each of the recursions in (3.27) and (3.28). However,
it is possible, in some situations, to obtain solutions with accept-

able accuracy using only the linear estimator.

3.3.3 DYNAMIC STATE ESTIMATION

In the time varying problem a series of observations
are performed at certain time intervals k = 1,2,..., and estimations
of the state are required after each set of observations is avail-
able (filtering). Assume first the linear case modelled by (3-3)

to (3-10). The solution can be obtained in a two-step procedure:



i. a prediction of the state at the next interval is made
using the transition equation (3.3)
ii. the predicted value is used as an a priori estimate

and the estimation is calculated using (3.25).

If an estimate is available then the best prediction of
the state at the time interval k+1, before the existence of ZR+!

is given by:

(3.29)

with an error covariance

Pk 4k + O* (3.30)

These results can be used as indicated in step jl1. above
to derive the dynamic estimator (Kalman filter), which in a re-

cursive form is given by:

(3.31)

*r 4+l ¢ M+ 1+ M+l (Mk+L " Nk o+l
(3.32)

(3.33)

(3.34)

33
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An extended version of the Kalman filter is obtained for
the non-linear case defined in (3.1) and (3.2) by linearising $
and h using the best available estimate of the state at each stage

of the linearisation. The equations defining this filter are exactly

the same as the ones presented above with and defined as:
T (3.35)
(3.36)

3.3.4 USE AND ADVANTAGES OF STATIC
AND DYNAMIC STATE ESTIMATION

The static state estimation approach is applicable to problems
in which the state vector is time invariant or when the "dynamic"
associated with it is so slow, when compared with the interval between
sets of observations, that the system can be considered as changing
states by discrete steps. In the first case, an estimation scheme like
the one given by (3.27) can be used to process successive sets of
information which have an overall amount of redundancy. In the
second case each set of observations is associated with one particular
value of the state vector. A model similar to the one given by (3.11)
can then be used to estimate discrete values of the state. As no
transition model enters in the formulation, it is not possible to
use past information in the present state estimation. Therefore
each set of information should contain a certain amount of redund-

ancy to allow some form of error compensation.
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For the general time-varying case, the dynamic approach
should be preferred as it is the only one able to estimate the
transient behaviour of the system. In the slow time-varying case
referred to above, dynamic state estimation also has a great
advantage: there is no need for redundancy in each individual
set of observations. This is so because results of past estimation
are projected into the future by the transition equation and can
be used as extra observations. However, dynamic state estimation
algorithms are usually more complicated than static ones and also

require detailed models of the system dynamic

3.4 POWER SYSTEM STATE ESTIMATION

The power system load varies continually according to a
daily pattern which suffers seasonal variations during the year
and on special days (weekends, holidays, etc.). Apart from a
small random fluctuation, the load varies smoothly. Sudden changes
seldom occur and are the result of either a predictable event (e.g.
disconnection of a large industrial load) or some abnormal state of
operation (e.g. outages). System variables like generations, line
flows, voltages, etc. are continually adjusted directly or indirectly
to follow the load variation according to some operational strategy,
control and network laws. In a very precise way, the system
actually never achieves a steady-state. However, the amplitude of
the oscillations caused by the transients are, in general, small com-
pared with the overall change. Therefore, for many important
classes of power system studies it is convenient to assume that

variations in load are met instantaneously by variations in generation
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and other system variables. This hypothetical mode of operation

(35). In order to describe an

is called the quasi-static mode
operating point in the quasi-static mode it is usual to choose as
state vector one in which the components are the complex nodal
voltages in all system nodes. This vector is called the static state.
The power system state estimation problem analysed in
this thesis, as already formulated informally before, is concerned
with the estimation of the static state. The static state is a slow
time varying vector whose variation shows a pattern similar to the
one described above for the load. Its estimations are obtained
from sets of measurements of system variables like active and re-
active node injections, line flows and nodal voltages. The number
of measurements usually exceeds the number of states, i.e. a certain
degree of redundancy is available. The frequency in which measure-
ments are taken and estimations are performed depends on particular

operational requisites and varies in existent install ations from

seconds to several minutes.

3.4.1 TIME-VARYING STATE MODEL
An accurate and simple state transition model, in the form
of the ones given by (3.1) or (3.3) is not available yet. The

difficulties in developing such a model are:

I. To find a simple relationship (» or $) between the state
vector (x”) and the load (u. , w”). This relationship would have
to take into account the behaviour of generators, voltage regulators,

governors, etc., and the network equations. Even for small systems



such a relationship would involve a large number of differential

and algebraic equations®

ii. To develop a model for the load variation (u”, wk).
A large number of observations of the power system behaviour
followed by the application of identification techniques would be
required to obtain such a model. Even so, it is doubtful whether
the result of such an experiment would lead to a practical model.

Therefore it should be concluded that,for the reasons
stated above, no explicit model for the time varying state model

will be available in the foreseeable future.

3.4.2 MEASUREMENT MODEL

A measurement model like the ones defined by (3.2), (3.4),
(3.7) and (3.8) is made up of two components; a relationship
between the measurement (Z”) and the state vector (Xj*) and a
statistical model of the errors.

The relationship between measurements and state variables
is obtained from information about the network, and metering system
structure (connectivity of generators, lines and loads and location
of measurements) and network parameters together with the network
equations.

The structure of the network and metering system, which
is usually referred to simply as the network configuration, is obtained
in real-time from telemetered (or telephoned) switches and circuit
breakers status. This information is usually condensed in two

tables: the feeder and measurement tables”5l The former is a



description of the interconnection of the network nodes and the
latter specifies the location and type of the measurements (measure-
ment pattern). As a measurement is associated with a node or line,
changes in the status of switches and breakers may lead to changes
in the measurement pattern. The network parameters are obtained
from off-line calculations and manufacturer information.

The measurement equations are derived from the load-flow

(

equations 86) by expressing the measured variables as functions

of the state variables. Using the elementary network model pictured

in table 3.1, these equations are given by

(3.38)

(3.39)

(3.40)

where:
set of nodes directly connected to node i
Pjk, : active and reactive power flow in line i-k
P., Q. : active and reactive injection in node i
V. : voltage magnitude at node i
Ojk = 0. - 0~ : angular difference between voltages at nodes

i and k
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Node i Node k
r'i’k = transmission line or transformer resistance
X'lk ,= transmission line or transformer reactance

y. " = total

line susceptance

t = off-nominal tap ratio (t = 1 for lines)

Admittance

* k

Table 3.1

T ransmission Transformer
line
rik rik
I*Tk P izikl12
X -X ..
X|k ik
w 2 [ 2t
(t> t)
ik/2
v izik r
(i - 1>
vik/2 o
mz ik i2

Network branch elementary model

39



The relationship between measurements and state variables

can then be written in a compact form as:

ik = U ("K' Sk} + A (3. HD

where

: vector of measurements whose components
are active and reactive injections and line

flows and voltage magnitudes

h : non-linear vector valued function whose
components are the equation defined in (3.37)
to (3.HO) -

Y : the network admittance matrix whose elements

are the admittances g~ + jb~"

s 1 is a compact representation of feeder and

measurement tables (network configuration)

VIt : measurement error

k : time interval

The network configuration may contain errors caused by
unreported switches or circuit breakers status changes or failure
of the network configurator. No mathematical model is available
for this type of error due to the difficulty in modelling equipment

or software malfunction and human mistakes.



Errors in network parameters are usually modelled as
zero mean random variables with a time structure of the bias type
as they are constant in time”'"" .

The measurement error vector v is made up of two com-

ponents as follows:

(3.42)

where:
v| : measurement noise

b~ gross measurement error

The measurement noise is a sum of errors introduced by
the various components of the telemetering system (transducers,
TP’s, TC's, etc.). Certain components of this sum are dependent
on the actual value of the measurements that produce a correlation
between the errors of different measurements and between measure-

ments in different instants of time. Others are better modelled

as bias type errors. Despite this complex structure, it is common
practice in power system state estimationl - to assume that v”*
is a "white noise"!l ' and its components are uncorrelated. It is

also usual to model the noise as a normally distributed random
variable with zero mean and known standard deviation. These
assumptions reduce the work of deriving estimation algorithms and
do not have a large effect on the overall performance of the estim-
ators due to the relative importance of the measurement noise in

the final result, as pointed out in Chapter II.



However, it is important to keep these approximations in
mind whenever statistical inferences are made from the results of
estimations.

Under the above assumptions the measurement noise is

modelled as follows:

VAis N (0, R) (3. 43)

o)
1

= diagonal (o™ 022

v |t

1
o
-
o
=

—
=~

(3. 45)

where Cm is the standard deviation of the m-th measurement error.
Gross measurement errors are large, totally unpredictable,
errors due to total or partial failure of the metering system or
observation during transient swings. For the same reasons pre-
sented for configuration errors, no mathematical model can be

derived for this type of error.

3.5 APPROACHES TO POWER SYSTEM STATE ESTIMATION

The power system state estimation problem modelled in
the previous section presents three major problems when approached

using the techniques described in sections 3.2 and 3.3:i

i. absence of an adequate state transition model
ii. presence of gross measurements and topological errors

ili. high dimensionality



To overcome these difficulties a great deal of work was done
and continues to be done in order to adapt and extend the existent
estimation techniques to the problem at hand. The general philo-
sophy behind this work, which is also followed in this thesis, is
to decompose the problem in such a way as to make possible the
application of the available estimation techniques to part of it, by
the introduction of approximations, and by developing non-standard
methods to deal with components of the problem not yet adequately
covered by the standard estimation methods.

Three main approaches to the problem have been proposed

£78)

in the literature and in the next sections they are briefly des-
cribed, compared and improvements in some of them, which are

reported in the following chapters of this thesis, are pointed out.

3.5.1 STATIC STATE ESTIMATION

Static state estimation has been the most used approach to
the power system estimation problem . It avoids
completely the problem of modelling the time behaviour of the state
vector by performing isolated state estimations, at some specified
periods of time, in which only one meter scan (snapshot) is used.
The price to pay for the simplicity of this approach is a relatively
high degree of redundancy required to guarantee a reliable estim-
ation.

The model used is the one defined by (3.41) to (3.45).
The decomposition technigue mentioned earlier is used to deal with
the different types of errors: logical checks are performed in the

incoming data to detect large errors in the measurement or network



configuration, and state estimation algorithm similar to the one
given in (3.22) is used to filter out the measurement noise and
post estimation statistical tests are performed to detect eventual
large errors still present in the results (see Chapter IIl).

A variation of this approach is the use of some algorithms which
have the ability to reject bad data automatically. In Chapter 1V
one of these algorithms, called Bad Data Suppression, is pres-
ented and compared with the conventional WLS algorithms and in
Chapter V an improved version of another of these algorithms,
the one which uses as criteria the sum of the moduli of the resid-
uals, is described.

Static state estimation is a practical approach to power
system state estimation. It works well whenever a relatively large
redundancy ratio is available and the interval between estimations
is large enough to really make each estimation run completely un-
correlated to each other. However, if a more closely monitoring
of the system is desired, i.e. if measurement scans are taken at
small intervals, the use of static state estimation may not be the
most efficient way of tackling the problem, as useful information
obtained in previous estimations are wasted. Techniques which
take into consideration the time evolution of the state vector may
become faster and require a smaller redundancy ratio for the same

level of reliability.



3.5.2 DYNAMIC STATE ESTIMATION

Despite the difficulties in finding a model for the static
state dynamics mentioned earlier, some attempts to use the dynamic
estimation technique described in section 3.3.3 can be found in the
literaturel16,22,23,54,69,70,85*. In these experiments the state
change between tv:o consecutive estimations is modelled simply by
a random variable, i.e. the state is assumed time invariant and
the only thing that changes is the uncertainty about the value of

the state. This model, as given in reference (70), is given by:

k4l = *k + <K (3.46)

- {wA} =0 (3.47)

E {"w.} =6kjiQ (3.48)
Q = e(At)2 diag {q.2} (3.49)

where
6. . is the Kroenecker delta
KJ
qj is the maximum rate of change of the
i-th state in the past estimations
At is the time between estimations

a is a parameter calculated off-line and used

to "tune" the estimator
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The application of the extended Kalman filter to the above

model will produce the following estimator

(3.50)

(3.51)

*k = +(;k (S, - U (3.52)

(3.53)

In order to avoid the matrix inversion in (3.51) at every
estimation, a sequential processing of the measurements is often
used.

A technique for bad data detection and identification using
the estimator described above has been recently proposed in ref-
erence (70). This method is based on the statistical analysis of

the so-called "innovation process".

Their authors claim that by examining the shape of probability
distribution function of v~,it is possible to say whether the measure-
ment vector contains bad data or not.

Some criticism has been raised in the literature against the

estimation method just described. The criticisms are based on the



following points:

a. The estimator given by (3.4) to (3.5) is not truly
a dynamic estimator as the simplified model used does not allow
an accurate prediction of the future states of the system.

b. The tuning of matrix Q, i.e. the calculation of
the g.'s and a is a laborious off-line process.

c. The sequential processing of measurements may
become an unstable process requiring a time-consuming ordering
of measurements to guarantee convergence.

d. The bad data detection technique, based only on the
statistical analysis of the innovation process, may fail as it is
based on a model that is "at best a very crude representation of

78)

the actual state behaviour"i 1.

3.5.3 TRACKING STATE ESTIMATION

The practical limitations of the static state estimation approach

pointed out in section 3.5.1 cannot be overcome by the use of
dynamic estimation techniques as explained in the previous section.
However, it is possible to develop a class of estimators, based on
static models and simple assumptions about the time behaviour of the
state vector, which may have a better general performance in
following (or tracking) closely the time varying state vector. In
these estimators the main objective is to improve computational
efficiency and reliability rather than dynamic response. This class
of estimators arc usually referred to, in the power system industry,

as tracking state estimators.
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Some examples of tracking state estimators can be
found in the literature® 3'7'*4 . The general form of these
estimators is the same as the one given by (3.27) or (3.52) with
the only difference that the gain matrix is chosen based on
engineering or heuristic judgement rather than by a mathematical
optimisation process. These algorithms are mainly orientated to
the filtering of measurement noise. A simple procedure of checking
large changes in measurements between consecutive snapshots is
suggested in reference(23) for a tracking estimator which evolved
from the simplified dynamic model described in the previous section.

In reference (51) a co-ordination scheme between a pre-
estimation "data validation" stage, in which those changes in
measurements cf consecutive snapshots are taken into account, and
a bad data suppression estimator is described. In Chapter VI of
this thesis, this idea is developed into a full tracking state estimator
by the introduction of a prediction stage, in which present estimate
values of measured variables are extrapolated to the next snapshot,
in order to take into account the time evolution of the system and
to avoid discrepancies caused by transients. A similar method
involving the estimator proposed in Chapter V of this thesis (piece-

wise linear criterion) is also presented.



3.6 CONCLUSIONS

The power system state estimation problem cannot be solved
straightforwardly by standard techniques. The absence of an
adequate model for the time behaviour of the state vector, the pre-
sence of gross measurement and topological errors and the high
dimensionality of the problem require the introduction of non-standard
procedures in deriving practical power system state estimators.

Three approaches to the problem have so far been put
forward in the literature: static, dynamic and tracking state
estimation. Static state estimation, which has been the most widely
studied of th e three, is adequate when the interval between
estimations is large enough to make them really uncorrelated. If
this interval is not so large, i.e. a closer monitoring of the system
is required, the tracking state estimation approach may become more
efficient and reliable. Dynamic estimators, developed using sim-
plified models, have many inconveniences and do not seem to con-

stitute a practical option.
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Most of the research work carried out so far in power
system state estimation is based on the application of the WLS
method to static models. Some important results achieved in
this work are presented and compared in this chapter as they
form the basis for the development of the algorithms presented

in the next chapters of this thesis.

4.1 INTRODUCTION

The first suggested approaches to the power system state
estimation problem used a static model and a method of solution

based on the WLS criteriont79'80'81)'.

The static model was chosen
in these early days, and is still the most widely used today, as

a consequence of the unavailability of an adequate model for the
time behaviour of the static state as discussed in the last chapter.
The WLS method was preferred due to its excellent filtering capa-
bility demonstrated by the large experience available with the

method in other applicationsisz‘gz).

No model of the measurement
error statistics is necessary in this approach. The only information
required by the WLS method, apart from the system parameters and
the measurements themselves, are a set of "weights" which represent
the relative accuracy of the measurements. Even these weights do
not need to be known accurately as their influence in the results
is small.

Later studies in power system state estimation(29‘45) have

suggested that rejection of gross measurement and topological errors

is more important than the filtering of the small measurement noise.
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i.e. a reliable solution is more important than an accurate one.
The WLS algorithm behaves very badly in the presence of these
errors due to its quadratic criterion. Therefore, modifications
in the approach initially used were necessary. A first improve-
ment was the introduction of the assumption of Gaussian error.
This assumption allows the use of statistical tests on the estimation
results with the objective of bad data detection, identification and
elimination”1' . A second type of improvement was introduced
by changes in the VVLS algorithm itself in order to render it less
vulnerable to bad data. This can be achieved by altering the used
performance criterion (64,67)
A large amount of work has also been carried out with the
objective of improving the computational performance of the WLS
estimators. These efforts have been conducted on two different
lines. The first one makes use of transformation of variables to
obtain a version of the algorithm which is easier to implement. An
example of this approach is the Line-Only algorithm ~. The second
class of improvements is achieved by the introduction of approx-
imations in the basic algorithm derived from physical characteristics
of the power system. Examples of this approach are the Fast

. .. . 12,19,20,41,47,74
Decoupled estlmators( )

4.2 WEIGHTED LEAST SQUARES METHOD

The power system static state estimation problem can be
formulated as the solution of the following overdetermined set of

equations
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N
1

h (x) + v (4.1)

where:
2" is the measurement vector (Mxl)
XN is the state vector (Nxl)
W\ is the error vector (Mxl)
Ky(*) is a non-linear vector function relating Z and

x and defined in (3.37) and (3.40)

In the VVLS approach the state estimate x is defined as

the value of x which minimises

J(x) = (Z - h(x))T R_1(Z - h(x)) (4.2)

where R 1 is a diagonal matrix of weights proportional to the

accuracy of the measurements. If statistical properties of the

error are known, the use of weights equal to the inverse of the

error covariance will produce a maximum likelihood estimate&25‘82)
A necessary condition for the minimum of J(x) is given by
3J (x)

3 A= 2HT(x) R_1 (Z - h(x)) =0 (4.3)

X X=X
where

3h(x)
H (x) 3x R (4.4)

is the Jacobian matrix evaluated at x. Sufficient conditions for the
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local minimisation of (4.2) can be derived but are not important
in practice and will be ignored in this thesis.

Equation (4.3) represents a set of 2N-1 non-linear
equations in an equal number of unknowns in which the measured
variables are given as a function of the state variables. As these
functions are a sum of sines and cosines, a general analytical
solution is difficult, if not impossible. Therefore iterative solutions
should be used. Several iterative algorithms are available in the

(24)

literature All of them have the following general form:

Xi+l = x1 + CLHT(x') B."1 (I - h(x')), i=0,1,2....

(4.5)
where x° is an initial guess, is a gain matrix and i is the
iteration counter.

The only difference among the existent methods is the
choice of the gain matrix G. Great freedom exists in the choice
of this matrix. Any full rank matrix used in (4.5) will produce

the minimum of (4.3) provided convergence occurs.

4.2.1 BASIC WLS ALGORITHM
A linearised analysis of the convergence of (4.5) and some
heuristic arguments(sz) indicate that an "optimum" gain, in terms

of the number of iterations, is given by:

G1l=A (x) = HT(x) R 1 H(x!) (4.6)



The above gain matrix was used in most of the initially

. 78
proposed power system state estlmators( )’.

If RMis chosen as the error covariance matrix, A(x) gives
the covariance matrix of the state estimate error, which represents
an extra advantage of this choice of gain.

Possible stopping rules for the algorithm defined by (4.5)
and (4.6) are to stop the iterations when J(xI+1) - J(x') or the
magnitude of all components of xI+~ - x1are less than some pre-
determined value. The latter criterion is the most commonly used
since the former needs a relatively large amount of calculation.

The implementation of the above algorithm consists of two

main steps in each iteration:

a. calculation of matrices H~(x') and A(x")

b. solution of the system of linear equations

A(X')(xi+l - x) = Abl (4.7)

Ab' = HT (x') R"1 (Z - h(x%) (4.8)

Formulae to calculate the elements of the Jacobian matrix
HA(x") can be found in references”1 . The elements of

A(x') and Abl are given by

»k m ht 5"1 H* <*ey

Abj =h75."1 (Z - h(xr)) (4.10)



where ﬂ] and —HR are columns of H(x"). It is therefore convenient
to store only the non-zero elements of H”x1) column by column using
a simple list processing scheme. An alternative way is not to store
explicitly the Jacobian by evaluating only one row of HA(XX1) at a
time. The contributions of this row to A(x'") and Ab(x’) can then
ue calculated before evaluating the next row”51”. Matrix A(x*)

is real, symmetrical and with a large proportion of zero elements.
Its inverse, in an implicit form, can be obtained in an efficient way

using one of the factorisation methods and ordering schemes des-

cribed in reference (13).

<*.2.2 FAST-DECOUPLED VYLS ALGORITHM

The basic WLS algorithm described in the previous section
is accurate and has good convergence characteristics but its com-
puting time and storage requirements are excessive for on-line
implementation, where a process control computer is likely to be
used. These requirements are mainly due to the need for eval-
uating and factorising the gain matrix at every iteration. A possible
way of alleviating this numerical burden is to use a constant or a
piece-wise constant gain matrix. However, the number of iterations
required by such algorithm will certainly be higher and the overall
saving in computing time may be not that great.

A very much more efficient improvement in the WLS algo-
rithm is achieved by the application of the fast decoupling techniques
which have been used successfully in the load flow problem1l .

In order to simplify the understanding of the WLS decoupled algo-
rithm, the measurement equations will be partitioned into active

and reactive subsets as follows:



(4.11)
=h (0,V) w (**. 12)
-q - - q

and consequently the Jacobian matrix will then be given by:

Bp* -I_[.BV
H (0, V)

{'».13)

~o TRV

In normal steady state operation of a power system, with

an EHV transmission network, the following approximations are

usually accepted as reasonable:
Vj - 1.0 pu

cosO.I.K 31.0 (4.14)

gjk sin”~ « b.k sinOjk

where Vj is the voltage magnitude at node i, 0-k is the angular

difference between nodes i and k and gjk and bik are elements

of the admittance matrix. Under these assumptions, the Jacobian

submatrices defined in (4.13) maintain the following relations:

(4.15)
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where |Hj indicates the moduli of the elements of 1J. Moreover,
the elements of the Jacobian vary little with changes in the state
variables (0 and V). Therefore, the Jacobian matrix can be

approximated, with good accuracy, by a block-diagonal and state

independent matrix

(4.16)

where ﬂp and ﬂq are obtained from l_-lptsl and HCI& by the intro-
duction of the approximations given in (4.14).
The above approximations on the calculation of the Jacobian

matrix can be introduced in the WLS estimator in two ways:

a. using the approximated Jacobian only in the calculation
of the gain matrix
b. extending the approximations also to the evaluation of

HT R_1 (Z - h(x)).

In the first scheme, the resulting algorithm still produces
the same solution as the basic WLS algorithm. In the second one,
optimality is lost. However, simulation studies”11'~ ' 51" with both
algorithms have demonstrated that the solution given by scheme b
is very close to the optimal solution and adequate for practical
purposes. As the algorithm given by scheme b is more efficient,
from a computational point of view, it should be the one to be chosen

in practical applications.



A further improvement in the algorithm is achieved by
dividing the reactive measurement equations by the magnitude
of the voltage of the node in which the measurement is taken
and also by ignoring series resistances in the computation of the
elements of the sub-Jacobian

The final version of the Fast Decoupled State Estimator

(FDSE) is then given by

e (Zp- ty 0" ¥)J (4.17)
vt -y oy (4.18)
where
(4.19)
(4.20)

divided by the corresponding voltage magnitude and the elements
of E and_H are given in Table 4.1.

The computational work required by the FDSE is much
smaller than the one by the basic WLS. Matrices Ap and Aq have
to be calculated, factorised and stored only once at the beginning
of the iterative process. As can be seen in Table 4.1, the elements
of H and H are equal to, or a linear combination of, the line

-p —q
parameters. Therefore, no explicit calculation and storage of these



elements is really required. Whenever necessary, they can be

readily obtained from the arrays containing the line parameters

3P.
- K 1 s
" kox xik 3VT = kela.i bik kaa.iyk
9Pj 1 3Q-
X ik 3V7 = ¢ bik
3Q".
9Pik 1 N
. 9Vk = bik - yi
' X -
opik _ 1 9Qik -
S6k X ik VK ok
=0 3V. 1
Qi n, Qik Qik
;o Qlk = v - or

Table 4.1 - Elements of matrices H and H
-p -q



Simulation studies performed using the FDSE described
aboven~11,31” have demonstrated its superiority over the basic WLS
algorithm. For a convergence tolerance of 10_n in the state
variables, which produce results with an accuracy adequate for
practical applications, the number of iterations required by the
FDSE is about the same as the basic WLS and, in some cases, less.
The storage requirement is largely reduced as only two block
diagonals of the gain matrix have to be stored. The solution time
for the FDSE increases linearly with the problem size while for the
basic WLS algorithm this increase is more close to a quadratic curve.
Convergence sensitivity to line X/R ratio is adequate for most of

the situations likely to occur in practice.

4.2.3 LINE-ONLY ALGORITHM
The Line-Only algorithm developed by a team of the American
Electric Power (AEP) ~27'*'*'31~ is also a WLS based algorithm. It
achieves great computational efficiency by the use of an ingenious
transformation of variables. However, it has the limitation of not
allowing the processing of all types of measurements (e.g. injections).
Let S denote the vector of complex line flow measurements.
A relationship similar to (4.1) can be established relating S to the

state variables

+ v («».21)

where x represents the complex nodal voltage, v the error in the

line flow measurements and f (e) is a function relating the complex



line flows and state variables. The Line-Only algorithm is obtained

minimising

J) = {1S - f(x) DT R_1C I8 - f(x)I) (4.22)

where R ' is a matrix of weights similar to the one used in (4.2).

The voltage drop across the network branches in which

measurements are taken is given by

e =B 's- U (4.23)

where

B : diagonal complex matrix of elements Bm = xAig"+jb.")

Co

: complex vector of elements : Um = Xj yjk*"9jk+ ikn

L ]
e : complex vector of elements e = x. - x”"

m : measurement number

i-k : branch of the network in which measurement m is taken

Introducing (4.22) into (4.21) the performance criterion

is reduced to

J(x) =(le- C x])T D (lJe- C xj) (4.24)
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where

D : diagonal matrix of elements Dm = Rm'/(Jix.I |g.Ik + JbIK*I)

C : measurement-to-node incidence matrix

The minimum of J(x) is obtained by solving

= 2CTD (e - C x) =0 (4.25)

which in a rearranged form produces the estimator

x = (CT DC)1CT De (4.26)

As the vector of voltage drops e has to be obtained from
(4.23), in which there is an explicit dependence on the state
vector, the algorithm requires an iterative solution. To compute
e from (4.23) the voltage level of the system has to be set. This
is done by specifying one of the nodal voltages in the system which
is assumed to he known without error. The column and row corres-
ponding to this voltage is then excluded from the C matrix which
avoids the singularity of D C.

Matrices and are real and vectors x and e are complex
and usually expressed in cartesian co-ordinates. Hence the problem
is intrinsically decoupled and a block successive displacement tech-
nigue can be used. As the voltages vary little in the iterative
process, the dependence of matrix D in the state variables can be
dropped, producing a constant gain algorithm similar to the FDSE

described in the previous section.



Simulation studies comparing the Line-Only and FDSE
algorithms'11' 51" show that the former has a slightly superior
performance in terms of computation time and storage require-
ments. However, the limitation of not being able to handle
injection measurements (in its original and efficient version)
represents a considerable drawback on the practical applicability
of the method . For instance, it makes impossible the use of
zero injection pseudo-measurements which enhances the redundancy

ratio at no cost.

4.3 POST-ESTIMATION BAD DATA
DETECTION AND IDENTIFICATION

The WLS estimators described in the previous sections
have an adequate performance only when the network configuration
is correct and the measurement error is small and random. Other-
wise the accuracy of the estimates may be badly affected. This
can be identified by the presence of large residuals (difference
between measured and estimated values) which indicates that the
"fitting" of the input data into the system model was not well per-
formed .

In the case of gross measurement error, the large residuals
may in some cases correspond to the measurement grossly in error.

In other cases, due to the "smearing effect"(45)

inherent to the
WLS method, healthy measurements may be affected also. Topological
errors affect the result of the estimation only when measurements

are taken in the line which status is wrong. In that case the

residuals corresponding to these measurements will probably be
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large in a similar way as if they contained gross error.

Techniques for post-estimation detection and identification
of gross measurement and topological errors are mainly based in
the information contained in the residuals. As both types of
errors manifest in the same way (large residuals) a method to
differentiate between them is required. The usual approach is
to assume initially that the configuration is correct and eliminate
the measurements with large residuals. Afterwards a retost is
carried out in order to verify if the large residuals were due to
gross error in the measurements or a wrong status of ths line
where the measurements are taken.

In the following sections some techniques to detect, identify
and eliminate probable grossly wrong measurements are described.
In section *1.6 a procedure to identify topological errors is also

described.

4.3.1 LINEARISED ANALYSIS OF THE ESTIMATION RESULTS1“5'82)

Assume that the measurement error is small, normally dis-
tributed, with zero mean and covariance matrix R~ Then the results
of an estimator using the basic WLS algorithm given by (4.5) and

(4.6) has the following statistical properties

E {x - x}

1
o

(4.27)

E{(x - x)T (x - x)} = Ex = HT (x) R“1 H(x) (4.28)

where x and x are true and estimated values of the state.
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The estimated residuals, defined as

£ =27 - h(x) (4.29)

where Z is the vector of measurements, is a normally distributed

variable with statistics given by

E {r} =0

E H " tL(x) ?xb(x) 14*30)

Normalised residuals are defined as

£ [D-11* (4.31)

|w)
11

diagonalfr (4.32)

and are vectors whose components are N(0,1) random variables.
The performance index J(x) calculated using (4.2) is a
sum of squared normally distributed random variables. Therefore
it follows a chi-squared distribution of probabilities with K = M-N
degrees of freedom. The mean and variance of this distribution

are given by

E (J(x)} =K (4.33)

VvV {J(x)} = 2K (4.34)



If K 230 the chi-squared distribution approaches a normal dis-

tribution. In that case the standardised random variable
J(x) - K
J (X, K) = —mememmeeee (4.35)
/1K
becomes zero mean, unit variance Gaussian, i.e. N(0,1).

4.3.2 BAD DATA DETECTION

The bad data detection techniques used in state estimation
are derived from the well-known subject of hypothesis testing of
statistics'65'72”. In this technique, hypothesis are formulated
about statistical properties of random variables involved in an
experiment, for instance the type of distribution (normal, expon-
ential, etc.) or the parameters of a specific distribution (mean,
variance, etc.) from which statistical properties of other variables
(outputs of the experiment) can be derived analytically. If the
statistical properties of the outputs agree with the ones derived
from the hypothesis, then this is a confirmation that the hypotheses
are correct within certain probability limits.

The problem of bad data detection can be formulated as a
hypothesis testing problem wusing the results of the previous section
Under the assumption of Gaussian error, it was concluded that
the performance index J(x) is chi-squared distributed and the
normalised residuals are normally distributed. If one or more
measurements contain gross error or if the status of a line is not
correct, some of the residuals used to calculate J(x) will no longer

be normally distributed. Therefore the calculated value of the



performance index or of some normalised residuals will fall too
far out on the "tails" of the respective distribution of probability
functions.

The bad data detection test can be formulated as a hypo-

thesis testing problem with two hypotheses:

H0 : no bad data exists

H : H0 is not true

Depending whether the performance index or the residuals
are used to test the hypothesis, three different detection methods

are available in the literature (45):

A
a. The performance index or J(x)-test

The J(x) test is formulated as

Accept Hgq if J(x) s vy

Reject Hq if J(x) > vy

The detection threshold level y is obtained from the chi-
squared or normal distribution curves depending on the degrees
of freedom of the particular problem. The choice of y determines
the so-called "false alarm probability" P , i.e. the probability of
rejecting Hg when it is actually true. For example, if the normal

distribution is used a value of y = 1.65 corresponds to Pe = 0.05

for the standardised index.
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A
b. The normalised residuals or r~-test

The normalised residuals given by (4.30) are N(0,1)
random variables. Therefore, if all residuals fall In the +3.0
range, then there is a 99.97% chance that no bad data exists.

A
The r~ test is formulated as

Accept Hq if |rN . ] < 3.0 JeeetM

Reject Ho if |rN .j >3.0 lgeeegM

The evaluation of the normalised residuals requires a con-
siderable computational effort due to the need to calculate As
only the diagonal elements of Er are required, this work can be
reduced by the use of the sparse inverse technique~l . In the
FDSE the covariance matrix Zr is available only in an approximated
form. Simulation studies performed using this approximated matrix
. . . (41)
in the calculation of the residuals have shown adequate results

As is constant in the FDSE, Er needs to be recalculated only

in cases of change in the network configuration.

c. The weighted residuals or r~-test

An alternative approach to the P~-test, which requires less
computational effort, is a test based on the weighted residuals.

These residuals are defined as:

(4.36)
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The r~-test can then be stated as
Accept Hgq if |Jrw .| ~ 3.0, i=1,...,M
Reject Hq if Jrw J > 3.0, i =

f£(5I
It can be shownl - that

rN " rW

which makes the ?"-test more effective than the ?"-test.

Simulation studies using the above tests”~”~ ~ have shown
that ?‘"-test is more effective than the ;(x)-test for a single
gross measurement error while the J(x)-test has a better performance
for multiple gross measurement error or configuration error.
Therefore, it is safer to implement both tests. In that case detection

of bad data would be indicated if either one of the tests fails.

4.3.3 BAD DATA IDENTIFICATION

After the detection of bad data by one of the tests described
above, the identification and subsequent elimination of the bad data
effect in the estimation results, should be performed.

Bad data identification is a problem not yet well solved in
static state estimation. The only information available that can be
used for identification purposes are the measurement residuals.

From an intuitive point of view, the large residuals should corres-
pond to the measurement containing gross error. Unfortunately,

this is not what usually happens in practice. Due to the smearing
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effect previously referred to, the straightforward comparison of
the residuals magnitudes cannot produce a definitive answer to the
identification problem.

A heuristic approach in which selected groups of suspected
bad data are removed from the measurement set and re-estimation

(45)

performed is available in the literature There exists two

versions of this technique:

a. Ordered Residual Search

In this version the residuals are put into a descending
order of magnitude, and the measurement corresponding to the
largest residual is removed first. If bad data is still detected,
a further estimation is carried out with the following measurement

in the list removed, and so on.

b. Grouped Residual Search

Here the first few largest residuals are removed simultan-
eously and then put back one after the other until a bad data is
detected.

The first version of the residual search is suitable for the
case in which there is only one gross error while the second can be
used for multiple gross errors or configuration errors.

In the identification method described above, it is necessary
to perform successive re-estimations of the state using a set of
measurements from which some measurements were deleted. This
would require, in principle, the re-calculation and re-factorisation

of the gain matrix. Less time-consuming approaches have been proposed



in the literature. In the first one the factorised inverse is
modified using the Shermann and Morrinson formulan”15”". The
second one, much faster, is to substitute the suspected measure-
ment by a pseudo-measurement obtained from some results of the
. . . . . . . (41)
linearised analysis previously described in section 4.3.1
A third and even simpler method is to assign zero weights to the
suspected measurements”5”. This last method usually requires a

few more iterations than the others in the cases which several

bad data occurs in the same node.

4.4 BAD DATA SUPPRESSION ALGORITHMS

An adequate solution for an estimation problem in which
some measurements are grossly in error would be one in which
the residuals corresponding to these measurements were approx-
imately equal to the error. This kind of solution can never be
achieved using the WLS criterion as the sum of the square of such
large residuals would certainly make that solution non-optimal.
Estimators less vulnerable to bad data can be designed using
criteria which assign less importance to large residuals. Examples
of this kind of estimators are the Bad Data Suppression (BDS)
algorithm/6**'67~ and the estimator using linear programming”

The first one, which can be considered as an extension of the WLS
method, will be described in this section while the second one will

be studied in the next chapter.



4.4.1 BASIC BAD DATA SUPPRESSION ALGORITHM* 61])

The BDS estimator is obtained by minimising the per-

formance criterion

J(x) = pT(x) R 1 p(x) (4.37)

where each element of the vector p(x) is defined as

(4.38)

f(r) if .

where "m is the measurement residual as defined in (4.29) and f(e)
is a function chosen in such a way to assign less weight to large
residuals. Sore of the functions suggested in the literature are
given in Figure 4.1 and Table 4.2.

The minimisation of J(x) can be achieved by an iterative

process similar to the one used for the basic WLS algorithm

x'+1 = x'" + A\x') HT(x") C(x) R_1 p(x") (4.39)
where
A(x') =HT(x) GT(x) R_1 C(x") H(x") (4.40)
3h(x)

H (x) (4.41)

X=X
(4.42)

X=X

and i is the iteration counter
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Quadratic (plain WLS)

Quadratic-tangent

Quadratic-square-root

Quadratic-constant

Figure 4.1

Non-quadratic cost functions



> X
pm m m m
"m "m
Quadratic-tangent rm 1 sign (rm) Xonqz Aopy -1)1 (2 X0 -1)1
m
. . rm oo rm "i
Quadratic-square-root 1 sign (r ) Xom(4 -3) ( m) (4
rm m.m Xom m Em "3
Quadratic-constant 1 0 0
rm ™

pm and gm are elements of the vector p and matrix C respectively

Table 4.2: Non-quadratic cost functions and derivatives



The choice of the breakpoint value A affects the convergence
and bad data suppression properties of the BDS estimator. If A s
chosen too small, the convergence is slow and the risk of local
minima is increased as healthy measurements may be taken as bad
data. As A increases the bad data suppression effect is decreased
and finally disappears. A value of A= 5.0 was reported”51” to
produce good results. If all the residuals are below the breakpoint
A, the C matrix is equal to the unit matrix and the BDS algorithm
reduces to the VVLS algorithm.

A variant of the algorithm described above is obtained if
in (U.38) the weighted residuals are substituted by the normalised
residuals in the definition of the breakpoint. The algorithm thus

obtained is reported to have a better performance in bad data sup-

pression(45)
If several bad data occur in the vicinity of a node, it
may happen that many of the matrix elements are small and placed

in such a position as to impair the diagonal dominance of the A
matrix. If this occurs, numerical instability or slow convergence
is likely to occur. Such difficulties with the BDS algorithm have
been reported in the literaturel

A program written for the VVLS algorithm can be easily trans-
formed into one for the BDS algorithm by the simple introduction of
a routine which modifies the large residuals according to the chosen
criterion. The storage requirements of such a program are virtually
the same as the WLS but the time necessary for a solution is usually

larger due to the slower convergence of the BDS method.
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4.4.2 FAST DECOUPLED BAD DATA SUPPRESSION ALGORITHM(51)

The basic BDS algorithm, in the same way as the basic
WLS, is not adequate for on-line applications due to its computational
inefficiency. A further drawback of the algorithm is its numerical
instability. These problems are mainly due to the recalculation of
the A matrix at every iteration. In a similar manner to the VVLS
method, fast decoupling techniques can also be applied to the BDS
algorithm to improve itr. computational performance.

A first difficulty found in fast decoupling the BDS algo-
rithm is the presence of the matrix in the definition of the gain
matrix A. The elements of G depend upon the magnitude of the
weighted (or normalised) residuals and consequently change con-
siderably from iteration to iteration. An efficient way of avoiding
this problem is to use as gain matrix the same as used for the
FDSE algorithms. The algorithm thus obtained produces the same
solution given by the basic BDS method requiring a few more
iterations. The BDS estimator can then be decoupled in a similar
way to the WLS estimator, producing the following algorithm

Oit1 =0* + A’'1 Hji R"1 G v 143
pt-Hg Bpl G g (0 V9 (1-43)

o Wheg By GREN e

where G and p are submatrices of G and p respectively.

- p' &g
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In the algorithm above, the following inequalities are

implicitly assumed

(4.45)

These inequalities remain valid onI)y if _Rpl E‘»p and qu Gq

are of the same order of magnitude. Therefore, in order to satisfy
(4.45) throughout the iterative process, whenever a bad data is
encountered in either the active or reactive part of a complex
measurement, the corresponding term in matrices GN and G~ are
set to equal values.

and A, eliminates

The use of the constant gain matrices
the numerical instability reported in the basic algorithm and reduces
considerably time and storage requirements making the fast decoupled
BDS algorithm adequate for on-line applications.

Extensive simulation studies reported in reference (51)
demonstrated that the fast decoupled BDS algorithm has a performance
very similar to the fast decoupled WLS together with the post-
estimation bad data detection and identification technique described
in section 4.3. Both methods are able to detect, identify and eliminate
bad data provided the local redundancy in the region of trouble is

high enough.



4.5 IDENTIFICATION OF TOPOLOCICAL ERRORS

Both the residual search analysis and the BDS estimator,
described earlier in this chapter, are able to detect and eliminate
gross measurement and topological errors in order to produce a
good state vector in most of the situations likely to occur in
practice. However, they cannot distinguish whether the detected
bad data corresponds to a gross measurement or topological error.

This important problem has been in some ways neglected
by the researchers. Only minor references to it can be found in
the literature until very recently”™' . In fact, reference (59)
is the only one found by the author of this thesis in which the
problem was analysed more carefully and a procedure outlined for
its solution.

The proposed method is based on the fact that the inclusion
in the configuration of a line that is actually off, or vice-versa,
affects primarily the estimate of the injections at the end nodes.
These injections, if measured, will probably be identified as bad
data and therefore suppressed. The state vector obtained after
the suspected measurement suppression is independent of the
topological error. This healthy state vector can then be used to
test whether the suppressed measurements contain gross error or
are a result of topological error. This is done by a simulation
process in which the status of suspected lines are changed and
the injections at their ends recalculated and compared with the

rejected ones.



4.6 CONCLUSIONS

The WLS based algorithms reviewed in this chapter
constitute a powerful tool for the implementation of on-line power
system state estimation. The fast decoupled versions of the
plain WLS and BDS algorithms have adequate filtering capability
and storage and computing time requirements acceptable for use
on a process control computer. However, some problems remain
not completely solved. One of the most important of these is the
difficulty in the detection and identification of gross measurement
and topological errors in systems with not very high redundancy
ratio. Both the residual search technique used with the plain WLS
method and the BDS algorithm either fail completely or require a
large computing time to find the right solution in this case.

Another important problem, which has not yet been fully appreciated
by the researchers, is the inability of the algorithms to differentiate
automatically between topological and gross measurement errors.

An improvement in these two and other weak points, using the
static approach, seems difficult to be achieved. The answer to
those problems may be found in the use of extra information to
increase the redundancy ratio, for instance the information avail-

able in past estimations.



CHAPTER V

EFFICIENT PIECEWISE-LINEAR CRITERION (PLC)

DECOUPLED STATE ESTIMATOR



In this chapter an improved version of a state estimator
using as performance criterion the sum of the moduli of the
residuals is described. This estimator has the ability of rejecting
automatically topological and gross measurement errors in most
of the situations likely to occur in practice. Storage and com-
puting time requirements of the algorithm were reduced consider-
ably in relation to a previously proposed formulation, by exploiting
certain particular characteristics of the problem which allowed the

use of fast decoupling and advanced linear programming techniques.

51 INTRODUCTION

In the previous chapter of this thesis the inadequacy of
the basic WLS method to cope with bad data was pointed out.

In that chapter, it was also described how modifications can be
introduced in the original WLS criterion in order to render the
estimator less vulnerable to bad data. All these modifications

were introduced with the objective of reducing the WLS undesirable
effect of assigning great importance to measurements with large
residuals which correspond most probably to bad data. This

type of estimator may be included in the general category of non-
quadratic estimators.

A completely different type of non-quadratic estimator,
which has very good bad data rejection properties, may be derived
by using as criterion the sum of the moduli of the residuals. This
new type of estimator, whose basic formulation was initially proposed
in reference (48), can be formulated as a sequence of linear pro-

gramming (LP) problems, which can be solved using any of the



available LP techniques(43'57)_

This estimator will be called in
this thesis the Piece-wise Linear Criterion (PLC) estimator, which
seems to be a designation which more appropriately characterises
the method.

The version of the estimator which will be presented in
this chapter has been considerably improved in terms of storage
and computing time requirements. The improvements introduced
are of two kinds: The decomposition of the LP prob'‘cms into two
smaller ones by the application of decoupling techniques, similar
to the ones used for the WLS algorithm in the previous chapter,
and the use of advanced LP techniques like the combined use of
the revised simplex and dual simplex with inverse basis in compact
form and reinversion.

In power system engineering, particularly in on-line
applications, there was a tendency of avoiding methods involving
LP algorithms based on the fear that these algorithms always
require large storage and computing time. More recently, this
tendency has been reversed, partially due to many problems faced
when using non-linear optimisation and also, as it apnears, to
a better understanding of the efficiency and reliability of the LP
techniques, provided the algorithms are well adapted to the problem
structure*88'89*. The state estimator to be presented in this
chapter may well be analysed from this point of view when compared

to equivalent ones based on the WLS criterion.



5.2 PROPERTIES OF THE PLC ESTIMATOR SOLUTION

The state estimation problem, in a more general formulation,
can be viewed as the solution of a redundant set of algebraic
equations. This set is usually inconsistent due to the presence
of error in the measurements. Let this set of equations be

represented by

Z =h (x) +v (5.1)

where
M x 1 vector of independent terms (measurements)
x : N x 1 vector of unknowns (state)
h( ) : function relating 2*and x
v ' M x 1 error vector

M >N

A solution for the above set of equations, in the usual
sense of a vector which satisfies simultaneously all the equations,
does not exist due to its inconsistency. The problem has been
usually solved by the WLS method in which a solution is obtained
by minimising a quadratic function of the residuals as shown pre-
viously in this thesis. The method can be interpreted geometrically
as minimising the sum of the squares of the distances from the
solution point to the hyperplanes representing the measurement

equations. In the case of small and random errors, this solution



is usually close to the ideal solution of the free of error (v = 0)
set of equations. If gross measurement or topological error is
present in the data, the hyperplanes corresponding to the affected
measurements or status will be at a great distance from the ideal
solution and will attract the WLS solution, affecting strongly the
accuracy of the estimate.

Another possible way of establishing a solution for the
set of equations defined by (5.1) is to choose one of the "partial
solutions" obtained by solving a non-redundant system formed by
any N of the M equations. These solutions are more or less close
to the ideal solution depending on the size of the error of the chosen
equations (measurements). This approach was attempted without
success in the early days of power system state estimation™ 7' 71" .
The failure of the method was probably due to the absence of a
rule to choose the "best" partial solution. In reference (48) a
completely new formulation of this basic idea was proposed. The
method, referred to in this thesis as the PLC estimator, is based
on the formulation of the estimation problem as a sequence of LP
problems in which the objective function is the sum of the moduli
of the residuals and the constraints are the linearised measurement
equations. The property of an LP problem solution of always being
in an extreme point of the region determined by the constraints
guarantee that the chosen solution is one of the partial solutions
referred to above, while the minimisation of the criterion pushes
the solution towards the ideal one. Assuming that the measurement
error is comparable with the degree of accuracy required for the
estimates, i.e. that a high filtering capability is not essential, the

estimates produced by this technique are adequate for practical
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applications.

The M-N equations (or measurements) left out when
obtaining a partial solution in the method described above, have
obviously no effect on the estimation result. This fact is the
reason for the good bad data rejection property of the PLC
estimator. As explained before, the hyperplanes corresponding
to bad data are very far from the ideal solution. AM the partial
solutions in which such a hyperplane is involved will also be at a
great distance from the other hyperplanes. Therefore, these
solutions will almost certainly be rejected by the algorithm pro-
ducing an estimate free of the bad data effect.

In order to illustrate the ideas exposed above, an example
involving a three busbar system is presented in figures 5.1 to 5.4.
In figure 5.1 the system diagram, parameters, measurement place-
ment and equations are presented. In figure 5.2 the measurement
equations for both the cases with and without error are plotted.
In figure 5.3 the measurement equations, corresponding to the
case in which the measurements contain error, are plotted again
and the six possible partial solutions (sj,...,sg) are shown. The
ideal solution (S]) and the one given by the WLS method (S*)
are also shown. The solution given by the PLC algorithm can be
any one of s to Sg (in fact it is s” in that case) which are all
farther from the ideal solution than the one given by the WLS
method. Nevertheless, the accuracy of any of these solutions,
perhaps with the exception of s”, is adequate for practical pur-
poses. In figure 5.4, the same problem is shown, the only differ-

ence being that the measurement of the line flow P”j is set to zero



12 System Parameters
b12 = 4.167 pu

b 1j

5.556 pu
b23 = 6.250 pu

100 MVA base

# active injection

o

active line flow

Linearised Measurement Equations : X
“b 12 -b,3
"p1 1
P2 b12 + b 23 b 23
X = zZ = H =
0
P12 -b 12
e} 0
8 b3
=) =

True Values

by = 99.5 MW

g, = = 8° = -,.052 rad. po = 32.7 MW
o5 = - 8° = -,.140 rad. b1p = 2L.7 MW
by = 77-8 MW

Corrupted Value of the Measurements (x 3% error)

Lt 102.5 ww
po - 31.7 ww
o = B2 @
Py - 75.5 ww
Figure 5.1 - Example to illustrate the properties

of the PLC estimator.
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02 (rad.)

Figure 5.4 Measurement equations for the case in which
measurement P' contains a gross error and
WLS and PLC ~solutions

to simulate a bad data. The representation of the measurement
equation corresponding to the bad data fall very far from the
ideal solution (in fact out of the drawing space) and also the
solution giver' by the WLS method. The PLC estimator solution
remains the same, as in the case without bad data, as any partial
solution involving the measurement grossly in error (s, s2» Sj)

would certainly not be optimal.
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5.3 BASIC PLC STATE ESTIMATION ALGORITHM

Consider the state estimation problem defined in (5.1).
The PLC criterion is given by

M
J(x) = Rm Irm | (5.2)

mtl

where M is the number of measurements, Rm is the weight assoc-
iated with the m-th measurement and M is the m-th component

of the residual vector
r=2-nh (x) (5.3)

As shown in Chapters IlIl and IV, a usual procedure to
solve non-linear state estimation problems is an iterative process
in which successive linear approximations of the given problem
are solved. This technique will be followed here to derive the

PLC estimator. The Taylor expansion of (5.3) around an initial

guess Xx° gives

(5.4)

where

AZ° = Z - h(x°) (5.5)

AX®° = X - Xx° (5.6)



3h(x)
H(x°) = (5.7)

3x
The non-linear estimation problem can then be formulated
as a sequence of minimisation problems in which the objective
function is the criterion given by (5.2) and the constraints
are the set of equations defined in (5.4). This formulation in

compact form can be written as follows:

M
Minimise J' = m|—| RM Kmﬂl
A* h (5.8)
subject to H(x') Ax' + rl=AZ1
where i = 1,2,... is the iteration counter. The iterative process

stops when the values of Axlis less than a specified tolerance.
The minimisation problem defined above cannot be solved
straightforwardly as the moduli function is piece-wise linear and
non-differentjable at r = 0, as can be seen in figure 5.5(a).
However, it is possible to define a transformation of variable
which produces an equivalent linear objective function. The
transformation is obtained by substituting the terms rm by the

difference of two slack variables as follows:

r =-s - s ,m-1, .... M (5.9)

such that



Figure 5.5 Original and transformed criteria
of the PLC state estimator.

(5.10)
s2m-1'" S2m "°

(5.11)
s2m-1 * S2m 0

which implies that
‘ M

irm' = as2m-1  s2m1 S2m-1 +s2m ' m =

(5.12)

as can be seen in figure 5.5(b).



After the introduction of the transformation of variables
described above, the problem defined in (5.8) has a linear
objective function and linear constraints and, therefore, can
be solved using LP methods. However, as the variables AxJ
can assume either positive or negative values, the problem is not

yet in the format of a standard LP problem(U3).

This format is
desired as it is an assumption used in deriving most of the LP
algorithms. The problem can be transformed into the standard
format by the introduction of a further transformation of variables
in which a vector d, whose elements are all equal to a sufficiently

large constant D, is added to the increment in the state variables

as follows:

Ax' = Ax +d (5.13)

which will lead to the redefinition of AZ as

AZ' = AZ + H d (5.14)

As a result of this transformation, whatever the positive
or negative value of the elements of Ax' (provided they are between
certain limits determined by the size of D), the transformed vector
Ax! will certainly have all components greater than or equal to zero.
The PLC estimator can then be formulated as a sequence

of LP problems as follows:



s M
Minimise J = | Rm (s » - s2m)
(Ax*)' m=1
(Ax')’
subject to HhUx1) {¢l = (AZ*) (5.15)
(Ax)1, S >0
where
1 -1
1 -1
U (5.16)
1 -ij (Mx2M)
S - (SN 82 —ome- s2M-1  S2M} (5.17)

In the final solution of the LP problem defined in (5.15)

to (5.17) at least one of the slack variables included in each

constraint will be null (non-basic). Therefore, the condition

given by (5.11) is automatically enforced.

A flow chart of the algorithm just described is shown in

figure 5.6.
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Figure 5.6

Flow-chart of the basic PLC algorithm
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5.4 FAST DECOUPLED PLC STATE ESTIMATION ALGORITHM

Almost all the computational burden of the algorithm des-
cribed in the previous section is located in the solution of the
LP problems. Therefore, these problems should be formulated
and solved as efficiently as possible. Storage and computation
time requirements of LP problems increase non-linearly with the
number of constraints and variables. If a LP problem can be
broken down into smaller ones, considerable savings in the com-
putation requirements are to be expected. This fact has led to
the idea of decoupling the equations involved in the PLC estimator
in a way similar to the one used in Chapter IV for the WLS algo-
rithm.

The PLC and WLS algorithms present a major difference
as far as the application of decoupling techniques is concerned.
In the WLS method an optimality condition is derived analytically
(equation 4.3). Therefore any algorithm which satisfies this
condition will produce the optimal solution regardless of any later
approximations. In the PLC estimator no optimality condition is
available explicitly. At every iteration a new LP problem is form-
ulated and solved. Therefore, in order to separate the LP prob-
lems into two smaller ones by decoupling active and reactive
variables, and still guarantee that the algorithm would produce
the same solution of the non-decoupled version, it would be neces-
sary to use some decomposition or partitioning technique available
for solving large LP problems. However, practical simulation

studies (see Chaptervil) performed with the basic PLC algorithm



and a sub-optimal fast decoupled version, which will be presented
below, show that the results of both algorithms are about the
same, particularly with respect to the rejection of bad data.

This result, which in some ways confirms a previous one per-
formed for the WLS methodi41), indicates that there is an inherent
decoupling in the way acti ve and reactive measurement errors
contribute to the result of the state estimator.

A fast decoupled PLC state estimator can then be derived
adopting a sub-optimal decoupled criterion and a coefficient matrix
obtained using the same fast decoupled Jacobian sub-matrices used
in the fast decoupled WLS estimator. The sequence of LP problems

to be solved are as follows:

minimise jp =

m=1
(5.18)
subject to [P~" Upl
AO*, SpS O
and
(5.19)
(AV?")
subject to [H u 1
AV, S~ 10
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where

P. (@ sub/superscripts indicate active
and reactive variables

voltage magnitude and phase
angle vectors

are matrices and vectors similar
to the ones defined in (5.16) and

(5.17) with the appropriate dimensions

A flow chart of the fast decoupled PLC estimator is given

in Figure 5.7.

5.5 EFFICIENT IMPLEMENTATION OF THE
PLC STATE ESTIMATOR

Standard library routines to solve LP problems like the
ones given by (5.18) and (5.19) are largely available. Although
some of these "packages" are very efficient to solve ordinary LP
problems, their use in connection with the PLC state estimator

would not be adequate for two reasons:

i In a real-time environment the state estimator will
most certainly be implemented in a process control
computer with insufficient computational capability to

accommodate a general purpose package.



Figure 5.7:

Flow-chart of the fast-decoupled PLC estimator
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ji. as these packages are developed for general problem
formats, they are not able to explore in full the
particularities of the problem at hand.
Therefore, the development of a custom-designed set of
LP routines is a fundamental step in coding efficiently the PLC

estimator.

5.5.1 PARTICULAR CHARACTERISTICS OF THE PROBLEM
The main particular features of the LP problems given in
(5.18) and (5.19) which can be exploited in developing efficient

codes for the PLC estimator are listed below:

i. Coefficient matrices: They do not actually need to be
either built up or stored as they are composed by the
submatrices Hp and Hq , whose elements are linear
combinations of the network parameters (see Table 4.1),
and matrices U and U which contain only 1 and -1

and, therefore, can also be easily generated by the

algorithm when required.

M. Initial basic feasible solution (b.f.s.): A considerable
part of the effort of solving a LP problem is spent in
finding an initial b.f.s., i.e. a solution vector which
satisfies all constraints and has all the components greater
than or equal to zero. In the problem above, an initial
b. f.s. can be obtained very easily by setting M of the
existent slack variables equal to the r.h.s. vector and the

remaining variables equal to zero.



Sparsity: The coefficient matrices, and in consequence
any basis matrix derived from them, are very sparse.
For a system of 100 nodes and 200 lines, with an average
of 3 lines connected to each node, in which all injections
and line flows at one end of the lines are measured, the
number of non-zero elements in the Jacobian submatrices
(Hp or H”) would be only 400 (approximately). This will
produce densities of 0.7% and 1.0% for the coefficient and
basis matrices respectively.

iv. Repeated solutions: The iterative process given in
Figure 5.7 consists basically of repeated solutions of two
LP problems (active and reactive) in which only the r.h.s.
vector (weights) and the matrix of coefficients remain

unchanged during the whole process.

5.5.2 METHOD OF SOLUTION OF THE LP PROBLEMS

Several algorithms are available in the literature to solve

43 57
LP problems like the ones given by (5.18) and (5.19)( )
Some of them, like the simplex method, require an initial b.f.s. to
start with. Others, like the dual-simplex and primal-dual methods,

can start with a non-feasible solution and iteratively force it to
become feasible in such a way that, when it does, it is also optimal.
In all methods, at each iteration a new extreme point of the feasible
region (or a new b.f.s.) is obtained by pivot operations on the
original coefficient matrix augmented by the r.h.s. vector (tableau).
In the revised simplex method, instead of actually performing the
pivot operations in all elements of the tableau, at each iteration only

the relevant elements are updated by the inverse basis matrix.



This procedure, of always accessing the original data, is more
efficient from the point of view of speed, storage and accuracy.
This technique can also be extended to other LP methods. The
basis matrix can be stored in full or only the part corresponding
to structural variables (reduced basis). If the problem has a
relatively high degree of sparsity the full or partial inverse basis
should be stored using a product form.

A readily available initial b.f.s., the availability in core
of the original data (coefficient matrix, cost vector, etc.) and the
degree of sparsity of the coefficient matrix, point towards the use
of the revised simplex method with inverse basis in compact form
to solve the LP problems given by (5.18) and (5.19). In this
method the b.f.s. at each iteration is obtained from the original
data by multiplying the r.h.s. vector by the inverse basis matrix,
which is a square matrix obtained from the coefficient matrix by
selecting some variables as basic according to some rule. The
inverse basis is stored in compact form through a representation
as a product of elementary matrices. Only one column of each ele-
mentary matrix has to be stored. These columns are usually
called eta-vectors and the whole set is also called the eta-file.
A fairly detailed description of this method is given in Appendix A.

The algorithm presented in Figure 5.7 usually converges
in four or five iterations from a flat start (unit voltage magnitudes
and null phase angles). The result of the first iteration is usually
close to the final solution, the remaining iterations performing only
small adjustments on the state variables in order to achieve the

overall specified accuracy. Therefore, the r.h.s. vectors AzZ"
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and AZM change very little from the second iteration onwards.
This is especially so for the transformed variables AZ' and
AZ-H which have absolute values much greater than the original
ones, provided the constant D used in (5.13) is large enough.
On the other hand, most of the work of a simplex iteration cycle
for any one of the sequence of LP problems that have to be
solved by the algorithm, if they are started from a b.f.s. like
the one described in section 5.5.1(ii),is spent on bringing the
state variables (or structural variables) into the basis. These
operations are usually repeated in almost the same order in all
the problems of the sequence. Also the optimal basis does not
change very much from one iteration to the other. Therefore,
if a full simplex iterative cycle is performed for every LP problem
in the sequences defined in (5.18) and (5.19), a large amount of
repeated operations would be performed without any extra improve-
ment in the final result and increasing largely the algorithm com-
puting time requirement.

There are two ways in which the observations above can

be used to reduce the time requirement of the PLC estimator:

i. to solve the first problem of the sequence (active or
reactive) by the revised simplex algorithm and to
use the same optimal basis for the next problems,

ii. instead of using the same basis for all problems of
the sequence, actually obtain a new optimal basis for
each problem using the dual-simplex method (see
Appendix A) which usually requires only a few iterations

in this case.



Method i. is very fast but does not guarantee optimality.
As will be shown in ChapterVIl, it usually gives good results for
problems in which no bad data is present, but has a rate of
failure greater than the original method for the cases with bad
data. Method ii. produces the same solution of the original
algorithm with a very small increase in computing time over
method i. This is so because, as mentioned earlier, only a few
variables change in the optimal basis in two consecutive LP prob-
lems in the sequences given by (5.18) and (5.19) and, therefore,

only few iterations of the dual simplex algorithm would be required.

5.5.3 STORAGE CONTROL OF THE INVERSE BASIS
COMPACT REPRESENTATION

As can be seen in Appendix A, at every iteration of the
simplex or dual simplex algorithm, using the inverse basis in
compact form, a new eta vector is formed. This increases the
number of elements (and storage) required to represent the
inverse basis. Reinversion techniques exist to recalculate these
elements, from time to time in order to compact the representation.
One of these techniques, which is called Pre-assigned Pivot Pro-
cedure”6” was used in the development of a program to study
the performance of the PLC estimator and is also described in
Appendix A.

There is no definite rule to determine how many times and
at what particular instant in the process, the reinversion should
take place. If storage is the major problem, then a possible rule
would be to perform the reinversion whenever the space required

to store the eta-vectors exceeds a certain limit. |If computing time
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is the major issue, then a compromise between the time spent
in the reinversion and the time saved by having a more compact

representation of the eta-vectors should be arrived at.

5.5.4 EFFICIENT ALGORITHM

Figure 5.8 shows a flow chart of an efficient procedure
to solve each one of the LP problems which appear in the fast
decoupled version of PLC estimator. This procedure uses the
ideas explained in the last sections. The flow chart should be
used together with Appendix A, in which each of its steps related
to the iterative cycle of the revised simplex and dual simplex
algorithms, with inverse in compact form, is described.

Although two different algorithms are used simultaneously
in that procedure, the amount of extra programming required is
small as both the revised simplex and dual-simplex algorithms use
the same basic operations (forward and backward multipliction by
the inverse basis, calculation of reduced price, etc.) only differ-
ing in the rules to choose the pivots and, therefore, could share

most of the developed routines.



Figure S.8 Flow chart of the efficient procedure to solve each LP in the PLC estimator



5.6 CONCLUSIONS

The PLC state estimator presented in this chapter has
the property of choosing as solution to the estimation problem
one which satisfies exactly a non-redundant subset of the
measurement equations. This type of solution is obtained by
formulating the estimation problem as a sequence of LP problems.
If gross measurement or topological errors are present in the
measurements, the equations containing this type of error will
be excluded from the solution of the estimator in most situations
likely to occur in practice, thus avoiding the spoiling of the
estimates.

The fast decoupling of the LP problems reduces the PLC
algorithm to the solution of two sequences of LP problems (active
and reactive) in which only the r.h.s. vector changes. This fact
was used to reduce considerably the storage and computing time
requirements of the algorithm by a combined use of the revised
simplex and dual simplex algorithms with inverse in compact form
and reinversion techniques.

The algorithm obtained by the introduction of the modific-
ations described above has a bad data suppression performance
similar to the BDS algorithm presented in the previous chapter
together with storage and computing time requirements comparable
with the fast decoupled version of the same algorithm. In Chapter
VIl the results of a simulation study comparing the performance

of the two algorithms will be presented and discussed.



CHAPTER VI

GROSS MEASUREMENT AND TOPOLOGICAL ERROR

SUPPRESSION IN TRACKING STATE ESTIMATION



In this chapter a class of tracking state estimation algo-
rithm obtained by the combined use of time-series prediction
techniqgues and non-quadratic state estimation algorithms is
presented. The estimators achieve a more efficient bad data
suppression capability than the equivalent static approach, by
making use of the information obtained in recent estimations.
An overview of the way in which the tracking estimators inter-
act with other components of the on-line data processing system

is also presented.

6.1 INTRODUCTION

The main objective of a power system state estimator is
to maintain an updated data base which is used for security
monitoring, economic dispatch, etc. Some elements of this
data base (voltages, power flows, etc.) follow the variation in
demand and, therefore, should be re-estimated from time to
time. The frequency of this updating depends on particular
operational requirements of the system and is usually higher
in periods when rapid changes in system variables take place
(e.g. morning load pick-up, peak periods, immediately after an
outage, etc) in which the system is submitted to severe stress
and emergency situations are more likely to occur, which requires

a closer monitoring.
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The conventional procedure to schedule a static state
estimator is to perform estimations at relatively long time in-
tervals (5 to 30 mins) or when a change in the network topo-
logy takes place. In order to take into account possible rapid
changes in the state between the scheduled estimations,
measurement scans are taken at a much shorter interval (every
30 seconds, for instance) and compared with the results of the
previous estimation. If an overall "large change" is detected,
then a new estimation is performed (30,49, 53)

The above procedure is adequate in most of the practical
situations as far as the updating of the data base is concerned,
i.e. the "age" of the information available for security monitoring,
economic dispatch, etc., is acceptable. However, from the point
of view of the estimation efficiency, it is not the best way of
tackling the problem. By allowing relatively large intervals
between estimations and isolating each of these estimations from
the previous ones, some information is wasted. This affects
mainly the task of bad data detection and identification which,
as seen in previous chapters of this thesis, requires a relatively
large redundancy ratio. Still due to the large interval between
estimations, a non-linear formulation of the estimation problem is
necessary which requires an iterative algorithm to produce a
solution. This requirement may become a severe limitation in
certain systems in which response times for relatively large
estimation problems, in a process control computer, as fast as

10 seconds are expected” ~



An improvement in the scheme described above can be
obtained by the use of tracking state estimators like the ones
introduced in Chapter IIl. In that approach, instead of only
testing whether the values of a new measurement scan are
sufficiently different from the previous estimation to justify a
new one, the algorithm would actually update the value of the
state variables by performing a run of the tracking estimator.

Of course, a new estimation would not necessarily occur at

every scan. Depending on the delay imposed by the telemetering
system, the capability of the processor in which the estimator
will be run and the input-output facilities, a compromise solution
should be achieved which may determine that estimations should
be performed only after a few scans, provided that the total
interval between two consecutive estimations is kept small enough.

In this chapter, an incremental static model of the system
state time evolution and a predictive technique which extrapolates
the values of past estimations, together with the non-quadratic
state estimation algorithms described in Chapters IV and V, are
used to derive tracking state estimators which are more efficient
from the point of view of suppression of bad data than the equiv-
alent static approaches.

The predictive technique referred to above is based on
the assumption that in normal operation the power system loads,
and consequently all the other system variables, change smoothly
during a load cycle. Therefore a reasonable prediction of the
future behaviour of the system can be obtained using only past

observations and time-series techniques® ' ' ~. Whenever the



112

system behaviour departs largely from this predicted path, some
trouble in the form of bad data or sudden change in the system
operating point is assumed and communicated to the estimator
which, by a careful weighting of the importance of these changes,

will be able to produce a correct estimate of the current state.

6.2 STATIC INCREMENTAL MODEL OF THE STATE TIME EVOLUTION
The practical impossibility of deriving a true dynamic model

for the power system static state (voltage magnitude and angles

at all busbars) was explained in Chapter III. In that chapter

it was also pointed out that tracking state estimators can be

derived by extending the static state estimation techniques to

the time varying case. This approach often leads to much more

simple and efficient alogorithms than the consideration of elab-

orated dynamic estimators based on simplified models(78)

Following the above ideas, the problem of tracking the

time evolution of the static state will be considered here as the

solution of a sequence of static estimation problems (or the solu-

tion of a sequence of redundant sets of algebraic eauations), in

which each problem differs from the previous one by small changes

in the coefficient of the equations and in the r.h.s. or independent

variables. Therefore, after obtaining the solution of the first

problem of the sequence, using any one of the methods described

in Chapters IV and V, the solution of the remaining problems will

be obtained by calculating the changes in the dependent variables

(states) caused by changes in the independent variables (measure-

ments) .



Let the measurement and state vectors be related by the

equation

~ooEh {x s (6.1
where

k : time interval

K . measurement vector (Mx1)

AK state vector (Nx1)

Ak :error vector (MxlI)

h(+) : non-linear function defined

Assume that a state estimation was performed at instant

k-1 and let be the result of this estimation. Then define
. 6.2
*k-1 =0 (09
Let be the vector of measurements at k and
(6.3)

ANK = Akt Ak-L

(6.4)
Ai-k " ~k-1

From (6.2) to (6.4) and using Taylor's series expansion the

following relationship can be derived

(6.5)
= H inr-i* Ark * *ik
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where

U =3E (6.6)

The error vector gy is a sum of the present snapshot
measurement error with the previous estimation error and the
error introduced by the linearisation. Under the assumption
that the estimations are performed at relatively smali intervals,
the error of linearisation is comparable with the measurement

error.

6.2.1 DECOUPLED MODEL

As already pointed out in Chapters IV and V,
the sensitivity of voltage phase angles (magnitudes) to changes
on reactive (active) variables in an EHV network is small.
In those chapters, it was also indicated that errors in active
(reactive) variables have little influence on the estimates of
voltage magnitudes (phase angles). Therefore, the incremental
model given by (6.5) can be reasonably approximated by two

independent sets of equations as follows:

(6.7)

(6.8)

where
0, V : voltage phase angle and magnitude vectors
Zp, Zq : subvectors of Z corresponding to active and

reactive measurements



aj3, : subvectors of u corresponding to active
and reactive measurement errors

ﬂp(-), _I-h (=) : main diagonal submatrices of H(*).

6.2.2 DECOUPLED MODEL WITH CONSTANT
COEFFICIENT MATRICES

The elements of the Jacobian submatrices ﬂp(x_.k)
and Hqgix”) vary little with changes in the state x~ (see Chapter
IV). The error introduced in the state estimation if these matrices
are made state independent by calculating its elements around
nominal values, are acceptable as shown by results of simulation
studies using fast decoupled static estimators'll' 41™*1A.

The successful results obtained with the FDSE described
in reference (11) and reviewed in Chapter IV, make the decoupled
matrices used in that method a good choice for the static incremental
model. In fact, these matrices seem to represent fairly accurately
the relationship between the measured and state variables over a
large range of operating conditions. Using these matrices the

final incremental model will be given by:

6.9
+U-E (6.9)
(AZYg + £ (6.10)
where
(6.11)

and the elements of Hp and Hq are calculated as indicated in

Table *».1.



6.3 PREDICTION OF THE VALUES OF MEASURED AND
STATE VARIABLES IN THE NEXT INTERVAL

The power system load changes daily according to a pre-
dictable pattern. Sudden variations are not frequent and are
either the result of a predictable event or an indication of some
abnormal state of operation. The other system variables, like
voltages, power flows, etc., follow these variations in load
according to the adopted operational and control strategy and
network constraints. Apart from eventual transients, these
variables present a variation pattern similar to the demand.

This behaviour of the power system has already been described
in previous chapters to characterise the so-called quasi-static
mode of operation.

A simple relationship between changes in load and corres-
ponding changes in network variables is not available. Neither
is a model for the daily load variation (see section 3.4.1).
However, due to the relatively simple (in view of the application
in mind) behaviour of the power system described above, it is
possible to obtain reasonably accurate predictions of the system
load and other variables, based on the statistical analysis of pre-
vious observation.

Time-series techniques are particularly useful in predicting
the future behaviour of a process like the one descri bed above,
in which a relatively simple process is to be observed but an
adequate model is not available. Several applications of these
techniques to the subject of short-term load forecast, which has
many similarities with the problem analysed in this section, can

be found in the literature”.



Techniques used to forecast time-series can be used to
calculate predicted values of the measured and state variables
in the next measurement scan. These values are then used
in the tracking estimators to be described in the next sections

for the following purposes:

i to provide a better starting point in the algorithm
whenever it is required.

ii. to "smooth out" fluctuations in the measured variables
caused by transients

iii. to increase the volume of information (redundancy)
available to the estimator, which will make easier

the task of bad data detection and identification.

The purpose given in iii. is the most important of the three
and is the one responsible for making the tracking approach more
efficient than the static one from the point of view of the overall

redundancy required.

6.3.1 EXPONENTIAL SMOOTHING OF STATE
AND MEASURED VARIABLES

The values of state and measured variables obtained
in each run of the estimator constitutes a family of time-series.
In a rigorous sense, those series are correlated to a degree
which depends on the coupling existent between each pair of
corresponding variables. However, due to theoretical and practical

difficulties existent in dealing with correlated time series, and



also because high accuracy is not required, these time-series

will be assumed to be independent. Provided a relatively short
period is considered (say up to 30 mins), each of these series

can be reasonably modelled as being made up of a trend component

plus a random change(93).

As only one step ahead predictions
are required (next scans), the use of a linear trend is adequate.

Several prediction (or forecasting) techniques are available
to be used with univariate time-series like the ones described
aboven17' ~ . Among these, exponential smoothing was chosen
to be used in this application, in place of more sophisticated

methods like the Box-Jenkins approach for instance, based on

the three points below:

i. it produces result of sufficient accuracy
ii. it is fully automatic

iii. it is fast and requires very little extra storage

Items ii. and iii. above are particularly important in view
of the on-line application.

The version of exponential smoothing which will be used
here is the one devised by Holt and Winters for series modelled
as above and which is described in Appendix B. Suppose that
measurement scans and estimations are performed at regular
intervals: let y. denote the predicted value of the variable
being modelled by the series (state or measured variable) and
TK—I the trend component (i.e. the expected increase or decrease
per interval in the current value) at instant k-1. Then, after

a run of the estimator is performed at the time interval k, pro-



ducing the value for the variable in question, the predicted

values of the series are updated by the following formulae:

yk =« yk + -a)(yk 1+ Tk f), 0<a<l1
(6.12

Tk = B(yk - W + (1 -8) Tk-r 0< 6<1
(6.13)

and the predicted value in the next scan is given by
Vk+i = yk + Tk (6-14)

where a and 6 are the smoothing constants.

The choice of the smoothing constants can be made in
two ways: in the first one, they are chosen according to an
empirical assessment of the particular characteristics of the
series under consideration. In general, the larger the random
change associated with the series the lower the values of the
optimal smoothing constant. A more objective approach is to

select these values based on a minimisation of the error that

would be obtained in "forecasting" the previous observed values

of the series (see Appendix B). The first approach is obviously

much faster and produces results adequate for practical applic-

ations as will be shown in Chapter VII.
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The recursive process defined by equations (6.12) and

(6.13) can be started by setting

Yi - v, (6.15)

T1 =Yy, - YQ (6.16)

and then using the equations recursively for k = 2,3,...,n.

6.4 TRACKING STATE ESTIMATORS

A possible way of using the prediction technique described
in the previous section, to improve the overall redundancy ratio
in the model given by (6.9) and (6.10), is to use the predicted
value of the state as an a priori estimate for an algorithm like
the ones described in section 3.3.2. However, two major dis-
advantages arise in this approach: a. it is difficult to obtain
reasonably accurate values for the error covariance matrix of
the predicted values (matrix P in (3.25)), as several sources of
errors are involved and no model for the time structure of these
errors is available; b. the need to refactorise the gain matrix
at every interval would probably be excessive, impairing the
computational performance of the tracking algorithm.

Another possible approach, which is adopted in this thesis,
is to use a two-step procedure: first the values of the measure-
ments obtained in the present scan are compared with the pre-
dicted values in order to check whether large discrepancies exist;

afterwards an estimation is performed in which suspected measure-



merits receive special attention. In this approach, the increase

in the amount of information available to the estimator is

achieved indirectly by indicating possible bad data. An efficient
way of transferring this information to the estimator can be achieved
using the non-quadratic estimators described in Chapters IV and

V, which have an automatic facility for discriminating against

these suspected measurements. This approach does not have

any one of the disadvantages of the previous one and has the
advantage of using algorithms which have been previously tested

successfully.

6.4.1 BAD DATA DISCRIMINATION TECHNIQUE

In normal conditions of operation (no outage, no
sudden change in load) and if the data acquisition system is
working well (no meter communication failure), the differences
between the predicted values of the measured variables, obtained
using the technique described in section 6.3, and the actual
value of the measurements, should be small. These differences
reflect all kinds of errors involved in the process of estimation-
prediction, like the measurement noise, error in modelling the
time-series, random fluctuation in the load, etc. Although
impossible to prove mathematically, due to the almost empirical
nature of the prediction technique, it is not unreasonable to
assume that this set of differences is a random variable with
an approximated normal distribution of probabilities® ' The
result of simulation studies reported in Chapter VII indicates

that this assumption is acceptable when the measurement error



and the load random variation are modelled as Gaussian white
. (82) e , . .

noise which Is a usual assumption in power system state

estimation studies”2 , . This distribution has a zero mean

and its variance can be determined approximately by off-line

analysis of previously obtained data.

Two types of events can disturb the process described

above:
i. a sudden change in the system operating point
due to loss of a big load, outage, etc.
ii. gross measurement error
In the case of transmission line outage, the change in
status of the line may be reported or not. In the negative case

a wrong model of the network would be used by the estimator.

Both types of events described above are indicated by
some of the differences between predicted and measured values
being larger than the maximum expected (for instance three
times the standard deviation of the prediction error). Moreover
the mean and standard deviation of the sample of differences will
also be far from the expected values. Therefore, by calculating
these parameters of the sample, it is posible to detect the two
types of abnormality. The problem that remains is how to dis-
tinguish between the two situations.

In the case of sudden change in the operating state, the
large differences between predicted and measured values are
correlated as they represent actual changes in the power flow

pattern. In the case of gross measurement noise, these differ-



ences are completely uncorrelated, as failure on one meter does
not have influence in other meters. Therefore, by analysing

the extent of the correlation between these large differences,

a distinction between the two abnormal situations can be achieved.

A possible approach for this discrimination test is to use
a method similar to the one described in references (69) and (70)
in which the "skewness" of the distribution of probability of the
differences between predicted and measured values is calculated
and compared with a threshold limit. As already pointed out in
Chapter IIl, this technique relies too much on a simplified model
of theproblem.

In this thesis an approach based on the spatial (or topo-
logical) correlation of the measured variables was preferred. The
method is based on the principle that if a disturbance like the
ones described in event i. above occurs in a region of the system,
all the measurements taken in that region will experience a sudden
change. Therefore, if a large difference between predicted and
measured values of a specific variable occurs in isolation, i.e.
no other large difference is observed in measured variables in
neighbouring nodes, that is a strong indication of a gross measure-
ment error.

The above principle can easily be developed into an auto-
matic routine to discriminate between sudden change and gross
measurement error situations. One possible procedure is as
follows: a suspected measurement is checked against other
measurements in the same node and in neighbouring nodes; for

each flagged measurement found in these lists a certain number



of points is added to the measurement flag. Depending on the
final scores the suspected measurements are confirmed as con-
taining gross error or not. If high scores are obtained by most
of the flagged measurements, then it is an indication of a real
sudden change in the system state. In practice, such a pro-
cedure should incorporate certain particular characteristics of
the power system in which it is going to be implemented, such
as existence of radial lines, data concentrator in some regions,
etc. The thresholds below which a score should be for a sus-
pected measurement to be confirmed as bad data also depends on
the particular system and should be worked out beforehand.

In figure 6.1 a flow-chart of one possible routine to produce

the above scores is presented.

6.4.2 QUADRATIC-SQUARE ROOT
CRITERION (QSR) ALGORITHM

In this first tracking algorithm the problem defined

in (6.9) and (6.10) is solved using the Bad Data Suppression
technique described in section 4.4. The information obtained,
using the bad data discrimination procedure described in the last
section, is used initially to force the application of the non-quadratic
correction only to measurements suspected of containing gross error.
This improves the suppression effectiveness, speed and reliability
of the algorithm”

Among the various non-quadratic functions suggested in
section 4.4, the quadratic-square root was the one chosen due to
its reported better performance” N~ . Even though the prob-

lem considered here is linear, due to the "extra" nonlinearity



Figure S.1 Flow chert of a routine to produce »cure* Indicjt.ng whether a large change between
predicted and measured values corresponds to a gross measurment error or a sudden
change In the states (the measurement is taken at node N).
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introduced by the non-quadratic criterion, the estimator needs

to be in an iterative form (45).

The derivation of the estimation

equations follows the same steps shown in Chapter IV for the

static case and will produce the following estimator

éft,Hl = Ad +apl51 ul_b F_Ppl §-1

(6.17)

(S. 18)

where A and A are defined as in (4.19) and (4.20) and the

—p —q
elements of the diagonal matrices and and the vectors
and are given by (dropping the indices p and g for simplicity)

if the m-th measurement

bad data or if i > 1 and

A2 0Pl > X

otherwise

is a suspected

(6.19)

where
AZm
. - 3)]
fl1 (az"™ = Sign (AZ™ X°m (* Xo_
-1 AZ
AZ m g

f2 ~ = ( X0, ) ( Xom

126



and

i = iteration counter
m = measurement number
X = threshold

°m = assumed standard deviation of m-th measurement error

If no measurement is flagged as suspected bad data, the
algorithm above reduces to a plain linear WLS estimator and, there-
fore, no iterative process is required. Otherwise, the iterative
process will use as starting point the one obtained by the differ-
ence between the predicted values and the estimated values in
the last interval, which should be very close to the solution and,
therefore, reduce the number of required iterations.

The choice of the matrices B and B (whose elements
are usually the inverse of the measurement error covariance
in the static case) is not simple in the tracking mode. Rigorously
these matrices should be time variant and include some information
about the accumulated error of past estimations. However, as will
be confirmed by the results of simulation studies presented in

Chapter VII, constant matrices whose elements are the covariance

of the measurement error for "half-of-the-scale"” values produce

acceptable results.
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6.4.3 PIECEWISE-LINEAR CRITERION (PLC) ALGORITHM
The application of PLC method described in Chapter
V to the problems given by (6.9) and (6.10) is straightforward.
As the model and criterion are both linear, the resulting estim-
ator will also be linear and, therefore, not requiring an iterative
approach. Each step of the tracking estimator is defined by

the following LP problems:

M
Minimise
m=i
(6.20)
(AN
subject to [H uJ S
-P
and
M
Minimise
m=I
(6.21)
UV*)L v °
where

: are the number of active and reactive

measurements



(A™)'. (av”™)' : are the transformed values of the
increments in the voltage angles and

magnitude as defined in (5.13)

(AZj), (azf) : are the transformed values of the
inet ements in the active and reactive

measurements as defined in (5.14)

Up. Uq. Sp. S”: are as defined in (5.16) and (5.17).

The same remarks about the choice of matrices R_ and
Rq made in the last section apply to the algorithm above.

If no measurement is flagged as bad data, the problems
defined by (6.20) and (6.21) can be solved using the dual simplex
technique described in Chapter V, in which the optimal solution
of the last estimation is used as an initial basic solution. As the
estimations are performed at short and regular intervals, the
difference between the measurement increments (A AZj) from
one interval to the other should be small and, therefore, by
reasons already explained in Chapter V, only few iterations of
the dual simplex will be required.

If at least one measurement is flagged as a suspected bad
data, then a different procedure should be adopted, as explained
below:

i if the suspected measurements correspond to a slack
variable in the optimal basis of the previous estimation, i.e. if
it had no influence on the result of that estimation, then that

optimal basis is maintained in the present estimation, which guarantees



that the suspected measurement is certainly excluded from the
solution. This procedure slightly impairs the optimality of
the estimator, but is convenient from the point of view of com-
putational efficiency.

ii. if the suspected measurement corresponds to slack
variables not in the basis, then two procedures can be followed:
a) to perform a brand new solution of the LP problem in which
these measurements are excluded by receiving a zero weight;
b) to forget about the suspected bad data and perform an ordinary
dual-simplex cycle in the hope that the algorithm will by itself
detect the bad data, as it usually does in the static mode of

operation.

6.5 OVERALL APPROACH

In a practical on-line implementation, the algorithms des-
cribed in this chapter will work together with many others like
the network configurator, data validator, etc., as already pointed
out in previous chapters. Also, they will interface with a data-
base from which all information about parameters, network and
metering system configuration, etc. will be obtained and to which
the results of the state estimator will be directed. Finally, a
certain interaction between the state estimator and the system's
operators is required to sort out situatbns which the estimator
is not able to solve by itself.

Another important aspect to be considered in an on-line
implementation, is the way in which the various components of

the state estimator and correlated programs are scheduled in



order to perform the consecutive estimations. This aspect is
particularly important if the tracking approach is used, as in
that case an almost continuously updating of the state is per-
formed .

In the next sections, these and a few other aspects of
an integrated data processing scheme will be analysed. The
analysis will be limited to general aspects of the problem,
particularly the ones closely associated with the algorithms pre-
sented in this thesis. In a practical development, some partic-
ular characteristics of the problem, like the computer system
configuration, processor features (word length, etc), operational
system, data base structure, etc., should also be taken into

consideration.

6.5.1 INITIALISATION
Power system monitoring is a twenty-four hour

per day job. As a consequence of this requirement, state estim-
ations should be performed in a continuous fashion. However,
in periods of light load (overnight, for instance) or for mainten-
ance purposes, the state estimator may be "switched-off" for
relatively long periods of time. This may also happen as a con-
sequence of a computer or telemetering system breakdown. There-
fore, from time to time, a re-initialisation of the state estimator
is required.

The main characteristic of the re-initialisation operation is
that no adequate information about the recent past of the system

is available. Therefore the estimator should rely solely on one



measurement and status scan to produce a new estimation. This
situation requires the use of the static state estimation approach.
Both tracking algorithms described in this chapter have
the same basic formulation of their corresponding static algorithms.
Therefore they can be easily rescheduled to operate as a static
estimator by changing the input variables (the increment in the
measurement should be replaced by the measurements themselves)
and corresponding outputs, and allowing some iterations. This
procedure should be preceded by a pre-estimation stage in which
thorough checks on the income measurements and status are
performed in order to identify any bad data. Possible approaches
to this pre-estimation stage are the data validators proposed in
references (45,51). A past-estimation bad data detection and
identification module, using the tests described in section 4.3,
is also required. This whole process should be repeated as many
times as necessary to guarantee that this first estimation is free

of any gross measurement or status error.

6.5.2 PREDICTION AND ESTIMATION SCHEDULE
Although primarily designed to produce estimations
at short time intervals, it may happen that in a particular applic-
ation a new estimation at every measurement scan is either not
desired or not convenient, during a certain period of the estim-
ation operation. In that case at least the predictive stage and
the analysis of the changes between scans should be performed

at the arrival of every new measurement scan.



A possible scheduling scheme would be to run the
estimator at regular intervals (say every five scans) or when
the prediction/change analysis stage detects some abnormality
in the new scan. In the latter case, a tracking estimation
would be performed if the abnormality turns out to be a sus-
pected bad data, or a complete static state estimation is run
if a major change in the operating point is detected.

As the time series considered for the prediction technique
uses as observations the estimated values (instead of the mea-
sured values which are net reliable), the predicted parameters
(level and trend) are not adjusted between estimations and,
therefore, only an extrapolation of the present values are per-
formed until new estimated values become available.

In figure 6.2 a hypothetical situation showing the main
aspects of the problem discussed above is depicted. An estimated
value obtained at interval zero is extrapolated until interval 5,
in which another estimation and prediction are performed. At
interval 9 a large deviation between the measured and predicted
value is observed, which the change analysis module interprets
as a bad data, and a new tracking estimation is performed before

the scheduled interval.



Figure 6.2: Example of prediction and estimation scheduling

6.5.3 CONFIGURATOR AND OBSERVABILITY
Whenever the estimator is initialised or a change
ir the status of a circuit breaker or switch takes place, a re-
definition of the network topology and measurement pattern is
required. This updating is performed by a program called the
1etwork configurator which processes logical variables associated

with the status of circuit breakers and switches. Reference (51)



gives a detailed description of a possible approach for the devel-
opment of such a program.

Usually the network configurator consists of two stages:
the first one is used for initialisation purposes, i.e. to build up
the whole network and measurement model; the second one is
used to update this model when a change in configuration takes
place. These two modules will be referred to in this thesis as
the Configurator | and Configurator Il respectively.

After a new configuration is obtained, it is necessary to
analyse whether the available measurements allow the estimation
of the whole state vector. In some situations, due to nonsingular-
ity of the A matrix defined in (4.19)-(**.20) or the infeasibility
of the LP problem defined in (5.15), this estimation is not possible.
In that case the system is declared non-observable”3” 'a n d
usually it is split into an observable and a non-observable region

and the estimation is then performed only for the observable one.

6.5.4 POST ESTIMATION BAD DATA ANALYSIS
The results of every tracking estimation should
be tested, using one of the detection tests described in section
4.3.2, in order to assess if it is free from the effect of possible
bad data. This test is necessary, even when non-quadratic
estimators are used, because in some circumstances the estimators
ay fail in suppressing a bad data, for instance, if this bad
data occurs in a region in which the local redundancy ratio is low.
If bad data is detected by the above test, the safest pro-
cedure is to switch to the static estimator as the resources of the
tracking approach have been fully used at this stage. However,

this situation is bound to occur very infrequently as it requires



the bad data escaping a very hard suppression procedure.

6.5.5 CONFIGURATION ERROR
If a sudden change in the system state was

detected by the change analysis module and, after a static
state estimation is performed, bad data is still detected by
the procedure described in the previous section, that is a
strong indication that there is an error in the configuration.

As a result of the bad data analysis performed after
every static estimation, some measurements may be deleted.
A procedure like the one proposed in reference (59) and re-
viewed in section 9.5 <can then be used to sort out whether
these deleted measurements really contain gross error or are
the result of a configuration error. In the last case, a warning
should be given to the operator in order to check the suspected

status and rerun the network configurator.

6.5.6 GENERAL FLOW CHART

In figure 6.3 a general flow chart of an on-line
state estimator, incorporating all the features described in this
and previous chapters, is presented. In that flow chart the
flow of information, i.e. the way in which the data is used by
the various modules of the program is stored and exchanged,
is omitted for reasons of simplicity. This aspect of the problem
is often highly dependent on the particular computer system in
which the estimator is going to be implemented and, therefore,

requires special attention in each particular application.
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Figure C.3: Flow chart of an integrated statlc/tracklng state estimator



6.6 CONCLUSIONS

The problem of gross measurement and configuration
error suppression is nowadays considered a major issue in
power system state estimation. In order to obtain estimates
not corrupted by these types of errors, a relatively large
degree of redundancy and high time-consuming residual search
procedures are required by the conventional static state
estimation approach.

Tracking state estimation algorithms, like the ones des-
cribed in this chapter, which make use of the extra information
contained in recent estimations and simple assumptions about
the time behaviour of the system state, may become more effic-
ient from the point of view of bad data suppression and com-
putational requirements.

The approach used in this chapter combines a predictive
technique, based on the modelling of the past estimated values
of each measured variable as time series, and non-quadratic
algorithms. Whenever a measurement scan is available, the
actual measurement values are compared with predicted values.
If large discrepancies are detected, this information is trans-
ferred to the estimator, which by assigning less importance to
the suspected measurements, is able to produce a healthy state
estimate.

The computational requirements of the algorithms are
reduced when compared with a conventional static approach while
its efficiency in terms of bad data suppression is increased, as

can be checked by the results of simulation studies reported in

Chapter VII.






In this chapter the results of a comprehensive performance
study of the algorithms developed in the research project reported
in this thesis, which were described in Chapters V and VI, in
comparison with algorithms previously existent, which have been
reviewed in Chapter |V, is presented. The study was performed
using simulated data and the approach used was the Monte Carlo
technique. General comments about the overall results are

presented together with samples of the numerical values obtained.

7.1 INTRODUCTION

A definitive test for a power system state estimation method
can only be made in an on-line environment. This is so because,
as pointed out in previous chapters, no adequate model for the
load-generation matching process is available. Also some additional
elements, like the statistical properties of the measurement noise,
frequency of occurrence and size of gross measurement error,
the probability of occurrence of unreported status change, etc.
are not yet well established. Therefore, it is not possible to
reproduce accurately in a simulated environment the situations
that the estimator will face in practice. However, as a first
step in assessing the potentialities of a newly developed technique,
it is reasonable to perform some tests using simulated data.
Moreover, if two different methods are tested using the same set

of data, a fair comparison of the performance of the methods is

likely to be achieved.



The most used method to assess the performance of a state
estimator algorithm wusing simulated data is the Monte Carlo
approach . In this method, a random numbers generator is
used to produce the measurement error which is added to the
results of an exact calculation of the measured values corres-
ponding to an arbitrary"true" state. Afterwards a state estim-
ation is performed using as input the "corrupted" measurements
and the resulting state estimate is then compared with the true
values. The process is repeated a relatively large number of
times (20 or 30), with different sets of random numbers, to
ensure that the results have some statistical significance.

The choice of the parameters of the simulation, like the
size of the measurement noise, the rate of change of system
variables, etc., is difficult as relatively little practical experience
is available and a lot of intuition should be used. Very severe
situations will probably eliminate methods which would have an
adequate performance in average conditions while mild situations
could hide possible weaknesses of the method.

Another difficult point in a study like the one reported in
this chapter, is the choice of the sample of results to be shown
in a limited space among the large amount of results obtained
throughout the study. The procedure adopted in this thesis is
to concentrate the results in the form of general comments and
to exhibit some numerical values with the only objective of illus-

trating these comments rather than as proof or conclusive evidence.



7.2 SIMULATION OF THE MEASUREMENT SYSTEM

The input data to a state estimator is the network para-
meters and configuration, the measurement pattern (type and
location of the measurements) and the values of telemetered
variables. In an on-line environment these data would be
available in the data-base which is updated from time to time
by the network configurator, the data acquisition system and
the operators. In a simulated study these data have to be
generated by an auxiliary program (simulator) and stored in
some files which play the role of a data base.

The central piece of the simulator is a load flow program
which produces the true values of the state and measured
variables. Other components are routines to specify the re-
quired measurement pattern, to add errors (noise and bad data)
to the true values of the measurement and to simulate the time
evolution of the system. A flow chart of the simulator is given
in Figure 7.1 and in the following sections some of the parameters
used in the simulation study reported in this chapter are also
given.

7.2.1 Simulation of the system time evolution

The time evolution of the system static state is simu-
lated by the calculation of successive load flows in which load
and generation vary from initially given values. Each one of
these load flows corresponds to an operating point of the system
at the moment in which a measurement scan is taken. The load
curve at each busbar is composed of a trend (linear, quadratic,

etc.) plus a random fluctuation. The rate of change of the load



143

Figure 7.1 : Flow chart of the simulation program



is made different for each node or group of nodes. The random
fluctuation is represented by adding normally distributed random
numbers to the trend values. These numbers have zero mean
and standard deviation of 1% of the trend value~62”~. A total
load variation of 50% of the initial values was used and this
variation is distributed among the generators according to pre-
specified percentages. A constant power factor was assumed,

so the reactive load follows the active load.

7.2.2 Simulation of a measurement scan
A measurement scan is obtained by adding some
error to the true values of selected variables from the sequence
of load flow solutions described in the previous section.
The measurement noise is simulated by a normally
distributed error component with zero mean and standard devia-

tion given by

o =.1 (.005 F + .02 Z 7.1
m "3l ( m m’ (7.1)
where
m : measurement number
F : meter full-scale
m
Z : actual value of the measurement
m

The coefficients in equation (7.1) were set taking into consideration

*(28
reported error bounds for telemetering equipment( )



Cross measurement error is simulated by setting some
chosen measurement to values which differ from the true
values by 50% to 100%. The number and location of the bad
data was chosen based on a judgement of the relative difficulty
of detection. Three standard situations were always included
in the studies: a) one isolated gross error; b) more than
one uncorrelated gross errors, i.e. gross error in measurements
electrically far away from each other; c¢) correlated gross errors.
Configuration errors were simulated in the estimation
programs themselves by altering the values of network parameters
in such a way as to simulate the addition or subtraction of a

line.

7.3 PERFOMANCE ASSESSMENT

The performance of the algorithms in the simulation studies
as already commented in the introduction to this chapter, is
assessed by comparing the estimated values of the measured
variables and the respective true values. However, the differ-
ence between estimated and true values alone is not enough to
characterise the performance of the estimator. A comparison of
the size of this difference with the error present in the measure-
ments is necessary in order to assess whether the result of the
estimation constituted an improvement over the raw data.

In order to quantitatively measure the quality of the

estimator results, the following performance indicators were used:
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mgl,M °m
M max Zm - Zm 7.5)
max m=1,M am -
where
M : number of measurements

an. ZM ZI : estimated, measured and true values
of the m-th measurement

standard deviation of the m-th measurement error

The above quantities give an absolute measure of the
measurement and estimation errors. Relative indicators of the
estimator performance can be obtained dividing corresponding

quantities as follows:

n _ave

(7.6)
ave ~ dM
ave
R
max (7.7)
max

max
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The values obtained for these indicators can be interpreted

as follows:
» 1.0 the result of the estimation is worse
than the original data
s 1.0 the result of the estimation is about
R
ave
the same as the original data
max

« 1.0 the result of the estimation is better
than the original data. |If bad data
were present in the measurements, it

means that the bad data were suppressed,

7.4 COMPUTATIONAL FACILITIES

The simulation studies reported in this chapter were per-
formed in a general purpose 65K/265K, 60-bit word, CDC 7600
computer. This machine does not have integer-variable packing
facilities, i.e. an integer or a real variable use the same word
length. Therefore, storage requirements reported for the algo-
rithms should be viewed as an upper limit, as in machines which
have the packing facility it is bound to be smaller. The instal-
lation operates in a time share mode which implies that the CPU

times recorded for the algorithms should be considered as average

values.

7.5 TEST SYSTEMS AND MEASUREMENT PATTERNS
The systems used in the simulation studies were the I|EEE

14, 30, 57 and 118 busbar standard load flow test systems.
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Several measurement patterns were defined for each system

by choosing different combinations of voltage magnitudes, in-
jections and line-flows as measurements, with redundancy ratios
varying in the range 1.6 to 3.3, which are limit values likely

to be found in practice' . Table 7.1 shows some information
about the test systems as well as two different measurement
patterns for each system, one corresponding to a low and the
other to a high redundancy ratio. These two measurement pat-
terns are the ones associated with the results that will be shown

in later sections of this chapter.

No.of Max. Number of measured (*)

System lines R/X voltages injections flows Redundancy
2 4 40 1.7
14 BB 20 .51 2 . 80 3.9
6 12 82 1.7
7 14 160 1.6
57 BB . 80 ‘1.09 7 14 320 3.0
11 10 18 372 1.7
118 BB 186 .47 10 18 744 3.3

Table 7.1: Test systems and measurement patterns

(*) The redundancy ratio is obtained by dividing the number

of measurements by the number of state variables.



7.6 PERFORMANCE COMPARISON OF THE PLC BDS AND
WLS ALGORITHMS

The simulation studies involving the improved version
of the Piece-wise Linear Criterion (PLC) estimator described

in Chapter V were performed with the following objectives:

i. to assess the bad data suppression capability of the algorithm,
both in its basic formulation and in the decoupled version, rela-
tively to the BDS estimator which is the only other similar
approach available in the literature.

ii. to compare the computational performance of the algorithm in
terms of time and storage requirements and reliability with

other state estimation approaches.

For each of the test systems and measurement patterns
shown in Table 7.1, a total of twenty simulations were performed,
each one corresponding to a different set of measurement errors
(noise and bad data). In each one of these simulations, estim-
ations were performed using the improved version of the PLC
estimator, the basic PLC, the basic VVLS, the fast decoupled WLS
and the fast decoupled BDS. From the results of these studies,

the following conclusions were drawn:

i Bad data suppression capability Both basic and improved
versions of the PLC algorithm showed results similar to
BDS estimator. Both approaches have an adequate perform-
ance for the cases of high redundancy (say over 2.0) in
which the estimators were able to suppress bad data in more

than 900 of the simulated situations. In the cases of low
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redundancy, the rate of total or partial failure was
about 50%, most of the cases corresponding to inter-
active bad data. Almost no difference was noticed
between the performance of the basic and decoupled
versions of the PLC estimator which confirms assumpt-
ions made in Chapter V. In Figure 7.2, the results of
some simulations performed with the I[EEE 30-busbar
system are shown. These results are typical of the
ones found throughout the study. Table 7.2 below
gives an indication of the type and quantity of bad
data associated with each of the simulations depicted

in Figure 7.2.

Simulation Bad Data

0 None

1 None

2 Single

3 Single

H Two non-interactive

5 Two non-interactive

6 Four non-interactive

7 Two interactive

8 Four interactive

9 Four interactive

10 One line with wrong status
Table 7.2: Type and quantity of bad data present in the

simulations for which results are shown in
Figure 7.2.
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(a) Low redundancy

(b) High redundancy

Figure 7.2 : Comparison of the performances of the LPC, BDS
and VVLS estimators. Test system |EEE 30-busbar.



Filtering capability The capability of the PLC estimators
to filter out the measurement noise is weaker than that

of the WLS based algorithms. In fact, in most of the
tested cases in which only the measurement noise was
present, the results of the estimation with the PLC algo-
rithm exhibit about the same level of noise as the measure-
ments themselves. This can be observed in Figure 7.2(a)
and (b) for simulations number 0 and 1 in which no bad
data is present.

Computation Time Figure 7.3 shows the average CPU
time required by the PLC and VVLS algorithms for the

test systems and measurement patterns contained in Table
7.1. From this figure the large reduction in the execution
time requirement achieved by the improvements introduced
in the PLC algorithm, which were described in Chapter V,
is evident. Although the ti me requirement of the PLC
algorithm remains larger than the fast decoupled BDS and
WLS algorithm, these requirements are now acceptable for
practical application. A last observation about Figure 7.3
is that the time requirement of the PLC algorithm increases
with the increase in the redundancy ratio. As in practice
high redundancy ratios are not usual, this feature of the
algorithm does not constitute a serious drawback.

Storage The difference in storage requirements between
the fast decoupled PLC and WLS (or BDS) algorithm is
located in the space used to store the basis matrices in

the first and the gain matrix in the second. The basis






matrices have higher dimension but less percentage of
non-zero elements than the corresponding gain matrices.
The high sparsity of the basis matrices are mainly due

to the columns corresponding to the slack variables.

A disadvantage of the PLC algorithm is that, due to the
nature of the LP algorithms, these basis matrices cannot
be factorised in an optimal way as is the case with gain
matrices in the WLS algorithms. However, using the
re-inversion technique presented in Chapter V and Appen-
dix A, it was possible to keep the storage requirement

of the PLC algorithm about only 40% higher than the WLS
method.

Reliability The reliability of a state estimation algorithm
is understood in this thesis as the ability of the algorithm
to reach a solution in a reasonable number of iterations,
despite the difficult conditions imposed by the presence
of gross measurement or configuration errors. In the
simulation studies performed with the PLC and BDS algo-
rithms, neither of the two have failed to reach a solution
in any of the tested cases but the PLC algorithm presented
a much more regular performance in terms of the number
of required iterations, as can be observed in Figure 7.4,

which indicates a more reliable performance.
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7.7 TRACKING STATE ESTIMATOR RESULTS

The main objective of the simulation studies performed
with the tracking state estimators described in Chapter VI was
to assess the performance of the approach in relation to the
static state estimation method, in terms of bad data suppression
capability. Secondary objectives of the study were the compar-
ison of the performance of the two developed tracking algorithms
(PLC and BDS) and evaluation of computational requirements.

As shown by the results of the previous section, and
as already commented on in previous chapters, the difficulty
in bad data detection and elimination using the static approach
occurs mainly in the case of low redundancy ratio system.
Therefore the simulation studies reported in this chapter con-
centrated on the low redundancy system described in Table 7.1

In sections 7.7.1 and 7.7.2 some comments about the
prediction and logical search procedure are presented in order
to individually analyse their performance and in section 7.7.3
the overall performance of the tracking state estimators is dis-

cussed .



7.7.1 Prediction technique results

The results obtained using the predictive tech-
nique described in section 6.3 can be considered adequate for
the purposes of bad data detection and identification. In all
the simulations performed, errors greater than 1% (which is the
size of the random component of the load) seldom occurred and
the maximum error observed was less than 5%. Therefore the
simulated bad data (which was set between 50% and 100% of the
measurement size) were easily spotted. These results apply to
all the shapes of the load trend component tested (linear, quad-
ratic, sinusoidal and exponential). Several values of the smoothing
constants a and 6 in (6.12) and (6.13) were tested and the value
of 0.3 for both constants was found to produce the best results.
The difference between measured and estimated variables, in the
cases in which no bad data was present, has a distribution of
probability close to the normal in most of the observed cases
which confirms the assumption used in Chapter VI. In Figures
7.5 and 7.6 typical samples of the results obtained using the pre-

diction technique are shown.

7.7.2 Bad Data discrimination results

The bad data discrimination technique described
in section 6.U.1, which has the function of differentiating between
a situation of sudden change in the system state and gross error
in the measurements, worked in almost all the cases of single
or multiple non-interactive bad data, but has a fairly high rate

of failure in the cases of multiple interactive bad data, particularly



(a) Linear trend
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Figure 7.6: Statistical distribution of normalised differences between
measured and predicted values in a sample of a simulation
using the IEEE-118 system, low redundancy, linear trend.

Figure 7.7 IEEE 14-busbar system showing the measurement pattern
used in the example of the logical search routine



the ones in which the bad data were concentrated in regions
of the system with low local redundancy ratio. These cases,
however, constitute situations not likely to occur in practice
and some of them could not be solved even using the logical
residual search described in section 4.4 followed by repeated
runs of the estimator.

The determination of the limit scores, below which a
measurement should be flagged as suspected bad data, were
performed by inspection of the network and measurement pat-
tern. The process may become tedious for large networks, in
which case it should be automated in a program. Such a program
was not developed in the research project described in this
thesis and is left as a suggestion for further research.

In order to illustrate the behaviour of the bad data dis-
crimination routine, as well as the determination of the Ilimit
scores, an example involving the I|EEE 14-busbar system, with
the measurement pattern shown in Figure 7.7 is now presented.
For this example, and in most of the simulation studies, the
number of points attributed to each flagged measurement at the
same node (W2) and in nodes directly connected to the node of
the suspected measurement (W3) were set to 2 and 1 respectively.
The maximum possible scores associated with nodes in which there
are measurements, are given in Table 7.3. This table indicates
that, apart from nodes 11 and 12, a relatively high degree of
local redundancy exists throughout the system. Therefore it was
decided to fix the maximum scores based on the situation in which
at least one other measurement in the same node and two in

neighbouring nodes are flagged, i.e. a maximum score of 4 to



characterise a bad data except in nodes 11 and 12 in which this

maximum score was made equal to 2.

Number of measurements

Maximum

Node at the at neighbouring possible

same node node scores
1 2 5 9
2 3 9 15
3 1 7 9
4 2 11 15
5 0 14 14
6 3 3 9
7 1 5 7
9 1 6 8
1 0 2 2
12 0 2 2
13 0 5 5

Table 7.3: Maximum scores for the example using
the bad data discrimination technique

Two situations in which large discrepancies between pre-
dicted and measured values were observed, are included in
this example. In the first one, gross measurement equal to
500 of the true value was introduced in the measurements of
the power flows of lines 5-6 and 6-13. In the second one, a
sudden change in the system operating point was simulated by
setting the load at busbar 3 to zero. The results of the dis-

crimination routine is shown in table 7.*, in which N1 corresponds
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to the number of flagged measurements in the same node and N2

is the corresponding number for neighbouring nodes.

Case Large changes N1 N2 Score Decision
1 flow in 5-6 0 1 1 Bad data
flow in 6-13 0 1 1
injection in 1 2 2 6
injection in 2 1 5 7
injection in 3 1 2 4 sudden
? flow in 1-2 2 2 6 change
flow in 1-5 2 2 6
flow in 2-3 1 5 7
flow in 3-4 1 2 4

Table 7.4: Results of the example using the bad
data discrimination procedure (only
active measurements are considered)

7.7.3 Overall approach results

For each one or the four low redundancy measurement systems
shown in Table 7.1, a total of 10 simulations were performed using
different sets of measurement noise and bad data. Different shapes
of the load trend (linear, quadratic, sinusoidal, etc.) were also
used. In each simulation a total of 30 measurement sets, corres-
ponding to equal number of measurement scans, were generated.
The bad data were introduced in the time intervals 10 and 20. The
system state was estimated for the whole 30 interval period using
the PLC and QSR (or BDS) tracking estimators described in section

6.4. At the time intervals 0, 10, 20 and 30 complete static state
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estimation (see Figure 6.3) was performed using the fast
decoupled state estimator and logical residual search described
in sections 4.3 and 4.5. From the results of these studies,

the following conclusions were drawn:

i. Bad data suppression capability Both PLC and QSR
tracking estimators showed a percentage of success
in suppressing bad data superior to 90% of the tested
cases against 75% for the plain static approach.

Some of the cases in which the tracking estimators
succeeded and the static one failed, correspond to
relatively simple cases of interactive bad data which
have a fair chance of occurrence while the 10% of

the cases in which both approaches failed corres-
ponds to situations less likely to occur in practice.

No substantial difference was observed in the perform-
ance of the PLC and QSR tracking estimators.

In Figures 7.8 and 7.9, two examples of the
results obtained in the studies are shown. These
results correspond to the most interesting group
of results, i.e. the ones in which the tracking algorithms
succeeded while the static estimator failed. The
type, size and place of the bad data simulated in

these examples are shown in Tables 7.5 and 7.6.



169

Time
interval Bad data
10 + 50% error in act./react, injection at node 1
and act./react, flows in line 1-3
20 + 50% error in act. /react, power flows in
lines 1-3 and 1-2
Table 7.5: Simulated bad data in the example
shown In Figure 7.8.
Time
interval Bad data
10 + 50% in act./react, injections at nodes 1 and 3
20 + 50% in act. /react, injection at node 7 and in
flows of lines 6-7 and 7-8
Table 7.6: Simulated bad data in the example shown

in Figure 7. 9.

Tracking and filtering capability Both algorithms

were able to follow the time evolution of the systems for

all the types of trends experimented. As can be

seen in Figures 7.8 and 7.9, in the intervals in

which no bad data is present, a filtering performance

more or less similar to the one shown by the corresponding
static approach was observed. This fact indicates that

no substantial loss in that respect should be expected

from the use of the tracking approach.
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Comparison of the performance of the QSR and PLC tracking estimators with the static
estimators. The static estimation is performed at intervals 0. 10. 20 and 30. Bad data
is introduced in the measurement scans at intervals 10 and 20. Test system: IEEE 30-

busbar. linear trend.

figure 7.8:



Comparison of the performance of the QSR and PLC tracking estimators with the
static estimator. The static estimation is performed at intervals 0, 10, 20 and 30.
Bad data is introduced in the measurement scans at intervals 10 and 20. Test

system IEEE 57-busbar, sinusoidal trend.

Figure 7.9:
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Computation time A definitive time comparison
between the static and tracking approaches is
difficult to be achieved as both approaches use
the computer facilities available in a different
way. The static estimator is executed once at
certain specified intervals while the tracking
estimator is almost continuously run. However,

as a rough guide to the computation time require-
ments of both approaches, some typical figures
obtained in the simulation studies are given in
Table 7.7. The results shown in these tables
correspond to cases in which bad data was present

in the measurements.

Tracking

B D .Dis- Estimation Total Static
System Prediction crimination PLC QSR PLC QSR
19 BB .001 .005 .009 .009 .015 .015 .080
30 BB .002 .010 .020 .013 .032 .025 .190
57 BB .009 .023 .039 .030 .066 .057 . 310
118 BB .009 .057 .219 .119 .280 .180 .987

Table 7.7: Typical computation time for PLC and QSR

tracking estimators and state estimator ( sec.)

Storage The extra storage required by the overall
approach described in section 6.5 is due to the pre-

diction and bad data discrimination routines. The



requirements of the prediction routine is small as
only the result of the last prediction is required
by the exponential smoothing technique. The re-
guirement of the bad data discrimination routine

is also small as it requires few extra arrays for
the measurement flags. The basic data used by the
discrimination routine (feeder and measurement
tables) have to be used by other components of the
overall estimation approach and therefore does not
increase the overall requirement. In the programs
developed the total extra storage does not exceed
10%.

Reliability The PLC tracking estimator is linear.
Therefore no iterative process is required which
guarantees a high degree of reliability. The iter-
ative process used by the QSR estimator is also
very reliable as very good initial conditions (given
by the prediction routine) are available. Usually
only one iteration is enough to obtain a solution

with a 10"“ tolerance on the state variables.
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7.8 CONCLUSIONS

Two sets of simulation results were reported in this chapter;
the first one is a comparison of the performance of the improved
version of the PLC state estimator described in Chapter V with
the static state estimator algorithms reviewed in Chapter 1V; the
second one is a comparison between the tracking state estimation
approach presented in Chapter VI and the static approach described
in Chapter IV and V.

The results obtained with the PLC estimator indicate that
the method has a large potential applicability in power system state
estimation mainly due to its good bad data suppression capability.
The feature of the method of being able to reject bad data auto-
matically allows a direct comparison with the BDS algorithm which
is the only other state estimator with this property. The application
of the two methods (PLC and BDS) to a large number of cases of
single, multiple, interactive and non-interactive bad data produced
results which demonstrates that the two methods have about the
same performance in bad data suppression which is also equivalent
to the one obtained by the logical residual search procedure des-
cribed in Chapter IV. This suppression effect is adequate in systems
with relatively high redundancy ratio but become less effective in
system (or regions of a system) in which this redundancy ratio is
smaller.

The PLC algorithm has shown a more reliable convergence
characteristic than the BDS method, reaching the solution in almost
the same number of iterations for a specific convergence tolerance

regardless of the number, size and place of the bad data. This is



a characteristic particularly important for a method which is going
to be used on-line.

A great improvement in the computational requirements of the
PLC algorithm was achieved by the introduction of the modifications
suggested in Chapter V. The time and storage requirements of
the algorithm in this version, although still longer than the equiv-
alent WLS algorithms, was found to be acceptable for on-line
implementation.

The tests performed with the tracking state estimators (PLC
and QSR) show that both estimators are able to follow (or track)
the time evolution of the system state vector with an accuracy
comparable with the uncertainty of the systemls operational limits.
This performance was observed in periods of relatively large load
variation and for different shapes of the load curve. The QSR
tracking algorithm usually produces results more accurate than
the PLC tracking algorithm whichis a result similar to the one
observed in the corresponding static algorithms.

Both tracking algorithms have shown an improved bad data
suppression effect in relation to the static estimation algorithms,
particularly in the case of systems with not very high redundancy
ratios. Several cases of interactive bad data in such systems,
which were unidentified by the static estimators, have been sup-
pressed by the tracking estimators. These results confirm the
effectiveness of the prediction-discrimination technique in increasing
the amount of information available to the estimator and consequent
improvement of its detection capability. No substantial difference
in the bad data suppression effectiveness was observed between

the PLC and QSR tracking estimators.



The storage requirements of the tracking estimators
are practically the same as the ones of the equivalent static
approaches as most of the information required by the prediction-
discrimination procedure is also used by the static algorithms.

The time requirements of tracking algorithms if a single scan is
considered, is much less then the one required by the equivalent
static algorithm, but this cannot be considered in absolute terms
as the two approaches use the computer facilities in different ways.
The QSR algorithm is slightly faster than the PLC algorithm.

The PLC tracking estimator, being a non-iterative algorithm,
is theoretically a more robust estimator than the QSR tracking
estimator. However, in the cases studied no convergence problems
were observed for the QSR estimator probably due to the avail-
ability of an excellent starting point for the algorithm produced

by the prediction routine.



CHAPTER VIM

GENERAL CONCLUSIONS
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The use of digital computers for on-line control and
supervision of power systems has become common practice
nowadays. The main objective of this control is to keep the
system operating point in a secure region. This preventive
or security control is achieved by the use of sophisticated
algorithms which simulate a set of contingencies likely to occur
and detects possible emergency situations caused by these
contingencies. These algorithms require as starting point the
knowledge of the system present operating condition or state.
State Estimation has become one of the most accepted methods
of obtaining these operating conditions from telemetered values
of some system variables due to its advantages in terms of
generality, efficiency, reliability and economy.

At least three approaches have been proposed for the
power system state estimation problem: static, dynamic and
tracking. In the first one, isolated measurement scans (snap-
shots) are processed at some prespecified instants of time using
a WLS algorithm. In the second one the Kalman filtering tech-
nigue is used to produce a continuous processing of consecutive
scans by a method in which the model of the system dynamic is
used to project into the future the information obtained in previous
estimations. The third approach may be understood as a compromise
between the first two in which static state estimation algorithms

are adapted to take into consideration the time varying character-



isties of the system state. The disadvantage of the first approach
is the requirement of a relatively high redundancy ratio and/or
computation time to produce reliable estimations. Dynamic estim-
ators could overcome this problem if adequate models for the power
system dynamics and the measurement uncertainty were available.
As this is not so, the estimators derived using very simplified
models do not exhibit the properties of the true dynamic estimators,
apart from some undesirable computational drawbacks. Tracking
state estimators may become more efficient than the other two
approaches by combining some advantages of the two approaches
and avoiding some of their disadvantages.

Most of the work carried out in power system state estimation
so far has been concentrated on improving the performance of the
WLS based algorithms for static estimation. Some of this effort
was directed towards the development of faster algorithms such
as the fast decoupled and line-only estimators. Another important
part of the work was concentrated on trying to overcome the in-
ability of the original WLS algorithm to deal with gross measurement
and topological error. Some success has been obtained by the
use of logical residual search procedures based on statistical pro-
perties of the measurement error. Another attempt to solve the
problem was made by a modification in the original WLS criterion
itself in order to make the algorithm less vulnerable to bad data
(CDS method). Both approaches have a similar performance in
eliminating bad data which is adequate in a large number of prac-
tical situations with the exception of the ones in which the bad

data occurs in areas of low local redundancy. Both approaches
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are not able to distinguish whether a suppressed bad data
corresponds to a gross measurement or configuration error.
This distinction can only be made by a further stage in which
the results of the estimation are examined.

A completely different attempt to produce an estimator
with good performance in the presence of bad data is the Piece-
wise Linear Criterion estimator which represents the estimation
problem as a series of LP problems. The original formulation of
this method has a bad data performance similar to the BDS algo-
rithm referred to above, but very large storage and computing
time requirements. In Chapter V of this thesis, an improved
version of this algorithm was proposed, based on the fast decoup-
ling of the LP problems and the simultaneous use of the simplex
and dual simplex algorithms to solve them. Simulation studies
reported in Chapter VII showed that this improved version of
the algorithm has much less storage and computing time require-
ments than the original formulation while maintaining its bad data
suppression qualities. Although the time and storage requirements
of the improved version of the PLC algorithm are still larger than
the corresponding WLS algorithm, these requisites are acceptable
for on-line implementation. The algorithm is extremely reliable in
terms of the number of iterations required to reach the solution
even in cases of large numbers of bad data in which the BDS algo-
rithm usually shows a slight instability.

As pointed out above, the static estimation algorithms have
some difficulty in suppressing bad data in regions of the system
with low local redundancy. In those cases either a time consuming

search for the bad data is required, or, even worse, the methods



arc not able to identify the bad data at all. To increase the
redundancy ratio by the installation of extra measurements points,
a large investment in meter and telecommunication equipment
would be required. An alternative to this physical improvement
of the redundancy ratio can be achieved by the use of the
tracking state estimator approach referred to above. In Chapter
VI of this thesis, a class of tracking state estimators developed
according to this idea have been reported. The estimators are
based on a linear static incremental model of the static state time
evolution. The increase in the effective redundancy "atio is
achieved by a combination of a predictive stage based on time-
series forecasting technigues and an estimation stage using non-
guadratic criterion estimators. Under the assumption of smooth
load variation, an abnormality is detected whenever the measured
values of a quantity deviates largely from its predicted value.
This abnormality can be either caused by a sudden change in

the operating state (loss of a large load, line outage, etc.) or
gross error in the measurements. A logical check routine based
on the topology of the network and measurement system is used
to differentiate between these two situations. The information
produced by this routine is then transmitted to the estimator in
order to decrease or even eliminate the influence of the bad data
in the estimation. Simulation studies comparing the performance
of the tracking and static methods, which were reported in Chapter
VIl of this thesis, show a more reliable bad data suppression
capability of the tracking approach in the case of systems with

redundancy ratios in the range likely to be found in practice.



The result of the tests performed with the state estim-
ation algorithms described in this thesis, in which a wide
variety of measurement patterns and error types and sizes were
simulated, indicates that the state estimation approach may have
a high degree of reliability and computational efficiency provided
these algorithms are combined adequately and the measurement
system has a reasonable amount of redundancy. The integrated
use of tracking algorithms to follow the slow time variation of the
system state with static algorithms for initialisation purposes or
in cases of sudden change in the system state, was found to be
the most efficient way of obtaining consecutive state estimations
from the point of view of the redundancy ratio required for a
given degree of reliability in the estimates and the better util-
isation of the computational resources. Although a definitive
evidence of the suitability of the state estimation approach can
only be achieved by tests performed in an on-line environment,
the results obtained with simulated data show a performance of
the algorithms high enough to recommend the state estimation
approach for use in power system monitoring and control.

Although the theoretical background for power system state
estimation is at pressent well established and efficient algorithms
are available, some improvements in the existent methods are still
possible and desirable. One of these, which has already been
discussed above, is the effective on-line identification of topological
errors which may have been treated as gross measurement errors
by the state estimator. Another point which requires some investi-
gation is the error analysis of non-quadratic estimator results in

which case a similar analysis existent for the VVLS algorithms is
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not valid. An interesting point for further investigation, which
arises from the prediction module used in the tracking estimators
described in Chapter VI of this thesis, is a possible association
of this module of the estimator with the one responsible for the
short-term load forecasting. Finally, as a result of increasing
use of new computer hardware facilities, like computer networks
and vector and parallel processing, an investigation of the influ-
ence of this new technology in the power system state estimation

methods should be considered carefully.



appendix a

PROGRAMMING TECHNIQUES
SOME LINEAR



In this appendix a brief review of the linear programming

techniques used in developing an efficient PLC estimator is

presented.

The aims of the appendix are to complement the

information contained in Chapter V and to establish a common

notation and te rminology rather than to present a comprehensive

review of the subject.

in each

form as

where:

Al

The

THE REVISED SIMPLEX METHOD113' “3" 57)

linear programming problems which have to be solved

iteration of the PLC estimator can be written in a general

minimise J =c¢c x

subject to A x = b

n>m

: objective function
: cost coefficient vector (nxl)

: vector of unknown variables, including the

main and slack variables (nxl)

: constraints coefficient matrix (nxm)

known r.h.s. vector (mxl)

(A.1)

(A.2)

(A.3)
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A basic solution for the above problem is a vector
obtained by setting n-m unknown variables equal to zero and
solving the resulting square system of equations obtained from
(A. 2). If this basic solution satisfies (A. 3) it is called a
basic feasible solution (b.f.s). The simplex algorithm is a
procedure which searches for the optimum by discrete changes
from one b.f.s. to the other, starting from any b.f.s., and
improving (decreasing) the objective function at every step.

At each step of the algorithm, the unknown variables
are divided into a set of m basic variables (x”) and m-n unknown
non-basic variables (£3). The elements of the cost vector and
coefficient matrix corresponding to the basic variables are called
the basic cost vector (~) and the basis matrix (B). Equations

(A.1) and (A.2) then become

[Al B] = b (A .3)

J (A. 4

As the non-basic variables are made equal to zero, the b.f.s. at

each step of the algorithm is given by

(A.5)



with the associated cost

3 =ibib (A.6)

The simplex algorithm, in its revised version, is as

follows:

Find an initial b.f.s. and corresponding initial

basis matrix

Calculate the reduced cost vector c*:

. . A.7
¢ =c g B 1A (A.7)

Determine: min ¢! =<c]. , j = non-basic variables

where c! is an element of c¢'.

If ¢ > 0, stop. The current basic solution is optimal.

Calculate

P=B A, (A-8)

where A” is the s-th column of A.
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P. P
5. Determine: min j-J = r-
i bi br

where p. and b. are the j-th elements of P and

b respectively.

6a. Interchange xr by xg as basic variable.

b. Update B 1 by a pivot operation on the element
at column s and row r.

c. Compute the new basic solution : x» =B 1b

Return to step 2.

A.2 INVERSE BASIS IN THE PRODUCT FORM(8'9'13'40' 57" 711

In step 6b of the revised simplex algorithm presented
in the previous section, the inverse basis matrix B is updated
by a pivot operation. An equivalent operation is performed

by multiplying the previous basis by the following elementary

matrix.

Ej (A.9)



where

a.
r 1 e ' = m , 1ir
rs
n. = (A .10)
, =
rs
a.. = element of A.

After k pivot operations, the inverse basis is given by:

5. * Ek Ek-i =+ -1 Zinitial (A-1D)

The elementary matrices can be stored by recording only
the non-zero elements (and their row position) of the non-unit
column and its position in the matrix. These columns are often
called "eta-vectors".

If the basis matrix is sparse, great savings in storage
and computing time can be obtained by the representation of its
inverse in compact form provided some precautions are taken as
explained in the next section.

40, 46, 57, 71
A.3 REINVERSION TECHNIQUES( - 46,57, 71)

If the inverse basis in product form is used, at each
iteration of the revised simplex algorithm a new eta-vector is
generated and added to the current set. Therefore the number
of elements required to represent the inverse basis increases very

rapidly with the number of iterations. The problem is aggravated



by the fact that eta-vectors generated in late iterations tend
to contain more non-zero elements. Apart from obvious large
storage requirements, this problem also affects the computing
time as more elements enter in the product defined in (A. 11).
The representation of the inverse basis as a product
form is not unique. It depends on the chosen sequence of
pivot operations. This sequence also has a drastic influence
in the generation of non-zero elements. Therefore after some
iterations it may become worthwhile to compact the represent-
ation of the current inverse basis by a regeneration of the eta-
vectors, using the original problem data and an optimal sequence
of pivot operations. This has also the advantage of eliminating
cumulative errors.
The basic procedure in developing a set of eta-vectors

is as follows:8

1. select a column of the basis not already selected for
pivoting.
2. transform this column by applying the current set

of eta-vectors.

3. choose a pivot element for the transformed column
in a row where no column has pivoted previously.

4. form a new eta-vector from the transformed column
using (A. 10) and add to the eta-vector set.

5. repeat steps 1 through 4 until all columns have

been pivoted.



Many procedures to optimise the process of generating
the eta-vectors just described are available in the literature.

The improvements sought by these procedures are:

a. to minimise the time required to generate a new
set of eta-vectors by reducing the number of
"column transformations" (step 2 of the above

procedure).

b. to reduce the number of created zero elements.

An analysis of the generation process shows that both
objectives can be achieved if the rows and columns ordering
of the matrix is re-arranged in such a way as to keep the matrix
as close as possible to a lower triangular representation. Most
of the basis matrices found in practical problems cannot be
fully triangularised and attempts to do so result in the matrix
in the form shown in Figure A.l, in which the dashed area
contains only zero elements. Pivot operations down the main
diagonal in section A of the matrix will neither require the exe-
cution of step 2 of the procedure described above nor create non-
zero elements.

Section B of the matrix shown in Figure A.l is often
called the "bump" and the sorting out of an optimal sequence for
the pivoting of its elements is the main step in a reinversion
method. Many techniques to find this sequence are available in

the literature. The one which was used in the program developed
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Figure A.1

Figure A .2



to test the PLC estimator is called Pre-assigned Pivot Procedure
and is described in reference (46). The basic idea of this
method is to postpone columns in such a way as to have as

many as possible columns with only zeros above the main diagonal.
The postponed columns are known as "spikes" and are the only
ones responsible for the creation of non-zero elements.

At the end of the procedure the matrix would have the form

given in Figure A. 2.

A.4 DUAL-SIMPLEX ALGORITHM(43'57,71)

The test of optimality in the revised simplex algorithm
requires that all components of should be positive. As can
be observed in (A.7), the value of C1does not depend on the
r.h.s. vector b. Therefore, any basic solution which produces
all C' positive and is also feasible will be optimal independently
of the r.h.s. vector.

This fact can be exploited for the solution of repeated
linear progra Timing problems which differs one from the other only
by the vector b. The first problem is solved by the (primal)
simplex algorithm given in section A.1l. As a subproduct of
this solution an optimal basis matrix is available. For the next
problem this basis will remain optimal as long as the basic solution
given by (A.5) is feasible, i.e. 0. Otherwise a procedure
based on the duality theory can be developed to move from this

basic solution to another in such a way that is kept positive
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and eventually reaches the optimal solution. This procedure is

called the dual simplex algorithm.

Assuming that a basis matrix for which the corresponding

C' 2 0 is available, the dual simplex algorithm is as follows:

1. Calculate : x»~ = 1b

If x» i 0, stop. The current basic soiuticn is optimal.

2. Choose row r as

*b,r = min ~b,i <0

where xb i are the elements of Xu..

3. Choose column s as
C c!

— = min —Jr
- p5 - pj

where CJ and Pj are the elements of Cland P

respectively as defined in (A. 7) and (A.8).

4. Obtain the new basis by a pivot operation on the

element r-s and go back to step 1.






B. 1 BASIC METHOD

A time-series is a collection of observations made sequen-

tially in time~7~. The problem of forecasting future values of

a time-series can be summarised as follows: given a series of
) o ) A
observations X'i’ x 1( Xn' it is required to forecast xn+h
1

for some positive integer h. The earliest version of exponential
smoothing, which was proposed by C. C. Holt in 1978717'**2' 52/,
applies only to the case in which the time-series is stationary

and non-seasonal. In that case a reasonable estimate of the value
of the series in the next interval is given by a weighted sum of

past observations

<
I
o
+
o
<
+
o
<
+

= B.1
n+2 o*n 1" n-1 2°'n-2 ( )
where Cj, i = 0,1,...,n, are weights. If more weight is to be
given to recent observations, a possible set of weights would

be a series of geometric weights which decrease by a constant

ratio like
c. = a(l~a) , i —0,1,... (B. 2)
/here a is a constant such that 0< <i<l. In that case (B.1) becomes:
= + - 0 .+ - - + ee*
el a xn a(l-o9 Xn-i a(l-a)2 X, ;

(B .3)
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The value given by (B.3) depends on all the previous
observations. In order to obtain an expression in which this
value is made dependent only on the last observation, equation

(B.3) is usually re-written as:

Xn+1 a xn + (l-a)(ax "+ a(l-a) xn_2 + eee)

(B.«»)

which produces the following recursive form

*n*1 = a *n + (1-a) a*n-1 (B *5)

Equation (B.5) represents a basic algorithm for basic
exponential smoothing which replaces the original series Xj
by a "smoothed" series x... A starting point to the algorithm
can be chosen simply by setting Xj = x~. The forecast of
future values of the series are given by the latest smooth

value, so that

X = X (B .6)

The constant a is termed the "smoothing constant" and
an optimal value for this constant can be obtained by minimising
the sum of the squared error which would be obtained if past
values of the series were calculated using (B.5). The mini-
misation is carried out as follows”~”~ : the sum of squared pre-
diction errors is computed for different values of a between 0 and

1, say in steps of 0.1, and a value is chosen which minimises



this sum. Usually the sum of squares is quite flat near the

minimum and so the choice of a is not critical.

B.2 HOLT-WINTERS METHOD

The prediction procedure described in the previous section
can be general ised to apply to time-series containing a trend.
One of the possible generalisations available is the method devised
by Holt and Winters. This method, for the case of linear trend,
is given by:

X_ = X, * {1-a)(xn_l (B.7)

Tn-,>

B .8
= A (xn ' Xn-1> + (1-y) Tn-1 ( )

where a and y are constants such that 0< y <1.
A simple way to obtain "starting up" values for the algo-
rithm given above is to set
(B.9)

(B .10)

The forecast of future values Of the series is given by






c.1 INTRODUCTION

The following three programs have been developed in

association with the research work reported in this thesis:

Simulator
BDS state estimator

PLC state estimator

The programs were written in FORTRAN IV (ANSI Standard)
and each one of them is an "all in core" program,i.e. they do not
use any auxiliary means of storage during the execution phase.
The only machine dependent feature of the programs is the two-
level storage feature of the computer in which the programs were
developed and tested (CDC 7600). If the programs are required
to run on other machines the statements corresponding to this
mode of storage (LEVEL 2 statements) should simply be removed.

Apart from the programs referred to above, others were
used in the research project for the performance comparisons
reported in Chapter VII. However, these programs were developed
in association with other projects and are well documented in

references (11) and (51).

C.2 SIMULATOR

The simulator is used to generate the data (parameters, net-
work and measurement system configuration, measurement values,
etc), according to the procedure described in section 7.2. |In

Figure 7.1 of that section a flow chart of the program is presented



in which the input and output files used by the program are

shown.

The main subroutines of the program are:

LFINP - reads and writes the input data

LFSOL - solves a load flow problem using the fast decoupled
method

LFOUT - writes the result of the load flow

FD1SEL - generates network configuration and measurement

pattern (this subroutine simulates the network
configurator)

TRSIM - updates the operating point by changing the values
of loads and generations

TRMEAS - assigns the values for the measured variables and
introduces the measurement noise (this subroutine

simulates the telemetering system)

This program also uses a set of subroutines for the solution
of a system of linear equations by the Bifactorisation method”
land subroutines from the NAG library (which are described in

a manual edited by UMRCC) for the generation of random numbers.

c.2.1 INPUT DATA STRUCTURE
1 - One title card of 80 alphanumeric characters
2 - One general information card with the following

specification:



Columns

1-10

11-20

21-25

26-33

39-49

3

Columns

1-5

6-10

11-15

4 -

Columns

1-8

9-13

14-18

19-23

24-28

29-33

34-38

49-58

59-68

One control

Busbar data cards.

Description

MVA Base

Convergence tolerance
Maximum number of iterations
Slack busbar name

Standard deviation of load

random component

Description

Maximum number of simulations

Maximum number of time intervals

Type of load trend component

with the following specification:

Description

Busbar name
Specified voltage
Active generation
Reactive generation
Active load
Reactive load
Nominal voltage
Load rate of change

Generator share of total load (0)
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Type

Real
Real
Integer

Alphanumeric

Real

card with the following specifications:

Type

Integer
Integer

Integer

One card for each network data

Type

Alphanumeric
Real
Real
Real
Real
Real
Real
Real

Real
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5 - Blank card

6 - Branch data cards. One card for each network branch

with the following specification :

Columns Description Type
1-8 Sending end name Alphanumeric
9-16 Receiving end name Alphanumeric
17-24 Resistance (pu) Real
25-33 Reactance (pu) Real
34-41 Shunt susceptance (pu) Real
42-47 Initial tap position Real
49-53 Minimum tap position Real
54-57 Tap step Real
58-63 Maximum tap position Real
64-69 Specified voltage Real

7 - Blank card

The specification of the measurement pattern (place and type
of the measurement) is obtained by changing the v&lues of a few
variables in the subroutine FD1SEL according to ¢omment cards

in that routine.



C.2.2 OUTPUT DATA STRUCTURE
The simulator generates two data files to be used
by the estimator programs. The first one which is called FBASE
contain information about network parameters, configuration,
meter-full scale, etc. The second one contains the measured
and true values of measurement and the true values of state

variables and is called TLMDT.
FBASE Structure

1 - One title card of 80 alphanumeric characters
2 - Node cards. One card for each busbar with the

following specification:

Columns Description Type
5-8 Busbar name Alphanumeric
10-13 Blank if not the reference busbar.
Any character otherwise Alphanumeric

3 - Blank card

4 - Branch cards. One card for each branch With the

following specification :

Columns Description Type
5-8 Sending end name Alphanumeric
13-16 Receiving end name Alphanumeric
17-26 Resistance (pu) Real
27-36 Reactance (pu) Real
37-46 Shunt susceptance (pu) Real

47-56 Tap position Real
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5 - Blank card

6 - Active measurement pattern cards. One carc* for each

measurement with the following specification:

Columns Description TYPe
1-4 Measurement type Integer
5-8 Measurement location Integer

7 - Termination card : 99999 (columns 1 to

g8 - Reactive measurement pattern cards. One card for

each measurement with the following specification:

Column Description ""YPe
1-4 Measurement type Integer
5-8 Measurement location Integer

9 - Termination card: 99999 (columns ' to 5)

10 - Meter full-scale cards. One card for each meter' in

the same order as the measurement patterns, with

the following specifications:

Columns Description

1-10 Meter full-scale Real



TLMDT Structure

1 - Measurement cards. One card for each measurement,
in the same order as the measurement patterns in

FBASE, with the following specifications:

Columns Description Type
1-15 Measured value Real
16-30 True value Real
31-45 Error standard deviation Real

2 - Transformer tap. One card for each TCUL transformer
wifh the following specification:
Columns Description Type

1-15 Tap position (pu) Real

3 - State variables cards. One card for each busbar with

the following specifications:

Columns Description Type
1-15 Voltage magnitude Real
16-30 Voltage phase angle Real

The conventions used for the measurement patterns

specification are as follows:



0 injection
Type = 999 voltage magnitude

t 0 or 999 line flow (line number)

injection or volt, mag : node number
Location
line flow : line number

C.3 BDS STATE ESTIMATOR

The BDS state estimator program uses the estimation algo-
rithms described in section 6.9.2 and the bad data detection
technique described in section 6.9.1. The input data to this
program is the one contained in the files FBASE and TLMDT
described in the previous section and a one-card-file of control

variables which is specified as follows:

Columns Description Type

0-5 AC/DC key (= 1 full AC estimator; Integer
= 0 active estimator only)
6-10 Simulation key (= 1 simulated data; Integer

= 0 real-time data)

11-15 Number of time intervals Integer

16-20 Number of simulations Integer



The main subroutines of this program are:

TRINP - reads and writes (part of) the input data
TRSOL main control routine for the BDS algorithm
TRFAC - build up and factorise gain matrices

BDSUP - applies bad data suppression effect

TRLDT reads telemetered data (TLMDT)

TROUT -writes the result of the estimator

TRHP - calculates active Jacobian

TRHQ - calculates reactive Jacobian
TRZCP - calculates hP (5)

TRZCQ - calculates h”(x)

SEA - calculates the gain matrices
SEDB - calculates the product RN 1 AZ

Cc.4 PLC STATE ESTIMATOR

The PLC state estimator uses the estimation algorithm
described in section 6.4.3, and the bad data detection technique
described in section 6.4.1. The input data for this program is
the same as the one described for the BDS estimator in the last
section.

Some of the subroutines used in this program are identical
to the ones used in the BDS estimator. These common subroutines

are: TRINP, TROUT, TRLDT, TRHP. TRHQ, TRZCP and TRZCQ.
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The remaining main subroutines of the program are:

TRSOL - main control routine of the PLC algorithm

LPROG main control routine for the solution of the LP problems
PRSPX primal simplex algorithm

DUSPX - dual simplex algorithm

PVSEL selection of an optimal pivot ordering for reinversion
REINV reinversion

cC.5 SAMPLE OF THE PROGRAMS' OUTPUT
In the next pages a sample of the output of the simulator
and the state estimator programs for the case of the IEEE 14-

busbar system is presented.



STATE ESTIMATION SIMULATION PROGRAM
0.

~v, @ st oo
co & ofNBE Yoo ' 00
=i g Nov o Als 0o

NOOE o.YARO Xy OEN 0. ogN bS Vo.Tro
X000 0 < . o v
%y Vo000 OgoLOO™ Og V000 O Coogpo T0000 0LV
= [ ) [3) c 3
¥y 0=000 wc.occc y OOLOLO M_ Cooo 0000 0oLoLLO
O.ccccc c.ccocc 0y 0000V M Youoo SRTYISTS) vovLo
o1 09000 0, 00009 Oy LOOVOOV ©,000 ©vo00 )
O 09000 L0, 00000 Oy voVOO *N @ ,000 ' o000 0OV
01 00000 20, 00LLO ~<y 00000 \ ZopYo0 Z 5 0p00 0LOLO
TR 0, LOVOO .m.um. VLoV Z Jovoo Y0000 vooLo
O VOV w,c. 0ooo© X [SYeYeYeNs) M,.\u *ucccc O 0opoLO 0LVOO
0¥ 0000O Oy LOLOLO o' 0oLV 0oyLo 0 oopLo 0oLoLo
01 00VV0Oo 04 00000 b VOVO - ¥ Sopoo 3> 00000 voooo
O VOVOOD 04 00O0VOO o ccccm ¥ 0goo ® 00O, voooLoY
O VOVOO 0P 0LOOD 00 VOO G D < vpoo © 0OOQ 0LLLO
01 vovOoO 010000 o0 LOVOgG 30000 > ©0000 00000
01 voOLO 01 00VOO 08 VOVOO m000O < 000LO )
NET«Otflt DATA
«ODE 10 NODE RESISTANCE REACTANCE Shunt SUSC. INIT.TAP 80T.TAP STEP TOP TaP VOLTACI
o Yoo G3R¥ X o¢oNO
o¥aog 2€o0d 0Zd a0
oo v® [ el o2 Yo
08 £ QW.U v8 o
N oY v @ { v&o0o o 00
~ oo Z 0% £ of oY Go
— ooy o.ht VOO
o~  Yod b §:0 0 O 00LLO
~ vonla { 0q %0 O voooo
) 125 0 255a% 0 voooo
~N 000 3 v ozA o vooovo
\% o voolo IV &R o 0000VOL
~ 0 0000 % ool 0 0LLOVLO
03| x 0B=&HO 0 ovLoLoLo
[ Xzos® 0 00V O
- % .—20X 0 0000V
0 0ovooLOL Aivem 0 0O,
o 00uoo ¢ 0k 1 vogLo
0 0omOOL b oz 0 voovoo
0 LoLoLoo mv.c<ms O ovLLLo
0 0v oo ¥3 oo o Loovo
N 0 Vo =3 oo 0 0o
~N 0 voovo N Voo 0 0OoVOV
S o] o - o 0o u ooovo
N o 0 0 0o 0 ©oovo

Eofa. o00xtx 0% s kcywlcho x0ofs
o v ocgey o% EN:K BB ooExo
OEE,. wuXob< of X->ah £ XAl o
Lorsdd o toalvoroAhm.  <Xx$

odne < of ¥ESE o~ Ax | ~wXa K TxaA



TTTis ziz;

G
il

gl
GuiHiliiinG

yipiliso

c C’N//C

90z

—_

---aaaaaaaaaaa'aaaaaaaa xe
=~111 iH =

P#'c'vs $S ) 7c /’NSVS %:%u'rf“ <5N“.5Nh5m :

eeegdadaaaaaathaaaaaasm

» S HUssssHHSiIiHSs;! i

l'u b iinisiinmni-m

~ ~N
Tl
Bre2

o»"> 3

'—l
-
—

-m I----I----I LA N

« S

]JJJJIl

V.N>/N/'""3-an >« »

rzzggs

Ps 2

% e

gt

D

NOI RN IND) NN I\ Y

NOIGNAIJO! WHAIUAN IAINE

T Wl b

WINL I



* %

* SlAlfc ESTIKATION *
* RLSOLTS *

OPERATING MODfc- 1TKRAI1VE (IN1T1ALIZ ATION)
LONVERGENCE IOLERANCE= . OUU10

NUMOKR Of ITERA!/IONS= 5

SI MU ALION NHKBER= 1
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STATE VARIABLES (PO/DEG)
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NAU1L T.0600 U.uuuU 1.U5VA
NA1)2 1.1)4cuU -1 .90A1 1.039A
NADI 1.u187 -7.1U27 1.0160
NADA 1.02 TU -6.5920 1.020A
NAU3 T.0271 -3.6295 1.026A
NADO 1.0933 -9.7309 1.0926
NAO? 1.U527 -8.1913 1.0321
NAO6 1.1182 -6.1335 1.1172
NACS 1,U192 -10.3223 1.0185
NATO 1.02A7 -10.6830 1.02A1
NATI 1.03a6 -11).72b3 1.0361
NA12 1.0649 -1U.A665 1.06A1
NA13 1.U548 -1U.6731 1.05A0
NATA .9822 -10,9637 ,96 1A

ERROR IN ESIINAIED STATES (X)

MAXIMUM  AVERAGE
MAGN11UDE 1 1

FEUJ kfij - E .4 .3

U.00UO
-1.9110
-7.12A5
-6.6133
-5.6 A69
-9.7315
-6.2092
-6.133A

-10.3425
-10.7062
-10.7491
-1U.3U42
-10.7119
-10.9899

PRrREPRPRRRRRRPRRR

ERROR(X)
RAVE VOl MAG VOL PH ANG  VOL hAG  VOL PH ANG  VOL MAG  VOL PH ANG

0.

NABRNNNWNND WW WNO

ERROR U )

L0¢



»CTIVfc * RASURKMNENTS (MW)

€ 1R Ea>
= gkx LY
L PN - MNA MWHQCM <o W oS P o
z zwm ~2CD G.rc D bOZ, cmc. m«a oZ" £05 0
2 o NI x o7 oY LK e0S X5H® 0o ofv S5co 0w
: os NG X O3 SI® O 2greof e &5° s 020 <o
= 7ol 2 02 sro S9reon <5 < < ol >
= O- NRS= x oF o =2 405 "o .n.wo ©%o < LO0m
v - =0 V!
z r0> 7.>Crnv x eM r.OMa MAm QCW ) Naw - W AUWA MOm
RN R -2 - (AT S
I Lot NGB x of ety T 0oL e0g T O 1oy MY vz$
v e T ) '@ Lo e0T %o oL« PN >0 @ o230
%0 oV e x *M <o Q= 00 -om, aWM oo %o ow
I 0 L g
oy S0t NAD X k% O-9 83t ,03 os- SN < 9oz 2.
‘ [ - N
e Lo, QAT x i Oos wGleos $o0 S\e 2o {oz “0b
£ o) AOCK  x 2 log <t % cos o o-2z >0 wmo
== = . ~
- ol oAZ x O3 ST etk Qow =1 022 « o2 oS s
- “on NAE ~ Do L 20te0b >0g & o= i S¢o
N o
0 e A x a O3 qOreug oo, v =20 -Ja 000
a - ™ . &
N JOon o X g oz 235408 200 Wt °-0 Sos 003
b co. NYO 0 x T o T ¥ <Z w0 ¥ 00 v<o ~ (D 900 MOa
° or NVE S w2y N o= oY« - <o 0w
_0 Lo ! x 09 o < 2 a5 405 oo wwm weo 230 00«
= o NAON O x oo o Zose08 206 25~ | o% ¥ =Y
=y L A ; = -
27 ol o x Oz 000 ZXIeos 500 o o% 2 @ <<y
Eas L00 mm xm Y0 EEO 4T
>t 5. BXo Ot ¥
% [ vk — 280 — @ O,
e T s o2 B
K . = - KA oET ou® SO s os A
N E o = s or* sos  RE <u oz 6o Sa
rO x o x 0, .G) c- 8 — %k L r_w@ ,m% wUl
Sl x o3 'o A= - v ©o | SAac <<
0. x 0 x o3 © e = O A a
So. o T .aﬂ T 2 ¢ ..b o C (ma [N S
S0 x =X ' 1 Z o oL g% <% 2, <t
. x © PN 0 . MV =5 # o
o+ o 2 & E Cev — 250 —Ow > m
- Q = -
S o H o LN “m W 00 <= X To cox UMO et
- x > - Z> .
NS T A V2 o 28 Z = 350 O
- - . . .
. x 0 x T ) >Eg 0 @ @ G Z 10 <9 <
Oy *M = Ae o >*> R - L) <5 Mnl
-0 ¥ 0 x ' e R o S N vs —
Lo® x 0 x _m .& U.n’r =oo VAR o<® 530 “v
ro. x O x 'a "Ve e St N—=~ A..N 229 <0 e
co. x © « 00 ) = SEg 0 FOR o el oo’ so* WL
Lol x g x 09 Vi Yk oV LOu = o8 o0
-0, X 0 x .u“r, .&L Xeo mgpc xO ©,_ 02 oa< . \_
Lo x x % .% OFe © Ngo 8> Lon MAa oo
L0 x ko V= Jte o oo8 z = @ o Sox M
- ) Sal
“O- x o x cm .wU te 0m VgV N <o uMM o MWM
O x x e (= T -0~ Og < *W o~ 55 A\/#o wwN
LOC W g x oS Vo mﬁOct B g =z e > AA.n‘_,
on. % 0 —— XS 23 0 Voo nolo O3 n«m ; N
ool x o —— (XS {0 © 0<o 1 o3V [SEY -8 a

CIA AUVVUIA
<IA»CU*-rr% M
n *0 -**C 7

o aC

i

e

n» —
-lJ‘<O>>Cr*ﬁg
OroMU«<«

»i
vrA * g'-a}\ n

fRgeke s

- »A

rir>

Y5 A



a*******************

* SIAIE ESTIMATION *
* hE£Sul Is *

OPERATING MUL'ts TRACKING
SIMJULA11ION NUMUEW 1
TIME INTERVAL» 1

SIATE VARI AbLES (PU/UEG)

UISUAK TRUE 1RCE ESTIMATED EST 1MAIED ERROR (X) ERROR(X)
NAVE VOL MAG VOL PH ANG VOL MAG VOL PH ANG VOL MAG VOL PH ANG

nAul 1.0600 0.0000 1.0S9A 0.0000 1 0.0
NA)2 T. UAWO -1.90A1 1.039A -1.96A7 1 3.2
NAUI 1.0187 -7.1027 1.016« -7.32A1 .2 3.1
Na UA 1.0210 -6.5920 1.0193 -6.7718 .2 2.7
HACS 1.0271 -3.6295 1.0233 -3.7720 .2 2.3
NMAOG 1.0933 -9.7309 1.0917 -9.8860 .1 1.6
MAC 1.0327 -8.1913 1.0308 -8.3716 .2 2.2
MAUH 1-11«2 -0.1335 1.1167 -6.2497 1 1.9
NAuU9 1.0192 -10.3223 1.U172 -10.3319 .2 2.2
NA U 1.0247 -10.6830 1.0229 -10.9033 .2 2.1
VALl 1.0586 -10.7283 1.0369 -10.9186 .2 1.8
NA |2 1.0649 -10.4665 1,002V -10.63/7 .2 1.6
NA13 1.0548 -10.6731 1.U32v -10.8333 .2 1.7
NAH .9622 -10.963/ . 9n02 -11.1907 .2 2.1

ERROR IN ts11IHATED STATES m

MAXIMUM  AVERAGE
MAGNITUDE .2 .2
PH. ANGLE 3.2 2.1

60¢
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Abstract - In this paper the tracking of the time
varying power system static state is analysed. The
relative importance of the small measurement noise and
che eventual occurrence of gross error in the measure-
aents is used as a design criterion for the development
of fast tracking estimators. The basic approach uses
a pre-estimation bad data detection/elimination scheme
based on the exponential smoothing of past estimations
and Logical checks followed by an estimation stage.
Three different estimation algorithms were tested:
plain weighted least squares, quadratic square-root and
linear criterion. Numerical results showing the per-
formance of the three estimators in a simulated test
case arc also presented.

INTRODUCTION

Tne power system static state (voltage magnitude
and phase angles at all nodes) is a slow time varying
vector. It follc-s the daily cycle of electric energy
demand. A state estimator is a set of programs which
obtains estimates of the static state at some required
instants of time from telemetered values of network
variables (line flows, node injections, voltage magni-
tudes etc.) and topological information. The measure-
ments contain a certain amount of error which can be
of two types, eitner a small statistically "well
behaved"” error due to instrument inaccuracyinterfer-
ence, miscalibration, etc. (measurement noise) or a
large, unpredictable error due to some sort of partial
or total failure of the telemetering system, transients,
etc. (bad data). The error introduced by the measure-
ment noise is comparable with the uncertainty of most
of the operational constraints (e.g. transmission over-
load limits) against which the results of -the estim-
ation will be checked. Therefore high filtering
capacity is not a necessary requirement of the estimat-
or. Bad data, however, can seriously distort the
results of the estimation, producing completely unreli-
able state estimates. Therefore a practical power
system state estimator should be designed bearing in
oind that it should be able to detect and eliminate
efficiently the grossly wrong measurements eventually
present in a snapshot and from the bad data free set of
aeasurements it should obtain an estimate of the state
with the accuracy required by the application programs
that will use the estimation results. Most of the j N3
state estimation methods proposed in the literature * *
use the static approach in which each snapshot is con-
sidered separately. An algorithm based on the Weighted
Least Squares (WLS) method is normally used to filter
the measurement noise and a post estimation residual
analysis is carried out to detect and identify bad data.
However, some attempts have been made to explore the

time varying characteristics of the state. They can be
divided into two categories: dynamic state estimation
approach based on Kalman filtering techniques and using
a simplified model of the state dynamic behaviour”
and tracking state estimation which extends the tech-
niques developed for static estimation to the time
varying case without explicit definition of the dynamic
model”» 7.
Measurement
intervals (up to
control computer

scans are normally taken at short

one minute). Assuming that a process
is used, a complete static state
estimation could not possibly be performed for each
scan. The conventional procedure is to store the data
and only when a substantial change is detected (or
after some specified period of time, whichever comes
first), a new estimation is performed”. However, in
some situations (e.g. durinj an unusual load pick up
period) a more close monitoring of the system state
would be desirable. Moreover, a large interval between
estimations weaiten the correlation between consecutive
estimations making detection and identification of bad
data even more difficult.

Tracking state estimator algorithms can be designed
in order to give results with a delay which allow the
estimator to "keep up" with the rate of incoming data.
In this paper three tracking estimator schemes are
analysed. The aigoritnms are based on a step by step
linearisation of the network equations and on the
assumption of a smooth load variation. The principle

of decoupling active and reactive variables is also
used. The filter elementsof the estimators are based
on a quadratic (WLS), quadratic-square root and linear

(sum of the moduli of the residuals)criterion respect-
ively. AIll of them use a pre-estimation detection/
identification of bad data procedure based on an
exponential smoothing of previous estimations. The main
purpose of the study was to show the viability of
tracking estimation either on its own or as a complacent
to other methods of state estimation.

FORMULATION OF THE PROBLEM

The measurement and state vectors at an instant ji
time k are related by the equation

Z(k) - h(x(k)) * WK @
where

£(k) - measurement vector (mxl)

>c(k) - state vector (nxl)

v(k) - measurement error vector (mxl)

h( <) - nonlinear function given by network laws

(see Appendix A)

Assume that a state estimation has been performed
at an instant of time k-1 and let £(k-1) be the result
of that estimation. Then define

Z(k-1) - h(x(k-1)) (2)
Let £(k) be the vector of measurements at time k and
define

AZ(K) - Z(k) - Z(k-1) 3)

Ax(k) - x(k) - j(k-1I) (4)



From (2). (3) and (4) and using Taylor series expansion

AZ(K) - H(x(k-D)Ax(K) + W'(k) (5
where
iho
HOK-D) - By % o (k-1 (6)

W (k) is a vector which components are the sum of
che measurement errors plus the error introduced by
the linearisation of h(x) . Under the assumption that
the system state varies little between two consecutive
snapshots, the error of linearisation is comparable to
che measurement noise.

Decoupled Model

The sensitivity of voltage phase angles (magni-
tudes; to changes on reactive (active) variables in an
EHV network is small. This property has been exploited
in the development of very efficient static state
estimators9g »1°» The application of this decoupling
technique to the tracking estimation model given by

(5) will produce two independent sets of equations as
follows:
- - *

L“IP(k) “HP (_x(k I)AL9(k) ‘ V\lé (k) (7)

AZ (k) - H k-1)AV (k) +W_"(k 8

2, (k) - H (kDAY (K) AW (k) (®)
where

x (k) - (0(K)j V(k)T; V vectors of voltage

phase angle and magnitude respectively

(Zz (k)] Z (k))T; Z, Z vectors of active
anS reactive measRremints.

(_\p'(ki!_q‘(k))T;‘Kﬁ',_yq vector of error

terms corresponding to active/reactive

H’ fk)

measurements.
H XKD (k)
Hoo (x () HI(x(K))

Constant Jacobian Matrices

The changes in the elements of H (x) and H (x) due
to changes in the state x is not sigRificant. gAs
observed in 9 and ** the error introduced in the
estimation by making these matrices independent of the
state are acceptable. In Appendix A the approximations
introduced in the calculations of the Jacobian elements
in order to produce constant matrices are described.

A turther improvement in the model can be achieved by
dividing each of the equations of the reactive set by
the voltage at the busbar in which the measurement is

taken. The final model is then given by
AZ (k - H A0Y W (k 9
2, (k) -t A0 W (K) ©
AZ' (k) - H AV e W (k) (10)
q q- 9

The error introduced by the decoupling procedure can

also be considered as being incorporated in the error

terms W. and W
P -q
METHODS OF SOLUTION

Equations (9) and (10) represent two independent
sets of overdetermined linear equations. Due to the
presence of the error terms these systems are incon-
sistent, i.e., there is no solution that satisfies them

exactly. A "solution" for such a system can be charac-
terised by the choice of acriterion to be optimised.
This criterion is usually defined as a function of the
residual terms.

The most usedcriterion for the solution ofproblec»
like the one referred to above is the Weighted Least
Squares (WLS). If the error is normally distributed
the solution obtained with the VLS criterion can be
proved to give the minimum covariance estimate. Even
if the normality assumption cannot be guaranteed the
WLS can still give good results provided the error terms
are all small. However, if bad data is present the WS
method will give incorrect results due to excessive
weight assigned to bad data.

The methods of solution adopted in this paper will
consist of a two step procedure: first an analysis of

the incoming measurements will be made in order to
detect possible grossly wrong measurements (see next
section); afterwards an estimation will be performed

in which the suspected measurements will receive special
attention.

Plain MLS1

In this method the ordinary WLS criterionis used.
The suspected measurements are substituted by predicted
values obtained by an exponential smoothing of the past
estimation (see next section). The algorithm is given

by
A6(k) - A*IH jI"IAZp(Kk) (M>
AV(k) - (12)
where
A e HR"™™ ; A_m HIR *H are the constant gain
P P P q
matrices
R « diag (Rj,RO, ...); Rj, R”. eee «re weights

chosen according to the relative accuracy of
the measurements (usually made equal to the
inverse, of the assumed error covariance).

Modified WLS (Bad Data Suppression)”

The performance of the WLS method in the pres-
ence of bad data can be improved if a non-quadratic
criterion which assigns less weight to measurements with
large residuals is used. This technique has been used
in static state estimation with reasonable success. It
can be extended to the tracking state estimation prob-
lem by applying the nonquadratic correction terra to the
suspected measurements. Even though the models given
by (9) and (10) are linear the resulting estimator has
to be solved iteratively (for details see Appendix B).
The algorithm is given by

ABL*(k) - ABL(K) ¢ A THTG (AZ, (K)O(AZ (k) (13)
AVA'TK) - AVI(K) + A IhtC (AZ (k))e(AZI(k)) (14)
- - L I

where Che element« of the diagonal matricee C (=) and
G (=) and the vectors Ppi-) and 0q(*) at« giv*n by
(using a simplified notation) 1

o if the m-th measurement is
» <
1.0 not a suspected bad data
*%
_ 2oLt
o e sign(AzS Xo (A xa .- )
oZ 9 AZ1 otherwise
u -3
Xa, xa



m - measurement number

I - iteration counter

X - chosen threshold
assumed standard deviation of the measurement
error

Linear Criterion (Linear Programming) 3.12

In this estimator the criterion used is the sum of
the moduli of the residuals. The filtering capacity
of this estimator is not as high as the WLS based
estimators. However it has a much better performance
in the presence of bad data. If the linearcriterion is
used the problem can be formulated as the solution of

the following Linear Programing problems (see Appendix
C for details):

Tp *
N o <*u
Y ¢
Ad . r Ad
Go-
p7 g -P
-P
and
Hi°c .[t R .i(*2i-1* *2])
eV av
J.to H.i U 06
g P % )
where
mP, m_ are the number of active/reactive
measurements
s!, s are slack variables representing the
residuals
1 -l
-l
u.,u -
P q

1 -1 (mesz) , (quzmq)

If no measurement is suspected of being a bad data
the weights R and R are chosen in the same way as in
the wLS methoH. In""?he case of a suspected measurement
the corresponding weight is reduced accordingly to the
degree of suspicion.

BAD DATA REJECTION TECHNIQUE

The power system .load varies daily according to a
predictable pattern. Sudden variations are not frequent
and when it occurs it is either the result of a pre-
dictable event (e.g. disconnection of a large load) or
an indication of some abnormal state of operation (e.g
outages). Network variables follow these variations
according to the adopted control strategy and network
constraints. Apart from eventual transients, these
variables present variation patterns similar to demand.
A simple relationship between changes in load and net-
work variables is not available. The same occurs with
a model for the daily variation in load. However, it
is possible to obtain reasonably accurate prediction of
the behaviour of these variables, within certain con-
ditions, based on previous observations. Time series
techniques are particularly appropriate to use in
situations like that in which a relatively simple pro-
cess (in view of the application in mind) is to be
observed but an adequate model is not available.

Exponential Smoothing of Measured Variables**

The recent pa pled lingle

measured variable can be considered as a time series.
Provided a relatively short period is considered (up to
I hour), this time series can be reasonably modelled as
being made up of a trend component plus a random change.
The trend component varies according to the time of day
but it usually repeats every day for corresponding
periods of time. For instance, the morning load pick-
up period in most systems can be observed to follow a
linear pattern. The most suitable model for the trend
component as well as information about the random
change can be obtained from off-line studies of prev-
ious days' estimations.

Assuming a linear trend the predicted value of a
measured variable in the next snapshot can be obtained
through an exponential smoothing function like

z.(k) - a.(k-1) + Zbjik-1) + 2(1-B)ei Ck-l) 17)

».(1t) - «o(k-1) ¢ bijik-1) + (I-Bi)ct (k-1) (s)

bi (k) - b~rk-1) + (1-B)2ei (k-1) (19)
e.(k-1) - ¢¢(k-1) - zl(k-iy (20)
where

" i :measurement number

Z~ (k) :estimated value at instant k
Z~ (k) :predicted value at instant k
S :time series parameter

The smoothing parameter B regulates the relative
weight given to more recent estimations on the calcul-
ation of the predicted value. It can also be obtained
by off-line calculations based on previous estimations.

Bad Data Discrimination

The expected values of the measured variables in the
next snapshot are calculated at the end of each
estimation using expression (17) to (20). When the
present snapshot is available, the values of its com-
ponents are checked against the predicted values. In
normal conditions of operation the difference between
measured and expected values should not exceed a cer-
tain threshold value determined by the parameters of
the random component of the series. If one or more
measurements do not pass the above test then an abnor-
mal situation is detected. This abnormality can be
due to either bad data or sudden change in the systr.*
state due to loss of a large load, unreported outage of
line, etc. If a real sudden change occurs in the system
then various correlated variables should be affected in
the region near the abnormality.

In order to differentiate the situations described
above an analysis of the intercorrelation between sus-
pected bad data points should be performed. a logical
check routine to perform this analysis should take into
consideration particular characteristics of the power
and telemetering systems such as existence of radial
lines, data concentration in some regions, etc. In the
tracking mode the required speed of response demands a
fast algorithm. Furthermore, due to the small interval
between estimations a bad data can be more easily
spotted. A simple routine can be programmed as
follows: a suspected data point is checked against
other measurements in the same node and neighbouring
nodes. For each measurement not flagged a certain
number of points is added to the measurement flag.
Depending on the final scores the suspected measure-
ments are flagged as bad data or not.



Comments

The bad data discrimination method described
above, even though producing good results in the

majority of cases, mayfail in certain situations.
For instance, in the case of highly interactive bad
data points, very low local redundancy,etc. If this

failure occurs, two situations can arise: (a) a bad
data goes into the estimator, (b) a good measurement
is flagged as a suspected bad data. In the first case
thepiainWLS estimator would probably give a bad res-
ult depending on the size of the bad data. The two
other algorithms, with a "built-in" way of rejecting
bad data, could in most cases produce an accurate
solution. In the second case the rejection (or
weighting down) of good measurements would not cause
much damage to the estimation provided the number of
rejected measurements is not high enough to alter sub-
stantially the system redundancy.

COMPUTATIONAL ASPECTS

For initialisation purposes or when a major change
in the system state (or network structure) takes place
the algorithms described earlier should be used as a
conventional iterative static state estimator. A net-
work configuratori and a post-estimation bad data
detecticn/identification routine”™ should also be
incorporated in the estimator to be used when a
static state estimation is performed. Figure 1 shows
a basic flow chart of the complete estimator. At an
initialisation mode or when a ‘hange in the network is
reported the elements of the system admittance matrix
and of the matrices Hp, , A™and A" 1 defined pre-
viously are calculated ano stored in~“compact form
using sparsity techniquesl”™ in a file of processed
network data. This data is then used on the subsequent
estimations until a new change occurs in the network.
In normal tracking operation only the routines needed
for this kind of estimation should be loaded which
saves core space. In particular situations in which
only active flows (and phase angles) are required, the
reactive part of the algorithm can easily be "switched-
off" and all voltage magnitudes be set to 1.0 per unit
with considerable reductions in computer requirements.

SIMULATION RESULTS

The algorithms presented in the previous section
were tested using simulated data from different power
system», measurement patterns, types of abnormality (bad
data, sudden change of load or generation, etc.) and
the pattern of load change. Due to space limitations
only the simulation study performed for the IEEE 14-

bu-.bar system with the measurement pattern showed on Fig.

2 will be presented. This study was found to represent
a typical behaviour of the algorithms among all the
tested cases.

Description of the Simulation

The time evolution of the system static state was
simulated by the calculation of successive load flows
in which load and generation varied from initial given
values. Each of those load flows correspond to the
svstem operating point at the moment in which a snap-
shot is taken. The load curve at each busbar is com-
posed of a linear trend plus a random fluctuation. The
slope of the trend variation was made different for
groups of nodes. Hie random fluctuation was represen-
ted by a normally distributed random number with zero
mean and a standard deviation of 22 of the value of the
trend component. A constant power factor was assumed
so the reactive load follows the active load. The
increase or decrease of the total load is distributed
among the generators according to pre-specified per-
centages. The simulation study was made over a period

SIAH

Fig. 2: Measurement pattern used in the simulation

of 30 time sample intervals. The initial end final
values of load, generation and state variables for each
busbar as well as the values of the rates of change of
loads and generation are shown on Table |I.

The measurement noise was simulated by adding a
normally distributed error to the values obtained from
the load flows. The error bounds were set to .332 of
the meter full-scale plus 22 of the actual value of the
measured quantity.



INITIAL VALUES

FINAL VALUES LOAD GENER-
busbar GEN. LOAD STATE GEN. LOAD STATE RATE OF ATION
MJ MVAR MV WAR  pu deg. MV MVAR MV WAR pu deg CHANCE z
1 116 -1 0 0 1.06 0 204 -13 0 0 1.06 0 .3 .36
9> 8 26 15 1.04 -1.9 155 44 49 29 1.04 -3.9 .3 .28
3 60 19 113 23 1.01 -7.0 98 73 215 43 1.01 -14.2 .3 .18
4 0 0 57 5 1.01 -6.5 0 0 107 9 1.00 - 11.1 .3
5 0 0 9 2 1.02 -5.5 0 0 1S 4 1.01 - 9.1 .3 -
6 24 44 13 9 1.07 -9.7 43 52 0 0 1.07 -12.7 .2 .09
7 0 0 0 0o 1.03 -8.2 0 0 0 0 1.02 -12.3 .2
8 24 35 0 0 1.09 -6 .0 43 47 0 0 1.09 -8.4 .2 .09
9 0 0 35 20 1.00 -10.4 0 0 57 32 .97 -15.6 .2
10 0 0 10 7 1.00 -10.7 0 0 14 9 .98 -15.7 -
1 0 0 4 2 1.04 -10.7 0 0 5 3 1.03 -14.8 -
12 0 0 7 2 1.04 -10.5 0 0 10 2 1.03 -13.9 -
13 0 0 16 7 1.03 -10.7 0 0 21 9 1.02 -14.3
14 0 0 18 6 96 -11.1 0 0 25 8 .93 -16.2 -
TOTALS 107 30S 98 - - 541 ~TNT 148 - - * -
Table 1: Initial and final values of the simulation study
At time sample 10 an error of 50Z was introduced Numerical Results

in the measured values of the active and reaccive flows
in lines 5-6 and 6-13 in order to simulate bad data.

A sudden change in the system operating point was simu-
lated at time sample 20 by setting the values of the
active and reactive load at busbar 6 to zero.

In the bad data detection/elimination scheme a
measurement was considered suspected of being a bad
data whenever its value deviated more than 20 times
the vaiue of its assumed standard deviation from the
predicted value. In the logical check routine the
number of points attributed for each non-flagged
measurement at the same node or in neighbouring nodes
were set to 2 and 1 respectively. A score greater
than 6 was required to differentiate a possible bad
data from a real change in the network variables.In the
exponential smoothing and quadratic-square root the
values of the parameters 0 and A ured were 0 * 0.6 and
A- 4.0.

Performance Assessmentt

The performance of the algorithms in the simu-
lation studies was assessed by checking the estimated

values against the available true values. The inform-
ation obtained from this check is summarised in the
three following performance indicators:

vV k> i!1 <zi\k) - Z*(k))2/0? (21)

J (k) - | (zf(k) - z*(k))2/02 (22)

i-1

(k> 1z*(k) - zT(k)]/0i (23)
where m: number of measurements

zT, Z\*, Z”~:. are the true .measured and estimated

1 1 1 values of the i-th measurement

The performance index indicates the level of
u certainty on the measurements. The performance index
J shows how close are the estimated values to the true
values. In the case of a good filtering performance of

the estimator Jg should be always smaller than J~. The
E.iximum value of the weighted residue is used to
¢ mplement the general information of the indicators

Jm and Jg.

The results obtained for the test case are pre-
sented on Figures 3 to 7 and Table 2. Figure 3 shows
the relative value of the performance indices Jg and
Jyj. Figure 4 is a plot of the maximum weighted
residue in eacn time sample. Figures 5 and 6 show the
time evolution of true and estimated values of the
voltage magnitude at busbar 13 and the active power
flow in line 5-6 In figure 7 the predicted values
(by the exponential smoothing technique) of the active

power flow in line 5-6 is compared with its true
value.

In Table 2 values obtained from the logical check
routine are shown for the time sample 10 and 20. In

this table Nj is the number of non-flagged measurements
in the same node of the measurement being analysed and
h2 is the corresponding number for neighbouring measure-
ments. The numbers shown correspond to active measure-
ments only.

TIME
SAMPLE FLAGGED MEASUREMENTS *1 *p SCORE
flow in 5-6 0 16 16
flow in 6-13 4 2 10
injection in 6 1 2 3
flow in 6-11 1 0 2
flow in 6-12 1 1 2
20 flow in 6-13 1 1 2
flow in 5-6 0 6 6
injection in 1 2 3 7
flow in 1-5 2 2 6
flow in 2-5 2 8 12
Table 2: Results of the logical check routine

Analysis of Results
The following comments rel ate to the test case
shown in this paper and also other simulations.

i. Filtering Capabilitv The values of Jg/J* and R*
around 1To and 3.0 shown on Figures 3 and 4 for
the time samples not containing bad data or not corres-
ponding to a sudden change show that the three algo-

rithms produce results with a degree of uncertainty
similar to that existing in the raw data. These results
indicate that the product of the estimation is only a
consistent set of network variables without any its-
provement in terms of accuracy compared to the avail-
able measurements. Under the assumption of small



ispLitude measurement noise this result is adequate for
practical applications.

H. Tracking Capability The ability of the algorithms

based on a constant decoupled linear approximation
of the network model to follow the state evolution can
oe seen by the same order of magnitude of Jg/I\f and R»
at the beginning and end of the simulation. The algo-
rithms were even able to recover from a sudden change
in the network operating point at the time sample 20.

ixi. Exponential Smoothing The assumption of a linear
trend for the exponential smoothing of past
aeasurements produced good general results even in
cases where other trends were used to simulate the
ivstem evolution provided the rate of change was not
high. No investigation was made for the determination
of optimal values for the parameter 6 but values
Detween 0.6 and 0.8 were found to produce good results.

iv. Logical Check The simple logical check routine
used performed well in the case of one bad data
only or non-interactive multiple bad data points (pai-
ticularly on relatively large systems). In the case of
interactive bad data it can produce useful information
only if the local redundancy is high (as is the case in

the example shown).

v. Bad Data Rejection The values of Jg/dM and *cr
tice sample 1J snows a similar performance by the
Juacratic-Square Root and Linear Programming estimators
and poorer performance by the Plain WLS. This was due
to the difficulty of finding a correct weight for the
predicted value used in place of the rejected bad data.
In general, in the cases which the pre-estimation pro-
cedure failed, the Plain WLS has alvays produced wrong
results and the other two estimator* have performance
similar to the example shown here, except for cases of
highly interactive bad data or low loc”l redundancy.

CONCLUSIONS

In this paper an approach for the tracking
estimation of the power system static state was pre-
sented. The combined use of a pre-estimation detection
and identification scheme, with algorithms using some
form of automatic bad data rejection, were shown to
have an adequate performance under the assumed designed
criteria.

The only situations in which the algorithms did
not perform adequately was in cases of multiple inter-
active bad data in nodes with low level of local
redundancy. However, this situation represents an
enormous challenge for almost all of the existing state
estimation techniques.

The performance of the presented algorithms can be
improved with a more elaborate pre-estimation detection
and identification of bad data routine incorporating
particular characteristics of the power and tele-
metering systems.
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APPENDIX A
MEASUREMENT EQUATIONS AND JACOBIAN ELEMENTS

The power system variables normally measured for
the purpose of state estimation are the active and
reactive load injections and line flows and voltage
magnitudes. Those variables are related to the state
variables (phase angle and voltage magnitudes) by the
equations:

ik ioxk ik ik ik ik ik
Qi vvik* vivk(cikcos(ik ik -IN9IK)*VTGK(A-2)
P (A.3)
! kéa. fik
(A.4)

where
. active, reactive injection at node i
vV Q !
R . active, reactive flow at line i-j
pik’ <3ik !
a.l set of nodes directly connected to i
V., 0 magnitude, phase angle of voltage at
node i
AR element of the network nodal
cik" j®ik ; .
admittance matrix
ik shunt element

The elements of the Jacobian matrices Hp and
defined in (9) and (10) are obtained from equations
(A.1) to (A.4). Based on physical characteristics of
the EHV networks these elements can be made state
independent by the following approximations9:

cosQik * 1.0 (A.5)
Vi Vk * 1,0 (A*6)
GijtsinOnc<<Bikcos0ik (A7)

Introducing approximations (A.5) and (A.s) and
negleccing some terms according to (A.7), the elements

of H and are given by the equations in table A.1.

3P. IS

- a B o —_
39, e ik 5> Y

1 kto .
3P. 3Q!

ook VA o ik

U u . U,y
30, Yoik av. ik ytk
ouL.B 920 “ .
39k *ik 381’( “ik
UL .o 3 1.,
Tei >VI

TABLE A.l

APPENDIX B
QUADRATIC-SQUARE ROOT ESTIMATOR

Consider a linear estimation problem defined by
the model equation

Z - Hx «W (B.I)
Define a performance criteria by
J(x) = pt(x)R",p (B.2)

where R is a diagonal matrix of weights and the elements
of £(x) are given by

- if 1 X
~(x) (B.3)
R Ir i 1
i-1... sign(r™) Ao.(4 j *-3) if
r - Z- Hx (B.4)
where
oX - assumed standard deviation of measurement error
X » chosen threshold
m - number of measurements
The minimum of J(x) is given by
dJ(x) 0 B.S
dx - ( - )
According to the chain rule
dj _ dj d¢ dr <B.6>
dx dp_dr dx
or 2HTCTR_,E<r) - O (B.7)
where
G - diag(,,92 =<.«,)
if r i X
(B.8)
-1 [
ﬁfq> (a )it > X

Equation (B.7) ia nonlinear in x and can b« aolvad
only by an iterative proceia. Applying Taylor eeriea
expansion to £(x) around an initial guess

p(x) * oix”™ - CH (x-x°) <pe»>
which leads to the iteration
HTeV 'cH (xk*'- xk) <« H V 'co(xk) (B.10)

The gain matrix given by the product HG R CH
has influence on the speed of convergence but not on
the optimality of the solution given by (B.10). In
order to avoid the need for refactorisation at every
iteration it can be made equal to the gain matrix of
a plain WLS estimator producing the final algorithm

hV 'h (ik*,-a') - kK'r 'co(x') (B.1N



APPENDIX C
LINEAR PROGRAMMING ESTIMATOR

Consider the same estimation problem as in
Appendix B but with a performance criteria given by

3- It (.1

a4

(c.2)

where is the i-th column of H
Using the above criteria the estimation problem
can be formulated as a linear programing problem pro-

ided some changes of variables are introduced. Let

i. substitute the residue terms r. by the
difference of two positive slack variables

2i-1 2i (€:3)
il. add a large enough constant d to the
elements of the state vector
xq ¢d (C.4

which will lead to a redefinition of the measurement
variables as

z Z ¢ Hd (C.5)

The estimation problem can now be formulated as

a linear programming problem as

MinJ - | v

f21-, * V
1 (C.6)

subject to

[H1 uj

where

mx2m

<V2

2m-1 2m’

As in the final solution of the problem above
at least one of the two slack variables defined by (C.3)

will be null (nonbasic) the objective function given
ny (C.6) is equivalent to the performance criteria
defined in (C.l).

The estimate given by (C.6) will always satisfy
xactiy (within the calculation accuracy) n of the m
equations of the problem, i.e. it will lie on the point
't intersection of n hyperplanes representing the n
hoaen equations. If the number of bad data is less
han m-n the criterion given by (C.l) will almost
always choose a solution point in which the equations
corresponding to the bad data are excluded.

10.

11.

12.

13.

14.
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INTRODUCTION

The objective of a power system state estimator is to obtain a reliable estimate

of the system state (voltage magnitude and phase angles at all nodes) from a set of
telemetered information (usually analogue values of injections, line flows, voltage
magnitudes and switches status). The measurements contain a certain degree of noise

introduced by metering and communication devices and sometimes completely wrong inform-
ation due to partial or total failure of the telemetering system (bad data).

Most of the existent state estimation algorithms , which are based on the Weighted
Least Squares (WLS) method, are able to deal quite well with the measurement noise
levels of modern telemetering systems. However, they usually fail in the presence of
bad data. An acceptable solution can only be obtained by repeated runs of the estima-
tor from which some suspected measurements are excluded

State estimation algorithms with a better performance in the presence of bad data
can be achieved by the use of other criteria than the WLS. An example of this tech-
nigue is the Dad Data Suppression method?2. If the level of noise of the measurements
is not high (as is U3ual in practice) the sum of the moduli of the residuals can bo
used as a criterion to develop an estimator with a good bad data rejection perform-
ance3. In this estimator each iteration can be formulated as a Linear Programming (LP)
problem. The property of the solution of a LP problem of always lying in one corner of

the polyhedron made up by the constraints is the key feature of the method for

rejection of bad data



In this paper an improved version of the LP estimator in terns of speed and stor-
age requirements is presented. Each of the LP problems is decomposed into two smaller
ones by decoupling the equations corresponding to active and reactive measured variab-
les. The coefficients of each LP problem are made constant during the iterative pro-
cess by the introduction of some approximations. The LP problems are then solved using

a simplified Revised Simplex algorithm adapted to the particular characteristics of the

problem.

FORMULATION OF THE PROBLEM

The measurements and state vectors are related by the equation

Z = h(X) < W (1)
where
z - measurement vector (mx15
X - state vector (nxD
w - measurement error vector (mxl) .
h (.1 - non-linear functions given by network Iaws.II

Given a set of measurements Z Lhe state estimation problem can be seen as the cal-
culation of a vector x which "best fits" the given measurements. The estimate is ob-
tained by optimising a chosen criterion which is usually a function of the residuals.
The residuals are given by

r = Z - h(X) (2)

In the WLS method the criterion is defined as

J (3)

where
r» are the components of r
w” are chosen weights (usually the inverse of the assumed covariance of

the measurement error).

If the measurement errors are small and random (preferably if normally distributed!

their effect in an estimate obtained by minimising (3) will be compensatory, i.e. the
method w ill work, as an averaging process producing an estimate with a level of uncer-
tainty smaller than the one present in the measurements. In the case of bad data an

adequate solution would be one in which the residuals corresponding to the grossly

wrong measurements are approximately equal to the error. This kind of solution can
never by achieved using the WLS criteria because the sum of the square of such large
residuals would certainly make that solution not optimal.

Estimators less vulnerable to bad data can be designed using criteria which assigns

less importance to large residuals. An extreme case would be the criteria given by
m
(4)
An algorithm based on (4) will always choose on estimate that satisfies exactly n

of the m equations of (1), i.e. the solution of the algorithm will lie in ono of the



vertices of the polyhedron defined by the measurement equations. Provided the number
of bad data is smaller than m-n the algorithm w ill exclude the equations corresponding
to the bad data *from the final solution in most of the practical situations. The esti-

mates w ill normally contain a degree of uncertainty of the same level of the given
measurements Clow filtering capability). X |

In Figure 1 a hypothetical 2-dimensional 2-1i.(x)
problem is depicted and the probable
solutions obtained by minimising the cri-
teria defined in (3) and (4) are shown.
In this figure the full lines represent
a set of four measurement equations
corresponding to measurements 27 to

z . The dotted line represents the
fourth equation in the case of large
error (bad data). and are the
solutions given by the LP criterion and
S, and S_ by the WLS criteria for the
cases with and without bad data res-

pectively.

Figurel. Two-dimensional example
LP DECOUPLED ALGORITHM

The usual procedure for the solution of non-linear state estimation problems is by

successive Iinearisationl The Taylor's expansion of (2) in the neighbourhood of XO
gives
r% = Az - H(X°)AX® (5)
where
AZ° = Z - h(X°)
AX° = X - X°
oo Y
W=X
The solution of the minimisation problem defined by (4) and (5) will give a first
approximation to the estimate. The final solution will be given by solving the sequence

of minimisation problems defined by

m
minimise « E£w.|[r M| (6)
i-1
subject to H(XK)aXK ¢+ rK AZ" (7)
where k o 1. 2, ... is the iteration counter.

Each of the problems defined by (6) and 17) can be formulated as a LP problem pro-
vided some changes of variables are introduced to guarantee that the variables involved

w ill remain positive. These cliangos arc as follows:

i. substitute the residual terms r k by the difference of two positive slack variables



2i-1 2i i1
il add a large constant d to the elements of x
X-‘ -
i xi * d 1.
which will lead to a redefinition of Z as
Z' = Z + H(Xk)d

The LP problems can now be formulated as

m
Min J - . .
ITIWi1S2i-1 * si)
Subject to (H(X )j U) -6Z'
S 20
where
-1
-1 rax2m
S,
( SFm-13m) T
In the optimal solution of the LP problems formulated above at least one of the
slack variables defined by (8) will be null (non-basic). Therefore the objective func-

tion given by (11) is equivalent to (6).

The decoupling of active and reactive equations in the state estimation problem has
been applied successfully to algorithms based on the WLS method. It reduces the comput-
ing time per iteration and storage by the use of constant gain matrices without affect-
ing the reliability and accuracy of the algorithms. The same technique can be applied

to the LP estimator by decoupling the set of constraint equations M2) into active and

reactive subsets. A further sim plification can be obtained by also assuming a sub-
optimal decoupled criterion function. In this decoupled version the sequence of optim-
isation problems leading to the solution will be given by
mp
Min 7 w (si + s’
it-i i*P 21-1 21
subject to
A0’
(H ; U) AZ
P P s
and A0 S
P P

MIniY L Mg G211 2

object to AV
(Hy: Upg) AZ
q



w here

®»V vectors of
NoL2n * vectors of

W. JW, : active and
i.p 1.q

Up.Up.Sp.P"s as defined

mp, mq number

»H

submatrices
7z

H
P
are made st

as defined
COMPUTATIONAL ASPECTS

All purposes "packages"

(15) and (16) wusing differen

programs are very efficient

of the LP estimator.

control computer is normally

required.

In the development of t

characteristics of the LP pr

i. M atrix of

and H ) should be stored.
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algorithm when required. As

used.
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slack variables as basic var

initial basis matrix.

iii. Sparsity
U

P
the

submatrices and U A ty

Therefore
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The Fast Decoupled Line

tested on a variety of simul

placement, nuntier and size o

1
using the Full WLS (FWLS) .

active

of active,

However,

coefficients

The elements of

The coefficient

q
Revised Simplex

voltage phase angles and magnitude

and reactive measurements

reactive weigohts

in (13) and (14) with appropriate dimensions

reactive measurements

of the Jacobian matrix H(Xo)j the elements of H and Hq

ate
4

in

independent by the introduction of some approximations

for the solution of LP problems like the ones given by

t forms of the simplex method are largely available. These

and can be used with good results in off-line applications

'or on-line applications, in which a modest size process

used, a smaller and dedicated LP routine will certainly be

he LP routine the following observations about particular

oblems will help to achieve efficient programing;

On the submatrices corresponding to the Jacobian (H"

and U
q
sparse a compact

U can be generated easily by
P g9

storage

the

and are form of should be

ble solution It can be obtained directly by choosing m

iables. This choice has as an extra advantage a unity

matrix as a whole is very sparse due to the

pical value of percentage of non-zero elements is %.

algorithm with the inverse basis in product form should

vings in storage and computing time.

ar Programming (FDLP) state estimator Just described was

ated estimations corresponding to different networks, meter

f bad data, etc. In each of the cases studied.estimations

4
Fast Decoupled WLS (FDWLS) and the Full Linear Programing

(FLP)3 were also performed in order to produce a comparative assessment of the algo-
rithm studied. 3

The networks used for the study were the 5-busbar system given in and the stand-
ard 14, 30 and 57 busbar IEEE test system. Table 1 shows the metering pattern adopted
for each system. In this table NK * no. of nodes; NL * no. of lines; NI * no. of
measured injections; NF » no. of measured flows; NV * no. of measured voltages and

*

n redundancy ratio.

form of



. _ ) SYS rjK ML N1 NF NV n
T,ie for the simulations (measurements] were
A 5 7 2 14 1 1.9

obtained by adding a normally distributed error
B 14 20 4 40 2 1.7

to the values obtained from load flow calculations.
C 30 21 12 62 6 1.7

The bounds of the error were set to .3% of the full
D 57 60 14 160 7 1.6

scale plus 1.5-* of the actual value of the measured

quantity. Table 1 - Test Systems

The quality of the estimation was measured by ine performance index

A
p 1m i|:1 o 2I 2 (17)
where 27 and are the estimated and true values of the i-th measurement and a” is
the assumed standard deviation of the error. The expected value of J for an optimal
estimator is given by the inverseof the redundancy ratio4 n. For the systems given
in Table 1 this value varies from *526 to .625. Values of J muchlarger than these

P
indicate a poor performance of the estimator.

In Table 2 the results obtained in the simulations using the systems in Table 1
are summarised. The values shown for systems A,B,C and D correspond to the cases in
which only the normally distributed error whose bounds are defined above is present.
Systems B* and C* are the same as B and Cwith the only difference that the error in
two measurements (in each system) were made equal to 50% of the actual value of the

measurement (bad data).

SYS.

112THOD A B B* C C* D
No J ta 3 3 3 4 4 5
FLP Time .090 1.068 1.120 8.845 9.101 17.237
JP 1.416 .910 1.125 1.236 1.401 1.191
No.lte. 4 3 4 4 5 5
FDLP Time .020 .196 .201 .81B .807 1.348
JD 1.534 .981 1.087 1.325 2.118 1.237
No.lte. 3 3 4 4 4 5
FWLS Time .016 .165 .166 .644 .670 1.227
JP .254 .361 25.1 .297 15.7 .354
No.lte. 4 4 5 4 5 5
FOWLS Time .008 .023 .023 .058 .060 147
J .230 .318 28.30 .320 18.3 .308
P
Table 2 - Summary of Results
The values of J in Table 2 show that the FDLP estimator has a performance siml-
1ijr to the FLP estim aFt>or. When no bad data is present in the measurements both LP
i »timators have a poorer response than the WLS estimators. However, in cases with bad

data (B* and C*) the value of J for the LP estimators is practically unaffected which

p
indicates a rejection of the bad data while showing unacceptable results for the WLS



algorithms. A big improvement in terms of speed was obtained by the application of
the decoupling tpchnique to the LP estimator as can be seen by comparing the times fo
the FDLP and FLP. The time requirements of the FOLP was found to be approximately
equal to the FVILS which is acceptable for some practical applications. Storage requin

ments of FDLP are about the same as the FCWLS provided an efficient programing is use

for the Simplex algorithm.
CONCLUSIONS

In this paper a fast decoupled version of a state estimator using linear pro-
gramming was presented. The results of simulation studies showed that the estimator i
able to automatically reject bad data eventually present in the measurements avoiding
the need for a post-estimation residual search and rs-runs of the estimator as it is
the case with the weighted least square estimator. This property of the linear pro-
gramming estimator compensates its higher time requirements making the presented metho
a practical option for on-line implementation.
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NONQUADRATIC STATE ESTIMATION: A COMPARISON OF METHODS

D.M. Falcao, S.H. Karaki and A. Brameller
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In this paper a comparative performance study of two nonquadratic
state estimators is presented. The first one uses a fast decoup-
led version of the bad data suppression method which combines
numerical efficiency with a capability to eliminate bad data.
The second one is based on a recently proposed estimator using
linear programming which is also presented in a decoupled formu-

lation. The two methods are compared in terms of the ability to
detect and identify bad data, reliability of convergence, time
and storage requirements. Results are given for networks of

different sizes and characteristics with different metering
patterns.

INTRODUCTION

One of the main problems encountered in developing power system state estimation
algorithms for real-time applications is how to cope with the eventual presence of

large and totally unpredictable errors in the measurements (bad data). Algorithms

based on a quadratic weighting criterion (weighted least squares) fail in the pres-
ence of bad data due to unduly large weights assignhed to measurements corresponding
to large residuals which are probable bad data. Nonquadratic weighting criteria can

be chosen to render the state estimator less vulnerable to bad data by minimising the
influence of large residual measurements in the results of the estimation.

In this paper a performance analysis of two classes of nonquadratic estimators is pre-

sented. In the first one. the bad data suppression estimator (BOS), the weight of a
measurement with a residual larger than a preset threshold is modified according to a
nonquadratic criterion (e.g. quadratic-square root) . This basic BDS algorithm, sug-
gested in the literature [1.2], is presented in a fast decoupled version which pos-

sesses many of the numerical advantages of the fast decoupled weighted least squares
estimator [3] and has in addition the useful function of bad data detection and iden-

tification. The second one uses as criterion the sum of the moduli of the residuals
[47]. Each iteration of the algorithm is formulated as a linear programming (LP) prob-
lem. In the present version the LP problem i3 reduced to two smaller ones by decoup-

ling active and reactive variables.
FAST DECOUPLED BAD DATA SUPPRESSION ESTIMATOR

In the BDS estimation problem (1.2], it is required to find the estimate of the sState
vector x such that

J(x) * pt(x)R p(x) (1)

Is minimum, where p(x) is a vector of non-linear functions, the m-th element of which

(2



where f is a non-linear function of r . In this

paper the following function
(quadratic-square root)is used:

f / X i 14I rm 5
(r/9,) - Xo sign (r 1(4 o, - 3) (3)
lwm
An approximate value for the solution can be found through the iterative process
eK*¥1 * oh ¢+ a"1 nh r g p (ek.vKk) (4)
p ppP PP
vk+l =VK *AHRGp (eK.VK) (5)
q999q9ggq
h A * : = R H
where D p Fﬂ: "I: PA a4

G ' 3p (x)/I3r . G = 3p (x)/3r
p p p q q

The algorithm uses constant coefficient matrices A and A whose diagonal dominance
is preserved even though more than one large errorPis preient in the vicinity of a

node. Hence the numerical instability of the basic BDS algorithm reported for such
cases is overcome.

The breakpoint X affects convergence and the bad data suppression effect: if X is
too small (e.g. =1) convergence is slow and the risks of local minima are increased
as healthy measurements w ill be taken as bad data. However, if X is too large (=20)
then the usual bad data (>50) w ill not be recognised. A good choice was found to be
X » 5.

When bad data is detected in the active or reactive part of a complex measurement the
corresponding terms in matrices G and Gq are set to equal values such that the fol-
lowing inequalities assumed in thl derivation of equations (4) and (5) are maintained.

H R G >>Ht R G and H1 R G >> H R G
P P P e g q q4qgq pv p (]

FAST DECOUPLED LINEAR PROGRAMMING ESTIMATOR

In this method the state estimates are obtained by minimising

Iy =L Ry Tl (6)

Using the above criterion the estimation problem car. be formulated as a sequence of

LP problems which in a decoupled version will be given by
M
P
Minimise \ RmP (s 7 v b))
m=1
k k-1
0 -6
subject to (H . U ) e T 1
P P

eK - eK'\ S >0

and : P
I Rm*q (32m-T * S2m)
m*1 -k k-1-
Vo=V
[n1
subject to (H . U )
q q
k k-1
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The state estimates given by (7) and (8] will always satisfy (within the calculation
accuracy) N of the M measurement equations, i.e. it will lie on the point of inter-
section of N hyperplanes representing the N chosen equations. If the number of bad
data is less than M-N in most of the practical situations the estimator will choose a

solution point in which the equations corresponding to the bad data are excluded.

In order to obtain an algorithm suitable for real-time application a customised
routine exploiting the particular characteristics of the LP problems given in (7) and

(8) should be used. An improvement in speed, while maintaining the bad data elimin-
ation characteristics of the method, is obtained by solving completely the LP prob-
lems only on the first iteration. In the following iterations the same optimal basis

is maintained.

SIMULATION STUDIES

Simulation results for the 14, 30 and 57 busbars IEEE standard test systems, with the

measurement patterns shown in table 1, are presented in this section. The measure-
ments were simulated by adding a normally distributed random perturbation to the
results of a load-flow. The standard deviation of the error was calculated as .4%
of the meter full-scale plusl-3Xof the true values of the measurements. In some
cases larger errors (bad data) were also added to the measurements. The location of

the bad data was chosen at random and the size was fixed as 25% of the true value.

The validity of the estimations was assessed by calculating the performance indices

J., J and J as follows
| " K >
1 r 2 2 )
J, * T I (z' - Z -r/0 , i - 1.2,3
i M m m m
m=1

where Z' and Z" are measured and true values for J”, measured and estimated values

for and estimated and true values for J*. respectively. The expected values of
Jn, and are shown in table 1.
Table 1. Test systems and measurement patterns
rleasurc»ment 3atterr A Mijasurenicnt Pattern

No. Max. No. Redun- Expec:ted Vedues No. Redun- "XpGCtea vazues
Svstcm lines R/X Meas dancy 91 J2 J3 Meas. dancy J2 J3
14buU 20 .F 58 2.1 1.0 .53 .47 98 3.6 1.0 72 .28
30DD 41 1.1 106 1.8 1.0 .46 .56 188 3.2 1.0 .63 .31
57BB 80 1.1 213 1.9 1.0 .47 .53 369 3.3 1.0 .69 .31
Tables 2, 3 and 4 contain the results of three of the studies carried out. For each
system three out of ten simulations arc shown. The simulation studies were run in a
general purpose 65K/265K GO-bit word CDC 7600 computer. The time shown is average
CPU time in seconds. In those tables NOD - no. of bad data and NIT « no. of iter-
ations .

The bad data capability of both estimators was observed to be adequate for the case

of high redundancy ratio (table 4) in which, for all ton simulations, the bad data
were detected. In the cases of low redundancy ratios (tables 2 and 3) both methods
failed partially or totally in 50% of the cases containing bad data. The effect of
the measurement noise level was found to be of little importance in the final results
for both estimators. The LP method has loss filtering capability than the DOS method
as con be observed by values of J3 larger than the expected values. This effect is



less pronounced in the case of high redundancy ratio (table 4).

Table 2. Results for measurement pattern A and 3' measurement noise
Error BDS LP
System
rm J1 NIT Time J2 33 nit Time J2 K
0 .72 5 .037 .43 .30 5 .077 1.70 1.72
143B 4 20.54 0 .046 20.54 1.15 5 .000 27.07 1.21
6 56.16 9 .050 14.94 15.15 5 .113 62.20 40.45
0 .75 5 .070 .29 .40 5 .374 1.13 1.09
30B3 4 23.53 10 .099 4.90 77 5 .465 15.90 1.74
6 30.39 13 121 0.37 20.42 5 .353 49.49 54.47
0 .02 5 .201 .39 .47 6 1.021 1.13 .94
57BD 4 16.27 0 .199 3.01 .60 6 .907 10.37 2.01
10 19.65 12 .207 4.70 5.70 6 1.123 21.16 22.11
Tapie 3. Results for measurement pattern A and 1* measurement noise
Error BDS LP
System ) .
N3D J1 HIT  Time 32 J3 HIT Time 32 13
0 .72 6 .039 .43 .20 5 .077 .91 .97
14-3B 4 263.70 7 .040 24.31 1.06 5 .060 259.01 1.39
6 522.35 25 .105 44.9 76.30 5 .115 521.74 65.09
0 .75 5 .073 .29 47 5 .365 2.32 5.54
3033 4 160.36 15 .130 11.20 .50 5 .347 170.63 2.67
6 195.72 17 .145 19.05 132.00 7 412 667.50 744.03
0 .61 6 .167 .40 .51 6 1.734 1.95 1.B7
57BB 4 324.25 0 .213 16.17 .06 6 1.001 2.10 2.16
10 410.10 16 .207 25.16 257.16 6 .995 297.17 341 .47
Taole 4. Results for measurement pattern B and measurement noise
Error BDS LP
System N8 D 3l HIT Time 32 313 NIT Time 12 13
0 .79 6 .045 .61 .16 13 164 .70 .40
143B 4 67. B9 7 .050 16.75 .00 5 .192 66.74 .42
6 410.70 22 .113 20.90 .40 5 .209 410.27 1.11
0 .65 6 .061 .70 .30 5 1.503 .92 .30
30BB 4 44.55 0 121 5.93 .35 5 1.790 40.50 .73
6 105.42 21 .162 12.04 .40 5 1.563 103.59 .75
U .94 7 174 .67 .26 6 2.753 1.06 .02
57BB 4 22.49 9 .203 3.00 .34 6 3.000 10.34 .01
10 01.67 13 .264 9.53 .70 6 3.107 56.31 1.91

The time and storage requirements of the LP method are larger than that of the BOS

method, particularly for a system with high redundancy ratio. As the routines used
to obtain the im plicit inverse of the matrices Ap and Aq in the BBS method are more
e fficiently programmed than the routine used to solve the LP problems, it is believod

that the performance of the LP method can be improved in terms of time and storage
requirements.

The number of iterations required by the BBS method in some cases was relatively
large compared with the LP method which indicates that the LP method is slightly more
reliable. « No cases of non-convergence happened in the simulation studies for any

method.



CONCLUSIONS

A performance study of two non-quadratic state estimators was reported in this paper.
The first method is a fast decoupled version of the bad data suppression algorithm

and the second method is a decoupled estimator using lincqr programming. Both meth-
ods were found to behave adequately in the presence of bad data provided the redund-
ancy ratio is high enough. The bad data suppression algorithm has smaller time and

storage requirements than the linear programming method while the latter is slightly
more reliable.

LIST OF SYMBOLS

N number of state variables
M number of measurements
6. V voltage angle and magnitude vectors
X state vectors x * (0, V)
z measurement vector
h(x) non-linear vector-function relating Z and x
k iteration counter
p. q subscripts indicating active, reactive quantities
m subscript indicating the m-th component of a vector
standard deviation of the m-th measurement error
R" = diagonal matrix of weights (R I/om2)
r residual vectors r 1 Z - h(x)
~p* Hqg submatrices of 3h(x)/3x as defined in reference [3] for the FDA method
Hpe » npV
vector of slack variabless S = (sl S2M}
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