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ABSTRACT

The subject of this thesis is the development of a general method for the
automatic placement of components on a circuit board. The layout of integrated
circuits motivated the use of hierarchical techniques as a means of dealing
with increasing circuit complexity. A new approach to hierarchical placement
is suggested in this thesis, based on a tree structure which embodies an
adopted set of circuit properties and objective functions.

The placement problem is here defined in mathematical terms and a formu-
lation is proposed for its most widely accepted figures of merit. Three place-
ment objectives are selected and a graph theoretical study is presented, which
investigates the correspondence between those objectives and the structure of
a binary tree.

A new placement method is proposed in this thesis, designed in accordance
with the suggested fully hierarchical philosophy. The method consists of two
main steps: the building of the tree structure representing the circuit
hierarchy and its subsequent embedding on different board environments. A set
of algorithms is presented, for the tree-building and tree-mapping on two
basic types of boards: regularly structured and continuous plane.

A practical implementation showed that the method is fast and can
generate placement solutions which are comparable with those obtained
manually, both in terms of measurable circuit objectives and observed

routabili ty.
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CHAPTER |

THE PLACEMENT PROBLEM

1. INTRODUCTION

In this introductory Chapter we place the Placement Problem within
the general field of Layout Automation. Fundamental layout concepts are
introduced, the hierarchical design philosophy is discussed and the different
layout stages are briefly specified.

The Placement Problem is then defined in mathematical terms and related
formulations are discussed. This section is followed by a survey of the use
of graph theoretic structures in circuit representation.

The final paragraphs comprise a study of the definition of objective

functions for the Placement Problem.



2. LAYOUT AUTOMATION

The layout problem can be formulated in the following way: given a
number of elements (components) and a list of connections to be made
between these elements, position the elements on a plane and generate the
physical connections on one or more pianes, taking any specific constraints
into account.

This involves a large range of subjects such as: the generation of
electronic circuit drawings, logic diagrams, flowcharts, the layout of
printed circuit (PC) boards, integrated circuit (IC) masks, etc..

Automatic layout has been used in earlier small and medium scale
circuits as a means of speeding up the layout process as wellas relieving
the human designer of repetitive and error prone tasks. With the ever
increasing complexity of very large scale integration (VLSI), layout au-
tomation has become a real necessity. The increasing demand for custom large
scale integration (LSI) chips which are to be produced in small quantities,
has made this necessity even more important as a means of design cost
reduction. This cost is based on two factors: the design time and the number
of errors per design cycle. Therefore layout automation is aimed at the

reduction of both.

The term layout automation has been used to specify a wide range of
different degrees of assistance provided by the computer. At a lower
degree, manual layout is often supported by machine digitizing and edi-
ting in the final phase of the design sequence. This approach can produce
very dense layouts, but at the expense of an enormous design time and

high risk of errors. In an intermediate or semiautomatic philosophy, auto-
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matic layout routines (e.g. placement and routing) are used to aid and
even to replace the designer. He supervises the call of procedures, and
can either accept the result or try a different input. At the extreme level
of the automatic design spectrum, full use is made of the analyzing and
decision making capabilities of the computer. Dedicated software is applied
to automatically process the design through each step from raw logic data
to final routing. The output is quite predictable in performance and

production costs are minimal both In design time and error checking.

3. METHODOLOGY OF LAYOUT AUTOMATION

Printed circuit board layout has received extensive attention from
industry, leading to the development of several algorithms and methods that
allow automated PC board layout. Most of these algorithms are particularly
suited for regularly structured boards with fixed locations (slots) for
uniformly shaped components. This approach was introduced to simplify the
problem algorithmically and also because regularly structured PC boards are
easier to manufacture. One disadvantage Is that this restriction can lead
to bad utilization of the available space.

The conventional approach has been proved Inadequate for certain
types of layout problems, especially the case of LS| circuits. These are
frequently composed of elements of very different size and shape and It |Is
Important to minimize the total chip area.

With the necessity for LSl design automation, a number of layout

concepts have been Introduced and extensively developed, such as standard



cell, polycell, general cell, gate array, etc. Standard, cell assemblies
have a regular organization and so are particularly suited for the layout
algorithms, most of the effort being spent in the design and maintenance
of the standard cell library. |In the polycell approach, cells have all
approximately the same height and are placed in regular rows. General cells
are not restricted in size or shape and may be assigned to any position on
a continuous plane. A gate array is a predefined pattern of basic devices
and gates which may be interconnected during the final manufacturing states
in order to achieve the specified chip function.

The algorithms developed under a regular structure methodology for
the placement and the routing are therefore only applicable to standard cell
and gate array environments. They cannot be used as such for general cell
assemblies. In this thesis, the term general placement will refer to the
type of environment where components of different size and shape are to be
placed on a continuous plane without predefined locations.

Under both approaches, however, it may happen that the position of
particular modules Is totally or partially specified. The components subject
to this type of design requirement will be referred to as preplaced. An
example of partial preplacement is the positioning of edge connectors along

one (or more) of the board boundaries.

The layout of general cell assemblies has brought up the need for a
different approach to layout automation. Furthermore with the constant
increase in circuit complexity, new methods had to be devised to handle the
enormous amount of data. The natural solution was the subdivision of the layout

problem into several hierarchical levels [MC80]. A genera) cell assembly



may thus consist of combinations of standard cell assemblies, standard
cells or lower level general cell assemblies. The use of a recursive
process reduces the circuit complexity to a level consistent with the

available design capacity.

4. HIERARCHICAL APPROACH

A hierarchical approach itself is not a new idea. Software designers
have learned how to deal with increasingly complex programs by developing a
structured programming methodology. The human hardware designer also, often
performs his task in a hierarchical fashion by repeatedly splitting the
problem into smaller manageable units.

Starting with a set of given specifications, the designer makes a
number of design decisions, both in terms of logical design and physical
design. Those decisions can take one of two major forms: top-down decom-
position of modules into less complex ones and bottom-up combination of
building blocks into larger ones. At some stage in the process, the modules
will have to be mapped into some of the building blocks in such a way that
this mapping may result in a correctly operating design.

The design execution is therefore a combination of top-down and
bottom-up processes that are happening concurrently in the designer's mind

until he reaches a final acceptable design.



The design process is characterized by three cooperating tasks:

Behaviour design - where the initial specification is decomposed

into subproblems, and possibly refined.

Structural design - where blocks or modules are realized by the

interconnection of more primitive modules.

. Physical design - where the design is implemented in a given

technology.

In most cases behaviour and structural designs are concurrently
developed, whereas the physical design process is done separately. Techno-
logical constraints may however have a very strong influence on the
behaviour or the structural designs of a system. As an example, a situation
may arise where an application requires customized random logic which is
not found in the available standard cell library. A new cell must then be
designed or the whole design process iterated in order to meet the available
design resources. A recent work in this field [HG85] describes a new type
of design phylosophy where the three basic design tasks are performed
concurrently. The given functional specification of a module is, through a
sequence of transformations, decomposed into geometric cells which fit

together in a given silicon area.

Three major hierarchies may thus be associated with the digital system
design procedure: a behaviour hierarchy, a structural hierarchy and a physical
hierarchy. The mapping of a behaviour into a structural hierarchy is usually

known as the logic design process. In actual practice this is an iterative



task done mainly in the designer's mind without the help of design automation
tools. Few of the existing logic design systems are supported by automatic
or computer-aided techniques to reduce the time required to perform an error-
-free mapping of behaviour into structure.

The mapping of a structure into physical hierarchy is usually known as
the physical process. Currently, and for integrated circuit design in parti-
cular, this process is supported by a collection of software packages for logic
simulation, automated placement and routing, circuit analysis and design rule
verification. However, very few of the existing physical design systems are

consistent with a wholly hierarchical approach.

5. PHYSICAL HIERARCHY

In order to package a system the designer has at his disposal a hierarchy
of cabinets, racks and printed circuit boards. This physical hierarchy is
extended to each integrated circuit on a PC board. In 1C design he may use a
succession of supercells, macrocells, simple cells and transistors. In the
course of designing large scale integrated circuits, the human designer
naturally adopts an approach of breaking down the design into blocks, which
are successively subdivided until the transistor level.

Several automated hierarchical design systems have been developed,
especially for VLSl circuits. Their major advantage is the reduction in design
time, while keeping sufficiently detailed information to allow concise
prediction of the behaviour of the system.

A major problem In hierarchical design is the mapping from a structural



into a physical hierarchy. One possible solution could be a direct correspon-
dence, i.e., to make every structural module the same as every physical module.
This solution may however lead to inefficient area utilization. A successful
mapping should be able to look-ahead over one or more levels of the physical
hierarchy.

The physical process is essentially a partitioning problem in the graph
theoretical sense. Given detailed information about the connectivity of a
system, as provided by the structural design, subdivide it into subsystems
of a given maximum size. The successive partitioning of the subsystems generates
a tree structure where the whole system is represented by the tree root and
the other nodes correspond to the subsystems, the leaves being the simplest
components considered.

In this tree structure depicting the physical hierarchy of a system,
it may happen that a particular node represents a subdivision into elements
which belong to the same plane surface (e.g. the passage from PC boad to 1C,
1C to general cell or general cell to standard cell). According to our
previous definition in paragraph 2, that partition corresponds to a layout
problem.

The layout may, in turn, be expressed in a hierarchical fashion. That
corresponds to the expansion of a single level partition into several new
partition levels. The number of such levels is a direct function of both the
number of elements involved and the degree (number of subsets) of each
parti tion.

In general the given layout plane is rectangular In shape, and so are
the components to be positioned on it. The partitioning process is then the

same at each level, representing the assignment of groups of elements to



rectangular board areas.

In order to evade the problem of dissecting a rectangle into three or
more predefined areas, binary partitions are frequently associated with the
layout problem. However, most of the existing layout methods which are based
on partition are not of a hierarchical nature. Those partition processes
are usually based on iterative swapping of pairs of elements across boundary
lines on the board. Only recently, attempts have been made to elaborate the
layout hierarchy first, and then to embed it on the board surface [Ri8f*]
[0185], In an integrated layout methodology, the partitioning technique
(tree building) will be essentially the same for all types of layout. The
main difference will be in the embedding of the tree according to the particular

type of environment: regular structured board or continuous plane.

6. LAYOUT ALGORITHMS

One major objective in the layout design of a circuit on a PC board
is to complete all the necessary connections in the routing phase. The
connection success depends on the router being used but is also largely
determined by the effectiveness of the preceding steps.

Before a router is used, the following steps are expected to be done
automatically in such a way as to produce high routability: board partis
tioning, component assignment, placement and gate assignment.

The allocation of a circuit to several boards so as to minimize the
interboard connections is a typical partitioning problem. Similarly,
component assignment is a partition of the circuit elements (logical gates)

into subsets to be assigned to the components, in such a way that the



intermodule connections are minimized.

Placement defines the positions of the modules on the board. How to
state the Placement Problem is what we are going to analyse in detail in
the remaining paragraphs of this Chapter.

The step of gate assignment is essentially a placement at the
component level. After each component is positioned, this process consists
of the allocation of a predefined group of gates to a set of logically
equivalent gate sites.

In the routing phase of a PC board and before the actual wire layout,
four basic steps are usually followed which may to a large extent contribute
to the intended routing success. Those steps are: the determination of
precisely which wires are to be laid out, the assignment of connections
to specific pins of a component, the allocation of each wire to one of the
available board layers and the establishment of the order in which the
wires on each layer should be processed.

Some routing methods of a structured nature have been proposed, par-
ticularly concerning the ordering problem. Usually not related to the
previous layout steps, they define their own hierarchy of areas on the
board which are successively routed and then combined in a bottom-up
fashion.

In integrated circuit layout the main objectives are 100% complete
routing and also the minimization of the total chip area. The type of
effective computer design aids that can be adopted in the pursuit of those
objectives is largely influenced by the methodology in use: standard cell,
polycell or general cell approaches.

In the standard cell and polycell approaches the fundamental phases



are still placement and routing, performed usually in separate operations.
Optimization of the placement can be done very easily by interchanging
cells in different rows or in the same row. Routing can be performed
effectively with a fast channel router.

In the layout of general cell assemblies however, the use of hiera-
chical methods becomes a real necessity. The circuits are extremely complex
and comprise elements of dissimilar size like memory structures, PLA's or
entire standard cell assemblies already laid out.

By using a hierarchical design method, the circuit complexity can be
spread out in as many levels as necessary to make it consistent with the
available design capability. Only one level is processed at each time and
the basic algorithms are the same for each recursion level. Placement and
routing are optimized at each level before proceeding to the next one.

Another important characteristic of general cells is that input-
-output pins are not restricted to any particular cell side so that
routing channels are not predefined. With a structured approach, it becomes
possible to optimize the pin positioning of a cell by the interconnections
with the others at the same level, and at a lower level adjust the layout
of that cell so as to be optimal for that pin positioning.

In most of the existing general cell layout systems, routing is
performed in three stages. The first one is the definition of the routing

channels, usually done in parallel with placement which enables a correct

estimate to be made of channel widths and consequent area optimization.
In the second stage, or global routing, nets are loosely assigned to the
routing channels. It is only in the third stage that the nets are finally

assigned to a specific track in the routing channel.



Routing is, in any type of layout, a costly process requiring an
enormous amount of computer time. Its cost is primarily dependent on
circuit complexity and on the wirability provided by the placement
technique used. An optimal placement is critical to successful cost-
effective routing.

The routing problem has been intensively studied and methods are
known which guarantee a 100% completion under adequate conditions.

Rather than improving the already complex routing scheme, we believe
that the major factor in improving the wirability of a layout system, is
the enhancement of the placement phase. This was the main motivation for

the research reported in this thesis.

7. THE PLACEMENT PROBLEM

Let C = (C.Ji=l....... n} be a given set of components. Every component
has a number of terminals or pins to which interconnections are made.

A net is a collection of terminals (of the same or of different
components) that are connected to each other. Let N = {N~]|k-1....... m) be
a given set of nets.

A physical circuit can then be represented by a system denoted
(C,N) of components and nets.

Given a rectangular area or board B and a circuit (C,N), the Place-
ment Problem consists of assigning to each C. £ C a unique position on 8,

defined by its Euclidean coordinates (x.,y.), in such a way that some



objective Is optimized.

The placement problem cannot be "solved", in the mathematical sense,
due to its combinatorial complexity and also to the difficulty in defining
objective functions. The question is, in practice, approached through other
problems of related formulation and easier interpretation. For that reason,
a number of more or less acceptable simplifications are usually introduced.

The most commonly used simplifications of the placement problem are

the following four:

. Assume that the only objective is to minimize the total wirelength.

Reduce each component to a point (its geometrical centre) where all

pins are identified.
Represent all nets in terms of one-to-one connections.

. Assume that the board has a finite number of locations, to which
components can be assigned. All components are considered equal in
size and can take any location.

Under those assumptions, the total wirelength can be written as:

. n
4- r r c(i,j). dist [s(C.), s(C.)]
i-1 1 J

where c(i,j) is the number of wires between components C. and C”, and
dist[s(C.), s(Cj)] is the distance between the slots, or locations, to
whichCj and have been assigned. This function has to be minimized over

all possible permutations of each component to each slot.
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This problem is known as the Quadratic Assignment Problem, very
often mentioned in association with the Placement Problem. It should however
be noted that the quadratic assignment is, in itself, a very complex combi-
natorial problem. It has been shown by Garey et al . [GJ7f*] that the qua-
dratic assignment belongs to a class of problems called NP-complete, either
all or none of which are solvable in polynomial time. Since many infamous
combinatorial problems have been proved to be NP-complete, the latter al-
ternative seems far more |likely.For that reason, enumerative optimization
methods and approximation algorithms are frequently used.

From the above discussion and the rigidity of the former assumptions,
one must question the feasibility of reducing the placement problem to
the quadratic assignment problem. Even if an optimum solution to the asso-
ciated quadratic assignment problem was found in a reasonable amount of
computation time, that one would not necessarily be an optimum solution to
the original placement problem.

To assume that minimal total wirelength is the only objective function
may not necessarily increase routability, because it will tend to create
areas of wiring congestion.

The fourth assumption is also particularly restrictive. Only in the
case of regularly structured boards with fixed component locations can
permutations be considered. In most of the cases, the board is a conti-
nuous plane without predefined slots. It should also be noted that this
restriction evades the complex problems of rectangular cutting and
packing, often encountered in the placement of general cells.

The second and third assumptions are made in order to represent the

circuit in terms of a graph.



8. CIRCUIT REPRESENTATION

The definitions of the last paragraph reveal two different aspects
of the circuit layout problem. The "topological" aspect relates primarily
to the manner in which components are interconnected. Further topological
information may include the order in which the terminals of a component
appear on its outer boundary, interchangeability of terminals and the re-
quirement that the external connections have to appear on the outside
boundary of the circuit in a prespecified order.

The "geometrical" aspect of the circuit layout problem is primarily
related to parameters that can be measured. Distances, size of individual
components, thickness of conductor lines and the size of a printed circuit
board or an integrated circuit chip are examples of geometrical parameters.

A physical circuit (C,N) as defined, comprises topological informa-
tion about a set of components and the way they are related by a set of
nets. On the circuit board B, components are assigned to Euclidean coordi-
nates and related by distances on the plane. Hence the effect of the place-
ment process is, in some sense, to embed the circuit's topology in the
board's geometry.

Placement algorl thrrs requi re, as a framework, a convenient circuit
representation or model. An ideal circuit model should represent, as
faithfully as possible, all the topological aspects and also take the geome-
trical parameters into account. In practice, this objective is limited by
the actual functionality of the model. The efficiency of a placement
algorithm may however be determined by the correct choice of a circuit re-
presentation.

The definition of physical circuit is closely related to the mathema-
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tical concept of ahypergraph [Be70]. Given a finite set X = {xj ,x™...... x"}

and a family E = {E.]i 6 1} of subsets of X, the pair (X,E) is called a
hypergraph if E. ~<i> (i € I) and U E. * X
1 iei
The elements of X are the nodes and the sets E. £ E are the edges

of the hypergraph (X,E).

A physical circuit (C,N) has the structure of a hypergraph, where X
is the set of all component terminals which are connected and E is the
set N of all nets. In other words, terminals are the nodes and nets are the
edges of the hypergraph representing the circuit. Since components are sets
of terminals, they are also hypergraph edges. Fig. 1 shows a circuit and

its hypergraph representation.

FIG. | - A circuit and its hypergraph representation
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Hypergraph models have been used in association with the circuit par-
titon problem [La73]. but are seldom related to the circuit layout problem.
VanCleemput [Va76] developed hypergraph models for the circuit layout pro-
blem, that are able to represent ordering of terminals and other properties
of physical circui ts.

When all edges in a hypergraph are of cardinality 2, it becomes a
simple graph. Graph models have been widely used in several areas of the
design automation of digital systems, particularly in the circuit layout
problem. They are easy to program and can be made to represent different
types of circuit reflecting their topological and physical properties.
A very concise mathematical formulation on the use of graph models for the
circuit layout problem was established by VanCleemput [Va76] . Circuit pro-
perties were analysed in detail and different representations were develo-
ped and discussed.

The graph in Fig. 2.a) represents the classical"component-to-node,
connection-to-edge" model for the sample circuit in Fig. 1. Components are
represented by single nodes and each net is a complete graph, i.e. there
is an edge joining every pair of nodes belonging to the net. The number of
edges between two components therefore equals the number of nets which are

common to them.



FIG. 2 - Graph model of the circuit in Fig. I, with a) w=l and
b) w=2/n.

Since, in this representation, all edges were given the same weight
(w=l) and each net is connected by a total of n” " edges, there is an
overestimation of the high-order nets when compared to the low-order ones.
A way to balance this disproportion [HW76] is to give the weight w=2/n to

each edge in a net of order £. In that case, the total weight becomes

which is the length of the minimum spanning tree connecting £ nodes. Fig.
2.b) shows this last representation with all weights multiplied by a factor
of 6, for simplici ty.

Representing nets in terms of complete graphs seems an adequate model
for placement algorithms because the decomposition into single connections

can be done in the course of the layout. The problem of net decomposition can

be formulated as finding a spanning tree in a complete graph of £ nodes and,



as it was first proved by Cayley in 1S97> there are nn ” possible decom-
positions 1Be7Cl. It would be premature to establish a particular one, prior
to the actual placement of the components. The decomposition may depend on
the specific type of net (chain, star, cycle,...) and also on the techonology
in use. As an example, the circuit design in ECL and other fast logics may
require a resistor next to the terminal module of each net. In this case, it
is desirable that the decomposition of nets (and identification of terminal
modules) be performed subsequently to the placement of components.

The basic representation of components by single nodes, can easily be
adapted to incl ude the cyclical order of terminals and other topological pro-
perties. Geometrical information, like the physical dimensions of each com-
ponent, can be attached to the data structure representing the node and
taken into account by the placement algorithms.

A simple model, like the one described, also provides a convenient
representation for other types of design requirements. In addition to the
basic distribution of weights, determined by the order of the nets,
artificial weights can be imposed on specific edges representing vital
connections. An extra measure of connectivity can thus be introduced
between components belonging to a functional block or forming a loop which
must be kept together for maintenance and timing reasons.

Generally speaking, circuit models based on graph theoretic structu-
res supply a convenient framework for the placement algorithms. A variety
of models have been developed [Va76] , which are able to represent a wide
range of circuit properties. According to the specific problem, a model can
be organized as the one that best reflects the behaviour of the techonology

under consideration and/or the expected properties of the final layout.
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9. OBJECTIVE FUNCTIONS

The goodness of a placement is ultimately determined by how efficiently
it can be routed. Routability is however an intangible objective, depen-
ding also on other factors besides placement, such as the particular type
of circuit and the routing system which is to be applied afterwards. This
fact explains the diversity of objectives and properties that is found in
the literature reporting the different placement techniques. In particular,
when a placement scheme is to be incorporated into an existing routing
system, it naturally tends to accomplish the objectives that most adequately
model the wiring features of the routing system.

There is nevertheless a general consensus on a number of properties,
that practice has shown to be strongly related to circuit routability.

Those are measurable properties that can be evaluated independently of the
technology in use and the behaviour of any routing scheme.

The most widely accepted figures of merit for a good placement can
be grouped into two classes which we will name minimal distance objectives
and even distribution objectives. To the first class belong all classical
objective functions such as the minimal total distance. Among the even
distribution objectives is the minimization of the number of crossovers

through boundary lines.

9.1 - Minimal distance objectives

Let (C,N) be a given physical circuit, whose set of components
C={C. |i=l,...,n} is to be assigned to uniquely defined positions on a
board B. The position of component C. £ C will be defined by the plane

coordinates (x.,y.) of its centre point.
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In addition, let d be some metric relating any two points in the

plane such that
dij = d[(x.,y.) , (xi.yi)].

The set {d.ij i =1 has the structure of a symmetric matrix with
zeros along the main diagonal, and will be referred to as the distance matrix.

The most commonly used metrics are: the Euclidean distance
dj =\/(Xi-Xj)2 ¢ (yj-vj)2

and the rectilinear distance

It is also assumed that every circuit net £ Il has already been
represented in terms of single edges. The number of edges between compo-
nents C. and C., possibly adjusted by some weighting factor as seen in the
last paragraph, is said to be the connectivity c.j between those components.
The connectivity matrix jc.”.J. n is also a symmetric one and,

strictly for the present purpose, all the elements c.. can be made equal to

Let S be the set of all possible solutions of this placement problem.
Given a nonnegative integer k and a solution s € S, we define the k-th order

moment of s as follows



Mk(s) 1y Cip dij (5)

where the sum !s taken over all i,j such that 1 < 1 <j < n.

In the particular case of k = 0, the expression becomes a constant,

equal to the total connectivity of the circuit.
When k=l , the first moment is given by
J- Cij < dij(s)
" J fl
that is, the total distance of placement s. The minimization of Mj(s) over

the set of all solutions s £ S is known as the quadratic assignment problem.

If k=2, the second moment is determined as

The choice of M2(s) rather than M~(s) as an objective function for
the placement problem, may bring considerable advantages. From a computatio-
nal point of view, when the used metric is the Euclidean distance, it saves
the square root evaluation repeatedly required in a placement algorithm.

On the other hand, a solution obtained on tends to produce fewer long
distances, when compared with the minimal total distance solutions. This
fact is to be expected when one evaluates the variance of the distribu-

tion of distances from the mean value. The value of the average distance
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in solution s, denoted d(s) is given by

a(s):n--"\] _____________ L -

The mean square deviation from the average of the distances is the
number 07~ (5) defined by

2 A ¢ (d (s)-a(s))*
0j(s) =-LU— U_-Lt--mmmmmmmmmme

N
After some simple algebraic manipulation, this can be written as

MQ. M2(s) - Mj(s) M (s)
cd(5)

Since Mg is a constant, there exists a close relation between the
minimization of M2(s) and of 0’2\(3) , i.e. a better uniformity of the produced
distances. It should however be noted that the optimal solutions obtained
on M2(s) and on Mj(s) do not necessarily coincide. The most convenient
approach might be to choose, among the best solutions in M](s), the one
with smaller M2(s) and consequently lower o”is).

For higher values of k, the k-th moment (s) is related to yet
another frequently used objective of the placement problem, namely the mi-
nimization of the longest distance. In a given solution s 6 S, the longest

distance L(s) between connected components, is defined as

L(s) = max {6.. d..} where 6.. = J
I '11 1” J 1 otherwise .
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It has been proved by Steinberg [St6l] that L(s) can be regarded as
a limiting case of (s), i.e. there exists a K such that for all k ~ K,

the optimal solution on M”(s) is also the optimal solution on L(s).

9.2 - Even distribution objectives
Another class of objectives has been introduced, suggested by two

practical observations [Br77], namely:

successful routing is dependent on the density of interconnections.

some areas of the board are usually more dense than others.

It has also been observed that minimal total distance may not be a
good criterion to use in order to increase routability, since heavily
connected components tend to be clustered together, therefore creating
areas of wiring congestion.

In order to enable a measuring of the density of interconnections on
the board, a new concept was introduced and named boundary line or cut line.
The board is artificially divided by equidistant horizontal and vertical
lines, generating cells that approach the size of individual components.
Every single connection between a pair of components will cross a number of
boundary lines. For the set of all connections in the circuit and assuming
that the shortest routes are taken, the amount of crossovers at each line
can thus be determined.

Let x* be the number of crossovers at an individual boundary line t.
Over the set of all possible solutions s € S, the first objective function

one might consider is



X.I(s) =',[£ xl.(s)

i.e., the total number of crossovers for all boundary lines £=I,...,m.
By taking the cell width as measuring unit, it can be easily proven

that X|(s) equals Mj(s) when the rectilinear distance is considered. Using

Xj(s) as an objective function will not, for that reason, lead to better

results than the classical minimal distance objective.
As suggested by Wang [Wa80]: it is necessary not only to minimize the

number of crossovers, but also to ensure a uniform distribution of these
crossovers over the set of all cut lines.

For that effect Wang defined a new objective function that, in our

own notation, is written as
X2(s) = £ " (s).

Again, by evaluating the variance o (s) of the number of crossovers

from the mean value x(s) = Xj(s)/m

£ (X»(S) - X(S))'

a21 S
X m

we come to the expression

2
In fact, to minimize X”is) tends to minimize ox(s) therefore ensuring

a uniform distribution of crossovers. It should also be noted that X"(s)
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and X~(s) are not necessarily correlated, suggesting that a more convenient
approach might be the simultaneous optimization of both.
Breusr [Br77] defined another objective function based on the mini-

mization of the largest value

Y(s) = max (x.(s)}
i. 1
Following Steinberg's result [St6l] we may consider this objective

equivalent to a X"(s) with k of a sufficiently high order.

10. CONCLUDING REMARKS

The placement problem was here defined from a theoretical point of
view and an attempt was made in order to systematize its most widely
accepted figures of merit. For this effect a number of objective functions
was defined, which are independent of any particular technology or routing
scheme.

It should however be pointed out that the optimization of any of the
defined objective functions leads to a complex combinatorial problem. An
example is the case of Mj(s), and of Xj(s) as well, leading to the quadratic
assignment problem which is known to be NP-complete. On the other hand, a
careful choice must be made among those objective functions, since the
optimal solutions they produce may be conflicting. This is the case of a
solution obtained strictly on minimal total distance Mj(s) that may give

poor results in terms of even distribution of crossovers X~(s).
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From the above discussion it is clear that a convenient criterion
for the placement problem should involve a combination of two or more of
the referred objective functions. Moreover, since the problem cannot be
"solved" in the mathematical sense, it is admissible that approximation
algorithms be designed in terms of such combinations.

The simultaneous optimization of objectives may also bring other de-
sirable properties as side-effects. For example,to minimize M2(s) together
wi th XE(s) will tend to distribute the density of from-to pairs evenly on the board.

It is our belief minimal total distance Mj(s) balanced by an even
distribution of crossovers X”is) is, for most of the cases, the most conve-
nient combination of objectives. We think that efficient algorithms can
be designed as an attempt to minimize both functions, in such a way that
X~ (s) is favoured in the cases where conflict arises. As a result, a near
minimal total distance would be achieved and potential areas of wiring con-

gestion avoided.



CHAPTER I

PLACEMENT METHODS

1. INTRODUCTION

This chapter is intended as a guide and motivation for the following
ones, where a new placement method will be fully described and discussed
in mathematical terms.

The placement problem as defined previously has been studied under
different approaches,depending on the technology in use and the choice
of the objective functions to be optimized.

In the present Chapter we specify three basic approaches and accor-
dingly we classify the existing placement techniques.

Our new method is then globally described and classified. Its scope
and restrictions are considered and associated problems are raised.Special
concepts like “knot" and "connectivity tree" treated later in detail, are
sketched here.

The final section was designed as a summary of the subsequent Chapters

where the method will be fully analysed.
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2. CLASSICAL METHODS

A variety of placement techniques has been developed which directly
aim to optimize one of the classical objectives: minimal total distance and
even distribution of wires over the board surface.

In general, over an initial configuration either random or constructi-
ve, an iterative scheme swaps pairs (or groups) of components while some
improvement is observed. This approach makes this class of methods particularl

suitable for regularly structured environments with fixed module locations.

2.1. Initial placement

It has been debated in the literature whether it is better to use a
random start or a constructive-initial placement as an initial solution to
the iterative improvement algorithms. Proponents of the former argue that the
computation time to generate a constructive-initial placement is better spent
generating several random starts from which the best solution can be chosen.

However, experimental work on the subject [HW76] shows that there is no

correlation between the total distance of a random initial solution and the
final total distance after placement improvement. Therefore, the best initial
solution does not necessarily lead to the best final placement so that each
random start needs to be followed by the iterative improvement algorithm.
It is also stated by Hanan, Wolff and Agule that iterative-improvement algo-
rithms tend to run longer when starting with a random placement as compared
with starti ng wi th a good constructive-initial placement.Detai led expe ri men-
tation showed that, generating k random starts and following each one with
iterative improvement takes at least k times as long as generating one cons-

tructive-initial placement and following it with a placement-improvement



algor ithm.

Hanan and Kurtzberg [HK72] present a general discussion of the class
of constructive-initia 1 placement techniques and a description of the most
common algorithms. In this class of methods, modules are selected one at a
time and positioned in the partially formed configuration. The particular
rules for selection and positioning of the modules, define the specific
methods.

Once an acceptable initial configuration is obtained an iterative

scheme is then applied, depending on the objective function adopted.

2.2. Minimal distance methods

In this class we include all iterative placement methods that
aim to minimize the total distance Mj(s), therefore reducing the placement
problem to the quadratic assignment problem.

Over the last two decades a large number of papers on this subject
has appeared in the literature. Hanan and Kurtzberg [HK72] give a detailed
description of the most important minimal distance placement techniques
and a list of references. Subsequent to this work ,Hanan,Wolff and Agule
[HW76] performed a comprehensive study of the relative efficiency of those
techniques. Detailed experimentation showed that, for large problems, the
only viable combination of placement algorithms is based on the force-directed
pairuise relaxation algorithm. It not only achieves the best placement but it
also achieves it in the shortest computer time.

Pairwise interchange algorithms testall n(n-1)/2 possible pairs of n
modules for interchange.Whenever one tria | interchange results in a reduction

of M|](s) this interchange is accepted, otherwise the modules return to their



previous positions. In the force-directed algorithms,a force vector is

computed for each module M

where s... is the vector distance from M to i. This force vector allows the
target point, where the sum of forces on module M is zero, to be computed.The
target location of M is then chosen within a certain neighbourhood e.. of its
target point.

The force-directed pairwise relaxation algorithm is a combination
of both concepts. A module A is chosen for a trial interchange with a module
B located in only if A is located in e0. This procedure clearly limits the
number of trial interchanges and since two modules are optimized at a time,
computation time is reduced considerably.

The resulting solution, obtained strictly on the associated qua-
dratic assignment problem, may then be adjusted to the original placement
problem. This is still accomplished by means of the force-directed pairwise
relaxation algorithm adapted in order to minimize the minimum spanning tree
distances of the placement problem.

As already pointed out in Chapter |, minimal distance methods produce
solutions where heavily connected modules tend to be clustered together. On
the other hand, pairwise interchange algorithms perform badly whenever the
sizes of modules are signi ficantly different. The first problem can be avoided
by manual intervention, the latter problem can be solved by subdividing

a large module into its constituents.



2.3. Analytical methods

The analytical methods use mathematical techniques to directly optimize
a defined placement objective. The resulting solution is then used to produce
the placement configuration.

Force-directed placement algorithms [CM73] [QB79] are classical represen-
tatives of this approach. A set of simultaneous equations is established, which
models a system of attractive forces between interconnected components and
repulsive forces between unconnected components. The solution to this system
gives the equilibrium position of each module. This solution must then be adapted
to the particular type of environment: in regular structured boards components
are assigned to the slots and in the general case components are spread out in
order to eliminate overlaps. Quinn and Breuer [QB79] present a mathematical
formulation of the subject and a technique for solving the set of equations.

More recently, another class of analytical methods is being developed
where the objective function is basically the total weighted squared distance
M~s). Cheng and Kuh [CK8f«] formulate this approach to the placement problem
in analogy with resistive network optimization. A method is proposed for solving
the optimization problem and for using this solution to place the modules on
regularly structured boards. With a similar formulation, Blanks [B185] evaluates
lower bounds for M7is) and uses these bounds in the development of a new pairwise
interchange placement technique.

A mathematical model can also be constructed for the general placement
case. In the method presented by Markow et al. [MJS4], the objective function
depends on the total rectilinear distance and on a criterion of the chip size.
That function is also subject to a number of restrictions which define a position
for each block relative to the other blocks and the chip boundaries. The used
iterative optimization algorithm gives, at each step, a feasible solution and an
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estimation of the distance from this point to the optimal solution. The method
due to Sha and Dutton [SD85] follows a similar approach. However, the objective
function is defined in terms of a squared Euclidean metric and there are no

integer variables,which enhables the use of a classical optimization procedure.

2.4. Even distribution methods

This class includes all iterative placement methods that are intended
to minimize the number of crossings over a set of boundary lines.

At each cut line, the problem of grouping components into two subsets
so as to minimize the interconnections is typically a partitioning problem.
This subject will be discussed in Chapter IIl of this thesis.

The partitioning algorithm required by the placement methods included
in this class is usually based on Kernighan and Lin's procedure [KL70][SK72].
This procedure is essentially an iterative interchange between groups of mo-
dules selected from both subsets.

The location of boundary lines and the order in which they are pro-
cessed characterize the different placement methods. Breuer [Br77] introduced
the concept of sequential optimization of cut lines and elaborated a thorough
discussion on the subject. The placement algorithms of the min-cut class, due
to Breuer, are particularly suited to regularly structured boards with fixed
module locations. Two min-cut procedures, namely quadrature and slice/bisec-
tion, specify the position and sequence of cut lines. In the quadrature
algorithm the board is repeatedly bisected by alternating vertical and hori-
zontal lines. By first processing cut lines in the centre of the carrier, in-
terconnections are pushed away from this region. This fact makes quadrature
suitable for boards with a high density of routing in their centre. Slice/
/bisection is best suited to boards where there is a high interconnect

density at the terminals. The board is divided into successive rows and each



row is in its turn repeatedly bisected.
In other min-cut algorithms, like the one developed by Corrigan |Co79],
the order of partitioning is not predetermined. A set of "directives" defined

by the user during the process execution, is made to meet the particular

characteristics of the assembly.

Although the piacement methods included in this class have been originally

designed for regularly structured boards, they introduced a number of concepts that

can be appl ied to other types of envi ronment.The basic terms cut line and parti tion

are often present in hierarchical piacement techniques dealing wi th the general case.

3. HIERARCHICAL APPROACH

As discussed in Chapter | of this thesis, the increasing complexity of
integrated circuits with cells of dissimilar shape and size, brought up the
need for hierarchical layout methods. With the advent of VLSI, hierarchical

placement methods started to be considered.

There are basically two ways to handle the placement of general cells

under a structured approach. Either the whole circuit is successively partition-

ed until the cell level is reached or, starting with isolated cells, blocks

of increasing complexity are built up.

3.1. Top-down placement

Lauther's min-cut placement algorithm for general assemblies [La79]
is a typical representative of this approach. Starting with the total cell
area and the desired shape of the final assembly, it is possible to calculate

the expected dimensions of the substrate. The initial rectangle representing



the whole board is divided into two rectangles of sizes adjusted to fit the
total cell area in both subsets. The process is recursively applied to the
resulting rectangles, until each subset contains a single cell.

For partitioning, a modified version of Kernighan and Lin's procedure
is employed. The direction of cut lines is switched between horizontal and
vertical for each iteration unless, at the last steps, cells do not fit into

the avai table area.

Once each cell is allocated to a rectangular domain, its exact coor-
dinates and dimensions must still be determined. The use of three post-
-processors, namely "rotation", "squeezing" and "reflecting"”, can still im-

prove the final layout.

As pointed out by Wipfler et a). [WW82] the disadvantages of this
method are as follows: Due to its sequential nature the min-cut procedure
minimizes the number of crossovers locally but not globally. The results of
the bipartitioning algorithm also depend on the initial configuration adopted.
Moreover, the additional constraints concerning the size of the blocks (total
area of all elements assigned to the block) are difficult to implement. In
practice, this causes overlaps of cells.

In order to solve the first two problems, Wipfler et al. proposed a
method based on the force-directed concept. A force-directed placement algo-
rithm calculates the relative cell positions (circuit topology) and a cut
algorithm transforms this relative placement into a geometric cell arrangement
considering cell area. The cut algorithm is not a partitioning process, in
the sense we have been considering, since it only concerns board areas and
does not alter the circuit topology. In order to eliminate overlaps,

cells can be "moved", "rotated" and "mirrored" in interactive mode.



We also include In the present category the type of placement methods
that, while performing the space division phase in a top-down fashion, exe-
cute the partitioning of cells in a bottom-up mode. A clustering algorithm
combines blocks into groups of high connectivity from the cell level towards
the whole circuit, thus producing a cluster tree [MT79] [Ha82]. This tree
structure is traversed top-down during the process of space division, o)
that each block is allocated to a rectangular area.

At each hierarchical Ilevel of a top-down placement, the space divi-
sion phase can be interpreted as a Floor Plans problem [Ga81], where a combi-
nation of rectangular space costs and communication costs must be minimized.
In order to simplify this question, most of the existing methods are of a bi-
nary nature so that space division is,at each step, limited to the biparti-
tion of a rectangle. The problem can nevertheless be approached by means of
Linear Programming techniques, as in [MM82] [HS82], permitting an effective

optimization of the available area.

3.2. Bottom-up placement

As opposed to the former category, bottom-up placement methods start
from one cell and add other cells one by one until all cells in a block are
placed. Blocks are then combined in a similar manner and the process is re-
peated until the complete design is placed.

Let us examine the placement method due to Preas and van Cleemput
[PV79], as a representative of this class. The block structure (partition of
cells) is defined on functionality and a limit is imposed on the number of
blocks which are to be processed simultaneously. For this reason a branch-
-and-bound technique can be used to examine all possible solutions. At a given

level, whenever a new block is to be added to the partially formed configuration,
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every possible relative position has to be considered (i.e. above, under, to
the left and to the right), as well as all possible rotations and reflections
of the new block. The cost function to be minimized is the total area occupied
by the blocks and their interconnections, with possible constraints on the
maximum height, width or aspect ratio of the final assembly.

A bottom-up strategy can also be efficiently employed is standard cell
and polycell assemblies. Richard [Ri8"] uses a clustering algorithm to succes-
sively combine pairs of strongly interconnected (groups of) components. The
binary tree structure thus generated is then used to determine the order in

which the components are sequentially selected an placed.

For both approaches it holds that it is not enough to build a dense
placement of the cells, without including some expected routing area. |If
this area was not included during the process, the cells would have to be
subsequently expanded, thus producing an irregularly shaped assembly.

The expected routing area can be more accurately evaluated under a
bottom-up methodology. It is also possible to perform, at each stage, a com-
plete routing of the partial configuration. A placement method proposed by
Malladi et al. [MS81] includes an estimation of the interconnection channel
widths, as well as the number of interconnection crossovers and connection
lengths. The algorithm due to Chandrasekhar and Breuer [CB82] deals with the
particular case of a binary block hierarchy. At a given level, two rectangular
blocks are combined in order to produce a new rectangular block in such a
way that the total layout area including the interconnect space is minimized.
In [BK83] a statistical model is used for estimating the necessary routing area
at each hierarchical level and accordingly modify the initial placement

solution, obtained by a force-directed algorithm.



All the previous classes of placement methods explicitly aim to opti-
mize at least one of the classical objectives: minimal distance or even
distribution. Bottom-up algorithms are apparently only intended to minimize
the chip area. However connections do take space,and a global overview of
the circuit connectivity is essential to an effective optimization. For that
reason, the placement methods of the present category must rely on a starting
solution, usually obtained with the aid of one of the classical algorithms.

It should also be pointed out that, to pack a given set of rectangular
blocks into as small an area as possible is by itself a very complex combi-
natorial problem. Two-dimensional packing problems are known to be NP-complete
and the search for suitable approximation algorithms has been a field of

active research [GJ81].

4. THE USE OF GRAPHS

As discussed in Chapter | of this thesis, graph theoretic structures
offer a convenient representation for some aspects of the circuit layout
problem. In the representation of circuits,they can model a large range of
circuit properties. Graphs are also present in the form of trees, when repre-
senting different types of layout hierarchies.

In this section we include all placement methods that explicitly

make use of graph models.

4.1. Topological approach

Topological layout methods, rather than executing the usual phases



of placement and routing, first construct a graph model for the circuit. This
graph represents the topological aspects of the circuit as faithfully as
possible, while neglecting all geometrical information. The graph Is then
embedded In one or more planes with the restriction that no two edges must
Intersect except at the vertices. The final step consists of transforming the
topological layout Into a physical layout that takes Into account the geometri
cal properties.

The topological approach has the property of objectively considering
circuit planarity as a factor of circuit layout. Under the usual methodology
the problem is only taken into account during the routing phase, when compo-
nents have already been assigned to their definitive positions. In the case
of PC boards two distinct connections are not allowed to cross, which causes
a number of plated-through holes or vias. The technology of integrated cir-
cuits may provide a form of "cross-overs", which however consume some physical
area.

There already exist efficient, linear-time algorithms for testing
whether a graph is planar [HT74]. Yet, to embed a given graph in a planar
surface so as to minimize the number of edge-crossings, has proved to be

another NP-complete problem [GJ831.

VanCleemput elaborated a comprehensive study of topological layout
methods [Va76]. A very concise mathematical formulation of graph models was
established and a number of algorithms, dealing with the graph embedding
problem, were presented. A variety of models and embedding algorithms has been
developed, which are able to capture the particular topological properties of

different technologies [NJ85].



The space partition method reported in [MM82] [HS82] makes use of
the dual of a planar graph concept in a different approach to circuit em-
bedding. An important property of a planar graph Is that it has a planar dual.
If certain conditions are satisfied, a planar original graph (POG) will ge-
nerate a rectangular dual graph (RDG). Figure 3 shows an example of this

correlation.

c
B A
F E D
FIG. 3 a) Planar original graph b) rectangular dual graph

Rectangular areas in the RDG represent nodes in the POG and contiguity
between rectangles in the RDG represents connectivity between the correspon-
ding nodes in the POG. The dimensions of the rectangles are evaluated as a
function of the connectivity between blocks, the cell count for each block and
particular technological constraints. A search for the solution with minimum

or near minimum total area is then performed by means of Linear Programming
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techniques.

4.2. Polar graph concept

The idea of representing an arrangement of non-overlapping rectangles by
a polar graph had already been applied to the layout of integrated circuits.
However, only with the advent of hierarchical placement methods, was this
concept fully explored. Figure 4 shows a sequence of stages during a top-down

placement process [La79] <

FIG. 4 - Polar graphs representing top-down placement

At each stage, the arrangement of blocks is represented by a pair of
planar,acycl ic directed graphs. The graph represents the x-dimension and

is denote by dashed lines whereas the y-dimension graph G~ is denoted in full.



There is a one to one correspondence between the edges of and G”. When the
algorithm starts, the two graphs contain one edge each. This pair of edges
represents the initial rectangle, whose dimensions are evaluated in terms of
the total cel 1 area.

The partitioning of aset of cells is represented by a splitting of
the corresponding edge pair, into two new edge pairs. The lengths of the new
edges are adjusted, according to the total cell area in each subset.

At the final stage, each edge pair represents the real dimensions of
a single cell. Note that until now we only have a relative positioning of the
cells, as represented by the edges in both graphs. To find the actual coordi-

nates of the cells, a longest path algorithm must still be applied.

This polar graph representation of blocks has also been employed by
bottom-up placement algorithms [PV79]. The model is similar to the one already
described, with the difference that an edge pair always represents a single
cell instead of entire blocks.

From the basic model generated during the placement phase, a more
detailed version can be derived, representing the positions and widths of rou-

ting channels [PG78J [La791[Ha32].

** 3- Symbolic layout

A different approach to the layout problem involves the input, by the
circuit designer, of a diagram representing the circuit topology [Wi78]. A
set of programs adjust this diagram in order to include all significant design
rules and minimum geometry constraints. This is followed by the use of an

automatic compaction routine.



Under this semiautomatic approach, more sophisticated systems may
provide the access to a collection of routines to improve the different

stages of the process [Hs8l | [LJ8Z] [RR851 .

k.k. Conpaction

An increasing number of layout automation systems, dealing with custom
1C design, rely on some form of compacting layout configurations into as
small an area as possible. Compaction is a relatively new field in CAD [AG70],
which is rapidly becoming a vital tool in the design of custom 1C layouts. To
this subject, an interesting parallel has been suggested by Cho [Ch85] between
1IC layout and computer programming: "doing layout with compaction is like
programming in high-level languages... As projects become more complex and
compaction improves, doing layout with compaction may dominate the custom
design process, just as most programming projects today are done with high-
-level languages".

Two-dimensional compaction is a complex problem, which has proved to be
yet another NP-complete problem in layout automation [AH??] . For that reason,
most of the proposed methods separate the compaction problem into two independent
processes: the x-compaction, during which elements can only move horizontally
to the left and the y-compaction, where elements move strictly vertically to
the bottom.

Several different approaches have been proposed for solving the compaction
problem |Ch85]. Here we will outline two main classes of methods, namelly
constraint graph and compression ridge.

Under the first approach, a graph structure is first built to indicate
the relative positions and the minimum distances required among the elements.

Similar to the polar graph concept, a constraint graph may however be made to



represent arbitrary rectilinear areas [HW8»]. The x-compaction is performed
with basis on the graph G" (as defined in § [*.2) and the y-compaction is
performed over G», in two independent processes. In a second phase of the
method, both graphs are solved using a longest path technique.

Finding a shortest path in a directed graph is a well-known computer
science and operational research problem. Changing from shortest path to
longest path involves only minor modifications to the chosen algorithm [GK85].
Working on the graph G”, the minimum required x-dimension of the chip can be
evaluated as the length of the longest path in Gx> The x-coordinate of each
component must be, at least, the length of its own longest path away from the
source node. A parallel process evaluates the y-coordinates of components.

The basic constraint graph approach can be improved in a number of
directions [Ch85). In particular, compaction methods are being developed which
are compatible with hierarchically designed layouts. A further minimization
of the total chip area might still be achieved by rotating particular components
along the critical path, whenever this operation does not result in a noticeable
increase in the opposite chip dimension. This approach could require
several iterations and repeated longest path evaluations but appears
viable by means of network programming techniques.

Compression ridge methods [AG70] perform compaction by cutting off
empty spaces. Each x-compaction process cuts off an equal-width vertical
segment (not necessarily continuous) that forms a complete column.
X-compaction and y-compaction are alternated until no complete column or
line can be found.

Compaction was originally introduced as a means of packing rough

sketches or symbolic diagrams to produce 1C layouts. It may however become
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a powerful tool when used as part of a fully automated layout system.
Placement and routing may then be performed on a larger virtual area and

subsequently compacted in order to produce the final layout [RM83].

5. A NEW PHILOSOPHY

The intrinsic complexity of the placement problem together with the
diversity of layout environments, has led to the development
of a variety of placement techniques. Depending on the technology in use
and the choice of objectives, different approaches have been considered
and a number of placement concepts has been originated.

The layout of integrated circuits motivated the use of hierarchical
methods as a means of dealing with increasing circuit complexity. However
this approach is not, in our belief, completely explored. Few attempts
have been made to build up the hierarchical structure and then to map it
into the board surface.

In most of the top-down placement methods, the hierarchy is defined
through a sequence of partitions that locally minimize the number of inter-
connections. As already pointed out, this technique requires a good initial
solution and the interchange of blocks is constrained by their relative si-
zes. Moreover, the iterative nature of the partitioning process is not
actually defined in mathematical terms. Blocks are successively interchanged
as long as some improvement is found, but there is neither a guarantee of
the convergence of the process nor a limit on the number of iterations.

Bottom-up placement methods also rely on a starting solution for a

global overview of the circuit connectivity. The hierarchy of blocks is
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defined by the user and based on functionality.

We suggest that a more effective approach consists of elaborating
first the entire circuit hierarchy and then embedding it in the board.
We believe that a tree structure can be built, modelling the hierarchy
of blocks, in such a way that desirable properties of the final placement
are incorporated. This tree structure can subsequently be mapped into the

circuit plane in accordance with the particular type of environment.

A major advantage of the proposed approach lies in the fact that
placement objectives are included in the building of the structure. In
particular, a hierarchy can be elaborated in terms of the classical
objectives, i.e. minimal total distance and even distribution of conne-
ctions .We assume that efficient algorithms can be designed for the buil-
ding of such a structure taking account of a chosen set of topological and
geometric circuit properties.

Under this approach, no initial configuration is required and no ite-
rative interchange is performed either during the building or the em-
bedding of the tree structure. This structure represents the relative
positions of the blocks on the board, which were defined in terms of circuit
properties and placement objectives. It can only be altered by manual in-
tervention or by geometrical board constraints.

The hierarchical structure at each level consists of detailed infor-
mation about the elements included in each block as well as their connecti-
vity. This information may became a valuable legacy to a subsequent hierar-

chical router.
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In the next paragraph a new placement method, designed in accordance
with the proposed philosophy, is globally described. It combines the expe-
dience of a hierarchical approach with the global circuit overview provi-
ded by classical methods as we 11 as making extensive use of graph theoretic

models .

6. PROPOSED METHOD

Consider a physical circuit (C,N), defined by a set C of components
interconnected by a set N of nets and also a circuit board. This system
may represent any type of placement environment such as a regularly

structured PC board or a general cell VLSI chip.

The initial phase of the placement method proposed consists of
representing (C,N) by a suitable graph model. As discussed in Ch. | - 88,
a variety of graph theoretic structures provide a broad range of choice
for the most adequate model. In the implementation of the method, the
classical "component-to-node, connectlon-to-edge" representation was ado-
pted. It is a simple model for the basic topological circuit properties,
which also provides a convenient representation for other types of design
requirements. Artificial weights may, at this stage, be imposed on speci-
fic edges in order to reinforce vital connections or to favour a required

proximity between components.

The graph model acts as a basis for the building of a tree structure



representing the circuit hierarchy as suggested in the last paragraph. A
binary hierarchy was adopted in the implementation of the method, in order
to simplify the following space division phase.

The tree structure is therefore a binary tree ,called a connectivity tree,
where each leaf represents a graph node and the root represents the whole
graph. Figure 5 shows a connectivity tree for the sample graph model indi-

cated in Ch. 1. § 8.

FIG. 5 - The connectivity tree concept

The way in which graph nodes are associated is determined by the
choice of placement objectives to be optimized. As discussed in Ch. 1.
§ 10., we assume that minimal total distance balanced by an even distri-
bution of connections is, for most of the cases, a convenient combination
of objectives. In the following Chapter we present a study of the defi-
nition of the connectivity tree and also a tree building algorithm based

on the optimization of such objectives. This algorithm works in a bottom-up
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fashion, by successively associating pairs of nodes. At each tree vertex
the resulting coalescence of nodes, or pairs of nodes, will be named a
knot. This concept is intended to depict a group of interconnected nodes,
with all the internal and external incident edges.

At this stage, the user may be given access to the tree structure
generated by the algorithm and eventually alter the distribution of arti-
ficial weights on the edges of the graph model in order do obtain some

desired effect.

In the next phase of the method, the connectivity tree is mapped into
a given board area. Specific characteristics of the particular type of en-
vironment must now be taken into account. This problem is discussed in
Chapter IV of this work, where two algorithms are proposed, one for regu-
larly structured boards with fixed slot positions and the other for the gene-
ral case of a continuous plane.

The mapping process is considerably simpler for the first type of
board. In the general case, an intermediate stage is required in order to
evaluate the expected routing area. Since the connectivity tree is built in
a bottom-up order, this stage may however be associated with the tree buil-
ding phase, in a similar manner to the one discussed in § 3-2 of the pre-
sent Chapter. Each tree vertex will therefore contain an estimation of
the corresponding layout area including the interconnect space. The tree
root will provide information about the expected total layout area of the
assembly.

To embed a given hierarchical structure in aplanar surface is essen-

tially a space partitioning process. In the simple case of a binary tree
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structure this process is, at each step, reduced to the subdivision of
a rectangle into two rectangles of specified areas. Figure 6 describes a

sequence of stages in the embedding of the sample connectivity tree de-

picted in Fig. 5-

FIG. 6 - The space partition phase

Each one of the basic circuit components is now allocated to the cen-
tre point of a singular rectangle. Local adjustments, of each component
within its rectangular domain, may still be performed in order to enhance

the routability of the placement solution.
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7. SCOPE AND RESTRICTIONS

A new placement method has been proposed as a representative of a fully
hierarchical placement philosophy. In the present paragraph we investigate
the correlation of an approach with other stages of the layout process
and point out the main difficulties encountered in the implementation of
the method.

The proposed placement approach is compatible with a wide range of
layout environments. A collection of algorithms will map the connectivity
tree into different board geometries.This fact enables the use of the
method at various layout levels of the system hierarchy discussed in Ch.
I. § 5- The connectivity tree of a given circuit then becomes a branch of
the tree structure representing the whole physical hierarchy of the sys-
tem. Under this perspective, we believe it is viable to apply similar
algorithms to the one used for the building of the connectivity tree to
other aspects of the layout problem. The partitioning of the circuit into
several boards so as to minimize interboard connections and the grouping
of gates into components with minimal intermodule connections, are two
likely candidates.

Subsequent to the placement of a PC board, the step of gate assignment

is essentially a placement at the component level. Wire-list determina-
tion and pin assignment can be performed in terms of the placement solu-
tion.

The connectivity tree also provides valuable information to be used
during the routing phase. We suggest that the sequence in which the wires
are processed, could be defined in terms of a bottom-up tree ordering.

Since one major objective in the building of the connectivity tree is
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minima) total distance, components associated at the lower levels and
therefore going to be placed together, are also the most strongly inter-
connected ones. A number of hierarchical routing methods has been proposed
[LS80][BP83|[RMS3] , where a bottom-up scheme defines "saturated
zones" on the board that are successively processed in a shortest-first
order. Our approach can be made compatible with such a routing scheme

if "saturated zones" are identified with the board areas defined by the

space partition phase.

With respect to the implementation of the proposed placement
method, the main difficulties concern the space partitioning phase. These
difficulties are originated by two major factors: specific design requi-
rements and a high density of components.

Examples of design requirements are the location of edge connectors,
the preplacement of components or blocks and the existence of preferential
and forbidden board areas. The space partition algorithms are compatible
with a limited number of preplaced elements because these will act as
fixed points in the mapping of the tree structure. However, the existence
of a large number of preconditions tends to conflict with the established
placement object!ves. Design requirements will then be satisfied to the

detriment of the structure defined by the connectivity tree.

At the end of the tree building phase, we have an estimate of the mi-
nimum total area required for the placement of the circuit. In most cases,
the available board area is larger than the required minimum and the

mapping algorithm will distribute components uniformly on the board sur-



face. Tree-embedding algorithms are designed in such a way that the area
attributed to each block is proportiona 1to the tota larea of the components
it contains. The area occupied by components, and consequently the
empty spaces, will then be evenly distributed over the available space.

In the case of very dense boards this proportionality is difficult
to achieve, in particular when elements of very dissimilar size are
involved.

The binary top-down approach to space partition adopted here may also
cause fitting difficulties at the lower levels, in the cases of a high
component densi ty. Sinee the implemented version of the method did not
include any selection of component orientation, this problem had to
be solved by manual intervention. However, it appears feasible to con-
sider a more elaborate version of the method, where the best relative
orientation of two coalescing components is determined during the tree
building phase.

A more general solution to the difficulties caused by very dense
boards, in particular when a minimum total area is required, would com-
prise two stages. The circuit layout on a virtual area, estimated as suffi-
cient for placement objectives to be accomplished, followed by the use of

an automatic compaction routine.

8. ABSTRACT OF THE FOLLOWING CHAPTERS

In the following two Chapters the placement method proposed will

be studied in detail. Chapter IlIl comprises a discussion, in mathematical



terms, of the definition and building of the connectivity tree. The tree-

-mapping process is described in Chapter IV. Two algorithms are presented,

one for regularly structured boards and the other for the general case of a

continuous plane, both taking into account the problems raised in the last

paragraph. In Chapter V we reporta summary of the results of the implemen-

tation of the proposed placement method.



CHAPTER |11

GRAPHS, PARTITIONING AND TREES

1. INTRODUCTION

As seen at the end of the last Chapter, a concept fundamental to this
work is a binary tree representing the connectivity structure of a given
circuit.

In this Chapter we discuss the definition and building of the conne-
ctivity tree. Starting with some graph theoretic concepts, we analyse the
partitioning problem and its relationship with placement. Tree-objectives

are established and a tree-building algorithm is presented.



CHAPTER |11

GRAPHS, PARTITIONING AND TREES

1. INTRODUCTION

As seen at the end of the last Chapter, a concept fundamental to this

work is a binary tree representing the connectivity structure of a given

circui t.

In this Chapter we discuss the definition and building of the conne-

ctivity tree. Starting with some graph theoretic concepts, we analyse the

partitioning problem and its relationship with placement. Tree-objectives

are established and a tree-building algorithm is presented.



56

2. NOTATION AND CONCEPTS

A graph is a system consisting of a finite non-empty set {x.]| i=1,2,...
of nodes and a family of unordered pairs of distinct nodes (x.,x".) called

edges. The node set of a graph G will be denoted by W(G) and the edge set

by E(G).

With all pairs of nodes (x.,Xj) a real function c(x.,xj called

weight is associated, such that:

a) V x.,Xj € N(G) : c(x.,Xj) >0.

b) c(x.,Xj) > 0 if and only if (x.,Xj) £ E(G) i.e. stricly positive
when there is an ed%e between X5 and Xj' Note that c(xi.,x.i) =0

for all x. .

c) c(x.,xj) = c(xj ,x.).

Given a graph G, a knot A is a subset of G consisting of a set of no-
des W(A)cN(G) and all edges incident to them, with the initial weights.
Considering the graph shown in figure 7, A is the knot built upon the no-

des Xj, x™ and x*.

FIG. 7 * The concept of knot



Edges between nodes in A are called internal to A and not represen-
ted in the diagram. Simi larly, the edges connecting nodes in A to the outside
are said to be external to knot A. In the simplest case, a knot may consist

of a single node x. £ N(G) with all edges incident to it.

We will now define the operation coalescence (0) between a pair (A,8)

of knots with disjoint sets of nodes, l.e. W(A) fl N(B) = $, as
o: (A,B) « Ao B

The result AoB is a new knot such that

N(Ao B) = W(A) U N(B)

and E(A o B) = E(A) U E(B), as illustrated in figure 8.

FIG. 8 - Coalescence between knots



The following concepts are made to introduce a measure of the edges
in a knot, both the internal and the external ones.

Let us consider the definition of degree 6(x) of a node

x £ W(G):
6(x) =\ c(x,x.) = \ c(x,x.)
X X../ X
i i
since c¢(x,x) = 0.

Similarly the degree of a knot A will

be the sum of weights for all
external edges, i.e.

6(A) = 1 1 c(x.,x ).
X. £A ijA J

Between two knots A and B with disjoint sets of nodes, we determine

their interconnectivity y (A,B)

y (A, B) = 1 c(x. ,x )

and may therefore evaluate the resulting degree of two coalescent knots

6(A 0 B) = 6(A) + 6(B) - 2V (A.B) =

Considering now the internal edges in a knot, we define

intraconnecti-
vity 4>(A) of a knot A as the sum of weights of all

internal edges,

i.e.
v (A) =4 1 | c(x ,x)
Lx. €A ><J £ A 1
Note the coefficient 1/2 is present because each edge would otherwise be
counted twice.
In the trivial case of a knot consisting of a single node x, there are
no internal

edges and $(>t) = 0; as to a coalescence A o B we determine
jPHN RYLAfH
university

lierai
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(A 0 B) = &(A) + MB) + y(A,B) .

For the total measure of both internal and external edges in a knot

A we define connectivity °(A):

o(A) = B6(A) + 2 <p>(A).

In the case of a single node x, connectivity is the same as degree,

o(x) = 6(x)

and for two coalescent knots

o(A o B) 6(A 0 B) + 2 ijA o B) =

6(A) + 6(B) - 2 y(A,B) + 2 $(A) + 2 $(8)+2 ¥(A,B) =

o(A) + o(B)

which makes connectivity additive with respect to knot coalescence. There-

fore we may compute the connectivity of a knot A in terms of the degrees

of its nodes

°(A) = o(x.) = 1 6(x.) .

Regarding the whole graph G as a knot without external edges, i.e.

aG) = 0, we have

o(g) = 6(g) + 2 Mg) = 2 Mag)

and thus
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which is Euler's first theorem of graph theory.
Let n(A) be the number of single nodes in a knot A; we determine

ratio of connectivity p(A) as the quotient

o(A)

P(A) ittar b4

Note that the ratio of connectivity of the whole graph G is
n

0(G) i=l 5(*i>

"© = e

i.e. the average degree of its nodes.

3. THE PARTITIONING PROBLEM

A tree can be defined as a connected (every pair of nodes are joined
by a path) graph, with no cycles (closed paths). In particular, a binary
tree is characterised by a root of degree 2 and leaves of degree 1 whereas
all other nodes are of degree 3. In this work nodes of trees will be
called vertices, in order to be distinguished from nodes of the Initial
graph.

We give the name connectivity tree to a binary tree representing the
sequence in which coalescences of knots in a given graph are made. Each
leaf represents a single node and all other vertices the result of two coa-
lescent knots, the root thus containing the whole graph.

Figure 9 shows an example of connectivity tree and Its original graph.
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FIG. 9 - A connect 1livity tree

Our aim is to find a special sequence of coalescences,that is, to
build a tree satisfying certain predefined properties. We could, for ins-
tance, intend to maximize the interconnectivity at all coalescences made
or, which is the same, minimize the degrees of all successive knots.

This is, in some sense, a bottom-up approach to the Graph Partitio-
ning Problem, which can be stated as: given a graph G with costs (weights)
on its edges, partition the nodes of G into subsets no larger than a
given maximum size, so as to minimize the total cost (sum of weights) of
all edges cut. Other formulations of the problem take different specifi-
cations into account such as, for instance, the number of permitted subsets.
By traversing the tree top-down, each vertex may be regarded as a partition.

Graph partitioning is a NP-complete problem, which has been studied
under several forms and in fields ranging from Combinatorial Analysis to
Linear Programming. Due to its combinatorial complexity, a strictly exhausti

procedure to find a particular solution Is completely infeasible. To see
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this let us count, in our case, the number of connectivity trees generated
by a graph with £ nodes. Let that number be denoted by x~.
Since coalescence is a commutative operation, there is only one tree

for a graph with 2 nodes:

i.e., there is only one tree with two leaves.

Assuming we know xn let us now evaluate how many trees there are with
n+l leaves. It is known that a binary tree with n leaves has a total of
2n-1 vertices (n leaves plus n-1 internal vertices). The (n+])th leaf can
be coalescent to any of them thus, for each tree withf leaves there are

2n-1 trees with n+l leaves, i.e.

T (2 n-1) X, -

n+l

Similarly

X_ = (2 n-3) Ty

= (2 n-3) (2 n-5) Xz

= @2 n-3) (2 n5 ... x2

= (2n-3) (2n5) ... 5 3. 1

-1
- nn (2 |'|) (2 n-2)1
i-l 2n_1(n-1)!

Note that this expression has a growth rate of a factorial times a
power of 2, producing very large numbers for relatively low values of ji,

e.g.

x,0 = 3''t59'»25 (5:3* 107).
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Because it seems likely that any direct approach to find an optimal
solution will require an inordinate amount of computations, heuristic
methods are usually considered. They can produce good solutions (possibly
even an optimal solution) and at the same time be sufficiently fast to be

practical.

4. A LOOK AT PREVIOUS WORK ON PARTITIONING GRAPHS

The physical problem of dividing a circuit into two or more blocks
with a minimum number of interconnecting wires is typically a partition
in the mathematical sense. However, the explicit partitioning of graphs
to enhance the performance of placement algorithms has received little
attention. Usually parti tioning is only considered as an interchange impro-
vement process over an initial placement. This includes the min-cut
methods [Br77] [Co79] [La79] all based on Kernighan and Lin's procedure
[KL70] [SK72] adapted to obey particular constraints.

Basically the pairwise interchange strategy is as follows: "An element
in A which is more strongly connected to elements in B than in A is consi-
dered a good candidate for a move to B. Similarly, elements in B are inspected
for A candidates. The candidates from A and B are paired and the (hopefully
positive) improvement from a simultaneous exchange is calculated for each
pair; then the best pair is exchanged and the algorithm repeats until no
further improvement can be found".

Kernighan and Lin's approach is to find, not just single pairs of ele-

ments to exchange, but entire groups of equal size. Therefore, even if



the exchanging of subsets results In a loss, the exchange of whole groups
may still give a profit. This is a more powerful approach but it still
requires an initial placement and there is no way to tell how many itera-
tions will be performed, each of them a partition problem on its own.
Besides, the order of the partitions, their direction and position can

all influence placement optimization. The order of partitioning needs
careful selection since, for each element, the number of choices decreases
with the continuation of the process.

Another partitioning method is the Ford and Fulkerson Max Flow -

- Min Cut algorithm for networks [FF62]. The main difficulty in its use on
the placement problem is that, on finding minimal-cost cuts it isolates
nodes with only one low weight edge. As discussed in the next paragraph,

a connectivity tree whose branches are too unbalanced in size should be
avoided since it generates space fitting situations. Ford and Fulkersonls
procedure makes no provision for constraining the sizes of the resultant
subsets, and there seems to be no obvious way to extend it to include
this.

Clustering methods [LL69] are of a much more intuitive nature on "iden-
tifying natural clusters" of nodes which are strongly connected in some
sense. However, provision is not made for elements not obviously belonging
to any set.

In our opinion, merging (bottom-up) processes seem a better approach
to the partitioning problem than the splitting (top-down) ones. The main
reason is a considerable reduction in the problem's complexity since,
each level comprises only the selection of a few elements to be merged.

Also, each resulting cost can be computed in a time independent of the



total number of elements.

Important theoretical work was done by Luceio and Sami [LS69] giving some
useful heuristic ideas which can be exploited to give good merging solutions.
Given a graph, a group A of nodes is defined as minimal when, for any proper
subset AcA where A j;if, ((A) > 6(A). The main theorem of this paper establis-
hes an interesting property, namely, that minimal groups cannot partially

overlap, i.e., either

AuB or B3 A or AflB-

A procedure based on this property is then outlined for determining all the

minimal groups in a given graph.

5. ESTABLISHING OBJECTIVES

The concept of a connectivi ty tree, being the topological representa-
tion of a given network should, in its structure, approach the objective
functions already established for the placement problem. In the present
paragraph, those objectives are transferred to defining an optimal connecti-

vity tree.

5.1. Minimal total distance

The basic aim is to keep together components (or groups of components)
which have strongest interconnectivity. The operation coalescence results
in the shortening of a distance between knots A and B. If most of the

external edges in A go to B and conversely, then they should be coalesced.
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The resulting AoB will have lower degree than either A or B.
This closely resembles Luccio and Sami's concept of minimal group.

Translating to our own notation, we say a coalescence is minimal when

6(A o B) <min {¢(A), 6(B)}.

In that case, since

6(AoB) = 6(A) + 6(B) - 2 V(A,B) < 6(A)

we have 6(B) < 2 Y(A,B) and similarly 6(A) <2 Y(A,B) . Meaning that a mini-

mal coalescence can only occur when

V(A,B) > max (1/2 6(A), 1/2 6(B))

i.e., most of the external edges in both A and B are interconnections.

This is, of course, the ideal situation, not usual in practice. Yet,
an efficient procedure for building a connectivity tree should be able to
perform all existing minimal coalescences. Luccio and Sami's main theorem
guarantees that each knot will at most have one possible minimal coalescence,
which is easily inferred from the condition above.

Extending the concept to the whole tree we define anopti mal connectivity
tree, in the sense of a final placement with minimal total distance, as
the one where all coalescences are minimal, and therefore the degrees of
the vertices decrease upwards from leaves to root. Figure 10 shows an optimal

min-dist tree, with the degrees at the vertices.
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FIG. 10 - Optimal min-dist tree

5.2. Even distribution of wires

Another important measure of a good placement is the even distribution
of wires across the board surface. In graph terms, the objective is to
make the number of edges proportional to the number of nodes at each knot,

i.e. a constant ratio of connectivity
P (A) 9(a)
for every knot A. At the next phase of the algorithm real components sizes

will be taken into account and the proportionality extended to areas on

the board.

In the sense of a constant ratio of connectivity, an optimal coalescence

AoB is the one where

p(A) = p(B).
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Note that, in this case

o(A) o(8) is also equal to
n(A) n(B)
o(A) + g(B) o(AoB) _
n(A) + n(B) n(Aopg) - PAOB)
i.e. the resulting knot still has the same ratio.

An optimal connectivity tree in the sense of even distribution is
therefore the one where every coalescence is optimal and the ratio of
connectivity constant for all vertices. Also, since the ratio at the root

is the average degree of all nodes

1 n
p (root) - — I 6(x.),
j«l

the ratio at each vertex should be this value, or at least approach it.

Fig. 11 shows a tree where the ratio is constant for all non-terminal

verti ces.

FIG. I Optimal even-distribution tree
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5-3- Balancing the tree

It is also desirable that the tree should not be too unbalanced.
There are good practical reasons for that.

The first one is that the next procedure is a tree traversal, and
the corresponding complexity can increase from O(n log2 n) to O(n ) in the
case of an extremely unbalanced one.

On the other hand, a large disproportion in the sizes of two coalescing
knots, will be transmitted to the areas of the two rectangles to which they
are going to be mapped. The smaller knot would be made to fit a long thin
strip therefore increasing the distance between its elements. The extreme
situation of an isolated component would leave a long empty wasted area at
its side.

For these reasons it would be convenient to build a completely symme-

trical connectivity tree, where at each vertex

n(A) = n(B).

It is interesting to note that this property can also affect the uni-

formity of the connectivity ratio. Since in this case

P(A 0B = e p(A) = p(B).

then, the resulting ratio is the mean of the ratios of the coalescing

knots.



5.% Concluding remarks

Three objectives have been established for defining a connectivity
tree leading to an optimal placement, yet, for each of them, the optimal
solution does not always exist and even a search for the best solution is
by itself a complex combinatorial problem.

Moreover the three objectives are difficult to combine and are, in
some cases, incompatible. For instance, a binary tree built strictly on
min-dist is, as observed in practice, a very asymmetric one, since the
low degree components tend to appear isolated at the upper branches.

Minimal total distance can also conflict with the constancy of conne-
ctivity ratio. Consider the situation on figure 12: fig. 12.a) shows the
original graph, fig. 12.b) the tree built solely on min-dist and fig. 12.c)
the tree aiming for a constant ratio. The degrees of the vertices are denoted

0] and the ratios in D .

FIG. 12 - Connectivity trees of graph a), built on b) min-dist and

c) even distribution.
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In a conflict situation like this one the second solution should be
chosen, favouring a final placement with even distribution of wires to a

minimal total distance one, as discussed in Chapter |I.

6. TREE BUILDING ALGORITHM

The remarks in the previous paragraph are, in a theoretical sense, a
summary of the main difficulties in the placement problem. Hard, and some-
times contradictory objectives are contemplated.

The tree building procedure presented here tries to meet the three
objectives as closely as possible, while being competitive in terms of
running time and memory space. A merging (bottom-up) approach was followed
as the simpler and more economical solution.

Let us recall the three objectives:

0~ — Minimal total distance (6(A o B) <min {6(A), 6(B)})
0~ — Even distribution of edges (p(A) = p(B))

— A symmetrical tree (n(A) = n(B))

The algorithm starts by treating all nodes as knots and successively
coalescing strategically chosen pairs of knots, until there is only one left
(root of the tree).

At each step, a knot S is selected, which then determines the choice
of C to be coalesced to. This choice of C is based on the interconnectivity
f(S,C) and aims for 0j. The selection of S is intended to balance the tree

both in size and ratio.



6.1. The selection of S

The way knot S is selected at each step is essential to objectives
02 and 0Oj, to produce a tree balanced in terms of size as well as conne-
ctivity ratio.

The element going to lose its individuality is basically the
smallest (S) in size,i .e. the one with the least number of nodes. By succes-
sively coalescing the smallest knot we obtain a more "fanned-out”, i.e.
symmetrical tree.

However, especially at the first steps working on isolated nodes, a
selection based only on size is still undetermined, leaving plenty of
scope for a secondary order to be introduced. From the equally smallest
knots, the algorithm takes the one with lowest degree. The effect is simi-
lar to the former one: low degree elements coalesce first since they have
less choice. They will tend to distribute evenly around the high degree
ones. Experience showed that otherwise they remain isolated till the upper

tree vertices.

6.2. The choice of C

This is mainly a search for a minimal coalescence with knot S. The
algorithm looks for the "closest" (C) element to S in order to minimize
their distance.

Primarily C is the most connected knot to S, i.e. V(S,C) is maximal.
Again, this choice is still, in general not uniquely determined. Let CI

and C2 be two equally connected elements to S. Then

»(S.Cl) = Y(S,C2),



let us also assume that 6(Cl) <6(C2) and evaluate the degrees of the two

possible coalescences

6(S o Cl) = 5(S) + 6(C1) - 2 f(s,Cl)
and

6(S 0 C2) = B(S) + B(C2) - 2 V(S,C2).

Therefore 6(S o Cl) < 6(S o C2) and since there is no more than one
minimal coalescence to S, if it exists, it must be the one with the lowest
resulting degree. And so Cl is chosen as the "closest" to S with lowest

degree.

6.3. Algorithm

Since the secondary order is common for the selection of both S and C,
it is sufficient to sort all knots on increasing degrees,so that S is the
"first" of the smallest and C the "first" of the <closest . Moreover, this
sorting operation needs only be done once, over the set of all initial nodes
At each step, S and C are extracted from the order, and the resulting SoC
is inserted accordingly.

Fig. 13 is a structure diagram [Li77] of the tree building algorithm,

whose input is the original graph and output the connectivity thus built.



Make nodes into knots

Sort on increasing degrees

Select Smallest
Choose Cl osest
Coalesce

Reinsert in order

until only one

Vv knot is left

FIG. 13 - Tree building algorithm

6.1«. A practical example

To illustrate the method let us consider the network in figure U. a)

used in Luccio and Sami's work [LS69], p. 188, as an example of the mini-

mal groups identification procedure.

FIG. 1] a) Sample network



Converting to our net representation, where each edge in a signal set
is given the weight 2/n, and multiplying all weights by a factor

of size £
in figure 1¥. b).

of 3 for clarity, we obtain the graph depicted

FIG. I» b) - Sample graph to illustrate tree building algorithm

By evaluating the degrees of all nodes, and sorting on increasing or-

der, we obtain:

knots D E F 1 C A G H B
degrees 13 Yk Iti 18 19 21 21 21 23

The smallest element in the list is D,and C is the most connected to

it. Coalescing and evaluating the resulting degree:

6(DoC) = 6(D) + B(C) - 2 't'(D.C) =

- 183+ 19 - 12 - 20
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Figure 1%, c¢) shows the graph after this first step, as well as the

new order of knots

FIG. 1* c) After the first step

The process is then repeated until there is only one knot left, as

depicted in figures I from d) to j).

FIG. 1M d) After the second step

Fig. 11 e) After the third step
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14 h) After the sixth step
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6 S ———
flPoClo (Ao(EoB)Il)--—-- — ~N(FoG)o (loH ))  l-—---

FIG. I» i) After the seventh step

(( (DoC)o( Ao]JE 0B) ))o ((FoG)o (loH) >3----- ----—--—-

FIG. 1¥ j) After the eight step

After eight steps there is only one knot left, in this case with
degree 6, since the given graph had two external connections of weight 3-

As the defined operation coalescence is not associative, the sequence
in which those operations were performed determines uniquely the conne-
ctivity tree represented in figure 15- The figure on the left shows the

degrees and the one on the right the ratios at each vertex.

FIG. 15 » Connectivity tree for sample graph
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On the whole, the three objectives are acceptably achieved. The tree
is well balanced, degrees decrease upwards at mosL vertices and the uni-
formity of ratios is the best for this particular example. A better solu-
tion in terms of the min-dist objective, e.g. producing Do (Eo (Co (Ao B)))
instead of (DoC) o (Ao (EoB)), would be unbalanced both in size and
connectivity ratio. Luccio and Sami's procedure determines the minimal
groups {A,B},{F,G}, {I,H} and also {{A,B> C,D,E} and {{F,G}, {l,H}}. This one
would therefore be the best solution solely in terms of total minimal distance
and when a binary structure is not required.

In general, the algorithm favours even distribution over minimal dis-
tance. A simple case is the one pointed out in figure 12 (§ 5.4) where the

second solution will be generated, with p(B) = p(AoC) = k.

As a final remark note that, in spite of the operation coalescence being
commutative, the smallest knot S was always kept at the left hand side branch,
so that at every tree vertex the left hand side branch is always smaller or

equal in size to the right hand one.

6.5. Complexity

Due to its simplicity, the algorithm shows a limited growth in running
time. For n*initial nodes, a sorting process on increasing degrees is
performed only once. Over the linked list of all elements in this defined
order, three traverse operations are executed in each step: the search
for S and C and the insertion of S o C. Note that the evaluation of
6(SoC) is independent of the total number of nodes. Since after each step
the list becomes one element shorter at the end of n-1 steps the number of

operations is

3 n+ 3(n-1) + ... +3.2 = 3/2 (n+2) (n-1)



i.e. a polynomial of degree 2. For that reason, a sorting method of order
O(n ) was considered adequate for the initial ordering on increasing
degrees. Shakersort [Wi76], an improved version of Bubblesort alternating
the direction of consecutive passes, was used in the implementation. We
may therefore conclude that the described tree-building algorithm is of

2
order O(n ) in running time.

The algorithm also shows a limited growth in terms of memory space.
Since a binary tree with £ leaves has a total of 2n-1 vertices, the imple-
mentation of the tree structure only requires a number of (equal in size)
blocks of order i?(r).

The present phase of the placement method, as well as the following
one, requires access to the connectivity matrix representing the graph
model. This is a symmetric matrix of order £ and often very sparse. Although
not provided in the performed implementation, special storage techniques

for sparse symmetric arrays might be considered for large problems.



CHAPTER 1V

MAPPING THE CONNECTIVITY TREE

1. INTRODUCTION

At this stage of the proposed placement method, the hierarchical
structure of a given circuit is represented in terms of a binary tree,
which was built to pursue three main objectives: minimal total distance,
even distribution of connections and symmetry at each vertex.

In the present Chapter we describe the mapping of the connectivity
tree into the given board area. Two algorithms are presented, one for
regularly structured boards with fixed locations for modules and the
other for the general case of a continuous plane where components of
dissimilar size may occupy any distinct positions. The problems raised
by specific design requirements and by high component density are

analysed in both types of environment.
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2. BASIC PROCESS

In order to introduce the basic concepts involved in the mapping
process, we make a number of assumptions defining an ideal board enviro-
nment.

Assume a rectangular board of sufficiently large area, without fixed
locations for modules, and also a set of components of similar size and
shape. There are no design restrictions concerning the assignment of

components to specific positions on the board.

2.1. Areas

Given a connectivity tree and an ideal board, the embedding of the
tree on the board surface is a top-down hierarchical process which assigns
tree vertices to rectangular board areas.

At a certain stage during the process, a tree vertex comprising a
knot AoB has already been assigned to a specific rectangle. Let us denote
that rectangle by [AoB] of which both the location and the dimensions are
uniquely determined. [AoB] is now going to be partitioned into two
rectangles [A] and [B]

The first decision to be taken concerns the direction of the parti-
tion line. As a rule, the rectangle is partitioned across its longer dimen-
sion. The resulting rectangles will thus have minimum perimeter, therefore
reducing the distances between components within each knot. Recall that
the circuit elements belonging to knot A are expected to be placed closer

to each other than to elements in B.



Next, the areas of the resulting rectangles [A] and [B] must be eva-
luated. Since components were assumed to be all similar in size, the area

of each rectangle may be determined as proportional to the number of

components, with

area [A] = 'n(AoAB) area [A O 8l-

The area attributed to each knot is therefore proportional to the total

number of components included, i.e.
area [A] area [B] area [A o B]
n (A) “ n (A) “ i (AoB)

In this case, the board area occupied by components and consequently
the empty spaces will be uniformly distributed on the board surface.

Since the connectivity tree contains at each vertex A the value of
its total connectivity o(A), an estimate of the expected routing area may
easily be included. The area assigned to the subrectangle A would then be
determined as

o(A)

o(A 0 B) area [A o B]

area [A]

so that

area [A] area [B] area [AoB]
~0-(W o (AoB)
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which represents a uniform distribution of connections at every area in
the board.

Owing to the fact that a major objective in the building of the
connectivity tree was an even distribution of connections, the latter
evaluation of areas will not differ largely from the former one. Note

that for a coalescence where p(A) = p(B):

c(A) = p(A) 0(n) n(A)
o(A 0 B) P(A) n(A) + p(B) n(B) n(A o B)

2.2. Permutation

At this stage the dimensions of the subrectangles [A] and [B] are
defined but not their relative position.The most convenient pewrutation
[A/B] or [B/A] must still be determined. By [A/3] we denote that A is
placed to the left of (or above) B.

At the first level (tree root), assuming noadditional constraints,
the choice of permutation is irrelevant, but it becomes increasingly
important as we travel down the tree, processing areas whose surroundings
are already placed.

Both permutations are evaluated at each step and the most convenient
one is adopted. The notation value [A/B] represents the penalty of placing
A at the left of (or above) B. This value will necessarily be a function
of the distance as well as the connectivity between components. Each knot
is considered placed at the centre point of the corresponding rectangle
and distances are measured from there. At each step, the point that locates
AoB will generate two new points for A and B according to the chosen

permutation, as illustrated In figure 16.



AOB

(First) (Second)

FIG. 16 - Choice of permutation

Let the first permutation be [A/B], where a. and b. are the corres-

ponding centre points of [A] and [B]. The value [A/B] includes the cost

of placing A at &~ and B at b”, i.e.

value [A/B] = cost (A,aj) + cost (B,bj).

Since all elements x. 6 A are at a” the cost (A,a”) will only depend

on connectivity and distance to elements outside A. On the other hand, the
relative distance from [A] to [B] is a constant for both permutations
(@l bj = a2 b*) , as well as their interconnectivity y (A,B). Hence, the

terms in cost(A,aj) representing connections within A and from A to B

do not need to be evaluated.

By analogy with the concept of k-th order moment, as introduced in

Chapter 1. § 9, we define a cost function of order k as:

cost. (A,a.) = J | c(x.,x.). dk(a.,x.)
x.€A xJ. € AoB ij j

PR |



where d(aj ,x ) is the distance between aj and the centre point of the
current rectangle containing Xj .

The adopted metric is a reduced rectilinear distance. As the par-
tition line (and also the segment ab) is always either vertical or ho-
rizontal, the component of the distance which is parallel to the bor-
derline is a constant for both permutations. The evaluation of the
distance may therefore be reduced to the component which is parallel to
ab . Note that, Euclidean distance and rectilinear distance are equivalent

for the present purpose.

2.3. Squared distance

Based on the discussion in Chapter | § 9, the adopted cost
function was the one in terms of a squared distance (k=2) . In the present
section we investigate the effect of such a function when compared to the
corresponding one in terms of a linear distance (k=I).

Let us examine the simple example depicted in figure 17. a). The
size of individual components is represented by units of the grid imposed
on the board. Assume that n(A) = n(D) = 2 and n(B) = n(C) = 6. Knots C
and D having already been placed, the present decision concerns the choice
of permutation [A/B] or [B/A], Figure 17 b) shows the resulting placement

solutions.
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»>D

a) Sample problem
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b) Placement solutions showing crossover analysis
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By evaluating the cost function based on a linear distance

cost. (A,a ) = ) J c(x.,x.) . d(a ,x.)
X.6A xngoB 1 J 1 J

and taking the grid width as unit, we obtain for both permutations the

vai ues

Valuej [A/B] = costj (A,a”) + costj (B,b])

@2x 1)+ (6x1+2x1) = 10

Valuej [B/A] = costj (A.a”) + costj (B.b%)

(2x2) + (6x0 + 2x2) = 8.

The second permutation would, in this case, be selected. On the

other hand, by repeating the process with the cost function of second

order, we determine

value2 [A/B] = cost2 (A,aj) + cost2 (B,bj)

(2x 12) + (6x 12 + 2x 12) = 10.

value2 [B/A]

cost2 (A,a2) + cost2 (B,b2)

(2x22) + (6x02 + 2x22) = 16

which favours the first permutation.

Our method selects the first permutation and a human designer would
probably do the same. In fact, the first permutation produces a better
solution with respect to uniformity of distances as well as an even dis-
tribution of connections. The following table shows the values of the

o}
moments M] and Mi as well as the variance of distances o4 (as defined in
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Ch. 1. 0 9/. for the total evaluation of both metrics:

Euclidean Rectilinear

1 wm. M2 o HI M2 d I N
[A/B] J 62.36 130 0.012 70 170 0.222 I 30

[B/A] 63.31 136 o0.079 68 168 0.1(62 1 30

The Euclidean distance, as including "squared" factors, presents
lower values for the first permutation. As to the rectilinear metric,
the total distance is larger but with a lower variance in the values of
individual distances.

In order to perform a crossover analysis, a grid of cut lines with a
width equal to half the unit of distance was imposed on the board, as
represented by dashed lines in figure 17-b). Crossovers are counted in
such a way that each connection with endpoints over two lines, only
counts at one of them. Hence, there is a total of 16 cut lines. By eva-
luating the weighted crossover moments Xj and as well as the corres-

ponding variance, for both permutations, we obtain the following values:

2
X1 X2 °X

[A/B] 110 2328 68.937
[B/A] 136 2701«  96.750

As pointed out in Chapter |. § 9, a simple count of crossovers (Xj)
is identical to a rectilinear total distance. However, to minimize

ensures a uniform distribution of these crossovers on the set of all cut



lines.

The proposed formulation of the cost function does therefore ensure
an adequate choice between both possible permutations, while only
requiring a limited amount of computations.

Note also that the "squared" distance has the effect of reinforcing
the growth of the cost function with an increase of distance. The above
example was selected for its predominance of connectivity (weights) over
distances, which caused the observed disparity of some results. A parallel
study for a similar example with all weights equal to one would show the
first permutation as the one producing lower values in all the tests

performed.

2.b». The method

At this stage both rectangles [A] and [B] are uniquely determined by
their dimensions and location. |If neither comprises isolated components
the process is recursively applied to both of them. The decision on

which rectangle is going to be processed first defines the order of the

connectivity tree traversal during the mapping phase.

As a rule, priority is given to the rectangle with the larger number of
components. In this way the bigger rectangles are partitioned first, as
the smaller the area the more accurate Is the location of Its components.
Moreover, since a major objective in the building of the connectivity tree
was a constancy of the ratio p(A) = o(A)/n(A) at each vertex A, the bigger
rectangle will also be the one comprising the knot with higher connectivity.

The first single component to be placed on the board Is therefore the one



of higher degree. The process is then repeated in a top-down depth-first
order until each rectangle contains one single component.
Figure 18 summarizes the main steps in the basic form of the tree-

-mapping process.

MAP(tree vertex; rectangle)
Choose direction

Evaluate areas

Select permutation

Choose next vertex

Recursive calls

FIG. 18 - Basic tree-mapping process

The described method does not consider design requests for the specific
location of certain components. Yet, the particular case of preplaced
external connectors may be easily implemented. They are assigned to fixed
coordinates at the edges of the initial rectangle, from which the dis-
tances to connected components are measured.

In its basic form the tree-mapping method is limited to the type of
placement problems where all modules are of similar size and the board is
a continuous surface without fixed places for components. In the remainder
of the present Chapter we analyse the utilization of the method in two

special types of environment.
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3. REGULARLY STRUCTURED BOARDS

In this paragraph we study the case of regularly structured boards
with fixed slots for modules, separated by routing channels.

Let m be the number of slots and £ the total number of components,
with n <m. It is assumed that each component may be assigned arbi-
trarily to any slot and also that the slots are disposed along equidis-
tant rows and columns. A grid may thus be imposed on the board, in such
a way that each rectangle (not necessarily a square) comprises one single
slot. The location of each slot is defined by the coordinates of the
centre point of the corresponding rectangle.

Strictly for the evaluation of rectangular areas, a coordinate
system is employed where the unit of length on the x-coordinate
(y-coordinate) is the width (height) of the mesh. At a given stage during
the process, a rectangle [AoB] is to be partitioned into two rectangles
[A] and [B], in such a way that both dimensions of all rectangles have
integer values. Let S[AoB] be the longer dimension of the given rectangle
which is to be divided into two portions s[A] and s[B]. These values are

made proportional to n(A) and n(B) respectively and rounded to the next

integer, as

s[A] = round

s[B] S[A 0 B] - s[A]

Clearly, the desirable proportionality of areas is not exact,



especially for small values. This fact tends to cause conflict situations,

in particular at the lower hierarchical levels in very dense boards.

3.1 . Space conflict

Consider the situation depicted in figure 19, where n(A) = n(B) = 3.

The evaluation of lengths gives

s[A] = round (7 =3)

|
N

and s[B] = 1,

which makes [B] insufficient for all components in knot B.

AoB

(3

FIG. 19 - Space conflict example

When such a confl Ict is detected, the algori thm wi 11 modify the
connectivity tree in order to make it fit the board geometry. The
remaining space in [A], denoted free [A], is estimated and a search is
made in B for an element to be transferred to A. Note that at the pre-

vious level of recursion the whole [AoB] was ensured to be sufficient

for all elements in AoB.



Starting at vertex B a tree traversal is made towards the lower
levels, searching for an element E able to fit free [A]. The first E such
that n(E) < free [A] will be transferred to A, even if n(E) is bigger than
the necessary to make B fit into [B]. The loop is necessarily bounded
since the excess in [B] is never greater than the remaining space in [Al .

Recall that, in spite of the operation coalescence being commutative,
the connectivity tree was built in such a way that, at each vertex, the
left hand side branch is always smaller than or equal to the right hand one
(Smaller joins Closest). Consequently, if the search for E starts always
at the left hand side branch, the process will be faster and also less
likely to find the most heavily interconnected elements. Detailed experi-
mentation confirmed this assumption, showing that a preorder search for
E along the left branches first, is quicker and produces better placement
results.

Once the element E is found, it is deleted from its place in the tree
and "subtracted" at each vertex on its way up towards B. Then, it is
appended to the branch starting at vertex A and accordingly "added" to
the Intermediary vertices. The transferred element is appended to a termi-
nal vertex of the branch starting at A, giving priority at each vertex
to the smaller branch. This makes the process faster and also less likely
to disturb the heavily interconnected branches. Experimentation showed
that a search for the element in A which is more connected to E, is much
slower and does not improve the final placement results. Note that,
since the cost function grows very rapidly with distance and E is more
strongly connected to B than to A, it will in most cases be placed in the

neighbourhood of (B].
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At the end of the smallest branch, the transferred element is
appended at the left hand side, so that it is the first to be chosen if
a further alteration is needed at a lower level. This minimizes the number
of elements wich are disturbed from their position in the original

connectivity tree.

3.2. Proportionality

In the last paragraph we studied the process of fitting the connecti-
vity tree to the particular board geometry, in order to solve space
conflict situations. The usage of the process may however be generalized
to other problems. Suppose that a similar sub-tree to the one used in
the former example is to be mapped into the board area represented in

figure 20.

- «[A] *CB]

FIG. 20 - Loss of proportionality

Both rectangles are now sufficient, but the proportionality of areas
is lost. A check of proportionality may be introduced in order to detect
this type of situations and accordingly modify the tree, not to solve

space conflicts, but to keep areas proportional to the number of components.
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This procedure will anticipate congestions and also space conflicts at

the forthcoming levels.

The statement made in Chapter IIl § 5.3. on symmetry being a main
objective in the building of the connectivity tree, is now clear. A
tree vertex where a knot of very small size was coalesced to a much larger
one, would necessarily produce a long sparse area at the side of a

congested one.

3.3- Preplacement

The next question to be analysed concerns the existence of components
whose location is totally or partially predetermined. The tree mapping
algorithm recognizes two main types of elements in each knot A. The
floating components (float(A)) for which the location is defined by the
system and the preplaced ones (prep (A)) with given precise coordinates.

The decision on which Is the most convenient permutation has, so
far, been taken on connectivity only. However, since the problem is

essentially the partition of a rectangle Into two, it is possible to
choose the knot containing a preplaced element to occupy the area
including the predefined location, as will be discussed later.

The tree traversal order is also modified: branches with preplaced
components are placed first. They will act as fixed points on the choice
of permutation. The cost function cost (A ~ ) must also be adapted
according!y:

2

cost (A,a.) * | 1 c(x.,x.) .d (a.,x.).
x. € float(A) Xj i float(AoB) J J
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this expression measures the weighted square distance from the elements
in float(A) (considered placed at aj) to all the others, including the
preplaced ones In A. The whole knot A will thus tend to occupy the area
where the prep(A) are located.

Once the permutation is selected, a verification is made for every
preplaced element in both A and B. |If any of them happens to be on the
wrong side, it is deleted and transferred to the other branch. This will
not alter the permutation, since it only depends on the floating
components.

This alteration of the tree represents the fact that the predefined
placement of components may be incompatible with connectivity. Design
requirements are then satisfied to the detri ment of the structure defined
by the connectivity tree. Yet, if a particular group is strongly
connected to a preplaced element, it will be kept in its neighbourhood
since the cost function grows very rapidly with distance.

A very frequent example of preplacement is a row of external connectors
at one (or more) of the board edges. Edge connectors are treated as
"semi-placed" components: one coordinate is fixed (e.g. y = 0) and the
other may take any value along the edge. The obvious solution is to define
them as preplaced at the steps where the boundary line is parallel to the

edge, and as floating when that line is perpendicular to the edge.

3.*t. Algorithm
In figure 21 we summarize the main steps of the tree-mapping algorithm

for regularly structured boards with fixed slots for components.
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HAP (tree vertex; rectangle)

Choose direct ion
Evaluate areas

Select permutation
Check preplacement
Solve space conflict
Adjust proportionality
Choose next vertex

Recursive calls

FIG. 21 - Tree-mapping process for regularly structured boards

The evaluation of the area attributed to each subrectangle Is also
adjusted In order to take preplacement Into account. Preplaced elements,
although Incorporated In the tree, are not Included in the counting of
components at each tree vertex. The actual positions they occupy on the
board are included in a list of all the forbidden slots as required by
the designer. Sizes of rectangles, in both permutations, are therefore
evaluated in terms of the available slots for floating components.
Adjustments of the connectivity tree in order to solve space conflicts
or to balance the number of components in both rectangles must also be
performed accordingly.

Since in the majority of the problems the whole set of modules does
not cover every available slot, at the end of the process some components

will have been assigned to two or more possible locations. In order to
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select the most favourable slot for each one of those components, a final

step must still evaluate the cost function at every possible location.

4. GENERAL CASE

In the present paragraph we discuss the tree-mapping process in its
general form. The board is a continuous rectangular plane of limited area,
where components of dissimilar size and shape occupy any distinct positions,

subject to a number of design constraints.

4.1. Evaluation of areas

When compared to the basic process, the area allocated to a particular
knot A is no longer a direct function of n(A), since it must account not
only for different sizes of components but also for the necessary routing
area. Prediction of wiring space depends on factors such as track-spacing
which forms part of the design rules of individual technologies. An approxi-
mation of the area attributed to each knot A may be evaluated as a function
of the total area occupied by components and the connectivity o(A),
adjusted by a factor depending on the particular technology in use. A more
accurate evaluation could be associated with the tree building process, by
estimating the width of the interconnection channel between two coalescing
knots.

At the tree root we have an approximate measure of the minimum total
area required by the complete layout of the circuit. This information can
be made available to the user at this stage, allowing for the detection of

impossible cases before an attempt at placement is actually performed. By
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making full use of this property, the connectivity tree could also become

a valuable tool In the partitioning of a circuit Into different boards.

At a given stage during the process, let u(A) and u(B) be the
minimum total area estimated for the layout of knots A and B respectively.
The direction of partition follows the basic rule and subrectangles sizes

are determined In function of the given area [AoB] In such a way that

area [A] _ area [B] area [AoB]
p (A) u (B) p(A) + p(B)

It should however be pointed out that, the minimum area estimated for
a given knot may only be achieved by means of a packing process. In a bi-
nary partition mode, the dissimilarity In components sizes as well as

the presence of preplaced elements leads to a certain degree of wastage,

therefore requiring a larger area than the estimated minimum. As the next
two sections describe, the implemented version of the method is compatible
with the most frequent cases of preplacement and, to some extent, adjusts

the disposition of components is order to fit a tight area.

*1.2. Preplacement

The estimated minimum total area p(A) of a given knot A comprises
the area occupied by the floating as well as the preplaced components In
A. External connectors are not included; they will be placed on a strip
along the edge(s) outside the rectangle representing the effective board
area.

The order in which the connectivity tree is traversed and also the



selection of the most favourable permutation are adjusted in terms of the
preplaced elements, in a similar manner to the one used on regularly
structured boards.

Once the permutation is selected, a test is made for the location of
the centre point of every preplaced component. Those elements which happen
to be on the wrong side are transferred to the other branch as in the pre-
ceding case. The whole process is checked from the beginning by re-evaluating
the subrectangles areas, while keeping the same permutation.

Since only the centre points of prep laced components were guaranteed to
be on the correct side, a subsequent step must still check the boundary
line position in relation to the area occupied by each preplaced component.
If the borderline intersects any of those elements, it is moved accordingly.
Both subrectangles are checked and, if no acceptable position is found
for the boundary line, a second attempt is performed by changing the direction
of partition.

This simple approach proved adequate for the most frequent practical
problems. In exceptional cases, where it is Impossible to draw a partition
line without crossing preplaced components, the problem may be solved by

replacing groups of fixed elements by whole preplaced blocks.

4.3. Space fitting

As already pointed out, the implemented tree-mapping method does not
execute the packing of components into as small an area as possible. Ho-
wever, it performs a certain degree of adjustment between the shape of the
connectivity tree and the available board area.Such aprocess is based on

the following assumption: "A given area is sufficient for the placement of
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a knot A, if it accommodates a regular arrangement of components of average
size as well as the largest module in A".

This procedure is solely intended to adjust the disposition of compo-
nents, as defined by the connectivity tree, towards the shape of the
available board area. In the case of a very dense assembly, the method
requires the placement of the circuit on a larger virtual area, followed

by a compaction routine.

Although the area attributed to a given knot A is larger than the
total area of its components, it must still be ensured that such space is
sufficient to accommodate a particularly long module. The longest module
in A is defined as the one with maximal dimension, in the direction which is
perpendicular to the partition line. Note that the other dimension has
already been verified at an earlier level.

The present test is associated with the one that checks the borderline
position in relation to the preplaced elements. Whenever the line intersects
the longest component, it is moved accordingly. Similarly, if the opposite
subrectangle is also insufficient for the longest module in B, a second

attempt changes the boundary line direction.

Once the borderline position is acceptable, both in terms of the longest
modules and the preplaced elements, the resulting subrectangles areas are
tested for a regular arrangement of average components. Both dimensions of
the average component in A are evaluated as the arithmetic mean of the
corresponding dimension for all components in knot A.

This test comprises a collection of heuristics, intended to fill empty
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areas generated by the previous borderline displacement and also to adjust
the relative positions of components as an attempt to fit intoa particularly
densely occupied space.

As an example of the first problem, let us consider the simple situa-
tion depicted in figure 22 a). Knot A comprises the larger module and knot
B the three smaller ones. The borderline displacement created an Insuf-
ficient areaforall components in B. A grid of average components from B,
imposed on the empty area in [A], allows for the approximate evaluation of
how many modules need to be transferred. This process is similar to the one
described for regularly structured boards, but with the important difference

that the actual sizes of transferred elements must be verified.

@ (b)

FIG. 22 - Space fitting examples

The second type of space conflict is caused neither by preplacement nor
by a dissimilarity in component sizes. However, it tends to occur, parti-
cularly at the lower stages of the process in very dense boards. As an exam-
ple, assume that nine modules of similar size are to be placed on a square
area, with n(A) = b and n(B) = 5, as shown in figure 22.b). The borderline

position, according to the general rule, generates insufficient areas at
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both sides. Note, that a grid of average components in AoB has been
tested in [AoB] at a former level.

At the present level, a grid of average A-components shows that [A]
is insufficient: 3 effective spaces for 4 modules. Likewise in [B], there
are 3 spaces for 5 modules. When this situation is detected, the space
fitting procedure searches for an element in A, which is able to fit the
grid in B. The element is transferred and rectangles areas are reevaluated.
As a rule, the element is transferred from the smaller to the larger knot
(excepting when the smaller comprises a single component) since the
conflict would otherwise be repeated at the next step, therefore generating

an infinite loop.

The use of the space fitting procedure may also be generalized in
order to ensure the desirable proportionality of areas.As an example, the
presence of an unusually large module may generate a sparse board area,
even if no conflict is detected in the opposite rectangle. This situation
must be detected as early as possible and consequently rectified, not
only to achieve proportionality but also to avoid forthcoming space con-
flicts.

Yet, it is debatable whether this should be performed as a systematic
process or only when the imbalance is considerable, since the connectivity
tree should ideally be kept unaltered. We suggest that the systematic
process is introduced only in a second attempt on a critical board. This

approach was tested on a particularly dense board and proved successful.
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k.k. Algorithm
Figure 23 summarizes the main stages in the tree-mapping algorithm in

its general form

MAP (tree vertex; rectangle)

Choose direction
Evaluate areas

Select permutation
Check preplacement
Check boundary line
Space fitting

Adjust proportionality
Choose next vertex

Recursive calls

FIG. 23 - General case of tree-mapping process

The growth of the process in terms of running time depends heavily
on the number of tree alterations performed. The basic binary tree tra-
versal ranges from 0(n log2 n) when perfectly balanced, to O(nz) in the
worst case. At a given tree vertex with k components, where no space
conflict arises and no preplaced element is transferred, the process is
linear, i.e. 0(k) at each step. Note that, in this case, only the evalua-

tion of areas and the cost function depend on k. When tree alterations are
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required, the growth in running time depends on the number of transferred

elements, rather than the total number of components k. Detailed experi-

mentation showed that, when only a few elements are transferred, the process

is kept near-linear at each step, as will be shown in the next Chapter.



CHAPTER V

IMPLEMENTATION AND RESULTS

1. INTRODUCTION

In this Chapter we report a summary of the results obtained on a
practical implementation of the proposed placement method. The main
sections correspond to the two basic types of environment: regularly
structured boards and the general case.

The numerical results comprise observed values of objective functions,
running times and rates of successfully routed connections. Different
versions of the basic method, as well as manual placement solutions, are

also assessed and discussed.



2. IMPLEMENTATION

The proposed placement method, as described in the last two Chapters,
has been implemented in Pascal on the CDC 7600 of the University of
Manchester Regional Computing Centre. A simple interface with the existing
CAD system has enabled direct access to data files holding the circuit
description of real boards, which happened to be being designed at the
time. These are wire wrap and PC boards, part of the hardware of mainframe
MU6G, whose implementation layout was executed by members of staff and
research students.

The following report includes, as a reference, the corresponding
results obtained by manual placement. For the magnitude of the studied
problems, it seems adequate to establish a comparison between automatic
and hand placement. With one or two hundred components, given the time
and expertise, the human designer will always be able to produce better
results. The aim of layout automation is primarily to reduce the design
time as well as the number of errors. An automatic placement system
should therefore achieve, In the shortest possible time, results which

are comparable with those obtained by manual placement.

True evaluation of placement is determined by how eflclently it can
be routed. However, the routability of an automatic placement solution is at
least as dependent on the tracking scheme used as a manual placement. The
available routing system was reasonable but, at the time, still under
development.

The router used |Lo8A] was designed as part of the Generalized Tracking

System, developed at the Department of Computer Science at the University of
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Manchester. It consists of an improved version of Aramaki's method [AK71] and
can be briefly stated as follows: when shearching for a route between two
pins, draw a horizontal line from each pin and extend it as far as possible.
An unblocked vertical line is then looked for, connecting the two horizontals.
The process can also be performed along the opposite direction.

This tracking system was also sensitive to net ordering and a systematic
study of the most effective sequence of nets, for each board, was beyond the
scope of this thesis. A number of placement solutions was sent to the tracking
system, together with those obtained manually, and some of the results will

be reported in the following paragraphs.

The main discussion in the present Chapter considers aspects which are
measurable directly from the obtained placement solutions. These comprise
objective functions as defined in Chapter 1.8§9, as well as the observed running
times in relation to the estimated complexity of the algorithms involved.
Comparative results on different versions of the basic method, which led to
the taking of decisions on some points discussed in the earlier text, are

also reported here.

3. REGULARLY STRUCTURED BOARDS

The most easily available information on the type of regularly structured
boards with fixed slots for components, concerned the circuit description of

a number of wire wrap boards known as Augat boards.
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Augat boards accomodate a combination of 16 pin and 2h pin ECL logic.
Each board comprises an array of 6 x 30 slots for 16 pin modules, with 6 x 2
locations for 2k pin Edge CONnectors (ECONs) along the top edge, as shown
in figure 28. Particular locations in the basic array can also be used for
16 pin eXtra CONnectors (XCONSs).

Since ECL logic requires terminal network resistors, locations for
plugable single-in-line resistor modules are also available. As pointed out
in Chapter 1.§ 8, the chosen representation for nets in terms of complete
graphs allows for net decomposition to be performed as a result of the obtained
placement solution. The given sequence of components in each net may thus
be rearranged and the terminal module identified, in such a way that the
total net distance is minimized. A location for a resistor in then selected
in the neighbourhood of the terminal module.

Augat boards have internal power layers, so neither placement nor
the tracking system need to be concerned with space for track power connections

on the board.

For a given board, the data file consists of a net-list in terms of
pin-to-pin connections. The initial phase of the method, converts this
information into a graph model representing the circuit, as discussed in
Chapter 1. § 8. Next, the connectivity tree is built as described in Chapter

3.1. Tree adjustments
In the present section we report a set of results obtained on the

placement of two Augat boards, which refer to the tree mapping and subsequent



tree adjustments discussed in Ch. IV . § 3- The following table specifies
the magnitude of Augat boards ABI and AB18: number of 16 pin components,

external modules and nets.

# components  # ECCNs # modules # nets

ABI 109 7 116 579
ABI 8 99 3 102 302

The observed running time (in seconds), for the connectivity tree

building was, for both boards:

* modules time
ABI 116 7.A25
ABI 8 102 5.681

These values are in line with the estimated conplexi ty of O(n®) for the tree
building algorithm. We may therefore establish an approximate evaluation

of the required time to build a connectivity tree with £ initial nodes, as
2
T (n) = a.n with a« 0.0005 sec
tree

which was supported by similar observations on other boards.

The basic connectivity tree may subsequently be adjusted in order

to fit the available board area. As discussed in the last Chapter, the
running time for the tree mapping phase will depend not only on the number
of modules, but also on the amount of necessary tree alteration . In order

to investigate the effect of such alterations on the total running
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time, we forced the given circuits into smaller sections of the basic Augat
board. The following values are total job times, comprising the net-list
input, graph model, tree building, tree mapping and output of the placement

solution.

Board area 6 x30 6 x25 6 x20 6x19
ABI 10.973 10.921 11.1 A6 11.151
AB 18 8.922 8.872 8.867 8.866

These results show that the increase in running time motivated by
tree alterations is very limited. Such increase may even be overcompensated
by the final step which selects the most favourable location for components
whose domain comprises more than one slot. This fact explains the apparent
disparity on the results of AB18, since a sparse board produces larger
domains for its modules. On the other hand it becomes clear that, for this
type of board, the major factor in the total running time is the building

of the connectivity tree.

The former values were obtained with the tree adjustments as follows
(Ch. IV . § 3.1): each transferred element is "searched" along the smaller
branches of the origin knot, and likewise "appended" to a terminal vertex
along the smaller branches of the destination knot. The comparative
efficiency of this approach was supported by detailed experimentation, from
which we select the following set of results obtained on the same boards
AB1 and AB18.

The "search" along smaller branches was compared to the opposite

solution, i.e., giving priority to the larger branch at each vertex. The
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effect of "appending” the transferred element to its most connected.
component at the destination knot, was also investigated. The four possible
combinations were tested and evaluated.

Figure 2h shows the results on the placement of AB1 and AI8 on the
entire 6 x 30 Augat board area, as well as those obtained on the manual
solution. These values comprise the total weighted Euclidean distance
(dist), measured from the centre point of components, taking the grid size
as unit, and the maximum single length (max). A weighted crossover analysis
was also performed, using the same grid: x" represents the average number
of crossovers on vertical cut lines (likewise Xy, on horizontal lines) and

the total sum of squared crossovers. The total job times (in seconds)
include a search for the nearest available location for a resistor at the
terminal module of each net. The sequence of components in each net was
also rearranged as a result of the layout solution. Starting from the
initial module, the nearest one was searched within the net elements, and
the process repeated until the terminal module was reached. The nearest
available resistor for this module was then selected and added to the
output of the new net sequence.

The set of results reported in figure 2k shows that, for average
problems, the type of tree adjustments performed does not affect the final
solution in a noticeable manner. The only observed differences are originated
by the "search" procedure used, but these are not sufficiently conclusive,
for that reason, the whole process was tested on a smaller section (6x20)
of the board and the corresponding results were as shown in figure 25.

From this new set of values, it becomes clear that the most favourable

strategy for tree adjustments is to give priority to smaller branches in
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both operations. Besides being faster, it also produces better placement
solutions. With respect to the "append" operation, as pointed out in Ch. IV
§ 3.1, a search for the most connected element at the destination knot is
much slower and does not improve the final results.

Due to the way in which the connectivity tree was built, the smaller
branch at each tree vertex is also the left hand side one. This property
suggested a new form for the implementation of the "search" procedure: to
give priority at each tree vertex to the left hand side lower branch.
Moreover, since transferred elements are appended also to the left of terminal
branches, this approach would minimize the number of components which are
disturbed from their positions in the original tree. In fact, this alteration
improved the observed placement results, although with a slight increase in
running time. The comparative results of both approaches are reported in the

following section.

3.2 Preplacement

The present section concerns the placement of Augat board AB6. This
circuit has a total of 166 components, including 12 edge connectors (ECONSs)
and AO external modules (XCONs), and a total of 861 nets. XCONs are 16 pin
modules which are to be placed in the basic 6x30 array, near the board
edges, in such a way that normal components do not occupy locations between
XCONs and the nearest board edge. This board was selected in order to test
the preplacement capabilities of the mapping algorithm. With basis on the
manual placement solution, the AO XCONs were treated as preplaced components
and 9 locations which were left unoccupied for the above reason, were

defined as forbidden areas.
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In the placement of AB6, other aspects of the method were also
investigated. The first subject concerns the used graph representation of
the given circuit. As described in Chapter |. § 8, each net is
represented by a complete graph connecting ail its £ elements with the
weight w = 2/n attributed to single edges. In order to ascertain the
benefit of such representation when compared with the basic mode 1.where all
edges are given the weight w = 1, both solutions were tested and assessed.

With respect to the obtained connectivity tree, for most of the
observed practical problems, the graph model with w = 2/n generates a
more unbalanced tree. This fact is due to two main reasons: firstly because
the tree building algorithm tends to coalesce groups of equally interconnected
elements into "long", i.e. unbalanced branches. Secondly, this effect is
emphasized by the attribution of weight w = 2/n to single edges, which is
intended to produce a more uniform distribution of weights on the whole
graph. However, since the relative positions of components within an
equally interconnected block are irrelevant for this type of boards, the
only practical consequence is a slight increase in running time at the tree
mapping phase. In fact, this representation produced better placement
solutions in all the regularly structured boards tested.

figure 26 shows the connectivity tree for AB6 obtained on the graph
model with w « 2/n. Edge connectors (ECONs) are indicated byO and external

modules (XCONs) by «

Another detail which was investigated in the placement of AB6 concerns
the adopted "cutting" direction for square areas. Rectangles are as a rule

partitioned across the longer dimension, but the chosen direction for
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squares was proved to affect the placement solution. Recall that, in the
coordinate system used,a square does not necessarily have equal dimensions
in Euclidean metric. For that reason and also because of the Augat board
geometry, the placement solutions were noticeably different for both cases.
In general, the best results were obtained by "cutting" the square areas

horizontally, i.e. across the longest grid dimension.

Figure 27 comprises two sets of results on the placement of board
AB6. In the first set, only the 12 edge connectors were defined as
preplaced components. A comparison between both graph models shows that
w = 2/n produces lower values with respect to total distance and number
of crossovers. These solutions were obtained with the type of tree
alterations suggested at the end of the last section: a "search" along
the left hand side branches. The corresponding placement solution obtained

on the previous "search" strategy was also tested for the w = 2/n model.

Although obtained in a lower running time, that solution did not improve

the values of the basic objective functions.

The second set of results corresponds to the placement of AB6 with the
10 external modules as well as the 12 edge connectors defined as preplaced
components, and with 9 predefined locations kept unoccupied. With respect
to the used graph model, the lower values of distance and crossovers were
obtained with the weights distribution w = 2/n. As to the cutting direction
of square areas, the horizontal solution was observed to produce better
placement results. Also, a comparison with the previous "search" strategy
showed that those results were not improved.

On the whole, the placement solutions obtained by the proposed method
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produced results which are comparable to those obtained by manual placement.
The best automatic solution was generated in approximatly 24 seconds
(which includes the evaluation of objective functions and output of new
net-list) and, for most of the assessed objectives, compares favourably with
the manual placement solution.

The best solution obtained by the proposed method on the placement
of board AB6 is represented In figure 28. As in the connectivity tree in
figure 26, ECONs are indicated byO» XCONs by» and the forbidden slots

denoted by O .

4. GENERAL CASE

A direct implementation of the tree-mapping process In its general
form, as described in Ch IV. § A, was tried on a number of PC boards,
namely PC2, PC8 and PCI 1,all part of the MU6G hardware. The layout of these
boards involved a set of interesting features such as dissimilar size of
modules, edge connectors, preplacement and various degrees of component
density.

For each board, different versions of the basic method were tested and
the resulting solutions sent to the tracking system together with those
obtained by manual placement. In the cases of boards PC8 and PCll the
results were similar and both comparable to those produced by the corresponding
manual solutions. However, the placement of PC2 was difficult and not
completely satisfactory. This fact was due to a very high density which, in
the manual solution required a careful choice on the relative orientation

of components. The set of orientations thus defined was naturally proved
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FIG. 28 Placement solution of ABE
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inadequate for different arrangements of modules such as those generated
automatically. Since the practical implementation of the proposed placement
method does not Include the choice of component orientation, this problem
had to be solve by manual intervention. The placement of PC2 was therefore

only successfully accomplished after a sequence of empirical attempts.

In the remainder of this Chapter we will describe in detail the layout
of PC8, a Memory board part of the MUB6G. The circuit description of PC8
comprises a total of 125 modules as specified in the following table,

connected by 485 nets.

# modules dimensions area
16 - pin 80 7.5 x 20.0 12.5x 25.0
22- pin 36 10.0 x 28.0 15.0 x 33.0
ECONs 9 7.0 x 50.0 12.0x 55.0
The indicated dimensions are all in millimetres and the assumed

orientation for components is the one used in the manual solution: all
modules placed vertically, excepting the edge connectors. As an approximation
of the minimum necessary routing area, 5 millimetres were added to the
real dimensions of modules. Since the board dimensions are 410 x 180, the
ratio of the area occupied by components with respect to the total board
area is approximately 2/3.

Also based on the manual placement solution, the 9 ECONs as well

as 9 XCONs were preplaced on a 410 x 23.5 strip along the top board edge.



Two other XCONs were assigned to fixed positions within the remaining
board area. These will be referred to as "preplaced" components and the

former ones as "edge connectors".

Two versions of the basic method were tested, corresponding to the
graph models with weight distributions w=1 and w=2/n. As already observed,
the circuit representation with w = 2/n generates a more unbalanced
connectivity tree which requires a larger number of tree adjustments during

the mapping phase.

4.1 - Tree adjustments

During the placement of board PC8, tree adjustments were performed in
order to solve space conflicts and also to maintain the proportionality
of areas, as discussed in Ch. IV. § **.3. In fact, the implemented placement
scheme failed to perform on this board without proportionality adjustment.
We suspect that the density of components in PC8, i.e. 2/3 of the total
board area, approaches the limit of successful performance of the implemented
tree-mapping algorithm. A higher density may only be achieved by a more
elaborated scheme including a packing algorithm or in association with
a compaction routine.

Since the tree-mapping algorithm in its general form requires a larger
number of operations per step, the observed running times were necessarily
higher for the present type of boards. The following table reports the
observed times in seconds of the fundamental phases in the placement of PC8,
for both graph models, and the corresponding values of the total weighted

Euclidean distance and maximum single length in millimetres.



tree-building tree-mapping dist max
w= 1 7.652 5.956 6.587x10**  3.256x10Z
w = 2/n 7.507 7.508 6.527x10** 3.8k8x102
(Manual Placement) 5-938x104  3.060x102

As already pointed out, the representation with w = 2/n generates a
more unbalanced tree, which increases the number of tree adjustments
during the mapping process. In the remainder of this paragraph we will
analyse the effect of such adjustments on the running time of the tree-
-mapping procedure, using the connectivity tree obtained on the graph
model with w = 1 as example, for reasons of simplicity.

Figure 29 illustrates the basic tree for board PC8 with weights
distribution w = |. Edge connectors are denoted byO(ECONs) and e (XCONs) .
Preplaced components and E5 are indicated byD. This tree is subsequently
modified during the mapping phase, due to three main factors: space
conflicts, proportionality adjustments and preplacement. The resulting
placement solution is depicted in figure 30-

Figure 31 shows the aspect of the same connectivity tree, after the
mapping process execution. In this diagram, terminal branches are truncated
whenever they comprise an easily identifiable block of components and edge
connectors are not indicated, although included in the counting at each
tree vertex. Manifest differences between the trees are the adjustment of
"long branches" in order to fit board areas and the"displacement" of
preplaced components Ek and E5 (O).

The values in brackets at each tree vertex, denote the observed

running times of the corresponding mapping steps. These values are represented
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29 - Connectivity tree for PC8 with w = 1
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FIG. 30 Automatic placement solution of PC8 with w = |



FIG. 31 < Connectivity tree for PC8 (w=l), after mapping



as points in the graphic at figure 32, where the x-coordinate indicates
the number of components at each vertex and the y-coordinate is the observed
running time in seconds. As pointed out in Ch IV . 8§ k.k, the process is
near-linear at the steps where no alteration is performed. Higher time
values correspond to those steps where elements have been transferred from
one sub-branch to the other. As an example, at the tree root one preplaced
module (IP) was transferred from the right to the left hand side and
component C29 was displaced (id) in the opposite direction. The point at
coordinates (10, 0.179) shows that 3 displacements (3d) were required in
order to fit a "long branch" into an approximatly square board area. Note
that tree adjustments due to space conflict are more frequent for smaller
knots, representing lower tree vertices.

Since the computational complexity for the traversal of a perfectly
balanced binary tree is of order O(n log2 n) and based on the observed
running times, we may estimate the minimum time required by the tree-mapping
process. In the ideal case where no adjustments are performed and assuming
a symmetrical connectivity tree with £ leaves, the mapping phase will take

at least:
Tmap(n) = a.n. Iogzn with a « 0.003 sec.

b.2 - Tracking

Both placement solutions of board PC8 (based on the graph models
with w= | and w = 2/n) were tried on the existing tracking system,
together with the manual layout. The observed rates of successful connections,

although not completely satisfactory, showed that the method can produce
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solutions which are comparable to those obtained manually. Routing results
were also used in order to assess the relative efficiency of different
versions of the basic method and to analyse the effect of local adjustments
on the final layout.

From 1693 initial points, 52.86% were successfully connected on the
automatic solution with w = 1 and only 1*5.12% on the one with w = 2/n,
whereas 52.51% were connected on the manual placement. It should however
be pointed out that the described implementation did not include any form
of adjustment in terms of the available list of connectiohs. Component
orientation and pin assignment were the same as for the manual solution
and no reordering was performed either within the elements of each net
or on the given net sequence.

Figures 33 and 3% show the successful connections generated by the
tracking system over the placement solution of board PC8 based on the graph
model with w = 1. Although with similar total Euclidean distance (see § I*.1)
the solution with w = 2/n produced manifestly lower routing results. We
suspect that this is mainly due to the larger number of transferred
elements which causes slight misalignments between pins of adjacent
components. Recall that in the implementation described, modules are placed
at the geometric centre of the corresponding rectangular domain. On the
other hand, the exact dimensions of such domains may easily be made
available to the user at the end of the mapping process. This suggests
that pin-alignment can be performed in a simple post-processor which may
considerably enhance the routability of a placement solution. In the present
example 26 modules were selected as noticeably "displaced"” and accordingly
aligned with neighbouring components. As a result, ST new points were

successfully connected, which improved the observed rate from 1*5.12% to 50.68%.



FIG. 33 * Plotted wire pattern of PC8 (w =1): horizontal connections



FIG. 3% - Plotted wire pattern of PC8 (w=Il): vertical connections



CHAPTER VI

CONCLUSIONS

1. A REVIEW OF CONCEPTS

The intrinsic conplexi ty of the placement problem, together with the
diversity of layout environments, has led to the development of a wide
range of placement techniques which are diverse in their formulation, aims
and strategy. In this thesis we presented a definition of the placement
problem in mathematical terms and an attempt was made in order to systema-
tize its most widely accepted figures of merit. For this effect a number
of objective functions was defined, which are independent of any particular
technology or routing scheme and can thus be evaluated directly from the
obtained placement configurations. Three basic approaches to the problem
were specified and accordingly a classification of the existing placement

methods was proposed.

The layout of integrated circuits motivated the use of hierarchical

methods as a means of dealing with increasing circuit complexity. However
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this approach has not been, in our belief, completely explored. In most of
the proposed techniques, the hierarchy of blocks is either defined by the
user and based on functionality [PG78] [PV791 or determined by an initial
placement configuration obtained with the aid of one of the classical

methods [MS81] [BK83] [0185]. Few attempts have been made to build up the
hierarchical structure first and then to map it into the board surface. In
this case, the tree structure is generated by a clustering algori thm which

aims strictly to minimize the total wire distance [MT79] [Ha82] [RI8"].

In this thesis we suggested a new approach to hirarchical placer«nt,
based on a tree structure which embodies an adopted set of circuit proper-
ties and objective functions. The tree structure thus defined represents
the relative positions of a hierarchy of blocks on the board surface. Under
this approach, no initial configuration Is required and no iterative inter-
change is performed either during the building or the embedding of the tree.
The proposed strategy combines the simplicity of constructive placement
techniques with the global circuit overview provided by classical methods
as well as the expedience of a fully hierarchical approach.

We believe that efficient algorithms can be designed,both for the
building of such a tree structure and Its subsequent embedding on the
different types of layout environments. In this thesis, a new placement
method has been described which was designed in accordance with the proposed
philosophy. It comprises a tree-building algorithm based on the optimization
of three placement objectives and two algorithms for the tree-mapping on

the basic types of boards: regularly structured and continuous plane.
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The initial phase of the proposed method consists of representing
the given physical circuit by a suitable graph model. A simple model was
adopted which can represent the basic topological circuit properties as
well as other types of design requirements.

The graph model acts as a basis for the building of the tree structure.
In Chapter 111 we introduced a number of graph theoretical concepts, which
enabled a formulation of the correspondence between the structure of a binary
tree and desirable placement properties. The optimal connectivity tree thus
defined represents the relative positions of blocks in a placement solution
with minimal total distance and even distribution of both wires and components
on the board surface. However, these objectives represent complex combina-
torial problems and are, is some cases, incompatible. For that reason an
approximation algorithm was proposed, which tries to meet the three objectives
as closely as possible while being competitive in terms of running time and
memory space.

In Chapter IV we described the mapping of the connectivity tree into
the given board area. Two algorithms were presented, one for regularly
structured boards with fixed locations for modules and the other for the
general case of a continuous plane where components of dissimilar size may
occupy any distinct positions. The algorithms are compatible with specific
design requirements such as the preplacement of components at definite
coordinates and, to some extent, adjust the disposition of components in
order to fit densely occupied areas. In the general placement case the
method also provides, at each tree vertex, an estimation of the correspon-

ding layout area including the interconnect space.
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A binary structure was adopted for the connectivity tree in order to
simplify the tree-mapping process which would otherwise lead to the complex
problem of non-guillotine rectangle cutting. The main desidvantage of a
binary approach lies in the fact that it cannot, by itself, generate a
placement configuration with the smallest possible area. However, a placement
solution which accomplishes the adopted set of circuit objectives can be
efficiently generated by a binary scheme and subsequently compacted, into as
small an area as possible, in the cases where a minimal area is required.

The recent advances in the field of circuit compaction [Ch85] came to confirm
this assumption, by providing a choice of compaction methods which are

compatible with the basic binary scheme.

The placement method proposed in this thesis was implemented in Pascal
on a CDC 7600 system and tried on a number of PC boards of the two basic
types: regularly structured and continuous plane. The observed values of
objective functions and running times confirmed the estimated efficiency and
complexity of the algorithms involved. A comparison with manually obtained
placement configurations showed that the basic method can produce solutions
which are competitive both in terms of measurable properties and observed

routability.

2. SUGGESTIONS FOR FURTHER RESEARCH

A fully hierarchical placement philosophy has been suggested in this
thesis and a new placement method has been designed and implemented as a

prototype of that approach. The observed results indicate that the method is
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fast and produces placement configurations which are comparable with those
obtained manually. This fact attests the expedience of the proposed philosophy

and provides motivation for further research.

The goodness of a placement is ultimately determined by how efficiently
it can be routed. The experience of human designers has shown that placement
objectives such as minimal distance and even distribution are strongly related
to circuit routability. However, there exist a number of empirical factors
which are taken into account by skillful designers and have not yet been
formulated in mathematical terms. Manually obtained placement configurations
are, for that reason and at least for small problems, usually more suitable
than the automatically generated ones. We suggest that a complete study be
made on the circuit properties which are known to increase routability for
each particular type of layout. Once those properties are formalized in
mathematical terms, we assume that effective algorithms can be designed
which are specifically suited to each problem. A placement system could then
provide a choice of both tree-mapping and tree-building algorithms to be
selected for each particular layout problem.

An example of the referred empirical factors appears to be the identi-
fication of highways and bus-structured nets as well as their subsequent
positioning on the circuit board. We suspect that such structures, once
identified, can be treated as new vertices to be coalesced during the tree-

-building process.

Two algorithms have been proposed for the tree-mapping process and

tried on a number of PC boards. Although not confirmed by practical Implemen-
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tation, the first algorithm is also applicable to other types of regularly
structured environments such as gate arrays and cellular arrays. The second
algorithm contemplates the general case of a continuous plane whenever a
minimal circuit area is not required, as discussed in § 1 of this Chapter.
The method can only be made applicable to layout problems such as the design
of full-custom VLSI chips, when used in association with a compaction procedure.
This approach is also being followed by an increasing number of layout
automation systems which deal with custom 1C design [Hs81] [RM83] [1_184]
[NJ85] (RR85I «

The constraint graph approach to compaction, as outlined in Chapter II.
§ h.h, is particularly adequated to a binary space-partitioning process. The
constraint graphs can be generated during the tree-mapping phase in a manner
which is similiar to the polar graphs construction (Ch Il. § it.2). An esti-
mation of minimal circuit dimensions is given by a longest path evaluation
in each graph. Further minimization of the total area can still be achieved
by local adjustments of particular components. We suggest that a compaction
method can be developed where components situated along the critical path
of each graph are rotated whenever this operation does not increase the
total chip area. This approach could require several iterations and repeated
longest path evaluations but appears viable be means of network programming

techniques.

The fully hierarchical placement philosophy proposed in this thesis is
compatible with a wide range of layout environments. This fact enables the
use of the same method at various levels of the tree structure representing

the system hierarchy. The connectivity tree of a given circuit thus becomes



a branch in the physical hierarchy of the whole system. Under this perspective,
webelieve it is viable to apply the basic philosophy to other aspects of the
layout problem. As an example, a tree-building algorithm could be applied to
the layout processes which involve partitioning.

The connectivity tree also provides valuable information to be used
during the routing phase. We suggest that the sequence in which the wires are
processed, could be defined in terms of a bottom-up tree ordering. This
approach is compatible with hierarchical routing methods which use a bottom-
-up and shortest-first scheme [LS80] [BP83] [RM83].

It could also be interesting to investigate the suitability of the
approach to an effective interaction between the placement and the routing.
An integrated layout system could then be developed where, at different
levels of the tree structure, the placement is performed, pin positioning is

optimized and the partially formed configuration is routed and compacted.
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