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A bstract

This thesis is devoted to the study of viscous-inviscid interactions and upstream 

influence effects occurring in the hypersonic flow over slender two-dimensional 

or axially-symmetric bodies at zero angle-of-attack, under the assumption of the 

perfect gas law.

In P art I, self-similar solutions were obtained for the hypersonic flow near the 

leading-edge of three-quarter power-law bodies. The tangent wedge/cone approx­

imation was used to relate the pressure distribution to the displacement thickness. 

Furthermore, the nature of the upstream influence effect was considered numeri­

cally, and it was discovered tha t upstream influence exists for axially-symmetric 

cases provided th a t the body slenderness ratio and surface tem perature exceed 

certain critical values. The numerical results for two-dimensional flat plates were 

found to be in good agreement with solutions obtained by previous authors. 

Asymptotic results have also been obtained for very hot bodies, and the effects 

of varying the Prandtl number and ratio of specific heats have been considered. 

New analytical results have also been obtained for cases in which the boundary 

layer thickness is negligible in comparison to the body thickness, particularly for 

power-law bodies. It was discovered tha t the upstream influence effect decays 

exponentially as the leading edge is approached, and an analytic expression has 

been obtained for the upstream influence eigenvalue.

In Part II, the equations describing the interaction between the boundary

10



A B S T R A C T 11

layer and inviscid flow were solved numerically for the hypersonic flow over com­

pression or expansion corners with strong wall cooling. It was observed th a t the 

flow separates for compression ramps if the ramp angle is greater than a certain 

critical value. For axially-symmetric flows, it was observed th a t the pressure gra­

dient becomes favourable at a certain distance downstream of the ramp corner, 

and tha t the minimum in the skin friction distribution increases with decreasing 

radius for fixed ramp angle. It was also discovered tha t the flow over expan­

sion corners separates if the radius is smaller than a certain critical value. New 

self-similar solutions were also determined far downstream of the corner point 

for cases not involving separation, and also for flows exhibiting incipient separa­

tion. An asymptotic theory was used to describe the separation and reattachm ent 

process occurring in subcritical flows in order to remove the Goldstein singular­

ity at the separation point. The resulting nonlinear inner interaction problem 

was successfully solved using a new unsteady algorithm, and it was observed 

th a t the separated region lies entirely upstream of the ramp corner. In addition, 

asymptotic solutions far upstream and downstream of the interaction region were 

derived, and the numerical solutions were found to be in very good agreement 

with both of these analytical results. Finally, it was shown th a t the asymptotic 

theory considered here, as well as marginal separation theory, can both be used 

to describe the separation process occurring in axially-symmetric flows.
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C hapter 1

Introduction

1.1 C haracteristics o f H ypersonic Flow s

The analysis and computation of hypersonic flows is of crucial importance in 

the design of vehicles capable of high speed flight, such as the space shuttle 

and the next generation of reusable launch vehicles. The present work addresses 

the hypersonic flow over two-dimensional or axially-symmetric slender bodies and 

compression ramps at zero angle-of-attack, as shown in Fig. 1.1. Notwithstanding 

the existence of powerful Euler/Navier-Stokes computer codes for the simulation 

of such flows, it is still desirable to supplement these tools with basic analyti­

cal concepts tha t explain and correlate the purely numerical results, and tha t 

may also reveal new ideas about improving the aerodynamic design and perfor­

mance. Moreover, direct numerical solutions of the Navier-Stokes equations tend 

to struggle for accuracy in the range of Mach and Reynolds numbers which are 

encountered in hypersonic flight, such as during the atmospheric re-entry from 

orbit.

The theory of viscous hypersonic flows is described in detail in numerous books 

and journals (see, for example, Anderson 1989, Cheng 1993, Cox & Crabtree 1965 

and Mikhailov et al  1971), and only the most im portant features will be discussed

15
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Shock wave

Expansion fans

Shock waves

Boundary-layer edge

Region ol’ separated flow

Strong interaction Moderate interaction Weak interaction

Figure 1.1: The hypersonic flow structure over a slender body at zero angle-of- 

attack (not to scale).

here. Hypersonic flows differ from subsonic or even low Mach number supersonic 

flows in many respects. Firstly, the temperature within the viscous boundary 

layer near to the body surface increases and the density decreases as the free- 

stream  Mach number becomes large. This results in comparatively large amounts 

of viscous dissipation and heat transfer to the body surface, and it is for this 

reason tha t re-entry vehicles must be protected from the generated heat using 

special tiles or ablative materials. In addition, a relatively strong shock wave 

is generated near the leading-edge, as can be clearly seen in experiments (see 

Figs. 1 . 2  and 1.3).

The extreme viscous dissipation within hypersonic boundary layers can cre­

ate tem peratures high enough to cause chemical reactions, dissociation or even
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ionization within the gas. The high tem perature and low density within a hyper­

sonic boundary layer causes it to be orders of magnitude thicker than low speed 

boundary layers a t the same Reynolds number. Consequently, the boundary layer 

can exert a m ajor displacement effect on the inviscid flow outside the boundary 

layer, thus causing a given body shape to appear thicker than it really is. The 

changes in the inviscid flow in turn feed back to affect the growth of the bound­

ary layer downstream. This phenomenon, which is known as viscous interaction, 

can have im portant effects on the pressure distribution, and hence the lift, drag 

and stability on hypersonic vehicles. Very close to the leading-edge tip there ex­

ists a merged region -  also known as the shock layer -  in which the shock wave 

and viscous boundary layer are virtually indistinguishable. Furthermore, hyper­

sonic boundary layers have a well-defined edge where the appropriately scaled gas 

tem perature and viscosity vanish, which is in sharp contrast to low speed flows.

For simplicity, real gas effects shall be neglected throughout this thesis and 

the gas assumed to obey the perfect gas law. In addition, vorticity and entropy 

layer effects will also not be taken into account, and the flow shall be assumed to 

be laminar throughout. Nevertheless, these aspects are extremely im portant for 

the overall vehicle design and performance (for further details concerning these 

effects, please refer to the above cited references and also to Bertin 1989 and 

Dorrance 1962).

1.2 Fundam ental Flow Param eters

It is im portant to introduce several non-dimensional parameters tha t character­

ize the nature of the flow. It should be noted tha t throughout this thesis, the 

streamwise and transverse coordinates are represented by x  and y respectively, 

with corresponding velocity components u and v. In addition p  is the pressure, p 

the density, T  the tem perature and p, the viscosity. Quantities with a subscript
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‘oo’ are used to denote free-stream conditions. For convenience the acronyms 

‘2 D ’ and ‘AXI’ will be used to refer to two-dimensional or axially-symmetric 

cases respectively, and the integer j  is defined as:

1
0 for 2D flows,

( i . i )

1 for AXI flows.

The mainstream Mach and Reynolds numbers are defined respectively by:

where L  is a characteristic length scale of the body. These two fundamental 

flow parameters are assumed to be large, but such tha t the small perturbation 

parameter e is small, namely1

Furthermore, the ratio of specific heats 7  and the Prandtl number P r are defined 

respectively by

=  (1 .4)
cv k

where k is the thermal conductivity. For air at standard atmospheric conditions 

7  =  1.4 and Pr rs 0.725.

One of the most im portant parameters in hypersonic flow theory is the hyper­

sonic viscous interaction parameter x  defined by:

where C is the Chapman-Rubesin constant given by Eq. (2.7). This param eter 

characterizes the intensity of the viscous-inviscid interaction described in the

(1 .2)

e =  M lJ 2Re" 1/ 4 «  1 . (1.3)

(1.5)

R t will be shown in Sec. 2.2 that for flows with strong viscous interaction, the boundary 
layer thickness is of the same order of magnitude as e.
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previous section (see also Sec. 1.3). Another fundamental flow param eter is the 

hypersonic similarity parameter K  = M^e/, where c /  is the body slenderness 

ratio. The hypersonic inviscid flow over two different but affinely related bodies 

are similar (in terms of non-dimensional variables) if the ratio of specific heats 7  

and K  are the same (Anderson 1989). This result can be extended to hypersonic 

flows with viscous interaction, provided tha t K  is defined in terms of the local 

inclination angle 9 of the boundary layer edge, i.e.

I< =  M 0o0. (1 .6 )

It is also im portant to introduce the ratio O of the body thickness h to tha t 

of the boundary layer 5, i.e.:

n =  f  (i-7)

If D 1, the AXI boundary layer equations reduce to an equivalent 2D problem 

using Mangler’s transformation (see, for example, Hayes & Probstein 1959 and 

Yasuhara 1962). However if O ~  1 or -C 1 (as would be the case for a

vanishingly thin needle), then Mangler’s transformation is not applicable and

transverse curvature effects can not be neglected.

1.3 H ypersonic V iscous Interaction

In this section, the theory of viscous-inviscid interaction in hypersonic flows shall 

be described. For a more complete discussion including a comprehensive reference 

list, please refer to Anderson (1989), Cheng (1993), Mikhailov et al. (1971) and 

also to the other references previously cited above.

1.3.1 S trong In teraction  R egim e

This case occurs when y  >  1, and is of particular importance near the leading 

edge tip of a slender body, as shown in Figs. 1.1 and 2 .1 . If the thickness of the
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boundary layer is of the same order of magnitude, or even much greater than, 

th a t of the body (i.e. £2 ~  1 or O <C 1 ), it can be shown th a t the local inclination 

angle 9 of the boundary layer edge can be estimated by (see Sec. 2 .2 ):

e ~  e =  M ^ R e - 1' 4 . ( 1 .8 )

As pointed out by Bush k, Cross (1967), this approximation differs from the 

classical result given by Eq. (1.10) which is valid for flows with weak or mod­

erate viscous interaction. It also follows from this estimate and Eq. (1.2) (with 

L  replaced by x) th a t the boundary layer thickness <5 ~  xO ~  a;3/4. Further­

more, the pressure distribution for flows with strong viscous interaction can be 

approximated using the tangent-wedge/cone formula (see Sec. 2.3), which states 

tha t

p oc 82. (1-9)

Using this approximation, it can be inferred tha t the leading-order pressure 

p ~  a;-1/2. Therefore the pressure gradient is favourable and the flow is not 

expected to separate from the body surface near the leading-edge tip .2 It is also 

evident from Eqs. (1.5), (1.6) and (1.8) tha t the viscous interaction param eter 

X -  K \

The hypersonic flow over flat plates with strong viscous interaction was con­

sidered by Lees (1953) and Stewartson (1955b). Solutions for the hypersonic flow

over hot or cold flat plates have been computed by Werle et al. (1973) using an

implicit finite-difference scheme. Kozlova & Mikhailov (1970) and Dudin (1978) 

have also computed flows with strong viscous interaction on a semi-infinite delta 

wing at zero angle-of-attack, and it can be shown tha t the problem can be re­

duced to a self-similar one which can be subsequently solved using techinqiues 

developed for two-dimensional flows.

2Flow separation, may occur at non-zero angles-of-attack.
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The asymptotic solution of the boundary layer equations for the flow over 

axially-symmetric bodies has been obtained by Glauert & Lighthill (1955) and 

Stewartson (1955a) for incompressible flows. Later, Wei (1964) considered the 

self-similar problem at moderate supersonic speeds and Stewartson (1964) investi­

gated the hypersonic flow with strong viscous interaction near the nose of a very 

slender sharp cone. Self-similar solutions for the flow over slender AXI bodies 

with surface shapes of the form ys oc a;3/ 4 have been obtained by Yasuhara (1962) 

and Ellinwood & Mirels (1968), under the assumption th a t f2 ~  1. However, 

it appears th a t no solutions have so far been obtained for vanishingly thin AXI 

needles (i.e. for which £2 — 0), and this problem shall be addressed in Chapter 3.

1.3.2 M od erate  In teraction  R egim e

From Fig. 1 .1 , it is clear tha t there must exist a transitional region where the 

viscous interaction is moderate (i.e. x  ~  !)■ A number of solutions have already 

been obtained for this case, such as the computational results of Dewey (1963), 

who obtained solutions of the boundary layer equations with cross flow using 

the local similarity method. The hypersonic flow over a finite delta wing at 

zero angle-of-attack has been computed by Dudin (1983) using a finite-difference 

scheme which takes into account the pressure on the wing trailing edge (see also 

Walker et al. 1993, pages 68-71). In contrast to the strong interaction regime, the 

main obstacle posed by flows with moderate viscous interaction is th a t they do 

not admit self-similar solutions, and therefore the full three-dimensional problem 

should be considered. Khorrami & Smith (1994) have also computed the hyper­

sonic flow over 2 D flat plates and thin aerofoils using a multi-sweeping method 

to solve the equations in both the inviscid and viscous layers simultaneously.

Talbot et al. (1958) have measured the self-induced pressure on a 3° and 5° 

semi-vertex cone experimentally in a hypersonic flow with 0.5 < x  < 2.3 and
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0.9 < x  < 3.5 respectively. It was shown tha t the tangent-cone approximation 

(see Sec. 2.3) predicts self-induced pressures which are only 10 to 20 percent 

higher than the measured values.

1.3 .3  W eak In teraction  R egim e

This case occurs when x  ^  b  and is of particular importance far downstream 

of the leading edge or nose, as shown in Fig. 1.1. It can be verified th a t the 

boundary layer inclination angle 9 for the hypersonic flow past a flat plate can 

be estimated by:

o ~  V ^ ,R e-W  (1.10)

(see, for example, Anderson 1989 and Dorrance 1962). It follows using this es­

tim ate and Eq. (1.2) (with L  replaced by x) th a t the boundary layer develops 

a parabolic profile since 5 ~  x6 ~  x 1//2. It can also be inferred from Eqs. (1.5),

(1 .6 ) and (1 .1 0 ) th a t x  ~  A”.

If the thickness of the boundary layer is negligible in comparison to tha t of the 

body (i.e. Pi 1 ), it is expected tha t the pressure distribution may be calculated 

using the inviscid equations of motion, and tha t the boundary layer displacement 

effect should be of secondary importance. This is the case for the flow over blunt 

bodies, and to leading-order

(1-n )

where ys(x) is the body contour geometry.

Numerous self-similar, parabolized and full Navier-Stokes solutions for the 

hypersonic flow with weak viscous interaction past flat plates and thin aerofoils 

have been obtained by a number of investigators (see, for example, Anderson 1989 

and 1995, Bertin et al. 1989 and Mikhailov et al  1971 for further details). In 

particular, self-similar solutions for the flow over bodies of power law shape are
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well known (see Hayes Sz Probstein 1959). Inger (1995) has recently considered 

another type of similarity solutions in the case of exponentially shaped bodies. 

Ruban & Sychev (1973) have also computed the three-dimensional flow over a 

two-dimensional aerofoil with three-quarter power-law generator and with various 

trailing edge boundary conditions.

It was shown by Neiland (1969), Stewartson h  Williams (1969), Messiter (1970) 

and Sychev (1972) th a t viscous-inviscid interaction in a region of weak global vis­

cous interaction can be described in terms of a local multi-layer structure known 

as the triple-deck, as shown in Fig. 5.1, and numerous solutions of the triple-deck 

equations have been obtained (see Sec. 1.5 for further details).

1.4 U pstream  Influence Effect

An im portant property of supersonic and hypersonic boundary layers is their abil­

ity, under certain circumstances, to transm it perturbations upstream  through the 

subsonic part of the boundary layer. This implies th a t the solution at a particu­

lar streamwise location can not be determined uniquely without consideration of 

the downstream conditions, thus reflecting the true elliptic nature of the Navier- 

Stokes equations. This is rather surprising, since the governing equations in the 

viscous and inviscid layers are of parabolic and hyperbolic type respectively, and 

at first sight it would appear tha t the flow over the entire body could be computed 

using a downstream marching technique with simultaneous matching between the 

solutions in both layers at the boundary layer edge.

This upstream  influence effect has been a major problem in the computation of 

viscous hypersonic flows -  particularly for flows with moderate or strong viscous 

interaction -  and can cause a nonlinear breakdown of the solutions if numerical 

marching is used purely in the downstream direction. However, Khorrami & 

Smith (1994) have recently developed a multi-sweeping method to compute the
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hypersonic boundary layer over flat plates and thin airfoils. This method prevents 

nonlinear breakdown of the numerical marching procedure by directly bringing 

into effect the upstream influence.

The upstream  propagation of disturbances within supersonic boundary layers 

was first observed in the experiments of Ferri (1939), Ackeret (1947), Chapman et 

al. (1958) and others. In these investigations it was observed th a t an oblique shock 

wave incident on a boundary layer could cause the flow to separate well upstream 

of the point of intersection of the shock and boundary layer. A similar situation 

can also occur, for example, for the flow over a compression ram p or forward 

facing step. The theoretical description of this behaviour was first presented 

by Lighthill (1953), who showed tha t the viscous-inviscid interaction plays a key 

role in the upstream influence effect. Using the equations of the supersonic triple­

deck formulation, solutions of the boundary layer equations can be sought in the 

following form (see Stewartson 1974):

where the positive eigenvalue a is to be determined and q is an arbitrary constant. 

In addition, f ( y )  satisfies the following boundary conditions:

u ^ i j - q e ax f ( y )  +  ••• , 

v =  qa eax/(?/) +  •■• , > as x ~ °°,

p = q +
( 1 .12 )

/ (0 )  = /'(0)  =  0, / ' ( o o ) = ( T - 1. (1.13)

It can be shown tha t

(1.14)

where

(1.15)
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Since a  is positive, it is concluded th a t upstream influence does exist and th a t it 

decays exponentially as x  — oo.

The upstream  influence effect associated with hypersonic boundary layers with 

strong viscous interaction was first discovered by Neiland (1970), who considered 

the flow over an insulated flat plate under the assumption of a linear tem perature- 

viscosity law and a Prandtl number of unity. It was shown th a t the streamwise 

extent A x  of the upstream propagation of disturbances is of the order

A x  r s j  x 3/4. (1.16)

Thus, in contrast to flows with weak global viscous interaction, the upstream 

influence effect for the case x  1 affects the entire flow up to the leading-edge. 

In addition, by making use of the tangent-wedge approximation for the pressure 

distribution, Neiland (1970) showed tha t there exists a non-uniqueness in the 

asymptotic expansion for the pressure:

p — pqx~1̂ 2{1 +  • • • +  qx*-1/2 +  • • • } as x  —» 0+ , (1.17)

where pQ is a constant which can be computed by solving the appropriate self­

similar equations, and q is an arbitrary constant. The eigenvalue a  characterizes 

the intensity of the upstream transmission of disturbances and was found to be 

approximately 25.3. Werle et a l (1973) extended Neiland’s (1970) original work 

to include the effects of non-adiabatic walls. These results were later confirmed 

by Brown Sc Stewartson (1975a), who solved the equations in both the viscous 

and inviscid layers simultaneously, and concluded tha t the tangent-wedge formula 

yields remarkably accurate results.
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1.5 A sym p totic  T heory o f Separated Flows

Flow separation can lead to quite adverse effects on the performance of aircraft 

and vehicles capable of hypersonic flight, and may result in excessively high heat 

transfer rates at the reattachm ent point. For a more comprehensive discussion 

of separated flows, see Bos (1998), Cassel et al. (1995, 1996), Kerimbekov et 

al. (1994) and Sychev et al. (1998).

It turns out th a t the interaction between the boundary and inviscid layers 

plays a crucial role in the separation process. If the flow separates in a re­

gion of weak viscous interaction, the separation and reattachm ent process can 

be described using an asymptotic theory based on the triple-deck structure. 

The main difference between this theory and the classical interactive strategy 

of P randtl (1904) is tha t the pressure p(x) is unknown in advance and for 2D 

flows is related to the displacement thickness A(x)  and surface geometry f ( x )  

via the Ackeret formula, which for supersonic or hypersonic flows without wall 

cooling takes the form:

, . dA d f  n   ̂nv
p ( l )  =  ~ ^  +  d ^  (L 18)

(see, for example, Ashley & Landahl (1965) for a derivation of this relation). In 

order to take upstream  influence effects into account, the boundary conditions far

downstream from the leading edge are also required in order to solve the triple­

deck equations, an exception being the hypersonic flow past compression ramps 

with strong supercritical wall cooling (see Sec. 6.2.2).

Triple-deck theory has subsequently been applied to many problems spanning 

the full range of flow speeds from subsonic to hypersonic. The effects of wall 

cooling on the triple-deck structure have also been investigated (see Chapter 5 for 

further details). Numerical solutions of the triple-deck equations for the flow over 

2D compression ramps have been obtained by numerous authors, most recently by
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Cassel et al. (1995, 1996) and Bos (1998). These results show th a t a separation 

zone develops near the corner for ramp angles greater than a certain critical 

value. G ajjar & Smith (1983) have also considered the case of free-interactions. 

Solutions for supersonic AXI flows have been obtained by Kluwick et al. (1984) 

who solved the governing equations in both the lower viscous sublayer and inviscid 

region simultaneously. In addition, the separated flow past a trailing edge at 

incidence in supersonic flow has been investigated by Elliott& Smith (1986).

It will be shown in Chapter 5 tha t the lower-deck sublayer for the flow over 

bodies with strong wall cooling reduces to a classical Prandtl boundary layer with 

prescribed pressure gradient. However, it is well known th a t a Goldstein (1948) 

singularity is usually encountered at the separation point in any situation where 

the pressure distribution is known in advance. The nature and structure of this 

singularity was first described by Landau & Lifschitz (1944), who showed th a t 

the asymptotic behaviour of the skin friction ts immediately upstream  of the 

separation point x  =  x s is given by:

rs(x) ~  (xs -  x )1/2 as x  —» x s . (1-19)

Later, Goldstein (1948) demonstrated tha t the solution of the boundary layer 

equations can not be continued downstream of x s. However, under certain cir­

cumstances (such as the flow near the leading-edge of an aerofoil at a critical 

angle-of-attack), a weaker singularity may be encountered in which the skin fric­

tion vanishes linearly at x s (see Werle k. Davis 1972 and Ruban 1981, 1982). This 

is sometimes referred to as marginal separation, and does not preclude the possi­

bility of continuation of the solution downstream of x s (see also Appendix C).

It should be emphasized tha t triple-deck theory is not in general applicable in 

a region of strong global viscous interaction (i.e. x  ^  !)■ Nevertheless, Brown et 

al. (1975b) have developed a Newtonian version of the theory (i.e. 7  close to 

unity) which makes use of the tangent-wedge formula in place of Eq. (1.18) as 

the crucial pressure-displacement relation.
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1.6 O utline of Thesis

This thesis is divided into two main parts. The first part deals with the hypersonic 

flow near the leading-edge of 2D or AXI slender bodies with strong viscous- 

inviscid interaction. The second part is mainly devoted to the hypersonic flow 

over compression or expansion ramps in a region of weak viscous interaction and 

with strong wall cooling. Although the same governing equations of gas dynamics 

are valid over the entire body, the crucial pressure-displacement relation differs 

in both of these regions.

Chapter 2  introduces the hypersonic boundary layer equations with strong 

viscous interaction for values of the ratio 0  of the body to the boundary layer 

thickness spanning the full range of values from zero to infinity. In addition, the 

tangent wedge/cone approximation shall be employed as a means of determining 

the pressure distribution, and transverse curvature effects for the AXI case are 

fully taken into account. The conditions for self-similarity are also discussed, and 

it will be shown tha t self-similar solutions for the case £2 1 or 12 <C 1 exist only

for three-quarter power-law bodies, flat plates or vanishingly thin AXI needles.

Chapter 3 is mainly devoted to the flow over three-quarter power-law bod­

ies, and numerical solutions are obtained for the resulting self-similar equations. 

The results for vanishingly thin AXI needles are believed to be the first ever 

obtained. In addition, new semi-analytical relationships for the determination 

of the boundary layer thickness for different body thicknesses are derived. The 

upstream  influence effect is represented in the form of an eigen-function pertur­

bation whose intensity is dependent upon an eigenvalue a. Although upstream 

influence in hypersonic flows was discovered almost thirty  years ago, results for 

the eigenvalue a have so far only been obtained for the 2D flat plate case with a 

P randtl number of unity. In this chapter, numerical results are obtained for vari­

ous body thicknesses, tem perature factors, Prandtl numbers and ratio of specific
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heats for both 2 D and AXI flows. Asymptotic results for very hot bodies are also 

derived, and the results are compared with existing solutions.

Chapter 4 considers relatively thick power-law bodies of the form ys = r x a , 

where a  < 3/4. It is shown tha t the parameter O is much greater than unity for 

this choice of body contour. Furthermore, it is expected th a t the upstream influ­

ence effect should decay exponentially near the leading edge and tha t its effects 

are most strongly felt in a thin viscous sublayer near to the surface. Analytical 

results are obtained for the thickness of the sublayer and also for the eigenvalue 

to. It is shown th a t u  is positive, thus proving tha t the upstream  influence does 

indeed decay exponentially as the leading-edge is approached. Finally, numerical 

solutions of the self-similar equations are used to correlate the analytical results 

for various values of a , 7 , Pr and tem perature factor gs.

Chapter 5 discusses the hypersonic flow over compression or expansion corners 

with wall cooling for both 2D and AXI cases in which the param eter Q is much 

greater than unity. The influence of the surface tem perature is considered, and 

the equations for the strong wall cooling case are formulated.

Chapter 6  treats the numerical solution of the inviscid upper-deck equations 

using both the Method of Characteristics and fmite-difference ‘Leap-frog’ method. 

The resulting pressure distribution is employed in the computation of the flow 

in the viscous lower deck using a fully-implicit downstream marching technique. 

New numerical results are obtained for both 2 D and AXI cases, and the effects of 

varying the body radius or ramp angle are discussed. In addition, new self-similar 

solutions are determined for the flow far downstream of the ram p corner for flows 

without separation, and also for cases exhibiting incipient separation.

Chapter 7 is devoted to the flow separation phenomenon occurring in hyper­

sonic flows over 2D compression ramps with strong subcritical wall cooling. It 

is surprising tha t no numerical solutions have so far been obtained for this case,
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owing to the de-stabilising effect of subcritical wall cooling. An asymptotic the­

ory is employed in order to remove the Goldstein singularity, and the resulting 

nonlinear interaction problem is solve numerically using a novel unsteady algo­

rithm  developed by the author. In addition, the asymptotic solution far upstream 

and downstream of the interaction region is derived, and it shall be shown th a t 

the numerical solution is in very good agreement with both of these analytical 

results. It is also shown tha t the asymptotic theory considered here, as well 

as marginal separation theory, can both be extended to describe the separation 

process occurring in axially-symmetric flows.

All the numerical results presented in this thesis were obtained using FOR­

TRAN 90 computer codes w ritten exclusively by the author, and run on a 

DEC Alpha workstation using double precision accuracy. Unless otherwise stated, 

all the solutions presented here are properly converged to within the required ac­

curacy, and also appear to be grid independent.3

3Discrepancies in the numerical results could of course appear if the grid being employed is 
either too coarse or too fine.
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F ig u re  1.2: Hypersonic flow past a blunted flat plate in air at = 13.8. 

(Crown copyright photo from Cox & Crabtree 1965.)

F ig u re  1.3: Hypersonic flow past a sharp 10° cone in air at = 6.85. (Photo 

from Chernyi 1961.)



Part I

H ypersonic Flow over Very  

Slender B odies w ith  Strong  

V iscous Interaction
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C hapter 2 

H ypersonic Boundary Layer 

E quations

2.1 Introduction

In this chapter, the hypersonic flow of an ideal gas near the leading-edge of a very 

slender 2D or AXI body oriented parallel to the upstream flow will be investigated, 

as shown in Fig. 2.1. If h and L  are the characteristic height and length of the 

body respectively, then the slenderness ratio d ~  h / L  is assumed small in the 

sense th a t

The equations of the body surface ys and boundary layer edge will be taken 

respectively as:

where the functions s and b are arbitrary to start off with. In addition, the 

viscous-inviscid interaction is expected to be strong, i.e.

(2 .1)

y„ =  Lds(x/L) ,  yb =  Lb(x/ L)s (x / L) , (2 .2)

X =  M ^ R e - ^ C 1/2 »  1. (2.3)

33
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F ig u re  2 .1 : Schematic of the hypersonic flow near the leading edge of a slender 
body (not to scale). SW and BLE indicate the shock wave and 
boundary layer edge; IL and VL are the inviscid and viscous layers.

The equations of continuity, streamwise momentum and energy which govern 

the flow within the boundary layer are given respectively by (see, for example, 

Hayes & Probstein 1959):

^  (pvy*) =  0. (2-4)

(  du d u \  dp 1 d (  • d u \  ( N
p { u dX + ' % ) = - ^ + ^ { y ^ j ) '  (2-5)

f  dh d h \  dp 1 d (  ■ p, d h \  ( d u \ 2
P [ Ud i  + V&y) - Ud i  + Vi dv P  ' (2'6)

In addition it can be inferred from the transverse momentum equation tha t the 

pressure is a function of x  only throughout the boundary layer. The perfect gas
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equation of state and linear temperature-viscosity law are given by:

p =  PUT, =  C + 1 (2.7)
Moo Too

where 7Z is the universal gas constant and C  is the Chapman-Rubesin constant. 

Furthermore, the to tal enthalpy H  is related to the static enthalpy h by:

H  = h + ^ L t f t= JL (2.8)

where

A =  2— f  (2.9)
7

The no-slip conditions on the body surface imply tha t

u =  v = 0  at y  — y s {x) .  (2 .1 0 )

The surface condition for the enthalpy is given by: 

h =  hs (heat transfer case) or
> at y = ys(x), (2 .1 1 a)

d h /d y  =  0  (thermally insulated case) I

where hs is the body surface enthalpy. The conditions at the outer edge of the

boundary layer can be determined using the Rankine-Hugoniot shock relations in

the hypersonic limit Mm —* oo (see, for example, Anderson 1989):

^ ^ y ^ M t sin2/3’ (2'12a)

~  ^  -  LH, (2.12b)
Poo T 1

^ 2(j +  1)T M1  si“ 2 P’ (2 .12c)

—  1 -  (2.12d)
« o o  7 + 1  ’  ̂ ;

-  -+ (2.12e)Woo 7 + 1
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where P is the shock wave inclination angle. By making use of the equation of 

state (2 .8 ), it follows tha t the required boundary conditions a t the outer edge of 

the boundary layer are, to leading-order,

27
u ^U oo ,  h = j ^ — ^ u l Q sin2 P at y = yb{x). (2.13)

2.2 E stim ates for H ypersonic Flows

It is very useful in the investigation of hypersonic flows to obtain simple order 

of magnitude estimates for the flow variables within the boundary layer. By 

comparing the convective, viscous and mechanical energy dissipation terms in 

the energy equation (2 .6 ), it can be inferred th a t ^ ^ ^  72

h =  cpT  ~  uIq. (2-14)

It follows from Eq. (2.7) th a t the viscosity can be estimated by

p, ~  (2.15)

For hypersonic flows with strong viscous interaction, the shock wave inclination 

angle f3 is of the same order-of-magnitude as the local inclination angle 9 of 

the boundary layer edge. Moreover, since 9 is relatively small, it follows from 

Eq. (2.12a) th a t the pressure can be estimated by:

p ~  j P o o M ^ 2 = poov.^92. (2.16)

An estimate for the density can now be found using the equation of state Eq. (2.7a) 

yielding:

P -  PvoO2- (2.17)

A comparison of the convective and viscous terms in the momentum equation 

(or equivalently the convective and heat transfer terms in the energy equation)
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shows that:

pu p
(2 .18)N x  (A y)2 '

Using the above results, as well as the definition of the Reynolds number Reoo 

given by Eq. (1 .2 ), it can be shown tha t an estimate for the boundary layer 

thickness 5 is given by:

5 ~  L M l P R e '1/4. (2.19)

Hence, the slope 9 of the outer edge of the boundary layer is found to be of the 

same order-of-magnitude as the small perturbation parameter e, i.e.:

0 ~  ~  e =  M ] p R e"1/4. (2.20)

It should be noted th a t the requirements tha t e « l  and x  1 both imply tha t

«  Mx  <  R e^2, (2.21)

which is valid for most hypersonic flow conditions, such as th a t encountered 

during the atmospheric re-entry from orbit.

These simple order-of-magnitude estimates suggest the use of the following 

non-dimensional scaled variables within the boundary layer:

x  =  Lx, y — Ley , u — UoqU, v — UooCU, (2 .2 2 a)

h = u ^ h ,  H  =  p = r p ^ M ^ p ,  (2.22b)

P =  AxX2P, p =  Poo M ^ p ,  T  =  7 T00 (2.22c)

In addition, the slenderness ratio d and the function b(x) defined by Eq. (2.2) 

must also be scaled according to:

d = er, b(x /  L) — eb(x). (2.23)
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It can be inferred from Eq. (2.13) and from the first of Eqs. (2.22b) th a t the 

scaled enthalpy at the boundary layer edge is given by:

h  ~  7----<  L (2 -24)(7 + l ) 2 V }

Therefore, for hypersonic flows, the scaled enthalpy and viscosity should van­

ish a t the outer edge of the boundary layer, and thus the position of this edge 

can be determined precisely. This is in sharp contrast to subsonic or super­

sonic flows with small freestream Mach numbers. Moreover, the density within a 

hypersonic boundary layer is relatively small and can be thought of as a quasi­

vacuum. Upon substitution of Eqs. (2.22) into Eqs. (2.4)-(2.6), it can be shown 

th a t the boundary layer equations remain invariant. Therefore, for convenience, 

th e superscript ‘ ~ ’ w ill be dropped and th e  equations considered to  

b e scaled  and non-dim ensional. The scaled perfect gas equation of state and 

linear temperature-viscosity law given by Eq. (2.7) can be written in the form:

p = pT, \± = 7 C T , (2.25)

and from Eq. (2.8), the scaled total enthalpy H  can be expressed to leading-order

as

H  =  h +  - u 2, h =  I ~.  (2.26)
2 A p

It is useful to express the scaled energy equation (2.6) in terms of the total 

enthalpy H  with the help of the streamwise momentum equation (2.5), and the 

resulting equation can be written in the form:

(  d H  d H \  1 3 f  , /  du 1 d H \ ]  .
p { u d ^ + v w )  =  ? ^ v (2-27)

where

;/ =  1 -  T  (2.28)
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In addition, the equations for the body and boundary layer edge position given 

by Eq. (2.2) become

where gs = hs/ u ^  is the temperature factor. At the boundary layer edge,

For the special case of the flow past an insulated body with P r =  1, it follows 

from Eqs. (2.27) and (2.31) that

which is known as Crocco’s Integral. A similar integral can be obtained under 

the assumption th a t the P randtl number is small (i.e. Pr —» 0), in which case the 

constant u —* — oo. In this case it can be shown that the solution to Eq. (2.27) 

is given by:

The pressure distribution on the surface of a slender body in a hypersonic flow can 

be approximated using the so-called tangent wedge/cone formula. This states th a t 

the local surface pressure is approximately equal to the exact value of the pressure 

on a wedge or cone having the same inclination to the oncoming flow direction 

under the same freestream conditions. The experimental results of Talbot et 

al. (1958) for the hypersonic flow over a slender cone with moderate viscous

ys = r s (x )y yb = b(x)s(x). (2.29)

The boundary conditions at the body surface are given by:

(2.30)

u = 1, H  = 1/2 at y = yb(x). (2.31)

(2.32)

H  =  h 2.
2 (2.33)

2.3 Tangent W ed ge/C on e A pproxim ation
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interaction show th a t the tangent cone method predicts self-induced pressures 

which are only 10 to 20 percent higher than the measured values. However, it is 

expected th a t this approximation yields more accurate results as x  —̂ co.

It can be shown (see Chernyi 1961 and Cox & Crabtree 1965) tha t the pres­

sure coefficient Cp on the surface of a body in inviscid hypersonic flow can be 

approximated by:

and <j) is the local surface inclination to the upstream flow. If 7  =  1 and is 

small, this approximation reduces to the Newtonian formula (see Anderson 1989 

and Cox &; Crabtree 1965), namely

In order to apply this formula to flows with strong viscous-inviscid interaction,

outer edge of the comparatively thick boundary layer. Therefore, Eq. (2.34) can 

be written in terms of the scaled pressure defined by Eq. (2.22b):

Since K 2 ~  x 1 f°r flows with strong viscous-inviscid interaction (see Sec. 1.3), 

it follows th a t to leading-order

(2.34)

where the function ^ (7 ) is given by

(7 +1X7 +7)
(7+3)2

for 2 D flows

for AXI flows,
(2.35)

Cp = 2  sin2 4> ~  2(f)2. (2.36)

the slope <f) of the body surface should be replaced by the local slope 9 of the

(2.37)

where K  = M ^e .  For small values of 6

9 ~  tan  9 =  — e-^- {b(x)s(x)} .
da; da;

(2.38)
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w here th e  superscript ‘ " ’ has b een  dropped for convenience. It should 

be noted th a t the boundary layer edge position yb(x) = b(x)s(x) is unknown in 

advance and depends upon the solution in both the viscous and inviscid layers. 

The above formula allows the determination of the pressure distribution without 

recourse to the solution of the full Euler Equations, and it is also invaluable in 

developing self-similar solutions of the boundary layer equations. Finally, it is 

im portant to understand tha t for flows with weak viscous-inviscid interaction, 

the Ackeret (or related) formula given by Eq. (1.18) should be used instead.

2.4 Self-Sim ilarity R equirem ents

It is convenient to define a stretched transverse coordinate 77 by

v = W )  p [ x ' ° (240 )

where G(x)  is an unknown function to be determined by similarity requirements 

as part of the solution. This transformation was originally employed by Dorodnit- 

syn (1942) for the compressible flow over a flat plate, and enables the governing 

equations of gas dynamics to be expressed in quasi-incompressible form. More­

over, the use of Dorodnitsyn variables avoids problems associated with the relative 

low tem perature and high density conditions in the intermediate layer between 

the inviscid flow and boundary layer, at least for linear temperature-viscosity 

laws.

It is convenient to introduce the stream function ip such th a t

dip - dip ■
—  =  puy3, —  -  —pvy3. (2.41)

Restricting attention to the scaled momentum equation to s tart off with, it can 

be shown th a t Eq. (2.5) can be written as

I  ( if!£ + T'Cp 9  / yStA
G \ & n d x  d x d r i J  \  2 )  p d x  G2{x) dr] \ v &q)  ' ( 1
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where y is now considered to be a function of both x  and p (cf. Eq. (2.43b)).

It should be noted tha t the density p and viscosity p  have been eliminated by

making use of the equation of state and linear temperature-viscosity law given 

by Eq. (2.25)

A self-similar solution of the above equation will now be sought in the form

u = u(p), H  = H(p),  (2.43a)

ip = <3 (2 0 ^ ( 77), y = s(x)y(r/), (2.43b)

p =  [s'(x)]2p , p =  [s'{x)]2p(p), (2.43c)

where s(x) is the body surface contour and G(x) is the unknown function defined

in Eq. (2.40). In this section, a prime (') will be used to denote differentiation 

with respect to x. The form of the solutions given by Eqs. (2.43c) for the pressure 

and density are suggested by the tangent-wedge/cone formula (2.39). It can be 

easily shown from the definition of the stream function Eq. (2.41a) and the first 

of Eqs. (2.43b) th a t

dib . .u — u — (2.44)
Of]

Hence the momentum equation becomes:

7d2i> G' 
dr f  ~G ~  ~

8" , ^ - d  f  _2jd2ip \  s2j{s')2 
-  +  j C p -  y -j -j  — p p .  (2.45)s' dp \  dp2)  G2

For self-similarity, this equation must be independent of x, and this requires th a t 

G(x)  satisfies the following conditions:

G' s"
( 2 ' 4 6 )

G2 ~  E J A .  (2.47)

W ith this choice of G(x),  Eq. (2.45) reduces to the following ordinary differential 

equation:
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The distribution of y{rj) may be determined by considering the definition of 

rj given by Eq. (2.40), which can be written in the form:

I  ■ %  <2-«>
This equation can be expressed in terms of the self-similar variables defined by 

Eqs. (2.43) as follows:

Cy _  A 
d?7 pyi

G , .
(2.50)s.7 + 1 ( 5 / ) 2 j2 \dr]

For self-similarity, the expression in braces in the foregoing equation must be a 

constant, and this yields a second expression for the function G(x):

G r i t s ’*1 {s')2. (2.51)

Equations (2.47) and (2.51) can now be combined yielding the following equation 

for s(x):

s2s's" =  c, (2.52)

where c is an arbitrary constant. Hence, for a self-similar solution to exist, the

body contour s(x) must satisfy Eq. (2.52).1 For the special case c =  0, this

equation has the trivial solution s(x) — 0, which corresponds to a flat plate or 

vanishingly thin needle. The only non-trivial solution satisfying the boundary 

conditions s(0) =  0 and s( 1) — 1 is given by s(x) ~  x 3B. This choice of body 

contour ensures self-similarity for both 2D and AXI flows. Although this funda­

mental fact has been known for several decades, the analysis employed here for 

arbitrary bodies shall prove useful in Chapter 4. Finally, the function G(x)  can 

be found using either Eq. (2.47) or (2.51), and it should be noted th a t G(x) is 

unique to within a multiplicative constant. It should also be noted th a t Eq. (2.46) 

is identically satisfied for power law bodies of the form s(rr) =  x a.

xTo the best of the author’s knowledge, this equation has never been derived before.



C hapter 3 

Form ulation for Three-Q uarter  

Power-Law B odies

3.1 Introduction

This chapter shall focus on the solution of the interactive hypersonic boundary

layer equations for surface geometries of the form:

ys(x) =  rx z/A, (3.1)

where r is an 0 (1) slenderness ratio. From Eqs. (2.43a-c), this choice of body 

contour suggests tha t the solution of the boundary layer equations should be 

sought in the following form:

u — u (x yq)y H  — H ( x yq)y (3.2a)

if) =  G{x)i>{x, q), y = x 3/4y ( x y q) , (3.2b)

p = x~1̂ 2p(x), p = x~1/2p(xy q). (3.2c)

44
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Functions with a superscript f ’ are now assumed to be dependent 011 x  as well 

as 77. In accord with Eq. (2.51), the function G(x) is chosen as:

2^/yCpo x) C for 2D flows, 

s/ j G'Pq x  for AXI flows,
(3.3)

where n = (1  +  3 j) /4  and pa is the self-similar pressure coefficient given by 

Eq. (3.21). It should be noted tha t an affine transformation has been incorpo­

rated into the definition of G(x) such tha t the resulting momentum and energy 

equations are independent of both p0 and C , and the factor of 2 1-J has been 

introduced for convenience.

The momentum equation (2.5) becomes

dip d2ip d’ip d2ip\  - d 2ip 
x  | v—  I — nip-

dp dpdx Ox dp2 dp:

A
2 IL - ( f Y 2x dp

4 \ d p ) p dx
p d ( _ 2jd2ip

(3.4)

Similarly the transformed energy equation (2.27) is given by

dtp d H  d'ip d H  \  - d H  p d
X 1 ~  )  ~  n^~dP  =  T o d n

f i  (A A dT k
\  dp dp2

1 d H  
P r dp

(3.5)

The relationship between y and p, for j  = 0  or 1 is:

J L  ( f + A  =
dp p dp (3.6)

which shall be referred to henceforth as the displacement equation. Finally, the 

tangent wedge/cone formula Eq. (2.39) can be written as

(3.7)P = K( l )  i p ( x ) + xb'{x)

The boundary conditions at the body surface (p =  0) are:
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and the conditions at the boundary layer edge (77 =  0 0 ) are given by:

(3.9)

It is convenient for AXI flows to define the area function A by:

A(»7) =  { y ( v ) V (3.10)

which represents the area of a circular annulus between the body and boundary 

layer edge.

Equations (3.4)-(3.9) constitute a system of four nonlinear coupled equations 

for the four unknown functions t/5, H ) y (or A) and p. In order to investigate 

the upstream  propagation of disturbances, the solution of the foregoing equations 

shall be sought in the following asymptotic form:

The quantity <f> represents -0 , H, y or A, and q is an arbitrary constant represent­

ing the amplitude of the perturbations. The positive constant a is an unknown 

eigenvalue which characterizes the intensity of the upstream transmission of dis­

turbances through the subsonic part of the boundary layer. The smaller the value 

of cr, the more pronounced the upstream influence effect. Functions with a sub­

script ‘O’ represent the self-similar (leading-order) solutions, whilst those with a 

subscript ‘1’ represent the first eigen (perturbation) solutions. In addition, the 

pressure and boundary layer edge positions are expressed as:

4>{x, 77) =  <£0 (77) H h qxa4>i{r}\ a) +  • • • as x —> 0 + . (3-11)

p(x) = po(l H b qxa +  • • •),

b(x) =  &o T * 11 T  qxabi +  • • • •

(3.12)

(3.13)

The following relations also hold for the AXI case:

(3.14)
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Substitution of the above expansions into the transformed boundary layer

which will be given in the next two sections. It is im portant to note tha t the con­

stant q is left completely undetermined from these equations and can in principle 

be used to impose a boundary condition far downstream of the leading edge, such 

as the presence of a compression ramp.

3.2 Self-Sim ilar Equations

The self-similar momentum, energy and displacement equations for 2D flows are:

The leading-order pressure po and boundary layer edge positions b0 are related 

via the tangent wedge/cone formula given by Eq. (3.7) which gives:

equations (3.4)-(3.9), and equating powers of x a, yields two systems of equations

VC +  ^ [2#o ~  ('0o)2] —

Pr”1 HU + iP0H'0 + = 0,

Va{v) = r + MXo(ri),

(3.15)

(3.16)

(3.17)

where a prime (') is now used to  denote differentiation with respect to r/. The 

corresponding equations for the AXI case are given by:

('V'/vO' + V'oV’o + J [2-Ho — ('</'[))2] — 0, 

Pr-^A o H '0 ) ' +  H '0 +  K Aoi/W ')' =  0,

Aii(p) =  r 2 + MX,, (if).

(3.18)

(3.19)

(3.20)

(3.21)

where

fro =  2/o (oo). (3.22)
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In these equations, the displacement integral Z0 and the unknown constant M  

are defined respectively by:

To(v) = [  2 # 0 -  (V^)2 d?7, (3.23)
Jo

M  = A , /— . (3.24)
V Pa

These equations must be solved subject to the boundary conditions:

^o(O) =  ^J(O) =  0, 4> o(oo) =  1, (3.25a)

H 0( 0) =  gs or H'g( 0) =  0, #o(oo) =  1/2. (3.25b)

The leading-order boundary layer thickness is given by — r and the

pressure distribution along the body is p(x) = p0a;~1//2. Finally, the skin friction 

rs and surface heat transfer qs are defined by:

■^=("SL/ ^ = ( C L -  ( 3 - 2 6 )

In order to take into account the displacement effect of the boundary layer into 

these expressions, the body surface ys — r x 3/4 has been replaced by the effective

surface formed by both the body and boundary layer thicknesses, i.e. y^ — b0x 3//4,

and it can be shown tha t to leading-order:

rs(x) =  r0x~3/4, qs(x) = q0x~3/4, (3.27)

where

To =23~1\/-yCp0b’Q‘il)'J(0), (3.28)

?0 =23-1 P r^ 1 V 7 W o  % H'a{0). (3.29)

The quantities '0q(O) and H'0(0) are determined from a numerical solution of the 

self-similar equations.
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3.3 E igen-Equat ions

The eigen momentum, energy and displacement equations for 2D flows are given 

by:

+  ^oV4' — (4o’+2A)'i/jQ'0i +  (4cr +  1)'0q'0i

=  2A {a  [2Ho~-(i>'0)2] -  H l } - ,

P r " 1 H"  +  -00H[ -  4ai>'0H l

(3.30)

[ W )2 +  W 01>'i\" -  P r” 1 H I  -  (4a + 1 ) A K ,
(3.31)

Vi(V’a ) = M[Xi(?],a) -X o ( i?)]■ (3.32)

The corresponding equations for the AXI case are: 

(AoV-D' +  foi>" -  (<r+^)^o0l + (a + X)V’oVi

{a [2H0 -  « ) 2] -  H i} -  {(A0 +  A 0 < } ' ,
(3.33)

2

P r - 1 (Aofll)' +  =  - ( a  +  l ^ i J j

“■ +  '0o'01) +  (Ao +  A1)(z/'0q'0q +  Pr 1 H'0)}

Ai(t7, a) -  <7) -  X0(77)]. (3.35)

(3.34)

The integral T\ is defined by

Zi07> ^) =  2 [  H i -  '0oVJi d77. (3.36)
Jo

These are three linear coupled equations for the three unknown functions tpi, Hi  

and yi (or Ai). However, the unknown eigenvalue a also appears in this system 

of equations, and it can be shown from Eq. (3.7) tha t a satisfies the following 

equation:

0(n) =  2 ^cr +  ^  &i(cr) -  =  0, (3.37)

where

bi(a) = tji(oo;a). (3.38)
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These equations must be solved subject to the boundary conditions:

^ i ( 0 ) = ^ l ( 0 )  =  0, ^ i ( o o ) = 0 ,  (3.39a)

H 1(0) = 0 or H'l (0) = 0, tfi(oo) =  0. (3.39b)

3.4 T he B oundary Layer Thickness

For 2D flows, the momentum and energy equations (3.15) and (3.16) can be 

solved independently of Eqs. (3.17) and (3.21). Moreover, the la tter equations 

have a remarkably simple analytic solution which shall now be derived. Since the 

leading-order boundary layer edge position 60 =  ?/o(°o), it follows from Eq. (3.17) 

tha t

bo = r +  M J q, where Jo — X0(oo). (3.40)

W ith the help of Eq. (3.21), the unknown constant M, which was defined by 

Eq. (3.24), can be expressed in the form:

N  4 /
M  =  — , where N  — -A w  , (3.41)

bo' 3 Y «(7 ) ’ V ;

and N  is a known constant. These last two expressions yield the following

quadratic equation for b0:

6q — rbo “  N J Q = 0. (3.42)

The only physically acceptable solution to this equation is

, r + V ^ + i N T ob o = ---------- ----------- . (3.43)

This remarkably simple formula enables b0 to be computed for any slenderness 

ratio r as soon as the momentum and energy equations have been solved, and 

Eq. (3.43) has been incorporated into the numerical algorithm which will be
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described in Sec. 3.5. In particular, the boundary layer thickness on a flat plate

(i.e. r = 0) predicted by this formula is 50 =  y/NJo. Furthermore, by defining 

two new scaled variables B  and R  by

b0 =  b J n Jo, r =  R-^Njio, (3.44)

the solution (3.43) can be expressed in the form:

„  R  +  V R 2 +  4
B  = ------ ^ -------- . (3.45)

It is clear th a t B  represents the ratio of the true boundary layer edge position to 

the flat plate boundary layer thickness 5q = y/NJ'o. Similarly, R! is the ratio of 

the slenderness ratio r to 50. For example, if R  — 1 (i.e. the body has the same 

thickness as the flat plate boundary layer), then Eq. (3.45) yields B  — (l +  \/5 ) /2  

(i.e. the boundary layer edge position exceeds the body thicknesses by a factor 

of approximately 1.62).

A similar argument for AXI flows shows tha t the leading-order boundary 

layer edge position 60 and slenderness ratio r are related via the following cubic 

equation:

bl — r2b0 — N J q = 0, (3.46)

However, in contrast to the 2D case, the momentum and energy equations (3.18) 

and (3.19) cannot be solved independently of Eqs. (3.20) and (3.21). Thus, 

Eq. (3.46) cannot be used to determine bo for different values of r (since J0 is itself 

a function of r), and the full system of equations must be solved simultaneously 

for 'ipQ,Hoi A 0 and p0 (and hence bo). This suggests tha t the solution is strongly 

dependent upon the value of the slenderness ratio r. Nonetheless, Eq. (3.46) may 

be used to check the final numerical solution, and can be made independent of 

J 0 by introducing the scaled variables:

60 =  B yiV Jo, r =  R t/N 7o-  (3.47)
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0.6

2D case0.4

0.2

■I AXI case

0 42 6 8 1 0

R

F ig u re  3.1: Theoretical scaled boundary layer thickness A =  B  — R  for various 

body thicknesses R.

Substitution of this transformation into Eq. (3.46) yields the following equation:

B s -  R 2B  -  1 -  0. (3.48)

The analytic results given by Eqs. (3.45) and (3.48), which to the best of the 

author’s knowledge have never been derived before, permit the scaled boundary 

layer thickness A =  B  — R  to be determined prior to any numerical solution 

of the self-similar equations. Figure 3.1 shows the variation of A with R. The 

distribution of B (R)  for the 2D case is given by Eq. (3.45), whilst for the AXI case 

Eq. (3.48) was solved using the Newton-Raphson technique. It is evident th a t the 

boundary layer is in general thinner for the AXI case since the flow curves around 

the body, and this is known as the three-dimensional relieving effect. Also notice 

th a t A decreases monotonically as R  increases, and it follows from Eq. (3.45) or
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(3.48) th a t A —> 0 as R  -A oo.

For very small Prandtl numbers, the energy equation has the simple integral 

given by Eq. (2.33), from which it follows tha t J 0 =  Jo(°o) =  0. It can therefore 

be deduced from Eq. (3.43) or (3.46) th a t b0 — r, i.e. the boundary layer thickness 

is negligible. Similarly for the special case 7 =  1, the constant N  = 0 and it also 

follows th a t bQ =  r.

3.5 N um erical A lgorithm

The self-similar and eigen-equations derived in Secs. 3.2 and 3.3 were solved using 

a second-order accurate finite-difference scheme, and only a brief description of 

the numerical method will be given in this section.

It is convenient to express the momentum equation as a second-order equation 

for the streamwise velocity u — difj/drj. The self-similar equations thus constitute 

a system of five nonlinear coupled equations for the functions ipo, u0, H 0j yQ (or A0 

for AXI flows) and the unknown constant p0. For the 2D case, the momentum 

and energy equations (3.15)—(3.16) were solved simultaneously using the global 

finite-difference method described in Appendix A.2, which is based on a quasi- 

Newton iteration procedure. The streamfunction 'ip0 and the integral Tq(t]) were 

computed using the Trapezoidal rule. Once these equations have been solved, the 

boundary layer edge position 60 was determined using Eq. (3.43). For the AXI 

case, the entire system of equations (3.18)-(3.25) were solved simultaneously. The 

implementation of the method described in Appendix A.2 for the solution of these 

equations is best described by considering the AXI momentum equation (3.18), 

which can be w ritten in the form:

m ±t \ 0.25 X(y2 — 2H0) — (w +  A'Az
w f" = <f>(w, x , y, z) =  --------^  f -  ^ (3. 49)

A n



C H APTER 3. TH REE-Q U ARTER PO W ER-LAW  BODIES 54

where, in order to be consistent with the notation of Appendix A.2,

w = ipo, y -  w' =  u0, z  = y' = w”, 0 < y < ?7max. (3.50)

Once the function <j> has been identified, the solution for y(y)  can be computed it­

eratively by solving the system of tri-diagonal equations (A.11)-(A.12). It should 

be noted th a t the condition i?J(0) =  0 for insulated bodies was approximated us­

ing a second-order accurate forward-difference quotient (see Eqs. (A.13)-(A.15)).

Once the self-similar solutions have been computed, the eigen-equations were 

solved using a method similar to tha t described above. However, these equations 

involve the unknown eigenvalue a, which was determined as a root of Eq. (3.37). 

This equation can be solved using the Bisection or Newton-Secant algorithms, 

although the former method was preferred since it guarantees convergence to 

within any specified accuracy e, provided the true value of cr lies within the 

interval specified by the two starting approximations. This is particularly useful 

for cases in which the eigenvalue is very large.

The numerical algorithm described here is globally second-order accurate, 

and was found to be very robust. The solution was assumed to converge only 

when the maximum change between successive iterations was less than a specified 

tolerance level e, which was taken as 10~7 for all of the solutions presented here. 

The initial velocity and enthalpy profiles used to start the iteration were chosen 

as Uq — tanhr/ and H q = 0.5. Unless otherwise specified, all the numerical results 

presented in this chapter have been obtained using a uniform grid consisting of 

1000 mesh points, and the maximum value of y was taken as 10. Solutions have 

also been computed using various other mesh sizes, and the results appear to be 

grid independent provided r/max is chosen large enough.
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3.6 Self-Sim ilar R esults & D iscussion

Self-similar and eigen-results have been obtained by the author for numerous 

different cases, and it is only possible to present a few of them  in this thesis. In 

particular, solutions will be presented showing the effect of varying one or more 

of the reference conditions:

r  =  1, gs =  0.5, 7  =  1.4, P r =  0.725. (3.51)

The last two parameters are valid for air at standard atmospheric conditions, 

and the Chapman-Rubesin constant C  was taken as unity for all of the solutions 

shown here. Unless otherwise stated, the following symbols have been used in 

Figs. 3.2-3.6:

•  2D case (----- ),

• AXI case ( —),

• AXI insulated case (o o o).

3.6 .1  B ou n dary  layer th ickness & pressure d istr ib u tion

Figures 3.2 (a)-(d) show the effect of varying the slenderness ratio r or surface 

enthalpy gs on the leading-order boundary layer thickness 50 and pressure pQ. It is 

apparent th a t 50 decreases monotonically as r  increases, and th a t the AXI bound­

ary layer is thinner than the corresponding 2D case for all of the results shown 

here, thus confirming the theoretical result shown in Fig. 3.1. It is also evident 

from Fig. 3.2 (b) tha t the effect of surface heating is to increase the boundary 

layer thickness. Solutions for the insulated case are shown in Figs. 3.2 (a) and (c) 

and Fig. 3.4 (a) for the AXI case only. It is evident th a t the effect of insulating 

the body is to decrease the boundary layer thickness by a small amount. The 

effect of varying r or gs on the self-similar boundary layer edge position is also
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shown schematically in Figs. 3.3 (a)-(c). To the best of the au thor’s knowledge, 

the results shown in Fig. 3.3 (a) are the first solutions ever obtained for the AXI 

hypersonic flow over a vanishingly thin needle.

3.6 .2  Skin friction  &; heat transfer

Figures 3.4 (a)-(d) show the effect of varying r or gs on the self-similar skin 

friction r 0 and surface heat transfer q0 coefficients, which were both defined by 

Eq. (3.28). As expected for 2D flows, r 0 and |go| increase as r increases. However, 

an interesting observation from Figs. 3.4 (a) and (c) for the AXI case is th a t there 

exists an optimum radius r* which results in minimum values for r0 and |(/0|- It 

should be emphasized tha t t 0 and |#o| were evaluated at the boundary layer edge 

position yb, rather than the true surface ys, in order to take into account the 

displacement effect of the boundary layer1 . Furthermore, it can be observed 

th a t T0 increases as gs increases. A similar kind of behaviour can also be seen in 

the results for the surface heat transfer |g0|, provided gs >  0.5. It is also evident 

th a t both To and |g0| are greater for AXI flows.

3.6 .3  V eloc ity  &; enthalpy profiles

Figures 3.5 (a)-(d) show typical velocity and static enthalpy (tem perature) pro­

files for the AXI case with various surface enthalpies gs. In view of the trans­

formation given by Eq. (3.3), n0 and hQ have been plotted against the vari­

able £ =  21~iy'yCpo rj. For cold surface temperatures, the enthalpy distribu­

tion reaches a maximum value near to the wall, after which it decreases to its 

prescribed cold surface value. For comparatively high tem perature factors, the 

velocity profile exhibits an overshoot which becomes increasingly pronounced as 

gs becomes large. This is believed due to the relative low density within the hot

1 See also Chernyi (1961) for further details concerning the determination of body shapes 
with minimum drag for AXI inviscid hypersonic flows.
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hypersonic boundary layer which allows the flow within the boundary layer to 

accelerate and exceed th a t of the external inviscid flow. It is easily verified th a t 

this effect is a natural consequence of the self-similar boundary layer equations 

as follows. Suppose n0 =  V’o reaches a maximum value at 77 =  i f .  Conse­

quently ipQ{r]*) =  0 and f ' f f f )  < 0, and it can be inferred from the momentum 

equation (3.15) or (3.18) th a t this can only occur if H 0(rj'k) is large enough. This 

implies tha t the surface enthalpy must exceed a certain critical value. The results 

of Emanuel (1994) and Yasuhara (1962) also show pronounced velocity overshoot.

Although not shown, the boundary layer profiles for the 2D case were found 

to be qualitatively similar to the AXI case, and tha t the velocity overshoot effect 

is considerably greater for 2D flows. Moreover, it can be inferred from the self­

similar energy equation tha t velocity overshoot can also occur if the Prandtl 

number is small enough2 . However, it remains unclear whether or not velocity 

overshoot is a true physical phenomenon, since real gas effects should be taken 

into account for very high surface enthalpies.

2 Although not shown, this effect has been observed in the present numerical results.



C H APTER 3. TH REE-Q U ARTER PO W ER-LAW  BODIES 58

VO

0.5

0
0 64 8 102

0.5

0
20 3 4 5

r §s
(a). gs=0.5 (b). l - l

70

60

50

40

30

20

10

0
6 8 100 2 4

5

4

3

2

0
20 3 54

(C). gs=0.5 (d). 1-1

Fi gure 3.2: Effect of varying r  or gs on the boundary layer thickness 50 and 

pressure p0 ( 7  =  1.4, Pr =  0.725; for legend see page 55).
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(a). r=0, gs=0.5

(b). r=l, gs=0.5

(c). r=l, gs=5

F ig u re  3.3: Self-similar boundary-layer edge positions £>0 (7 =  1-4, Pr =  0.725; 

for legend see page 55).
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F ig u re  3.4: Effect of varying r or gs on the skin friction r 0 and surface heat 

transfer qQ ( 7  =  1.4, Pr — 0.725; for legend see page 55).
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F ig u re  3.5: Velocity and enthalpy profiles for various surface enthalpies gs (AXI 

case, r = 1 , 7  =  1.4, Pr =  0.725). Insulated case (0 0 0 ).
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3.7 E igen-R esults &; D iscussion

Figs. 3.6 (a)-(d) show the effect of varying one of the reference conditions (3.51) 

on the computed value of the upstream influence eigenvalue a. Numerical in­

vestigations suggest tha t there either exists a unique positive eigenvalue (whose 

value depends on the input parameters) or tha t a is infinitely large (in which 

case there is no upstream influence effect). Moreover, the smaller the value of a, 

the greater the upstream influence effect.

3.7.1 Effect o f varying r

As shown in Fig. 3.6 (a), a increases monotonically as r  becomes large, and this 

is a direct consequence of the fact th a t the boundary layer thickness decreases 

for increasing slenderness ratio. For the 2D case, a decreases as r 0, and the 

upstream influence effect is felt most strongly for the flat plate case. On the other 

hand, AXI flows exhibit a rather surprising behaviour as r —> 0. The eigenvalue a  

reaches a minimum value, after which it increases sharply and appears to become 

infinitely large at a critical value r* «  0.1131 (see also Fig. 3.7 (a)). This be­

haviour suggests tha t the AXI boundary layer is supercritical for r <  r*, and does 

not perm it the upstream propagation of disturbances. For r > r*, the boundary 

layer will be referred to as being subcritical, and upstream influence is present. 

I t should be noted tha t the value of r* depends upon the input parameters, and 

varies from case to case. It is also evident tha t the upstream influence effect is 

almost always stronger for 2D flows, owing in part to their greater thickness.

3.7 .2  Effect o f varying ps,7 or Pr

The variation of the surface enthalpy, ratio of specific heats and P randtl number 

all appear to have similar effects on the value of a, as shown in Figs. 3.6 (b)-(d).
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In particular, a decreases monotonically as gs, 7  or Pr increases for both 2D and 

AXI flows. The boundary layer also appears to be supercritical for gs less than a 

certain critical value g* «  0.0207 (see also Fig. 3.7 (b)).

It was shown in Sec. 3.4 th a t for very small Prandtl numbers (or for 7  =  1 ), 

the boundary layer thickness is very small. This suggests th a t the upstream 

influence effect should be negligible for this regime, and this is indeed observed 

in the numerical solutions shown in Fig. 3.6 (c) and (d). Moreover, as P r —> 0, 

the value of a  for the 2D case exceeds tha t for the AXI case. A similar kind of 

behaviour is experienced for very hot surface temperatures, as will be discussed 

in the next section.

Solutions for the insulated case have also been obtained for the AXI case, and 

are shown in Fig. 3.6 (a). As expected, the effect of insulating the body is to 

reduce the upstream influence effect, since the boundary layer is thinner.
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3.8 Very H ot B odies

It is well known th a t very high surface temperatures are experienced during hy­

personic flight -  such as during the atmospheric re-entry from orbit -  and its 

effects are of particular importance near sharp leading edges. It is particularly 

interesting to determine the behaviour of the upstream influence eigenvalue a 

for large values of the tem perature factor gs. Following the analysis of Brown & 

Stewartson (1975a) for the flat plate, the following scaled variables are indicated 

for 2D flows in the limit as gs —> oo:

substitution of Eqs. (3.52) into the interactive self-similar and eigen boundary 

layer equations given in Secs. 3.2 and 3.3, it can be shown th a t the original 

equations remain unaltered, but th a t the boundary conditions become:

In addition, the body slenderness ratio r and boundary layer edge position b{ 

must be scaled according to

v = 9S1/4C, yi(i) = g3s/8yi{()
Mv) = <7a1/4$i(C)> =  gsHi{Q.

(3.52a)

(3.52b)

for 2=0 or 1, where £ is 0 (1) in a hot near-wall sublayer of thickness gs 1̂ 4. Upon

$i(0) =  $ (0 )  =  0, $ (o o ) =  0,

i?o(0) =  1, # i(0 )  =  0, Hi(oo) =  0.

(3.53a)

(3.53b)

(3.54)

It thus follows tha t the leading-order boundary layer thickness <5o ~  g3J \  which 

can become relatively large for high surface temperatures.

For AXI flows, the following scaled variables must be used instead:

77 =  (7s1/8c, a i(v) = g3/iM C )  

^ i i v )  =  9s/8$ i ( 0 ,  Hi(w)  =  gsH i {  c )

(3.55a)

(3.55b)
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which also result in the same equations as before, but with the original boundary

conditions replaced by Eqs. (3.53a-b). In addition, it can be shown th a t the

transformations given by Eq. (3.54) are also valid for the AXI case. It is evident

from the first of Eqs. (3.55a) tha t the thickness of the hot near-wall subla}^er for 
1 /sAXI flows is 0 ( g 8 ), which is much greater than tha t for the corresponding 2D 

case which is 0 { g J 1̂ A).

Solutions for the hot surface limit g8 —> oo have been obtained for the case 

r — 1, 7  =  1.4 and Pr =  0.725.3 The same numerical algorithm described in 

Sec. 3.5 has been used to solve the self-similar and eigen-equations for this case, 

but with the original boundary conditions replaced.by Eqs. (3.53a-b). For the 2D 

case, it was found tha t a =  3.557, whilst for the AXI case a  =  2.293 (accurate 

to three decimal places). These results suggest tha t for very hot bodies, the 

upstream  influence effect is in fact greater for AXI flows. It is believed th a t this 

is mainly due to the fact tha t the boundary layer is thinner -  and thus hotter -  

for AXI flows.

3.9 Com parison w ith  Previous Studies

It is difficult to compare the present results with previously obtained solutions 

since the equations given by numerous authors were not scaled using the hy­

personic estimates given in Sec. 2 .2 , and their formulations contained different 

parameters than those derived in this thesis. Moreover, results for the eigenvalue 

<r have only been previously obtained for the flow over a 2D flat plate (i.e. r =  0) 

and with a P randtl number of unity. Nevertheless the results presented here ap­

pear to show the expected behaviour, and the self-similar solutions are in good 

qualitative agreement with those obtained by Yasuhara (1962). A useful check

3The maximum value of rj was taken as 20 for these very hot body calculations, due to the 
comparatively large boundary layer thickness.
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on the numerical results is to compute the surface enthalpy on an insulated flat 

plate for the special case 7  =  1.4 and Pr =  0.725. The present method yields 

gs =  0.4178, which agrees to four decimal places with the value given by Khorrami 

& Smith (1994).

The analysis for the viscous layer employed in the present study is similar to 

the approach used by Brown & Stewartson (1975a), and differs in some respects 

from the original formulations of Neiland (1970) and Werle et al. (1973). Some 

aspects of the two approaches are not easily compared; in particular, the latter 

authors made use of the Levy-Lees transformation defined by:

n x  n y

£ =  /  p(x tu) dar, 77 — ■ .—- /  p(x ,z )  dz. (3.56)
Jo y v 2 x  J ?j

It is clear from Eq. (3.2c) tha t for self-similarity p =  x~ l/2p(r}), and it follows

from the above equation tha t

(  ~  V*. (3.57)

Moreover, Neiland (1970) considers the following asymptotic expansion for the 

pressure:

K O  =  PfflT1 + -----1- PiC  H-------------- , (3.58)

where a is an unknown eigenvalue. It can be inferred from the foregoing equations

and Eqs. (3.2c) and (3.12) tha t a is related to the au thor’s eigenvalue a via the

simple formula:

(3.59)

Neiland (1970) obtained a numerical solution of the self-similar and eigen equa­

tions4 for the flow over a 2D flat plate with gs = O.b, 7  =  1.4 and Pr =  1 and 

found tha t a — 49.6, or equivalently a = 25.3 from Eq. (3.59). By comparison,

4There appears to  be a typographical error in the eigen-momentum equation in Nei- 
land’s 1970 paper.
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the present algorithm yields a — 23.5. It should be noted th a t Crocco’s integral 

(cf. Eq. (2.32)) is valid for this special case.

Figure 3.8 compares the solutions obtained using the au thor’s numerical code 

with those obtained by Brown & Stewartson (1975a) for the case of a 2D flat 

plate with various tem perature factors gs, under the assumption of a Prandtl 

number of unity. The latter solutions were obtained by solving the equations in 

the inviscid and viscous layers simultaneously, instead of using the tangent-wedge 

approximation for the determination of the pressure distribution. Also shown is 

the author’s numerical result for very hot bodies:

a —y 2.593 as gs —y oo, (3.60)

which was obtained using the method described in Sec. 3.8, and the following

asymptotic results which were obtained by Brown & Stewartson (1975a):

cr ~  0.0014 g j 6 as gs ~y 0, (3.61)

a —y 3.2 as gs —y oo. (3.62)

The two sets of results are in reasonably good agreement with each other, partic­

ularly for cold surface temperatures. This also verifies the fact th a t the tangent- 

wedge formula can be successfully used to determine the pressure distribution for 

flows with strong viscous interaction. However, it is apparent th a t the tangent- 

wedge approximation tends to overestimate the upstream influence effect for rela­

tively large surface enthalpies. In addition, the author’s results appear to suggest 

tha t a becomes infinitely large for values of gs less than a non-zero critical value 

g*s , in which case the flow becomes supercritical. This is in contradiction with 

Eq. (3.61), which is believed to be incorrect since it was derived in the double 

limit a —y oo and gs —y 0.
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F ig u re  3.8: Comparison of the author’s eigenvalue results with those of Brown 

& Stewartson (1975a) for the flow over a 2 D flat plate (i.e. r  =  0) 

with gs =  0.5, 7  — 1.4, P r =  1.



C hapter 4

Form ulation for R elatively  Thick  

B odies

4.1 Introduction

Hitherto, the boundary layer thickness 5 has been assumed to be of the same 

order of magnitude, or even much greater than, the body thickness h. Moreover, 

numerical results have been obtained in the previous chapter for bodies with

be derived under the assumption tha t S h. In this case, the boundary layer 

is two-dimensional to leading-order, and axially-symmetric curvature effects are 

only im portant within the inviscid layer. In contrast to the formulation used 

in the previous chapter, the leading-order pressure distribution is now known 

in advance and may be calculated using the tangent wedge/cone approximation 

given by Eq. (2.39), which to leading-order can be expressed in the following 

form:

surface shapes of the form ys(x) = r x 3//4. In this chapter, analytical results shall

(4.1)

71
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where the boundary layer edge position yi = b(x)s(x) has been replaced by the

body surface ya — rs(x)  due to the fact tha t the boundary layer thickness is 

assumed to be negligible. Nevertheless, the displacement effect of the boundary 

layer will be taken into account later in this chapter in order to analyse the na­

ture of the upstream propagation of disturbances induced by the viscous-inviscid 

interaction.

It is convenient to introduce the Prandtl transposition (see, for example, 

Rosenhead 1963):

This leaves the scaled 2D continuity and momentum equations (2.4)-(2.S) un­

changed, which in the transformed variables can be written as:

where 5(x) is the boundary layer thickness and gs is the tem perature factor.

The theory presented in this chapter is valid for arbitrary surface geometries 

ys(x), provided th a t the body is relatively thicker than the corresponding three- 

quarter power-law body. However, in order to simplify the subsequent analysis, 

only power-law bodies of the form:

V = z + y3(x), v = w + uy's(x). (4.2)

(4.3)

(4.4)

(4.5)

However, the boundary conditions become:

u = w = 0, H  — gs or =  0 a t z — 0,
dy

u ~  1, H  =  1/2 at z = S(x),

(4.6)

(4.7)

y8(x) — r x a , where a  < 3/4^ c< > Q  (4-8)

shall be considered.
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4.2 Self-Sim ilar Equations

It is convenient to use the stream function ip defined by:

dip dip
a ^  = pu ' = (49)

and it is also useful to introduce a modified Dorodnitsyn variable r7 by:

v = W ) L  (4io)
Following a procedure similar to tha t used in Sec. 2.4, a solution of the boundary 

layer equations shall be sought in the following form:

u = u(x,rj), H  = H(x,ni), (4.11a)

ip — G(x)ip(x,T)), z = x 3/2~az(x,r)), (4.11b)

p =  x 2a~2p{x), p — x 2a~2p(x , 77). (4.11c)

The functional form for the pressure and density are suggested from the tangent 

wedge/cone formula (4.1), whilst the solution for the transverse variable z  shall 

be obtained in Sec. 4.5. It can be shown using Eqs. (4.8) and (4.11b) th a t the 

ratio Ll of the body to the boundary layer thickness is given by:

n = %  =  y ^ a -3 /2  (412)
0 Oo

Since £2 becomes large for a < 3/4 as x —¥ 0 +, it follows th a t axially-symmetric 

transverse effects within the boundary layer can be neglected to leading-order 

(see also Sec. 1.2). However, transverse effects are still im portant in the inviscid 

flow outside the boundary layer, and therefore the only difference between 2D and 

AXI flows in the present theory is due to the differing definitions of the coefficient 

k (j ) in the tangent wedge/cone formula (see Eq. (2.35)).
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Substitution of Eqs. (4.10) and (4.11) into the boundary layer equations (4.3)—
i

(4.5) yields

8 $  d2rijj dip d2ip - d 2,ipG'
dr] drjdx dx dr f  dr f  G

d^dH_ _  di>_dH_ _  -R H  G" _  jC p  d_ f  d ^ d ^ _  2c* -2

drj dx dx dr] dr] G G2 dr] f dr] dr]2 P r dr] ) X ’

where the density has been eliminated using the equation of state (2.26 ). Self­

similarity requires tha t

4) = 'Po {v), H  = H 0(rj) and p = pQ, (4.15)

which are all independent of x. It follows using Eq. (2.47) (with j  =  0) th a t the 

function G(x)  is given by:

G(x) = axa_1/2) (4.16)

where a is an affine transformation constant defined by:

Substitution of Eqs. (4.15)-(4.17) into the transformed momentum and energy 

equations (4.13) and (4.14) yields the following system of ordinary differential 

equations:

C  +  M V > -  M ) 2 + 2H0 = 0, (4.18)

P r” 1 + MfoHZ + =  0. (4.19)

where A and u were defined by Eqs. (2.9) and (2.28) respectively and
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These equations should be solved subject to the boundary conditions:

V'o(O) — ’/’o(O) =  0 , V'o(co) =  (4.21a)

H a(0) = g„ tfo(oo) =  1/2. (4.21b)

It should also be noted th a t a prime is now used to denote differentiation with 

respect to rj and th a t the affine transformation renders the equations independent 

of both r and C. An im portant property of the above system of equations is th a t 

the single param eter M  characterizes the dependence of the solution on both a

and 7 . Another interesting observation is tha t M  — 0  for bodies of parabolic

shape (i.e. a  = 1 / 2 ), and whence the foregoing equations become:

C  +  P r { l -  « ) 2} =  0, (4.22)

t f o O ) = T { ( l - P r M ) 2 +  P r P  (4.23)

It is therefore evident tha t the momentum equation (4.22) is reduced to an equa­

tion of second order.

In addition, the leading-order skin friction rs(x) and surface heat transfer rate 

qs(rc) are given by (cf. Eqs. (3.26)—(3.28)):

t s ( x )  = N i p  0 (0)a;a-3/2, (4.24a)

qs{x) = IV Pr - 1  H'0(0)xa~3/2, (4.24b)

where

N  =  jCpoa-1 = yU l  -  a ) ( l  -  7 )Cp0. (4.25)

The self-similar equations (4.18)-(4.21) can be easily solved numerically (using

the m ethod described in Appendix A.2 ) for various values of M, gs and P r in 

order to determine '0o(O) and H'0(0 ). Although this is not the main purpose of 

the present analysis, the numerical solution of these equations will be used to
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correlate the analytical results for the upstream influence eigenvalue which will 

be obtained in the next sections.

It is immediately evident from Eqs. (4.1) and (4.11c) tha t the constant p0 is 

given by:

p0 =  a 2 r 2«( 7 ). (4.26)

It can also be readily shown tha t the asymptotic expansion to the solution of 

Eqs. (4.18)-(4.21) near to the surface is given by:

V'o =  \PqT}2 +  * ’ ’ 1
> as 77 —► 0, (4.27)

H 0 = g s + H'(0)r] T--> J

where /?0 =  ^o(O)- The leading-order density near to the body surface can be

found using the equation of state (2.26) which yields:

p ~  psx 2a~2 where ps = a 2r2K,(~f)\~l g~v. (4.28)

It can therefore be inferred th a t the variation of the density normal to the surface

is negligible in a thin viscous near-wall sublayer. However, it should be empha­

sized th a t this sublayer is not incompressible, which is in contrast to the simpler 

case considered by Lighthill (1953) for the supersonic flow over a flat plate with 

weak viscous interaction (see also the incompressible lower-deck equations of the 

triple-deck structure in Sec. 5.2).

4.3 Solution  in Inner V iscous R egion

In order to investigate the upstream influence through the boundary layer, a new 

similarity variable (  which is 0 (1 ) in the thin viscous near-wall sublayer should 

be defined as follows:

C =  p(z>0d£, (4.29)
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where the exponent m  must be determined using viscous-inviscid interaction the­

ory and b is an affine-transformation constant defined by Eq. (4.37). This new 

variable is related to the original Dorodnitsyn variable 77 by:

r) =  6a - 1a:m" Q!+1/2C. (4.30)

Since 77 <C 1 as x  —> 0 + in this region, it follows tha t

a  — m  — 1/2 < 0, (4.31)

which will be proved to be true in due course. It can be shown th a t the boundary 

layer equations (4.3)-(4.5) can be expressed in the form (cf. Eq. (2.42)):

1 / dip du dif) d u \  A(i/f— u2) 1 dp ' jCp d2u
bxm \  dC, dx dx dC,)  2 p d x  b2x 2m dQ2 ’
( c f y ^ ^ c t y d H \  _ j C p d ^ (  (  du } _ d H \ \
\  d (  dx dx d (  )  bxm d (  \ Ud(  ̂ P r d ( ) f

It is expected th a t the upstream propagation of disturbances should decay 

exponentially as x  —» 0+ for the case a  < 3/4, instead of the power-law behaviour 

suggested by Eq. (3.11). In particular, the solution for the pressure shall be sought 

in the following asymptotic form:

p = pqX2oc~2 +  • • • 4- qP e-W3: " +  • ■ • as x  —> 0+ , (4.34)

where the positive constants u  and n are to be determined, and q is an arbitrary 

constant. The eigenvalue to is a measure of the exponential decay of the upstream  

transmission of disturbances through the boundary layer. In contrast to the 

algebraic character of the upstream influence considered in the previous chapter, 

whose intensity is dependent solely upon the magnitude of the eigenvalue cr, the 

exponentially-decaying behaviour considered here is dependent upon the values 

of both the eigenvalue tu and the exponent n. Using Eqs. (4.11), (4.16), (4.27) and

(4.30), it follows th a t the streamfunction and total enthalpy should be expressed
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in the following asymptotic form as x  0+:

ifr = i/3 062a - 1s 2m- Q+I/2C2 +  • • • +  q c ^ ( Q x l e ^ " ” +  • • • , (4.35)
£

H  =gs +  6 c r12;m- “+1/2ff'(0)C • • • +  qd<6(C)zk e- "1"” +  • • • , (4.36)

where the exponents I and k are to be determined. The affine-transformation 

constants b, c and d are defined respectively by

/ a ^ y /3 c = o p  d = <rL - i ) b c 0 i
\  napo J Pqps a2

and are introduced such th a t the resulting equation for 4/ and <& can be expressed 

in universal canonical form. The streamwise velocity u can be obtained using the 

first of Eqs. (4.9) which yields:

u =
9b (4.38)

=  0 oba~1xm- a+1/2C +  ■ • • +  q c b ~ e +  • • • .

Upon substitution of Eqs. (4.34)-(4.38) into the transformed boundary layer 

equations (4.32)-(4.33), and comparing terms of comparable order of magnitude, 

it can be shown th a t 4/ and <4> satisfy the ordinary differential equations:

=  - 1  +  4T , (4.39)

P r" 1 =  (C ^ T , (4-40)

provided th a t

3 3
I — -  — a, . k — 2(1 — ck), 3m  — n — 3a — —. (4-41)

A second equation, which shall be derived in the next section, is required for the 

determination of both m  and n. The conditions at the body surface (4.6) imply 

tha t

4/(0) =  T'(0) =  0, $(0) -  0. (4.42)



C H APTER 4. R E L A T IV E L Y  THICK BODIES 79

The arbitrary constant g, which represents the amplitude of the disturbances, 

formally disappears from these equations. Therefore the exponentially-decaying 

terms in the foregoing asymptotic expansions are unique to within a multiplicative 

constant (cf. Sec. 3.1). It is also evident tha t the equation for T  is independent 

of the higher-order enthalpy function <h, and therefore the energy equation does 

not play a significant role in the exponentially decaying upstream influence effect. 

Moreover, the solution of Eq. (4.40) is not required for the subsequent analysis.

By differentiating Eq. (4.39) with respect to £, it follows th a t T" satisfies the 

following equation, along with the additional boundary condition (which follows 

from the no-slip conditions in Eq. (4.42)):

=  T"", T"'(0) =  1. (4.43)

The solution of this equation can be expressed as a linear combination of Airy 

functions (see, for example, Abramowitz & Stegun 1965):

T"(C) =  MAi(C) +  iVBi(C), (4.44)

where M  and N  are constants to be determined. It is well known th a t Bi grows

exponentially large as £ becomes large, and thus N  = 0. It can also be inferred

from Eq. (4.43) tha t M  = 1/ Af(0) and therefore

* " « )  -  § § -y  (4-15)

4.4 D isplacem ent Effect of Inner R egion

In order to determine the exponents m  and n, as well as the eigenvalue u>, the 

displacement effect of the inner region should be considered. Firstty, the pertur­

bation A 6 to the slope of the streamlines at the outer edge of the viscous sublayer 

is given by:

A 9 =  lim —. (4.46)
£->-oo u
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By making use of the definition of the streamfunction (4.9) and the transform a­

tion (4.29), it can be shown that:

bxm ^XA0 = - ^  = --------------------------------------------- 4.47
t y z  P

The density can be eliminated using Eq. (4.28), and it follows using the expansion 

for the streamfunction (4.35) that

AO = e 2x m~2a+1(  +  ■ • • +  q 0 3x l- m~n- a+1/2 e"Wffi_n +  • • • , (4.48)

where1

^  b (  ex. 1 \  ^  acna; 4 /
0 2 =  ( m _  _|_ ) 0 3 =  -—  lim —. (4.49)

ps \  2 4 /  bp0 p s  <->oo C

However, by taking into account the no-slip condition (4.42) and making use of 

the fact th a t

P Ai(C)dC = i, (4.50)

it can be deduced from the solution (4.45) that

\Ij  l
lim — =  . (4.51)
C->oo C 3 Ai (0) v '

Hence the coefficient 0 3 can be expressed in the form:

This additional contribution to the displacement thickness determines the 

exponentially-decaying term in the asymptotic expansion for the pressure given 

by Eq. (4.34) as follows. From the tangent wedge/cone approximation (4.1),

p = K(y) (ra,xa~l +  A #)2
(4.53)

=  K , ( ^ ) a 2r 2 x 2oL~ 2 H +  2 q K , ( iy ) r a O s x l ~ m ~ n ~ 1^2 e ~ u x  " +  • • • .

1The reason for the use of the subscripts ‘2’ and ‘3’ shall become clear in due course.
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It should be noted th a t in deriving this formula it was assumed th a t

x a-l  ^  x m-2a+l^ (4.54)

which will later be shown to be true. By comparing Eq. (4.53) with the assumed 

expansion for the pressure given by Eq. (4.34), it can be inferred tha t

P  = 2K(7)rQj©3, (4.55)

provided

1
I — to — n = - .  (4.56)

J-/

The solution of the third of Eqs. (4.41) and (4.56) yields

( 4 ' 5 7 )

As expected, the criterion tha t n  should be positive implies th a t a  < 3/4. In 

addition, both the assumed conditions (4.31) and (4.54) yield the same condition 

for a.

The upstream  influence eigenvalue can now be determined by combining the 

second of Eqs. (4.37) with the known expressions for © 3 and P  from Eqs. (4.52) 

and (4.55) respectively, yielding the result:

lo =  —I-SAi' ( 0  )b(3lp2sa~2{nra.A)~l , (4.58)

where

Ai^O) -  - { 3 1/3r ( l / 3 ) } _1 «  -0.258819. (4 .5 9 )

Since all quantities in this expression are positive for a  <  3/4, it follows tha t uj is 

also positive, thus proving tha t upstream influence does exist and th a t it decays 

exponentially as x  0 +.
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4.5 Solution  in M ain Part of B oundary Layer

It remains to be shown whether the main part of the boundary layer contributes to 

the displacement thickness, and if so, whether this additional contribution alters 

the eigen-solution determined in the previous section. This can be accomplished 

by expanding the solution in the inner viscous sublayer in terms of the original 

Dorodnitsyn variable 77, and this suggests tha t the asymptotic solution for '0 and 

H  (which were defined by Eq. (4.11)) in the main part of the boundary layer can 

be expressed in the following asymptotic form as x —> 0 + :

0  =  i>o{w) 4-----h q4>\(rj)xl~m e-tJ® ” H , (4.60)

H  =  H 0(r]) +  • • ■ +  qHi(rj)xl~m e~b,x' n +  • • • . (4.61)

By substituting these expansions into the transformed boundary layer equa­

tions (4.13)—(4.14), and comparing terms of comparable order of magnitude, it 

can be shown that

-  A i ’o = °> (4-62)

-  faH'o = 0. (4.63)

In order to match with the solution in the viscous sublayer,

1 c
'0o —>■ *01 3 5  Ai'(0 ) ^ ’ 9s as 9 0 . (4.64)

It can be easily verified th a t the solution of Eqs. (4.62)-(4.63) satisfying the 

foregoing boundary conditions is given by:

7̂ ( 77) =  A i/)q (77), Hi(rj) = AH'0(r}), (4.65)

where

A 36ftAi'(0)' 4̂ '66^
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This solution can now be used to compute the boundary layer thickness as follows. 

Firstly, it is immediately evident from the definition of rj given by Eq. (4.10) tha t

dz G(x) a o/9 „ ,
=  — F T  =  _ a ; 3/ 2- « .  4 . 6 7

0 7 ]  p  p

Using the equation of state (2.8), it can be shown that

- g ) ' } ,  (4.68)

where

_ aX aX , ,  v
= 2p~o = 2n V '  ^

Thus, the boundary layer thickness 6 is given by

S(x) = B x3>2- a £  2 f i~  (jjjfj') d*7. (4-70)

Substitution of Eqs. (4.60)-(4.61) into this formula yields

J(rc) =  B J 0x ^ 2~a +  • • • +  qBJrx1- ™ - * ^ 2 e""*"" +  • • • , (4.71)

where

poo poo

Jq = 2Ho -  W ) 2 d77, Ji = 2 jffi -  4)'0i)i dr?. (4.72)
J o  j o

The integral Jo can be calculated from a numerical solution of the self-similar

equations (4.18)-(4.21). The quantity J\ can be determined analytically with the

help of Eq. (4.65) and by taking into consideration the boundary conditions (4.21)

yielding

Ji =  - 2  Ags. (4.73)

The slope of the streamlines at the outer edge of the boundary layer can now be 

determined as:

A0 =  — = 0 , x l^ - a +  ■ ■ ■ +  q 0 3x‘- m- n- a+1/2 +  • ■ • , (4.74)
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where the coefficients 0 i  and © 3 are obtained using Eqs. (4.69) and (4.73) giving:

©i =  5 J o, © 3  — uojB J i = —2nojgsAB.  (4-75)

By substituting the known expressions for A  and B  from Eqs. (4.66) and (4.69), 

it follows th a t © 3 can be expressed in the form:

03 =  - 3 (476) 

which is identically equal to the previously obtained expression given by Eq. (4.52).

Therefore, the leading-order term of 0 { x l!2~a) in Eq. (4.74) is much larger in 

magnitude than the corresponding term of 0 ( x m~2a+l) in Eq. (4.48) if a  < 3/4. 

This implies th a t the slope of the streamlines does change across the main part 

of the boundary layer. However, the coefficient © 3 of the eigen-term in both 

solutions is identical, which means tha t the solution for the eigenvalue derived in 

the previous section remains unaltered. Thus although viscous effects are impor­

tan t throughout the entire boundary layer, its effects on the upstream influence 

induced by the viscous-inviscid interaction are negligible in the main part of the 

boundary layer. This fact is also evident from the observation th a t Eqs. (4.62)- 

(4.63) are locally inviscid.

4.6 Eigenvalue R esults &; D iscussion

The formula for the eigenvalue uj may be expressed in a more useful form by 

substituting the known expressions for a , b and ps from Eqs. (4.17), (4.28) and 

(4.37) respectively into Eq. (4.58), and after some algebraic manipulation it can 

be shown that

w = (1̂ 1 Ai'(0)|)3/V /2Cr3/V  (4.77)

where

v =  7- 3/8A-t'V / V / 2(1 -  (4.78)
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In these equations, A and n  are defined respectively by:

« = 5 ( ^ - 3 o ) ,  (4.79)

and k (j ) is the coefficient in the tangent wedge/cone formula which was defined 

by Eq. (2.35). It should be emphasized th a t the intensity of the exponentially- 

decaying upstream  influence is dependent upon the values of both the eigenvalue 

to and the exponent n  (which depends only on a).

The above formula for to yields a wealth of information regarding the nature 

of the exponentially decaying upstream influence. Firstly, it is immediately clear 

tha t u) increases as the slenderness ratio r increases. This behaviour implies a 

lesser degree of upstream influence for larger slenderness ratios, which is remi­

niscent of the numerical results of the previous chapter. As a  —» 3/4, it follows 

from the second of Eqs. (4.79) tha t n  0. This implies tha t io becomes infinitely 

large and thus the character of the upstream influence develops an algebraic form 

(cf. Eq. (3.11)), rather than the exponential behaviour considered here. It is also 

clear from Eq. (4.30) tha t in this situation, the thickness of the viscous sublayer 

grows and ultim ately merges with the main part of the boundary layer in the 

limit as a  —> 3/4.

Since the quantity ^(7 ) is smaller for AXI flows (cf. Eq. (2.35)), it follows from 

Eq. (4.78) th a t the intensity of the exponentially-decaying upstream  influence is 

slightly greater for the flow over AXI bodies. This result is entirely due to the 

fact th a t axially-symmetric curvature effects are only prevalent within the inviscid 

flow outside the boundary layer, which is in contrast to the analysis for three- 

quarter power-law bodies, for which transverse curvature effects must be fully 

taken into account. It can also be inferred from Eq. (4.78) th a t u —» 0 0  as 7  —» 1 

or gs —y 0 , which again are in accord with the results of Chapter 3.

These findings are presented in Figs. 4.1 (a)-(d), which show the effect of 

varying one of the following reference conditions upon the value of v (which is
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proportional to u>):

a  =  0.5, gs = 0.5, 7  =  1.4, Pr =  0.725. (4.80)

The quantity /?0 — ^5(0) has been computed from the numerical solution of 

the self-similar equations (4.18)-(4.21), which were solved simultaneously using 

the global finite-difference method described in Appendix A.2. A uniform mesh 

consisting of N  = 1000 grid points was employed, where the maximum value of 

77 was taken as 10 and the tolerance level e — 10"7. All the results presented here 

appear to show the expected behaviour. In particular, the results for bodies of 

parabolic shape (i.e. a  — 1/2), which are presented in Figs. 4.1 (b)-(d), appear 

to show the same qualitative behaviour to those shown in Figs. 3.6 (b)-(d) for 

the algebraic eigenvalue a for the flow over three-quarter power-law bodies.
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F ig u re  4.1: Effect of varying one of the reference conditions (4.80) on the up­

stream influence eigenvalue v (for legend see page 55).
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C hapter 5 

H yp ersonic Triple-Deck w ith  

W all C ooling

5.1 Introduction

Consider the flow over a cold compression or expansion corner having an asymp­

totically small ramp angle, with the upstream flat surface oriented parallel to 

the oncoming freestream flow (see Fig. 5.1). If the ramp occurs in a region of 

weak global viscous interaction, i.e. x  <C 1, then the flow develops a so-called 

triple-deck structure, as shown in Fig. 5.1 (see also Sec. 1.5). The effects of wall 

cooling are particularly im portant for hypersonic flows in order to combat the 

high tem peratures generated near to the surface (see Townend 1991 and Wal- 

berg 1991 for further details). The two-dimensional hypersonic triple-deck for­

mulation with significant wall cooling was first considered by Neiland (1973), and 

later by Brown et al. (1990) and Kerimbekov et al. (1994). Wall cooling brings 

about numerous changes to the flow structure, the most im portant of which are 

listed below:

1. An overall reduction in the length scales of the interaction region.

89
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inf

Figure 5.1: Schematic of the triple-deck structure for the hypersonic flow over 
a cold compression ramp (not to scale).

2. The upstream  boundary layer bifurcates into two regions, since a near-wall 

sublayer (labelled region A in Fig. 5.1) is required to adjust the relatively 

high boundary layer tem peratures to th a t of the cold surface.

3. The main part of the boundary layer (region II) does contribute into the 

displacement effect, and an additional intermediate layer (region la) in the 

interaction region is required to match the solutions in regions I and II. 

This is in sharp contrast to the original supersonic triple-deck theory of 

Neiland (1969) and Stewartson & Williams (1969) w ithout wall cooling.

4. The location and extent of any recirculating region is affected by wall cool­

ing, and sufficient cooling can ultimately inhibit separation altogether.

Region I is a layer in which changes to the pressure gradient provoke a nonlinear 

response to the flow, and in particular may result in separation. Regions la  and 

II are effectively continuations of regions A and B into the interaction region, 

and the flow in region III is inviscid and governed by the Euler Equations. The 

nature of the solution in each of these regions has been described in detail by
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Kerimbekov et al. (1994); the subsequent analysis shall extend this study, with a 

minimum of detail, to include axially-symmetric effects.

The spatial lengths, velocity, pressure, density, enthalpy and absolute vis­

cosity are made non-dimensional with respect to L, p ^ ,  p ^ ,  u^  and p 0 

respectively. Here, pQ denotes the viscosity evaluated at a reference enthalpy of 

and L  is the length of the upstream flat surface from the leading edge. The 

viscosity is assumed to depend upon the static enthalpy according to the power 

law:

where n  is a positive constant. In this chapter, the superscript will be used 

to denote unsealed non-dimensional variables. In order to be consistent with 

the notation of Kerimbekov et al. (1994), the subsequent analysis is presented in 

terms of the Reynolds number Reo, which is defined by

For the special case of a linear temperature-viscosity law (i.e. n = 1), it follows 

from Eq. (2.15) tha t p 0 ~  ^  and therefore Re0 ~  M ^2R e^. Moreover, the

hypersonic viscous interaction parameter xo and small perturbation param eter eo 

are defined by

both of which are assumed to be small. For n = 1, these two parameters are 

equivalent to the classical definitions given by Eqs. (1.3) and (1.5) (apart from 

the factor of C 1̂ 2).

In order to keep the present analysis general for various body shapes, the 

surface ys is chosen as

(5.1)

Xo =  M^,Re01/2, Co = Re0 1/4 (5.3)

Vs  =  r  +  f ( x ) (5.4)
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where f  is the characteristic body radius. For a true compression ramp

0, x <  0,
f {x )  =  { (5.5)

ax, x > 0.

where a  is the ramp angle. It should be emphasized th a t the triple-deck formu­

lation is only valid if the ramp angle a  ~  cq.

5.2 V iscous Lower Deck

In the lower viscous sublayer (region I), a new transverse boundary layer coor­

dinate Y  is defined such tha t the ramp geometry is represented by Y  = f (x ) .  

Using an order-of-magnitude analysis similar to tha t employed in Sec. 2.2, it 

can be shown th a t the solution in this region depends upon the following scaled 

variables:

x  =  1 +  ( 7  -  I ) 1/2 A_5/4Xo/Ag™+l/2x, (5.6a)

Y  =  ( 7  -  l ) 1/ 2A_3/4 e0Xo/4^ +1/2{'̂  +  /(z)}> (5-6b)

u =  ( 7  -  l ) 1/2 A1/4 xJ/4^ 1/2n, (5.6c)

v = ( 7  -  l ) 1/2 A3/4 e0xJ/4^s1/2{^ +  u f ' (x )} ,  (5.6d)

P =  1 +  'j X1/2Xo 2P, P =  (5.6e)

h = gsh , =  f ( 5 . 6 f )

where gs — hs/ u ^  is the tem perature factor and A is an 0 (1 ) constant which can 

be determined from a global solution of the upstream boundary layer flow. In 

addition, the body contour and ramp angle must also be scaled according to:

/(£ )  =  ( 7  -  l ) 1/2 A"3/4 e0 Xo/4^ +1/2/ ( ^ ) J (5.7a)

a  = A1//2eoa. (5.7b)
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It should be noted tha t an affine transformation and a Prandtl transposition has 

been incorporated into Eqs. (5.6)—(5.7), so tha t the ramp surface is represented 

by y =  0 .

Upon substitution of the transformations (5.6)-(5.7) into the Navier-Stokes 

equations, it follows th a t the flow in the lower deck is incompressible to leading- 

order with density p = 1 / ( 7  — 1) and h = p, =  1 . Furthermore, it can be 

inferred from the transverse momentum equation tha t p  =  p(x)  in region I. The 

remaining dependent variables in the viscous sublayer satisfy the generic triple­

deck problem:

du du dp d2u
u d ^  + v &i = ~ A i  + W '  ( }

9u dv n , .
a* +  Wy -  ° ’ (5'9)

subject to the boundary conditions:

u = v = 0 at y — 0, (5.10a)

u —>?/ +  •• • as x  —>■ — 0 0 , (5.10b)

u ~» y +  A(x)  +  • • • as y —>■ 00, (5.10c)

where A ( x ) is the displacement function. It can also be inferred from the above 

equations tha t

, , / d A  dp
u - > - { p  +  A(.T)}— -  —  as y ->  0 0 . (5.11)

Using this result, it can be inferred from Eqs. (5.6c-d) tha t the slope 9 of the

streamlines at the outer edge of region I is given by:
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5.3 M ain Part of Boundary Layer

The nature of the solution in the intermediate layer (regions la) and the main part 

of the boundary layer (region II) was determined by Kerimbekov et al. (1994). 

In particular, it was shown tha t the slope 6 of the streamlines remains invariant 

across regions I and la, and th a t at the outer edge of region II:

5 =  n ( - ? 4  +  4 ) ,  (5.13)( da; da; da; J

where A(x)  is the displacement function given by Eq. (5.10c). The parameters S  

and C are defined by:

S  =  (7 -  1) - 1/2A (5. 14)
r5  o

C =  /  { M ( Y ) } ~ 2 — 1 dY, (5.15)
J o

where 50 and M ( Y )  are the thickness and Mach number distribution of the up­

stream boundary layer. The first two terms on the right-hand side of Eq. (5.13) 

represent the conventional displacement effect associated with region I 

(cf. Eq. (5.12)), while the third term is the contribution due to the main part of 

the boundary layer (region II).

It should be noted tha t if £  > 0, an adverse pressure gradient results in 

an increase of the displacement thickness A{x) of region II. A similar kind of 

behaviour occurs in subsonic flows, and therefore this case shall be referred to 

as subcritical. On the other hand, if C < 0, a pressure rise leads to a decrease 

in the displacement thickness, just as for a supersonic flow. Consequently, this 

case is called supercritical. In addition, the tem perature factor gs enters into 

the interaction problem only via the parameter S  which is 0 (1 ) if the wall is 

relatively cold, i.e. ^ < 1 .  This implies tha t the surface tem perature Ts is small 

in comparison to the stagnation tem perature of the external inviscid flow, but 

not necessarily tha t Ts is much less than the mainstream static tem perature T ^ .
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5.4 Inviscid U pper Deck

Following the analysis of Kerimbekov et al. (1994) for 2D flows, the solution in 

the inviscid upper deck (region III) depends upon the following scaled variables, 

suitably extended for AXI flows:

x  =  1 +  ( 7  -  1)1/2A“ 5/4Xq/Ag™+1/2x, (5.16a)

y  = ( 7  -  1)1/2A“5/4M ~1Xo/V +1/2{£ +  r}, (5.16b)

u — 1 +  A1//2eoM ^ u ,  v ~  \ 1/2eov, (5.16c)

p =  1 +  yA1/2x t /2q, P =  1 +  A1/2xJ/2A (5.16d)

h ~  hoo'u^ +  A 1/2e0M ~1/i. (5.16e)

Furthermore, the radius f  of the body is assumed to be of the same order-of- 

magnitude as the thickness of region III, and must therefore be scaled according 

to:

f  = ( 7  -  l ) 1/2 A“ 5/4 M001Xo/4^ +1/2r- (5.17)

It can be shown using Eqs, (5.16b), (5.17) and (5.7a) th a t the body contour

defined by Eq. (5.4) can be expressed in the form z  =  (Axo)1//2 .f(^)- Since <  1,

it follows th a t to leading-order the body surface is represented by z =  0. However, 

the function f ( x )  does enter into the interaction problem by matching with the 

solution in region II, as will be discussed later. In addition, the ratio Q of the 

body thickness to tha t of the boundary layer is given by

6  =  (AXo)“ 1/2^  (5.18)

which is therefore much greater than unity. Consequently, axially-symmetric 

transverse effects within regions I-1I  can be neglected to leading-order (cf. Sec. 4.2). 

Nevertheless, transverse effects are im portant in the inviscid region III.
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Substitution of Eqs. (5.16a-e) into the Euler Equations yields the following 

linear system of equations:

du _  dq dv dq
dx dx  ’ dx dz  ’

(5.19a)

dp I d  ■ dh dq , | «
Tx = - J 7 T ^ d i {(z + r ) v ] ' &  =  (5-19b)

(t  -  l )h  = w  -  p, (5.19c)

where j  =  0 or 1 corresponds to 2D or AXI flows respectively. It follows from 

these equations th a t the pressure q(x,z)  in the upper deck is governed by a wave 

equation of the form:

d2q d2q j  dq
d 3 ? ~ d z * ~  z + r d z  =  ̂ ^

The condition th a t the flow be undisturbed far upstream of the ram p corner and 

also as z —y oo requires tha t

as x  —»■ — oo, z —» oo. (5.21)

Equation (5.20) also requires a boundary condition at the body surface z  = 0t 

which will be derived later in this section by matching the solutions in the vis­

cous and inviscid layers. For flows with subcritical wall cooling, the following 

additional boundary condition is required in order to take the upstream  influence 

effect into account:

dqjdx  =  0 as x  —> oo. (5.22)

This condition is frequently used in the computation of inviscid hypersonic flows 

(see, for example, Guardino 1995); however Eq. (5.22) can not be applied for 

supercritical flows, since there are no upstream influence effects for this case. 

From Eqs. (5.16c), the slope 6 of the streamlines as z  —» 0 is given by

0 =  T =  A1/,2e0u +  • • • as z -> 0. (5.23)
u



C H APTER 5. H YPERSO N IC  TRIPLE-DECK 97

Since this quantity must match with the value of 6 at the outer edge of region II 

(cf. Eq. (5.13)), it follows tha t

(5.24)

W ith the help of Eq. (5.19a), this condition can also be expressed in the form:

which is just the required boundary condition for Eq. (5.20).

5.5 Surface Tem perature R egim es

It is convenient to introduce the Neiland number Ne, which is defined by:

This param eter represents the ratio of the contributions to the displacement thick­

ness due to the main deck (region II) and viscous sublayer (region I). Furthermore, 

there exist three tem perature regimes which will now be described.

1. N e <  1, corresponding to moderate or high surface tem peratures, i.e. gs ^>

thickness is negligible, and the problem reduces to the classical supersonic 

triple-deck formulation first developed by Neiland (1969) and Stewartson 

Sz Williams (1969). Numerical solutions for this regime in the 2D case 

have been obtained by numerous authors, most recently by Bos (1998) and 

Cassel et al. (1995). These results generally show th a t a separation zone 

develops near the corner for ramp angles greater than a certain critical 

value.

2. Ne =  0 (1 ), corresponding to moderate wall cooling, i.e. gs ~  Xo2̂ 2n+l\  Nu­

merical solutions for the 2D case have been obtained by Brown et al  (1990),

(5.25)

Ne =  jSXt4/3. (5.26)

Xo 2̂ 2n+l\  In this case, the contribution of the main deck to the displacement
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and more recently by Cassel et al  (1996) who showed th a t wall cooling acts 

to inhibit separation. Moreover, it was shown tha t wall cooling has a strong 

de-stabilizing effect for subcritical flows, while for the supercritical case, it 

has a strong stabilizing effect.

3. Ne 1, corresponding to strong wall cooling, i.e. gs <C Xo2̂ n+l •̂ 

this case, the contribution of the lower deck to the displacement thickness 

is negligible. This regime, which is of interest in the present study, was 

first considered for 2D flows by Zhikharev (1993) for the case of marginal 

separation from a cold wall with strong subcritical wall cooling, and also 

by Kerimbekov et al (1994) for supercritical flows. The purpose of the 

present work is to extend these seminal studies to the case of AXI flows 

over both compression and expansion corners (see Chapter 6), and also to 

investigate the separation and reattachment process in the vicinity of the 

ramp corner for subcritical flows, where a Goldstein (1948) singularity is 

expected immediately upstream of the separation point (see Chapter 7).

5.6 Form ulation for Strong W all C ooling Case

Following the analysis of Kerimbekov et al, (1994) for 2D flows, the following- 

scaled variables are indicated for the viscous sublayer in the cold wall limit as 

Ne —> oo:

x = Ne3//4 x, y ~  Ne1̂ 4 '*/, (5.27a)

u — Ne1/4 u, v = Ne-1/4 v } p = Nel^2p, (5.27b)

A  = Ne1/4 A, f  = Ne5/4 / ,  a  =  Ne1/2 (3. (5.27c)

The corresponding variables for the inviscid upper deck are given by:

z = Ne3//4i ,  g =  No1/2 (g r  =  Ne3//4r. (5.28)
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Upon substitution of these transformations into the interaction problem defined 

by Eqs. (5.8)-(5.10) and Eqs. (5.20)—(5.22), it can be verified th a t the governing 

equations remain invariant. However, the matching condition given by Eq. (5.25) 

becomes:

Therefore, the first term on the right-hand-side of this equation, which represents 

the contribution of region I to the displacement thickness, can be neglected for 

large values of the Neiland number Ne. This implies tha t the pressure distribution 

q(x, z) in the inviscid layer can be determined independently of the flow in the 

viscous sublayer. In addition, the ramp geometry is given by:

where (3 is the scaled ramp angle defined by the third of Eqs. (5.27c). For conve­

nience, th e  superscript w ill be dropped and th e equations considered  

to  be scaled w ith  respect to  th e  N eiland num ber for th e  rest o f th is  

th esis .

The form of equation (5.29) suggests the use of the following asymptotic 

expansion for large Neiland number Ne:

where cj) represents u, v, ipt p or A. The form for the third term  is suggested 

from the asymptotic analysis of Chapter 7 (see also Kerimbekov et al. 1994). 

Moreover, the scaled ramp angle f3 should also be expanded in the form:

(5.29)

f ix , x > 0
(5.30)

4> =  4>o +  Ne 1 4>i +  Ne 4/3 (j)2 +  ■ • • , (5.31)

/3 =  ft* +  Ne“4/3 f t  +  ■ • ■ (5.32)
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in order to consider small perturbations about the critical ramp angle for which 

separation first occurs. Upon substitution of these expansions into Eqs. (5.8)- 

(5.9), it can be easily verified tha t the problem for the leading-order streamfunc- 

tion ipo is given by:

dipo d2ip0 dipQ d2'ip0 _  dp0 d3^ 0
dy dxdy dx dy2 da; dy3

where

dip o dip o
« . = w , v0 =  (5.34)

In addition, the boundary conditions (5.10) become

dipQ
=  I j y  = ° at V ~ ° '  (5.35a)

ipo —»■ ^ y 2 +  • • • as x -)■ — oo, (5.35b)
\

ipo ^ - y 2 P A 0( x ) y -\-- as y oo. (5.35c)

It can also be shown th a t the interaction problem for the higher-order terms <pi

(for i = 1 and 2) is given by:

dipQ d2ipj d2ip0 dipj dipQ d2ipj d2ip0 dipt =  d d*ipj ( .
dy dxdy dxdy dy dx dy2 dy2 dx &x dy3

subject to the boundary conditions:

*  =  ^  =  ° at j/ =  0, (5.37a)

ipi ^  0 as x —y —oo, (5.37b)

ipi —»■ Ai (x)y  4- • * • as y -4 oo. (5.37c)

5.7 Pressure D istribution  for 2D Flow s

For the 2D case (i.e. j  = 0), the solution of Eq. (5.20) can be expressed in 

D ’Alembert’s form:

q(Xj z) ~  g(x +  z) +  h(x — z), (5.38)
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where g and h are arbitrary functions. Since only outgoing waves are im portant 

for hypersonic flows, it follows tha t g =  0. It can therefore be inferred from 

Eq. (5.29) tha t

_  <±A d f  dp
p —  ---- 1—— -f- SJZ——. (5.39)

dx dx dx

The param eter S  <C 1 for moderate or hot surface tem peratures, and in this 

case the foregoing equation reduces to the conventional Ackeret Law (1.18) for 

supersonic flows.

Substitution of the scaled variables defined by Eqs. (5.27) into the above 

equation, and om itting the ‘'F yields the interaction law:

1 d A  d f  . dp . .
P = - T e t e  + t e +Sen{C)d-X (5'40)

In the cold-wall limit Ne —> oo, the first term on the right-hand-side of this equa­

tion becomes negligibly small. Furthermore, if the ramp geometry is given by

Eq. (5.30), then to leading-order Eq. (5.40) yields the following ordinary differ­

ential equation for Po(^):

Po = s g n ( T ) ^  +  PH(x),  (5.41)

where H(x)  is the Heaviside function. For the subcritical case, i.e. C > 0, the 

solution of this equation satisfying the condition tha t the flow be undisturbed far 

upstream of the corner (i.e. p 0 as x —> —oo) is given by:

Po eN x < 0,
Po{x) =  { (5.42)

Po, x > 0.

The corresponding solution for the supercritical case, i.e. C < 0 is given by:

0, x < 0,
P o { x )  -  { (5.43)

Po(l — e~x)> x > 0.



C hapter 6 

N um erical R esu lts for th e Strong  

W all C ooling Case

6.1 Introduction

In this chapter, numerical solutions of the leading-order inviscid upper deck prob­

lem given by Eqs. (5.20)-(5.22) shall be obtained for both 2D and AXI hypersonic 

flows with strong wall cooling. As discussed in Sec. 5.6, the displacement func­

tion A(x)  formally disappears from the boundary condition (5.29) in the cold wall 

limit Ne —)• oo. Thus, to leading-order, Eq. (5.29) can be expressed in the form:

dq d2 f  d 2p
&  =  “ d ^ “ s g n ( £ ) d ^  a t  z  =  0’ ( fU )

where the surface pressure p{x) — <?(£, 0), and the has been omitted for con­

venience. Consequently, the solution in the inviscid region III can be obtained 

independently of the flow in the viscous sublayer (region I) . As soon as the surface 

pressure distribution has been computed, the solution in the viscous sublayer can 

be found by solving the boundary layer equations (5.8)—(5.10) with prescribed 

pressure gradient, as in the classical theory of P randtl (1904). It should be noted 

tha t the solution for the pressure can also be expressed in terms of an integral

102
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involving source and sink distribution functions (see Ashley & Landahl 1965 and 

Kluwick et al. 1984), but the boundary condition (6.1) renders this approach 

impractical.

A uniform mesh defined by

shall be employed for the inviscid calculations, and quantities such as will 

be used to denote approximations to q{x^Z}t). In addition, an asterisk shall be 

used to refer to the known solution from the previous iteration, i.e. q^k. Using 

the computed surface pressure p(x) = q(x, 0) from the inviscid calculation, the 

solution in the viscous sublayer shall be obtained using a uniform grid defined

6.2 N um erical A lgorithm  for Inviscid U pper D eck

6.2.1 S ubcritica l flows (£  > 0)

Since subcritical flows do permit the upstream propagation of disturbances, the 

^-derivative in Eq. (6.1) should be approximated using a second-order accurate 

central difference quotient as follows:

Notice the use of a second-order accurate forward difference approximation for 

the normal derivative of the wall pressure. Since the surface pressure Pi = q^i,

— x min -p (z l)z \:r , 1 U  ^

zk — (k — l)A z, 1 < k < K,

(6 .2)

(6.3)

by:

Xi =  x mi„ +  (* — l)A x , 1 <  i < I,  

Vi =  (j -  1 < j  < J-

(6.4)

(6.5)

(6 .6 )
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the foregoing equation yields the following linear tridiagonal system of equations 

for pp.

&iPi—1 4“ &iPi 4~ CiPi-\-1 — dj, 2 <  i < I  -  1 (6.7)

where

1
di — C{

3
bi 2A z

di =  w ;  +

(Arc)2 ’ 
2

+
(Aa;)2 ’
dV
dx2

(6.8a)

(6.8b)

(6.8c)

and

Qj , 3
2Az

(6.9)

The quantity W* involves the solution in the interior of the computational do­

main, and is assumed known from the previous iteration. Methods for calculating 

W* will be discussed in Secs. 6.2.3 and 6.2.4. The upstream boundary condi­

tion (5.21) requires th a t p1 — 0. The boundary condition far downstream of the 

ramp corner given by Eq. (5.22) was approximated by:

p i - 2 ~  4p/-i + 3p idp
da:

0
2Aa;

(6 .10)

The above system of equations can be expressed in the form:

/ 1  0 \  f  ^  \  f  0 \

&2 C2

a i - i  b i - i  Ci - i

1 - 4  3 /

P 2

P i - i  

V Pi /

dr,

d i - i

V 0 }

(6 .11)



C H APTER 6. RESU LTS FOR STRO NG  WALL COOLING CASE 105

Unless otherwise specified, all the other elements in the coefficient m atrix are 

zero. The I -th row of the system can be expressed in tri-diagonal form using the 

(J — l)- th  row as follows:

The solution thus proceeds as follows. First compute the solution q^k in the 

interior of the computational domain using either of the methods described in 

Secs. 6.2.3 or 6.2.4, from which W* can be determined. Then solve the above 

tri-diagonal system using Gaussian Elimination to compute a new distribution 

for the wall pressure p*- Next, recalculate the solution throughout the entire 

computational domain, and continue in this fashion until the maximum change 

in 'Pi is less than a specified tolerance level e, which was taken as 1 0 ~ 7 in the 

present study.

6.2 .2  Supercritica l flows (£  < 0)

In contrast to the subcritical case, supercritical flows do not perm it the upstream 

propagation of disturbances, and therefore the solution can be computed using 

a downstream marching technique. Moreover, since the flow is undisturbed up­

stream  of the compression ramp, the numerical integration may be initiated from 

x =  0 . 1 Equation (6.1) is discretised as follows:

where a second-order accurate backward difference is used to approximate d2p / d x 2, 

since the solution at any point depends solely on the flow immediately upstream. 

Since pi =  i, this equation yields the following numerical scheme for 2 < i < I:

(6 .12)

3gf,i +  4gi|2  -  qj,3 

2 A z

(6.14)

1Due to the slight rounding of the ramp (cf. Eq. (6.36)), x m -m  was taken as —2.
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where Wi was defined by Eq. (6.9) and

* . 3  2 . .
M  =  — -  +  7-—- .  (6.15

2A z (Ax)2 K }

This method allows the computation of the wall pressure pi using the known 

solution at the grid points i — 1, i — 2 and i — 3. In order to s tart the marching 

procedure, the values p_i, p0 and pi are set equal to zero. It should be noted th a t 

no global iterations are required for this case, and th a t no boundary condition 

can be applied far downstream at i = I.

6.2 .3  M eth o d  o f C haracteristics

The Method of Characteristics has been frequently employed in the computa­

tion of inviscid supersonic or hypersonic flows, since it permits the solution to

be computed downstream along the characteristics. This reflects the real phys­

ical aspect th a t disturbances in a supersonic flow are propagated along these 

curves. Moreover, the two-dimensional Euler Equations reduce to ordinary dif­

ferential equations (sometimes known as the compatibility equations) along the 

characteristics, which are more readily solved than the original partial differential 

equation.

The wave equation (5.20) is particularly suited for solution using the Method 

of Characteristics since the characteristics are straight lines with gradient ±1. By 

defining

dq . dq , .s — —— and t = — , (6.16)
ox ay

it can be shown tha t the compatibility equations along the characteristics with 

gradient ±1 are given by (see Appendix B):
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h

F igure 6.1: Grid for the Method of Characteristics showing three typical points;

mesh points intersecting the dashed lines are used for computing

This equation can be used to compute the solution locally, as shown in Fig. 6.1, 

where the solution at any given point A depends solely on information propagated 

from two neighbouring points B and C. If these points are chosen close enough 

together, it follows tha t Eq. (6.17) can be approximated along the characteristic 

from B to A by the difference equation:

S A  -  S B  __ t A  ~  t B  =  j { t A  +  t B )  ,  v

h f  2 h/2 zA T z B -\-2r

where h = A x  = A z. Notice the use of average values on the right-hand-side of 

this equation. Similarly, the solution along the characteristic from C to A can be 

approximated by:

5 a  ~  s c  , t A - t c  _  j ( t A + t c )  (

h/2 h/2 zA -\- zc  + 2r'
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The solution of this pair of linear equations is given by:

 ̂ _  (1 -  bc )aB +  (1 -  bB)ac + _  ac  -  aB tc
^ O I 7 7 ’ A  n I 7 ; > (6.20)2 +  Ojj — be 2 bB — be

where

=  I ?  — V  M ’ =  Ttf (6 -2 1 )- r )  ~  h)  4 ( z a  +  r) +  /i)

&B — Ss +  (& 0 — Cic =  -5c +  (6c? +  l)tc - (6.22)

Finally, since

=  sdx +  tdy , (6.23)

the solution at point A is given by

Qa =  Qb +  +  <5jg +  +  £b)> (6.24)

The boundary conditions given by Eq. (5.21) require that:

ft,* =  0, 1 < k < K,  (6.25)

Qi,K 0, 1 S  i Si C if ^max ^max “  *£min- (6.26)

For k =  2, this algorithm requires knowledge of the wall pressure pi — q ^ .  For 

subcritical flows, this is assumed known from the previous iteration, whilst for 

the supercritical case pi is to be computed at the current streamwise location xi. 

Due to the geometry of the characteristic mesh, there is some difficulty associated 

with the implementation of the matching condition (6.1). However, this problem 

was resolved by evaluating the quantity Wi (which was defined by Eq. (6.9)) 

using only the mesh points which coincide with an effective finite-difference grid, 

as shown by the dashed lines in Fig. 6.1.
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6 .2 .4  Finite-difFerence m ethod

An alternative method considered here for the numerical solution of Eq. (5.20) 

was an explicit finite-difference scheme, and the equation was discretised using 

second-order accurate central differences as follows:

This equation yields the following explicit scheme for 2 < i < I  and 2 < k <

where A =  A x /A z, and A < 1 in order to ensure stability of the numerical 

algorithm (see, for example, Burden & Faires 1993). This scheme, which is also 

known as the Leap-frog method, enables the solution to be computed everywhere, 

starting from the initial conditions q0^  =  qi^ =  0.

It was observed th a t this scheme generated spurious oscillations in the solu­

tion if A < 1, which are visible in the result for the pressure distribution q(xt z) 

shown in Fig. 6.13 (which was obtained using I  =  200 and K  — 100 which gives 

A =  0.5). It is believed th a t these oscillations appear because the finite-difference 

grid does not properly match with the physical characteristics (unless A =  1, in 

which case the stability criterion would be violated). In fact, the appearance of 

oscillations in the numerical solution of hyperbolic equations is not uncommon us­

ing explicit second-order accurate schemes (see, for example, Guardino 1995). By 

comparison, the Method of Characteristics yields an oscillation-free solution (cf. 

Fig. 6.12, where a mesh consisting of 200 x 200 points was employed). Moreover, 

the finite-difference method requires the solution to be known at two previous 

streamwise locations, whilst the Method of Characteristics only requires the up­

stream solution at two adjacent points on the characteristics mesh.

Q i + i tk  —  2 q i f k  +  q i - i tk  q i . k + i  —  2 +  q ^ k - i  ■1 — a ~ A
(Ax)2 (A*)2(A*)2

K -  1:

1) Qi~ 1,/m (6.28)



C H APTER 6. RESU LTS FOR STRO NG  WALL COOLING CASE 110

6.3 N um erical A lgorithm  for V iscous Sublayer

Equations (5.8)-(5.10) represent a conventional boundary layer problem with 

prescribed pressure gradient, and can be solved using a downstream marching 

technique, provided th a t the flow does not separate from the body surface. The 

following second-order accurate difference equation was used to approximate the 

momentum equation (5.8):

n(* {  u i - 2 , j  ~  ( u i , j + l  ~  u i , j ~  1

2 Ax )  i J \  2A y
u i tj + i  — 2'tiij +  U i j - i  ,

s j 4+  W ?  ’ (629)

This equation defines the following tri-diagonal problem for 2 < % < I:

T bjUij T CjUij-|_i — dj, 2 ^  j  S: J  1) (6.30)

where

a’ = W  + u ty ' (6'31a)
2 3 u*i ,■

(6 '31b)
2

Cj ~  (Ay)2 ~  ajj (6.31c)

dj = A iA 4-2,2 _ + (df). ■ (6-31d)
The no-slip conditions at the body surface require u^i =  v^i =  0. At the outer

edge of the viscous sublayer, the condition Eq. (5.10c) was approximated by: 

( 9 u \   , “ W-2 -  4«i,j-1 +  3^,.,
----------------5Ay  ' (6'32)

The above tri-diagonal system of equations was solved using Gaussian Elimina­

tion. It should be noted tha t the condition (6.32) requires th a t the J -th  row of

the system be expressed in tri-diagonal form using the (J  — l)- th  row in a manner

similar to tha t used for the I - th  row of Eq. (6.11):

— (4aj_ i +  bj„i)uitj - i  +  (3aj_i — c j - i )u i tj  = 2A y a j - i  — d j - i .  (6.33)
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The continuity equation (5.9) was approximated using:

1 f 2 , j  4 u { ^ i j  -|- 3 u i j  U i —2, j—i i T ±

2  V 2 A x  2 A x

+ Vi’J ~ F j - 1 = 0, (6.34)
2A y v '

which yields the following iterative scheme for 2 < j < J :

A y
Vi , j  =  Vi , j - L  + 4 ^ ^  ( U i ~ 2i3 ~  + 3U i j  + U i - 2 , j - l  ~  + 3U i j - i )  .

(6.35)

Starting from the upstream solution given by Eq. (5.10b), the above system of 

equations were solved iteratively to determine the solution at the current stream- 

wise location, using the computed solution from the previous location as the 

initial distribution. The solution was marched downstream to x  =  rcm ax, or until 

the flow separates.

Since second-order accurate backward differences have been employed for the 

^-derivatives in Eqs. (6.29) and (6.34), the resulting method is sometimes referred 

to as a three-level fully implicit scheme. This scheme was found to be robust and 

unconditionally stable (in the Yon Neumann sense). The Crank-Nicolson scheme 

(see, for example, Burden & Faires 1993) was also utilised for the solution of 

the present problem, but this method required a relatively large number of mesh 

points (as compared to the three-level scheme) in order to preclude the occurrence 

of numerical oscillations. In addition, the three-level fully-implicit method is more 

stable to short harmonic oscillations. For this reason the three-level scheme was 

preferred and all of the solutions shown here were obtained using this method.
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6.4 R esu lts &; D iscussion

Numerical results have been obtained by the author for various ramp angles and 

body radii for both subcritical and supercritical cases. Unless otherwise specified, 

the pressure distribution q{x,z)  in the inviscid layer was computed using the 

Method of Characteristics with I  = K  =  500 and £max =  10. For subcritical 

flows x mjn =  —10, whilst for the supercritical case :rmjn =  — 2. In order to avoid 

problems associated with the discontinuous derivative of the body contour f ( x )  

at x =  0, the ramp corner was rounded slightly so tha t f" (x )  is a smooth function 

everywhere. In the present study, f ( x )  was defined by:

where the rounding parameter R  was taken as 0.05. Using the computed sur­

face pressure p(x) = q(x, 0) from the inviscid calculation, the solution in the 

viscous sublayer was computed using the fully-implicit three-level scheme with 

I  =  500, J  =  250 and j/max =  10. Results are presented for the pressure p(x) and 

skin friction rs(x) defined by:

The solution in the viscous sublayer was computed up to x = x max, or until the 

flow separates in which case rs(xs) — 0, where x s is the location of the separation 

point. Solutions were also obtained using various other mesh sizes, and the results 

are believed to be globally grid independent.

6.4.1 T w o-d im ensional com pression  corners

Results for the 2D flow over a true compression corner (i.e. with no rounding of 

the ram p corner) are shown in Figs. 6.3 and 6.4. In this case, the surface pressure 

distribution is given analytically either by Eq. (5.42) or (5.43). Furthermore, the

(6.36)

(6.37)
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(3=0-46
(3=0.47
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x

F ig u re  6.2: Skin friction rs distributions for various ramp angles (3 close to the 

critical value 0* ss 0.48 for 2D subcritical flows.

solution for the supercritical case was initiated from the ramp corner, since the 

flow is unperturbed upstream (i.e. p =  0 and t s = 1 for x  <  0 and £  <  0). As 

expected, the minimum r 0 in the skin friction distribution decreases as the ramp 

angle (3 is increased, and eventually reaches zero at a certain critical value (3* 

a t a streamwise location x  =  x s. This phenomenon is also known as incipient 

separation. It is evident from Fig. 6.2 tha t for subcritical flows x s =  0 and (3*' ps 

0.48. An im portant feature of this case is the occurrence of a Goldstein (1948) 

singularity upstream  of the separation point, and the sharp behaviour of the skin 

friction immediately downstream of the ramp corner. It should also be observed 

tha t the flow separates just upstream of the ramp corner for the case (3 — 0.49, 

and therefore this particular solution could not be continued downstream of x s
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using the current downstream marching technique. However, it will be shown 

in the next chapter th a t the flow in the separation region can be described by 

considering a multi-layer structure near to the wall, and using the method of 

matched asymptotic expansions to determine the solution in each region to form 

a coherent description of the separation and reattachm ent process.

For the supercritical case, it was observed tha t x s =  0.5 and /?* ps 0.75, which 

are in good agreement with the numerical results of Kerimbekov et al. (1994). In 

contrast to the subcritical case, the skin friction vanishes linearly at the separation 

point, and this phenomenon is known as marginal separation (see Appendix C). 

It can also be observed tha t for both subcritical and supercritical 2D flows,

p —> /?, ts —)■ 1 as x —> oo. (6.38)

6.4.2 A x ia lly -sym m etr ic  com pression  corners

Results for the AXI case are shown in Figs. 6.5-6.15. It is evident from these 

solutions th a t AXI effects have a major influence on the flow properties, especially 

for comparatively small body radii. In particular, the wall pressure reaches a 

maximum value at a certain streamwise location2 , after which it decreases further 

downstream. This results in a favourable pressure gradient which accelerates the 

flow and may cause the skin friction to exceed unity downstream of the ramp 

corner, particularly for small radii. A similar kind of behaviour can be seen in 

the results of Kluwick et al. (1984) for supersonic flows, although their results did 

not take wall cooling into consideration. A rather surprising result is that, for a 

fixed radius r, the skin friction becomes greater than unity a t almost the same 

streamwise location, regardless of the ramp angle (see Figs. 6.5 and 6.7).

It can be observed from Figs. 6.6 and 6.8 that the minimum r 0 in the skin

2For subcritical flows, this maximum in the pressure distribution occurs in the vicinity of, 
but not exactly at, the corner x  =  0 due to the slight rounding of the ramp.
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friction distribution increases with decreasing radius r for fixed ram,p angle. Con­

sequently, the critical ramp angle (3% a t which separation first occurs is greater 

for AXI flows, and increases as r decreases. In the limit as r —t oo, the results for 

AXI flows approach those for the corresponding 2D case, as shown by the dashed 

curves in Figs. 6.6 and 6.83 . In this case, the AXI wave equation (5.20) reduces 

to the corresponding 2D case.

Figure 6.11 (a) shows a comparison of the exact solution given by Eq. (5.42) 

for the 2D subcritical case with the result obtained using the Method of Charac­

teristics. Figure 6.11 (b) shows the result for the corresponding AXI case obtained 

using both the Method of Characteristics and the finite difference method. Very 

good agreement is obtained in both cases, and this is despite the presence of 

numerical oscillations in the interior solution obtained using the finite-difference 

method (see Fig. 6.13).

The pressure distribution q(x,z)  in the inviscid region is shown in Figs. 6.14 

and 6.15, which were obtained using a mesh consisting of 200 x 200 points, and 

the rounding param eter R  was taken as 0.2. It is clear th a t the pressure decays 

at large distances from the body surface, which is in sharp contrast to the 2D 

case for which the pressure remains constant along the characteristic lines with 

gradient unity, as shown in Figs. 6.12 and 6.13.

6.4 .3  E xp an sion  corners

Although the present study has so far been devoted exclusively to flows over 

compression ramps, the governing equations can be equally applied to expansion 

corners by merely requiring the ramp angle to be negative. For the 2D case, the 

pressure p(x) decreases monotonically, thus resulting in a favourable pressure gra­

dient which accelerates the flow as it passes over the expansion corner. However,

3The pressure p ( x )  for these 2D cases were obtained by solving the full inviscid upper-deck 
equations with j  — 0 in order to take into account the slight rounding of the ramp corner.
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for AXI flows there is expected to be a region of unfavourable pressure gradient, 

which may result in flow separation and reversal.

Solutions for various body radii are shown in Figs. 6.9 and 6.10, where the 

ramp angle was kept fixed. It is evident tha t the flow separates if the radius is 

smaller than a certain critical value r*, which is itself dependent on the ramp an­

gle. Since the flow separates downstream of the expansion corner, the singularity 

encountered at the separation point appears to be weak and can be described 

using marginal separation theory (see Appendix C). In addition, no separation 

phenomenon was observed for the 2D flow over expansion corners, regardless of 

the ramp angle. It is surprising to observe tha t the skin friction distribution 

shown in Fig. 6.9 for the 2D hypersonic flow with subcritical wall cooling is qual­

itatively similar to tha t obtained by Rizzetta et al. (1978) for supersonic flows 

w ithout wall cooling.
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F igure  6.3: Pressure p and skin friction rs distributions for various ramp angles

/3 (2D, subcritical case).
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F igure  6.4: Pressure p and skin friction rs distributions for various ramp angles
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/3 = 0 .2 ,... ,0.7 with increment A/3 =  0.1 (AXI, subcritical case,

radius r= 1).
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F igure  6.6: Pressure p and skin friction rs distributions for various body radii r

(AXI, subcritical case, /?=0.47). Dashed curve (-----) represents the

2D case (i.e. r =  oo).
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the 2D case (i.e. r =  oo).
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the 2D case (i.e. r ~  oo).
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F ig u re  6.11: Comparison of the pressure distribution for the subcritical case 
with f3 =  0.47 obtained using the Method of Characteristics with: 
(a), the exact result (2D case); (b). result obtained using the 
finite-difference method (AXI case).
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F ig u re  6.12: Pressure q(x,z)  obtained using the Method of Characteristics for 
the 2D subcritical flow with j3 — 0.47.

F ig u re  6.13: Pressure q(x,z)  obtained using the Finite-Difference method for 
the 2D subcritical flow with (3 = 0.47.
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F ig u re  6.14: Pressure q(x,z)  obtained using the Method of Characteristics for 
the AXI subcritical flow with — 0.47 and r =  1.

F ig u re  6.15: Pressure q(x,z)  obtained using the Method of Characteristics for 

the AXI supercritical flow with /? =  0.75 and r  =  1.
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6.5 A sym p totic  Solution for Subcritical Flows

6.5.1 U p stream  so lu tion

It can be easily shown using the momentum equation (5.33) th a t the solution for 

the streamfunction near to the surface can be expressed in the form of a Taylor 

series expansion as follows:

where t s ( x )  is the skin friction distribution defined by Eq. (6.37). Furthermore, 

by defining

the asymptotic solution immediately upstream of the corner can be w ritten in 

the form

where tq — rs(0). For 2D flows with subcritical wall cooling, it follows from 

Eq. (5.42) tha t Ao =  po and vo =  0. This appears to suggest a discontinuous 

behaviour of the streamfunction at x = 0, which is clearly a physical impossibility. 

This paradox can be explained by seeking a solution downstream of the ramp 

corner in the form of an eigen-function, as will now be described.

6.5 .2  D ow n stream  so lu tion  for n on-separated  cases

If the minimum tq in the wall shear stress is 0 (1 ), it follows from Eq. (6.41) 

tha t the longitudinal velocity u0 — difto/dy is approximately linear as y becomes 

small. Consequently it can be inferred from the momentum equation th a t a new 

near wall sublayer of thickness y ~  a;1/3 should be considered. This suggests th a t

(6.39)

a;->0+
(6.40)

(6.41)
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the solution for ip0 immediately downstream has the following asymptotic form:

where 77 is an 0 (1 ) similarity variable in the near-wall sublayer defined by

An affine transformation has been incorporated into these equations such th a t 

the resulting equation for h(r}) is independent of A0, vq and r 0. Upon substitution 

of the above equations into the leading-order momentum equation (5.33), and 

taking the limit as 2: —» 0 +, the following ordinary differential equation can be 

derived:

The param eter uj characterizes the intensity of the axially-symmetric effects and 

is defined by

It should be noted from Eq. (5.42) tha t the pressure gradient immediately down­

stream of the corner Vq — 0 for 2D flows with subcritical wall cooling, which 

implies tha t u  — 0. However, it is clear from the numerical results shown in 

Figs. 6.5 and 6 . 6  tha t is non-zero for the AXI case. The appropriate boundary 

conditions are given by:

The la tter condition follows from the upstream asymptotic solution given by 

Eq. (6.41), and also from the condition tha t the streamfunction '</>0 should be 

continuous at x = 0. It follows from Eq. (6.42) th a t the wall shear stress distri­

bution immediately downstream of the corner point is given by:

y) = 1xh(rj) -1-----  as x  -> 0+ , (6.42)

(6.43)

N" 4 . ^-rfh” — r]h' h — u). 
3

(6 .4 4 )

/i(0 ) =  h'(0) =  0 , ti"{oo) =  1 . (6.46)

t s ( x )  =  t 0 +  A(,t0 1 ^ s h " ( 0 ) x 1 / 3  H  as x  — >  0 + . (6 .4 7 )
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The quantity h"{0) can be determined from a numerical solution of Eqs. (6.44)- 

(6.46), which were solved using the global finite-difference method described in 

Appendix A.2. The condition h"'(oo) =  1 was approximated using a second-order 

accurate backward difference quotient, i.e.

( d 2k \  — /Cat-3 +  4&;v_2 — 5/cjv-i +  2k n  . .
= 1 “ ----------------- w ------------------ ■ (6-48)

where k ~  h' and N  is the number of mesh points. It should be noted th a t 

this requires two preliminary Gaussian eliminations to eliminate the two extra 

off-diagonal elements in the Jacobian m atrix (see Appendix A. 2).

A uniform grid defined by rji = (i — 1) Arj was employed, where Nr] was taken 

as 0.01. The maximum value of 77 was taken as 20 and the tolerance level e =  10-7 . 

The numerical solution for the 2D case (i.e. w =  0) yields h"{0) =  1.536 (accurate 

to three decimal places).

6.5 .3  D ow nstream  so lu tion  for incip ient separation

If the ramp angle is close to the critical value for which separation first occurs 

(which is also referred to as incipient separation), it follows from Eq. (6.41) th a t 

the asymptotic behaviour of the streamfunction immediately upstream  of the 

corner point is given by:

I
i>o = g\>2/3 +  * • • as x -> 0“ . (6.49)

Using this result, it follows from the momentum equation th a t the thickness of 

the near-wall sublayer y ~  x 1/4. This suggests tha t the solution immediately 

downstream should be expressed in the form

ipQ(x,y) = Xl/Ax s/4g(C)-\-------  as x  0+ , (6.50)

where C is an 0 (1 ) similarity variable in the near-wall sublayer defined by:

c =  Ao/4A j - (6-51)X
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and once again an affine transformation has been incorporated. Following a 

procedure similar to tha t used above, it can be shown th a t g(()  satisfies the 

following nonlinear differential equation:

4g"' -  2(g 'f  +  3gg" =  4w, (6.52)

along with the boundary conditions

0(0) =  p#(0) =  0, 0 ,"(oo) =  l. (6.53)

This nonlinear equation was solved using the same numerical procedure used 

before, and the solution for co = 0 yields g"{0) =  2.009 (correct to three decimal 

places). Furthermore, the wall shear stress distribution immediately downstream 

of the corner point is given by

ts{x ) = gn(C)x1̂  +  • • ■ as x  —v 0+ . (6.54)

Figure 6.16 compares the skin friction for 2D flows obtained using the three- 

level finite-difference method described in Sec. 6.3 with the asymptotic results 

given by Eqs. (6.47) and (6.54). It is evident tha t the numerical solution exhibits 

the correct asymptotic behaviour as x  —»• 0+ , thus confirming the sharp behaviour 

of ts immediately downstream of the ramp.



C H APTER 6. RESU LTS FOR STRO NG  WALL COOLING CASE 132

(a). A.o=(5o=0.3, to=0.533, h” (0)=1.536
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F igure  6.16: Asymptotic behaviour of the skin friction rs immediately down­

stream of the ramp (2D, subcritical case).
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Subcritical Flows w ith  Separation

7.1 Introduction

It is clear from the results of the previous chapter that flow separation occurs once 

the scaled ram p angle exceeds a certain critical value /3J» which is itself dependent 

on the body radius. Solutions exhibiting comparatively large regions of reversed 

flow have been obtained by Brown et al. (1990) and Cassel et al. (1996) for 2D 

flows with moderate supercritical wall cooling (i.e. Ne ^  1 and £  < 0). These 

results indicate th a t the size of the separation region becomes smaller as the 

tem perature factor decreases -  or equivalently as the Neiland number increases 

-  and th a t strong wall cooling can ultimately inhibit separation altogether.

This chapter will primarily focus on the separation phenomenon occurring
SlVo Afl

in 2D hypersonic flows over compression ramps with subcritical wall cooling. It 

is rather surprising th a t no solutions of the triple-deck equations (5.8)-(5.10) 

and (5.39) containing reversed flow regions have so far been obtained for this 

case, which is believed to be due to the de-stabilizing effect of subcritical wall 

cooling (see Cassel et al. 1996).

The present problem for the lower viscous sublayer is similar to th a t consid­

ered by Smith & Daniels (1981) in their study of the incompressible boundary

133
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F ig u re  7.1: Schematic of the multi-layer structure in the sublayer near the ramp 
corner where the flow separates (not to scale).

layer flow over a small hump on a wall. In particular, it was shown tha t the 

Goldstein (1948) singularity, which shall be described in Sec. 7.2, can be removed 

through consideration of a series of regions having successively shorter stream- 

wise length-scales, thereby perm itting a smooth transition into a separated region 

downstream of the hump (see Fig. 7.1).

Regions 1 and 2  simply serve to shift the singularity downstream to a certain 

streamwise location X 0. The flow within regions 3 and 4 is governed by an 

integro-differential equation, and its numerical solution shows th a t the flow can 

pass smoothly through separation. However the solution then term inates at a 

subsequent location X 0) where a more severe singularity develops. This behaviour 

indicates a strengthening of the reversed flow, and th a t another nonlinear region 

(labelled regions 5 and 6  in Fig. 7.1), centered on X 0i is required to remove the 

singularity.

The scalings and nature of the solution in regions 1-4 have been described in
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detail by Smith & Daniels (1981) for the incompressible case, and later by Kerim- 

bekov et al. (1994) for subcritical hypersonic flows with separation well upstream 

of the ramp corner. The purpose of the present study is to extend this work 

to consider the flow separation and reattachment regions near the compression 

corner for ram p angles close to the critical value /3J for which separation first 

occurs, i.e.

=  Po +  Ne-4/3 /?2 + ■ ■ • . (7.1)

The numerical results of Chapter 6  suggest tha t =  0.48 for 2D flows with sub­

critical wall cooling, and tha t this critical value increases as the radius decreases 

for the AXI case.

In Sec. 7.3, the equations governing the flow in the inner interaction regions 5 

and 6  shall be derived, and their subsequent numerical solution and asymptotic 

behaviours shall be obtained in Secs. 7.3-7.7. The asymptotic solution in regions 

c and d downstream of the ramp corner shall also be determined in Sec. 7.5, and it 

shall be deduced tha t the reattachment point lies well within the nonlinear region 

5. It will also be shown in Sec. 7.8 tha t the separation process on AXI bodies 

within the inner interaction region 5 reduces to the 2 D case. A similar situation 

occurs for AXI flows with marginal separation, as will be shown in Appendix C.

7.2 G old stein ’s Singularity

7.2.1 L eading-order term s

The structure of the solution ahead of a point of zero skin friction x s, where 

separation first occurs, was first investigated by Landau & Lifschitz (1944) and 

Goldstein (1948). Immediately upstream of x s, it was shown th a t the boundary 

layer splits into two parts (labelled regions a and b in Fig. 7.1). It can be in­

ferred from the momentum equation tha t the transverse coordinate y which is
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0 ( ( —5 )1/4) in region a, where s = x — x s. In addition, the asymptotic expansion 

in Eq. (6.49) can be continued in the following form (see, for example, Sychev et 

al  1998):

rM x >v) =  “ A0( - s ) 3/V  +  ^ a0( - s ) r f

+ as s  ̂ 0 , (7.2)

where the constant A0 is the pressure gradient upstream of the separation point, 

and 77 is an 0 (1 ) similarity variable in this region defined by:

* =  (7-3)

The constants a0 and a\ can, in principle, be found through a numerical solution 

of the full leading-order problem given by Eqs. (5.33)-(5.35). It follows from this 

solution th a t the skin friction distribution immediately upstream  of x 8 develops 

a parabolic profile as given by Eq. (1.19). An im portant consequence of this 

singular behaviour is tha t the solution cannot be continued downstream of x s if 

the pressure gradient is prescribed in advance.

It can be inferred from the foregoing equations tha t the asymptotic solution 

as s —> 0 “ in the quasi-inviscid region b can be expressed in the following form 

(see also Kerimbekov et al. 1994):

'0o (x,y) =  $0 (y) + a 0Ao1( - s ) 1/2$o(2/)

+  ^lAgi ( - s ) 3/,4 ^'0 (y) +  • ■ • as s —> 0“ . (7.4)

The leading-order streamfunction 4?0 (y) must satisfy

$ 0 (y) = jUoy3 -  +  • • • , as y 0 (7.5)

in order to m atch with the solution (7.2) in region a. Matching a t the outer edge

of region b also requires th a t

$o(y) \ v 2 +  A G{xs)y +  • • ■ as y -» 00, (7.6)
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where A q(xb) can, in principle, be found from a global numerical solution.

The displacement function upstream of x s can be determined by a comparison 

of Eqs. (5.35c), (7.4) and (7.6), from which it can be shown that:

A 0(x) =  A0(£5) +  u o A ^ —s)1/2 +  tqAo x( - s ) 3/4 H  as s -» CT. (7.7)

This implies th a t the slope of the streamlines 90 at the external edge of the viscous 

sublayer is given by:

Go(x) =  +  * * ■ as s ^  0“ . (7.8)

Hence as s —» 0~, the slope of streamlines becomes very large in magnitude. 

This provokes the formation of an additional inner interaction region centred on 

x = x S) where the contribution of the sublayer to the displacement thickness 

can not be neglected. A preliminary estimate of the streamwise extent A x  of 

this inner region can be obtained by a comparison of the Ne” 1 A'(x)  term  in 

the original interaction law given by Eq. (5.40) with the pressure term  on the 

left-hand side yielding

A x  ~  Ne-2 , (7.9)

which is very small indeed for large Neiland numbers. However, it will later 

be shown in Sec. 7.5 tha t Eq. (7.9) underestimates the true extent of the inner 

interaction region (cf. Eq. (7.73)), since it does not take into consideration the 

solution downstream of the separation point.

7.2 .2  H igher-order term s

It follows from Eq. (5.31) and the 2D interaction law given by Eq. (5.40) th a t pi 

satisfies the equation:
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Since the distribution of Ao(^) immediately upstream of x a is given by Eq. (7.7), 

Eq. (7.10) can be solved yielding the following asymptotic behaviour for pp.

Pi (x) — Pi{%s) ~  o , o \ l (~ s ) 1̂ 2 H , as s —̂ 0 . (7.11)

The asymptotic solution for the next-order term ipi was given by Smith & 

Daniels (1981):

0 i  {x,y)  =  \n(—s)l /Ahi(ri) +  h2{p) +

(—s)1/4 ln(—s)i/4 /i3 (?7) -1- (—s)l 4̂ ^ 4 (?7) +  • • • as s - » 0 “ , (7.12)

where the functions hi(r]) satisfy the boundary conditions:

hi(0) =  /ij(0) =  0 for i =  1 , . . .  , 4. (7.13)

The solutions for hi, h2 and /i3 are given by:

hi{rj) — for i =  1, 2, 3, (7.14)

where bi are constants. The equation for is given by:

K  -  \ \ v 3K  +  -  1 a o!?/l4 =  ~  (7.i5)

By making the substitution k =  77/14, Smith & Daniels (1981) were able to obtain

an analytic solution of this equation which is not exponentially large as 77 —» 0 0

provided th a t

h  =  M o T  (7-16)

where

1 r ( 3/ 4)

Equation (7.12) suggests tha t in region b 

'0 i (x,y) = j ^ l n ( - s )  +  b2 -f ^ ( - s ) 1/4 ln ( - s )  +  &4 ( - s ) 1 /4  j
x Aq 4 (—s) ^ ^ ^ 9 (2/) T • • • as s ■—¥ 0 . (7.18)
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It can be inferred from Eqs. (5.31) and (5.40) th a t for 2D subcritical flows, p2 

is given by:

The solution for '02 in region a was sought in the following asymptotic form:

'020r, V) =  +  (~ s)m+1/4 / 2 (77) +  ■ • ■ as 5  -> 0 , (7.20)

where m  is an unknown constant to be determined as part of the solution and 

the functions f] satisfy /*(0) =  //(0) =  0 for i — 1 and 2. Upon substitution of 

this expansion into Eq. (5.36), it can be shown th a t the only non-trivial solution 

which does not exhibit exponential growth as 77 —> 0 0  occurs when m  — 0, in 

which case

where c; are arbitrary constants. Hence the solution for '02 in region a can be 

expressed as

By making use of Eqs. (5.42), (7.11) and (7.19), the asymptotic behaviour of 

the pressure immediately upstream of x s is given by:

p[x ) =  A0 +  A0s +  Ne 1 {pi(xs) -  aQA0 ^ - s ) 1/2}

+  Ne-4/3 {/52 +  p2s} +  • • ■ , as s —> 0” . (7.25)

(7.19)

M v )  =  \c ip 2 for i =  1, 2, (7.21)

Ip2(x,y)  =  ^ V2 {°1 + c 2(~ s )1/4} H  as s 0 . (7.22)

This solution suggests the following expansion in region b:

^ 2 (£,2/) =  c52(?/)(-s) as s 0 (7.23)

where

(7.24)
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7.3 T he Inner Interaction R egion

7.3.1 U p p er region 6

It can be shown th a t the solution for the pressure, displacement and streamfunc­

tion in the upper region 6 can be expressed in the following asymptotic form:

p(x) =po(xs) +  (Ne-1 lnNe)A0X 0 (7.26a)

+  Ne 1{pi(xs) +  AoXo} +  Ne 4/3 XQ2̂ 3P ( X )

A(x) = A q(x s) +  Ne” 1/3 A f /3B { X )  +  • ■ • , (7.26b)

i)(x, y) =<[>0(y) +  Aq 2/3 Ne-1/3 B(X)$'0(y) +  • • • , (7.26c)

where X  is a new streamwise variable defined by:

x =  x t +  (N e-1 In Ne)X0 +  Ne-1 X 0 +  Ao5/3 Ne- 4/3 X .  (7.27)

Matching with the solution in region 4 obtained by Kerimbekov et al. (1994)

requires that:

P ( X )  -!■ X  +  i x ( - X ) - 1/2 +  ■■■)
> as X  —» — oo, (7.28)

B ( X )  ^  / / ( - X ) ” 1/2 H  J
where the constant fi was defined by Eq. (7.17).

Upon substitution of Eqs. (7.26a-b) into the pressure-displacement relation 

given by Eq. (5.40), and making use of the above upstream boundary conditions, 

it follows th a t the interaction law in the inner region takes the following form:

d P  d B  d F  ,
d x ~ d x ~ d x  +  1- ( 7 -2 9 )

Since A0 =  p0 (to leading-order) in the interaction region, the scaled surface

geometry / ( x) =  Ne-4 3̂ F { X )  is given by

0, X  < 0,
F ( X )  = { (7.30)

X, X  > 0.

j s m  
i m m m p f  
u m m f  o f
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In addition, it can be inferred tha t the slope of the streamlines 6 a t the external 

edge of region 6 is given by:

/>/ '* dA  , dB
^ ) =  - ^  =  - A“ N e d x -  <7'31)

This result can also be determined from the fact tha t

w  = z  = - %  (7-32)

and it can be easily verified th a t the slope of the streamlines throughout region

6 remains constant and equal to tha t given by Eq. (7.31).

7.3 .2  Lower region 5

The solution in the nonlinear reattachment region 5 can be expressed in the 

following form:

il>(x,y) = \ o 1K e - 1<l>(X,Y), (7.33)

where Y  is a scaled transverse variable defined by:

y =  Ao2/3N e '1/3F. (7.34)

Hence, it follows that the inner interaction problem is now defined by:

d'P B2^  d<S d 2® _  dP  934/
BY B X B Y  ~ 8 X  B Y2 ~  “ dX  +  B Y 2’ ^  ’

along with the no-slip conditions at the body surface:

\I/ =  _  =  0 at y  =  0. (7.36)
o Y

The upstream  boundary condition for T is determined by asymptotically m atch­

ing with the solution in region 3 obtained by Kerimbekov et al. (1994) yielding:1

i '  —>■ \ y 2 +  \ h { - X ) - 1I2Y 2 + ■■■ as X  -> -o o . (7.37)
o z

1Eqs. (7.28) and (7.37) correct mathematical errors in Kerimbekov e t  a l .  (1994).
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It should be noted th a t in view of Eqs. (5.31) and (7.33), the third-order term  

given by Eq. (7.22) does not influence the solution in the inner interaction region. 

Matching with the solution (7.26c) in region 6  yields the following condition:

$  i y 3 +  1 B (x ) Y 2 + ■■■ as Y  oo. (7.38)
o z*

Furthermore, it can be shown using Eq. (7.32) tha t the distribution of 6 in region 

5 is given by:

0(z) =  -A oN e ^ .  (7.39)
W y

Matching with Eq. (7.31), which is valid at the outer edge of region 5, shows tha t

9W dB  aw „
8 X ~ d X d Y  aS ^ ° ° ’  ̂ ^

and it can be confirmed tha t this expression is consistent with the boundary

condition (7.38) for large Y.  It should be emphasized th a t the affine transform a­

tions employed in this chapter render the inner interaction problem completely 

independent of both the critical ramp angle /?£ and the pressure gradient A0 

immediately upstream of the ramp corner.

Smith & Daniels (1981) obtained a numerical solution of a similar inner in­

teraction problem for the incompressible boundary layer flow over a small hump 

on a wall, and found tha t a smooth solution exists for all X .  However, their 

steady-state code eventually proved to be divergent a t a certain streamwise lo­

cation. Zhikharev (1993) obtained solutions of another interaction problem with 

marginal separation far upstream of the ramp corner where F{ X)  =  0 (see also 

Appendix C). However, it should be emphasized tha t both of these solutions were 

obtained using boundary conditions different from those employed in the present 

study.

Before discussing the unsteady numerical algorithm for the solution of 

Eqs. (7.35)—(7.38), along with the interaction law (7.29), the asymptotic be­

haviour of this system of equations far upstream and downstream of the ramp 

corner shall first be determined.



C H APTER 7. SU BC RITIC AL FLO W S W ITH  SEP AR ATIO N 143

7.4 U pstream  A sym ptotic  Solution

7.4.1 L eading-order term s

The solution of the nonlinear inner interaction problem was sought in the follow­

ing asymptotic form in the limit as X  —> — oo:

*  =  g(-*)3/V  +  ( - X T f M  +  ( ~ x ) 2a- 3/ iM v )  +  ■■■, (7.41a)

P  =  X  +  c { - x y  +  ■■■ , (7.41b)

B  =  c { - x y  + --- , (7.41c)

where a , 7  and c are constants to be determined and

^ ( _ x ) 1/4 (7.42)

is 0 (1 ) in the inner interaction region. Prom the no-slip conditions (7.36) on the 

body surface, the required boundary conditions for f \  are given by:

/ 1  (0) =  / 1  (0) =  0. (7.43)

Upon substitution of Eqs. (7.41a-c) into the system of Eqs. (7.29) and (7.35)- 

(7.38), it can be easily verified tha t the only non-trivial solution for f \  satisfying 

the required boundary conditions is given by

h i v )  = C7-44)

where ai is an arbitrary constant. It should be noted th a t this solution is valid 

for any value of a. Moreover, since the pressure gradient is of the same order 

of magnitude as the convective and viscous terms, it can be inferred from the 

interaction law and Eq. (7.38) tha t

7  =  a — 1/2 and c  = a \ .  (7.45)
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7.4 .2  H igher-order term s

It can be shown th a t / 2 satisfies the following equation:

along with the no-slip boundary conditions:

h (  o )  =  m  =  0 . (7.47)

It is evident from Eqs. (7.41a-c) and (7.44) tha t in order to be consistent with 

the upstream  boundary condition given by Eq. (7.37), it is required tha t

where fi was defined by Eq. (7.17). The solution of Eqs. (7.46) and (7.47) for the 

case a  =  0, which has never been obtained before, is unique under the additional 

condition of absence of exponentially growing terms in the asymptotic expansion 

of the function 7 2 (77) as 77 —» 0 0 . This condition occurs only if the second of the 

matching conditions (7.48) is satisfied.

In the present study, a novel technique shall be employed in order to solve 

Eqs. (7.46) and (7.47) with a  =  0 for both / 2 (77) and the constant a\ (which will 

be assumed unknown), and in so doing it will be verified th a t ax — (j,. Therefore, 

this analysis will produce the required solution for / 2, and it will also confirm the 

validity of the upstream boundary condition (7.37), both of which are required 

for the subsequent numerical solution of the inner interaction problem.

The function / 2 was expressed in the form:

where the linearly independent solutions si and s2 satisfy the following equations:

a  — 0  and a\ = fi ps —0.9560 (7.48)

ai{aisi(?7) +  s2(r))}, (7.49)

(7.50)

(7.51)
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subject to the initial conditions:

Si(0) =  0, sj(0) — «j, sj'(0) =  0 i = 1 , 2 .  (7.52)

The third condition follows from the observation tha t an arbitrary term  of 0(r]2) 

can be added to any solution of Eqs. (7.50)-(7.51). The value of Ki is deter­

mined from the requirement th a t the resulting solution for s* must not exhibit 

exponential growth as 77 —> 0 0 .

From inspection, it can be deduced th a t the solution for the case i = 1 is 

given by:

si — 77 and =  1. (7.53)

The solution for S2(rj) was obtained numerically by integrating Eq. (7.51) using

the predictor-corrector method described in Appendix A .l, starting from the 

initial conditions (7.52). In order to determine the value of k,2 which does not 

result in exponential growth in s2 as 77 -» 0 0 , it is im portant to consider first 

the asymptotic behaviour of Eq. (7.51) for large 77. It can be verified th a t to 

leading-order:

1 , 9 4 ,s2 ~  ~b2rj +  — H  as 77 ->■ 0 0 , (7.54)

where the constant b2 is to be determined. This suggests th a t k2 can be computed

as a root of the equation:

0 ( « 2 )  -  s"'(o o ; k 2 ) =  0 ,  (7.55)

which can be solved using either the Newton-Secant or Bisection method. The 

numerical solution for S2 -  which is shown in Fig. 7.2 -  yields:

k,2 «  0.9560 and b2 «  1.312. (7.56)

It is also evident th a t this solution exhibits the correct asymptotic behaviour for 

large 77 given by Eq. (7.54).
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F ig u re  7.2: Numerical solution for s2(r]), s'2(r]) and s2(rj).

In addition, since f 2 ( 0) =  0, it follows from Eqs. (7.49), (7.53) and (7.56) th a t

s2(0) n nccn (>-?
ai =  “ ^ (5 )  =  “ a9560, (7'57)

which is in very good agreement with the expected result th a t a\ must be equal 

to /i (cf. Eq. (7.48)). This confirms the analysis of Smith & Daniels (1981) for 

the higher-order streamfunction t/q (see also Sec. 7.2.2). The numerical scheme 

employed here can also be used to solve Eq. (7.50), and the resulting numerical 

solution strongly confirms the analytic solution given by Eq. (7.53).
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The above analysis yields the following asymptotic expansion for the stream ­

function as X  —» — oo:

xjf =  ^ 3( " ^ ) 3/4 +  +  s2(v)} +  • • • . (7.58)

By substituting Eqs. (7.53) and (7.54) into Eq. (7.58), and making the replace­

ment rj =  y ( —X )-1/4, it can be shown that:

T 1  y 2  1 r  ^ —3/4 f y  ! ,  Y 2 \
* _ a 5 +  +  N ~ x )  Y ( ^ x y 7  + 2b2( ^ x y » \  + ' - ' ■

(7.59)

This result can now be used to determine the asymptotic behaviour of the dis­

placement function B ( X )  upstream of the ramp corner by comparing with 

Eq. (7.38) which yields:

£ (X )  =  n ( - X ) ~ l/2 + l k ( - X ) - s/4 + ■■■ as X  -> -o o . (7.60)

Finally, the pressure P( X )  can be determined using Eq. (7.29), and making use 

of the fact tha t F ( X )  = 0 upstream of the ramp comer:

P ( X ) = X  + » ( - X ) - 1/2 + h  2 ( - X ) - 5/4+  «; +  ••■ as X  -> -o o , (7.61)
Z

where k is defined by

K = Aq/3/?2 • (7.62)
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7.5 D ow nstream  A sym ptotic  Solution

7.5.1 L eading-order term s

Using an argument analogous to th a t used in Sec. 7.2, it can be inferred th a t 

the boundary layer downstream of the interaction regions 5 and 6 remains split 

into two parts (labelled regions £c’ and ‘d ’ in Fig. 7.1). From Eq. (6.50), the 

leading-order solution in the lower viscous sublayer c is given by

if)0(x, y) == Aj/4# /4^(C) +  • • • as x  0+ , (7.63)

where g(()  is the solution of Eqs. (6.52)-(6.53) and x denotes the streamwise 

distance from the ramp corner which is given by (cf. Eq. (7.27)):

X  =  X  -  x s -  (N e-1 In Ne)X0 -  Ne”1 X 0 =  5/3 Ne~4/3 X.  (7.64)

The similarity variable (  was defined by Eq. (6.51), and can be expressed in terms 

of the inner variables as follows:

C =  =  T P -  (7.65)

In order to determine the solution in the upper region d where the viscous term  

is negligible in comparison to the convective terms, the asymptotic behaviour of 

Eqs. (6.52)—(6.53) for large £ should be considered, and it can be verified that:

g ~  ~C3 +  2C°^2 — 2 ° ^  * '' aS ^ ~^ ° ° ’ (7.66)

The constant c0 can, in principle, be found through a numerical solution of 

Eqs. (6.52)-(6.53). Equations (7.63)—(7.66) suggest th a t the solution in the quasi- 

inviscid region d can be expressed in the following asymptotic form:

'0o(x, y) =  $o(2/) +  ^ 1/4$ i (y) H  as x  -» 0+ , (7.67)
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where <fr0 {y) is the streamfunction in the vicinity of the ramp corner (cf. Eqs. (7.4)-

(7.6)). In order to match with the solution (7.63) in region c, the functions $i(y)

must satisfy the following boundary conditions:

1 1
$ 0 ( 2 / )  =  g Aoy 3 +  • • • , $ 1 (2 / )  =  2 Ao/ 4 coy 2 H--------  as y  -»  0. (7.68)

Upon substitution of Eq. (7.67) into the momentum equation (5.33), it can be

verified th a t

^ / \ d4>0
$ 1  =  (7-60)

The constant a  can be determined using the boundary conditions given by 

Eq. (7.68), and it follows tha t

a =  c0X ^ \  (7.70)

It can also be inferred using Eqs. (5.35c), (7.6) and (7.67) th a t the asymptotic 

solution for the displacement function A(x) in regions c and d is given by:

A q(x ) — 4l0(a;s) +  4-----  as x -4- 0+ . (7.71)

Therefore, the slope of the streamlines at the outer edge of region d is given by:

00{x) = — =  ~ x ~ 3/4 +  • • • as x  —» 0+ , (7.72)
da: 4 v 1

which can become very large as x  —>■ 0+ . Using this result, it can be inferred from 

the interaction law (5.40) tha t the streamwise extent of the nonlinear interaction 

region is given by

A x  ~  Ne-4/3, (7.73)

which is much larger than the previous estimate given by Eq. (7.9). Moreover, 

this estimate is of the same order of magnitude as tha t of the inner interaction

regions 5 and 6, thus confirming the expectation that the reattachm ent point lies

within this region.
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Although not required for the subsequent analysis, the solution in regions c 

and d for the case in which t0 =  0(1) can also be obtained using a method similar 

to th a t employed above. From Sec. 6.5, the solution in region c is given by:

'0o(£, y) = - r 01/ 3772^ 2 /3  +  A0TClxh(rj) H  as x  0 +, (7.74)

where

V =  P ^ j - r  (7.75)

It can be verified tha t the asymptotic behaviour of the function h(rj) for large 77 

is given by:

1 Qh -r} +  dot] +  • • • as ti —̂ 0 0 . (7.76)
6

The numerical solution of Eqs. (6.44)-(6.46), which was obtained in Sec. 6.5, 

shows tha t do = 1.427. Using these results, it can be shown th a t the asymptotic 

solution in region d is given by:

0o0c, y) — Q0(y) +  d0 A0T^5/3x 2/ 3O'0 (y) +  • • • as x  0+ , (7.77)

where

1 1

=  2T°y2 +  6 Ao?/3 +  ’ ”  aS V ° ’ 7̂‘78^

Oo{y)  -> i? /2 +  Ao(xs)y  H---  as y  00. (7.79)

It follows using the above boundary condition tha t

Ao(x) = Ao(xs) T  doXoR^^^ 2̂  + ' ’ ' as ^ 0 +. (7.80)
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7.5 .2  H igher-order term s

By making use of Eq. (7.71), the asymptotic behaviour of pi can be found by 

solving Eq. (7.10) which yields:

Pi(x) = Pi(xs) -T crx1̂  +  • • • as x —v 0+ . (7.81)

The solutions in region c for the higher-order streamfunction terms Ui and U2 in 

the asymptotic expansion (5.31) were sought in the following form:

ipi(x, y) =  (jxnki{Q H  as x  —>■ 0+ [i = 1 or 2), (7.82)

where a  was defined by Eq. (7.70) and n is to be determined. Substitution of 

Eqs. (7.63) and (7.82) into Eqs. (5.36)-(5.37) yields the following linear equation 

for bp.

K '  +  ~  ( n  +  g'k[ +  ng"ki =  j 4 ’ (7.83)
V J  [ 0 ,  i =  2,

subject to the no-slip boundary conditions ki(0) = k[(0) =  0. The third required 

boundary condition shall be discussed later in this section. The forcing term 

on the right-hand side for the case i = 1, which enters into the equation for k\ 

if n — 0, is due to the second-order pressure term given by Eq. (7.81). The 

appropriate value of n  for the case i =  2 was determined by considering a small 

streamwise perturbation of the form x — xq +  Ax,  where Xq is a characteristic 

streamwise distance downstream of the inner interaction region. It follows from 

Eq. (7.65) th a t the similarity variable (  can be expressed in the form:

C =  Co -  j ^ - A x ,  where Co =  ■ (7-84)
4 ^ 0  X q

Using this result, it follows from Eqs. (5.31), (7.63) and (7.82) th a t

u  = Aj/44 /4f/(Co) +  &k\(Co) Ne-1

+  Aj/4a;0 1j/4A x |-f/(Co) “  jCoP;(Co)^ +  era#&2(Co) Ne 4/>3 +  • • ■ . (7.85)
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If the streamwise disturbances are confined within the length-scale of the inner 

interaction region (i.e. A x  ~  Ne“4/3 from Eq. (7.73)), it can be inferred by 

comparing the third and fourth terms of the above expansion th a t n =  —1/4. 

Moreover, it follows th a t

k2(C) ~3<7 —Ctf', (7.86)

which can be verified by direct substitution into Eq. (7.83) with n  =  —1/4.

The higher-order terms for the solution in region d can be obtained using an 

argument similar to tha t used in Sec. 7.5.1 for the leading-order terms. For n = 0 

or —1/4, it follows from Eqs. (7.66) and (7.83) tha t to leading-order:

h  ~  - diC,2 -I  as C —» oo, (i — 1 or 2), (7.87)

where cZ* are constants. Upon substitution of this result into Eq. (7.82), and

making the replacement £ =  A i t  follows tha t the solution in region d 

can be expressed in the form:

Mx,v) =Ti(2/)$"1/2 +  -"  1 _ +
/ as x  —)■ 0 , (7.88)

^2{x,y)  = T 2(r/)S_3/4 H J
where the functions T i(y) satisfy the boundary conditions (for i =  1 or 2):

T i{y) ~crdiXl/2'ij2 H  as y -> 0. (7.89)

Upon substitution of Eqs. (7.67) and (7.88) into the higher-order momentum

equation (5.36), and making use of the boundary condition given by Eq. (7.89),

it can be verified tha t

adi dfi>0

Tiiy) = I p N '  (7'90)

Since 'ipi —> Ai(x)y  as y —)■ oo, it follows tha t
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In addition, since T* Ai(xs)y as y oo, it can be inferred from Eqs. (7.6) 

and (7.90) th a t

di = a - 1X10/2A i (xs). (7.92)

This implies th a t the third required boundary condition for Eq. (7.83), which 

hitherto has been left unspecified, depends upon the displacement effects A i ( x a) 

and A 2(xs) induced by perturbations of 0 ( Ne-1) and 0(N e~4/3) respectively to 

the critical ramp angle (3$. Although these conditions are required for the unique 

determ ination of Aq and &2, their solution is not strictly required in the subsequent 

analysis.

By making use of Eqs. (5.42), (7.19) and (7.81), the asymptotic behaviour of 

the pressure downstream of the reattachment point can be expressed in the form:

p(x) = (31 +  Ne-1 {pi{xs) + a x 1/4} + N e~ 4/3/?2 +  • • • as x  -* 0+ . (7.93)

In addition, the corresponding asymptotic behaviours of the streamfunction and 

displacement thickness in region c as x  -*■ 0+ are given respectively by:

'ip(x, y) =  Al /4x 3/4g(()  +  crAq(C) Ne-1 T a x ~ 1/Ak2(Q Ne_4/3 H , (7.94)

A(x) = A q ( x s ) + a x L/A +  A i{xs)x~l/2 Ne-1 T A 2(xs)x~3/A Ne-4/3 H . (7.95)

By expanding these solutions in terms of the inner variables defined by Eqs. (7.27) 

and (7.33), it can be shown that as X  —► oo,

*  (X, Y )  =  X 3' 4g( C) +  crAofci(C) +  o\% 112 X ^ h ^ )  +  • • ■ , (7.96a)

P( X )  = a , X l/i +  * +  • • • ,  (7.96b)

B { X )  =  coX1/4 +  A T A ^ X - ^  + A M ( x . ) X - V a + ■■■, (7.96c)

where the constant k is defined by Eq. (7.62). The above result for the pressure 

P ( X )  is also consistent with tha t obtained by integrating the interaction law 

given by Eq. (7.29).
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7.6 U n stead y  N um erical A lgorithm

7.6 .1  Form ulation  o f th e  In teraction  P rob lem

In this chapter, a novel unsteady algorithm developed by the author shall be 

employed in order to solve the nonlinear interaction problem discussed in Sec. 7.3. 

Previous experience has shown tha t interactive boundary layer problems involving 

separation can be successfully solved using the unsteady form of the governing 

equations, and by advancing the solution in time until a steady-state is reached. 

In order to consider small perturbations about the critical ramp angle (cf. 

Eq. (7.1)), the streamwise coordinate X  in the upstream asymptote given by

Eq. (7.58) was replaced by X  — A (where A is a parameter), which is equivalent

to a streamwise shift in the position of the ramp corner.

It is convenient to introduce the shear stress r  and velocity components U 

and V  defined respectively by:

dU TT d tf d® ,
T = W ’ U = 8 Y '  y  =  - a v  <7-97>

The nonlinear inner interaction problem given by Eqs. (7.35)-(7.38), along with 

the interaction law (7.29), can be expressed in the form:

dr  TTdr  dr  d2r
d t + d X + 8 Y  ~  &Y*' (7.98a)

d P  d B  d P  „ ,

d x ~ d x ~ d x  +  1’ ( 7 ' 9 8 b )

$  =  (7 =  0 at Y  =  0, (7.98c)

t =  Y  +  B{ X)  +  • • • as Y  oo, (7.98d)

T = Y  + fj,{ A - X ) - 1/2 +  4 a - X ) - 5 / V , ' ( £ )  +  - "  as X - + -  o o ,  (7.98e)

where the similarity variable £ is defined by:
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It should be noted th a t an unsteady time derivative term has also been included 

in Eq. (7.98a), where t denotes the time step, and tha t the surface geometry F ( X )  

enters into these equations only via the interaction law (7.98b). In order to avoid 

problems associated with the discontinuous derivative of the surface geometry 

F ( X )  a t X  — 0, the ramp comer was rounded slightly by defining F ( X )  as 

follows:

F ( X )  = \ { x  + V W + 1 p }  , (7.100)

where the rounding parameter R  was taken as 0.5.

The upstream  boundary condition given by Eq. (7.98e) involves the function 

s2 which was derived in Sec. 7.4, and whose solution is shown in Fig. 7.2. It

is also evident from Eq. (7.98e) tha t large positive values of A correspond to

comparatively small ramp angle perturbations, i.e.

@2 —̂ 0 as A —̂ co, (7.101)

whilst negative values of A correspond to larger perturbations, i.e.

/?2 -> oo as A —> —oo. (7.102)

7.6 .2  F in ite-d ifference schem e

The unsteady boundary layer equation (7.98a) was approximated using second- 

order accurate formulae for the spatial derivatives and first-order approximations 

in time as follows:

Ti’j  ~  Tt-i I TJ* ( ^ L \  I y *  ( r * » j+ 1 ~  T'ld ~ l
A t  V d X  J  id iJ V 2A Y

_  Ay-i-i — 2rj,j +  '7y;/- i

(A y )2 ’ [ }
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A uniform mesh defined by:

Xi  — -Amin +  (i — 1 )A A , 1 < i < I,

Yj =  (j ~  1)AY,

(7.104)

(7.105)

has been employed, and an asterisk is used to denote quantities evaluated at the 

previous time step. It should also be noted tha t conventional central differences 

have been used in the transverse direction, whilst the streamwise convective term  

is represented by an upwind or downwind formula depending on the local direction 

of the flow, i.e.

Equation (7.103) defines the following tri-diagonal problem for r ^ ,  3 <  i < I:

A similar finite-difference formulation for the momentum equation was employed 

by Cassel et al. (1995, 1996) for the solution of the triple-deck equations given 

in Chapter 5. In order to implement the interaction law (7.98b), the following 

fundamental relationships (which follow from Eqs. (7.98a) and (7.98c-d) must be 

considered:

for < 0.
(7.106)

C L j T i j _i +  b j T i j  +  C j T i t j + i  —  r 2 < j  < J  — 1, (7.107)

where

2 1
(7.108a)

aj ( A Y ) 2 A F

)j ( A Y ) 2 +  2 A Y ’ 
2

1
(7.108b)

(7.108c)

(7.108d)
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Using these results, Eq. (7.98b) can be expressed solely in terms of the shear 

stress and known surface geometry F( X )  as follows:

dr  \  f  dr  \  d F
d Y v—o

d r \
+ 1. ( 7 . 1 1 0 )

This equation yields the first required boundary condition for r  and can be ap­

proximated using the following second-order accurate difference formula:

— 3 7 ^ 1  T 4 t ^ 2  —  T i)3 _  T f _ 2 ,J  +  3 T i ' j d F
d X + 1. (7.111)2 A Y  2 A X

It should be noted th a t a backward (upwind) quotient has been employed at 

the outer edge of the computational domain where j  — J  since the interaction 

problem does not permit upstream influence. In addition, the shear stress is 

assumed unknown at the current streamwise location Xi  where the solution is 

sought, whilst the solution at the previous two spatial steps i — 1 and z — 2 is 

assumed known from the previous time step (hence the asterisk). The foregoing 

equation can be rearranged in the following form:

— 37i t +  Atso -  Ti 3 3 r ,;ijtJ i —2 , J 4 t *£—I,- d F
dX2 A Y  2 A X  2 A X

It is also evident from Eq. (7.98d) tha t

— )  =  1 «  Ti’J~2 ~  47V “ 1 +
d Y

+  1 = M*. (7.112)

Y —too 2 A Y
(7.113)

which is the second required boundary condition. Equations (7.107), (7.108),

(7.112) and (7.113) can be expressed in the following form:

( - A  B  - C  d \  (  T t \  (

0-2 2̂ 0-2

O ' J - 1  b j - i  C j - l

C ~~B A

To

T j - i

\ T j  /

r  2

Tj -  1

V 1 J

(7.114)
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where Tj — is the shear stress at the current streamwise location AA In 

addition,

A = 2 A Y ’ B  =  A Y ’ C = 2 A Y '  D  =  ~ 2 A X ’ ( 7 U5 )

Unless otherwise specified, all the other elements in the coefficient m atrix are 

zero.

7.6 .3  S o lu tion  procedure

Starting from the upstream solution given by Eq. (7.98e) at i =  1 and 2, Eq. (7.114) 

was solved (for 3 <  i < I)  to determine the solution at the current streamwise 

location X i} using the computed solution from the previous location as the initial 

distribution. The solution was marched downstream to X  = ATmax to yield a new 

distribution of throughout the entire computational domain. The marching 

technique was then repeated in order to determine the solution at the next time 

step, and the procedure is repeated until a steady-state is reached.

An efficient Gaussian elimination solver for tri-diagonal systems was employed, 

suitably modified to take into account the extra non-diagonal elements in the 

coefficient m atrix of Eq. (7.114). Firstly, the J -th  row of the system was expressed 

in tri-diagonal form using the (J  — l)- th  row as follows:

— ( B E  +  b j_ i )T j - i  T  (AE — cj_ i )Tj = E  — r j_ i , E  —  J 1. (7.116)
o

Next, the m atrix was reduced using Gaussian elimination to upper row-echelon 

form using the lower-diagonal elements a.j as pivots (which are non-zero from
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Eq. (7.108a)), which yields the reduced system of equations:

- A  B  - C D \  ( Tl \  (
- D  T2 f 2C2

i  y ~ i D (7.117)

b j - i  c j - i  T j _ i  r j _ !

V
where the tilde ~ indicates the computed elements after the elimination process.

The use of aj as the pivot elements enables the entries of the J - th  column to 

be known in advance. This reduced system of equations were then solved very 

efficiently using backward substitution.

The streamwise velocity U and streamfunction T were then determined by in­

tegrating Eqs. (7.97) using the Trapezoidal rule, subject to the no-slip conditions 

a t the body surface i =  =  0. The transverse velocity V  — —d ^ / d X  was

then determined using forward or backward differences depending on the sign of 

Uij in a manner similar to tha t used in Eq. (7.106). It was observed tha t the use 

of central differences render the algorithm unstable.

The computation was marched forward in time until a steady-state was 

reached, and this was assumed to take place when the maximum difference in 

the skin friction distribution between successive time steps was less than a spec­

ified tolerance level e, which was taken as 10“7 for all of the results shown here. 

A linear stability analysis shows th a t this novel unsteady algorithm is numeri­

cally stable if the Courant-Friedrichs-Lewy criterion is satisfied (see, for example, 

Anderson 1995 and Guardino 1995):

m a x
(7.118)
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It follows from E q. (7.98d) tha t the maximum streamwise velocity

^max ^  (7.119)

However, due to the non-linearity of the boundary layer equations, as well as 

the possibility of instabilities which may arise from the implementation of the 

boundary conditions (7.112)—(7.113), the time step A t  was restricted to values at 

least one-half of th a t indicated by Eq. (7.118).

An im portant feature of this method is tha t the shear stress is assumed un­

known at both j  = 1 and j  =  J , and is determined from the solution of the above 

system of equations. This is in stark contrast to the steady-state approach used 

by Smith & Daniels (1981), in which the shear stress a t the outer edge Tj  = Titj  

is assumed known from the previous iteration. It turns out th a t physically un­

realistic converged solutions are obtained if this approach is used in the present 

unsteady algorithm. In fact, the generation of spurious steady-state solutions 

is not uncommon in unsteady CFD codes (see also the recent review of Yee & 

Sweby 1998). The novel algorithm described above is globally second-order ac­

curate in space and first-order accurate in time2 , and was found to be robust. It 

was also observed th a t the third-order term in Eq. (7.98e) is of crucial importance 

in order to obtain the correct upstream asymptotic behaviour given by Eq. (7.37).

Once the shear stress t  has been determined throughout the entire computa­

tional domain, the displacement function B ( X )  is found using Eq. (7.98d), which 

can also be expressed in the form:

B{ X )  = lim (t  — Y) .  (7.120)
Y —»oo

The pressure P ( X )  can then be determined at any desired tim e using the inter­

action law given by Eq. (7.98b), and it can be shown that

P( X)  = B ( X )  -  F{ X)  P X P k , (7.121)

where k was defined by Eq. (7.62).

2Since steady-state solutions are sought, the first-order accuracy in time is irrelevant.
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7.7 R esu lts & D iscussion

Calculations were carried out using a number of mesh sizes and the results are 

believed to be globally grid independent. Unless otherwise stated, all the numer­

ical results shown here were obtained using a uniform mesh with I  = 150, J  = 

100, X mjn =  —50, X max =  50 and ymax =  10. In addition, the time step A t  was 

taken as 5 x 10~3.

It is evident from Fig. 7.3 tha t the numerical solution for the case A =  0 

exhibits the correct upstream asymptotic behaviour given by Eqs. (7.58) (with 

Y  = 0) and (7.61), namely

where n & —0.956 and b2 ~  1.312. The third-order term  in Eq. (7.58) can 

be om itted from the expression for the skin friction because s^fO) =  0. More­

over, the solution clearly tends to the downstream asymptotic solution given by 

Eqs. (7.96a-c), which to leading-order can be expressed in the form:

where Co is the constant in the asymptotic expansion (7.66) of the function g{rj) 

for large 77. The numerical solution of Eqs. (6.52)—(6.53) (with uj =  0) yields 

Co ~  0.995 and g”(0) «  2.009. It is interesting to observe th a t Eq. (7.123) also 

yields a reasonably accurate shear-stress distribution for small values of X , even 

though the formula is strictly only valid for large X .

Solutions were also obtained for various values of A, and the results for the 

surface shear stress are presented in Fig. 7.5. These results show tha t as A be­

comes large (i.e. as the ramp angle perturbation fa decreases), the size of the 

separated region is reduced and ultimately vanishes as A -> 0 0 . Moreover, all

(7.122)

T, ( X )  =  g"(0)X1/4 +  , P ( X )  =  c0X 1/4 +  k +  • ■ • as X  -t- oo, (7.123)
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the solutions exhibit virtually the same downstream behaviour, which is why the 

higher-order terms in Eqs. (7.96a-c) can be neglected. In addition, the reattach­

ment point is very close to the point X  = 0 for all values of A, which implies th a t 

the separated flow region is always located upstream of the ramp corner.

The separated region is shown graphically in Figs. 7.4 and 7.6, where the 

velocity vectors are plotted for the cases A =  0 and —7 respectively. It is evident 

from these pictures tha t the speed of the fluid in the reversed flow region is much 

smaller in comparison to the rest of the flow field. Moreover, the strength of the 

recirculation region increases and a vortex is generated which moves upwards into 

the flow for decreasing values of A.

The convergence histories of the numerical solutions are shown in Fig. 7.7, 

where A is the maximum difference in the skin friction distribution between 

successive time steps, i.e.

A =  max (r^i — t *̂ ) , 1 < i < I. (7.124)

Clearly, the time required to obtain steady-state solutions increases as A de­

creases, and no converged solution using the current mesh size could be achieved 

for values of A less than —7.22.3 A similar kind of numerical breakdown was 

observed in the steady-state calculations of Zhikharev (1993) for the marginal 

separation from a subcritical cold wall (see Appendix C). In fact, the impossibil­

ity of obtaining converged solutions at a finite value of the controlling param eter 

is typical of interactive boundary layer calculations (Smith 1988).

3Steady-state solutions for A < —7.22 could be obtained using a coarser grid, but with less 
resolution of the separated flow region.



M
x)d 

(x) i

C H APTER 7. SU BC RITIC AL FLO W S W ITH  SEPARATIO N 163

6

Numerical solution 
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F igure  7.3: Pressure P ( X )  — k and skin friction rs(X)  distributions for A =  0.
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F ig u re  7.4: Velocity vectors for A =  0 in the vicinity of the ramp corner.
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F igure  7.5: Skin friction rs(X)  distributions for various values of A.
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F ig u re  7.6: Velocity vectors for A =  —7 in the vicinity of the ramp corner.
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F igure  7.7: Residual histories for various values of A.
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7.8 E xtension  to  A xially-Sym m etric Flows

For z  ~  Ne_4//3, it can be inferred from Eq. (7.26a) tha t the pressure q(x,z)  in

the inviscid layer above the inner interaction regions 5 and 6 can be expressed in

the following form:

q(x, z ) =  qQ(z)p(N e~1 lnNe)qi(z) +  Ne-1 q2{z)
(7.125)

+  Ne-4/3 Q(X, Z )  +  ■ •■ ,

where X  and Z  are 0 (1 ) variables defined by (cf. Eq. (7.27)):

X  =  x„ +  (Ne-1 In Ne)X0 +  Ne"1 X 0 +  A„ 5/3 Ne~4/3 X ,  (7.126a)

x =  A^5/3 Ne"4/3 Z. (7.126b)

Notice th a t x  and z  are scaled identically (with respect to terms of 0 (N e-4 3̂)) to 

avoid degeneration of the wave equation (5.20). Matching with the asymptotic 

expansion for the surface pressure given by Eq. (7.26a) requires that:

q0 Pq(x8), 

q± —> AoXq,

Q2 P i { % s )  +  A q X q , y

as z - > 0 .  (7.127)

J -Z5
Upon substitution of Eqs. (7.26b), (7DSQ and (7.126) into the axially-symmetric

wave equation (5.20), it follows tha t in the cold wall limit Ne oo:

qi(z) =  Ai ln(z + r) + Bi, i = 1, 2, 3, (7.128)

=  0 (7129)d X 2 d Z 2 ’ U-129J

where Ai and B{ are constants and r  is the radius. It can also be inferred from 

the matching condition (5.29) tha t

t f  = o, i = 1- 2- 3- a t  2 * 0  (7’130)
d2S  d2F  d2P  „
d X 2 d X 2 ~~ d X 2 _  ' (7.131)
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\%T
Applying the boundary conditions given by Eqs. (7$) and (7.130) shows that:

q0 =  po(x8), qi = A0X 0, q2 =  pi{xs) +  A0vY0. (7.132)

Moreover, the inner pressure distribution Q (X, Z) for the axially-symmetric case

is governed by the two-dimensional wave equation (7.129), which has the well- 

known D ’Alembert solution (cf. Eq. (5.38)). In addition, it can be inferred from 

Eqs. (7.28) and (7.131) tha t

dP dB  dF  , ,
d X  ~  dvY d X  +  ’ (7.133)

which is identical to the 2D interaction law given by Eq. (7.29). Consequently, 

the problem for AXI flows in the vicinity of the separation point reduces to the 

solution of an equivalent 2D case.



C onclusions & Suggestions for 

Further W ork

In Part I of this thesis, the self-similar equations for the hypersonic flow over 

very slender 2D and AXI bodies of the form ys(x) = r x 3/4 have been solved 

numerically. These solutions are of practical interest, since they yield reliable 

estimates for the skin friction and heat transfer rates without recourse to the 

solution of the full Navier-Stokes equations. The influence of the slenderness 

ratio r on the boundary layer thickness 5 was also determined analytically, and 

new quadratic and cubic formulae for 6 have been derived. It was also observed 

tha t there exists an optimum value of r which results in minimum drag and heat 

transfer on AXI bodies.

The upstream propagation of disturbances from the trailing-edge was consid­

ered by means of perturbing the boundary layer flow near the leading-edge, and 

analysing the resulting eigenvalue problem. Upstream influence was discovered 

for the AXI case for slenderness ratios and surface enthalpies greater than certain 

critical values. The numerical results for the 2D flat plate were found to be in 

good agreement with solutions obtained by previous authors. Asymptotic results 

have been obtained for very hot bodies, and the effects of varying the Prandtl 

number and ratio of specific heats have also been considered. New analytical 

results have also been obtained for cases in which the boundary layer thickness is

168
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negligible in comparison to the body thickness, particularly for power-law bodies 

of the form ys{x) =  r x a where a  <  3/4. It was discovered tha t the upstream 

influence effect decays exponentially as the leading edge is approached, and an 

analytic expression has been obtained for the upstream influence eigenvalue.

In Part II, the equations describing the interaction between the boundary 

layer (which proved to be predominantly inviscid) and external flow have been 

successfully solved for both 2D and AXI hypersonic flows over compression and 

expansion corners with strong wall cooling. In particular, the pressure distri­

bution in the inviscid upper-deck has been computed using both the Method of 

Characteristics and finite-difference ‘Leap-frog’ method, and it was observed th a t 

the former approach yielded oscillation-free solutions. The resulting pressure gra­

dient was subsequently employed in the solution of the boundary layer equation 

in the viscous sublayer using a fully-implicit downstream marching technique as 

far downstream as the separation point (for cases in which the flow does not sep­

arate, the solution can be continued indefinitely downstream). As expected, it 

was observed th a t the flow separates for compression ramps if the ramp angle is 

greater than  a certain critical value. For AXI flows, it was observed th a t the pres­

sure gradient becomes favourable at a certain distance downstream of the ramp 

corner, and th a t the minimum in the skin friction distribution increases as the 

radius is decreased for fixed ramp angle. It was also discovered th a t the flow over 

expansion corners separates if the radius is smaller than a certain critical value. 

New self-similar solutions were also found far downstream of the ramp corner for 

flows without separation, and also for cases exhibiting incipient separation.

Separated hypersonic flows over 2D compression ramps with strong subcritical 

wall cooling have been considered using an asymptotic theory based on the ‘com­

pensation’ regimes originally described by Smith &; Daniels (1981) for incompress­

ible flows in order to remove the Goldstein singularity at the separation point.
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The resulting fundamental inner interaction problem was successfully solved for 

various ramp angles close to the critical angle using a novel semi-implicit unsteady 

algorithm developed by the author, and the solutions are believed to be the first 

ever obtained for the present case. It was observed tha t the separated region lies 

entirely upstream  of the ramp corner. In addition, asymptotic solutions far up­

stream and downstream of the interaction region were derived, and the numerical 

solutions were found to be in very good agreement with both of these analytical 

results. Finally, it was shown tha t the asymptotic theory considered here, as 

well as marginal separation theory, can both be used to describe the separation 

process occurring in axially-symmetric flows.

There is much further interesting work which can be carried out to extend the 

present study, some ideas of which are listed below.

• Analysis of the hypersonic flow over axially-symmetric compression or ex­

pansion corners for cases in which the radius of the body is of the same order 

of magnitude as, or even much less than, the boundary layer thickness. As 

discussed in Sec. 1.2, this situation corresponds to the case Q ^  1 .

• Development of a modified triple-deck theory for cases in which the ramp 

corner is located in a region of strong global viscous interaction. Brown et 

al. (1975b) have already considered this case for 2D flows under the as­

sumption th a t 7  is close to unity. The effect of wall cooling would also be 

of particular interest.

•  Analysis of the hypersonic flow with transcritical wall cooling (i.e. where 

the Pearson integral \C\ «  !)■

•  Consideration of the overall body rotation, since this may provide dynam­

ical stability to a vehicle in flight. If the axis of rotation is parallel to 

the oncoming freestream flow, the problem would not be as formidable as
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it may first appear since the formulation would be mathematically two- 

dimensional. Furthermore, it is anticipated tha t the boundary layer would 

bifurcate into two layers for relatively high rotation rates.

•  Consideration of non-zero angles-of-attack. This would complicate the for­

mulation of the problem for AXI cases since the flow would be truly three- 

dimensional.

• Inclusion of real gas effects (including chemical reactions), and the use of 

a more realistic temperature-viscosity law, such as Sutherland's Law, since 

these are im portant for real hypersonic flows (see, for example, Ander­

son 1989 for further details).



A p p en d ix  A

N um erical Solution of O rdinary  

D ifferential Equations

A .l  Initial-V alue Problem s

Consider a general nonlinear second-order initial-value problem of the form:

y" =  <f)(x, y, z), 3  =  2/', a < x < by (A .l)

y(a) = a , y'{a) = A, (A.2)

This equation can be solved using the following second-order accurate Predictor- 

Corrector method (for 2 < i < N)\

V*i — Vi-i +  hzi_iy (A.3)

z* = Zi_i +  h 0 ( ^ _ i ,^ _ i ,^ „ i ) ,  (A.4)

Vi -  y ^ i  +  h j  , (A.5)

, j A ( X i - i  +  Xi  2/t-i +  y\ + z ? \  ^
Zi -  Z i - !  +  h<j> ( ----   , -----   , -------— -  j  . (A.6)

It should be noted th a t a uniform grid defined by:

Xi = a + (i — 1 )hy 1 <  i < Ny (A.7)
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has been employed, where h is a constant step size and N  is the number of 

intervals. This method has been successfully used to solve Eqs. (7.50)-(7.52).

A .2 Boundary-V alue Problem s

A .2.1 Second-order equations

In this appendix, a global finite-difference method shall be described for the 

numerical solution of a general nonlinear second-order boundary-value problem 

of the form:

y" — y, z), z  =  y', a < x < b, 

y{a) =  a, y(b) =  /?.

(A.8)

(A.9)

This equation can be approximated using second-order accurate central differ­

ences as follows:

y i+1 -  2y { +  iji_t ( yi+l -  yt_x  - 9  \ x h V i , 2 <  i < N  -  1.h2 2h , ,  (A.10)

The boundary conditions (A.9) imply tha t yx = a  and yN = j3. This N  x N  

system of nonlinear equations can be solved using Newton’s iterative method 

(see Burden & Faires 1993). If yi is an approximation to the solution everywhere, 

it can be shown th a t an improved approximation is given by y* — yi + v^  where Vi 

is given by the solution of the following tri-diagonal system of linear equations:

0( 1  0

CL 2 c 2

(XjV-1 6 j v - l  Cjv_ i

0 1 J

V2

V N - 1  

\ V N J

T2

V N ~  1

V 0 )

(A .ll)
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The m atrix in the foregoing equation is known as the Jacobian m atrix and its 

non-zero elements are given by (for 2 < i < N  — 1):

This system of equations can be solved very efficiently using a tri-diagonal Gaus­

sian elimination routine with backward substitution1 . In order to s tart the solu­

tion procedure, an initial distribution for y(x) satisfying the boundary conditions 

(A.9) is required. The solution is assumed to converge only when the maximum 

change between successive iterations is less than a specified tolerance level e.

This m ethod can also be extended to cope with more complicated boundary 

conditions. If, for example, the boundary condition y(a) =  a  is replaced by 

y'(a) =  /i, then this latter condition could be approximated by

This requires th a t the first row of Eq. (A. 11) should be replaced by the following 

equation:

where r\ =  2h^i-\-Zy* — + yt- Using the second row of Eq. (A.11), this equation

can be expressed in tri-diagonal form as follows:

(A.12b)

(A.12d)

(A.12a)

(A.12c)

(A.13)

S v i  + A v 2 — U 3 —  7*1, (A.14)

(a2 -  3c2)ui +  (&2 +  4c2)u2 =  r2 +  c2ri. (A.15)

■'•Alternatively the Thomas algorithm (see, for example, Anderson 1995) could be employed, 
but the implementation of derivative boundary conditions would be less straightforward.
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A .2.2 T hird-order equations

The algorithm described above can be readily extended to solve third-order (or 

even higher-order) nonlinear equations of the form:

Equation (A.18a-b) can be solved using the method discussed earlier and Eq. (A. 18c) 

can be integrated using the Trapezoidal Rule :2

This recurrence relation can be used to integrate Eq. (A. 18c) for 2 < % < IV, 

starting from the initial condition wi =  7 .

The finite-difference algorithm described in this section is globally second- 

order accurate and was found to be very robust. Moreover, the method works 

equally well for linear as well as nonlinear problems, and convergence is achieved 

within a relatively small number of iterations. An alternative method to solve 

boundary-value problems involves using a ‘shooting’ technique to integrate 

Eq. (A.8 ) using any marching technique (such as the Runge-Kutta or Predictor- 

Corrector method described earlier in this appendix), starting from the initial 

conditions (A.2 ) for an estimated value of A. The procedure is repeated until 

a value of A is found such tha t y(b) is close to (see, for example, Burden & 

Faires 1993). However, this method usually requires reasonably accurate initial

approximations for y'(a) in order for convergence to be achieved.

2Since the complete algorithm is globally second-order accurate, little or no accuracy is 
gained by the use of the more accurate Simpson’s Rule.

w'" =  <f){W) x t y, z), z = yr, y = w \  a < x < b,

w(a) = 7 , w'(a) = ck, i t /(6) =  /?.

(A.16) 

(A.17)

These equations can be expressed in the form:

y" =  0 ('lu, x, y, 2 ), z = y', a < x < i>, 

y [a) = a, y(b) = (3,

(A.18a) 

(A.18b) 

(A.18c)

W i  =  W i - 1 +  - { V i  + (A.19)



A ppend ix  B

D erivation  o f th e C om patib ility
I —i  i •E quation

In this appendix, the compatibility equation (6.17) shall be derived with a mini­

mum of detail (for full details see, for example, Kincaid 1991). Consider a general 

quasi-linear hyperbolic equation of the form:

d2u d2u d2u /~r~\ h \
a o~ 2  — h +  e =  0. (B .l)ox1 dxdy dyz

The quantities a , 6, c and e are assumed to be functions of x, y, u, s and i,

where s and t are defined by Eq. (6.16) but such tha t b2 — 4ac is positive in the

domain being considered. By defining a curve C  in the £?/-plane by x — x(s)  and

V — ?/(5)) where s is a real number, it can be easily shown th a t along this curve

d2u ^  dp d2u dy
d x2 dx dxdy  da: ’

and similarly for d2u /d y 2. Hence it follows tha t Eq. (B .l) can be expressed in

the form

d2u d s d y  dt dy
T a—— :— h e -— h e— =  0. (B.3)

da: da: da: dxdxdy

The curve C  is now chosen such tha t the term d2u jd x d y  disappears from the 

foregoing equation. Consequently the original hyperbolic equation reduces to an

176
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ordinary differential equation along the two characteristic curves, which are given 

by the two distinct roots of the equation

a,2)2~6S +c=o-
In particular,

a = 1, 6 =  0, c =  —1 and e =  - 7 3 , ^  (B.5)
[y +  r) dy

for the axially-symmetric wave equation (5.20) considered in this thesis, and the 

characteristic curves are simply straight lines with gradient ±1.



A p p en d ix  C

M arginal Separation T heory

C .l Supercritical Flows 

C .1,1 T w o-d im ensional case

Marginal separation occurs when the skin friction vanishes linearly at the sepa­

ration point, and was first considered by Ruban (1981, 1982) and Stewartson et 

al. (1982) for incompressible hows. Kerimbekov et al. (1994) have shown tha t 

marginal separation occurs in the hypersonic flow over 2D compression ramps 

with supercritical wall cooling (see also the numerical results of Chapter 6). In 

particular, it was shown tha t the inner viscous sublayer (region I in Fig. 5.1) de­

velops a multi-layer structure with streamwise extent A x  ~  Ne~2//3 in the vicinity 

of the reversed flow region, as shown in Fig. C .l. The structure of the solution 

in each of the regions labelled a, b, c and d was determined by Ruban (1981). It 

turns out th a t the solution in regions ‘a ’ and £c’ (and similarly in regions £b ’ and 

£d ’) can be expressed using the same asymptotic expansion, which is in contrast 

to the more complicated structure considered in Fig. 7.1.

It was shown by Kerimbekov et al. (1994) tha t the appropriately scaled dis­

placement function B ( X )  in the inner interaction regions 1 and 2 satisfies the

178
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F ig u re  C .l :  Sketch of the multi-layer structure in the viscous sublayer in the 

vicinity of the marginal separation point (not to scale).

following integro-differential equation:

B 2 -  X 2 +  2a =  n [  P N H  d{,
U o  ( *  -  0 1/2

n
r ( 3/ 4)

V ^ r ( 5 /4 ) ’

where

B ( X )  —» —X  +  a X  1 -I- • • • as X  —> —oo, 

£ (X )  X  +  • • • as X  -> oo.

(C .l)

(C.2a)

(C.2b)

The param eter a is proportional to the perturbation /?2 about the critical ramp 

angle /?J (cf. Eq. (5.32)). The numerical solution of the foregoing fundamental 

equation was obtained by Kerimbekov et al. (1994), and it was shown th a t sep­

aration occurs for values of a greater than 1.287. It was also observed tha t the 

separation point moves progressively upstream as the ramp angle is increased (i.e. 

for increasing a); however the reversed flow region is always located on the ramp 

surface.
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C .1.2  A x ia lly -sym m etr ic  case

Although marginal separation theory was originally developed for 2D flows, it 

will now be shown using an argument analogous to tha t employed in Sec. 7.8 

tha t the theory is also applicable to AXI flows. The analysis of Kerimbekov et 

al. (1994) suggests th a t the pressure q(x,z)  and displacement function A(x)  in 

the inviscid layer above the inner interaction regions 1 and 2 can be expressed in 

the following asymptotic forms (for Z rs-' Ne 2/3):

q (x ,z ) =  go(.z)+Ne-2/3<7i(:];,.z) + N e~ l q2(z)
(C.3a)

+  Ne“4/3 g3(x, z) +  Ne"5/3 Q (X , Z) + ■ ■ ■ ,

A(x) = A 0(x0) +  Ne“2/3£ (X )  +  • • ■ , (C.3b)

where X  and Z  are 0 (1 ) variables defined by (cf. Eq. (7.126)):

x = x s +  Ne~2/3 A, z = Ne~2/3 Z .  (C.4)

Substitution of Eqs. (C.3)-(C.4) into the axially-symmetric wave equation (5.20) 

and matching condition (5.29), and taking the cold wall limit Ne -y- oo, it can be 

shown that:

qQ(z) =  p0{x8) and q2{z) =  P i ( x s ) ,  (C.5)

in order to match with the asymptotic expansion for the pressure on the body 

surface given by Kerimbekov et al. (1994). The functions qi and q3 satisfy the 

equations:

d2qi d2qi j  9® _  . _
dx2 dz2 z + r d z  ( ’ ( •*

qi —y A0A, q$ —y — AjA2 as z  —y 0, (C.6b)

^ •  =  - s g n ( £ ) ^  as 2 ^ 0 , (C.6c)

where A0 and Ai are constants. Furthermore, it follows th a t Q(A, Z)  satisfies the 

two-dimensional wave equation (7.129). Thus the 2D marginal separation theory
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described by Kerimbekov et al (1994) can also be applied to AXI flows in the 

neighbourhood of the marginal separation point. This is particularly im portant 

for the flow over AXI expansion corners shown in Figs. 6.9 and 6.10, where it was 

discovered th a t marginal separation occurs downstream of the ram p corner if the 

body radius is smaller than a certain critical value.

C.2 Subcritical Flows

Zhikharev (1993) considered the case of marginal separation from a cold wall with 

subcritical wall cooling. It was shown tha t under certain circumstances, marginal 

separation theory can break down in the vicinity of the reattachm ent point xr , 

and th a t an additional inner region with streamwise extent A x  ~  Ne~4//3 centered 

on x r should be considered. The resulting nonlinear interaction problem took the 

form:

where the param eter c is proportional to x r. It is im portant to note th a t this 

system of equations differs from th a t considered in Sec. 7.3 in both  the upstream  

boundary condition (C.7d) and the interaction law (C.7e), which is due to the 

fact th a t the reattachm ent region was assumed to take place well upstream  of the 

ramp corner where F ( X )  = 0. Zhikharev (1993) used a line-relaxation method 

based on a Newton iteration procedure to obtain solutions of Eqs. (C.7a-e), and 

found th a t a reversed-flow singularity occurs for c >  1.225.

d P  d3T
-TT7 +  W77V (C.7a)

d Y  d X d Y  d X  d Y 2 d X  d Y 3

=  0 at Y  — 0, (C.7b)

$  -> A 3 +  A m y 2 +  • ■ •
6 2

T i y 3 + ic F 2 H  as
0 Zi

as y  —> oo

(C.7d)

(C.7c)

d P  AB  
d X ~ " d X ~  ’

(C.7e)
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