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Abstract

The dynamic mechanical properties of two commercial aluminium-based foams, 

viz. Cymat/Hydro (closed-cell) and Duocel (open-cell), were investigated using a 

direct-impact technique for a range of velocities from 10 to 210 ms'1 and are reported 

in this thesis. Elastic wave dispersion and attenuation in the pressure bar was 

corrected using a force deconvolution technique. A method for locating the point of 

densification in the nominal stress-strain curves of the foams is proposed, which then 

provides a consistent framework for the definition of the plateau stress. Data for the 

uniaxial, plastic collapse and plateau stresses are presented and they show that the 

plastic collapse strength changes significantly with compression rate. This 

phenomenon is discussed, and the distinctive roles of microinertia and ‘shock’ 

formation are described. The effects of compression rates on the initiation, 

development and distribution of cell crushing are also examined. Tests were carried 

out to study the effects of density gradient and of specimen gauge length at different 

rates of compression and the results are discussed. The origin of the conflicting 

conclusions in the literature on the correlation between nominal engineering strain 

rate and the dynamic mechanical properties of aluminium foams is identified and 

explained.

One-dimensional ‘steady-shock’ models based on a rate-independent, rigid, 

perfectly-plastic, locking (r-p-p-t) idealisation of the quasi-static stress-strain curves 

of the foams are formulated for two different impact scenarios to provide a first-order 

understanding of the dynamic compaction process. A thermo-mechanical approach is 

used in the derivation of their governing equations. Predictions by the models are 

compared with experimental data and with the results of finite-element simulations 

of two-dimensional Voronoi honeycombs. A kinematic existence condition for 

continuing ‘steady-shock’ propagation in the foams is established using 

thermodynamics arguments and its predictions compare well with the experimental 

data. Finally, the energy formula from thermodynamics is used to highlight the 

apparently incorrect energy balance approach to describe ‘shock’ propagation in 

cellular materials which appears in some current literature.
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Chapter 1

Introduction and literature survey

1.1 Introduction

Metal foams are a new, as yet imperfectly characterised, class of materials with 

low densities and novel physical, mechanical, thermal, electrical and acoustic 

properties. They offer a plethora of potential applications such as for energy 

absorption (in packaging and crash protection), for blast-resistant lightweight 

structures (in the cores of sandwich panels, for example) and for thermal 

management (Ashby et al., 2000). However, it is in energy absorption and 

lightweight structures where metal foam appears to hold the greatest promise. When 

metal foam is loaded in compression, energy is absorbed as their cell walls bend and 

stretch plastically, or buckle, or fracture (depending on the material of which it is 

made) and, depending on whether the cells are open or closed, by the compression of 

the gas within the system of cells. The presence of a long collapse plateau in their 

compressive load-deflection curve allows the foam to absorb energy whilst keeping 

the peak force (or deceleration or acceleration) on the packaged object below the 

limit which will cause damage or injury. Understanding how the topological 

arrangement of the cell structure in the foam and the material behaviour of the solid 

phase, relate to the strength properties of a foam and its macroscopic response at 

different loading rates is, therefore, essential to their successful implementation. 

Although a sizeable amount of literature on the mechanics of foams exists -  an 

excellent introduction is given in the book by Gibson and Ashby (1997) -  there are 

comparatively fewer studies on the dynamic response of metal foams to impact 

loadings although it is growing quickly.

The current literature contains conflicting, and sometimes confusing, conclusions 

on the correlation between loading rate (particularly when referred to the nominal



engineering strain rate s  = F;. / /0 , where Vi is the impact velocity and l0 the initial

gauge length of the specimen) and the dynamic strength of aluminium-based foams. 

Kenny (1996) reported that the specific energy absorption of Alcan1 foams is 

independent of nominal compression rates from 10"3 to 10Y 7 (an impact velocity of 

10ms'1 corresponding to a nominal compression rate of 10Y7 in his tests); similarly, 

for Duocel foams (Lankford and Dannemann, 1998; Dannemann and Lankford,

2000). The study by Deshpande and Fleck (2000) on Alulight and Duocel foams 

showed that their plateau strength remains rate insensitive up to a nominal strain rate 

of SxlOY7 (corresponding to an impact velocity of 50ms"1). This contradicts the 

experimental results of Mukai et al. (1999a,b) who reported a 50-100% enhancement 

of the quasi-static plateau strength in closed-cell Alporas foams for compression 

rates greater than 10Y 7 (corresponding to an impact velocity of 6ms'1). The 

confusion relates to several factors including different interpretations of the 

underlying mechanisms responsible for dynamic strength enhancement, 

inconsistencies in the definition of key material parameters such as the strain at 

which densification occurs, the definition of the plateau strength and, partly, to the 

choice of experimental technique. The motivation for this study is the need to clarify 

the underlying inconsistencies in the current literature on the relationship between 

loading rates and the dynamic properties of metal foams; this need arises because 

they are used increasingly as materials for energy absorption and in lightweight 

structures designed to resist blast and impact loadings (Hanssen, 2000; Fleck and 

Deshpande, 2004; Deshpande and Fleck, 2005). This thesis presents the results of a 

systematic and extensive investigation into the dynamic mechanical properties of 

metal foams.

1.2 Outline of the thesis

Almost any metal can be foamed although most commercial metal foams are 

based on either aluminium or nickel. The dynamic mechanical properties of two

’ Alcan, Duocel, Alulight, Cymat and Alporas are product names o f various commercial aluminium- 
based foams (o f either open or closed cells). See Ashby et al. (2000) for information on their 
manufacturers.
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commercial aluminium-based foams, viz. Cymat/Hydro2 (closed-cell) and Duocel 

(open-cell), are studied in the present thesis. The thesis begins with an evaluation of 

the basic parameters which characterise the structure of the foams. The limitations of 

the two common high-rate testing techniques are discussed and the most appropriate 

technique for metal foams testing is highlighted. A description of the test apparatus 

follows and an account is given of the deconvolution technique used to correct the 

measured force pulses for elastic wave dispersion and attenuation in the pressure bar 

(Chapter 2). Chapter 3 proposes a new method of locating the densification strain 

based on the efficiency of the foam, defined according to its performance, in 

absorbing energy. This lays the foundation for a consistent framework to which key 

material parameters can be extracted from the nominal stress-strain curves of any 

cellular materials without recourse to ad-hoc criteria. The quasi-static and dynamic 

mechanical properties of the Cymat and Duocel foams are next presented and 

discussed. In chapter 4, one-dimensional ‘steady-shock’ models are formulated 

which enable the dynamic mechanical properties of the metal foams measured under 

impact loading conditions to be predicted. The predictions by the model are 

compared with the experimental data and with the results of finite-element 

simulations of two-dimensional (2D) Voronoi honeycombs. The latter highlights the 

mechanisms by which metal foams absorb energy under impact loading conditions. 

Chapter 5 identifies and explains the source of some anomalies which arise between 

the theory presented in Chapter 4 and those in the current literature. Finally, in 

Chapter 6, suggestions for further research and conclusions are given.

1.3 A brief survey of recent literature

A number of papers have recently appeared in the literature some of which adds 

to the confusion on whether or not the dynamic mechanical properties of metal foams 

are affected by the loading rate and they are summarised in Table 1.1. The common 

theme in these papers is the characterisation of the foams’ dynamic properties 

(and/or the energy absorbed) in terms of the nominal engineering strain rate at the

2 Cymat and Norsk Hydro had merged their aluminium foam process technologies with the former 
having acquired all o f  Norsk Hydro’s intellectual property and production assets related to 
aluminium foam production.
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ĈD
CL
d

CD
d  

§ ^

- £ 8  8 © 
q  e

o
cd
co
1/1
COo1-14-»
CO

§
CD
Wj
Cl
•

1
»3 y~̂ vo  7 o  1o  acn S _ o  S  ^
CL W  
d

*3
CQ t s
CL CDw .fa
GO Q

*3
u r?u  ^  w O
4_i
P  —1 
0 0  CD 

P  CDd  o 
p  d
<  Q

o
cdCL

vo
Os
Os

CD
&

C+H
O

4->
d
OD

d

S3
Cl
CD

dfl
d
.2
&O
CO

3
60L-.
CD
d
CD
CD

s‘o
CD
CL

C/5

CL
d

CQCL
XGO

U
u
¥

c d

<

CN

xJ<u
1
4—*
do
CD

'rtH



temperature of their intended application. Unlike solid metals, the relatively large 

cell sizes in metal foams (of the order of millimetres) meant that its dynamic 

properties are dominated by the structural response of the individual cell walls at the 

meso (cell) scale. It will be shown in Chapter 3 that a direct correlation, similar to the 

well-known Cowper-Symonds empirical correlation for solid metals, is not viable.

Qtuni-static

K«bkyB*r

0.007 l/» (Quasi-Static) 
2.25 I/s (Kirfsky Hat)

Cm INN

(a)

0 0 0 7  l a ( Q om*-Stale) 

 J 5 I4  l/% lOat G in)

• '  I  ' *

(b)

Figure 1.1 -  Comparison of the local deformation fields in Duocel foam between 

those under quasi-static loading and those measured during (a) SHPB 

and (b) direct-impact tests (reprinted from Lee et al., 2005)
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A split-Hopkinson pressure bar (SHPB or Kolsky) apparatus was used in most of 

the studies listed in Table 1.1 although it is not clear whether the assumptions of 

force equilibrium and uniform deformation (see Appendix A) were satisfied for their 

test specimens. In-situ measurements of the local deformation (strain) field in Duocel 

test specimens at different nominal strain rates by Lee et al. (2005) suggest the latter 

may not have been; see Fig. 1.1. This raises the question of the appropriateness of the 

SHPB test on metal foams which is addressed in Chapter 2. Also, the ad-hoc nature 

in which the plateau stress is defined meant that a direct comparison of the data from 

different studies is often not possible (this is addressed in Chapter 3). Finally, most 

commercial aluminium-based foams suffer from some form of cell shape anisotropy 

but no distinction is made of how the properties are affected by the cell orientation in 

most of those studies.

The mechanical properties of a metal foam are influenced by its relative density 

and cell structure, particularly by anisotropy and by defects such as wiggly, buckled 

or broken cell walls, and cells of exceptional size and shape (Ashby et al., 2000). In 

general, they are independent of the process-route used to make the foams but a 

recent study by Montanini (2005) appears to suggest otherwise. He reported that the 

dynamic plateau stresses of the M-Pore and Cymat foams are insensitive to strain 

rate whilst that of Schunk is sensitive. However, this can be due to differences in the 

cell microstructure and orientation, arising from the ways in which the foams were 

manufactured. O f relevance to the present study is his finding that the peak stress, 

known as the plastic collapse stress in the present study,, of Cymat foam changes 

significantly with loading rate.

A recent paper by Miysohi et al. (2002) suggests that the sensitivity of the 

measured foam properties to strain rate can be altered by modifying the chemical 

constituents of the cell wall material. They reported that the plateau stress is 

“ effectively enhanced with the combined effect of strengthening solid alloy and 

increasing the aspect ratio of cell wall thickness against cell edge length” . Note that 

the latter scales linearly with the relative density ( p a/ p s , the density p 0 of the foam

divided by that of the solid of which it is made p s) of the foam. Therefore, it is

14



unclear whether the observed strength enhancement is a result of alloy strengthening 

or an increase in relative density. They further reported that the plateau stress of the 

modified foam, after adding strengthening alloys of 0.5 wt.% Mg and 7 wt.% Zn to 

the aluminium cell walls, is independent of strain rate as opposed to one without. 

This being the case the plateau enhancement must be due to increase in the relative 

density of the foam. It is interesting to note that commercial aluminium 6106-T6 

alloy, too, contains similar components of the so-called ‘strengthening alloy5 (see 

http://www.matweb.com~) but it is also well-known that Al 6106-T6 alloy is 

insensitive to strain rate below SOOÔ "1.

Analysing three-dimensional (3D) foams is a difficult business: the cell walls 

form an intricate three-dimensional network which distorts during deformation in 

ways which are hard to describe. Two dimensional foams (Voronoi honeycombs) are 

much easier to analyse and their results shed light on the mechanics of 3D foams. 

Recent numerical simulations of 2D foams have established an understanding of the 

mechanisms that will underpin much of the later discussion on the dynamic 

properties of 3D foams. Ruan et al. (2003) studied the in-plane dynamic compressive 

response of regular honeycombs through finite element simulations. Three 

deformation patterns were observed which depends on the direction of loading, the 

impact velocity and the relative density -  they are summarised in a mode 

classification chart. Of relevance to the present study is the effect of impact velocity 

on the distribution of cell deformation within the honeycomb structure which is 

reminiscent of that observed in 3D metal foams -  see Chapter 3 of the present thesis.

An interesting recent study is that by Honig and Stronge (2002a,b). Their 

simulations on the in-plane dynamic compression of honeycomb reveal the existence 

of a critical impact velocity beyond which crushing first initiates in the layer of cells 

adjacent to the impact surface. At velocities lower than the critical value, the location 

of the initial crush band is determined by the distribution and the extent of initial 

imperfections in the honeycomb structure. This phenomenon is also observed in 3D 

metal foams to be discussed later in Chapter 3. Finally, and most importantly, they 

found that the translational inertia of the cell edges leads to an increase in the

15
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transverse force acting on the row of collapsing cells, leading to an enhancement of 

the hydrostatic pressure and, consequently, the crushing stress. By contrast, 

rotational inertia of the cell edges was found to play a negligible role.

Previous works on the dynamic compression of cellular structures (assemblies of 

metal tubes and honeycombs) and materials (primarily wood) was surveyed in a 

comprehensive review by Reid et al. (1993). It highlights the common features 

reflecting the common mechanisms that influence the behaviour of cellular structures 

and materials under dynamic compression. The central theme is on how microinertia 

of the cell walls/edges produces force/stress enhancements that are considerably 

greater than those resulting from the strain-rate sensitivity of the material also apply 

to the present work on metal foams. The review by Reid et al. (1993) is essential 

background reading for anyone wishing to gain a further insight into this topic.

1.4 Contributions to existing literature

The bulk of the research work reported in this thesis has now been published 

and/or presented at symposiums and seminars. A list of the papers published, 

submitted for publication and currently under preparation in which the present thesis 

is based is as follows:

1. “Inertial effects in the uniaxial dynamic compression o f a closed-cell aluminium alloy foam”
(with J.J. Harrigan, S.R. Reid), M aterials Science and Technology 18 (2002), 480-488.

2. “Dynamic compressive strength properties o f  metal foams. Part I -  Experimental data and
observations” (with S.R. Reid, J.J. Harrigan, Z. Zou, S. Li), Journal o f  the Mechanics and  
Physics o f  Solids 53 (2005), 2174 -  2205.

3. “Dynamic compressive strength properties o f metal foams. Part II -  ‘Shock’ theory and
comparison with experimental data and numerical models” (with S.R. Reid, J.J. Harrigan, Z. 
Zou, S. Li), Journal o f  the Mechanics and Physics o f  Solids 53 (2005), 2206 -  2230.

4. “Discussion: ‘The resistance o f  clamped sandwich beams to shock loading’ (Fleck, N.A. and 
Deshpande, V.S., 2004, ASME J. Appl. Mech., 71, pp.386-401)” (with S. R. Reid, J.J. Harrigan), 
AS ME Journal o f  A pplied Mechanics 72 (2005), 978 -  979.

5. “Dynamic crushing o f  two-dimensional cellular materials and the effects o f  irregularities” (with 
Z. Zou, S.R. Reid, S. Li, J.J. Harrigan), Submitted (2005).

6. “On the mechanical strength properties o f  materials with a densification regime” (with S.R. Reid,
Z. Zou), In preparation (2005).
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7. “Dynamic crushing o f  honeycombs and features o f shock wave front” (with Z. Zou, S.R. Reid, S.
Li, J.J. Harrigan), In preparation (2005).

8. “Influence o f cell size and morphology on the dynamic compressive strength o f  aluminium alloy 
foams” (with J.J. Harrigan, S.R. Reid), In Cellular Metals and M etal Foaming Technology (J. 
Banhart, M.F. Ashby, N.A. Fleck, Eds.), Verlag-MIT Publishing, Bremen (Germany), (2001) pp. 
345-350.

9. “The crushing strength o f aluminium alloy foam at high rates o f strain” (with S.R. Reid, J.J. 
Harrigan), Invited Lecture, Proc. 40> Int. Symposium on Impact Engineering, Kumamoto, Japan, 
16-19th July 2001, Elsevier Science.

10. “Effects o f  non-periodic microstructure and imperfections on the dynamic response o f  two- 
dimensional cellular materials” (with Z. Zou, S. Li, J.J. Harrigan, S.R. Reid), Mechanics and  
M aterials Conference, Scottsdale, Arizona, 17-21st June 2003.

11. “High-rate compaction o f  aluminium alloy foams” (with J.J. Harrigan, Y.C. Hung, N.K. Bourne, 
P.J. Withers, S.R. Reid, J.C.F, Millet, A.M. Milne), In Shock Compression o f  Condensed M atter 
(M.D. Furnish, Editor), American Institute o f  Physics, M elville, New York (2005).

It is hoped that the dissemination of the work reported herein will lead, in some 

ways, towards a better understanding of how the cell features and the structural 

response at the meso-scale affects the dynamic mechanical properties of metal 

foams, and of the way these properties could be exploited in the engineering design 

for energy absorption and shock-resistant sandwich structures.
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Chapter 2

Description of materials, force 
measurement techniques and signal 
processing

2.1 Introduction

The purpose of this chapter is to present the basic parameters which characterise 

the structure of the closed and open cell foams, viz. Cymat/Hydro and Duocel 

respectively, to be studied. The information needed to analyse their properties is 

contained in a record of the material of which each foam is made, such as their 

relative density, on whether they have open or closed cells, average cell diameter, 

shape anisotropy-ratios, etc. (Gibson and Ashby, 1997). They are presented in the 

form of a characterisation chart for each type of foams. A brief review of the two 

common experimental techniques used in the high-rate testing of metal foams, viz. 

the split Hopkinson pressure bar (SHPB) and the direct impact techniques, is given 

next. The main emphases, however, are to contrast the limitations of each technique, 

and to discuss important considerations in the design of test specimens. Standard 

terminologies such as incident/input and transmitter/output bars are used throughout 

the thesis and they have their usual meanings in the context of a standard SHPB set­

up whilst only the latter is used in a direct-impact set-up. Finally, the force 

deconvolution technique which was employed to correct the dynamic force-time 

pulses for elastic wave dispersion and attenuation in the pressure bars is reviewed.

2.2 Material Description

The information which characterises each foam material are obtained/measured 

using standard laboratory apparatus, and those of their micro-structural features were

18



obtained from optical and/or scanning-electron micrographs and using the 

commercial image-processing software Image Pro®. Further details are available on 

the respective manufacturers’ web-site (see Ashby et al., 2000).

2.2.1 Cymat/Hydro foams

The commercial Cymat/Hydro foams were manufactured using a melt gas 

injection technique; details of which are given by Ashby et al. (2000). The solid 

phase (cell wall) material was an aluminium-based alloy of constituents Al -  Si (7- 

9%) -  Mg (0.5-1%). It has a density ( p s ) of 2130kgm'3, Young’s modulus ( E s ) of

lOGPa and yield strength ( <j vs ) of 185MPa (Hanssen, 2000). The three mutually

perpendicular principal directions in a typical foam panel, viz. casting (x), transverse 

(y) and gravity (z), are illustrated in Fig. 2.1. In order to characterise their directional 

properties, circular cylinders with their axes in either the y  or the z directions -  their 

strength differences are greatest between these two directions -  were cut from a 

panel by spark machining. All the cylindrical Cymat specimens had equal gauge 

length la and diameter da of approximately 45mm unless stated otherwise.

Transverse
■ L -...

Casting

D enser
m aterial

G ravity

(a) 21 (bf® ®
Typical foam  specim ens w ith

either a z or a y  axis.

Figure 2.1 -  Reference system of a typical Hydro/Cymat foam panel.
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The specimens are comprised of approximately equiaxed, closed-polyhedral 

cells with approximately 10-15 faces. Each cell has an approximate diameter of

dc = 2 - j A j  n  where Ac is the projected cell area onto a plane. Figure 2.2 shows the 

frequency of occurrence,/ ( / , ) ,  of a given cell diameter dc, against dc, for two y-

axis specimens with different average cell sizes. The average cell diameter of a 

specimen is defined by (Gibson and Ashby, 1997)

00

3 = \d c ■ f ( d c)d(dc) , (2.1)
0

and the cell diameter dispersion (standard deviation) is

cu

= \ k - d f - f ( d M d c) (2 .2)

35

30
NO"
^  25 

20

o
C<U
cr
<uu.

CL*

15

10

^  ̂ Sm all cell 
Large  cell

m m L x M _ss_

10 12 14 16 18 20 22

Cell diam eter, d c {mm)

Figure 2.2 -  Cell diameter distribution in typical small and large cell y-axis 

specimens.
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In Fig. 2.2, the two average cell sizes are approximately 14mm and 4mm; for 

brevity, they will be referred to as large cell and small cell Cymat specimens, 

respectively, hereinafter. The former has greater cell diameter dispersion. With the 

choice of dimensions, the small and large cell Cymat specimens have more than 10 

cells and approximately 3-5 cells, respectively, in the transverse circular plane 

perpendicular to the direction of compression. Consequently, it is anticipated that the 

properties of the latter are likely to be affected by size effects — defined as the effect 

of specimen size, relative to the cell size, on the measured properties (Onck et al.,

2001) -  and the reasons for studying these specimens will be explained later. 

Primarily due to the manufacturing process, cylinders of the large and small cell 

Cymat specimens have average densities p 0 that range from 107 -  346 and

187~-512kg-.m"J, respectively. Common cell morphological defects, such as missing 

cells, non-uniform cell wall thickness, fractured cell walls, cell size variations,

Commercial Name 
Cell wall composition

Density, p Q (kg.m~3)
Open or closed cells

Average cell diameter, d  (mm) 

Standard deviation of d , p
d

(mm)
Largest principal cell

dimension, L y (mm)
Smallest principal cell

dimension, L z (mm) 
Intermediate principal cell

dimension, Lx (mm)
Shape anisotropy ratios, Ryz,
Ryx

Cymat/Hydro 
AlSi8Mg (base alloy), SiC 

(particle type)
187 -512 107 - 346

Closed

(small-cell)

3.51

4.12

3.66

3.87

^ = 1 . 1 3

Rvx =1.06yx

14
(large-cell) 

3.56

15.96

13.25

14.04

R y z  = 1 - 2 0  

Ryz = 1 - 1 4

Other specific features Non-uniform density 
distribution 

along the z-axis (see Figure 2.3)

Table 2.1 -  Characterisation chart for Cymat/Hydro foams
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Figure 2.3 -  Density distribution in two small cell specimens in the (a) z, and the (b) 

y  direction. Both cylindrical specimens (l0 = d 0 =45mm)  were 

sectioned along their respective diametrical mid-plane.
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misalignment of cell walls and cell wall waviness, are present in all the specimens 

(Chen et al., 1999), being most severe in the large cell Cymat specimens. A detailed 

analysis is beyond the scope of the present work; nonetheless, some of the more 

important cell geometrical characteristics are summarised in Table 2.1.

The density (normalised by the density of the cell wall material p s ) distributions 

along the z-axis and the y-axis of two typical small cell Cymat specimens are shown 

in Figs 2.3a and b, respectively. The former has cell edges (and also their cell faces) 

that tend to greater thickness in the positive z-direction. This is due to foam drifts 

caused by alternate impellers rotating in opposite directions during the foaming 

process (Harte and Nichol, 2001). Specimens with axes aligned along (in) the z- 

direction are non-homogeneous, with spatial variations of density that have an 

approximate step-distribution. In contrast, the density distributions in specimens 

aligned in the y-direction are relatively uniform. The same trend is also observed for 

the large cell Cymat specimens. If the band of cells with greater wall thickness is 

parallel to the loading axis, it acts to reduce the effects of imperfections by 

strengthening and stabilising the specimen during compression (Chastel et al., 1999). 

For this reason the cutting of cylindrical specimens along the y-axis was carried out 

in a manner in which the denser material at the base of the foam slab is avoided -  see 

schematic in Fig. 2.1b.

Macroscopic anisotropy due to cell elongation in the foam is characterised by

the shape anisotropy ratios, R{. =Li/ L j and Rik =Li/ L k , where L( is the largest

principal cell dimension and the subscripts z, j  and k refer to the three principal 

directions in Fig. 2.1 (Gibson and Ashby, 1997). The shape anisotropy ratios for the 

two average cell sizes are listed in Table 2.1. In both cases, the slightly elongated 

cells have their largest principal dimension in the transverse (y) direction. The data 

for the small cell Cymat specimen suggests that the mean cell diameter in the y- 

direction is marginally larger by factors of Ryz =1.13 and R -  1.06 compared to

those in the z and the x directions, respectively. The same can also be said of the 

large cell Cymat specimens but with different factors.
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2.2.2 Duocel (ERG) foams

An investment casting method is used to manufacture the Duocel foams 

although details of the proprietary process remain undisclosed (Ashby et al.5 2000). 

The foam has a reticulated structure of open, duodecahedronal-shaped cells 

connected by continuous, solid metal ligaments. The ligaments are made of the 

aluminium alloy A16106 -  T6 which has a density (p s ) of 2700kgm~3, Young’s

modulus ( E s ) of lOGPa and yield strength ( <jys) of 193MPa. Unlike the Cymat

foams, the matrix of cells and ligaments is almost periodic; hence, the test specimens 

have uniform densities and do not suffer from any obvious cell morphological 

defects except for minor variations in their cell size and cell elongation. All the 

Duocel specimens were supplied by ERG as finished circular cylinders of 

d 0 = 45mm and l0 = 50m m , unless stated otherwise; they come in two different pore 

sizes of 10 and 40 pores per inch (PPI) with a corresponding average cell diameter of 

approximately 4mm and 2.0mm respectively. Table 2.2 lists some of the relevant 

information which characterises the Duocel foams.

Commercial Name Duocel
Cell wall composition A16106- T6
Density, p 0 {kg.m'3) 257 - 287 210-271
Open or closed cells Open

Average cell diameter, d {mm)
4

(10 PPI)
2.0 

(40 PPI)

Standard deviation of d , p
d 0.2 0.07

{mm)
Largest principal cell

dimension, Li {mm) 5.6 2.7

Smallest principal cell

dimension, Z 3 {mm)
3.1 1.8

Intermediate principal cell

dimension, L i {mm)
4.1 2.1

Shape anisotropy ratios, Rn , Rn =1.37 Rn =1.29
f?!3 Rn =1.81 R, 3 =1.50

Table 2.2 -  Characterisation chart for Duocel foams
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Macroscopic anisotropy exists due to cell elongation caused by directional 

cooling during the casting process (Ashby et al., 2000). Their shape anisotropy ratios 

are listed in Table 2.2. To investigate whether these affect the strength properties 

measured, the specimens supplied have either the smallest or largest principal 

dimension of their constituent cells aligned parallel to the axis of compression. Both 

directions were investigated for the 10PPI foam; for brevity, a lOPPI-transverse 

(10T) or 1 OP PI-longitudinal (10L) specimen denotes one where all their cells are 

orientated with its smallest or largest principal dimension along the axis of 

compression, respectively. Photographs of sectioned samples are shown in Figure

2.4. However, only ‘40PPI-longitudinal (40L)’ specimens were studied in the present 

thesis.

(a) 10-PPI transverse (b) 10-PPI longitudinal

Figure 2.4 -  Photographs of two undeformed 10PPI Duocel specimens (40 x 60mm) 

sectioned along their mid plane where the constituent cells have their 

(a) smallest and (b) largest principal dimension orientated along the axis 

of compression.

25



2.3 Force measurement -  SHPB versus Direct-impact techniques

The two common experimental techniques used in the high-rate testing of metal 

foams are the split Hopkinson pressure bar (200 < s  < 104^-1) and direct-impact 

(103 < £ < 105^-1) tests, where s  is the nominal engineering strain rate defined as the 

ratio of the change in length of the test specimen. Both are well-established methods 

and the theory behind each technique is given in Appendix A. The focus here is on 

discussing their limitations and the important considerations in the design of test 

specimens with a cellular microstructure.

Both techniques utilise strain-gauged, cylindrical pressure bar(s) as the hasis for 

a mechanical method of measuring stress (or, more precisely, strain) wave pulses 

generated by impact. The sensitivity of the pressure har is determined by the 

properties of the material of the bar (density p b), the type of strain gauge used and 

the characteristics of the associated instrumentation. Although the bar can be made of 

any solid material, the elastic wave impedance (= p QCe where Ce is the elastic wave

speed) of the material to be tested usually dictates the choice. Imagine a 

homogeneous foam specimen (only those aligned along the y-axis for the Cymat 

foams or any Duocel foams) idealised as a one-dimensional chain of particles of 

equal mass m (= p 0A0d ) that are interconnected by identical, massless linear elastic

springs of stiffness e (= EfA0/ d ), where Ej- is Young’s modulus o f the foam and

A0 is the cross sectional area of the undeformed specimen. If dispersion effects and

wave attenuation are neglected then the speed of an elastic wave (plane stress) 

propagating in this chain is given by (Brillouin, 1946)

Ce —d '  yfefm = ^{Ef  / p 0) ■ (2.3)

Using Eqn. (2.3) the wave impedance of a typical small cell Cymat specimen 

( p 0 = 350kg.m~3 and Ej- « \.6GPa), assuming the effects of gas compression

within the cells are negligible, is estimated to be ~ 0.75 x kg.m~2 .s~x and that of a
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10L Duocel specimen ( p 0 = 272kg,m~3 and Ej. & 03G Pa) to be

~ 0.29 x 10 6kg.m~2.s~l - both are two orders of magnitude lower by comparison with

that of standard steel (~  40x \06 kg.m~2 .s~]). The high impedance mismatch 

suggests that a pressure bar with lower acoustic impedance is needed for the SHPB 

test. Otherwise, the forces at the specimen-input bar interface cannot be resolved 

accurately -  the incident and reflected force pulses being almost identical and so 

essentially cancels each other (see Eqn. A10 in Appendix A). The transmitted strain 

pulse may, as a consequence, become too small to be measured accurately. However 

one of the difficulties with, for example, polymer bars, such as PMMA, is the need to 

employ complex geometry-dependent viscoelastic model analysis of the pressure bar 

signals to deduce the specimen behaviour. This contrasts with the straightforward 

data reduction if steel bars are used. If, on the other hand, a linear elastic data 

reduction is used with polymer bars, errors of up to 52% may be expected (Wang et 

al., 1994). Finally, it is noted that the simplified technique used by Deshpande and 

Fleck (2000) to justify a linear elastic data reduction may not have fully considered 

the range of possible signal frequencies encountered during the impact testing of 

their metal foams (Bacon, 1998 & 1999). Therefore, their results must be treated 

with caution for the above reason and require further validation.

Careful considerations must also be given to the design of test specimen for a 

SHPB test; in particular, for a cellular material. The errors due to the radial and the 

longitudinal inertia of the specimen have to be minimised by choosing a specimen 

aspect ratio o f (Davies and Hunter, 1963)

where v j  is the Poisson’s ratio: typically between 0.31 -  0.34 for both the Cymat

and Duocel foams (Ashby et al., 2000). The errors due to friction at the specimen- 

pressure bar interfaces must be minimised by reducing the areal mismatch between 

specimen and bars. A short specimen length is generally required for rapid ‘ring-up’ 

(often described as attaining equilibrium) to a uniform uniaxial stress state. If the

(2.4)
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deformation in the test specimen follows the Taylor-von Karman theory, then the 

minimum ‘ring-up’ time is given by Davies and Hunter (1963) to be

t> 7T’l0^ p 0/(d<j/ds) (2.5)

where dcr/ds is the tangent modulus of the specimen’s true stress-strain curve. 

Although a shorter specimen achieves uniform stress much quicker (Eqn. 2.5), l0 

cannot be reduced without a concomitant reduction in both the specimen (Eqn. 2.4) 

and pressure bar diameters. A minimum diameter ratio of d0/ d  > 5 for a metal foam

specimen is also necessary to avoid size effect (Onck et al., 2001). As a rule of 

thumb, it is recommended that the diameter of the test specimen should at least be 

ten times that of d . Lastly, the specimen gauge length must be greater than the 

length scale that defines the continuum limit of the foam (this is to be discussed in 

Chapter 3). However, it is often not possible for the test specimen to satisfy all of the 

above criteria and its final design is usually a compromise.

The most important characteristic of the SHPB apparatus is that it allows high 

strain rate deformation while the test specimen is, in fact, in ‘dynamic equilibrium’, 

i.e. the stress gradient is essentially zero along the specimen. This allows the 

deduction of the dynamic uniaxial stress-strain response on the premise that internal 

force equilibrium and uniform deformation always exists within the test specimen. 

Since localisation is a distinctive feature of the deformation of metal foams -  this is 

evident in the local deformation fields of the Duocel foams in Fig. 1.1 -  the 

requirement for uniform deformation of the test specimen in a SHPB test is, strictly 

speaking, not met initially or at all unless l0 is of the order o(d). Therefore, the 

results of a SHPB test on metal foams have to be interpreted with care.

In a direct-impact test, the test specimen is attached to one end of the striker bar 

(better termed, in this case, the backing mass) and this end is projected by a gas gun 

so that it impacts the output bar directly. The transmitted wave signal measures the 

variation of the interface force at the proximal (impact) end of the specimen with
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time (see Appendix A) and this is used to deduce the crushing stress in the test 

specimen. Although this technique increases the maximum loading rate achievable 

and avoids the dispersion problem in the incident bar it, too, poses several 

difficulties. Neither the nominal strain nor the nominal strain rate in the specimen 

can be evaluated without an incident bar. However this limitation may be overcome 

(see Gorham et al., 1992). A constant strain rate is not achieved because the 

specimen lacks internal force equilibrium. Therefore, the ratio J f //0 is, at best, an

overestimate of the actual strain rate in the specimen; nevertheless, it provides a 

useful value for test design. Just as with the SHPB technique, specimens must also be 

sized to avoid size effect and specimen length effect. Finally, whilst the direct impact 

test as described above can be used to measure the force pulse behind the 

deformation front, the pulse exerted at the support surface of the specimen can be 

measured by placing the specimen at the end of the output bar and striking it with the 

input bar. The direct-impact technique is recommended for metal foam testing 

because, unlike a SHPB test, no assumptions on uniform deformation and force 

equilibrium within the test specimens need to be made.

2.4 Apparatus and experimental set-up

A thick-walled, tool-steel chamber of 45mm inner diameter was used to stop the 

premature break-up of the specimens by buckling and/or shear banding during the 

quasi-static and the dynamic compression tests. In order to reduce the effect of 

frictional restraint, the contact surfaces between the specimen and pressure 

bar/chamber were lubricated with PTFE spray. To examine the influence of the radial 

constraint on the mechanical characteristics of the foam, quasi-static compression 

tests were carried out using small cell Cymat specimens (at 16% relative density) 

with (uniaxial strain) and without (uniaxial stress) the radial constraint. The results 

are plotted in Figure 2.5.

Significant differences between their compressive responses are only observed 

for the densification regime, i.e. after the point of densification (to be defined in 

Chapter 3). Because the present study is concerned with the mechanical properties
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defined in the pre-densification regime (compare the data for the plastic collapse crqcsr

and plateau crqpl stresses in Fig. 2.5), it is concluded that the radial confinement had

negligible effect. Likewise, for specimens subjected to dynamic compression. 

Radford et al. (2005) recently presented a similar comparison for closed-cell Alporas 

foam and the same conclusion was reached with their data. Similarly, it was found 

that the mechanical properties of the Duocel foams are also unaffected by the radial 

constraint.

With radial constraint 
a qJ  = \3 .54 MPa

15.90 MPa

No radial constraint 
0 -?' =13.22 MPa

14.'79 MPa
rigid, perfectly-plastic, locking 
idealisation of the no-constraint case

0.0 0.2 0.4 0.6 0.8

Nominal Strain, s

Figure 2.5 - Quasi-static stress-strain curves of Cymat specimens (16% relative 

density) with and without a radial constraint. The open circle marks 

the point of densification. The r-p-p-l idealisation of the stress-strain 

curve is plotted for the one without a radial constraint.

Quasi-static compression of the specimens was carried out using an Instron-4507 

testing machine under room temperature conditions (18°C, 55% relative humidity) at

a constant displacement rate 5  of 45pm s~] . A direct-impact technique was used for

the dynamic compression of the foam specimens. Because a steel output bar was
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chosen (due to the more straightforward data reduction), modifications to the original 

experimental set-up -  described in detail by Reid & Peng (1997) -  were needed to 

increase the signal to noise ratio of the strain gauge measurements (the location of 

the strain gauges on the output bar is shown in Fig. 2.6).

This was achieved in two ways. The diameter of the output bar was reduced to 

20mm. This increased the strength of the signal. Also the upper frequency limit of the

Aluminium foam Pressure bar

Strain gauge
Backing mass

Figure 2.6 -  Schematic of experimental set-up for direct impact testing of aluminium 

foam projectiles.

amplifier (‘Fylde’ H359-TA) was lowered to 160kHz -  this reduced the effects of 

high frequency noise. Because the bar diameter used was then less than those of the 

specimens, the areal mismatch was dealt with by fitting an anvil of 50mm outer 

diameter (similar to that used in Harrigan et al., 1998c) to one end of the bar (see Fig. 

2.6). Both the bar and anvil were made of silver steel. A simple static calibration then 

allows the conversion of the strain gauge signal into a corresponding force pulse. The 

gain of the amplifier was 500 and the bandwidth of the oscilloscope (LECROY) was 

set to its lowest value of 30MHz.

An aluminium backing mass (with a diameter of ~45mm) was attached to the 

rear (distal) end of each specimen (see schematic in Fig. 2.6). This has two purposes: 

it helped with the alignment of the specimen in the barrel of the pneumatic launcher;
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and it provided additional kinetic energy for specimen crushing. The biggest possible 

backing mass that will not yield the pressure bar was chosen for each specimen. It is 

convenient to introduce a dimensionless mass ratio

M,. = M b/M f  = 4M b/x p J 0d 2o (2.6)

where M f  and M b are the mass of the specimen and backing mass, respectively. In

general, a higher mass ratio is needed for complete crushing of the specimen at the 

lower impact velocities. Useful information is normally restricted to the first 800 j j s  

of the force pulse -  known as the bar transit time -  because of signal reflection from 

the free end of the output bar. The bar transit time is determined by the properties of 

the material of the bar.

2.5 Deconvolution method for the indirect measurement of impact 

force

Inoue et al. (2001) described an inverse analysis using deconvolution to estimate 

the impact forces induced by a collision of two bodies of arbitrary shape. Dispersion 

of the elastic waves in the output pressure bar due to three-dimensional (3D) elastic 

wave propagation and the presence of the anvil effect the signal oscillations and 

cause a gradual increase in the rise time of the force pulse with propagation distance. 

Consequently, the pulse measured by the strain gauges does not accurately reflect the 

actual force pulse generated at the point of impact (see Fig. 2.6). In this section, the 

basic principles behind the force deconvolution technique are presented.

A time-dependent force pulse is a superposition of plane waves of many 

frequencies, each of which will travel at a different velocity when dispersion is 

present. Assuming that the transfer function is independent of the input amplitude 

and of the presence and absence of any other frequency components, there then 

exists a linear mapping of the unknown force pulse Fc(t), generated at the common

plane of impact, onto Fm(t), measured by the strain gauges. They are related to each
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other according to the convolution or Faltung’s theorem as follows (Arfken and 

Weber, 1995):

Fm{t ) = (2-7)
0

where d>(? -  r )  is an amplitude and phase modifying (or transfer) function. The

8006004002000

Time, t {jus)

Figure 2.7 -  The prediction by ABAQUS of the output force pulse F0(t), measured at 

strain gauge station 1, for a prescribed input force pulse F,(f), acting at 

the specimen-pressure bar interface (Harrigan and Reid, 1998b).

concept of causality is invoked requiring r < t  in Eqn. (2.7) (Arfken and Weber, 

1995). Taking the Laplace transform of the definite integral in Eqn. (2.7) gives

F m( 5 )  =  ^ ( ^ c ( 5 )  ( 2 . 8 )

where the over-bar denotes the Laplace transform of the corresponding function in
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Eqn. (2.7).

The transfer function ^ (s) is normally derived from a calibration experiment

(Inoue et al., 2001). Here, the approach by Harrigan et al. (1998c) was adopted and 

the transfer function was derived numerically using finite elements (.ABAQUS) 

because of the practical difficulties with attaching strain gauges to foam projectiles. 

A numerical calibration also has the advantage over an experimental one in that the 

calibration process is free from the effects of extraneous noise often associated with 

such experiments. The accurate specification of the pressure bar geometry, the 

material properties of the bar (including material damping), the boundary and 

support conditions in the fmite-element model is, of course, critical to its 

implementation. A mesh sensitivity study was also carried out (see Harrigan et al., 

1998c; Inoue et al., 2001). Figure 2.7 shows the difference between the predicted 

response, F0(t), at strain gauge station 1, for a prescribed input force pulse 

acting at the specimen-input bar interface, as predicted by ABAQUS.

Accordingly, the transfer function (in the transform space) is

Substituting Eqn. (2.9) into (2.8), and applying the inverse Laplace transform, the

All the Laplace and inverse transformations were carried out numerically by fast 

Fourier transforms (see Inoue et al., 1992).

Ail the dynamic force pulses were smoothed, in an 11-point moving average 

process, before they were corrected by deconvolution (see Harrigan et al., 1998b,c).

&(s) = F 0(s)/F t(s). (2.9)

unknown force pulse Fc(t) at the point of impact is given by (Inoue et al., 2001)

(2 . 10)
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Figure 2.8 shows typical force pulses of a small and a large cell Cymat specimen 

before and after deconvolution. Unlike the former, the corrected force pulses of the 

large cell Cymat specimen fluctuated wildly. For the small cell Cymat specimens, 

noise contributions are typically less than 5.5% of the plateau force measured at an
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Figure 2.8: Force pulse of a small and a large cell y-axis Cymat specimen before 

(left) and after (right) deconvolution (a) small cell Cymat specimen, 

Vj =\3A4ms~], p j  p s =0.122, M r =16.87 and, (b) large cell Cymat

specimen, V. =12.01m5_1, p 0/ p s =0.0503, M r =56.94.
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impact velocity of XIAAms 1, Hence, any changes in F m{s) are less significant after 

inversion as seen in Fig. 2.8a. By contrast, noise contributions are up to 60% of the 

plateau force in large cell Cymat specimens measured at impact velocities of

Vi < 20ms~] (Fig. 2.8b).

For these reasons, the measured force pulses of all the large cell Cymat 

specimens were not corrected by deconvolution in this study; rather their raw signals 

were used. It is also worth noting the significant modification to Phase I (defined in 

Chapter 3) of the deconvoluted force pulse (see Fig. 2.8a). By contrast, Phases II and 

III appear largely unaffected with only a noticeable increase in noise superimposed 

on the raw signal. Unlike the Cymat foams, the dynamic force pulses for the Duocel 

foams were all corrected using deconvolution in the present study.

2.6 Conclusion

The basic parameters which characterise the structure of the Cymat and Duocel 

foams are summarised in the form of a characterisation chart.

Limitations of each of the two common experimental techniques, viz. SHPB and 

direct-impact, are contrasted and the reasons for choosing the direct-impact method 

given. It has been shown that the compressive mechanical properties of the foams, 

before the onset of densification, are insensitive to a radial constraint. Finally, a 

review of the deconvolution technique used to correct the force pulses is presented 

and the reasons for not correcting the measured force pulses of the large cell Cymat 

specimens are given.
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Chapter 3

Quasi-static and dynamic mechanical 
properties of Cymat and Duocel foams

3.1 Introduction

The compression problem is the more important one when designing with metal 

foams for impact energy absorption. Therefore, only the compressive mechanical 

properties of the Cymat and Duocel foams are explored in the present thesis. In this 

chapter, the results of an extensive experimental investigation into the uniaxial 

compressive characteristics of open (Duocel) and closed-cell (Cymat) aluminium- 

based alloy foams under quasi-static and dynamic loading conditions are presented. 

Their dynamic mechanical response were investigated using a direct-impact 

technique (previously described in Section 2.3), over a range of impact velocities 

from 10/ws-1 to 210»ts_1.

The role and influence of instabilities in the deformation of constituent cells (this 

is termed microbuckling to distinguish it from instabilities in the whole specimen), 

the distinctive role of microinertia (a term commonly used to refer to the inertia of 

the individual cell walls) and ‘shock’ formation in the foams are explained. The 

effects of compression rates on the initiation, development and distribution of cell 

crushing are also examined. Tests were carried out to examine the effects of density 

gradient, cell orientation, cell size and specimen gauge length at different rates of 

compression and the results are discussed. The origin of the conflicting conclusions 

in the literature on the correlation between nominal strain rate s  (defined as the ratio 

of the impact velocity Vi to the initial gauge length l0 of the test specimen) and the 

dynamic strength of metal foams is identified and explained. Both the open and 

closed-cell foams share similar mechanisms of deformation and compressive strength 

characteristics. Therefore, only their differences are highlighted; otherwise, it should
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be assumed that they apply to both foams.

3.2 Quasi-static compression

To illustrate the range of phenomena involved when metal foam is compressed, 

the quasi-static response of the Cymat and Duocel foams to uniaxial compression is 

described first. This also provides a reference point for the subsequent discussion of 

their respective dynamic test data.

3.2.1 Nominal stress-strain curves

Figure 3.1 shows typical quasi-static compressive stress-strain curves for small 

and large cell Cymat specimens in they- and the z- directions (see Fig. 2.1). Those of 

the 1O f 10L and 40L Duocel specimens are shown in Fig. 3.2. All stress and strain 

measures are based on engineering stress and nominal strain definitions. Like all 

cellular solids, they show linear elasticity at low stresses followed by a ‘plateau’ 

region and then a regime of densification in which the stress rises steeply (Gibson 

and Ashby, 1997). These common features of the curves and the respective 

mechanism of deformation associated with each regime in the curve are described 

first. However, it should be noted here that, whilst their detailed stress-strain 

response is o f  intrinsic interest, it is the objective o f  the present thesis to provide a 

simplified description o f the mechanical properties o f the foams, according to the 

rigid-perfectly-plastic-locking (r-p-p-l) material idealisation in which the foam is

characterised mainly by its plastic collapse stress o f , its plateau stress crqp) and its

densification strain s D, as shown in Fig. 2.5. The superscript qs denotes quasi-static 

loading conditions. This simplified description of the foams’ properties is consistent 

with its use in energy absorption where the peak force (or acceleration or 

deceleration) on the packaged object must be kept below a limit that will cause 

damage or injury (controlled by afr ) and where a large controlled absorption of

energy must occur at a nearly constant load (controlled by apl and sD). These three

parameters are particularly useful in characterising the dynamic response of the
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foams, the focus of this thesis. The material response in the densification regime is, 

by contrast, of lesser intrinsic interest when designing with foams for impact energy 

absorption but it has an effect the accuracy of the ‘shock’ model in Chapter 4.

SC-z (pQ/ps = 0.105)
SC-y
(a //7s = 0105)

LC-z (Pc/Ps = 0.048)

LC-y
(So/ps = 0.05.3)
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Figure 3.1 -  (a) Typical nominal stress-strain curves of small cell (SC) and large cell 

(LC) Cymat specimens compressed along their y  (thick line) and z 

(thin line) axes. The open circle marks the point of densification.

(b) The three phases of early deformation response in a large cell, y- 

axis {LC-y) Cymat foam. The solid circle marks the plastic collapse 

stress.

(c) Efficiency-strain curve for the SC Cymat foam compressed along 

they-axis {SC-y).
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Figure 3.2 -  (a) Typical nominal stress-strain curve for 10T, 10L and 40L Duocel 

specimens. The open circle marks the point of densification.

(b) Early deformation response of the 10L and 10T Duocel specimens 

enclosed within the bubble region in (a). The solid circle marks 

the plastic collapse stress.

The early compressive response of both foams is divided into three phases -  as 

shown in Figs. 3.1b and 3.2b. Phase 1 corresponds to linear, elastic straining of the 

specimen through cell wall bending and cell face stretching (Gibson and Ashby,
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1997), the latter applies to the closed-cell Cymat foams only. This occurs at small 

nominal strains. Further straining now causes the localised plastic deformation that 

has developed around small domains of spatially correlated defects to spread and, 

eventually, coalesce to form bands (or layers) of deforming cells that advance across 

the specimen. Its cumulative effect is reflected in the non-linear, ‘concave-up wards’ 

response of the stress-strain loading path (denoted as Phase 2).

For the Cymat specimens, a stress collapse (or load drop) caused by geometric 

softening in the plastically deforming cells always accompanies the initiation of 

plastic collapse in the weakest band of cells, at afr , which marks the beginning of

Phase 3. This is analogous to the response of a Type II struct to quasi-static 

compression (see Calladine and English, 1984). Data for their shape anisotropy ratios 

(given in Table 2.1) suggest that the load drop which marks the beginning of Phase 3 

should be greater for compression in the y- than in the z- direction. But this is not 

consistently reflected in the curves shown in Fig. 3.1 because of variable geometry of 

the cell structure. It may, therefore, be assumed that the constituent cells of the 

Cymat specimens are randomly orientated.

By contrast, stress-collapse does not always occur for the Duocel specimens; it 

depends on the orientation of constituent cells relative to the axis of compression. If 

the largest principal dimension of their constituent cells is parallel to the axis of 

compression, such as in the 10L and 40L specimens, the early response exhibits 

analogous Type II structural characteristics; if the loading is parallel to the smallest 

principal cell dimension (10T specimens), they exhibit analogous Type I structural 

characteristics. Compare, for instance, the early response of typical 10L and 10T 

specimens shown in Fig. 3.2b. The discernible differences in the Phase 3 response of 

the Duocel foams are due to their highly regular matrix of cells and ligaments. It is 

interesting to note that similar stages of early deformation response are also observed 

in wood (a natural cellular material) and in unidirectional fibre-composites (man- 

made) subjected to uniaxial compression along the grain and along the direction of 

fibre-reinforcement, respectively. In the former, the differences between the early 

deformation response of 0° (along grain) and 90° (across grain) wood specimens
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are reminiscent of those in the 10L and 10T specimens, respectively (Reid and Peng, 

1997). However, the deformation mechanisms differ in each material and they are 

discussed in greater detail by Bastawros et al. (2000), Poulsen et al. (1997) and 

Moran et al. (1995).

The mode of cell collapse per se in a 3D foam is too difficult to quantify, unlike 

for honeycombs subjected to in-plane compression. However, they always invariably 

involve some form of plastic bending in order to accommodate the large changes of 

shape of the constituent cells. Visual examination of partially crushed specimens 

during loading suggests that cell collapse in the Cymat, the 10L and 40L specimens is 

non-symmetric, in a £shear-type’ mode. Non-symmetric cell deformation leads to a 

decrease in stiffness that results in a maximum load followed by a subsequent plastic 

loading path with a negative slope as is evident in their respective stress-strain curves 

in Figs. 3.1 and 3.2 (Papka and KLyriakides, 1994). By contrast, the cells in the 10T 

specimens deform in an approximate symmetric mode (c.f. quasi-static lateral 

compression of a ring) -  consistent with the absence of a stress collapse in Phase 3.

When opposing walls of the cells in a collapsing band touch each other, the cells 

stiffen locally and this triggers the plastic collapse of a non-contiguous band of cells. 

Localisation of deformation is one of the most distinctive features of cellular 

materials. Each band appears to develop a spacing of 3-4 mean cell diameters from 

each other -  consistent with the results of surface deformation analysis by Bastawros 

et al. (2000). For shorter Cymat specimens with a 45mm gauge length, the crush 

bands eventually intersect each other and are inclined at angles of approximately 25° 

to the loading axis. The process of discrete crush band multiplication is repeated, 

causing stress oscillations in the long ‘plateau’, though this exhibits gradual overall 

strain hardening. This region of the stress-strain curves continues until bands of 

collapsed cells consume the entire specimen; thereafter, the cell wall material itself is 

compressed. In general, shortening of the specimen in the densification regime 

occurs in a spatially uniform manner. These observations are broadly similar to the 

ones made by Bastawros et al. (2000).
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The effects of density gradient were examined by comparing the compressive 

response of the small cell Cymat specimens in the y- and the z- directions (see Fig. 

3.1a). First consider the effect of loading direction. The point of densification in each 

curve is marked with an open circle. As expected, the z-axis Cymat specimen 

densities at a smaller nominal strain. In this direction, band multiplication is 

confined, at least in the early phases of compression, to the lower density zone where 

the density is close to that of a y-axis specimen (see Fig. 2.3). Intuitively, this is 

hardly surprising since the thicker cell edges and cell faces in the higher density band 

have greater bending stiffness and stretch resistances, respectively. This is also 

reflected in their stress-strain curves: the plateau stresses in both directions agree 

within the limits of experimental error (they are seen in both the small and the large 

cell Cymat specimens). The small cell Cymat specimens are nearly twice as stiff and 

strong compared to the large cell ones because size effects affect the latter. This is 

explained in a later section.

3.2.2 Quasi-static mechanical properties

The set of moduli that characterises the linear-elastic response of the foams is 

given by Gibson and Ashby (1997) and, therefore, not repeated here. The literature 

suffers from a lack of consistency in extracting key material parameters, such as the 

plateau stress o-JJ and the densification strain s D, from a nominal stress-strain curve.

Consequently, the experimental data presented by different researchers are often not 

suitable for direct comparison because of the different ad-hoc criteria and definitions 

used. The present development avoids such a problem. The plastic collapse stress 

ff** is reached when a band of cells start to collapse. This is the first peak stress that 

separates Phases 2 and 3 in the early deformation response (see Figs. 3.1b and 3.2b). 

Its corresponding strain is denoted by scr. In cases where a load drop does not occur,

notably in all the JOT specimens, the plastic collapse stress is found using a simple 

graphical construction as illustrated in Fig. 3.2b. If a foam is compressed up to a 

nominal strain of s a , the energy absorbed per unit volume is given by (Gibson and

Ashby, 1997)
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e a

W = jarc(s)d£
o

(3-1)

The efficiency E of the foam in absorbing energy is defined as the energy absorbed 

up to a given nominal strain, sa , divided by the corresponding stress value, i.e.

e (£ ) = — ™ ----- s 0 < < 1. (3.2)

Finite element (FE) simulations on the in-plane compression of honeycombs 

have shown that opposing walls of their cells make contact and crush together when 

the efficiency is a global maximum in the efficiency-strain curve (Tan et al, 20 053). 

This idea can be extended, following arguments consistent with Gibson and Ashby 

(1997), to the more complex geometry of three-dimensional (3D) foams so that their 

densification strain eD is also defined by (see Fig. 3.1c)

= 0. (3.3)
c=eD

There are cases where it is necessary to smooth the efficiency-strain curve before 

locating its stationary point. Since the densification strain is sensitive to spatial 

variations of density, only the data obtained from the compression of y-axis Cymat 

specimens were fitted to this definition for densification strain to give (the form of 

the empirical scaling relation was proposed by Ashby et al., 2000)

£d = 0 .7 6 [l-3 .1 7 (/> „ /p > 2 .1 7 (p „ /p J], (3.4)

By the same procedure, the densification strain for the Duocel foams is found to be

3 This is the subject o f  an on-going investigation by the author (see listing in Section 1.4).
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eD = 0.70[1 - 1.50 (p. I p , 143.14 )3]. (3.5)

To define the plateau stress (especially in the light of its application to dynamic 

loading) the concept of the time average value ( / )  of a smooth and continuous

function f ( t )  is proposed. The strain axis of the stress-strain curve is converted into 

time by using

t = e t 0/ S , (3.6)

where the quasi-static compression rate 5 = 45pms 1. The plateau stress o ‘(J is

{<)c

c

t
t c r

Figure 3.3 -  Definition of plateau stress for the function <j c (r).

defined as the time average value of the function <rc(t) so, as illustrated in Fig. 3.3, 

the rectangular area (tD - ^ cr)(crc.) is equal to the actual area under the curve in the 

interval tcr < t < tD, namely

( h - t c r ) .
jcr c{t)dt (3.7)
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where tcr and tD is related to scr and sD, respectively, through Eqn. (3.6). If plastic 

collapse o f the foam results in a perfectly plastic stress-strain response then Eqn.

(3.7) gives a qp]\ = <jfr , as expected.

The theoretical plastic collapse strength of the closed-cell Cymat foams (ignoring 

the gas pressure contribution for now) is (Gibson and Ashby, 1997)

° - 3 ( ^ P o / P s Y 2 +  ( 3 - 8 )
V  V  ■'■■■ 11 ■ —111.......J N------------------v- ^

plastic  b ending o f  ce ll ed g es  p lastic stretching o f  ce ll faces

where 0  is the fraction of solid in the cell edges; the remaining fraction ( l - ^ )  of 

solid is contained in the cell faces. Experimental data for the plastic collapse strength 

of the Cymat foam specimens and the predictions by Eqn. (3.8) (for different values 

of 0)  are plotted in Fig. 3.4. The large scatter in the data reflects the sensitivity of 

the plastic collapse stress to local heterogeneities, such as density variations and cell 

morphological defects, within the collapsing band of cells. All the data lie close to 

0 w 1: this suggests that they deform primarily by bending of their cell edges -  in 

essence they behave like open-cell foams. Two reasons for this are that the cell faces 

may have been ruptured before plastic collapse and the contribution from plastic 

stretching of the cell faces, though still present, is comparatively small and negligible 

(Gibson and Ashby, 1997). The data for the large cell Cymat specimens lies beyond 

the limiting value of 0 = 1. This is because they are affected by cell-size effects,

since d 0/ d  <5 for the large cell Cymat specimens, which occur in specimens when

the reduced constraint of the cell walls at the free surface is coupled with an 

increased area fraction of stress-free cell walls (see Onck et al., 2001). Due to 

reasons stated above, the data for the large cell specimens, unlike its small cell 

counterpart, cannot be treated as representative of the Cymat foam properties. 

Rather, their inclusion is to elucidate how cell size affects the static and dynamic 

strength properties. This is discussed later.
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Figure 3.4 -  Data for the plastic collapse stress plotted against relative density. The 

bubble indicates the region of super-imposed density dependence 

between the small and the large cell Cymat specimens.

The scaling relation in Eqn. (3.8) requires a unique and single-valued 

correspondence between the domain of definition (relative density) and the strength 

property. As pointed out earlier, the z-axis Cymat specimens have strength properties 

that are lower than their relative density would, normally, predict. This is particularly 

evident for the large cell Cymat specimens (the anomaly is enclosed within the 

bubble-region in Fig. 3.4). Because of the super-imposed density dependence, 

separate characteristic curves were used to fit the data for the different average cell 

sizes. Although the response of the Cymat foam is not perfectly-plastic, the same 

scaling law was used to fit the data for the plateau strength also. As shown in Fig. 

3.4, the dependence of all the strength data on p 0/ p s are adequately described by 

Eqn. (3.8) with (f> = 1 and there appears to be little evidence of the influence of 

membrane stress. The percentage scatters in the strength data for the small and large
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Figure 3.5 -  Data for the quasi-static (a) plastic collapse and (b) plateau stresses 

(normalised by the yield strength of the cell wall material) of the 

Cymat foams plotted against relative density (p0/ p sJ . The solid 

lines represent the scaling relation given by Eqn. (3.8) with (f) = 1.

cell Cymat specimens is ± 20% and ± 40% respectively. By setting (f) = 1, the 

experimental data is fitted to the scaling relation in Eqn. (3.8) to give (see Fig. 3.5)
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For small cell Cymat foams:

° a - / ° y s = C \ ( P o / P s f 12 = 0 .5 2 2 ( ^ o / / ? J 3 /2 , 

i ° y s  ^ C l i P o / P s f 2 = 0.54l{pJ ps f 2,

(3.9)

(3.10)

and for large cell Cymat foams:

° a - l ° y s = C - h { P o l P s ) m = ^ W ( P o l P s f 2 > 

°pi/°ys =C4( p J p s f 2 = 0.166(p0 j  ps )3/2.

(3.11)

(3.12)

Unlike the Cymat foams, the quasi-static strength properties of the Duocel foams 

are sensitive to cell orientation but insensitive to cell size (see Fig. 3.7). In general, 

significantly higher plastic collapse and plateau stresses were measured along the 

largest principal dimension of its constituent cells (i.e. in the 10L and 40L 

specimens), as opposed to along its smallest principal dimension (10T specimens). 

This is best explained by an analogy of simpler two-dimensional (2D) honeycomb 

with principal directions X ) and X 2 as shown in Fig. 3.6. Assuming deformations are 

sufficiently small so that changes in geometry are negligible, the plastic collapse 

stress in the Xj and X 2 directions is given by (Gibson and Ashby, 1997)

respectively. For a regular hexagonal honeycomb, i.e. 6 = 30° and h = l , Eqns 

(3.13) and (3.14) predict identical plastic collapse stress in both directions. Suppose 

the cells are elongated in the X 2 direction with h unchanged from the case where 

0 -  30°, it is easily verified that a fr /crys is always greater in the X? than the Xj 

direction, i.e.

+ sin #)sin 0\ and (3.13)

(3.14)

1 /2cos2 0 - l/2 ( /i/ /  + sin0)sin<9> 0 for 30° < 0 « 9 O °  (3.15)
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where / = /? V 3 /2 c o s# . In the 3D Duocel foam, four cell edges m eet sym m etrically

Figure 3.6 -  A typical cell of an undeformed honeycomb

at each vertex in a tetrahedral arrangement. Under compressive loading the intricate 

3D network of cell edges distorts in ways which are hard to quantify. Nonetheless, 

the dependence of the plastic collapse stress on cell orientation can be explained by 

analogy with a simpler 2D honeycomb shown above. The percentage scatter in the 

data for the plastic collapse and plateau strength of the Duocel foams is 

approximately ±5%  and ±10% respectively. Again, the scaling relation of Eqn.

(3.8) can be used to fit reasonably well the experimental data for the Duocel cell 

foams, by setting <f> = 1, to give (Fig. 3.7)

Along largest principal cell dimension (JOL & 40L specimens)

° Z l a v  =  C 5 { p „ ! P : f 2 =  0 . 6 0 6  ( p „ / p , ) 3 / 2 ,

=  Ct{p.lp,r = 0 7 0 8 [ p J p , T ,

and along smallest principal cell dimension (JOTspecimens):

< ! ° y ,  = C1( p J p , T  = 0 . 3 2 3 ( / > o / p , ) 3 / 2 ,  ( 3 . 1 8 )

= C 8 ( p „ / p , ) 3 / 2 = M U { p J p , f \  ( 3 . 1 9 )

(3.16)

(3.17)
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Figure 3.7 -  Data for the quasi-static (a) plastic collapse and (b) plateau stresses 

(normalised by the yield strength of the cell wall material) of the 

Duocel foams plotted against relative density ( p j p s)L . The solid 

lines represent the scaling relation given by Eqn. (3.8) with </> = 1.
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3.2.3 Gas contributions to the strength properties of Cymat foams

When closed-cell Cymat foam undergoes plastic collapse the fluid in the cells is 

compressed too. Hence, the gas pressure contribution must be added to Eqn. (3.8). A 

first order estimate of this can be made by assuming that the ideal gas in the cells 

undergoes isothermal compression to give a strength elevation of (Gibson and 

Ashby, 1997)

where P0 (= 0.1 MPa) is the atmospheric pressure. A similar calculation, assuming 

adiabatic compression, gives (Gibson and Ashby, 1997)

specimen ( p 0 = 350% * m 3, v j  » 0.32, sD = 0.445 ), the predicted strength elevation

by Eqns. (3.20) and (3.21) is approximately QtilMPa and 0.03MPa, respectively. 

Similarly, gas pressure contribution in a typical large cell specimen 

( p 0 - 1 3 5 % -m~3,Vf  «0 .32 ,££  =0.641) is approximately 0.03MPa and 0.05MPa,

respectively. In each case, the strength elevations are less than their respective limits 

of experimental error; therefore, following Deshpande and Fleck (2000), it is 

concluded that the contribution of gas pressure to the measured strength properties of 

the Cymat foams is so small as to be negligible.

3.3 Dynamic compression

Circular cylindrical foam specimens were compressed dynamically under

(3.20)

(3.21)

where y  (=1.4 for air) is the ratio of specific heat capacities. For a typical small cell
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uniaxial strain conditions at velocities of up to2\0ms~l . Under impact loading 

conditions their cells, too, deform by cell edge bending and cell face stretching -  

depending on whether they are open or closed. However the inertia o f the cell walls 

modifies the local quasi-static collapse mechanism, leading to less compliant modes, 

which generally require higher loads to cause cell crushing. The response of metal 

foams with spatially uniform density such as the y-axis Cymat and Duocel specimens 

is described first.

3.3.1 Dynamic behaviour of foams with uniform densities

3.3.1.1 Force pulses and deformation patterns

Typical force pulses measured at different impact velocities are shown in Figs. 

3.8 (for Cymat foams) and 3.9 (for Duocel foams). If the specimens are compressed 

at a constant rate, then their time and nominal strain axes are linearly related 

according to Eqn. (3.6) (replacing 5  with the impact velocity Vf). In reality, this is 

only achieved with a sufficiently high mass ratio of M r > 100 (see Chapter 4). If the 

period of the force pulse (total time required for the specimen to reach densification) 

is greater than the pressure bar transit time of

t = 2 l J p b/E„ (3.22)

where lb is the distance between strain gauge station 1 and the distal end of the bar, 

p b is the bar density and Eb is Young’s modulus of the bar, then the pulse is 

truncated by wave reflection, see, for example, (a) and (d) in Figs. 3.8 and 3.9. 

Deformation of the Cymat and Duocel specimens occurred in three distinct phases: 

an initial phase leading to peak deceleration (I); a crushing phase (II); and, a 

densification phase (III) -see Figs. 3.8c and 3.9c. They are analogous to the elastic, 

plateau and densification regimes of their quasi-static response (see Section 3.2.1).
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Phase I deformation corresponds to the initiation of elastic cell deformation by a 

precursor elastic wave. At cell level, the disturbance propagates as flexural waves in 

the cell edges and faces; the latter applies to the closed-cell Cymat foams only. Phase 

II deformation begins when plastic collapse first occurs in a band of cells at the 

weakest section of the specimen and this is always accompanied by a drop in the 

load. By contrast, this feature is notably absent in the 10T specimens under quasi­

static loading conditions where the load is strictly monotonic increasing -  see Fig. 

3.2a. This phenomenon is relevant to the accuracy of the ‘shock’ theory predictions 

in the next chapter.

Two contrasting distributions of cell deformation and their corresponding force 

pulses are shown in Figs 3.10 and 3.11. The development and distribution of cell 

deformation in the foam specimens depends to a large extent on the impact velocity. 

Two types of deformation pattern develop as follows:

1, Sub-critical velocity compression. The first set of foams shows partially 

crushed small cell Cymat (Fig. 3.10a) and 10L Duocel (Fig. 3.10b) specimens 

compressed at a sub-critical velocity. Both had insufficient energy to achieve 

full crushing. Their deformation pattern is similar to those observed under 

quasi-static loading conditions where crush bands form at random non-adjacent 

sites leading to non-uniform straining of the specimens. Plastic collapse 

initiates at the weakest band of cells, almost always in the interior of the 

specimen. The layer of cells at the impact surface is reinforced by friction 

through their contact with the anvil and this makes geometric softening in them 

much more difficult (Papka and Kyriakides, 1994). For this reason, plastic 

collapse of the cells at the impact surface usually occurs in the latter stages of 

Phase II deformation. There are, however, exceptions depending on the 

distribution, the severity and the types of cell defects present. In summary, 

overall shortening in specimens during sub-critical velocity compression is 

always by the accumulation of discrete, non- contiguous bands of crushed cells. 

This leads to a somewhat diffused deformation pattern wherein layers of 

crushed cells are separated by materials which survive without crushing if the
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Figure 3.10 -  Typical distributions of cell deformation and their corresponding force 

pulse for (a) small-cell y-axis Cymat and (b) 10L Duocel specimens 

crushed at sub-critical velocities. The discrete crush bands are clearly 

visible in each specimen. The arrow head denotes the impact end.
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Figure 3.11 -  Typical distributions of cell deformation and their corresponding force 

pulse for (a) a small-cell y-axis Cymat and (b) a 10L Duocel 

(specimen gauge length of 100 mm) specimen crushed at super-critical 

velocities. A planar cross sectional surface separates the crushed and 

uncrushed cells. The arrow head denotes the impact end.
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specimen is unloaded before Phase IIL

2. Super-critical velocity compression. Both specimens shown in Fig. 3.11 had no 

backing mass (M ,.=  0), similar to a Taylor bullet test. The continuous transit of 

an elastic wave in the rear portion of each specimen reflected between the crush 

front and the rear (distal) stress free end eventually brings the specimen to rest 

after many traversals in the rear part of the specimen. At a super-critical 

velocity, the impulse generated by impact is so severe that the cells at the impact 

surface undergo rapid plastic collapse and density. The residual momentum is 

then transferred to an adjacent layer of cells, in a ‘domino-type’ effect, so that 

cell crushing (or compaction) occurs sequentially, in a planar manner, along the 

axis of the specimen from the impact-end. This is irrespective of whether the cell 

deformation mechanism is stable or unstable. With reference to the initial un­

deformed configuration of each specimen, a planar cross-sectional surface, 

separating the crushed and the uncrushed cells, of approximately one cell-width 

(hereinafter, called the cmsh front), can be seen to propagate along the axis of 

the specimen with time. Such a phenomenon is captured by high-speed 

photography by Radford et al. (2005), and in fmite-element simulations of 2D 

Voronoi honeycombs to be presented in Chapter 4. Because unloading from 

partially compacted states involves only a small volume recovery, the interface 

remains visible in the fully unloaded specimen as shown in Fig. 3.11. Since the 

particle velocity and the deformation gradient (strain) in the specimen suffer 

rapid, finite changes across a propagating, narrow surface, it is called a ‘steady- 

shock’ wave here, idealised as a first-order singular surface (Eringen and 

$uhubi, 1974). Under super-critical impact loading, a ‘shock’ forms immediately 

in the foam specimens, across which the Rankine-Hugoniot relations are 

assumed to hold. The typical force pulses measured exhibited successive 

decreasing peaks with time (more examples of force pulses for specimens 

compressed at a super-critical velocity are given in Figs. 3.8c, 3.9c and f): they 

are reminiscent of the results of simulations using a heuristic spring-mass model 

by Shim et al. (1990). The decreasing peak forces are due to the decreasing 

momentum flux at the cmshing wave front with time. If all the cells in the
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specimen have collapsed and the energy of impact is not yet completely 

dissipated, compression of the cell wall material will occur if  M r > 0 and this is 

reflected in the rapidly stiffening regime of Phase III. Otherwise, Phase III will 

be absent from the force pulse measured (Fig. 3.11). The time at which the foam 

specimen starts to unload is estimated using simple momentum considerations 

and this is marked by the solid circle in Fig. 3.11. It is interesting to note that 

similar ‘shock’ type response is, too, observed in the high-velocity crushing of 

wood, of cellular structures (Reid et al., 1993; Reid and Peng, 1997), and of 

honeycombs (Reid et al., 1993; Ruan et al., 2003).

The critical velocity corresponding to a transition in the deformation pattern is to 

be estimated later.

3.3.1.2 Strength properties

The procedure to extract the key material parameters from a dynamic force pulse 

paralleled that for the quasi-static nominal stress-strain curve closely and is not 

repeated here. For the same reason given in Section 3.2.2, it must be noted here that 

only the dynamic data for the small cell specimens are representative of the Cymat 

foam properties. Those of the large cell Cymat specimen are used to explain how 

size effects affect their dynamic strength properties.

(i) Plastic collapse strength

The variation of the plastic collapse stress, a d. , with impact velocity is plotted in 

Fig. 3.12 for the Cymat foams and in Fig. 3.13 for the Duocel foams. The data is 

normalised by {p0/ p s )^2 to compensate for the effect on the results of variable

density between specimens (Ashby et al., 2000). The stress ratio II (=<jdrj  <j .̂ ) is 

defined as the ratio of the dynamic to the quasi-static plastic collapse stress. 

Following the criterion proposed by Deshpande and Fleck (2000), the dynamic stress 

is said to be enhanced if, and only if, it exceeds the upper limit of the scatter in its
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Figure 3.12 -  Variation of the normalised plastic collapse stress <ydCr l(p ol  p sT' wilh 

impact velocity V. for (a) small and (b) large cell y-axis Cymat 
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61



700

600

500

e  ( O
500 1000 1500 2000 2500 3000 3500 4000

f4 0 0

- 1  P ,J  300
(MPa)

200

100

0

Direct-impact (experimental data) 
□  10L
O 40L
Drop-hammer (experimental data) 
E  10L 
©  40L

Eqn. (3.25)
 Eqn. (3.16)

O

o

on
o

-------------Eqn. (3.24) □ O

O 
□ □

o □
0 □

□ o rt^ o ‘ 
■era' 0 ° Cp =161 .6m s",

| p  = l l l k g m ~3______

Sub-critical velocity regime Super-critical velocity regime

n

0

600

500

20 40 60 80 100 120 140 160 180 200
V. (ms'1)

(a)

e  C O
500 1000 1500 2000 2500 3000 3500 4000

a d 400

Pjl 
Ps 

(MPa)
200

100

Direct-impact (experimental data) 
A  10T
Drop-hammer (experimental data) 
A  I0T

A A

-----------  Eqn. (3.18)
'------------- Eqn. (3.24)

Eqn. (3.25) A  A

A  A

C = 161.6ms ,

p  = 260kgm

Super-cntical velocity regimeSpb-cntical velocity regin]e

0 20 40 60 80 100 120 140 160 180 200

(b)

Figure 3.13 -  Variation of the normalised plastic collapse stress <jdcr/ (p0/ p s) '? with

impact velocity Vj for Duocel foams along the (a) largest and (b)

smallest dimension of their constituent cells. Dashed lines indicate 

corresponding quasi-static scatter in loads and s  is the nominal 

engineering strain rate.

62



corresponding quasi-static data. For example, the dynamic plastic collapse stress of a 

small cell Cymat foams is said to be enhanced if a%r > 1.2(7%*. The percentage

scatters in the quasi-static data of both foams are given in Section 3.2.2. Figure 3.12 

shows significant enhancement of the plastic collapse strength for both the small and 

large cell Cymat specimens over the full range of velocity; likewise, for the Duocel 

foams along both principal directions of its constituent cells (in Fig. 3.13). Note the 

enhancement of plastic collapse stress in the large cell Cymat specimens (Fig. 3.12b) 

even though the data were not corrected by deconvolution, i.e. directly from force 

pulses Fm{t) measured by the strain gauges.

Based on calculations in Section 3.2.3, the contribution to the Phase I 

enhancement by the compression of trapped gas in the Cymat foams is estimated to 

be small enough to be negligible. Deshpande and Fleck (2000) also found that the 

nominal strain rate in the cell edges of an open cell foam is approximately an order 

of magnitude lower than its nominal compression rate k .  Since the nominal

compression rate was less than SOOÔ ”1 in all our tests, it is concluded here that 

material strain rate sensitivity of the aluminium cell walls is also negligible. Herein, 

the main contention is that inertial/velocity sensitivity is the most dominant effect in 

the Cymat and Duocel specimens studied.

Microinertia of the cell walls in the foam specimens causes a delay in triggering a 

buckling collapse mode and/or from the generation of an alternative less complaint 

cell collapse mechanism than that occurring in quasi-static compression (Reid et al., 

1993). Its effect is the analogue of the lateral inertia forces that develop in the amis 

of a typical Type II stmt by introducing an initial phase of deformation where axial 

plastic compression in the stmt dominates (Calladine and English, 1984; Su et al., 

1995; Karagiozova and Jones, 1995). A considerable amount of the kinetic energy of 

the striker mass is absorbed during this initial phase before a bending mechanism 

predominates. Finite element simulations on the in-plane compression of 

honeycombs have established that the translational and rotational inertia of the cell 

edges, as opposed to the lateral inertia forces in a Type II stmct, are responsible for 

such effects. The former was found to play a greater role in the enhancement of the
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mechanical properties than the latter (Honig and Stronge, 2002a,b). In the case of 3D 

foams, such as Duocel, where four cell edges meet at each vertex in a tetrahedral 

arrangement, the rotational inertia is caused by the three remaining restraining edges 

as one begins to buckle and rotate; likewise, for the translational inertia. In general, 

the cell edges in 3D metal foams distort in such complicated ways which are to 

describe. Because of this, a detailed micromechanical analysis to estimate the 

additional energy absorbed that can be attributed to microinertia effects may appear 

futile to do. Nonetheless, a theory capable of providing reasonable estimates of this, 

especially at the higher impact velocities, will be presented in the next chapter.

The experimental data in Figs. 3.12 (Cymat) and 3.13 (Duocel) shows an 

approximately linear variation of the plastic collapse stress at the lower impact 

velocities, in sub-critical velocity regime. This suggests the influence of Type II 

microinertia effects which is consistent with the stress level being controlled by axial 

plastic compressive wave propagation in the cell walls in the initial phase of 

deformation before bending deformation predominates. Suppose the aluminium cell 

wall has a ‘bi-linear’ stress-strain relation, then the velocity of this plastic wave is 

given by

where Ep is the plastic modulus. Since E  « 10.5MPa for Al 6106-T6, the plastic 

wave speed Cp is approximately 160.7m -1 for the Cymat foams and 161.6m -1 for

the Duocel foams. One-dimensional plastic wave theoiy predicts a linear variation of 

the dynamic plastic collapse stress with impact velocity according to

appears to fit the experimental data reasonably well at the lower velocities. Calladine

(3.23)

(3.24)

where p  -  I I N  is the average density of specimens tested. Equation (3.24)
N
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and English (1984) correctly described this phenomenon as a ‘velocity’ rather than a 

(nominal) strain-rate effect. The data in Figs. 3.13a and 3.13b also appears to have a 

similar trend with those of wood studied by Reid and Peng (1997). The stress ratio is 

greater along the largest compared to the smallest principal dimension of the 

constituent cells at the same velocity; this is similar to those of 90° and 0° wood 

specimens. Another similar feature is the load drop in 90° wood specimens after the 

initiation of crushing; a feature which is missing under quasi-static loading 

conditions. This, too, is observed here for the 10T and 10L Duocel specimens. At 

higher impact velocities, in the super-critical velocity regime, the linear trend 

disappears and the plastic collapse strength now has a quadratic dependence on 

impact velocity (see Figs. 3.12 and 3.13) which suggests that a different inertia 

phenomenon, associated with the dynamic localization of crushing, is active. It will 

be shown in Chapter 4 that this is consistent with ‘shock’ wave propagation.

Foams Experiment
(ms1)

Theory - Eqn.(3.25) 
(ms )

Value of relative 
density in Eqn. (3.25)

Small cell -100 108 0.101
Cymat

Large cell -50 42 0.048
Cymat

10L & 40L -110 116 0.100
Duocel

10T Duocel -90 85 0.096

Table 3.1 -  Comparison between the experimental and predicted critical initial 

velocity.

As noted in section 3.3.l(i), a switch in the deformation pattern, from discrete 

crush band multiplication in Fig. 3.10 to progressive cell crushing in Fig. 3.11, 

occurs when the impact velocity exceeds a critical value of . It will be shown

in Chapter 4 using thermodynamics arguments that, for a r-p-p-l material, the critical 

velocity is given by

V,-M  =(2 Cna J py \ p J p , T ^ n  (3.25)
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where the subscript n = 1 {small cell), 3 {large cell), 5 {10L & 40L) or 7 (707). Table

3.1 compares the experimental and the predicted critical velocity. A good agreement 

between theory and experiment is observed. The predictions by Eqn. (3.25) separate 

the data in Figs. 3.12 and 3.13 into two regimes; one where there is an approximate 

linear dependence with velocity and, the other, a quadratic dependence. This is 

particularly evident in Fig. 3.13.

(ii) Plateau strength

The plateau stress in Phase II, a time averaged value of the force pulse divided by 

the cross-sectional area of an undeformed specimen A0, is associated with the 

accumulation of bands of crushed cells. Data for the normalised plateau stress 

{<rdpl/{ p 0/  p s )^2 ) and the stress ratio ( n  = <jdpl j  crqp l) of the Cymat and Duocel

foams obtained at different impact velocities are plotted in Figs. 3.14 and 3.15 

respectively. Unlike their plastic collapse strength, they exhibit an approximately 

quadratic dependence with the impact velocity. The difference between the plastic 

collapse and the plateau stress of each specimen increases with impact velocity 

(compare Figs. 3.12 and 3.14 for the Cymat foams and Figs. 3.13 and 3.15 for the 

Duocel foams), the former being the higher of the two values. At the lower impact 

velocities the plateau stress measured is lower than its corresponding quasi-static 

value probably because of the effect of internal elastic wave reflections; however, the 

reasons for this remain unclear. If  the dynamic plateau stress is said to be enhanced 

only if it exceeds the upper strength limit of their corresponding quasi-static scatter 

(Deshpande and Fleck, 2000), then Fig. 3.14 shows that the dynamic plateau stresses 

are insensitive to impact velocity below the values of ~ 50w75_1 and ~ 80ms”1 for 

the large and small cell Cymat specimens, respectively. Likewise, Fig. 3.15 gives 

-lOOms"' and ~ 60ms~l along the largest and smallest principal cell dimension of 

the Ducoel foams, respectively. To a first approximation, it is reasonable to conclude 

that the plateau strength of both foams is insensitive to impact velocity in the sub- 

critical velocity regime. Enhancement of the plateau strength occurs in the super­

critical velocity regime where ‘shock’ propagation effects are important.
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velocity Vi for (a) small cell and (b) large cell y-axis Cymat
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At sub-critical velocities, i.e. approximately Vi < 108/775 1, the normalised plastic

collapse and plateau stresses of small cell Cymat specimens are greater than their 

corresponding large cell ones (compare Figs 3.12 and 3.14). This suggests that 

specimen cell-size effects and strength degradation due to morphological 

imperfections remain active during sub-critical velocity compression. At super­

critical velocities of V{ > 1 0 8 / 7 7 5 “ ' , the strength data are no longer affected by these,

the strength for the large cell specimens being greater than the small cell specimens 

at each velocity. This implies, in particular, that further local enhancements in 

strength are now dominated by a different inertial phenomenon associated with the 

dynamic localisation of crushing, i.e. the deformation response begins to exhibit 

‘shock-like’ characteristics (Reid and Peng, 1997).
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Figure 3.16 -  Static and dynamic normalised energy versus displacement curves for 

the Cymat foam specimens.

If the time axis of the force pulses in Figs. 3.8b-c is converted into displacement 

of the distal end to produce nominal stress-strain curves (assuming a uniform rate of 

compression so that 5 = Vi t), the greater amount of energy (normalised by
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(;Pol Ps f 2̂) absorbed at higher impact velocities with similar displacements is

clearly evident in the normalised energy versus displacement plots in Fig. 3.16. The 

same is also tme for the Duocel foams. The theoretical explanation for this is given 

in the next chapter.

3.3.2 Dynamic response of foams with a density gradient

Since the z-axis Cymat specimens have spatial variations (step-distributions) of 

density, tests were earned out to measure the impact forces generated by impact on 

either the high (HD) or the low (LD) density end of each specimen. Figure 3.17 

shows two partially crushed small cell specimens (compressed at a velocity of 

approximately 23ms~]) and their corresponding normalised stress pulses. The 

specimen with a higher mass ratio is compressed further by virtue of its higher 

kinetic energy. An unusually high level for the plastic collapse stress was recorded if 

the HD end of the specimen impacts the output bar (Fig. 3.17a). This was seen in 

both the small and large cell specimens over the entire range of velocity. It suggests 

that cell deformation may have occurred in the HD zone of the specimen where a 

higher load is needed to overcome the inertia of the thicker cell walls. Its photograph 

shows limited cell crushing, see Fig. 3.17a, in the HD zone. If impact occurs at the 

LD end of the specimen, the HD zone behaves like a rigid material so that cell 

crushing is confined, at least during the early period of Phase II, to the LD zone (Fig. 

3.17b). Figure 3.17 shows that Phase II deformation is dominated by the 

multiplication of bands of crushed cells in the LD zone, regardless of which end of 

the specimen strikes the transmitter bar (see photographs in Fig. 3.17). This is also 

reflected in their plateau strength, which agrees with one another within the limits of 

experimental error. In general, the dynamic strength properties, the initiation, 

development and distribution of cell deformation and the densification strain of a 

specimen are all affected by spatial variations of density. Their implications must be 

considered when, for example, a foam panel is used for impact energy absorption 

purposes.
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Time {jus)

Figure 3.17 -  Two small cell, 2 -axis specimens and their corresponding normalised 

stress pulses measured from the (a) HD and the (b) LD end of each 

specimen. The arrowhead indicates the impact end and the HD zone 

of each specimen are boxed.

3.3.3 Effects of specimen gauge length

To investigate the effects of specimen gauge length, tests (quasi-static and 

dynamic) were carried out using only small cell, y-axis Cymat specimens, of 45mm 

diameter, with gauge lengths ranging from 5mm <lQ< 65mm . Hence, they were not 

affected by the size effect described in Section 3.2.2. The smallest gauge length used 

was 5mm because of difficulties with machining shorter specimens. Test specimens 

of different gauge length were first compressed at a constant velocity (the largest 

backing mass that will not cause the pressure bar to yield was used). This was then 

repeated for different impact velocities (up to lOOms-1) to build up a family of 

curves. The objective was to separate the rate sensitive response due to an increase in 

the impact velocity (F,) from the length effects caused by changes in the gauge
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length ( l0) of the specimen. Note that the latter is another type of ‘size’ effect 

different from the one discussed in Section 3.2.2.

Data for the normalised plateau stress ( < W  i a ys (Po I Ps )l 5 1) specimens with

different gauge length are plotted in Fig. 3.18. The solid lines are predictions of a 

one-dimensional ‘steady-shock’ model by Reid and Peng (1997):

where p  is the average density of the specimens tested at each velocity. The dashed 

lines are curves of constant nominal, engineering strain rate. The resulting diagram 

allows some important features of specimen length scale to be illustrated. First, the 

shorter specimens have a stronger and stiffer response under quasi-static 

compression. Mukai et al. (1999a,b) also reported a similar observation with closed 

cell Alporas foams. This length effect persists to a value of approximately 5 average 

cell diameter, beyond which fluctuations in the strength property are within ±20% of 

its mean value predicted by Eqn. (3.10). This unusual response is probably due to 

end-effects in the shorter specimens where geometric softening in the two end rows 

of cells is made more difficult, or suppressed entirely, through its contact with the 

rigid platen. The data presented agree with the surface deformation analysis by 

Bastawros et al. (2000) who also reported that the localised bands in Alporas foam 

exhibit a ‘long-range’ correlation of approximately 3-5 cells. Second, a similar length 

effect is also detected in specimens under dynamic loading. Their plastic collapse 

stresses decrease with increasing gauge length, but at increasingly higher stresses as 

the impact velocity was increased. The number of cells to which this length effect 

persists reduces from ~5 at 10 m -1 to ~2 cells at 80»w_1. However the effects of 

specimen gauge length became less significant, compared to the velocity sensitive 

response of the foams, at increasingly higher velocities. Figure 3.18 shows that there 

is a characteristic length associated with an accommodation domain which sets a 

limit to the minimum material volume required for a valid continuum approximation.

(3.26)
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Figure 3.18 -  Normalised plateau stresses of small cell^-axis Cymat specimens with 

different gauge length and impact velocity. Solids lines are 

predictions by Eqn. 3.26 (dynamic test) and Eqn. 3.10 (quasi-static 

test). Dashed lines are family of constant nominal engineering strain 

rates.
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The minimum specimen gauge length required to achieve the bulk strength of 

Cymat/Hydro foams is, at least, 5 average cell diameters. Lastly, the figure shows 

that there is no correlation between the dynamic strength properties and the nominal 

engineering strain rate. It is anticipated that the open-cell Duocel foams also exhibit 

similar specimen gauge length effects. The velocity dependence of the strength 

properties and the irrelevance of nominal engineering strain rate are clearly 

illustrated in Fig. 3.18. This is the one of the main reasons for the conflicting 

conclusions on the correlation between loading rate and dynamic strength of foams 

to be found in the literature.

3.4 Conclusion

The strength properties of Cymat and Duocel foams were measured and their 

response to dynamic loadings described. A consistent framework has been proposed 

to extract key material parameters (the plastic collapse and the plateau stress, and the 

strain at which densification occurs) from nominal stress-strain curves and dynamic 

force pulses. Phase II deformation is always accompanied by a load drop for both 

foams but this feature is notably missing in the 10T specimens under quasi-static 

loading conditions.

The density gradient in z-axis Cymat specimens is responsible for the unusually 

high plastic collapse load measured under impact loading conditions.

It was estimated by Eqn. (3.25) that the transition to a ‘shock-type’ deformation 

response occurs at an impact velocity of approximately 108ms-1 and 42ms-1 for the 

small and large cell Cymat foams, respectively; and of approximately 116ms"1 and 

85ms-1 along the largest (10L & 40L) and smallest (10T) principal cell dimension of 

the Duocel foams. Both sets of predictions compare well with the experimental data. 

Inertia effects associated with the dynamic localisation of crushing, i.e. ‘shock’ 

propagation, are responsible for the enhancement of the dynamic strength properties 

measured at super-critical impact velocities where specimen size effects (in the 

Cymat foams) and cell morphological defects are insignificant. In the sub-critical
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velocity regime, both the specimen cell-size effects (in the Cymat foams) and cell 

morphological defects affect the dynamic strength properties measured. Micro- 

inertial effects are responsible for the enhancement of the dynamic plastic collapse 

stress at the sub-critical velocities. Post-impact examination of partially crushed 

specimens showed that deformation is through the cumulative multiplication of 

discrete crush bands for static loading and for dynamic loading at sub-critical impact 

velocities. At super-critical impact velocities, specimens deform by progressive cell 

crushing from the impact surface.
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Chapter 4

One-dimensional ‘steady-shock’ models 
and comparison with experimental data 
and numerical models

4.1 Introduction

The results of an extensive experimental investigation into the dynamic uniaxial 

compressive response of Cymat and Duocel foams to impact loadings were presented 

in the previous chapter. The typical deformation pattern observed in both specimens 

under sub-critical velocity compression is the accumulation of discrete, non­

contiguous bands of crushed cells. However, beyond a critical impact velocity of 

approximately 108m*?”1 {small cell Cymat), 42m*?”1 {large cell Cymat), 116m*?”1 

(along largest principal cell dimension of Duocel) and 85m*?”1 (along smallest 

principal cell dimension of Duocel), cell crushing occurs sequentially, in a planar 

manner, along the axis of each specimen from the impact end towards the distal end, 

and the crushing wave front exhibits ‘shock-type’ characteristics, i.e. the particle 

velocity and the deformation gradient (strain) suffer finite jumps across the crush 

front. In this chapter, one-dimensional (ID) ‘steady-shock’ models are formulated 

and its predictions used to explain some of features of the formation and the 

propagation o f ‘steady-shock’ or compaction/consolidation waves in aluminium 

alloy foam specimens subjected to super-critical velocity compression. The 

mathematical techniques used are not original, being familiar to fluid mechanicists 

and shock physicists, but their application to metal foams provides some new 

insights.

Structural ‘shock’ waves are known to provide a useful model for the high 

velocity progressive crushing behaviour of cellular structures such as those
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composed o f rings/tubes and man-made honeycombs (Reid et al, 1983, 1993; Reid 

and Bell, 1984; Reddy et al., 1991). Similarly, a ‘shock’ model based on a rigid, 

perfectly-plastic, locking (r-p-p-l) idealisation of the quasi-static stress-strain curves 

of cellular materials may also be used to account, via a continuum approximation, for 

the dominant inertial effects operating at the scale of their cell structure. These 

studies have been summarised in several publications by Harrigan et al. (1998a, b; 

1999; 2005). Use of this simplified constitutive equation has focused on those 

dynamic effects that are generally produced in a material/structure with Type-I 

structural characteristics (Calladine and English, 1984), i.e. arising from ‘shock’ 

wave generation generally attributed to constitutive laws with a concave upwards 

plastic stress-strain loading path (Reid et al., 1993). In testing various materials and 

structures, there is also evidence, to a greater or lesser extent, that there are some 

Type-II structural characteristics (Harrigan et al., 1998a, 1999; 2005). This is 

associated with the initiation of deformation in an impact (non-zero initial velocity) 

process and is evident in Figs. 3.12 and 3.13 where the plastic collapse stress varies 

linearly (approximately) with the impact velocity; particularly at the lower velocities. 

In all of these previous studies, the formulation of the kinematics and kinetics of the 

problem were based only on jump conditions associated with the conservation of 

mass and momentum across the ‘shock’ front. In the present thesis, a detailed 

analysis is presented incorporating energy arguments as well. These draw attention to 

certain issues that are usually treated somewhat superficially, if not ambiguously, in 

previous work on cellular materials, specifically with regard to the energy absorbed 

at the ‘shock’ front.

The method of characteristics is first used to analyse the propagation of plane 

irrotational compressive-stress waves in a ID foam ‘rod’ having a general stress- 

strain relation with linear elastic and concave-upwards plastic loading path (Hanssen, 

2000; Hanssen et a l, 2002) in Section 4.2. The emphasis is on explaining the 

possible occurrence and the conditions leading to the formation of shock waves. In 

Section 4.3 the basic jump conditions for the dependent variables across a ‘shock’ 

front are derived. To obtain closed-form solution, an r-p-p-I idealisation of the stress- 

strain curve for the ID foam rod is then adopted and the equation of motion for a
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plane surface of strong stress discontinuity (or ‘shock’ wave) propagating in the rod 

is formulated. Two different impact scenarios are considered: in the first, a foam rod 

strikes a rigid stationary target and, in the other, a rigid mass strikes a stationary 

foam rod supported by a rigid surface. Both impact scenarios corresponds to the two 

possible test configurations for the direct-impact testing technique described in 

Chapter 2 and relate to the two principal modes of the application of metal foams to 

impact energy absorption. The kinematic existence condition for 

continuing/propagating ‘shock’ compaction in the aluminium foams is also 

established. Comparisons are then made between the results of the ‘shock’ model, 

the experimental data and the results of finite element simulations of two- 

dimensional (2D) Voronoi honeycombs. Finally, the limitations of the ‘steady-shock’ 

model generally are discussed.

4.2 Assumptions and Basic equations

Consider a circular cylindrical foam ‘rod’ of unit cross sectional area with 

generators in the X-direction bounded by the surfaces of particles which in their 

undeformed position lie in the planes X  = 0 and X  = l0 (see Fig. 4.1). The rod is

a (0

X  = 0 X = l

Figure 4.1 -  Co-ordinate system.

assumed to be initially uniform and homogeneous in all those properties associated 

with the principal y-direction of a typical Cymat foam panel or any Duocel foam 

specimens. In common with other studies on ‘steady-shock’ propagation in cellular
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solids (see Reid and Peng, 1997 and Ashby et al., 2000), the usual notion of a 

continuum is assumed to hold throughout. Suppose a system of compressive stress 

waves is generated by normal forces applied to the plane boundary (Ar = 0 ) a t ^  = 0 

as depicted in Fig. 4.1. The governing equations are expressed in terms of 

Lagrangian co-ordinates and engineering stress and strain definitions are adopted. 

The independent variables are X  and t\  and the dependent variables are axial 

displacement u , velocity v , uniaxial compressive strain s  and nominal compressive 

stress a , all functions of X  and t . Here, and in the rest of the thesis, all stresses and 

strains are treated as positive in compression.

The single material co-ordinate X  e [0,/o] describes the ID foam rod so that the 

position of a typical particle is given by

x = x(X,  t) for t>  0 (4.1)

where x is the position of the particle at time t which was at position X  in the 

undeformed configuration. The consistency condition of x - X  at t = 0 is assumed 

to hold. Displacement of a particle is given by

u{X, t )  = x ( X , t ) - X  (4.2)

and the compressive engineering strain and particle velocity is defined as

s  = -u ,x and (4.3)

v = x,t = un (4.4)

where the subscripts , X  and ,t indicate partial differentiation with respect to X  and t

whilst holding t and A  fixed, respectively. To ensure that v and s  are derivable from

u , they need to satisfy the kinematic compatibility relation given by
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£>t + V>A, -  0 . (4.5)

In order that mass be conserved locally, the density at the material point originally 

residing at X  must be related to the initial density of the body so that

The balance of linear momentum between any two material points in the sub-interval 

[a,b], satisfying 0 < a < b < l0 at all times, gives

where p  and p Q are the current and initial densities, respectively and /  is the body 

force per unit volume. If v„ and cr,x exist and a and b were arbitrary, the local form 

of Eqn. (4.7) can be written as (see Case 1 in Appendix B)

As discussed in Chapter 3, there are three possible contributions to the ‘rate- 

sensitive’ material response of metal foams, viz. compression of the trapped gas (this 

applies only to the closed-cell Cymat foams); strain rate sensitivity of the material of 

the cell wall which is dependent on thermal activation or dislocation drag processes; 

and, inertial sensitivity due to the inertia of the individual cell walls. It was 

previously established that contributions from the compression of trapped gas are 

negligibly small. Likewise, the aluminium cell wall material was also shown to be 

strain-rate insensitive. Hence, a time-independent, constitutive equation of the form

p { \ - e )  = Po- (4.6)

(4.7)

Pa*,, = f ~  <r>x- (4.8)

= g(£) (4.9)
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suffices in describing the uniaxial compressive stress state in the foam rod. For 

consistency with the strain-hardening model for aluminium foams developed by 

Hanssen et al. (2002) for uniaxial and hydrostatic loading conditions, the function g 

is assumed to possess the following properties:

(i) —  > 0  for every e in (fcr,l),and  (4.10) 
ds

d 2g(ii) — > 0 over the same interval. (4.11) 
de

Hence, the function g is strictly monotonic increasing in [ffcr,l] a°d concave upwards 

as depicted in Fig. 4.2.

(State 2)

Shock chord

c r = g [ £ )
eqn. (4.9)(State 1)

Eqn. (4.30) r-p-p-1 
idealisation

£ cr

Figure 4.2 -  Nominal stress-strain curve and its idealisation. 

Combining Eqns. (4.8) and (4.9), and ignoring body forces, gives

v„ = - c 2{e)s ,x (4.12)
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where c2(s) = (d a /d s ) /p 0 . Equation (4.12) has positive and negative characteristics 

given by

dX I  dt = ± (?(<£■). (4.13)

The invariant along dX/dt = +c{s) (a positive C + characteristic) and

dXjdt = -c (s )  (a negative C -  characteristic) are constants and given, respectively,

where R\ and R2 are also known as the Riemann invariants. Each of the C -  

characteristic passes through a section of the (X,f) plane, corresponding to a uniform 

region in which the flow variables v and s  are constant. Therefore, the invariant 

R2 = R is identical for all negative characteristics. Hence, each positive 

characteristics is intersected at every point by some negative characteristics,

Because the wave velocity is an increasing function of strain, i.e. dc/ds  > 0 , this

by

(4.14)

and

(4.15)

(4.16)

By addition and subtraction of Eqn. (4.16), it follows that

(4.17)
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means that stress increment (A c r> 0 ) from a plastic stress level <r(0,f,) will 

eventually be overtaken by a second stress increment from a higher stress level 

<7 (0 ,^ + Af,) at the point (Morland, 1959; Hopkins, 1968)

X  = c f l ( d c jd tx) , t = / ,+  c j (d c jd t \ )  (4.18)

in the X-t plane where c, = c(£,). This is shown in Fig. 4.3.

Shock Path

C  (Elastic wave speed)

Figure 4.3 -  Characteristic diagram of a simple wave system generated by a smooth 

and continuous force pulse.

Thereafter, the continuous wave solution breaks down and the analysis must proceed 

with the propagation of a discontinuity. Note that important issues such as the 

reflection of stress waves from the free or fixed end of the finite rod, which involves 

complicated interactions between the loading and unloading, elastic and plastic 

waves (see, for example, Morland, 1959), have not been addressed here. Finally, it 

should be noted that if an instantaneous velocity Vt is imposed on the plane 

boundary (Ar = 0 ) a t r  = 0,  instead of the normal forces prescribed above, the C +
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characteristics from the plane boundary ( X  — 0 ) is expected to intersect immediately 

with those of the foam rod, leading to the immediate formation of a ‘shock’ moving 

with a velocity Vs (<Vj).

4.3 One-dimensional (ID) ‘steady-shock’ models

It is assumed that the particle velocity in a foam rod is a function of the stress 

state only and a steady compaction (or crush) front can develop and propagate 

unchanged in its form. This allows the sequential cell crushing process observed 

during super-critical velocity compression to be analysed in terms of the Rankine- 

Hugoniot theory of shock propagation. The issue of whether a ‘steady-shock’ wave 

can develop in the presence of dispersive effects and the tendency of a propagating 

wave to evolve towards a shock is to be discussed later. The propagation of a plane 

surface of strong stress discontinuity in a ID foam rod is now considered. First, the 

basic jump conditions, or the dynamical conditions of compatibility, across a ‘shock’ 

front are stated.

4.3.1 Basic jump conditions and ‘shock’ interactions

Let the ‘surface’ of strong stress discontinuity (or a ‘shock’ front) be currently at 

the material point X s = X s (t) and moving at a Lagrangian wave speed of

Vs = d X j d t .  (4.19)

For a first-order singular surface, the motion of the surface is continuous whilst the 

deformation gradient and the particle velocity may suffer finite discontinuity. 

Displacement continuity across the ‘shock’ front is expressed, by Hadamard’s 

Lemma (Eqn. Cl in Appendix C), as

d[u]jdt = [u„] + V, [u,x ] = [v] -  V,[s] = 0. (4.20)

84



The symbol [h] = h -  h+ denotes a jump in the dependent variable, say h, across the 

‘shock’ front where superscripts -  and + denote the region immediately behind and 

just ahead of the ‘shock’, respectively. If is continuous everywhere except at X s , 

Eqn. (4.7) becomes (Case 2 in Appendix B)

M - A / , [ v] = o. (4.21)

For a thermodynamic system, the first law asserts that (Ericksen, 1991; Eringen and 

$uhubi, 1974)

j t {Ek +Eu ) = { H - Q ) +  P„,<»

J t  ( = (  £ ¥  ‘X + i  G  )  + ( j > d X ~ ^  C :!)

(4.22)

where d(Ek + Eu )/dt is the rate of increase of kinetic plus internal energies (per unit

reference area), respectively; U is internal energy per unit mass; q is the X- 

component of the heat flux vector; and r is the heat source per unit mass of specimen. 

If un and U u are continuous everywhere except at X s , assuming no heat is

rb
generated within the specimen so that p r  dX = 0 and ignoring body force, Eqn.

J a

(4.22) becomes (Bland, 1988)

PoV,[v1/2 + U ]-[ov  + q] = 0.  (4.23)

The jump conditions in Eqns. (4.20), (4.21) and (4.23) express the fact that the flux 

of mass, momentum and energy, respectively, must remain continuous across the 

‘shock’ front, whilst the stress, density and internal energy need not be. Likewise, the 

Clausius-Duhem inequality, applicable to cases where entropy is well-defined, is 

given by (Ericksen, 1991)
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(4.24)

and it can be expressed in a jump form (Case 2 in Appendix B) as follows (Ericksen, 

1991)

where rj is the specific entropy (or entropy per unit mass) and 6 the absolute 

temperature.

Across the ‘shock’ front, the jump in the compressive stress is found by 

eliminating Vs between Eqns. (4.20) and (4.21) to be

If Vs > ce (the elastic wave speed in a foam ‘rod’ is estimated in Section 2.3 of

Chapter 2), a plastic ‘shock’ wave propagates into a region of material which is 

initially undeformed; otherwise, an elastic wave precedes the plastic ‘shock’ wave. 

Only the latter situation is considered here although ce —» oo for a r-p-p-l material.

Suppose first that two uniform states of deformation and flow (‘b ’ and ‘c’ in Fig. 

4.4a) are separated by a shock front, travelling at a uniform velocity Vs , across which

all dependent variables undergo discontinuous changes. All regions of deformation 

are supposed uniform and separated by uniformly moving wave fronts. Treating each 

stress-wave profile as a series of small continuous steps with a constant wave

(4.25)

(4.26)

and the ‘shock’ wave speed is found by eliminating [v] to be

(4.27)
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velocity (see Morland, 1959), a plastic loading wavelet (‘a’ in Fig. 4.4a) will 

eventually catches up with the main ‘shock’ front since the plastic wavelet velocity 

exceeds the shock velocity. This plastic loading wavelet is generated by the 

compression of crushed cells beyond their densification strain eD (given by Eqns. 

3.4 & 3.5) which, although having limited compressibility,

a

(a) (b)

Figure 4.4: Situation before (a) and after (b) interaction between a plastic wavelet 

and the main ‘shock’ front.

still occurs behind the ‘shock’ front. It will now be shown that the interaction 

between this plastic loading wavelet and the main ‘shock’ front generates a weak 

reflected (elastic) shock wave travelling in an opposite direction to the main ‘shock’ 

front as shown in Fig. 4.4b. The increase in particle velocity across a ‘shock’ 

separating any two states, viz. ‘—’ and *+*, is given by Eqns. (4.6) and (4.26) to be

[ v U + = yl{cj- - c r +\ \ / p + - \ / p  ) . (4.28)

Interaction between the plastic loading wavelet, moving from states ‘a’ to ‘b \  and 

the main ‘shock’ front, moving from states ‘b ’ to ‘c’, is not equivalent to a single 

‘shock’ transition from ‘a’ to ‘c ’, as is evident from a mismatch in their particle 

velocity where (see Fig. 4.4)
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[V]a-*c < [ k L »c + [ v]0_ * . (4.29)

The correct matching of particle velocity is only achieved by introducing an elastic 

unloading wave, moving from states ‘b ’ to ‘a ’ after interaction. This unloading wave 

is then reversed by the next oncoming plastic wavelet, and the entire interaction 

cycle is repeated (Morland, 1959). In simple qualitative terms, this means that the 

‘shock’ wave gradually built-up from behind and with increasing strength its velocity 

increases. To circumvent the need to consider complicated ‘shock’ interactions, such 

as the one just described above, an r-p-p-l idealisation of the stress-strain curve for 

the foam rod will be proposed in Eqn. (4.30).

4.3.2 Impact of a foam rod against a rigid, stationary target

4.3.2.1 Equation of motion

Consider a foam rod of unit area travelling at a speed of v, (<c„) until it strikes

squarely a stationary rigid wall at time t = Q as depicted in Fig. 4.5. The frame of 

reference is fixed at the proximal (impact) end of the rod at / = 0. Let a ‘steady- 

shock’ form immediately at the plane boundary X  = 0 on impact. At t > 0 ‘shock’ 

compaction of the material occurs at the point x(Xj5f), with the portion of the rod / 

remaining rigid.

In common with the theme of designing with foams for impact energy 

absorption, and to obtain simple closed-form solution to the problem, a simple rate- 

independent r-p-p-l idealisation of the stress-strain curve for the foam rod (see 

Section 2.4 of Chapter 2), viz.

is adopted here where the superscript qs denotes quasi-static values. The response of

(4.30)
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the material in the densification regime, i.e. s>  eD (densification strain), is of lesser 

intrinsic interest in energy absorption applications and, therefore, a locking material 

assumption at e D suffices. Although Eqn. (4.30) is not strictly monotonic increasing 

in [0, ), its concave-upwards characteristic makes possible the existence of ‘shock'

waves. The locking assumption does not permit wave reflections or ‘shock’ 

interactions. Its initial rigid response also requires an instantaneous jump in stress 

from 0 to crqs in the rod on compression. This implies that an elastic loading wave

o

Zero particle 
velocityt>

x  + Axl + A l

Shock front

y + Av

Figure 4.5 - Parameters defining the ‘shock’ model for the impact of a foam rod 

against a rigid stationary target.
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travels the length of the rod at an infinite velocity which, given that the elastic wave 

speed Ce is at least an order of magnitude higher than the impact velocity Vt (see 

Section 2.3), is not physically unreasonable.

The conditions immediately behind and just ahead of the ‘shock’ are as follows:

Behind ‘shock’front’. v~ = 0, £~ = eD, <j ~ = <jd, p~ -  p 0/(  1 — s D)

(4 .31)

Ahead o f  ‘shock’ front: v+ = v , e+ -  0 , <r+ = a qs, p + = p o.

(4 .32)

Here, the superscript d  denotes dynamic values. Substituting these conditions into 

Eqn. (4 .26) gives the ‘shock’ relation

o d = o « + P ' V 1/ £ d , (4 .33)

which must be satisfied at all times. Equation (4 .33) ensures mass and momentum 

conservation across the ‘shock front. Let w, ( = | u(l0,t) \)  be the displacement of the 

distal end of the foam rod at time t and from geometry

/ =  l0 ~ u lo -  x , (4 .34)

and so

/' = dl/dt -  -(x  + ula) =  ~u,o j e D = - v / s D (4 .35)

where s D = u, /{ut + x). From Eqns. (4 ,20) and (4 .21), one obtains
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[ff . v ] . £ ^ ( v- _ v*)+ £ ^ £ l ( v- + v *)

- ^ [ v ]  + ^ ( v - - v - X v - + v-)

= (<?- +cr*)V,[s]/2 + p 0V,[v1]/2

(4.36)

The dynamic compaction process occurs so quickly that the foam rod can be 

assumed to be non-heat conducting wherein q is identically zero. Substituting Eqn. 

(4.36) into (4.23), and setting [q] = 0 , gives

[f t U ]-(o --+ cr* )[s]/2  = 0 > (4.37)

the familiar Rankine-Hugoniot equation. If the straight line (or Rayleigh line) joining 

the states in front of, and behind, the ‘shock’ front, in the stress-strain plane, is 

defined as the ‘shock’ chord, then Eqn. (4.37) implies that the change in internal 

energy per unit reference volume is given by the area under the ‘shock’ chord in the 

closed interval [£•*,£•“]. Thus, the increase in internal energy when an element of 

length Al is compacted to a length of Ax = A (̂l - e D) at the ‘shock’ front in the time 

interval t to t + At is given by

AEu = Ev (t + A t ) - E u (t) = \ ^ d + o qs)eDAl. (4.38)

Over the same time interval, the change in kinetic energy of the undeformed rod,

ahead of the ‘shock’, as it changes velocity from v to v + Av is

AEk = Ek (t + At) -  Ek it) = ~  {2v(M b + p j)A v  + pov 2A/}+ o(Av2, A/Av, A/Av2)

(4.39)

If the ‘shock’ compaction process leaves State 1 at time t and arrives at State 2 at 

time t  + At, then integrating Eqn. (4.2), assuming an isolated system
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wherein SQ = = 0 , gives

(E*+Eu\ - { E k + Ev \ =  0 (4.40)

From Eqns. (4.35), (4.38) and (4.39) and ignoring all higher order quantities of small 

terms, dividing by At and taking the limit At —> 0 , Eqn. (4.40) gives the equation of 

motion of the distal end of the foam rod as

{(1 + M r ) — u , J  eDl0} dvjdt = - ^ ‘/ p 0!o (4.41)

where the mass ratio M r = M bj p 0 lQ. An equivalent kinematic approach in which

considerations are given only to the purely mechanical conditions across the ‘shock’ 

front, viz. Eqns. (4.7), (4.26), (4.27), (4.34) and (4.35), was previously used by Reid 

and Peng (1997) to derive Eqn. (4.41). This last equation is easily integrated with the 

initial condition v («, = 0)=Vt to give

v = du,' / dt = {v,2 + 2a"ssD ln(l -  a(< /(1 + M r )eDl, ) / p 0 f 2 (4.42)

where Vi is the initial impact velocity. Note that as M r —> oo, 

v —> Vf Vu, e [ 0 ,^ / J ,  which implies that constant velocity compression of the rod 

is only achieved with a sufficiently large backing mass. A straight-forward order of 

magnitude argument suggests that v »  V, when M r > 100. Substituting for v in Eqn.

(4.33) gives the dynamic stress immediately behind the ‘shock’ wave front as

^  = a "’ {\ + 2 \ n { l - u J { l  + M r)sDlo)}+p0V 2js D . (4.43)

A fourth-order Runge-Kutta numerical scheme is used to solve Eqn. (4.42) for the 

displacement of the distal end of the foam rod with time, u{ (t). Together with Eqn.

(4.43) the variation of the dynamic stress a d with time t can be found. Since the
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compacted material behind the ‘shock’ is rigid and at rest (a consequence of the 

locking material idealisation), the dynamic stress measured is also given by Eqn.

(4.43). In the limit as ut 0 , crqs -  crqsr (the quasi-static plastic collapse stress), the

‘shock-enhanced’ plastic collapse stress is given by

Eqn. (4.44) has also been shown to have relevance for wood (Reid and Peng, 1997) 

and for aluminium honeycombs (Harrigan et al. 1999) under direct-impact loading 

conditions.

The initial impact velocity vhck required to achieve full locking of the foam rod 

is found by setting v = 0, Vt = vlock and u( = s Dl0 in Eqn. (4.42) to be

Hence the ratio of the kinetic energy absorbed under dynamic loading conditions at 

an initial impact velocity of vlock to that absorbed up to full locking under quasi­

static conditions is given by

Note that f l converges to unity as M r - » co. Equation (4.46) shows a greater benefit 

of the dynamic enhancement of the crushing strength in absorbing the kinetic energy 

of the foam projectile occurs for small values of the mass ratio M r . II > 1 because

of the influence of inertia effects in producing higher stress levels than a qs whilst

the material reaches s D .

(4.44)

(4.45)

n = (l + Afr )ln(l + l/M r ). (4.46)
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4.3.2.2 Kinematic existence condition for ‘shock’ compaction

It is convenient to introduce the specific free energy (or the Helmholtz

free energy) y/ at the common absolute temperature of 6 -  0 + -  6 defined by 

(Ericksen, 1991)

where U is the internal energy per unit mass and rj the specific entropy. Eliminate U 

in Eqn. (4,23) by using (4.36) and (4.47) gives (Ericksen, 1991)

Since 0  and Vs are both positive constants, it follows from Eqns. (4.25) and (4.48) 

that

The inequality is a neat expression of the property of the isothermal stress-strain

chord between 0 and sD, whilst [^] is the corresponding area under the stress-strain 

curve which gives the energy absorbed per unit reference volume of material under 

quasi-static compression. Consequently, a greater amount o f  energy will be expended 

in the adiabatic ‘shock ‘ compaction o f  a foam rod than in quasi-static compression. 

Since [q/0] = 0, it follows from Eqn. (4.25) that

This implies that an increase in the specific entropy always accompanies the passage

y/ = U — Op (4.47)

M - ( <<7 +  <7 *)[£]/2 = 0 ([9]/0 -K ,M )/K s . (4.48)

(4.49)

plane illustrated in Figure 4.2. The term (cr“ + cr+)[£‘]/2 is the area under the ‘shock’

r f  >i}+. (4.50)

94



of a ‘shock’.

Let an element of length Al be compacted to A/(l - e D) at the ‘shock’ front. The 

jumps in the kinetic and internal energies per unit mass on a shock front advancing 

into a stationary, stress-free material are equal for a non-heat conducting foam rod 

(for which q is identically zero) in an isolated thermo dynamic system (Chadwick, 

1976). Therefore, Eqn. (4.40) gives

{Ev )2 -{E y X  =(<j - + <t +)sdAI/2 = p 0v 2A l/2 .  (4.51)

Writing [ip] -  <7qs£D and multiply Eqn. (4.49) with A/, substitute for {Ev \  -  (£),), 

with Eqn. (4.51), gives

v > { 2 ^ SJ p X -  (4-52)

This is the kinematic existence condition for continuing ‘steady-shock’ wave 

propagation in the foam rod. Substituting a qs ~ a qsr = Cn<jys{p0! p sY 2 (see Section

3.2.2) into Eqn. (4.52) gives the critical velocity beyond which progressive cell 

crushing occurs, i.e. exhibiting ‘shock’-type characteristics, viz.

^i-crm a i = ^ C , o - „ I P , T i p J P s f ' s D'12 (4.53)

where subscript n = 1 {small cell), 3 {large cell), 5 {10L & 40L) or 7 {JOT). This 

derivation confirms the result produced by more simplistic qualitative arguments on 

the role of the ‘energy barriers’ by Reid and Peng (1997).

The predicted critical velocity using Eqn. (4.53) is I08ms~] , 42ms~\ 116ms~] 

and 85ms~l for the small cell (using p 0/p ,  = 0.101), large cell (using 

p o/ p s = 0.048) cell, 10L & 40L (using p j p s = 0.1) and 10T (using p j p s = 0.096) 

specimens, respectively. As discussed in Chapter 3, the predictions agree well with
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their respective experimental values of approximately lOO/ws 1, 50ms 11 Oms 1 

and 90/ra’"1.

4.3.2.3 Partitioning of energy absorbed

Since strain rate sensitivity of the cell wall material and the compression of 

trapped gas are negligible, then the difference between the areas under the ‘shock’ 

chord and the plastic stress-strain loading path in the interval [0, eD] gives the 

additional energy absorbed associated with micro-inertial effects. Therefore, the 

increment of work done, due to micro-inertia, in compacting an increment of 

thickness 5x for an r-p-p-l foam rod is

Replacing <jd with Eqn. (4.43) and setting ut = xcDl{\. -  s D) in Eqn. (4.54), and 

integrating from x = 0 to x - l o9 gives

The plastic strain energy density associated with quasi-static compression of the rod 

is crqssD; whilst Eqn. (4.55) shows that the plastic strain energy per unit total volume 

associated with inertial effects has a quadratic dependence with the impact velocity 

for a ‘shock-type’ compaction process. For example, Eqn. (4.55) predicts the Duocel 

■foams in Figs. 3.9 (c) and (f) absorb 41% and 33% more energy, respectively, 

compared to that absorbed by the same material under quasi-static compression up to

(4.54)

W s W I A ol0 = p t f l 2  + t7»eDm  + M r)eD- M r]\n
M r - ( l  + M,.)gp ~| J

(1 + M . X l - s j J  J '

(4.55)
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4.3.3 Impact of a rigid mass against a stationary foam rod

For the sake of completeness, the reverse impact scenario of a rigid mass 

striking a stationary foam rod is now considered. Suppose a rigid mass M b travels at 

a speed of V., along the X-axis, until it strikes squarely a foam rod of unit area that is

supported at its distal end by the pressure bar, as depicted in Fig. 4.6. The conditions 

just ahead and immediately behind the ‘shock’ front are as follows:

Behind 'shock'front: v~ = v , s~ - s D, cr~ = <rd , p~ — p 0/(l - s D)

(4.56)

Ahead o f  ‘shock’front: v+ = 0, s + = 0, cr+ = <jqs, p + = p 0.

(4.57)

Note that the ‘shock’ relation given in Eqn. (4.33) must also be satisfied across the 

‘shock’ front. For simplicity, define the scalar variables u( , x and / as shown in Fig.

4.6. From geometry

id l / d t  =  —v / £ d

and

d x f  d t  =  ( 1 -  s D )v  /  s D

(4.58)

(4.59)

By Eqn. (4.37), the increase in internal energy of an element A/ in the time interval 

t and t + At is

AEu = E u {t + A t ) - E u (t) = (crd + crqs)sD\M\/2 (4.60)

and the change in kinetic energy of the agglomerated (crushed) material behind the
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ve lo c ity

Shock frontt>
+ A u l + Al

Ai i  /

v + Av„- o

Figure 4.6: Parameters defining the ‘shock’ model for the impact of a rigid mass 

against a stationary foam rod.

‘shock’ front as it changes velocity from v to v + Av is

AEk = Ek (t + A/) -  Ek (/) = M bv Av + ?°xvAv + ^°V + o(av  2, Av Ax).
( \ - e D) 2 ( \ - £ d )

(4.61)

Using Eqns. (4.58) to (4.61) and neglecting all higher order quantities of small terms, 

then dividing by At and taking the limit At —> 0 , Eqn. (4.40) gives

[Mr + u,o / e Dl0 )dv/dt = ~ c r j  p 0l0 (4.62)
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Equation (4.62) can now be integrated with the initial condition v(w/# = o)=Fj to

give the common velocity of the rigid mass and the agglomerated (compacted) 

material behind the ‘shock’ front to be

v = {sa [Ml [a** + p oV?leD)l{Mr + u ,JeDl0'j - c r ’1)/p 0f 2. (4.63)

From Eqns. (4.33) and (4.63), the stress immediately behind the ‘shock’ front is 

given by

+ p aVil /e D)/(Mr +ulJ e DIoy  . (4.64)

The impact velocity vlock required to achieve full locking of the foam rod is 

found by setting v = 0 , Vi = Vlock and u, = s Dl0 in Eqn. (4.63) to be

vloct = 7 ^ 4 ( 1  + 1 / m J - i ] / a ,  • (4-65)

Hence, the ratio of the initial kinetic energy of the backing mass (which is fully 

absorbed by the foam rod) to that of the energy absorbed in static compression of the 

foam rod is given by

n = l + — . (4.66)
2 M r

Just like the previous case of the impact of a foam rod against a rigid target, n  > 1 

for all M r > 0 due to the influence of inertia effects.
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4.4 Comparison with experimental data and numerical models

4.4.1. Comparison with the experimental data

Within the limits of the r-p-p-l material model, the predictions of the ‘shock’ 

theory compare well with the experimental force-time pulses which is evident in 

Figs. 4.7 (Cymat foams) and 4.8 (Duocel foams). Note that some of the force pulses 

(such as Figs. 4.7 & 4.8a,b and c) were truncated by reflected stress waves from the 

distal end of the output bar.

Although the ‘shock’ theory is not applicable in the sub-critical velocity regime, 

a reasonable agreement with the measured force pulses is still achieved. In general, 

the theory does not reliably predict the onset of densification because the actual foam 

material is not perfectly'rigid at its densification strain s D. The extent to which the 

material behind the ‘shock’ front is compacted depends on the impact velocity and it 

is always to a higher nominal strain value than that predicted by using Eqns. (3.4) 

and (3.5). The increasing discrepancy between the prediction and the experimental 

force pulses, especially in the super-critical velocity regime such as in Figs. 4.8c & f, 

is a direct consequence of the locking material assumption. To support this argument, 

the actual densification strain value (indicated by a hollow circle in Figs. 4.8c and f) 

from the experimental force pulse is used, instead, in the theoretical calculations to 

predict the force pulses. An excellent agreement with the experiment is obtained, see 

Figs. 4.8c and f, which supports the argument above. A better agreement between 

theory and experiment can, in general, be achieved by relaxing the locking 

assumption at the densification strain and allowing the strain behind the ‘shock’ front 

to vary with the dynamic stress, such as in a recent study on wood by Harrigan et al. 

(2005).

Figure 4.9 shows a reasonably good agreement between the normalised energy 

absorbed by the Cymat foam rod and the predictions by the ‘shock’ model.
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Figure 4.9 -  Comparison between the experimental data for the energy absorbed 

(normalised by {po / p s ) ' 5) and the predictions by the ‘shock’ theory.

The theoretical dynamic plastic collapse stress is given by Eqn. (4.44) and the 

theoretical dynamic plateau stress is defined as the time average value of <jd(\t), Eqn.

(4.43), according to

D

where tD corresponds to the time where rigid locking of the whole of the foam 

specimen has occurred. They are plotted with their corresponding experimental data 

in Figs. 4.10 and 4.11 for the Cymat foams and in Figs 4.12 and 4.13 for the Duocel 

foams.
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Figure 4.10 -  Comparison between theory and experiment for the normalised plastic 

collapse stress of (a) small cell and (b) large cell v-axis specimens. 

The dashed lines indicate corresponding quasi-static scatter in loads 

and s  is the nominal engineering strain rate.
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Figure 4.11 -  Comparison between theory and experiment for the normalised plateau 

stress of (a) small cell and (b) large celly-axis specimens. The dashed 

lines indicate corresponding quasi-static scatter in loads and e is the 

nominal engineering strain rate.
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Figure 4.12 -  Comparison between theory and experiment for the normalised plastic 

collapse stress for Duocel foams along the (a) largest and (b) smallest 

dimension of their constituent cells.
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Figure 4.13 -  Comparison between theory and experiment for the normalised plateau 

stress for Duocel foams along the (a) largest and (b) smallest 

dimension of their constituent cells.
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The experimental data plotted in Figs. 4.10 and 4.11 shows that ‘size effect’ 

remain active in the large cell Cymat foams during sub-critical velocity compression. 

By contrast, the dynamic strength properties in the super-critical velocity regime are 

unaffected by ‘size effect’ and morphological defects; rather they are influenced 

primarily by the impact velocity. The predicted plastic collapse, <ydcr, and plateau,

(Tpj, stresses of the Cymat foams agree reasonably well with their experimental data.

In particular, the quadratic trend of the variation of the plastic collapse and plateau 

stresses in the super-critical velocity regime has been reproduced qualitatively. The 

theory provides a better prediction of the strength properties for the large cell foam 

because its nominal stress-strain curve is better approximated by a rigid response at 

the densification strain (locking). The discrepancy between theory and experiment 

for the small cell foam at the higher impact velocities is a result of the higher levels 

of strain achieved experimentally than are possible analytically when using the 

simplified material model given by Eqn. (4.30).

Figure 4.12 shows that the theory consistently under-predicts the plastic collapse 

strength of the Duocel foams in the sub-critical velocity regime but over-predicts in 

the super-critical velocity regime; this is irrespective of the orientation of their 

constituent cells. The reason for the over-prediction is the same for the Cymat foams 

given above. At sub-critical impact velocities, the ‘shock’ model consistently 

underestimates the plastic collapse stress due to microinertia effects and the plastic 

wave model should be used instead. This shows that the dynamic response of metal 

foams in an impact (non-zero initial velocity) process exhibits Type-II structural 

characteristics, irregardless of the form of their quasi-static force-displacement 

curve; see, for example, the 10T specimens. By analogy with the previous work on 

0° wood specimens (Reid and Peng, 1997), one can argue that the plastic collapse 

stress will increase more substantially than the ‘shock’ theory can predict. The 

consistent over-prediction of the plateau stresses by the model in Fig. 4.13 is 

probably due to the effects of internal wave reflection in the foam material which is 

not considered in the ‘shock’ model.

In general, it can be argued, based on an extension of the results from studies on
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2D regular honeycombs (see Honig and Stronge, 2002a,b), that dynamic localisation 

of crushing, or ‘shock' propagation, is not responsible for the significant plastic 

collapse stress enhancement in the sub-critical velocity regime of the Cymat (Fig. 

4.10) and Duocel (Fig. 4.12) foams. Rather, it is due to the translational and 

rotational inertia of their cell walls, which is analogous to the lateral inertia effects in 

Type II structures (Reid et al., 1983). In other words, dynamic strength enhancement 

is not always an indication of ‘shock’ propagation per se. This contrasts with the 

findings of Deshpande and Fleck (2000). In general, the ‘shock’ theory under- 

predicts the dynamic plastic collapse stresses of the foams in the sub-critical velocity 

regime because of the different enhancement mechanism. The simple one­

dimensional plastic wave theory, given in Chapter 3, provides a better estimate of the 

plastic collapse stress in the sub-critical velocity regime.

Adiabatic ‘shock’ compaction of a non-heat-conducting foam rod was assumed to 

occur. In reality, ‘shock’ changes are not strictly adiabatic; rather, a finite amount of 

heat energy is generated within the specimen through plastic deformation in the cell 

walls. The precise nature of the stress-strain relation across the ‘shock’ is not known 

at high impact velocities and is most likely to differ somewhat from the adiabatic 

stress-strain relation used in Eqns. (4.9) and (4.30). However, Zaretsky and Ben-Dor 

(1995) have shown that the adiabatic relation provides a sufficiently good 

approximation of the ‘shock’ Hugoniot curve for flexible foams. The present study 

assumes that this is also the case for metal foams.

For quasi-static compression and dynamic compression in the sub-critical velocity 

regime there is a characteristic length scale associated with the collapse mechanisms 

that evolve. Any attempt to use the classical continuum wave theory to model the 

progression of deformation through aluminium foams in the sub-critical velocity 

appears futile because of the negative slope in their stress-strain curves, due to local 

softening associated with the individual cell collapse, and so therefore do not admit 

wave-type solutions. The difficulties are further complicated by the need to introduce 

multi-scale effects generated by the cellular geometry. Similarly, there is a 

characteristic wave thickness associated with the propagating ‘shock’ front at the
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super-critical velocities. The thickness of the ‘shock’ front is the result of a balance 

struck between dissipative effects and the tendency of the propagating waves to 

evolve towards a ‘shock’ due to the rapidly decreasing compressibility of the 

material (Lighthill, 1956). The dissipative effects are a consequence of the finite time 

required for cell collapse due to inertial effects. The issue concerning the length 

scales associated with different deformation responses in the transition from a sub- 

critical velocity regime to a super-critical velocity regime becomes immediately 

apparent. The issue of whether a steady ‘shock’ can evolve and propagate in a foam 

material remains to be quantified. However, numerical simulations of 2D Voronoi 

honeycombs suggest that a travelling steady ‘shock’ solution may exists and this is 

examined next.

4.4.2. Comparison with results of numerical simulations of 2D Voronoi 

honeycombs4

In this section, the dynamic crushing of 2D Voronoi honeycombs is studied by 

finite elements (ABAQUS explicit) simulations. The technique used to generate 2D 

Voronoi honeycombs with varying degree of cell irregularity is first described. Let 

the minimum Euclidean distance ds between any two neighbouring nuclei (or 

points), say p  and q,  in a plane be

ds = dist(p,q)\= rj(px - q xf  +{py ~ q yf  . (4.68)

If no restriction is placed on how the nuclei are to be ‘seeded’ in the plane, then the
a tfiAd b-

inequality dist(c\,b)> ds must hold for any pair of nuclei^If the nuclei are to be 

‘seeded’ such that the Euclidean distance between any pair of neighbouring nuclei is 

always equal; then there exists a maximum value for ds given by

jmax _ (2 ,4 /  nS f , where n and A is the number of nuclei and the area of the plane,

4 Parts o f  the work reported in this section were carried out in collaboration with Z. Zou, S.R. Reid, S. 
Li, and J.J. Harrigan (see paper no. 5 and 6 in Section 1.4),
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respectively. To provide a measure of the extent of cell irregularity in 2D Voronoi 

honeycombs with identical number of nuclei within a plane of area A , Zhu et al. 

(2 0 0 1 ) introduced the non-dimensional parameter A , defined by

A := ds /d™* for 0 < A < 1. (4.69)

C S O
(a) (b)

Figure 4.14 -  Two-dimensional Voronoi honeycombs where (a) A = 1 and (b) 

A = 0.5.

t  Y

Figure 4 .1 5 - Loading conditions for the Voronoi honeycomb



Once the nuclei are seeded, a 2D Voronoi honeycomb is easily generated by using 

the same technique described by Silva et al. (1995). Figures 4.14a and b show 

Voronoi honeycombs for A = 1 (19 x 22 regular cells of 4mm edge length and 

034mm  wall thickness) and A = 0.5 (~ 400 cells and 032mm  wall thickness) 

respectively. Both have a relative density of 0.1. Their aluminium cell walls are 

prescribed with rate-independent, elastic, perfectly-plastic properties identical to 

those used by Chen et al. (1999). Each cell wall is modelled using 1 to 15 general- 

purpose shell elements (S4R) and self-contact simulations are incorporated in the 

model. The foams are compressed at constant velocities of lOm^”1, 50tfM~' (sub- 

critical) and lOOwj’-1 (super-critical) from the left, whilst their right-end remains 

fixed as shown in Fig. 4.15.

The distribution of crushed cells in the 2D Voronoi honeycombs (Figs. 4.16 and 

4.17) is consistent with those seen in 3D Cymat/Hydro foams at the different velocity 

regimes. Bands of non-contiguous crushed cells develop at a sub-critical impact 

velocity giving a somewhat diffused deformation pattern. By contrast, sequential cell 

crushing (or ‘shock’ wave propagation) occurs at a super-critical impact velocity. 

Figure 4.18 shows the variation of the internal energy density (using the identifier 

‘ALLIE’ in ABAQUS) in the Voronoi honeycombs compressed at three super­

critical velocities. Since all forms of non-mechanical energies, and the energy 

dissipated by viscous effects and by time-dependent deformation are not considered 

in the FE model, the only contributions to the internal energy are the recoverable 

elastic strain energy and the energy dissipated by plasticity (ABAQUS, 2002). Note 

that the former is negligibly small. The upturn at the end of each curve indicates an 

increased in the energy absorbed by the 2D honeycombs at full locking with impact 

velocity. It is evident from Fig. 4.18 that the two key parameters controlling the 

energy absorption capacity of these honeycombs are the relative density and the 

impact velocity. By contrast, cell micro-structural irregularities ( A ) had little effect. 

Zou et al. (2005) have shown that the energy dissipated through rate-independent 

plastic deformation in the cell edges occurs mainly in the vicinity of the collapsing 

cells, or crush front, and they account for more than 95% of the internal energy
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F/=10m/s K/=50m/s V,= 1 OOm/s

£ = 0.6

Figure 4.16 -  Deformation of 2D Voronoi honeycombs (A = 0.5) under in-plane 

compression at different impact velocities.
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F,=10m/s V,=lOOm/s

i ' f l RI iT iV iY iiV ii

Figure 4.17 -  Deformation of 2D Voronoi honeycombs (A = l)  under in-plane 

compression at different impact velocities.
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Figure 4.18 -  Internal energy density of 2D Voronoi honeycombs (A = l and 

A = 0.5) versus the percentage nominal strain at three velocity 

levels. The overall energy absorbed at full locking predicted by Eqn. 

(4.70) for each velocity is given by the underscored values.

density plotted. From Eqns. (4.26) and (4.37), it is easily shown that

[ P o U ] =  P o b ’Y / 2 • (4 -7 ° )

The predictions by Eqn. (4.70) of the overall energy absorbed at full locking 

(identified by the upturn in each curve) are given by the under-scored values in Fig. 

4.18. They agree well with the results of the numerical simulations. The parameters

used in their calculations were [e] = eD -  0.9, cr+ = 0.9MPa and [v]= . The stress

ahead of the ‘shock’ (cr+) is assumed to be that measured at the fixed-end. It was 

found to be nearly constant throughout the compression process and varies little with
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the im pact velocity.

The above numerical example shows that the increased energy absorbed by the 

2D Voronoi honeycombs (without trapped gas) can be attributed directly to rate- 

independent plastic deformation in their cell edges as a result of the dynamic 

localisation of crushing, or ‘shock’ wave propagation. This is an inertial phenomenon 

wherein the dynamic localisation of crushing is responsible for the increased energy 

absorbed by the Voronoi honeycomb. Although a full analysis of 3D foams is not yet 

available, it is expected that the same explanations given above could also be 

extended to 3D foams under super-critical velocity compression.

0.6
<£=00.5 0.6 0.78= 0.1 0.2 0.3 0.4

0.4

0.2

0.0
10 12 14 16 18 200 2 4 6 8

V

Figure 4.19 -  Distribution of local compressive nominal strain along the V-axis of a 

Voronoi honeycomb (A = l) subjected to an impact velocity of 

200w5' _1

Figure 4.19 shows the distribution of the local compressive nominal strain along 

the A-axis of a Voronoi honeycomb ( A = 1) subjected to a constant velocity 

compression of 200/ra,_1. It shows an abrupt drop in the compressive strain across
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the shock front over a single cell width and the compressive waveform propagates 

approximately unchanged in form along the X-axis. The simulation suggests that a 

travelling steady ‘shock’ solution may exist but its detailed investigation is left for 

future work.

4.5. Conclusions

It has been shown that a continuous process of elastic-plastic stress wave 

propagation into a uniform region in which the mechanical behaviour is represented 

by a single concave upwards stress-strain relation cannot be maintained indefinitely 

in a strain-hardening foam rod (Hanssen et al., 2002) and ultimately the plastic wave 

must show discontinuities, leading to the formation of a ‘shock’.

The general quadratic trend of the variation of the dynamic plastic collapse and 

plateau stresses with impact velocity, evident in the experimental data, is captured 

well by the simple r-p-p-l one-dimensional ‘shock’ theory. The kinematic existence 

condition for ‘shock’ compaction of the foam rod has been established by 

thermodynamics arguments and it predicts the impact velocity for transition to a 

‘shock’-type deformation response of approximately 108/n.s’-1 {small cell foam) , 

A2ms~ 1 {large cell foam), 116ms~x{10L & 40L) and 85ms~' (10T) which compares 

well with the experimental data.

Dynamic localisation of crushing is not always responsible for the significant 

plastic collapse stress enhancement in the sub-critical velocity regime. Rather, this 

can be due to Type-II micro-inertial effects. Dynamic strength enhancement is not 

always accompanied by ‘shock’ propagation per se. Inertial effects associated with 

the dynamic localisation of crushing are responsible for the enhancement of the 

dynamic strength properties in the super-critical velocity regime. The predictions of 

the ‘shock’ theory compare well with the experiment data in this velocity regime 

where size effects and morphological defects are insignificant. In the sub-critical 

velocity regime, both effects influence the dynamic strength properties.
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Chapter 5

Comments on the applications of the 
Rankine-Hugoniot relations and the 
‘steady-shock’ theory in recent literature

5.1 Introduction

The last few years have seen rise in the use of the one-dimensional ‘steady- 

shock’ theory, such as the one presented in Chapter 4, to formulate simple predictive 

models, in particular for the dynamic compressive response of metal foams (Lee et 

al., 2005) and for other micro-architectured core materials in blast-resistant sandwich 

beams (Fleck and Deshpande, 2004; Deshpande and Fleck, 2005). Section 5.2 

revisits the one-dimensional model on the interaction between a shock, generated by 

explosions in air and underwater, and the front-face of a sandwich beam structure by 

Fleck and Deshpande (2004). Three important and related issues on the estimation of 

the peak overpressure acting on the front face of the sandwich beam following the 

reflection of the shock are discussed. In Section 5.3, anomalies between the ‘steady- 

shock’ theory presented in Chapter 4 and those in the current literature are discussed 

by examples and by results of FE simulations of 2D Voronoi honeycombs.

5.2 The one-dimensional fluid-structure interaction model (Stage I) 

of Fleck and Deshpande (2004)

In this section the one-dimensional (ID) fluid-structure interaction model 

proposed by Fleck and Deshpande (2004), denoted by FD hereinafter, is revisited. 

Suppose a shock wave is generated following an explosion in air and this interacts 

with a sandwich beam. The Rankine-Hugoniot relations are first reviewed which 

then provide a basis for estimating the peak overpressure acting on the front face of
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the sandwich beam following the reflection of the shock.

5.2.1 The Rankine-Hugoniot relations (Lighthill, 1956; Billingham and King, 

2000)

For simplicity assume that the shock is planar and lies at x = s(/) and is 

propagating in air. Figure 5.1 shows a planar shock in a frame of reference moving 

with the shock, with spatial co-ordinates x = x — s . The flux of mass, momentum and 

energy must be continuous at the shock, whilst the pressure, density and internal

Shock

Pl Pr

VL
Pr

VR
Pl

UL
CL u R

CR

X
Figure 5.1 -  The various physical quantities on either side of a planar shock in a 

frame of reference moving with the shock.

energy of the gas need not be continuous. This is expressed by the well-known 

Rankine-Hugoniot relationships, viz.

P lvl ~ P rvr > ( 5 - 1 )

P iy l  + P l =  P rVr + Pr > ( 5 -2 )

{Pl l̂ /^ + p J J l + PlP l ~ (.PrVrI^-'11'P rU r ^ P rP r (5-3)

where quantities immediately to the left and right of the shock are denoted, 

respectively, by subscripts L and R ; v (= v -  s ) is the particle velocity relative to the 

shock, s is the shock velocity, p  is density, p  is pressure and U is the internal
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energy per unit mass. Since U = p j  p { y - 1) for an ideal gas, where y is the ratio of 

specific heats ( = Cp/ C v where Cp and Cv are the specific heat at constant pressure 

and volume, respectively), Eqn. (5.3) can be rewritten as

= (v«72 + W ( r “ i K ) / v ^  (5-4)

and using Eqn. (5.1) gives

= v l l 2 +ypRl(r-\)pR  • (5-5)

Under adiabatic conditions, the equation of state of an ideal gas (one where there 

is no interaction between the air molecules) is

P V r = constant. (5.6)

Differentiating Eqn. (5.6) gives

yp = ~ Vdp/dV = B (5.7)

and the local sound speed is

c = t]B /p  =^Jyp/p . (5.8)

For an ideal gas, the Rankine-Hugoniot relations are normally written in terms of the 

local sound speed (Eqn. 5.8) as follows:

PtpL  =  P rVr > ( 5 ' 9 )

pM  +clh)=pJi>l+cl lr ) , (5-10)
v,2/2  + c * / ( r - l )  = vs2/2  + C’ / ( r - l ) .  (5.11)
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Since the Rankine-Hugoniot relations provide three equations in six unknowns, it is 

possible to eliminate any two to obtain a single equation involving four unknown 

quantities. For example, one can eliminate p R and p R from Eqns. (5.9) to (5.11) to 

give

'  2  '  

\ 7  + b
v 2L +(yR - v L )vL -

\ Y  + \ j
^  = 0 . 
P l

(5.12)

5.2.2 Normal reflection of a shock from a planar solid wall (Taylor, 1963b)

P s P o
s

p  1 hr ' s  o P o

1 I
v s !

OII

Before reflection

<------

P s P\s
h

P s
k

V s v, = 0
1

After reflection

[ /
/
/

/ R

%

A
/
/
/w
/ A

/ L
/
/
/
/
/
/

Figure 5.2 -  Normal reflection of a shock from a rigid wall

Fleck and Deshpande (2004) argued that the front face sheet of the sandwich 

beam may be assumed to be fixed and rigid because of the large jump in acoustic 

impedance with air, i.e. full transmission of the blast impulse to the sandwich beam 

must be considered. Hence, the problem to be solved is equivalent to the normal 

reflection of a shock from a solid, stationary wall. The solution to this equivalent
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problem is given by Taylor (1963b) whose analysis is summarized here (by adopting 

a different approach). Consider the case of a rightward propagating shock as shown 

in Fig. 5.2. Let the velocity of the shock before it reaches the rigid wall be i +, and 

the gas pressure, density and normal velocity behind the shock be p s , p s and y9, 

respectively. The initial ambient gas pressure and density ahead of the shock is p 0 

and p 0. However, continuity requires that the normal velocity of the gas molecules

be zero at the wall. The particle velocity, in a frame o f reference moving with the 

shock, on either side of the shock before reflection is

v, -  v - s , and V „  - - S ,  . (5.13)

Substituting into Eqn. (5.12) gives

y + l (v, - 0 2 - v, ( v . - 0 -------7 7  {p, /p, )  = 0tr+U
(5.14)

Let the normal shock velocity immediately after reflection from the wall be -  j_ . 

The gas pressure p , and density p x at the wall are not known although the normal 

velocity at the wall is still zero. The gas pressure, density and normal velocity on the 

other side of the shock are still p s , p s and v,, as shown in Fig. 5.2. The relative 

particle velocity on either side of the shock after reflection now becomes

vl =vs + s_ and vR = s_ (5.15)

and substitution into Eqn. (5.12) gives

f 2   ̂
^ + i

(5.16)

It is obvious fi‘om Eqns. (5.14) and (5.16) that both vs - s _  and +s_ satisfy the
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same quadratic equation given by Eqn. (5.12) (which is of the form 

A v l  + B vl + C = 0 ) and are, therefore, its two roots whose product satisfies

(vs -S-Xvs +s_)^-C[A = - yps/ p s (5.17)

Eliminating and p R from Eqns. (5.9) -  (5.11) give

y  + \
PlvI  Pr

0 . (5.18)

Substituting the various quantities on either side of the shock before and after 

reflection into Eqn. (5.18) gives

\ r + \ )

Vr+i.

Pl{v, ~ K Y  Po r - 1
Pl  p , r  + 1

Pl(k +S-)2 Pi r - 1
Pi p, r +1

= 0  and

0 .

(5.19)

(5.20)

Multiplying Eqns. (5.19) and (5.20) together and using (5.17) to eliminate the 

relative particle velocity terms, one arrives at

Po , r - i  
\ p , r+i .

Pi , r-> 
\P,  y + l . \ r + b

= o. (5.21)

This equation forms the basis for the discussion in the next section.

5.2.3 Discussion: On the ID fluid-structure interaction model by FD

There are three important and related issues in the fluid-structure interaction 

model of FD that can now be discussed below:
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(1) The net pressure acting on the front face of the sandwich beam (see Eq. 15 of FD) 

was proposed to be the superposition of the incoming and reflected blast wave 

pulses. In general, this is acceptable for the weak shock (or sound) waves generated 

in underwater explosions because water is nearly incompressible. However, by using 

the results of the weak shock analysis to estimate typical impulses delivered to the 

front face of the sandwich beam by strong shock waves, say, in air blasts (see pages 

389 and 397 of FD), FD imply that their modified Taylor’s model (1963a) is also 

applicable to non-linear, finite amplitude disturbances propagating in a compressible 

medium (air). The author does not agree that linear superposition of the shock wave 

pulse is applicable in air blasts.

(2) FD proposed that full transmission of the blast impulse to the sandwich beam, 

assuming a stationary rigid face sheet, be considered for air blast loadings. This 

allows safe design charts to be constructed. The point in question is FD ’s assumption 

that the limiting (maximum) impulse transmitted is identical to that of a weak shock 

in water, where the reflected peak overpressure is twice the incident overpressure, 

given by

where p 0 is the overpressure and 6 the decay constant of the pressure pulse 

(exponentially-decaying). By contrast, Eqn. (5.21) shows that for a strong shock 

( p s »  p 0) where p 0/ p s -> 0 , p xj p s -»  8 , i.e. the reflected overpressure can be up 

to 8  times that of the incident overpressure in an ideal gas. This gives a limiting 

impulse of 8po0 by momentum considerations; a classical result well-known to

fluid mechanicists (Taylor, 1963b; Baker, 1973; Billingham and King, 2000). Hence, 

the limiting impulse transmitted in an air blast can be a factor of four (4) greater than 

that considered by FD. The actual reflected overpressure could reach a factor of 20, 

or even higher, if real gas effects, such as dissociation and ionisation of the air 

molecules, are taken into consideration (Baker, 1973). In general, the relationship

(5.22)
0
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Figure 5.3 -  Pressure change due to the reflection of a shock incident normally on a 

solid wall in air, assuming y = 1.4. The pressures on either side of the 

shock before and after reflection are depicted in Fig. 5.2.

between the ratio of the reflected overpressure to the initial overpressure (/?, / p s ) is

a function of the ratio of ambient gas pressure to the initial overpressure ( p 0/ p s ), as

shown in Fig. 5.3. Therefore, it is questionable whether the performance charts 

constructed by FD, based on the assumption that the reflected overpressure in air is 

only twice the incident, are a sufficiently safe guide for the design of air-blast 

resistant sandwich beams. This point was recently raised in a discussion paper by 

Tan et al. (2005). In response, Fleck and Deshpande (2005) have noted that their 

analysis can handle strong air shocks provided one takes the transmitted impulse as 

an input to the model. This is undoubtedly correct, but the point in question is not on 

the approach rather the magnitude of the impulse felt by the sandwich beam after the 

shock is reflected from the front face sheet and its consequences.

(3) Following an explosion in air, a relatively compact volume of high energy gases
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is generated. The outward expansion of these gases produces a pressure (or shock) 

wave that travels at a supersonic speed which depends on the size of the charge used 

(see experimental data of Swisdak, 1975). The velocity of the shock is normally 

greater than 3 3 0 m “‘, the speed of sound in air at 0° C , used by FD (Page 389 of 

FD). Since no explicit Hopkinson scaling law (Baker, 1973) exists that could be used 

to estimate the speed of the shock, an alternative example is provided here. Consider 

a long cylinder filled with a perfect gas and closed at the left-end by a plane, rigid 

piston as shown in Fig. 5.4. 5 The gas is initially everywhere at rest with density p 0

and pressure p 0. Assuming that no heat is supplied to the gas and that a steady shock 

is fully formed due to the piston advancing at constant velocity V . Using Eqns. 

(5.1) to (5.3), one obtains the following relations:

Shock front

PISTON

P i

P i

\  = VP
Disturbed gas

s
P o  

p 0 

Vo “  0

Stationary gas

Figure 5.4 -  The various quantities on either side of the shock front cause by an 

advancing piston.

Pifa -rph P o*

Po - P \  =~PoVpS

2 r ~  i \Po
= l ( s . v y +j L

2 pJ y - l
' E l  

<Pi

(5.23)

(5.24)

(5.25)

where the notations have the same meaning as in previous sections. Defining the

5 T his is a tutorial problem  the author encountered as an undergraduate at the N ational U n iversity  o f  Singapore in 
a third-year flu id  m echanics course delivered  by Prof. T .S . Lee.
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parameters a  = sfVp and M  = Vpjc  (where M is the Mach number and c is the local 

sound speed given in Eqn. 5.8), Eqns. (5.23) and (5.24) can be expressed as

£ l = i + JL and (5.26)
Po “ - 1

—  = l + a / M 2 (5.27)
Po

for which it is possible to calculate p x and p x once s is known. Substitute Eqns. 

(5.26) and (5.27) into (5.28) and simplify gives

2M  V  - (l + y ) M 1a  - 2  = 0 (5.28)

which has a positive root given by

The above results show that as M  0 , s -> c , p x-> p 0 and p x —> p 0. When 

Vp « c the shock wave is, therefore, weak in the sense that [ p]« p a and 

[ p i «  p 0 . The speed c to which s approximates is the speed of sound in the 

undisturbed gas. Thus because FD assumes that the pressure pulse travels at the

(5.29)

Therefore, the speed of the shock is

(5.30)

speed of sound in air (330ms 1), their analysis can only applies to weak shocks and 

not to strong air shocks.
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5.3 Application of the ‘steady-shock’ theory to the high velocity 

compression of metal foams in existing literature

In this section, detailed comments are given on the application of the ‘steady- 

shock’ theory to metal foams in recent literature which is inconsistent with the one 

presented in Chapter 4. The plastic shock wave analysis by Fleck and Deshpande 

(2004) is discussed first.

5.3.1 The plastic shock wave analysis of Fleck and Deshpande (2004)

In the analysis of the core compression phase (see Fig. 5.5), a global energy 

balance of the sandwich beam was given by FD to be (Eqn. 28 in FD)

where the symbols used by FD also apply here. For a thermodynamic system, the 

first law asserts that, for any possible process, (Ericksen, 1991)

where E is the energy (kinetic plus internal) of the system, P is the power (rate at 

which work is done on the system) and Q is the rate at which heat is supplied to the 

system. Because no heat or external power is supplied to the sandwich beam 

throughout Stage II (defined as the core compression phase by FD), it is reasonable 

to assume that core compression occurs within an isolated system. Hence, P = Q = 0 

and Eqn. (5.32) gives

E n e r g y  a b s o r b e d  b y  t h e  f o a m
I n i t i a l  k i n e t i c  e n e r g y  K i n e t i c  e n e r g y  o f  f o a m  i n  f r o n t  K i n e t i c  e n e r g y  o f  f o a m
o f  f r o n t  f a c e - s h e e t  o f  s h o c k  a n d  b a c k  f a c e - s h e e t  b e h i n d  s h o c k  a n d  f r o n t  f a c c - s h c c t

(5.31)

(5.32)
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Figure 5.5 -  Sketch of the propagation of a ID shock in the sandwich core (reprinted 

from Fleck and Deshpande, 2004)

E = constant. (5.33)

In other words, the jumps in the kinetic and internal energies per unit mass across the 

shock front are equal. Two issues/questions arise from Eqn. (5.31) as follows:

(i) That the energy absorbed per unit volume of core material (c7nY£ D ) is

independent of the initial front face velocity vo. This is not consistent with the

studies reported in Radford et al. (2005) and Deshpande and Fleck (2005), nor with 

the experimental data presented in Chapter 3.

(ii) That the change in the internal energy density of the core material [p^U] 

(=crny£D by FD) is independent of the particle velocity jump across the shock front, 

where [] = ( )d - (  )M and U is the internal energy per unit mass. By contrast, the 

Rankine-Hugoniot relations predict (from Eqns. (4.26) and (4.37))

[pcU] = o \ e } + p c[V? l 2 .  (5.34)

As previously discussed in Section 4.4.2, the prediction by Eqn. (5.34) agrees well 

with the results of the numerical simulations. Since [v]»v0, the curves in Figure

4.18 shows that the [p cU ] is dependent upon [v] at every stage of the compression
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process. Therefore, it is questionable whether energy conservation is achieved in 

Eqn. (5.31). It is explained later that the identifier ‘ALLIE’ (abscissa of Fig. 4.18) 

gives the internal energy density of the core material.

The two anomalies above were highlighted in a Discussion by Tan et al. (2005). 

In response, Fleck and Deshpande (2005) have argued that a major component of the 

internal work in the FE simulations of Section 4.4.2 is probably due to the artificial 

viscosity inherent in the explicit simulations using ABAQUS. They show that by 

equating the change in internal energy in our FE calculations to the degree of axial 

stretch of the cell walls of the foam, in the extreme case of all the cell walls sharing 

equally this energy change, each cell wall will then need to undergo a nominal 

compressive strain of 0.99 in the case where v0 = 200ms~l which they conclude is 

physically unrealistic.

The author agrees with Fleck and Deshpande (2005) that ABAQUS Explicit 

does, indeed, introduce a linear bulk viscosity term6 whose purpose is to improve the 

modelling of high-speed dynamic events. A brief review of how ABAQUS partitions 

the different energy terms in the energy balance equation is required to clarify FD’s 

response. In ABAQUS, energy balance is expressed as (ABAQUS, 2002)

Eu + E k + E f - E w = constant (5.35)

r 1where Ek (=  —pv.vdV)  is the kinetic energy, EF is the energy dissipated by 
r 2

contact friction forces between contact surfaces, Ew is the rate of work done to the 

body by external forces and Eu is the internal energy which ABAQUS further 

divides into two separate contributions as follows (ABAQUS, 2002):

6 N ote  that no quadratic bulk v isco s ity  term is introduced because it on ly  applies to so lid  continuum  elem ents  
(A B A Q U S , 2 0 0 2 ). A  general-purpose shell e lem en t (S 4R ) is used here in the FE m odel (s e e  S ection  4 .4 .2 ).
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Eu = |  f c ' . z d V  t
0 VP J

dt +
o \v

j V \ z d V  i
y

dt (5.36)

R e m a i n i n g  e n e r g y  E n e r g y  d i s s i p a t e d  b y  v i s c o u s  e f f e c t s

where c c is the stress derived from user-specified constitutive equation and crrf is 

the viscous stress (defined for bulk viscosity, material damping and dashpots). Note 

that ABAQUS continues to call the remaining energy the internal energy. Using the 

strain decomposition £ = ee/ +zpl + £cr (where zel, z pl and £cr are elastic, plastic and 

creep strain rates, respectively), ABAQUS further distinguishes the various 

contributions to the ‘remaining energy’ in Eqn. (5.36) as follows:

jac : z d V  d t -  J Joc:£cl dV dt+ jj jV :£pl dV
o VP j o v p

dt
J

R e m a i n i n g  e n e r g y E l a s t i c  s t r a i n  e n e r g y  E n e r g y  d i s s i p a t e d  b y  p l a s t i c i t y

A
+ jV  : zcr dV

o Vp

dt
J

E n e r g y  d i s i p a t c d  b y  t i m e  d e p e n d e n t  d e f o r m a t i o n  
s u c h  a s  c r e e p ,  s w c c l i n g  a n d  v i s c o e l a s t i c i t y .

(5.37)

Note that the energy dissipated through bulk viscosity is not part of the ‘remaining 

energy’; rather, it is separately classified as the energy dissipated by viscous effects. 

The energy identifier ALLIE (see ABAQUS, 2002) is the sum of the ‘remaining 

energy’ (Eqn. 5.37) and three other energy terms not applicable to the simulations in 

Section 4.4.2. Since the last term in Eqn. (5.37) is zero, the abscissa of Fig. 4.18 

gives the sum of the elastic strain energy and the energy dissipated by plasticity in 

the FE model. Figure 5.6 gives the variation of the different energies with time 

during the in-plane compression of a regular honeycomb (A  = 1) at 200ms~] - the 

results shown are for the same numerical example given in Section 4.4.2. The figure 

shows that the energy dissipated by viscous effects is less than 5% of the energy 

dissipated through rate-independent plastic deformation (ALLPD in ABAQUS). It 

also shows that ALLIE = ALLPD which suggest that the contributions from the 

elastic strain energy is small and, therefore, negligible. Hence, the author disagrees 

with the response of Fleck and Deshpande (2005).

131



External work 
ALLIE  
ALLPD  
Kinetic energy
Energy dissipated by viscous effect
"Artifical" strain energy
Elastic strain energy S

0 100 200 300 400 500 600 700

Time (jus)

Figure 5.6 -  Variation of the energies absorbed with time during the in-plane 

compression of a regular honeycomb ( A = 1 ) at 2 0 0 /w.s"1.

The author agrees, in principal, however with Fleck and Deshpande (2005) that 

the magnitude of the principal strain components in the cell walls must be checked. 

This is carried out for the FE model which shows that the maximum principal strains 

in the cell walls never exceed 0.55 for the case of v0 = 200ms" 1 and is considerably

lower than the value of 0.99 estimated by Fleck and Deshpande (2005). It is the 

opinion of the author that this level of straining is not physically unrealistic.

5.3.2 Application of the ‘shock’ theory to metal foams by Ashby et al. (2000) and 

Lu and Yu (2003)

In a similar vein, consider the case of a one-dimensional end-on impact of a long 

stationary bar of foam of cross sectional area A by a rigid mass M  travelling at an 

impact velocity V0 (see Figure 5.6a). This case was previously analysed by Ashby et 

al. (2000) and Lu and Yu (2003). An idealised compressive stress-strain curve shown
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in Figure 5.6b was adopted. Their analysis assumes zero particle velocity ahead of 

the ‘shock’ and an upstream stress equal to a qp] . A global energy balance of the foam 

energy absorber was given as

M  + PaAl
1 -  s V2 +<t%s d

D  J 1 eD 2
(5.38)

where I is the current location of the ‘shock’ front measured from the impact end.

Shock front

Mass

(a)

Stress

Velocity

Density

8scr

(b)

Figure 5.6 -  (a) The stress, velocity on either side of the ‘shock’ wave front for an 

impacted foam by a mass M  and (b) Schematic compressive stress- 

strain curve for a metal foam.
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By comparing terms with Eqn. (4.40), they assert implicitly that the change in 

internal energy per unit reference area of the bar is

(5.39)

Assuming that Eqn. (5.39) is correct, multiplying Eqn. (4.37) with /, and writing

a contradiction. Thus, by this simple argument, the assertion in Eqn. (5.39) cannot be 

correct; otherwise, the energy flux is not continuous across the ‘shock’. 

Consequently, Eqn. (5.38) does not account in full for the balance of energy. The 

correct equation of motion for this case is presented in Section 4.3.3.

6.4 Conclusion

Anomalies between the ‘steady-shock’ theory presented in Chapter 4 and those in 

recent literature have been discussed by examples and by results of FE simulations 

of 2D Voronoi honeycombs. It is hoped that the apparently incorrect treatment of the 

energy absorbed by metal foams when subjected to impact loading have thereby been 

clarified.

[p0U]l = <r%eDl / ( \ - s D), gives

(5.40)
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Chapter 6

Conclusions and further research

6.1 Conclusions

6.1.1 Experimental method for high strain rate testing of metal foams

The performances of two common high strain rate testing methods, viz. the 

SHPB and direct-impact techniques, were examined critically in the context of 

testing cellular materials. Important issues in sample design, such as the sizing of the 

test specimens in relation to how specimen size, relative to the cell size, affects the 

mechanical properties of metal foams, were discussed. The localised nature of cell 

defoimation in metal foams was demonstrated in impact tests for a broad range of 

loading rates in Chapter 3. A possible violation of the uniform deformation 

assumption during the SHPB testing of metal foams is revealed. The present study 

recommends the direct-impact technique for the high rate testing of metal foams.

6.1.2 Consistent method to extract key material properties

A consistent method, based on the efficiency of metal foams in absorbing 

energy, has been proposed to extract key material properties, viz. the plastic collapse 

and plateau stresses, and the strain at which densification occurs, from nominal 

stress-strain curves and dynamic force pulses. The method also provides a consistent 

framework for defining key material parameters in other cellular materials in the 

current literature.

6.1.3 Quasi-static and dynamic properties of Cymat and Duocel foams

The mechanical properties of the Cymat and Duocel foams have been measured
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and their dynamic response to a wide range of loading rates is broadly classified 

according to velocity regimes, viz. sub and super-critical velocities. At sub-critical 

velocities, test samples deform by cumulative multiplication of discrete crush bands. 

Cell size effects and morphological defects continue to affect (knock-down) the 

mechanical properties measured. At super-critical velocities, samples deform by 

progressive cell crushing from its impact end where a different inertial phenomenon, 

namely ‘shock’ wave propagation, is responsible for the enhancement of the 

mechanical properties measured.

The transition from a discrete band multiplication to a ‘shock-type’ deformation 

was measured to occur at impact velocities of approximately 100m "1 {small cell 

Cymat), 5 0 m "1 {large cell Cymat), 110m "1 {10L & 40L Duocel) and 90ms~x{10T 

Duocel) and this agrees well with the theoretical predictions of 108m "1, 42 m "1, 

116m "1 and 85 m "1, respectively.

Significant enhancement of the plastic collapse stress is measured in the sub- 

critical velocity regime for both foams. Translational and, to a lesser extent, 

rotational inertia of the cell walls, rather than ‘shock’ propagation, are responsible 

for the strength enhancement. They introduce an initial phase to the deformation, 

which is dominated by plastic axial compression of the cell walls. The linear 

variation of the plastic collapse strength data with impact velocity and the good 

agreement with the predictions of a one-dimensional plastic wave theory support the 

influence of Type-II microinertia effects. In the super-critical velocity regime, the 

data for the plastic collapse stresses varies with the square of impact velocity which 

is consistent with ‘shock’ propagation.

The plateau strength data is insensitive to the impact velocity in the sub-critical 

regime for both foams. Significant enhancement of the plateau stress is observed in 

the super-critical velocity regime where ‘shock’ propagation effects are important. 

The reason behind the lower plateau strength compared to its corresponding quasi­

static value at the lower impact velocities remains to be clarified.
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A direct correlation between the dynamic mechanical properties and the nominal 

engineering strain rate of metal foams was shown to be unviable and the reasons for 

the conflicting conclusions in the current literature have been clarified.

6.1.4 One-dimensional plastic wave and ‘steady-shock’ models, and numerical 

simulations of 2D Voronoi honeycombs

The one-dimensional plastic wave and ‘steady-shock’ models presented in 

Chapters 3 and 4, respectively, brings together the following features:

1. prediction of the plastic collapse stress in the sub-critical and super-critical 

velocity regimes.

2. prediction of the full dynamic force-time pulse and the dynamic plateau 

stress for proximal and distal end impacts

3. established the kinematic existence condition for continuing ‘shock’ 

propagation

4. prediction of the impact velocity for transition to a ‘shock-type’ 

deformation.

5. estimation of the additional plastic strain energy absorbed per unit volume 

of material associated with microinertia effects.

Both models successfully reproduce the measured strength properties 

qualitatively in their respective velocity regimes. At sub-critical impact velocities, 

the ‘shock’ model consistently underestimates the plastic collapse stress due to 

microinertia effects and the plastic wave model must be used instead. The over­

estimation of the plastic collapse stress at super-critical impact velocities is due to the 

effect of the locking assumption at the densification strain in the ‘shock’ model. It is 

possible to rectify this deficiency by relaxing the locking assumption, for example by 

allowing the strain behind the ‘shock’ front to vary with the dynamic stress. In 

general, the predictions of the plateau strength by the ‘shock’ model are consistently 

overestimated; again, a consequence of the locking material assumption. But the 

quadratic trend has been reproduced qualitatively.
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The numerical simulations of 2D Yoronoi honeycombs subjected to super-critical 

velocity compression show an increase in energy absorption which can be attributed 

directly to rate-independent plastic deformation in their cell edges caused by the 

dynamic localisation of crushing. The ‘shock’ model gives an accurate prediction of 

the increased energy absorbed by the honeycomb.

6.2 Further research

There are numerous aspects of the dynamic mechanical properties of metal foams 

that would benefit from further investigations of which the following arises from the 

present study:

1. Using a more realistic constitutive relation with the ‘steady-shock’ model, 

such as by relaxing the rigid locking assumption at the densification strain, to 

give a better prediction of the plastic collapse and plateau stresses.

2. For high-velocity impact experiments, the results can be interpreted in terms 

of the Rankine-Hugoniot theory of shock propagation. The profiles of these 

high amplitude waves are satisfactorily approximated as shocks because the 

actual wave thickness is small (of the order of one cell-width) compared to 

the propagation distances of interest. For experiments performed at pressures 

only moderately in excess of the static threshold, the waveforms are only 

crudely approximated as shocks because of the large amount of dispersion 

present. Whilst it is easy to conceive a number of effects that would 

contribute to the observed dispersion, it seems probable that the most 

influential is the lag experienced by the material in coming to equilibrium 

under dynamic loading because of the time required for ceil collapse. This 

dispersive effect is counteracted by the tendency of the propagating waves to 

evolve towards shock due to the rapidly decreasing compressibility of the 

material as it is being compacted. The observed wave thickness is a balance 

struck between these two conflicting tendencies and an investigation into the 

structure of the ‘shock’ wave which forms at the moderate impact-velocities 

is important.
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3. A new ‘wave’ theory is required for the sub-critical velocity compression of 

metal foams. It must recognise and incorporate the effects produced by the 

presence of the saddle transition phase in the representation of the stress- 

strain curve. This will undoubtedly require the application of a regularised 

continuum theory involving higher order displacement gradients and 

introducing length scales characteristic of the cellular geometry, or other non 

local approaches.

4. The present study has emphasized the concept of the Hugoniot equation of 

state, i.e. one which describes the thermodynamic states attainable through a 

steady shock wave. Analytical procedures must be developed to treat 

unsteady wave propagation in metal foams.

5. A 2D Voronoi honeycomb structure is being used increasingly to shed light 

on the mechanics of the much more complex 3D foams in the current 

literature. However, it not entirely clear whether a connection exists between 

Voronoi diagrams in E2 and convex polyhedra in E3. If so, how are they 

related? An investigation of this type will undoubtedly require some 

background knowledge on computational geometry.
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APPENDIX A

Theory of the Split-Hopkinson pressure 
bar and Direct-impact tests

(A) Split-Hopkinson pressure bar (SHPB) test (Kolsky, 1953)

The one-dimensional wave equation is given by

d 2u 1 d u
d X 2 c 2 dt2 '

(Al)

In the incident bar, the solution to Eqn. (A l) is

u \ X , t ) =  f ( X  - c t )  + g (X  + ct) = ui +ur (A2)

where /  and g  are arbitrary functions of the incident (subscript /') and reflected 

(subscript r) wave pulses and c is the elastic wave speed.

w, u2
r>

Test specimen

•,(0

Incident Bar k-i Transmitter Bar

Figure Al -  Schematic of the incident bar, test specimen and transmitter bar in a 

SHPB setup
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The strain in the incident bar is found by differentiating Eqn. (A2) with respect to X , 

while holding t fixed, to be

^f'+g'=£>  +-5V- (A3)

Note that all stresses and strains are treated as positive in compression and the 

subscripts 1 and 2 denote the incident and transmitter bar, respectively. 

Differentiating Eqn. (A2) with respect to t, while holding X  fixed, and using Eqn. 

(A3) gives

= c(-  f '+g')  = c (- £, + s  r ). (A4)

Taking the time derivative of the displacement in the transmitter bar, u2 -  h [ X - c t \  

gives

u2 = ~cs t . (A5)

where the subscript t denotes transmitted pulse. The nominal engineering strain rate 

in the test specimen is given by

s  = (w, - u 2)/l0 (A6)

where and u2 are the velocities at the incident bar-specimen and specimen- 

transmitter bar interfaces, respectively (see Fig. Al). Substituting Eqns. (A4) and 

(A5) into (A6) give

£ = c ( -  £i + £r + £, )//0 (A7)

The forces at the incident bar -  specimen and specimen -  transmitter bar interfaces 

are, respectively,
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Ft = A bE b(S i + Sr) & F2 = A bBbs, (A 8& A 9)

where Ab is the cross sectional area and Eb is the Young’s modulus of the bars (both 

pressure bars are of identical material and cross sectional area).

Based on the assumptions that the test specimen is always in force equilibrium 

and deforms uniformly, i.e. Fx = F2, this gives

£t =z£.+£r . (A10)

Using Eqn. (A10) with Eqn. (A7) gives

s - 2  c£r/ l0 (A ll)

The average compressive stress in the test specimen is given by

<rf =(Fl + F2)/2A„ (A12)

where A0 is the cross-sectional area of the test specimen. Substituting Eqns. (A8) 

and (A9) into (A12), and using (A10), gives

a f = F b
\ AoJ

(A13)
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(B) Direct-impact test

Test specimen

Backing mass

- UiUi

Transm itter Bar

Figure A2 -  Schematic of a direct-impact set-up.

The compressive stress in the test specimen is given by

FI A. ^ (A 14)

and the nominal engineering strain rate is defined as

(A15)

where Vj is the initial impact velocity of the foam projectile or the backing mass. 

Equations (A 14) and (A 15) are valid for both proximal and distal end impacts 

considered in Chapter 4.
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APPENDIX B

Different forms of physical laws

A physical law can be expressed in various forms depending on the nature of the 

function in question. In the present thesis, compression of the foam rod is assumed to 

be unidirectional, along the OX  axis (see Fig. 4.1); and from symmetry, the 

dependent variables can be expressed as functions of the Lagrangian co-ordinates

many of the physical laws are expressed in an integral form as follows (Bland, 1988):

where F, G and H  are arbitrary functions of X  and t\ and X ] and X 2 are constant 

values of X  where X x < X 2. In the main body of this thesis, Eqn. (B l) may also 

appear in a differential and/or jump (or shock) forms as follows:

Case 1. Suppose both dG/dt and dF/dX  exists.

Since dG/dt exists, and A, and X 2 are constant, then

(A ,/) alone. Since there is dependence on just one space dimension X  and time t,

f (x ] , t) -  f {x 2 £ 2 G(X, t)dX + h (x , t)dX (Bl)

(B2)

WritingX 2 = X { +AX  and dividing Eqn. (Bl) through by AX  gives

1 d  rX\+£iX 1 ftTj+AA*
H dX

(B3)
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In the limit as AX  -»  0, and since dF/dX  exists, Eqn. (B3) can, therefore, be 

written as

d F  d G  i s  a + -----+ H  = 0, (B4)
OX dt

also know as the differential form of Eqn. (B l) (Bland, 1988).

Case 2\ Suppose the function G has a discontinuity at X s(t) such that 

X, < X s (t) < X 2 and dG/dt exists everywhere else.

rX2 , v (*,(<) rX2
Separate the integral G \X yt p X  into and so that

•tV| «IY| «lVit (?)

<A_( pMd 
dt

t \ (B5)

•k(') dt dt

where G- ( ^  (/),?) and G+(Xs(t),t) denote the values of G ( X j )  immediately 

behind and ahead of the discontinuity, respectively. Substituting X 2 -  X s(t) + AX/2  

and X ] -  X s ( t ) -  AX/2  into Eq. (B5) gives

f A‘M 2  HdX+ VS[G]
J X j t ' ) - A X /2  s l  J

(B6)

where the symbol [h] = h~ -  h+ denotes a jump in the dependent variable, say /?, 

across the discontinuity and the superscripts -  and + denote the region immediately 

behind and just ahead of the discontinuity, respectively; and the velocity of the 

propagating discontinuity is given by
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dt
(B7)

In the limit as X l —» X ~  and X 2 —> X  *, Eqn. (B6) becomes (Bland, 1988)

also known as the jump form of Eqn. (Bl). The jumps in Eqn. (B8) are strong 

discontinuities o f the functions in Eqn. (B4).

Note that Eqns. (B l), (B4) and (B8) are the integral, differential and jump (or 

shock) forms of the same physical law. In general, any laws expressible in the form 

of Eqn. (B l) are often referred to as ‘conservation’ laws (Bland, 1988).

[F ] -F s[G] = 0 , (B8)
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APPENDIX C 

Hadamard’s Lemma

Suppose the function ) is defined and continuously differentiable, i.e. the

partial derivatives of d(f)/dX and d<j>/dt is continuous everywhere, in a region of the 

X-t space except across the curve C. Let the suffix + to denote the value of a variable 

just to the right of and below C and the suffix -  to the left and above. Define 

[h] = h~ -  h+ as in Appendix A and dfdt  be the time differentiation following curve 

C. Hadamard’s lemma states that

d(f) d(f)
+ L

d(j)
dt dt dX

t

Hadamard’s lemma imposes certain restrictions called compatibility conditions 

among various orders of discontinuities of (f>. Its proof is similar to the one in 

classical analysis and can be found in Bland (1988).
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