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SUMMARY,

In Sections I and IX, the volume dependent isotope shift and the elastic
scattering of electrons by nucleil are treated by a method with which they can be
simp15 relatede.

In Section I, the result already obtained by Feshbach that the & wave
scattering due to the finite nuclear size depends only on the volume integral of
the potential due to the nuclear charge distribution is derived in a simple manner
with a clear indication of the limitations. It is showm that this is then the
only information which can be obtained for energies at which only the s wave
scattering is important.

In Section I¥, the isotope shift is calculated taking into account the
distortion of the electronic wave function by the nuclear charge distribubion
uging a non-perturbation method due to Broch and is reduced gomewhat below that
obtained with the simple perturbation method. It is shown by the ssme method as
that used for the electron scattering that the isotope shift depends essentially
only on the above volume integral and on ite difference between two isotopes.
Uging the resulits obtained from the scattering of electrons by Ag and Au by ILyman,
Hanson and Scott and assuming that the nuclear radius increases proportionally to
A% the isotope shift is brought into considerably better agreement with the
experimental data.

In Section IXT,the suggestion of Brix and Kopfermann of the effect of a
difference in the deformations between two isotopes on the isotope shift is
considered, the method of Section II being used to calculate this., It is shown
that in those cases where it is possgible to estimate these deformations from the
spectroscopic guadrupole moments, the difference beltween this and the intrinsic
guadrupole moment must be taken into account, and in general increases the effect

greatly above the estimates of Brix and Kopfermann, A mumber of tentative




applications are made which suggest that this deformation dependent isotope

ghift may perhaps be responsible for the large variations observed in the

data,




I

THE, BLASTIC SCATTERING OF ELECTRONS BY NUGLET

The scattering of electrons by nuclei deviates from pure Coulomb scetltering,
i.8, if the nuclei could be represented as point charges, for energies at which

the electron wavelength 3 becomes of the same order of magnitude as the nuclear
2

LN
dimensions. If for the nuclear radius we take Ro::g#:'tﬁp’ then for energies
(2,4 i
. : ~ EAYs LD .
congiderably in excess of the rest mass Bb/ﬁ = ;3§; , where € = E/mc~ is the

energy in reletivistic units. TFor hesvier nuclei, the scattering at large
angles can then be expected to be influenced by the finite nuclear size at
energies greater than about 5 MeV. For lighter nuclei, observable effects will
be at somewhalt higher energies. For such energies which musgt not be so great
that the wavelength becomes of the same order as the internucleon distance, the
scattering will be almost wholly elastic, and can be congidered as dus to the
charge distribution of the nucleus ag a whole. The scattering process will be
adequately described by considering the electrons to move in the potential of
the nuclear charge distribution, In this work we restrict ourselves to
energies for which such a description of the scattering can be considered ag
valid. Radiative effects are quite appreciable and it is essential that they
are allowed for in order that the scattering may be interpreted in terms of the
nuclear cherge digtribution.

Calculations using the Born approximation have been made by Rose (1948),
Elton (1950) and Parzen (1950), which however are only accurate for light
elements. Detailed calculations of the scatbering cross sections making a
vhase shift amalysis have been made for a uniform and a surface charge

distribution by Elton and Achesen (1951) for energies of about 20 leV,
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Feghbach has derived some general properties of the nhase shifts for the
extreme relativistic case when the rest mags of the electron can be neglected.
In particular, he has shown that for not too high energies the s wave shift,
which for energies in the region of 20 MeV is sufficient to describe the
deviation from pure Coulomb scattering, depends essentially only on S~w’r‘*ghr
vhere \f is the potential due to the nuclear charge distribution and r is
sufficiently far outside this distribution for the potential to be Coulomb. It
follows that scattering experiments can then determine only this volume integral
of the nuclear potential giving ope condition for the nuclear chsrge distribution.
Feshbach assumes the condltlon E'ﬁ/@mahm 1 for his proof. However, for the
extreme relativistic case thlS is just equal to ng%x , which as we have seen
must be of the order of unity for Linite nuclear size effects to be appreciable,
In fact for heavier nuclel for energles somewhal greater than 20 MeV thisl
expression will actually become greater than one., Hence it is of importance
to see exactly what the limitations of the above dependence of the phase shift
on the volume integral of the potential ars. In this work a method is developed
with which Feshbach's result may be derived in a simple menner ag well as
additional termg of what is essentislly an expansion in powers of ;%;2:{ .
Above about 50 LeV this expansion ceases to converge and the whole basis of
Fesghbach's result breaks down, When, however, only the comparison of two
charge' distributiong is of inteiast, it will be shown that it is sufficient To
uge only the volume integral of £he potential up to about 50 lieV.

The method can also be applied to higher phase shifts which can be

expected to become important at energles of aboul 30 beV,




CALCULATTIONS OF PHASHE SHIFTS.

We consider an electron, energy E, moving in a central field with potential
energy VY. On separating out the angular devendence, bthe small and large radial
functions ﬁ:}“? }njf may be obtained from the solutions of the escuations

3 E
d@a - R eai- w9k

(1)
0(-2[3 ( p)
T2tz (E4l-U)fR m—'j*ii
d{% I
where k = ={j +%) = (€ + 1), for j = £ + %
k = 'i-(j e '%“ = 6 for j = ‘6 - —.]57
We use relativistic units ‘i?‘ =zm=c¢c=1, and £ = E‘ U= "% - f:- .
3 b "‘f - - s < _&M,CA’ YV N Al g i«i’/mc

Por the scattering of an electron by the field of a finite size nucleus, charge

Ze, the asymptotic expressions for the regular solutions of fk , gk, in the form

given by Feshbach, are

Yy .o, :
’JD“" v(gﬂi) W-X_!ﬂ.g . (?;«) aj‘&it‘cw(tﬁw)u + j)k} (2)

jaa fv(ée-()'/ L‘/Eﬂiﬁé (W) wyg,; - ((‘“,L‘ ?)ME

et . .
where a = 2« , & = and [+ dis the electron momentum in relativistic units.
2R

In the more usual notation (Mott and lassey, 1949), the phase shift for
the state j = € + 4 is denoted by 4?3 and that for j = ¢ - + by}j - (€+1).

We may write

. ) A
49‘& - j)@%,fﬁ’- + éh (3)

v . . v . .

_)g ,R 1g the phase shift for pure Coulomb scatiering, the corresnonding regular
« («©

solutions being devoted by ‘{rle,& s g bR while Sk is the extra phase

shift due to the finite nuclear size and gives the deviation from pure Coulomb
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I, 1
and have the same agymptotic forms as the regular solutions except for a

{c) () £$}
different phage shift ?)Rrg » Bxplicit expressions fOI"QQ:R s ?@,I and

{¢)
scattering. The irregular Couwlomb functions are denoted by {%hf s

also for the differential cross—section in terms of the phase shifts are given
by Parzen and Elton, bul are not necessary for our purpose.

For the extreme relativistic case, ¢ »>» 1, where the rest mass may
be neglected in the above equabtions, Acheson and Feshbach have pointed out the

following relation between the phase shifts,

V){% - l‘?—-—!ﬁ’ (4)

Since this holds separately for the Coulomb phase shifts, also S& = §~~k .
Thus for extreme relativistic energies states with the same j but opposite spin
orientations with respect to the orbital angular momentum have the same phase

- shifts. The numerical analysis of Elton and Parzen using the accurate
squation (1) are in good agreement with this result. In addition for energies
of the order of 20 MeV, the calculations of Elton and Acheson show that only
the phase shifte g—s, Sﬁ for the Sy,, [*v, states differ appreciably from
ZeT0.

It ig therefore only necessary to calculate 3«& in this region of
energies. However, for an energy of 100 eV Parzen's results show that the
phase shifts up to S-5 ’ %5* must be included. As an approximate criterion
we may take qu to become important for 3? Hp?’f . Thus Sa 25 § a l.e. the
,{;:& ’ oig;a states may be expected to become significant at energies of
about 30 MeV, Convenient expressions for the cross-gsection in terms of the
vhase shifts for € ™21 have been given by Acheson.

Feghbach has brought attention to the special class of potentials




5e
v = Fluf)
B 98

where I, f? are parameters describing the charge distribution, Ty being a

(5)

length of the order of the nuclear dimensions & 1 /3 any additional parameters
needed to specify the potential., From Poisson's eqguation it is seen that the
corresponding charge density must have the form
LD
¢ - I(r SF 6)
I

For this type of charge distribution Feshbach has proved that for ¢ >»1 the
phase shifts depend on € , r, only through i'ro° This may be seen by
rewriting equations (1) with the rest mass neglected., The importance of this
result is in extending calculations already made to other radii or energies.

In order to calculate Bk we consider the regular solutions of the vadial
functions at a point 1, sufficiently far outside the nuclear charge distribution

for the potential to be Goulomb,

.‘fh O’.) = C, f‘:i’* (h) + Ca %;:3:(?')

g (7)
¢

(e
Jelf) = ¢ guelr) + i gax(h)

02/01 measures the admixture of the irreguler to the regular soluticn due to the
deviation from a Coulomb field in the nuclear interior. From (7) and using the
asymptotic forme (2),

,t,M gl« = C: Cast ( ﬁ(ﬁz jé«% #® )

— e
(<) ¢
g-wh(@&Iw_ﬁékﬁmw

CQ/C1 is obtained using both equations (7)




C e | ' (9)

frre(t) s (1) 3 (0
where dngt (& ) {k(r‘)/jéz{a")

Kk is written with the suffix ¢ wherk we specially wish to emphasise that it

wd
¢ fths(*‘)ﬁm(*’) e ()

depends on the energy. TFor our purpose it is sufficient to note that for a
given energy 8k depends on the nuclear charge distribution only through l\tg g(r)
As dis evident from the above derivation 02/ G1, and hence S$ia  are independent

of Ty, 80 long as this is oubtside the charge distribution. Thus two different
charge distributions will give the same scattering if the !7( b, (5‘;) for all

the imvortant Sk are the same for both. In particulsr at energles for

which the phase shif'ts Sa= S‘ are sufficient, two distributions will give the
seme scattering at a given energy ir IC (rq) is the same, where for the s state

the suffix -1 will for convenlence be omitted.

METHOD FOR OBTAINING XKj

By differentiating K = éfﬁ’k with respect to g and using the equation
(1), the following Riccati equation is obtained for Ky,

0“(:%2 — “Q&- -

Te ¢ Ke = (€+1-w)q, - (€ - 1-W) (10)

For extreme relativistic case, ¢ > 1, this becomes

ii;g - :}%:‘3, e - (¢ cu)( k’h:.)

(11)

For the potential (5), it is then seen by rewriting this eguation that for

€31,

t":ﬁg.i = iCh (f f:, < %a ) /g) (12)




which is in agreement with Feshbach*s result that for potentials of this type,
the phase shift depends on £ , * only through € . We may then for future
reference note that for the charge distributions (6) which in addition are such
that the charge density is zero outside rQ, where ro can now be considered as
the nuclear radius, the total differential of . with respect to , using
02) is given by

d fch, i

~clt~ ' ' 3'%8

i*y Vi
The required solution of is determined by the behaviour near the

origin. We require those solutions of (10) which correspond to the regular
solutions for . For potentials less rapidly divergent at the origin than
a Coulomb potential it is seen from equations (1) that the indicial behaviour
of KI* corresponding to these regular solutions is

€ - | - IL(o) , (U)
<£=> 0 'D

i 2 k+0 ./ g
L C‘K - * r M b* C B
(t M ti> c -U(0) ) C
We consider first the case k 0. If we rewrite (10) in the form,
a\ v elKu Jk
(I - te, ) = [U-€)({<- frit) = uh © T 1k
v v u c

this may be transformed into an integral, equation by multiplying by the

- Ik
integrating factor V

If Kfc 1 this may be solved by successive iteration starting with Kj* = 0,

The solution obtained in this way is then seen to have the appropriate



indicial behaviour corresponding to k <L 0.
i /
For k > 0, if we put X = "i;l we obtain a Riccati ecuation for ;1 bz
4
gimilar to that for Kz . As above this may be transformed into the integral

equation
¥;
X (€) - %L;“ { (€ +1-) & (¢-(-u) kg }{ Y ¢’ (126)
e
The solution which corresponds to solving this by successive iteration
starting with ’Xk = 0 gives then the correct indicial behaviour for X when
k ’> 0. From the Riccati equations for /h, Ki it is readily seen that for
£ »> 1, the solutions as obtained above satisfy G K*hz -1, which is of course
the counterpart of the result Sk = Saa o 1In what follows below we shall
then restrict ourselves to k L. Q.
The first iteration of (15) is

P g )y~ AR — A
(% () = gah 5 ¢ 5 7 0(%" -k (__;‘;:)g’ (17)
2 -

(2

Thus for the s wave within the validity of the first iteration, the phase shift
depends only on the volume integral of the potential which is just Feshﬁach‘s
result. By integrating by parts twice and using Poisson's equation, the
integral in (17) may be expressed in terms of an inbegral over the charge
density. Thus
d A e -tk
S‘(?’" 2.:(-}, - — ‘@,f !') -2k 2(.4’3 b ‘f:g - (18)
A 2 (20 -1) ? ak
The upper limit in the integral on tﬂé’ right 1s actually r but may, since r
is effectively outside the charge distribution, be replaced by o0 .,  Thus if
the first iteration gives a sufficiently good approximation for Kg , Sk will

ad
be the same for two charge distributions if S ¢ r-alz— 2 AP is the same for
0




9.
both. For the s wave this integral just becomes S‘ fr T A

CALCULATION OF Kg FOR ¢ 2721

We now consider in more detail the case of the s wave, k = =1, for € »7 1.

(15) then becomes

() éz Bg (o))l g’ (19)
I
For the first iteration we have
/'('i).a { ,..é R
e (§) = gt | Wgler o EE (20)
3
o .

and for the second)

ey PO o ) 3 “,,.1 ,
C(E) = Ie(E) v g w wLA (€)] ¢ e

This process converges rapidly it Ke‘ << 1, and we may then write

&

K (8) = k(8) + 25 A7) .

- ii)
where ?k is the extra term given by the n'th iteration. If the potential is

uf{\

of the type (5) and proportional to a, then the above iterabtion process will
also give an expansion in homogeneous polynomials in a and\ E'gﬁ, of increasing
degree. Thus the first iteration will contain terms in a, € %0 , the seéond
terms in a’ , a*eg, , o (ico)ﬂ (€§ )T . Such successive homoheneous
ce Ce /7, 2 B

polynomials do not however correspond to successive iterations after the second
since K% ‘occurs as the scguare in the iteration,

We may expect thalt above a certain energy the iteration process will no
longer converge and the bagis for Feshbach's result with break down.  This
will occur uhen Kfﬂ)(go) , which since U is proportional to a, is of the order

of (a + s:tﬂ ) becomes:of the order of unity.




In order to obtain a more precise idea of the convergence and of the
importance of the additional termm, given by the second Iteration, we consider

the charge distribution used by Kosenthal and Breit (1932),

f = o
The corresponding potential energy of the electron is

> \*7 1

r

can vary from -1 for a point charge through w.= 2 for a uniform charge

distribution to U = * when all the charge is on the surface. For the first
itgration we have /.
cany rgy/n ... .
c1 ot
J it11 e6)

For the second iteration



For constant density, ft= 2, we have from the above formulae,

- a * I- j0-072 adt 0-10ia.*iie” 0)
5 7 n +C'0idi ((§,)*7
For a surface charge distribution,- yt= > “he solution for K( £0 ) may be
obtained explicitly,
i
Kite) - % i-t («B «—-*£.)<**B(* Y *h) ]

Expanding uyt (a *~ " * ] this becomes



The first tvio terms of this expression are identical with those derived from the

first two iterations, while the third term can easily b© obtained from the third

iteration. We see that above about 50 MeV the second iteration increases very
rapidly and the method ceases to be reliable. Thus even at 15 MeV the second
iteration contributes almost distribution

COMPARISON OF GEARGK PISTffIBUTIONS
Although it would appear from the above that the first iteration is not a
very good approximation for K even at rather low energies and breaks down
completely at higher energies, nevertheless when the equivalence of two charge

distributions is being considered it is sufficient to use only the first

iteration. We consider as an example the equivalent radii, rf and rc, of a
surface and a uniform charge distribution. The simplest way to obtain the
relation between rg and Loy is to equate the exoressions (27) for - 2 and £l = 00
with f - ,

(32)

The first tern; is due to the first iteration and can immediately be obtained

for = 2 and n = of> . The
remaining terms from the second iteration make only a very small contribution.
Thus for energies for which the iteration procedure does not break down entirely
i.e. up to energies of about 50 MeV, the use of the first iteration is a very
good approximation when the equivalence between the two charge distributions
and not the actual value of K is being considered. Since the difference between
a uniform and a surface charge distrjbution can be considered as an extreme the

magnitude of the terms in (32) due to the second iteration may be regarded as



in the nature of an wpper limit to these terms in the expression for the radius

of the uniform charge distribubtion eguivalent to some actuzal distribution. The

reagson for the near cahcellation of the terms from the second iteration is seen
) NP O . X . . . W (9

from (21). Thus if ¥ "7 ( %.) is equal for two charge distributions, X ( %_)

and U( ) will not be very different for 0 < § &4 &£ , and hence the integraiel
(2 “
e

(4
A (%, ) and hence ;YQ)( f‘) itself will not differ very much

occurring in
for the two distributions. We see then that for any given charge distribution
f , the radius of the equivalent uniform charge distribution wili be given

with good accuracy by

.ol
Ze 3 .. SR
I M [V e (23)
q w §
&
 SIGNIFICANCE FOR THE INTERPRETATION OF THE EXPERIMEKTAL,
21G] RESULTS
ResULTS

e rmarsatti st

The significance of the result just obtained is in the interpretation of the
experiment§, The calculations of Acheson and Elfon extended by using Feshbach's
result that the scattering depends only on g Ty, may be used to determine the
radius T (¢ ) of the equivalent uniform charge distribution from the scattering

at an energy ¢ . Because of the near cancellation of terms in the second
itération, this eqnivaleqt radius for the actual but unknown distribution will
only be very slightly energy dependent. Thus from (32) for }iﬁ‘the ratio
between the equivalent radiil for a surface and a uniform charge distribubion,
( %% ), differs by less thane25% from that given by the first iteration for

¢ = 0, and by less than 4% for an energy of 50 MeV., Since at energies at
which vy can be expected to become appreciably energy dependent, higher phase

shifts become important, the equivalent radius may be btaken as energy

independent for the energies of interest since variations of the above amount
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would hardly be experimentally significant. This implies that for energies for
which only the s wave shifl is important, the only information which can be
deduced from scattering experiments at different snergies is the equivalent
radius at zero energy. From (33) knowledge of r, then implies knowledge of
gt&fi""alf .
o

More detailed information about the form of the nuclear charge digtribution
could be obtained from the scattering alt somewhal high@r energies when the
[Lag (k = =2), A;%% (k = 2) states becoms important. In a similar way as
above for not too high energies, the phase shifts for these states would depend

«b
on the charge distribution only through g‘fééaLf . This could again be
expressed in terms of the radius of an eqﬁivalent uniform charge distribution
which would not of course in general be the same as that for the Sg ) [“/,
states. |

Of course, for purposes of comparison, any of the distributions (23) and
more especially a surface distribution could have been used; however, it seems
most natural to use a uniform one.

The only relevant experiments so far available are those of’§bman, Hanson
and Scott (1951) with 15.7 MeV electrons. Their results interpreted using the
calculations of Acheson indicate that for Ag and Au with a radius of 1.45 x 10™3
ﬂ% ci. the charge is more concentrated towards the centre than for a uniform
charge distribution, They find that the effective radius, assuming constant
charge demsity, needed to fit the experimental resulbs ig aboubt 20k smaller than
the above value, i.e. about 1.15 x 10-13 ﬂ% cm. These results must be
considered as somewhal uncertain as the radiative correction was allowed for
using the result of Schwinger (1949). Thig is of doubtful accuracy for heavy

elements since the radiative scattering is calculated for a Coulomb field using

ﬂ—_- —_
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the Born approximation and is given relative to the Born approximation expression
for the elastic scatltering.
NOTE. It recently came to the writer's attention that Rose and Newbon (1951) have
congidered the Riccati equation (10) in connection with the nodal properties of
the radial functions i?‘s’ ﬁjg . They do not however use this to obtain an
explicit solution.

Rose (1951) has alsc considered an integral form of the radial
equations together with an iteration procedure for solving these, With this
the use of the firgt iteration for both functions then gives just the result
(17) for {{*?, Since however both functions enter explicitly in Rose's
treatment, it is more convenient especially for the second iteration to consider

fv , which is the quantity of immediate interest in our consideration, directly.
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II.

THRORY OF THE ISOTOPE SHIFT,

In the usual derivation of the volume dependent isotops shift (I.S.) the
charge in binding energy of an electron due to the difference in its electrostatic
interaction with a point charge and the same charge spread over the nuclear
volune 1s calculated using a perturbation method. In this the difference between
two isotopses of the potential energy of the electiron in the nuclear region is
averaged over the relativistic charge density wheu the electron is moving in the
field of a point nucleus. If it is assumed that the charge is uniformly
distributed throughout the nucleus and that the increase in volume bebween two
isotopes is vproportional To the increase in mass, then with the nuclear radius
given by ry = 1.9 x 1043 A% ch., it is found that the I1.S. calculated in this
way 1ls greater than the experimental I,S5. by a factor of 2-3 except in the region
of Z = 60, where the isotope shifts are anomalously large (Brix and Kopfermann,
1949, 1952).

It might be expected however that the spreading of the charge would stroﬂgly
distort the wave function of the electron from its Goulomb form just inside the
nuclear region where the perturbation takes place and thus to considerably affect
the I.S. Hence it is of some interest to investigate whether a more accurate
calculation taking into account this distortion of the wave function might not
remove some of the discrepancy. An approximate estimate of the effect of
the distortion when all the charge is on the surface was made by Rosenthal and
Breit (1932). Crawford and Schalow (1949) made an estimate based on the work
of Broch (1945) for the two cases of constant charge density, and all the charge
on the surface which should be exact, bubt with which we disagree. They do not

examine other charge distributions or the dependence on Z, and their method




cannot be extended to an arbitrary distribution.
Using the method of Broch (1945)# which avoids perturbation theory altogether,

it is shown that the I.S. of an s electron depends on the charge distribution

only through Kf-s| , S # where the latter is the charge in Kg. | between
the two isotopes. The method developed in I. may then be applied to calculate
the I.S. for any given charge distribution. It is then also possible to

establish a simple correction with the elastic scattering of electrons by nuclei.

PERTURBATION THEORY OF THE TI.S.
Using the perturbation method, Rosenthal and Breit (1932) and Racaii (1932)
obtain for the I.S. due to a charge of potential energy of the electron in
the field of the nucleus,

(34)
O

where A E 1is the term shift due to the effect of the finite nuclear size. Since

is only different from zero in a region of the dimensions of the nuclear
radius, we may for the wave functions in this region neglect the binding energy
as compared with the rest mass of the electron. It is then convenient for

the present purpose to write the radial equations in the form

X1 a H fit. =+ >b
1% , J fFix * ' J J+* i1 1k (35)
Ax, a’*

where X - an

and a h ' /M is the Boltr radius.

« ~ 1c) I X
With U =- — , the functions £l > Ut £ are ™10n given by \43)
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with C3; = 0, Since the value of ¢ corresponding to the nuclear radius is
A
Y 0,6 x 10“4 A3Z, it is sufficlently accurate to rebtain only the lowest power
of 2«2 . We have then
(92 2 C*

. s 2 n e
k, R ‘j%“ (a6 h(lk ) (36)

where & - J}:*~w¢‘

Thus
=24
AE - N R(k-€) SU e
o ( )M v [7%(1+26) ) Aa® d (37)
with N = 8xZe?C?, (38)

The normalisation is that used by Rosenthal and Breit

ta 5(05&1‘* g ) de s (39)

c? is determined from the normalisation by putting j?“/%- asymptotically equal to
the radial Schr8dinger wave function for larger r. In this way, Rosenthal

and Breit obtain for an s electron

(40)

vhere R is the Rydberg constant and ‘7{(0) the value of the Schrfdinger wave
function at the origin.
With the charge density (6), Rosenthal and Breit obtain for the I.S. of an

s electron
t e w | A€ Q:L
|t & - 2, 0

g(ﬁ&‘)gﬂﬁ‘{' ) N‘ razu..fgé‘) \‘;u -t H)(Rcf‘“) ‘ *e (41)

Brix and Kopfermamn have taken as a standard with which to compare the 1.3. as

determined from experiment the case of constant charge density, w= 2, as given
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by (41), together with the assumption that the nuclear radius is proportional to

L
A®, and that therefore ‘?'___.x@ = %A + For the actual value of the nuclear
N, A

radius they use 1.4 x 10~13 AF Cln,

Fige. 1 shows the results for the I.S. data, apart from rather uncertain
corrections due to the shielding of the inner electrons by the valence electron
(Crawford & Schalow (1949) and Humbach (1952)), according to the most recent
presentation of Brix and Kopfermann (1951). In this a correction for the
distortion of the wave functlon has already been made based on the work of
Humbach (1952), which has only just come to the writer's notice. S(AE)“ is
then the I.S. of the standard model of Brix and Kopfermamn with the correction
due to distortion already included, and not as calculated by the simple
perturbation treatment.

Our results for the effect of the distortion of the wave function are in
agreement with those of Humbach who has also used Broch's method. However, he
does not give any simple procsdure for calculating the I.S. for any given charge
distribution such as is derived in the following, nor of course the relation

with the electron scattering.
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NON-~-PERTURBATTON METHOD FOR THE T.S.

By a method avoiding the use of perturbation theory, Broch obtaing for the
difference in ensrgy between an electron in the field of a finite size nucleus

and a point nucleus,

AE = - ) (HQ&»)F(! (42)

where N is given by (38) with C:1 ingtead of C. Cl, 02 are the coefficients of
the regular and irregular solubions respectively in the general sgolution for the
two radial functions in the region exterior to the charge distribution where

the electron is moving in a Coulomb field. For this region and where r is still

sufficiently small that the binding energy may be neglected,

giat‘i) - l;gl ?;6”(31‘&) t ;’)_Aéﬁ(,,?:(.'/“)-]

jfa(zx) = (; Aae (An *) 4 (o A-ae (2
where A ag ( 2 - &), ) ae T ot Va 9 g vl
A-ae = ( 2+ &) Jae + 2 a Joaga
For a point nucleus 02 = 0, TFollowing Broch, the condition for the

conbinuity of {h/ j | 86 a point 2A,, where the potential is Coulomb, then gives
the admixture of the irregular relabtive to the reguwlar solution due to the

deviation from a Coulomb field in the region JI( &£ 2,
Ca . a Jags (02113!/‘? - Kr() Axe [ 20)
C - o e
6 h‘z(ﬂl)A“}é(QN;”l) - A 92-6{ ?1-/9“)

vhere K ("—t) is now assumed evaluated neglecting the binding energy and is |

(44)

determined from the solution interior to 24y . It must be emphasised that the
only condition on Xy is that the potential is Cowlomb at 2t .  Thus if the

charge density does not fall abruptly to zero, X / must be sufficiently far out
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to satisfy this condition. As is evident from the derj.vation,02/01 is then
independent of ¢, ., Expanding the Begsel functions and retaining only the

lowest power of a4ty ,

t? - !1.(._’:“3@) Z a “___;1_}:..'.." -x,)((:z- 6) ')1 24 (45)
{ 7 {1+ 26) a - (i (:«,)(" + ) ) ‘

In this approximation it can easily be verified directly that 02/ Cl is

d [
independent of 3y by showing that 'f”L (-;f} = 0 using equation (49) together with
2 o

2. .
U=- '%_f‘_ . A1l the results derived below from (45) are then independent
3w,
of a, . Substitubting (45) in (42) )
- - i) (- ) re¢
NE = §. -5 {Q’ ol ) 2ty (46)
pr(ie6) La- Kp(x)(k+e)

The normalisation is given by (39). For an s electron 012 is again given by
(40) Since the part of the normalisation integral extending to 3ty may be
neglected because of the smaliness of 2, , and outside 2y that part due to
Co can also be neglected again as a result of the smallness of ¢y ,

The T.5. is

-y A 6P “»&ﬂ("“‘) L 26
C(AE) = M. = -~ 2y (47)

‘m(\# ié) Lﬂ,- ‘\]z( .)(a&g)l

Thus for two charge distributions to give the same 1.8, (Cja (2 ;) § I (%)

must be the same for both,
In order to obtain K} , the same method may be used as in I. 1If the
binding energy is neglected, i.e., with £ = 1, the Riccati equation for Kje

becomes

1. 2 - -3
dite o 2k (TR oy (18)
u( X e o L A A r

The indicial behaviour of the required solutions is obtained from (14) b




putting € = l. If in the nuclear region it is also vermissible to wiite éé

- 2
instead of Lﬁ; % for the factor multiplying K‘: , (48) becomes
oA
- ) . .
A '\?3 o ‘%,{a lih t ‘i{:’ (l 1 !{Lia!q.) (49)
C/i L 2 aa'

This is formally equivalent to the equation for the extreme relativistic
case if in this we put ¢ = O, The approximation just made is equivalent
to assuming *® ol 1 for the factor multiplying X hz ° This is somewhatb
more sgtringent, especially for lighter elemeﬁts, than the condition Hew< 1
assumed previously. However, for la < 0O we see from the ibteration
procedure for obtaining K |q that the term neglected only affects K|, in the
second iteration, the error involved in the additional term due to this belng
less than 10%. The only important case for the I.S. is in fact that of an
§ electron, k = -1, and since as we shall see the additional term due to the
second iteration makes only a relatively small contribution for this, the
error in K dus to the above approximation is very small. Tor k » 0 we see
from (16) that the approximation made above would cause an error in K|
already in the first iteration. Thus for ]lwﬁa states which are the only
other states for which the I.S. is at all appreciable, it would be necessary
to use equation (48) if we wish to obtain a more accurate value of Ky =
However, even in this case if we are only interested in comparing charge
distributions which give the same K, it is again only necessary to compare
the volume integrals of the potentials as for k = -1, since the term neglected
would only give a contribubion independent of the potential in the first
iteration.

In what follows we sghall consider only s states and agsume that it is

sufficiently accurate to use (49). If we sgsume the vpotential has the form
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(5), then by rewriting (49) it is seen that

- ;2 A

K=K (5 2%) (50)
and then
/(.) I( — 2 h—: ) {, & f\' i—— ;i,
i - SN ,L v -
Do X * s 3“( X

A
vhere the , denoted differentiation with respect to (an) . Hence

P (ﬂe 2 I

Ao Mo EES

Using (49)7

(2 g

P
With M, outside the charge distribution where U = - A;?
i
21k ) '»t*t‘ﬂig‘“N?Jf ) lﬁ,thur@j!uﬁixﬁfb)( (52)
‘}A‘O le — &Ho

If we now consider a charge distribution of the form (&) but depending only

) ic
on 3, , then using (52) and substituting for § I - %;;p oo in (47)

C(AE) - N e P L_m + (T2 )(Hw)_j X 5 (53)

(A [h koG -] L,

Thus if Y ° VW}yfﬁ)for both isotopes except for different values of r o7 ‘then
e

the I.8. depends on the change in charge distribution between the two isotopes

6 to

4

only through
It is of particular interest to consider the special class of charge

distributions (6) but in addition such that the charge density is zero outside

No , where »Mp can now be considered as the nuclear radius, The distribution

(23) is of this typs. An alternative way of obtaining the I.S. in this case
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is by evaluvating 02/01 at )\L, = M ¢ for the lighter isotope and at 2, = ¢ « Sty
for the heavier; i.e. we do not keep i, fixed. We then obtain § ( AE) by vaking
the totel differential with respect to , of (46) with s, = oty . Trom (13)

we have with ¢ = 0

(,,‘l .8 v

and we immediately obtain (53) with A, - Xy . For this type of charge distribution
K(*e) is then independent of Xp and the I.8. depends on the redius Jtp only
§xep

S RAG s s o -
through X, in addivion to the relative charge of radivs 7 - .
A g

BVATLUATTON OF XK.

Since for the I.S. of an & electron K can be considered as satisfying the
same ecuation as for the extreme relativistic case with &€ = O, all the resulis
obtained in I for k =.=1, ¢ %71 can immediately be used for the I.S. if we put
¢ = 0.

Since with relativistic units the potential U ig proportional to ¢v , the

iteration procedure will also give f{ as an expansion in powers of A s

W= 2

koo )k [ & w artey] (54)

As already pointed out in I successive Uw do not correspond to successive

iterations except for ¥, = ’X'u')/ TR

For the potentials (24), K™, ¥, are given by I (25, 26, 27, 28, 29) withg¢ = O.
f’;}’j (I‘O) is obtained from the third iteration and can be calculated without too
much difficulty; the general expression for any W is however rather long. We

give some special cases,

X 4 a o
a=o0; KO = - B[ 1rcnsa)
n= 15 iitfgj(- rﬂ) - "f:j:' ( {4+ €1 M.z ¥ -0 -Zi a ‘ﬂ)
(8) - -
= 2 h-( (}p) - '"‘2..‘1 /1 + {(;_i&»{,aﬂ',ﬁu ﬁ.gjfv()jfi') (55)
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(%) . Ja . 2. 5 A . ¢
n=3; (PN = ?,.g.(u 0P a f«(myai)
n =43 [P = . f“‘ (1e vcovaa® s ¢g0(ssat)
. A
n =%; !’UE)( Fo) = 3 (_ It f';_ ¢ :'?:f )
1 3 }

= 0 is a limiting case; the vpotential becomes logarithmic and the calculations
must be carried out separstely. In figures (2) and (3), -E(r,)/a is shown
plotted against a for n = 2 and n = =& . The gtraight line in each case represents
the second iteration and the upper curve when‘ﬂg(ro) has also been included. It
is seen that this last term makes only a very srall conmtribution to K(r,) for all
elements, i.e. 2 «,92. e may thus consider the second iteration to be a very
good approximation for all elements. Since the additional term due to the second
iteration is only a relatively minor vart of K, the use of the ecuation (4%) for X
is seen to be justified.

It ig of interest to commare the above results for K with those obtained by
solving the radial ecuaticns directly. These calculations were made before the
above iteration method was devised. The equations (35) are transformed into
second order linear equations sach involving only one of the functions {fh, ?i& o

Thus for g&, /
A? éaa ) AU Ry dd] st 4“*" :{tf#*? (56)
A = (“ > yar “ de 18 L dse 1x

If this is solved j*e mey be obtained from the first of the eguations (35) and
{ip may be found. For the potentials (24) with n an inteser greater then zero,
the singularity at the origin is resular and a series solution in 2¢ is nossible.
Due to the smallness of Ap it ig found that the terms in xe in K( ?ly ) may be

A . G“ &{(30) - "
neglected and that hence < = 0 as already proved more generally above,

A Ap
For k = -1, the term it K( ¢ ) in a is just (26). Successive terms in ascending
2 " - . C e

powers of a” may be obtained from the recurrence relations. The coefficilent of

each power in a is now a nobt very raoidly converging series. The terms uo to a5

were calculated for n =1, 2, 3, 4, o0 and are in acreement with the ones given
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above. This is essentially the method used by Crawford and Schalow to
investigate the cases of uniform and surface distributions.

It is seen that the iteration method is much less tedious and can be applied
to any charge distribution, whereas only in exceptional cages can a series solution

in X be found for equation (56).

EVALUATICN OF T.9.

The I.S8., for the potentials (24) is obltained if the value of K(ro) is
substituted in (53) with X, = xp. In the approximation where only the first
iteration (26) for K(r,) isused, the I.S. for a uniform charge distribubion becomes

= a:.ll ] 2 ¥ ;ﬁlm/ L.‘
Cac) - N Al S A e -
fea(te 2e) V4 206 X0

The ratio of the I.3. as given by (53) to that calculated using the
verturbation method (41), is
o (A1) _ al»f‘l{lﬁj’&) o A IS (Fe)(hve) ) dprani),,,

A 3 0y J(58)
S(At":)ﬁg,,u{,'" |t e AT FEC{Fe) -a:)j 2 ot j

P was calculated using (55) for u = 1,2,3,4, - and in Figures (#J and (§) is showm

})

1l

plotted againset Z2 for w = 2 and & D . For the lower curve in each case, the
terms up to a5 have been included in K(ro), vwhile the upper curve corresnoonds to
the use of the first iteration only. The effect of;fg(ro) is very small and on
the scale used the curve for P uging only the second iteration is almost identical
with that obtained if F}(ro) is also included.

It is seen that the effect of the digtortion of the wave function is to
decrease the I.S8. below its value as calculated by the perturbation method and
that this difference increases with Z ag is o be exnected. P varies only slightly
with m, i.e. with the concentration of charge. Thus for Z =82, P = 0,78 for a

uniform charge distribution and 0.76 when all the charge is on the surface. The

use of the first iteration is already a congiderable improvement on the perturbation
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treatment and becomes a vrogressively betler approximation as the charge moves
outward.,

It is seen then that the effect of distortion although appreciable and in
the right direction could explain only a vart of the discrepancy between the uniform
model of Brix and Kopfermann and the experimentsal data.

With the help of the results just obtained, the I1.S. may be calculated for
any given charge distribution. Thus the uniform charge distribution which gives
the same T.S, must have the same values of K(rqp), gli(rl) as the given distribution
and the problem is then just to calculate this equivalent uniform charge
distribution. The equivalence of K considered in I was seen to be conveniently
specified by the radius r, of this equivalent distribution. It was shown that if
r, is obtained from (33) it has almost the same value as if the second iteration
is used for its determination.  Similarly, using only the first iteration 5%%

may be determined from

e g Y A [
e )ag’ e (59)

[

~{

o

é

and will again be accurate also within the use of the second iteration.

It may be noted that for the charge distributions (6) which in addition do
not devend on further parameters 5 , we have from (46) and (53) that & (O E) =
AL 2¢. 5_“?’ and that therefore‘ S'j‘:- = b-b 7

Xy va(. r«ﬁ
also follows from (33) and (59).

for these distributions. Thig

The I.S. for the given distribution may now be obtained from (53) with

and A, = g and using for K(ro) the values already obtained for a uniform

charge distribution. Alternsatively we may use the results obtained for P, which

depends only on %, together with the I.S. as caleulated by the perturbation method
r

-E? .

The imnortant point is that using only the first iteration for a given

with the values T, and
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charge distribution, the I.S8. may be calculated accurate to within the use of the
second iteration if the results for a uniform cherge distribution already obtained

with this, are used. The I.S, will then depend besides on Z only on [ *¢ 9#} ]
f.

RELATTON WITHE BLECTRON SCATTERING

It was shown in I that the radius r, of the uniformm charge distribution

needed to describe the s wave scattering was almost independent of energy and in
particular ecuel to r, for ¢ = 0., Thus r, as obtained from experiments on
electron scattering can be used for the I.S8. in a way which follows immediately
from the discussion at the end of the previous section. The data on the I1.S.

will then give effective values of which are related to the chenge in the

Fe-

£

charge digtribution between the two isotoves by (59). If the charge distribution

-

el
"L
direct interpretation as the relative charge of the parameter occurring in the

is of the type (6) and also does not dewend on ﬂg , then would have the
potential., Any such information would be a valuable test for theories of
nuclear structure. Thus on the basis of an extended individuel particle model,
the change in charge distribution would have to be ascribed to a change in the
range and strength and also of the shape of the collective potential in which the
nucleons move. The addition of any neutrons must change in some way the extent
and deoth of this potential and hence also the proton distribution. On the other
hand, there would also according to Rainwster (1950) be a change in the shape of the
individual nucleon potential and consequently a change in deformation of the
nucleus. Any such difference in deformation between two isotopes would fhen
according to Brix and Kopfermann (1949) also give rise to an I,S,

Since Ag and Au are near the lighter and heavier end resnectively of the
elements for which the volume dependent IT.S5. is known, we take as a tentative
estimate of the equivalent radius T, of these elements the value l.15 x 10"13 A% Cllt o

as determined from the scattering of electrons by Ag and Au by Lyman, Hanson and




1.(3"*)'-3»6'
e from the value

Scott, The 1.S. will then be reduced by a factor (
obtained if a radius of l.4 x 10713 A§ em., is used. This is equal to .7 for
2 = 55 and to .74 for Z = 82. Including the effect of the distortion of the
wave function, the value of the I.S. as obtained with the standard model of Brix
and Kopfermann using perturbation theory is then reduced by .64 for Z = 55 and by
58 for Z2 = 82, This would account for a considerable part of the discrepancy
between the data and the model of Brix and Kopfermann.

To take the radius as increasing vproportiocnally to A% is in general
insufficient to specify the change in the charge distribution between two isotopes,
especially if deformation effects are likely to be important as for instance is

strongly suggested for the exceptionally large I.8. of Sm and Eu (Brix and

Kopfermann, 1949).
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ITI.

I.S. AND NUCLEAR DEFORMATIONS.

Brix and Kopfermann (1949, 1951) have suggested thalt a change in charge
distribution due to a difference in shaps between two isotopes will lead to an
I.S, in addition to that due to an increase in volume usually considered. The
effective potential energy of an # $vy, or [l electron in the nuclear interior will
then be obtained by averaging the deformed nucleus over all directions. If the
isotopes have a spin I >» 1, they will possess a speclroscopic quadrupole moment
defined with respect to fixed axes in space for the substate M = I, Brix and
Kopfermenn have assuned that if these quadrupole moments are too large to be due
tothe motion of a single proton it is justified to describe them by an
ellipsoidal deformation from spherical shape of the nucleus as a whole, it then
being possible to make a quantitative estimate of the deformations and hence also
of the extra potential arising from these.

It is important when calculating the deformetion from the spectroscopic
quadrupole moment to take into account that this may be considerably smaller than
the intrinsic quadrupole moment referred to the axis of the nucleus. This
difference will have an important influence especially for smaller I in view of
the fact that the deformation occurs as the square in the extra potential to
which it gives rise, Brix and Kopfermann have especially considered the
connection of the I.S. betwesn S50 and sml52 with the quadrupole moments of
Eul?l and Euld3 which have one extra proton relative to the corresponding Sm
isotopes. Both the I.S. between Eul5l and Bul?3 and that between Sm+>0 and
sml52 are exceptionally large. It is especially noteworthy that the latter
is nearly twice the already large I.S. between any other two adjacent even Sm

isotopes, thus the relative spacing of the Sm I.S. are,
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Sml44 Sm147 Sm148 Sml49 Sm150 Sm152 Sm154
0 1.41 2 ReR6 3614 4681 5.72
Assuming that the deformations of sm20 and Sml52 are approximately the same as those

of the corresponding Eu isotopes and calculating the deformations of the latter
from their known quadrupole moments, Brix and Kopfermann obbtain an estimate for the
contribution of the deformation dependent part of the I.S. between BEutol ang EnlS53
and hence also of that between Sml5o and Sm152. Ags a result of their calculation
which ignores the difference between the spectroscopic and intrinsie quadrupole
moments, they find that the deformation dependent contribution of the I.S. is rather
smaller than the difference of the I.S. betwesn Smt20 and Sml52 and that between
other adjacent even Sm isotopes; their interpretabtion then being that in view of
the uncertainties involved just this I.S. jump is explained as due to a difference
in deformation, When however the difference between the spectroscopic and
intrinsic quadrupole moments are taken into account, it will be shown that the
deformation dependent part of the I.S. is of the order of magnitude of the whole
of the anomalously large I.S. of Eu and hence with above assumptiong of Brix and
Kopfermann regarding the deformationg of sml?0 ang sml52 also of the order of
magnitude of the whole of the I.3. between these.

In the following the deformation dependent T.8. js calculated with the
method developed in II, using the same model as Brix and Kopfermsnn of a uniformly
charged nucleus deformed into a rotational ellipsoid of the same volume as the
undeformed spherical nucleus, the difference between the spectroscopic and intrinsic
quadrupole moments being taken into account, Various tentabive applications are

considered, especially in comnection with the large observed variations in the I,S.




CALGULATION OF POTENTIALS.

We consider the nuclear charge disgtribution to be represented by a wniformly

charged body of revolution whose surface [7,’ is given by

PP L{ FEa®) v £ w(8) ¢+ - j (60)

wvhere © ig the angle between the axis of revolution and the radius vector I’

=

from the origin to a point on the surface, the origin being taken as the centre of
the sphere, radius ¥, , which is obtained in the limit ¢ = 0. ¢ is a parameter
which gives a measure of the deformation of the body relative to this sphere. In
the following, it is assumed that £ is sufficiently small that only powers of £
up to § 2 need be retained. Expanding in terms of spherical hammonics we write

-~y

w(0) = et Palim ©)
el =0

=3

D(O) ~ o B Fagwn)

.
. —4 = “
W) = wa B ‘)

o =8

With constgnt charge density,
¢ 3 e
the total charge is Ze if the volume is the same as that of the sphere of radius

fo . The potential energy of an electron at a point I in the interior of the

nucleuvs is then

(6. - .‘.a: 6 * ~z :'&}‘ l': (,C-&“? é} Bh “ . e 2 ¥ & 34( - }
ViE) - VEr) s TR s e YT {iaim. Peef a2 )]

;: L o A i a

where

. o Le - 5
\/M(F) A f"i j“ L{ ;(Jﬂ,)J
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is the potential energy due to the uniformly charged sphere, radius Ij,
For a G, or J4,, electron, the effective potential energy V(I') is obtained

by averaging (I} over all directions.

V() = v™(r) & ve(h) (61)
whers
R - 68 }
‘\/;,' (?’) - @t 3 § Edy + €F i{‘?ﬁﬂ = »,Ej f (€2)
" . L 2

is the potential. energy due to the deformation. We now suppose that the nucleus
may be described more specifically by an ellipsoid of revolubtion with semi~-axes

@ , b along and perpendicular to the axis of revolubion respectively. If the
volume of the ellipsoid is the same as that of the sphere radius [ , the
deformabion may be described in terms of the parameter ¢ = @§§§' which is positive

for a prolate and negative for an oblate ellipsoid of revolution. Using the

equation for the surface of an ellipsoid,
é{ S - ?"
/8, = - L ) 3, = A e
! § &
for both a prolate and oblate ellipsoid and from (62)
V() = S8 R e
= D5 S g (63)
¢ ( - /s
The difference of potential energy in the nuclear interior between two isotopes is,

SV = §Ye + 8Ve + $Veo

where ] Ze® gfg"é B, LZ . ( gn)j
% VQ’ - f‘;} r; R I
is the usual change in potential energy due to an increase of volume specified by

§1, of a sphericel nucleus radiuvs I

. Ze* a2, . . (64)
SV = =52 (g0 o)
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jgtwo isotopes. HVeentia energy due to differing deformations &, , £,  of the
two isotopes. ‘5\2 may either increase or decrease the I.S. due to § Vo

depending on whethex'j€a§§»)EJ orﬂ%,ﬁI>§€m[respectively.

S 2 a

Ly
R

P
P A

-

s
%,
o £ ) -

is a small correction to the volume dependent charge of potential SVe arising
from the fact that for an ellipsoidal nucleus the charge is effscliively concentrated
more towards the centre. Even for g‘:é- the I.S8. due to $Ve, o is less than 2%

of that due to % Y and may therefore safely be neglected.

If the nucleus has a spin I » 1, it will have a spectroscopic quadrupole
moment which mey then be used to calcuwlate ¢ . I ¢ is so large that it must
be interpreted as due to a large nmumber of protons, the description of the nuclear
charge distribution by a uniformly charged ellipsoid can be considered as reasonable
especially if the cause of these large quadrupole moments is taken to be a
deformation by the nucleons in unclosed shells of the core of the remaining
nucleons ag suggested by Rainwater (1950). The intrinsic quadrupole moment Q&
defined with respect to the symmebry axis of the nucleus is then given in terms
of the deformation § by

0, = ;i ¢ 28’

QZ. will be lawger than the spectroscopic quadrupole moment (¢ , the relation

between the two being (see e.g. 4. Bohr, 1951)

(T +1){al +3)
L (af -0

When I becomes large TVE tends to one, but for small I, ﬁt may be quite large.

@ V@ ; ve = (65)

Q is zero whatever the value of (), if I = 0,3,

We then have
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(66)

and

L 2 2 o R
oy . et (e T ")
¢ g U,

i 2 :'1 - (67)

Thus, for small I, ¥% will have a very large effect on SV since it

occurs ag the square in the above expression, the omission of this factor by
Brix and Kopfermann being in fact quite crucial. IBven if the nucleus doss not
have a spectroscopic quadrupole moment it may still have & deformation, i.e. an
intrinsic quadrupole moment with respect to the internal symmetry axis and hence
also for even and spin % isotopes $¥% need not be zero. In this case, however,

¢ can only be obtained on the basis of some model of nuclear structure such as
Rainwater's which allows for deformations. The importance of nuclei which have
observable spectroscoplc quadrupole moments and for which the I.S. is known is
that £ and hence the I.S, due to $V¢ may be rather directly estimated from
the spectroscopic gquadrupole moments and that therefore a comparison with the
experimentally observed I.S. may be made involving only a minimum of hypothesis.

CATLGULATTION OF THE I.S. DUE TO NUGLEAR
DEF ORMATION

To calculate the I.S. corresponding to Sw@ , W write this in the form,

whent
%: - ;3-_ (tga . &.‘a.) (68)

and dosg not depend on r.

For nuclei with spectroscopic quadrupole moments,
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m e 2 BEI T
t"‘ = St ( af}:z, {p:e R 1)
{;2 i X - . . ’. . [ LI ]
f P o &
(62)
We demote the I.S. corresponding to SYv, 8Y¢ by ‘a(ﬂ{’f.r)_, 5:(!3 (¢ ) respectively.
Using the simple perturbation theory to calculate the I.S., we have from (37)

for an & electron,

‘(; (/j E:f :1) P.ég.r:im. - N . i gﬂ (u\ F_ - Cw&‘l &
P(H&G) (ufu)
and with (41) for n = 2,

"23 1/3 1 » v d 9
( Qwﬁ&@ - «2- 67 é i: . i:? (70)
o(cl[:\r)f_hu{. > 58,
which ig essentially the result given by Brix and Kopfermann (1949).
We now calculate the 1.S. using the method developed in I, As was shown,
it is sufficient to limit ourselves to the first iteration. TFor a uniform

spherical charge distribution, radius F, , we have from (25) and (26) with m = 2

for a change in radius &1} ,

vt if ;"L ( ;}) R (71)
The chamnge in fi:(‘)( F ) corregponding to ) "{g is on the other hand from (20),
Foony

equating (71) and (72) we obtain the change in radius & ¢ of the uniform spherical

charge distribution of radius I, which will give the same I.S. as
ST 5
s T (73)
[ 3

And therefore from (53),

s
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S(AE) = N 2t e rrleo] ¢

e . C e X, R
(200026 o4 ] (1) s F

o =

If the change of radius corresponding to ${4f£,) is &1,

S (AL LAY - ‘
(Ak) é,/ R o (74)

. ,,_v“ i"" [ -
(A ) ¢ /0 3 o
It is seen that the perturbation expansion (70) reduces to this in the 1limit
1 W) (2 ioe- & g l'

We have

-~ T g E s~ SM-
SOR) AR e S
. - - [ S B

hid Bl b (AER) pet” 7 ’

For Pb, & = 0,6, & = 0,8, this is 1.l and thus the perturbation expression for

S (AL )/ » {ABs) is a rether good approximation.

For the ratio & (AL:t) /S (AF )l we have
. R - 1 -
o A el 3F e L S{AE) et 3
: o
For Pb, this is =2 0.85.  Assuming = R, A3 and ";-‘1 - %ﬁ we have
]
from (69) and (74) for isotopes with a spectroscopic quadrupole moment,
S(AE) as L (e - T o)
cagy AT
With oA = 2, f’% 2 1.4 x 10—}“3 cm, and @ expressed in 59‘““‘*5,
\ ﬁﬁ: e ' 2 oA o
R A A O R P (75)
b (4 i?,r’_)m 2 EAY

where the index N denoctes that the calculations have been made assuming a
i
uniformly charged nucleus of radiw {, = ld4 x 10™1345 em. , the change in radius
2
being taken ag 3 A +« This is the standard model which has been used by Brix

and Kopfermann (1949, 1951).
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RESULTS AND DISCUSSION.

We make use of the ratio s = (@k/gé, of the spectroscopic quadrupole moments
of the two isotopes as this can be directly determined from the hyperfine
gtructure, involving no detailed knowledge of the atomic wave functions, and is in
general known with considerably greater accuracy than the absolute wvalues of
the quadrupole moments themselves. For two isotopes with the same spin,

Yi, = ¥r, = Tx and,
9 (AE) eS8 Ao a2 s <2
ey g UV "

In this expression apart from the assumptions regarding the congtancy of the
charge density and the magnitude of the nuclear radiue, the principel uncertainty
will be due to the error in ().

The I,S. data, apart from rather uncertain corrections due to the shielding
of the inner electrons by the valewce electron have been given by Brix and
Kopfermann in the form §(AF)/$(AF,) “where § [AE) is the éxperimentally
determined I.S. and 5(&6&&P§ is the I.S., of their standard model. In their
most recent presentation (1951) shown in Fige. 1, they have included the correction
P due to distortion of the wave function as calculated by Humbach (1952), this
being in agreement with the rvesults obtained in II.

If we assume that effects of nuclear polarisation by the electron, discussed
by Breit, Arfken and Clendenin (1950) are small, we may write

S(AF) = §(AEs) + S{AE)
where the quantities are supposed to be actual or calculated values as will be
clear from the context. Then |
glagy) . AE) L 5(Ak)
GIAES)™ §(AEs)" S(aEs)"

%

Thus in order to test the above theory, we must see whether we obtain a reasonsble
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value for & , the actual value of which must of course always be positive, with
SBE)

G AES" . 153
We consider the I.S8. between the two Eu isotopes, Bl and Buw” (2 = 63).

”g
55;

as determined by Brix and Kopfermann.

2
The spin of both is 5/5 and therefore from (65),5%33 fél:%. The hyperfine
structure and I.S. has recently been very thoroughly reinvestigated by Brix (1952),
who gives s = 2.0 and ﬁ@ﬂﬁﬂ{%{dﬁhfi 2.3, vhere this value includes an estimate of
the effect of the shielding of the irner electrons by the valence electron.
Schiler and Korsching (1936) give {Qﬁgf‘::l.2 barng, this value being
congidered as somewhat uncertain as the terms which can be used for calculation
are perturbed, the error being of the order of 2. Hence from (76),

g(ﬂfa‘)& = 0.5(s% - 1)@&‘;‘“ T 2,2 + 0.9
S(A )
and % % 2,3 -2,2 = 0.1 + 0.9.
In view of the rather large errors involved in Q}}@;:‘J‘“ and S{ﬁf?}/ 5 (A Eir)ﬂ,

and the uncertainty of the assumptions regarding the nuclear charge distribution,
the actual numerical value of & obtained cannot be considered as very significant.
However, the above resulits show very clearly that the anomalously large I.S.
between the Eu isotopes is readily explained as a consequence of a difference in
deformations, if the experimentally determined spectroscopic quadrupole moments
are used to make an esbimate of these.

"~ The whole and not merely the jump of the exceptionally large I.S. between
Sm150 and Sml52 (Z = 62) is then readily explained if the difference betwsen the
spactroscopic and intrinsic quadrupols moments is taken into account and if the
deformations are assumed to be somewhat less than those of the corrvesponding Eu
isotopes. The still larger I.S. betueen Eul51 and Bul®3 would then indicate that
the extra proton increases the already large deformations of the Sm isotopes. In

connection with these, it is interesting to consider the application of an
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empirical rule given by A. Bohr (1951) to the isotopes Sm:u”?, o8, This rule

is that for two isotopes which differ by two neutrons and have ths same value of I,
the nmucleus with the numerically smallest quadrupole moment has a magnetic moment
clogest to the appropriate Schmidt value. The theoretical justification for this
according to Bohr is that the gfeater the deformation of the core the greater is
the influence of the coupling of the angular momentum of the nucleons in unclosed
shells with the motion of the core and the greater consequently is likely to be

the deviation of the magnetic moment from the Schmidt valus.

The spins of the odd neutron nuclei Sml47, sS4

are both 7/2, while the
magnetic moments are ~0.3 and -0,25 nuclear magnetons respectively, the quadrupole
moments not being known. The I.S8. is approximately the same as that between the
other Sm isotope pairs (excepting a0 ang Sml52) and therefore rather large. The
spins and magnetic moments agree with the configurations ( {P’ 71 )2 and ( éi?'/;&)5
predicted by the shell model, the magnetic moment of sm47 lying rather closer to
the appropriate Schmidt wvalue than that of Sm149. Bohr's rule thus predicts

that the numerical value of the quadrupole moment of smt49 g greater than that
of smi47 and ‘that therefore the deformation dependent I.S. will tend to increase
the volume dependent part. This would support the explanation of these rather
large 1.5, ag due to a deformation dependent effect which then becomes
exceptionally large for Sml5o, Sm152 and Eulsl, Eu;SB.

The copjunction betwesen the neutron numbers 88 and 90 of the I.S. jump
observed both for Sm and Nd (2 = 60), together with the exceptionally large
difference in quadrupole and magnetic moments of the Eu isotopes, suggests that
there is some change in the neutron configuration on the addition of the 45th
pair of neutrons,

The only other isotopes besides Eutol and Eul®3 for which both the

spactroscopic quadrupole moments and the I.S. are lmown are Rel85 ang Rel87 (Z =175).




The spin of both isotopes is 5/&. Sehider and Korsching (1937) give the two
values (§g£%§/1?36%7 = 1,08 and 1.02 as obtained from two different lines,
the former being claimed as the more accurate; Q?RQE’ = 2,6 Parng, there being
good agresment betwsen the values obtained from the two different terms.  The

deformation dependent I.S. will thus act in the opposite direction to the voluume

dependent part. If we write @7423,"“ / @5&%‘“ =1+ Jd, 4 .a~1, then
5 (AEg) . %-0.3'7; 3 = 0,08
e = e =
w (AES) P

(=0.09; * = 0,02

On the other hand, Brix and Kopfermann using the data of Schuler and Korsching give,

3){ .{1 t;) / 3 ([39(_;{)*“)‘}{ - 0.35‘ Thus,

g = 72 if 2

!

I

0,08
8 = .46 if 3 =0,02

There is thus in general the possibility, also present for isotopes without
spectroscopic gquadrupole moments, that the deformation dependent I.S. is
sufficiently negative to reduce the I.S. to a very small or perhaps even negabive
value. This may then perhaps be the reason for the rather small I.S8. of the
elements from W (Z2 = 74) to Pt (Z = 78) inclusive.

Kopfermann and Meyer (1947, 1951) similarly to their considerations of Brix
and Kopfermann about the I.S. jump in Sm and the quadrupole moments of Bu, have
suggested that the difference in the Re quadrupole moments may be connected with
the decrease in the I.S. of the corresponding W (Z = 74) isotopes, Wie4 and W86,
The relative spacing of the I.S. of the W isotopes ig,

WJSO 82 w184 w186
~-0.91 0 1 1.89
With the larger and more accurate value 1.08 for (Qgi'%i/kgtkmr it would

seem however that with deformations for W84, W0 of approximately the same
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value as those of the corresponding Re isotopes and including the difference between

- H
the spectroscopic and intrinsic quadrupole moments, % {AF:), $(4E} is too large

to account for just the rather small jump in the I.S. It seems more likely to
suppose, in a similar way as for the Sm isotopss, that the somewhat small I.S.

of all the W isotopes as well as that of the Re igotopes is due to a nsgative
deformation dependent I.S,.,, and that the small I.S. jump between W184 and w80 is
due to a change in this.

A case of some interest in comnection with the possibility of very small I.S.
is that of the Iodine isotopes ILR7, 1129 (Z = 53) for which the quadrupole
moments but not the I.S. are lmown. The spin of 127 ig 5/é and @r'*7= -0.75
1o PES
é

s ¥

barns, the corresponding guantities for 1129 being 7/2, ”Jﬁa = L
8

= eb
and Q)I'W? = =0.43 barns. From (75),
G (AE;)

NV Y=

It must be remarked that the model of an ellipsoidal nucleus is not likely

= = 0,35

to be a very good description in this case as the quadrupole moments are rather
near the single particle values expected on the basis of the simple shell model.
The order of magnitude of the deformation dependent I.S. obtained is nevertheless
likely to be correct and the I.8. between 7127 and 1129 can be expected to be
rather small, The reason for the very small I.S. of the elements Xe(Z = 54) and
Ba (Z = 56) which follow Iodine may then perhaps be due to large negative
deformation dependent I.S. In this comnection it is interesting to consider

the application of Bohr's rule to the odd neutron isotopes Ba135 and Bal37,

These each have a spin of 3/, and the magnetic moments 0.832 and 0.936 nuclear
magnetons respectively, the quadrupole moments not being knowm. The values l
are not far from the d3/é Schmidt value suggesting the neutron configuration (ﬂ£%g)

and (¢{3Q>J which are in good agreement with the predictions of the shell
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model. The magnetic moment of Ba137

ig nearegt the Schmidt value, this isotope
having just one neutron less than the ﬁagic number 82, and Bohr's rule then
predicts that (8’ ~ ¢a'*! and that therefore the deformation dependent
I1.8. will act in the opposite direction to the volume dependent part. This then
would seem to support the explanation that the deformation dependent I.S. may at
any rate be partly responsible for the small I.S. of Ba.

Certain indications may be obtained from the I.S. and magnetic moments of
isotopes with a spin %, which of course have no spectroscopic quadrupole moments,
if a plausible extension of Bohr's rule is made. This would then state that
for two isobopes which differ by two neutrons and have the same value of I the
nucleus with the magnetic moment closest to the appropriate Sclmidt valve would
have the smaller deformation. The only isotopes with a spin % which come into
congideration at the present time are those of the odd proton elements Ag (Z = 47)
and T¢ (Z = 81). The magnebtic momenks of Ag187, ﬂglog are =0.159 and -0,086
nuclear magnetons respectively, both being near the Jty,Schmidt value in good

109

agreement with the shell model. The magnetic moment of Ag is somewhatb
closer to the Schmidt value and therefore the deformation dependent I.S. should
be negative. It is not however likely that this is very appreciable in view of
the normal value of the I.S. and also of the fact that since the magnetic moments
of both isotopes are rather close to the Schmidt value their deformations will
probably be small.

The magnetic moments of 1¢203 ang T€205 are 1,596 and 1,612 nuclear magnetons
respectively, these being somewhat closer to the S, then the [y, Schmidt value,
this being reconcilable with the shell model. The magnetbic moment of the
heavier isotope is closest to the Schmidt value and the deformation dependent I.S,

should be negative,. There is no indication from the exverimental I.S., that this

is significant. Perhaps in view of the proximity of these isotopes to both the
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neutron magic number 126 and the proton magic number &2 it is not unlikely thatb
their deformatlons are small.

Finally we mention two cases which seem to be of some interest:
1) The spin and spectroscopic quadrupole moments of sbl?l ang spic3 (2 = 51) are
S/é, «0.3 barns and 7/é, =-1.2 barns respectively, the I,S., not being knowm.

From (75), g(ﬂf&}/é(ﬂf})ﬁz 0.62 and thus the I.S., can be expected to be rather

large. This might indlcate that the unknown IL.S. in the region between Cd and
Xe may have values quite different from those expected if the points for Cd and
Xe in Fige 1 are joined by a straight line,

2) The two isotopes Yb171, Yol 73 (2 = 70) have spins of % and 5/2 respectively.

(Jyi'"? = + 3.9 barns and is exceptionally large. S(ﬁi?l/b@ﬂﬁ%}ﬁfCLB and
although somewhat on the small side is not abnormally so, thus %(llﬁ§)/’béaiaﬁ)”

cannot be expected to be numerically very large and will almost certainly be
legs than 0.5 in magnitude.
One obtaing
evgtTt (b (AE)
o T U sy
This shows that even though the deformation of Yb'’? is so large, €ye!’3 =< 5 ,
that of Tpi 7t can only differ very little, In fact since the relative spacing
of the I.S. of the Yb isotopes is given by
ypl7i Yt 7R Tl 13 Y- TpL76
0 0.62 1 1.38 Rel
the deformations of all the isotopes must be very nearly the same which seems
rather remarkable in view of the probable large magnitude of these.
From the foregoing and in particular the example of the Eu isotopes, it must

be considered as established, even in view of the rather large uncertainties
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involved, that a difference in the deformations of two igotopes can have an effect
on the I.8. comparable or even larger in magnitude than the usual volume dependent
I.5. The posgibility must also be strongly enteritained that the large variations
obgerved in the I.S. may be due to this deformation dependent effect., The I.S,
data could then be used to give informabion about the variation of nuclear
deformations, providing a valuable test for theories of nuclear structure which
involve a deformed core. Of especial interest in this comnection are the I.S.

of a sequence of isotopes which have all rabther large or small I.S. This must
then be taken ag indicating that the deformations continmuously increase or

decrease respectively from one isotope to the next, and not that merely the
difference in deformation between any two isotopes remsins approximately the same.
Thus the large I.S. of the Sm isotopes would indicate that all the isotopes from
Sm144 to Smt24 have successively larger deformations with an exceptionally large

increase betwsen 811115O and Sm152.
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