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SYNOPSIS

The present investigation has been carried out to determine the
performance characteristics of a Capillary Compensated Hydrostatic
Bearing System, consisting of two journal and one double film thrust
bearing. A theoretical analysis of the journal bearing, including
the squeeze film equation, is presented and a procedure for the
design of the hearing pad geometry for both the steady and dynamic
loads is outlined.

Digital Computer Programs have been employed to determine the
steady load deflection curve, the rescnant frequency, damping ratio,
modal shapes etc. of the spindle in the bearing system, and these
have been discussed with the experimental results on the test rig.

The importance of the temperature effects on the performance of
hydrostatic bearings has been studied, and the heat dissipation in
the journal bearing was obtained from the circumferential and radial

temperature measurements.
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CHAPTER I

INTRODUCTTION




INTRODUCTION

A hydrostatic bearing supports a load on a fluid film, maintained
under pressure by an external source of power, whereas this power has
to be generated within the bearing by the relative movemen# of the
mating components, in a hydrodynamic bearing. Hence, the main
attraction of hydrostatic bearings is their ability to carry loads
even at zero relative velocities. Since there is never any metal to
metal contact, the power loss due only to the shearing of the oil film,
is generally small, approaching almost negligible values for low
speeds. This also eliminates wear of the components and ideally they
need never be changed. Besides being capable of carrying large loads,
very high stiffness can be obtained with the range of compensating
elements and techniques available to the designer today. They are
suitable for automatic control operations and lend themselves easily
to pressure feed back systems for design of bearings with almest
infinite stiffness.

For these and a few other reasons, the hydrostatic bearings are
now being incorporated in a range of equipment and a considerable
volume of literature has accummlated describing their various
applications.

Since these bearings have a separating oil film between mating
machine elements even at zero speed, they are useful for supporting
and easy starting of heavy loads, like turbogenerators, telescopes, etc.,
thus eliminating the high starting torque inherent in any hydrodynamic
bearing. Machine tool manufacturers are employing these bearings to
support large machine tool beds capable of moving easily and rapidly
without any stick-slip motion. Air bearings are being developed for

high speed spindles of grinding machines for very accurate machining
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processes, the low viscosity of the alr keeping the power requirement and
heating to a minimum, while the load is supported by the external
pressure.

While -a considerable amount of research has been done in the field
of hydrostatic bearings, it has largely been confined to the development
of the theoretical amalysis and design procedures from static stiffness

considerations. Recently, some work has been done on tapered land
*

ﬁournal bearings for self alignment by MANNAM, FOWLER and CARPENTER1

and by KEARNEY® on Master and Slave bearings. HIRS® has worked on
bearings with inherent friction compensation and investigations were
carrvied out by SHINKLE and HOI%I\IUI\TG':}+ on the friction characteristics of
journal bearings including the effects of turbulence.

‘However, not much work hag been reported on the dynamic analysis
of hydrostatic bearings, nor the effect of temperature on their
performance characteristics. With increased emphasis on surface
finish in metal cuttigg processes and application of these bearings for
high speed spindles both these factors have assumed great importance
and further investigation is necessary for a complete understanding of

these phenomenac

1.1, Dynamic Analysis of Hydrostatic Bearings

ROYLI, HOWAﬁTH and CASELEYwHAYFORD5 presented a theoretical analysis
for static and dynamic performance of single circular and rectangular
pads (with one dimensional flow), and discussed the application of pilot
pad éensing technique with an external compensating valve to provide -
almost infinite stiffness for a journal bearing. The oil flow being two
dimensional in a journal bearing, the damping coefficient is likely to
be much smaller and in the absence of experimental inveétigation it is
difficult to say how far this analysis is applicable to it. Since thé

automatic control valve is likely to prove even more useful for dynamic

* Numbers refer to Bibliography.
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loading, it would have been of interest to know more about the dynamic
behaviour of the bearing.

In his M.Sc. thesis submitted at M.I.T.,, U.S.A., SCHER6 investigated
the dynamic performance of a hydrostatic journal bearing with feed back
control, and step input to the bearing system. The test rig consisted of
a bearing with only two pads, grooved inside the journal and the discussion
was confined to a stationary journal (no rotation) and load applied only
along the centre line of the top and bottom pads. However, discrepancies
were noticed between the experiments and the theoretical analysis and it
seems that the squeeze film equation is considerably altered due to the
0il flow in both the axial and circumferential directions, and even with
large circumferential lands, the latter cannot be neglected.

BROWN7 simplified the analysis of a thrust bearing by converting
its parameters into an enclosed piston and c¢ylinder arrangement with
oil flow through an external restrictor, thus considering the combined
effects of hydrostatic oil flow and oil compressibility, neglecting the
squeeze film effect. Since the squeeze film effect i1s considered to be
more important in hydrostatic hearings, than the oil compressibility,
it is doubtful how far the claims of good experimental results are just-
ified or may be generalized for predicting behaviour of other bhearing
systems. Moreover, the convertion of the system into a piston cylinder
arrangement is in effect a closed bearing and not a total loss system as
the hydrostatic thrust bearing.

The frequency response characteristics show that the dynamic stiffness
of the system is.greater than the static stiffness at all times, with a
considerable degree of damping, making the hydrpstatic thrust bearings
very suitable for machine tool applications.

The dynamic anélysis and the squeeze film equation for a flat
rectangular pad with one dimensional and two dimensional flow was presented

by MORI and YABES, and it was then modified for a L-pad journal bearing
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with axial pressure relief grooves. The equations for the two dimensional
{low were solved independently in the two directions of flow, but without
any experimental verification the validity of the assumptions could not

be established.

A detailed analysis of a circular pad thrust bearing for dynamic

loads was presented by LICHT9

N

and damping constants for the evaluation of the dynamic response were

, and the equations for the local stiffness

derived. The results for the equation of motion were obtained with an
analog computer. A few important points raised in the discussion of

the paper are worth mentioning here. RICHARDSON suggested the consider-
ation of the liquid compressibility effects in the analysis, since it
had been found by LUMING at M.I.T., that compressibility of the oil
could not be neglected. SNECK presented a modified continuity equation
as .it was doubtful if the steady state flow equation presented in the
paper, could be used to describe a non-steady phenomenon. Hé also
derived equations for determining the permissible vibrational frequency
for which the inertial effects could be neglected.

HUNT and TORBE1O also analysed a circular pad thrust bearing for
static and dynamic sinuisoidal loads. Equations for static load
capacity and stiffness were derived and were later extended to include
the effects of the dynamic load. Though rotation of the pad was not
considered, yet considerable agreement was obtained with experiments
performed in the static condition.. further work was proposed to deter-
mine the inaccuracy involved in aésuming the hydrostatic bearing as a lin-
ear system, i.e,constant stiffness, and since the stiffness of the thrust
bearing varies with film thickness, it would be of interest to see the
results of the further analysis.

' In his paper presented at the 7th International Machine Tool Design
agd Research Conference, DE GAST=11 referred to the experimental work done

- on a journal bearing with dynamic load, though no theoretical analysis
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was included. A graph showing the change in phase angle between load and
deflection and the change in deflection amplitude for different supply
pressures (at the same load and frequency) was presented. The damping
was found to increase with the frequency and due to excellent damping
charécteristics and high natural frequency of the restrictor membrane,

no instability problems were encountered in the system.

1.2, Temperature Lffects in Journal Bearings

With the increased application of hydrostatic bearings, a
discussion on its relative merits and demerits over the traditional
hydrodynamic bearing, for all aspects of performence, is inevitable.
The development of design procedures for hydrodynamic bearings had
generally been based on their lbad carrying capacity and stiffness
characteristics. However, with the application of bearings for very
high speeds; the temperature and heat dissipation aspects became
increasingly important, as very often the bearings designed to provide
adequate load capacity failed due to excessive temperature rise. It
jis felt that the development of the hydrostatic bearings is also likely
“to follow a similar cycle. Therefore, though the temperature effect is
important by itself in the study of hydrostatic bearings, yet any such
work will nécessarily be considered in the light of results obtained for
hydrodynamic¢ bearings.

Research on heat dissipation and temperature distribution in
bearings has been going on since the early 1930's and in his paper

KTINGSBURY 12

showed that the internal heating of the oil film was an
important factor in limiting its load capacity, which was approximately
proportional to the shear stress that could be maintained. Three fund-
amental equations relating oil viscosity, shear stress and temperature

were derived and experimental verification was obtained by determining

the reduction in shear stress due to temperature rise.




The heat generated in a bearing is clearly dissipated along three
paths, i.e. heat conducted to the bearing housing and to the journal,
and heat carried away by the oil. However, it is interesting to see the
different results obtained by various authors depending upon the
assumptions made in their respective analyses. KARELITZ13 defined Phe
types of bearings according to the oil supply, upon which depended the
main mode of heat transfer. He showed the essential difference between
bearings with copious supply of oil, such as oil ring lubricated
bearings where the oil was brought into contact with the shell all
around the circumference, heat was transferred to the bush at all points
and a large variation in temperature along the bush did not occur - and
bearings with drop feed where bearing clearance was substantially empty
and not only was the heat generation more concentrated but the trans-
mission of heat to the shell was also localized to the pool of oil
between the journal and the bearing. It follows that in the first type
of bearings, the oil would carry away a substantial portion of the heat
generated, wﬁile in %he second type the heat must be transferred mainly
by conduction through the bearing housing.

HERSEY14 outlined in detail the problems of temperature rise in
the bearings and the research necessary for better understanding of
their performance characteristics.~ It was stated that while the previous
design coﬁsiderations had been the load capacity and stiffness, in future
the limiting factor would be the temperature rise in the bearing. An
analytical method for the solution of temperature rise was discussed in
terms of heat generatéd and heat dissipated with the intermediary of an
independently determined relation between the lubricant viscosity and its
temperature. MUSKAT contended however, that this procedure required the
heat transfer coefficients for a bearing desipgn which are not readily
available and if indeed there were a satisfactory method for determining

the lubricant film temperature independently, the procedure put forward
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may perhaps be better used for the calculation of effective heat transfer
constants. A method was suggested and was later employed by MUSKAT and

MORGAN15

to obtain the friction coefficient by torque measurement and thus
the oil viscosity, and from the oil viscosity - temperature charts, the
average film temperature.

An analysis for lightly loaded bearings at high speeds with
negligible spindle eccentricity was presented by BOYD and ROBERTSON16o
While MUSKAT and MORGAN assumed negligible heat flow to the oil, BOYD
and ROBERTSON neglected the heat lost to the bearing housing. For
hydrodynamic bearings, where the oil flow is not extremely high, this
assumption with bush temperatures of 180°F could not be valid and hence
the two analyses are likely to oversimplify the theoretical calculations.

CLAYTON and WITKIE ! experimentally determined the circumferential
and the radial temperature distribution in the journal bearing and from
the radial temperature gradient extrapolated the actual temperature of
the bearing bush. However, this method of extrapolation could lead to
erroneous results, especially when the bush and the main housing are of
different materials (as is often the case) and inclusion of a thin
fluid £ilm between them cannot be overruled,

An experimental investigation on temperature effects in Journal

189 by setting thermocouples in the

bearings was also carried out by COLE
circumferential and radial divections. The temperature maxima were
observed to be displaced in the direction of motion from the load line,
and were probably'at the miniwmum film thickness. An approximate figure
for heat loss by conduction was obtained as 20 to 25% of the total power
loss and the oil flow accounted for 40% heat dissipated at low speeds
and 60% at high speeds. The ex@eriments showed the occurnfence of large
variations of temperature, hence viscosity, circumferentially in high

speed journal bearings. The bush crown temperature gave a fair approx-

imation of the maximum temperature but the oil outlet temperature, which




8
is often taken as the measure of operational safety, was well below the
maximum and hence was an unreliable criterion. The heat balance showed
that the assumption of complete dissipation of heat by the oil could be
misleading.

PINKUS and STERNLICHT 2 presented an analysis for the circumfer—
ential temperature distribution in the mid-section of a journmal
bearing. Since the maximum temperature in the bearing occurs in the
oil film with maximum rate of shear and its experimental determination
is difficult, this analysis is useful, however, the neglect of heat
transfer to the bearing body by conduction and the assumption of all
the power dissipated to the oil film, divorced as it is from actual
conditions of performance, make the analysis of limited use.

The equations for the adiabatic temperature distribution for both
the short and the infinite bearing were presented by PURVIS, MEYER and
BENTONEOu This theory also neglected the heat conduction to the bearing
housing and the maximum temperatures are therefore likely to be higher
than found in préctice. Moreover, only oil flow due to viscosity was
considered and since flow in the axial and circumferential directions
due to pressure gradient and velocity was neglected, it is likely to
introduce serious errors while performing with high spindle speeds and
eccentricities.,

ORLOFF>! presented the analysis for the coefficient of friction for
journal bearings from Reynold's equations, which correlated well with
the results of the experimental investigation. A heat balance of the
bearing was prepared and though it neglected the heat loss to the
bearing body, yet it demonstrated the considerable effect of temperature
rise on the load capacity of the bearing. It was suggested that better
performance and greater load capacity of the bearing coild be achieved

by lowering the inlet oil temperature.
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As has been mentioned earlier, not much work has been reported on
the effects of temperature rise in hydrostatic bearings. DE GAST11
obtained the temperature rise of the oil coming out of the bearing during
performance. Since the oil outlet temperature has generally proved to be
much lower than the temperature in the bearing, no real indication of
the actual temperatures is thus available from these results.

CUENCA and RAYNER22 presented a numerical solution for a circular
pad hydrostatic thrust bearing with central fluid supply assuming
negligible rotational speed and isothermal boundaries, and it was shown
that the load capacity was 32% less than calculated by the isothermal
theory. However, the analysis in its present form is inadequate and of
limited practical use. Since the temperature is a function of the heat
transfer to the oil and the bearing housing, the latter cannot be
neglected for any realistic determination of fthe reduction in load
capacity. Moreover, larger heat is generated due to the relative
movement of the parts and shearing of the oil film during actual
performance, while only the tempefature due to the pressure gradient
has been considered in this analysis.

An investigation into the performance characteristics of a capillary
compensated hydrostatic bearing system for steady radial loads was carried
out and submitted in an earlier thesis by the author23, wherein results
of the preliminary study of the temperature effects and temperature
distribution in the bearing were also included. The present work may be
considered as an extension of the previous work and therefore, has to be
seen in that context. Effort has been made to presexrve the continuity of
the whole work by reference to salient features of the previous work and
inclusion of the main results.

The purpose of the present work therefore, was to study the bearing
system in greater detail with special reference to its dynamic character-

istics, i.e. natural frequency, damping ratio etc., and to outline a
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procedure for design of journal bearings from not only the steady load
considerations, i.e. load capacity, stiffness; power requirement,
rotational flexibility etc., but also the dynamic load. While the
stress has been on the theoretical analysis and performance of the
journal bearings, the whole system has been studied as envisaged for
application to machine tools.

Computer programmes have been prepared to determine the static
and dynamic response of the system and experiments were performed to
see how far these could be applied to actual bearing systems.

The importance of studying the temperature effects in bearings
needs no further elaboration and since the damping factor is so
susceptible to oil viscosity changes due to temperature rise in the
bearing, it becomes even more urgent for dynamic loads. Hence, it
was proposed to study the effect of temperabure rise on the perform-
ance of the journal bearing and to prepare a heat balance of the
bearing from temperature measurements on the oil and in the bearing

housing.




CHAPTER IX

ANALYSIS AND DESIGN OF HYDROSTATIC JOURNAL BEARINGS WITH CAPILLARY

COMPENSATION




ANALYSIS AND DESIGN OF HYDROSTATIC JOURNAL BEARINGS WITH CAPILLARY

COMPENSATION

Hydrostatic journal bearings may consist of 3, 4 or more pressure
pads, each supplied with oil of the same pressure and each independently
compensated by restrictors of the same characteristics. Journal: bearings
with pressure relief grooves between pads as well as bearings with main
pads to carry load and pilot pads for load sensing and pressure feed
back control have also been employed.

The design of compensated hydrostatic journal bearings for .
application to machine tool spindles requires consideration of both the
steady and the dynamic conditions of loading since they are subjected to
steady preloads and dynamic cutting loads in metal cutting processes,
The main factors of consideration for steady lcads arej
(a) Load carrying capacity
(b) Stiffness
(¢) 0il flow
(d) Total power requirement
(e) Resistance to tilting

In its broad form, therefore, the design of the hydrostatic bearing
can be considered as the selection of a pad configuration (Fig. 1), its
geometry and radial clearance, to carry the load, provide the stiffness
and ensure that the power requirement and the oil flow are not excessive.

The analysis of a capillary compensated journal bearing for steady
loads was partly covered in an earlier thesis  and published by the
author and COWLEYaq} where the expressions for load carrying capacity,
stiffness, oil flow and power requirement were derived. To enable the
present investigation to be seen in its true perspective, the results of

the previous analysis will be included here, while the resistance to

11
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tilting and subsequent work will be fully discussed.
A list of notations used in the analysis is given in Appendix I.

‘2.8, Load Carrying Capacity

The load capacity of the journal bearing, for load acting into
the pad as shown in Pig. 1, is given by the equationj
= Kl 1f Ps see (1)
When the load acts in any arbitrary direction, the load capacity

is given by;

n=
= K, p, I, p, (vector sum) ves (2}
where = DL (1 - el) sin « ees (32
2
1, = (o5 -y e ()
and p, = ratio of the nth pad pressure to the supply pressure.

The pad pressures can be determined by equating the oil flow
through the bearing pad and the capillary restrictor23. Thus, when
the load acts into the pad (Fig. 1) the ratios of the respective pad

pressures to supply pressure are given by the equations;

1"

Z + bmp T
by = Ei ves (5)
Z + f3 + mfz
Z + bmp. £ "
p, = ——1 o (6)
7+ f1 -+4mf1
111 1]
Z+ 2m (p,f, + p.f, )
and p2 = pl‘. = T ’l 1 "3 3 " eee (7)
7+ fa + 2m (f1 4—f3 )
d L el
where 2 = (=) ees (8)
ég h3 D1
m = (_I_l)a 61(1 -2 el)

aa(,l - ea) LA N ] (9)
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nm

f = T+ be L(cos o + sin &) sin 5

+ (cos o - sin @) cos -n-ég:]

+ 3e2 [g = CcOS N1 sin 2«]

.2_3[-11!1 - cos BT
+3e (s:.nac«oscv cos 5

sin @) (-g— + -;— cos ni cos 2a)

mm BT a5 1
+ (cos 5 cos @ - sin - sin o) (‘2 5 COS nm cos aai'
ees (10)
and £ = El-a-ecos (m-aZIB (11)
n 2 LN N )

Similarly, when the load acts into the circumferential land, the

ratios of the pad pressures to the supply pressure are;

72(Z + f#' + hme")

p> = P = " see (12)
3 2 (Z f T II)( ] ") ( N)E
+ L + me3 Z + f3 + amf3 - me3
¢ "
72(2 + f3 + ’-an3 )
and p4 = p,l - Ly X (13)
(Z + £, +omf, Mz + £, + 2mt, )=(2me," )2
4 3 3 3 3
2+1beStiffness

An exact expression for the stiffness of the journal bearings is
rather complicated to derive and has not been included here, however
the slope of the load eccentricity ratio curve gives a fair approx-—
imation of its value. Therefore, the stiffness can be obtained from
the equation

S ;—}; o | vee (18)

2e1¢.01i1 Flow

a) Vhen the spindle is concentric in the bearing, the oil flow ‘is

given by the equation;

psthoB 4 ,
9% = 2 o ceo (15)
where K, = =02 ces (16)

£ Lel
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b) UWhen the spindle deflects in the bearing due to external load,

the equation for oil flow is;

5
pstho n=h ?
Q noaﬁw nfq (pnfn ) 000 (17)

2.1d, Total Power Requirement

The total power requirement of a journal bearing is the sum of the

power required to pump the oil and the power lost in shearing of the

oil film due to spindle rotation, aund is given by the equation;

3
P - tho (-ém) 2 + HNZK (18)
o © z%600p ‘ma P 766000h,,
wbere K = DL [1 - ea(1 - 2 e1]] eee (19)

By differentiating equation (18), and equating to zero, the optimum
oil film thickness can be calculated for which the total power

requirement is a minimum. Hencej

K z
: ™4
oy = 04362 /%‘-E- [ﬁ- (“E“”)_] vos (20)

2.18. Resistance to Tilting

There is nothing in the mechanism of operation of a hydrostatic
journal bearing to readily suggest that it has any substantial resistance
to spindle inclination in the bearing. However, a complete understanding
of this phenomenon is necessary, not only for the correct prediction of
the spindle deflection due to steady loads, but also for accurate
evaluation of the natural frequency and damping ratio of a bearing
system, as wili be shown later. When the spindle assumés an inclined
position in the bearing as shown in Fig. 2, it causes a convex pressure
distribution over the axial land in section (a) and a concave pattern
in section (b), instead of a linear drop assumed for horizontal position
of the spindle. The difference between the forces acting over the

lands, represented by the difference between the areas under the curves,
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causes a balancing couple on the spindle. The moment produced by one
radian inclination of the spindle will be called the rotational stiffness
of the bearing, and its inverse will be referred to as the rotational
flexibility.

To avoid any confusion between the bearing stiffness to steady
normal. loads discussed earlier, and the rotational stiffness, the former
will henceforth be called the normal stiffness and its inverse as the
normal flexibility.

Consider the oil flow through section (a) (Pig. 2), then the
equation of the equilibrium of forces acting over a small element of

the oil of unit width isg

I

B o] - foegen -]
[}p + &0 dx) = p| dy (v + T dy) - 7| dx eeo (21)
from which on simplification,

% _ ot

ax By 006 o (22)

As shown in Appendix IT, the equation of the olil flow is;

. _b? ap
qx = ’,TZZ'E dx ¢eo (23)

If the spindle inclination in the bearing is &, then the oil film

thickness anywhere in section (a) can be expressed asj;

hx = (ho - QDC) s o0 (21"’)
Now, the rate of flow is a constant; therefore,
3
Yy g Bt gy
dx = dx 121 dx
2
ap dp

or (ho + ax) S+ 30 s = 0 eoo (25)
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The solution of the differential equation (25) is;

p = _(_;l + .aa_c_..,a o (26)
xa 20 ( ho+ax)3

Applying the boundary conditions,

Pgg = Pr x = -1

il
t
=

and P = 0’ X X (27)

Xa

The equation for the pressure over the axial land in section (a)

is;
p(h_ - o1,)? [ (n, = o1,)? ] -
p o= - 1 sae 2
xa 2 2 2
(ho - oéla) ~(h - a11) (h0 + ox)
Similarly, the equation for the pressure in section (b) is;
p(ho + crl,])a (hO ¥ alz)a
be = ( )2 2 [ 2 - 1 oess (29)
h + al, "(ho + Q’l,l) (ho + ox)

The forces acting over the axial lands in sections (a) and (b)

can now be found by integrating the pressure equations; thus;

p "2 %
Fa = 3 f Py, ©OB B dB (-dx)
-l %
-1 '
= D sin a, f P, dx ees (30)
-1,

Which on integration and simplification gives;
Dp sin aé(ho - 014)2
F = (h - ol ) -
® ‘ 2 2 o T2
tho - 012) -(ho -~ ol,) ] _

2
(n, - o)

(ho - ol )

—a(12~3.1):] eos (31)

And similarly, the equation for the force acting over the axial

land in section (b) is;
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Dp sin o, (h_ + ol )2 (@ +a1)?
F, o= 2.0 1 [ 2 2 - (h0 + a&a)
ar[(ho + 01'12)2 - (h0 + ol )2] (ho * al‘l)
el a(la b 11>] cee (32)

Since the pressure profiles over the axial lands form approx-
imately a triangular shape (Fig. 2), the resultant of the forces can
be assumed to act at distances %»1 from the side edges respectively.
Hence, considering the forces acting on the top and the bottom sides
of the spindle in a journal bearing, the total moment acting on the
spindle is; |

2

M o= £ (F, - F)Q, + 21) oo (33)

Therefore, the expression for the rotational flexibility is;

RF]. - 3“ ewneo (3"")
2(F, - Fb)(12 +21,)

Representing the ratio of the axial land to the total length of
the bearing as el, as in the previous analysis, the above equations can
be modified; thus;

i Dp sin ay[h = .5La(1 - 2¢1)] [(h o
2 cv[(ho - .sLa)‘?-%ho ~ .5Lo(1 - 2e1)}2] 0 7

(b, ~ . 5Ley)2

%ho - .5La(1 - 2e1)% N “Lel_l eee (312)

Dp sin t:zfa[h0 + JSLe(1 - 2@13]2
b a[(ho + .5La»)2«%ho + JSLa(1 - ael)%z]

(ho + 5Le)?
[ 2 - (h_+ .5L@) - aLel] ees (32a)
%ho + oSLa(1 - 2e1)} °

M = (Fa - Fb)L(’I - 1.33el) eeo (33a)

and RFl = - . 0o (3ha)
(Fa - Fb)L('l - 1.33el)

A typical pressure distribution over the axial lands due to spindle
inclination is shown in Fig. 2, while the variation in the rotational

flexibility for various axial land ratios is shown in Fig. 3. It is
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evident that a reduction in rotational flexibility is obtained by

increasing the axial land ratio as well as the spindle inclination.

2.1f.5election of Pad Geometry for a Journal Bearing

The procedure.for selection of the radial clearance for a
particular journal bearing configuration, for minimum power
requirement and the calculation of the capillary restrictor dimen~
sions for maximum load carrying capacity has been outlined in an
earlier thesis. It was shown that the load capacity of a comp-
ensated bearing was a function of the design factor, %2 (ratio of
the respective resistances of the bearing and the compensating
element, to oil flow), as shown in Pig. 4, and therefore depending
upon the eccentricity ratio at which the bearing was intended for
operation under full load, the design factor could be selected to
give maximum load capacity of the bearing. It was also shown how
the radial clearance could be selected for minimum power requirement.

The effect of the oil film thickness on the rotational flex-
ibility, normal stiffness, power requirement and oil flow in the
bearing is shown in Fig. 5. It is clear that if the minimum power
requirement were considered the main criterion for the selection of
the radial clearance, then it would result in a bearing with lower
normal stiffness, higher rotational flexibility and oil flow.

In the application of journal bearings for machine tool spindles,
the stiffness is always more important than the power requirement, which
may only be a small proportion of the total power fequirement of the
machine. From equation (14), it can be inferred that the stiffness of
the bearing can be increased by reducing the oil film thickness. Hence,
it seems quite fair to select the radial clearance from considerations
of stiffness and manufacture, and then to select the pad geometry to

satisfy the other factors i.e. power requirement, oil flow, rotational




19

flexibility etec., according to their relative importance in the system.
The effect of the pad geometry factor, m, on the load factor,
load carrying capacity and the power requirement is shown in Figs. 6 and

7, for the bearing with the following specificationsj;

Length of the bearing, L = 2,50 in
Diameter of the spindle; D = 2,00 in
Radial clearance, h, = 2x 107 in
Design factor, 2 o=

0il supply pressure, P, = 400 psi
Spindle speed, N = 2000 rpm

In general, it is found that increasing the pad geometry factor,
reduces the load capacity of the bearing. This is because increasing
the axial land ratio, el, reduces the effective area under the pressure
curve (Fig. 1), while higher circumferential land ratio induces greater
0il flow across the pads with conseguent drop in pressures of the pads
supporting the load.

As stated before, the total power requirement is composed of the
power required to pump the oil and that lost in shearing of the oil
£ilm. While reducing the axial land ratio reduces the shearing loss,
it is partly offset by increase in oil flow and oil pumping power.
Hence, one axial land ratio will require minimum total power and this

can be found by differentiating equation (18) and equating to zero.

Therefores \
3
ap D h
[s] [+] Z 2 NL
c—— = — ( ) p +4- '_g_ o 2 el oo (35)
del Le12(39600u) 2+’ vs 7 OOOho
2
or el o= 5051 hO ps ( 4 ) _L 200 (36)
e, ™7 ° e
t» DNL

It is found from the above equation, and also seen in Fig. 7, that
axial land ratie, el m .10, for all the circumferential land ratios,

requires minimum power, under the present conditions of performance.
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The least power, anywhere, would obviously be required for the maximum
possible circumferential land ratio. However, on closer examination of
Fig. 7, it is found that a high circumferential land ratio considerably
reduces the load capacity of the bearing. Hence, it may be necessary
to sacrifice on the power requirement to obtain greater load capacity,
depending on the requirements of the system.

From the derivation of the rotationgl flexibility, it is clear
that increasing the axial land ratio increases the resistance of the
bearing to spindle tilt. The variation of rotational flexibility,
normal flexibility and power requirement with axial land ratio is shown
in Fig. 8, and it is evident that while normal flexibility and power
requirement increase slightly, the rotational flexibility decreases
considerably for higher axial land ratios. Hence, it is now necessary
to consider a bearing system and evaluate the total effect of the
normal and rotational flexibility on the spindle deflection to select

the axial land ratio for a hydrostatic journal bearing.

2.1g.5teady Load Analysis of a Hydrostatic Bearing System

A number of computer programmes have been developed at UMIST to
determine the static and dynamic characteristics of machine tool struc-
tures. One such programme permits the calculation of the deformation
shape of a general three dimensional structure composed of beam like
elements, to steady loads.

The details of the mathematical background to these programﬁes
has been given earlier by MIGLIARDI25 and hence will not be covered
over here. The essential feature of the technique used is to subdivide
the structure into a number of lumped masses, connected together by
massless elastic elements., The inﬁut data required consists of the
bending, shear and torsional elastic characteristics of each of the

constituent structural elements. The resulting output gives the
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deflection of all the points of connection between the elements (station
points) resulting from any set of loads applied to the station points.

The main spindle of the bearing-system-consisting of two hydro-
static journal bearings, and the equivalent discrete model required
for the computer analysis is shown in Fig, 9. The system was divided
into eight elements and the distributed mass was represented by seven
discreet mass points. The division of the structure is based on the
discontinuities in the elastic structural elements. Obviously, greater
accuracy is obtained with as large a number of divisions as possible,
but based on previous results obtained by FAWCETT and GOWLEY26, and
MUNSONa?, this subdivision was considered adegquate for the present case.
The bearing characteristics afe expressed by a single helical spring,
and a torsional spring of stiffnesses equivalent to the normal and
the rotational stiffness of the bearing respectively, as determined
from the analysis described earliexr. The computer programme for
determining the static deflection shapes and compilation of the data
is shown in Appendix IX.

The results have been ohtained in terms of the spindle end deflection
for a load at that point. The variation in the spindle end deflection
with the bearing rotational flexibility for various normal flexibilities
is shown in Fig. 10. The two extremes of bearing behaviour can either
be almost zero rotational flexibility where the bearing virtually clamps
the spindle like a fixed end, or almost infinite flexibility with freedom
to revolve freely around a point as in a pin joint. It is seen from
Fig. 10 that the spindle end deflection is dependent upon the rotational
flexibility and therefore a pad geometry with very low rotational flex-
ibility should be selected for minimum spindle end deflection.

However, a closer examination of Fig. & shows that while rotational

flexibility can be reduced considerably by a larger axial land ratio,
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the minimum practical value thus obtained, by itself makes very little
reduction in the spindle end deflection. At the same time, the normal
flexibility increases and the total pewer requirement becomes almost
twice its minimum value at el = ,100., Therefore, it seems that for
steady loads after selecting the circumferential land ratio for higher
load capacity the axial land ratio can then be selected from minimum

power requirement considerattion.

2.2, Dynamic Load Considerations

The main considerations in the design of the bearing system for
dynamic loads are;

(1) Natural frequency

@1 Dynamic Stiffness

(#i) Damping ratio

The na£ural frequency of the system depends largely on the normal
and rotational flexibilities and will be discussed in greater detail
later. The damping ratio is a function of the damping constant of the
bearing, as well as the olher parameters mentioned above.

The equations for the load capacity and stiffness of the bearing
to steady uniform loads have bheen derived earlier. However, when the
spindle is subjected to impact or a variable load, because of the
lubricants resistance to instant extrusion from between the approaching
surfaces, a pressure is dbuilt up and is actually capable of supporting
load. This phenomenon is known as the squeeze film effect. The
extent of the pressure build up depends on the oil viscosity, the area
across which the flow takes place and the time factor of the dynamic
load.

While the damping provided by a fluid film to dynamic loads is not
entirely independent of the fluid compressibility, it is largely

dependent upon the squeeze film effect and therefore this factor will
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be discussed in detail as applied to compensated journal bearings.

2.2a.5queeze T'ilm Equation for a Hydrostatic Journal Bearing

The expressions for the damping constant of a flat rectangular pad
with one dimensional and two dimensional flow are derived in Appendix II.
This analyéis may be extended for a journal bearing with the following
assﬁmptions;

(1) The dynamic displacement of the spindle is small, such that
it can be taken to deflect parallel to the bearing and mean oil film
thicknesses hold over the axial and the circumferential lands.

(2) The side pad pressures do not change with spindle deflection
and the loaded and the unloaded pads can be analysed as individual
padse

(3) 0il behaves as an incompressible fluid.

(4) The depth of the pressure pad is large compared to the oil
film thickness, so that the pressure is constant within the confines
of the pad.

The configuration of the pad for deriving the squeeze film equation
is shown in Fig. 12. Consider the spindle approach the pad 3 with a
velocity %%, then the flow equation in térms of a flat rectangular pad

with two dimensional flow is;

2 2
wWoalp , n & _ o D)
12 dx2 121 dya dt

The equations for the pad pressure p% and the pressures over the
axial and the circumferential lands can be solved as shown in Appendix IT,
It is only to be kept in mind that since the pressure in pads 2 and 4 is
assumed constant, the boundary equations applicable in this case arej

o= 0=
P = Py 8 = 0

c 2
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— \J -
pa = P3a '.Y = y1

and p, = o, y o= ¥, eee (38)
where pé = new pressure of pad 3 - psi

P, = original pressure of pads 2 and 4 - psi

p. = pressure over the circumferential lands -~ psi

c

and P, = Dpressure over the axial lands - psi

Then the equations for the pressures over the lands are;

2 dh :
_o12y ¥S e [a_ ]
p, = h3 3 T 6 (62 + 61)9 -+ eqaa
¢
pt (8, - @) P (6 - 6,)
+ ) 2 + 8 3 e d 1 e (39)
2 M 2 1
dh P
_od2w a2 ]___.i....<v-v>
and p = 5 [y (75 + 707 + 7,9, AR 2
a
s00 (L,‘O)
If the spindle eccentricity ratio is e, then
h, = ho( 1 - e cos B)
end h, = ho( 1 - e cos é) eee (41)
% * 8
when B* = B + :
2
Therefore from the above equation;
dh
a _ de
T® T TR o P
dh
and _ ¢ _  de
3t = hO cos B at tes (14'2)

Substituting the above equations in equations (39) and (40),

therefores
2
2w 2 de [2 - ]
P, 5 5= cos B'h_ FF |@ (62 + 61)9 + 6162
c
P3 (g - 0) Po (0 ~8,)
+ 62 - 91 2 + m 1 oo (43)
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12y 3 2 '
andp, = -S4 228w S [y - (y2+y,])y+y1y2]
L
+ z_—pi—j-(ya - y) e (Ll‘ll‘)
y2 = y1
Differentiating equations (43) and (44); therefore;
3p (p! - p)
1c = de - - o
(7 55 = 5° 3 cos B'h, g (6, = 8,) 6. - 6.)
=91 h c 2 1
XX} (#5)
ap cos B h pd
4 (== 124, O de -y et
and ( 5 ) 3 5 (ya 1) = (46)
y=Y1 a

For a capillary compensated journal bearing, the oil flow through

the restrictor is given by

- - T

Q = Kc(ps p3) LR R ("*‘7)

b

_ ng
where K = =  5gm eeo (48)
Then the equatlgn of the o:Ll flow thrgugh the pad isj
h ap
c Fa
=% =4

dh

= l"ry,le,] a"'%' oo (49)
2] aPat
Putting in the values of ( —R) and (-—a—}:-) from equations
©=8, Y=Y,
(45) and (46), the above equation becomes;
th ok de
) ae 1 -
KkPs * 3 76, -6 PotPo [’2 cos B' ry, (8, - ¢,)
hz'c
+ 2cos B r 91(y2 ) + Mry,le,]] K, + 33 Em
3
Y4 h

+ «es (50)

a
1'.'(62 - 61) 3 (:ra - y,l) ___I

Equating the bearing pad resistance terms to K‘b’ and simplifying,

the equation for the pad pressure is,
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th y‘l
Pé = chs + 31 r(e2 - 91) Py
(Kc + Kb)
de
+ h 3¢ |2 cos Be ry1(92 - 91) + 2 reqécos B(y2 - y1) + 2y1§:'

K + K

(o] h
ooe (51)

th Iq hBa r@1

Where Kb = 3”4 (92 - 91) + 3“ (ya . y1) oo (52)

The load capacity of the pad can now be calculated from the equations
of the pressure distribution over the axial and the circumferential lands,
neglecting the load carried by the corners made up of the intersection
of the lands.

The total load capacity is the sum of that carried by the pressure
pad, the axial and the circumferential lands.

(i) Pressure Pad

The load carried by the pad is;

C]
1
W = !
b 2y1 i; p3 cos B rd ©
1
- 2 3
or = #ry1 pj sin 0, cee (53)
(ii) Circumferential Land
The lbad carried by the circumferential land is given by
%
wc = hy1 f P, cos @ rd 8
%
or W, = =2bry, —H-cos B'h de fea 92 -(@, + 6.)0 + 6,8, |cos 64 6
¢ ~ Y4 3.3 odt Jg [ 17 %2 1 2]
C 1
6, py(0, -08)+p (8~20)
+ 4ry J.Z 3 2 2 1 cos 64 8 coo0 (54)
1 6, - ©
91 2 1
Which on integration and simplification givesg
,24“y133 de
D e 0 2 -
W, 5 cos B* h_ =r [(cos 6, + cos 91)(92 61)
I

. cos 0, = cos 0,
- 2(sin 6,- sin 91):] - 4y1rpé sin 6, + 5, - 6, ]
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- COS 6? = GOS8 91
+ 4y1rpo sin 0, + s :E 0oo (55)
2 1
(1i1) Axial Tands
The load carried by the axial lands is given by
& y
1 2 .
L 2{; f p, dy cos 6 rd 6 vao (56)
1 Iq
- . ; 0 de fy 2r 2 _
or 2hr sin o, - cos B h = , [3’ (yé + y1)y
a 1

by sin @,p vy
T3 o2 ;
YT, | Gy # w2 05 (g o y)dy
1a Yo = ¥4 v, 2

+

On integration and simplification, this gives;

. (y, = 3.
- ; s de RS - “1]
wa = Uy sin Qﬁ [ h3 cos B ha FES (yz 31) + P 3

coo (57)
Therefore, the total load capaciby isg
W = W +W +W
P @ a
Putting in the values of ng W, eand W from equations (53), (55)

and (57)

(cos 6, - cos 91)
o 9 ] g o
W o= i1 [?r sin Bﬁ(yz y?) L\Lry1 G ]

cos 62 = @98 91 j

+ qurpo sin @2 o+

Ga = 61
de 24r3 cos B“y1
- }bho“-ﬁ" [ h3 %(cos Ga + cos 91)(92 - gq)

G

Ly sin 91 cos B

nP
a

- 2(sm@2wsme)§w

3
\ (7, = 7% ] oo (58)

Substituting the wvalue of p% from equation (51), the load capacity

of the pad is given bys

. hr o v, cos@anccse
W =[K0ps M TR T RN W) Pr;j [_2? sin 6@y, = y,)- 4”1"""5;:3‘““

1

']

(KG o+ Kb)

(cos 62 - GOB 91)

d‘@m it w E -
= Wh 5 [2 cos B! xy,(6, - 6,) + 2r 91%008 Bly, = ¥q) + 2&,;

(K{g + Kb)

]:c




(cos 92 - oS 91) :]
[%ry1 I - 2r sin @, (y2 - y1)
de I' 24 % - 6,) - 2(stno,-sin6, )]
- wh 3% [h3  cos B ¥, (cos 0, + cos 61)(92 61) 2(31n62 31n91)
) br sin 6, cos B o - )3:l
2 Y2 = I
a
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eee (59)

The load capacity consists of the load carried by an equivalent

steady pressure and that due to

form;
dh
W Ystatic * a4 TF
where K, = damping constant - 1lb/in/sec.

d

the squeeze film effect, and is of the

vee (60)

Using the notations of Fig. 1, as in the analysis for the steady

load;
Yo =3
2 - 1 = el
- L
Y2 = 2
0, + 0 )
2 - 2
61 = eaoaé
6, = aé(a - eq)
Z1 = .P..{-g.
b
and PO = (TT?‘ Z)pS eeos (61)
The equation (59) can therefore be expressed asj
p
S — - I:L el D sin(eq.a,) = LD(1 ~ 2 el)
static 1 +.% 2 2&é(1 T ot)
1
%cqs @,(2 - ea) - cos eaaz%:l
- )2 -
pSZhogj e cos B i L(1_ 2_?1) [Lel b sinom.e.) = ID(1 = 2 ol)
6w D 02(1-ea)(z1+1)(z+rr)Kb ‘T2 2 a,(1 ~ ed
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%cos aé(z ~ e@) = COS e&oaz%]

%
S . .
(o) ID(1 - 2 el)E:s1n @, (2 - o) +

cos cvz(zmea)- cos ete0l, ]
2&2(1 - eor)
soe (62)

and the damping constant is;

- - o -
g‘DL 0’2(" 2el)(1=ea)cos B! + LD oaaecv[cos B.el + 1 291] x

K = 124 :
d 3
L (z1 + 1)

(Lel) [2&é(1—ew) Dlel sin(eeq) - LD(?mzel)%cos aé(a-eul-coaobeag]

212(1-2e1)el(1~¢ cos B)° + 4D ag ea(1~eq) (1~e cos B)’

D sin(o.ew)
+ 2 - (Lel)” cos B

6(1=-e cos B)”

DL (1-2el)

+ =g (1oo con B°)3 cos B“i:2%$iﬂ aé(2~ew) - sin o,ex g
- foos op(2-e0) +o0s aend {2 a(i-exi ] ver (63)

The effect of the pad geometry factor on the damping constant of a
journal bearing is shown in Fig. 13. It is c¢lear that the damping constant
increases rapidly by increasing both the axial and the circumferential
land ratios. As shown in Fig. 14a, the damping constant drops with a
larger ratio of the resistances of the pad and the capillary restrictor,

Z It is interesting to see that for a given pad goemetry, both the

10
normal stiffness and the damping constant decrease with larger radial
clearance and a lower oil filw thickness offers advantage for both the

steady and the dynamic loads.

2.2b.Dynamic Load Analysis of a Hydrostatic Bearing System

As for the static deflection curves, computer programmes have been
prepared for determining the natural frequencies, modal shapes, ttodal

damping ratios and the general response to the dynamic load of three
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dimensional structures. The distributed mass of the elements is replaced
by set concentrated masses located at the station points. The bearing is
converted into a helical and torsional spring as before, and a single
dashpot damper is included in the system in the directions of loading
(Fig. 9.).

The variation of natural frequency and damping ratio with
rotational flexibility is shown in Figs. 15 and 16 respectively. It
is seen, once again, that a lower flexibility is desirable for dynamic
loads as well as the steady loads considered earlier. As shown in
Fig. 16, the damping ratio is lower for higher bearing stiffness and
it is here that the two important parameters are in direct conflict.

It would therefore be necessary, to establish a compromise criterion
for selection of the bearing stiffness and dampingiconstant.

The effect of the damping constant on the dambing ratio of the
system is shown in Fig. 17, where it is obvious that the concept of
increasing the damping ratio by increasing the damping constant can be
misleading. The shape of the curve could be explained by considering
first zero damping in the system which would result in zero damping
ratio, and then a very large value of the damping constant -~ which
implies zero spindle deflection at the bearing, hence again a zero
damping ratio. It follows therefore, that finite damping ratios must
appear for intermediate values of damping constant and an optimum
for which the damping ratio is a maximum depending on the equivalent
spring stiffness of the bearing.

Hence, for a particular normal stiffness of tﬁe bearing, determined
from static deflection programmes, a damping constant can be selected
to give the best damping ratio, and taken to its logical conclusion, a
pad geometry can be selected to give this damping constant.

The resonant frequency is not appreciably affected by the damping

constant as shown in Fig. 18. Similarly the damping ratio does not vary
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considerably with the rotational flexibility over the whole range of the
damping constants of the bearing pad. Fig. 19 shows the variation of the
damping ratio for rotational flexibilities of 500 x 10_9 and 10,000 x
10_9 rad/lb in. The variation of resonant frequency shows higher value
for stiffer bearing, the two curves following almost identical pattern

for various values of the damping constant.,

2.3, Hydrostatic Thrust Bearing

The analysis of an anhilar thrust bearing with capillary
compensation for steady loads has been covered in the earlier thesis
and only the results of that will be included here.,

2.3a. 0Qil Tlow

The oil flow in the bearing is given by the equation;

3
@ = Bk, ver (64)
1 1
where Kf = —-—r-a- + o — ees (65)
log T log =
1 3
For capillary compensation, the pad pressure is given by
Y
s
p = ﬂthf ce e (66)
T =R
c
ﬂd4
where Kc = ?ESEE 3 as for a journal bearing.

20.3b. Load Capacity and Stiffness

The load capacity is given by the equation;

w - e (67)
P
nKl EKch
r21+ - I'23 r22 - I'a,l
where Kl T ey e eee———— ees (68)
r r,
log — log =
r3 I',]
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Therefore, the stiffness of the bearing is;

KXK.K p
§ o . g1’ o (69)
2 2

[fﬂiﬁ_ N ﬁg]
3 T

2.5¢. Total Power Requirement

The total power requiremrnt is given by the equation;

3
P o= [-%- kg ' ~”N2KP] (70)
= 6600 3T 2 58,05h eee
K 1
where Kp = (rq4 - rqs) + (rl"2 - rqq) eoo (71)

By differentiating equation (70) and equating to zero, the

optimum oil film thickness for minimum total power reguirement is;

2.1
K K =%
hopt = 0.1}06/-‘% [%m] eoo (72)

The design of the thrust bearing pad is subject to the same
discussion as the journal bearing, and hence will not bhe covered in
detail here. The variation of the oil flow and the total power require-
ment with the width of the land is shown in Fig. 21. It is noticed
again that for a particular oil film thickness, one value of the land
width requires minimum total power, while each of the lines shows
constant stiffness characteristics. Hence, an oil film thickness can
first be chosen for a required stiffness, and consequently a pad

geometry selected for minimum power requirement.
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EXPERTMENTATTON AND RESULTS

The performance of the hydrostatic bearing system was mainly
investigated to determine the following three characteristics;
1o Temperature distribution and heat balance
2o Steady load deflection

3. Dynamic response

3.1. Tempeature Distribution and Heat Balance

The hydrostatic bearing system for this investigation consisted
of two journal bearings to support the main spindle and carry the
radial loads, and a double film thrust bearing to take axial loads in
either direction. The spindle could be loaded radially through another
journal bearing, connected to a hydraulic cylinder supplied with oil
under high pressure.

3.1a. Journal Bearing

The design features of the hydrostatic journal bearing are shown
in Fig. 22. The main feature of the bearing was the interchangeable
brass bush, which was screwed on to the main housing with the pad
geometry machined on it, to enable bearings of different geometrical
configurations and radial clearances to be employed without any major
alteration in the assembly.

Sixteen % BSF screws were mounted radially in one bearing to carry
thermocouples for measuring the temperature of the oil film along the
bush circumference. In the other bearing eight screws were fixed up to
the bush intermnal diameter, while alternately eight more were mounted
at a distance of £ in. from the bush. The bush internal diameters of
both the bearings were finish bored in one operation with these screws
in position for accurate alignment and consistent tolerances on both

bearings.
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%.1b. Thrust Bearing

Pig. 23 shows the main design features of the hydrostatic thrust
bearing. As for the jourmal bearing, the annular pad configuration is
machined on a brass disc and is screwed to the main body. The brass
pads are then finish machined with the main body to give the correct

clearance between the bearing and the thrust face of the main spindle
and such that the twe faces are parallel to one anobther and coaxial.

' 3.1c. The Hydraulic Circuit

A closed hydraulic circuit was designed for the system and a
schematic diagram is shown in Fig. 24. High pressure oil was supplied
to the bearings by a pump through a filter and the pressure was
controlled by the combination of the pressure relief and control
valves. All the pressure pads in one bearing were supplied from an
oil distributor through identical capillary restrictors and the pressure
was regulated with valves.

The outlet oil was collected in a drip tray placed around the
table and was pumped back to the manifold through another filter.

3.7d. Capillary Restrictors

The compensating elements counsisted of cold drawn stainless steel
capillary tubing, .033 in. by .O48 in. o.d. for the journal bearings
and .084 in. by 112 in. o.d. for the thrust bearings. These were
sealed with araldite in special 3 in. diameter adaptors and were mounted
in the pressure line to the bearings as shown in Fig. 24.

3s1e. Temperature Measurement

Thermocouples were mounted around the bearing bush to measure the
circumferential and the radial temperature distribution in the journal
bearing. The % BST screws were drilled and the thermocouples were
inserted in them and sealed with araldite, which held them in position

and insulated them from the screws and the bearing body. The thermo-
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couple bead was carefully adjusted in line with the end of the screw
which had been finish machined earlier with the internal diameter of the
bearing bush, thus ensuring that all the thermocouples were flush with
the bush diameter, when mounted in the housing. In one of the bearings
sixteen thermocouples were mounted around the bush circumference to
give the circumferential temperature distribution of the eil film,
while in the other eight of them were fixed § in. from the bush to
give the radial temperature gradient in the bearing housing.

A thermocouple was also fixed in the inlet pipe to the bearing
for accurate determination of the rise of temperature of the oil in
the bearing.

The electric circuit employed for the temperature measurement is
shown in Tig. 25. The thermocouples were grouped together in blocks
of eight and through a selector switch were comnnected to a four
channel U.V. recorder. To eliminate any error in individual block
circuits, one thermocuple in each block was taken as reference and put
in iece cooled water along with the cold junction.

The experimental set up of the bearing system with the thermo-
couple leads to the distribution box and the U.V. recorder is shown in
Fig. 26. The experiments were performed by slightly preloading the
spindle, to offset the effects of the belt tension and the thrust face
load, such that the pressures in the four pads of the first journal
bearing were approximately the same and the spindle could be assumed
concentric in the bearing. The thermocouples along the bearing bush
circumference and the ones radially displaced were at first connected
to different galvanometer circuits respectively, but to eliminate any
error in calibration, the thermocouples in the two halves of the
bearing circumference were separately connected to two galvanometer

circuits. Thus the temperature readings for thermocouples along the
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bush circumference and radially displaced in one half of the bearing
were taken by the same galvanometer, which also recorded the inlet oil
temperature.

Temperature readings were obtained for spindle speeds of 500, 1050
and 1900 rpm and maximum temperature rise was observed to be 3.6 , 6 and
10.4°C, while the radial temperature difference between the two sets of
thermocouples was found to be 1.0, 1.5 and 2¢5°C respectively.

The procedure for the calculation of the heat dissipated to the
oil and the bearing housing is outlined in Appendix I¥T. The oil flow
was determined from the average pad pressure and the viscosity at the
mean oil temperature, and the heat carried away by the oil from the
average temperature rise of the oil in the bearing. For the estimation
of the heat given to the bearing housing, heat flow was assumed only
from the bearing axial lands and approximately between cylindrical
surfaces composed of the brass bush and the mild steel housing. It is
realized that the heat flow from the housing will follow a more complex
pattern and the estimate presented is likely to be lower than the
actual heat conduction, but with the distance between the two sets of
thermocouples only % in., straight path heat flow was assumed to
simplify the calculations.

The heat dissipated to the 0il and the bearing housing is shown
in Pig. 27. It was found that while the ratio of the two was nearly
the same for various spindle speeds, the oil accounted for almost
twice as much heat dissipated as the bearing housing.

3%.1f. Torque Measurement

The technique of measuring torque on spindles by fixing stréin
gauges at h5° to the axis and diametrically opposite each other to
form a Wheatstone bridge is fairly s’candard28 and shall nhot be discussed
in great detail here. An improvement on this procedure is the use of

torque gauges which are available as one or more paired elements,
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consisting of a single Vee formation of an active and dummy element.
Multiple paired elements c;ﬁ be employed to increase the bridge
resistance, the gauge area and therefore the heat dissipating capacity
and to measure the average strain in the spindle. The gauges can be
mounted diametrically opposite each other, with thelr centre lines
in an axial or circumferential direction (Fig. 29).

For the present work four Saunders Roe torque foil gauges were

29

employed™ " in series to increase the resistance of the arms of the
bridge, and were mounted diametrically opposite each other circum-
ferentially, with strain gauge adhesive and hardener. The usual
precautions were taken while fixing the strain guages, i.e. no air
bubbles were trapped between the bonding surface of the strain gauge
and the steel coupling.

The Wheatstone bridge circuit employed for measuring the torque
is shown in Fig. 30. The output from the bridge was taken through
slip rings mounted over an insulation ring of synthetic resin bonded
paper, to an amplifier and the signal was tranamitted to a U.V. recorder.

To eliminate the inaccuracies of contact resistance of the brushes
and the slip rings, a mercury pool was at first tested for transmitting
the output current from the slip rings. The performance of the mercury
pool commutator was found satisfactory electrically and the calibration
of the gauges was done on a torque calibrating equipment shown in Fig.
310y while the calibration curves for both clockwise and anticlockwise
torque are shown in TFig. 32.

However, during experimentation, the mercury tended to fly off
with the slip rings, most generally shorting the circuit and this method,
therefore; had to be abandoned.

A brush assembly was then mounted, with three brushes at 120°

intervals around each slip ring, to compensate any contact error on one
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brugh by the other two around the periphery. Considerable difficulty
was ehcountered while taking the measurements with this assembly. The
contact resistance across the brushes and the slip rings tended to vary
with spindle rotation at different speeds from the static condition.
The brushes heabted up at higher speeds even with very small spring
pressures and the heating and the change in contact resistance invar-
iably upset the static balance of the bridge. Hence satisfactory
results over long periods of performance could not be obtained, and
the effects of speed on power loss and oil viscosity could not be
studied. It was later felt that the oil temperature in the various
bearings would be different due to the spindle inclination even at
no load, and it would be difficult to analyse individual bearings and
study the effect of speed on power loss in journal bearings accurately.

Therefore the experiments were not carried any further.

3.2. Steady Load Deflection

To establish the validity of the theoretical analysis on the
rotational flexibility of the journal bearing this investigation was
carried out with the system consisting of the main spindle and two
Jjournal bearings. The spindle deflection shape was obtained by apply-
ing load to the pulley mounted on the spindle end, with dial gauges
placed at various places along the spindle as shown in Fig. 33.
Experiments were performed with supply pressures to the bearings
ranging between 25 and 600 p.s.i. and maximum load of 90 lbs. The
spindle deflection shape, as determined from the readings of the dial
gauvges for loads of 10 lbs and 90 lbs. for different supply pressures
is shown in Fig. 34. The spindle end deflection was simulated from
these curves and is shown in Fig. 35efor various supply pressures.

It was found that for low bearing pressures; the spindle deflection

depended more on the bearing stiffness, while for higher pressures the




39

spindle end deflection was dependant on the spindle stiffness. Thus there
was little difference in the spindle end deflection for bearing pressures
of 400 p.s.i. and 600 p.s.i. and there would virtually be no advantage in

increasing the bearing pressure any further.

303%. Dynamic Response

To determine the dynamic characteristics of the Jjournal bearing
including the damping ratio, the experiments were performed at first with
the main spindle and the two journal bearings -as shown in Fig. 36, by
applying harmonic force to the spindle and obtaining the frequency
response curves. The circuit employed for the experiments is shown in
Fig. 38. A Solartron Oscillator model CO 546 operating on a Wien
network was employed to drive the vibrator motor through an amplifier
model PP 250 VAP, The frequency of oscillation is selected by the
range switch and calibrated dial on the oscillator from 25 ¢/s to 500
ke/s. By making use of the calibrated scale and the vernier any
frequency can be set with an accuracy of 1 in 3000.

The amplifier is designed to preduce an output of 250 VA over a
frequency range of 20 Hz to 10,000 H2 with ah anode dissipator capacity
of 500 watts. An input signal of 0.7 volts rms is required for full
output.

Four illuminating on/off switch push buttons are fitted to the
front panel, two marked *HEATER' and the other two marked 'P.A.'. The
éreen THEATER® bubtton switches on the driver stages while the green
'P.A." button switches on the power amplifier or the output stage.
During normal operation the lamps show a steady light but in case of a
fault or overload, the lamp monitoring the faulty circuit flashes
warning of a fault indicating the affected circuit.

The displacement of the spindle was obtained with a quartz

accelerometer which gives the acceleration of the point under test.
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The signal from the accelerometer is transformed to a proportional
output voltage in the charged amplifier and fed to the oscilloscope.
The displacement can then be calculated by the relation;

a

d = a:;;—aﬂ 200 (?3)

where d = displacenent

acceleration

i}

a

[}

£ applied frequency

A force transducer was mounted between the vibrator and the pulley
to determine the force applied to the spindle. The transducer was a
quartz load washer type, which converts the mechanical force into an
electrostatic charge signal. The signal is transformed into a prop-
ortional output voltage in a Kistler charged amplifier and transmitted

to the oscilloscope.

3.5%a. Frequency Response Curves

The frequency response characteristics were obtained for various
bearing supply pressures and the curve for Py = 100 p.s.i. is shown in
Fig. 40 where the acceleration output obtained on the oscilloscope for
various forced frequencies is directly plotted. It was noticed that the
Ffirst mode amplitude of the spindle end was the only significant one as
&1l the other values become small when converted into actual displace-
ments from the acceleration plot of Fig. 40. The absolute displace-
ment is given by the equation &%), therefore compared to the first mode

displacement amplitude, the value at any subsequent mode is;

£
4. = a (=02 oo (74)

n n 'f
n
where dn and a, are the displacement and acceleration amplitudes respect-
ively at nth mode frequency.
The frequency response curves for higher supply pressures were

nearly the same and to avoid overlapping of these curves they have not
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been included in Fig. 40. However larger scale plots for supply
pressures of 100, 200 and 400 p.s.i. in the viecinity of the first
resonant frequency are shown in Tig. 41 to determine the damping
ratio of the systen.

3%05b. Damping Ratio

The procedure for determining the damping ratio of the system
from the frequency response characteristics for acceleration is
outlined in Appendix IV. TFor the present work, the two frequencies
Before and after the resonant to give 85% of the peak acceleration
amplitude were found from Fig. 41 and the damping ratios were then
calculated. It was found that the displacment and the resonant
frequency for supply pressures of 100, 200 and 400 p.s.i. were not
very different but the damping ratio was higher for the lower
pressure bearings,‘ The variation in the damping ratio and the
modal displacement of the spindle end is shown in Fig. 42.

Experiments were also performed with spindle end preload and
the enlarged frequency response curves for Py = 200 p.s.i., are shown
in Fig. 4% while the variation in the damping ratio, resonant
frequency and displacement amplitude as compared to no preload is
shown in Fig. 44. It was found that both the damping ratio and the
resonant frequency increase siightly with spindle deflection in the
bearing due to the preload.

3.3c. Modal Shapes

The modal shapes of the spindle at the first three resonant
frequencies were obtained by placing the accelerometer along specially
made flat surfaces on the spindle in line with the axis of vibration,
and determining the amplitude and the phase of the signal on a Resolved
Compenent Indicator. This instrument displays the 'in phase' and

‘quadrature’ components of an A.C. signal with respect to the related
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reference voltage.

It consists of two thermocouple wattmeters and the associated
electronic circuits to drive them. Two signal inputs are required, a
constant amplitude from phase reference signal and the signal to be
neasured. The 0° and 180° phases of the reference signal energise
one watimeter, and the 90o and 2'700 phases energies the other. The
signal to be measured is amplified and fed to the two wattmeters,
one of which indicates that component of the test signal in phase
with the 0° and the 180° reference phases, while the other indicates
that component at 90° to them,

The output points are plotted on cartesian co-ordiantes and
define the signal in amplitude and phase.

Figs. 45, 46 and 47 show the three modal shapes of the spindle
with the respective phase difference between the spindle end and
the various other points on the spindle. Resulis obtained from the
computer programmes are also shown in each case for the purpose of
COMPAarison.

In the second stage of the experimentation, frequency response
curve was obtained with the thrust bearing in position as shown in
Fig. 37 and is drawn in Fig. 40, It was found that the thrust bearing
made almost nelgigible difference to the resonant frequency of the
system but the damping ratio was higher and the displacement amplitude
at the first resonant frequency was lower and almost indistinguishable
for second and third frequencies. However, the amplitude of
vibration for the other points onh the spindle, away from the thrust

bearing, was not significantly different as shown in Fig. 45,
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DISCUSSION



DISCUSSION

4,1. Temperature Distribution and Heat Balance

A similar investigation on a hydrodyvamic journal bearing by
COLE18 has been taken as the basis for discussing the results of
the present work. It has already been reported in the earlier
thesis23 that the temperature along the bearing bush circumference
was gquite uniform when the spindle was concentric in the bearing,
while the profile of the temperature rise followed the spindle
deflection in the bearing due to radial loads. The maximum rise
occurred along the line of load and the minimum £ilm thickness, and
hence for the maximum eccentriecity ratio of .70 and speed of 1900
r.p.m. encountered in the present experimentation, the hydrodynamic
effect in the bearing was found to be negligible.

The profile of the temperature rise along the bearing
circumference was quite smooth and there were no sharp ltemperature
changes as in hydrodynamic lubrication. Perhaps the conditions of
load and speed in the present worls were not severe enough to cause
large variations in temperabture alcong the bush circumference but it
seems that the bearing was kept at a more uaniform temperature due
to large oil flow. Hence there would not be any large local varia-
tions in oil viscosity in the hydrostatic journal bearings caused
by these temperature differences, and the dangers of bearing failure
due to this critical factor seem considerably reduced.

It was féund that the oil carried away approximately 65% of the
heat dissipated to the oil and the bearing housing and this high
percentage was probably due to large oil flow. Since the temperature
was higher for higher speeds, the larger reduction iﬁ oil viscosity
due to this temperature rise caused greater oil flow and this seemed

to help in keeping the ratio of the heat dissipation to the two
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elements the same for various spindle spezeds. Heat flow to the spindle
was not determined experimentally and in the absence of power loss
measurements in the journal bearing, no approximate estimation was
possible, and hence the complete heat balance of the bearing could

not be prepareé either.

Though the maximum temperature in the bearings was by no means
high, yet assuming constant viscosity of the oll as at room temper~
ature is likely to cause error in the design of optimum parameters
for the bearing system, especlally for orifice compensation where
the ¢il density is also a wariable factor. In the present case it
was found that as the temperature increased after starting the
experiment, it caused a much higher oil flow to the thrust bearing
and since all the bearings were being supplied oil from the same
pump through different control valves (one each for the thrust
bearing and the journal bearings, Fig. 24.) this ultimately upset
,the balance in the system with consequent drop in the journal
bearing pressure., IHence, a more practical value of temperature and
cil viscogity should be considered for designing the hydraulic
system, pump capacity elc., especially for large oil flow systems.

It is appropriate to mention that the temperature of the inlet
oil continued to rise during experimentation, partly due to the in~
efficiency of the cooler in the system. The bemperature build up
in the bearing is shown in Fig. 28 and it was found that while the
bulk of the temperature increased during the first hour, the temp-
erature continued to rise even alter three hours of running. Due
to this cumulative effect the oil temperature in the bearing went
up to about 5000 even though the maximum rise in the bearing itself
was only sbout 10°¢ for spindle spesd of 1900 r.p.m. While steady

state temperature is not critical for hydrostatic bearing performance
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yet it is desirable to stabilize the flow characteristics of the
bearing which are so sensitive to changes in oil viscosity. The
importance of the cooler in a hydraulic system is not always realized
as in the present case where the wrong type of cooler was installed
in a new hydraulic rig, but an efficient cooler would be able to
dissipate all the heat generated and maintain the inlet oil temper-
ature as close to the room temperature as possible and thus limit
the bearing temperature rise to that caused only by the losses in
the bearing itself. With a new cooler more appropriate for the
present low oil flow system the maximum temperature in the bearing
was about 3500 at speeds of 1900 r.p.m.

It was found that most of the temperature rise in the bearing
occurred due to the spindle rotation and since the dynamic tests
were performed with the spindle stationary, the effect of temperature
rise on the dynamic characteristics of the bearing could not be
studied., The maximum temperature with b, = LOO peseic, with the
spindle stationary, was only 26°C and the temperatures were not found
to be very different nor critical for the range of pressures en-

countered.

L,2. Steady Load Deflection

It was found that greater accurascy in the results from the computer

programmes could be achieved by dividing the bearing system into
fourteen elements instead of eight as discussed in detail in the next
section, and a comparison of the spindle deflection shape obtained
from this new model and the experiments is shown in Fig. 48. It shows
that the programme can be used very successfully for prediction of

the spindle deflection shapes. Fig. 49 shows the comparison of the
experimental results of the spindle end deflection with those deter-

mined by the computer programmes and it was found that the theoretical
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expressions for the rotational flexibility could be used for very
accurate computation of the spindie end deflection. The very small
differences in the two results could be attributed to experimental
errors with the dial gauges aund approximations in the computer model.
The bearing stiffness in the model was assumed linear in the programme
and though this assumption is not strictly true (since the stiffness
of a journal bearing is not line;ry especially for high eccentricity
ratios) yet the spindle end defleztion was found reasonably linear
for the range of loads applied in the present experimentation, as
shown in Fig. 35b.

It would be quite appropriate at this stage to discuss the
relative importance of the bearing and the spindle stiffnesses in a
bearing system. It has been shown in section 3.2 that for the
present system there would virtually be no advantage in increasing
the bearing pressure from 400 to 600 p.s.i., since the spindle end
deflection is not substantially reduced. It seems that beyond a
certain normal and rotational stiffness of the bearing, the spiundle
is clamped at the bearing point and the spindle end deflection is
mainly a function of the spindle stiffness and is hence nearly the
same for even higher bearing stiffnesses. It can be seen in Figs.

10 and 11 that while higher stiffness of the bearing reduces the
spindle deflection at the bearing point, it does not proportionately
reduce the spindle end deflectiOﬁ‘and hence attention has to be paid

to the spindle design as well for keeping the spindle end deflection
in a bearing system as small as possible. For a given system there

is no substantial reduction in the spindle end deflection by
increasing the bearing stiffness beyond a particular value and this

can be conveniently determined with the help of the computer programmes

as outlined here.
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L,3. Dynamic Response

The frequency response characteristic showed that the fundamental
resonant frequencies for the three supply pressures where very close
to each other, but conirary to expectations the frequency of response
was lower for higher bearing pressures. Although the higher pressure
in the bearing implies higher normal stiffness, yet it has a smaller
damping coefficient and it is the combination of these two factors
which determines the equivalent stiffness of the bearing to dynamic
loads and the resonant frequency of the system. Results obtained
from the computer programmes also show (Fig. 18) that for large damp-
ing constants, the first resonant frequency of the system for lower
normal stiffness of the bearing is indeed higher.

The damping ratio was higher for lower supply pressures to the
bearing, as expected from the analysis. Since the lower stiffness
of the bearing permibts larger deflection of the spindle, this in-
creases the damping and produces a higher damping ratio of the systenm
for dynamic loads.

The higher equivalent dynamic stiffness of lower supply pressure
bearings also reduces the resonant amplitude of vibration as shown in
Fig. 42, with the minimum somewhere between 100 and 200 p.s.i. The
variation in the amplitude of vibration for various supply pressures
at their first resonant frequencies compared to pg = 100 p.s.i. and
the phase angles determined with the Resonant Component Indicator is
shown in Fig. 50, It was seen earlier that there was no substantial
reduction in the spindle end deflection for steady loads with bearing
pressures higher than 400 p.s.i., and it is clear now that there was
in fact an increase in the amplitude of vibration for dynamic loads
with pressures higher than 200 p.s.i. In a bearing system, therefore,

there is no real advantage in increasing the normal stiffness beyond
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a particular value even for steady loads and this higher stiffness at
the same time reduces the damping ratio for dynamic loads. Hence, it
seems that the spindle end amplitude of vibration, which reflects the
equivalent dynamic stiffness of the bearing, could be used as the
criterion for the selection of the bearing normel stiffnesses.

The resonant frequency and the damping ratio both increased with
preload as shown in Fig. 44. It appears that with the spindle deflec-
tion in the bearing the equivalent dynamic stiffness of the bearing
increased due to the higher damping constant for a smaller film
thickness, and this increased both the resonant frequency and the
damping ratio of the system while decreasing the amplitude of vibr~
ation. This suggests that during a metal cutting process in a machine
tool causing preload on the spindle, the dyhamic performance will be
no worse than that determined from the theoretical analysis with no
preload.

The results from the computer programmes are shown in Fig. 51
and these confirm the trends of the experimental work discussed above,
The fundamental resonant frequency, determined from the programme was
only 10% lower than the experimental value. It was also found that
the amplitude of vibration was smaller for higher stiffness bearings
when damping in the system was neglected in the programme, but when
damping was incorporated the amplitude was higher, as in the experi-
ments, due to the combination of the normal stiffness and the damping
coefficient causing a lower equivalent dynamic stiffrness. The slope
of this curve would obviously depend on the damping oonstanf of the
bearings.

Although the results from the computer programmes for the resonant
frequenoy and the modal shapes correlated well with the experimental

values, yet they were not felt to be accurate enough for the present
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investigation. Apart from the discrepancy in the first resonant
frequency, the modal shape and the node points for the second and the
third modes could not be accurately determined with an eight element
model of the bearing system. Hence, it was decided to divide the
bearing system into fourlteen elements to take into account all the
discontinuities in the spindle and eliminate the inaccuracies and
approximations in the calculation of the flexibilities of the wvarious
elements in the model.

To determine the ability of the compuber programmes to deal with
any system of hydrostatic bearings, experiments for correlation were
performed on two spindle systems. One of the systems consisted of
.the large pulley mounted on thg main spindle as shown in Fig. 36,
while the other comsisted of a small pulley of 2% in. diameter at
the spindle end as shown in Fig. 9. Since the first system was more
coavenient for determining the comparable performence with a thrust
bearing in the system (Fig. 37) and it was also felt that a large
pulley at the spindle end would closely simulate the condition of
performance of a lathe spindle with a head stock, it has been discussed
above. However, only one result could be obtained for the fourteen
element model of the second system, with damping incorporated in the
programme, and despite several attempts no further success could be
achieved. This was attributed to ill conditioning in the dynamic
equations and the matrix for the computer programme, a condition not
apparent for the eight element model. Hence, the subsequent discussion
will be confined td'the results of the experimental work on the second
system and the computer programmes.

The modal shapes of the second system with the results of the 14
element model programme are shown in Figs. 52, 53 and 54. It was found

that more accurate results could be obbained by increasing the number
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of elements in the model. The first resonant frequency predicted was
within 1% of the experimental value, while the modal shapes and the
node points were much better defined. The computer programme predicted
sharp changes in phase relationship between various station points
since it only takes discrete damping at the station points into account,
while the experiments showed gradual changes along the length of the
spindle due to distributed material demping. Consequently the differ-
ences between the results of the experiments and the computer
programme were larger near the node points and best correlation was
thus obtained for the first mode. However, the results of the
programme were close ehough in range and magnitude to permit their
application to similar systems for predicting the resonant frequency
and the modal shapes.

The comparison of the results for the dampling ratio was more
difficult since the damping ratio is a function of the normal and
rotational stiffnesses and the damping constants of the bearings and
the spindle system and both the theoretical analysis and the computer
programme were based on simplifying assumptions and approximations.

The resonant frequency is dependent largely on the normal and rotational
flexibilities of the bearing and the spindle, and since these para-
meters cen be calculated fairly accurately, the first resonant frequency
is determined very close to the experimental value. However the
determination of the damping ratio, experimentally and with the computer
programmes was more elusive. The foreed frequency response method was
employed in the present case, and though it is generallly considered
quite acceptable,yet for small damping ratios, any slight variation in
the drawing of the frequency response curves introduced large errors

in the results. The caleculation of the damping ratio for 80% and 85%

acceleration amplitude ratios on the frequency response curves gave
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different results and hence a direct method of determining the damping
constant applicable to the bearings could not be employed. An approx-
imate method, however, was tried, as shown in Fig. 55, by drawing the
variation in the damping ratio with the bearing normal flexibilities
for various damping constants from Fig. 17 and plotting the experfi-
mental values on this Fig. to get the damping constant to which these
curves most closely related in slope and magnitude. It was thus
found that the damping constant of the system was nearer to 400 and
mich lower than calculated from the equation (63) in Chapter II (x 1600).
Since the Fig. 55 was itself drawn with resulis for an elight element
model it is not known how much inaccuracy is introduced due to this
factor. However, it is clear that a more accurate ﬁheoretical analysis,
computer programme and experimental procedure is regquired to determine
the correct damping value in the system. The difficulty in the
calculation of the damping ratio from the experimenfal results has
been stated earlier. In the computer programme, no material damping
has been considered and this may be contributing some error to the
results. The simplifying assumptions in the theoretical analysis for
the squeeze film equation of a journal bearing do not appear to
adequately represent the actual conditions of performance, and hence
it is felt that it will be necessary to take into account both the
liquid compressibility as well as the changes in the side pad pressures
due to dynamic load, for getting more accurate results. At the same
time, the mean oil film thickness assumed over the axial and the
circumferential lands is not true by any means. Due to the spindle
curvature, the oil film thickness over the axial lands of the pad is
larger towards the horizontal axis away from the vertical load line
as shown in Fig. 12. and the mean oil film thickness assumed at 0 = o°

in fact is the minimum over the axial lands. This increase in the film
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and the area is likely to reduce the resistance of the axial lands to
oil flow. It was reported earlier25 that for steady loads the circum-
ferential oil flow reduces the normal stiffness of the bearing even
more than determined from the analysis and it is likely that for
dynamic loads too, the drop in side pad pressures would increase the
oil flow in the circumferential direction. Since the film thickness
increases over the circumferential lands as well, due to the spindle
curvature, the lands would alsoc offer less resistance to extrusion

of the oil due to dynamic loads. DBoth these reductions in the
resistance of the pad would therefore decrease the damping constant
of the journal bearing.

It is a coincidence that this drop in the damping constant has
produced near optimum conditions of damping for %he present system.
If the damping constant had been as high as calculated from the
theoretical analysis, the damping ratio of the system would have been
much smaller as shown in Fig. 17 and nearly the same for all bearing

Pressures.




CHAPTER V

CONCLUSION




CONCLUSION

The computing technigue can be successfully employed to
determine the chgracteristics of similar hydrostatic bearing systems,
and knowing the preferential requirements of the system, i.e.
stiffness, power etc., an optimum pad geometry for the journal
bearings from both the steady and dynamic load cousiderations
can be selected. Also, the range of maximum stiffnesses
effective to 1limit the steady load deflection and the amplitude
of forced vibration of the spindle in a bearing system can be
assessed. The input data requirement of the bearings for the
model in the program can be calculated from the theoretical analysis
presented, and by dividing the system into as large a number of
elements as possible, very accurate results of spindle deflection
curve, resonant frequency etc. can be cbtained.

A more rigorous analysis is required to determine the damping
characteristicé of a Journal Bearing9 and the effects of liquid
oompress%bilitj, leakage factors across the axial and the circume-
ferential lands, locition of the compensating element etc., need
to be considered ﬁor’aﬂ exact solution.

In machine tools, it is now considered advisable to lodate
the thrust bearing nearer to the spindle end, to prevent spindle
distortion due to thermal expansion, and since the thrust bearing
reduces the amplitude of vibration of the spindle end,lit should
also be considered in preparing the model of the system for the
computer programs.

The effect of temperature on the performance of hydrogtatic

bearings is not as considerable as in hydrodynamic bearings. The
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temperature rise within the bearing was not substantial and inefficient
cooling contributed a large share to the actual temperature in the
bearing, and hence more attention should be paid to the cooler design.
Due to more uniform temperature distribution with spindle deflection,
the danger of bearing failure is less likely and therefore the design
of the hydrostatic journal bearing of comparable dimensions can bhe
mainly considered from the considerations of static and dynamic
stiffness outlined earlier, though a more practical value of working
temperature and oil viscosity should be taken for calculating the

design paramsters, pump capacity etc.
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APPENDIX I
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>R B =

N = 9
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LIST OF NOTATIONS

i}

i}

(eneral

0il viscosity in Reyns - 1b.sec/in2°

oil film thickness - in.

opbimum oil. film thickness for minimum power requirement - in.

pad oil pressure ~ p.s.i.
supply oil pressure — p.S.i.

oil flow - cu.in/sec.

load carrying.capacity of the bearing -~ lbs.
normal stiffness of the bearing - lb/in.
normal flexibility of the bearing - in/lb.

bearing oil pumping power requirement - h.p.

oll shearing power loss ~ h.p.

total power requirement of the bearing - h.p.

0oil flow through the capillary restrictor - cu.in/sec.

internal diameter of the capillary tube - in.

length of the capillary tube - in.
number of pressure pads in the bearing.
R.P.M. of the spindle.

bearing load coefficient.

bearing flow coefficient.

shear power loss coefficient.

capillary coefficient.

Bearing

L

D

t]

length of the bearing - in.
diameter of the spindle - in.
radius of the spindle - in.

radial clearance ~ in.
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1 = length of the axial land - in.
el = axial land ratio.
= £
L
o = angle between the direction of application of the load and the

beginning of the first pressure pad (Fig. 1.)
a = half of the angle subtended by the edges of the pressure pad

at the centre of the bearing.

@ = half of the angle subtended by one pressure pad at the centre
of the bearing.
%
et = Er
2
P, = pad pressure with spindle concentric - p.s.i.
Qo = oil flow with the spindle concentric - cu.in/sec.
Po = total power requirement with the spindle concentric - h.p.
e = eccentricity ratio.
lf = load factor.
ff = flow factor.
m = pad geometry factor.
2 = bearing design factor.

Resgistance to Tilting

o = angle of spindle tilt in the bearing.
M = moment acting on the spindle due to tilt - 1lb.in.
RFL = rotational flexibility of the bearing - rad/lb.in.

Squeeze Film Eguation

ha = oil film thickness over axial land - in.

hc = o0il film thickness over circumferential land - in.

P, = Dpressure over axial land due to dynamic load -~ p.s.i.

P, = Dpressure over cirvumferential land due to dynamic load - pe.s.i.
p% = pressure of pad 3 due to dynamic load - p.s.i.

B = angle between the load line and the centre of the axial land.

gt = angle between the load line and the centre of the circumferential land.|

91 = half of the angle subtended by the edges of the pressure pad at the




iii

centre of the bearing.

i}

half of the angle subtended by the outer edges of the
circumferential lands at the centre of the bearing (Fig. 12.)
= dynamic load carried by the pressure pad,

= dynamic load carried by the circumferential lands.

= dynamic load carried by the axial lands.

= damping constant.

= bearing pad resistance.

= ratio of the capillary resistance to the bearing pad

resistance to oil flow

K
c

&

Thrust Bearing

Tge Ty = radii of the annular thrust pad -~ in.

Tz Ty,

r,-r = radial land width.

Heat Dissipation

H, = heat carried away by the oil - BTU/sec.

At = oil temperature rise in the bhearing - °r.

v = weight density of the oil - lb/inz'o

C = specific heat of the oil ~ BTU/1b deg F.

Hb = heat conducted to the bearing housing - BIU/sec.
Atb = mean radial temperature different in the bearing - °p.
R1 = inner radius of the bush - in.

R2 = outer radius of the bush - in.

R3 = radius of the outer thermocouple setting - in.
Ky = thermal conductivity of brass - BTU/sec/in/°T.

= thermal conductivity of steel - BIU/sec/in/°F.




APPENDIX II

SQUERZE FILM EQUATION FOR A RECTANGULAR PAD

The main assumptions in the derivation of the squeeze film
equations are eﬁunciated in Chapter II. Consider a rectangular pad,
bounded on one side, and permitting oil flow in only one direction
as shown in Fig. 12. Then the equation of the equilibrium of forces

acting on a small volume of oil isg

[(p + %% ax) - pj] dydz = [(T + %i dz) - T] dxdy eeo (1)

]

vhich on simplification gives

e . X |
ax - az o0 (2)

The shear stress, T, can be expressed in terms of the oil

viscosity and the velocity of flow; hence,

o= u-g-ug cae (3)

2

P R -
o L4 a} - ?‘B :322 L 4 (l{')

The.solution of equation (4) can be obtained by applying the

boundary conditions,

n o= 0, Z = O
w = o0, 2 = h
o a1 ép .2
Q o u. -—‘“”2"]} dx (hz Z ) eeo (5)
Then the equation for the oil flow is
h
9 = f u dz
o]
1 dp g 2y .
or 4, =T3¢ gy [ (hz - 2°) dz
[
or ,.._,,,“}}i e (6)
G "T5n A

The rate of oil flow is a constant

o o 4 dg dq
dx dy dz

iv




or du . dy
dx dz
du
or dv = = ax dz o600 (7)

Integrating both sides

h h
du

r dv = =-‘r P az
o 0
Since the L.H.S., is V = gﬁ

dt

«'e the equation (7) becomes
3 2

h” dp _ dh coe (8)
12t dx2 dt

The equation of pressure distribution can be determined for a pad

with width b, by integrating equation (8) and applying the boundary

conditionss
px = Py X = X1
and px = Oy x = xa
o . J2w  dh E 2 _ Ve %
ote P 3 2dt x (x, + X, )%+ XX,
e 2o = (x, = %) 0eo (9)
2 1
The load carried by the pad is given by the equations
X2
W o= 2bx1p + 2b I. Py di
*1

Putting in the value of p_ from equation (9

2by dh

3

W= pb(x2 + x1) -

For a capillary compensated pad, the equation of oil flow through

the restrictor is;

Q = Kc(pﬁ - p)
where K = = ===
128
Therefore, the equation of the oil flow in the system isj
3
2bh” 3p - ) dh
Qo+ S (ax)x=x = 2bx, =¥ ses (11)

2
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From equation (9),

(«%E.-) o= :%2‘5 %1‘2% ( 1) il ;”%’f oo 0 (12)
x xaxa b 2
o°o the equation (10) becomes;
5
. b dh - - S JE
K. (o, = ?) 0 ( + %) T S = 0 soo (13)
K p b (et %)
o (<] dat 1 I
¢ o P = had .? 000 (1 !‘)
3 %
... K+ e
=) e
Denoting the resistance of the pad as Kbg such thats
- 3
_ bh~
Kb - Ewix2=x1$
The equation for the pad pressure isj
o2 2
K D an Omlx," - )
p = —85_ . & vee (15)
K + K ¢ 5 K
¢ b b7 (= + 1)
Kh

Putting in the value of the pad pressure into equation (10) the

load capacity is given hyj

2 2
. bpS(x2 + x1) b n [.a(x i )3 . 6(&2 =X, )(x2+x1) ]
- Kb dt N 'ﬂ KG
L+ (=2 4+ 1)
C

ooa (16)
This consists of the load carried due to the static pressure and
due to the squeeze film effect. Therefore, the damping constant of

the pad is;

1 + m>2
. 2w 3[ L3 —r2 A
Ka 3 (1 2) E'I + Wy K g
(1 w-mm) (== + 1)
xa Kb

0909 (1?)

RECTANGULAR PAD WITH TWO DIMENSIONAL FLOW

The eguation of flow for a two dimensional pad shown in Fig. 12,

can be derived in the same mammexr as shown above for a pad with one
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dimensional flow. Therefore, the equation isj

3 2 5 2
1% @m% <§a JEE-H na-»% = "%llt'“ L (18)
Mo 2 ay”©

The solution of the equations is found by assuming that the
equations for flow in the x and y directions can be solved independ-

ently and applying the boundary conditions

px. = Py X = x.i
P}C = Oy x = 3{‘.2
P, = Py Yy o= vy
and p, = Oy yo= ¥,
. =12H;,g_h;,%2_ y et -
oo Py 5 oadt (¢ R A %y - %) (xy = x)
ses (19)
‘ P
= :!—an q % i 2 <2 7 \ g % - ’l -
and Py w5 2db g + 907 + y¥8 + W, =¥, (rp = ¥)
o880 (20)

Considering the oil flow through a capillary restrictor as in the

previous case, the egquation of the oil flow in the system isj

3 3
c B e (2R o 0P = dh
] '1"12'4J l“y,l(ax) N -+ 157 4:{1(;‘337) = 431y1 aL veo (21)
=y R
The expressions for (%%) and (%%) can be obtained from
X=x1 'y:y/l

equations (19) and (20) as before, and therefore the equation (21)

becomes §

- 3
dn - gy _ ok P ]
hagyy 5 = Ko(pg = p) o+ by l—adt (g = x5) 28 G, - x,)

0o

dh - P l 2
+ bx == (y, =¥
P‘?[Edﬁk 1 2) ) oo (22)

~ 12w (y2 = ¥4

The equation for pressure in the pad is therefore;

dh .
o chs . ZEE c“ﬂya " y1x2)
- 5.9 x 35 x
KG’ + %’“’(}h Zx ! " ) KC‘ * %’})’m(x =X + ‘1
WEy T2y W™y T2y

eoo (23)
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The load capacity of the pad can now be calculated by assuming the

pressure distribution as a truncated pyramid as shown in Fig. 12.

X, ¥ X :
° 2 2 e
= . 4 + 4 : L -
0o W ,y.p + by, f pxdx Mx1 j. pydy + 4 f px(y yq)dx
% ¥ x
1 1 1
+ kb jp Py (x ~ = )dy eas (2U4)
¥4 :
hore samdt = L] (25)
Where mewe—— = o~ evs (2
I ™ ¥4 *p ¥y : .

Integrating the above equation and simplifying;
2 o o :
S0 [2Gey, + wyy) + Gy, + )]
- x Yl + v v V(s ]
113 dt [(x x1) (3'2 + 3’»,) + (32 :*,r,,) (:x2 + x1) vos (26)

Putting in the value of p from equation (23), and denotlng the pad

resistance as Kb as befores

2
W o 3@8[2(3{2}7 +3C3",l) +X. yl]
N
(1 + Kh

= i% iﬁ [ﬂx - X )3(3? + ¥, )+ (yé - y1)3(x2 + xq)

+ 2 (x1y2 + Y%, )(Exaya + 2x1y1 + X T, xayq)(x2 - x1)(y2 - y,l).:j

g; + 1)§J (ya Yﬁ) + x1(X2 - Xq)g
ees (27)

o

o o« the damping constant is given by the equation;

. 2 5 . 3y
K, _;%Dﬁuxp(%+yp+(%*Yﬂc%+xp

o2 oy, + v, )(2xﬁy2 *2K,Tq b KT, x2y1)(x - X )(y2 - y1 .]

K
G + Dy, oy = 3 + %Gy = %3
e




APPENDIX IIX

HEAT DISSIPATION IN HYDROSTATIC JOURNAL BEARINGS

(a) OIL FIOW
The oil flow in the journal bearing is given by the equation;
K.h3
Q = f 0 P so0 e (1)
o gﬂ
D,
where Kf = el
ho = radial clearance - in
# = oil viscosity at mean bearing temperature in Reyns =~
1b sec/in”
and p = average pad pressure - psi

it is assumed that the journal is concentric in the bearing, the
observed temperature is the average of the oil film, there is no
temperature gradient along the axis and the oil viscosity is uniform
over the axial land,

Then the heat carried away by the oil is given by the equation;

HO = QO A't ‘yC LN (2)
where y = weight density of oil - 1b/in’
¢ = specific heat of the oil -~ BTU/1b deg F
Ato = o0il temperature rise in the bearing

Substituting the values of Kf, hov r and ¢ in the above equation;

i = Atop (1,8 x 12.57 x (.003)> x .0307 x =3y
o = 6 -9
At p x 10
s 1.55 — BTU/sec ees (3)

BEARTNG HOUSING

The profile of the bearing bush in the housing is shown in Fig. 22
The thermocouples are placed midway between the axial land and it is
assumed that there iz no temperature gradient along the axial land and

the average temperatures indicated by the thermocouples are fairly

ix




ropresentative of the actual temperatures.

The heat transfer through the bearing can be calculated from the
observed radial temperature difference across the bush and the steel
housing, assuming same heat flow from both the axial lands and none
from the circumferential lands.

Therefore, heat flow through the brass ring is;

Kq anl(ta - t1)

HB = - l’(a sse (Ll‘)

log T
1

Similarly, the heat flow through the steel housing is given by;

K., 2ml(t, - t.)
Hy = - S 2 oo (5)
log

\N

N.':d g\NbU

where KB and KS are thermal conductivities of brass and steel respectively.
Since the heat flow is the same, the equations (4) and (5) can be

equated to eliminate the unknown temperature ¢ Then the heat flow in

20

terms of the observed temperatures is given byj

omi(t, - t.)
- ] 1
ki = see (6)
b RE R3
log == log ==
R1 R?
: + 5
KB KS
vhere t1 e t3 = Atb = the mean radial temperature difference -~ Op
1 = effective length of the axial lands ~ ft
R1 = inner radius of the bush ~ in
R2 = outer radius of the bush - in
and R3 = radius of the outer thermocouple setting - in

Substituting the values of ]R,]g RZ’ R39 1, KS and KB;

. 2n
H, 5 (Atb)1.8

1.2 1.
log K 2 log 1’255

o8t T

or = 90592 Atb eoe (7)




APPENDIX IV

CALCULATION OF DAMPING RATIO FROM FREQUENCY RESPONSE CHARACTERISTICS

OF THE BEARTNG SYSTEM

When a harmonic force is applied to a damped system, the

amplitude ratio is given by the equation;

X 1
?‘;7% o eo (1)
\/uw«-)? (2 g ¥)?
n
where F'_ = amplitude of the force

K = stiffness of the equivalent spring

E = damping ratic

w = applied angular frequency

W= resonant angular frequency

At rescnance therefore,

Xn
FO (4 = E“g*' coo (2)

When the frequency response characteristics are obtained for
acueleration rather than displacement amplitudes for all frequencies,

then any ratio of acceleration amplitudes, R at frequencies w and vy

isg
2
= L o “2‘5‘ oeo (3)
w2
V/ w2 2 W A2 n
(1-;~2) 4—(2@;;;)
n n
Squaring both sides therefore,
W 2 W 32 w o4 4 a
G- @egl)® o @)t &
W W 2
n n n. R
2
or E Ly @Rl = o ses ()
wn R2 Wn

This is a quadratic equation'in (& )2, therefore the solution isj

@ y2 452_2 (_g - 2 _ 4 _
“n 1.2 (1 ”gm) (1 = %}

i




xid

which gives two roots of (% )29 so that
n
w W 2
=1)2 4 (22 o 2= E ver (5)
W o

2
n n 1 - &Sw
RZ

From the frequency response curve, the two frequencies before and
after the resonant fregquency which give acceleration amplitude ratios,
R, can be obtained. The value of the damping ratio, £, can then be

calculated from equation (5).




APPENDIX 'V

COMPUTER PROGRAM TO DETERMINYE THE EFFECT OF THE DESIGN FACTOR ON
THE LOAD FACTOR AND THE FLOW FACTOR OF THE HYDROSTATIC JOURNAL
BEARING

bogin

real a,o,bl,el,0s,82,01,62,m1,m2,%,m,01,02,03,04,08,8p2,18,£f,w,u,h,q,0lf,c
off A,hb,hs,th,d,1,L,D,N,kp,kf,ho,qg0,0A,kL

integ@r nmn n,ll ii jj xx,kk

array £(1:4,112)

read(a,m)

cyele 11=6,1,9
e=,111

newlines(2); spaces(15)

captionkbeccentricitybratiobed=b; print(e,1,2)

newlines(3); spaces(18)

cysle n=1,1,4

f(n,1)—ﬂ+6@*((cos(a)+81n(a))*sin(n*ﬂ/2)+(cos(a)msin(a))*cos(ﬂ*n/z))+3az*c
(w/z-cos(w*n)*sin(za))+z/3*(e#3)*((ain(n*nyz)*cos(a)-coa(n*w/z)*c
sin(a))*(5/2+1/2*cos(n*w)*cos(za))+(coa(n*ﬂ72)*cos(a)+ain(n*V/z)*e
sin(a))*(5/2«1/2*%cos{n*r)*cos(28)))

£({n,2)=(1+e*(cos(n*r/2) *cos(a)+sin(nkr/2)*sin(a) ) ) #3
repont
select cutput(i)
magﬁion%hm#M%Mﬂ.ﬂ““#b#kff° newline; speces(18)
eyole k=i, 1,15
A=kl
5% p2=0,5
1t p3={A+4mrp2+£(3,2))/(A+(£(3,1)+4m*£{3,2)))
wi={ As grorepze £€1,2) ) /(AR CE(L , L)+ 4ms (1 ,2)))
apz= Ar2ux (pi*£(1,2)+p3*%£(3,2))) /(A+£(2, L)+2m* (£(1,2)+£(3,2) )}
if 1(p2-ap2)/p2] < .005 then ->2
p2~(pz+ap2)/2, ->1
pP4=ap2; p2=ep2
1pr3~1:1; ££=(p1*£(1,1)+p2+£(2,1)+p3*£(3,1)+p4*£(4,1))

print{A,2,2); spaces(3); print(lf,1,3); spaces(4); print(ff,3,3); newline
spacea(iS)
vepeat
newlines(3); spaces(ls)
ropoat
stop
ond of program

7854 .7960
SR 4

xidd




SPECIMEN RESULT

eccontricity ratio e

14
1,00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10,00
11,00
12,00
13.0
14.0
i5.00

14
0.45
0.53
0.547
0.530
0.519
0.499
-479
. 460
<442
424
.408
3%
:366
354

0
0
&)
0.42
(8] 40
0.39
o}
(0]
(o]

= 0,60

£
2.947
3-904
.376
74552
8.484
9.282
9.965
10,551
11,070
ii.521
11,923
12,283
12,608
12,902
13.170

occentricity ratio e = 0,70

b
1.00
2.00
3.00
4.00
5,00
6.00
7.00
8.00
9.00

10,00
11,00
12.00
13.00
14.00
15,00

1
0,500
0,631
0,628
0.608
0.584
0.501
0.537
0.515
0.49
0.47
0.458
0.442
0.426
0.412
0.399

£f
2.898
4,898
6.460

7.720

8.777

9.639
10,401
11,002
11,651
12,169
12.632
13.048
13.426
13.770
i4.085

xiv




APPENDIX VI

COMPUTER PROGRAM TO DETERMINE THE EFFECT OF THE OIL FILM THICKNESS
ON THE O1L FLOW, STIFFNESS AND THE TOTAL POWER REQUIREMENT OF THE

HYDROSTATIC JOURNAL BEARING

bogin

rosl o,®,0l,08,82,m,p1,p2,03,P4,P8,2p2,1%,88,w,u,h,q,01f,0ff ¢
Z,hbo heo,th,d,1,L,D,N,kp,kl ki ho,q90,0Z

integer n,11,43, jj,xx,kk

arvay £{(i14,1:2)
read(s,o,L,D,ps,u,N,d,82)

cycloe n=i,1,4

Eln, 1) =r+60%( (cos(a)+sinda) )*ainlnrr/2)+(cos(a)-sin(a) )*cos(r n/2) Y+30%%c
(W/zucos(ﬁ*n)*sﬁm(za))+2/3*(®%3)*@(s&n(n*w/z)*coa(a)—cos(n*ﬂ/z)*c
Sin(a))*(5/2+1/2*c@8(m*ﬁ)*s@s(za))+(@@m(m*ﬁ/z)*cos(a)+sin(n#w/z)*c
sinda))*{(5/2-1/2*cos(mxr)scoa(2a)))

f(n,2)=(1+ex(cos(nrr/2) xcos(ad+sinltir/2)*sin(a)) ) ¥3

ropoel

cycle 11=1,1,4

el=11/20

eyole ii=y,i,8

ea=11/9

m=(L/DY 2k { im0l ) * ol /{a2* (1-0a))

Lkl=4D (l-ol) *sin(a2) ; kf=rsD/(L*ol); kp=(D§3)*Lx(ir-4a2*ea*(i-201)) /7

nowline

spaces(18)

captioneld=4; print(el,1,3); newline; spaces(18)
captionead=46; print(ea,1,4); newline; spaces{i8)
ceptionmib=$g; print(m, 1,4), nowline; spaces{i8)
captionklé=f4; print(kl,i,3); newline; spaces(i8)
captionkfé=$; print(kf,2,3); newlino; spaces(i8)
captionfkp=f; print(kp,z,3); newlines(3); spaces(18)
coptlondbbabbbbsbibblibbbssbbipbit; nowline

wR=]

eyele jj=1,1,10

Z=3j

5: p2=0,5

13 p3=(Z+4mxp2+£(3,2)) /{2 C(L£(3,1)+4m*£(3,2) )

Pl Zeqmip2% £€1,2) ) /(Z+(E(L, 1)+4m*£(1,2)))

p2s=( Z+-2mk (pi*£(1,2)+p3+£(3,2))) /{Z+£(2, 1) +2m* (£(1,2)+£(3,2)))
if 1{p2-ap2)/p2} < ,005 then ->2; p2=(pz+ap2)/2; =>1

P4=ap2} p2=ap

Lf=p3-pi; LEf=(pi*f{i,1)+p2%L(2,1)+p3+£(3,1)+p4*£(4,1))} spaces(18)
print(z,2,2); spaees(4), print(lf,i,4)3 spaces(4); print(££,3,3); newline
Af xw<i,5 then >4
0Z=7; oli=if; off=ff; 53




xvi

4ixrepeat
Xie=2 § =Ty =>K
3ew=oli*xDFLx(1-0l)+pstsin(az)
ho=0,3628qrt{usN /pe)* (exp(0, 25Log (kp* (7+02) /(kf*0Z) )} ) ; nowline
captiondwh=$; printi{w,4,2); newline
caﬁti@n#&&&@ptimwm&fibmbthickne:s&iuﬂimches&hopt$_¢, print £1(ho,3)

newlines{3)
captiondhdbbhbbbsbisssheodibbbdbgodbidbsdhbodddsidposdbddsssslbbe

thbddbddq
newlines({2)
oycle kk=1,1,8
haslelok 5o~ 4.
g=pst(hf3)*DxoLf/{24u*L*el) ; go=ki*(h}3)*0z+ps/{Ouk(7+0Z))
hbo=pargo /66003 hso—u*(nﬁ3)*N=*L*(mn4a2*ea*(1~291))/(766000h*w)
th=hbos+hso
=37+ (dhg) «Lrel /(16% (h$3)+D+0Z)
print £1(h,3); spaces(2); print(hso,2,3); spaces(2); printqe,3,3)
snac@aiz)p.print(hbo Z2,3)s espaces(2); print(th,2,3); spaces(2); print £1(1,3)
spacos{2) 3 print(q,3,3); newiine
ropeat
NEWPRESs
repoat
stop
end of progiram

7854, .0 2.5 2.0 400 9.96a~6 2000 3.3a=2 7854

&k




»vidd

SPECIMEN RESULT

el = 0,100
ea = 0,778
w = 0,716
kKl = 3,182
kf = 25,133
kp = 7.556
% 1£ ££
1.00 0.4692 2.935
2,00 0.5493 g.882
3.00 0.5578 .356
4.00 0.5454 7 « 524
5.00 0.5275 8.457
6,00 0,5007 9.250
7.00 0.4858 9.940
8.00 0.46061 10,525
9.00 0.4471 11.044
10,00 0.4296 11,496
3.14 0,5568 6.536
W = 708,72
optimm £iln thicdiness in daches hopt = 2.2800 =3
)1} hso go hbeo PO 1 a
3,0000 =4 - 0,786 0,011 0,001 0.787 2.2240 2 0,011
11,0000 =3 0.393 0.084 0,005 0.308 2.780a 1 0.087
1,500 =3 0.262 0,284 0,017 0.279 8.236a o 0.295
2,000 =3 0.196 0.673 0°0§1 0.237 3.4740 O 0,700
2.500a =3 0.157 1.314 0,080 0.237 1.779a © 1,367
3.000a -3 0.131 2.271 0.138 0.200 1.0200 © 2,362
3.500a =3 0.1i2 3.600 0.219 0.331 6.483a ~1 3.751
4.0000 =3 0.098 5.383 0.320 0.424 4.343c -1 5.599




APPENDIX VII

COMPUTER PROGRAM TO DETERMINE THE ROTATIONAL FLEXIBILITY OF THE

HYDROSTATIC JOURNAL BEARING

bogin

veal a,h,ps,82,L,D,Z2,C,B,M,8,RFL, 0]
Intoger 1i,3],kk

read(ps,as,L,D,2)

eyele di=1,1,9

®le=,05%1d

newlines(2)

select output(i)

captionkbield=8; print(el,1,3); newlines(3)
coptiondbihbebblbbssebibbalbdibiddtiMpisississdSdlbbdssssRFL
newlines(2)

gyele jj=1,1,8

h=]J#50=4

cycle kik=i,1,9

a=, 25 hidek /1,

Calhe , 544 ek (1-2%01) ) $2/{ (he , 5L48) ¥ 2= (B, GLsek (1~201) ) $2)

B (e ST o (1-261) Y42/€ (b . SL¥8) 42 (Bt . Sk (1-201) )42)

Mz ((Zirp@) /{2 ) k@) R CH (b , 5LH8)#2/ (hen , 5Lk RH (12261 ) )= (hm , SL¥R)+L¥@LHR) 40
(as) /{ (e BY $8Y¥BHC (it , SLre) 42, Clat  SLah (1=28L) Jm (it , SLkE) ~LHGLHB) Yhe
{3=40L) *LxDrezina2) /3

S/ (e LO¥3 )
RFL=10%3/8

priat f1{h,3); spaces(5); print fi{a,3); spaces(s); printdu,3,2); spaces(q)
peint(s,3,2); spaces(4); print(RFl, 4,2)

newline

repoat

newlines(3)

zopeat

newlines(s)

ropeat

REWPREE®

atop
ond of program

400 7854 2.50 2,00 3.i4

;{1#{‘4’#2

svidd




el =0

h
1.500¢
1. 5000
1.500¢
1.500c
1.500a

1.500¢
1.500a
1.500¢
i.5000

2 .000x
2,000a

2.,000c
2 .000x
2,000a
2.000x
2,000¢
2.000

Zooom

9130.

h
1.500a
1,500
1,500a
1.500a
1.5000
1.500c
1. 500
i.500c
1,500x

Q
o
Q
R

L

. 000
. 000y
. 000
. 000
«000a
. 000¢t
. 000
. 000¢

DD DIODIOR

050

-3
-3
-3
-3
-3
-3
-3
-3
-3

-3
-3

-3
-3
-3
-3
-3
-3

100

-3
-3
-3
-3
-3

-3
-3
-3

-3
-3
-3

-3
-3
-3
-3
-3

SPECIMEN RESULT

1.,200a
2, 400c
3.600a
. 800a
. 000

7 . 2000
8.400a
9.000x
1.0800

1,600
3.200a

. 800
.400q
8.0000
9.600c
1.120c
1.280¢

1.440«

1.200c
2.400a
3.600a
4.80Ca
6.000a
7.200a
8.400x
9.600a
1.080a

1.600a
3.200c
4.800a
6. 400a
8.000«
9.6000
1.1200
1,280

1.440c

-4
-4
-4
-4
-4
-4
~4
-4
-3

-4
-4
-4
-4
-4
-4
-3
-3
-3

=

L]

»
FRHI TG &R

s

-»
L O W Co
253288 &b

[RY
NN e OO0 (:QTI’UKU) }\)?f‘p.c
oo o n

.

[y

w
.
co
o

7.04

9.60
12.97
17.78
25-
40.0

1.54
3.17
o4
9:60
12.97
17.78
25.44
40,08

o2}

SMa HphWW
* [ - - - - -
S B QN Ut
00&0\\8 :&N-P.\I\l‘

i
e )
L ]

0
(o))
c

2.67

3.01
3.33
3.82
.62
.10

9.58

12,87
13.19
13.77
14.66
16.01
18,02
21.16
26.50
37.12

9.65

9.89
10,33
11,00
12,00
13.51
15.87
19.88
27.84

RF1
288.37
280.49
267.36
248.98
225.34

196,45
162,31
122,92

78.27

384.49
373.99

350.48
331.97
300.45

261,94
216,

163.
104.36

RF1

77.71
75.81
72,63
68,19
62.48
55.50
47 .25
37.73
26.94

103.61
101,08
96.85
90,92
83.31
74.00
63.00
50,31
35.92

xix




APPENDIX VIII

CCMPUTER PROGRAM TO DETERMINE THE DAMPING CONSTANT OF THE JOURNAL

BEARING

bogln

real u,h,0l,ea,b,ps,az,1,n,B,W,Kd,06,7,Kb,Ke,d,1
Integer 14,3J,kk,11

roed{u,b,ps,a2,L,D,B,Z)

eyele 11=0,1,3

o=, 1%11

newlines(3)

eaptionpbsos=$; print(e,1,3); newlines(3)
ceycle ii=i,1,4

el=13/20
coptionditelbbbsbbsbboabbsibbbbbshbbibisbblabisiWilbbssbbabdK
newlines(2)

cyele jj=7,1,8

oa=33j/9

eysle kk=2,1,6

h=lck Sa-4

W=ps# ((D+sin(earaz)*(Lrel)) /(1+1/(2) )=(D L {1-201)*(cos(a2+(2~6a))~cos(a2+*c
82} ) /({1+1/(2) ) %2+ (1~0a)+a2))
Kd-1@«u/<h¢5*(z+13)*({L*(1»2@1)*D3*@@E€B)*cimeaﬁ*az)/<z)+(D*aO*ea*(cos(b)*c
Iw@hAL*(lm?@l)))/(1))*{@1*L)*(Dkﬁmn(aa*&z)*h*®1*az*(imea)*2~(D*L*(1~201)*c
(eos(a2+(2~0a) )=cos(azreon) ) ) ) /(2+L2%( 1-2¢01) ¥o1* (1=64cos(B) ) #3+4*earD+c
a?«&a*(1a®*c@s(b))*3*(1~ea))-1zu*L*D#3*(imzal)*oos(B)*((eos(az*ea)+cos(az*c
{2-08)))*(1~08) *282=2% (sin(az+(2-ea) )-sin(eara2))) /(hi3*8x(1-e*cos(B) )+3)+c
{2uxDxgin(eaxaz)rcos(b) *(L*xel)*3) /(h$3* (1-e*cos(b)) ¥3)

print(el,1,3); spaces(s); print{esa,l,3); spac®5(5), print £1(k,3); spaces(s)
print({¥,4,1); spaces(5); print(kd,s,1)

newline
ropoat
newlines{3)

vepeat

DOWPRZS

ropoat

NOWpAge

repeat

stop

ond of program

5.0000-6 0,00 400 0,7834 2.30 2,00 0.7854 1,00

LA




SPECIMEN RESULT

® = 0,000

ol ®f h w K
0,080 0.778 14.000a =3 661.9 11079.2
0.050 0.778 1.500a =3 661.9 3282.7
0.050 0,778 2.000a =3 661.9 1384.9
0.050 0.778 2.500a =3 661.9 709.1
0.050 0.778 3.000a =3 661.9 410.3
0,080 0.889 1,000 =3 667 .7 7564..7
0.050 0.889 1.500a =3 667.7 224%.4
0,050 0.889 2,000a =3 067.7 9%5.6
0,050 0.8%9 2.5000 =3 667.7 484.1
0.050 0.889 3.000a =3 667.7 280.2

el o8 h w K
0.100 0.778 1.0000 =3 620.2 14809.6
0.100 0.778 1,500 =3 620.2 4388.0
0.100 0.778 2.000a =3 620.2 1851.2
0.100 0.778 2.5000 =3 620.2 947.8
0,100 0.778 3.0000 =3 620.2 548.5
0,100 0,889 1.000c =3 629.2 9636.2
0.1.00 0.889 1.5000 =3 629.2 2855.2
0,100 0.889 2.000a =3 629.2 1204, 5
0.100 0.889 2.500a =3 629.2 616.7
0.100 0.889 3,000a =3 629.2 356.9

el =173 h W K
0,150 0,778 1,000 =3 578.5 16860.2
0.150 0.778 1.500¢ =3 578.5 4995.6
0.150 0.778 2,000a =3 578.5 2107.5
0,150 0.778 2.500a =3 578.5 1079.1
0.150 0.778 3.0000 =3 578.5 624.5
0.150 0.889 1.000a =3 590.8 10981.2
0.150 0.88 1.5000 =3 590.8 3253.7
0,150 0.889 2.000a ~3 590.8 1372.7
0.150 0.88¢g 2.5000 =3 560,38 202.8
0.150 0.889 3.000a =3 590.8 406.7




APPENDIX IX

COMPUTER PROGRAM TO DETERMINE THE STEADY LOAD DEFLECTION OF THE
SPINDLE IN A HYDROSTATIC BEARING SYSTEM

begin

Integer clements, dimenmsions, cuts, n, runs, f
ropd(elemente) ; read(diwensions); read{cuts); vead(runs)
n=(eloments-cuts)*dimensions

4002 bogin

integer 1,j,k,h

arrey H,X,Y,Z(i:elements, iielements)

array F(1:12,l:0lements)

ecyele i=i,1,6lomonts

eyels j=i,1,12

read({r{j,i)); ¥(j,1)=r(j,i)*1la~9

repost

road(X{1,1)); read(y(1,i)); read(z(i,1))

ropeat

cycle i=2,1,6lements

cyele j=i,1,elements

k=l-1

X(j'i,,j):‘:X(k,j)—-X(k,i); Y(ipj)=Y(k:j)“Y(kai>3 Z(i,j)-"‘-‘Z(k,j)mZ(k,i)
ropeat

1ﬁt®?@r R,®

null(H

sysle i=i,i,eleomenta

r@a&(N) 3 if N > 100 then ->7
wint(mod(f) y+d~d; ~>8

73 B=int{N)=1004 i«ni

8 w=iy <»g

33 p=Rtld

road(N); if N>100 then ->g

R=R+int(mod(N)) ; =55

9¢ R=R43nt(N)=100

58 cyels Jj=wr,1,R

if N<0 them ~->23 if N>100 then ~>6

HCL, D=1 ; =>4

23 H(i I =035->4

62 H(i,j)ani

43 repoat

if R<olements then ->3

zepoat

bogin
roal det

inteper p,q,g,b,c,8,d
array a(iin)

xxidi




xxiii

if ocuts=0 then ->50
axray inv P’”(l.cuts*dim@naiens 1icuts*dimensions)
awraz T""(i“n 180uts*dimensions)
null{F’")
eyele q=1,1i,elements
cycle p=l,l ,cuts
oyele g=p,i,cuts
breoleoments-~cuts+p; c=elements-outs+g; =>100 unless g=p
it w(q,b)=0 then ->110; =>i15
100% if H(g,c PSR or H(q,b)=0 then ->110
1152 cycle i=bkg-3,1,6%g
eyele j= *p—5s1,i+(g-p)*(6—i)

if i=Og-5 then ->1; if i=0g-4 them ->2; if i=6g-3 then ->3
ﬂﬁ 126g-2 th@n Y if i=0g=1 then =353 >0

13if j=Op-5 then ->7; if j=Op-4 them ->8; 4if j=Op-3 them ->9

if j=bp-i them ->103 Aif j=Op them —>i1; =31

r'n Af j=6p-5 them ->12} if J=Op~4 then -»i3; 3£ j=Op-3 then ->14

if J=6p-2 then ~>15; 4if J=6p them ->16; =->31

3% if j=6p-5 - then ->1%73 if J-6pu4.th@n m>18, if j=Op-3 then ->19

if j=Op-2 them ->20; if j=bp-1 then ->21; «>31

4% if j=6p-4 then ->223 if j=6p-3 & then -523; 4f j=Op-2 then ->24; ->31
5sif £ j=6p=5 then ->25; if T j=6p=3 khen hon 263 ig F j=6p=1 then ~>27; =>31

63if j=6p=-5 then ->28; if j=Op-4 them ->20; if j=Op then ->30; =>31

7% FUUE, 3= (4, )+ (F(L,)+F(2,)*Z{q,c)=-F(3, @) *Y(d,c)+(F(2,q)+F(11,q) *c
z{q,¢))*+2(q,b)~-(F(3,9)-F(12,9)*Y(q,c) )*¥(q,b) ) *H(q,c)*H(q,b) ; =>32
8z F'U(L, J)=F" (i, })+(~F(6,q)*¥(q,c)+(F(3,q)~F(i2,q)*¥{q,c))*X(q,b) )*H(q,c)*c
H(q,b); ->32
0% ¥'UL, D=F""(1,i)+(F(9,q)*Z(a,c)-(F{2,q)+F(11,q)*2(q,c) ) *X(q,b) )*H(q,c)*c
H(q,b); ~»32
1077 (1, 3)=F" (4, )+ (F(2,q)+F(11,9) *Z(q, ¢) )*H(q,c)*H(q,b) ;~>32
1187 (4, 3)=F" " (4, ))+(F(3,9)~F(12,q) *¥(q,c) ) *H(q, c) *H(d, b) }~>32
127 (1, )=F" (i, D+(F(3,a)*X(q,c)={F(6,a)+F(12,q) *X(q,c) ) *Y(q,b) )xH(q,c)*c
H(q,b); ->32
133 FUUE, 9 =F" (4, )+ (F(4,)~F(5,9)*Z(q, c)+F(6,q) *X(q,¢)-(F(5,9)=-F(10,q) *c
Z(q,c))*z{q,b)+(r(6,a)+F{12,9)*X(q,c) ) *X(q,b) ) *H(q,c)*H(q,b) ; ->32
143 F'UL, =P (4, )+ (~F(3,0)*2(q,c)+(F(5,q)~F(L10,q)*Z(q,c) ) *¥(q,b) ) *H(q,0) *c
H(Qﬂvb) 3"’>32
158 P04, 3I=F""(4, D+(F(5,9)-F(10,9)*Z(q,c) ) *H(d,c) *H(q, b) ;~>32
162 F'U(L, §)=F" (1, D+(F(6,a)+F(12,q)*X(q,c) ) *H(q, c) *H(q, b) $->32
i7: F"(i,j)=F;‘(i;j)+(-F(2,Q)*X(Q.c)+(F(9sQ)-F(ll,q)*X(Q.e))*Z(q,b))*H(q,c)*g
H Q;b $=>32
18 7', 9)=F (1, D+(F(5,0)*Y(q,e)-(F(8,9)+F(10,9) *+¥(q,c) ) *Z(q,b) ) *H(q,c) *c
H(q,b); ->32
198 F''(L, 3)=F"' (1, D+(F(7,q)+7(8,q)*¥(q,0)~-F(9,q) *X(q, c)+(F(8,q)+F(10,q)*c
Y(q,c))*¥(q,b)=~(F(g,q)-F(11,a)*X(q,c) ) *X(q,b) )*H(q,c)*H(q,b) ; ->32
203 F'°(1,3)=F"'"(4i,3)+(F(8,qQ)+F(10,q)*¥Y(q,c))*H(q,c)*H(a,b); ->32
213 F''(4,3)=F""(1,3)+(F(9,q)-F(11,8)*X(q,c) ) *H(q,c)*H(q,b); ->32
22: F'(4,3)=F""(i, )+(F(5,0)~F(10,q9)*Z(q, b)) *H(q,c)*H(q,b) ;} ->32
234 F"(1,j)=F"(1,j)+(F(8.Q>+F(1o,q)*Y(q,b))*H(q.c)*H(Q.b)3 ->32
24% F'UCL, 3)=F " (4, §)+F(10,q)*H(q,c)*H(q,b) ; ->32
253 F'U(L, )=F" (L, D+ (F(2,9)+F(11,q)*Z{q,b) ) *H(q,c) *H(q,b) ; ->32
20 F'U(L, §)=F""(i, )+(F(0,q)-F(11,4)*X(qa,b) )*H(q,c)*H(q,b) ; ->32
27% FPU(L, 3)=F (A, 9)4F (11, ) vHqg, c)*H(g,b) ; =>32
28: 7L, 3y=F" (i, D+(F(3,Q)-F(12,9)*¥(¢q,b) ) *H(q,c)*H(g,b) ; =>32
29t 'L, 3)=F" (1, 3)+(r(0,q)+F(12,q)*X{q,b) ) *H(g,c)*H(q,b) ; =->32
308 F'E, =R (4, 4F(12,0)%B g, c)*H g, b) ; ~>32

o




xxiv

3it F''(4,jI=0
32:F"'(j,8)=r""(1,3)
r@gg at

ropoat
1108 @ r@g@&
r@ggat

repeat
comment BIFE ds input

bogin

cy@ﬂ.@ i=1,1,cutsrdimensions
cycle j=1,1,cutsrdinensions

print LR (8, 3),3)3 spaces{2)

ropoat

newl ine

repeat

ond

invert(inv,F*’ ,det)
newlines(z)

print £1(det,3)
rowlines(2)

el (F 'y n)

cycle a=1,1i,elemonts-cuts

cycle p=1,1,cuts

cycle g=q,l,elomentad-cuts
hz=elnents-cutstp

if H(qg,g)=0 or H{(q,k)=0 then ->200
eycle i=big.5,1,64g

cyele j=6%p-5,1,0%p

if ﬂ‘l~6g-5 then ->413 if i=6g-4 then ->42; 3if i=Og-3 then ->43
if 4=6g.2 Then ->44; if 1=6ge-l then =3>45; => 46
41348 j=Op-5 them ->71j if a=6p~4 then w>8:i.; if j=6p-3 then ->91
ir =bp-i then -»i0i; 4if "~ j=Opthen —>iii; <5311

42,3 if J—-6p«-5 then ->i21} it Jn%p«-z; then ~»1313 if j=6p-3 then ->i41

if j=Op-2 them ->1851; if j=6p then -»161
=331 R
43: AL j=6p-5 them ->i7i; if j=Op-4 them ->1813 if j=6p-3 then ->191

Af j=Op-z them ->201; 1if j=Op-i them -»211; ->311

4 if .J-6pm4 then =221 iz J-6p==f; thon =>231; if j=Op-2 then ->2413 ->311
45348 ;j»~6mm5 th@m ->251; if £ j=6p-3 thon hon -»2013 i£3==6p-1 then ->271; =->311
4611f j=6p-5 thom -»281; i.ﬁ J=6p~4 Them ->201; if j=6p then ->301; =>311

7i3 FUUCL, 3=F (A, PDHOP(L, Q)4+ F(2,q) *2{q,2)~F(3,q) *¥Y(q,g)+(F(2,9)+F(11,q) *c
2(q,82)*2(q,b)=(F(3,a)=F{12,0)*¥(q,e) }*¥(q,b) ) *H(q,b) ;->321

8iy T''I(L, N=F" (4, D4 (=F(6,q)*¥{q,8)+(F(3,a)-F(12,q)*7(a,&) )*X(q,b) )*¢c
B(a.b) 3->321

91: F'''(d,3)=F" "L, 3+ (F{g,a)*%{q,g)-(F(2,0)+F(11,q) %Z(q,&) )*X(q,b) )%
H(g, D) §->321

1016 " (L, 3)=F" " " (1, IH+(r(2,@)+F{il,q)*Z{g,g) Y*H(a,b) ;->321

Li1eF?° (L, 3)=" " (4, 33+ (F(3,q)-F(12,9)*¥(q, g) ) +H(a, b) ;~>321

122387 (L, Gy=F" T (L, D H(T(3 @) *R(q, @)= (F(0,q)+F(12,4) *X(q,g))*¥(q, b)) *c
H{a,b) j~>321




XXV

1348F° T ¢4, I=F" T (L, I+ (F(4,)=F(5,4)*2Z(q,&)+F(6,9)X(q,8)-(F(5,4)=F(10,q)*c
z(q,e))*z(g, b)+(r¢6,4)+F(12,q) *x(q,g) ) *X(q,b) ) *H(q,b) }->321

i4ie FPUUCL, 3= (4, §)+(<F(8,a)*Z{q,g)+(F(5,0)-F(10,q) *Z(q,g) )*Y(q,b) ) *c
H(dq,b) j~>321

15188 " (L, §y=F" ' (4, 3I+(F(5,a)-F(10,4)*2(q,&) )*H(q,b) }~>321

16437 VL, )=F" ' (4, D+ (FO,)+F(212 ) *X(q,g) ) *H(q,b) ;=>321

1713F " (A, I=F (A, 3+ (-F(2,q)*X(q,g)+(F(9,q)-F(11,q)*X(q,8) ) *2(q,b) ) *¢c
H(Qpb) 3‘“'>321
484 (L, )= (4, 5)+(F(5,a)*¥{q,8)-(F(8,q)+F(10,q) *¥(q,g) )*2(q,b) ) *c

H(q,b);->321
1913F " " (L, )=F"" (1, )+ (F(7,0)+F(8,a)*Y(q,g)=-F(9,q) *X(q,g)+(F(8,q)+F(10,q)*c
v(a,e))*+Y(q,b)-(F(9,q)~-F(11,q) *X(q,8) )*X(q,b) )*H(q,b) ;->321
201:F" " "(4, 3)=F" " "(4, )+(F(8,0)+F(10,q) *¥(q,2) y*H(q,b) j->321

Z413F" (L, §)=F" " (1, )+{F(9,q)-F(i1,q)*X(q,2) ) *H(q,b) ;~>321
225:F" (4, 9)=F" " "(1, ))+(F(5,a)-F(i0,9)*2(q, b)) *H(q,b) }~>321
231874, §)=F" " "(4, )+ (F(8,q)+F(10,q)*¥(q, b)) *H(q,b) ;~>321
244:F" " (4, 3)=F"" (i, )+F(10,9)*H(q,b) }~>321 .
2513F" " (i, 3)=F" " "(4, 3)+(F(2,q)+F(11,q)*Z(q,b))*H(a,b) ;~>321
20137 "(4, J)=F" "' (1, )+(¥(9,q)-F(11,9) *X(q, b)) *H(q,b) j~->321
270:F" (L, P=F"""(1, §)+F(11,q)*H(g,b) ;~>321

2817 (4, D=F"" (1, §)+(F(3,Q)-F(12,a)*¥(q,b) ) *H(q,b) ;->321
2913F" (L, 3)=F" " (i, )+(F(6,q)+F(12,q9)*X(q, b)) *H(q,b) }~>321
304:F' (4, §)=F"""(4i, )+F(12,0) *H(4,b) j->321
3413F' ' '(4, 3)=0

321: repeat

r@Eeat

200¢ repeat

ropoat

ropeoat

corment Bot F B is input

50: wogad(e)

cycle £=1,1,0

voad{d)

eyele i=1,1,n

a(iy=0

repeat

->51 if cuts=0

cycle i=1,1,n

cyele p=1,1,dimensions*cuts
cycle g=1,1,dimensions*cuts
a{i)=a(i)~F'"'"(i,q)xinv(q,p)*F'"''(d,p)
repeat

ropeat

repeat

5itcycle q=1,1, elements-cuts
cycle p=q,1, elements-cuts
g=intpt((d+dimensions-1) /dimensions)
if H(q,p)=0or H(q,g)=0 then ->330
eyele j=6p-5,1,6p

-»310 if frecpt((d-1)/6)<0,001
->»52 if fracpt((d-2)/6)<0.001
-~>53 if fracpt((d-3)/6)<0.001
-»34 if fraept((d-4)/6)<0,001
~>Sg if fracpt((d-3)/6)<0,.001
-5
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510% if Jebp-5 then->y2; if j=Op-4 then ->82; if j=Op-3 then ->92
if j=bp-i then ~>102; if j=6p then ->i12; =312
821 if j=6p-5 then ->122; 1f j=Op-4 them ->132; if j=6p-3 then ->142

if j=bp-2 them ->i52; if j=6p then ->162
<»312

53¢ Aif j=0p-5 then ->i72; if j“6pm4 then ->182; if Jj=6p=-3 then ->192

if j=6p-2 them -~»>202; if J=Op-1 them =»212; ->312
54t AL j=6p-4 them ~>222; if j=0p-3 them ~>232; if j=Op-2 then ->242

->312

55eif JoOp=5 them =>252; if J=Op-3 them ->2623 4if j=Op-1 then ~>272
=312 R

563i% j=Op=5 them ->282; 4ii j=O6p-4 them ->202; if j=6p then ->302
=312 - R

72se(D)=a(J)+F{1,q)+F(2,q)*2(q,g)-F(3,4)+¥(q,&)+(F(2,q)+F{11,0)*Z(q,&) ) *c
z(q,p)~(F(3,q9)-F(12,)*v{q,e) )*¥(a,p) ->322

8238()=a(i)-F(6,0)*¥(q,2)+(F(3,q)~-F(12,a)*Y(q,g) )*X(q,p) ;->322

92sali)=o{N+F(9,a)*Z2(q,g) -(F(2,q)+Fr(11,q)+Z(q,g)) *X(q,p) ;->322

1025a(dy=al3d)+ F(2,q9)+ F(11,q)*Z(q,g) ;->322

ii12salid=al{i)+ F(3,q)~ F(12,q)*Y(q,g) ;~>322

1223a( =l I)+{(F(3,q) *X(q,)-(F{6,a)+F(1i2,g)*X(a,g) ) *Y{a,p)) }->322

1323a{ j)=alid+ F(4,9)=F(5,@)*z{q,g)+#(6,q)*X(q,8) -(F(5,Q)~-F(10,q)*Z(q,g))*c
7Z€q, p)+({F(6,q)+F(i2,a)*X(q,g) ) *X{a,p) }=>322

14238 jI=al§)-F(8,@)*2(q,g)+{r(5,a)=F(10,q) *&{q,g) ) *¥{(q, p) ;->322

152:8(j)=alj)+ F(5,@)~F(10,q)*z(a,g) ;->322

1622 j)=a(i)+ F(6,q)+F(12,q)*X(q,g) }~>322

i723a(j)=af jy- 7(2,q)*X(q,2)+(F(9,a)-F{ii,q)*X(q,g))*Z(q, p) }=>322

i82ta{D=alj)+ T(5,@)+¥(q,g)~(F(3,q)+F(i0,qQ)*¥(q,g))*2(q,p) ;->322

1923a jy=al )+F{7,q)+¥(8,q)*¥(a,g)-F(9,a)*x(q,)+(F(&,q)+F(10,9)*¥(q,g) ) *c

v¢a,p)-(r(g,q)-F(11,Q)*X(q,e) ) ¥X(a,p) ;~>322

2028 3)=a(J)+F(8,q)+F(10,q9) *Y(q,e) ;=>322
2iz:a{=a(j)+F{(9,q)-F(11,q)*X(q,g) ;~>322
222:a(J=a( J)+F(5,9)-F(10,q)*Z(d,p) ;- >322
2323a( jy=o{ )+F(8,q)+F(10,q) *Y(q,p) j~>322
242ta(j)=a( j)+F(10,q) ;~>322

25238 P=alJ)+F(2,q)+F(11,q)*2(q,p) ;->322
262s8(j)=a(j)+F(9,q)~-F(11,q)*X(q,p) ;=>322
272:a(j)=a( j)+F(11,q) ;->322

282:a(j)=al J)+F(3,Q)=-F(12,q)*¥(q,p) }~>322
2023 a{j)=a(i+F(6,q)+F(12,q)*X(q,p) ;->322
302:a(i=alj)+F(12,q) ;->322
31zalj)=al{j)+0

322% repeat

330srepesat

ropeat

compent dnput iz Bot F Bo - Bot P B * inv * ( Bot F B )t
egel@ i—ipi elemonts-cuts

cyele J=bi-5,1,04-3
print £1{a(j),3); space
zepent

spaces{z)
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if fracpt{is/3)<o,001i then nowline

repesl

nowl ines(2)

ropost
ond
ond

TUR BT S 1,
=>400 1f zwas>0

stop

end of program
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i4 5.8 4-8 3-8 2-8 18 8 % 6 5 4 2-1 1=1 1

3
3
32
33

ST/

SPECIMEN RESULT

0.000x-99
8.900y =2
1.204y ~1
0.000y=99
0.000¢=99
0,0000=99

0,000q--99 -
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(0] o 000(2-’99
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0,000g=99
0,000=99
O ® 00003"99
0,000y=99

0. 000y=99
Q @ 0000!‘“99
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0o OOOCV “99
0 o OOOQ"’99

0.000x-99
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Oe 00%"99
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3 0 ‘!'|‘73Q’
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-1 o 2380[
el 1 o 4?3&
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C. 0000.’"99
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QC 20 ==2C
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APPENDIX X

COMPUTER PROGRAM TO DETERMINE THE DYNAMIC RESPONSE OF THE HYDROSTATIC
BEARING SYSTEM- WITH DAMPING

bogin
integes elements, dimensions, outs, m, rums, £, R, B,1,J,k,h,t,p,q,0,a8n,0

bb,cec, 88, times,u

roal e

read (elements, cuts, B, R)

n=(elementa-cuts)*3; dimensions=0

array A(1:2n,1:20),X,Y(1:R+1,1:2+0loments) ,L{12%olements,132)
array A'(ii2+elements,li2*eloments)

voutine spec solve ejigenvalue problem(arrazgggp A,1,X,Y, integer mn,c
integername R)

begin

real C

array a{iin,lin),m(1in)

srray H,X,Y,Z(ielements, itelomonts)

array F(1:12,1elements)

cycle i=1,1,0lements

cycle j=i,1,12

read(F(j, 1)) F(j,1)=F(3,i)*la~g

ropeat

road(X(1,1)); read(Y(i,i)); wread(z(i,i))
if elements=i then ->i

cycle i=2,1,elemonts
kedad
eysle j=i,1,elenents
XCioJ)~X(keJ>~X(k ) v, =v(k,j)~vq(k,1); Z(L, Jd=2(k, jI-Z(k,1)
ropeat
ropeat

libegin

xeal N

integer R,¥

nuil(H)

cycle i=i,1,eloments
read(N) 3 1f N > 100 then ->7
R=int(mod(N) Y+i-l; >

7% R=int(N)~100+i-1

82 r=ip «>5

3% ©=R+l

read(N); if N>100 then ->9
R=R+int(mod(N)) ; =55

93 R=R+int(N)-100

53 excle J==x,1,R

xxix




AAXK

4if N<o them ->2; if N>100 fhem =36
H{d, d=1 3 =>4

28 H(L, §d=03=>4

62 H(i, j)e=i

43 repeoat

if R<elements then ~>3

zepeat

begin

roul dot

integer p,q,8,b,0,0,d,m,1

Af cuts=0 then 50

arpay duv,?'°(1scutstdinensions, 1 jcutsdinonsions)
array F'7°(132+n,1cutsrdimensions)

switeh A€136), c(133), D'{0:8), D(0:35)

B s

aa=0; bb=0} oewi

Af times=1 then aa=1l; if times=2 then bb=i; if timss=2 then cc=-1
cyele g=1,1,clemente-bbrouts

syele p=i,1,cuts

beolemente-cuterp; =>4y if H(g,b)=0

cyele g=aarprblbtq, i, bbrelementsicutarec

beint((g-p) /{g-p+0.1)); c=gr(oloments-cuts)®ana

if H{q,2)=0 then -> 110

eygle i=6g-5,1,6g

d=inbgeb

eysle j=b6p-5,1,6p*(hrao+bb)drank(i=h)

NG

AC1) s £=3-Op+5; <oD{EYs A{2): £=23-0pill; ->D(2); A(3): £=j-Op+17; =>D(L)

A4 s F=jeubpr233 -20{8); A(5)1 f=j<0p+205 =>D(L); A(O): £=j-Op+r35; ~>D(L}

BloYs B, 3= (A, DR, )41 (2,q) *Z(a,0)=F(3,a) #Y{q,e)+(F{2,q)+F(il,q) *c
zdq, ey y*zle, b)=(F(3,q)=F(12,4)+v{q, e} ) *¥{q,b) ) «H(a, c)*H{g,b?
=32

DY FPUO(L, )=F 0t T(A, I+ (P06, )+ Y (g, )+ (F(3,q)-F(12,a)*¥(q,e) ) #X(q,b) ) *c
H{q,c)*H{q,b); =>32

B2y ¥, D= (A, D (R, q)+2{a, 0)=(F(2, ) +F(1L,q)¥2(q, e) ) *X{q, b} )¥c

H(q,c)*H{g,b}; «>32
DY s FOCL, 3Rt (R, D(F(2,q) 4711, )+ 2(q, 0) I (g, c)*H g, b) ;  ~>32

DEsYe FUOTCA, 30=p (L, 304 (F(3,9)=-F(12,4) *Y(q,c) ) *H{q,c)*H(g,b); =>32

DEOY s 0O, 3Y=F " "(d, 33+ (F(3,q) #X(g,c)=(F(0,a)+F{12,9) *X{(q,c) ) ¥Y(q,b) ) *c
H{q,c)*Hlq,b); =32

BE7Y UL, 3)=F (L, D+ (R4, q)=2(5,a) «Z(g,s)+F(6,q) *X(q,c)= (F(5,q)-F(10,q)*c
Z¢q, ) )*Z{g, b+ (F(6,qr+F(12,q) *X(q,6) ) +X(q, b) ) *H(q, c)*H(q,b)
=332

DE8Y s 77 TCA, 3d=r" " {1, 53+ {=F(8,q)+Z{(q,e)+(F(5,9)-F(10,9) *Z{q, c) )*Y(q,b) ) *c
H(q,c)+H{q,b); =>32

DLgYs PO, 3¥=F " (A, I+ (P(5,a)=F(10,6)*2{q,0) )*H(q,c) *H(q,b); ~>32

DEI1Ys FPOCE, 30 0, )P0, @)+ (12, ,9)*X(q,6) I*H{g,6) *H{q,b) ; ~>32

Dizys ¥V, 3)=F" "4, 3 (-F(2,4)*X{q,0)+(F(0,q)=F(il,q) *X(q,c) )*Z(q,b) )*c
Hlq,e)+H(g,b}; «>32

DCigYs F'UULE, =" L, D (F(5,a)n¥(g,6)=-(F(8,a)+F(10,q) *Y(q, ¢) )*Z(q,b) ) *xc
H(g,o)+H(q,b); =>32




XKL,

DE4Y $F (L, 3)=F" " {1, 3)+(F(7,a)+F(8,q)*¥(q,c)=F(9,q) *X(q,0)+(F(8,q)+F(10,q) *c
v(q,6) 1*v(d,b)=(F{9,q)=F(11,q) %X (q,c) )*X(q,b) ) ¥H(q, c)*H(q,b)
->32

DCigys FP(4,3)=F"" (1, )+ (F(8,0)+F(10,4)*¥Y(q,c))*H(q,c) *H(q,b); =>32

DEi6Ys FOO (4, Jy=F"' " "L, D+(F(9,a)-F(1l,q)*X(q,c) ) *H(q,c)*H(q,b); ~>32
pCighs F' UL, §d=F" " (1, I)+(F(5,0)=F(10,a)*Z(q, b} ) *H(qy,c) *H(q,b) ; ~>32

DEzoY s FUA, Gy=F"" "(i, )+ (F(8,a0)+Fr(10,q)*Y(q, b)) *H(q,c)*H(q,b)} ~>32

D(21): F''UC(L, 3=F" " (4, §)+F(Ll0,a) *H(q,c)*H(q,b); ~>32
DE24Y¢ F'PL, =R (L, D+ (F(2,9)+F(11,q) *Z(q, b)Y )*H(q, c)*H(q,b) ; ~>32

D(26)s F'''(a, 5)=F" " "(1,)+(F(9,q)-F(11,9)*X(q, b)) *H(ua,c)*H(q,b); ~>32

D(28Y: F''C4, 5)=F" " (4, )+F{i1,q) «H{g,c)*H{g,b); ~>32
D{30Ys F' (L, 3)=F"'""(1, )+{F(3,9)-F(12,)*¥(q,b) }*H(q,c)*H(aq,b); ~>32

D(3iys F'VC(L, 9)=F (L, )+ (F(O, q)+F (12, 904X (q, b) ) *H(q, o) ¥H(q,b) ; ->32
D{35)s F'7°(L,3=F"" (1, )+F(12,q)*H(q,e)*H(g,b); =->32
D(10Y: =>D(3)3 D(17) s ~>D(3); D(18): ~->D(3); D{22): ~>D{(3); D(23): ~>D(3)

D(25)s ~>D(3); D(27): =>D(3)3 D(29):=->D(3); D(32): ~>D(3); D(33): ->D(3)
D(34): =>D(3)
p3): F'''(4, 3d=0

3J2sropoat
ropeat
il0:repeat

47 ropest
repeat

=80 if times=2

cycle i=i,1,06%cuts

Gz@'l@‘; j=1’1’i

F'O0L,3)=F"""(1,3); F''(j,i)=P''(41,3); zopeat
repoat

eyele i=i,1,0%cuts

eyele j=1,1,0%cuts

print £1(F''(1,3),3); spaces(2)
ropeast

newline

ropsat

invert{inv,F'',det); newlines(2)
print fl{det,3); newlines(2)

-2

50snull(a)

~»514f cuts=0

cycle i=1,1,n
p=i+3*(intpt(i/3,001))

cyecle j=i,1,i
a=j+3*(intpt(j/3.001))

cyele 1=1,1,6+cuts

cycle e=1,1,6%cuts

a(i, d=a(i, )~F'' "(p,e)*inv(e,l)+F"'"' '(q,1)
repeat

repoat

ropeat

repeat

23repost
513cycle g=1,1,elements-cuts

oycle p=q,1,elements-cuts
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if ulq,p)=0 then ->33%

gyole g=p,i,elements-cuts

if H(g,g)=0 then ->330
we=int( (g-p) /{g-p+0.1))

sycle 1=0g-5,1,0g=3
d=int(le=1, 5% (intpt(1/3.00L))); c=L-O%g+d
cycle e=0p=5,1,m(6p=Ll=3)+1
Jeint{e-1,5¢({intpt{e/3.001)))

w>Ce)
(1) s Fmo-bpr5s =>D'(£); C(2): L=0-0%p+8; =>D'(£); C(3): f=0-Okpslil; ->D'(F)

D°C0Y: adi, I=all, HD+F{L,@)+F(2,q)*%{a,2)=F(3,a) *V{a,g)+(F(2,9)+F(11,q)*2(q,g) ) *c
264, pY=-(F(3,@)=F(12,a)*¥{q,g) Y*¥(q,pd; -~>322

p'C1)e ali,iy=ali, ID=F(6,a)*Y(q,e)+(F(3,8)=F(12,q)*¥{q,e?)*X{(q,p); =~>322

p'(2): ali, D=all, D+Flo,a)*Z(a,8) =(F(2,@)+F{i1,ad)*2(q,2)) *X(q,p); =~>322

D'(3) tadi, H=all, 3+(F(3,a)*X(a,g)=(F(6,q)+F(i2,q)*X(a,e) ) *¥(q,p))} =>322

D'(4): ali,J¥=ali, jd+ F{4,a)=-F(3,a)*2{q,e)+F(0,q)*X(q,g)=-(F(5,q)-F(10,q) *c
z€a,e))*3(q, p)+(F(0,a)+F(12,q)*%(a, ) Y*x(q,p}; =>322

D'€5)s afd,jd=ali, j)-F(8,q)*2(q,g)+(F{5,a)=-F{10,q)*Z(q,g) Y*¥Y(q,p) }=>322

D*(6)Ys ali,j)=ali, )=F(2,q)*x(q,e)+(F(g,a)=F(11,q)*X(q,&))*2(q,p); =~>322

DYe all, Jy=add, 3+ F{(5,ay*v{q,eg)-C(F(8,q)+F{10,q)*v{(a,g) )*a{q,p); =~>322

D78 sald, jd=all, H+F{7,0)+F(8,q)*¥(d,2)=F(g,q) *x (g, g)+{F(8,a)+F(10,q)*c
¥{q,e>)*v{(q,p)-(F(Q,q)-F(il,a)*x(q,g) ) *X(a,p) } ~>322

322: repeat

ropoat

3303 repeat

331¢ repeat

ropeat

end

comment & ocontains lower trisngle of 3#%3 flex matyix

wzcwrn

eyels j=1i,1,n

ali, D=alj,1)
pagaat

xepeat

gyelo 4=0,3,n-3
read(e’)

eyele j=1,1,3
mfd+J)=6’

repeat

repost

null{A)

eyele p=i,1,n
i=n+p

cysle j=1,1,n
A(jri)m&(j rp>*m(P)
repeat

ropest

sycle i=1,1,B

=l

rord{C,p,q)

=*333 unless p=0
u=03 p=i

3333 eyele j=1,1;n
A(J,p)=Al],p)-urcx(ald,p)-ali, @) ); A(J, @) =A(],q)-C*(alj,q)-uxalj,p))
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reg@at
w@pwat

oyele J=il,Li,n
Alsr J, 3)=1

gﬂg@&t
@md

TusA I

oyele ss=1,1,3

cgcl@ i=88,3,(n-3+88)
=i+dntpt(l/3.001)

cyele j=s8,3,(n-3+88)

g=i+dntptdi/3.000) 3 A'(p,a)=A(%,3)

Eepest

repeat

n={eloments-cuts)*2

solve eigenvalue problem(A’,l,X,Y,n,R)

newline

cycle i=i,1,n

print fl(l{i 1),3); spaces(2)

if fracpt(i/i0)<,001 then newline

ropost

newlines(3)

eyecle 1=1,i,n

print fl(l(i 2).3); spaces(2)

if fracpt(isio)<,00i then newline

g@p@at

newlines(4)

ner{ elemonta-cute) *0

1f R=0 then => 423

newlines{2)

gycle i=1,1,R
eyele i, 1, (eloments-cuts)*2

print F£L{X{i,3),3); spaces(z)
if frecpt(j/g9) < 0,001 then newline

newlines(2)

eyele j=1,1,(slements-cuts)*2
print £1(Y(1,j),3); spaces(2)

if fracpt(j/9) < 0.001 then newline
ropont

newlines(3)

repest
® '=0

cycle i=1,1,R

cycle Jj=1,1,(elements-cuts)*2

ACH, D=Cx(4, 3))2+(¥(1,3))2%; e'=e'+A(d,])
repeat

newline

print fi(e’,0); newline

ropsat

423 srepeat

routine solve eigenvalue problem(arrayname A,l,X,Y, integer n,integername R)
roal norm j; array b,c,d(1:n)
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routine Lanczos tridiegonalization (grray name A,b,c,d, integer n)
arrax xray B(1in+l,1:n), BB(1ins+d,1in), bh(i:n), e(. e(len), ee(i.n)

integer i,j,r; real sum,sumi,sum2,sum3,x,y,br,cr

x = sqrt(l/n)

cycle i = 1,1,n ; B(4,i) = x; BB(1,1) = x ; repeat; b(1) = 0 ; o(1) =0

gycle r =
cyele i =
sum = 0O}
cycle j =
repeat
B(r + 1,i) = sum ; BB(r + 1,i) = sumi
xrepoat

suin=0

cycle i = 1,1,n; sum = sum + B(r,i)#*BB(x,1)
ropeat

bb(r) = sum jeum = O
->2 ifr=1; br =

HEHP
RELL
FRER:
we O

sum = sum+ A(L, j)+*B(r,j); suml = sumi 4+ A(Jj,i)*BB(r,J)

bb(r) /bb(r-1) ; b{x) = crrbyr ; br = c(x)*br

2t cyele i = 1,1,n; sum = sum + BB(r,i)*B(» + 1,1i)
ropeat
d(r) = sum/bb(x) ; -> 3 if r =n
cycle i = 1,1,n
sum = B(r + 1,i); sumi = BB(r + 1,1i)
sum = sum - d(r)*B(r,i); suml = sumi - d(r)*BB(r,i); -> 1 if r = 1
sum = sum - b(r)*B(r - 1,i); sumi = sumi - br*BB(r - 1,i)
1: B(r + 1,i) = sum § BB(r + 1,1i) = sumi
repeat
cycle i = 1,1,r
Sum = 0; sumi = O
cyele j = 1,1,n
sum = sum + BB(i,j)*B(> + 1,3); suml = suml + B(i, j)*BB(xr + 1,J)
zropoat
a(i) = sum/bb(i) ; ee(i) = sumi/bb(l)
repeat
BUmZ = 0; sum3=0
cycle i = 1,1,n
sum = 0} suml =
cycle j = 1,1,r
sum = sum + e(j)*B(j,1); suml = suml + ee(j)*BB(J,1)
repeat
=B(r + 1,i) ~ sum; B(r + 1,i) =x ; ¥y
sum2 = sumz + x?; sum3 = sum3 + y?
raepeat
sum2 = sqrt(sum2); c(r + 1) = sum2; sum2 = 1/sum2 ; cr = sqrt(sum3)
sum3j = 1/cxr
cycle i = 1,1,n
B(r + 1,i) = B(r + 1,i)*sum2 ;BB(r + 1,i) = BB(r + 1,i)*sum3
repeat
repeat
33 cyele » = 1,1,n
cycle i = 1,1,n
A(x,i) = B(r,i)
repeat
repeat

return
end

BB(»r + 1,i) - sumi; BB(r + 1,1) =y
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routine elgenvelues(arrayname b,c,d,l, integer m, roalname norm)
integar i,3,k,N,L,t,rev § real ,q,n M ,dp,dq,K KO0 ,x,dr,8,8
array a{osi osn.) »A,Q,T,E F(Osm),pa qa(osi)
- 1%% ifn>1 3 1(1,1) '-d(.i.) 3 1(1,2) =0 ; norm = Jd(1)| 3 => 17
18: nowm = |d{(i)] + Ib(z)l
@gcl@ i=2,1,n=1 .
fe€idt + 1ddi)] + Ib{i+i)i ; noam = 8 1f 8 > norm ; repeat
= le(n)| + ld(n)] jnorm = 8 4£ s > nowm } s = 1/norm
a(o 0 =1 3 a(1,0) = d{i)*s § ali,i) = - i
cycls i = 2,1,n
M = =b(i)*c(i)*sz § D= d{i)*s
ALO) = D*all1,0) + M*a(0,0) ; A{i-1) = -8{i,i-2) + D¥a(1,i-1)
A(i) = = a(l,i-1) 5 a(i,i) =0 § ~> 10 4f 4 < 3
gycle j = 1,1,1.2
ACT) = wa(i,swl) + Dxali,j) + M+a(o,3)
repesat
198 eyele j = 0,1,3%
8(0,3) = a(1,3) 3 a(l,3) = AP
ropeat
repeat
N=njt=13k=113;Ko= lasil
18 => 2 3£ A(0) #0 §} N =N-1 3 I(N,1) =0 3 1{N,2) = 0O
cycle i = 0,1,N
A(L) = A(i+1)

rege&t
S
2: pa(o) =0 3 pa(i) = 0 ; qgafo) = o;qa(1>=osr=0
38 ~>73EfN=03~->111EN=3 ;L=03~>43ifN>23;p=--A(1)/A(2)

a = ~A(0) /A(2)
-% 10
r == ACO)/A{1) § => §
48 K=KO 3} 8 =0 ; rov = 1
eyele j = 0,1,N
8= 8 + lozg(lA(j)I) if A(J) »# 03 rpopeat
8 = oxples/{N+1))
cyele J = 0,1,N
ALY = A(jd*s
zopogt
=» 6 if [A(N-1}AC0) | > [A{LYA(N)]
It ==t g k=k+tir=1/rifevzo
cyele 1 = 0,1,intpt(4N-0,1)
= AC(i) 3 ACi) = A(N-i) ; A(N-i) =
repoat
6: p = pa(k) : q = qalk)
212 gyele i = 1,1,20
Q(N) = A(N) 3 Q(N=1) = A(N~1) + p*Q(N) § T(N) = 0 ; T(N-1) =

oycle j = N-2,-1,0

QI = AP + pQ(i+1) + grQ(F+2) 5 T(I) = Q(3+2) + p*T(j+1) + q*T(j+2)
repeat
> 8 if 1Q(1)! < K 3 -> 12 if JA(L*K] <€ 1QC1) 1 ; Q(0) = AC(O) + q*Q(2)

8: -> 10 1f 1QCo) | < K ; -> 10 if !q(o)l < " 1ACO)*K |
128 E(N) = A(N) ;3 F(Y) =

cyels j = N-1,-1,0

E(J) = ACHY + »xB(3+1) 3 B(J) = E(j+1) + r+«P(j+1)

r@geat

-> 5 if |B(0)] £ K 3 -> 5 4f IEC(0)| < IACOY*K| § M = p*T(0) + qQ*T(1)
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= fr(o)z - M*T(1)
KOi:EDmo;D=1/D
= (QC0)*T(1) ~ T(O)*Q(1))*D ; dq = (M*Q(:l) - T(0)*Q(0))*D
m> 10 if [p*dpl + |dgl < 5K*(p® + lgl) 3 p=p+ dp ; @ = ¢ + dq
¥(0) = Ko if F(0) = 0 ; Tdr = «E(0)/F(0) 3 -=> 5 if ldr] < 5K*|x]  r=1r + dr

8=8+ lQ(i)/A(i)! if A(1) # 0
= s => 15
N =

A4
f
]
5
E
P
~
z
N
~
]
O"t
'“4

85t ® =1/

10t 8 =4p 3> 13 ifL=18andi=13D=35;8=0D+q;->13if L =1

~> 13 1£]8]>1a=10%D
S=03L=13g==Djr=s;->21
13t => 14 if t > 0 j a = 1/4 } 2
14t p=83 L=1; L=0Jif 5> 0 ; 8
switch c(0:1) ; -> C(L
c(o): L(N,1) = norm«(p + &)3 1(N,2) = 0; 1(N=1,1) = norm(p -~ 8)
1(N-1,2) = 0 j} -> 16
c(1): D = norm*p ; 8 = noxm*8 §; I(N,i) =D j; L(N,2) = 8 ; 1(N=-1,1) =
I(N=-1,2) == 8
163 N = N-2
cycle j = 0,1,N
A(Y) = Q(j+2)
repeat
-> 3
7% cyecle i = 1,1,n
AL = 1¢i,1)% + 1(d,2)2

k=4

=

= AQL)

wo

1(k,1) 3 1(k,1)
1(k,2) ; 1(k,2)

3 ACK) = A(N)
s N=N-1; ->9 if N > 1

=2

-

~
nt

[ 3

p
P

routine tridiinverse iteration(arrayname b,c,d,1,X,Y,integer n,real normw)

integer i,Jj,k
real s,h,eps,bi,bil; complex lambda,u,v,w,eta

T aerray r, a.nt(lm) jcomplex array m,p.q(1°n),x(i:m-z),y(l.n)

ops = lg-1l*norm ; norm = norm¥sqrt(0.5) ; lambda = norm+(1+i)

R=nif R >n

cxcle Jj=1,1,R

= 1(j,1) + i*1(j,2) 3 u = w-lambda

=> 13 if lim(W) | > o and mag(u- Zirim(w)) =

= 15 if mag(u) < eps ; lambda = W § => 16

15: lambda = lambdax(1 - eps/mag(lambda)) ; 1ambda. = re(lambda) if im(w) =
163 u = d(1) - lambda ; v = b(2) 3 v = eps if b(2) =

cxcle i=2,1,n

= efi) ; bi =ep8 if bi = 0 ; => 3 it i =
bii b(i+1) ; bil = eps if bil
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38 => 1 if Ibil > magdu)
m{i) = bi/u § pli=1) = v § @(i-L) = v § =(i-1) =0
W= d(d) - lambda - m(i)sv § v = bil 3 dnt(l) = =1 § => 2
13 mCiy = u/bd § m(i) = 1 if mag(u(i)) = O and bi < eps
p(iai) = bl 3 @(i-1) = ACL) = lewhda § ©(i=1) = bl
W= v e n{iyrgli-1) § v = -m{idexfi-1) § int(i) = 1
23 zepent
p(n) =u 3 aln) =0 3 =(n) = 0 § =(2ei) = 0 5§ x(M2) =0 § h=0
eta = i/n § eta = otav(i+i) 1f im(lambda) # 0 ; 8 =0
cycle 1 = n,-1,1
v = ota - gliy x{itl) - e(idvx(Lle2)
bii = meg(p(i)) 3 -> 6 Af il = 0 § %(i) = u/p(i) 3 -> 7
6: ®(i) = u/ops
78 bl = meg(x(i)) 3 -> 11 1L bl < 8 3 8 = bl 5 v = x(i)
113 b = h + mag(x(i))?
repeat
h o= i/s8gwédh) ;3 v = hrconijfvd/e
cycle i = 4,1,n
y{i) = m(i)*v § (1) = y{i)
Fopeat
cyede k = 1,1,5 § 8 =0
oycle i = 2,1,n
> 4 1f dnt(i) > 07 (1) = (1) - mli)*e(i-1) 3 ~> §
u = ®%(i=1) § ®(1-1) = xi) 3 ®(1) = ¥ - Mm(Ly*x{i-1)
sopoat
h =20
cycle i = m,~4,1
u = x(L) « qliy*x(i+i) - {iy+n(iez)
bii = meglp(i)) ; => 8 £ Bl = 0 3 %(1) = w/p(d) 3 => 9
s (1) = u/eps
9t bi = meg(x(l)) ; => 12 £ bl < 8 § 8 = bl 3 v = x(1)
128 h = h 4+ bi?
ropoat
h = i/sgetCh) 3 v = higoni(vd/a 3 8 = 0
eysle i = 1i,1,n
u= iy § 8= 5+ meg(y(d)-u)? § y(i) = v j x(1) = v
repvat
=> 10 if 8 < n*la=1i
reopuat
=% 40
13: gyole & = 1,1,n
' ¥(3,4) = X(j-1,4) 3 v(j, 1)
zepeat
we 14
1ot gyele 1 = 1,1,n
X{j, 1) = woly(i)) 3§ v(j,4i)
ropeat
14: zepeat
»oturn
end

Ut
oo oo

|13

im(y{i))

L}

routine backtransformation (arrayname A,X,Y,integer n)
integer i,]j,r ; complex sum,z ; complex array y(lin)
1,1,R
i,1,n

&

g

L i e
font

1,i,n
pum = sum + ACJ,i)(X(w, ) + Erv(x,3))
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ropoat
y(i) = sum
repeat
cycle 1 = 1,1,n ; X(r,1) = re(y(i)) ; Y(r,1) = im(y(i))
ropeat
ropeat
return
end

Lanczos tridiagonalization(A,b,c,d,n)
eigenvalues({b,c,d,l,n,norm)

> 1 A R 2O
tridiinverse iteration{b,c,d,l,X,¥Y,n,norm)
back transformation(A,X,Y,n)
i: return
end

end of program
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SPECIMEN RESULT
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—4.649q -5
73570 =2

"2 .643& -5
1.5%3q =2

ql‘l' .649{” '-5
73570 =2

1 :GL*BQ -5

9,317 =8
'5 . 6080’ -3




XL

CALCULATION OF THE RESONANT FREQUENCY, DAMPING RATIO ETC.

FROM THE COMPUTER PROGRAM PRINT OUT,

The dynamic equations of motion are formulated in the program,
from the data supplied on the flexibility, damping and inertial
properties of the system., The program calculates the roots of the
system characteristic eguations from which the various resonant
frequencies and the damping ratios may be determined., Referring
to the print out on page xxxix, the first block contains the real
part and the second block the imaginary part of the n roots of the

equation, Therefore, the first root isg

o 1,866 - &% 52,555 =3 (1)

Consider a system with a single degree of freedom expressed by

the equation

1 2 1
>t ws t 3 =0 | @)
S n w

vhere s is the Laplace Operator,

Then the roots of the equation are

(3)

Therefore equating the equations (1) and (3)

g .
-;; = ‘10866 X 10‘.{)

= 2,353 x 107 (%)




The solution of the equation gives;

£, = 68,0 ¢/s

and £ = ,0791

Similarly, the next block gives the modal shape information,
i.,e, the real and imaginary parts of the velocity (first seven
figures) and acceleration (next seven figures) vectors of the
various points on the spindie. From these walues the modal shape
of the spindle_can be drawn at each resonance frequency as shown

in Figs. 45, 46, 47, etec,

XId
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APPENDIX X|

COMPUTER PROGRAM TO STUDY THE EFFECT OF RADIAT. LAND WIDTH RATIO ON THE

oil FLOW AND THE TOTAL POWER REQUIREMENT OF THE HYDROSTATIC THRUST

BEARING

bagin '

r@ai 8,Ri, R2, R3, R4, KL,Kl,Ke,Kp,u,w,hop,ha,p,kb,q,P,n,h,N,d,1
ins@g@r i,a,li :

rxwRy ea,bb,cc(0116)

voad(R1,R4,u,w,n,N,d)

Ra=R13 RS=R4.
seleet output{l)
cyele i=1,1,12
R2=RZ+1/32
R3=R3-1/32

; -’1/10%(R2/R1)+1/10g(R4/R3))
_ET =({R4%R3%) /log(R4/R3)=(R22= R12>/1og(R2/31>)
Kp=(R 4$4pn3#4>+(nz+4y31*4)
p=2w/{w EL) .
newiines{4)
captiondsR28=8; print(R2,1,4); spnces(S)
ggyuvaan3$~$, print(R3,1,4); newline
captionddkis=hs print R1(RL,4); spaces(4)
aam*imnéﬁlédﬁ, print f1(K1,4); newline
aawtz@@@éxp$w$, print f1(Kp,4); newline
2mgyﬁmmé$p@ckattpressure&inbpsi&-&, rrintlp,2 2,3)3 newline
hop=, 4004 art( s,/ w)* (exp( | 25%Log(Kp*K12 /K£)))
captionbboptinumblilméthicknessbinginchesghopty=$; print £1l(hop,3)
newlinas{2)
ecaptionbibbbnbbbhbibbsbbbbhabibbbbbbsdabbibbbibbssbhbibbbibbbbbrp
newiine
syele j=0,1, 16 3 h—;j*“ i0-3
1f 1\ 0.5 Xhen h=hop
RSt C (R2H 4~ R1+4)+ (R4# 4~R3H ))/(58 05*h) /6600
gepsprKErhty/(06%u);  hb=p*q/6000;  P=(hs+hb)
print £1{k,3); spaces(s); print(hs,2,3); spaces(5); print(q,3,3)
spaces(4) s peint(hb,2,3); spaces(s); print(r,2,3)
43 K@a(r*Kf*h#S)/(Gu*n)
g PR iRl L2rs(dd4)/(128u¥Ke);  newline
Sraad ji=Ke; bh(j)_s' ce(jH=1
ropeat . -
newiinos(4)
eag530&$$$$K0$$$$$$$§¢$¥$$$8$$$ﬁﬁé#ﬁﬁii##&l
newiine
eyele j=0,1,16
pring 11(&a(3),3); spaces(3); print fl(bb(a),3); spaces(3)
print fi(ee(j),3)
nowline

XLiit




roNeat
[ITSNET. S B )
auwpwg@

§@At

sﬁ@w
end @? nrogvan

1,428 2,625 9.96a-6

R A

SPECIMEN RESULT

Rz = 1.1875 R3
K€ = .5.0903¢ 1 - K1l.
Kg =  4.7498a- 0 -

pocket pressure in psi =

o

optimen £4lm thickness in

i hs
4,403 =3 0.1i1
1.,0000 =3 0.494
2,000 =3 0,247
3.000¢ =3 0.165
4+ 0008 =3 0.123
SuOOCW ""3 00099
0.000a =3 0,032
7. 0000 =3 0,071
8.000w =3 0.062
G000z =3 0.055
1,0000 «2 0,049
1.1000 =2 0.045
1.%00a =2 0.041

Ke 8
7,010 =2 -1,680a 5
7.8880 4 -7.,5000 5§
6.3080 =3 -3.750a 5
2,120 -2 ~2.500a¢ 5
5.0400 ~2 «1.875a - 5
9,9500 =2 -1,500a 5
1.703a =1 «1,250a¢ 5§
2.7040 =1 -1,07ia¢ 5§
4.037a =1 =9.375¢ 4
5.748a =1 ~8.333¢ 4
7.8885a =% =7.500a0 4
1.040a¢ © -6.818x 4
1.362¢ © -0.2500 4

500 4.00

2.5625
1.0981a 1

29. 524
inches hopt =

q
8.280
0.093
0.745
2.514
5.959
11,640
20,143
31.939
37.675

‘7.882
93.116

123.937
160.904

1
1.750a
1,550
1.945c
5.703«
2.431
1.245a
7.2040 =1
4.530q -
3.039x -1
2.13
1.5500 -
1.1690 -1
9.005ax -2

Q00 RNC

2000

44632 =3

bbb
0.037
0,000
0.003
0,011
0.02Y
0,052
0.090
0.143
0.213
0.304
0.417
0.554
0.720

8.4a-2

XLiv
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FLEXIBILITY — in/Ib x 1O

NORMAL

10
- ea=.800
B - | P, = 400 psi
B | N = 20003rpm
- | a=-64xl0rad
5
IO - Rotational !
— Flexibility :
- ?9
- "0 x
x £
4 . a
- | | -
Normal % f . L
Flexibility l i g >
B ~
N f w =
- | | = 2
[ f >
3 | : ? o u
- Power L.
. Requirement | ﬁ r
_ >z <«
- ! o 2
! a ©
- -
<L
5
l02__ { a
t
|
l
0
o) N 2 -3 4 .5
AXIAL LAND WIDTH RATIO — el
FIG.8 VARIATION OF NORMAL AND ROTATIONAL

FLEXIBILITIES AND POWER REQUIREMENT
WITH AXIAL LAND WIDTH RATIO
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EIGHT ELEMENT MODELS

SECOND SYSTEM
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FOURTEEN ELEMENT MODEL
ALL DIMENSIONS IN [INCHES

FIG.9 MODELS OF THE BEARING SYSTEM FOR THE COMPUTER
PROGRAM
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FIG.25 SCHEMATIC DIAGRAM OF THE CIRCUIT FOR

TEMPERATURE MEASUREMENT IN JOURNAL
BEARINGS
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AMPLITUDE — volts x10

Attenuation = -O3 v
Accel. Amplitication = 4242

Accelerometer Cal = 51.i mv/g

t=73cls

X X X

With Thrust Bearing

I il
@) T
A B |c D E [F |G [HJI] K
!\.___‘_“_-_‘/‘
—-I~O},
W.R.T.
[+ o o
REFERENCE 530" 24" 240 237 8’ 68 68 62 56 . 255
SIGNAL
¢ e - . - ‘ o gl V4 P /
_ ,ﬁ P Pl Il Dl el e -
rd -
W.R.T. ° ° ° o o ° o o o [}
SPINDLE 0 2 I -2 202 189 189 183 177 16
END
EXPERIMENTAL
2.0,
To
»
(2]
& (.5
o
-
[§]
(1]
> .o
E f=68 cls
(8]
Y. os
-l
2 |
> I
118 . ‘
PRINTOUT 281 282 285 33 82 150 222°
' | |
| - | p
— e . ) o
e /’] -~ ~ /|| ol
W.R.T. SR i
SPINOLE O | Py 56 16° 230° -0
END
COMPUTER PROGRAM
FI1G.45 COMPARISON OF EXPERIMENTAL AND COMPUTER PROGRAM
MODAL SHAPES ~— FIRST MODE
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FORCE

o [ Attenuation = ‘OS5 v
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1 ‘\,‘ '
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e A
o
= B |[c ) l\ 3 G HJ /l K
a A
b . ' \ /A I
<..0 rIA S~ " |
-2.0 L ‘
|
|
W.R.T. o o o o | o
REF. SIG. 141 120 106 90 : I
|
¢) ~ e e . _/l !
~ - - - - ;
W.R.T. A o o o .
SPINDLE ©  —2I —-35 -5{ 230
END
EXPERIMENTAL
fo
< 40_
» t=480c¢ls
o
o
o 2.0
w
> | |
b
- O |
S a/3 2 ] 5 i -
9 |
| B
l;‘--2-0. : !
i
-4.0L I
]
l
: !
[+] o !
PRINTOUT 174 258° 343" 282° 189 205" 4
| | j
B P |
P e - | . ‘
W.R.T . I i
SPINDLE O 84° 169° 108° 5° 120! o
END
COMPUTER PROGRAM
FiGi 46

COMPARISON OF MODAL SHAPES — SECOND MODE




Q 20| | '. l Attenuation = 045 v
" . ‘L.
- ./ \. B Accel. Amplitication = 14140
° t =890 cjs
I Coor ]
3 E F/ g
o A
= |
] © B |C (D 19 G H [J lK
a
2 “
< _i.ol
a
!
- 20L
W.R.T.
Q o o [+ L+ o o
REF. SIG. 209 67 54 42 259 270 90 72 53 253
® > L L pp
/'/ P /,7 g // P P P /_/
-
W.R.T.
o (<] [+] o [+] -] [+] [+] [} [+]
SPINDLE o] 218 205 193 50 61 241 223 204 44
END
EXPERIMENTAL
'?9 8.0
n t =878 cis
("]
[+ 4
[0 . oL
2 4.0 I
)
w !
Q
ol / 3 2 1 ~~————" 5 6] 7
5 .
Ses4.0 .
w oy ' .
>
-8.0l
PRINT OUT 126 30 305 a0 205 e
-~ - g - e .
N ;v, : . i -
e e e - f
W.R.T. X !
Q [} ) !
SPINDLE O 175 '790 2740 l67° 16
END
COMPUTER PROGRAM
FIG.47 COMPARISON OF MODAL SHAPES — THIRD

FORCE -~

MODE
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Force

o4 Attenuation = -O25 v
; Accel. Amplification « 2828
° Accelerometer Cal. = 5l-imv/g
! Force Transducer = 378 Kp/v
8
=
L t= |35cls
-t
o
=
« "
fo) | |
A B D £ F |6 [H JI K
o/.
-1.O .——-0/
W.R.T.
REFERENCE o ° o o ) ) ) 0 o
57° 55 52 49 239
SIGNAL 9 225 221 62
. . . . -~ . R -
(P> e .ﬁ,L/_L/Té’_ g L
) - e 7
/— 1
W.R.T. o o ° ! °c o o ° o o
SPINDLE o) 6 2 . 203 198 196 193 190 20
END
EXPERIMENTAL
0
x
[7)]
x
o
.-
b
> t=134.2cls
b
f
(&)
o
-l
w
> | !
II + I/
7 8 ° ion (12 B
| _ |
| .
¢ o o o ‘o I
PRINT OUT 146 146 146 146 236 326 326 326 326 57146 146
o = ' ) -~ s e
— e : . - a — _— A ';u_ e
e = /'/l/ ~ ~ Pl Vel e
N 1
W.RT - : 2 l |
o Q Q o Qo L] (-]
SPINDLE o) o) . O 90 180 180 180 80 271 © ©
END COMPUTER PROGRAM
FIG.52 COMPARISON OF THE EXPERIMENTAL AND COMPUTER

PROGRAM MODAL SHAPE — FIRST MODE




123 corcE
4.0 . ,
o 2.0 / Attenuation = 1O v
= | Accel. Amplification = 2828 |
x . /
» ,‘-\‘\ /l
[+]
e 1.0 t=530 cls
1 / \.
w /
a
5 4 [
5 B D [3 F G H J K
o
= A
<o \
(Y A
\‘ A/
-2.0
W.R.T. o o o ) ° o o ) o
REF SIGNAL 49 123 103 203 198 195 (92 189 4
- = ﬂ/ .
/ -
W.R.T.
Q o [+] (3] Q
SPINDLE -26 -46 54° 49 46 43 40 215
END
EXPERIMENTAL
10
< 20
o t =510 cls
o
e}
o f
> |
5
F o 4l
o 73 27 1 '7 8 9 10 12 13
o
i |
§-1~O-—
—-2.01l-
0 [+ [+] o
PRINT OUT 265 265 265 85 355 265 265 265 26535585 B85
S e N N P2 gl Pl e
//‘ ~ /,I/ 7 e Pl e
W.R.T. o e |
[+] Q N
SPINDLE © © o 180" 90° ©° o° o° 0’ 90" 180° 180"
END
COMPUTER PROGRAM
FIG.53 COMPARISON OF MODAL . SHAPES — SECOND MODE
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2.0 | FORCE
P
|
o
o "o l/— i | l
4 L " [
:: l./ -
= fe] ! | ] yd l
? la 8 D leel/ |o ]H J K
w , I ( , .
> -1.0} ! N
[
2 l Attenuation = 1O v
& | Accel, Amplitication = i414
=
« 2 -OF |
' f=1030
~3.0- .
]
1
W.R.T, . '
[+ [+] L] Q [+ [+] [+]
REF. SIGNAL o 57 5 189 160 98 21 14 71
l i
o~ - -~ - <
e R ,p/_’_.._ﬁé_/ _7£: T _«___7.4,
Pl e e -~ /
// 1
i
W.R.T, ‘o o o o o o
SPINDLE -9 -38 260 183 (76 ! -27
END |
EXPERIMENTAL
4.0
l t=1126 cis
2.0 |
vo . : 1
wn
o)
o 6 s 4l [3 2l 7 8 9
- i
¥ i
u !
> -2 Or ;
> , :
S |
Q
o-4.0
|
11
>
~&.0}-
T 1
Q
PRINT OUT 84 84 264 264 354 84 84 109
— — Y . R P ) /.
W.R.T i
o (1] o o
SPINDLE o O 180 180 270°O° 00 220 iBOo 9Oo Oo Oo
END

COMPUTER PROGRAM

FIG.54 COMPARISON OF MODAL SHAPES — THIRD MODE
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