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SYNOPSIS

The present investigation has been carried out to determine the 
performance characteristics of a Capillary Compensated Hydrostatic 
Bearing System, consisting of two journal and one double film thrust 
bearing. A theoretical analysis of the journal bearing, including 
the squeeze film equation, is presented and a procedure for the 
design of the bearing pad geometry for both the steady and dynamic 
loads is outlined.

Digital Computer Programs have been employed to determine the 
steady load deflection curve, the resonant frequency, damping ratio 
modal shapes etc. of the spindle in the bearing system, and these 
have been discussed with the experimental results on the test rig.

The importance of the temperature effects on the performance of 
hydrostatic bearings has been studied, and the heat dissipation in 
the journal bearing was obtained from the circumferential and radial 
temperature measurements.
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CHAPTER I

INTRODUCTION



INTRODUCTION

A hydrostatic bearing supports a load on a fluid film, maintained 
under pressure by an external source of power, whereas this power has 
to be generated within the bearing by the relative movement of the 
mating components, in a hydrodynamic bearing. Hence, the main 
attraction of hydrostatic bearings is their ability to carry loads 
even at zero relative velocities* Since there is never any metal to 
metal contact, the power loss due only to the shearing of the oil film, 
is generally small, approaching almost negligible values for low 
speeds* This also eliminates wear of the components and ideally they 
need never be changed. Besides being capable of carrying large loads, 
very high stiffness can be obtained with the range of compensating 
elements and techniques available to the designer today. They are 
suitable for automatic control operations and lend themselves easily 
to pressure feed back systems for design of bearings with almost 
infinite stiffness.

For these and a few other reasons, the hydrostatic bearings are 
now being incorporated in a range of equipment and a considerable 
volume of literature has accummulated describing their various 
applications.

Since these bearings have a separating oil film between mating 
machine elements even at zero speed, they are useful for supporting 
and easy starting of heavy loads, like turbogenerators, telescopes, etc. 
thus eliminating the high starting torque inherent in any hydrodynamic 
bearing. Machine tool manufacturers are employing these bearings to 
support large machine tool beds capable of moving easily and rapidly 
without any stick-slip motion. Air bearings are being developed for 
high speed spindles of grinding machines for very accurate machining



2
processes„ the low viscosity of the air keeping the power requirement and 
heating to a minimum, ivhile the load is supported by the external 
pressure»

While■a considerable amount of research has been done in the field 
of hydrostatic bearings, it has largely been confined to the development 
of the theoretical analysis and design procedures from static stiffness 
considerations. Recently, some work has been done on tapered land

1 *journal bearings for self alignment by MANNAM, FOWLER and CARPENTER
'and by KEARNEY2 on Master and Slave bearings.. HIRS^ has worked on
bearings with inherent friction compensation and investigations were

Acarried out by SHINKLE and HORNUNG on the friction characteristics of 
journal bearings including the effects of turbulence.,

However, not much work has been reported on the dynamic analysis 
of hydrostatic bearings, nor the effect of temperature on their 
performance characteristics. With increased emphasis on surface 
finish in metal cutting processes and application of these bearings for 
high speed spindles both these factors have assumed great importance 
and further investigation is necessary for a complete understanding of 
these phenomena.

1*1• fiyPQfflic Analysis of Hydrostatic Bearings
ROYLE, HOWARTH and CASELEY-IIAYFORD^ presented a theoretical analysis 

for static and dynamic performance of single circular and rectangular 
pads (with one dimensional flow), and discussed the application of pilot 
pad sensing technique with an external compensating valve to provide ' 
almost infinite stiffness for a journal bearing. The oil flow being two 
dimensional in a journal bearing, the damping coefficient is likely to 
be much smaller and in the absence of experimental investigation it is 
difficult to say how far this analysis is applicable to it. Since the 
automatic control valve is likely to prove even more useful for dynamic

* Numbers refer to Bibliography.
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loading, it would have been of interest to know more about the dynamic 
behaviour of the bearing*

In his M*Sc. thesis submitted at U„S0A„, SCHER^ investigated
the dynamic performance of a hydrostatic journal bearing with feed back 
control, and step input to the bearing system,, The test rig consisted of 
a bearing with only two pads, grooved inside the journal and the discussion 
was confined to a stationary journal (no rotation) and load applied only 
along the centre line of the top and bottom pads. However, discrepancies 
were noticed between the experiments and the theoretical analysis and it 
seems that the squeeze film equation is considerably altered due to the 
oil flow in both the axial and circumferential directions, and even with
large circumferential lands, the latter cannot be neglected.

7BROWN simplified the analysis of a thrust bearing by converting 
its parameters into an enclosed piston and cylinder arrangement with 
oil flow through an external restrictor, thus considering the combined 
effects of hydrostatic oil flow and oil compressibility, neglecting the 
squeeze film effect. Since the squeeze film effect is considered to be 
more important in hydrostatic bearings, than the oil compressibility, 
it is doubtful how far the claims of good experimental results are just­
ified or may be generalized for predicting behaviour of other bearing 
systems. Moreover, the convertion of the system into a piston cylinder 
arrangement is in effect a closed bearing and not a total loss system as 
the hydrostatic thrust bearing.

The frequency response characteristics show that the dynamic stiffness 
of the system is greater than the static stiffness at all times, with a 
considerable degree of damping, making the hydrostatic thrust bearings 
very suitable for machine tool applications.

The dynamic analysis and the squeeze film equation for a flat
rectangular pad with one dimensional and two dimensional flow was presented 

8by MORI and YABE , and it was then modified for a pad journal bearing



if
with axial pressure relief grooves. The equations for the two dimensional 
flow were solved independently in the two directions of flow, but without 
any experimental verification the validity of the assumptions could not 
be established.

A detailed analysis of a circular pad thrust bearing for dynamic
9loads was presented by LICHT , and the equations for the local stiffness 

and damping constants for the evaluation of the dynamic response were 
derived. The results for the equation of motion were obtained with an 
analog computer. A few important points raised in the discussion of 
the paper are worth mentioning here. RICHARDSON suggested the consider­
ation of the liquid compressibility effects in the analysis, since it 
had been found by LUMING at that compressibility of the oil
could not be neglected. SNECK presented a modified continuity equation 
as it was doubtful if the steady state flow equation presented in the 
paper, could be used to describe a non-steady phenomenon. He also 
derived equations for determining the permissible vibrational frequency
for which the inertial effects could be neglected.

10HUNT and TORBE also analysed a circular pad thrust bearing for 
static and dynamic sinuisoidal loads. Equations for static load 
capacity and stiffness were derived and were later'extended to include 
the effects of the dynamic load. Though rotation of the pad was not 
considered, yet considerable agreement was obtained with experiments 
performed in the static condition., Further work was proposed to deter­
mine the inaccuracy involved in assuming the hydrostatic bearing as a lin­
ear system, i.e,constant stiffness, and since the stiffness of the thrust 
bearing varies with film thickness, it would be of interest to see the 
results of the further analysis.

In his paper presented at the ?th International Machine Tool Design
11and Research Conference, DE GAST referred to the experimental work done 

on a journal bearing with dynamic load, though no theoretical analysis
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was included. A graph showing the change in phase angle between load and 
deflection and the change in deflection amplitude for different supply 
pressures (at the same load and frequency) was presented* The damping 
was found to increase with the frequency and due to excellent damping 
characteristics and high natural frequency of the restrictor membrane, 
no instability problems were encoimtered in the system*

1.2. Temperature Effects in Journal Bearings
With the increased application of hydrostatic bearings, a 

discussion on its relative merits and demerits over the traditional 
hydrodynamic bearing, for all aspects of performance, is inevitable.
The development of design procedures for hydrodynamic bearings had 
generally been based on their load carrying capacity and stiffness 
characteristics. However, with the application of bearings for very 
high speeds, the temperature and heat dissipation aspects became 
increasingly important, as very often the bearings designed to provide 
adequate load capacity failed due to excessive temperature rise. It 
is felt that the development of the hydrostatic bearings is also likely 
to follow a similar cycle. Therefore, though the temperature effect is 
important by itself in the study of hydrostatic bearings, yet any such 
work will necessarily be considered in the light of results obtained for 
hydrodynamic bearings.

Research on heat dissipation and temperature distribution in
bearings has been going on since the early 1930’s and in his paper 

12KINGSBURY showed that the internal heating of the oil film was an 
important factor in limiting its load capacity, which was approximately 
proportional to the shear stress that could be maintained. Three fund­
amental equations relating oil viscosity, shear stress and temperature 
were derived and experimental verification was obtained by determining 
the reduction in shear stress due to temperature rise.
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The heat generated in a bearing is clearly dissipated along three

paths, i.e. heat conducted to the bearing housing and to the journal,
and heat carried away by the oil* However, it is interesting to see the
different results obtained by various authors depending upon the

13assumptions made in their respective analyses* KAEELITZ defined the 
types of bearings according to the oil supply, upon which depended the 
main mode of heat transfer* He showed the essential difference between 
bearings with copious supply of oil, such as oil ring lubricated 
bearings where the oil was brought into contact with the shell all 
around the circumference, heat was transferred to the bush at all points 
and a large variation in temperature along the bush did not occur - and 
bearings with drop feed where bearing clearance was substantially empty 
and not only was the heat generation more concentrated but the trans­
mission of heat to the shell was also localized to the pool of oil 
between the journal and the bearing. It follows that in the first type 
of bearings, the oil would carry away a substantial portion of the heat 
generated, while in the second type the heat must be transferred mainly 
by conduction through the bearing housing.

'i h.HERSEY outlined in detail the problems of temperature rise in 
the bearings and the research necessary for better understanding of 
their performance characteristics. It was stated that while the previous 
design considerations had been the load capacity and stiffness, in future 
the limiting factor would be the temperature rise in the bearing. An 
analytical method for the solution of temperature rise was discussed in 
terms of heat generated and heat dissipated with the intermediary of an 
independently determined relation between the lubricant viscosity and its 
temperature. MUSKAT contended however, that this procedure required the 
heat transfer coefficients for a bearing design which are not readily 
available and if indeed there were a satisfactory method for determining 
the lubricant film temperature independently, the procedure put forward
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may perhaps be better used for the calculation of effective heat transfer
constantso A method was suggested and was later employed by MUSKAT and 

15MORGAN to obtain the friction coefficient by torque measurement and thus 
the oil viscosity9 and from the oil viscosity - temperature charts, the 
average film temperature.

An analysis for lightly loaded bearings at high speeds with
16negligible spindle eccentricity was presented by BOYD and ROBERTSON „

While MUSKAT and MORGAN assumed negligible heat flow to the oil, BOYD
and ROBERTSON neglected the heat lost to the bearing housing. For
hydrodynamic bearings, where the oil flow is not extremely high, this
assumption with bush temperatures of 180°F could not be valid and hence
the two analyses are likely to oversimplify the theoretical calculations.

CLAYTON and WILKIE^ experimentally determined the circumferential
and the radial temperature distribution in the journal bearing and from
the radial temperature gradient extrapolated the actual temperature of
the bearing bush. However, this method of extrapolation could lead to
erroneous results, especially when the bush and the main housing are of

different materials (as is often the case) and inclusion of a thin
fluid film between them cannot be overruled.

An experimental investigation on temperature effects in journal
18bearings was also carried out by COLE , by setting thermocouples in the 

circumferential and radial directions. The temperature maxima were 
observed to be displaced in the direction of motion from the load line, 
and were probably at the minimum film thickness. An approximate figure 
for heat loss by conduction was obtained as 20 to 23% of the total power 
loss and the oil flow accounted for heat dissipated at low speeds 
and 60% at high speeds. The experiments showed the occurSrenceof large 
variations of temperature, hence viscosity, circumferentially in high 
speed journal bearings. The bush crown temperature gave a fair approx­
imation of the maximum temperature but the oil outlet temperature, which
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is often taken as the measure of operational safety, was well below the 
maximum and hence was an unreliable criterion. The heat balance showed 
that the assumption of complete dissipation of heat by the oil could be 
misleading 0

19PINKUS and STERNLICHT presented an analysis for the circumfer­
ential temperature distribution in the mid-section of a journal 
bearing. Since the maximum temperature in the bearing occurs in the 
oil film with maximum rate of shear and its experimental determination 
is difficult, this analysis is useful, hov/ever, the neglect of heat 
transfer to the bearing body by conduction and the assumption of all 
the power dissipated to the oil film, divorced as it is from actual 
conditions of performance, make the analysis of limited use.

The equations for the adiabatic temperature distribution for both 
the short and the infinite bearing were presented by PURVIS, MEYER and 
BENTON20. This theory also neglected the heat conduction to the bearing 
housing and the maximum temperatures are therefore likely to be higher 
than found in practice. Moreover, only oil flow due to viscosity was 
considered and since flow in the axial and circumferential directions 
due to pressure gradient and velocity was neglected, it is likely to 
introduce serious errors while performing with high spindle speeds and 
eccentricities.

0EL0FF21 presented the analysis for the coefficient of friction for 
journal bearings from Reynold’s equations, which correlated well with 
the results of the experimental investigation. A heat balance of the 
bearing was prepared and though it neglected the heat loss to the 
bearing body, yet it demonstrated the considerable effect of temperature 
rise on the load capacity of the bearing. It was suggested that better 
performance and greater load capacity of the bearing coiild be achieved 
by lowering the inlet oil temperature*
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As has been mentioned earlier, not much work has been reported 011

11the effects of temperature rise in hydrostatic bearings® DE GAST 
obtained the temperature rise of the oil coming out of the bearing during 
performance® Since the oil outlet temperature has generally proved to be 
much lower than the temperature in the bearing, no real indication of
the actual temperatures is thus available from these results®

22CUENCA and RAYNER presented a numerical solution for a circular 
pad hydrostatic thrust bearing with central fluid supply assuming 
negligible rotational speed and isothermal boundaries, and it was shown 
that the load capacity was 32$> less than calculated by the isothermal 
theory. However, the analysis in its present form is inadequate and of 
limited practical use® Since the temperature is a function of the heat 
transfer to the oil and the bearing housing, the latter cannot be 
neglected for any realistic determination of the reduction in load 
capacity. Moreover, larger heat is generated due to the relative 
movement of the parts and shearing of the oil film during actual 
performance, while only the temperature due to the pressure gradient 
has been considered in this analysis®

An investigation into the performance characteristics of a capillary 
compensated hydrostatic bearing system for steady radial loads was carried 
out and submitted in an earlier thesis by the author , wherein results 
of the preliminary study of the temperature effects and temperature 
distribution in the bearing were also included® The presfent work may be 
considered as an extension of the previous work and therefore, has to be 
seen in that context® Effort has been made to preserve the continuity of 
the whole work by reference to salient features of the previous work and 
inclusion of the main results.

The purpose of the present work therefore, was to study the bearing 
system in greater detail with special reference to its dynamic character­
istics, i.e® natural frequency, damping ratio etc®, and to outline a
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procedure for design of journal bearings from not only the steady load 
considerations, ioSo load capacity, stiffness, power requirement, 
rotational flexibility etc„, but also the dynamic load* While the 
stress has been on the theoretical analysis and performance of the 
journal bearings, the whole system has been studied as envisaged for 
application to machine toolso

Computer programmes have been prepared to determine the static 
and dynamic response of the system and experiments were performed to 
see how far these could be applied to .actual bearing systems«,

The importance of studying the temperature effects in bearings 
needs no further elaboration and since the damping factor, is so 
susceptible to oil viscosity changes due to temperature rise in the 
bearing, it becomes even more urgent for dynamic loads. Hence, it 
was proposed to study the effect of temperature rise on the perform­
ance of the journal bearing and to prepare a heat balance of the 
bearing from temperature measurements on the oil and in the bearing 
housingo
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ANALYSIS AND DESIGN OF HYDROSTATIC JOURNAL BEARINGS WITH CAPILLARY
COMPENSATION

Hydrostatic journal bearings may consist of ^ or more pressure 
pads, each supplied with oil of the same pressure and each independently 
compensated by restrictors of the same characteristics. Journal? bearings 
with pressure relief grooves between pads as well as bearings with main 
pads to carry load and pilot pads for load sensing and pressure feed 
back control have also been employed.

The design of compensated hydrostatic journal bearings for 
application to machine tool spindles requires consideration of both the 
steady and the dynamic conditions of loading since they are subjected to 
steady preloads and dynamic cutting loads in metal cutting processes.
The main factors of consideration for steady loads are;
(a) Load carrying capacity
(b) Stiffness
(c) Oil flow
(d) Total power requirement 
(<b) Resistance to tilting

In its broad form, therefore, the design of the hydrostatic bearing 
can be considered as the selection of a pad configuration (Fig. 1), its 
geometry and radial clearance, to carry the load, provide the stiffness 
and ensure that the power requirement and the oil flow are not excessive. 

The analysis of a capillary compensated journal bearing for steady 
loads was partly covered in an earlier thesis and published by the 
author and COWLEY2 ,̂ where the expressions for load carrying capacity, 
stiffness, oil flow and power requirement were derived. To enable the 
present investigation to be seen in its true perspective, the results of 
the previous analysis will be included here, while the resistance to

11
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tilting and subsequent work will be fully discussed.
A list of notations used in the analysis is given in Appendix I. 
2.1a. Load Carrying Capacity
The load capacity of the journal bearing, for load acting into 

the pad as shown in Fig. 1, is given by the equation;

W s h  Xf ps (1)
When the load acts in any arbitrary direction, the load capacity

is given by;
n=̂ f

W = K_ p p (vector sum) ... (2)i s  n=l n
where = DL (1 - el) sin ĉ  *•. (3)

lf « (p^ - Pl) ... W
and pn » ratio of the nth pad pressure to the supply pressure.

The pad pressures can be determined by equating the oil flow
2̂ 5through the bearing pad and the capillary restrictor ■*'. Thus, when 

the load acts into the pad (Fig. 1) the ratios of the respective pad 
pressures to supply pressure are given by the equations;

P
Z + Jfmppf,

, = ----- r * 2- „ ... (5)
z + f _ + Jfmf-,

Z + ^mp^f "
p =  r   „ . . .  (6)

Z + f + 4mf^

Z + 2m (pf ’ + p,f ")
Pp = Pit = t n it . . .  (7 )Z + f0 + 2m (f,. + f-y ) d. 1 3

where Z 3=

m =

if
I ?  ( d l e l )  _  ( 8 )

16 h3 D1 o
/L\2 el(l *" 2 el) /r»\
(F  ^ C ~ e S T ’m ••• (9)
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f = tt + 6e I (cos of + sin of) sin ~  + (cos or - sin Of) cos ~  I

+ 3e^ Qy - cos nrr sin 2oTJ
2 ^ v htt nrr .5 *1 \+ j e ĵ Csin • cos Of - cos -sp sin Of) (^ + ~  cos nrr cos 2Of)
/  OTT ^ nTT \  / 5  1+ (cos cos of - s m  —  s m  (^ - ^ cos nTr cos 2Qfi|

... (10)
and fn = jl + e cos (rp - OfTp ... (11)

Similarly, when the load acts into the circumferential land, the 
ratios of the pad pressures to the supply pressure are;

Z(Z + fr + f̂iflf̂ )
?-z " Pp 85 ...... ..—      ^  ... (12)■ ? *- i n i it (i £

(Z + f. + 2mf_ )(Z + f_ + 2mf, )-(2mf, )‘^ 3  3 3 3
Z(Z + f ' + t o  ")3 3

and p. = p. -   ... (13)
/ * Hw  * ✓ ,(n2(Z + f^ + 2mf^ )(Z + f^ + 2mf^ )-(2mf^ )

2*1 b.Stiffness
An exact expression for the stiffness of the journal bearings is 

rather complicated to derive and has not been included here, however 
the slope of the load eccentricity ratio curve gives a fair approx­
imation of its value. Therefore, the stiffness can be obtained from 
the equation;

1 dW { , .
s w  ~  a£ •** (14)O
2.1c.Oil Flov;
a) When the spindle is concentric in the bearing, the oil flow is

given by the equation;
W o 3 Z

^  = - ^ r -  • • • (15)o
where (^g)
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b) When the spindle deflects in the bearing due to external load, 

the equation for oil flow is?

peKf V  n=3 n=*f
Q » 7-~ rbzr  2 (pnfn } ••• (17)n~1
H a 1 d o Total Power Ret 
The total power requirement of a journal bearing is the sum of the 

power required to pump the oil and the power lost in shearing of the 
oil film due to spindle rotation, and is given by the equation;

¥ o 5 , z , 2 *
© ” 39600$ ps 7§5000ho ***

where = D3L jj - e«d - 2 elTj ; ... (*19)
By differentiating equation (18), and equating to zero, the optimum 

oil film thickness can be calculated for which the total power 
requirement is a minimum„ Hence;

% t  = ...(20)

2.1®. Resistance to Tilting
There is nothing in the mechanism of operation of a hydrostatic 

journal bearing to readily suggest that it has any substantial resistance 
to spindle inclination in the bearing* However, a complete understanding 
of this phenomenon is necessary, not only for the correct prediction of 
the spindle deflection due to steady loads, but also for accurate 
evaluation of the natural frequency and damping ratio of a bearing 
system, as will be shown later* When the spindle assumes an inclined 
position in the bearing as shown in Fig* 2, it causes a convex pressure 
distribution over the axial land in section (a) and a concave pattern 
in section (b), instead of a linear drop assumed for horizontal position 
of the spindle* The difference between the forces acting over the 
lands, represented by the difference between the areas under the curves,



causes a balancing couple on the spindle<> The moment produced by one 
radian inclination of the spindle will be called the rotational stiffness 
of the bearing, and its inverse will be referred to as the rotational 
flexibilityo

To avoid any confusion between the bearing stiffness to steady 
normal loads discussed earlier, and the rotational stiffness, the former 
will henceforth be called the normal stiffness and its inverse as the 
normal flexibility <>

Consider the oil flow through section (a) (Fig„ 2), then the 
equation of the equilibrium of forces acting over a small element of 
the oil of unit width is §

(p + |ĵ  dx) - pj dy
from which on simplification,

pin*
(t + ^  dy) - t dx

Bx
Bt
By

As shown in Appendix II, the equation of the oil flow is;
_ hg^ dp 

12|jb dxq.x

(21)

(22)

(23)
If the spindle inclination in the bearing is a, then the oil film 

thickness anywhere in section (a) can be expressed as;
hx (h + ox) o (2*0
Nov/, the rate of flow is a constant; therefore,
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The solution of the differential equation (25) is;

C1 *  °2  ■̂ xa 2 oi + (h +ax)2
O

Applying the boundary conditions,

(26)

P.xa P, x =

and p = 0, x =xa . (27)

The equation for the pressure over the axial land in section (a)
is:

p(hQ - Y
xa (h - ca_)2-(h - a O 2o 2 o 1

(h - a>l0YQ 2

_ (h t ox)2 o
... (28)

Similarly, the equation for the pressure in section (b) is;

P.
p(hQ +

xb (h + aEL0)2-(h + dl.)2 o 2 o 1

(h f cii0Y O d
(h +* ox)o

... (29)

The forces acting over the axial lands in sections (a) and (b) 
can now be found by integrating the pressure equations; thus;

F D “3-2
85 2 f j Pxa c°s (3 dP (“dx)

0L

= D sin at, "12
2 J »

-1 .
xa dx (30)

Which on integration and simplification gives;
.2

F.

Of

Dp sin Of_(h - _______2 o_____1
(h - <a.)2-(h - (Vl. )21O 2 O I J

(ho -  ylZY
(ho - *q>

ofd2 l.jjj . (31)

And similarly, the equation for the force acting over the axial 
land in section (b) is;



Since the pressure profiles over the axial lands form approx­
imately a triangular shape (Fig* 2), the resultant of the forces can

2be assumed to act at distances 1 from the side edges respectively* 
Hence, considering the forces acting on the top and the bottom sides 
of the spindle in a journal bearing, the total moment acting on the 
spindle is;

H = | (Fa - Fb)(l2 + 2^) -..(35)
Therefore, the expression for the rotational flexibility is;
RF1 = ■23---------- ... (54)

2(F& - F. )(12 + 211)
Representing the ratio of the axial land to the total length of 

the bearing as el, as in the previous analysis, the above equations can 
be modified; thus;

Dp sin fb. - *5LcK 1 - 2el)| 2 r-
F = —    (ho “ *5Lof)af(ho - *5La)-^ho - - 2el)pJ L 0

(h - *5La02
- 7---2 „ cvLel I ... (31a)

^hQ - .5Lct(1 - 2el)i J

Dp sin 0fo[h + .5Lof(l - 2el)l2Tjl {I* I* O «l »a*H *5* —i—————a———wwhimitjtm )■!i mpîip i iinwHiwgi.ami.Tii«i t u'.immMWMUMri PMirmw Jt»
b * f h0 + •5L»)2-^ho + *3Lof(l - 2el)j-2l

r (h -f t
I v -------------- r - (h + - oLell (32a)
L^hQ + .5LcK1 - 2el)> ° J

M = (Fa - Fb)Ld - 1.33el) ... (33a)

and RF1 = ---  — ----------- (34a)
(Pa - Fb)Ld - 1o33el)

A typical pressure distribution over the axial lands due to spindle 
inclination is shown in Fig* 2, while the variation in the rotational 
flexibility for various axial land ratios is shown in Fig. 3* It is



18

evident that a reduction in rotational flexibility is obtained by 
increasing the axial land ratio as well as the spindle inclination.

2.1f..Selection of Pad Geometry for a Journal Bearing
The procedure for selection of the radial clearance for a 

particular journal bearing configuration, for minimum power 
requirement and the calculation of the capillary restrictor dimen­
sions for maximum load carrying capacity has been outlined in an 
earlier thesis* It was shown that the load capacity of a comp­
ensated bearing was a function of the design factor, Z (ratio of 
the respective resistances of the bearing and the compensating 
element, to oil flow), as shown in Fig. 4, and therefore depending 
upon the eccentricity ratio at which the bearing was intended for 
operation under full load, the design factor could be selected to 
give maximum load capacity of the bearing* It was also shown how 
the radial clearance could be selected for minimum power requirement.

The effect of the oil film thickness on the rotational flex­
ibility, normal stiffness, power requirement and oil flow in the 
bearing is shown in Fig. 5* It is clear that if the minimum power 
requirement were considered the main criterion for the selection of 
the radial clearance, then it would result In a bearing with lower 
normal stiffness, higher rotational flexibility and oil flow.

In the application of journal bearings for machine tool spindles, 
the stiffness is always more important than the power requirement, which 
may only be a small proportion of the total power requirement of the 
machine. From equation (14), it can be inferred that the stiffness of 
the bearing can be increased by reducing the oil film thickness. Hence, 
it seems quite fair to select the radial clearance from considerations 
of stiffness and manufacture, and then to select the pad geometry to 
satisfy the other factors i.e. power requirement, oil flow, rotational
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flexibility etc*, according to their relative importance in the system.
The effect of the pad geometry factor, m , on the load factor, 

load carrying capacity and the power requirement is shown in Figs. 6 and 
7, for the bearing with the following specifications;

Length of the bearing, L ~ 2.50 iu
Diameter of the spindle, D = 2.00 in
Radial clearance, h - 2 x 10 ino
Design factor, Z - Tr
Oil supply pressure, pg = 400 psi
Spindle speed, N - 2000 rpm
In general, it is found that increasing the pad geometry factor, 

reduces the load capacity of the bearing. This is because increasing 
the axial land ratio, el, reduces the effective area under the pressure 
curve (Fig. 1), while higher circumferential land ratio induces greater 
oil flow across the pads with consequent drop in pressures of the pads 
supporting the load.

As stated before, the total power requirement is composed of the 
power required to pump the oil and that lost in shearing of the oil 
film. While reducing the axial land ratio reduces the shearing loss, 
it is partly offset by increase in oil flow and oil pumping power. 
Hence, one axial land ratio will require minimum total power and this 
can be found by differentiating equation (18) and equating to zero. 
Therefore;

dPo _ 1,0 hQ5 , z ' 2 UP^NL ,,5)

del = " l i 2<39600u> Z+Tf Pb 7S5055T •

or el ss 5of?1 h ^ p  / , Z >. 1 ... (36)
T w T  J  ^

It is found from the above equation, and also seen in Fig. 7» that 
axial land ratio, el .10, for all the circumferential land ratios, 
requires minimum power, under the present conditions of performance.
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The least power, anywhere, would obviously be required for the maximum 
possible circumferential land ratio. However, on closer examination of 
Fig. 7, it is found that a high circumferential land ratio considerably 
reduces the load capacity of the bearing. Hence, it may be necessary 
to sacrifice on the power requirement to obtain greater load capacity, 
depending on the requirements of the system.

From the derivation of the rotational flexibility, it is clear 
that increasing the axial land ratio increases the resistance of the 
bearing to spindle tilt. The variation of rotational flexibility, 
normal flexibility and power requirement with axial land ratio is shown 
in Fig. 8, and it is evident that while normal flexibility and power 
requirement increase slightly, the rotational flexibility decreases 
considerably for higher axial land ratios. Hence, it is now necessary 
to consider a bearing system and evaluate the total effect of the 
normal and rotational flexibility on the spindle deflection to select 
the axial land ratio for a hydrostatic journal bearing.

2.1g.Steady Load Analysis of a Hydrostatic Bearing System
A number of computer programmes have been developed at UMIST to 

determine the static and dynamic characteristics of machine tool struc­
tures. One such programme permits the calculation of the deformation 
shape of a general three dimensional structure composed of beam like 
elements, to steady loads.

The details of the mathematical background to these programmes 
has been given earlier by MIGLIARpi2^ and hence will not be covered 
over here. The essential feature of the technique used is to subdivide 
the structure into a number of lumped masses, connected together by 
massless elastic elements. The input data required consists of the 
bending, shear and torsional elastic characteristics of each of the 
constituent structural elements. The resulting output gives the
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deflection of all the points of connection between the elements (station 
points) resulting from any set of loads applied to the station points*

The main spindle of the bearing system consisting of two hydro­
static journal bearings, and the equivalent discrete model required 
for the computer analysis is shown in Fig* 9* The system was divided 
into eight elements and the distributed mass was represented by seven 
discreet mass points* The division of the structure is based on the 
discontinuities in the elastic structural elements* Obviously, greater 
accuracy is obtained with as large a number of divisions as possible, 
but based on previous results obtained by FAWCETT and COWLEY26, and 
MUNSON2?, this subdivision was considered adequate for the present case. 
The bearing characteristics are expressed by a single helical spring, 
and a torsional spring of stiffnesses equivalent to the normal and 
the rotational stiffness of the bearing respectively, as determined 
from the analysis described earlier. The computer programme for 
determining the static deflection shapes and compilation of the data 
is shown in Appendix IX.

The results have been obtained in terms of the spindle end deflection 
for a load at that point. The variation in the spindle end deflection 
with the bearing rotational flexibility for various normal flexibilities 
is shown in Fig* 10. The two extremes of bearing behaviour can either 
be almost zero rotational flexibility where the bearing virtually clamps 
the spindle like a fixed end, or almost infinite flexibility with freedom 
to revolve freely around a point as in a pin joint. It is seen from 
Fig* 10 that the spindle end deflection is dependent upon the rotational 
flexibility and therefore a pad geometry v/ith very low rotational flex­
ibility should be selected for minimum spindle end deflection*

However, a closer examination of Fig* 8 shows that while rotational 
flexibility can be reduced considerably by a larger axial land ratio,



22

the minimum practical value thus obtained, by itself makes very little 
reduction in the spindle end deflection, At the same time, the normal 
flexibility increases and the total power requirement becomes almost 
twice its minimum value at el ~ »100o Therefore, it seems that for 
steady loads after selecting the circumferential land ratio for higher 
load capacity the axial land ratio can then be selected from minimum 
power requirement consideration,

2o2o Dynamic Load Considerations
The main considerations in the design of the bearing system for 

dynamic loads are; 1
(i) Natural frequency
(ii) Dynamic Stiffness
Hri) Damping ratio
The natural frequency of the system depends largely on the normal 

and rotational flexibilities and will be discussed in greater detail 
later» The damping ratio is a function of the damping constant of the 
bearing, as well as the other parameters mentioned above*

The equations for the load capacity and stiffness of the bearing 
to steady uniform loads have been derived earlier, However, when the 
spindle is subjected to impact or a variable load, because of the 
lubricants resistance to instant extrusion from between the approaching 
surfaces, a pressure is built up and is actually capable of supporting 
load. This phenomenon is known as the squeeze film effect. The 
extent of the pressure build up depends on the oil viscosity, the area 
across which the flow takes place and the time factor of the dynamic 
load.

While the damping provided by a fluid film to dynamic loads is not 
entirely independent of the fluid compressibility, it is largely 
dependent upon the squeeze film effect and therefore this factor will
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be discussed in detail as applied to compensated journal bearings*

2.2a.Squeeze Film Equation for a Hydrostatic Journal Bearing
The expressions for the damping constant of a flat rectangular pad 

with one dimensional and two dimensional flow are derived in Appendix II. 
This analysis may be extended for a journal bearing with the following 
assumptions;

(1) The dynamic displacement of the spindle is small, such that 
it can be taken to deflect parallel to the bearing and mean oil film 
thicknesses hold over the axial and the circumferential lands*

(2) The side pad pressures do not change with spindle deflection 
and the loaded and the unloaded pads can be analysed as individual 
pads*

(3) Oil behaves as an incompressible fluid*
(*f) The depth of the pressure pad is large compared to the oil 

film thickness, so that the pressure is constant within the confines 
of the pad*

The configuration of the pad for deriving the squeeze film equation
is shown in Fig. 12. Consider the spindle approach the pad 3 with a 

dhvelocity then the flow equation in terms of a flat rectangular pad
with two dimensional flow is;

+ = ah (3 )
12** dx2 12>* dy2 dt

The equations for the pad pressure pj. and the pressures over the 
axial and the circumferential lands can be solved as shown in Appendix II. 
It is only to be kept in mind that since the pressure in pads 2 and k is 
assumed constant, the boundary equations applicable in this case are;

P0 = Pj;. 9 = 0n

= V  0 = e2
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Pa - pj, y - y1
and p « o, y = y2 (58)
where - new pressure of pad 3 - psi

pQ = original pressure of pads 2 and ^ - psi
p G3 pressure over the circumferential lands - psic

and pa = pressure over the axial lands - psi
Then the equations for the pressures over the lands are;

. 0 ,2 dh12m, g* c
pc “ h3 2 dt e2 - (e0 + e j e  + e1 e J

+

1

p* (0~ - 0) (0 - 9.)
V t  + ••• (39)

pa - [ y2 - (y2 + y1)y + y1ya ]  + "  y)

... (<t0)
If the spindle eccentricity ratio is e, then
h s= h ( 1 - e cos 0)a o

and h = h ( 1 - e cos {3) ... (4*1)c °
when 0* = 0 + — 2

Therefore from the above equation;
dh ,a , de— ss — n cos B "rrdt o K dt

and ^ c  . . de
S t  = “ h0 003 e at {hz)

Substituting the above equations in equations (39) and (4-0), 
therefore;p0 — 8“ 4 °°s e' ho ft [®2 - (02 + V® - ®ieJ

p3 (e, - 0) , po (e - e.)
+ <e ~ e ') 2 + - e p  1 *** (45)
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and Pa = ■ ^  ■£2f ' g‘ h o f t  [ y2 "  (y 2 + y 1 )y  + y 1y 2^J
a

+ 7 ^ l v r (y2 " y) —2 ~ yr
Differentiating equations (A-3) and (AA); therefore;

(1 12u, r , de . n p̂3 Pôr 90 e-0 ~ h5 2 0 dt 2 ” 1 ' rC®2 “ V
' 1 ... (43)

cos p h , piand (— &) » ISli   .2. (v „ Y ) „ -2j ... (2*6)“ “ V 33T h3 2 dt 2 V  y -y ***
y=y-, a

For a capillary compensated journal bearing, the oil flow through 
the restrictor is given by

Q = kc(ps " v p  *o. (A7)
Tid̂where K_ =c

Then the equation of the oil flow through the pad is;
hr . Bp_ h^ Bp_

Kc(ps - P|) + ^  4yi(- -ge“) + 12* 4P0, (^-)
y—

= 4ry101 §• ... (49)
1 rYn paPutting in the values of (— -rf-) and (” ») from equations
r 9=01 dy y*y

(A3) and (A6), the above equation becomes; 
h3 y

Kcps + 3iT K e ~  -~e~y p0 + ho §  L2 oos e' ryi{02 “ V
+ 2 cos 3 r 91(y2 - y^) + ifr3r'i9'|̂J 35 P3 [Kc +

nTe2 ̂  e1J 3m* (y2 - 7^

c 
3lA

3 r0. -»
+ V  ]  • • • (5o)

Equating the bearing pad resistance terms to K^, and simplifying, 
the equation for the pad pressure is,
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h c

p3 " Kcps + 3|A H e 2" - 01) p0
K +
G

+ h t t  o dt 2 cos 0® ry,j(G^ - 9 ^ + 2  rG^cos 0(y2 - + 2y ^
K + K. o b

-» -g oc* (51 )
b y1 h r9

where ^  TeCT-T^ + " W  '(̂ '“ ^ 7  •”  (52)

The load capacity of the pad can now be calculated from the equations 
of the pressure distribution over the axial and the circumferential lands, 
neglecting the load carried by the corners made up of the intersection 
of the landso

The total load capacity is the sura of that carried by the pressure 
pad, the axial and the circumferential lands.

(i) Pressure Pad
The load carried by the pad is 5 

0
W = 2y f 1 p® cos 0 rd 0
P “91

or = 4ry^ p^ sin o*» (55)
(ii) Circumferential Land
The load carried by the circumferential land is given by;

W 5= 4-y f P cos 0 rd 9c 1 J c
0-j

0
or Wc = "2^ry^ cos ff J 2 j”©2 -(9  ̂ + 02)Q + 6^©2 J cos 0 d 0

h c 91
0 p,(0P - G) + p (9 - 0 )̂

+ f̂ry j — -------------r— — "—  cos © d 9 (5^)
e1 2 “ 1

Which on integration and simplification gives;
- 2 W p3

wc “  y  1   - cos 0° hQ —  I (cos + cos 0^)(0^ - 0^)

-j p  COS 8p - GOS 0,. -l
2 (s in  s in  9̂  ) J  -  ^ r p ^   ̂s in  ©̂  + ------- -— g J



(ill) Axial Lands
The load carried by the axial lands is given by?

9-
W - 2 f f p dy cos 0 rd 0 «*> o (56)a * «  ̂ a-0- y-

or as -24r sin 0. cos 0 hQ ™| j 2 fy2 - (y + y )y
h a y1

h r sin 0 p ® y
+ yiy2]  ^  + -j-rj:'*' I (y2 -y)ay ̂ y /j

On integration and simplification^ this gives?
(y *“ y ) “i

Ha - kr sin 01 [ -f“ cos (3 hQ §§ (y2 - j J *  + P^— ■ 2'- - ■ J
a  ( 5 7 )o o o

Therefore9 the total load capacity is?
W ~ W + W + W p e a
Putting in the values of If , W and W from equations (53)» (55)p c a

and (57)
(cos Qg - cos 01)

V = P* |_2r sin 0^  - jr.,) - ^ J
r cos 02 *» cos 01 «■+ S ^ o  LSin ®2 +   J

sip r zks? cos 8% c-------- J (COS 0£ 4- COS 0-})(0£ “ 0^)
0

x sin 0,, cos 5
- 2(sin 02 - sin Q^j - —  - y*- (y^ - y^) J (53)

h Si
Substitutes the value of p. from equation (51), the load capacity

of the pad is given by? 

W r yi i r cos02-coSe1 -Lv« * I T  ' F T e r ^ C T  pol l2r Bia ei(y2 “ yi}~ ^ 1— 070“  .2 wr  t 2 1
(K + K, )C* D

(cos 0p - cos 0^) 
+ rp [sin 0* + — y y -



^ ho ff £ IT ^  C0S y'i[̂ cos + cos 01^®2 ” " 2 ŝ^n ®2"6^n®1*h' c
4r sin 0  ̂ cos _ _

a
(y2 “ y*i^3 ••• (59)

The load capacity consists of the load carried by an equivalent 
steady pressure and that due to the squeeze film effect, and is of the 
form?

W « W . . . + K, ~  (60)static d dt
where = damping constant - Ib/in/sec.

Using the notations of Fig. 1, as in the analysis for the steady
load;

y2 - y1 ^ el 
L

L
y2 55 2
e2 + ^

2 °2
0  ̂ - eatoOt̂

©2 “ 0^(2 " eot)

Kc
1 K, b

and p = )p * • • (61)ro tt + 2 s
The equation (59) can therefore be expressed as;

"static = T T T  CL 61 D ein(e"-"2)
2<j 2

^cqs 0^(2 - eat) - cos J

PsZho<1 " ecos e’)5 L(1 ” 2 sl) I\ , „ ,. , X LD(1 - 2 el)D a2(1-e«)(Z1+1)(Z+n)Kb L sinCeflf.Oj) - 2 _ ea)
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) "I
’cos o?2(2 - ectf) - cos eaoo^jj

p Z j- cos wp(2”»eof)- cos ear* or- -i
— v LD(1 - 2 el) sin o?0(2 - ecf) + — — --------------■̂Tr) L 2 -I

ooe (62)

+(Z+rr) 2 cv0 (1 - eot)c.

and the damping constant is?
^2 /DL 0̂ (1-261) (l-e<y)cos 0® + LD o^eafcos 0.el + 1 - 2elJ

K - - «~iS     .„,....... ..............
h O (21 + 1)

(Lei) |̂ 2Q’2(l-eQ’) DLel sin(<*2eff) - LD(l-2el) *cos a2(2-eo)- oos »2eofJ J
2L^(l-«2el)el(l“*e cos 0®)^ + Ad ev2 ecyCl-ea) (1 -*e cos 0)^

D sin(«ype») „
4- »™>—— »..**i'■■rvirn' (Lei) cos 0

6(l™e cos 0)1"

ry5r (‘\a,pQ\) P ( )
+ -BT- - cos 0® 2 fs in  C£-,(2-eo') -  s in  ar0ea (

6 (1-e cos 0®K 2 ;

- ^cos ot̂ (2-eot) + cos a^eaj jj2 ••• C63)

The effect of the pad geometry factor on the damping constant of a 
journal bearing is shown in Fig* 13* It is clear that the damping constant 
increases rapidly by increasing both the axial and the circumferential 
land ratios* As shown in Figo 14a, the damping constant drops with a 
larger ratio of the resistances of the pad and the capillary restrictor,
Z^«, It is interesting to see that for a given pad goemetry, both the 
normal stiffness and the damping constant decrease with larger radial 
clearance and a lower oil film thickness offers advantage for both the 
steady and the dynamic loadso

2«2boDynamic Load Analysis of a Hydrostatic Bearing System
As for the static deflection curvess computer programmes have been 

prepared for determining the natural frequencies, modal shapes, modal 
damping ratios and the general response to the dynamic load of three



30
dimensional structures* The distributed mass of the elements is replaced 
by set concentrated masses located at the station points* The bearing is 
converted into a helical and torsional spring as before, and a single 
dashpot damper is included in the system in the directions of loading 
(Fig* 9*)*

The variation of natural frequency and damping ratio with 
rotational flexibility is shown in Figs* 15 and 16 respectively* It 
is seen, once again, that a lower flexibility is desirable for dynamic 
loads as well as the steady loads considered earlier* As shown in 
Fig. 16, the damping ratio is lower for higher bearing stiffness and 
it is here that the two important parameters are in direct conflict*
It would therefore be necessary, to establish a compromise criterion 
for selection of the bearing stiffness and damping constant.

The effect of the damping constant on the damping ratio of the 
system is shown in Fig. 17, where it is obvious that the concept of 
increasing the damping ratio by increasing the damping constant can be 
misleading. The shape of the curve could be explained by considering 
first zero damping in the system which would result in zero damping 
ratio, and then a very large value of the damping constant - itfhich 
implies zero spindle deflection at the bearing, hence again a zero 
damping ratio. It follows therefore, that finite damping ratios must 
appear for intermediate values of damping constant and an optimum 
for which the damping ratio is a maximum depending on the equivalent 
spring stiffness of the bearing.

Hence, for a particular normal stiffness of the bearing, determined 
from static deflection programmes, a damping constant can be selected 
to give the best damping ratio, and taken to its logical conclusion, a 
pad geometry can be selected to give this damping constant.

The resonant frequency is not appreciably affected by the damping 
constant as shown in Fig. 18. Similarly the damping ratio does not vary



considerably with the rotational flexibility over the whole range of the
damping constants of the bearing pad. Fig. 19 shows the variation of the

-9damping ratio for rotational flexibilities of 500 x 10 and 10,000 x 
10“9 rad/lb in. The variation of resonant frequency shows higher value 
for stiffen bearing, the two curves following almost identical pattern 
for various values of the damping constant.

2.3° Hydrostatic Thrust Bearing
The analysis of an anUlar thrust bearing with capillary 

compensation for steady loads has been covered in the earlier thesis 
and only the results of that will be included here.

2.3a. Oil Flow
The oil flow in the bearing is given by the equation;

3
Q = ■ K_£, ... (64)

where K» = ----—  + —    ... (63)1 r? rhlog log
* -'j * 7J

For capillary compensation, the pad pressure is given by 
P

p = ... (66)
1 + sirc

4•ndwhere = 128'pl * as ^or a journal bearing.

2.3b. Load Capacity and Stiffness
The load capacity is given by the equation;

w = 7 — 1 3 ^  -
ttK  3K,K1 1 C
2 2 2 2r . - r  r - r

where K_ =   ■ ■     --—------ — ... (68)
1 r4 r2
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Therefore, the stiffness of the bearing is;

S (69)
 ̂K^ 2 2K 2

2<>3co Total Power Requirement
The total power requirerarnt is given by the equation;

o • • (70)

where KP (71)

By differentiating equation (70) and equating to zero, the 
optimum oil film thickness for minimum total power requirement is;

The design of the thrust bearing pad is subject to the same 
discussion as the journal bearing, and hence will not be covered in 
detail here. The variation of the oil flow and the total power require­
ment with, the width of the land is shown in Fig« 21. It is noticed 
again that for a particular oil film thickness, one value of the land 
width requires minimum total power, while each of the lines shows 
constant stiffness characteristics. Hence, an oil film thickness can 
first be chosen for a required stiffness, and consequently a pad 
geometry selected for minimum power requirement «>

hopt (72)
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EXPERIMENTATION AND RESULTS

The performance of the hydrostatic bearing system was mainly 
investigated to determine the following three characteristics;
1o Temperature distribution and heat balance
2o Steady load deflection
3« Dynamic response

3*1« Tempeature Distribution and Heat Balance
The hydrostatic bearing system for this investigation consisted 

of two journal bearings to support the main spindle and carry the 
radial loads, and a double film thrust bearing to take axial loads in 
either direction. The spindle could be loaded radially through another 
journal bearing, connected to a hydraulic cylinder supplied with oil 
under high pressure.

3.1a. Journal Bearing
The design features of the hydrostatic journal bearing are shown 

in Pig. 22. The main feature of the bearing was the interchangeable
brass bush, which was screwed on to the main housing with the pad
geometry machined on it, to enable bearings of different geometrical 
configurations and radial clearances to be employed without any major 
alteration in the assembly.

Sixteen J BSF screws were mounted radially in one bearing to carry 
thermocouples for measuring the temperature of the oil film along the 
bush circumference. In the other bearing eight screws were fixed up to 
the bush internal diameter, while alternately eight more were mounted 
at a distance of J- in. from the bush. The bush internal diameters of 
both the bearings were finish bored in one operation with these screws 
in position for accurate alignment and consistent tolerances on both 
bearings.

33
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3°1b. Thrust Bearing
Fig. 23 shows the main design features of the hydrostatic thrust 

bearing. As for the journal bearing, the annular pad configuration is 
machined on a brass disc and is screwed to the main body. The brass 
pads are then finish machined with the main body to give the correct 
clearance between the bearing and the thrust face of the main spindle 
and such that the two faces are parallel to one another and coaxial.

3.1°. The Hydraulic Circuit
A closed hydraulic circuit was designed for the system and a 

schematic diagram is shown in Fig. 24* High pressure oil was supplied 
to the bearings by a pump through a filter and the pressure was 
controlled by the combination of the pressure relief and control 
valves. All the pressure pads in one bearing were supplied from an 
oil distributor through identical capillary restrictors and the pressure 
was regulated with valves.

The outlet oil was collected in a drip tray placed around the 
table and was pumped back to the manifold through another filter.

3•1d. Capillary Res t ri ct ors
The compensating elements consisted of cold drawn stainless steel 

capillary tubing, .033 in. by .048 in. o.d. for the journal bearings 
and o084 in. by .112 in. o.d. for the thrust bearings. These were 
sealed with araldite in special ^ in. diameter adaptors and were mounted 
in the pressure line to the bearings as shown in Fig. 24.

3*1e. Temperature Measurement
Thermocouples were mounted around the bearing bush to measure the 

circumferential and the radial temperature distribution in the journal 
bearing. The -J BSF screws were drilled and the thermocouples were 
inserted in them and sealed with araldite, which held them in position 
and insulated them from the screws and the bearing body. The thermo­
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couple bead was carefully adjusted in line with the end of the screw 
which had been finish machined earlier with the internal diameter of the 
bearing bush, thus ensuring that all the thermocouples were flush with 
the bush diameter, when mounted in the housing. In one of the bearings 
sixteen thermocouples were mounted around the bush circumference to 
give the circumferential temperature distribution of the oil film, 
while in the other eight of them were fixed § in. from the bush to 
give the radial temperature gradient in the bearing housing.

A thermocouple was also fixed in the inlet pipe to the bearing 
for accurate determination of the rise of temperature of the oil in 
the bearing.

The electric circuit employed for the temperature measurement is 
shown in Fig. 23* The thermocouples were grouped together in blocks 
of eight and througjh a selector switch were connected to a four 
channel U.V. recorder. To eliminate any error in individual block 
circuits, one thermocuple in each block was taken as reference and put 
in ice cooled water along with the cold junction.

The experimental set up of the bearing system with the thermo­
couple leads to the distribution box and the U.V. recorder is shown in 
Fig. 26. The experiments were performed by slightly preloading the 
spindle, to offset the effects of the belt tension and the thrust face 
load, such that the pressures in the four pads of the first journal 
bearing were approximately the same and the spindle could be assumed 
concentric in the bearing. The thermocouples along the bearing bush 
circumference and the ones radially displaced were at first connected 
to different galvanometer circuits respectively, but to eliminate any 
error in calibration, the thermocouples in the two halves of the 
bearing circumference were separately connected to two galvanometer 
circuits. Thus the temperature readings for thermocouples along the
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bush circumference and radially displaced in one half of the bearing 
were taken by the same galvanometer, which also recorded the inlet oil 
temperature.

Temperature readings were obtained for spindle speeds of 500» 1050 
and 1900 rpm and maximum temperature rise was observed to be 3*6 , 6 and 
10.4°C, while the radial temperature difference between the two sets of 
thermocouples was found to be 1.0, 1.5 and 2.5°C respectively.

The procedure for the calculation of the heat dissipated to the 
oil and the bearing housing is outlined in Appendix III. The oil flow 
was determined from the average pad pressure and the viscosity at the 
mean oil temperature, and the heat carried away by the oil from the 
average temperature rise of the oil in the bearing. For the estimation 
of the heat given to the bearing housing, heat flow was assumed only 
from the bearing axial lands and approximately between cylindrical 
surfaces composed of the brass bush and the mild steel housing. It is 
realized that the heat flow from the housing will follow a more complex 
pattern and the estimate presented is likely to be lower than the 
actual heat conduction, but with the distance between the two sets of 
thermocouples only § in., straight path heat flow was assumed to 
simplify the calculations.

The heat dissipated to the oil and the bearing housing is shown 
in Fig. 27* It was found that while the ratio of the two was nearly 
the same for various spindle speeds, the oil accounted for almost 
twice as much heat dissipated as the bearing housing.

3*1f« Torque Measurement
The technique of measuring torque on spindles by fixing strain 

gauges at 45° to the axis and diametrically opposite each other to 
form a Wheatstone bridge is fairly standard and shall hot be discussed 
in great detail here. A11 improvement on this procedure is the use of 
torque gauges which are available as one or more paired elements,
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consisting of a single Vee formation of an active and dummy element. 
Multiple paired elements can be employed to increase the bridge 
resistance, the gauge area and therefore the heat dissipating capacity 
and to measure the average strain in the spindle. The gauges can be 
mounted diametrically opposite each other, with their centre lines 
in an axial or circumferential direction (Fig. 29).

For the present work four Saunders Roe torque foil gauges were 
29employed in series to increase the resistance of the arms of the 

bridge, and were mounted diametrically opposite each other circum- 
ferentially, with strain gauge adhesive and hardener. The usual 
precautions were taken while fixing the strain guages, i.e. no air 
bubbles were trapped between the bonding surface of the strain gauge 
and the steel coupling.

The Wheatstone bridge circuit employed for measuring the torque 
is shown in Fig. 30* The output from the bridge was taken through 
slip rings mounted over an insulation ring of synthetic resin bonded 
paper, to an amplifier and the signal was transmitted to a U.V. recorder.

To eliminate the inaccuracies of contact resistance of the brushes 
and the slip rings, a mercury pool was at first tested for transmitting 
the output current from the slip rings. The performance of the mercury 
pool commutator was found satisfactory electrically and the calibration 
of the gauges was done on a torque calibrating equipment shown in Fig.
31o, while the calibration curves for both clockwise and anticlockwise 
torque are shown in Fig. 32.

However, during experimentation, the mercury tended to fly off 
with the slip rings, most generally shorting the circuit and this method, 
therefore, had to be abandoned.

A brush assembly was then mounted, with three brushes at 120° 
intervals around each slip ring, to compensate any contact error on one



38
brush by the other two around the periphery. Considerable difficulty 
was encountered while taking the measurements with this assembly. The 
contact resistance across the brushes and the slip rings tended to vary 
with spindle rotation at different speeds from the static condition.
The brushes heated up at higher speeds even with very small spring 
pressures and the heating and the change in contact resistance invar­
iably upset the static balance of the bridge. Hence satisfactory 
results over long periods of performance could not be obtained, and 
the effects of speed on power loss and oil viscosity could not be 
studied. It was later felt that the oil temperature in the various 
bearings would be different due to the spindle inclination even at 
no load, and it would be difficult to analyse individual bearings and 
study the effect of speed on power loss in journal bearings accurately. 
Therefore the experiments were not carried any further.

3.2. Steady Load Deflection
To establish the validity of the theoretical analysis on the 

rotational flexibility of the journal bearing this investigation was 
carried out with the system consisting of the main spindle and two 
journal bearings. The spindle deflection shape was obtained by apply­
ing load to the pulley mounted on the spindle end, with dial gauges 
placed at various places along the spindle as shown in Fig. 33* 
Experiments were performed with supply pressures to the bearings 
ranging between 25 and 600 p.s.i. and maximum load of 90 lbs. The 
spindle deflection shape, as determined from the readings of the dial 
gauges for loads of 10 lbs and 90 lbs. for different supply pressures 
is shown in Fig. 34. The spindle end deflection was simulated from 
these curves and is shown in Fig. 33<»*for various supply pressures.

It was found that for low bearing pressures, the spindle deflection 
depended more on the bearing stiffness, while for higher pressures the
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spindle end deflection was dependant on the spindle stiffness. Thus there 
was little difference in the spindle end deflection for bearing pressures 
of -̂00 p.s.i. and 600 p.s.i. and there would virtually be no advantage in 
increasing the bearing pressure any further*

To determine the dynamic characteristics of the journal bearing 
including the damping ratio, the experiments were performed at first with 
the main spindle and the two journal bearings as shown in Fig. 36» by 
applying harmonic force to the spindle and obtaining the frequency 
response curves. The circuit employed for the experiments is shown in 
Fig. 38. A Solartron Oscillator model CO 3^6 operating on a Wien 
network was employed to drive the vibrator motor through an amplifier 
model PP 230 VAP. The frequency of oscillation is selected by the 
range switch and calibrated dial on the oscillator from 23 c/s to 300 
kc/s. By making use of the calibrated scale and the vernier any 
frequency can be set with an accuracy of 1 in 3000.

The amplifier is designed to produce an output of 230 VA over a 
frequency range of 20 Hz to 10,000 Hz with ail anode dlssipator capacity 
of 300 watts. An input signal of 0.7 volte r m s  is required for full 
output.

Four illuminating on/off switch push buttons are fitted to the 
front panel, two marked HEATER1 and the other two marked *P.A.*. The 
green *HEATER* button switches on the driver stages while the green 
'P.A.* button switches on the power amplifier or the output stage.
During normal operation the lamps show a steady light but in case of a 
fault or overload, the lamp monitoring the faulty circuit flashes 
warning of a fault indicating the affected circuit.

The displacement of the spindle was obtained with a quartz 
accelerometer which gives the acceleration of the point under test.
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The signal from the accelerometer is transformed to a proportional 
output voltage in the charged amplifier and fed to the oscilloscope.
The displacement can then be calculated by the relation;

a = — -— y  ... (73)
(2nf)

where d = displacement 
a = acceleration 
f s= applied frequency 

A force transducer was mounted between the vibrator and the pulley 
to determine the force applied to the spindle. The transducer was a 
quartz load washer type, which converts the mechanical force into an 
electrostatic charge signal. The signal is transformed into a prop­
ortional output voltage in a Kistler charged amplifier and transmitted 
to the oscilloscope,

3«3a* Frequency Response Curves
The frequency response characteristics were obtained for various

bearing supply pressures and the curve for p = 100 p»s,i, is shown ins
Fig, 40 where the acceleration output obtained on the oscilloscope for 
various forced frequencies is directly plotted. It was noticed that the 
first mode amplitude of the spindle end was the only significant one as 
all the other values become small when converted into actual displace­
ments from the acceleration plot of Fig, 40, The absolute displace­
ment is given by the equation therefore compared to the first mode
displacement amplitude, the value at any subsequent mode is;

an = an 4 1 )2 . . .  Wn
where and a^ are the displacement and acceleration amplitudes respect­
ively at nth mode frequency.

The frequency response curves for higher supply pressures were 
nearly the same and to avoid overlapping of these curves they have not
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been included in Fig* 40* However larger scale plots for supply 
pressures of 100, 200 and 400 p*s*i* in the vicinity of the first 
resonant frequency are shown in Fig* 41 to determine the deunping 
ratio of the system,,

3<>j5b<, Damping Ratio
The procedure for determining the damping ratio of the system 

from the frequency response characteristics for acceleration is 
outlined in Appendix IV* For the present work, the two frequencies 
before and after the resonant to give &5°/° of the peak acceleration 
amplitude were found from Fig* 41 and the damping ratios were then 
calculated* It was found that the displacment and the resonant 
frequency for supply pressures of 100, 200 and 400 p»s*i* were not 
very different but the damping ratio was higher for the lower 
pressure bearings* The variation in the damping ratio and the
modal displacement of the spindle end is shown in Fig* 4-2.

Experiments were also performed with spindle end preload and 
the enlarged frequency response curves for p = 200 p*s*i* are shown 
in Fig* 43 while the variation In the damping ratio, resonant 
frequency and displacement amplitude as compared to no preload is 
shown in Fig* 44* It was found that both the damping ratio and the 
resonant frequency increase slightly with spindle deflection in the 
bearing due to the preload*

3«3c* Modal Shapes
The modal shapes of the spindle at the first three resonant 

frequencies were obtained by placing the accelerometer along specially 
made flat surfaces on the spindle in line with the axis of vibration,
and determining the amplitude and the phase of the signal on a Resolved
Component Indicator* This instrument displays the *in phase* and 
'quadrature* components of an A*C« signal xvith respect to the related
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reference voltage*
It consists of two thermocouple wattmeters and the associated

electronic circuits to drive them* Two signal inputs are required, a
constant amplitude from phase reference signal and the signal to be
measured* The 0° and 180° phases of the reference signal energise

o oone wattmeter, and the 90 and 270 phases energies the other* The 
signal to be measured is amplified and fed to the two wattmeters, 
one of which indicates that component of the test signal in phase 
with the 0° and the 180° reference phases, while the other indicates
that component at 90° to them*

The output points are plotted on cartesian co-ordiantes and 
define the signal in amplitude and phase*

Figs* 43, 46 and 47 show the three modal shapes of the spindle 
with the respective phase difference between the spindle end and 
the various other points on the spindle* Results obtained from the 
computer programmes are also shown in each case for the purpose of 
comparison*

In the second stage of the experimentation, frequency response 
curve was obtained with the thrust bearing in position as shown in 
Fig* 37 and Is drawn in Fig* 40* It was fotind that the thrust bearing
made almost nelgigible difference to the resonant frequency of the
system but the damping ratio was higher and the displacement amplitude 
at the first resonant frequency was lower and almost indistinguishable 
for second and third frequencies* However, the amplitude of 
vibration for the other points oh the spindle, away from the thrust 
bearing, was not significantly different as shown in Fig* 45®
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DISCUSSION

** o1° Temperature Distribution and Heat Balance
A .similar investigation on a hydrodynamic journal bearing by 
18COLE has been taken as the basis for discussing the results of

the present work* It has already been reported in the earlier 
23thesis that the temperature along the bearing bush circumference 

wajs quite uniform when the spindle was concentric in the bearing, 
while the profile of the temperature rise followed the spindle 
deflection in the bearing due to radial loads* The maximum rise 
occ^irred along the line of load and the minimum film thickness, and 
hence for the maximum eccentricity ratio of „70 and speed of 1900 
roPoino encountered in the present experimentation, the hydrodynamic 
effect in the bearing was found to be negligible,,

The profile of the temperature rise along the bearing 
circumference was quite smooth and thei'e were no sharp temperature 
changes as in hydrodynamic lubrication 0 Perhaps the conditions of 
load and speed in the present work were not severe enough to cause 
large varia.t±ons in temperature along the bush circumference but it 
seems that the bearing was kept at a more uniform temperature due 
to large oil flow* Hence there would not be any large local varia­
tions in oil viscosity in the hydrostatic journal bearings caused 
by these temperature differences, and the dangers of bearing failure 
due to this critical factor seem considerably reduced*

It was found that the oil carried away approximately 63% of the 
heat dissipated to the oil and the bearing housing and this high 
percentage was probably due to large oil flow* Since the temperature 
was higher for higher speeds, the larger reduction in oil viscosity 
due to this temperature rise caused greater oil flow and this seemed 
to help in keeping the ratio of the heat dissipation to the two

43



elements the same for various spindle speedse Heat flow to the spindle 
was not- determined experimentally and in the absence of power loss 
measurements in the journal bearing, no approximate estimation was 
possible, and hence the complete heat balance of the bearing could 
not be prepared either*

Though the maximum temperature in the bearings v/as by no means 
high, yet assuming constant viscosity of the oil as at room temper­
ature is likely to cause error in the design of optimum parameters 
for the bearing system, especially for orifice compensation where 
the oil density is also a variable factor* In the present case it 
was found that as the temperature increased after starting the 
experiment, it caused a much higher oil flow to the thrust bearing 
and since all the bearings were being supplied oil from the same 
pump through different control valves (one each for the thrust 
bearing and the journal bearings, Fig* 2k„) this ultimately upset 
.the balance in the system with consequent drop in the journal 
bearing pressure* Hence, a more practical value of temperature and 
oil viscosity should be considered for designing the hydraulic 
system, pump capacity etc*, especially for large oil flow systems*

It is appropriate to mention that the temperature of the inlet 
oil continued to rise during experimentation, partly due to the in­
efficiency of the cooler in the system* The temperature build up 
in the bearing is shown in Fig* 28 and it was found that while the 
bulk of the temperature increased during the first hour, the temp­
erature continued to rise even after three hours of running* Due
to this cumulative effect the oil temperature in the bearing went 

oup to about 50 C even though the maximum rise in the bearing itself 
was only shout 10°C for spindle speed of 1900 rop*m* While steady 
state temperature is not critical for hydrostatic bearing performance
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yet it is desirable to stabilize the flow characteristics of the 
bearing which are so sensitive to changes in oil viscosity* The 
importance of the cooler in a hydraulic system is not always realized 
as in the present case where the wrong type of cooler was installed 
in a new hydraulic rig, but an efficient cooler would be able to 
dissipate all the heat generated and maintain the inlet oil temper- 
ature as close to the room temperature as possible and thus limit 
the bearing temperature rise to that caused only by the losses in 
the bearing itself* With a new cooler, more appropriate for the 
present low oil floitf system the maximum temperature in the bearing 
was about 33°C at speeds of 1900 r*p0mu

It was found that most of the temperature rise in the bearing 
occurred due to the spindle rotation and since the dynamic tests 
were performed with the spindle stationary, the effect of temperature 
rise on the dynamic characteristics of the bearing could not be 
studied* The maximum temperature with p s *f00 p«s*i*9 with theS

/-Ospindle stationary, was only 2o G and the temperatures were not found 
to be very different nor critical for the range of pressures en­
countered*

h*2* Steady Load Deflection
It was found that greater accuracy in the results from the computer 

programmes could be achieved by dividing the bearing system into 
fourteen elements instead of eight as discussed in detail in the next 
section, and a comparison of the spindle deflection shape obtained 
from this new model and the experiments is shown in Fig* ^8* It shows 
that the programme can be used very successfully for prediction of 

the spindle deflection shapes* Fig* A9 shows the comparison of the 
experimental results of the spindle end deflection with those deter­
mined by the computer programmes and it was found that the theoretical
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expressions for the rotational flexibility could be used for very 
accurate computation of the spindle end deflection* The very small 
differences in the tî o results could be attributed to experimental 
errors with the dial gauges and approximations in the computer model* 
The bearing stiffness in the model was assumed linear in the programme 
and though this assumption is not strictly true (since the stiffness 
of a journal bearing is not linear, especially for high eccentricity 
ratios) yet the spindle end deflection was found reasonably linear 
for the range of loads applied in the present experimentation, as 
shown in Fig* 33b.

It would be quite appropriate at this stage to discuss the 
relative importance of the bearing and the spindle stiffnesses in a 
bearing system. It has been shown in section 3»2 that for the 
present system there would virtually be no advantage in increasing 
the bearing pressure from hOO to 60G p.s*!*, since the spindle end 
deflection is not substantially reduced* It seems that beyond a 
certain normal and rotational stiffness of the bearing, the spindle 
Is clamped at the bearing point and the spindle end deflection is 
mainly a function of the spindle stiffness and is hence nearly the 
same for even higher bearing stiffnesses* It can be seen in Figs.
10 and 11 that while higher stiffness of the bearing reduces the 
spindle deflection at the bearing point, it does not proportionately 
reduce the spindle end deflection and hence attention has to be paid 
to the spindle design as well for keeping the spindle end deflection 
in a bearing system as small as possible. For a given system there 
is no substantial reduction in the spindle end deflection by 
increasing the bearing stiffness beyond a particular value and this 
can be conveniently determined with the help of the computer programmes 
as outlined here.
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k03» Dynamic Response
The frequency response characteristic showed that the fundamental 

resonant frequencies for the three supply pressures where very close 
to each other, but contrary to expectations the frequency of response 
was lower for higher bearing pressures* Although the higher pressure 
in the bearing implies higher normal stiffness, yet it has a smaller 
damping coefficient and it is the combination of these two factors 
which determines the equivalent stiffness of the bearing to dynamic 
loads and the resonant frequency of the system* Results obtained 
from the computer programmes also show (Fig. 18) that for large damp­
ing constants, the first resonant frequency of the system for lower 
normal stiffness of the bearing is indeed higher.

The damping ratio was higher for lower supply pressures to the 
bearing, as expected from the analysis. Since the lower stiffness 
of the bearing permits larger deflection of the spindle, this in­
creases the damping and produces a higher damping ratio of the system 
for dynamic loads.

The higher equivalent dynamic stiffness of lower supply pressure 
bearings also reduces the resonant amplitude of vibration as shown in 
Fig. *f2, with the minimum somewhere between 100 and 200 p.s.i. The 
variation in the amplitude of vibration for various supply pressures 
at their first resonant frequencies compared to pg « 100 p.s.i. and 
the phase angles determined with the Resonant Component Indicator is 
shown in Fig. 30. It was seen earlier that there was no substantial 
reduction in the spindle end deflection for steady loads with bearing 
pressures higher them *KD0 p.s.i., and it is clear now that there was 
in fact an increase in the amplitude of vibration for dynamic loads 
with pressures higher than 200 p.s.i. In a bearing system, therefore, 
there is no real advantage in increasing the normal stiffness beyond
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a particular value even for steady loads and this higher stiffness at 
the same time reduces the damping ratio for dynamic loads. Hence, it 
seems that the spindle end amplitude of vibration, which reflects the 
equivalent dynamic stiffness of the bearing, could be used as the 
criterion for the selection of the bearing normal stiffnesses.

The resonant frequency and the damping ratio both increased with 
preload as shown in Fig. 44. It appears that with the spindle deflec­
tion in the bearing the equivalent dynamic stiffness of the bearing 
increased due to the higher damping constant for a smaller film 
thickness, and this increased both the resonant frequency and the 
damping ratio of the system while decreasing the amplitude of vibr­
ation. This suggests that during a metal cutting process in a machine 
tool causing preload on the spindle, the dynamic performance will be 
no worse than that determined from the theoretical analysis with no 
preload.

The results from the computer programmes are shown in Fig. 51 
and these confirm the trends of the experimental work discussed above. 
The fundamental resonant frequency, determined from the programme was 
only 10% lower than the experimental value. It was also found that 
the amplitude of vibration was smaller for higher stiffness bearings 
when damping in the system was neglected in the programme, but when 
damping was incorporated the amplitude was higher, as in the experi­
ments, due to the combination of the normal stiffness and the damping 
coefficient causing a lower equivalent dynamic stiffness. The slope 
of this curve would obviously depend on the damping constant of the 
bearings.

Although the results from the computer programmes for the resonant 
frequency and the modal shapes correlated well with the experimental 
values, yet they were not felt to be accurate enough for the present
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investigation . Apart from the discrepancy in the first resonant 
frequency, the modal shape and the node points for the second and the 
third inodes could not be accurately determined with an eight element 
model of the bearing system* I-Ience, it was decided to divide the 
bearing system into fourteen elements to take into account all the 
discontinuities in the spindle and eliminate the inaccuracies and 
approximations in the calculation of the flexibilities of the various 
elements in the model*

To determine the ability of the computer programmes to deal with 
any system of hydrostatic bearings, experiments for correlation were 
performed on two spindle systems* One of the systems consisted of 
the large pulley mounted on the main spindle as shown in Fig. 36, 
while the other consisted of a small pulley of 2^ in. diameter at 
the spindle end as shown in Fig* 9° Since the first system was more 
convenient for determining the comparable performance with a thrust 
bearing in the system (Fig. 37) and it was also felt that a large 
pulley at the spindle end wotild closely simulate the condition of 
performance of a lathe spindle with a head stock, it has been discussed 
above* However, only one result could be obtained for the fourteen 
element model of the second system, with damping incorporated in the 
programme, and despite several attempts no further success could be 
achieved* This was attributed to ill conditioning in the dynamic 
equations and the matrix for the computer programme, a condition not 
apparent for the eight element model* Hence, the subsequent discussion 
will be confined to the results of the experimental work on the second 
system and the computer programme'*

The modal shapes of the second system with the results of the 14 
element model programme are shown in Figs* 52, 53 and 54. It was found 
that more accurate results could be obtained by increasing the number
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of elements in the model* The first resonant frequency predicted was 
within 1% of the experimental value, while the modal shapes and the 
node points were much better defined* The computer programme predicted 
sharp changes in phase relationship between various station points 
since it only takes discrete damping at the station points into account, 
while the experiments showed gradual changes along the length of the 
spindle due to distributed material damping* Consequently the differ­
ences between the results of the experiments and the computer 
programme were larger near the node points and best correlation was 
thus obtained for the first mode* However, the results of the 
programme were close enough in range and magnitude to permit their 
application to similar systems for predicting the resonant frequency 
and the modal shapes*

The comparison of the results for the damping ratio was more 
difficult since the damping ratio is a function of the normal and 
rotational stiffnesses and the damping constants of the bearings and 
the spindle system and both the theoretical analysis and the computer 
programme were based on simplifying assumptions and approximations*
The resonant frequency is dependent largely on the normal and rotational 
flexibilities of the bearing and the spindle, and since these para- 
mete.rs can be calculated fairly accurately, the first resonant frequency 
is determined very close to the experimental value* However the 
determination of the damping ratio, experimentally and with the computer 
Programmes was more elusive. The forced frequency response method was 
employed in the present case, and though it is generallly considered 
quite acceptable?yet for small damping ratios, any slight variation in 
the drawing of the frequency response curves introduced large errors 
in the results* The calculation of the damping ratio for 80% and 85% 
acceleration amplitude ratios on the frequency response curves gave
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different results and hence a direct method of determining the damping 
constant applicable to the bearings could not be employed. An approx­
imate method, however, was tried, as shown in Fig. 551 by drawing the 
variation in the damping ratio with the bearing normal flexibilities 
for various damping constants from Fig* 17 and plotting the experi­
mental values on this Fig. to get the damping constant to which these 
curves most closely related in slope and magnitude. It was thus 
found that the damping constant of the system was nearer to 400 and 
much lower than calculated from the equation (65) in Chapter II 1600). 
Since the Fig. 55 was itself drawn with results for an eight element 
model it is not known how much inaccuracy is introduced due to this 
factor. However, it is clear that a more accurate theoretical analysis, 
computer programme and experimental procedure is required to determine 
the correct damping value in the system. The difficulty in the 
calculation of the damping ratio from the experimental results has 
been stated earlier. In the computer programme, no material damping 
has been considered and this may be contributing some error to the 
results. The simplifying assumptions in the theoretical analysis for 
the squeeze film equation of a journal bearing do not appear to 
adequately represent the actual conditions of performance, and hence 
it is felt that it will be necessary to take into account both the 
liquid compressibility as well as the changes in the side pad pressures 
due to dynamic load, for getting more accurate results. At the same 
time, the mean oil film thickness assumed over the axial and the 
circumferential lands is not true by any means. Due to the spindle 
curvature, the oil film thickness over the axial lands of the pad is 
larger towards the horizontal axis away from the vertical load line 
as shown in Fig. 12. and the mean oil film thickness assumed at 0 = 0 
ip. fact is the minimum over the axial lands. This increase in the film
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and the area is likely to reduce the resistance of the axial lands to
23oil flow. It was reported earlier that for steady loads the circum­

ferential oil flow reduces the normal stiffness of the bearing even 
more than determined from the analysis and it is likely that for 
dynamic loads too, the drop in side pad pressures would increase the 
oil flow in the circumferential direction. Since the film thickness 
increases over the circumferential lands as well, due to the spindle 
curvature, the lands would also offer less resistance to extrusion 
of the oil due to dynamic loads. Both these reductions in the 
resistance of the pad would therefore decrease the damping constant 
of the journal bearing.

It is a coincidence that this drop in the damping constant has 
produced near optimum conditions of damping for the present system.
If the damping constant had been as high as calculated from the 
theoretical analysis, the damping ratio of the system would have been 
much smaller as shown in Fig. 17 and nearly the same for all bearing 
pressures <»



CHAPTER V

CONCLUSION



CONCLUSION

The computing technique can be successfully employed to 
determine the characteristics of similar hydrostatic bearing systems, 
and knowing the preferential requirements of the system, i.eo 
stiffness, power etc., an optimum pad geometry for the journal 
bearings from both the steady and dynamic load considerations 
can be selected. Also, the range of maximum stiffnesses 
effective to limit the steady load deflection and the amplitude 
of forced vibration of the spindle in a bearing system can be 
assessed. The input data requirement of the bearings for the 
model in the program can be calculated from the theoretical analysis 
presented, and by dividing the system into as large a number of 
elements as possible, very accurate results of spindle deflection 
curve, resonant frequency etc. can be obtained.

A more rigorous analysis is required to determine the damping 
characteristics of a journal bearing, and the effects of liquid 
compressibility, leakage factors across the axial and the circum­
ferential lands, location of the compensating element etc., need 
to be considered for'an exact solution.

In machine tools, it is now considered advisable to lodate 
the thrust bearing nearer to the spindle end, to prevent spindle 
distortion due to thermal expansion, and since the thrust bearing 
reduces the amplitude of vibration of the spindle end, it should 
also be considered in preparing the model of the system for the 
computer programs.

The effect of temperature on the performance of hydrostatic 
bearings is not as considerable as in hydrodynamic bearings. The
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temperature rise within the bearing was not substantial and inefficient 
cooling contributed a large share to the actual temperature in the 
bearing, and hence more attention should be paid to the cooler design. 
Due to more uniform temperature distribution with spindle deflection, 
the danger of bearing failure is less likely and therefore the design 
of the hydrostatic journal bearing of comparable dimensions can be 
mainly considered from the considerations of static and dynamic 
stiffness outlined earlier, though a more practical value of working 
temperature and oil viscosity should be taken for calculating the 
design parameters, pump capacity etc.
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APPENDIX I

LIST OF NOTATIONS
General

s 2oil viscosity in Reyns - lb.sec/in .
h - oil film thickness - in.
h . opt optimum oil film thickness for minimum power requirement - in
P = pad oil pressure - p.s.i.

■̂s supply oil pressure - p.s.i.
Q = oil flow - cu,in/sec.
W = load carrying,capacity of the bearing - lbs.
s S normal stiffness of the bearing - lb/in.
F - normal flexibility of the bearing - in/lb.
h,b = bearing oil pumping power requirement - h.p.
hS oil shearing power loss - h.p.
P B total power requirement of the bearing - h.p.
Qc S oil flow through the capillary restrictor - cu.in/sec.
d B internal diameter of the capillary tube - in.
1 Vlength of the capillary tube - in.
n - number of pressure pads in the bearing.
N “ R.P.M. of the spindle.

K1 = bearing load coefficient.

Kf B bearing flow coefficient.
KP S shear power loss coefficient.
Kc B capillary coefficient.
Journal Bearing
L B length of the bearing - in.
D B diameter of the spindle - in.
r B radius of the spindle - in.
ho S radial clearance - in.



ii
length of the axial land - in.
axial land ratio.
1
L
angle between the direction of application of the load and the 
beginning of the first pressure pad (Fig. 1.) 
half of the angle subtended by the edges of the pressure pad 
at the centre of the bearing.
half of the angle subtended by one pressure pad at the centre 
of the bearing.

°2
pad pressure with spindle concentric - p.s.i. 
oil flow with the spindle concentric - cu.in/sec. 
total power requirement with the spindle concentric - h.p. 
eccentricity ratio, 
load factor, 
flow factor, 
pad geometry factor, 
bearing design factor.

Resistance to Tilting
& = angle of spindle tilt in the bearing.
M = moment acting on the spindle due to tilt - lb.in.
RF1 a rotational flexibility of the bearing - rad/lb.in.
Squeeze Film Equation
ha a oil film thickness over axial land - in.
hc ss oil film thickness over circumferential land - in.

Pa = pressure over axial land due to dynamic load - p.s.i*

pc ss pressure over circumferential land due to dynamic load - p.s.i.

P3 as pressure of pad 3 due to dynamic load - p.s.i.

P sr angle between the load line and the centre of the axial land.

P1 ts angle between the load line and the centre of the circumferential land
= half of the angle subtended by the edges of the pressure pad at the

1
el =

or =

m
Z



iii
centre of the bearing.

9 = half of the angle subtended by the outer edges of theti

circumferential lands at the centre of the bearing (Fig, 12,)
W - dynamic load carried by the pressure pad,P

- dynamic load carried by the circumferential lands,
W « dynamic load carried by the axial lands.0.

= damping constant,
ss bearing pad resistance.

Ẑ  - ratio of the capillary resistance to the bearing pad
resistance to oil flow 
Kc
\

Thrust Bearing
r^, r^ = radii of the annular thrust pad - in. 

r3’ rk

r2"r-] = radial land width.
Heat Dissipation
Hq =s heat carried away by the oil - BTEJ/sec.
AtQ s= oil temperature rise in the bearing - °F.

■Z
y = weight density of the oil - lb/in .
C ss specific heat of the oil - BTU/lb deg F.

s= heat conducted to the bearing housing - BTU/sec.
At^ — mean radial temperature different in the bearing - °F»

s= inner radius of the bush - in.
R2 = outer radius of the bush - in.
R^ - radius of the outer thermocouple setting - in.

= thermal conductivity of brass - BTU/sec/in/°F.
Kg =s thermal conductivity of steel - BTU/sec/in/°F.



APPENDIX II

The main assumptions in the derivation of the squeeze film 
equations are enunciated in Chapter II0 Consider a rectangular pad, 
bounded on one side, and permitting oil flow in only one direction 
as shorn in Fig* 12. Then the equation of the equilibrium of forces 
acting on a small volume of oil is;

|'(p + dx) - pj dydz

which on simplification gives

(t Br
Ba dz) « tJ dxdy (1)

Bx
Bt
Bz (2)

The shear stress9 t , can be expressed in terms of the oil 
viscosity and the velocity of flow; hence9 

t = (3)
B^u
Bz‘2

... w

The.solution of equation (4) can be obtained by applying the 
boundary conditions,

U ™ O § 2j *— O
u - o, z - h

Chz “ z*~) 2^ dx a 'o o XI

Then the equation for the oil flow is
(5)

q » f u dz
o

or qx
1 dp 
2p» dx

h
^  J (hz -» a ) dz

o
h5 dpCt "  ( M U iu i t i  r.r.Tiglifi12jx dx

The rate of oil flow is a constant
(6)



Integrating both sides

J dv = -  f  !  ^
o o

dhSince the LJI.S0 is V ~ 
the equation (7) becomes

= 3* ... (8)12y» dx2 dt
The equation of pressure distribution can be determined for a pad

with width b, by integrating equation (8) and applying the boundary

conditions ;

Px = Ps x = xn
and p - o, x -x 2

Px = ^  “ 2dt [X X̂1 + + X1X2.]

0*0 (9)

The load carried by the pad is given by the equation;
Px2W = 2bx,p + 2b | p dx 1 w x

Putting in the value of p from equation (9)

W » pb(x2 + ^  f» Cx2 - xn)3 ... (10)

For a capillary compensated pad, the equation of oil flow through 

the restrictor is;
Q = K (p - p) c s

ttcL̂where K = —  
c *i28ua

Therefore, the equation of the oil flow in the system is;
2bh^ ^  dh



From equation (9)®
- 23}k a jffiL (x — x ) «» „ „ 0 (12)

V  “ u3 2dt W 2 V  X.-X.»ax- h 2 1d

the equation (10) becomes;

& e (ps " p) “ ^ ^  (X;, + X i ) “ • “  ss O 000 (13). -2 _
b dh (x_+ x.)2 SC" s

K +
000 (14)

x2"3^7

Denoting the resistance of the pad as K^, such that; 
v hh3K £g iwjujrny.u m n wimffW/iiQ O^Cx^-X^ )
The equation for the pad pressure is;

K p ,, 6p.(xD2 “ x-2)c s dh ^ 2 1 c\P gj _  „ — 0*0 (13)
IC 4* TC ^ . Vo b tA~- + 1)

Kb
Putting in the value of the pad pressure into equation (10) the 

load capacity is given by;

bp (x^ + x„ ) . ,, 6(x„2-x.2) (x^+x.)
W . - O - S g — 1- - <*b 2(x _ xj 3 + 2 _ 1 ----2_1_K, dt L 2 1 K

1 + —  (iT + 1)
C O

oo« (16)

This consists of the load carried due to the static pressure and 
due to the squeeze film effectB Therefore, the damping constant of 
the pad is; 3£j| ^

(1 + — r
[ (, . i , 3 j , . _ i _ . _ i _ j ]

.. (17)

Kd “ ilT  x25^  "2 ' 21)2 ( ^ + 1)
x2 Kb

RECTANGULAR PAD WITH TWO DIMENSIONAL FLOW
The equation of flow for a two dimensional pad shown in Fig. 12, 

can be derived in the same manner as shown above for a pad with one



dimensional flowo Therefore, the equation is;
h3 afp , h3 3^  dh ,.01*}■ “ «»» — o o o V. IO)

Bx  ̂ By*"
The solution of the equations is found by asstiraing that the

equations for flow in the x and y directions can be solved independ­
ently and applying the boundary conditions

P ~ p> X a: X1
p = X O ̂ x =: X2
P =y p? y  ;- 7,

and p ~ y O g y s; *2
6O 0 p -■̂ x

12u. 
h5 ’

dh
2dt

( 2 
(x “ (x1 -S )4 Xp)x 4 x^x2^ 4 ■u""|3? ' . (x2 - x^) (x2 - x)

(19)
and p = y

12y,
la?

dh
2dt L 2 (y1 + y2)y + ŷ y2^ p1 Cy2 “ y)

... (20)
Considering the oil flow through, a capillary restrictor as in the 

previous case, the equation of the oil flow in the system is;
3 3

Q + L_  1lt  (5E) + £_  Ifx (M.) = t v ,  i  . . .  (21)
^ 1 2 f t  y1 '5 x ; v..v. + 12ft ^ V a y '  1y1 dt uX““.n.,̂ y y jj
The expressions for 0̂ )  and (-r̂*) can be obtained from

ax ay y=y1
equations (19) and (20) as before, and therefore the equation (21)
becomes;

S y i  §  = Ko(ps -  p ) + s f - a f t  (x i  -  x2 ) "  « i l  T T ^ r i T ) !

+ S [ a T t (yi ” y2} " %  ” • (22)

The equation for pressure in the pad is therefore;



VX3.3.

The load capacity of the pad can now be calculated by assuming the 
pressure distribution as a truncated pyramid as shown in Fig. 12.

O°o W s ^x1y1p -i- 4y J* p dx 4 J p dy 4 4 j p^(y « yjdx
y1 *

?2+ 4 J PyX3* “ 3C^)^y ••• (24)
y1

y - y-j x “ x^where — — -JL ~ ----—  (25)yg - 71 x2 - ^
Integrating the above equation and simplifying;

W |p [2(x2y2 + *,*,) + (Xly2 + x ^ ) ]
0

" dt D X2 “ x1 ^ y2 + y1̂  + ^ 2  “ y1 ^ * 2  + xl 0  2̂^

Putting in the value of p from equation (23)* and denoting thp pad 
resistance as as before;

W . §ps [a(x2y2 + Xly p  + Xly2 + ^y.,]
(1 + £*) 

c

H  [(x2 - x1)5 (y2 + y*> + (y-o ~ y^)5 ^  *

4  2 (x^y2 4 y1x2)(2x2y2 + 2x^y^ 4 x^y^ 4 x^y^Xx^ - ) (y2 - y^)

+ D j y ^ y g  - y ^  + x 1(x2 - x 1)j
(27)

o the damping constant is given by the equation;



APPENDIX III

HEAT DISSIPATION IN HYDROSTATIC JOURNAL BEARINGS 
(a) OIL FLOW
The oil flow in the journal bearing is given by the equation;

K h 3
Qo = T ~  p (D

where K =i Lei
h = radial clearance - ino
p - oil viscosity at mean bearing temperature in Reyns - 

lb' sec/in^
and p « average pad pressure - psi

It is assumed that the journal is concentric in the bearing, the
observed temperature is the average of the oil film, there is no
temperature gradient along the axis and the oil viscosity is uniform
over the axial land*

Then the heat carried away by the oil is given by the equation;
H si Q At vC ... (2)o o 1

where y = iireight density of oil - lb/in^
C = specific heat of the oil - BTU/lb deg F

At^ ss oil temperature rise in the bearing
Substituting the values of K̂ ., h. v r and c in the above equation;

H 4t°P f1’8 x 'l2,57 x x .0307 x .5so - “Sir _9
At p x 10

a 1.55 — — ;------- HEU/sec ... (3)|x

BEARING HOUSING
The profile of the bearing bush in the housing is shown in Fig. 22 

The thermocouples are placed midway between the axial land and it is 
assumed that there is no temperature gradient alon'g the axial land and 
the average temperatures indicated by the thermocouples are fairly



representative of the actual temperatures□
The heat transfer through the bearing can be calculated from the

observed radial temperature difference across the bush and the steel
housing, assuming same heat flow from both the axial lands and none
from the circumferential lands»

Therefore, heat flow through the brass ring is;
IC 2riL(t - t )

hb = _ J L _  1_---1_ ... (4)
log

Similarly, the heat flow through the steel housing is given by;
XC„ 2Trl(t- - t0)

Hg « - - 5 — — _  (5)
log

where and are thermal conductivities of brass and steel respectively* 
Since the heat flow is the same, the equations (4) and (5) can be 

equated to eliminate the unknown temperature t^* Then the heat flow in
terms of the observed temperatures is given by; 

H, B
_ 2irl(t- - t^)

E1”* *p\ ♦ • ♦ (6)
2 3log log

where - At^ = the mean radial temperature difference - °F
1 - effective length of the axial lands - ft
R^ « inner radius of the bush - in

and
R^ - outer radius of the bush - in

= radius of the outer thermocouple setting - in 
Substituting the values of R^„ R^, R^9 1, Kg and K^;



APPENDIX IV

CALCULATION OF DAMPING PATIO FROM FREQUENCY RESPONSE CHARACTERISTICS 
Off THE BEARING SYSTEM

When a harmonic force is applied to a damped system, the 
amplitude ratio is given by the equation?

X 1
F 7 k  sO

/ (« w \2 . - w %2(1 - v,) + C2 § rr )2 w

(1)

wm
where F = amplitude of the forceo

K - stiffness of the equivalent spring
| ss damping ratio
w » applied angular frequency
w = resonant angular frequency
At resonance therefore,
X „n 1

FJ7K “ 21 (2)
When the frequency response characteristics are obtained for 

acceleration rather than displacement amplitudes for all frequencies, 
then any ratio of acceleration amplitudes, R at frequencies w and w^
is?

2%.» O J?R =     "      0 — V. o • « (3) - 1 — ------ --- — -  V
(1 - *-2)2 + (2 5 s )2

n n/
Squaring both sides therefore,

(1 - ~ ?)2 + (2 ? ”  )2 = (~ )ifw 2 w w t-,2n n n R
2

or (if y  (1 - + (—  )2 (4|2 - 2) + 1 = o ..i (If)
n R2 n

w 2This is a quadratic equation in (™ ) , therefore the solution is



xil

which gives two roots of (™ )^t so thatwn
( ! l ) 2  + < £ ) *  .  . . .  (5 )

, .  h £2R
From the frequency response curve, the two frequencies before and 

after the resonant frequency which give acceleration amplitude ratios, 
R, can be obtained• The value of the damping ratio, 5, can then be 
calculated from equation (,!?)•



APPENDIX V

COMPUTER PROGRAM TO DETERMINE THE EFFECT OF THE DESIGN FACTOR ON 

THE LOAD FACTOR AND THE FLOW FACTOR OF THE HYDROSTATIC JOURNAL 

BEARING

n
goal a,©,bI,©l,ea,a2 ,cl,©2 ,mlfiii2,3£J3i,plpF2 ,P3 »P4 ,ps,ap2,Xf ,££5w,u,h,q,ol£,
©££,A,hfe,hs,th,d,l,L,D,N,kp,k£,h©,q©,OA,kl
integer rm,n, XI f ii, i^ikk
B3PS&ST f<lS4, 112)
r©ad(a;m)
cycle 11=6,1,9 
©“.Ill
newlines(2); spaces<15)
captionfe$eocentgicity$ratiofee$=fej pslatC© ,1,2)
^©wlines<3); spaces(18) 
cycle n=l,l,4
f<xi,l)=7?-{-6©*((ca0<a)+sin(a))*sin<n*7r/2)+(e©s(a)«sin(a))*cos(?7*n/2))+3ea*c 

(?r/2- cos< ir* n) * sin( 2a) )+2/3* < ®+3 )* < < s im( m* ?r/2 ) * cos ( a) - co s(n* ir/Z ) *£ 
sin( a) ) * ( 5/2* 1/2* cos ( n* ir) * cos ( 2a) )+< cos < n* n/Z ) * cos < a)+s In (n* v/2 ) * © 
sin(a))*( 5/2-1/2* cos ( n* ?r) * cos ( 2a) ) )

f (n, 2 ) -< 1+©* < cos (n* ff/2) * cos ( a)+sin(n* ff/2) * sim(a) ) ) f 3
repeatmmtrnwgi mwselect ©utput(l)

$ nowlflaof spaeos(x8)
kk“l,l,15A*=kk

5§ $2=0.5
1 i P3«<A+4m*p2*£(3 ,2) )/<A+<£<3, l)+4m*£<3,2) ) ) 
p l~ (A *4 B # p 2 *f ( 1 , 2 ) ) / ( A * ( f  ( 1 1 l)+4m*&£ C l ,2 ) )  )
ap2-CAf2Hi* (pl*£( 1,2)+P3*£<3,2) ))/(A+£(2, 1)*2hi* < t (1,2)+£(3,2) ) ) 
if 1(p2«ap2)/p2l £  .005 them ->2 
p2~(p2+ap2)/2J ->T
2 8 p4=ap2; p2=ap2
lf=P3«pl; f£=<pl*£(l,l)+p2*£<2,1)+P3*£<3,l)+p4*f<4,1))
pX'imt(A,2,2) » spaces(3); pglnt(lf,1,3)f 8pac©s<4>5 pyimt(ff ,3,3) ; newline

newlines(8)j spaces(13) 
stop■CUM 11 Jim 1 ftuof program
.7854 .7960
**%z

xiii



3eiv

SPECIMEN RESULT

©o©@a!ita?i©it3r 2?©fcics> © ~ 0.60
23 If
1.00
2.00

0.454
0.530

3.00 0.5474.OO 0.5365.00 0.519
6.00 0.499
7.00 0.4798.00 0.460
9.00 0.441
10.00 0.424
11.00 0.408
12.00 0.393
13-0 0.37914.0 0.360
15.00 0.354

a.947 
4.904 
0.376
7.553
8.484
$.282
9.965
10.551
11.070
11.521
11.923
12.283
12.608
12.902
13.1^0

eooentvieity a?atio © = 0.70
25 if ££
1.00 0.566 2.898
2.00 0.631 4.898
3*oo 0.628 6.4.60
4.00 0.608 7.720
5.00 0.584 8.7776.00 0.561 9.6397.00 0.537 10,401
8.00 0.515 II.062
9.00
10.00

0.494
0.47b

II.65I
12.169

11.00 0.458 I2.632
12.00 0,442 13.048
13.00 0.426 13*436
14.00 0.412 I3.770
15.00 0.399 14.085



APPENDIX VI

COMPUTER PROGRAM TO DETERMINE THE EFFECT OF THE O IL FILM THICKNESS 

ON THE O IL FLOW, STIFFNESS AND THE TOTAL PCWER REQUIREMENT OF THE

HYDROSTATIC JOURNAL BEARING

a»®,6]L,ea9a2 ,m,p:L,p2fp3 »P4pps,&p2 »l£*££»w,u,h,q,ol£f©f£„£ 
Z9hba>ph8o9th9drl9LrDfNpkp9klpkf 9bOpqpp0Z *”
imt©ger tipllpiip jjpXXplsk
affaray £(184p1s2) 
r©ad(a,ePL,DPpspUpNpdpa2)

oy-glg. a«l»i*4f (n p 1) =ff+6©*( <e©es<&)+sin<®.) )* sAn<Jm*ff/2)+(c©s< a)-sin(a) )*c©s( ir*n/2) )+3®2*c 
(?r/2-co©('/r*n) * siia<2a> >+2/3* (&$3 >* C ( sin(n*7r/2) *c©s( a)-cos (n* ff/2)*£6£n{a))*(5/2+l/2*oQs(n*ff)*eos(2a)>+(co8(i&*ff/2)*oo0(a)-f'8ln(&*ir/2),£'o
sin< a) ) * < 5/2“l/2*©osCn*ir > *e©s(2a) ) )

£<a p 2) =( i+©* (cos<n* ff/2> *e©s( a)+ein<n# jt/2) * ain( a) > ) +3
e^ol© 11=1pi,4 
©1=11/20 
cycle ii=7plp8
©a=ii/9
wa < L/D) s * < l-»2©i )*<&!/ < a2* (l»o a> )
kl=L&B*<i~©l)*sAn<a2); k£=ir*D/(L*el); kp=<D43)*L*Or~4a2*ea*(l“-2®l))/ir
»©wXln©
□paces<l8)
caption©! 4s=415 print(©191,3) 5 n©wlin© | spaces(18) 

g p3?int(©ap 1,4) § newline; spae©s(l8) 
print(mflp4) > n®wlin©$ spaoea(l8) 

oapt&opklfrsfrln p2?iat(klPlp3) j n©wlin@$ spaces(l8> 
captionk£$s=frs print<k£ P2P3) ; n®wlin©j spaces(18) 
captionfekp&=ftg print(kp,2P3)J n©wlin@s(3>| spaces(l8)

j newlisa©
3oe=l
cycle jj»lplplO 
Z~jj
5? p2=o.5
1 ? p3=(Z+4m*p2*f<3?2))/(2t(£(3pl>+4m*f<3,2)>) 
pl-CZ+4®*P2* £( 1 p 2) ) /(Z+ ( £ (1 p i)+4m* £( 1 9 2) ) )
ap2=( Z+2Ja* ( pi* £ < 1,2)+P3* £ <3,2) ) >/< Z+f <2,1 )+2m* Cf < 112>+f (3,2 ) ) ) 
if Kp2~ap2)/p2l < *005 then »>2J p2-<p2*ap2>/2$ ->i
2 8 P4=ap2? p2=ap2
lf=P3-pl? ff=(pi*f<ipi)+p2)*‘f<2P 1)+P3*f<3P1)tp4*f<4,1)); apaces(l8) 
print<zp2P2)$ spa©es<4>j priat<X£P1P4>$ spa©©s<4>; print(£f,3,3); newline 
if xx«l.5 then “>4 
OZ=Z? o!f=lfj offstfff ->3

xv



xvi

48s?©p©&t
3C®ss2j) Z=7T? ->5
35W=^l£*B*L*(:i«©l}*p8#s±n(a2).
hosaoo362sep?tCs£*N/p © } * <©xp(o, 251og(kp* <?r+QZ)/<k£*0Z) ) ) ) g n@wlin© 
©apti@n|sw&g4g print (7,4,2); »©wlin©

i3LHa*thioknas8 în<|iiBeli©s*hopt6i=:* g print £l<ho»3>

n©wlin®s(2)
cyol© kk“lplp8 
H A *  5«-'4
q^s*(h43>*D*off/(24u*L*el) g qo^f*<S^3)*OZ*ps/(6u*(fl,+OZ))
Bfe©E5p s *q o /66oo$ hso=u*(D43)*N 2* I ^ ( 7r«4a2#©a*(X“ 2® l) ) /< 766oooh*Tr)
tfe™kb«H*IiS©
X“37?* < <£$4) *Ij*©1/(i6* (h+3 ) *D!HOZ)
print fl(hs3>g spac©s(2>» print(hsop2P3)g spaces(2)g print(qo#3,3) 
np&0§a(^)g jprint(hfoo,2»3> ? spao©s(2>| print(tfof2ff3> g Bpaces(2)g print £1(1,3) 
sp&3©8(sT? print (q , 3 P 3 > g new!in©
n©wpag©
s?

7854 .6 2.5 2.0 400 9„96a~6 2000 3.30-2 .7854



xvii

SPECIMEN RESULT

©1 ® G.iOO
©a S 0.778
m - 0,7x6
kl ~ 3.182
kf » 25.133kp “ 7-556

% If £f
1.00 0.4692 2.9352.00 0.5493 4.882
3.00 0.5578 0.356
4.00 0.5454 7.3245.00 0.5275 8.4576.00 0.5067 9.256
7.00 0.4858 9.940
8.00 0.4661 10.525
9.00 0.4471 H.044
10.00 0.4296 II.496
3. H 0.5568 6.536

W as 708.72
©ptismm film thioknoss in in©tM»© h@pt * 2.250a -=3

h ks© q© kb© po 1 <s
5,000a -4 0,786 0.011 0.001 0.787 2.224a 2 0. Oil
i.oooa »3 0.393 0.084 0.005 0.398 2.780a 1 0.087
1.500a -3 0,262 0.284 0.017 0,279 8.236a 0 0.295
2,000a -3 0.196 0,673 0,041 0.237 3.474^ 0 0.700
2,500a ~3 0.157 1.314 0.080 0.237 1.779a 0 1.367
3.000a ->3 0,131 2.271 0.138 0.269 1.029a 0 2.36a
3.500a -3 0.112 3.606 0.219 0.331 6.483a -1 3.751
4.000a -3 0.098 5.383 0.326 0.424 4* 343« -1 5.599



APPENDIX VII

COMPUTER PROGRAM TO DETERMINE THE ROTATIONAL FLE XIB ILITY  OF THE 

HYDROSTATIC JOURNAL BEARING

t,h»p3,a2»L,D,Z,C,BPM,S,BFlp®3L
integer ii„jjpkk 
r®ad(p8,a£,L,DfZ)
eyci© ii=lpl»9
©1=2,05* ii 
a©wlin®e(2) 
select mstput(i)
eaptionfcfefeelfrgft? print(ol,l,3)$ n©wli»®s(3>
newlines; (2)
cycle j j~~l,1,8
h^Jj*5a- 4cycle lsk=lpl,Q 
&==02*h*kk/L
C«(b- = 5*L*a# (i-2*©X) )42/( (to-. 5L*a)42- (to-. 5L*a* (1-2®X) ) 42)
B«( bf-. 5L* a* (1-2®1) ) ;4 2/( (kt. 5L* a) 42- (h+ . 5L* a* (l-2el> >42)
M»-((Z*pffl)/((z+ff)*a>* c*((to». 5L*a)42/(k«. 5L*&*<1»2©1} )~ (to-. 5L*a)+L*el+a)+<o

( 2* p© ) / ( C ff+Z )*a) * B* ((tot-. 5Iĵ a) 42/ ( 1m- . 5L* a* (3.- 2©1 > >- (tot. 5L* a) «L*»l*a) >*© 
(3«4®l)*I^D#siiB(a2 )/3 ""

SNM/(a*io43)
rfx» io 4 3 /s

print fl(kP3)g spaces(5>g print fl(a,3>; spac©s<5>; print<M,3 >2)) space»(4> 
print(S ,3,2)I spaee8<4)g p3?i»fc(RFl?4,2>

newline <3(3)

et©p
end of pregram

400 ,7854 2-50 2.00 3.14

xviii



SPECIMEN RESULT

©1 ~ 0,050
h a M s RFl

1,500a -3 1,200a -4 O.43 3 .47 288.37
1.500a -3 2.400a -4 0.86 3.57 280.49
1,5°°° -3 3.600a -4 1*35 3 .7 4 267,36
1.500a -3 4*S00a -4 1.93 4.02 248.98
1,500a -3 o.oooa -4 2.66 4*44 225.34

1.500a -3 7.200a -4 3.67 5.09 196.45
1.500a -3 8.400a -4 5.18 6.16 162.31
1.500a -3 9,600a -4 7.81 8.14 133.92
1.500a ~3 l.o8oa -3 13.80 12.78 78.27

3 .000a -3 1.6ooa -4 0.42 2.60 384.49S.OCQa -3 3.200a -4 0,86 2.67 373.99
3,000a -3 4.800a -4 1.35 2.81 356.48
3.000a -3 6,400a -4 1*93 3*01 33I.97
3 .000a -3 8.000a -4 2,66 3 .33 300.45
3 ,000a -3 9.600a -4 3.67 3.82 261.94
3,000a -3 1.120a -3 5.18 4,62 216.4I
3 ,000a -3 1.280a -3 7.81 6.10 I63.89
3 .000a -3 1.440a -3 13.80 9 .5 8 IO4.36

©1 « 0.100
h a M s RFl

1.500a -3 1.200a -4 1*54 12.87 77.71i.500a ~3 2.400a *4 3-17 13.19 75.81
1.500a -3 3.600a -4 4.96 13.77 72.63
1.500a -3 4.8ora -4 7.04 14.66 68,19
1.500a -3 6.000a -4 9.60 16.01 62.48
1.500a -3 7.200a -4 13.97 18.02 55.50
1.500a -3 8.400a -4 17.78 21.16 47.251.500a -3 9.600a -4 25.44 26.50 37*731.500a -3 l.o8oa -3 40.08 37.12 26.94
3,000a -3 l,6ooa -4 1.54 9.63 IO3.6I
3 .000a -3 3.200a -4 3 .17 9.89 101.08
3 .000a -3 4.800a —4 4.96 10.33 96.85
2.000a -3 6.400a -4 7.04 11.00 9O.92
2.000a «3 8.000a -4 9.60 12.00 83.31
2.000a -3 9.600a -4 12.97 13.51 74.0°2.000a -3 1.120a -3 17.78 15.87 63.00
2.000a -3 1.280a -3 25.44 I9.88 50.31
3 .000a -3 1,440a -3 40.08 27.84 35.92



APPENDIX VIII

COMPUTER PROGRAM TO DETERMINE THE DAMPING CONSTANT OF THE JOURNAL

BEARING

begin
jggal u,h,®X,ea,b,ps,a2fXi,DfBvW,KdL,efZ,Kb,Ke,d,l
integ®*1 ii . ,3 j pkk p XX 
p © ad C n t b t p s f a2 „ L , D , B, Z )
©ycl® ll“Ofi,3 
®~,1*11 
n©wlin©s<3)
oaptioftfefefeefrafr§ pff£nt(®f1,3); si®wXia©s<3>
cycle ii-ltlp4 
©X=ii/20
newlines(2) 
cycle ,jj=7 „l,8

©yele kk;=2 p±p6
tickle* 50-4
W=ps*((D* sinC ©a* a2)*(L*©1))/(1+1/< 2))-< D*L*(1“2©1)*(cos C (2-©a))-cos < a2+£

©a)))/((1+1/(Z))*2*(l“©a)*&%)) 
Kd'<i.3*w'(&#3*(̂ l))*((L*(:L*~2©X)*D2*©©s<B>*<l»©a}*a2)/(2)+<D*a2*©a*(cos(b)*£

I.* ® 1+L* (;i«2®l>})/(!)>*£©! *L) * ( D*s in(@a* a2> ©X# a2* ( 1- ©a) * 2- ( D*L* (l-2®lT* c
Ce©s(a2* (2*-©a) )-eos(&2*ea) } ) )/(2#L®*( 1-3*©!)*©!* < l“*®*c©s(B> ) +3+4*ea*D*c 
&2*a2* (l-o«oos(b) > +3* < l«©a) )-i2ia*L*D’{‘3* ( l-2®l)*oos(B) * ( <cos(a2*ea)+cos7a2*£ 
(2=>©a> ) > * <l-@a)*2a2-2* (sis(a2* (2-©a) )-sin(ea*a2) ) )/(h+3*8*( l-e*eo0(B»t3)+e[ 
(2u*D*sin(©a*a2)*cos(b)*(L*©X)sit3)/<h43* (l-o^oosCb))^)

p3?iatC®l,l,3)§ spsuses<5); p2?int(©&,lP3)} spac©s(5)j ps?int £l(b,3); spac©s<5> 
pv£&t(W,4,l) j spae©s(5)j print(Kd,5,l)

n©wlin©sC3)

ncwpag©
repeatn,i' ‘.i yrj£r>r̂fnjm.,>newpag©
stop

ps

5 #ooo« - 6 o 0oo 400 0 .7 8 5 4  2 .5 0  2 .0 0  0 .7 8 5 4  1 ,0 0

***z
3oe



xxi

SPECIMEN RESULT

© sa 0.000
©a h w K

0,050 0.778 1.000a "3 661.9 U 079.2
0,050 0.778 1.500a -3 661.9 3282.7
0,050 0,778 2.000a -3 661,9 I384.9
0,050 0,778 2.500a -3 661.9 709.1
0,050 0.778 3.000a -3 661.9 4IO.3
0,050 0.889 1,000a “ 3 667.7 7564.7
0.050 0.889 1.500a 667.7 2241.4
0,050 0.889 2.000a -3 667,7 945-6
0.050 0,889 2.500a -3 667.7 484. 1
0.050 0.889 3.000a **3 667.7 280.2

©1 ©a h w K
0.100 0,778 1.000a -3 620.2 I4809.6
0.100 0.778 1.500a -3 620.2 4388,0
0.100 0.778 2.000a *3 620.2 1851.2
0,100 0.778 2.500a -3 620,2 947.8
0.100 0,778 3.000a ~3 620.2 548.5
0,100 0.889 1,000a “ 3 629.2 9636.2
0,100 0.889 1.500a -3 629.2 2855.2
0,100 0.889 2.000a -3 629.2 1204.5
0,100 0.889 2,500a -3 629.2 616.7
o.ido 0.889 3.000a ” 3 629.2 356.9

©1 ©a h V/ K
0,150 0.778 1,000a -3 578*5 16860.2
0.150 0.778 1,500a -3 578,5 4995.60.150 0.778 2.000a “ 3 578.5 3107.5
0.150 0.778 2.500a «3 57S.5 I079.1
0.150 0.778 3.000a -3 578.5 624.5
0.150 0.889 1.000a -3 590.8 I0981.2
0,150 0,889 1.500a -3 590.8 3253*70.150 0.889 2.000a -3 59° *8 1372.70,150 0.889 2.500a -3 590.8 702.8
0.150 0.889 3.000a »3 590.8 406.7



APPENDIX IX

COMPUTER PROGRAM TO DETERMINE THE STEADY LDAP DEFLECTION OF THE 
SPINDLE IN A HYDROSTATIC BEARING SYSTEM

dimensions, cuts, n, runs, f 
ts)i read(dimensions)g read(cuts) $ read(runs)

nssC©i©aB©nts« ctit s) * dimensions
4008 beg inI <w,Ti«wffcS**gap>r i,3,k,h
?ray H,X,Y,Z<l8elements,l8©l©ments)

F< X 812,18 elements) 
i«l, 1 ,elements 

®Xgl® ,1“1 r i p 12
r©adCF<jpi)> » F(j,i)=F<j,i)*la-9

read(Y(l,i)); read(Z(l,i)) 
 13=2,1, elements 
©^oi@ j~i, X,elements
k»i«l
X<i,j)~X(k,j)«X<k,1)? Y(i,j)=Y(k,j)-Y(k,i> J Z(i,j)=Z<k,J)-Z(k,i)

begin 
real. N 
integer R,r

i~i, 1 v elements
I if N > loo then ->7

Rs=int(m©d(N) )+i- 1 j - >8
7 s R~Xnt(N>-100+i-1
8 s r~ig ->5
38 3?~R+1
reftd<N) ? if N>loo then ->9 
RsR*int(iood(N)) t ~>5
98 R~R[-int<N)-l00 
5s e>yais j-r,l,R
if N<0 then ~>2J if N>100 then ->6
H(i?tj)~l j ->>4 
28 H(iy<j)=K3J-5>4 
6s
48 repeat* wwiBTmwwjtJif R<elements then ->3

real dot
integer P»<lp6»b,cpe,d
array &Clsn)

xx ii



xxiii

if cutano then ->>50
aapffay imrpF 9 ¥<l8cuts*dim©nsi©nsBi8ewts*di3tt©nsions) 
as?a?ay f 9 9 v< i m Plscnts*dimension6)
*mil<F99}
ojolg- q-i P 1, elements 
eyeI© p»i,ipouta 
eyele gaspp 1, cnts
b>«eieiiients«outsfp; ©=eXem®nts-©uts+g ? ->,100 males a g=p
if H(q,b)aO then ->110? ->115
1008 if H(qP©)«0 car H(qPb)=0 then ->lfo
1158 i®6*g-5»i#6*g
e^el® j^*p-5 , 1, i+(g-p)*(6-i)
if
if

l=6g-
lss6g-

->1? if i=6g-4 then »>2? 
->4? if i=6g-l then ->5?

if i=6g-3 then ->3 
~>6

18if j~-6p-5 then ->7? if j=6p-4 then ~>8? if j=6p~3 then ->9 
if j»-6p«l then ->lo? if j=6p then «>11? “>31

if j==6p~5 then ->13? if j='op-'4 then ->13? if j=6p-3 then ->14
then ->16? “>31if j«6p-2 then ->15? if j-6p w«g« »^x v , - 

3 s if j=6p-5 then ->17? if j=6p-4 then ->18 
if j==<3p-2 then ->20? if j=l>p-l then ->21? »

if j==6p-3 then ->19
~ - — x »>»<*» — *'piGJ.P ->31

45 if ji=6p°4 then ->22? if j=6p-3 then ->23? if j=6p-2 then ->24; ->31 
5gif j-6p~5 then ->25? if j=6p-3 then ->26; if j=6p-l then ->27? ->31
6 s if j~6p*5 then ->28? if j=6p-4 then ->29? if ,j=6p then ->30; ->31
78 F 9'tl9j)-F99<ipj)+(F<lPq)+F<2 ,q)*Z(qpS)~F(3 Pq)*Y(qPc>+(F<2 pq>+F<llPq)*c

Z<qpc>) f‘2<q,b>-(F(3 ,q)-F<i3 lq)*Y(qI)e)>*Y<q,b))*H<q,c)*H(q,b) ? ->32 
8s F f 9(i, j)*=F9 9<i, j>+<-F<6Pq)*Y<qPo)+<F(3 Pq)~F<12pq)*Y<qPo))*X<qpb))*H<qpc)*c

H(q,b)? ->32
9s F 9,a,j)=F,’(i,j)+<F<9i,q}*Z<q?c>-(F<2,q}+F(ll,q)*Z<q,c)>*X<q,b>)*H(q,c)*o 

H(q,b>? ->32
10SF9 ’<i,j)=F9 9<iPj)+<F(3 pq}+F<llpq}*Z<qP©)>*H(qpG)*H(qpb>?->32 
ll8F'"(iPj}=F9 #<i,j)+<F<3 ,q)»Fa2 Jq)*Y<q,c>»*H<q,,c)*H<qfb)?->32  
128F9 9Cit j)~F* 9<iP j>+<F<3 Pq)*X(qPc M F < 6 ,qHF<12Pq>*X<qP©)>*Y<qpb>)*H<qpc)*c 

H(qPb>? ->32
<ip j>=F9 ’<ip j)+<F<4 Pq)-F(5Pq>*Z(qpc)+F<6 pq)*X<qpc)-(F<5 Pq)-F<lO,q)*c

Z(qpc))*Z<qPb)+<F<6 pq)+F<12Pq>*X(qpe))*X<qPb))*H<qPc)*H<qPb)? ->32 
(iPt1)”F9 9(iPo)+(-F<8 pq)*Z<qpc)+(F<5Pq)-F(10pq>*Z(qpc))*Y<qpb))*H<qpc)*£ 

H(qPb)?->32
<ipj)~F9 9(iP j)+<F(5Pq)-F<10pq)*Z(qpc))*H(q,c)*H(q,b)s~>32 
(i,3)=F99(ip j)+<F<6 Pq)+F<12Pq)*X<qpc))*H<q,c)*H<qPb)?->32  
<iP j)=F9 9<i, j)-».<~F<2,q>*X(qPc)+(F(9Pq)-F(llpq)*X<qpc))*Z<qPb)>*H<qPc)*c 

H(qPb)?->32
(ipj)=F9 9(ipj>+<F<5Pq)*Y<qPc)»<F<8 ,q)+F<10Pq)*Y(qPc))*Z<q,b))*H<q,c)*c 

H<qPb)? ->32
(i,j)=F9 9(i,j)+(F<7 Pq)+F<8 pq)*Y(qpc)-F(9 Pq)*X(qPe)+(F<8 #q)+F<10pq)*e

Y<qfc>>*Y<qPb)-<F<9Pq)-F<llPq)*X<q,o>)*X<qPb))*H<qPc)*H<qPb); ->32 
(i,j)~F9 9(iP5)+(F(8 ,q)+F<lO,q)*Y(q,e))*H(qpe)*H(qPb) ? ->32 
(i,j>=F9’<i,j)+<F<9,q)-F<llpq)*X<qPc>)*H<qPc>*H<qpb>? ->32 
(i,j)-F9 9<i, j)+(F(5Pq)“F(lopq)*Z(qpb))*H(qpc)*H(qPb)? ->32 
<i, j>=F"<i, j)+(F(8pq)+F<10Pq>*Y<qpb)>*H<qPc)*H<qfb)j ->32 
(i»j)-F9’<iPj)+F<l0Pq)*H<qP©)*H(qpfo)? ->33 
(i,j)=Ft9(i,j)+(F<2,q>+F(llPq>*Z<q,b>)*H(qpc)*H<qPb>? ->32 
<i,j)=F9’<i,j>+<F<9,q>-F(ll,q>*X<q,b)>*H<qpc)*H<qpb)? ->32 
<ipj)~F9 9(iPj)+F(llPq)*H(qpc)*H(qpb)? ->33 
<i,j)=F99<i,j)+(F(3 Pq)«F<12,q)*Y(qpb))*H(qpo)*H<qpb)? ->32 
Ci, j)~F9 ’Cip 3)+(F<6 ,q)+F(l2 pq)*X(qpb))*H<qpc)*H<qpb)? ->32 
<i,ti)”F9 9(ipj)+F(12,q)*H(q,e)*H<q,b) ? ->32

138 F 9 
I48 F 9
15S F 9 
l6 s F 9 
178 F 9
l8s F 9
I98 F 9
20
21
22
23
24
25
26
2728
29
30

F 9
F 9
F 9
F 9
F 9 
F 9 
F 9
F 9
F 9
F 9j?*9



xxiv

31 § F ,vCi,j)=o 
32aF,,{,jpi)«Fv,Cii,13)

o&mi&nt BtFB is inpnt

begin
oygl.® i”i 91 f outs* dissensions 
cjrgl© Js,i 91 p ©tat s* dimensions 
pj?int flCF” 9Cij,j)p3)» sp&©©®(2) 
repeat

iav©a*tCiwpF®9 Pd@t) 
aewlines<2} 
print fl(d©tP3> 
n®wlin©s<j2)

nail (F *9 9)
oy®3.a q-i , 1 9 ©leaients-eiuts 
eycl© p-lpip©at3
fe-elment s- ou t s+p
if H(qPg)=so chp H(q,b)~0 then ->200 

<»£cl© ;i»6*p-5,ip6*p

if i=s6g-5 than ->41? jLf i=6g-4 then ->42? if i=6g-3 then ->43
if i=a6g-a then ->44? if i=6g-l then ->455 =>> 46
41sif j-5p^5 then ->71; if js=6p«4 then ->8lj if j=6p-3 then ->91 
if j=s6p-i then ->101; if j-6pthen »>±li$ ->311
4^8 M  J^^P-S then ->121; if 3̂ 5*** 4 then if j=6p-3 then ->141
if j~6p«2 then ->151; if j-6p then «>l6i 
->311
43“ if j“6p»5 then ->171; if j-=6p«4 then ->l8l| if j=6p-3 then ->191
if ;j*“6p-2 then ->201; if j=6p-l then ->211$ ->311
44s i£ d“^P“4 then ->221$ if j=6p»3 then ->231? if j=6p-2 then ->241; ->311 
45?if j“6p-5 then ->251$ if then ->2615 if j=6p-l then ->271; ->311
46 8 if jss6p-5 then ->2811 If j=6p-4 then ->291 i if j=6p then ->3015 ->311

7is F"  ’a, j)«F9 * °<i,j)+<F<l,qHF(2»q)*Z(qpg)~FC3 ,q)*Y<q,g)+<F(2,q)+F<ll,q)*& 
Z(q,g))*Z<q,b)-<F<3 ,q)-F<i2 ,q)#Y<qug))«'Y<qI,b)>*H<q,b) $->321 

8ls F n *(ip j)^'T '(1, j)+(~F(6,q)*YCqug)+(F(3pq)~F<i2,q)*Y<q,g))*X(q,b»*o
H<q,fo) ?->321

91S F5 9 '(i,3)«sF' *'C&fdH<F<9 ,q)*Z(q,g)~(F(2 „q)+F(ll,q)*Z(q,g))*X<q,b))*£
HCqPb)g->321

loisF 99 ’<1,j)=F9 9 B(iJ,(j>-KF(2pq)-i-F<ilfq>*zCq!,g})*H(qab) $->321
1118F*9 v(iJJ>=*F,” <iP j)*CF<3 Pq}-Fa3 *q)*YCq9g))*H(q,b)?->321
121SF9 9 9(iPj)~F9 9 9 CiI, j)+(FC3 ,q)*X(q,g)<‘>(F(6 ,q)+F(12,q)*X(q»g))*Y(qfb))*e

M(qPlb} ?~>32i



XXV

1318F9’ 9a,j>=F99V 
Z <q

1418 F 8 9 T(ip j)=sF’ 
H(q

1518F*9 Hi, j>=F99 
i6isF9 9 9<£Clj)=F9 9
I7iSF9,,Cirj)=F,f

H<q
iSisF9 tsCi,a)=sF*9

1918F99 9 
2018F°99
2118F9 99 
2218F9 9 9
23IBF9 91
241SF9 99 
251IF9 99 
261SF9 T 9 
271!F99 9 
28iSF9 9 9 
29ISF9 9 9 
301SF9 9 9
311SF9 9 9 
321s repeat 
repeat 
2008 repeat

i , j ) = F 99 
Y(q

£ , j ) « F 9 9

i,J)=F" 
d)“F 99 

i J ) = F "  
i , j ) - F "  
i , j ) = F "  
£,j>=F9 9 
£ , j ) = F 9 9 
i,j ) = F 9 9 
i ,  j ) = F "  
i>  j ) - F 9 9 
i,j)=0

<£,d>+(F<4 ,q)-.F(5,q)*Z<qpg>+F<6 ,q>*X<q,g)-<F<5,q>-F<lO,q)*c 
g>)*Z<qpfe)+<F<6 Pq)+F<12,q)*X(q,g)>*X<q,b))*H<qrb) $->321 
f<i„ j)+<-F(8 >q)*Z<q,g)+<F(5,q)-F(lO,q)*Z(q#g))*Y(qib))*e
fe)j->321
<i,j)+<F<5fq)-F<lo,q)*z<qPg»*H<qtb)|->32l 
<i,j)+(F<6 pq>+F<22»q)*X<q,g))*H<qfb) $->321
<£, j)+ ( -F (2 ,q )* X < q ,g )+ (F (9 f q ) - F ( i i , q ) * X ( q ,g ) ) * Z ( q #b ) ) * c
to)$->321
< i,  j)+ < F < 5 fq )*Y < q ,g )-(F < 8 ,q )+ F < lO ,q )*Y <q ,g>> *Z < q fb ) ) * c

b) ;->321
< i,  j)+(F<7 ,q)+F<8 pq)*Y(q»g)-F<9 ,q)*X<q>g)+(F(8 ,q)+F(10,q)*o 
g»*Y(q»b)-.(F(9,q)-F(lIpq)*X(qtg))*X(q,b))*H<q,b>;->321 
(i,j)+(F(8,q)+F(10, q) * Y(q f g} > * H(q, b) $->321

<i, j)+<F<9,q>-F<il,q)*X<q,g))*H<q,b>;->32i 
<i,j>+(F<5,q>-F<i0Pq)*Z<qPb))*H<q,b);-> 3 2 1  
(iPd)+(F(8 fq)+F(10pq)*Y(qpfe>)*H<q,b) $->321
< i, j)+F( 10, q> *H(q, fo) }->321 
<i,d)+<F<2 pq>+F(llpq>*Z<qpb»*H(qpb)$->321  
<i,j)+(F<9Pq)-F<llpq)*X<qpb»*H<q,b) $->321
< i,3)+F(11,q> *H<q,b)$->321 
<i,d)+<F<3 ,q)-F(l2 Pq>*Y<q,b))*H<qpb);-> 3 2 1  
( i»j)+(F(6,q)+F< 121q)*X(q, b)) *H(q,b) $->321 
(i>d)+F(12pq>*H(qfb>$->321

comment Bot F B is input
50s read(e) 
cycle f~lpl„® 
r®ad(d) 
cycle i=lplpn 
a(i)=0
>>51 if cuts=0 

1=1,l,n
p=l,1,dimensions*cuts 

rci© q=l,1,dimensions*cuts 
a<i>Ra<i)-F 9 9 9(i,q)*inv(qpp)*F9 9 9 <d,p)
repeat
51scycle q=l,l, eleraents-cuts 
cycle p=q,1, elements-cuts 
g=£ntpt<(d+dimensions-1)/dimensions) 
if H(q,p)=oor H(q,g)=0 then ->330 
cycle d=6p-5,l»6p 
->510 if fracpt((d-l)/6)<0,001 
“>52 if fracpt((d-2)/6)<0.001 
->53 if fracpt((d-3>/6)<0.001
-»>54 if fracpt( ( d-4) /6) <0.001
->55 if fracpt((d-5>/6)<o.ooi
-.>56



510g if then->72? if j=6p~4 then ->82? if j«6p-3 then ->92
if j’-Sp-i then ->102? if j==6p then ->112? ->312
52s if j-6p-5 then ->122? if jss6p-4 then ->132? if j=6p-3 then ->142
if j«6p«2 then ->152? if j=6p then ->162— HBfflBuuai v ' WTWii»> nrmpnv'mw.'iiu->312

53s if j“6p-5 then ->172? if j«6p»4 then ->182? if j=6p-3 then ->192
if js=6p-2 then ->202? if j“6p-l then ->212? ->312
54s if j=6p-4 then ->222? if j~6p-3 then ->232? if j=6p~2 then ->242
->312
55* if J:s6p-5 then ->252? if j^p-3 then ->262? if j-6p-i then ->272
->312
561±£ j-6p-5 then ->282? if j~6p~4 then ->292? if j~6p then ->302
->312

72S&U)a&(j)+F<l,q)-t>F<2 pq)*Z(q,g)-F(3 »q)*Y(q,g)+<F<2 lq)+F(ll,q)*Z<q,g))*o 
Z<q,p)-(F<3,q)-FCl2,q)*Y<q,B>)*Y<q,p) ?->322

8 2Sft{j)s&<j)-F(6 9q)*Y(q,g)+(FC3 ,q)-F(12,q)*Y(q»g))*X<q,p) ?->322 
9 2saCj)^Cj>+F(9 Pq)*Z(qPg> -<F(2,q>4-F<li,q)*Z<qpg)> *X(q,p) ?->322

l02Sa(j>-aCj>+ F<2 ,q)+ F<li,q)*Z(qpg) ?->322 
ll2Sa<j}~a<j)+ F(3 Pq>» F(12,q)*Y<qPg) ?»>322
1223aU)»&<j)+<F<3Pq)*X(q,g)-<F<6»q)+F(12»q)*X(q,g»*Y<q,p))?->322
132S&Cj)-a£j)+ F<4Pq)-F(5,q)*Z<qPg)+F<6pq>*xCqpg) -<F<5,q)-F(l0 ,q)*Z<q,g))*c 

Z<qsp)+(F<6 ,q>+F<i2 ,q)*X(q,g»*X<qPp>?->322 l4 2sa<d)»a<j)-F(.8 »q)>f‘ZCq,g)+(F<5fq)->F(loPq>*Z(q9g))*Y(q9p) ?->322 
1522aCj)=aCj)+ F(5 ,q)-F(10,q)*Z(qpg) ?«>322 
i6 2S!eCj>=a(j)+ F(6,q)+F(12Pq>;f*X(q,g) ?->322
172saCj>-a< J)- F<2,q),»tX(q,g)+<F<9lq>-F(llpq)*X<q,g>>*Z<q,p) ?->322 
l82saU)«&( j)+ F<5 ,q)*Y<qs,g>~<F(8 Pq)+F<ClOpq}*Y(qt,g)>*Z(q,p) ?->322 
I92'sa( j)^a( j)+F{7,q)+F(8pq)*Y(q,g)»F<9fq>*X(q,g)+(F(8,q)+F(iO,q)*Y(q,g))*c

Y<qpp)-<F<9Pq>-F<ll,q)*X<qPg>)*X(qPp>?->322 
202s&(j)^<tj)+F(8 ,q)+F(l0 Pq)*Y<qpg)?->322  
212?aCj)=a(,j)+F<9,q)-F(ll,q)*X(q,g)?->322 
222sa<j)=a(j)+F(5 ?q)-F(10,q)*Z(q,p)?->322  
232 s a< j)«r<j)+F(8,q)+F<10,q)*Y(q,p)?->322 
242sa( j)s=a( j)-fF(10,q> ?->322 
2528&(<j)~a<j)+F<2 pq)+F<llPq)*Z(qpp>?->322 
262 s &(J)-e(j)+F<9fq)-F(11,q)*X(q,p)*->322 
2722aCj)=&<d)+F(ll,q)?->322 
282S&(.j)-a(j)+F(3 ,q)-F<12,q)*Y(q,p)?->322  
292s &(j)-a< jHF<6 ,q)+F(12,q)*X(q,p) ?->322 
302 sa( j)*=a( jHF(12,q) ?->322 
312sa( j>==a<U)+o 
322s repeat
3308repeat 
repeat
comment inpt is Bot F Bo - Bot F B * inv * < Bot F B )tW.r<«’TCV"*3C«3j*ir7»eye I© 1=1 p19elements~cute 
cycle js=6i~5fl,6i«3
print flCaCj),3)? space
repeat
sp&ee®<2)



xxvii

if £recpt(1/3)<0.001 then new!in©

>>400 if 2ma©>0

14 6 i i
0 0 0  4000 o 0 8000 o 0 100000 160000 320000 
0 0 0
21.2 0 o 166.2 o -84.9 166.2 o 84.9 106.1 84.9 84.9
-2.0 0 O

67.8 O O 3639.1 O -867.4 3639.1 0 867.4 361.4 289.1 289.1
-8.0 o o

’1^0.80 0 O 2.00 O -0.10 2.00 O 0.10 0.60 O.4O O.4O
-8 o 5 o 0
39.6 o 0 787.6 o -295.2 787.6 0 295.2 210.8 168,7 168.7
-12.0 O O
75.2 o 0 1608.9 O -1065.7 1608,9 0 1065.7 1333.1 1065.7 1065.7
-14.0 0 0
21.2 O O 166.2 o 84.9 166,2 o -84.9 106.1 84.9 84.9
2.00 O O
62.2 o o 2827.9 o 728.8 2827.9 o -728.8 331.3 265.0 265,0
7.50 o o
42.4 O O 1011.5 O 339-5 1011,5 0 * -339.5 212.2 169.8 169.8
11.5 o 0
62.2 o o 2827.9 o 728.8 2827.9 0 -728.8 331.3 265.0 265*0
17.0 0 o
21.2 0 o 166.2 o 84.9 166.2 o -84.9 106.1 84,9 84.9
19.0 0 o
21.2 O 0 166,2 O 84.9 166,2 o -84.9 106.1 84.9 84.9
21.0 0 O
33.9 O 0 518.5 o 216.8 518.5 o -216.8 180.7 144.6 144.6
24.0 0 o

1 ’I
0 0 0  4000 0 0 8000 0 o 100000 160000 320000
19.0 0 o



xxviii

14 5 -8 4 - 8  3 - 8  2 -8 l -8 8 7 6 5 4 2 - 1  l - l  1

3 
3* 
32
33

SPECIMEN RESULTgrmw»*« mm <— ,i tiw fiiw<wtiw»
Do 000^99 OoOOOa-99 O*OO0h?-99 2.120o? -2 OoOOOo?“ 99 0»000q?-99
8.90Cbf -2 0 0 OOOof—99 0„000a»99 8,980b? -2 o*oooa-99 0.000a-99
1029^a **1 0,>00Q»-99 0.000a-99 2 0 046® —I O.OOOa-99 O.OOOa~99
0.000®~99 OoOOOa-99 O.OOOa-99 0„ OOOa-99 O.OOOa?~99 0,000^-99
o.ooc®-99 OaOOOft?«99 0,000®-99 O.OOOa-99 0,000®»99 0.0Q0®-99
OoOOOor-99 OaOOOQf“ 99 0.000&-99 O.OOOhr-99 0.000®-99 0.000a-99
0„000a~99 O.OOOa-99 O.OOOcy-99

0.000®-99 3.^73ar 0 OoOOOcy-99 0.000a~99 1.331a? 1 O.OOOa-99
0o000®-99 5A ? 2cx 1 O.OOCbf-99 0.000®-99 5 .8? ^ 1 O.OOOa-99
0„000&-99 8 #82^0' 1 0.00Qy-99 OoOOOcr-99 1.072a? 2 O.OOOqt-99
O0OOOa-99 -3.9910? 0 0.000®-99 OoOOOo?“ 99 -1 *333a? •1 0.0002-99
OcOOOaf»99 -1 *2380? 1 0.000a?-99 O.OOC&-99 -4*990a 0 O.OOQcy-99
OeOOOof-99 -1.V73a? 0 0.00Cbr-99 O.OOOaf-99 2#o46q? 0 O.OOOcv-99
OeOOCb'“99 7.32*ta 0 O.OOOa-99

0,0002-99 O.OOOa-99 6*9^7o? 0 0.000a-99 0#000a-99 1.730a 1
0.000®~99 O.OOOa-99 6,028a 1 o.ooca-99 o.oooa-99 6.443a? 1
0aOOOa-99 0.000®~99 9#^83o? 1 0.000a-99 0 * OOOa—99 1.1^3a 2
OoOOOa-99 O.OOOa-99 -1.038a 0 O.OOOa-99 o.ooo®~99 -1.181® 1
O.OOOa-99 0.000a?-99 -1.190* 1 O.OOCh?~99 0.00C&-99 -3.943a? 0
0aOOOa-99 O.OOOa-99 -2.9^7a 0 o.OGOa-99 0«,000tf“99 3.167a -2
O.OOOa-99 O.OOOa-99 ^•3^9a 0



APPENDIX X

COMPUTER PROGRAM TO DETERMINE THE DYNAMIC RESPONSE OF THE HYDROSTATIC 
BEARING SYSTEM- WITH DAMPING    t*nwm>mmw»»«iw

to®g£neŝKxdSla*-!* mu*
integer elements, dissensions,, ©utsp n„ runs, £„ R, B,l,j,k,fo,t,p,q,e,aa,c
feb, c©, ss , time s, u 
real ©'
read (©laments, cuts, B, R) 
a«<©leme&ts-euts) *3; dimensions^
array A<l!2n,i82n) ,X,Y(lsRf I, l82*elements) ,l(i82*elenients,l82) 
m a y  A ,(l$2*©lements,l82*el©m9nts)
routine spec solve eigenvalue pyofel©m(arrayname A,X,X,Y, integer n,c

real C
array &(im,im)pm(l8n)
astray H,X,YpZ(l8©l©ments,i5©l©ments>
array F(l8l2 ,l8eXements) 
cycle 1=1,1„elementsmriwmana»n» weycl© jsslpljia
r©ad(F(j,i>>? F(jri)=F(^,i>*la-9
repeat
read(x(l,i))% r©ad<Y(ipi)>? read(Z(i,i))
regeat
if elements^! then ->1
cycle &=2pl,©l©ment8 
k=£«i
cycle j^i,l,©l©m©nts
X<£7 J)MX(kPj)~X(k,i>? Y<i,j}=Y(kp<j>~Y(fc,£}? Z(i, j)=Z(k, j)-Z(k, i)

18begin 
real N 
integer R,r 
null(H)"
cycle i=l,1,elements 
read(N) t ii N > 100 then ->7 
R~int(rood(N) )+i-l j ~>8 
78 R-int(N)-100+ i™1
8s r=£g ->5 
38 r=R+l
r©ad(N)5 if N>100 then ->9 
R-R+int(mod(N)) J ->5 
98 R=R+int(N)-1 0 0  
5 * cycle j=r,l,R

X X  i x



SODS

if N<o then ->25 if N>ioo then ->6CT3M»SW*a*WP cwwrn MottQKfcl.'tt&Yv*HCi,J>«l j ~>4 
as HCi,j)»o?«>4
6s
4 sif R<@I©sa©:at® then =>>3mjsmvls ûwuawnu
©&4

-ppqipgjb̂ jejdjaija.
if mta-~0 then ->>5®
a2ggny_ inv p F s 0 (1 s ©nt s* dim©nsi@nss f 1s ©ats*dissensions)

F°9 'Clŝ npiseutsefiiffliension®)
ACis6)„ cCis3>, dHosS), 0(0:35)

  Laies-l»i, a
nail <F9’9)
aa^o» fefo=0» oe-1
if tiat&s-i t p m i  sta^lf if fc&snesag then bb^l; if tisn©sss2 then cc=-l 
c^©5,® ©2-1 p i p ®2®sa®nts«hlj*©uts 
cycle p~l, i, cat e
bwal®m®nt&-©nt»fp j ->47 if H(qffo}-0
cycle »i»bb#elementg+©tats*e©
haintC Cg"p)/Cg“p+0 . i) ) j ©Bag4.(ei©sB©nts-ouf s)*aa
if H(fljp©)=o th©n -> 110v  ̂ CMWEKWwaw
®ZSi®, i=os~5-i.oed-i~6g+6
©yol® sj=6p«5, i P 6p* ( h* aa-fbb}* i*an.«* ( i-h)

f=*5“6p+-5i «>D<f); A(a)s f®j“*6p-i*lij »>D(f); AC3) s f=g-6p+17; «>D(f>
AC4) s f»sj“6|H-a3 s ->D<f)} a<5>8 fs=g~6p+29§ -^iKf)? A(6): f=j-6p+35; ~>D(f)
D(o) s F ? ’ T(i, j)"Fc 9 Hi * 'j)+(F(lpq)-t‘F(2 ,q)*ZCq»o)-F(3 p<il)’i,Y(q»c)+(F(2fq)+F(ll>q)*G 

ZCq,©))«Z(q,b>«(F(3»q)-F(12,q)*Y(qpC))*Y(q,b))*H<q,c)*H(q,b>
<•>>32

BCD s F' * Hi, j)«F* * Hi,d)+<-FC6fq)*YCq,o)+CF(3»<i)-F<l2,q)*Y(q,c))*X<q,b))*o 
H(q,o)*H<q,b)$ ->32

D(3) s Fv 9 ’Cij^ssF’ 9 HI, j)4’(FC9,q)*Z(q,c)-(F(2l,q)+F(ll,q)*Z(qpo))*XCq,b))*c 
H(q,c)*HCq,b); -=>3 a

DC4) S F s 0 9<i, j)^F»f Hip j)+CF(2 ,q>+F<ll,q)*2;(q,o))*H<q,e)*H<q,b)$ ->32

DC5>S F M Hi, j ) ^ "  Hi,j>+(FC3,<&)-FCl2»q)*YCq,c))*H(q,c)*H(q,b) J ->32
DC 6) § F° 9 Hi, j}~F'9 °Cip j)+CF<3pq)^X(qp©)™CFC6,q>+FCl2pq)*X<qp©))*YCq,b))*c 

H(q,e)*H(q,b)$ ->32
B(7> s P" Hip j^F* ' Hip j)-fCFC4Pq)«FC5pq)*ZCqp©)4-F(6,q)*X<qsc)-(F(5,q)-FClO,q)^c 

Z(qp©))*Z(q,b)+<F(6 ,q)+FCi2 ,q)#X<q,©))*X(q,b))*H(q,©)*H(q,b)
->32

DCS) s Fv 5 ’Cip,j)?*F0 ? H  i s j)+ C»F(8 ,q) *z(q,©)+(F(5,q)“F(109q)*Z(q,c)>*Y(q,b))*e_ 
H<q,©)*H(q,b)j »>32

D(9)s F* 9Hi, j)«F’ 'Hl,j)4HF<5,q)-FUo,q)*Z<q,o))*H<q,e)*H<q,h); ->32
DC 11) S F ? v Hip j)**F* "CDd>*t*(F<6 ,q)+F<12,q)*X<q,©))*H(q,©)*H<q,b)j „>3a
DC 12) S F 9 ’ Hip j)=Fs 9 Hip j>+C-F(2,q)H*XCqpO)+CFC9,q)-FCll,q)*XCq,©))*ZCq,b))*© 

H(q,o)*HCq,b)$ «>32
D<13)s f 9"Hipj)“F T? Hipd)+CF<5,q)*YCq,©)-(F(8,q)+F<10(q)*Y<q,e)>*zCq,b))*©

,e)*H<q,b) j ->32



DC14)SF 

DC 15)

' v Hip j)=FB 5 Hi, j)+(F<7Pq)+F<8Pq)*Y(qpc)~F(9,q>*X<qPo)+<F<8,q)+F<10,q>*c 
YCqpc)>*Y<qpfe)~(FC9 Pq)~F(iipq)*X(q,c))*X<q,b))*H<q,c>*H(q,b> 
->32

<i,<j)+(F(8 ,q)+F(iOPq)*Y<q,c))*H<qpc)*H<q,b); ->33
(ip d)+<F(9 ,q)-F(ll »q)*X(q,o) )*H(q» c)*H(q,b); ->32 (i,d)+(F<5 ,q)-F(10pq)*z<qpb))*H<q,o)*H<qpb); ->32
<i, j>+<F<8,q>+Faopq)*YCqPb))*H<q,e)*H<q,b)j ->32
<i,d)+F<10,q)*H<qpc)*H<q,fe)$ ->32
(i,j)+<F<3Pq)+F(ll,q)*Z(q,b))*H<q,c>*H<q,b)} ->32
(itj)+<F<9,q)-F<iipq)*X(qpb))*H<q,c)*H(qpb); ->32
< i,j)+F<11,q)*H(q P c)*H(q,b)? ->32 
<i,j)+<F<3 Pq}-F<12,q)*Y(qPfe})*H(q,c)*H(q,b); ->32
(i, j)+(F(6 ,q)+F(12,q)*X(qlffe))*H(q,a)*H(q,b); ->32
<ifj)+F(i2 pq)*HCqpo)*H(qpfe) $ ->32
->D(3); d(i8)j »>d(3)j d<32)s ~>d<3>; D(23)s ->D(3>

F’9 H i pj)=F1 *
F 01 '(ifj)^"F®1Hi,J)=Fv #

D<20)g F* v Hi, j)=F”
D(21>8 F” ’ Hi, j)=F* ’
DC24)8 F*9Hi,j)=F*9
D<26) 8 Fv * Hi, j)=F*v
D(28) 8 F ? ' Hi, J>=Ft ’
D<30) 8 F* ' Hi, j)=F* '
D(3i> s F’ ’ Hi, j)-F”
0(35)8 F M H i J ) bF m  
D(1 0 )8 ->D(3)$ D<17>
D(25>S »>D(3)J D<27)S ->D<3>$ D(29)8»>D<3)J D<3'2) 8 ->D(3>J D<33> 8 ->D<3) 
D<34> 8 ->D<3>
D(3)g Ftf Hi, j)=0

32?repeatWhWMMWM
ilos^i 
478repeatI' DMHUKmpamirepeat
•=>50 if times=2 
oyole i=l,l,6*cutsi.1.1 JUmcycle j=i,l,i 
F° Hi, J)”F f T Hi, j) J F ,,(d,i)ê "Hifd)i repeat

i=l,1,6*cuts 
cycle j=ip1,6*cuts 
print flCF1 Hi,d) ,3) J spaces<2)

invest(inv,F ' *,det); newlin©s<3) 
print fl(det,3)8 newlines(2)
~>2
508null(a)
■">51if cuts=o 
cycle i“lpl,n 
P“i+3*(intpt(i/3.ool)) 
cycle 3=1,1,! 
q~J+3*(intpt(j/3.ool)) 
cycle 1=1,1,Scouts 
cycle e=l,l,6*cuts
a(i?j)=a(i,j)-F’ ’ HPf*)*inv(e,l)*F' ’ Hq,l)
2?

28repeat
51scycle q=l,1,elements-outs 
cycle p~q,I,elements-cuts
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If H(q,p)»o then ->331
g=p,1pelement®»©uts

  lpg)«o then “>330
m=£nt( ( g-p) /( g-p+o. 1) )
QJgga® 5L«6g-5>l»6g-3

•5*(intpt(l/3.001)) > $ c=l~6*g+6 
cycl© ®iz6p~§t X,m*(6p«l«3)+X 
j =int ( ®- 1. 5* ( intpt ( ®/3♦001) ) )

c(i>8 f=©-6*p+55 c(2)s f=@~6*p+8? ->d '(£)» 0(3)* f=e-6*p+iij ->d ’(f)
D*(0) 8 a(ifl3)=a(:!Lp,j)+F<ipq)+F<2pq)*Z<qpg)-F<3Pq>*Y(qpg)+(F<2pq>+F<llpq)*Z(q(g)>*© 

Z<qpp)-(F<3Pq)-F<:L8pq)*Y«:qpg»*Y<qpp); ~>322
D’(l>8 ftapJ)*a(i,j>-F(6fq)*Y<q,g)+<F<3,q)-FU2,q)*YCq,g»*X(q,p)j ->322 
D0(2) 8 a<ipj)=a(i,j)+F<9 tq)*Z(qpg) »(F(2pqHF(ll,q)*Z<qvg)) *X(q,p); ->322 
D H 3) 8a(iP3)=a(i,3)+CF(3#q)*X<q,g)-(F(6,q)+F(12#q)*X(q,g))*Y(q,p)) J ->322 
D H 4>8 a(iP3)«a(iP3)+ F<4Pq)~F(5Pq)*Z(qpg)+F(6pq)*X<qpg)-<F<5Pq)-F<109q)*c 

Z(qpg})*z(qpp)+(F(6Pq)+F(129q)*x(q,,g))*X(qpp)} ->322
0°C5)8 a(i, j)«a(ip j)-F(89q)*Z<q,g)+(F(59q).-Faopq)*Z<qpg»*Y<qpp>*->322
d*C6)8 &CiP3)«ft(i,3)-F<2Pq>*X(q,g)+(F<9Pq>-F(ll>q>*X(qpg»*Z<q#p)> ->322 
D H 7>8 a(iP3)=aaP3)+ F<59q)*Y(qpg M F < 8 pq)+Fao9q)*Y<qpg))*Z<q9p)? ->322 
Dt(8)8a(iP3)=a(iP3)+F(79q)+F<8pq)*YCq,g>-F(9Pq)*x(qpg)+<F<8pq)+F(10Pq)*o 

YCqPg»*Y(qpp)-(F<9,q)-F(llpq)*X(qpg»*X(qPp)j ->322
3228 repeat

330s repeat 
3318 m

a contains lower triangi© of 3*3 flex matrix
cycle 1=1.Ipn 

j=lpl,n 
3 P i)

1=0,3sn-3
8)
j=i,l,3

psslplPn 
i=n+p
sgjg.A<j,
3?<

*“■*’ i P1 p H 
u=X
r© a d (c ,p pq)
"**333 unless p=o
u=0g p=l
3 3 3 s CYC^® 3=1,1,11
A<jpp)=A<j,p)«u*C*(a(j,p)-a<jpq)); A( j,q)=A( j,q)~C*(a( j,q)-u*a< j,p>)



xxxiii

©J3©S
eyed® j-iptpn 

si1 P CjktMAs£bAWirr»n
n~2*n
©yel© seal,1,3êawuiawxu wcycl© i"SSs3 P<n«*3+ss)
P“i+ Antp t C V 3 o 003.) 
o,3ggl® j=esP3P(iw3+ss) 
qffii4>intpt(J/3«001) 5 A'(ptq)»A<ipd)

n=(©i©ra©nt&»Gutis) *2
eigenvalue protolem(As,X PX ,Y„n,

eycl© i~iPlPn
print fl(iCipl) ,3> > spaees(2>
if fr&cptCi/loH.ooi then newline
2?<!

o£cl©
print flCXCi(2) ,3); spac©s(2) 
if fra©pt<i/io)<,OOl then newline

•cute)*6
if R-o then ~> 423(0311) UBWJXUIO I ***n©wXAn®s<2)
_ _ _  i“lpipR 
ê s.1© ;j~-Islv(elomient8»cttts)*2 
print flCX<i,d),3)l spaoes<2) 
if £raept(j/9) < 0.001 then newline

eyol© j®l,l,(element8-cuts)*2 
print fl(YCi»d),3)$ spao©8<2)
if fraeptCd/9) < 0.001 then newline

© ’ssO 
c^cl© i-ipipR
cycle j=lPl,(elemente-cuts)*2

j,l)~CX<iPlj))2+<Y<ip j))3J e'=©*+A<iPj)

print fl(©9,6); newline
repeat
423srepeat

routine solve eigenvalue prablem(arrayname A,1PX,Y, integer n ,integorname R)
real norm g array b,c,d(lsn)
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routine Lanczos tridiagonalization (array name A,b,c,d, integer n) 
array B(i:n+l,l:n), BB(lm+l,lsn), bb(lsn), e(l*n), ee(lin) 
integer i,j,r; real sum,suml ,sum2,sum3,x,y,for,cr 
x - sqrt(l/n>

i = 1,1,n j B(l,i) = x; BB(l,i) « x ; repeat; b(l) = o ; c(l) = o
cycle r = 1,1,n 
cycle i a i,i,n 
sum » o ; suml = o
cycle j = 1 ,1,n ; sum = sumt- A(i,j)*B(r,j); suml = suml + A(j,i)*BB<r,j)
repeat
B(r + 1,1) a* sum ; BB(r + l,i) a suml
sum-0
cycle i = 1,1,n; sum = sum + B(r, i)*BB(s?,i) 
repeat
bb(r) a sum ; sum a o
«> 2 if r a i ; br = bb(r)/bb(r-l) ; b(r) a er*for j br a c(r)*br
21 cycle 1 = sum " sum + BB(rpi)*B<r + l,i)
repeat
d(r) a sum/bb(r) ; -> 3 if r = n 
cycle i a 1,1,n
sum a B(r + 1,1); suml a BB(r + l,i)
sum a sum - d(r)*B(r,i); suml a suml - d(r)*BB<r,i); ■> 1 if r - 1
sum a sum - b(r)*B(r - 1 ,1); suml a suml - for*BB(r - 1,1)
is B(r + 1 ,1) a sum ; BB(r + l,i) a suml
repeat
cycle 1 a i i  r■uJMnWMIIM r rsum a o; suml a o 
cycle j a 1,i,n
sum a sum + BB(i,j)*B(r + l,j); suml a suml + B(i,j)*BB(r + 1, j)
repeat|i»ll) i Z-! ,ni|iw —e(i) a sum/bb(i) ; ee(i) a suml/bb(i)
repeat
&xm.2, - Oj sum3=o 
cycle i a 1,1,n 
sum = o; suml = 0 
cycle j a 1,1,r
sum = sum + e< j)*B( j,i); suml a suml + ee( j)*BB< j,i) 
repeat
x a B(r + 1,1) - sum; B(r + 1,1) a x  ; y  a BB(r + 1,1) - suml; BB(r + 1,1) 
sum# a suma + x2; sum3 a sum3 + y2
SUIQ2 = sqrt(sum2); c(r + 1) a sum2; sum2 a i/stsm2 ; cr a sqrt(sum3> 
sum3 a i/cr 
cycle i a i,i,n
B(r + 1,1) a B(r + l,i)*sum2 ;BB(r + 1 ,1) a BB(r + l,i)*sum3
repeat
repeat
3 s cycle * - 1 ,1,ncycle i a i,i,n
A(r,i) a B(r,i)
repeat
repeat
return
end
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routine eigenvalues(arrayname foPo,dPXp integer n, realname norm) 
integer i,j,k,NPLPt,rev ; real ppq,DpM,dppdq,KPKOpr,dr,s,S 
array a(o$l,Osn),ApQpT,E,F(0Sn)Ppa,qa(osl)
3 ”i8 ji n > i | 1(1,1) a d(l) 5 1(1,2) a 0 ; norm = |d(l)| ; -> 1J
l8s norm a |d(l)| + |fo(2)l 

jggglg. i 88 2,l,n-l
a s |o(i)| + |d(i)| + Ib(&+l)| o norm = s if s > norm ? repeat
s = lc(n)| + id(n)j jnorm a s if s > norm ; s a 1/norm

»Po> = 1 ; a(l,o) a d(i)*s ; a(lfl) a - i
 ___ i = 2,1,n
M “ -b(l)*c(l)*8a J D = d(A)*s
A(o) a D*a(l,o) + M*a(0 ,0) ; A(i-i) = -s(XpA-2) + D*a(l,i-1) 
A(i) a » a(ipA~i> ; a(l,i) « o ; -» 19 if i < 3 
cycle j a 1,1,1-2
A(j) = -a(lpj-1) + D*a(lP3) + j)
repeat 

19 s cycle j = 0,1,1
a(o,j) = a(lPj) ; a(l,j> a A(j)

N = n j t = 1 ; fc = 1 ; KO = la«Il
IS -> 2 if A(0) ft o t N = N-l ? 1(N,1) a 0 ? X(N,2) « 0

cycle i a o,l,NmmwoaDw r rA(i) a A(i-f-i)
repeat
-» 1

2S pa(o) a o ; pa(l) = o ; qa(o) = 0 % qa(i) « 0 ? r a o
3 s »> 7 Ji N = o ; -> 11 if N » 1 ; L - o ; - > 4 J ^ N > 2 ; p a  -A(l)/A(2>

q a -A(0)/A(2)
- >  10

11* y 8 - A(o)/A(l) ? -> 5 
4§ K ts KO | s a o | rev = 1

cycle J a opiPN
a a *8 + log(!A<j)I) if A(j) & 0?
IB a ©Xp(-SJ/(H+I>)
cycle J a 0,1,N 

A(j)*s
if |A<N-1)A(0)| > |A(1>A(N)|

15§ t & - t ; k a k + t ; r a  i/r if r /s 0 
cycle i a otl,intpt(jN-o.l) 
s = A(l) ? A(i) a A(N-i) ) A(N-i) a s 
repeat

6s p = pa(k) j q a qa(k)
cyci0 i = 1,1,20
Q(N) a A(N) ? Q(N-l) = A(N-l) + p*Q(N) ? T(N) a 0 ; T(N-l) = O 
cycle j a N-2 ,-1 ,0
Q(j) a A(j) + p*Q(j+l) + q*Q(0+2) 1 T(j) a Q(j+2) + p*T(j+l) + q*T(j+2) 
repeat
“> T  if 1Q(1) | < K ; -> 12 if IA(1)*K| < |Q(1)I ; Q(o) = A(o) + q*Q(2) 

8s -> 10 if IQ(0)I < K ; -> 10 if 1Q(0)| «“ |A(0)*Kl 
12S E(N) a A(N) ? F(N> a O ■ “

cycle j a N-l,-l,o
E(j) a A( j) + r*E(j+1) ; F( j) a e( j+1) + r*F(j+1)
*> 5 if (E<0)1 < I< ? -> 5 if |E (0 ) | < |A(o)*K| ? M a p*T(0) + q*T(l)



xxxv i

D = T<0)a » M*T<1)
D = K 0 i f D = 0 | D =  1/D
dp = <Q(0)*T(1) - T<0)*Q(1))*D J dq * (M*Q<1) - T(o)*Q(o))*D
•**> 10 if ip" dp I + |dq| < ? P « p + dp t q = q +  dq
F(0) a K0 if F(o) = 0 } dr S «E(o)/F(o) 5 5 if I dr I < 5K*|r| ; r = r + dr
repeat
pa(k) = p j qa(k) = q ; s = |Q(0)/A(0) | ?s « s + |Q(1)/A(1) I if A(l) ^ 0
«> 6 if b < 10K ? K « 10K if rev < o $ rev = -rev $ ~> 15

5? p a i/r if t < 0 5 1(N,.1) a r*norm $ I(N,2) = O j  N = N-i
cycle j = 0,1,N
A<.1) = E(j+i) 
repeat

108 s = |p j-> 13 if L = 1 and i » 1 j D « s2 g S a Dt-q ; -> 13 if L = 1

-> 13 ifISl>la-10*D
"" S = 0 ; L = 1 ; q = -D 5 r « s ; 21

13! -> 14 if t > o ; q = 1/q ? s = -s*q 5 S = S*q2
14: p = s ; L  = 1 ; L b o if S> o ; s - sqrt(ISI)

switch c(o:l) ; -> c(L) "
C(0)s 1(N, 1) « norm*(p + s>? 1(N,2) » 0J X(N-1,1) = norm*(p - s)
1(N- 1 ,2) = 0 J -> 16
C(l) 0* D = norm*p $ a - nonn*s ; l(N,i) a D j X(N,2) “ s ; 1(N-1 ,1) a d 
1(N- 1 ,2) = - 8 

16s N a N-2
cycle j a 0,1,N 
A<j) a Q(j+2> 
repeat 
™> 3

7! cycle i = i,l,n
A(i) = l(i,i)2 + l(i,2) 
repeat
N a n

9s M a A(N> J k a N 
cycle i a N-1,-1,1 
-> 20 if A(i) _> M J M a A(i> J k a 1

20S repeat
p a 1(N,1) $ l(N,l) a l<k,i) ; l(k,1) a p J A<k> a A(N) 
p a 1(NP2) ; 1(N,2) a l(k,2) J l(k,2) a p J N = N-l } -> 9 if N > 1

17 s return, 
end

routine tridiinverse i terat ion(arrayname b,c,d,l,X,Y,integer n.real norm) 
integer i,j,k 

real s,h,eps,bi,bil$ complex lambda,u,v,w,eta
array r,int(i:n) scomplex array m,p,q<lsn) ,x(ltn+2) ,y<lsn)
©ps » la-ll*norm } norm a norm*sqrt<o„5) $ lambda a norm*(l+i)
R - n if R > n "
cycle j = 1,1,R
w a l(j,1) + i*l(j,2) | u « w-lambda
-> 13 if 1 im(w) I > 0 and mag(u- 2i*im(w)> « o
»> 15 if mag<u) < ©ps j lambda = w } -> 16
15 s lambda = lambda* (1 - ©ps/mag(lambda)) ; lambda = r©(lambda) if im(w) = o 

l6s u ~ d(l) - lambda $ v - b(2) $ v = eps if b(2) = 0 
cycle i « 2,i,n
bi = c(i) ; bi s ©ps if bi = 0 ; -*> 3 if i = n 
bil =2 b(i+l) f bil = ©ps if foil - 0
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38 ± if |M! > mag<u)
m(i) = bi/11 g~p(i»l) a u § q(l-i) “ v | r(i-l) = O 
u ss d(i> - lambda -> m(i)*v g v == M l  g ist(i) a -1 J -> 2 

18 m(i> ~ u/foi § m(I) - 1 if msgCm(i)} « O and M  £  ©ps 
p(i«l) “ M  £ q(iUl) ss d(i) ■» lambda g r(i-l> » teii 
u a v ■ aa(i>*qCi-l> ? ? » g int(i) a 1

28 repeat
p(n) - u g q(a) ~ 0 g sKn) a 0 g » 0 g x(m-2) = 0 ; h = 0

eta a i/n g eta s= ©ta*<i+i> if lambda) / 0 g a a o
CNgcl© 1 a n , - l , l  *”
a ss eta - qCi)*x(±*X) *» r(i}*x(i+2>
M l  = aiag'(p(i>) g -> 6 if M l  a 0 g x<i) a u/p(i) g -> 7 

6 s x(i) a u/©ps
7s bi - mag(x(i)> j 11 if M  < a g s « bi ? v ~ 
lls h = k + mag<x(i))2

S<2...
l/aqrt(h) £ v - h*oon,j(v)/s 
1 = l,l,ii 

y(i) a x(i)*v g x(i> a y(i) 
repeat 

cycle k a 1,1,5 p 3 - o 
cycle i a 2,1,11

4 if int(i) > Og x<i> a x(i> « saCl)*3£(i“i> g -> 5
45 u = x(i-l) g x(i-l) a x(i) g x(i) a u « aa(&)*xCi-l)

'h  a 0
cycle i = a,-1,1
a =■■ x(i) « q(:l)*xCi+l) - s»(i)*x(i+2>
M l  a magCpCi)) g -> 8 if M i  » 0 g x(i> a u/pCi) g -> 9 

8s x(i) « u/©ps
9* bi a mag(x(i)> ; -> 12 if bi < » * a a fei * v a x<i)

128 h a h *  bi2 “
h » l/sqrt(h) g V a fe,̂ oonjCv)/s g S a o 

cycle i ~
u a x(i)#v g s 2= 0 + mag(y(i)*ui)8 g y(i) » la g x(i) a u 

repeat
-> 10 if s < a*la-11
>> io

i a ipi,n
:j,i> a X(,j-*ipi) g Y<j,i) = «¥(j»ipi) 

repeat
-s> 14

.108 cycle i » 1,1,n
X<J,i) = r©(y(i>) g Y(j,i) a im(y(i>) 
repeat 

142 repeat 
return 
©nd

routine backtransformation (arraynam© A,XaY,integer n) 
Integer i, j, r g complex sum,s g complex array y(lsn) 
cycle r a 1,1,R 
cycle i ” 1,1,n 
sum a 0 
reX© ,j a 1,1,n
sum a sum + A<j,i)*(X(?, j) + i*Y<r, j))
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repeat 
y(i) - sum 

repeat
cycle i = 1,1,n ; X(r,i) ~ r©(y<i>) g Y(rsi) - im(y(i))

return
©nd

Lsmcssos tridiagonalization(c „dpn) 
eigenvalue s(b,c,drl,n,norm)

i i£ R < o
tridiinverse iteration(b?cpdpl pXpY pn pn©rm) 
back transformation ( A, X , Y, n)

18 return 
end

end of program

8 1 4 9
0 0 0  4000 o o 8000 o o looooo 160000 320000
0 0 0
89.9 0 0  9050 o -1525 9050 o 1525 452 360 360
-8.5 o o
39 e 7 o 0 842 o -299 842 0 299 199 159 159
-12,23 O O
13.6 O 0 80.5 0 -34.7 80.5 O 34.7 43.5 34.7 34.7
-14.25 0 0
100.6 0 0 12420 0 1910 12420 0 -1910 505 402 402
9„50 0 o
100.6 0 0 12420 0 1910 12420 0 -1910 505 402 402
19.0 0 0

50.3 0 0 1652
33.755 0 0
0 0 0 4000 0
19.0 0 0

8 3 -4 2 - 4 1
.02051 .02161
400 0 2
400 0 3400 0 17
400 0 18
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-3*117® -3 
-1.114® ~5 
-7*157® “9

-2.733® -3 -1.114® -5 
-7*157® -9

-1,866® -4 
-1*593® -5

-1,866® -4 
-1*593® -5

-1*147® -5 
-5.550® -5

-1.147® -5 
-4.388® -5

Q,OOOa-99 
-1.818a -4 
-2.817® “5

O.OOQy-99 
1.818® -4 
2.817® -5

-2.353® -3 -1*346® -4
2,353® -3 
1.346® -4

-3*323® -4 
0.000®-99

3*323® -4 
O.OOOa-99

7*471® -4 
2.316® -3  
-6.408® -1

2.193® -4 
-2.397® -1 
-7*430® -1

-1.057® -5 
-7*035® -2

-1.328® -4 
3*391® -3

1*356® -3 
4.262® -2

1*997® -3 
-4.350® -1

0.000®-99
O.OOQa-99
O.OOOof-99

O.OOOa-99
O.OOOa-99
0*000®-99

O.OOQy-99
0.000a-99

0,00Q®-99
0,000®-99

O.OOOa-99
O.OOOa-99

O.OOQy-99
O.QOQ®-99

-9.943® -4 
7 *804® -® 

-1 *344® -1

-1.154® -3 
3 .638® -1  
-2 *836® -1

-1*169® -3 4,224® -1
-1*173® -3 4.278® -1

-4.292® -4
4.293® -1

3*673® -4 
1.571® -1

0.000®-99
0,000®-99
o.ooo®-99

O.OOQ®-99
O.OOOa-99
O.OOOa-99

O.OOOa-99
O.OOOa-99

o,ooo®-99
0,000®-99

O.OOOa-99
O.OOOa-99

0,00Q®-99O.OOOa-99

1.122® -4 
-8.068® -5 
1.272® -2

2.204® **4 
-2.999® -2 
-3*090® -2

2,728® —4 
-3*475® -1

3.010® -4 
-5*252® -1

2.376® -5 
-6.223a -1

-4.649® -5 
7.357® -2

6.212® -5 
7*957® -5 

-1.873® =»2
8.053® -4 4.532® -2 
-3.674® -2

1.222® -3 
6.612® -2

1*450® -3
7*427® -2

-1.761® -4 
7.854® -2

-2.643® -5 
1.593® -2

1.122® -4 
-8.068® -3 
1.272® -2

2,204® -4 
-2*999® -2 
-3*090® -2

2,728® -4 
-3*475® -1

3*010® -4
-5*252® -1

2.376® -5 
-6.225® -1

-4,649® -5 
7.357a -2

-6.212® -3 
-7*957® -5 
1.875® -2

-8.053® «4 
-4,532® -2 
3*674® -2

-1.222® -3 
-6,612® -2

-1*450® -3 
-7*427® -2

1.761® -4 
-7*854® -2

1.643® -5 
-1.593® -2

4.047® -7 
1.572® -5 
-5*768® -4

3*762® -6 
-5*864® -3  

2.287® -3
-5*809® -8 
-3*967® -3

-2,600® -6 
-8.570® -4

-1.592® -5 
1.116® -3

9.317® -8 -5*608® -3
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CALCULATION OF THE RESONANT FREQUENCY, DAMPING RAT10 ETC.
FROM THE COMPUTER PROGRAM PRINT OUT,

The dynamic equations of motion are formulated in the program, 
from the data supplied on the flexibility, damping and inertial 
properties of the system* The program calculates the roots of the 
system characteristic equations from which the various resonant 
frequencies and the damping ratios may be determined* Referring 
to the print out on page xxxix, the first block contains the real 
part and the second block the imaginary part of the n roots of the 
equation,, Therefore,, the first root is§

Consider a system with a single degree of freedom expressed by 
the equation

10866g? - b ± a 2.35.3 -=>3 (1)

1 2? 1 0 (2)
s
* MX.-aW-nATT-H
2 W Si 11 wXI

where s is the Laplace Operator„
Then the roots of the equation are

s
1 (3)

Therefore equating the equations (1) and (3)

I

and

w



XLi

The solution of the equation gives% 

gj 68*0 c/s 

and 5 “ .079'!

Similarly, the next block gives the modal shape information, 
i.e. the real and imaginary parts of the velocity (first seven 
figures) and acceleration (next seven figures) vectors of the 
various points on the spindle. From these values the modal shape 
of the spindle can be drawn at each resonance frequency as shown 
in Figs* M 5, ^7» etc.
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APPENDIX XI

CTqwqm   i" i WIiKiIMi tWllim*Wi<l'iii» BWWW
COMPUTER PROGRAM TO STUDY THE EFFECT OF RADIAL LAND WIDTH RATIO ON THE 

o i l  FLOW AND THE TOTAL POWER REQUIREMENT OF THE HYDROSTATIC THRUST

BEARING

sroaX ®,R1, R Z ,  R3* R4 , K £ ,K l ,K e ,K p ,n ,w ,h © p ,h s fp , h b , q , p ts i ,h ,N »d » liatggeg £, 3 ? II
array sia? bto. cc(o s 16) 
s?©adCRlaR4su?w !fss,N,di)
R2=R1J R3™?4 
©elect cmiputd) 
cycle i=X,1,1Z 
RZ™R2*1/$Z 
R3-R3^i/3 2

Kf“:( l/2.©g<R2/Rl)+l/l0g(R4/R3>>
K1“C(R4S-R3 s ) /'£©g<R4/R3 >- <R2S-R12 ) /l©g< R2/R1) )
ICp~{R4^4-R3 f 4)+ (R2^4-Rl+4)
p~2a?/(rfa’:Kl)
si©wliis.@s<4>
eaptlcm$&R2ftgfei print(R2,1,4); spaces(8) 
cspt ion&R3 | print(R3,1,4)? newline 
captionfa&Kf&==& 5 print :Q (Kf, 4) j space3< 4) 
oapgtiogL&gl&a&g print fl(Kl,4>; newline 

; print fl(Kp,4>; newline 
capt£oafefepoolcet̂ pressurefeir.fepsi£-fe; print(p,2,3>; newline 
J^p~0 4.0(5-?- sqrt<u*N/w)* (e^( V35*log(Kp*Kl2/Kf) ) )
oaptionfefeoptiBMmfegiXmfethieknessfcin$inchesfcIiopt$~fc; print f 1 (hop,3)
n©wlines<2)
newlin©
ovcX© ,1,i6 j h-j*la-34Kimw»»«3At ■ ' * • v * vif sj< 0,5 th©n h--hop
hS-N “*u* < <R2^4“*Rl+4>+< R4+4-R3=f 4) ) / ( 58,05*h) /66OO
qssw# p*K£* M ‘ 3/C6*is) j hb=p* q/6600 $ P=( hs+hb)
print.£l(fep3>$ sp&o©s(5>$ print(hs,2,3>J spae©s<5>| print<q#3,3>
spaces<5)4 p&*iat(hb,2,3) f spao©s<5); print(p,2,3>
42 Ke^C vr-i;E f ) / (6ia*n)
£.*-**, 73*f/CB:l*p/hj 1=tt*Cd*4>/(isSn^Kc) $ newlin©
3saa{.1)=Ko; bh{j)ss; ce(j)=l
repeat . ■
n©v/lin©s<f 4)
newline' 
gycXe 3^0,1,16
print fl(aa<j),3>j spaces(5)j print fi{bb<j),3>s spaces(5> 
print £!(cc Cj),3)
w . m i ± n ® >

XUfi



XLiv

E’epeat 
IS top

1,125 2.635 9.960-6 500 4.00 3000

SPECIMEN RESULT

R3 - 1.1875 R3 = 2.5625
k£ “ ■5.9993a 1 Kl. = 1.0781a 1

4.74980c- 0
pocket pressure in psi = 29.524
optiMsm film thickness in inches hopt *= 4.463-

h hB hfo
4.4630! “3 0.111 8.280 0.037
1.000a -3 O.494 O.093 0.000
2„0G0a ~3 0,247 0.745 0.003
3 . OOOO! ~3 0.165 2.5*4 0.011
4.000a “3 0.123 5-959 0.027
3 0 OOCa “3 O.O99 li.640 0.052
6.000a “°3 0.0§2 20.113 0.090
7.000a «■*>“3 0.071 3*.939 0.143
8.000a “3 0.062 47.675 0.213
9.000a ra3 0.055 67.882 0.304
1.000a “2 O.O49 93-1*6 0.417
. 1. looa *■2 O.O45 123.937 0.5541.200a “2 O.O4I 160.904 0.720

Ko & 1
7.01la *=*2 -i.68oa 5 1.750a 0
7.885a -4 -7,500a 5 1.556a 2
6.308a -3 “3.750a 5 1.945“ 1
2.1290c -2 -2.500a 5 5.763« 03.046a “2 -1.875a 5 2.431a 0
9.856a =*2 -1.500a 5 1.245a 0
1.703a -1 -1.250a 5 7.204a -1
2.704a = 1 -1.071a 5 4.536a -1
4-037a -1 -9-375“ 4 3.039a -1
5.748“ —1 -8.333a 4 2.134a -1
7.885a -1 -7.500a 4 1.556a -1
1.049a 0 -6,818a 4 1.169a -1
1.362a 0 -6.250a 4 9,005a -2

8.40-2

P
O.I48
0.4940.250
O.I76
O.I50
0.I5I
0.172
0.213
0.275
0.359O.466
0.599O.761
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ca = -800 
* 400 psi

N = 2000 rpm —3
i = 6 4  x IO rad

Rotational
Flexibility

Normal
Flexibility

Power
Requirement

-54-3•2O
AXIAL LAND WIDTH RATIO -  el

FIG.8 VARIATION OF NORMAL AND R O T A T IO N A L  
F L E XIB IL IT IES  AND POWER REQUIREMENT

WITH AXIAL LAND W ID T H  RATIO
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2D
FIRST SYSTEM

“  92 —  
TORSIONAL 
SPRING

HELICAL
SPRING

NEGLECTING DAMPING

4

DASH POT 
DAMPER

EIGHT ELEMENT MODELS

SECOND SYSTEM

] i .
Q
in Ol

-<.... •

FOURTEEN ELEMENT MODEL 
ALL DIMENSIONS IN INCHES

FIG.9 MODELS OF THE BEARING SYSTEM FOR THE COMPUTER 
PROGRAM
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2-0 iLLUl
IO

- 9
ROTATIONAL FLEXIBILITY -  RFI rad/lb In x IO 

FIG.IO VARIATION OF SPINDLE END DEFLECTION WITH ROTATIONAL 
FLEXIBILITY FOR VARIOUS NORMAL FLEXIBILITIES

.4 0 TTTT TTTT
0  7 5 0 0  x IO In /lb  
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•40

• 20 M i l lJ-U1 1111 111 1111
O

IO

FIG. i

IO IO IO IO IO IO
-9

ROTATIONAL FLEX IB ILITY  -  RFI ra d / lb  In x iO  

VARIATION OF BEARING POINT DEFLECTION WITH ROTATIONAL 

FLEXIBILITY FOR VARIOUS NORMAL FLEXIBILITIES
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220
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iS«90

160

140
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IOO
- 9

ROTATIONAL F LE X IB IL IT Y  _  r a d / lb  ln.X IO

FIG.I5 VARIATION OF R E SO N A N T FR EQ U EN C Y WITH R O TATIO NAL  

F L E X IB IL IT Y  FOR VARIOUS NO RMAL FLEXIBILITIES

(7) 7 5 0 0 x 1 0  In / lb  
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®  2000 x To In / lb

•08

0 6

• 0 4

•0 2

IO 10 IO _9lO
R O T A T IO N A L  F L E X IB IL IT Y  — r a d / lb  In x lO

FIG.16 VARIATION OF DAMPING RATIO W ITH R O T A T IO N A L  FLEXIBILITY  

FOR VARIOUS N O R M A L  FLEXIB IL IT IES
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FIG. 25

COLD JU N C T IO N R T R E F E R E N C E  T H E R M O C O U P L E

SCHEMATIC DIAGRAM OF THE CIRCUIT FOR 

TEMPERATURE MEASUREMENT IN JOURNAL  

BEARINGS
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a. GAUGES MOUNTED
AXIALLY , D IAMETRICALLY 
OPPO SITE ON THE SHAFT

b. GAUGES M O UNTED
AXIALLY ON THE SAME 
SIDE OF THE S H A F T

c. GAUGES MOUNTED 
C IR C U M F E R E N T IA LLY  
D IA M E TR IC A LLY  

OPPOSITE ON THE 
S H A FT

FIG. 29 TORQUE

BRIDGE

GAUGE WIRING DIAGRAM FOR FU LL  WHEATSTONE

SLIP
RINGS

STRAIN
GAUGES D o r A RC FILTER 

C IR CU IT

D o r A
AMPLIFIER
UNIT

D or A

UV RECORDER

FIG.30 WHEATSTONE BRIDGE CIRCUIT FOR TORQUE MEASUREM ENT
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