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In Sections I and II, the volume dependent isotope shift and the elastic 

scattering of electrons by nuclei are treated by a method with which they can be 

slmplij related.

In Section I, the result already obtained by Feshbach that the s wave 

scattering due to the finite nuclear size depends only on the volume integral of 

the potential due to the nuclear charge distribution Is derived in a simple manner 

with a clear Indication of the limitations, It is shown that this is then the 

only information which can be obtained for energies at which only the s wave 
scattering is important.

In Section II, the isotope shift is calculated talcing into account the 

distortion of the electronic wave function by the nuclear charge distribution 

using a non-perturbation method due to Broch and is reduced somewhat below that 

obtained with the simple perturbation method. It is shown by the seme method as 

that used for the electron scattering that the isotope shift depends essentially 

only on the above volume integral and 011 its difference between two isotopes.

Using the results obtained from the scattering of electrons by Ag and Au by Lyman,

Hanson and Scott and assuming that the nuclear radius increases proportionally to
x

A? the Isotope shift is brought into considerably better agreement with the 

experimental data.

In Section III, the suggestion of Brix and Kopfemann of the effect of a 

difference in the deformations between two isotopes on the isotope shift is 

considered, the method of Section II being used to calculate this. It is shown 

that in those cases where it is possible to estimate these deformations from the 
spectroscopic quadrupole moments, the difference between this and the intrinsic 
quadrupole moment must be taken into account, and in general increases the effect 
greatly above the estimates of Brix and Kopfermann. A number of tentative



applications are made which suggest that this deformation dependent isotope 

shift may perhaps be responsible for the large variations observed in the 
data.



I.!

THE ELASTIC SCATTERING OF ELECTRONS BY NUCLEI

The scattering of electrons by nuclei deviates from pure Coulomb scattering, 

i.e* if the nuclei could be represented as point charges, for energies at which

dimensions* If for the nuclear radius we take JL - then for energiesJ uA C *■

energy in relativistic units* For heavier nuclei, the scattering at large 

angles can then be expected to be Influenced by the finite nuclear size at 

energies greater than about 5 MeV. For lighter nuclei, observable effects will 

be at somewhat higher energies. For such energies which must not be so great 

that the wavelength becomes of the same order as the intemucleon distance, the 

scattering will be almost wholly elastic, and can be considered as due to the 

charge distribution of the nucleus as a whole* The scattering process will be 

adequately described by considering the electrons to move in the potential of 

the nuclear charge distribution* In this work we restrict ourselves to 

energies for which such a description of the scattering can be considered as 

valid* Radiative effects are quite appreciable and it is essential that they 

are allowed for in order that the scattering may be interpreted in terms of the 

nuclear charge distribution*

Calculations using the Bom approximation have been made by Rose (194$), 

Elton (1950) and Parsen (1950), which however are only accurate for light 

elements* Detailed calculations of the scattering cross sections making a 

phase shift analysis have been made for a uniform and a surface charge 

distribution by Elton and Achesen (1951) for energies of about 20 MeV*

the electron wavelength J becomes of the same order of magnitude as the nuclear

considerably where £ = E/mc^ is the



Feshbach has derived some general properties of the phase shifts for the 

exbreme relativistic case when the rest mass of the electron can be neglected. 

In particular, he has shown that for not too high energies the s wave shift, 

which for energies in the region of 20 MeV is sufficient to describe the

sufficiently far outside this distribution for the potential to be Coulomb, It 

follows that scattering experiments can then determine only this volume Integral 

of the nuclear potential giving one condition for the nuclear charge distribution. 

Feshbach assumes the condition t for his proof. However, for the

extreme relativistic case this Is just equal to , which as we have seen

must be of the order of unity for finite nuclear size effects to be appreciable. 

In fact for heavier nuclei for energies somewhat greater than 20 MeV this 

expression will actually become greater than one. Hence it is of importance

on the volume Integral, of the potential are. In this work a method Is developed

with which Feshbach*s result may be derived in a simple manner as well as
£ Re?

additional terms of what is essentially an expansion in cowers of rT"

Above about 50 MeV this expansion ceases to converge and the whole basis of 

Feshbach*s result breaks down. When, however, only the comparison of two 

charge- distributions is of Interest, it will be shown that it is sufficient to 

use only the volume integral of the potential up to about 50 MeV.

The method can also be applied to higher phase shifts which can be 

expected to become important at energies of about 30 MeV.

deviation from pure Coulomb scattering, depends essentially only on 

where V  is the potential due to the nuclear charge distribution and r Is

to see exactly what the limitations of the above dependence of the phase shift



3.

CALCULATIONS OF PHASE SHIFTS.

We consider an electron, energy E, moving in a central field with potential 

energy V * On separating ont the angular dependence, the small and large radial

functions ma3r obtained from the solutions of the equations

d f k  =  - ( £ “ l -- tO 9- h
7Cf t L * (1)

i-
where lc = -(j + ■§■) = -(€■*■ l), for j = £ + i

k = +(3 -i- ■§■) = ■£ for 5 = I  - i

£  = m = c = 1, and g = ̂ ^  *

For the scattering of an electron by the field of a finite size nucleus, charge

We use relativistic units

Ze, the asymptotic expressions for the regular solutions of fk , glc, in the form 

given by Feshbach, are

i *  +  [ j )  + j (2)

°ju 'V + f)^ J n £ ] y 2 n C // * A - 7
J  v I * &  (  /* )  I t  ( t  * V  ^  fe

£ 1where a = << = jr** and fl is the electron momentum in relativistic units,
u, e

In the more usual notation (Mott and Massey, 194-9), the phase shift for 

the state j = € + -jjr is denoted by and that for j = € - -rr by - (# + 1)°

We may write
Cc)

4' S H ( 3 )

to
JkjR is the phase shift for pure Coulomb scattering, the corresponding regular

P ^  csolutions being devoted by , j^f{ , while aft is the erbra phase

shift due to the finite nuclear size and gives the deviation from pure Coulomb



scattering, The irregular Coulomb functions are denoted by j f y X *

and have the same asymptotic forms as the regular solutions except for a
_ ̂  to a)different phase shift • Explicit expressions for 5 ani

also for the differential cross-section in terms of the phase shifts are given 

by Parzen and Elton, but are not necessary for our purpose.

For the extreme relativistic case, £ »  1. where the rest mass may 

be neglected in the above equations, Acheson and Feshbach have pointed out the 

following relation between the phase shifts,

>  " 1 -'* u)

Since this holds separately for the Coulomb phase shifts, also §$? = S--(? .

Thus for extreme relativistic energies states vrith the same j but opposite spin 

orientations with respect to the orbital angular momentum have the same phase 

shifts. The numerical analysis of Elton and Parzen using the accurate 

equation (1) are In good agreement with this result. In addition for energies 

of the order of 20 MeV, the calculations of Elton and Acheson show that only 

the phase shifts 0 for the states differ appreciably from

zero.

It is therefore only necessary to calculate S-a in this region of 

energies. However, for an energy of 100 MeV Parzen*s results show that the 

phase shifts up to S-5- , V  must be included. As an approximate criterion

we may take to become important for k  H 0> € .  Thus £-2* S* i*®« the

|*3 , cL% ^ states may be expected to become significant at energies of

about 30 MeV, Convenient expressions for the cross-section in terms of the

phase shifts for € 1 have been given by Acheson,

Feshbach has brought attention to the special class of potentials



where r are parameters describing the charge distribution, rQ being a

length of the order of the nuclear dimensions and any additional parameters

needed to specify the potential. From Poisson’s equation it is seen that the

corresponding charge density must have the form

Foi5 this type of charge distribution Feshbach has proved that for £ >> 1 the 

phase shifts depend on £ «, rQ only through £ r . This may b© seen by 

rewriting equations (l) with, the rest mass neglected* The importance of this 

result is in extending calculations already made to other radii or energies.

In order to calculate fk we consider the regular solutions of the radial 

functions at a point zj, sufficiently far outside the nuclear charge distribution 

for the potential to be Coulomb^

C2/Ci measures the admixture of the irregular to the regular solution due to the 

deviation from a Coulomb field in the nuclear interior* From (7) and using the 

asymptotic forms (2),

(6)

(7)

(8)

C2/Gl is obtained using both equations (?)



( * > )  ( K )  -  c ^ )

. Cc) (9)
(i ) - (t„jt p p  <w.)

where | C ^  ( >, ) ,,

Kk is written with the suffix £ wheats we specially wish to emphasise that it 

depends on the energy* For our purpose it is sufficient to note that for a 

given energy 6k depends on the nuclear charge distribution only through Kfc £ p.)< 

As is evident from the above derivation C^/Cj, and hence are independent

of r*|, so long as this is outside the charge distribution. Thus two different

charge distributions will give the same scattering if the (C fas ^ n )  f o r all 

the important Sfc are the same fox' both. In particular at enei'gies for 

which the phase shifts §,4= ^ * are sufficient, txjo distributions will give the 

same scattering at a given energy if 1C (r̂ ) is the same, where for the s state 

the suffix -1 will for convenience be omitted,

METHOD FOR OBTAINING Kfc
A h  sBy differentiating ICv = 1/ /* with respect to & and using the equation
3 *  '

(l), the following Riccati equation is obtained for Kjc,

<c t* - ( £  + 1 - a )  i q f  _  (£ • I •- u )  (10)

For extreme relativistic case, £ >> 1, this becomes

t "  ' f  K,< -  Lc *)(< ■'- * V )  (11)

6 *

For the potential (5)? it is then seen by rewriting this equation that for

€ » 1 ,



7.

which is in agreement with Feshbach*s result that for potentials of this type, 

the phase shift depends on £ , ^  only through € . We may then for future

reference note that for the charge distributions(6) which in addition are such 

that the charge density is zero outside rQ, where ro can now be considered as 

the nuclear radius, the total differential of . with respect to , using

02) is given by

d  fch, i

~ c l t ~  ' '

f -

i * U
3 i DC 9

V i

(13)

The required solution of is determined by the behaviour near the

origin. We require those solutions of (10) which correspond to the regular 

solutions for . For potentials less rapidly divergent at the origin than

a Coulomb potential it is seen from equations (l) that the indicial behaviour 

of K I* corresponding to these regular solutions is

<£-> O

L  (c't<
i- >  c

1)
€  - | - I L ( o )  ,

i 2. k + O  . / _ g  —  * r M b* C
(t M - U ( O ) ) CW
We consider first the case k 0. If we rewrite (10) in the form, 

a\ v el K u  J k
(I -  tc „ ) f- [ U - € ) ( { < -  f r i t ) = u h  “  T  1 k
v v u c

this may be transformed into an integral, equation by multiplying by the

integrating factor V -  Ik

(U)

(15)

If Kfc 1 this may be solved by successive iteration starting with Kj* = 0,

The solution obtained in this way is then seen to have the appropriate



8o

indicial behaviour corresponding to k <C, 0.

For k 0, if we put K |« = 'ZT* we obtain a Eiccati equation for $ feA|4
similar to that for K \z • As above this may be transformed into the integral 

equation
( t

% u )  - p  j { ( t * 1 - * )  > ^ - i ^ ) ^  » >
p

The solution which corresponds to solving this by successive iteration 

starting with f a  - 0 gives then the correct indicial behaviour for K fe when 

k p> 0, From the Riccati equations for^, Kj? it is readily seen that for 

£ »  1, the solutions as obtained above satisfy ftu = -1. which is of course 

the counterpart of the re suit S  - fc “ <, In what follows below we shall

then restrict ourselves to k <£. 0,

The first iteration of (15) is

^ | « U )  = \ > ( L c L $  1 -  t c  (iv)
1  2 k - i0

Thus for the s wave within the validity of the first iteration, the phase shift

depends only on the volume integral of the potential which is just Feshbach*s

result* By integrating by parts twice and using Poisson1s equation, the 

integral in (17) may b© expressed in terms of an integral ovex* the charge 

density. Thus

/ '  > - & . »  \ t f r  ^  w  w >
- O

The upper limit in the integral on the right is actually r but may, since r 

is effectively outside the charge distribution, be replaced by o O  e Thus if 

the first iteration gives a sufficiently good approximation for Kfe , will

be the same for two charge distributions if (  ̂ ' 2 is the same for

0



dO
both, For the s wave this integral just becomes s

CALCULATION OF K* FOR f  »  1 

We now consider in more detail the case of the s wave, k = -1, for £" >> 1, 

(15) then becomes

(19)

For the first iteration we have
ACO

l ^ e ( £ ) ~

and for the second

/

t* \ a  f 1 
C  I c (-

e £c (20)

(21)

This process converges rapidly if Kg* 1, and we may then write

e.«) * icrco + 4u. = « v
(22)

'■yi *0where is the extra term given' by the n’th iteration* If the potential is

of the type (5) and proportional to a, then the above iteration process will 

also give an expansion in homogeneous polynomials in a and € ̂  G of increasing

degree. Thus the first iteration will contain terms in a, £ , the second
"5 l / \ ̂terms in a , a , a* * Such successive homogeneous

polynomials do not however correspond to successive iterations after the second

since k" occurs as the scuare in the iteration.t

We may expect that above a certain energy the iteration process will no 

longer converge and the basis for Feshbach’s result with break down. _ This

will occur when , which since U is pi-oportional to a, is of the order

of (a + £ ) becomes'of the order of unity.



In order to obtain a more precise idea of the convergence and of the 

importance of the additional term, given by the second Iteration, we consider 

the charge distribution used by Kosenthal and Breit (1932),

f = o  ;  y  >  K

The corresponding potential energy of the electron is
>- \ * 7  1

> I< v y

(23)

y  - -  -

r
(24)

can vary from -1 for a point charge through w. = 2 for a uniform charge 

distribution to U  = ^  when all the charge is on the surface. For the first 

iteration we have

/cany rgy/j
Cl

J
*  t

it 1 1

3 J * (25)

(26)

For the second iteration



For constant density, ft = 2, we have from the above formulae,

HU) - a * I - j0-0^2 aJt o-lOia.*iie ̂ 0)
5 ^  ^ + C ' O i  i ( ( $ , ) * J

For a surface charge distribution,- yt = > ^he solution for K( £ 0 ) may be

obtained explicitly,

i
K i t e )  - % i - t  («■ «-*£.)<**■(* ‘ * h ) ]

Expanding u y t  (. a ^ ̂  * ] this becomes



The first t v  jo terms of this expression are identical with those derived from the 

first two iterations, while the third term can easily b© obtained from the third 

iteration. We see that above about 50 MeV the second iteration increases very 

rapidly and the method ceases to be reliable. Thus even at 15 MeV the second

Although it would appear from the above that the first iteration is not a 

very good approximation for K even at rather low energies and breaks down 

completely at higher energies, nevertheless when the equivalence of two charge 

distributions is being considered it is sufficient to use only the first 

iteration. We consider as an example the equivalent radii, rf, and rc, of a 

surface and a uniform charge distribution. The simplest way to obtain the 

relation between r and r_ is to equate the exoressions (27) for - 2 and fl = 00S v*

with f  - ,

The first tern; is due to the first iteration and can immediately be obtained

remaining terms from the second iteration make only a very small contribution. 

Thus for energies for which the iteration procedure does not break down entirely 

i.e. up to energies of about 50 MeV, the use of the first iteration is a very 

good approximation when the equivalence between the two charge distributions 

and not the actual value of K is being considered. Since the difference between 

a uniform and a surface charge distrjbution can be considered as an extreme the 

magnitude of the terms in (32) due to the second iteration may be regarded as

iteration contributes almost distribution

COMPARISON OF GEARGK PISTffLBUTIONS

(32)

for = 2 and n = o£> . The



ill the nature of an upper limit to these terms in the expression for the radius 

of the uniform charge distribution equivalent to some actual distribution. The 

reason for the near cancellation of the terms from the second iteration is seen

for the two distributions. We see then that for any given charge distribution 

J* , the radius of the equivalent uniform charge distribution will be given 

with good accuracy by

The significance of the result just obtained is in the interpretation of the 

experiments The calculations of Acheson and Elton extended by using Feshbach1s 

result that the scattering depends only on £r0, may be used to determine the 

radius rQ( ) of the equivalent uniform charge distribution from the scattering 

at an energy £ . Because of the near cancellation of terms in the second 

iteration, this equivalent radius for the actual but unknown distribution willf A t

only be very slightly energy dependent. Thus from (32) for P-&* the ratio 

between the equivalent radii, for a surface and a uniform charge distribution,
h( ), differs by less than *25L/° from that given by the first iteration forc

E “ 0, and by less than 4% f°r an energy of 50 KeV* Since at energies at 

which rQ can be expected to become appreciably energy dependent, higher phase 

shifts become important, the equivalent radius may be taken as energy 

independent for the energies of interest since variations of the above amount

from (21). Thus if K ^(  ) is equal for two charge distributions, K* ( ^ )

rent for 0 1 1 9 and hence the integrant(Lv O'}

occurring in /*  C  ̂ fi  ̂ will not differ very much

(33)

SIGNIFICANCE FOR THE INTBHPRETATION OF H E  EXPERIMENTAL 



14.

would hardly be experimentally significant. This implies that for energies for 

which only the s wave shift is important, the only information which can be 

deduced from scattering experiments at different energies is the equivalent 

radius at zero energy0 From (33) knowledge of r Q then implies knowledge of
t£>

C $  H  oO-
o
More detailed information about the form of the nuclear charge distribution 

could be obtained from the scattering at somewhat higher energies when the 

\l y x (lc - ~2), (k = 2) states become important<> In a similar way as

above for not too high energies., the phase shifts for these states would depend
oO
f t 6 M  o This could again be

<?
expressed in terms of the radius of an equivalent uniform charge distribution 

which would not of course in general be the same as that for the S i > P'/a 

states0

Of course, for purposes of comparison, any of the distributions (23) and

more especially a surface distribution could have been usedj however, it seems

most natural to use a uniform one.

The only relevant experiments so far available are those of ̂ ym^n, Hanson

and Scott (1951) with 15.7 MeV electrons. Their results interpreted using the
—13calculations of Ache son indicate that for Ag and Au with a radius of 1.45 x 10 ^

jlA3* cm. the charge is more concentrated towards the centre than for a uniform

charge distribution* They find that the effective radius, assuming constant

charge density, needed to fit the experimental results is about 20/o smaller than
Xthe above value, i„e0 about 1.15 x 10“^3 A:̂ cm. These results must be 

considered as somewhat uncei’tain as the radiative correction was allowed for 

using the result of Schwinger (1949). This is of doubtful accuracy for heavy 

elements since the radiative scattering is calculated for a Coulomb field using

/ ________________

on the charge distribution only through
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the Born approximation and is given relative to the Born approximation expression 

for the elastic scattering.
NOTE. It recently came to the muter1s attention that Bose and Newton (1951) have 

considered the Biccati equation (10) in connection with the nodal properties of 

the radial functions ^  ̂\z . They do not however use this to obtain an

explicit solution.

Rose (1951) has also considered an Integral form of the radial 
equations together with an iteration procedure for solving these. With this 

the use of the first iteration for both functions then gives just the result 

(17) for s Since however both functions enter explicitly in Rose's

treatment, it is more convenient especially for the second iteration to consider 

f\ , which is the quantity of immediate interest in our consideration, directly.
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THEORY Off THE ISOTOPE SHIFT.

In the usual derivation of the volume dependent isotope shift (I.S.) the 

charge in binding energy of an electron due to the difference in its electrostatic 

interaction with a point charge and the same charge spread over the nuclear 

volume is calculated using a perturbation method* In this the difference between 

two isotopes of the potential energy of the electron in the nuclear region is 

averaged over the relativistic charge density when the electron is moving in the 

field of a point nucleus® If it is assumed that the charge is uniformly 

distributed throughout the nucleus and that the increase in volume between two 

isotopes is proportional to the increase in mass# then with the nuclear radius 

given by rQ = 1*9 x 10“^  cm.# it is found that the I.S. calculated in this 

way is greater than the experimental I.S. by a factor of 2-3 except in the region 

of Z = 60, where the isotope shifts are anomalously large (Brix and Kopfermann# 

1949# 1952).

It might be expected hoirover that the spreading of the charge would strongly 

distort the wave function of the electron from its Coulomb form just inside the 

nuclear region where the perturbation takes place and thus to considerably affect 

the I. S. Hence it is of some interest to investigate whether a more accurate

calculation taking into account this distortion of the wave function might not 

remove some of the discrepancy. An approximate estimate of the effect of 

the distortion when all the charge is on the surface was made by Rosenthal and 

Breit (1932). Crawford and Schalow (1949) made an estimate based 011 the work 

of Broch (1945) for the two cases of constant charge density, and all the charge 

on the surface which should be exact, but with which we disagree. They do not 

examine other charge distributions or the dependence on 2# and their method



cannot be extended to an arbitrary distribution.

Using the method of Broch (1945)# which avoids perturbation theory altogether, 

it is shown that the I.S. of an s electron depends on the charge distribution 

only through K£-s| , S # where the latter is the charge in Kg. | between

the two isotopes. The method developed in I. may then be applied to calculate 

the I.S. for any given charge distribution. It is then also possible to 

establish a simple correction with the elastic scattering of electrons by nuclei.

PERTURBATION THEORY OF THE I.S.

Using the perturbation method, Rosenthal and Breit (1932) and Racaii (1932) 

obtain for the I.S. due to a charge of potential energy of the electron in

the field of the nucleus,

(34)
✓

where A  E is the term shift due to the effect of the finite nuclear size. Since 

is only different from zero in a region of the dimensions of the nuclear 

radius, we may for the wave functions in this region neglect the binding energy 

as compared with the rest mass of the electron. It is then convenient for 

the present purpose to write the radial equations in the form

X f a  Ĥ f i t .  + >b

I-**, j - ii ik (35)
a *

* 1 *  , f i x  *  ' J J *
Ax,

where X - an

and a h ' / M  is the Boltr radius.
1,1 « ^  lc) I X

With U =- — , the functions fj-ltj*1 > 'J t*., f* are ^̂ 10n given by \43)



with C x “ Oo Since the value of ot corresponding to the nuclear radius is 

- 0.6 x lCT^ A0Z, it is sufficiently accurate to retain only the lowest power

of X- * We have then
to* , . J L ' * -

£ h  (I *' < j £ }a •' ' hi* O  *
v ' 1 j b *  n x/ i m o (36)

where qJ (R* - «.“■

Thus
o<7

X £ /3L£ ( A E ) ^ .  - h. x - u
 ̂ ^  p x( 1 * 2 a )  j  j« (37)

with N = 87tZe2C2<, (38)

The normalisation is that used by Rosenthal and Breit
p  <X>

t ‘T \ ( f a *  * J h  ) ! >  / (39)
Q

is determined from the normalisation by putting y u /i~ asymptotically equal to 

the radial Schrddinger wave function for larger r. In this way, Rosenthal 

and Breit obtain for an s electron

* ’< m

where R is the Rydberg constant and ^(0) bhe value of the SchrGdinger wave 

function at the origin.

With the charge density (6), Rosenthal and Breit obtain for the I.S. of an 

s electron
j t <g (X r I    a 6' £ jtc

£ ( A  L.) • I** { a *  * i ) ( z m )  JL° (4b)

Brix and Kopfermann have taken as a standard with which to compare the I.S. as 

determined from experiment the case of constant charge density, = 2, as given



a

¥

OCArH

OA?

Or-!rH

OOrH

OO

Oto

o

ovO

O*A

,G-P•H
COG•ri
a
©P-,o-poCO•H
GOCm

G©

GOGP
G©G
CD
XP
<PO
GO
•HPO
P
OS
COcd

CO

T3©G•Has0p©T3
£
PG0

0
0
r~*p
©•H1

Lu

COGOGPG0G

Lu
C
*/«5

lu _

cv
I
X

po
CO

Ui

caGo•HPO0GGOO
uoG•Hn©rH©•HPCO
G
•apG
0o

G©PP0G
SoGP
PG
a0

ttf•H

O
cv

lA
rH

O
rH

lA
O

the
 
st
an
da
rd
 
mo
de
l 

of 
Bri
x 

and
 
Ko
pf
er
ma
nn
 
wit

h 
tho
 
co
rr
ec
ti
on
 
due
 
to 

di
st
or
ti
on
 

in
cl
ud
ed
. 

Onl
y 

the
 
dat

a 
for
 
is
ot
op
es
 
wit
h 

eve
n 

N 
are
 
sh
ow
n.
 

Ci
rc
le
s:
 

Z 
ev
ei
 

Po
in
ts
: 

Z 
od
d.



by (41) * together with the assumption that the nuclear radius is proportional to
JL £ v  C AA3, and that therefore 0 - — . For the actual value of the nuclear

3A

radius they use 1*4 x 10“̂  A!3 cm*

Fig* 1 shows the results for the i.S. data, apart from rather uncertain 

corrections due to the shielding of the inner electrons by the valence electron 

(Crawford & Schalow (1949) and Humbach (1952)), according to the most recent 

presentation of Brix and Kopfermann (1951 )* In this a correction for the 

distortion of the wave function has already been made based 011 the work of 

Humbach (1952), which has only just come to the writer1s notice* is

then the I*S. of the standard model of Brix and Kopfermann with the correction 

due to distortion already included, and not as calculated by the simple 
perturbation treatment *

Our results for the effect of the distortion of the wave function are in 

agreement with those of Humbach who has also used Broch's method* However, he 

does not give any simple procedure for calculating the I.S* for any given charge 

distribution such as is derived in the following, nor of course the relation 
with the electron scattering*
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NQN-PEflTUKBATIOH KETHQD FOE THE ,I.S.

By a method avoiding the use of perturbation theory, Broch obtains for the 

difference in energy between an electron in the field of a finite size nucleus 

and a point nucleus,

A E  * -  U»

where N is given by (38) with instead of G. Ĉ , are the coefficients of 

the regular and irregular solutions respectively in the general solution for the 

two radial functions in the region exterior to the charge distribution where 

the electron is moving in a Coulomb field. For this region and where r is stcll 

sufficiently small that the binding energy may be neglected,

h  I71 ) - 0t ^  <r I J  * 1*) ( C* 0  - ^  x. ^  } ]

V 1 U 3 )
y) M  ̂# C x  A  JL ✓

where A  ^  6 “ ( I'*2 ~ &) J  =l «r “b X  Q  x # * )

/\ -= C ̂  ^') ^ 7L ̂  'J~ * s * I
For a point nucleus " 0. Following Broch, the condition for the 

continuity of at a point X 4 , where the potential is Coulomb, then gives

the admixture of the irregular relative to the regular solution due to the

deviation from a Coulomb field in the region X  X t 9

" a *h<r [Axf] ~ fi'k(*i) A 2 6 ( J-n/i)
C ‘

where Kb is now assumed evaluated neglecting the binding energy and is

determined from the solution interior to X s . xt must be emphasised that the 

only condition on Xj is that the potential is Coulomb at Xj . Thus if the 

charge density does not fall abruptly to zero, X j must be sufficiently far out
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to satisfy this condition* As is evident from the derivation, Cg/C-̂  is then 

independent of „ Expanding the Beys el functions and retaining only the

lowest power of 5?ifi ,

— ■ = r ( l -  s a  - ), U 5 )

r c i  * * * >  I  a  - I c T m o ^  ^  5 *'
In this approximation it can easily be verified directly that C^/^l

f c \independent of by showing that  ̂ 1 = 0  using equation (49) together with
X a  ̂  *U = - • All the results derived below from (45) are then independent
31

a  e  - /V. | f  * 4 (46)

of * Substituting (45) in (/fi)

{  «• ~ /i'h ( 1  1L.X 6
U -  iCiU *,)( |4 * c)

2The normalisation is given by (39)* For an s electron is again given by 

(40) since the part of the normalisation integral exbending to ^  * may be 

neglected because of the smallness of ^5 , and outside § that part due to

0 2 can also be neglected again as a result of the smallness of ^  i *

The I.S. is

A , . p1 . J  J- r *  A - £ lC«a £*■') 3 «y  ^ A E J  - ( s. ——  —«------- —--- ■—— --- a (47)
\t A i ') hi. - K  (l* +  e~)]

Thus for two charge distributions to give the same I.S. /C|a ( 

must be the same for both*

In order to obtain IC |s , the same method may be used as in I. If the 

binding energy is neglected, i.e* with f  = 1, the RiccatjL equation for 

becomes
ci Kji ^ (% L ' . [ U- 3,) X , /
W 7  - f -----..-  K h 4 i L  U 8 )

The indicial behaviour of the required solutions is obtained from (14) by
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i Iputting *c = 1. If in the nuclear region it is also permissible to write t̂JL ft
instead of for the factor multiplying Ki , (48) becomes

3L CX

2  k  i c lt (. <1 / / , /c,p) (49)
U *  *■ a**-
This is formally equivalent to the equation for the extreme relativistic 

case if in this we put £ = 0* The approximation just made is equivalent

to assuming '7LJ? ^ 1 for the factor multiplying K ̂  o This is somewhat

more stringent, especially for lighter elements, than the condition 1

assumed previously• However, for )s 0 we see from the iteration 

procedure for obtaining K that the term neglected only affects K j* in the 

second iteration, the error involved in the additional terra due to this being 

less than lOJo. The only important case for the I.So is in fact that of an 

J electron, k = -1, and since as we shall see the additional term due to the 

second iteration makes only a relatively small contribution for this, the

error in K due to the above approximation is veiy small# for k 0 we see

from (16) that the approximation made above would cause an error in K ̂  

already in the first iteration. Thus for j^1/^ states which are the only 

other states for which the I*So is at all appreciable, it would be necessary

to use equation (48) if we wish to obtain a more accurate value of K (

However, even in this case if we are only interested in comparing charge 

distributions which give the same Kj it is again only necessary to compare 

the volume integrals of the potentials as for k - -1, since the term neglected 

would only give a contribution independent of the potential in the first 

iteration.

In what follows we shall consider only s states and assume that it is 

sufficiently accurate to use (49)» If we assume the potential has the form
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(5), then by re writing (<49) it is seen that

K  = K  ( r, ' 3 ) (50)

and then

a. ,x y j i  p•?< <? 3L p
) / A \where the denoted differentiation with respect to / ^ J  , Hence

) K  . .. / * \ 3 l\
J A 0 i » o J  2 * -

Using (49),

3 It . ... I t  ) -j -  J k . t -•( It K 1) ?
' l Jt‘W  (. ^  3«- ) (51)(9 %-P

J (X ̂With 3t, outside the charge distribution where U - - —

? K
■̂*■0 31

I j tK 1) t a? K J  " ^  * (M < * ̂  j jjx I K0   ̂JJ  { 52)
l n I—  ̂ ^

If we now consider a charge distribution of the form (6) but depending only
(? iCon Jl p , then using (52) and substituting for & |C - -rg  ̂ in (47)d X o

(y(Af ) A* fii ^  i** (53)
r ^ i ^ o  /.< t - o j  ‘

Thus if V  = tf/p) for both isotopes except for different values of r , then 
I <?

the I, S. depends on the change in charge distribution between the two isotopes

only through .
To

It is of particular interest to consider the specia3. class of charge 

distributions (6) but in addition such that the charge density is zero outside 

H p  , where X Q can now be considered as the nuclear radius. The distribution 

(23) is of this type. An alternative way of obtaining the I.S. in this case



is by evaluating a'̂ ~ & f°r the lighter isotope and at jCi =  yC ? *

for the heavier, i*e. we do not keep X, fixed. We then obtain £ B )  by taking 

the total differential with respect to X  of (46) with ?( ( ~ „ From (13)
we have with. £’ = 0

fi fc(xc) _
i2 'sf- p

and wTe immediately obtain (53) with X, ■' X Q a For this type of charge distribution

K (_X 0) is then independent of x .c> and the I.S. depends 011 the radius tp only
51 6 Cthrough X i n  addition to the relative charge of radius ... -

jl p

EVALUATION OF K*

Since for the I.S. of an s electron K can be considered as satisfying the 

same equation as for the extreme relativistic case with t = 0, all the results 

obtained in I for k =■-!, 1 can immediately be used for the I.S. if we put

€ =  o 0
Since with relativistic units the potential U is proportional to CL , the 

iteration procedure will also give /p as an expansion in powers of $t ,

00 U«'0l (54)^  k ‘° i n  t: X  a
1A ‘ 2

As already pointed out in I successive &U do not correspond to successive 

iterations except for v 'X j ' C ° \

For the potentials (24), /wf,)5 'K. are given by I (25, 26, 27, 28, 29) withg = 0.

(rQ) is obtained from the third iteration and can be calculated without too 

much difficulty^ the general expression for any ̂  is however rather long. We 
give some special cases,

* =  0; K X ' t  - - V (  1 *■  ̂ ' *’ * h
\ i  ~  i $  r c ^ s ' (  w  -  ■ ■ ( 1 1  f  ■ 1 i  x ' a  • +  2 f a  1 4 )i ̂
ft = 2; “ / j t p.1 0 6 * * *  S-Cie-foV (55)\ *
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n = 3; tiL3j(^) - - ^ f I  i *  c - e u t a ' * )

n = 4 ti‘3)( h ) - ft ( 1 * 0  - 0 1 3  t*-a + 6 ■ P IS  !> t* H)

|t‘5>(M - f ( / t f *■«? )
3 3 1 S' J

_ „3*n
I ± 3 / S’

li = 0 is a limiting case? the potential becomes logarithmic and the calculations

must be carried out separately. In figures (2) and (3), -K(rQ)/a is shorn 

plotted against a for n ~ 2 and n = .->0 . The straight line in each case represents 

the second iteration and the upner curve when ff (r ) has also been included. ItJ O
is seen that this last term makes only a very small contribution to K(r ) for all 

elements3 i.e. Z *492. We may thus consider the second iteration to be a very 

good approximation for all elements. Since the additional term due to the second 

iteration is only a relatively minor part of K, the use of the equation (A9) for K 

is seen to be justified.

It is of interest to compare the above results for K with those obtained by 

solving; the radial equations directly. These calculations were made before the 

above iteration method was devised. Hie equations (35) are transformed into 

second order linear equations each involving only one of the functions J k  •

Thus for / (4 , ,, j
X * U  ; p i ( h - p  _ H * ' * > ... k  x  4 *
(fai* L  -*- *■ H ’ a 1 X I  ^

If this is solved may be obtained from the first of the equations (35) and

flĵ may be found. For the potentials (2lv) with n an integer greater than zero,

the singularity at the origin is regular and a series solution in st is possible.

Due to the smallness of "X-& it is found that the terms in % <? In K( ) may be
neglected and that hence ^ K(*^) = q  as already proved more generally above.

For k = -15 the’term let K( ) in a is just (26). Successive terms in ascending 
2powers of a may be obtained from the recurrence relations. The coefficient of 

each power in a is now a not very rapidly converging series. The terms u p  to sP 

were calculated for n = 1, 2, 3? 4? ^  aI*d are in agreement with the ones given

* i w Q  a  A.{« (56)
f k  iA, d *  fix.
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above. This is essentially the method used by Crawford and Schalow to 

investigate the cases of uniform and surface distributions*

It is seen that the iteration method is much less tedious and can be applied 

to any charge distribution, whereas only in exceptional cases can a series solution 

in X be found for equation (56).

The I.S* for the potentials (24) is obtained if the value of K(rQ) is 

substituted in (53) with A, = a# • In the approximation where only the first

? was calculated using (55) for u = 1 , 2 , and in Figures (î,) and ($) is shown 
plotted against Z for —  2 and n = -.-0 . For the lower curve in each case, the

the use of the first iteration only. The effect o f ( r  ) is very small and on 

the scale used the curve for P using only the second iteration is almost identical 

with that obtained if Y ^ 0 ) is a],so included.

It is seen that the effect of the distortion of the wave function is to 

decrease the I.S. below its value as calculated by the perturbation method and 

that this difference increases with Z as is to be expected* P varies only slightly 

with u, i.e. with the concentration of charge. Thus for Z = 82, P = 0.78 for a 

uniform charge distribution and 0.76 when all the charge is on the surface. The 

use of the first iteration is already a considerable improvement on the perturbation

EyALUATICM OF I.S.

Iteration (26) for K(rQ) is used, the I.S. for a uniform charge distribution becomes

&■ ̂ 0

A Q (57)

The ratio of the I.S. as given by (53) to that calculated using the 
perturbation method (-41), is

5 * \terns up to s have been included in K(r0), while the upper curve corresponds to
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treatment and becomes a progressively better approximation as the charge moves 

outward*

It is seen then that the effect of distortion although appreciable and in 

the right direction could explain only a part of the discrepancy between the uniform 

model of Brix and Kopfermann and the experimental, data.

With the help of the results just obtained, the I.S. may be calculated for 

any given charge distribution* Thus the uniform charge distribution which gives 

the same I.S* must have the same values of K(r^), £ K(r^) as the given distribution

and the problem is then just to calculate this equivalent uniform charge 

distribution. The equivalence of K considered in I was seen to be conveniently 

specified by the radius of this equivalent distribution. It was shown that if 

r is obtained from (33) it has almost the same value as if the second iteration
V

is used for its determination. Similarly, using only the first iteration 

may be determined from
t ;

y / n *  £  - j ^  <»>- &
and will again be accurate also within the use of the second iteration.

It may be noted that for the charge distributions (6) which in addition do 

not depend on further parameters 3  , we have from (4.6) and (53) that S ( &  E) =

ThisE. 1 1 and that therefore for these distributions,
■x* tc

also follows from (33) and (59)-

The I.S. for the given distribution may now be obtained from (53) with

and x = and using for K(rQ) the values already obtained for a uniform
charge distribution. Alternatively we may use the results obtained for P, which

depends only on 2, together with the I.S. as calculated by the perturbation method
inwith the valu.es r_ and —^ r

The important point is that using only the first iteration for a given



S*

charge distribution, the I,S. may be calciliated accurate to within the use of the
second iteration if the results for a uniform charge distribution already obtained

with this, are used. The I.S* will then depend besides on Z only on ^ 6 *h,
tc

RELATION WITH ELECTION SCATTERING

It was shown in I that the radius r n of the uniform charge distribution

needed to describe the s wave scattering was almost independent of energy and in

particular equal to rQ for £ - 0. Thus rc as obtained from experiments on

electron scattering can be used for the I.S# In a way which follows immediately

from the discussion at the end of the previous section. The data on the I.S,
b /iwill then give effective values of which are related to the change in thei &.

charge distribution between the two isotopes by (59)* If the charge distribution
u would have the

direct Interpretation as the relative charge of the parameter occurring in the

potential. Any such information irould be a, valuable test for theories of

nuclear structure# Thus on the basis of an extended individual particle model,

the change in charge distribution would have to be ascribed to a change in the

range and strength and also of the shape of the collective potential in which the

nucleons move. The addition of any neutrons must change in some way the extent

and depth of this potential and hence also the proton distribution. On the other

hand, there would also according to Rainwater (1950) be a change in the shape of the

individual nucleon potential, and consequently a change in deformation of the

nucleus. Any such difference In deformation between tix> Isotopes would then

according to Brix and Kopfermann (1949) also give rise to an I.S#

Since Ag and Au are near the lighter and heavier end respectively of the

elements for which the volume dependent I.S. is known, we take as a tentative
“13estimate of the equivalent radius r of these elements the value 1.15 x 10 Â  cm.c*

as determined from the scattering of electrons by Ag and Au by Lyman, Hanson and

is of the type (6) and also does not depend on , then
I I L
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/  1• I s ' ) a eScott. The I.S. will then be reduced by a factor  ̂^y^ / from the value
no Iobtained if a radius of 1.4 x 10"^ A3 cm. is used. This is equal to .7 for 

Z = 55 and to ,74 for Z = 82, Including the effect of the distortion of the
itfave function, the value of the I.S. as obtained with the standard model of Brix 

and Kopfermann using perturbation theory Is then reduced by .64 for Z = 55 and by 

,58 for Z - 82, This would account for a considerable part of the discrepancy 

between the data and the model of Brix and Kopfermann.

To take the radius as increasing proportionally to A"* Is In general 

Insufficient to specify the change in the charge distribution between two isotopes, 

especially if deformation effects are likely to be important as for instance is 

strongly suggested for the exceptionally large I.S. of Sm and Eu (Brix and 

Kopfermann, 1949).
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III.

I.S. A W  MICLEAR DEFORMATIONS.

Brix and Kopfermann (194-9, 1951) have suggested that a change in charge 

distribution due to a difference in shape between two isotopes will lead to an

I.S. in addition to that due to an increase in volume usually considered. The 

effective potential energy of an $ j *f or electron in the nuclear interior mil

then be obtained by averaging the deformed nucleus over all directions. If the 

isotopes have a spin I ^  1, they will possess a spectroscopic quadrupole moment 

defined with respect to fixed axes in space for the substate H = I. Brix and 

Kopfermann have assumed that if these quadrupole moments are too large to be due 
to-the motion of a single proton it is justified to describe them by an 

ellipsoidal deformation from spherical shape of the nucleus as a whole, it then 

being possible to make a quantitative estimate of the deformations and hence also 

of the extra potential arising from these.

It is important \dien calculating the deformation from the spectroscopic 

quadrupole moment to take into account that this may be considerably smaller than

the intrinsic quadrupole moment referred to the axis of the nucleus. This

difference will have an important influence especially for smaller I in v i e w of 

the fact that the deformation occurs as the square in the extra potential to 
which it gives rise. Brix and Kopfermann have especially considered the 

connection of the I.S. between Sm-^0 and Sm̂ -52 the quadrupole moments of

Eu*^l and Eu*^3 which have one extra proton relative to the corresponding Sm

isotopes. Both the I.S. between and that between Sm^° and

S m ^  are exceptionally large. It is especially noteworthy that the latter 

is nearly twice the already large I.S. between any other two adjacent even Sm 
isotopes, thus the relative spacing of the Sm I.S* are,



31

Sm144- Sm117 Sm148 Sm149 Sm15° Sm152 Sm154

0 1.4a 2 2.26 3.14 4-.81 5.72
Assuming that the deformations of Sm*^^ and are approximately the same as those
of the corresponding Eu isotopes and calculating the deformations of the latter 

from their known quadrupole moments, Brix and Kopfermann obtain an estimate for the 

contribution of the deformation dependent part of the I.S. between Eu*^l and Eu-^3 

and hence also of that between Snr^° and Sm"^. As a result of their calculation 

which ignores the difference between the spectroscopic and intrinsic quadrupole 

moments, they find that the deformation dependent contribution of the I.S. is rather 
smaller than the difference of the I.S* between Sm^O and Sm-^2 and that between 

other adjacent even Sm isotopes2 their interpretation then being that In view of 

the uncertainties involved just this I.S. jump is explained as due to a difference 

in deformation. When however the difference between the spectroscopic and 

Intrinsic quadrupole moments are taken into account, it mil be shown that the 

deformation dependent part of the I.S. is of the order of magnitude of the whole 

of the anomalously large I.S. of Eu and hence with above assumptions of Brix and 

Kopfermann regarding the deformations of and also of the order of

magnitude of the whole of the I.S. between these.

In the following the deformation dependent I.S. is calculated with the 

method developed in II, using the same model as Brix and Kopfermann of a uniformly 

charged nucleus deformed into a rotational ellipsoid of the same volume as the 

undeformed spherical nucleus, the difference between the spectroscopic and intrinsic 

quadrupole moments being taken into account, Various tentative applications are 

considered, especially in connection with the large observed variations in the I.S.



CALCULATION OF POTENTIALS.

We consider the nuclear charge distribution to be represented by a uniformly- 

charged body of revolution whose surface 1 is given by

where Q is the angle between the axils of revolution and the radius vector jTj

from the origin to a point on the surface, the origin being taken as the centre of

the sphere, radius , which is obtained in the limit £ - 0e £ is a parameter

which, gives a measure of the deformation of the body relative to this sphere. In

the following, it is assumed that £ is sxifficiently small that only powers of £
2up to £ need be retained# Expanding in terms of spherical harmonics we write

the total, charge is Ze if the volume is the same as that of the sphere of radius 

% s The potential energy of an electron at a point f* in the interior of the 

nucleus is then

(60)

u. (<s)

it * &

With constqnt charge density,

3

where



is the potential energy due to the uniformly charged sphere, radius ^ ,

For a S«/^ or electron, the effective potential energy \t(r) is obtained
by averaging V(t) over all directions.

V(r) + V£( 0 (61)
where

Vt (') . - *'■' i i*'-. <■€•&>■ l>]f (62)
* 0

is the potential energy due to the deformation. We now suppose that the nucleus 

may be described more specifically by an ellipsoid of revolution with semi-axes 

a, 9 b along and perpendicular to the axis of revolution respectively. If the 

volume of the ellipsoid is the same as that of the sphere radius , the 

deformation may be described in terms of the parameter fr - which is positiven?
for a prolate and negative for an oblate ellipsoid of revolxition. Using the 
equation for the surface of an ellipsoid,

<*. * 0 , A  = - ^  ^  * £ ~ ri *r $

for both a prolate and oblate ellipsoid and from (62)

Ve -- i f  fs 6- (63)

The difference of potential energy in the nuclear interior between two isotopes is,

V ~ £ VV f* & Vc % V«r &
* ere . i f . -  S'fi s I, . t y l

"S % ■  ~  te, t  J  L  J
is the usual change in potential energy due to an increase of volume specified by 

of a spherical nucleus radius fj .
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is the change in potential energy due to differing deformations £, of the

from the fact that for an ellipsoidal nucleus the charge is effectively concentrated

more towards the centre. Even for £*=-•- the I.S. due to S V« ̂  is less than 2%
f

of that due to S YV and may therefore safely be neglected.

If the nucleus has a spin I ^  1, it will have a spectroscopic quadrupole 
«?moment which may then be used to calculate g- . If (p is so large that It must 

be interpreted as due to a large number of protons, the description of the nuclear 

charge distribution by a uniformly charged ellipsoid can be considered as reasonable 

especially if the cause of these large quadrupole moments is taken to be a 

deformation by the nucleons in unclosed shells of the core of the remaining 

nucleons as suggested by Rainwater (1950). The intrinsic quadrupole moment Q 0 

defined with respect to the symmetry axis of the nucleus is then given in terms 

of the deformation £ by

two isotopes. may either increase or decrease the I.S. due to & VV

depending on whether j£a f > }f(J or j€# | > (£,.( respectively.

is a small correction to the volume dependent charge of potential S'VV arising

will be larger than the spectroscopic quadrupole moment Q  , the relation 
between the two being (see e.g. A. Bohr, 1951)

X ( al 0X ( al 0

When I becomes large % tends to one, but for small I, is may be quite large. 
Q is zero whatever the value of (j)0 if I =

We then have
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(66)

and

s v £ ^ «, a  ̂ (67)
* rt

Thus, for small I, /j will have a very large effect on $ since it

occurs as the square in the above expression, the omission of this factor by

Brix and Kopfermann being in fact quite crucial. Even if the nucleus does not

have a spectroscopic quadrupole moment it may still have a deformation, i.e. an

intrinsic quadrupole moment with respect to the internal symmetry axis and hence 

also for even and spin -g isotopes need not be zero. In this case, however,

t can only be obtained on the basis of some model of nuclear structure such as 

Rainwater*s which allows for deformations. The importance of nuclei which have 

observable spectroscopic quadrupole moments and for ’tdiich the I.S. is known is 

that t and hence the I.S. due to may be rather directly estimated from

the spectroscopic quadrupole moments and that therefore a comparison with the 

experimentally observed I.S. may be mad© involving only a minimum of hypothesis.

CALCULATION OF THE I.S. DDE TO NUCLEAR 
DEFORMATION

To calculate the I.S. corresponding to SV* , we write this in the form,

ft?e “

when£

- > -  f-* 0

^  ( tV - C )  (68)

and does not depend on r*

For nuclei with spectroscopic quadrupole moments,
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(69)

We denote the I.S. corresponding to Ss»Y«̂ by t (̂ 1 ̂ )j ^ ) respectively.

Using the simple perturbation theory to calculate the I.S., we have from (37) 

for an s electron,

a c
">La- K- u  6- F -

r ' ( l t i r )  ( I  

and with (4-1) for tt. = 2,

^ ^ 6 ’ <■ i ^  ^  (70)
<5 I r t r ) ^  S$9

which Is essentially the result given by Brix and Kopfermann (1949).

Vie now calculate the I.S. using the method developed in II. As was shown,

it is sufficient to limit ourselves to the first iteration. For a uniform

spherical charge distribution, radius ro , we have from (25) and (26) with ja = 2

for a change in radius S' Tg ,

vicco(k> -• ^  y ( £ f  ; h > K  (71)

The change in /C°\ f) corresponding to SYg is on the other hand from (20),

c ' r (0'-n .? (X F  i $ ) 1 ■ I v  r  <72)M h  i1) {rj / * ■
equating (71) and (72) we obtain the change in radius & t£ of the uniform spherical 

charge distribution of radius which will give the same I.S. as ,

Sfl 9" - , x ̂ ^ h  (73)
K  3

And therefore fran (53)?
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r ' a * * ' )  jjx i i'.(i ■■„)j ' 11 3 f

If the change of radius corresponding to £ (^£>) is 6 K  ,

37.

-•• )5 /  *- - / h (74)
S(df:V) /c / ft J
It is seen that the perturbation expansion (70) reduces to this in the limit 

ca. "I o y i.e. 1 •
We have

£(A t;) / ^

For Pb, <4. = 0.6, 6' ~ 0.8, this is 1.1 and thus the perturbation expression for 

%  ( A £ v ) / b ( A k ^ ) is a rather good approximation.
For the ratio h [A t t )  /  &  ̂A  tt ) ̂ "C we have

^  (A  f v ) 5 | i>(AE-r) 5 _ n

O.
For Pb, this is 0.85* Assuming f- 2 $ PA  3 r '" I ^  have• a 5 A

e> A
5A

from (69) and (74) for isotopes with a spectroscopic quadrupole moment, 

^(AEC) __ , r  I_ ( ff - i f  (V)

A 1/5 - -2 E /
With S A = 2, K e = 1.4 x 10 cm. and (j? expressed in barWj

■■-. I- 35 x ie3 I filjBj *. (75)
S (A Izf)  - i f?

where the index N denotes that the calculations have been made assuming a 

uniformly charged nucleus of radiis = 1.4 x 10“^  A*" cm., the change in radius 

being taken as • This is the standard model which has been used by Brix

and Kopfermann (1949, 1951).



RESULTS AND DISCUSSION.

We make use of the ratio s of the spectroscopic quadrupole moments
of the two isotopes as this can he directly determined from the hyperfine 

structure, involving no detailed knowledge of the atomic wave functions, and is in 

general known with considerably greater accuracy than the absolute values of 

the quadrupole moments themselves. For two isotopes with the same spin̂

Yx, = *̂Xa_ = ir and,
§  / < A 1 V)  I'S$ A  Y a  I c J i ^  3 , ..
”  - ...... - Jj- -•) %, (76)
&(AEkT .x ' A ' ' 1

In this expression apart from the assumptions regarding the constancy of the 
charge density and the magnitude of the nuclear radius, the principal uncertainty 

will be due to the error in .

The I.S# data, apart from rather uncertain corrections due to the shielding 

of the inner electrons by the V* t electron have been given by Brix: and 

Kopfermann in the form ^ ( A b ) j where S (A E ) is the experimentally

determined I.S. and £ (/IE r ) ^ is the I.S, of their standard model. In their 

most recent presentation (1951) shown in Fig. 1, they have included the correction 

P due to distortion of the wave function as calculated by Humbach (1952), this 

being in agreement with the results obtained in II.

If we assume that effects of nuclear polarisation by the electron, discussed 

by Breit, Arfken and Glendenin (1950) are small, we may write

S l&e) s 6(A£V) f- i ( d C c) 

where the quantities are supposed to be actual or calculated values as will be 
clear from the context. Then

<3 (a1 > )  .. ... S ^ r )
i l A e j *

Thus in order to test the above theory, we must see whether we obtain a reasonable
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value for § , the actual value of which must of course always be positive, with

as determined by Brix and Kopfermann,
* "i cl 153We consider the I.S. between the two Eu isotopes, Eu p and Eu (Z = 63).

Ik *The spin of both is 5/p &nd therefore from (65), 5 , ) r$. The hyperfine*a ■-> *3
structure and I.S, has recently been very thoroughly reinvestigated by Brix (1952),

ir _ Mwho gives s = 2,0 and - 2.3, where this value includes an estimate of

the effect of the shielding of the inner electrons by the valence electron.

Schuler and Korsching (1936) give QgJisx ~ 1*2 barns, this value being 

considered as somewhat uncertain as the terms which can be used for calculation 

are perturbed, the error being of the order of 2C$>, Hence from (76),

E

'  ̂ X
‘< =  0.5(s2 - ^  2.2 + 0.9N

and $ " 2.3 - 2.2 = 0.1 + 0.9.

In view of the rather large errors involved in and

and the uncertainty of the assumptions regarding the nuclear charge distribution, 

the actual numerical value of S obtained cannot be considered as vezy significant, 

However, the above results show very clearly that the anomalously large I.S. 

between the Eu isotopes is readily explained as a consequence of a difference in 

deformations, if the experimentally determined spectroscopic quadrupole moments 
are used to make an estimate of these.

The whole and not merely the jump of the exceptionally large I.S. between 
^150 an(̂ gm152 £2 =62) is then readily explained if the difference between the 

spectroscopic and intrinsic quadrupole moments is taken into account and if the 

deformations are assumed to be somewhat less than those of the corresponding Eu 

isotojDQs. The still larger I.S. between Eu^^ and would then indicate that

the extra proton increases the already large deformations of the Sm isotopes. In 
connection with these, it is interesting to consider the application of an
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147 1/Sempirical rule given try A, Bohr (1951) to the isotopes Sm *" , Sm + • This rule 

is that for two isotopes which differ by two neutrons and have the same value of I, 

the nucleus with the numerically smallest quadrupole moment has a magnetic moment 

closest to the appropriate Schmidt value. The theoretical justification for this 

according to Bohr is that the greater the deformation of the core the greater is 

the influence of the coupling of the angular momentum of the nucleons in unclosed 
shells with the motion of the core and the greater consequently is likely to be 

the deviation of the magnetic moment from the Schmidt value.

The spins of the odd neutron nuclei Snr^, are both 7/2* while the

magnetic moments are -0,3 and -0,25 nuclear magnetons respectively, the quadrupole 

moments not being known# The I,S. is approximately the same as that between the 

other Sm isotope pairs (excepting Sm and Sm“' ~) and therefore rather large. The 

spins and magnetic moments agree with the configurations ( "|f and ( fy*)5 

predicted by the shell model, the magnetic moment of Snr^^ lying rather closer to 

the appropriate Schmidt value than that of Sirr̂ ,̂ Bohr’s rule thus predicts 

that the numerical value of the quadrupole moment of Sm^^ is greater than that
*1 / 7of Sm and that therefore the deformation dependent I,S, will tend to increase 

the volume dependent part. This would support the explanation of these rather 

large I.S, as due to a deformation dependent effect which then becomes 
exceptionally large fox* Snr̂ ,̂ Snr^^ and Eu^^.

The conjunction between the neutron numbers 88 and 90 of the I.S, jump 

observed both for Sm and NJL (Z = 60), together with the exceptionally large 

difference in quadrupole and magnetic moments of the Bu isotopes, suggests that 

there is some change in the neutron configuration on the addition of the 4,5th 

pair of neutrons.

The only other isotopes besides and Eu^-^ for which both the

spectroscopic quadrupole moments and the I.S# are known are and Bs-^7 (Z = 75).
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The spin of both isotopes is 5/2 • Schuler and Korselling (193?) give the two 

values “ 1*08 and 1*02 as obtained from two different lines,

the former being claimed as the more accurate5 =2*6 barns, there being

good agreement between the values obtained from the two different terms* The 

deformation dependent I.S. will thus act in the opposite direction to the volume 

dependent part. If we write (Pllii'8$ / = 1 + J , J  1, then

£(4Ff) (-0.37? :3 =0.08
1 J = -4*6/3 = (

* 6* ^  (-0,09; J = 0.02
On the other hand, Brix and Kopfermann using the data of Schuler and Korsching give,

( A  L- ) / b (tits)'1 _ 0.35. Thus,

*S = .72 if 7 = 0.03i

% = .46 if - 0.02.

There is thus in general the possibility, also present for isotopes without 

spectroscopic quadrupole moments, that the deformation dependent I.S* is 

sufficiently negative to reduce the I.S. to a very small or perhaps even negative 

value. This may then perhaps be the reason for the rather small I.S. of the

elements from W (Z =74) to Pt (Z =78) inclusive.

Kopfermann and Meyer (1947, 1951) similarly to their considerations of Brix 

and Kopfermann about the I.S* jump in Sm and the quadrupole moments of Eu, have
suggested that the difference in the Be quadrupole moments may be connected with

the decrease in the I.S. of the corresponding W (Z = 74) isotopes, and

The relative spacing of the I.S. of the W isotopes is,

W180 W182 W186

-0.91 0 1 1.89
With the larger and more accurate value 1.08 for /  Q  ̂ -i87 it would

seem however that with d ©formations for W^8̂ , of approximately the same
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value as those of the corresponding Re isotopes and including the difference between
ft

the spectroscopic and intrinsic quadrupole moments, £ £>) is too large

to account for just the rather small jump in the I.S, It seems more likely to 

suppose, in a similar way as for the Sm isotopes, that the somewhat small I.S. 

of all the W isotopes as well as that of the Re isotopes is due to a negative 

deformation dependent I.S., and that the small I.S. jump between and is
due to a change in this.

A case of some Interest in connection with the possibility of very small I.S. 

is that of the Iodine isotopes 1̂ -̂ , 1^9 (z = 53) for which the quadrupole 

moments but not the I.S. are known. The spin of I12? is 5/2 and Q l n * = -0.75 

barns, the corresponding quantities for I12  ̂being 7/2, , ~iy = 4.6

and p x 1 = ~0.43 barns. From (75),

^ ( A ^ c )  _ _
S (I\ EV) ̂

It must be remarked that the model of an ellipsoidal nucleus is not likely 

to be a very good description In this case as the quadrupole moments are rather 

near the single particle values expected on the basis of the simple shell model*

The order of magnitude of the deformation dependent I.S. obtained is nevertheless 

likely to be correct and the I.S. between 1̂ ^  and I"*'2^ can be expected to be 

rather small. The reason for the very small I.S. of the elements (Z = 54) und 

Ba (Z = 56) which follow Iodine may then perhaps be due to large negative 

deformation dependent I.S. In this connection it is interesting to consider 

the application of Bohr's rule to the odd neutron isotopes Ba'"^ and Ba- 7̂,

These each have a spin of 3/2 and the magnetic moments 0.832 and 0.936 nuclear 

magnetons respectively, the quadrupole moments not being known. The values 

are not far from the <̂3/2 Schmidt value suggesting the neutron configuration )
and ^ oi JJ which are In good agreement with the predictions of the shell
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137model. The magnetic moment of Ba is nearest the Schmidt value, this isotope 

having just one neutron less than the magic number 82, and Bohr's rule then 

predicts that Q  Sa and that therefore the deformation dependent

I.S. will act in the opposite direction to the volume dependent part. This then 

would seem to support the explanation that the deformation dependent I.S. may at 

any rate be partly responsible for the small I.S. of Ba.

Certain indications may be obtained from the I.S. and magnetic moments of 
isotopes with a spin gp, which of course have no spectroscopic quadrupole moments, 

if a plausible extension of Bohr's rule is made. This would then state that 

for two isotopes which differ by two neutrons and have the same value of I the 

nucleus with the magnetic moment closest to the appropriate Schmidt value would 

have the smaller deformation. The only isotopes with a spin •§• which come into 

consideration at the present time are those of the odd proton elements Ag (Z =47) 

and T^ (Z = 81). The magnetic moments of Ag"^, are -0.159 and -0,086

nuclear magnetons respectively, both being near the [*yaSchmidt value in good
*1 A Q

agreement with the shell model. The magnetic moment of Ag is somewhat 
closer to the Schmidt value and therefore the deformation dependent I.S. should 
be negative. It is not however likely that this is very appreciable in view of 

the normal valtie of the I.S. and also of the fact that since the magnetic moments 

of both isotopes are rather close to the Schmidt value their deformations will 
probably be small.

1203 205The magnetic moments of T£ p and TC are 1.596 and 1.612 nuclear magnetons 

respectively, these being somewhat closer to the gy then the |M/a Schmidt value, 

this being reconcilable with the shell model. The magnetic moment of the 

heavier isotope is closest to the Schmidt value and the deformation dependent I.S. 

should be negative. There is no indication from the experimental I.S. that this 
is significant. Perhaps in view of the proximity of these isotopes to both the
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neutron magic number 126 and the proton magic number 62 it is not unlikely that 

their deformations are small*
Finally we mention two cases which seem to be of some interest:

1) The spin and spectroscopic quadrupole moments of Sb^^* and Sb**-23 (2 = 51) are 

5/2? *-0*3 barns and 7/£, -1*2 barns respectively, the I*S* not being known.

From (75)} f (^£7 )/6(4£vJ = 0.62 and thus the I.S. can be ejected to be rather

large. This might indicate that the unknown I.S* in the region between Gd and

Xe may have values quite different from those expected if the points for Gd and

Xe in Fig. 1 are joined by a straight line.

2) The two isotopes Yb^^, Ybl^3 (Z = 70) have spins of -J- and 5/3, respectively.

Qiir?3 ~ * 3*9 barns and is exceptionally large. ^(<dF^)r‘— 0,3 and

although somewhat on the small side is not abnormally so, thus &(/! t-“e) j  ̂

cannot be expected to be numerically very large and will almost certainly be 

less than 0.5 in magnitude.

One obtains

( b [A Ert j 
173 " * 2

This shows that even though the deformation of Yb^^ is so large, £y^*73 —  ^ > 
171that of Yb 1 can only differ veiy little. In fact since the relative spacing 

of the I.S. of the Yb isotopes is given by
Yb171 Yb172 Yb173 Yb1^  Yb176

0 0.62 1 1.36 2.1
the deformations of all the isotopes must be very nearly the same which seems 

rather remarkable in view of the probable large magnitude of these*

From the foregoing and in particular the example of the Eu isotopes, it must 
be considered as established, even in view of the rather large -uncertainties
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involved, that a difference in the deformations of two isotopes can have an effect 

on the I.S# comparable or even larger in magnitude than the usual volume dependent

I.S. The possibility must also be strongly entertained that the large variations 

observed in the I.S. may be du© to this deformation dependent effect# The I.S# 

data could then be used to give information about the variation of nuclear 

deformations, providing a valuable test for theories of nuclear structure which 

involve a deformed core* Of especial interest in this connection are the I.S# 
of a sequence of isotopes which have all rather large or small I.S# This must

then be taken as indicating that the deformation! continuously increase or 

decrease respectively from one isotope to the next, and not that merely the 

difference in deformation between any two isotopes remains approximately the same* 

Thus the large I.S. of the Sm isotopes would indicate that all the isotopes from 
gm144 f)0 Sm3-54 have successively larger deformations with an exceptionally large 

increase between Snr^' and Snr̂ 6
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