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A bstract

The c and b quark asymmetries were determined from an analysis of electron 

inclusive multihadronic events recorded with the JADE detector sited on the e+e~ 

storage ring PETRA. At a centre of mass energy of 35GeV the measured values 

of the asymmetries were Ac — - 0.15 ± 0.15 ±  0.03 and At, — -0.24 ±  0.16 ±  0.03 

respectively, where the first error is statistical and the second systematic. These 

results are in good agreement with the Standard Model expectations of A®1”  = 

-0 .126 and A®^ = -0.230. Combination of the above result for Aj> with a 

previous measurement made by the JADE group enabled a limit to be placed on 

the B°B° mixing parameter. At the 90% confidence level, r < 0.40.
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General Introduction

This thesis describes the measurement of a quantity dependent on the inter­

ference effects which occur between the neutral carrier of the weak force and its 

electromagnetic counterpart, the photon. This quantity, measured for both c and 

6 flavours, is the asymmetry in the production direction of the quarks with respect 

to the electron direction in electron positron annihilation. Hence the axial cou­

pling of these quarks to the weak neutral force was measured, testing a sector of 

the Standard Model of elementary particle interactions. Furthermore it is shown 

that the measurement of the 6 asymmetry provides a means of studying mixing in 

the B°B° system.

The following is divided into two parts. In the first part the Standard Model 

is introduced. Its predictions concerning the quark production asymmetries and 

some other results of interest in the context of the measurement made are also 

given. The construction and operation of the JADE experiment and the standard 

analysis techniques used are then described. The description of the Standard 

Model does not follow the historical course of events, but is designed to emphasize 

the role of the principle of local gauge invariance in the development of the theories 

involved, this principle being responsible for the Standard Model coupling constant 

assignments which are measured.

In the second part the problems encountered in measuring the b and c asym­

metries and how they were solved are described. The results of the analysis are 

then presented and discussed.

JOHN RïLANDï»
uniW-Rs'tï

MNNCHEST
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Part I

T he Standard Model, Q uark Production in e+e~ A nnihilation 

AND THE JA D E  EXPERIMENT

In trodu ction .

Of the particles seen in physics experiments (Particle Data Group, 1984) only 

the five leptons, the photon 7 and the weak bosons, the W + , the IV ~ and the Z° 

are considered to be fundamental. The leptons are the electron e and its neutrino 

1/,, the muon /z and its neutrino and the tauon r. The r is assumed to be 

accompanied by another neutrino, the ur. The first of each pair has charge -1  in 

units of the proton charge and the second is neutral. All other particles, collectively 

called hadrons, are thought to be bound states of another set of fundamental 

particles which cannot escape outside hadrons, the quarks.1 The hadrons may be 

split into two classes, mesons and baryons. Mesons are bound states of a quark 

and an anti-quark, while baryons are composed of three quarks. There is good 

experimental evidence for the existence of five types of quarks (Perkins, Close). 

These are distinguished by the flavours down d, up u, strangeness s, charm c and 

beauty or bottom b. There is strong indirect evidence for the existence of a sixth 

quark flavour, top i (Bartel, 1983a) and some indication that it has been produced 

at the CERN proton anti-proton collider (UA1, 1985). The first, third and fifth of 

these particles have charge -1 /3 , the second, fourth and sixth charge +2 /3 . The 

leptons and quarks are all pointlike and have spin 1 /2  in units of h. The photon 

and the weak bosons have spin 1 .

The interaction binding the quarks together to form the particles seen in 

physics experiments, the hadrons, is termed the strong interaction. It is thought 

to be carried by another type of boson, the gluon. This interaction has the pe­

culiarity that as the interquark separation increases it gets stronger, explaining

'I t  is also possible that bound states of gluons, or a mixture of such bound states with quark 
bound states, exist as physical particles. The 1 may be such a particle (Edwards, 1082).
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why the quarks and gluons never exist as free particles.1 All fundamental par­

ticles undergo gravitational interactions, all those that are electrically charged 

undergo electromagnetic interactions, and all the fundamental fermions undergo 

weak interactions. The gravitational interaction is negligible at the energies at 

which particle physics experiments are done and will thus not be further consid­

ered. The electromagnetic interaction, coupling to particles through their electric 

charge, is familiar in its classical manifestation from everyday life. It has infinite 

range. The weak interaction, responsible for the beta decay of the neutron, is not 

intrinsically weak but has only very short range.

An essential feature of the currently favoured theories of fundamental particle 

physics is the idea that the forms of these interactions are dictated by a symmetry 

principle; local gauge, or phase, invariance. This principle, together with experi­

mental evidence as to the symmetry groups involved, has led to the development of 

a theory of the strong interactions; Quantum Chromodynamics. The addition of 

the Higgs mechanism, enabling the introduction of forces whose range is limited by 

the mass of the particles which transmit them, made possible the development of a 

theory which simultaneously describes electromagnetic and weak interactions, the 

Glashow-Salam-Weinberg model. The Higgs mechanism spontaneously breaks, or 

better hides, the fundamental symmetry of the interactions in this model. Clues 

to the symmetry remain however, specifically in the relative strengths with which 

the interactions affect the different particles in the theory and in the existence of 

a neutral carrier of the weak force. Together Quantum Chromodynamics and the 

Glashow-Salam-Weinberg model form the Standard Model of fundamental particle 

interactions.

The notation in the following sections is that which is used in texts such as 

Aitchison (1982), Aitchison and Hey (1982) and Bjorken and Drell (1964, 1965).

'There ii one piece of experimental evidence which ieem i to contradict thin (Pairbank, 1081).
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T he Standard Model

Chapter 1

Q uantum  Field T heory  and  the Feynm an R ules.

The framework within which current theories of the fundamental interactions 

are described is that of the Lagrangian formulation of relativistic quantum field 

theory. Systems are described by a Lagrangian L, or it’s density L, which de­

pends on the fields of the theory and their gradients. The fields are a means of 

representing multiple particle states. The equations of motion of the system are 

obtained from the action principle, namely that 1 — J d4xL  be stationary under 

variation of the fields. Correct special relativistic behaviour is ensured if L is a 

Lorentz invariant function.

Consider the case of a scalar field <f>[x) and let L have the form

L ~ \  ~ m 2<A2(x)^.

Applying the action principle gives the Euler-Lagrange equations (Goldstein, p36)

which in this case reduce to

{d^d* ■+ m2)<t> = 0

the Klein-Gordon equation , describing the motion of a free scalar field of mass m.

So far the discussion has been classical. Quantization of the system may be 

performed using the canonical procedure. A momentum ir conjugate to the field 

<t> is defined by
, > _ _  d L _
{ ) "  a(èo* ( « ) ) '
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\<t>(x),n(x')} = i¿ 3( x - x ' )

[jr(i),jr (i')] = 0 

\<f>(x),<f>(x')] =  0 .

(If the fields in question are fermionic then the commutators in the above expres­

sions must be replaced by anti-commutators.) The Hamiltonian density is defined 

by

H(x) = ir(x)do<t>(x) -  L(x).

The fields are then replaced by field operators satisfying the commutation relations

That the field operators may be used to represent many particle states may 

be demonstrated using the following argument. Fourier expanding the field and 

momentum operators in terms of free particle wave functions gives

and

where ko = \/\l2 + m2. The operators a and as a result of the commutation 

relations above, obey

[a(k),a^(k')] = 2 M 3(k -  k')

[a(k),a(k')j = 0

[flt(k),«t(k')] =o.

These are very similar to the commutation relations familiar from the case of the 

simple harmonic oscillator (Merzbacher, p 356).

[a(x),at(x ')] = 6 (x -  x')

[« (* ),« (* ')] = 0 

|«^(*),«^(x')] = 0

■  V



[¿(* ), *■(*')] =  ' ¿ 3(x -  * ')

[jt(x) , jt(x ')] = 0 

[</>(x),d>(x')] =  0 .

(If the fields in question are fermionic then the commutators in the above expres­

sions must be replaced by anti-commutators.) The Hamiltonian density is defined

The fields are then replaced by field operators satisfying the commutation relations

That the field operators may be used to represent many particle states may 

be demonstrated using the following argument. Fourier expanding the field and 

momentum operators in terms of free particle wave functions gives

and

where ko = n/ P  + m*. The operators a and a^, as a result of the commutation 

relations above, obey

[a(k),a^(k')] = 2 M 3(k -  k')

[a(k),a(k ')] = 0

[ a t ( k ) , « V ) ] = 0 .

These are very similar to the commutation relations familiar from the case of the 

simple harmonic oscillator (Merzbacher, p 356).

[a(x),o^(x')] = 6(x -  x')

[a(x),a(x')] = 0 

[c+(x),at(x')] = 0
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in which case, the following relationships between the Hamiltonian H and the 

annihilation and creation operators a and a hold

[H, a ! = -w a

and

[H.flt] = +u> a \

The resulting spectrum is a ladder of states, separated by energy w. Operating

there is a ladder of states for each k. The states are separated by an energy of k0.

particle of mass m and momentum k to it and vice versa for operations with a. 

This makes the statement that fields may be used to represent many particle states 

plausible. A more thorough approach shows that the field operator can actually 

be written in terms of a symmetric (for bosons) or anti-symmetric (for fermions) 

combination of individual particle wave functions (see, for example, Ziman).

with causes a move one step up the ladder and with a one step down. The 

ground state is specified by the condition

a|0) = 0

and has zero point energy w /2 .

Returning to the field theory case, in which

the commutation relations analogous to those above are

[H ,e(k)] = - M k )

and

[H ,at(k)] = +kaot (k),

Thus operating with increases the field energy by k0 consistent with adding a
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The first of the infinities typical of quantum field theories is encountered 

here. The ground state of the <j> field has infinite energy as it is an integral 

over a contribution of ko/2 for all k. This divergence is easily coped with as 

only energy differences are measurable and the infinite ground state contribution 

always subtracts out.

So far the theory that has been considered has been that appropriate to free 

particles. An interaction term H's may be introduced so that H = Ho +  H^. The 

time development of the free system, given by the equation of motion

= -»Ho|#)>5

is

I<t>(t))s = ]T] C „ex p (-iEnt)|n)
n

where the state has been represented as a sum of the eigenstates |n) satisfying

H0|n) =  E„ |n).

The subscript S denotes that the description is in the Schroedinger picture. The 

time development of the interacting system is

W 0>s = a„ ( 0 e x p ( - iE„t) |n)
n

where the effects of the interaction are contained in the time dependent coefficients 

an(t). The phase factors, which are not of interest in describing the interaction, 

may be removed by using the interaction picture. The state vector in this picture 

is defined by

l<A(0>/ = exp(i'H0)MO)s

and the interaction term in the Hamiltonian becomes 

H; = exp(iHo)H's. exp(-i'Ho).
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As may be checked by substitution, the equation of motion is

¿W «))i  = -«hU*M>i

and the remaining time evolution of the state is due only to the interaction. In 

terms of the eigenstates of the free system

M O )/ = £ an(t)ln>-
n

The interaction picture will be used from now on.

Physics experiments study the transition from a non-interacting particle state 

at time t\, long before the interaction of interest takes place, to a non-interacting 

state long after the interaction has taken place, at time <2- Define an operator U, 

which performs this transition, so that

Comparison of this with the equation of motion gives the evolution equation of 

this operator

Integrating this and noting that i/(< i, i j ) =■ 1 (Bjorken and Drell, 1965 p 177) 

gives

«/(<2,«i) = 1 -  * /  *H 'V(t,u)dt.
Jt,

Replacing the U operator under the integral with the expression on the right hand 

side, and iterating gives an infinite series solution for U

U(t2,ti) = l + (~i) f  dt H'(<) 4 (—»’)2 f ’ d t f  d< 'H '(0H '(< ')+  . . . .
Jt, Jt, Jt,

The n1*1 term in this series is

Jt, Jt, Jti
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Define the scattering operator S = l / ( - o o ,  -t-oo), then the n1*1 term in the expan­

sion of S is

5<") =  ( - » ) " d<n H'(<,)H'(<2) . . .H '(< n).

Demanding that the integrands be time ordered, that is if

-OO < tj < <2 < • • • < tn < oo 

then the integrand of the term is

H '(tn) . . .H '( t 2)H '(t,)

this becomes (Ziman, p 68)

S (n) =  f ° °  d u  r  d t f  - r  . . . H r(<„)]
^1 J — oo J — oO j -oo

where the P  denotes the time ordering process. This may also be written in terms 

of the interaction Hamiltonian density H'

S<"> =  j  d4xi f  d4X i - - J  d4x„P\H'(x1)H'(x2) . . .H '(x n)\.

The problem then is to evaluate matrix elements of the form

(<t>f\S\<l>i)

where |̂ >,) and \<t>j) represent the initial and final states respectively.

Consider the previously discussed Lagrangian density, but with an interaction 

term added, namely

¿ =  J m v -  f y .z z 4!

The interaction Hamiltonian is then

H '=  J  d*xH' 

-  /
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The amplitude for scattering from a state |fci,/c2) into \k3 ,k4) is 

<*s .*4|5|*i ,* 2) = <0|o(k3)a(k4)5ot (ki)fl^(k2)|0).

Considering the case in which k] ^ k3 and k 2 k 4 the lowest order term is 

S j l ’ =  ~  J  d4x(0|a(k3)a(k4) ^ a t ( k 1)at (k2)|0).

Remembering that <j> may be expanded in terms of the momentum eigenstates and 

using Wick’s theorem (Wick, 1950) enables calculation of this quantity. The only 

non-zero contributions are of the form

and

<0|o(k)̂ (x)|0) = e+ik z.

There are 4! such contributions and together they give

sjj* = - 1g  J  d * x  exp[-i(A:i + fc2 -  k 3 -  k 4 )  • x ]

= -ig(2n)46*(k\ ■+ k2 -  k3 -  k4),

the interaction strength multiplied by a delta function ensuring that energy and 

momentum are conserved.

This, and indeed all, the terms in the perturbation expansion of the 5  matrix 

may be represented using Feynman diagrams. The example above is drawn in 

figure 1.1. Algebraic factors are associated with elements of these diagrams and, as 

was first realised by Feynman, these algebraic factors are the same regardless of the 

context within which the diagram elements occur. For example the vertices in the 

<f>'4 theory which has been discussed here always have the factor -ig  associated with 

them. The Feynman diagrams may thus be used to calculate transition amplitudes, 

without going through the full field theoretic arguments for each different case.
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The amplitude for scattering from a state !ki,k2) into |Æ3, Ar4) is

{k3,kA\S\ku k2) -  (0|o(k3)a(k4)So^(ki)fl^(k2)|0).

Considering the case in which kj ^ k3 and k 2 J k4 the lowest order term is

^  j  d4x{0|a(k3)a (k 4)^ f lt (k 1)at (k2)|0).

Remembering that 4> may be expanded in terms of the momentum eigenstates and 

using Wick’s theorem (Wick, 1950) enables calculation of this quantity. The only 

non-zero contributions are of the form

<0|*(*)at(k)|0> = '~ikz

and

(0|a(k)<£(x)|0) =  e+ik z.

There are 4! such contributions and together they give

s j'*  = - 1g J  dAx exp [-»(A i + k2 -  fc3 -  fc4) • x]

= -ig(2n)*6*(ki + k2 -  k3 -  k4),

the interaction strength multiplied by a delta function ensuring that energy and 

momentum are conserved.

This, and indeed all, the terms in the perturbation expansion of the 5  matrix 

may be represented using Feynman diagrams. The example above is drawn in 

figure 1.1. Algebraic factors are associated with elements of these diagrams and, as 

was first realised by Feynman, these algebraic factors are the same regardless of the 

context within which the diagram elements occur. For example the vertices in the 

<f>* theory which has been discussed here always have the factor ~ig associated with 

them. The Feynman diagrams may thus be used to calculate transition amplitudes, 

without going through the full field theoretic arguments for each different case.
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F igu re  1 .1 . Lowest order <f>* field theory scattering diagram.

F igu re  1.2 . Next to lowest order field theory scattering diagram.



Consider now the next term in the scattering process under study

S/ i } = Jf ¿^A(O|a(k3)a(k4)P|«A4(x)^(y)]at(k1)at(k2)|0).

In addition to terms of the type previously discussed this contains a term of the 

form

<0|P[^(x)<^(y)]|0).

Now

<0|<A(x)<£(y)|0) = J  • (* “ »)]•

The quantity required is similar to the above, but for the time ordering of the 

product. This may be written

P\<t>(x)(t>(y)} = 0(xo -  y0)d>(x)<£(y) +  % o  -  x0)<f>(y)<t>(x)

where the 6 function
0(1) =  1 for t > 0

= 0 for t < 0

ensures that only the correctly time ordered products are non-zero. This function 

may be represented by

dui
-------re
w + «<

-iu/t

which must be evaluated in the complex plane using the residue theorem (see, for 

example, Kreyzsig). Combining these results

(0|P[^(*)^(y)]|0)
r  d * k  exp[-ifc • (x -  y)]

J (27rj< T *2 -  m2) + it

which may be recognised as the formula for a Feynman propagator. The Feynman 

diagram for this process is shown in figure 1.2. The amplitude is

«J? - + *»-*»- *<) m 2 (p + itj + fcj)2 -  m 2

where p is the momentum running round the loop in the diagram. Again overall 

energy-momentum conservation is ensured by the delta function and a factor -ig

11 JOHN TtfUVNOS
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appears for each vertex. The new feature here is the integral over the loop momen­

tum p. This integral is divergent and represents the second and more serious type 

of infinity encountered in field theories, not being simply additive as the previous 

example was. Moreover it is clear that in this theory the problem is worse for 

higher order terms in the perturbative expansion of the S matrix, as more and 

more loops appear.

The general treatment of such infinities is a complex subject and will not be 

tackled here. Suffice it to say that for a certain class of theories, which are known 

as renormalizable theories, all infinities can be absorbed in a finite number of 

redefinitions of some of the parameters of the theory, such as masses and charges 

or coupling constants. Physically this is justifiable, as the so-called ‘bare’ masses 

and charges which appear in the Lagrangian are never observable, always being 

subject to (infinite) corrections due to vacuum polarization effects. Renormalizable 

theories may be written in terms of the experimentally measured masses and 

charges. That this may be consistently done to all orders in the perturbative 

expansion may be proved diagrammatically, a demonstration of the power of the 

Feynman graphical approach (Ziman, p 186). Until non-perturbative solutions to 

quantum field theories are found only renormalizable theories are of interest in 

physics (Weinberg, 1980). An illustration of how renormalization may be carried 

out is given in the section on Quantum Electrodynamics.

A first indication o f the importance of the gauge principle, which is discussed 

in what follows, is that the property of gauge invariance seems to be crucial in 

proving that a theory is renormalizable. Conversely, if a theory is constructed with 

the specific aim of making it renormalizable, it turns out to be a gauge theory 

(Llewellyn-Smith, 1974). Perhaps an even more important feature of the gauge 

principle is its power to determine the dynamics of a theory, once the symmetries 

involved are specified.
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T he G auge P rincip le and Q uantum  E lectrodynam ics.

Consider the Lagrangian describing the motion of a free Dirac field rp of mass

m,

L0 =  ~ m)ip

where the ^  are the Dirac matrices, described in Aitchison and Hey. This is 

invariant under the global phase, or gauge, transformation

xl>{x) -»  rp'(x) = e x p [ - j0\rp(x).

The gauge transformation is termed global as the phase change introduced is in­

dependent of the space-time coordinates. Such an invariance implies the existence 

of a conserved current (Noether’s theorem) which in this case is

=  l / W -

Writing 6 = qx this is seen to be the electromagnetic current for a fermion of 

charge q

j “  =  it /o 'V -

Consider, following the suggestion of Yang and Mills (1954), demanding that 

the Lagrangian be invariant under the local form of the above transformation. 

That is, let x be a function of the space-time coordinates x. The local gauge 

transformation is then

rp(x) rl>'(x) = exp[-igx(*)]0(*)-

Some full Lagrangian L\ must be found so that the variation under the above local 

transformation bL\ is zero. Now

6 L0 =  -  m)\p' -  rp(i' -  m)ip

13



so L\ must contain a term whose change under the local transformation exactly 

cancels that above. Such a term is -qxp^rpA^ provided that, as the tp field 

undergoes the transformation above, undergoes the transformation

AA X) -* A'AX) = 'M 1) +  dM x)-

The Lagrangian then becomes

L\ =  ~ m)\p -  qxp^xpA .̂

Imposing invariance under the local gauge transformation has forced the introduc­

tion of a new vector field A  ̂ which undergoes interactions with the matter field rp. 

The Lagrangian above is exactly that obtained when the ‘minimum prescription’ 

for introduction of electromagnetic interactions is used (see, for example, Aitchison 

and Hey). Thus application of the local gauge principle has generated a theory of 

electromagnetically interacting Dirac particles from the free theory.

The Lagrangian above is not yet the complete Lagrangian of Quantum Elec­

trodynamics, or QED, as the term describing the behaviour of the A  ̂ fields is 

missing, the Yang-Mills term. This is the term which gives rise to the Maxwell 

equations and it may be introduced in a locally gauge invariant manner using the 

tensor

F*v =  & A V -  dvAil

as under the transformation for the A* fields

SF^ = {d^A *  +  d*X{x)) -  d‘, (A>> + ^ x ( x ) ) }  -  { P A *  -  d 'A*}

=  0 .

The addition of a term

Lem = --FurF**
4

so that the full Lagrangian becomes

L =  V>(»TfM0f» -  m)ip -  qxpY^PA  ̂ -  | F ^ F ^

14



ensures that, if the Euler-Lagrange equations are applied to the full Lagrangian, 

the result

dvdvA  ̂ -d » {d vAv) = /

has the correct Maxwell form. The Maxwell equations in terms of the electric 

and magnetic fields may be obtained from the above as is shown in, for example, 

Weinberg (1972).

The crucial stage above, demanding invariance of the Lagrangian under local 

gauge transformations, is equivalent in this and all cases to replacing the deriva­

tives dp in the free Lagrangian by their covariant counterparts, (Aitchison, 

p36). In the above example

0 " =  d* +  iqA».

The symmetry to which this simple one-dimensional phase invariance is related is 

that of the Abelian group U (l).

The QED tree level diagrams, that is those not containing loops, and the 

algebraic factors with which they are associated are given in Aitchison and Hey.

R enorm alization  and the R unning C oupling C onstant.

Consider the process t~n~ -»  t p~ , the lowest order Feynman diagram 

and a vacuum polarization correction for which are illustrated in figures 1.3 and 

1.4 respectively. The amplitudes for these two graphs are the same, but for a 

modification to the propagator in the second due to an integral over the loop 

momentum. This tends logarithmically to infinity as the upper limit of the integral 

goes to infinity (cf. the </>* theory considered in the first section of this chapter). As 

the divergence is associated with high energy behaviour it is termed an ultraviolet 

divergence. Some way of removing this infinity must be found before the theory 

can be of any use. If an upper bound to the integral, A, is introduced then it can

15



Figure 1.3. Lowest order electron muon scattering diagram.

F igure 1.4. Vacuum polarization correction to electron muon scattering.



be shown (Bjorken and Drell, 1964) that the amplitude resulting from the sum of

diagram may thus be considered to be, in part, an infinite modification to the

appears in the Lagrangian, and in the formula for the amplitude above, and the 

measured coupling constant a m must be found. A measurement of the coupling 

constant determines

n= 1 J
where Cn is the correction at order a " of the above form. The bare a may be

is obtained. As the expression for a contains an infinite term, the attempt to 

find the value of the bare a must be abandoned, alternatively stated, the theory 

cannot predict the value of am. At least however, by inserting the measured value 

of the coupling constant, calculations which give finite results may be performed. 

Agreement between theory and experiment is in fact extraordinarily good for pro­

cesses which may be considered purely electrodynamically, see Van Dyck (1976 

and 1977). JOHN rylan d :

the two graphs in terms of aB^\  the amplitude due to the first graph alone, is

where a = e2/ ( 47r) is the electromagnetic coupling constant, m the mass of the 

electron and q the momentum transfer. The effect of the vacuum polarization

coupling constant. Ignoring terms of order a 2 and higher

To get sensible predictions out of this theory the relationship between the a which

OO
Qm = a 1 + ^  anCn(A2)

obtained by inverting this formula. For the example above, working to order n =  1 , 

this gives

Writing the amplitude in terms of am the finite result
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The above is an example of the process known as renormalization and can in 

QED be performed systematically order by order to remove all the infinities which 

occur (Schwinger, 1958).

are the same but for the modification to the propagator, using a running coupling 

constant

where n is some reference momentum transfer, would include the effects of the 

vacuum polarization graph in the lowest order calculation. For q2 > >  m2 this 

becomes approximately (Bjorken and Drell, 1964)

where the subscript m has been dropped, the use of the renormalized coupling

convenience. Similar expressions may be calculated for higher orders and the 

most significant parts, the leading log terms, combined to give

The effective coupling strength is seen to increase for large Q2, that is small 

distances. This effect is small in QED and the use of the running coupling constant 

does not significantly improve results, however in Quantum Chromodynamics, or 

QCD, it becomes important.

Another type of infinity arises in attempting to calculate the diagram shown 

in figure 1.5. This time the divergence occurs as the emission angle or momentum 

of the bremsstrahlung photon becomes very small, this is thus termed an infra­

red divergence. The problem is not as fundamental as that above as this infinity

In addition to the above some q2 dependence may be included in the definition 

of the coupling constant. As the amplitudes for the diagrams in figures 1.3 and 1.4

constant being implicit, and the positive quantity Q2 =  -q 2 is introduced for

a
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cancels with others that appear when all the terms to this order are calculated. In 

calculating the above diagram alone a cut-off may be introduced to get rid of the 

infinite part. This is justifiable as the divergence is associated with just the parts 

of the process that are not measurable. It is impossible to distinguish between an 

electron and an electron that is accompanied by a photon of momentum less than 

that experimentally resolvable.

Historically QED was not developed using the gauge principle as described 

here, rather gauge invariance was noticed to be a feature of the theory (Fock, 

1927). Two theories constructed using the gauge principle are briefly described 

in the following. In these theories the symmetries involved are those of higher 

dimensional non-Abelian groups, and in such cases the gauge principle turns out 

to be even more powerful in constraining the form of the theories. For further 

discussion of the group theoretic terms used see Gibson and Pollard (1976).

G eneralization  o f  the Covariant Derivative and Q C D .

Consider a Lagrangian L formulated to describe the behaviour of a free field 

<J>. If L is invariant when </> is globally transformed according to an n-dimensional 

representation of the group G, that is under

<p(x) -* <t>'(x) = exp[-igOata]<l>(x) 

then the covariant derivative is defined to be

D" = d* + igtaWa>>(x).

(Sub or superscripts a ,6, . . .  are used to indicate group indices and summation is 

implied over repeated indices, whether they are ‘up’ or ‘down’ having no signifi­

cance.) The ta are n x n matrices obeying the algebra

[ta,tb} = ifabctC
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where the fabc are the structure constants of G. The W are the gauge fields, 

equivalent to the electromagnetic potential in QED, and transform according to 

WA X) w l ix) = ~ *exp[-»fffl(x) • e x p [+ i j i ( i )  • t]

+  e x p [-» 00(x) • ¿ jlV ^ x )exp [+ 15^(1 ) • t]

the dot product being over the group indices 1 ...n . Generalising the field tensor 

to

Fâ  =  -  dvW a>l -  gU cW ^W 01',

the Yang-Mills term in the Lagrangian has the form

LYM = - ]~F%Fâ .

Consider the use of these expressions in generating a theory of the strong interac­

tions, QCD.

There are experimental reasons for believing that quarks have associated with 

them a degree of freedom called colour. For example this solves the problem of 

the apparent violation of the Pauli exclusion principle in baryons containing three 

quarks of the same type; the quarks may have different colour quantum numbers. 

The number of colours may be deduced from the ratio of the quark to the lowest 

order QED muon production cross-section in e+e~ annihilation

p _  ° (e+e~ — W)
<ro(e4e - -*

Experimentally this is found to be approximately three times the number of quark 

flavours that are produced, suggesting that there are three colours. The same 

result can be deduced from a study of the 7r(l lifetime. QED calculations of the 

expected rate of the decay tt0 —» n  assuming the n" to be composed of mixtures of 

charged quarks and anti-quarks give a lifetime that is approximately three squared 

times too large, unless the three colours are included. For further discussion of 

this and other pointers to an SU(3) colour symmetry, see Gell-Mann (1960) and 

Close (1979).
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Adding the colour degrees of freedom a quark field may be written as

v».- =

where i runs over the flavours d,u,s,c,b... and R, B and G stand for the three 

colours. The free field Lagrangian

L =  5 1  -  m i)rl> i

i=d,u,t...

then displays invariance under arbitrary variations of ‘colour phase’

xl), xl>\ = e x p [ - t 0 5 0 “ y ] .

As there are three colours, not just one phase as in QED, the ‘colour phase’ 

changing quantity is not just a simple number. In fact the A°/2 are matrices 

which represent the symmetry o f the above transformation: SU(3). There are 

eight matrices in all as the group SU(3) has eight generators, that is in order to be 

able to make arbitrary rotations in an SU(3) space, eight operators are necessary. 

In the case above these matrices must have dimension 3 x 3, as the quark fields 

are three dimensional. Formally the matrices satisfy the algebra

Aa A6] A*
2 * 2  * abc 2 ’

f abc being the structure constants of SU(3). The 0, one for each of the generators, 

are parameters allowing the transformation to be made arbitrary. One possible 

representation of the A matrices may be found in Gibson and Pollard.

Using the given prescription, the covariant derivative is 

7?" = d" + 10s y  A“"

where the gauge fields describe, in this case, gluons. Inserting the covariant deriva­

tive in the free field Lagrangian produces a new Lagrangian, containing interaction
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terms. This is invariant under the local version of the SU(3) ‘colour phase’ trans­

formation, in which 6 —* 0(z), provided the gluon fields transform according to 

the general prescription given for gauge fields. Adding the Yang-Mills term the 

Lagrangian is

l = x > . ( ^  -  -  \ n » Fr -
t

The F“„ are defined by

F°v = d»Aav -  dvA% -  gsfabcA^Al.

The first two terms are of the same form as those responsible for the Maxwell 

equations in QED, the last describes interactions among the gluons themselves. 

This new feature arises as in QCD the gauge fields, the gluons, are found to carry 

colour charge, while the gauge fields of QED, the photons, are neutral.

The quantity gs is the strong interaction gauge coupling constant. To ensure 

local gauge invariance, it must have the same value for all flavours and also in the 

Yang-Mills sector. This illustrates the fact that for non-Abelian symmetries the 

principle of local gauge invariance is more powerful than in the case of Abelian 

symmetries. In QED, an example of the latter, there is no a priori reason why 

different matter fields should not couple to the gauge field with different strengths, 

nor any reason why those strengths should be quantized in units of the electronic 

charge.

The Lagrangian above is not the complete Lagrangian of QCD. A term of the

form

may be added without destroying the local gauge invariance (Llewellyn-Smith, 

1982). 0 is an arbitrary parameter that must be determined by experiment. Also 

when the complex problem of quantizing the vector gauge fields is tackled (see,
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for example, Aitchison) it is found that gauge fixing, or ghost, terms have to be 

added to the Lagrangian. The above form is however adequate for all QCD tree

level Feynman graphs. These are listed in Aitchison and Hey. Further discussion 

of QCD may be found in Pennington (1983).

Confinem ent and A sym ptotic Freedom.

Renormalization may be carried out in QCD in a manner similar to that 

illustrated for QED, though it is not the most economical method (t’Hooft, 1971a). 

The leading log expression for the running coupling constant in QCD is

with A of the order of 300MeV (Hill, 1985).

It can be seen that, for /  < 16, t»s(Q2) tends to zero as Q2 tends to infinity. 

This is the phenomenon of asymptotic freedom and implies that, to high energy 

probes, quarks will appear to be free inside protons, explaining the success of the 

quark-parton model (Close, 1979). Also, for large Q2, perturbation theory is valid 

and quantités such as the cross-section for quark anti-quark gluon production in 

e+e-  annihilation may be calculated.

For small Q2, o s (Q 2) becomes large and the perturbative expansion is no 

longer valid. Attempts are being made to solve the theory in this region using 

discrete approximations to the fields involved (Kogut, 1983). It is hoped the in­

crease of the coupling strength at low momentum transfers indicates that QCD

where /  is the number of quark flavours. Introducing

ln(A2) -  ln(/i2) -
1 2 tt

( 3 3 - 2  f ) a s (u2)

this may be written
127T

22



explains confinement, namely the fact that no free colour charges are seen. This 

certainly seems to represent the experimental situation, only one experiment hav­

ing reported evidence for free quarks (Fairbank, 1981) despite extensive searches 

(see, for example, Bartel, 1980).

In order to relate calculations in perturbative QCD involving quarks and 

gluons to the experimentally observed particles, models of the confinement process 

have been developed. In e+e~ annihilation these are concerned with how a jet of 

particles is produced from the initial quarks and gluons and the process is termed 

hadronization, or fragmentation. The hadronization model used in the following 

is that developed by the Lund group and will be described in the section on the 

Monte-Carlo. It is based on a solvable model which exhibits confinement, the 

Schwinger model (Schwinger, 1962). This is QED in one space and one time 

dimension. In this theory if a positive and negative particle are moved away 

from one another then, as in one spatial dimension the electronic field strength is 

independent of the separation between the particles, eventually the field energy is 

enough to polarize the vacuum, generating two dipoles and confining the charge.

T h e  G la sh o w -S alam - Weinberg Model.

In developing a theory of electroweak interactions the problem of finding the 

symmetries involved is complicated by the fact that the particles that belong 

together in multiplets do not have the same masses. Clues to the symmetry must 

be sought in the relationships between the coupling strengths o f the interactions 

to the different particles. The symmetries used in the currently accepted picture, 

the Glashow-Salam-Weinberg or GSW model, were first recognised by Glashow 

(1961).

Glashow saw that two symmetries are involved. The first is the SU(2)t  sym­

metry observed in weak interactions, which is seen in that the couplings of the 

weak interaction to many different particles have the same strength and may be
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mathematically expressed by the statement that (charged) weak interactions are 

invariant under global transformations of the form

'i’L -> V’i  =  exp

where

The subscript L denotes that only the left handed, or negative, chiral, or helicity, 

states are involved. This observation is the result of much experimental effort, as 

is described by Perkins (1982).

As the rpL are doublets the representation of SU(2)^ involved is two dimen­

sional, a suitable choice for the r are therefore the Pauli matrices, which satisfy 

the required SU^)^ algebra

One representation of these matrices is given in Gibson and Pollard. The sec­

ond symmetry involved is the U(l) symmetry of the electromagnetic interactions. 

Invariance is observed under global transformations of the form

ip ip' = exp [ - 1g'0\ ip.

Invariance of the Lagrangian under the local version of this second transforma­

tion may be demanded in order to generate QED as has already been shown. A 

similar procedure may be followed using the SU(2)t  transformation in an attempt 

to generate a theory of the weak interactions. If this is done then three gauge 

fields will be introduced as there are three generators of the group SU(2)t . Two 

of these fields will be electrically charged and one will be neutral. All of them will 

only couple to left-handed states, that is to particles whose spin and momentum
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directions are anti-parallel, as only these particles can be placed in SU(2)L dou­

blets. This does not correctly represent nature, it is known that the neutral weak 

interaction also couples to right-handed states (Perkins, 1982).

Glashow’s proposal provides a way out of this dilemma. A theory with the 

gauge group SU(2)^ x U (l) must be generated by simultaneously demanding in­

variance of the Lagrangian under both the SU(2)t  and the U (l) local gauge trans­

formations. In this case the SU(2)^ and U(l) sectors of the theory are connected. 

The SU(2)l symmetry is named weak isospin in analogy with the approximate 

SU(2) isospin symmetry evident in the hadron spectrum. The quantum num­

bers are conventionally labelled t and <3 for the total weak isospin and its third 

component respectively. The U(l) symmetry is called weak hypercharge, again 

in analogy with the hadronic case, and its quantum numbers are labelled y. The 

relationship between <3, 2/ and the electronic charge q of a particle is

9 =  i3 + 2 -

The correct form for the neutral weak interactions then arises through mixing of 

the weak isospin and weak hypercharge sectors. The required local gauge invari­

ance is obtained by using a covariant derivative of the form

D* = d1* + igT(i) • W" +  « l y f i " .

The weak isospin and weak hypercharge assignments are:-

Particles t h y 9
+ 1/2 + 1/2 - 1 0

+ 1/2 -1 /2 - 1 - 1

C R i H R i T R 0 0 - 2 - 1

+ 1/2 + 1/2 + 1/3 + 2/3

d'l»a'i 1 + 1/2 -1 /2 + 1/3 -1 /3
U R , C R , t R 0 0 + 4/3 4 2/3
JI J Lt
a R ' S R ' ° R 0 0 - 2/3 - 1 /3
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Substituting
T (0) =  0

7 (1/ 2) =  I 
2

in the above expression for the covariant derivative gives

D» = d " + iff- -W"* - » - B M 
2 2

for left handed leptons and

D* = -  ig'B“

for right handed leptons. As required, the charged weak gauge bosons can only 

couple to left-handed helicity states, while mixing the B field with the neutral 

part of the weak gauge field W3 allows neutral weak current interactions to occur 

in both sectors.

In addition to the problem of introducing the correct mixing between B and 

W3, the weak gauge bosons must be given masses in order to explain the short 

range of weak interactions. These goals may be accomplished, as suggested by 

Weinberg (1967) and Salam (1968), without destroying the local gauge invariance 

crucial to the renormalizability of the theory, by using the Higgs mechanism.

An isospinor with (f,<3) =  (1/2, ± 1 /2 ) and y = 1 composed of four scalar 

fields is introduced

which may also generally be written

The behaviour of this field is described by the Lagrangian

Lh = + V * ) 2.
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The reasoning which led to the introduction of this system, with the behaviour 

described in the above Lagrangian, is discussed in both Aitchison and Aitchison 

and Hey.

The peculiarity of the above which makes it possible to introduce the necessary 

particle masses is that it has a non-zero vacuum expectation value. This may be 

written

www ■(*</«<*>>)
where the freedom to choose the gauge has been exploited in order to make the form 

particularly simple. It should be noted that the above holds strictly only classically, 

it is assumed that the result carries over to the quantum case (but see the discussion 

in Guralnik). Replacing the ordinary derivative in L»  by its covariant form gives a 

Lagrangian L'H in which there are terms describing interactions between the scalar 

field <t> and the W and B fields. If the <t> field is set to its vacuum expectation value 

this becomes

L'h = ld ModMo -

+ \ p g \ K w " *  + K  w 2")o

+ ¡ f 2(gWZ-g'B'‘ )(ffW3>i - g ' B " ) *  . . . .

This contains terms describing, on the first line, a scalar field o of mass p (the 

Higgs boson) and on the second line, the charged parts of the W field, which have 

acquired a mass of

Mw = ~ f9-

The third line shows that the neutral component of the W field and the B field 

are mixed. Introducing the linear combinations

Zp =  c o s i n g  -  sin0w#/i

and

AM = sin Ow IV® + cos Ow B^
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where

tan 6w -  — 
9

reveals the mass eigenstates, with

Mz = ¿ / v V  + 9'2 

costfw

and

M* = 0 .

These are, respectively, the neutral weak boson and photon fields. Writing the 

covariant derivative in terms of these fields

Dft =  dM + ig sin 6 w Au + i
cosfljv

cos2 Owt3 -   ̂sin2 Ow Zu +

enables the quantity jsintfiv to be identified with the charge e (compare the 

above with the QED covariant derivative) and the couplings of the left and right 

components of the various fields to the Z° to be picked out.

It is also necessary to give masses to the fermions of the theory. This may be 

done without spoiling the local gauge invariance by the addition of a term of the 

form

0L ( / )  +  rpL(f)<f>rl>p(f))

for each fermion / .  Inserting the vacuum expectation value for <t> this becomes

- w / $ n ( / ) l M / )  + +  ••• = + •••

the required mass term (plus a term describing interactions between the fermion 

and the Higgs boson o in which the coupling strength is proportional to the fermion 

mass).

The t3 =  - 1 /2  components of the left-handed quark spinors have been con­

sistently written with a prime. This is because the eigenstates of the electroweak
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interactions are not the same as those of the strong interaction. Conventionally 

the phases are so chosen that the q = 2 /3 components are the same as the strong 

eigenstates and mixing then occurs between the q = - 1 /3  components. This

mixing may be expressed by

id ' )
s' = V 5l b'l w

where the matrix
( v ud O

v =  vcd vch
V̂td vu vth)

must be unitary. This constrains the values of the matrix elements in such a way

that they may be parameterized using three angles 8 1 , 6 2  and 6 3  and a phase 6

(Kobayashi and Maskawa, 1973). Writing si =  sintfi,cj =  cos0] etc. the matrix

is then
1 Cj - S1C3 -■Sl«3 ^

V  = s ic 2 C1C2C3 -  •S2S3e’ i C1C2S3 + 32036'*
 ̂S]S2 Cl«2C3 + C2S3e,f' C1S2S3 -  C2c3e,s

Adding the Yang-Mills term to the elements discussed in the above gives 

the classical field Lagrangian of the GSW model. Again this is not the complete 

Lagrangian, as when the fields are quantized gauge fixing terms must be added to 

it.

The renormalizability of this theory was proved by t ’Hooft (1971b). Feynman 

rules for all the tree level graphs are listed in Aitchison and Hey.

Significant support was lent to the GSW model by the discovery of the W 

and Z bosons (Amison 1983, Banner 1983, Bagnaia 1983). The masses quoted for

these bosons are currently1 (UA1, UA2, 1985)

Mw = 81.5 ± 1.4 GeV/c2

Mz = 92.6 ± 1.7 G eV /c2

'T h e  result» of the UA1 and UA2 groups are combined, statistical and systematic errors being 
added in quadrature.
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which give

sin2 0W = 0.225 ±  0.014

in excellent agreement with results from neutrino scattering measurements, from

which (CHARM, 1985)

sin2 Ow =  0.215 ±0 .10 .

JOHN RYLANOi
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C hapter 2

Electron Positron A nnihilation

In trod u ction .

When an electron and a positron collide at high energy several interactions 

may occur. The lowest order QED Feynman diagrams for which, in decreasing 

order of likelihood of the process in question, are illustrated in figures 2.1, 2.2 and 

2.3. The reaction 2.1, an example of a two-photon interaction, is of interest here 

only in that it is a background to the processes studied. For more information con­

cerning such reactions, particularly those in which the final state is multihadronic, 

see Cartwright (1983).

The graphs 2.2 and 2.3 in the case that the final state fermions are an elec­

tron and a positron are the lowest order diagrams describing Bhabha scattering, 

e+e_ —* e+e- , which is used by the JADE experiment to monitor the luminosity. 

This will be discussed further in the following chapter.

Q uark  P rod u ction  and the c and b A sym m etries.

The interaction of interest here is that represented by the graphs 2.3 and 2.4, 

when the final state fermions are cc or bb. The differential cross-section for the 

annihilation of high energy unpolarised electrons and positrons into these final 

states, calculated from the Feynman diagrams shown, is

«in = is (C|( i+ cosŜ  + C2cosi]

where initial and final state particle masses have been ignored. In the above 

o  =  e3/(4ir) is the electromagnetic coupling constant, s is the square of the sum 

of the electron and positron energies, that is the centre of mass energy squared 

and 0 is the angle between the outgoing fermion’s direction and the direction of 

the incoming electron, as illustrated in figure 2.5.
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The coefficients C\ and C2 are given by

C i =  9 /~  2qf vtvf Re(\) +  (ve2 +  a])(v) + a2)|x|2

and

C2 = -4qf aeaf Re(x) + 8rer /a ea/|x|2

where qj is the electric charge of the fermion and ae and a/  are the axial couplings 

of the Z" to the electron and fermion respectively, ve and v/ being their vector 

counterparts. These couplings, in terms of which the differential cross-section is 

more conveniently expressed than the left and right handed couplings gp and gp 

previously used, may be obtained from

a = 2(gp -  gL) 

v = 2(gp ■+ gp).

Reading the gi and gp from the neutral part of the weak covariant derivative 

given in chapter one it can be seen that a = 1 for the <3 = 1 / 2  components of the 

weak isospinors and a = - 1  for the <3 = - 1 /2  components. The vector coupling 

constants are then given by

V] = aj — 4qj sin2 Ow.

The axial and vector couplings are:-

Particle / 9/ af vf Vf (sin2 Ow = 0.225)
0 + 1 + 1 + 1.000

e,n,r - 1 - 1 - 1  + 4sin2tfw - 0.100

d,s,b - 1 /3 - 1 - 1 + 5  sin2 Ow -0.700
u,c, < + 2 /3 + 1 + I - 5  sin2 Ow +0.400

X may be defined as

1
X = 16 sin2 Ow cos2 8w { * - M 3z + iMz r z ) '
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Another parameterization is also commonly used (see, for example, Wetzel 1983). 

These two parameterizations give the same results when fully calculated to all 

orders, and are identical at the tree level, but the manner in which the corrections 

due to higher order diagrams are applied is not the same and care must be taken 

in comparing results using the different schemes (Cashmore, 1985). That above 

will be used throughout this thesis. In this case the relationship

■ 2« M l„„ 9iv = , .  _

holds to all orders.

The terms in the differential cross-section proportional to x 2 are those which 

arise from the weak diagram 2.4, those proportional to x are due to the interference 

between the weak diagram and the electromagnetic diagram 2.3 and the remaining 

term is due to the lowest order QED diagram.

Integrating the differential cross-section gives the total cross-section

47ra2
Of =

3 s ■Ci.

The term linear in cos# in the differential cross-section gives rise to an asym­

metry in the number o f fermions produced in the forward direction, with cos# > 0, 

compared to the number produced in the backward direction, with cos# < 0. De­

noting these numbers W / and N^ respectively, this may be expressed by

Aj Nfr  -  NJb
n I  + n I

or

where i  = cos 6.

fà %  *  ~ / - ,  %  dr
0 dni

A/ =

Performing the integrations gives
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At PETRA energies these expressions may be considerably simplified. Firstly 

note that the measured width of the Z° (UA1, UA2, 1985), Tz «  3GeV/c2, is 

much smaller than its mass, therefore to a good approximation

16sin2 Ow cos2 Ow \s ~ ^ z  

Secondly, as s < <  M|, |x| is small. Thirdly the measured value of sin2 Ow is close 

to 1/4 and thus the vector coupling of the electron to the Z°, ve =  1 -  4sin2 0w 

is small. Therefore, to an accuracy of better than one per cent for c quarks and 

five per cent for b quarks

doj a2 
dil 4s

+ cos2 0) -  4qfaeafX cos 0

O f  =
47rcr
"3s 9/

and
aeaf 1 s
Qf 16sin2iw  cos2flw « ~ A il

For the c and b quarks the asymmetries calculated from the approximation above, 

at 35GeV and using the values of the various parameters that have been given, 

are

Ac = -0.134

and

At, = -0 .269 .

For comparison the results without approximation are

Ac = -0.133

and

Ah = -0 .256 .

The error introduced by using the approximation is in both cases smaller than 

that arising due to the errors with which the parameters sintfw and Mz have 

been measured. These give rise to an errors of iO.010 for Ac and ±0.020 for Ab.
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From the total cross-section above the ratio of flavours produced in electron 

positron annihilations can be seen to be at lowest order simply the ratio of the 

quark charges squared, only quarks with mass less than the beam energy being 

produced. At 35 GeV the relative numbers of d, u, s, c and b are

Nd : Nu : N, : Nc : Nk = 1 : 4 : 1 :4 : 1.

The ratio
R _ o(e+e~ -> qq) 

oo(e+e~ —>

may also be calculated and is, again to lowest order

Ro = 3 ^  qj
/

where the sum runs over the quark flavours that may be produced at the energy in 

question. The factor three in this expression arises due to the three colour degrees 

o f freedom of the quarks, as was mentioned in the first chapter. R, measured by 

several groups over a large energy range, is plotted in figure 2.6. The formula 

above does not give a particularly good fit to the data. A QCD correction to the 

lowest order expression is found to be significant and the above must be modified 

so that

R = R° ( l  + y )

where the quark masses have been ignored. A good fit to the data is now obtained 

with as a  0.2 at 35GeV\

Corrections to the asymmetry arising from higher order electroweak diagrams, 

QCD and the quark masses must be considered to see if they have a significant 

effect on the result above. Electroweak corrections have been calculated by, among 

others, Brown et al. and Bohm and Bollik. Various of the diagrams shown in Cash- 

more (1985) were evaluated for the case that the final state fermions are muons,
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Figure 2.3. Lowest order QED electron-positron annihilation diagram

Figure 2.4 . Lowest order Z° contribution to electron-positron annihilation.
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consistent results being obtained. Taking the figures from the last reference, at a 

centre of mass energy of 35GeV and with other conditions also similar to those 

relevant to the measurement made here, the corrected asymmetry was found to be

AJ, =  A M + 0.017.

The correction consists of a component -f 0.023 from the higher order QED dia­

grams, and a component -0.006 from the weak and electroweak diagrams. The 

latter is dominated by the Z " self energy and is thus about the same for quarks. 

The QED correction is however smaller for quarks due to their smaller electric 

charge and greater mass. The net effect is that higher order electroweak effects 

approximately cancel in the c and 6 quark asymmetries.

Corrections due to including the phase-space factors for the fermion masses

give
2v

Af(™f) =

where

mj being the fermion mass. Using mc = 1.35 GeV/c2 and mi, = 5.3 GeV/c2 

(Fritzsch, 1985) this results in a decrease of the asymmetries at 35GeV so that

A1’ = 0.994 Ac

A'i = 0.911i4fc.

The effects on the asymmetry of the QCD processes illustrated in figure 2.7 

have been calculated by Jersak (1981). At \fs =  35GeV, making the approxima­

tions used previously, it is possible to parameterize the correction using

AI I I
f

( n + a s r / M )
[ i  + a g t / M j  '
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Figure 2.7. The QCD diagrams calculated In order to obtain the corrections to 

the quark asymmetries.



where p = 2mj/\/s and at 35 CeV, using the quark masses above

rc(n) =  0.2

M m) = i-o

nlfi) = 1.15 

tb(n) = 1.3.

Using as =  0.16
A'" = 0.96j4c 

A',',' =  0.99/1,,.

Combining all these effects, the corrections amount to

A*1* = M e

= kbAb

where kc = 0.95 and ki, = 0.90. The corrected values of the c and b asymmetries 

at 35 GeV are

/l*1* = -0.126 

and

Aj;0  = -0.230

where the figures from the full asymmetry calculation have been used.

Having measured the asymmetries it can be seen that the quantités ataj/qj 

may be determined. Assuming the quark charges to be 2 /3  and - 1 /3  as expected 

and supported by, for example, the previously discussed measurements of R, and 

using the result from scattering at = -1 .02  ± 0.12 (Kim, 1981) enables de­

termination of the aj. (The result for o, requires the use of information from 

e+e-  —► to resolve ambiguities as to which of ar and is dominant and

the sign of at.)
JOHN RYLANU
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Jets and Fragm entation.

The quarks produced according to the differentia] cross-section above are not 

seen as free particles. By some as yet not calculable process, hopefully eventually 

describable using non-perturbative QCD, they hadronize or fragment to produce 

a cone or jet of hadrons. Figure 2.8 shows an event in which this has occurred, the 

jets are clearly visible. Occasionally hard gluon radiation occurs and the gluon 

also hadronizes producing a jet, such an event is shown in figure 2.9.

A model that plausibly describes the hadronization process, based as previ­

ously stated on the Schwinger model, has been developed at the Lund university. 

The basic idea of this model is that the colour field between the separating quark 

and anti-quark may be represented by a massless relativistic string of constant en­

ergy per unit length. As the q and q move apart the energy of the string increases 

until it breaks, some of its energy being used to create a quark anti-quark pair 

q'q' at the freshly broken ends of the string. The polarity of the colour field is 

such that the q and q' are now connected by a colour string, as are the q and the 

q'. Further breaks may occur until the energy of the system is exhausted, result­

ing in the production of several colour singlet quark anti-quark pairs, or mesons. 

Baryons are produced when the string breaks with the production of a diquark 

anti-diquark pair. The ratio of baryon to meson production has been measured to 

be about 0.07 to one (Abrams, 1980). At the break the quark anti-quark, or di- 

quark anti-diquark, are given equal but opposite momenta transverse to the string. 

The transverse momentum, p j ,  distribution and the probability of producing the 

different flavours at the breaks being given by

where m y, the transverse mass, is defined by
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Figure 2.8. A two jet event.

Figure 2.0. A three jet event.



and k is the energy per unit length of the string. The quark masses, mq, are 

chosen so that the ratio of production of flavours in the fragmentation is

Nd : Nu : Ne : Nc : Nh = 1.0 : 1.0 :0.3 : 10-11 : 0.0

This gives good agreement with data (Bartel, 1983b).

Gluon production is represented by a kink in the string, which stretches from 

quark to gluon to anti-quark. On either side of the gluon a quark anti-quark pair 

form, resulting in two strings, one connected to the initial quark and one to the 

initial anti-quark, and a meson. The two strings then fragment in their centre of 

mass frames and finally all resulting particles are boosted back into the laboratory 

frame, which gives rise to three jet events if the gluon was sufficiently energetic.

The manner in which the longitudinal momentum, pi, and energy, E, are 

shared among particles in a jet is desribed by the fragmentation function. This is 

written in terms of
z — Pt-)hadron 

{E +  PJ-)quark
The symmetric Lund fragmentation function has the form

(1 -  z)af(z)dz = TV----------- exp
6m j.

dz

where TV is a normalization constant and a and 6 are parameters determined by a 

fit to data. The probability that a meson, formed when a break in the string leaves 

an anti-quark attached to a quark q, has a fraction of the quark q's energy and 

longitudinal momentum in the range z to z + dz is then f(z)dz. The remaining 

energy and longitudinal momentum are carried by the rest o f the fragmenting 

system.

Kinematical arguments have been used to suggest that, for the heavy c and 6 

quarks, a more suitable form for the fragmentation function is (Peterson, 1982)

f(z)dz = No dz
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where the Nq are normalization factors and the parameters iq are expected to be 

given approximately by the mass of the light quark created as the string breaks 

divided by the mass of the heavy quark all squared.

Heavy Quark Decays.

In c and b events the hadrons containing the heavy quarks, generally D and 

B mesons respectively, decay weakly with lifetimes’ (Schubert, 1984 and Bjorken, 

1985)
t(D±) = (8.3 ± 1.0) X 10-13 secs 

r(D °) =  (3.60 ±0.35) x 10“ 13 secs 

t(B) = (12.6 ±  1.9) x 10” 13 secs.

Note that r(B) is actually the lifetime of the mix of mesons and baryons containing 

6 quarks produced in electron-positron annihilations as it has not as yet proved 

possible to separate the contributions from these various particles. The mechanism 

whereby these decays occur is in general complicated due to non-perturbative QCD 

effects. The spectator diagram, illustrated in figure 2.10, is expected to be the 

dominant process. That it is not the only diagram of importance may be deduced 

from the difference between the D° and the D * lifetimes. If the identity of the 

light quark were of no consequence, as suggested by the spectator model, these 

would be the same.

The decays of particular interest in the following are the semi-leptonic ones 

D —* h>iX and B -* li/iX. They occur primarily via the spectator diagram, the 

virtual W producing a lepton neutrino pair. The measured branching ratios for 

these decays are (Schubert, 1984 and Baines, 1985)

BR(D -* li'iX) = (8.4 ± 0.6)%

BR(B -  lu,X) =  (11.7 ±0 .5 )% .

‘ The measured B  lifetime »hows an alarming dependence on the accuracy of the device used to 
measure it, being smaller the more accurate the detector, see figure 3 Bjorken, 1985.
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The multiplicity of semi-leptonic B decays is found to be smaller than that 

of B decays in which no lepton is produced, as in the former a significant amount 

of the energy released in the decay is invested in a colourless pair of particles and 

thus is no longer available to the fragmentation process which is responsible for 

the production of many of the particles in the latter decay. Measurements give 

average charged multiplicities of (Schubert, 1984)

Nch(B -> Y) = 6.3 ±0 .3  

Nch(B-^luiX) = 4.1 ± 0 .4 .

A similar effect probably occurs in D decays, but it has not been studied. The 

average charged multiplicity in D decays is (Liith, 1979)

NeK(D ^ Y )  =  2.5 ± 0 .1 .

The last point that must be made here is that, in the decays of B mesons, 

the 6 quark decay b -* cW is much preferred over b —* uW. The ratio

BR(b -  uW) 
f _  BR(b-+cW )

has been measured by CLEO to be less than 5% at the 90% confidence level 

(Atarelli, 1982).

41



C hapter 3

T he Accelerator and the Detector

PETRA.

Since its first operation in July 1978 to the present day, PETRA (an acronym 

for Positron Elektron Tandem Ring Anlage) has been the world’s highest energy 

electron positron storage ring. As shown in figure 3.1 PETRA consists of eight 

straight sections of lead-shielded water-cooled vacuum pipe, four long and four 

short, connected by circular arcs in which in normal operation two bunches of 

electrons and two of positrons circulate in opposite directions. These bunches are 

steered round the arcs by dipole magnets, while alternate horizontally and verti­

cally focussing quadrupole magnets prevent lateral bunch dispersal. Corrections 

for the incorrect focussing by the quadrupoles of slightly off-momentum particles 

are applied using sextupole magnets spaced regularly round the ring. Longitudi­

nal bunch dispersal is prevented by the influences of synchrotron radiation loss 

and the acceleration system. The latter, composed of radio-frequency cavities, is 

housed on the long straight sections. The dimensions of PETRA are shown in 

figure 3.1. An introduction to the physics of accelerators may be found in Blewett 

(1977).

The injection schemes for PETRA are as follows. Electrons from an elec­

tron gun are accelerated in LIN AC I to 40AfeV' and passed to the synchrotron 

(see figure 3.1) where they are accelerated to about 7 GeV. These may then be in­

jected into PETRA. Positrons, produced by electron collisions with a metal target, 

are accelerated to 400 MeV in LIN AC II and then stored in the positron inten­

sity accumulator until a sufficient number have been collected. These are then 

passed to the synchrotron and accelerated to about 7 GeV after which they are 

injected into PETRA. The electron and positron beams are then simultaneously 

accelerated to the required energy. While this is taking place electrostatic sep-
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arators at the experimental areas, where the bunches cross, are used to prevent 

the electron and positron beams from colliding. When collision energy has been 

reached these separators are switched off and the electron and positron bunches 

then pass through each other at the interaction regions. There are four of these, 

each equipped with a detector designed to study various aspects of the electron 

positron interactions which occur within them. The filling process takes typically 

twenty to thirty minutes.

The rate of interactions r for a process with cross-section o is given by

r -  Co

where £ is the luminosity, the number of interactions per unit time per unit 

cross-section. At PETRA this is typically 4 x 103(J cm~2s_1. The rate at which 

multi-hadronic events occur is thus one or two per hour. The integrated luminosity

L = J  Cdt

determines the total number of events that are observed through

N = Lo.

The luminosity is monitored by observing the process of Bhabha scattering as 

this is theoretically well understood, experimentally easily recognised and has a 

relatively high rate at least at small polar angles.

The 24,000 multi-hadronic events used in this study were obtained in about 

one year of running time from an integrated luminosity of about 70 pb .

JADE.

The JADE detector (JADE stood originally for a collaboration of JApanisch, 

Deutsch and Englisch institutes, nowadays the A stands for an Amerikanisch in­

stitute) is situated on the north-west straight section of the PETRA ring. The
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detector, illustrated in figure 3.2, was designed to measure the momentum and 

energy loss per unit length of charged particles, the energy of photons and elec­

trons and to identify penetrating particles, muons, over as large a solid angle as 

possible. It was hoped that the detector would thus be useable for a wide range 

of investigations.

At the time the data used in this analysis were collected, in the years 1980,1981 

and 1982, the detector consisted of the following components:

(a) the beampipe counters;

(b) the central drift chamber, or Jet chamber;

(c) the time of flight, or TOF counters;

(d) the electromagnetic calorimeter;

(e) the muon system.

Components (a),(b) and (c) were surrounded by an aluminium solenoid which 

carried, during running, a current of about 7500 A producing a magnetic field, par­

allel to the beampipe, of 0.487 T. This field was measured and found to be constant 

to within better than 1% over the volume inside the inner detector. Measuring 

the curvature of the trajectory followed by a charged particle in this magnetic 

field enabled determination of its momentum. Outside the coil the magnetic field 

was contained in an iron return yoke. Stray fields, which might have affected the 

performance of photomultipliers for example, were kept at the level of 10~4 T or 

lower.

The remaining detector components were:

(f) the forward muon counters;

(g) the tagging counters.
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These components will now be described in more detail, the emphasis being 

on those which are of particular interest in the following analysis.

Henceforth a coordinate system will be used with origin at the interaction 

point within the JADE detector, z axis in the direction of the positron beam, 

y axis vertical and x axis pointing towards the centre of the PETRA ring. In 

addition, as illustrated in figure 3.3, the coordinates 6, the angle with respect to 

the 2 axis and <£, the angle in the xy  plane with respect to the x axis will be used.

The Beampipe Counters.

The beampipe was surrounded by an array of 24 scintillation counters of 

length 1.3 m. Each of these was read out at both ends through a light-guide and 

photomultiplier. These counters were used primarily to provide an indication of 

the beam conditions, thus enabling a decision to be made as to whether or not it 

was safe to switch on the more fragile detector components.

The Jet Chamber.

Physical principles.

A charged particle passing through a gas loses energy to it through electro­

magnetic interactions, exciting and ionizing the atoms and molecules of the gas. 

The particle leaves behind it a trail of ionized atoms and the electrons which have 

been removed from those atoms. The energy lost by the particle per unit of flight 

path, dE/dx, and hence the linear density of the ionization trail are dependent on 

the gas pressure, its composition, the particle’s charge and its speed (Allison and 

Cobb, 1980). The dependence on the particles speed, which is one of the prop­

erties used to identify particles in the following, is illustrated in figure 3.4. For 

particles with a speed /? > 0.3, in units of the speed of light, dE/dx decreases with 

increasing speed, proportional to /?~2. A minimum is reached at about /} = 0.97 

and thereafter dE/dx increases logarithmically with increasing 'r2 = (1 -  /?2) \
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Figure 3.3. The JADE coordinate system.

Figure 3.4. dE/dx as a function o f ß*t.



until it plateaus at a d E / d x  of about 10.0 iteV/cm .

In a proportional drift chamber, such as the Jet chamber, the ion-electron 

pairs produced by the passage of a fast particle are caused to drift by the appli­

cation of an electric field across the gas. The velocity at which the electrons drift 

is typically 5 cm/fisec along the field lines towards the anode while the ions move 

about a thousand times more slowly towards the cathode. The field is shaped so 

that it is roughly uniform apart from a region near the anode, within which it is 

much stronger. The electrons thus drift towards the anode with almost constant 

speed until they enter the region of high electric field strength. Here between 

inter-atomic collisions they may acquire enough energy to ionize the atoms with 

which they collide and thus a large number of electrons and ions are produced 

near the anode. If the field strength is correctly chosen, by using an anode wire 

o f correct dimensions and applying the correct potentials, the number of electrons 

and ions produced near the anode is proportional to the number produced by the 

initial fast particle, hence the name proportional chamber. The charge cloud in­

duces an electrical pulse on the anode, starting as the electrons reach the anode 

and tailing off as the positive ions drift away from it. This pulse travels to both 

ends of the anode wire. Measurement of the time after passage of the charged 

particle at which the pulse is generated, together with knowledge of the electron 

drift speed in the gas, enables determination of where along the drift path the fast 

particle passed the anode wire. Measurement of the charge of the pulse enables 

determination of the amount of ionization caused by the fast particle and hence 

its dE/dx.

A coordinate for the distance along the anode at which the pulse was generated 

may be found by comparing the arrival times of the pulses, or by comparing their 

charges, at either end of the wire. These latter are inversely proportional to the 

impedance between the point at which the pulse was induced and ground. This
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impedance consists of a component due to the wire length along which the pulse 

has travelled and a component due to the electronics used to measure the pulse 

charge. If the impedances of the electronics at each end of the wire are known 

or are the same as the same readout system is used at both ends of the wire, 

then the position along the wire at which the pulse was induced may be found. 

This method, known as charge division, was used in the Jet chamber. More detail 

concerning the theory, construction and operation of proportional chambers may 

be found in Sauli.

Construction and operation.

The chamber was built of three concentric rings of cells, each cell being a 

proportional drift chamber. The inner two rings contained 24 cells and the outer 

48. The entire chamber was surrounded by an aluminium pressure vessel which 

enabled the gas filling, a mixture of argon, methane and isobutane, to be kept at 

a pressure of 4 atmospheres. This improved both the accuracy with which space 

points could be measured and the dE/dx resolution over that obtainable with a 

similar style of chamber at atmospheric pressure.

Each cell contained cathodes on the inner faces of its walls and 16 anode wires 

running axially along its length. A sector of the chamber, containing two first ring 

cells, two second ring cells and four outer ring cells, is shown in figure 3.5. The 

anode wires, of 20pm gold plated tungsten, were separated by further wires to 

enable fine control of the electric field in the critical multiplication region. Each 

of the anodes was read out at both ends through a pre-amplifier and an analogue 

to digital converter, capable of recording the arrival time and pulse height of up 

to eight pulses.

As the Jet chamber was operated in a magnetic field the electron drift direc­

tion was not that of the electric field lines, but at an angle to them. This angle, 

the Lorentz angle, was almost constanl along the entire electron drift path, as the
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electron drift speed was practically constant, and was measured to be 18°30' for 

the normal operational magnetic field of 0.487 T.

The measurements of the electronic drift time and the charge division for each 

of the 16 wires in a cell enabled determination of the track followed by a charged 

particle in passing through the chamber, up to deciding whether it had passed ‘ left’ 

or ‘right’ o f a plane of sense wires. To resolve this ambiguity the sense wires were 

displaced alternately 150 pm left and right of the central plane of the cell. Due 

to the electrostatic forces on the wires this displacement increased to a mean of 

200pm when the high voltage was switched on. The effect of this asymmetry was 

that the fit quality obtained when a smooth trajectory was fitted through the hits 

due to a track was better for the correct left-right assignment than for the ‘mirror’ 

hits. For tracks which passed through all three rings of the Jet chamber a further 

means of resolving the left-right ambiguity was available. The juxtaposition of the 

cells in the third ring with those in the first two was such that only one choice of 

trajectory allowed a smooth curve to be fitted along the hits assigned to a track, 

the mirror tracks being discontinuous at the boundary between the second and 

third rings.

Due to the axial magnetic field the trajectories of charged particles in the Jet 

chamber were approximately helical, although deviations from helicity arose due 

to energy lost in traversing the gas and multiple Coulomb scattering in the gas 

or cell walls. The particle momentum transverse to the beam direction pty (in 

GeV/c) was calculated from the radius of curvature p (in m) of a helix fitted to 

the space points assigned to a track using

Px„ =  0.3 qBp

where B was the magnetic field strength (in T), c the speed of light and q the 

particle’s charge (in units of e), assumed to be ±1, the sign being determined from
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the direction of the track curvature. The magnitude of the total momentum was 

then calculated from

0 being the angle of the track direction with respect to the beam, or z axis.

For each sense wire a measurement of the ionization caused by a particle 

passing through its sensitive volume was obtained by combining the pulse charge 

measurements made at each end of the wire. To find the linear density of the 

ionization trail this figure was corrected for the length of the particle track in the 

anode’s sensitive volume. This included a 10% correction due to the effect of the 

left-right sense wire staggering which slightly altered the shape of the electric field 

and hence the catchment volume left and right of the sense wire plane. Corrections 

were also made to the pulse height measurements from wires at the cell edges as 

for one side of the sense wire planes the catchment volume was reduced due to the 

Lorentz angle at which the electrons drift.

A study of the pulse charge results corrected for the above effects revealed a 

negative correlation between drift distance and pulse charge, probably due to the 

presence of a small amount of oxygen, which absorbs drifting electrons, in the Jet 

chamber gas (JADE 1979 and 1984a). Electronic cross-talk at a level o f about 6% 

was observed between adjacent sense wires and also tracks passing very close to 

an anode were seen to give a spuriously large pulse. Corrections were applied for 

all these effects to obtain a figure for dE/dx for the track for each anode that it 

passed.

The individual dE/dx measurements along a given track were seen to approxi­

mately follow the expected Landau distribution, that is a Poisson distribution with 

a long positive tail. The tail holds little information as to the particle identity and 

makes the distribution awkward to work with. The following procedure was thus
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adopted to produce a measure of the dE/dx for a track. The highest fifth of 

the dE/dx measurements were discarded and the remaining measurements, which 

were found to be approximately normally distributed, were used to calculate the 

mean dE/dx for the track and its standard error.

Some parameters and dimensions of the Jet chamber are given in table 3.1, 

more information concerning the construction and operation of the chamber is 

given in Heintze (1982).

The Time Of Flight Counters.

The Time Of Flight, or TOF, counters immediately surrounded the Jet cham­

ber pressure vessel. They consisted of 42 plastic scintillation counters which were 

read out at both ends, using photomultipliers. They were used in the trigger, for 

low energy particle identification and for rejection of out of time tracks due to 

cosmic ray or other sources.

The Electromagnetic Calorimeter.

Physical Principles.

A second means by which charged particles lose energy in traversing matter 

is the emission of bremsstrahlung radiation in the Coulomb fields of the nuclei 

(figure 3.6). This emission is, classically speaking, the result of the acceleration of 

the charge in the electric field of the nucleus. Only for light particles, that is elec­

trons and positrons, traversing sufficiently dense materials does bremsstrahlung 

radiation compose a significant proportion of the energy lost.

A closely related effect occurs when a photon interacts in a nuclear field to 

produce an electron positron pair (figure 3.7).

The combination of the processes of bremsstrahlung and pair production leads 

to the development of electromagnetic cascades, or showers, when high energy elec-
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Table 3.1, Jet Chamber Parameters.

Length 2.4 m

Inner radius 0.2 m

Outer radius 0.8 m

Maximum drift distance 0.075 m

Drift field 94 kV/m

Gas mixture, Ar:CH4:(iso)C4Hio 0.887:0.085:0.028

Gas pressure 4 atm

Drift measurement resolution 160 pm

Longitudinal measurement resolution 16 mm

Double track resolution 7 mm

Resolution of pxy measurement \\\ -  0-°“ Px,

Inner detector material for normally

(pxy in GeV/c)

incident particles 0.037 r.l.

Acceptance, max. no. of hits | cos 0\ < 0.83

Acceptance, more than 8 hits

dE/di resolution, >36 hits, |cos0| < 0.75

| cos 0\ < 0.97

(a) Bhabha tracks 0.065

(b) Pion tracks in multihadronic events 

with momenta in range 0.45 < p„ < 0.6 GeV/c 0.080



Figure 3 .6 . Bremsstrahlung emission of a photon in the electromagnetic field of 

a nucleus.

F igure 3 .7 . Pair production in the electromagnetic field of a nucleus.



trons, positrons or photons enter a dense material. For a high energy electron this 

occurs as follows. The electron emits a bremsstrahlung photon and this photon 

then pair produces. The electrons and positron emit further bremsstrahlung pho­

tons which also pair produce and so on until the energy of the resulting photons is 

below the threshold for pair production, that is less than twice the electron mass, 

or the loss of energy of the positrons and electrons through the processes of ioniza­

tion and excitation becomes dominant over the energy loss through bremsstrahlung 

radiation. Showers are produced in a similar manner by high energy positrons and 

photons. For the latter the first step is pair production, not bremsstrahlung. This 

process lends itself to Monte-Carlo simulation and may be accurately modelled 

(Ford, 1978).

The electrons and positrons in electromagnetic cascades travel with a speed 

greater than that of light in the dense material in which they are produced and 

thus emit 6erenkov radiation. They also cause excitation and ionization of the 

atoms of the material and as these atoms relax photons are emitted. Both these 

processes result in a detectable light output, the quantity of light being propor­

tional to the incident electron, positron or photon energy. For the material from 

which the JADE electromagnetic calorimeter was constructed the former of these 

mechanisms for light production is the most important.

Construction and Operation.

The electromagnetic calorimeter was built in three parts: a barrel section 

outside the magnet coil and inside the iron return yoke; and two end cap sections. 

Schott SF5 lead-glass was used throughout, a glass in which approximately 55% 

o f the silicon dioxide has been replaced by lead oxide, thus increasing its density 

without spoiling its transparency.

The barrel was constructed of 30 rings of 84 lead-glass blocks, each block 

tapering from 8.5 x 10.2 cm2 at its inner surface to 10.2 x 10.2 cm2 at its outer
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surface, over a length of 30 cm. This length represents 12 radiation lengths. The 

blocks were optically isolated from one another and each was read out through a 

6 cm light guide using a photomultiplier.

The endcaps were each built of 96 blocks of lead-glass. The blocks were 

14 x 14 x 22.3 cm3 in dimension, that is about 9.3 radiation lengths long, and were 

read out in the same manner as the barrel blocks although the light guides had to 

pass through the iron return yoke and were thus 51 cm long.

Prior to installation all the blocks and their photomultipliers were calibrated 

using a positron test beam. In addition an optical fibre was connected to each 

photomultiplier enabling them to be illuminated with light from a xenon flash tube. 

Hence calibration of any drift in photomultiplier gain was possible. Dimensions 

and parameters of the electromagnetic calorimeter are listed in table 3.2.

The Muon System.

This section of the detector was designed to enable identification of muons. 

These pass through the electromagnetic calorimeter without losing a lot of energy 

as they are too massive to emit much bremsstrahlung radiation, but then so are 

pions, kaons and protons. These latter however all undergo hadronic interactions 

with the nuclei in material while muons do not as they contain no colour charged 

components. Thus muons tend to penetrate further in matter.

To exploit this fact the muon system was built of a series of blocks of ab­

sorber inter-leaved with planar proportional drift chambers. These enabled the 

penetration of particles through the absorber to be observed and tracks which 

were particularly likely to be muons to be picked out. For more detail concerning 

the construction of this section of the detector see Allison (1985a).
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Table 3.2, Electromagnetic Calorimeter Parameters.

Barrel acceptance | cos 6\ < 0.82

Highest quality shower measurement | cos 9\ < 0.75

Barrel energy resolution E < 6 GeV, ^  =. <X06
Ve

E > 6 GeV, ^  =-- 0.038

(E in GeV)

Barrel angular resolution A 9 ss 0.6°, A<t> ss 0.7°

End cap acceptance 0.89 < |cosfl| < 0..97

End cap energy resolution ^  =  o.i

(E in GeV)

End cap angular resolution AO ss 0.7°, A<t> ss 1.1°



The Forward Muon Counters.

These were 4 arrays of 20 large scintillation counters placed outside the ends 

of the iron return yoke on either side of the beampipe and used to aid triggering 

on muon pair events in which the polar angle at which the muons were produced 

was small.

The Tagging System.

These detectors, which have undergone several design changes and which have 

been placed in two positions along the beampipe, were used to detect small angle 

Bhabha events in order to monitor the luminosity and also for two photon physics.
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Chapter 4

Data Taking, analysis, Multihadronic Event Selection and the 

J A D E  Monte-C arlo

Running the JADE Detector.

The control, monitoring and readout of the JADE detector during data taking 

were performed automatically by the JADE Data Acquisition System, JDAS. This 

was composed of a trigger unit and a computer system with its attendant software.

Typically, after completion o f a PETRA filling and acceleration of the elec­

tron and positron beams to the required energy, provided the beampipe counters 

indicated that the beam conditions were suitably stable, the high voltage supplies 

of the electromagnetic calorimeter and the Jet chamber were switched on. These 

could not be left on during filling as the occasional losses of large numbers of 

particles which occur during this process could then have damaged them. A data 

taking run was then started and control of the experiment passed to JDAS. During 

the run JDAS continually monitored various critical power supplies and produced 

and checked histograms related to the performance of the various detector compo­

nents. Its most important function however was to select potentially interesting 

events, to collate through a CAMAC system all the information recorded by the 

detector concerning those events, to perform various quick tests to check if the 

events deserved further study and if so to transfer the data to a storage medium.

Selection of a small group o f events for full readout and storage was neces­

sary as the great majority of signals which occur in the detector are not due to 

electron positron annihilations, but result from background sources such as cosmic 

rays, electron or positron interactions with residual beam gas atoms or with the 

beampipe, synchrotron radiation or just electronic noise. Readout of the com­

plete detector takes about 30 msec, during which time the detector is insensitive
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to further events. Beam crossings, and potentially electron positron annihilation 

events, occur every 3.8/¿sec. Thus simply storing all signals recorded by the de­

tector, even if coincidence with a beam crossing was required, would mean the 

loss of a large proportion of the events of interest and would require the use of an 

enormous amount of storage space.

The first stage in the event selection process was performed by the trigger, 

which was designed to use the information from the various detector components 

as it became available to decide whether to read the event out or not. If yes 

then JDAS collected and stored all the event data, otherwise all the detector 

components were placed in a state of readiness for the next beam crossing and 

potential annihilation event.

The Trigger.

The trigger process was started by the arrival of an electronic pulse from 

PETRA control, if this was followed by a signal from a capacitive pick-up at 

z = -6.67 m, indicating the passage of a positron bunch, then a logical flag TO 

was set. This indicated that the trigger system had started a cycle and further 

7'0's were not accepted until the cycle was completed. Timing signals were also 

issued to the electronic readout sytems of the various detector elements.

After the bunch crossing, signals started to arrive from the detector, firstly 

from the photo-tubes of the scintillators and the lead-glass system. The first trigger 

decision. T l, was then made. Three responses were possible, if the information 

was such that the event was definitely worthy of further study then an ‘accept’ 

was issued, if the event was definitely of no interest then a ‘reject’ was issued and 

if further information was required to enable the decision to be made a ‘postpone’ 

was issued. A reject resulted in the immediate issue of a reset to all the detector 

components, completing a trigger cycle and preparing the detector for the next 

beam crossing. An accept was followed by full readout of the detector. The
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conditions leading to the decisions accept, postpone and reject are given in table 

4.1. The T\ decision was reached approximately OJnsec after TO.

The next batch of information to become available to the trigger was that 

from the Jet chamber and was used to make the T2 decision. A hard-wired logic 

unit was used to check if the pattern of wires registering a hit could correspond to 

a track or tracks. Again an accept, a reject or a postpone was issued depending on 

the results of this check, see table 4.1 for the required conditions. The T2 decision 

was reached after about 2 nsec. A reject at either the T2 or the T l level enabled 

resetting of the detector in time for the next beam crossing.

If a T2 postpone was issued then the final trigger step, T3, was considered. 

Information from the muon system was used to decide if the event contained pen­

etrating particles, if so it was accepted if not rejected. Due to the long maximum 

electron drift time in the muon chambers, this information was not available until 

4.5/xsec after TO, thus waiting for T3 entailed the loss of at least one beam cross­

ing. T3 was originally designed as a means of triggering on muon pair events, but 

the necessity of waiting so long for the information to arrive made it desirable to 

find some other way of triggering on such events. In 1982 this was accomplished by 

modifying the T2 trigger to accept muon pair events. The T3 level of the trigger 

process was then only needed to search for indications of penetrating tracks after 

a postpone at T1 due to signals from opposite forward muon counters.

Readout and Online Event Selection.

The individual JADE detector elements were interfaced to the JADE online 

computer, a NORD 10S/NORD 50 dual processor, through a multi-branch CA- 

MAC system. If an event was accepted by the trigger unit then all the event 

data were transferred via the CAMAC system into a section of the memory of the 

NORD 10S. If the event was triggered at the T2 level, that is on the evidence 

that it contained tracks, the data were simultaneously transferred to a Plessey
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Table 4.1, Trigger Conditions.

(a) T l .

Condition:-

Total lead glass energy > 4 GeV.

Signals in both tagging counters.

A signal in one tagging counter and 

at least 2 GeV in the leadglass.

At least one TOF counter signal and 

two > 1 GeV lead glass clusters.

A signal from one tagging counter.

Signals from two approx, opposite TOF counters 

and hits in not more than 4 TOF counters. 

Signals from opposite forward muon counters.

Response:- 

Accept event. 

Accept event.

Accept event.

Postpone 1. 

Postpone 2.

Postpone 3. 

Postpone 4.

(b ) T2.

Following:- Accept event if:-

Postpone 1. One or more inner detector tracks.

Postpone 2. One or more inner detector tracks.

Postpone 3. At least two tracks with pxy > 0.5 GeV jc.

(c ) TS.

Following:- Accept event if:-

Postpone 4. At least one potential muon track.



MIPROC 16 microprocessor, which performed a more sophisticated track search 

than that used in the trigger, making use of the drift time information. As soon 

as the data transfer was completed, the CAMAC system was cleared and a reset 

issued, the detector was then ready to accept the next event.

If the MIPROC found no evidence of tracks in events triggered at the T2 level 

these were now rejected and purged from the NORD 10S memory. Otherwise the 

data were moved to a second section of memory, or buffer, in which they were 

accessible to the NORD 50. The NORD 50 performed some analysis of those 

events; histograms of various quantities important to the running o f the detector 

were filled, these were checked for evidence that the detector was malfunctioning, 

a fast pattern recognition procedure was used to study tracks in the Jet chamber 

data and the events were categorized.

The results of the fast pattern recognition were used to calculate the position 

of the event z-vertex. If the quality of the vertex found was good, and outside the 

limits possible for a genuine annihilation event (|z| < 30cm was required) then 

the event was not passed on for storage.

The categorization algorithms were capable of recognising event classes such 

as muon pair events, Bhabha events, multihadronic events, cosmic ray events and 

beam gas events. If the event was unambiguously found to belong to one of the 

latter two background types, then it was rejected, unless it was one of the 5% of 

‘ rejected’ events selected for storage to enable later checking of the classification 

algorithms. Rejection of events at this stage saved a considerable amount of space 

on storage media and also a lot of valuable off-line computing time. Another ad­

vantage was that the online system was able to produce ‘ instant' results for various 

quantities of interest, such as the luminosity and the ratio of the multihadronic to 

muon pair cross-sections R.
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Further detail concerning the online analysis may be found in Mills (1985).

Events which survived all the selection processes, or had been chosen for off­

line test of those processes, were then copied into a further buffer from which they 

could be graphically displayed, allowing the operators of the experiment to make 

a visual check of the detector performance. The same graphics display could be 

used to view the histograms collected by the NORD 50.

From this last buffer the data were copied either via a link to disc in the 

DESY computer centre and from there to magnetic tape, or, if the link was mal­

functioning, directly to tape in the JADE control room.

JDAS is described in more detail in Cords (1985).

The data format used was the BOS system (Blobel, 1979) in which data 

are stored in large arrays or banks. These may be easily created, extended and 

deleted, thus making the system suitable for the storage of raw data and later 

adding the information obtained by processing that data as is convenient in high 

energy physics.

D a ta A nalysis.

Despite the best efforts of the trigger and event filtering processes that were 

performed online, most of the events recorded by JADE in the period 1979 to 

1982 were from various background sources. As full analysis o f all these events 

would have required prohibitive amounts of computer time, further simple tests 

were made to eliminate some of the more obvious background events. These are 

listed in table 4.2.

For the approximately 13% of events that remained after these cuts a full 

analysis was performed. This included a detailed search for tracks in the Jet 

chamber. These were fitted to a parabola in xy space and a straight line in rz.

.  JOHN RYLAND!
UNIVERSITY 
LIBRARY 01 

MANCHESTER



Table 4.2, Preliminary Event Selection.

Events were rejected if either of the following conditions was satisfied:-

(a) Total lead glass energy < 7 GeV with < 3.5 GeV in the barrel, no tag 

signal or Jet chamber hits.

(b) Total lead glass energy > 6 GeV, 95% of which was in one endcap.

A fast search for inner detector tracks was performed for the events which survived 

these cuts and those in which no event vertex was found or in which the vertex 

was more than 35 cm from the origin in z were rejected. The remaining events 

were accepted if they satisfied any of the following conditions:-

(a) There were signals from one or both of the tagging counters and the event 

contained at least one track of momentum > 0.2 GeV/c with 20 or more 

hits in the xy plane and originating from within 30 cm of the origin in z.

(b) There was no signal from the tagging system and the event contained at 

least one track with momentum > 0.6 GeV/c, 12 hits in the rz plane and 

origin within a cylinder along the beam axis, centred on the interaction 

point, with radius 6 cm and length 60 cm.

(c) There was no signal from the tagging system and no track with 12 or 

more hits in the rz plane, but at least one track with 20 or more hits in 

the xy plane.



Clusters of neighbouring lead-glass blocks in which energy had been deposited 

were also searched for, and the position at which a single particle must have entered 

the electromagnetic calorimeter to form that pattern of energy deposition was 

calculated. The particle tracks in the Jet chamber in the locality of the shower 

were extrapolated to check if the particle concerned could have given rise to the 

shower. If no tracks fitted this hypothesis the shower was assumed to be due to a 

photon. The cluster energy was calculated and corrected for the angle of incidence 

of the track which caused its formation, assuming this to have come from the origin 

if it was a photon. Clusters in which energy may have leaked into an insensitive 

region of the calorimeter were marked as having an unreliable energy.

Finally the Jet chamber tracks were extrapolated through the lead-glass sys­

tem, magnet yoke and muon filter, allowance being made for the effects of multiple 

coulomb scattering. The muon chambers were then searched for hits in a region 

compatible with their resolution and the effects of multiple scattering of the track, 

to study the penetration distance of the track through the hadron absorber. Pen­

etrating tracks were flagged as muon candidates. More details concerning this last 

step are given in Allison (1985b).

At this stage of the analysis Monte-Carlo simulations, to be described in the 

last section of this chapter, suggested that about 55% of the events were the result 

of electron-positron annihilations.

Multihadronir Event Selection.

As a first step in finding multihadronic events, multi-particle events of all 

types were selected by requiring:

(a) at least 4 charged tracks in each event;

(b) a lead-glass energy of ¿barrel > 3GeV or £ endcaps > 0 4 GeV'
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(c) one track or more with at least 20 recorded hits and origin such that 

|«| <  40cm;

(d) at least 2 tracks with more than 24 hits and with origin such that the 

distance to the interaction point in the xy plane, |rmjn| < 3 cm.

Bhabha events in which some background source, typically beampipe inter­

actions, had contributed a few extra tracks were then removed by requiring that, 

for the events with only two tracks with more than 24 hits, the angle between the 

plane defined by one of the tracks and the beam axis and that defined by the other 

track and the beam axis, be at least 10°. Some t  pair events were removed by 

eliminating events with a three tracks opposite to one track topology.

Only about 0.5% of the events survived all these cuts, but the loss of mul- 

tihadronic events was negligible. Of the events selected approximately 50% were 

multihadronic, the rest being primarily two photon and beam gas events, though 

some t  pair contamination remained.

The events selected as above were then re-analysed. The tracks were re­

fitted to helices and also to parabolae constraining the tracks to the event vertex. 

The energy loss per unit length of charged tracks was calculated. A search was 

performed for vertices in the Jet chamber, arising from particles that decayed in 

flight or converting photons. Other quantities useful in physics analyses were also 

calculated, for example sphericity, the idea being that computer time could be 

saved by calculating such results once and having them available with the event 

data. For further information on this standard analysis package see JADE (1984b).

The last stage in the multihadronic event selection was to remove the beam 

gas and two photon events by requiring that

^vis > ^beam

60



and

Pbal <  0 4

where
AT,. N „

^vis = Xrf Pi + ^
i=l ;= l

and
53,^1 P. cos Oi + Ej cos fly 

Pbal — ?
Avis

Pi being the absolute momentum of the observed charged particle, fl, its polar 

angle and Nc the total number of charged particles observed. Ej, fl; and Nn are 

the corresponding figures for neutral clusters.

As the centre of mass of both two photon events and beam gas events was 

generally not stationary in the laboratory reference frame, and in both event 

classes energy was generally lost down the beam pipe, these cuts removed such 

events. Multihadronic events were only lost if a lot of energy had escaped down 

the beampipe due to bremsstrahlung emission of a high energy photon from the 

initial electron or positron, an unlikely occurrence. All the events which survived 

thus far were scanned, enabling removal, primarily, of some of the remaining r 

purs.

After the complete selection procedure outlined above Monte-Carlo simulation 

indicated that 96% of the events were multihadronic. The remaining background 

was composed primarily of t  pair events (2.4 ±  1.5%) and two photon events 

(1.2 ±0 .7% ).

The JADE Monte-Carlo.

In order to determine the properties of e+ e" annihilation events it is necessary 

to find out what influence the measurement process, that is the detector and the 

accompanying analysis procedures, has on the quantities of interest; namely the
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types, energies, momenta and number of particles produced. This is achieved by 

using a computer model to simulate the interactions thought to occur in electron 

positron annihilation and also the detection process. The latter is well understood 

and can thus be accurately modelled. Comparing the results of the simulation 

of an interaction and the detection process with those obtained from the real 

data then enables the underlying physics to be studied and the simulation of the 

interactions involved to be refined. The simulation techniques use (pseudo) random 

number generators to model the probabalistic nature of the interactions and the 

detection processes which occur in quantum physics. These are known as Monte- 

Carlo techniques, and the suite of programs written to perform the modelling 

have acquired the name the ‘JADE Monte-Carlo’ . The JADE Monte-Carlo has 

undergone five years of continuous development and the simulation of the detector 

is now sophisticated and in general accurate, as may be determined by comparison 

of Monte-Carlo and real data concerning processes in which the underlying physics 

is well understood. For example Bhabha scattering provides a source of electrons 

whose energy distribution is well known. The energy deposited by these electrons 

in the lead-glass system may thus be compared with the expectations of the Monte- 

Carlo.

The Monte-Carlo has a further purpose. If a procedure is required for identi­

fying a particular type of particle or event, this may be developed and its effective­

ness determined by studying the particular properties of that type of particle or 

event as simulated by the Monte-Carlo. Identification of such particles or events 

in the real data enables testing of new areas of physics.

The JADE Monte-Carlo may be considered as consisting of three stages. In 

the first the initial configuration of particles in an electron positron annihilation 

event is simulated. In the second these particles are tracked through the detector, 

simulating particle decays and interactions with the detector including production
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of signals in the detector components, but assuming perfect resolution and detec­

tion efficiency. In the last stage the effects of the real resolutions and efficiencies 

of the detector components are added. Further discussion will be limited to the 

modelling of multihadronic events.

The first stage of the Monte-Carlo for multihadronic event simulation was 

performed using a program based on the Lund model, version 5.2. The program 

simulates electron positron annihilation to hadrons including initial state radiation 

effects to order a 3, and perturbative QCD effects to order a|, using as = 0.16 at 

35GeV\ Threshold effects due to the quark masses are simulated. A significant 

result of this is that the probability of production of b quarks decreases from the 

9.1% expected from the ratio of the quark charges squared, to 8.2%.

As has been stated in chapter one the hadronization process, whereby the 

produced quarks anti-quarks and gluons convert to the hadrons that are seen, 

cannot be calculated from QCD. There are several alternative means of simulating 

hadronization, but that of the Lund group gives particularly good agreement with 

data (Bartel, 1983d). The ideas upon which this model is based were discussed in 

the chapter on electron positron annihilation. The Lund symmetric fragmentation 

function was used to produce the longitudinal momentum distribution for d, u 

and s quarks, with a = 1.0 and b = 0.6 (Bethke, 1984) and that of Peterson with 

tc = 0.05 and =  0.018 for the c and 6 quarks respectively, these latter being the 

values measured by the DELCO group (Atwood, 1983).

The decays o f short-lived particles, D and B mesons for example, were also 

simulated at this stage and the products added to the set of initial particles.

The second stage of the Monte-Carlo consisted of simulating the passage of 

each of the initial particles through the JADE detector, referred to as ‘tracking’ . 

The effects of multiple Coulomb scattering and energy loss due to passage through
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the material of the detector, photon conversions and particle decays were all taken 

into account. Decays were simulated according to the results tabulated by the 

Particle Data Group (1984), the decay products also being tracked through the 

detector.

As the particles were followed through the Jet chamber, the signals caused 

in the detector, excluding dE/dx information, were simulated, perfect efficiency 

and resolution being assumed. For particles which reached the lead glass electro­

magnetic shower development and the resulting signals were simulated, accurately 

for electrons and photons and somewhat less accurately for other particles to save 

computer time. Particles which passed through the electromagnetic calorimeter 

were tracked through the muon system.

In the third stage of the Monte-Carlo, the effects of the central drift chamber 

drift chamber resolution and efficiency were simulated as were the effects of the 

trigger. The Monte-Carlo data were then analysed in exactly the same manner as 

the real data.

The history of all the particles was recorded; their parents, genuine momentum 

and energy and how, if at all, they decayed.

That the Monte-Carlo accurately simulates the real data may be checked by 

comparing the distributions of various quantities in both data sets. As an example 

the Monte-Carlo and real data spectra of the momentum transverse to the event 

axis in multihadronic events, for tracks with momenta greater than 1 GeV/c, are 

shown in figure 4.1.
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F igu re  4.1 . Monte-Carlo (solid line) and real data (circles) pj  spectra for all 

charged tracks with momenta greater than 1 GeV/c.



Part II
M easurement of the c  and 6 

Quark asymmetries

Introduction.

The measurement of the c and b quark asymmetries necessitates the separation 

of c and b quark events from the mix of events produced in electron positron 

annihilation, the determination of the quark directions in those events and an 

analysis of the distribution of the directions to determine the size of any asymmetry 

present.

One means of identifying heavy quarks, on a statistical basis, is to study 

kinematic quantities dependent on their mass. The energy released in their weak 

decay leading to properties which distinguish them from light quark events.

The quark, as opposed to the antiquark, direction may be identified as follows. 

Consider the events schematically represented in figures 5.1 and 5.2. These contain 

a prompt lepton, that is a lepton which results from the weak decay of a heavy 

quark. As the heavy c and b quarks are almost never produced in the fragmentation 

process this must be one of the initially produced quarks. Such multihadronic 

events, containing one or more leptons, are termed inclusive lepton events. The 

sign of the lepton’s charge is the same as that of the quark from the decay of 

which it results. The charge of the lepton thus indicates, or tags, the quark charge. 

Therefore, for jets containing prompt leptons, it may be determined whether the jet 

had as parent the quark or anti-quark; provided the event flavour is known. (The 

complications arising in the case that a b quark decays via the cascade b —* c —* / 

are discussed in what follows.)

The outline of a scheme whereby the c and b asymmetries can be measured 

using inclusive lepton c and 6 events is now apparent. For each event the quark
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F igure 5.2. A schematic picture of an electron inclusive 66 event.



anti-quark production axis is found by determining the event axis. This direction 

is given a sense according to the sign of the prompt lepton and the direction of the 

jet in which it appears. Hence a series of measurements of the angle 8 between the 

outgoing quark’s direction and that of the initial state electron are made. From 

the distribution of these angles the required asymmetries are determined.

This scheme has been used with great success to measure the b asymmetry 

from a sample of inclusive muon events (Bartel, 1984a). In this study similar tech­

niques were used to measure the c and 6 asymmetries using a sample of inclusive 

electron events. In what follows the identification of electrons in multihadronic 

events, the separation of c and 6 quark flavours and the analysis of the quark 

direction distribution made to determine the asymmetries are described in detail.
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Chapter 5

Electron Selection

The basic idea behind the selection techniques discussed in this chapter is to 

obtain for each charged track, from the quantities measured by the JADE detec­

tor, a figure representing the probability that the track was that of an electron. 

Discussion is restricted to tracks having a momentum greater than 1 GeV/c. This 

cut significantly increases the ratio of prompt to non-prompt electrons without 

causing the loss of many of the former as these tend to have high momenta and 

also makes the efficiency of the selection technique to be presented roughly inde­

pendent of the track momentum. This considerably simplifies some features of the 

following analysis.

There are four ways in which the JADE detector can be used to identify 

charged particles. These are:

(a) the time taken to travel between the interaction point and the TOF 

counters;

(b) the penetration through the hadron filter;

(c) the energy loss per unit path length in the Jet chamber gas;

(d) and the energy deposited in the electromagnetic calorimeter.

All these techniques must be used in conjunction with a measurement of the 

particle’s momentum. For the purpose of identifying electrons from heavy quark 

decays, due to their high momenta, only techniques (c) and (d) are useful.

Method (a), time of flight, relies on determining the particles speed, v, which 

when compared with its momentum p enables calculation of its rest mass mo 

through the relation
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where 0 = v/c and ' 7 = 1  /\f\~~ 0 .̂ As the speed of a particle asymptotically 

approaches that of light with increasing momentum, separation of electrons and 

pions can only be achieved at momenta less than about SbOMeV. At higher 

momenta the differences in flight time between the interaction region and the 

TOF counters are smaller than may be resolved by the TOF system, which has a 

time resolution of about half a nanosecond.

Information from the muon system, method (b), is useful here only in that it 

enables vetoing of penetrating tracks, which are extremely unlikely to be electrons.

The electron identification process is thus based on the remaining two tech­

niques.

E lectron Selection using dE/dx.

As previously described the JADE inner detector provides a simultaneous 

measurement of a charged particles momentum and the energy it loses per unit 

length in traversing the inner detector gas dE/dx, or £ . The relationship between 

particle velocity and £, described in the section on the detector, leads to the 

set of curves illustrated in figure 5.3 for £ against momentum p for the particle 

types which occur most frequently in multihadronic events. These are, in order 

of increasing mass, electrons e, muons p, pions 7r. kaons K and protons p. The 

curve for muons is not separately illustrated; as muons have approximately the 

same mass as pions it lies very close to the pion curve and £ cannot be used to 

separate muons from pions with the JADE detector, the £ resolution not being 

good enough. In the following the pion and muon tracks are considered together 

and ‘pions’ means ‘pions and muons’ unless explicitly otherwise stated.

As the angle between the particle and wire directions gets smaller, the quality 

of the £ measurement decreases. Thus in the following analysis only tracks with 

|cosfl| < 0.8 are considered.

68



0.05 0.1 1 i r *v iA \p (GeV/c)

Figure 5.3. dE/dx as a function of momentum for electrons, pions, kaons and 

protons. The points are the dE/dx measurements obtained in a multihadronir 

event, that marked with an asterisk being probably the result of a deuteron formed 

in an interaction in the beampipe.



For each charged track, using the measured values of £, its standard error a 

p and its standard error ot,, the quantity

„ T ____\ 2 / r T  « \ 2

was calculated for the hypotheses that it be that of an electron, a pion, a kaon and 

a proton. The quantities pT and £T(pT) come from the theoretical curve for the 

particle type in question, as plotted in figure 5.3. For each of the four hypotheses 

it was necessary to recalculate ov as a component of the momentum measurement 

error arises from multiple Coulomb scattering, the degree of which is dependent on 

the particle mass. For each hypothesis the value of \2 was minimised by varying 

pT and hence £T(pT). Thus four minimum values of x 2 were obtained, x 2, X2> 

X2k and x 2,  These are related to the likelihood that the track in question be an e, 

a 7r, a K  or a p.

As the variation of i T with pT is slow in the momentum range under con­

sideration, the values of the minima of x2 for the different particle hypotheses are
\ 2dominated by the ((£T -  £)/oc) term.

From these values may be calculated the relative frequency with which a 

dE/dx measurement in the range i  to i  + d£, with a precision given by <7f, occurs 

for each particle type, assuming these measurements to be normally distributed. 

This is

f,(£)d£ =
l

1

exp W ) 1
d£

exp 4\d£
y/2n oc

where the subscript i runs over the particle types e,7r,K,p. To improve the ac­

curacy of the assumption that the dE/dx values were normally distributed, only 

tracks for which fifteen or more dE/dx measurements had been made where used.

The required quantity, the probability that the track whose measured dE/dx
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is i  is that of an electron, is then

P' [ ’

Re exp

£,• R. exp

where the ft, are the relative numbers of the various track types, defined so that 

£ t ft, = 1, and are functions of the track momentum. They were obtained by 

fitting analytic functions to the ratios of particle types as functions of momentum 

obtained from the Monte-Carlo. Polynomials of order six were found to give 

perfectly adequate fits. The functions are illustrated in figure 5.4.

The ft, may also be dependent on other variables, perhaps including the event 

flavour and whether the jet in which the particle is found had as parent a gluon 

or a quark. Thus more precisely the above may be written

pt(£) =  P'(£, P, flavour, jet type ,...).

In the following section the accuracy with which the ft may be represented simply 

as functions of momentum is investigated.

To check that the above formalism gives sensible results, consider the be­

haviour of pe in the following three limiting cases: -

(a) The measured value of i  is close to the (pT,£ T(pT)) curve for elec­

trons and the measurement error is small. In this rase x? is small and 

x j ,  Xk and X* are large. Hence exp (~ x?/2 ) »  1 and exp(~xJ/2) «  

c x p ( -X x /2) exP(- X*/2) «  0, thus pt »  1.

(b) The error of the i  measurement is large. In this rase X? 85 xl  *  Xk ** X? 

are small and p, & fte, consistent with no information being available.
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is £  is that of an electron, is then

P .(0  =
R j' (£ )

E , * , / . ( £ )

Re exp

E , exp 2

where the R, are the relative numbers of the various track types, defined so that 

= an<̂  are functions of the track momentum. They were obtained by 

fitting analytic functions to the ratios of particle types as functions of momentum 

obtained from the Monte-Carlo. Polynomials of order six were found to give 

perfectly adequate fits. The functions are illustrated in figure 5.4.

The R, may also be dependent on other variables, perhaps including the event 

flavour and whether the jet in which the particle is found had as parent a gluon 

or a quark. Thus more precisely the above may be written

pt(£) = pe(£, p, flavour, jet type ,...).

In the following section the accuracy with which the R may be represented simply 

as functions of momentum is investigated.

To check that the above formalism gives sensible results, consider the be­

haviour of pe in the following three limiting cases:-

(a) The measured value of £ is close to the (pT ,£ T(pT)) curve for elec­

trons and the measurement error is small. In this rase x2 is small and 

x j ,  X* and X'2 a^  large- Hence ex p (-x * /2 ) *s 1 and ex p (-x J /2 ) *  

e x p (-X k / 2) ** exp (-X */2 ) *  0, thus p, *s 1.

(b) The error of the £ measurement is large. In this case x? ** xl  *» Xk 88 X,2. 

are small and pt ss Rt, consistent with no information being available.

70





(c) £ is accurately measured, and consistent with the value expected for a

7r. In this case, interchanging the roles of the e and the 7r in (a) above, 

pe « 0 .

Thus pe is seen to behave correctly.

There is one situation in which the pe calculation above may give a large result 

for non-electron tracks. This will occur if, due to some error in a measurement, 

the value of £ is spuriously high for the momentum of the track under consider­

ation, or if a doubly charged particle is produced as a result of an interaction in 

the beampipe (see the example below). Such cases are rare as was determined by 

studying the distribution of £ measurements in the momentum range used. Nev­

ertheless they were guarded against by requiring that the measured dE/dx could 

reasonably be that of an electron. The probability of Xe

- v / f f - K ) "
was required to be greater than 0.05. Only 5% of genuine electron tracks give p and 

£ measurements leading to this or larger values of p(x*). Rejecting tracks with 

p(\l) < 0.05 thus rejects only 5% of the genuine electron tracks, while disposing 

of those tracks arising from doubly charged particles or in which some systematic 

effect has introduced a gross error in the dE/dx or p measurement.

The dE/dx against p plots in figure 5.3 have superimposed on them the mea­

sured dE/dx values of the tracks in a multihadronic event. A low energy electron, 

a track which is probably an electron with a momentum of about 1.2 GeV and 

several kaons and pions can all be clearly seen. The point marked with an asterisk 

is the measurement for a track which originates in the beampipe and which is 

probably that of a deuteron, hence the large dE/dx value.
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The accuracy of the pe determination described above was checked using the 

lead-glass information as is described in the next section.

The Lead-Glass Information and Electron Selection.

Electrons entering the lead-glass are expected to lose all their remaining en­

ergy in an electromagnetic shower. In the momentum range considered here all 

other types of charged particles lose only a small fraction of their energy in pass­

ing through the electromagnetic calorimeter. Thus a comparison of the particle’s 

momentum p with the energy it deposits in the electromagnetic calorimeter Ec 

enables the identification of electrons. In particular the quantity Z = Ec/p is near 

one for electrons and smaller for other particle types.

Again only tracks with |cos0| < 0.8 are considered, that is tracks which en­

tered the barrel section of the electromagnetic calorimeter. As the endcap sections 

are shallower than the barrel section the quality of the Ec measurement obtained 

there is not as good as that for barrel tracks. The larger size of the endcap lead- 

glass blocks and the poorer 0 determination for tracks close to the beampipe makes 

track shower association poorer in the endcaps. Furthermore, for tracks which en­

ter the endcaps, the momentum measurement, determined from p = pxy/smO, is 

also in general less accurate than that for barrel tracks. The combination of these 

factors leads to significantly poorer Z measurements in the endcaps.

In order to produce, from the Z measurement for a given track, the probability 

that the track be an electron, the Z distributions for electrons and other types of 

tracks must be determined. The development of electron showers in the lead-glass 

is accurately modelled in the Monte-Carlo. The electron Z distribution may thus 

be found by histogramming the Z values of Monte-Carlo electron data. The result 

is shown in figure 5.5. A peak is seen at one as expected, but this is far from the 

only feature of the distribution. There are a significant number of tracks with Z 

values both considerably less and considerably more than one.
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Figure 5.5 . Monte-Carlo electron track Z distribution.



The electron tracks with Z «  1 are primarily the result of poorly made Ec 

measurements, in which the electromagnetic shower was not completely contained 

in the lead-glass. This gives rise to Ec values smaller than the energy, or momen­

tum which is approximately equal to the energy for electrons at these momenta, 

thus Z =  Ec/p is less than one.

The electron tracks with Z >>  1 are due to three effects. The first is only 

significant for electrons. These, being light particles, have a reasonable probability 

of emitting a bremsstrahlung photon of significant energy as they pass through 

the material of the beampipe and the inner detector. If the electron leaves the 

interaction region with an energy or momentum of E, and then in the beampipe 

emits a photon of energy the momentum that is measured in the inner detector 

is p = E — E-y. The emitted photon and electron travel in close proximity as 

the radius of curvature of tracks in the momentum range studied here is large. 

They then produce electromagnetic showers at the points where they enter the 

electromagnetic calorimeter. These showers are often closer together than the 

spatial resolution of the lead-glass system, in which case they are seen as only one 

shower and assigned to the electron track. The measured electron shower energy 

is then Ec -  E and this gives Z = E/(E -  £■-,), which is greater than one.

The second effect occurs in both the Z distribution for electron tracks and 

that for non-electron tracks. It is also a result of the finite resolution with which 

the position of electromagnetic showers may be determined, the contamination 

of the electromagnetic showers being due to photons in the event coincidentally 

causing a shower so close to that due to the charged particle that the two showers 

cannot be resolved. This occurs relatively frequently as in a typical jet about seven 

charged particles and approximately the same number of photons are produced in 

a cone of half-angle only 15° (Bartel, 1985).

The third effect is associated with charged p decays. These produce one
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charged and one neutral pion which decays into a photon pair. The charged pion 

and one of the photons are then quite likely to enter the lead-glass within the 

shower position resolution, again causing the measured value of Z to be large.

The peak at one in the electron Z distribution appears to be Gaussian and 

more precise study reveals that this is indeed the case. This arises as the measur- 

ments of both Ec and 1/p are normally distributed, for the tracks for which the 

effects mentioned above are not significant, hence the Z distribution around one 

has a Gaussian distribution.

The Z distribution for non-electron tracks was not taken directly from the 

Monte-Carlo, as the simulation of the electromagnetic showers for these tracks was 

not sufficiently accurate. Instead the Z distribution from the real data, with the 

(small) electron contribution subtracted out, was used. The subtraction required 

the use of the electron Z distribution shown in figure 5.5 and the relative numbers 

of electron and non-electron tracks. This method ensured that only the Monte- 

Carlo quantities which were accurately simulated were used. The Z distribution 

for all tracks, and the subtraction made from it, are shown in figure 5.6. The 

resulting Z distribution for non-electron tracks is shown in figure 5.7. It is peaked 

at a value of Z well below one, but as expected from the arguments above there 

is a tail out to high values of Z.

In addition to the effects described above, a small contribution to the high Z 

tail of the non-electron Z distribution arises from anti-protons. The annihilation 

of these in the lead-glass results in the deposition of an energy of approximately 

1 GeV. This, together with the energy due to the anti-proton’s motion, gives rise 

to tracks having Z > 1 for anti-protons with momenta at the low end of the range 

considered here.

The two Z distributions were then fitted using, in the non-electron case a
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F igure 5.6 . The Z distribution of all charged tracks from the real data, the 

electron contribution is shaded.
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F igure 5.7. The Z distribution for non-electron tracks.



function of the form

and in the electron case

Ur { Z) L U  a,Zi
14 Zn+2

,. 1 7 ) _  ^Li=oa'Z' , *
" * (z )  -  Ì T F F  + ^

exp

the a, and the parameters of the Gaussian being free. The maximum likelihood 

technique was used, good fits being obtained with n = 8. These functions were 

then normalized to one.

Cross Checking the dE/dx Selection.

A check of the dE/dx selection and the accuracy of the Z distributions was 

performed as follows. Nine samples of tracks were selected, using the dE/dx 

selection variable pe, and requiring for the first sample 0.1 < pe < 0.2, for the 

second 0.2 < pc < 0.3 and so on up to the ninth sample for which 0.9 < p, < 1.0. 

The Z distributions of these samples were then plotted. The histogram for the 

fourth and ninth samples are shown in figures 5.8 and 5.9 respectively. If the 

variable pe correctly represents the probability that the tracks be those of electrons 

then these samples should consist of a proportion pe of electron and 1 -  pe of non- 

electron tracks, pe being the mean value of pf for the tracks in the sample. This 

was checked by fitting the normalized Z distributions for each of the samples with 

the function

F(Z) = rewe(Z) 4 (1 -  rt)wr(Z)

using the maximum likelihood method. The value of the free parameter r, re­

turned by the fit is then the proportion of electrons in the sample as determined 

using the lead-glass information. If the approximations made in calculating the 

dE/dx selection variable pt are sufficiently accurate, namely the dE/dx distribu­

tion is Gaussian and the particle type ratios R, may be reasonably represented 

as functions of momentum only, and the distributions ut and wr are correctly de­

termined, then the value of r, for a sample of tracks selected as above should be
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F igure 5.8. The Z distribution of the sample of tracks with 0.4 < pe < 0.5.

Figure 5.8. The Z distribution of the sample of tracks with 0.9 < p* <  1.0.



rt = mpe + c.

The values o f m and c are 0.980 and 0.00975 respectively. The fit has a probability 

of x2 of 0.45.

A further indication that the above selection procedure is reliable is provided 

by figure 5.11. In this figure the Z values of all tracks with pe > 0.1 are plotted. 

The electron peak at Z =  1 is clearly visible. The line is the F(Z) curve in which 

re has been set to the mean value of pt for the selected tracks and clearly represents 

the data well.

Selection Variable from the Lead-Glass Information.

Due to the asymmetry of the Z distribution it is not possible to use the same 

technique to form a selection variable using the Z information as was used to 

obtain pe. However, from the relative frequency distributions of Z for electron 

and non-electron tracks, u, and ur respectively, the probability that a track with 

a measured value of Ec/p = Z is that of an electron may be calculated. It is

ReUe
 ̂ RfUlt + Rr^r

where Rr = Rw + Rk + Rp and the R, are the same particle ratios, functions of 

momentum, used in forming the dE/dx selection variable pe. The disadvantage of 

using this as opposed to the previous technique is that the error with which the 

Z measurement was made cannot be incorporated in the determination of qt.
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compatible with the value of p e . A plot of rt against p t should be a straight line

through the origin with gradient one. That this is the case is illustrated in figure

5.10. The line illustrated is the result of a least squares fit using
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re = mpe + c.

The values of m and c are 0.980 and 0.00975 respectively. The fit has a probability 

of x 2 of 0.45.

A further indication that the above selection procedure is reliable is provided 

by figure 5.11. In this figure the Z values of all tracks with pt > 0.1 are plotted. 

The electron peak at Z — 1 is clearly visible. The line is the F(Z) curve in which 

re has been set to the mean value of pc for the selected tracks and clearly represents 

the data well.

Selection Variable from the Lead-Glass Information.

Due to the asymmetry of the Z distribution it is not possible to use the same 

technique to form a selection variable using the Z information as was used to 

obtain pe. However, from the relative frequency distributions of Z for electron 

and non-electron tracks, ut and u;r respectively, the probability that a track with 

a measured value of Ec/p = Z is that of an electron may be calculated. It is

R'U'
^ RfUje + Rr^r

where Rr = RT + Rk +  RP and the R, are the same particle ratios, functions of 

momentum, used in forming the dE/dx selection variable pe. The disadvantage of 

using this as opposed to the previous technique is that the error with which the 

Z measurement was made cannot be incorporated in the determination of qt.
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through the origin with gradient one. That this is the case is illustrated in figure

5.10. The line illustrated is the result o f a least squares fit using
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rt = mpe -|- c.
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The electron peak at Z = 1 is clearly visible. The line is the F(Z) curve in which 

rt has been set to the mean value of pt for the selected tracks and clearly represents 

the data well.
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Due to the asymmetry of the Z distribution it is not possible to use the same 

technique to form a selection variable using the Z information as was used to 

obtain pt. However, from the relative frequency distributions of Z for electron 

and non-electron tracks, wf and wr respectively, the probability that a track with 

a measured value of Ec/p = Z is that of an electron may be calculated. It is
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where Rr = Rn + Rk +  RP and the R, are the same particle ratios, functions of 

momentum, used in forming the dE/dx selection variable pe. The disadvantage of 

using this as opposed to the previous technique is that the error with which the 

Z measurement was made cannot be incorporated in the determination of qt.
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Figure 5 .10 . The purity of electron samples re as a function of the mean values 

of pe for the samples.

0. 0  2. 0  4 . 0  6. 0i  (c)

u

Figure 5.11. The Z distribution of all tracks with p, > 0.1 (circles) compared 

with the distribution expected from the mean value of p, (line).



Combination of the Selection Information.

Combining all the track type identification information available, the prob­

ability that a track with a measured value of dE/dx of £, with error 0 [ and 

Ec/p = Z is an electron track is

tron tracks and pr that for non-electron tracks. As Z and £ are independent, the 

p are equivalent to the products of the relevant one-dimensional relative frequency 

functions. Thus

where 6e(£) is the £ relative frequency function for electron tracks. From the 

previous discussion this is

as may be checked by substitution. Calculating Pr in this manner has the advan­

tage that, for tracks in which only one of £ and Z was measured, Pt may be set 

to the one-dimensional value which was available.

The above analysis was carried out for all barrel tracks. Only those tracks 

for which both Z and £ information was available were used in the following

p  ________ RePt(£ ; Z)______
R'P'(£,Z) + RrPr(£,Z)

where pe is the two-dimensional relative frequency distribution of £ and Z for elec­

P'(£,Z) = 6'(£)u>'(Z)

Similar expressions may be written for b„, 6* and 6f, from which pT may be 

calculated.

P r ( £ , Z ) = ± ^RnPv(£,Z) + Rk pk (£,Z) -i- Rppp(£,Z)^j.

The combined probability Pt may alternatively be calculated from pt and qe

using
RrP'(£)qt (Z)

RrP'(£)Qe(Z) + RePr(£)qr(Z)
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study to reduce the risk of systematic errors occurring in the electron selection. 

Electron signals are faked by only one type of rarely occurring track, namely anti­

protons with a momentum of about 1 GeV/c. These have about the same dE/dx 

as electrons and also, as they annihilate in the lead-glass, deposit a large amount 

of energy in the electromagnetic calorimeter. These tracks were removed as far 

as possible using the TOF information, the resolution of the TOF system being 

quite adequate for separating 1 GeV/c electrons and anti-protons. The transverse 

momentum spectrum of the remaining 1 GeV/c anti-protons is very different from 

that of the prompt electrons and thus they do not affect the measurement of the 

c and b asymmetries.
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Chapter 6

Flavour Separation

Having a method for identifying electrons in multihadronic events, the next 

problem that must be addressed is that of separating the events according to their 

flavour. There are two ways in which this may be done:

(a) by identifying a particular particle which occurs predominantly in events 

of only one flavour, for example D and D* mesons which occur essentially 

only in c events;

(b) by studying the mass of the primary quark, heavy primary quarks giving 

rise to characteristic signatures.

Method (a) has been used with some success (eg. Bartel, 1984b), the problem 

being that of finding a reasonable number of events in which the particle type in 

question was produced. As there is no easily identifiable particle which occurs 

predominantly in b events, this technique will not be considered here.

In practice, to exploit method (b), some variable x, which may be multi­

dimensional and whose distribution is dependent on the initial quark masses must 

be found. For an ideal separation variable, the probability density functions of x 

for the different flavours would be distinct, as illustrated in figure 6.1. Cuts at the 

indicated values of x would then give complete flavour separation. Unfortunately 

no such variable has been found and it is unlikely that one will be. Real separation 

variables have probability density functions that overlap considerably between 

flavours, as illustrated in figure 6.2. In this case the probability density functions 

for d, u and s quark events are so similar, as the quark masses are similar, that no 

separation is possible between these flavours. This is the case for all the separation 

variables that will be considered in the following so for convenience these three 

flavours will henceforth be collectively labelled r.
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Figure 6 .1 . An ideal separation variable. The arrows indicate cuts that give 

almost complete flavour separation.

Figure 6 .2 . A typical separation variable.



In order to find the best separation variable it is necessary to quantify the

one and the off-diagonal elements between zero and one. MtJ = 0 implies there

complete. M,y = 1 implies that p,(x) = Pj(x) and x allows no separation between 

the flavours i and j. The smaller the value of AitJ the better the separation 

between the flavours t and j  achievable using the variable x.

This technique was used to study the following separation variables:-

(a) Thrust T

(b) Sphericity 5

(c) Transverse mass M

(d) Electron transverse momentum pr(e)

(e) Electron isolation I

(f) Multiplicity N

These are defined as follows.

amount of overlap of the probability functions, this being the factor that deter­

mines the degree of separation that may be obtained. This may be done as follows 

(Marshall, 1984a).

Let the probability density functions for r, c and b be pr(x), pc(x) and pb(x) 

respectively. Normalize these functions so that

for i = r, c,6. Consider the matrix M  formed by the coefficients

where j  also runs over r, c and b. The diagonal elements of M  are then by definition

is no overlap between the t and j  distributions, that is the separation in x is
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(a) Thrust.

The thrust of a multihadronic event is the quantity

T -  max Ejjptli"
Z ,p .  .

The maximisation is performed by variation of the direction of the axis along which 

the modulus of the component of the track’s momentum, |p l |,, is calculated. 

P i is the absolute value of the track’s momentum, t running over all the charged 

and neutral tracks in the event. The direction which maximises the expression 

above is termed the thrust axis. Monte-Carlo studies show that it represents the 

initial qq direction to an accuracy of about 5°. The maximum possible value 

of T, indicating that the event has a very pronounced two-jet shape, is one. The 

minimum value, indicating that the event is spherical, is 1 /2. The flavour selecting 

power of T arises as heavy quark events tend to be somewhat more spherical than 

other events, due to the tracks from the weak decay of the heavy quark which 

receive momentum transverse to the quark direction in the decay.

(b) Sphericity.

The sphericity is determined from the tensor 

rp _ ¿L|(p»)a(p<)ff

i running over all charged and neutral tracks in an event, apart from those observed 

to come from a decay, in which case the momentum of the parent particle was used. 

This procedure is advisable as the quadratic manner in which the track momenta 

enter the sphericity calculation means that decays are not correctly treated. The 

(p,)a are the x, y and z components of the momentum of the i'4*1 track, as are the 

(p,)p. Diagonalization of Tap yields the unit eigenvectors qlt q3 and qs, and the

corresponding eigenvalues

Q ,=
E , ( p . q ; ) 2

L , p!
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These, ordered so that Q\ < Qi < Qa, describe respectively the flatness, width 

and length of an event in momentum space. The eigenvector qs is the event axis 

and represents the qq direction to about the same accuracy as the thrust axis; q i 

is normal to the event plane and q 2 is a vector in the event plane.

The sphericity is defined by

The maximum value of S is one, and indicates a spherical event shape. The 

minimum value is zero and indicates a two jet event shape. The usefulness of S 

as a separation variable arises as described above for thrust.

(c) Transverse Mass.

The transverse mass M is defined as

that is a vector with the magnitude of the particle energy and the direction of the 

particle momentum. In practice E| was calculated assuming all charged particles

to the event plane, the qi vector was used here. The factor 2^beam /^ v  is makes 

M insensitive to the loss of particles due to detection inefficiencies.

This variable is directly related to the mass of the parent quarks in an event, 

as may be seen by the following argument. Consider a particle of mass m which 

decays isotropically in its rest frame. The energy per unit solid angle is then e 

where

S -  + Q2 )

where

P.

to be pions and all neutrals to be photons. The vector n is the unit vector normal

4ne -  m.
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Calculate M
M = Y ,  lE * ' “ I

t

=  |£,sin0,cos<£,j
t

where an orthonormal coordinate system with axes T, m and n with the accom­

panying polar coordinates 0 and 4> has been defined, as illustrated in figure 6.3. 

The axis 1 may be considered to be the jet axis and rft a vector in the event plane 

in the case that the particle in question is the initial quark or anti-quark in a 

multihadronic event. Then

M = ^  Ei sin 0, j cos <t>, |
t

= J J  e sin 0, | cos </>, | d cos 0 dtp 

= e J  sin 0^2 J  ' cos <t>d<{> dcos0

= 27TC

m
T '

Returning to the multihadronic event this is the half the mass of the quark plus 

some contribution due to the fragmentation process. Summing over the initial 

quark and anti-quark, M for a multihadronic event is the quark mass plus the 

fragmentation contribution.

As only components out of the event plane are considered in forming M it is 

insensitive to the effects of single energetic gluon bremsstrahlung. This is a major 

advantage of M over the variables T and S in separation applications.

It has been suggested that the contribution to M arising from fragmentation 

is flavour independent (Marshall, 1984a). If this is the case then M provides a 

means of comparing the quark masses. It is certainly an excellent variable to use 

in the search for new particle production in electron positron annihilation. A new 

massive particle which decayed in such a manner as to leave a significant amount
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Figuro 6 .3 . The coordinate system used in discussion of A/.



of energy in the detector would be clearly visible in the M distribution (Chrin, 

1984).

(d) Electron TVansverse Momentum.

The electron transverse momentum, pr(e), is the component of an electron’s 

momentum transverse to the event axis, represented by the sphericity axis §3 here. 

If the electron had as parent a massive quark, this tends to be larger than the 

transverse momentum of electrons from other sources, due to the large amount of 

energy available in the heavy quark decay. The transverse momentum of electrons 

or muons is probably the most widely used flavour separation variable.

As may be deduced from the above the pr of an electron also provides a 

means of separating prompt electrons from electrons from background sources in 

c and b events.

(e) Electron Isolation.

The electron isolation is defined to be the energy in a cone of half angle 

6C about the electron direction, excluding that of the electron itself (0C = tt/6 

was used here). The idea being that if the electron is from a heavy quark decay 

it will tend to be thrown clear of the other particles in the event and thus 1 

will be small. If the electron is from some other source then it will tend to be 

produced surrounded by other particles and 1 will be large. Two problems suggest 

themselves immediately. It would seem likely that 1 will be highly (negatively) 

correlated with the electron transverse momentum and also that 1 will be strongly 

dependent on the details of the fragmentation process. However it is possible that I 

could be useful in distinguishing electrons that have a large transverse momentum 

because they were produced in a hard gluon jet from those which have a large 

transverse momentum due to their production in the decay of a heavy quark.
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(f) Multiplicity.

As was stated in the second chapter, the decay of a heavy quark often gives 

rise to a large number of particles and it may be possible to use this fact to 

identify heavy quark events. Unfortunately this effect is much reduced for semi- 

leptonic decays. Thus in the events under study, in which the electron is required 

in order to make it possible to tag the quark charge, the multiplicity is not likely 

to be a particularly powerful selection variable. However, in studies in which a 

prompt lepton is not required, perhaps including measurements of the b lifetime, 

multiplicity may well deserve attention as a separation variable.

Comparison of Separation variables.

The comparison o f the usefulness in flavour separation of the variables above 

was performed as follows. Distributions of the variables were obtained from the 

Monte-Carlo for r, c and b events. Analytic functions of suitable form were fitted to 

these distributions. The normalization factors and elements of Af,; were obtained 

by numerically integrating the functions over a suitable range, the Trapezium rule

n-l ,
Pi(xo)P](x0) + Pi(xn)Pj(xn) + 2 pt[xk)p,(xk) )

k=\ 1

being used. The results are shown in the table below.

Variable Mch Mrh Mrc
Thrust 0.84 0.79 0.99
Sphericity 0.78 0.73 0.98
Transverse Mass 0.74 0.70 0.99

Electron pr 0.72 0.54 0.92
Electron Isolation 0.78 0.72 0.97
Multiplicity 0.80 0.75 0.99

fJ To
PiP, dx as Xn *0 | 

2 n

The most powerful separation variables are p t («) and M.
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Combination of Separation variables.

It would obviously be desirable to combine the separation variables above in 

order to ensure that all the available information pertinent to flavour identification 

is used. Here care is necessary. As the above are not independent, the probabil­

ity distribution functions for a multi-dimensional separation variable formed from 

them cannot generally be represented by the product of the one-dimensional dis­

tributions involved. The probability density functions of the multi-dimensional 

variable must be obtained from multi-dimensional histograms of the T, S, M , ... 

distributions. This introduces a practical problem. The amount of Monte-Carlo 

data that must be studied to reasonably define the distributions and the number of 

parameters required to describe them, for example the number of free parameters 

in a fit needed to obtain a reasonable analytic representation of the distribution, 

increases as the square of the dimensionality, thus the calculations involved rapidly 

become unwieldy. Furthermore, the amount of additional information included by 

increasing the number of variables used is only significant if the newly included 

variables do not duplicate information already present. For example if event shape 

information is used in the form of the variable T, addition of S is unlikely to lead to 

a significant improvement in the separation. The independence of the probability 

density functions for the variables above indicates the degree to which the infor­

mation they contain is duplicated; completely independent variables containing no 

shared information and vice versa.

The (linear) dependence of two variables xj and xi may be investigated using 

the correlation coefficient formed from the variance of the xj and xj distributions 

and the covariance of their combined distribution. The correlation coefficient is

CQV(I1,X j )

v/va r(z7 )v /VRr ( * î )
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where, in terms of the expectation value defined by

E (i) = f  xf(x)dx
J -  oc

= X

and the obvious extension of this expression to two dimensions, the variance of 

it

var(xi) = E(xi -  x j)

with an equivalent result for var(x2) and the covariance is

C0V(X],X2) =  E ( x i x 2) -  X lX 2.

A value of c =  0 indicates that the distributions in question are completely inde­

pendent and vice versa for a value of plus or minus one. It must be noted that 

a correlation coefficient of zero is only a necessary condition for independence, 

not a sufficient one. Variables which are dependent on one another through some 

non-linear relation may have correlation coefficients of zero. For the variables of 

interest here, the relationships, if they exist, are likely to be linear and thus an 

analysis using the correlation coefficient is acceptable.

Returning now to the problem which prompted the above discussion, how 

many of the above variables is it worth combining to use in the separation of 

flavours in this case? The previously mentioned practical problems limit the num­

ber which can reasonably be used together to two or at most three. The obvious 

choice is to use transverse mass and electron transverse momentum pr- (From 

now on pt will be undertood to refer to electron transverse momentum.) The 

correlation coefficients of the M and pr distributions are around 0.1, with slight 

variations between flavours, the correlation coefficient for b events being smaller, 

that for r events about 0.2. This implies that the information content of the two 

variables is significantly different and they are well worth using together.

It was decided not to include a third separation variable, as for thrust and 

sphericity the separation obtainable is not enough to warrant the difficulties of
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their inclusion, multiplicity is also ineffective once the requirement is made that 

the event contain a prompt lepton and 1 suffers from the previously mentioned 

fragmentation dependence, more detailed study of this being necessary before it 

is understood sufficiently well to be useable as a separation variable.

Separation Techniques.

Having decided on the use of M and px as separation variables the problem 

of how best to use them arises. There are basically three techniques available. 

These are:

(a) using cuts;

(b) using weights; ,

(c) the maximum likelihood method.

Method (a) is probably the most frequently used separation technique in 

High Energy Physics and where the errors arising from statistical considerations 

are of the same size or smaller than those due to systematic effects the loss of 

information entailed in the use of cuts is probably justifiable as the technique is 

easily intuitively understood. In the case under consideration here this is not so 

and a more sophisticated technique must be used.

Method (b) is described by Barlow (1985). It is closely related to what is 

referred to as the method of moments by Marshall (1984a), although this latter 

does not use the optimum weight functions. Restricting the discussion, for sim­

plicity’s sake, to the case in which it is desired to determine the number of signal 

Ns and background Nr events in a mixture of the two the basic idea is as fol­

lows. The signal in question may be a particular flavour, or prompt as opposed to 

non-prompt electrons. Each event is weighted according to the probability that it 

comes from the signal distribution S(x), x being the chosen separation variable.



If the background distribution is B ( x ) ,  this is

, x Ns S(x)wix) = --------------- -—---------.
1 1 Ns S(x) + N b B ( x )

It can be shown that this is the best possible weight function, the results obtained 

using it being as good as those obtained using the maximum likelihood technique. 

The mean value of the weight function over the signal x distribution is

f°°ws = /  w(x)S(x)dx
J — OO

and similarly
f  o°

wg = /  u>(x)i?(x) dx.
J - O O

After weighting all of the N events in the sample according to their x values, the 

sum of the weightings is

Nw = WsNs + wbNb

and obviously

N = Ns + Nb.

These equations may be solved for the required Ns and Ng the results being

and

with errors given by

and

. .  N w -  w b N
Ns ~ — -----——

WS  -  WB

EN ( w(x')
1 V WS  -  WB  J

Nw -  W S N
Nb = — ------~ —

wb -  Ws
N

_  V /  w(x,) -
‘  2 -

•=1 V W p - W s  j

i f f W ( X { )  -

[S' W S -  W b  )

\ y (
ie(x,)  -  W g  \ 2

1/2

W g  -  W s  J
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If the background distribution is B { z), this is

_  N8S{x) 
NsS(x)  +  NbB(x)

It can be shown that this is the best possible weight function, the results obtained 

using it being as good as those obtained using the maximum likelihood technique. 

The mean value of the weight function over the signal x distribution is

/OO

u>(x)S(x) dx
- O O

and similarly
f°°

wg = I w(x)B(x)dx.
J — OO

After weighting all of the N events in the sample according to their x values, the 

sum of the weightings is

Nw = WSNS + u>bNb

and obviously

N = NS + Nb-

These equations may be solved for the required Ns and Ng the results being

„  Nw - wb N
Ns = — ------------ — —Ws -  1VB

y '  ( t^(x,) -  wB \
“  \ Ws -  VUB /
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If the background distribution is B ( x ) ,  this is

, , NsS(x)
1 ’ Ns S(x) + N b B ( x )

It can be shown that this is the best possible weight function, the results obtained 

using it being as good as those obtained using the maximum likelihood technique. 

The mean value of the weight function over the signal x distribution is

/OO

w(x)S(x) dx
-OO

and similarly
f°°

wB = / w(x)B(x) dx.
J - O C

After weighting all of the N events in the sample according to their x values, the 

sum of the weightings is

Nw = U>sNs + WBNB

and obviously

N = Ns + Nb.

These equations may be solved for the required Ns and NB the results being

Nw -  wBN

and

with errors given by

and

Ns =
lVs -  1VB

y '  (  u>(x,) -  
\ ws ~w B J

Nw -  wsN 
Nb = —------ —WB -  Ws

_ Y '  /  w(x,) -  Ws \
“  \  W B - W s  J

[ A  (w(x,) -
"  '  Lèi J

ly* ( w(xj)-Ws\3
° B I "  \ wB ~ ®s /

Li= I
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respectively.

It may be objected that it was necessary to know the relative numbers of signal 

and background events in order to be able to find the weight function, and hence 

that the above argument is circular. It is true that the optimum weight function 

can only be defined if Ns and Nb are known, but the above method gives correct 

answers for Ns and Nb regardless of the input values and the precision decreases 

only slowly as the accuracy of the input estimates worsen. The process can be 

iterated if the values of Ns and Nb calculated as above differ wildly from the 

input estimates.

Method (c), that of maximum likelihood, is a well known statistical technique. 

It can be shown to be efficient, that is it gives the most accurate results possible 

using the information available, and unbiassed, that is it gives asymptotically the 

correct results (Wetherill, 1981). To illustrate its application, consider the problem 

above, the maximum likelihood solution of which proceeds as follows. Let

li = NsS(xi) + NBB(xi).

This is simply the probability density function of x evaluated for the event. 

The likelihood function is then defined to be

N

i=i

its value represents the likelihood of the occurence of N events with i  =  i j  . . . xN 

for the given values of Ns and Np. The most likely value of these parameters 

may be found by maximization of the likelihood function by varying Ns and NB. 

Equivalently and often more conveniently, the logarithm of the likelihood function

L = ln (D

=  ! > ( / . )
1=1
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may be maximised. That is the equations

=> y ______ ___________ = 0
NsS(xì) + NB{xi)

and
dL

dNB

v ' '  £ (*«)
¿J  NsS(ti) + NB(xi)

must be simultaneously solved for Ns and NB.

0

0

The errors of the determination are obviously dependent on the sharpness of 

the peak in likelihood space at which the solution values of Ns and NB occur. 

Mathematically this is described by the values of the second derivatives of L at 

this point. A more detailed treatment shows that the errors may be obtained from 

the diagonal components of the inverse Hessian matrix. The Hessian matrix H is 

in fact the covariance matrix and is defined, as expected from the above, in terms 

of the second derivatives of L.

The expectation value is calculated, as previously defined, with Ns and NB taking 

their solution values. Using

d2L d2L
dN8dNB ~ dNBdNs

and inverting the Hessian matrix the errors are

Os = H22

H\\H22 ~ ^\2.

1/2

and

oB
Hu

Hu H22 - H \ 2.

1/2
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the being the components of the Hessian matrix. If the cross terms are small

these errors reduce to
1

and

ob =
v/7/22

Under very general conditions, the likelihood function is Gaussian in form. 

In this case the logarithm of the likelihood function is a paraboloid and its second 

derivatives are all constant, therefore

* ( * L \ = * k
\  dNg )  d N f

Indeed, where
a u ,

it is preferable to use the latter (Wetherill, 1981).

As described above the methods of weights and maximum likelihood are equiv­

alent. They could both be used to determine, say, the number of events containing 

electrons from b and c quark decays in a sample of inclusive electron events of 

known purity. Hence the number of events in which the quarks were produced 

in the forward and backward b and c directions could be determined, from which 

the b and c asymmetries could be calculated. There is however a better method 

o f obtaining the asymmetry from the measurements of the quark directions. This 

avoids the loss of information arising as a result of the forward backward binning 

and also removes the need to apply acceptance corrections.
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Chapter 7

Electroweak A symmetry Measurement Errors and 

A cceptance Corrections

Assuming that the methods of the previous chapter allow the identification 

of c and 6 events and the prompt electrons in those events and that therefrom the 

production angles 6 of the c and b quarks can be obtained, the next problem is 

that of obtaining the asymmetries from those measurements.

At a given energy the probability density function of the variable x — cos 8 is 

expected in the standard model, for each quark flavour or lepton, to be

3
P(x) = j ( l  + l2 ) + Ax>

A being dependent on the whether the particle is a lepton or a quark and if the 

latter on its flavour, as given in chapter two. Suppose the experimental data 

consist of N measurements of the angle 6. How can A best be obtained from these 

data?

The most obvious technique is that suggested in the previous chapter, namely 

to count the numbers of forward and backward events, Njr and Nb respectively, 

and to form
Np ~ Nb

The error in such a determination may be found by using the binomial nature 

of the forward backward distribution. Let the probability o f obtaining a forward 

event be p and that of obtaining a backward event q = 1 -  p- Then



The error of the asymmetry measurement is, from the properties of the binomial 

distribution,
° a  =  2  o v

This result is for a perfect experiment, that is one in which the acceptance is 

one over the full angular range. In fact for |x| large, that is near the beampipe, 

the acceptance is bound to decrease for any real experiment. Suppose the detector 

has 100% acceptance for |x| < I and zero acceptance outside this range. Using the 

above technique, the measured asymmetry is

A, _  Jo P(x) dx

/ V ( * )  dx
=  kA

where k = 4 //(3  + Z2). A is then determined from A' by multiplying by the 

correction factor 1/k. The error

O A'
f -

- A ' 2
N

~ k 2A~2
N

> oA.

The trivial increase in error due to the smaller data sample collected from an 

experiment with less than perfect acceptance has been removed; the results are 

for a sample of N observed events in each case.

The above illustrates the importance of good acceptance at large angles for the 

accurate measurement of electroweak asymmetries, but is still not a good model 

of a real experiment’s acceptance.

For the JADE detector, due to its symmetry in the polar angle which has been 

extensively checked (Bartel, 1982 and 1984a), the acceptance may be represented
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A, Ip E(x)p(x)dx -  / ° ,  E(x)p{x) dx 
/_!1 E(x)p(x) dx

Using the symmetry E(x) = E(-x)  the factor k relating the measured and actual 

asymmetries becomes
k _  ___8 /J  xE(x) dx__

3 / c|(l + x2)E(x)dx

The problem of determing the k factor and hence correcting for acceptance 

effects may be solved by the use of the Monte-Carlo. However, for distributions of 

the form above a neater technique exists.

by a function E ( i ) ,  symmetric in x, which falls from a maximum at x =  0 as |xj

increases. The asymmetry measured using the counting technique above is thus

Consider the likelihood function

¿ -n «-
»=j

where
/, = E(xx)p[xi)

= E(xi) (1 4- x,2) + Aii

The maximum likelihood estimate for A is then found by maximising the logarithm 

of this function

i = £ > ( / , )
•=i

that is by solving

^  W l n [.E (x,)]+ ln  | (l + x?) +  /lx , J = 0 .  
1=1 '

As the acceptance function is not dependent on the asymmetry

h ^ E(x)^  W ) b E {l]
=  0
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A, /o' E(x)p(x)dx -  E(x)p(x)dx 
f -1 E(x)p(x) dx

Using the symmetry E(x) -  E(-x)  the factor k relating the measured and actual 

asymmetries becomes
k _ _  8 /c! xE(x)dx 

3 / c)( l + x2)E(x) dx

The problem of determing the k factor and hence correcting for acceptance 

effects may be solved by the use of the Monte-Carlo. However, for distributions of 

the form above a neater technique exists.

by a function E ( x ) ,  symmetric in x, which falls from a maximum at x = 0 as |x|

increases. The asymmetry measured using the counting technique above is thus

Consider the likelihood function

¿-If ' .
t — l

where
li = E(xt)p[xt)

= E(ti)

The maximum likelihood estimate for A is then found by maximising the logarithm 

of this function

L = ¿ I n ( / , )
•=i

that is by solving

d_
dA 5^ { ln[£T(xé)] + I"

i=i *•
¡(1 + x2t ) + Aii }  =  o .

As the acceptance function is not dependent on the asymmetry

= 0
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and the above becomes

|(1 +  xj) + Ax, }
= 0

or

L = 0
nr; *(*••)

which is independent of the acceptance function.

Unfortunately this equation has no analytical solution, but in practice this 

is no handicap as many highly efficient algorithms are available for the numerical 

solution of just this kind of problem. Alternatively the value of dL/dA may be 

calculated for several values of A in the allowed range — 3/4 < A < 3/4 and 

the points (A,dL/dA) graphed. The intercept with zero may then be found by 

interpolation. The allowed range of A is smaller than the - 1  < A < 1 that might 

be expected due to the assumption that the x probability density function is p(x). 

This must be positive for all z which constrains the allowed values of A as above. 

For the expected Gaussian form of the likelihood function, the first derivative of 

its logarithm is a straight line and thus the interpolation is easily performed.

The error of the estimate of A is

where

In order to compare the precision of this method with the counting technique the 

following must be evaluated

%



For E[x) = 1 this integral may be done and for A < 0.7 the result may be 

accurately parameterised, giving (Marshall, 1984b)

oa = G
Comparing this with the previous result for the counting technique with 100% 

acceptance, for the expected 6 asymmetry at 35 GeV the statistical errors obtained 

using this method are about 10% smaller than those obtained using the counting 

technique. In addition in the case of less than full acceptance, systematic errors 

are smaller as no acceptance corrections are necessary.

For the case of a series of N discrete measurements of x, provided N is 

reasonably large,

f  =
\dA>) dA1

and hence
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Chapter 8

T he c and 6 Asymmetries

The information required in order to perform a maximum likelihood fit to 

extract the c and b asymmetries, using the ideas that have been discussed, was 

extracted from the data as follows.

Multihadronic events observed at centre of mass energies in the range 33 to 

37 GeV, with a mean energy of 34.9GeV. were searched for electron tracks using 

the previously described method. All tracks with P, > 0.1 were considered as 

potential electrons. The event axes of the events containing these tracks were 

calculated using the sphericity analysis. The momenta of the potential electrons 

transverse to this axis, pr, were then calculated, as were the transverse masses, 

M , of the events.

In order to determine the quark direction, the sphericity axis q 3 was given a 

sense such that

Pe ' Q3 =  9f

where p , was the electron momentum vector and qr its charge. The q 3 vector then 

represents the direction of a positively charged quark, if the track used to give a 

sense to the direction was that of an electron from the decay of a heavy quark. 

The required information, the cosine of the polar angle of production of the quark, 

is then the z component of the q3 vector. As the JADE coordinate system has the 

z axis in the direction of the positrons, not the electrons, the 3r<* component of 

q3 is - 1  x cos0 in the coordinate system used in the discussion of the asymmetry. 

Thus the scheme for giving a sense to q 3 outlined above gives cos 0 as for negative 

quarks in the JADE coordinate system.

For each potential electron track Pe, pr, M and cos i were stored on disc,
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making the information readily accessible to the routines used for calculating the 

likelihood function.

In order to construct the probability density function describing the distribu­

tion of the variables above, from which the likelihood function may be calculated, 

it is necessary to consider the distributions of the variables above for the various 

possible sources of potential electron tracks.

The first class of these are genuine electron tracks, the probability of this 

being indicated by the value of Pt for each track. These consist of both the 

prompt electrons of interest and electrons from various background sources.

The prompt electrons are produced primarily through the decays illustrated 

in figure 8.1 and 8.2. The charge of electrons so produced correctly tags that of 

the parent quarks. They are labelled be and ce for those produced in b and c 

flavoured events respectively. In b events a small number of electrons came from 

the decay illustrated in figure 8.3 and some from the decay illustrated in figure 

8.4 and similar processes involving other intermediary particles. The first of these 

production mechanisms results in electrons whose charge has opposite sign to that 

of the parent quark. These must be distinguished from those arising from the 

primary decay and are labelled bee. The production mechanism in figure 8.4 gives 

rise to electrons whose charge has the same sign as that of the parent quark and 

these are considered under the label be together with those from the dominant 

semi-electronic b decay.

The pr distributions o f the electrons from all these sources are shown in 

figures 8.5, 8.6 and 8.7.

The angular distributions of the event axes whose sense was determined using 

the be and ce tracks is that of the parent quark. For the bee tracks it is that
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F iguro 8.1 . Electronic decay o f a c quark.

F igure 8 .2 . Electronic decay of a 6 quark.



Figure 8.S. The cascade decay b —► c —► e+.

Figure 8.4. The cascade decay 6 -* 7 —* e~.
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of the 6 quark but with the sign of the asymmetric term reversed. One possible 

complication must be considered here.

The energy released in the weak decays of heavy quarks is considerable, for 

example an electron produced in the decay of a 6 quark in a B meson may acquire 

an energy of up to about 2.2 GeV. If the fragmentation occurred in such a way 

that the B meson received only a small amount of the available momentum and 

energy, then it is possible that an electron whose momentum from the decay is in 

the opposite direction to that of the B meson appear in the ‘wrong’ jet. A similar 

effect may occur in c events though with lower probability. This results in an 

incorrect tagging of the quark charge. Suppose the probability of this occurring is 

p, then the measured asymmetry, ignoring all problems of separation and so on, is

A' = (1 -  p) -  pA 

= (1 -  2p)A

as the events with wrong jet electrons appear to have opposite asymmetry to those 

that are correctly tagged.

The probability of the occurence of such wrong jet electrons was investigated 

using the Monte-Carlo. For b events it was found to be about 2% and for c events 

less than 0.5%. These values are dependent on the form of the fragmentation 

function, but even the assumption of a flat fragmentation function increased the b 

value to only 6%. The pr of the electrons involved was always small and therefore 

their effect in the maximum likelihood fit was negligible. Thus no correction was 

made for the ‘wrong jet’ electron effect.

The remaining electrons are non-prompt, that is not from heavy quark de­

cays. Monte-Carlo studies indicate that 95% of these are the result of photon 

conversions. The photons come primarily from the decay of neutral pions pro­

duced in the fragmentation, -* Tf- A 5 GeV photon produced close to the
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interaction point and travelling normal to the beam axis has a probability of 15% 

of undergoing conversion in the beampipe, pressure vessel or Jet chamber, a figure 

resulting from the 0.16 radiation lengths of material through which it must pass. 

Most of the rest of the background electron tracks come from the Dalitz decay 

tt" —> e4 e Less than one per cent come from other sources. The pT distri­

butions of these background electrons were found to be slightly dependent on the 

flavour of the event in which they occurred and thus it is convenient to distinguish 

between be', ce' and re', background electrons in b, c and r events respectively. 

The pr spectrum of background electrons in d, u and s events is illustrated in 

figure 8.8. The angular distribution of event axes whose sense was determined 

using these tracks is symmetric for each flavour, electrons produced from photon 

conversions having no memory of the charge of the parent quark.

The second type of background is that due to non-electron tracks. The prob­

ability that a track is not that of an electron being given by Pr = 1 -  Pt■ These, 

primarily charged pion, tracks were also found to have pr spectra somewhat de­

pendent on the flavour of the event in which they occurred and for b, c and r 

flavoured events were labelled br, cr and rr respectively. The pr spectrum of 

non-electron tracks in d, u and s events is illustrated in figure 8.9.

The angular distribution of the axes whose direction was determined from 

these tracks was not completely symmetric for a given flavour. Some memory 

of the charge of the parent quark was retained. The possibility of using this to 

determine the quark charge has been investigated by Wyatt (1983). Monte-Carlo 

studies indicated that the probability of a randomly selected charged particle, not 

including electrons, having the same charge as the parent quark of the jet in which 

it occurred rose linearly from 0.55 for tracks with very small pr to a maximum of 

0.60 for tracks with a pr of around 3GcV/c. This is only a slight increase over 

the probability of a half obtained if the particles carry no information concerning
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Figure 8 .8 . The Monte-Carlo background electron pr spectrum for d, u and s 

flavoured events.

F igure 8 .9 . The Monte-Carlo non-electron p r  spectrum for rf, u and * flavoured

events.



F igure 8.8. The Monte-Carlo background electron pr spectrum for d, u and s 

flavoured events.
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events.



the charge of the parent quark. Using the same argument as for the wrong jet 

electrons, the asymmetry measured using this effect would at most be a fifth of the 

genuine asymmetry. Nonetheless, attempts were made to include this information 

in the likelihood function. The result was that the function behaved badly, no 

maximum existing. This was probably due to poor understanding of the fine 

detail of the fragmentation process making the figures for the probabilities given 

above incorrect.

The remaining distributions of importance are those of the transverse mass. 

These, illustrated in figures 8.10, 8.11 and 8.12, are primarily dependent on the 

event flavours, although there is also a slight decrease in the mean event mass for 

events containing a prompt electron.

Following the discussion above the probability density function required can 

now be written down. The electronic part is

cos0) j r 6cpi,e(JW,p7’ )[S(cos0) + ¿i.cosfl]

+  r i,«P i.c e (M ,p r)[ .S (c o s 0 ) -  ^ c o s t f ]

+ »V'P(,e'(M,Pr)S(cos0)j-i-

N ^ r cepC'(M,pT)[S(cosO) -  ¿ccosfl]

-I- r«<pCe'(Ai,Pr)S(cos0) j + 
iy'rPrt'(M,pT)S(cosO).

In this expression the JVe are the relative frequencies of occurrence of an electron 

track in the event flavour concerned, the relative frequencies with which the various 

classes of electrons occur within that flavour being indicated by the r’s. The 

function

5(cos0) =  ¿(1 + cos20)O

is the symmetric part of the angular distribution.
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Similarly the non-electron probability distribution function is 

l r c o s 0 )  = N ( , p b r ( M , P T ) S ( c o s  8 ) +

NTcpCr (M, PT ) s  (cos 0) +

Nr Prr(M,pr)S ( c o s  0).

The values of the N and r were obtained from the Monte-Carlo. The p(M,pr) were 

represented, as previously described, using analytical functions obtained from the 

fits to the relevant Monte-Carlo data distributions shown in the previous figures.

Combining the above the complete probability density function is

l = P S  + Prlr.

The likelihood function is then
N

¿ = 1 1 ' '
l =  J

where /, is the probability density function evaluated using the M , pr and cos# 

values for the track, there being N tracks in all. Its logarithm is

N
L = ^ l n / t.

¿=i

To obtain the maximum likelihood estimates of Ac and Ab the above was 

maximised with respect to the c and b asymmetries. That is the simultaneous 

equations

dAc

and

were solved. Inserting the above 

these equations become

E

dL = 0
dAh 

form for L and performing

N‘ rcepce cos 6
l,

the differentiations
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and
NZ(riePbe ~  rbc'Pl'C'(M ’ PT))cOs0  0

»=1
The covariance matrix was formed from the quantities

d2L

and

where

and

#  i, = dA2
d2L

Hu ~ dAcdAb 
d2L

dAbdAc 
= #21

#  22 =
an
a a 2

a2 L Y '  :N‘ rcepce cos 0] '

1=1
d2L A  ¡# 'r « P c t cos0] [# fce(r(,epte -  rbcepfcce) cos0]

"  A  /?dAcdAh t=i

a 2L  A  |#fce ( rfctPfc, -  TbctPbct { M , P T ) )  COS0]

¿m ? "  ~ /?fc »= i
with Ac and Ah taking the values at the solution point of the simultaneous equa­

tions. The error of the c asymmetry measurement is then

# 2 2 ____
# 1 1  # 2 2  _  # ? 2

and that of the b asymmetry measurement

# . .
1 # 1 1  # 2 2  _  # ? 2
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Results.

The electron search found 7511 barrel tracks with a value of Pe > 0.1. The Pe, 

cos 6, M and pT distributions associated with these tracks are shown in figures 8.13 

to 8.16. The asymmetry of the raw cos 9 distribution is 0.0046 ± 0.0056. Figures 

8.17 and 8.18 show the M distribution of the events containing tracks with Pt > 0.8 

and the pr distribution of those tracks. The distributions of these quantities from 

the Monte-Carlo are also illustrated and match the data distributions well, giving 

confidence that the Monte-Carlo simulation of the electron data is good.

The fitting procedure described above returned the values 

Ac = -0 .15 ±0.15

and

Ai = -0.24 ±0 .16 .

Systematic effects from two sources were investigated. To study the influence 

of the fragmentation parameters chosen the constants N and r and the p(M,pr) 

functions were recalculated using Monte-Carlo data generated with the harder pa­

rameters ( c =  0.026 and ci = 0.009 and also with the softer parameters tc =  0.072 

and tf, = 0.030. These caused changes of about 17% and 12% in the c and b asym­

metries respectively. The effects of errors in the branching ratios were simulated by 

varying the relevant N and r by amounts proportional to the measurement errors 

for these quantities given in chapter two. The resulting changes in the asymme­

tries were 8% and 3%, respectively. Adding these figures in quadrature gives a 

systematic error of about ±0.03 for both the r and b asymmetry measurements. 

So
Ac = -0 .15 ± 0.15 ±0.03 

Ah = -0.24 ±  0.16 ± 0.03
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F igure 8 .13 . The distribution of the electron selection variable Pt .
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F igure 8 .14. The cos 0 distribution of the electron events.



F igure 8 .15. The M distribution of the events containing a track with Pt > 0.1.

F igure 8 .10. The pr distribution of the tracks with / ’, > 0.1.



Figure 8.17. The M distribution of the events containing tracks with Pt > 0.8 

(circles) compared with the Monte-Carlo expectations (solid line).
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Figure 8.18. The pr distribution of the tracks with P, > 0.8 (circles) compared 

with the Monte-Carlo expectations (solid line).



in good agreement with the expectations of the Standard Model as obtained in 

the second chapter, namely

= -0.13

and

A},0  =  -0 .23 .

That the errors with which these numbers are determined are reasonable 

may be checked as follows. The summed probability that the tracks be due to 

electrons, for all the tracks used in the fit, is 2916.7. The data thus correspond 

to a sample of about 2900 inclusive electron events, of which, according to the 

Monte-Carlo, about 330 contain c —* e decays and 180 6 —> e decays. The errors 

of asymmetry measurements made using pure c and b prompt lepton event sam­

ples containing these numbers of events would be 0.05 and 0.07 for Ac and At, 

respectively, assuming full acceptance. The discrepancy between these numbers 

and those obtained is due to the effects of fitting in the presence of a background 

and the limited acceptance of the JADE detector. This latter effect is particularly 

important here as the acceptance for inclusive electron events, with the constraint 

that the electron track must lie within |cosfl| < 0.8 decreases rapidly as the event 

axis approaches the beam pipe. The acceptance is thus poor in exactly the region 

in which asymmetries are most strongly manifest.

T h e A x ia l Coupling Constants of the c and 6 Quarks.

As presented in the second chapter, in the Standard Model the asymmetry 

A/ is given approximately by

Ay = k° - ^
9/

k being a numerical factor dependent on the energy. I he error introduced by 

the approximation is small compared to the measurement errors involved and so 

its use is justified. Including the corrections discussed in chapter two, which are
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different for the different flavours, k takes the values 0.0851 and 0.0798 for c and 6 

quarks respectively at a centre of mass energy of 35G W . The above asymmetry 

measurements thus correspond to

aeac
—  = -1 .8  ±  1.8 ± 0.4

Qc

and
a,at,
—  =  -3 .0  ± 2 .0  ± 0 .4 .
Qh

Using the value of ae measured in neutrino scattering experiments, given in chapter 

two, the ratios of the quark axial coupling constants to their charges are

— = 1.7 ±  1.7 ±0 .4  
9c

and

— = 3.0 ±  2.0 ±0 .4 ,
9f>

the error of the ae measurement being insignificant compared to the errors arising 

from the asymmetry measurements. Assuming the electric charges of the quarks 

to be 2/3 and -1 /3  for c and 6 flavours respectively, the axial coupling constants 

are

ac =  1.2 ± 1.2 ± 0 .2  

and

06 = -0 .98 ±0 .67  ±0 .17 .

These results are in agreement with both the Standard Model expectations of 

ac = 1 and 06 = -1  and previous measurements, the results of which are given in 

tables 8.1 for ac, and 8.2 for 06.

Alternatively, assuming the axial coupling constants take the expected values, 

the quark charges are measured to be

qc = 0.58 ±0 .58  ±0.13

and
qh = -0.34 ±  0.23 ± 0.06.

107



Table 8.1, Measurements of Ac and oc.

Group V^(GeV) Ac (measured) Ac(group’s expectations) ac Method
MAC 29.0 -0.05 ±0.11 -0.03 1.6 ±  3.6 c —> ß
HRS 29.0 -0.25 ±0 .18 -0.09 2.6 ±  1.9 D*
TPC 29.0 - - 2.0 ±  1.0 c -♦ e,p
TPC 29.0 - - 1.8 ±  1.8 D*
MARK J 34.6 -0.17 ±0 .09 -0.14 1.2 ±0 .6 c —> fl
JADE 34.4 -0.27 ±0.14 -0.14 1.9 ±  1.0 D*
TASSO 34.4 -0.13 ±  0.10 -0.14 0.9 ± 0 .7 D*

The weighted mean of these results is ac = 1.36 ± 0.36. The errors given are 

statistical only, these being larger than the systematic errors in all cases.

Table 8.2, M easurem ents o f  Af, and at,.

Group y/s(GcV) A b (measured) A/,(group’s expectations) 06 Method

MAC 29.0 -0.07 ±  0.09 -0.12 -0 .6  ± 0.7 6 -  M
MARK II 29.0 - - ~ -2 .6 ±^ b —» e,n

TPC 29.0 - - -1 .5  ±  1.4 b -> e,p
MARK J 34.6 -0.15 ±0.22 -0.25 -0 .6  ±  0.9 b —> n

TASSO 34.4 -0.38 ± 0.28 -0.27 -1 .4  ±  1.0 b -* p

JADE 34.6 -0.228 ± 0.060 -0.252 -0.90 ±  0.24 b -* n

The weighted mean of these results is a* = -0.94 ±  0.20. The errors given are 

statistical only.

The figures in the above tables are taken from Naroska (1983) with the exception 

of the results from the TPC group, are from Aihara (1985).



Chap ter 9

B°B° Mixing and the 6 asymmetry

B°B° mixing is the phenomenon in which the transitions B° -> and 

B° —» B° occur via, to lowest order, diagrams like those illustrated in figure 9.1. 

If this mixing occurs it implies that it is possible for events to occur in which the 

initial 6 and 6 pair decay as two 6 quarks or as two 6 antiquarks, the probability 

of this happening depending on the rate of the mixing transitions, the lifetime of 

the b quark and the frequency with which B° and B° mesons are produced in the 

fragmentation process.

The traditional means of looking for B°B° mixing is to exploit the infor­

mation as to the quark charges available when semi-leptonic decays occur. The 

relative number of b events in which two oppositely charged leptons are produced 

in opposite jets and in which two like charged leptons are produced in opposite jets 

being partially dependent on the amount of mixing that has occurred. Ignoring 

the problems of identifying the prompt leptons in question the main background 

arises from events in which the quark has decayed through the cascade b -»  c -> / 

or the antiquark through the charge conjugate decay chain. The result of this is 

that the charge of the lepton is opposite to that of its parent and some like sign 

opposite jet di-lepton events are expected even in the absence of B°B° mixing. 

Results are normally presented in terms of the ratio r of the number of mesons 

that decay in their original guise to those that decay as the conjugate partner, 

that is
_ N(B° -> B° f+) 4 N(B° -> B° -»  / - )  

r ~ N(B" -» / “ ) + N(B° -> Z+)

Rapid mixing, in which the transition rate is such that many mixing transitions 

occur before the B° mesons decay, that is the product of the B° lifetime and the 

mixing transition rate is much greater than one, gives rise to r = 1 while if no 

mixing occurs r =  0.
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Figure 9 .1 . Feynman diagrams for B('D° mixing.



There are two types of B° meson, that formed from a b and an s and that 

formed from a b and a d. The mixing rates for these two sorts of mesons, called 

f i“ and Bj respectively, are not necessarily the same. Indeed the fact that b -+ c 

transitions are much favoured over 6 —» u suggests that the rate of mixing is likely 

to be much larger for than for B(j mesons. The ratios r for B% and B°d mesons 

individually are labelled rs and rj respectively. The total mixing ratio is then

r =  PdTd + P»r,

where Pr and Pf are the proportions of B'J and B(J mesons produced in the frag­

mentation.

From a study of like sign dilepton events the CLEO group concluded that at 

the 90% confidence level rj < 0.10. They are unable to measure r„ as the energy 

of the electron-positron annihilations they study is below the threshold for the 

production of a B̂ 'B̂  pair. A similar study has been performed at PEP, where 

the higher energy enables production of both Bd and B mesons. This showed 

that r is less than about 0.2 (MARK II, 1985), again at the 90% confidence level.

The value of r may also be deduced from b asymmetry measurements in which 

the quark charge is tagged using a prompt lepton, provided it is assumed that the 

asymmetry with which the quarks were produced, A, is that given by the Standard 

Model. This is possible as the effect of incorrect tagging due to mixing is to reduce 

the measured asymmetry to A\ in the same manner as described for ‘wrong jet’ 

electrons in the previous chapter.

The relationship between A, A' and r may be determined as follows. In order 

to make the analysis independent of the value of A and hence of energy it is 

performed in terms of

109



The argument is given in terms of B° mesons, it applies also to B  ̂ mesons when 

the charge conjugates of all the particles are taken.

Suppose that the number of B° mesons produced in the fragmentation is Nq. 

The number which, after undergoing mixing, decay to give positive leptons is

where B¡~ is the branching ratio for the production of negative leptons from all 

particles, other than BCl mesons, containing 6 quarks, in the proportions produced 

in the fragmentation process. Using the figures given in chapter two for the ratio 

o f flavour production in the fragmentation process and for the ratio of baryon to 

meson production, Ro is found to be 0.55. This value o f Ro will be assumed for 

the remainder of the discussion, it should be noted however that it has not been 

measured.

If Nf b quarks are produced in the forward direction and Nb in the backward, 

then the number tagged as being in the forward direction is the number of forward 

jets containing a negative lepton. That is

where B(° is the branching ratio for the decay flu -> / “ . The number which decay 

to give negative leptons is

If these No neutral B mesons are a proportion Ro of the N particles produced in 

a sample of b events which contain the initial 6 quarks, then in terms of N

and
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The first term represents the number of forward jets arising from forward quarks, 

the former being smaller than the latter due to mixing, the second term is due 

to forward antiquarks in which mixing has produced what is tagged as a forward 

quark jet. Assuming that B\' = Bt =  £?/, in accordance with the spectator model, 

this becomes

A(2Ro -  1) + A'
where the last result is obtained by substituting for A.

Alternatively the information concerning r available from b asymmetry mea­

surements may be extracted from the values of the axial coupling constant of the 

6 quark, a[, obtained from those measurements. As

Similarly

The measured asymmetry is then

/ 1  + r — 2rRo \  Nf  — Nb 
\ 1 + r /  Nf + Nb)
1 + r -  2rRo .
-------------------------- A

1 + r

Hence

2rRo
1 +  r

for all energies. Thus
A

2R0 -  A
A -  A'

it is seen that
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Using Of, =  - ]  this becomes

r _ * + <
2R0 -  1 -  a['

The measurement of the 6 asymmetry reported in this thesis is not precise 

enough to enable a limit to be placed on r. If it is combined with the result for 

the the 6 asymmetry previously obtained by the JADE group (Bartel, 1984a), the 

range of values which r may take can be somewhat restricted. The measurement, 

made using a sample of inclusive muon events, gave

A' =  0.228 ±  0.060 ± 0.025.

Combining this with the result obtained in this study, and adding the systematic 

and statistical errors in quadrature gives

A' = 0.230 ±  0.060,

the result being dominated by the measurement made with the inclusive muon 

sample. This gives

r = - 0 . 0 0 1 ip

or, at the 90% confidence level,

r < 0.40

where it has been assumed that the expected Standard Model 6 asymmetry is 

exactly known.

Mixing in the D0D~° system may, in principle, be investigated as above. There 

are however as yet no measurements of the c asymmetry of sufficient precision to 

enable limits to be set on this process.
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Summary

A brief description of aspects of the Standard Model was given, particularly 

those of relevance to the study of electron positron annihilations into quarks. The 

expected asymmetries of the production angle distribution of c and b quarks, with 

respect to the electron direction, including corrections due to the quark masses 

and QCD effects were found to be

= -0.126 ±  0.010 

and

A P J' = -0.230 ±0.020

where the errors arise as a result of the precision with which the parameters of the 

Standard Model are known.

A method of identifying electrons in multi-hadronic events recorded using the 

JADE detector was developed. The method gives, for a track entering the barrel 

part of the electromagnetic calorimeter, the probability that the track was that of 

an electron.

Techniques for the identification of the flavour of multi-hadronic events were 

investigated. It was found that, of the quantities studied, lepton momentum trans­

verse to the event axis and the transverse mass of the event provide the clearest 

indication of an event’s flavour. Furthermore, these two quantities are to a reason­

able approximation independent. They may thus be used effectively in conjunction 

with one another.

The problems associated with the measurement of the asymmetry of the pro­

duction angle of the quarks to the electron direction in electron positron anni­

hilation were considered. The advantages of using a maximum likelihood fit to
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the production angle distribution were demonstrated, these being the fullest use 

possible of the available information and the independence of the results obtained 

on detection inefficiencies symmetric in the quark production angle.

A measurement of the c and b quark asymmetries was made, the results of 

which were

Ac -  -0 .15  ±0.15 ±0.03

and

Ab = -0 .24  ±0 .16 ±0.03

respectively. From these results, assuming the charge of the c quark to be 2/3, 

that of the b quark to be -1 /3  and the axial coupling constant of the electron to 

the Z° to be -1.02 ±  0.12, as measured in neutrino scattering experiments, the 

axial coupling constants of the c and b quarks were calculated to be

ac = 1.2 ± 1.2 ± 0.2

and

Of, = -0 .98  ±0.67 ±0 .17 .

These results are in agreement with the Standard Model expectations.

It was shown that the measurement of the quark asymmetries using lepton 

inclusive multi-hadronic events enables the study of mixing in the neutral me­

son systems, provided the Standard Model expectations for the asymmetries are 

accepted. An expression relating the decrease in measured asymmetry to the pa­

rameter r, conventionally used to describe mixing, was derived. A previous JADE 

measurement of the b asymmetry, made using an inclusive muon sample, combined 

with that above was used to determine the limit, at the 90% confidence level

r < 0.40
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