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UNIVERSITY OF MANCHESTER

ABSTRACT OF THESIS submitted by Neil Gatenby for the Degree of Doc-
tor of Philosophy in Computer Science and entitled Optimising Discontinuity

Meshing Radiosity

Month and Year of Submission: January 1995

Radiosity, in computer graphics, is a rapidly-expanding area of research. From
1ts meagre beginnings in 1984, modelling an empty room with N patches, using
O(N?) storage and time, it has progressed to a stage where highly complex scenes
can be modelled, fully accounting for occlusion, with only linear storage and time
costs. Energy transfer is evaluated hierarchically, basis functions can be high

order polynomials, and discontinuities can be accurately modelled.

This thesis presents a review of such algorithms, focussing on those methods

which address the problems of discontinuities in the radiosity function. A number

A
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of problems with existing methods, are identified, and a number of optimisations

and alternatives are presented.
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Chapter 1

Introduction

Computer generated images, which an observer might mistake for a photograph of
a real scene, are becoming more and more commonplace in the developed world.
The borders between what is computer generated, and what is not, are becoming
more and more blurred: the people developing the algorithms, used to generate
the images, have the benefit of more than 20 years of computer graphics literature
to peruse, and access to state of the art hardware which is cheaper, bigger and
faster than ever before. No surprise then, that the images being produced are

attaining the goal of those producing them: realism.

1.1 Physically correct versus Perceptually ac-

ceptable

In order to reach a goal, one must first define it: this thesis concerns itself with

the generation of realistic images, using computers. What is meant by realistic

23




Chapter 1. Introduction 24

in this context? How does one decide which image generation method produces

the more realistic image? The remainder of this section addresses these issues.

‘Photorealism’ is a word much used in computer graphics literature, and less
often gualified. Literally, a photorealistic image is one which a person might
mistake for a photograph of a real scene. The question arises: is it possible,
using a computer, to generate e;, photorealistic image of a scene!, given only a
detailed description of the scene, but given no access to a camera, or the scene
itself (which may be no more than some plans on a designer’s desk)? Indeed, are
‘photorealistic images’ quite what the people generating the images are striving
for? Is a ‘photorealistic computer generated image’ indistinguishable from a
photograph of the scene being modelled? For a large number of applications, the

answer to these last two questions is ‘no’! What is often required is an image

which only:

e gives the observer so many perceptual cues that they instantly recognise all
of the objects making up the scene, as well as their relative sizes, orienta-

tions, etc., and

e minimises those features in the image which might trigger perceptual re-

sponses that tell the observer that the image is computer generated.

These requirements only address the issue of perception; no mention of accuracy
has been made: how closely does the modelled light distribution correspond to

the actual distribution in the real world? [5, 69] Indeed, how should one measure

1For the purposes of this thesis, a “scene” is a description of a collection of “objects”,
some of which will (typically) be emitting light. The gas occupying the space around the
objects is assumed to play no part in the way in which the objects become illuminated.

Optimising DMR 1.1. Physically correct/Perceptually acceptable
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this ‘closeness’? [43] Suppose, for example, that some scene is being modelled
using two different rendering systems, each producing an image using the same
view. Given any point in the scene, the first rendering system can very accu-
rately estimate how much light, of a given wavelength, is leaving the point in
a given direction. The second rendering system, is unable to provide any such
information. Suppose further, that when a large sample of people were asked to
compare the two images, and say which was computer generated, and which was
not, the majority chose the first system’s image as being computer generated,
and the second system’s image as being the ‘real thing’. Which image is the

more realistic?

For the purposes of this thesis, where physical accuracy is a major concern, the
preferred image is the first one. For the purposes of film and TV special effects, or
product advertising, where human perceptual issues are paramount, the preferred

image would be the second one.

It should be noted, however, that concentrating on physical accuracy, rather than
on what is perceptually pleasing, does not mean that the resulting images will ap-
pear unrealistic. Quite the contrary: where the physically-based approach differs
from the perceptually-based approach is in its route to visual realism — reached
vie attempting to model what is actually happening to the light in between it
leaving a light source, and arriving at the eye. If the physical model is accu-
rate enough, the image will appear realistic. The more accurate the modelling,
the more realistic the image. Indeed, one could assert that the physically-based

approach is the more certain route to realism.

Optimising DMR 1.1. Physically correct/Perceptually acceptable
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1.2 Modelling reality

So, physical accuracy is a major concern in this thesis: primary applications of
the work described here include lighting, heating? and architectural design. These
are real-world applications, requiring real-world physical units to work with. For
example, when an architect is designing a building, they would like to make use
of a computer system which can tell them about the light distribution across the
desktops (say) in a room: are they well-lit by daylight? Are extra light fittings
needed? Are the windows too small, or pootly positioned? What difference does
it make when a particular wall is moved? When a particular column is added?
In summertime? In winter? How does the situation change when the walls are
painted? When the carpet is changed? ... Any number of combinations can be
tried out on the computer. As long as the simulation is physically accurate, the

result should be a well-designed building, whose lighting is ideally suited to those

who use it.

Exactly how does one proceed, when creating a physically accurate model of

illumination in the real world, using a computer?

Modelling is achieved by storing a computer representation of the shape, posi-
tion and orientation of the surfaces that make up the scene, together with their
emittance and reflectance properties (figure 1.1). This representation, hereinafter
referred to as the scene model, is repeatedly referenced to determine quantities
such as inter-object visibility, separation, and orientation, as well as various sur-

face properties. These values, in turn, are inserted into a mathematical model

2A change of wavelengths is all that is needed.
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(i) The scene being modelled

human ob:

(i) The model ot the scene

virtual camera

(X 4.y4.24; 1111111,

Figure 1.1: Some differences between the real scene, and the scene model

Optimising DMR 1.2. Modelling reality
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(the transport model) which defines how light interacts with the scemne. The
transport model takes information gleaned from the scene model and returns in-
formation about how various parts of the scene illuminate other parts. Typically,
this process iterates until enough information to create an image, of the desired
accuracy, has been found. Often, this is carried out for a number [74, 48] of

different wavelengths of visible light, so that colour images can be generated.

The complexity of the scene geometry, and the intricacy of the emittance and
reflectance information, are the factors which determine how difficult the prob-
lem will be to solve. The physical limits of the computer, together with time
Limitations that the user has, mean that it is only possible to obtain illumination
information for a finite set of points in the scene. The physical limits of the
display device, means that it is only necessary to have a solution for a finite set
of points. Limitations such as these, make simplifications usual in the scene and

transport models. Figure 1.1 illustrates some typical simplifications:

The observer

e In the real world, there is an observer: several feet tall, usually with
binocular vision, and generally not very reflective! Their very presence

will affect the light distribution in the scene.

e In the computer model, the observer is replaced by a virtual camera,
which has no affect whatsoever on the modelled light distribution, and

typically only provides one view of the scene.

Object detail

3Although this is hardly an issue for radiosity algorithms.
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e Some objects in the scene being modelled may have very complex

shape (e.g., the table legs).

o It may be that the modeller is not interested in modelling small details
in the scene (e.g., table leg shape, pencil on table) and these may be

simplified or ignored in the model.
Reflectance properties

e In the real scene, surfaces may well change their reflectance properties
as a function of position, incoming and outgoing directions, wavelength

and/or temperature.

e In the model, it is unlikely that all of these will variables be accounted

for.

To conclude; some simplifications are unavoidable, some are desirable, and some
will have a more significant effect on the results than others. The subsequent
sections detail the development of a transport model for computer-generated

images, bearing these limitations in mind.

1.3 Physically-based rendering

In order to model the steady-state* light distribution in a scene I', one must first
construct a transport model which: not only handles how the light sources in I’
illuminate the other objects (direct illumination); but also how inter-object re-

flections and/or transmissions (indirect illumination) affect the final distribution.

4Throughout this thesis, all quantities are assumed to be time-independent.

Optimising DMR, 1.3. Physically-based rendering




Chapter 1. Introduction 30

It is important to decide how many degrees of freedom are to be allowed in the
model being constructed ~ do we want to know how much light, of any given
wavelength, leaves any given point in [ in any given direction? Or, will the total
amount of light, leaving each object in T', regardless of direction, be sufficient?
Oz, should the model cater for something in between these two extremes? The
answer is that the ideal model will be application and environment dependent:
for radiation heat transfer applications {99, 103], the less accurate approach may
well be sufficient, but for many computer graphics applications [100], something
nearer the first approach will be needed. The ‘environment dependency’ refers
to the hardware being used to run the model; it simply may not be practical, on

some platforms, to run too intricate a model.

What follows, is a derivation of the rendering equation®, first introduced to the
computer graphics community by Kajiya in [61]. For now, few simplifying as-
sumptions are made, only that the surfaces are opaque, and the solution is steady

(i.e., is not varying with time).

1.3.1 Some nomenclature and units

As has already been stated, the resulting model must be able to provide the user
with information which can be directly applied to real-world situations: a set of
physical units is needed, which can describe all relevant quantities. One must be

able to quantify:

5Also known as the radiance equation [98].
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e how much light leaves the various light sources, and how this 1s spectrally

and directionally distributed;

e how different surfaces reflect light incident upon them: how does this vary

with position, incoming and outgoing directions, wavelength?

With these criteria in mind, this section introduces a number of definitions, terms
and units which can be used to quantify the flow of light through the scene. Most
of the terminology is taken from the illumination engineering community because,
unlike the thermal radiation heat transfer community — which spawned the early
radiosity work in computer graphics [43], they have standardised their terminol-

ogy [89], and it is now becoming the norm to use it for computer graphics [98, 84]:

directional notation: When referring to the direction in which light is travel-
ling, relative to a point x on some surface in the scene, a local spherical
coordinate system is assumed. This system is centred at X, and measures
an angle § between the direction and the surface normal at x, and an angle
¢ between the direction and some fixed, arbitrary, surface tangent at x (see

figure 1.2). The single bold character ® denotes the pair (8, ¢).

solid angle: The solid angle subtended by an object, at a point, is equivalent to
the surface area of the radial projection of the object, onto the unit sphere
about the point. Normally referred to by the symbol w, it is measured in

steradians (sr), and can be regarded as a sort of ‘field-of-view’ indicator.

radiant flux: Light is a form of electromagnetic radiation. Radiation is a flow
of energy — a fluz. The energy of a packet of light rays is referred to as

its radiant energy (@), and is measured in joules (J). The rate at which
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this flow of radiant energy changes with time, is known as the radiant fluz
(® = dQ/dt), and is measured in joules per second (Js™!), or watts
(W). Radiant flux corresponds to power; the amount of energy per unit

time, and is often referred to as the radiant power [77, 98].

radiant intensity: Whilst, at first sight (sic), radiant flux may seem like a suit-
able quantity for the transport model under construction, one should note
that it has no dependence on viewing angle, which should be incorporated
into the model. The quantity radiant intensity (I = d®/dw) is a measure
of the radiant flux per unit solid angle. This is measured in watts per
1

steradian (Wsr™! = Js'sr™!) and represents the radiant flow from a

point source, along a particular direction.

radiant exitance: The quantity used to measure how radiant flux varies as
a function of surface area, is radiant ezitance (M); measured in watts
per metre squared {Wm™2?). This measures the radiant flux leaving a
surface, per unit surface area. In heat transfer (and consequently computer
graphics) nomenclature, this is referred to as radiosity (B = d®ou/dA) — a

term that shall be adopted for the remainder of this thesis.

irradiance: Whereas radiosity is a measure of radiant flux leaving a surface,
irradiance (E = d®,/dA), also measured in watts per metre squared

(Wm™?2), is a per-unit-area measure of the radiant flux incident on the

surface.

radiance: Whilst radiant intensity details how radiant flux varies with viewing
angle, and radiosity details how it varies with surface area, a term which

covers how radiant flux varies with both these quantities is still needed. The
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dA

Figure 1.2: Terms used in the definition of radiance.

radiance
1 42

L= cos9dAci’0 b
along a specified direction © = (#</>), is the radiant flux per projected
surface area per unit solid angle, and is measured in watts per metre
squared per steradian (Wm~2sr~1). See figure 1.2. Note also, that
radiance is the radiant intensity per projected surface area (L = * -0")-
Radiance closely corresponds to the ‘colourl of an object, as noted by a
human observer, but is independent of the size of the object being viewed,

and the distance to it. As such, it is ideal for use in the model under

construction.

reflectance: To quote from [77]: “Reflection is the process by which electromag-
netic flux, incident on a stationary surface or medium, leaves that surface
or medium from the incident side without change in frequency. Reflectance

is the fraction of the incident flux that is reflected.ll
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It is common practise, in computer graphics, to assume that no (monochro-
matic) light which is incident upon a stationary surface will leave that sur-
face from the incident side with a change in frequency. This simplification
means that each wavelength of interest can be modelled separately, con-
siderably easing the computational difficulty. When referring to any of the
terms introduced in this section on a ‘per wavelength’ basis, the word ‘spec-
tral’ should be placed in front of the term to indicate that this is the case
(spectral radiant fluz, spectral radiant intensity, etc., ...). However, wher-
ever these terms appear in this thesis, it is the spectral quantity that is

being referred to — the reader should take it as being implicitly present.

bidirectional reflectance-distribution function: Whilst reflectance reveals
some information about how a surface reflects light, it does not incorporate
the directional dependence which is needed by the transport model un-
der development. The bidirectional reflectance-distribution function (com-
monly abbreviated to brdf (f,), units are sr~!) is the reflected radiance
along some outgoing direction, divided by the casual irradiance from some
incoming direction.

dL,(x,0,, )
Li(x,0;, A)dw; cos 6;

fr(x7 ®i7®oa)‘) = (12)

Further details of any unfamiliar terms can be found in figure 1.3 and

table 1.1.

It is worth noting that the brdf satisfies the Helmholtz reciprocity rule [99],
which asserts that swapping the incoming and outgoing directions will not

affect the fraction of light being reflected:

fr(x: @)i) ®0))‘) = fr(X7 607 ®ia>‘) (1'3)
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Quantity Symbol Units Explanation
radiant energy Q J energy carried by packet of rays.
radiant flux 0 W rate of change of @@ w.r.t. time.
radiant intensity I Wasr1 radiant flux per unit solid angle.
radiant exitance M Wm~—? see radiosity.
radiosity B Wm™2 ¢ leaving surface, per unit area.
irradiance I Wm™2 ® reaching surface, per unit area.
radiance L Wm™2sr~! | @ per projected surface area

per unit solid angle.
brdf fr sr~1 reflected radiance along ®, over causal

irradiance from ;.

Table 1.1: Illumination Engineering nomenclature used throughout this thesis.

Numerous attempts at deriving a useful analytic formulation for the brdf

(in terms of incoming/outgoing directions and material parameters) have

been described in the computer graphics and optics literature over a number

of years [114, 113, 117, 86, 12, 26, 60, 51, 126, 122, 68, 91]. Not all of these

formulations are physically-based, and few have been applied to models

which simulate global lumination. Others, however, have taken great care

to observe issues of physical accuracy [51, 122, 68, 91]. Many of these

models are discussed in [36].

1.4 The rendering equation

With this comprehensive nomenclature in mind, what can one assert about the

radiance leaving a point x (in T'), along the direction @, = (6., ¢,), due to light

incident from the direction @; = (6;, ¢;) only? From the definition of brdf, (1.2),
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dA

Figure 1.3: Terms used in the definition of brdf.

one can see:
dTO0(x, ©0,A) = fr(x,0,-,0 QA)L,(x, ©,, A) cos Oidwi (1.4)
In order to account for contributions from all fight incident at x, not just that

which is incident from the direction ©,, one must integrate (1.4) over the hemi-

sphere of incoming directions, fl,, above x:

Lo(x,00,A) = J/SZ /t(x,©,,0 QA)Lt(x,0t, X) cos Oidwi (1.5)
i

Adding in one extra term, Le, to account for fight being emitted from x, in the

relevant direction, gives a simple version of the rendering equation:

LO(x, 0 QA) = £e(x, ©0,A) + / /r(x, ©,, 0 QA)L,(x, ©,, A) cos Oidujt  (1.6)

Unfortunately, the equation is not very useful in this form: the aim is to solve

for X0, but the integral is still in terms of T, - the radiance incident at x.
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For the purposes of this thesis, the medium in which the scene sits is being
regarded as a vacuum. This means that the radiance incident at x, along the
direction ®;, is equal to the radiance leaving some point X', in I', found by tracing

a ray from x down the direction ©®;:

L,‘(X, @i, )\) = LO(XI, @z', /\) (17)

Figure 1.4 illustrates this point, and shows how it is possible to change the inte-
grand in (1.6) so that rather than considering the radiance arriving at x from all
directions visible to it, one considers the radiance leaving all points x' visible to

it, and travelling towards it. This change of integrand,

cos 0'd A(x')

dw; =
o x—x”

(1.8)

together with a change of integration limits, so that the integration now takes
place over those points in I' which can see x (the set V(x,I")), results in:

cos ; cos 8’

Lo(X, @4, A) = Le(x, @, A)+ fv RN N Lo(x, ©;,\) dA(x')

I — x'||*

(1.9)
The right-hand side of the equation is now in terms of L,, as desired, but the inte-
gration limits are still odd (how does one determine which points lie in V(x,T')?).
The integration limits can be changed to cover the whole of I' (a superset of
V(x,T)) and a visibility term g¢(x,x’) is introduced. This new term takes the
value 1 if the straight line joining x and x’ passes through no other part of I', and
zero, otherwise. This leaves, the fundamental result of this section, the rendering

equation:

Lo(x,®4, \) = Le(x, @, \)+ /F 9(%, %) £ (%, ©;, @0, \) Lo(x', ©;, )

Optimising DMR 1.4. The rendering equation




Chapter 1. Introduction 38

Lo(X,05,\)

T _cos 0’ dA(x)
llx-xiI>

Figure 1.4: Geometrical considerations when changing the integrand in the ren-
dering equation.

This equation expresses the radiance leaving any point in the scene, in any di-
rection, in terms of the same quantity for all other points (and directions) in the
scene. The recursive nature of the equation is clear: in order to find one value
of L, (for some point and direction), one must first find enough other values of
L, (for appropriate points and directions) to be able to evaluate the integral on
the right hand side of (1.10). In order to find any of these other values, one must

first .... (recursion).

1.4.1 A different parameterization

The rendering equation is often seen parameterized differently to (1.10) where,
rather than thinking in terms of directions relative to the point x, the problem

is formulated solely in terms of points on surfaces in I' (figure 1.5):

; o'
LO(X’ XH’ A) = Le(x) XH) )\)—l_/]:‘ g(x) X!)f’l’(x,, :X.-, X//) }\)Lo(xl) x’ )\)EF—_%
X—X
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Lo(x,x™A)
+
L, from x’,
reflected towards x”

X

Figure 1.5: Understanding the spatial parameterization of the rendering equation.

Here, the radiance Lo(x,x", A), leaving x in the direction of some other point x”,

is written as the sum of:

e any emitted radiance leaving x which is travelling towards x”, and

e the radiance which has left points x’ in I', only to be reflected at x towards

x".
Note that the brdf is now written in terms of three points, rather than one point
and two directions. Schroder and Hanrahan [94] have coined the terms directional

and spatial parameterizations for (1.10) and (1.11), respectively.

1.5 Algorithm classification

Recall (1.10):

. '
Lo, @0, ) = Le(, @0, At [ 90, X) (%, @, @0, V) Lo (', O, s dicos ¥, en

I —x||”
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Some of the surfaces in the scene, I', will be emitting light (the subset I'), the
remainder will not (the subset I'r). Expressing the rendering equation in terms

of these two distinct subsets:

Lo(x,0,,\) = Le(x,0,,A) +

cos 0; cos §’

/F 9(%, X) o (x, @, @,, \) Lo(x, ©;, \) dA(X') +

Ix —x/|*
cos 8; cos &'

/F 9(%, %) o (x, @, @4, \) Lo(x, ©;, ) T dA(x(1.12)

R [l — x|

(1.13)

The integral over I';, represents the part of Lo(x, ®,, A) which is due to light
emitting surfaces only. The I'p integral details how the non-emitting surfaces
contribute. The way in which different illumination algorithms handle these two

integrals can be used to place them into two separate categories:

e Those algorithms which make no real effort to evaluate the I'p integral
at all, and approximate the I'y integral by replacing the radiance term
L,(x',®;, \) inside the integral with its emissive component only (L.(x', @;, A}),

are known as local illumination models.

e Those algorithms which make a genuine attempt to solve both of the inte-

grals in (1.13), are known as global illumination models.

Local illumination models concern themselves only with how each light source
illuminates each point of interest. Global illumination models recognise that not
only will those surfaces visible to the light sources be directly illuminated, but
also that'the surfaces visible to these surfaces will be indirectly illuminated, and

so on, ad infinitum. Local models are of no further interest here, their failure to
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account to for inter-object illumination means that they return inaccurate results
in all but the most simple scenes®. They are, however, discussed in some detail

in [36].

IHumination algorithms may be further classified, by examining how they ap-
proach the problem under consideration. Those algorithms that first establish
which regions of the scene are of interest to the viewer, and then go on to es-
tablish how those regions are illuminated, are known as tmage space algorithms.
Those algorithms which calculate how the light sources have illuminated each
surface in the scene, before considering the viewer, are known as object space

algorithms.

Image space algorithms may very well not find out eny information about how
large areas of a scene are illuminated; the arcas being of little relevance to the
particular view. Object space algorithms always have at least some information

about how every point in the scene is lit.

This thesis is primarily concerned with global illumination, object space, models.
Global illumination because accuracy is important, and object space because
not all applications are solely concerned with image quality; many being equally
interested in having data on exactly how the various surfaces in the scene were

illuminated.

6A single convex object, for example.
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1.6 Thesis outline

The rendering equation, derived in this first chapter, is the fundamental transport
model upon which all global illumination algorithms are based. The remainder of
this thesis devotes itself to examining various solution methods for equations of
this type, with a particular emphasis being placed on methods which specifically

account for discontinuities in the solution [54].

Chapter 2 examines some classical solutions of the rendering equation. ‘Classical’,
in this sense, refers to algorithms which were published before the research for
this thesis, began. Various radiosity and ray tracing algorithms are examined,

compared and contrasted.

Chapter 3 reviews the theory and practise of higher order radiosity methods.
That is, algorithms which are amenable to approximating the radiosity across
a surface by a piecewise polynomial function, rather than simply a piecewise
constant function. Chapter 3 covers Galerkin radiosity, collocation radiosity and

wavelet radiosity.

Chapter 4 looks at the theory of discontinuities in the radiosity function being
modelled, and examines which of these discontinuities should be regarded as
being significant. A review is presented, of a number of algorithms which have

accounted for such discontinuities in their meshing, solution and rendering phases.

Chapter 5 presents a number of optimisations for the methods described in chap-
ter 4. These optimisations are the central premise of this thesis. Some results,

demonstrating the effectiveness of the various improvements, are also presented.
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Chapter 6 is the concluding chapter.

Appendix A presents a précis of binary space partitioning trees and shadow vis-
ibility binary space partitioning trees. An explanation of the winged-edge data
structure is given in appendix B, and appendix C contains images and statistics

from the implemented code.
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Solving the rendering equation:

classical solutions

This chapter presents a review of classical solution methods for the rendering
equation (1.10). For all but the simplest scenes, equations of this type have no
known analytic solution, and numerical approximation methods are the norm.
This chapter emphasises the radiosity method, since it is of most relevance to
the remainder of the thesis, but competing solution strategies are also examined,

and their various merits discussed.

2.1 Radiosity from radiance

It is clear that the rendering equation (1.10) would be a lot simpler to solve if the

directional dependence was taken out of the brdf. Not all applications will have

44
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surfaces whose reflectance properties are so complicated. For example, many sur-
faces will have reflectance characteristics which do not vary as a function of ¢
(figure 1.3) In other applications, reflectance properties may be closely approxi-
mated by a much simpler model than precisely the brdf: if the height of surface
irregularities is of the order of a wavelength or more, the reflectance is mostly
difftuse — if the irregularities are small relative to a wavelength, most of the light

is reflected specularly [10].

Whatever the reasons are, and some of them are historical (the simpler problem
was solved first), the following steps detail how the rendering equation (1.10)
changes, when all surfaces are assumed to be ideal Lambertian emitters and

reflectors.

2.1.1 TIdeal Lambertian surfaces

Lambertian surfaces, by definition, obey Lambert’s Law [64], which states that
‘the luminous intensity in any direction from any element of area of the surface
is equal to the intensity of the element seen in the direction of the normal to
the surface multiplied by the cosine of the angle between the normal and the
direction considered’. A change of units, and the introduction of projected area,
rewords this assertion: The reflected radiance does not vary as a function of out-

going direction, ©, = (6,, ¢,), from no matter direction the element is irradiated

(figure 2.1).
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Figure 2.1: An ideal Lambertian surface.

Constant brdf

Recall (1.5), which expresses the reflected radiance in terms of the incident irra-

diance and the brdf:

Lo(x,©,,\) = /Q Fo(%, 04, @0, M Li(x, ©;, A) cos fduw;

The surface now being considered is ideal Lambertian, so the left-hand side is
known to be independent of the outgoing direction, ®,. The only term on right-
hand side which has any dependence on @,, is the brdf; so this too must be

independent of outgoing direction:

LO(X, }\) = /;l f,-(X, @,;, )\)L,-(x, @,‘, )\) Ccos Oidwi (2.1)

Recall, however, that the Helmholtz reciprocity rule (1.3) asserts that one can
swap the incoming and outgoing directions, and the value of the brdf will remain
the same. It follows that, for an ideal Lambertian surface, the drdf is independent

of both incoming and outgoing directions:

fr(x: G)i) 603 /\) = fr,d(x: /\) (22)
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2.1.2 The radiosity equation

The fraction of incident radiance from a given incoming direction that is reflected

anywhere, is the directional hemispherical reflectance(pq) [77], and is given by':

pa(x%,0;, ) = /% fr(x,0;,0,, ) cos 8, dw, (2.3)

But, for an ideal Lambertian surface, f,.(x, ®;,0,, A) = f,q4(x, A), so:

pa(%, 0, A) = fra(x, )\)/ cos 8, dw,
2w
2w pwf2
= fra(X,A) / / cos 8, sin 8, db, d¢o,
o Jo

= 7fra(X,A) (2.4)

Recall the rendering equation (1.10):

; cos ¢’

Lo(X,®,, \) = Le(x, @4, A+ / 9(x, X) £ (x, ©;, @, ) Lo(x', ©;, A)EI(I)_S—@%
T X — X

If the surfaces now being dealt with are all ideal Lambertian, then the rendering

equation loses its dependence on outgoing directions, and the brdf can be replaced

by directional hemispherical reflectance:

cos §; cos &'

Lo(%,A) = Lo(x, A) + pa(x, A) /F 9(%, X') Lo(x, A) dA(x)  (2.5)

2
ml|x — x|l

Now that the radiance no longer varies as a function of outgoing direction from
a surface, it seems a strange unit to maintain. Consider the following, recalling

definition (1.1):

1 d&*®
cos 8 dAdw

1The notation f, ’ indicates integration over a hemisphere of directions.
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I — 1 d @
" cosfdw\dA
dd

_— = 2.
7 27rLcosl9dcu (2.6)

The left-hand side of (2.6) is the radiosity (B) expressed in terms of the radiant
flux, ®. For an ideal Lambertian surface, the integral on the right-hand side can

be trivially evaluated, because the radiance is isotropic:

B=L| cosfdw=rmL (2.7)

27

Carrying out a similar integration for all the terms in (2.5):

cos 0; cos &'

Bo(x, \) = Bu(x, ) + pa(x, \) fr 9(%, x') Bo(x', A) _dA(K)  (2.8)

mlx — x|

Equations (1.10), and (2.8) are both linear Fredholm integral equations of the
second kind. These are discussed in greater detail in chapter 3; suffice to say
here that they are equations in which the unknown function appears both in-
side and outside an integral, and that except for a few special cases [103, 93],
there is no known analytic solution to problems of this type; numerical solution
methods, however, abound [28, 6, 56]. In classical radiosity [58, 43], the problem
is simplified, by imposing the additional assumption that the scene can be split
into a finite number (V) of regions (paiches) across each of which the radiosity
only varies as a function of wavelength (figure 2.2). With this assumption in

operation, integrating (2.8) over the j? h patch (containing the point x) gives:

N cos 6; cos '
AB () = 4B )+ pai() 30 B / J,, 906%) T A dA()

WIIX x'||?

(2.9)

Where Bj(A) is the radiosity across the j* patch, E;(}) is the radiosity being
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emitted from this patch, and the integral over the whole scene has been written

as a sum of integrals over each patch, k, in the scene.

I the form factor® Fj is introduced:

Fa= [, [, e °°S"°°S"”dA(x'>dA<x) (2.10)

~ x|
.. then (2.9) simplifies even further:

B;i(A) = B;(A) + pa3(A) kZBk (2.11)

The form factor Fj; is the fraction of energy leaving the j** patch which impinges
directly on the k™ patch®. Numerous methods [36] exist for evaluating the NZ
form factors that appear in equations (2.11), but it is clear that once the form
factors are known, there remains a linear of system of NV equations, which can be

solved using any number of methods to find the N unknowns, B;.

It is an interesting aside to note that whilst (2.11) has been the mainstay of
classical radiosity [58, 43, 22], its derivation has typically involved taking a more
simplistic view of the situation from the start, and (2.11) is reached without

resorting to integral equations (see, for example [36]).

2.2 Constant radiosity algorithms

This section presents a review of computer graphics algorithms which are based

upon (2.11). Algorithms of this type, where the radiosity is approximated as a

2Also known as angle factor [103], or configuration factor [99]
3The form factor definition described by (2.10) is valid only for patches across which
the radiosity does not vary as a function of position.
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Figure 2.2: Approximating radiosity as a piecewise constant function.

piecewise constant (step) function, were first introduced to the computer graphics
community by Goral et al in [43]. Whilst this early method did not account for
inter-object occlusion (the problem was only solved for a simple cubic room),

more complex algorithms were quick to follow:

2.2.1 Form factors

The problem encountered by Goral et al, with regard to inter-object occlusion,
was their inability to evaluate the form factor between a pair of patches which
were partially occluded. Goral et al applied Stoke’s theorem [27] to the dou-
ble area integral in (2.10)4 in order to convert it to a double contour integral,
thereby making the evaluation tractable (the patches all being planar quadri-
laterals). If the two patches had been partially occluded, application of Stokes’
theorem [103] would not have been possible: discontinuities in the kernel, caused

by the occlusion, invalidate its application [65].

4with #(x,x") = 1
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Goral’s paper was quickly followed by Cohen and Greenberg’s classic hemi-cube
paper [22], which offered a fast numerical approximation to (2.10), accurate pro-

vided that [8]:

o the patches are small compared to their separation distance,
e the patches are not partially occluded, and

e a suitable level of numerical precision is in use.

The hemi-cube has been the dominant method of form factor evaluation for some
time, even given its drawbacks [8] and a number of competing methods introduced
both before and since [81, 72, 8, 101, 120, 104, 38, 93|. Form factor evaluation
methods are discussed in depth in [36]. The pertinent point hereis that, even with
inter-object occlusion, the desired form factors can be found; with no shortage

of evaluation methods to choose from.

2.2.2 Full matrix radiosity

Recall (2.11). This describes how the j** patch is illuminated by all the other
patches in the scene: patch j gathers light from the patches around it. Notice
from (2.11}), that in order to seec how the whole scene illuminates one patch, an
entire row {Fji}r=1,. n of the form factor matrix is needed. In order to evaluate
the radiosity of every patch, the whole form factor matrix must first be evaluated.
Consequently, algorithms of this type are known as full matriz (FM) radiosity

methods: N? form factors are evaluated before any images are generated.
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The question remains; given the form factor matrix, how does one utilise (2.11)

to actually obtain a solution, and thence an image?

Re-arranging (2.11), with a view to solving for B;:

N
B;(A) = pai(A) D_ Be(N) Fi = E;())

k=1

Now, taking the wavelength dependency as being implicit, and re-writing in vec-

tor/matrix notation:

(1 - Pd,1F11) —Pd,1F12 Tt _Pd,lFlN \ By / En

_Pd,2F21 (1 - Pd,2F22) o —Pd,2F2N By E,

\ —ranFn —panFne -+ (1 — panFnn) By En
(2.12)

This system of equations can either be solved directly, which is typically an O(N?)
problem, or iteratively, in which case convergence can be achieved in O(N?) steps.
One particular iterative method, Gauss-Seidel iteration [33], has been especially
favoured as a solution strategy for (2.12). The strong diagonal dominance of the
matrix, typically ensuring rapid convergence. The coding simplicity of the Gauss-
Seidel method, has also ensured its continued popularity within the graphics

community [125, 24].

Note that, if rendered, a solution of (2.11), would appear noticeably ‘blocky’.
Such a solution is, after all, a representation of the radiosity as a piecewise con-
stant function. Given small enough patches, such a solution can always be made
arbitrarily accurate. Typically, however, this is not the case, and the visually

displeasing ‘blocky’ appearance is avoided by extrapolating patch radiosities to
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patch vertices, and then using linear interpolation [46] across patches, when ren-
dering [43]. This approach does not increase the accuracy of the solution, but
it does remove the discontinuities in value from the rendered image — which

human observers find so noticeable [7].

Patches and Elements

Discretizing the original scene geometry into IV flat patches is discussed in greater
detail in later chapters. Typically, the discretization is based on the programmer’s
experience of such issues (e.g., lots of patches where shadows are expected, few
where they are not), or on the shape of the surface being discretized, in the
case of curved, or otherwise-complicated, surfaces. It is only in recent years
that consideration has been given to exactly where these patches might best be

situated for computational efficiency [14, 54, 70].

The notions of accuracy and arbitrarily positioned patches seem to be at odds with
one another: Figure 2.3 shows a surface across which the radiosity is represented
by four patches, and across which the true radiosity is varying rapidly. The use
of only four patches results in the expected ‘blocky’ appearance. Also shown,
is the same surface represented by 64 patches — with the expected improvement
in appearance. Unfortunately, solving (2.11) is an O(N?) problem, so increasing
the number of patches in this way, has a dramatic effect on the complexity of the

problem.

This situation was somewhat improved, with the introduction of elements [23]

— which patches can be divided up into. An element is some sub-region of a
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(i) true radiosity being modelled (ii) patches only

(iii) naive subdivision @) adaptive subdivision

Figure 2.3: Patches subdivided into elements.
patch. Elements receive energy the same way patches do, by accumulating all
the contributions from the patches in the scene, but they distribute their energy
via their parent patch, whose radiosity is the areca-weighted average of its element
children. Consider how the first two subdivisions shown in figure 2.3, would
influence the radiosity across other surfaces in the scene. Cohen et al [23] assert
that it makes little difference to most other surfaces whether the contribution of
the subdividedsurface is taken patch by patch (4 calculations), orelement by
element (64calculations, in this example). The cheaper option results insome

impressive images and run-times, with little error.

If the N patches are split into a total of M elements, then the algorithm proceeds

as follows:

1. Find the M N element-to-patch form factors.
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2. Use area-weighted averaging to find the N? patch-to-patch form factors.
3. Solve for the patch radiosities.

4. Use the patch radiosities and the element-to-patch form factors to find the

element radiosities.

5. Render, using the elements.

This is an O(N(M + N)) problem, which is much better than O(M?) for M > N.

The method can be further improved, by building a hierarchy of elements, where
some initial subdivision is used to reach a fairly coarse solution. This solution is
then examined, and patches or elements across which the radiosity seems to be
varying significantly are subdivided further. This is known as adaptive subdivi-
sion [23]. Whilst it is by no means obvious what subdivision criterion should best
be applied [118], the method can lead to pictures as realistic as those generated
using simple subdivision, but for far less cost (figure 2.3.iii). It is interesting to
note, that whilst adaptive subdivision results in a hierarchy of elements, con-
tained within their parent patch, it is only the leaf elements of this hierarchy

which take place in energy transfer. This situation is improved upon in [50].

2.2.3 Progressive refinement radiosity

The radiosity methods described in the preceding sections, resulted in some im-
ages which were unsurpassed, at that time, in terms of accuracy and realism.
However, the method still had two major flaws: storage costs and time. Before

one spends O(N?) time solving the linear system of equations (2.11), one must
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Figure 2.4: A schematic comparison of gathering and shooting (after [21]).

first spend O(N?) time evaluating the form factor matrix, and devote O(N?) stor-
age to keeping those values in the machine. These costs soon become prohibitive,

for useful scenes, on even the largest computers.

Fortunately, a reformulation of the problem — again due to Cohen et al [21] -—
overcomes some of these difficulties. Using this new formulation, images are seen
to appear quickly on the screen and, if left long enough, can converge to usefully
accurate solutions in O(N) time. Recall (2.11):

N
B; = E; + pa; »_ BiFj

k=1

It is clear that the contribution to the j* patch, due to the k** patch only, is the

amount:

Pd,jBijk (213)

This means that if only the £** column of the form factor matrix ({Fix}j=1,..n5)
is evaluated, then one can find the contribution of patch k to the whole scene,
in only O(N) calculations. Whereas in full matrix radiosity, a gathering process

takes place, this new approach — progressive refinement (PR) radiosity [21] —
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can be regarded as patch k shooting its energy out into the scene (figure 2.4).

A flaw with the method, as it has been described thus far, is that form fac-
tor evaluation methods will return a row of the form factor matrix in a single
iteration, not a column. This problem can be circumvented by evaluating the
k™ row {Fy;};=1,..n of the form factor matrix, and applying the form factor
reciprocity relation {36] {A;Fj; = ApFl;) to evaluate the requisite column. The

amount (2.13) now becomes:

Pd,; B Fiej Ar [ A;

It is simple enough to ensure that patch & is an important emitter; the patches
can be ordered according to A;B;. The result of this single shoot can now be

rendered, giving an image of the scene, locally illuminated by the patch k.

In order to achieve some graceful process, by which the first image is seen, as
successive shoots take place, to smoothly progress to a converged solution, Cohen
et al [21] calculate the contribution due to the increase in By, since patch k last

shot:

ABJ' 4= pd’jABkajAk/Aj (214)

Here AB; is the unshot radiosity of patch j; the radiosity gathered at patch 7,

which has not yet been shot.

Most PR radiosity systems evaluate form factors on the fly, only storing one

column of the form factor matrix at a time, so storage costs are kept linear too.

Application of the reciprocity relation to a row of form factors, which are all
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numerical approximations, has its own costs in terms of accuracy: PR methods
generally do not converge to quite the same solution as their costlier, but more ac-

curate, FM counterparts. Careful evaluation of the row entries can help alleviate

this problem [8].

Patch-to-vertex form factors

A significant improvement was made to PR radiosity, when patch-to-vertex form
factors were incorporated into the algorithm [120]. Previously, having established
the radiosity values for each patch/element, these values are extrapolated to the
vertices in the patch/element data structure, and linear interpolation is then used
to smooth shade the patches. Extrapolating data, however, introduces errors; so
the vertex radiosities which are used to render the scene all too often lead to

irritating anomalies such as light leaks and shadow leaks [7].

In the approach outlined by Wallace et al [120], they evaluate the contribution
of the current shooting patch to every patch wvertez in the scene, and then use
this (accura,te)' data to interpolate across patches. This approach has remained
popular, and has carried on into the work described here, in that the contribu-
tion of the current shooting patch is evaluated on a vertex-by-vertex basis: no

extrapolation takes place. More details are presented in chapters 4 and 5.

2.2.4 Hierarchical radiosity

Hierarchical radiosity [49, 50] was the first of a glut of innovative algorithms,

which have flooded the radiosity community within the last few years, and have
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done much to improve the method’s accuracy and performance.

Hierarchical radiosity was inspired by efficient solution methods developed for the
N-body problem. In the N-body problem, there are N particles, cach exerting a
gravitational/electromagnetic force on all the N — 1 other particles: the problem
is to compute the total force on each particle. There are a number of similarities

between the N-body problem and radiosity:

e In both problems, there is a total of N(/N — 1)/2 pairwise interactions.

e Gravitational and/or electromagnetic forces both fall off according to 1/r2.

The same fall off rate is true of form factors.

e Gravitational forces are equal and opposite. The form factor reciprocity

relationship details a similar situation for form factors.

Whilst the two problems are not without their differences, it became apparent
to Hanrahan [49], at least, that recent speed-up methods for solving the N-body
problem, might be usefully applied to radiosity. The two main lessons learnt

being:

o Numerical form factor evaluation methods are subject to error. Conse-
quently, one need only attempt to model light transport to within some

given precision.

o The light leaving a cluster of elements, reaching some distant point, can be
often be calculated, to within the given precision, by a single term which

represents the contribution of the cluster taken as a whole.
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To begin with, consider only the case where there is no inter-object occlusion:

Hierarchical radiosity methods begin by looking at each pair of patches (7, k) in
the scene, and making low-cost estimates on the upper-bounds of the form factors
Fji and Fi;. If both of these estimates are smaller than some pre-defined F;, then
the two patches are linked, to indicate that the calculated energy transfer between
them, will be within the desired level of accuracy. If one of the estimates is larger
than F., then the patch with the larger form factor (patch j, if Fj, > Fj;, say)
is subdivided® and the procedure recurses until either the F, condition is met,
or the subpatches become too small. Subpatches which become too small to
subdivide (their area is less than some predefined A.} are linked regardless. This

stops infinite subdivision around, say, the corners of a room.

The result of this initial refining and linking process, is that patches in the scene
will now not only have a hierarchy of subpatches, as per [23], but each patch j will
have a link, somewhere in its hierarchy, to every part of every other patch £ in the

scene, for which Fj, > 0 (all other patches, in the unoccluded case: figure 2.5).

Careful error analysis [49, 50] reveals that this method provides an automatic
means of calculating, to within a fixed error tolerance, the form factor between
two unoccluded patches. The method ensures that the form factor evaluation
method (which is known to be subject to numerical error) is only applied where
it is going to be accurate. If the algorithm deems a transfer falls outside of the
desired error tolerance, it will force it to take place lower down the hierarchy. At

the same time, interactions are encouraged to take place as high up the hierarchy

5Unless the patch has already been subdivided, when evaluating its interaction with
some patch other than &.
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(i)

Figure 2.5: Possible hierarchical subdivision of two patches (after [49]).

as possible.

Rather than having a form factor matrix, detailing how different patches will
transfer energy to one another, hierarchical radiosity results in a data structure
which details exactly how different parts of the scene interact with one another.
Furthermore, Hanrahan et al [49] assert that each patch will only interact with
a constant number of other patches, making a total of O(N) interactions —
effectively representing the form factor matrix as a collection of O(N) blocks;

where each block describes how one sub-region of a patch exchanges energy with

another.

Once the patches have been refined relative to one another, and the links created,

1t 1s possible to tour all the links of one patch j, and add in the contribution of
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each link patch & using:

Bj 4= pa; Fjx By

It is important to note, however, that patch j is not linked to all of the scene
via its links, it is linked to the rest of the scene via its subpatch links; so this
gathering process must be repeated for all subpatches of j, at every level of

granularity, before moving onto the next iteration.

Because each subpatch is only linked to some subset of the scene, the energy
gathered by each subpatch does not represent the total energy incident on the
region represented by it. Consider the top left subpatch in figure 2.6.i11 — this
region receives some of its energy via its parent patch’s links, and the rest via
its own links. In order to store the subpatch energy collected by the parent with
the subpatch (and the energy collected by the subpatch with the parent) it is
necessary to tour the hierarchy (figure 2.6), pushing the energy of parent patches
down to their chialdren, and pulling the element contributions up to their parents

(using area-weighted averaging).

The question of occlusion, in hierarchical radiosity, is now addressed. Hanrahan
et al [50] simply cast a constant number of rays between patches to get a visibility
estimate V. € [0,1]. This is then multiplied by the unoccluded form factor to
get the desired form factor estimate. It is easy to see how a number of methods®
could be applied to speed up this part of the calculation — Hanrahan et al used

BSP trees.
SBSP trees [112], octrees [40], shaft culling [47], etc. [42]
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Figure 2.6: Hierarchical radiosity: push and pull

Multi-gridding, B F-refinement and importance. Hierarchical radiosity
can be further enhanced by incorporating multi-gridding into the algorithm [50].
Multi-gridding is a technique borrowed from the finite element method [88], and
is a process whereby a converged solution is found for a coarse discretization of
the scene, and is then used as a starting point for the costlier iterations which
result when the mesli is refined further. A solution for a coarse mesh can be
found quickly. A solution for a finer mesh, using the coarse mesh solution as
its starting point, will also be efficient. In turn, this solution can be used as
the starting point for an even finer mesh, and so on, until the desired level of
accuracy is reached. This proves a much cheaper approach than solving for the
finest level from scratch, and has the added advantage that the various solutions

can be viewed as and when they become available.
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Hierarchical radiosity requires little modification to incorporate multi-gridding —
in order to iterate, simply refine using smaller and smaller values of F,, deleting

those links which were present at the previous iteration, but where now refinement

is called for.

With multi-gridding, a series of solutions is available, and so-called B F'-refinement
can be incorporated into the solution process [50]. With BF'-refinement, the de-
cision as to whether to hnk or refine, is not based upon the form factor estimate
(F), but upon the product of F' with the current radiosity estimate (B). Effec-
tively, transport is only evaluated accurately where reasonable amounts of energy
are involved; the transport of small amounts of energy is evaluated at a coarser
level. The solution method has now been tailored so that shooting and gathering
are all but indistinguishable: all interactions involve roughly the same amount
of energy (BF' € [B.F./4, B.F.|), making their ordering according to brightness

somewhat superfluous.

Another effective criterion for refining the links in the radiosity method has been
described by Smits et al [102], where the notion of importance is introduced.
Whereas the radiosity of a patch details how favourably it is positioned with re-
spect to the various light sources, and the rest of the scene; a patch’s importance
details how favourably it is positioned with respect to the current view, and the
rest of the scene. Mathematically, importance is the dual [84] of radiosity. Es-
sentially, those interactions which prove important to the particular view take
place further down the hierarchy, as do those which involve large amounts of
energy. Interactions which match both of these criteria take place at the finest

level of refinement. The method does not only solve for the radiosity of each
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patch, but also for its importance, so that it can be incorporated into the re-
finement criterion of the multi-gridding method. What results, is an algorithm
which devotes as little effort as possible to finding out how ‘out of sight’ surfaces
are lit, whilst maintaining accurate information for those that appear in the cur-
rent view, or which are important contributors to visible surfaces. The time and

memory savings over simple B F-refinement are impressive [102].

To conclude, hierarchical radiosity is notable because not only does it take great
care to ensure that its results satisfy some predefined error tolerance, but also

because it reaches those results in linear time, with linear storage costs.

Constant radiosity: some closing remarks

The way in which the radiosity method has progressed, since its introduction to
the computer graphics community, has impressed many. Starting as an O(N?)
algorithm, only capable of handling scenes without occlusion, it has progressed
to hierarchical radiosity — an algorithm capable of rendering accurate, realistic

images, of complex scenes with occlusions, in only O(N) time.

Throughout the development of the radiosity method, the algorithm’s only com-
petition for the title of best global illumination algorithm have been the various
ray tracing approaches. These are outlined in the following section, and compared

and contrasted with the radiosity method in the closing section of the chapter.
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2.3 Ray tracing

Traditionally, in the computer graphics community, ray tracing has taken a back
seat to radiosity in terms of attempting to take a physically accurate (as opposed
to perceptually pleasing) approach to realistic rendering. This is less true of
modern ray tracers {61, 123, 98], where physical accuracy is carefully accounted

for, and impressive images result.

2.3.1 Whitted ray tracing

Whilst ray tracing was first introduced by Appel [3] in 1968, the method was not
extended to account for any kind of global illumination effects until Whitted’s

algorithm [127] was introduced in 1980.

Whitted, like many others [124], models the brdf of a surface by splitting it into
two parts: one which represents the diffuse (uniform) part of the reflected light,

and another which represents the specular (mirror-like) part:

(X, O, 05, X)) = pa(x, A) + ps(X, @0, Oy, A)

Ray tracing relies on classical optics’ ray model of light transport: rays of light
leave the light sources, travel in straight lines except when they interact with the
scene, and eventually some of them reach the eye of the observer. Unfortunately,
tracing rays from the light source, in a large range of directions, in the hope that
enough rays to make a useful image eventually reach the virtual camera, stretches

the limits of even the most powerful computers.
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Whitted’s cheaper approach [127] (now known as light-backwards ray tracing)
traces eye rays from the eye of the observer” back into the scene. A recursive
routine is used, whereby having found the impact point on the first surface hit by
a ray, the algorithm generates a reflected specular ray and a refracted transmitted

ray, which are then recursively traced through the environment until either:

¢ a wholly diffuse, opaque surface is encountered,
e some maximum depth of recursion is reached, or

e the ray misses every surface.

As well as spawning a specular and a transmitted ray, those rays which hit a
surface with p; > 0, also generate shadow rays. Shadow rays are cast between
the impact point and the point light sources, to establish which sources have
an unoccluded view of the point. Those which have a clear view, contribute to
the radiance leaving this point. The direct contribution, from the sources, is
diffusely reflected at the impact point. This is, in fact, the only account made
for diffuse reflection in the algorithm — diffuse surfaces do not illuminate other
diffuse surfaces; only light sources illuminate diffuse surfaces (figure 2.7). The
radiance returned for each impact point is a linear combination of these three

contributions (specular, transmitted and direct diffuse).

Heckbert [52] introduced a useful notation for categorising the different paths
that light can take in between leaving a light (L), and arriving at the eye (E).
Photons will either go directly to the eye, or bounce off any number of diffuse

(D) and specular (S) surfaces on their way there. The set given by the regular

i.e., the virtual camera.
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expression® L{D|S)*E describes all such possible paths, and is useful when clas-
sifying different global illumination algorithms. Whitted ray tracing accounts for
only the L(D?)S*E paths. A simple ambient contribution, designed to account

for these shortcomings, can be included when evaluating each contribution.

Effectively, when illuminated directly, the surfaces behave like ideal Lambertian
surfaces. When illuminated indirectly the surfaces behave like perfect mirrors.
Simply put, what results is an algorithm which shows diffusely-shaded objects,

and reflections of diffusely-shaded objects.

A detailed review of Whitted ray tracing is given in [36]. The pertinent points
here are that it is physically unsound, and it only attempts to gather global

illumination information for surfaces visible in a particular view.

2.3.2 Distribution ray tracing

Distribution ray tracing® [25] is a term used to describe those ray tracing al-
gorithms which use Monte Carlo!? integration methods to evaluate the integral
term found in the rendering equation (1.10). For each pixel making up the image,
a number of rays are traced from the eye, through the pixel, back into the scene;
the way in which each of these rays (and the rays they spawn) are reflected,
when they hit a surface in the scene, is controlled by a probability distribution

function [62] which effectively describes the shape of the surface’s brdf.

8The regular expression A* describes 0 or more occurrences of the character A
(e.g., 4, AA,...,AAAAA,...). The regular expression ‘A|B’ indicates ‘either A or B’,
whereas A? refers to 0 or 1 instances of A [67].

®Originally called distributed ray tracing, the name has been changed to avoid confu-
sion with algorithms describing ray tracing on distributed memory parallel computers.

19More usually, quasi-Monte Carlo [128].
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Figure 2.7: Whitted ray tracing ws Distribution ray tracing.
Ideally, for each ray/surface intersection, one should sample the whole hemisphere
of directions above the impact point, to establish how the rest of the scene il-
luminates this point. In distribution ray tracing, the sample points are chosen
by distributing the rays around the reflection direction, according to the surfaces

reflection properties. Typically, the whole hemisphere is not sampled (figure 2.7).

Ray tracing has expensive overheads - each ray has the O(N) problem of finding
which surface in the scene it will hit first'! — if each impact point were to spawn a
large number of rays to sample its reflection hemisphere, then the algorithm would
quickly grind to a halt: this is the reason Whitted rejected the approach [127].

In distribution ray tracing, each dimension being sampled is only allotted one

HThis cost can be lowered with hierarchical data storage.
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ray: the large number of eye rays cast then ensure that each of the dimensions
are sensibly sampled. Care is taken not to resample the same part of the same

dimension more than once.

Distribution ray tracing was introduced primarily as an anti-aliasing technique:
Cook et al’s original algorithm [25] only handled glossy reflection and transmis-
sion — no attempt was made to model diffuse interreflection. A number of follow-
up papers addressed the question ‘how many rays are enough?’ [66, 29, 87, 75, 83],
but none of these methods are modelling any light paths other than those mod-
elled by Whitted (L(D?7)S*E). Instead, they concern themselves with which
L(D?)S*E paths will result in a cheap, accurate solution. The difficulty for a ray
tracer, with diffuse interreflection, comes with the sampling of large solid angles,

and one of the recursion stopping conditions:

e In order to model glossy surfaces, one need only sample some reasonably
small solid angle around the mirror and refraction directions — accounting
for diffuse interreflection involves sampling solid angles which may one or

two orders of magnitude larger than this.

e Most ray tracers will not spawn reflected/transmitted rays when a parent
ray hits a purely diffuse surface: modelling diffuse interreflection would
remove this stopping condition, considerably increasing the depth of the

average ray tree [127, 36] in the image.
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2.3.3 Ray tracing and diffuse interreflection

The first attempt to solve the rendering equation in its entirety, was made by
Kajiya in 1986 [61]. Kajiya overcame the computational hurdle of repeatedly
sampling large solid angles, by combining a modified distribution ray tracer with
the elegant application of some Monte Carlo variance reduction techniques. The
latter allowed the relevant integrals to be solved satisfactorily, with fewer samples

than would have been possible using a naive method.

Kajiya’s modified ray tracer differs from others in that when a ray hits a sur-
face, rather than spawning a specular ray and a transmitted ray, only one ray
is generated and traced through the scene. This new approach, dubbed path
tracing by Kajiya, does not propagate as expensively as conventional distribu-
tion ray tracing, even though it carries out the extra task of sampling indirect
diffuse llumination (figure 2.8). To proceed, each surface stores its diffuse, spec-
ular and transmission coefficients (pq, ps and p;). These are then used to ensure
that proportionate amounts of work are put into sampling each of the dimensions
corresponding to the three coefficients. Effectively, for each ray/surface intersec-
tion, the new algorithm generates a uniform random variable (7) in the range

[D: pd =+ ps -+ Pt}, then:

e if T € [0, pg|, a diffuse ray is spawned,
e il T € [pg, pa + ps], a specular ray is spawned,

e otherwise, a transmitted ray is spawned.

Note that the new algorithm is integrating the same dimensions as conventional
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Figure 2.8: Number of rays cast: ray tracing vs path tracing. (After Kajiya)

distribution ray tracing'?, but is being far more conservative with its method
of spawning samples (figure 2.8). The large number of eye rays cast, and the
discrete nature of the solution, ensure that (all else being equal) the two differ-
ent sampling methods will return the same results. Fortunately, all else is not
equal: Kajiya’s method (correctly) integrates one extra dimension, by generat-
ing rays which sample diffuse interreflection (DI). The slowly varying nature of
indirect diffuse illumination should help to ensure that its important features are
efficiently captured by the hierarchical integration approach adopted by Kajiya.
Whilst the method results in impressive images, and is certainly an elegant piece
of work in itself, the computational costs are still large: Kajiya gives the rendering

time for one simple scene as being more than 20 CPU-hours?.

1%j e., specular reflection & transmission

130n an IBM 3081
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A more successful attempt at modelling DI using ray tracing, was introduced by
Wazd et al [123]. Here, it was recognised that ray tracing’s poor performance
in accounting for DI was due to its insistence on solving for this component on
a pixel by pixel basis: indirect diffuse illumination is the least local, and most
slowly varying, of the all the components that need to be accounted for. By

evaluating it on a pixel by pixel basis, a lot of work is being needlessly repeated.

Ward et al [123] separate how the different lighting components are calculated,
choosing to evaluate the indirect diffuse part globally (i.e., view independently),
and then storing the information with the scene for inclusion in the conventional
pass. DIlis not being hastily evaluated on the fly, from scratch, for each pixel: the
pertinent information is found as and when it is needed, and stored for possible

later use in an octree data structure.

Ward et al also introduce an estimate for the gradient of the indirect diffuse
component of the radiance across a surface, based on scene geometry. A small
gradient is implied by no nearby objects, a large gradient is assumed near object
boundaries, and sharp corners, where the function usually changes rapidly. Now,
if the indirect diffuse component is needed at some point P, and values have
already been stored at nearby points, then the value at P can be taken as a
weighted average of the neighbouring values, using the inverse of the nearby
gradient estimates to weight the different contributions. Indeed, the weights can
be used to decide exactly which points are neighbours of P. Whilst a simple

radiance interpolation scheme was used in [123], this is improved upon in [121].

A similar approach to modelling indirect diffuse illumination, has been adopted

by Shirley [97, 98], and others [63]. These approaches take advantage of the fact
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that indirect diffuse illumination changes slowly, and model it using a modified
radiosity approach — which requires only a coarse discretization of the scene to
capture its slowly varying features. The radiosity algorithm used, is a modified
progressive refinement method, whereby having shot from all the light sources,
the accumulated radiosity of each patch is set to 0, whilst their unshot radiosities
are left alone. The algorithm then progresses to a solution, as usual. This results
in the indirect diffuse component being stored in the patches, for later inclusion

in the ray tracing step.

Bi-directional ray tracing [4, 16, 52] is an otherwise conventional ray tracing
algorithm which incorporates a light-forwards pre-process designed to establish
how the various surfaces are indirectly diffusely illuminated. As its name sug-
gests, light-forwards ray tracing involves spraying rays out from the light sources,
into the scene. Each ray has associated with it some portion (E())) of the light
source’s energy; as the ray makes it way through the scene, it deposits a fraction
(pa(A)E(A)) of this energy onto each surface it meets (except for the first bounce,
which is not ¢ndirect). The ray continues around the scene until its associated
energy falls below some threshold. The numerous energy deposits on the vari-
ous surfaces are stored in illumination maps, which are stored with the surface:
these are essentially just texture maps which store illumination information [4].
Once this information is stored in the illumination maps, it can be retrieved in a

conventional light-backwards ray tracing pass, as per [97, 63].
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2.4 Closing remarks: radiosity vs ray tracing

As described thus far, there are some very striking differences between the con-

stant radiosity algorithms, and the ray tracing methods:

o Whereas the ray tracing algorithms have trouble modelling diffuse inter-
reflection (due to their point-sampling approach), the radiosity algorithms

(with their area sampling approach) model little else.

o The radiosity algorithms discretize the scene into a number of flat'* patches,
while the ray tracing algorithms are content with a large range of object

primitives.

o Radiosity is an object-space approach, whereas ray tracing is an image-

space approach.

This last point does not apply to all of the ray tracing algorithms described:
some researchers have recognised that indirect diffuse llumination is a very slowly
varying quantity — once light is reflected diffusely, any detail that might have
present in the incident light is lost (figure 2.9). The consequent problems, for ray
tracers, have already been made clear; the various solutions principally having

involved taking an object-space approach to solving for this component.

Now, whereas ray tracing methods have to take special steps to account for in-
direct diffuse illumination, radiosity methods are ideally suited to modelling this
component: they model, in fact, diffuse illumination only. None of the radios-

ity methods described thus far have made any attempt to account for specular

4 The patches being flat is only a consequence of the form factor evaluation method,
not the radiosity method per se.
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indirect diffuse illumination

direct illumination

diffuse floor

Figure 2.9: Detail that is present in the incident light is lost after diffuse reflection
making indirect diffuse illumination, a particularly slowly-varying quantity.

transport. Many such methods [59, 119, 96, 101] are reviewed in [36]. W ith the
exception of Immel’s algorithm [59] all of these approaches recognise the imprac-
ticality of trying to solve the rendering equation globally15, and only attempt to
account for the specular reflections which reach the eye of the observer. This
is accomplished by extending form factors so that light which leaves one diffuse
surface, and arrives at another via a number of specular reflections, is accounted
for in the form factor. Having evaluated the extended form factors, the radiosity
equation can be solved in a first pass, and a distributed ray tracing (i.e., image
space) second pass can then capture the desired specular effects. It has been
pointed out [123] that this still does not account for all possible light paths (e.g.,

LSSDE), but more comprehensive extensions can overcome even this [17].

Essentially, the ray tracing algorithms, which are primarily image-space ap-
proaches, find that they have to incorporate an object-space pass if they are

to correctly handle the light transport in the scene. The converse is true of

15More recently, the wavelet method, described in the next chapter, has been ex-
tended to do exactly this [94, 85].
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radiosity algorithms.

The remainder of this thesis concerns itself with the accurate solution of the
rendering equation in diffuse environments. Care is taken to ensure that direct
lighting effects (figure 2.9) are accurately modelled, and that the constant ra-
diosity assumption [110] is not allowed to adversely affect the accuracy of the
solution. Concentrating on diffuse surfaces only, in this way, can be justified
with a number of reasons. In order to find useful real-world applications for the
type of work described in this thesis, an object-space algorithm seems essential;
implying radiosity. Also, recent work relating finite element methods to radios-
ity (described in the next chapter) have opened up new and interesting fields
of research, which bear close investigation. A final justification, is that limiting
oneself to diffuse transport only, in the first instance, does not prevent one in-
corporating specular transport at a later stage — considering diffuse-only scenes

should simply be regarded as a good starting point.
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Higher order radiosity methods

The previous chapter described a collection of radiosity methods, all of which
relied on the premise that the radiosity across a surface can be represented as
a piecewise constant function. This premise, in turn, necessitated the use of
(inappropriate!) interpolation in order to achieve images which appeared per-
ceptually acceptable. This chapter describes algorithms which recognise the
need for a consistent, higher order, radiosity representation, if accuracy is to
be achieved. Such a representation would be used throughout the solution and

rendering phases.

In order to meet accuracy demands, the constant radiosity algorithms of chapter
2, used a large number of patches in regions where the radiosity was varying
rapidly. The radiosity algorithms of this chapter approximate the true radiosity
using (piecewise) higher order polynomials, rather than simple step functions.

The computational complexity of handling a large number of constant functions,

1Using linear interpolation on a solution which is piecewise constant, is inconsistent:
a hack.
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is replaced by the computational complexity of handling a smaller number of

higher order functions. The relative merits of the two approaches are discussed.

Before considering the specifics of higher order radiosity methods, some back-

ground theory on the solution of integral equations, is presented as a framework:

3.1 Integral Equations

Much of the following discussion, on integral equations and associated solution
methods, deals with functions of a single variable: whilst this typically will not
include the radiosity across some surface in a 3D scene, the results do generalise
to functions of more than one variable [54]. The reader is referred to [28] or [6] for
a fuller discussion of the issues covered in this section. For a computer graphics-

specific discussion, see [54] or [55].

An integral equation is one in which the unknown function appears inside an
integral. When the limits of the integration are definite, the equation is known
as a Fredholm integral equation. Further, where the equation is linear in the un-
known function, it is called a linear Fredholm integral equation. Linear Fredholm

integral equations take three distinct forms:

y(s) = /abK(s,t):v(t)dt
o(s) = yls)+ /:K(s,t):c(t)dt

2(s) = / " K (s, 8)a(t)dt (3.1)

These are known as linear Fredholm integral equations of the first, second, and

third kinds, respectively. The functions y(s) and K(s,t) are both known; z(s) is
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the unknown. The function y(s) is known as the driving term, the function K (s, )

is known as the kernel [28]. The region [a, b] is the domain under consideration.

Integral equations are often written in terms of integral operators. For example,
a linear Fredholm integral equation of the second kind, of which the rendering

equation (1.10) is an example, might be written:

z=y+Kz (3.2)

Here, the dependence of the unknown function z on some parameter (s) is taken

as being implicit, and the integral operator K is defined by:

b
(Kz)(s) = / K(s, t)e(t)dt (3.3)

When a second kind integral equation is written in the form of (3.2), it is easy

to see how, if 7 is the identity operator, a solution might take the form:

z=(I-K)y (3.4)

If, in some sense, ||[K|| < 1, then the intuitive solution
s=y+Ky+Ky+--+Ky+--- (3.5)
seems to follow from (3.4).

Why ‘intuitive’? Well, in the case of the rendering equation, this corresponds
to the concept of light leaving the sources (y), bouncing off the surfaces in the
scene (Ky), then this light bouncing again (K%y), and again (K3®y), ad inf. So,
the light incident at any point in the scene consists of a direct illumination part,

a once-reflected part, a twice-reflected part, ... . Also, (3.5) seems to follow
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from (3.4) because (3.5) looks very much like the binomial expansion has been

applied to (3.4).

This thesis is concerned only with functions and kernels which are in some sense

well behaved. The only functions, z(s), that will be considered, are such that:

b
/ |z(s)[*ds < oo

In the case of radiosity, we talk about functions of finite energy. The set of all
such functions define the function space £%(a,b). The function z(s) is known
as an £? function. Suitable definitions of ‘equality’ and a ‘null function’ can be

combined with the set of £2 functions to form a complete linear vector space [28].

Similarly, this discussion will only consider kernels K (s,t) which are such that:

f:’ /: K (s, 1)|*dsdt < oo

The L, norm of an £? function z(s) is given by:
b 1/2
ot = { [ et}

2 can be used to define a norm for the integral operator

In turn, this function norm

K which maps the £? function z onto the £? function Kz:

el = sup 2

sesz oo 2]

(3.6)

It has been shown [28], that when ||K|| < 1, the Neumann series (3.5) does in

fact provide an exact solution to the integral equation (3.2):

z=y+> Ky (3.7)

=1

2The subscript 2 is taken as being implicit, in this thesis.
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Kajiya [61] has noted the similarity between the Neumann series expansion and
the iterative solution methods common to full matrix (FM) radiosity methods
(section 2.2.2). Several iterations being equivalent to summing early terms in
expansion (3.7). It is easy to visualise how, in the case of the radiosity equation,
the norm of the kernel is less than unity: here, the kernel describes how light is
reflected off the surfaces in the scene, and the conservation of energy applies —
so no more light can be reflected than was incident (i.e., ||Kz|| < ||z||). In real
scenes, the reflected energy will always be strictly less than the incident energy,
ie., ||[Kz|| < ||z||. Inserting this information into definition (3.6), it becomes clear
that ||K]| < 1 for the radiosity kernel; thereby validating the application of the

Neumann series [28].

The following definition, whose relevance will become more apparent in the next

section, is for the inner product of two L£? functions 2 and y over the domain
[a, D]:

<ay>= * a(t)y(t)dt (3.8)

Two (non-zero) functions « and y are said to be orthogonal when < z,y >=0.

3.2 Method of weighted residuals

Recall (3.2):

r=y+Kz

The aim now is to solve (3.2) ‘as best we can’ (in some sense) by restricting

the solution to a familiar function space — one which contains functions whose
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behaviour

e comes close to the complexity estimated of the true solution function, and

e is well understood.

In general, the exact solution lies in an infinite-dimensional (Hilbert) function

space. The more complex the restricted subspace, the closer, one presumes, this

approach will get to the true solution.

As yet, little effort has been made to define the notion of closeness, as it has

been used here; a clearer outline is given now.

3.2.1 The approximation function

The quantity

E(s) = zn:wiNi(s) (3.9)

i=1

is referred to as a trial function [32] for the equation in question (3.2). The n
functions {IV;}i=7 are known basis functions which, together, define the span of
the space that the trial function has been restricted to. The weights {w;}=7 are
not yet known; they are the scalars by which the basis functions are weighted to

ensure that the trial function Z is as close as possible to the exact solution, z.

Algorithms which adopt this approach are known as projection methods — the
idea being that the trial function is the projection of the exact solution into the

chosen, finite-dimensional, function space.
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Figure 3.1: Building a trial function from linear basis functions (after [24]).

A choice must now be made about which basis functions are to be used — effec-
tively choosing the function space that the solution is to be restricted to. Some
approaches use basis functions with global support (i.e., non-zero anywhere) [32].
Another approach is to utilise basis functions with only local support —i.e., those
which are zero everywhere, except in some small region of the domain. It is these
last functions, which have gained huge popularity through their use in finite ele-
ment methods [32, 6, 82], that are considered here. Not only are they simple to
visualise, they are also computationally robust and easily generated, even for the

most complex geometric shapes.

A one-dimensional example of a trial function is shown in figure 3.1. Here, the
basis functions each have local support and are linear. The function is sampled

at seven points, known as nodes: the weights {w;}}=}' are found, in this case, by
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evaluating the function at each of the nodes. The domain has been split up into a
number of elements, which are the regions used to limit the support of the basis
functions. As can be seen from figure 3.1, each basis function is associated with
a single node, and a basis function is non-zero only on those elements which are
adjacent to its corresponding node. Notice also, that each basis function is zero

when evaluated at any node other than its ‘own’.

A more complicated case, for a two-dimensional domain®, is shown in figure 3.2.
Again, the basis functions are linear, but now the elements are quadrilaterals,
having nodes at their vertices. Again, there is one basis function for each node,

and each basis function is zero when evaluated at any node other than its own.

In general, the nodes are positioned at various points within, and on the bound-
aries of, the elements. In turn, the elements are chosen according to the geometric
complexity of the surface being modelled (their shape), and the expected com-
plexity of the function being modelled (their order: the number of nodes per
element). Whilst figure 3.2 shows only the linear case, cubic basis functions (say)
across a quadrilateral element would require at least 12 nodes per element (many
being shared with neighbouring elements) [131]. The greater the accuracy re-
quired, the smaller the elements, and the more nodes per element. It is easy to

see how such a set-up might be used to model radiosity varying across a surface.

In both of the examples mentioned thus far (figures 3.1 and 3.2) whenever a basis

function has been evaluated at a node other than its own, it has been zero. This

3Any parameters (s,%) or domain limits (a,b) can now be regarded as 2D vectors.
So the parameter s can be regarded as the ordered pair s = (s1, $2), where s; and s
are both reals. The domain [a,b] becomes [a1,b;] X [ag, bg], the integral [ ds should
be regarded as f‘fl‘ f:j dsidsy, and so on. Similarly for higher dimensions. Since little
is gained by expansions of this type, the notation will remain unchanged, in the main.
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(i) scaling a linear basis function by a nodal value

wANifx) + w2N2(x) + w3¥N3x) + wédN4(x)

(ii) combining scaled basis function across an element

Figure 3.2: Building a 2D trial function from linear basis functions (after [24]).

typical of basis functions with local support [131, 57].

Having settled on a set of basis functions, and evaluated the weights correspond-
ing to each one, what has effectively been finalised is #ow the trial function
interpolates. In order to find out exactly which values it interpolates, one must
evaluate the trial function at each node ({-s»}j="). It is for this reason (compu-
tational ease) that basis functions are usually chosen where Nj(s{) = Sij — the

Kronecker delta, for in this case we have simply: x(5,) = u;,.
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3.2.2 Error considerations

Now, inserting the trial function (3.9) into the integral equation (3.2) gives:

¥ ~ y+Kz

0 ~ §—Ki—y (3.10)

The amount by which (3.10) falls short of zero, at any given point, defines the
residual function r:

r=§—-Ki—y (3.11)

Ideally, the weights {w;}i=} should be chosen so that the residual function is
1dentically zero. Alas, whilst the trial function is restricted to a particular finite-
dimensional function space, this is not true of the exact solution, and therefore
neither is it true of the residual. So, realistically, the weights should be chosen
so that the residual is as small as possible everywhere. In fact, they are chosen

so that the residual is forced to zero in some average sense [32]:

A number of independent weighting functions {W;(s)}i=} can be chosen, and the

residual minimised with respect to these functions by setting

<Wir>=0, Vie{l,...,n} (3.12)

Inserting the residual definition (3.11) into (3.12) gives, for each ¢ € {1,...,n}:

0 = <W,z-Kz—y>
= < Wi, Y w;N; — > w,KN; —y >
=1 j=1

= ij<I/Vi7Nj>_ij<vVi:ICNj>_<M7y> (313)

J=1 7=1
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Let us define the n x n matrices M and K, whose :*" row, j** column, entries are

given by:
b
Mi; =< Wi, Ny >= [ Wis)Ny(s)ds (3.14)
and,
b b
Kij =< Wi, KN; >= / Wi(s) / K (s, t)N;(t)dtds (3.15)
respectively.

The matrix M is the mass, or stiffness, matrix. The matrix K is the discretized

kernel matrix.

If we also define two column vectors w and y, whose ¢*® row entries are given by
w; and, y; =< W,y > respectively, then (3.13) can be rewritten in matrix/vector

form:

M-Kw=y (3.16)

The n xn matrix (M —K) is known as the generalised stiffness matriz — its entries
can all be found by utilising known information in some numerical quadrature
method. Similarly for the vector y. This leaves only the vector w unknown,
and it becomes apparent why exactly n weighting functions were chosen: the
system (3.16) represents a linear system of n equations in the n unknowns {w;}=%.

Solving this system gives weights which put the trial function very close to the

exact solution, in some average sense.

Exactly which weighting functions are chosen depends on the specifics of the prob-
lem at hand, and the effort one is willing to devote to reaching a solution. Two

common choices are found in the collocation method and the Galerkin method.
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Both of which are now reviewed.

3.2.3 Collocation method

Suppose the n nodes are positioned at s = 31,82,...,8,. In the collocation

method, the n weighting functions are:

1 ifs=s;

Wi(s) = (3.17)

0 otherwise
Inserting these weighting functions into (3.12), forces the condition r(s;) = 0. So
this choice of basis function amounts to ensuring that the residual is zero at each

of the nodes.

How do the collocation weighting functions affect the components in the linear

system of equations (3.16)? The mass matrix is now given by:

M.gj =< VV@,N:,’ >= Nj(si) (3.18)

Clearly, these entries are trivial to find — one need only evaluate a set of known
functions at a set of known points. Typically, N;(s;) = &;;, so the mass matrix

will be the identity matrix (as is the case in classical radiosity (2.12)).

From (3.15) and (3.17), the discretized kernel matrix is given by:

K;j =< W;,KN; >= (/CNJ‘)(S,‘) = /b I{(Si,t)Nj(t)dt (3.19)

a

In order to evaluate each of these entries, an integral must be evaluated. Typi-
cally, this will involve some form of numerical quadrature procedure [28]. How-

ever, the basis function NV;(¢), having only local support, will be zero for much of
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t € [a, b], so the problem is not as daunting as it might first appear.

The i** component of the vector y is simply y(s;) which, again, is simply evalu-

ating a known function at a known point.

Once the generalised stiffness matrix (M — K), and vector (y), corresponding
to the driving term, have been evaluated, it remains only to solve the linear
system of equations (3.16) for the weights w;. These can then be used to build
the approximate solution # (3.9) which is close to the exact solution in that the

residual is guaranteed to vanish at each of the nodes.

Collocation radiosity

In order to apply this theory to solve for the radiosity across a surface, regard the
function z(s) as representing the radiosity across the surfaces that make up the
environment. The driving term y(s) represents emitted radiosity, and the kernel

function is given by (figure 3.3):

cos 8,(t) cos 6;(s)

T2

K(s,8) = pals)g(s, %) (3.20)

Consider the following approach. The environment is split up into n elements

{[liv ui]}:z? = {[0;, ul]a [127 u2]) R [Zm b]}7

each containing a single node s; € ({;, u;).

Now, if the basis functions N; in (3.9) are chosen to be constant:

1 ifse [lj, uj]
Ny(s) = (3.21)

0 otherwise
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Figure 3.3: Patch-to-Patch form factor geometry, in parametric terms.

then the mass matrix (3.18) is the identity matrix (M;; = §;;), the discretized

kernel matrix K is given by (3.19):
I{ij = /“3' I{(Si, t)dt
1
and the vector y is evaluated using y; = y(s;).

Forcing the residual function to be zero at each node results in (3.16), the n

constraints:

i wi( My — Kij) = s
w; = y; + 2?=1 ij,-j
wi = Yi + gy w; fi, K(si,t)dt
cos B, (1)

n u; cos 0 (s¢
wi = yi o palsi) Doy wy iy g(s,8) P04 dy (322)

wr
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The combination of choosing simple basis functions, combined with even simpler
weighting functions, has brought us back to the radiosity equation (2.11) of chap-
ter 2. There, the proximity assumption, combined with the visibility assumption,
led to a system of equations identical to (3.22). The integral in (3.22) is the form
factor as it evaluated by most numerical algorithms [22], the weights w; are the

patch radiosities, and the y; are the patch emittances.

The first application of the collocation method (per se) to solve for the radiosity
distribution in a scene, was on a 2-dimensional flatland radiosity environment
in [54, 55]. Max et al [73, 116] have subsequently used the collocation method
for 3D radiosity, with linear basis functions defined over triangular elements —
effectively taking the classical radiosity method [22, 23] one step forward, by using
Gouraud shading [46] from the solution phase onwards; thereby superseding its

(otherwise inappropriate} use in the rendering phase.

3.2.4 Galerkin method

The Galerkin method is another commonly-used weighted residual method. Here,
the weighting functions are chosen to be the basis functions which span the
function space from which the trial function is chosen (i.e., W; = N;). With this

choice of weighting function, the mass matrix becomes:

b
M;; =< N;, Nj >= / Ni(s)N;(s)ds (3.23)

The discretized kernel matrix is given by:

b b
Ky =< N;,KN; >= [ N;(s K(s,t)N;(t)dtds 3.24
i J j
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And the homogeneous vector, y by:

b
Yi =< Njyy >= / N;(s)y(s)ds (3.25)

Notice that whilst (3.24) must now be evaluated for n? different pairs of basis
functions, these functions all have only local support, and therefore the inte-

gral (3.24) need only be evaluated over a fraction of [a, b] x [a, b].

Again, (3.16) holds, and it is by solving this linear system for the scalar weights
w; that the trial function which ‘best’ satisfies (3.2) is found. In order to evalu-
ate (3.23), (3.24) and (3.25) one must invariably resort to numerical quadrature
methods, although (computationally intensive) closed-form solutions are avail-

able, for constant basis functions [93].

If the basis functions are chosen so that
< Ni,Nj >= 6,']' (326)
— the basis functions form an orthonormal set.

With orthonormal basis functions, the mass matrix for the Galerkin method
becomes the identity matrix (regardless of the order of the basis functions), with
its obvious cost benefits. Details of different orthonormal basis sets are of little
interest here, suffice to say that a number are available — (normalised) Legendre
and Jacobi polynomials are two sets which can satisfy (3.26) for problems of

arbitrary (finite) dimension [129].

It is interesting to compare (3.19) and (3.24) — the discretized kernels (K) from
the collocation and Galerkin methods, respectively. One striking feature is the

double integral in the Galerkin kernel matrix compared to only a single integral
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for the collocation method. This superior sampling of the domain, ensures the
Galerkin method achieves are surer representation of the integral operator X,
than its collocation counterpart. Clearly, the increased accuracy is accompanied

by a consequent increase in computational expense.

An analogy

The following scenario is offered as a 3-space analogy for what the Galerkin

method is trying to do in function space.

One end of a spring is fixed at a point above a table. A heavy weight is fixed to
the other end of the spring. This weight lies on the table. The table is of such
a size, and other physical factors are such that, no matter where on the table
the weight is placed, it remains there. No matter where the weight is placed, the

spring is stretched beyond its natural length.

For reasons which are beyond our ken, the people who live on the flatland world
of the table top, wish to minimise the energy stored in the spring. This energy
is directly proportional to amount by which the spring is stretched beyond its
natural length [109]. In order to minimise the energy, the people on the table top

move the weight to lie directly beneath the point where the spring is fixed.

The flatland table top world is spanned by the unit vectors i and j. The extension
of the spring is described by the vector x. The people merely set x - i and
X - J to zero, and their goal was achieved as best at it could be, while being
restricted to the table top. Essentially, the scalar (inner) products of the quantity

to be minimised, with the basis vectors, were forced to zero. This is exactly
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Figure 3.4: A 3-space analogy for the Galerkin method.
what is happening in the Galerkin method. Even though the function to be
minimised (the residual) is more complicated than the chosen function space can
accommodate, its inner product, with each basis function in the chosen space, is

forced to zero. This minimises the function as best we can.

Galerkin radiosity

In the computer graphics community, Heckbert [54, 55], drawing on a wealth
of radiation heat transfer research, was the first to propose using the Galerkin
method for modelling radiosity. As with collocation radiosity, Heckbert only

implemented the method in a 2-dimensional flatland world.

Subsequently, the method has been used to solve for the radiosity distribu-

tion across a set of bi-parametric surfaces, comprising a 3-dimensional scene,

e . Fj—éﬁN YRy NS | . .
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Figure 3.5: A singularity in the radiosity kernel: As r — 0, K(s,t) — oo.

by Zatz [129, 130]. Zatz reports some impressively accurate results, whilst at the
same time drawing attention to some problems inherent in applying the method

to the radiosity equation.

By using basis functions of high enough order, Zatz concludes that radiosity
transfer can be calculated with arbitrary accuracy between most pairs of surfaces.
Problems arise, however, when the two surfaces meet along an edge or, less often,
at a point. In these cases, the radiosity kernel (3.20) approaches infinity as a
pole of order two as the area elements on the adjacent surfaces approach one
another (figure 3.5). Such singularities in the kernel, can drastically affect the
convergence of a quadrature rule being used to evaluate an integral involving the

kernel — specifically, the K;; of (3.24).

Thus far, we have only considered inner products of the form (3.8):

<oy >= /ab:z:(t)y(t)dt
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Zatz overcomes the singularity problem by using a weighted inner product

b
<,y >w= / 2(s)y(s)W(s)ds (3.27)
whose weighting function W is specifically chosen to cancel out the pole.

A drawback of the method is that the weighting function W, which is chosen to
have a zero of multiplicity two along the problem edge, actually behaves like this
along all edges, and so tends to make surfaces look overly dark near their edges,

and bright in the middle.

When the chosen basis functions are the Legendre polynomials, the un-weighted
inner product (3.8) is used, and singularities can cause convergence problems.
When the (more computationally expensive) Jacobi polynomials are used, the
weighted inner product (3.27) is used, the singularity is circumvented, but instead
of convergence problems, ‘dark edge’ problems result. In order to balance the
pros and cons of the two approaches, Zatz [129] uses a hybrid approach, whereby
energy transfer between surfaces is evaluated using Legendre basis functions,
unless the surfaces share a common edge. In this case, the problem is couched in
terms of Jacobi polynomials, the singular transfer is evaluated, and the results

converted back into Legendre bases.

Another problem Zatz encountered, was with discontinuities in the radiosity ker-
nel, caused by occlusion. Whilst the true radiosity across a surface may exhibit
discontinuities (of various orders [54]) in and around shadow regions, mimicking
this behaviour with a linear combination of continuous basis functions, is not
possible. When one attempts such a projection, a phenomenon known as Gibbs

ringing [129] becomes evident. The shadow region appears as one might expect it
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to, but the area around the shadow exhibits ripples which are clearly erroneous.
The higher the order of the basis functions being used, the less objectionable the

error becomes, but it never goes away completely.

Zatz circumvented the problem by taking a step backwards, and removing the
visibility term from the radiosity kernel, so that it could be handled separately.
Energy interchange between surfaces takes place without considering occlusion,
then the result is weighted by a shadow mask, defined over the receiving surface.
The shadow mask is effectively a texture map defined over the receiver, taking
values in the range [0, 1] — 0 for umbra regions, 1 for lit regions, with intermediate
values inside the penumbra. This approach improves the appearance of images,

but does so using a particularly crude technique.

The next section describes an extension of the higher order algorithms presented
thus far. These new wavelet algorithms attempt to incorporate the positive as-

pects of the higher order methods, whilst trying to steer clear of some of their

pitfalls.

3.3 Wavelet radiosity

In the previous chapter, it was shown how hierarchical radiosity (HR) outper-
formed other constant radiosity algorithms: even though the environment may
be split up into a large number of small elements, HR exploits the fact that if
these elements are grouped hierarchically, energy interchange can be accurately
evaluated by allowing, where appropriate, groups of elements to interact with

other groups — thereby reducing an O(N?) problem to O(N). Similarly, the
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preceding sections of this chapter have shown that treating the radiosity function
as being piecewise polynomial, rather than piecewise constant, can also lead to
improvements. Wavelet radiosity {45, 92] unifies these two approaches, allowing
not only piecewise polynomial basis functions of order > 0, but also a hierar-
chical treatment of the way in which the basis functions interact. Furthermore,
the (hierarchical) bases are specifically constructed so that the discretized kernel
matrix, which details how energy is exchanged between different basis functions,

contains many negligible entries — allowing particularly fast solution methods.

3.3.1 Function projections

As with all the radiosity methods examined thus far, the aim is to find a function
z(s), which lies (inaccessibly) in Hilbert space. A more accessible function space
V., spanned by the known basis functions {IV;}iZ7, is considered instead, with

z(s) being approximated by the linear combination:

Py z(s) = &(s) = Za:, i ( (3.28)

=1

The approximate function #(s) is the projection of z(s) into the basis set {V;}i=¢

1=1»

the operator which achieves the projection is Py, .

If < z—2, N; >= 0 for all basis functions NV;, then &(s) is an orthogonal projection
of z(s) into {IN;}i=F. If the chosen basis functions form an orthonormal set, then
this orthogonal projection relation can be used to find the unknown coefficients

;.

<z—2Z,N;>=0
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<z, N; > —E?=1$j<Nj,Ni >=0
z;, =<z,N; >

Py a(s) = z(s) = X%, <z, N; > Ny(s) (3.29)

In the case of radiosity, the integral equation to be solved is:

b
z(s) = y(s) —i—/ K(s,t)z(t)dt (3.30)
Where z(s) represents the final radiosity and y(s) the emitted radiosity.

The equation

Hs)=9()+ 3 < | " K(s, £)5(t)dt, Ni(s) > Ni(s) (3.31)

is known as the related integral equation. Notice how the kernel has been allowed
to operate on the approximate function &(s); an operation which will typically
not leave the result in our chosen finite dimensional function space V,, so this

has been reprojected back into V,, as per (3.29).

Solving (3.31) for the unknowns z; =< z, N; > can be done as soon as the discrete

kernel coefficients
b b
Ki; = / Ni(s) / K (s, 8)N;(t)dtds (3.32)

have been found. Notice that (3.32) is exactly (3.24), and that ensuring the
projection < z — &, N; > is orthogonal for every basis function N; has simply
resulted in a different derivation of the Galerkin method. The projection method
derivation has been included here, because the notion of projecting a function

into different basis sets is an important one, which can lead to computational

savings.
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All that remains, is to choose a suitable set of basis functions, evaluate the K;;,
and thence solve for the z;. Notice that many different sets of basis functions can
span the same function space — simply deciding to use n (orthogonal) polyno-
mials of degree 0,...,n — 1, is a long way short of uniquely identifying a suitable
basis set. Different bases may represent a given function more efficiently than
others. One family of basis sets, specifically constructed to yield efficient repre-
sentations of a function, by exploiting any smooth sections it might have, are the

wavelet bases:

3.3.2 Wavelet bases

Wavelet bases [11, 2] are a relatively new tool, even in the signal processing
field, where they originated. Wavelet bases form hierarchical basis sets which,
unlike the hierarchical bases discussed thus far [49, 50] (figure 3.6), do not simply
represent each basis function as being the average of its children on the level
below. Instead, the basis functions at each level in the hierarchy record what

detail is lost between this level and the finer level, below.

To begin with, consider the Haar wavelet basis. Given two box functions:

1 if s € [s1, s9]
(151,0(3) =

0 otherwise

\

1 if
$ra(s) = 4 s € lonss (3.33)

0 otherwise

It 15 clear that these two functions span some simple function space, and that
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f(s) A

wy

Figure 3.6: Standard hierarchical basis. A function is shown at five levels in a
hierarchy. The values of the basis functions, which simply average their children’s
values, are shown.
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any function z(s) lying in this space can be written as a linear combination:

z(s) = adio(s) + Bé1a(s) (3.34)

It is also clear that (3.34) can be manipulated to give:

2(8) = 2L (b10(s) + b1a(5)) +

B —a

2

(¢1,1(5) - ¢1,o(3)) (3.35)

Introducing ¢o(s) = ¢1,0(s)+¢1,1(s) and 1o o(s) = ¢1,1(8)—¢1,0(s) it becomes clear
that ¢p(s) and oo(s) together, span exactly the same space as {¢1,0(s), ¢1,1(s)}-
Whilst this observation may not seem significant in itself, and the subscripts may
seem overly complex, the point to note is that the original box basis set has been
replaced by one function (@) which represents the average of the function over
the interval, and another (tg0) which expresses how the function differs from the

average.

The construction of the Haar basis (figure 3.7) begins with n = 2¥ (finest level)
box functions {¢z ;(s) ::',:(Z)L"l which span the chosen finite dimensional function
space V. As described in the last paragraph, a pair of these functions ¢y, 2;,
$r,2j+1 can be replaced by a ¢r_;; ‘average’ function and a 1r_;; ‘difference’
function. Pairwise replacement of all of the ¢y, ; in this way results in n/2 ¢r_4 ;
functions (similar to the ¢, ;, but twice as wide) and n/2 1 ; functions, which
record how the ¢y, ; differ from the ¢z_; ;. In exactly the same way, the function
space spanned by the n/2 ¢y, ; functions can now be replaced by n/4 ¢ functions
and n/4 ¢ functions. This process recurses, until we are left with a single function
¢o which represents the average of the function over the whole domain, and a

hierarchy of functions {¢i,j}2:zg‘;i’oj:2i"1 which record the detail lost between the
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Figure 3.7: The (recursive) construction of the Haar basis set.
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various levels of the hierarchy. Together, these n functions span the original space

Vi, and are known as the standard Haar basis set.

The ¢; ; are known as smooth functions, whereas the ; ; are referred to as detail

functions.

The non-standard Haar basis consists of the standard Haar basis, together with

all of the ¢;; functions (¢ = 1,..., L — 1) which were discarded and replaced by

detail functions when creating the standard basis. Non-standard basis sets are

discussed in section 3.3.5.
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Figure 3.8: The standard wavelet basis can be regarded as a pyramid.

The Haar basis is the simplest of a whole family of wavelet bases, all of which are
constructed in an analogous fashion — starting with a finest level that consists
of a single smooth function, translated n — 1 times, to give the n = 2% functions
¢r,; (figure 3.7.1). The functions in this finest level are linearly combined to give
the n/2 smooth and n/2 detail functions at level L — 1. This process recurses,
as in the construction of the Haar basis. Finally, these bases consist of a single,

coarsest level, smooth function ¢o(s), together with a pyramid of detail functions

i ;(s) (figure 3.8).

The smooth functions from one level (z) uniquely define the smooth and detail

functions at the next most coarse level (z — 1):

Bic1 = D hu—2jbik
%

i1 = D Gh—2;Pij (3.36)
k

The sequences h and g, which give the ¢ and 1 functions, respectively, can be
thought of low-pass and high-pass filters, respectively. The relationship (3.36) is

known as the two-scale relationship for the basis in question.

The two-scale relationship is constructed to ensure that any function in the non-
standard basis can be expressed as a single function (defined over [0, 1]) suitably

scaled and translated. That is, one function (¢) for the smooth functions, and
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one () for the detail functions:

i i(s) = 27 ¢(2's — )

() = 277p(2's — 5) (3.37)

This means that ¢;_; ; is identical to ¢;; except it is twice as wide, and 1/ V2
times as tall — proportions which ensure that the inner products < ¢; ;, dix >
remain independent of ¢. In the Haar basis, the original smooth function (¢g
in figure 3.7) is a simple box function, and the original detail function (1og in

figure 3.7) is the difference of two adjacent box functions.

3.3.3 Projections into wavelet bases

The upshot of all this theory, is that not only can an arbitrary function z(s) be
projected into an L-level wavelet basis using
L-12'~1
Prz(s) = &(s) =< z,¢o > do(s) + ; JZ:% < x5 > Yii(s) (3.38)
but also, that costly quadrature routines need not be employed to evaluate the
inner products which appear. Once the inner products < z, ¢z ; > have been
found by solving the related integral (3.31) with N; = ¢, then the two-scale

relationship (3.36) can be used to evaluate the coefficients corresponding to the

detail functions further up the hierarchy.

A pyramid algorithm will, given the n coefficients < z, ¢, ; >, apply the two-scale
relationship to these coefficients, taking O(n) steps to find the n/2 coefficients
< z, pr—1,; > together with the n/2 coefficients < x,1y,_1 ; >. The algorithm can

then take the < z, ¢7—1; > coefficients and re-apply the two-scale relationship.
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In this way, a pyramid of inner products is returned by the algorithm in O(n +

242 ...+ 1) = O(n) steps.

Reversing the process is also possible. Here, the two-scale relationship is utilised
to return the coeflicients corresponding to the smooth functions of level ¢, given

only the coefficients corresponding to the smooth and detail functions of level

¢ — 1.

Because a standard wavelet basis stores detail functions in its hierarchy, if a
function is well approximated, over some part of its domain, by the smooth
function ¢;; (say), then the coeflicient corresponding to the detail function %, ;,
which records how the function differs from the smooth function, will have to
be very small. If sufficiently small coefficients are ignored (i.e., set to zero) then
functions which are suitably smooth can be represented by approximate wavelet

projections, with few non-zero coefficients — a saving which can prove most

valuable (figure 3.9).

Clearly, the more near-zero coefficients in (3.38), the cheaper is the approxima-
tion. Will the cost of the projection? vary for different wavelet bases? The answer

is yes: consider the inner product < z,%;; >, one of the coefficients from (3.38):

b
< @, >= f 2 (s)s (s)ds (3.39)

Now, if the function (s) is closely approximated (wherever 1;; is non-zero) by

some polynomial:

~ 2 M-1
z(s) = ag+ @15 + ags* + -+ + apras

“where ‘cost’ equates to the number of significant coefficients in (3.38)
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Figure 3.9: Projecting a function into a wavelet basis may lead to only a small
number of significant coefficients. From bottom to top, more and more basis
functions are included, only 11 coeflicients are non-zero in this example.

Optimising DMR 3.3. Wavelet radiosity




Chapter 3. Higher order methods 109

then (3.39) can be re-written:

M-1 b
<z iy >Ry czkf s ;(s)s"ds
k=0 e
And it becomes clear that a sufficient condition for the inner product (3.39) to

be small is:

b
/ bii(s)s*ds =0, Vk=0,...,M —1 (3.40)

Functions 1); ; which satisfy (3.40) are said to have M vanishing moments. Wavelet
bases whose detail functions have M vanishing moments will generate near-zero
coeflicients in regions where the function can be closely approximated by a poly-
nomial of degree M — 1. The Haar wavelet basis has one vanishing moment,
and (consequently) detail coefficients are small wherever the function is nearly
constant, over a suitable region of the domain. In figure 3.9, 11 Haar coefhi-
cients completely describe a function which one might have expected to take 16

coefficients.

3.3.4 Flatlets and multiwavelets

Two families of wavelet bases whose detail functions can have an arbitrary number

of vanishing moments are the flatlets [45, 92] and the multiwavelets [1].

Flatlet bases, like the Haar basis, are made up entirely of piecewise constant func-
tions. Unlike the Haar basis, a flatlet basis is not, strictly speaking, a wavelet
basis, since its detail functions will not all be scales of a single shape (s). For
example, the flatlet basis F5, whose detail functions each have 2 vanishing mo-
ments, is constructed by taking translates of 2 adjacent box functions ¢!, ¢Z,

then constructing a two-scale relationship which ensures that the next level up
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Figure 3.10: Constructing the 7, flatlet basis.

the hierarchy consists of box functions twice as wide as the original ones, and
detail functions which each have 2 vanishing moments (see figure 3.10). This

two-scale relationship can be conveniently represented in matrix/vector form:

( 1 1.0 0 \ 11,23‘ }—1,;,'
0 0 1 1 2 2
R b (3.41)
-1 3 =3 1 },2j+1 1'1_1,3'
-1 11 =1 b L)

The first two rows of this matrix have been chosen to give the two wide box
functions. The second two rows have been constructed to give functions with 2
vanishing moments (i.e., the rows are orthogonal to constant and linear variation;

represented by the vectors (1,1,1,1) and (0, 1, 2, 3), respectively).

Similarly, the flatlet basis F5, whose 3 detail functions each have 3 vanishing
moments, i1s constructed by taking translates of 3 adjacent box functions, and
building a two-scale relationship (a 6 x 6 matrix, now) whose top 3 rows ensure

3 box functions twice as wide as the originals, and each of whose bottom 3 rows
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gives a detail function with at least 3 vanishing moments. Clearly, in constructing
each of these bottom rows, there are 5 degrees of freedom, but only the need to
keep them orthogonal to constant, linear and quadratic variation (for 3 vanishing
moments). The extra degrees of freedom are accounted for by forcing one detail
function to have 5 vanishing moments, another to have 4 vanishing moments
and be orthogonal to the first, and the last to have 3 vanishing moments and
be orthogonal to the first two. In fact, the generalisation of this construction
method can be used to generate a two-scale relationship for flatlets F3; whose

detail functions each have at least M vanishing moments [92].

Notice that (figure 3.10) since the degree of the flatlet basis functions remains
constant (0), it is necessary to widen their support as M increases, with a conse-

quent increase in computational cost.

The multiwavelet family of bases which, like the flatlets, are not strictly wavelets,
are where hierarchical methods meet higher order methods. A Multiwavelet basis
Mas, is constructed by taking translates of the first M Legendre polynomials,
and combining them with a suitable two-scale relationship to give smooth func-
tions which are scaled Legendre polynomials, and detail functions which each
have M vanishing moments. The M, multiwavelet basis functions are shown in

figure 3.11. Its (normalised) two-scale relationship is given by:

2 0o 2 0 ) ; I

i»zj i_lzj

1 -3 1 V3 1 ?,zj ?ml,j 3 49
N = (3.42)

1 1
1,25+1 i—1,3

1 V3 =1 V8 )\ dhym \ Y1

Optimising DMR 3.3. Wayvelet radiosity




Chapter 3. Higher order methods 112

Figure 3.11: Constructing the My multiwavelet basis.

Whereas the multiwavelets necessitate higher order quadrature methods, for func-
tion projections, they do offer the advantages of increased convergence rates [28]
and smooth basis functions with which to represent the (mainly smooth, in the

case of radiosity) results.

The bases F; and M, are both identical to the Haar wavelet basis.

3.3.5 Flatland radiosity with wavelets

The previous sections have outlined how wavelet (and related) bases can be used
to represent a one-dimensional function, to a high degree of accuracy, with less
terms than one would normally expect, given the dimension of the function spaces
under consideration. In order to model radiative transfer between surfaces, using
wavelets, it will not only be necessary to develop two-dimensional wavelet bases
with which to model the radiosity across a bi-parametric surface, but also a four-
dimensional wavelet basis for the corresponding discretized kernel function. The

hope is that (as was the case with one-dimensional functions) representing the
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kernel in a wavelet basis will result in many near-zero terms which, when ignored,

will lead to faster algorithms which do not suffer unduly from loss in accuracy.

Before tackling those problems, this section will consider the case of flatland
radiosity [54], where the radiosity along a line, rather than across a surface, is
considered, and the discretized kernel can be represented in a two-dimensional

function space:

Recall the projection (3.38) of an arbitrary function z(s) into an L-level (n = 2F

dimensional) wavelet basis:

L-12¢-1

Pra(s) = &(s) =< z,do > ¢o(s) + Z Z < zy 5 > i ()

=0 5=0

In the related integral equation (3.31) the kernel is first allowed to act on the
projected function &, and then the resulting function is projected back into V,,,

the function space we are restricting ourselves to. So, whereas the original integral

equation can be written:
r=y+ Kz
The related integral equation can now be written:
t=9+ P KPLZ
The two applications of the operator P, (one before the application of the kernel,
and one after) ensure that
1. the kernel only operates on the basis functions of interest, and

2. rather than obtaining the full function that results from this limited appli-

cation of the kernel, the result is confined to the function space of interest.
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Standard basis kernel

If the operator P; denotes projection into the basis {qﬁi,j}gzgi_l, and @; denotes
projection into the basis {'glzi’j};zgi“]L, then the operator PLK Pr, can be expanded,

using the identity Pr, = Py + f’;ll Qi:

L—-1 L—-1
PKPL = (Pt 3 QIK(Ra+ 3 Q)
=1 =1

L-1 L—-1 L-1
= PR+ Y RKQi+ 3 QKPR+ Y QKQe (343
=1

=1 k=1

Each of the terms LX R in the above expansion® describes how the kernel projects
a function lying in the space corresponding to L into the space corresponding to
R. The expansion effectively represents a projection into the space spanned by

the basis functions:
Po(s)do(t)  do(s)ibi;(t)
VYra(s)do(t)  bri(s)i;(t)

(3.44)

Where ¢,k =0,...,L—-1,7=0,...,2" =1, and [ =0,...,2F — 1.

The discretized kernel coefficients corresponding to this basis, can be found from
the coefficients of the matrix (3.32) — which maps the {¢L,]-};§§L_1 onto them-
selves. This i1s achieved by taking one column of the matrix at a time and, as
was done in the one-dimensional case, recursively applying the two-scale rela-
tionship (3.36). The j** such column (transformed) describes the projection of
K¢r; into the wavelet basis. The discretized kernel now describes a mapping
X j=2L-1 . i=L—1,5=2¢-1 . .. .
from {dr;} 0o into {do, i ;}i =0 . The desired matrix is achieved by

repeating the recursive application of the two-scale relationship on the rows of the

Swhere I & R are operators which project a function into one of the rows of fig-
ure 3.8.
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Figure 3.12: The eight unique functions of the standard 2d Haar basis, for the
case L = 2. The other eight functions, which are shared with the non-standard
basis, can be seen in figure 3.13

recently column-transformed matrix. Each of the terms LK R in expansion (3.43)

represents a block of this projected kernel matrix.

It is now possible to store all radiosity functions (along a Hue) in a one-dimensional
wavelet basis, and use this (hopefully sparse) projected kernel to solve directly

in terms of the wavelet basis.

The standard two-dimensional wavelet basis (3.43) has not proved popular, how-
ever, when compared to the non-standard version [11, 45, 92]. By first column-
transforming the original matrix, and then carrying out transformations on rows
consisting of already-transformed entries, it was felt [92] that any smoothness
present in the rows may have been lost during column-transformation, and so
was not being exploited. A more rigourous argument is given in [11], where it is

shown that whilst one can ignore (i.e., set to zero) all but the biggest 0{nlog n)
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Figure 3.13: The eight functions common to both the standard and non-standard
2d Haar bases, for the case L = 2. See also figures 3.12 and 3.14

terms in the standard kernel, this figure is only 0(n) for the non-standard kernel.

It is for these reasons that the non-standard option is now examined.

Non-standard basis kernel

As has already been briefly mentioned, the one-dimensional non-standard wavelet
basis consists of all those functions found in the standard basis, together with all
of the smooth functions (generated by application of the two-scale relationship)

which were discarded when constructing the standard basis, i.e.,

i, . | Li=L~1,7=2'—
XviJi 1j=0

This6 is better viewed as an over-representation of a basis set, rather than as

a basis set per se, since if either of the pyramids were discarded, the

6The function ),0is simply 43 and appears in this thesis with a double-zero wher-
ever a single zero would lead to overly-complex indexing.
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Figure 3.14: The eight unique functions of the non-standard 2d Haar basis, for
the case L = 2. The other eight functions, which are shared with the standard
basis, can be seen in figure 3.13

remaining functions would still span the same space.

In order to overcome the problems which seem to have arisen, by first column-
transforming the whole matrix and then row-transforming, the transformations
in the different directions are interleaved. As before, the operator of interest is

PLJCPL - Consider the following, which is identically true:

i=L

PLICPL = Po/CPo + £ (C.+1/CP+1 -P./CP.)
i=0

But, by definition; P,+1 = Pt + Qi, so:

PI+1/CPi+l - PJ/CP, = (P, + Ot))C(Pt + Ot) - Pt)CPt

= PR+ QIR+ QI
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And so:

i=L-1 1i=L—-1 i=L—1

PL}CPLZPOICPO—I— Z PJCQ,—i— E Q,’]CP,'—{- Z Qi}CQi (3.45)

=0 2=0 =0

Which represents a projection into the space spanned by the basis functions:

bol(s)do(t)  Bia(s)hi;(t)
Yia(8) i (1) hia(s)i;(2)

(3.46)

Where 1 =0,...,L—1,7,1=0,...,2¢ - 1.

Notice now that only functions on the same level in the basis hierarchy interact
with one another. Practically-speaking, such a kernel is obtained by taking the
usual kernel matrix (mapping the {¢ L,j}j':gL ~! onto themselves) and applying the
two-scale relationship once to every row, and then once to each of the resulting
columns. The resultant matrix maps the {¢7_1 ;,%r-1,;} onto themselves —

specifically, the matrix will consist of four n/2 x n/2 blocks which describe how

the kernel maps:

the {¢L—1,j} onto the {’L/JLHLj},

the {111} onto the {¢r_1,;},

the {t1_1,;} onto themselves, and

the {¢r—1,,} onto themselves.

The first three of these blocks correspond to terms in expansion (3.45): P,_1KQp-1,
Qr—1KPr_1 and Q11K Q11 respectively. To obtain the rest of the terms in (3.45),
the interleaved transformation procedure recurses with the fourth block (corre-

sponding to P4, Pr1), resulting in four n/4 x n/4 blocks, corresponding to the

Optimising DMR 3.3. Wavelet radiosity




Chapter 3. Higher order methods 119

........... ‘!‘L-1,] rerersar i ¢L‘1.l Yevranans I " ‘VL—2,] s l " ¢L-2,| I l .I
; s
Qua%Qu4 PLa& Qi =
QL1KPL4 —'_?

QL oK Q- PLoK Q-

QuaxPLg

pov | | I ['3—1¢ . l w2 l

Figure 3.15: Re-arranging the kernel matrix for a non-standard wavelet basis.

terms Pr_sKQr—2, Q12K Pr 2, Qr2KQr—2 and P oK Py in (3.45). Always
recursing with the P, P; block eventually accounts for all of the terms in the

expansion (3.45) of the projected kernel.

Arranging these terms in an n X n matrix does not make matrix/vector multi-
plication convenient when the vector is expanded in terms of the non-standard
basis. Consequently, the blocks are arranged as per figure 3.15, with all entries
outside the blocks being equal to zero. Whilst this matrix is twice as wide and
twice as high as the original matrix, it has no more non-zero, and many more

near-zero, entries.

Each triplet of blocks (figure 3.15) describes how one level of the wavelet hierarchy
interacts with itself. Consequently, there are L such groupings, in total, together
with a solitary entry corresponding to PoKPy. The individual entries in the i

such triplet are given by:
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QiKQ; block: K&, = Ky, ;e = Jo [2 K (s, t)h;,5(8)hi o (t)dsdt
PKQ; block: Kfjy = Ky, = Jo 3 K(s,8)ig(s)bin(t)dsdt

Q:KP; block: K ik = Koo s = f: ff K (s,1)vi,i(s) i (t)dsdi

where j, k= 0,...,2¢ — 1.

The solitary entry, corresponding to PoK Py is given by:

K = Ky, 4 = / ’ / " K(s,£)do(s)do(t)dsdt

Energy transfer

Now that the kernel matrix can be directly manipulated so that it corresponds
to the non-standard wavelet basis, how can this be used to solve for the radiosity

distribution along the lines that make up the two-dimensional flatland scene?

If the radiosity along some line is given by the function z(s), then the projection

of this function into the L-level non-standard wavelet basis is given by:

L—12'-

52(3) =<z, QSO > QSO(S) + Z 2 <z, ¢t,3 > ¢'z,3(3)

i=1 7=0
L—12-1

+ DD <@,y > b g(s) (3.47)

i=0 7=0
Allowing the projected kernel to act on this function, we have:

PoKPris(s) = K% < 2,60 > dols) + TEG L2 K < @ hip > ig(s)+

Ez—o Z?l:-} gk <z, ik > i(s) + zz.ﬂ Eﬁfk_lo K’Y k< T y ik > @i 3(3)48)

It is important to remember, however, that whilst (3.48) contains n? entries

from the projected kernel matrix PrK Pr, great care has been taken to project
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the kernel into a basis which will result in many of these entries being near-
zero. If the effect of the projected kernel is only needed to within some finite
precision, then all but the largest m (say) of these terms can be set to zero, and
matrix/vector multiplication becomes an @(m) problem, rather than O(n?).

K= projectKernel() ;

< m)qSL,j >=<y, qSL,j >3
while ( not converged )
(<, iy > <@, >) = Pull( < z,¢p,; > );
(< g,¢i5 >,<g,%i; >) = Gather( K,< z,¢;; >, < z,%;; > );
<49, ¢L,j > = PuSh( < g,¢i,j >, < 9a¢e‘,j > ))
<, L >=<g,0L; > + <Y, b1 >;
Display ( < z,¢r; > );

Figure 3.16: Radiosity pseudo-code for a non-standard wavelet basis

How can this be usefully applied to solve for the unknown Z(s) in the related
integral equation (3.31)7 Gortler et al [45, 92] describe a three-phase algorithm,

using terminology from previous hierarchical algorithms [50]:

Pull: Project z(s) into the non-standard wavelet basis: Given the n inner prod-
ucts < z,¢r; >, recursively apply the two-scale relationship (3.36) until

the 2n inner products which appear in (3.47) have been found.

Gather: Allow the projected kernel P, K Py, to operate on the projected function
£(s), using (3.48). This corresponds to one bounce of light around the scene,

or accounting for a single term in the Neumann expansion (3.7).

Push: Project the resulting function back into the basis {(251,,;,'}?251; an operation
needed between each Gather and also for the displaying of the results. This
involves recursive use of the inverse two-scale relationship which, given 2¢7!

$i-1,; functions and 2= +h;_; ; functions will return the 2° ¢;; functions
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from the next-most-fine level in the basis function hierarchy.

This Pull-Gather-Push process can be wrapped in a loop and repeatedly applied
until convergence — i.e., Jacobi iteration: This algorithm (figure 3.16) is specific
to the non-standard basis. The Push and Pull operations are only insitde the
while loop because of the presence of the the ¢;; functions in the non-standard
basis: these functions represent the average over some region, so the energy col-
lected at one level (as with conventional hierarchical radiosity [50]) cannot be
regarded in isolation. At first glance, the presence of the Push/Pull routines
inside the while loop may seem excessive, but they account for the energy in-
terchange between functions at different levels of the basis hierarchy — which
was specifically not accounted for in the non-standard projected kernel matrix
(expansion (3.45)). With the standard basis, this is not the case, but the cost
for taking the Push/Pull routines outside of the while loop comes in the form
of log n times more links in the Gather routine: intuitively, each level now links
with every other level in the hierarchy (L = log, n levels). It was for this reason

that the standard basis was shunned in the first place.

3.3.6 3D radiosity with wavelets

For 3D radiosity, where the radiosity across a surface is now regarded as being a
function of two variables, the algorithm proceeds exactly as described in the last
section, but with the radiosity now being represented by a 2D wavelet basis, and

the kernel now a function of 4 variables.

How can the radiosity across some surface be represented in a wavelet basis?
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Consider a projection of the radiosity function z(s, ¢) into some finest-level, tensor
product, 2D basis:
2t—1

(s, t) = >, <z,¢1;60% > ¢1,5(s)bLx(t) (3.49)

7,k=0

This can be represented as an n X n matrix of inner products which can be
transformed (to represent a basis change into a 2D non-standard wavelet basis)
in exactly the same way the two-dimensional kernel matrix was transformed in the
flatland case. This results in a 2n X 2n matrix arranged as shown in figure 3.15.
This is a 2D Pull routine, a 2D Push routine can be similarly constructed using

the inverse two-scale relationship.

The basis change for the four-dimensional kernel matrix (stored in a 4D array
with entries Kjji) i1s achieved in a manner analogous to the 2D case: the two-
scale relationship is first applied to each of n® vectors { K}y (fixed j, ,
[). A similar transformation is then carried out on the {Kijkg}’;;S, then the
{Kiim )z, and ﬁnAa.lly the {Kiju }7=) - This process then recurses with the (n/2)*
entries which represent P;_y Pr,_1KPr_1Pr_1, exactly as per the 2D case. The
transformed kernel matrix can now be incorporated into a 4D Gather routine,

and the solution process proceeds exactly as in the flatland case.

O(m) kernel construction

One problem is apparent: the ‘bottom-up’ kernel construction algorithm just
described will require O(n*) storage and time, since no matter how few entries
are significant at the end of the process, we begin with n* such terms. If the

wavelet kernel matrix contains m significant terms, then figure 3.16 certainly

Optimising DMR, 3.3. Wavelet radiosity




Chapter 3. Higher order methods 124

describes an O(m) solution process — ideally, this should be accompanied by an

O(m) algorithm, for the construction of the projected kernel matrix.

A ‘“top-down’ approach, which utilises a decision-making oracle, is proposed by
Gortler et ol [45], in an attempt to reduce the complexity of constructing the

projected kernel matrix.

A quadtree algorithm is implemented, as per conventional hierarchical radios-
ity [49, 50]. Given two patches {or parts thereof) the oracle must decide whether
or not the region of the kernel responsible for the interaction of the two patches’
is sufficiently smooth, or not. If the wavelet basis being used, has detail functions
with M vanishing moments, then the oracle must decide whether the region of
the kernel under consideration can be reasonably represented by a polynomial of

degree M — 1 or less.

In conventional hierarchical radiosity (i.e., M = 1), information concerning the
size, orientation, separation distance, and inter-visibility of the two patches was
used to construct a similar oracle [49, 50]. This was possible because it is well
understood how all of the these quantities contribute to the fraction of energy
leaving one patch which reaches another. In the case of wavelets, particularly
those flatlets and multiwavelets which have such desirable vanishing moment
properties, it 1s not well-understood how such geometric snippets can be used to

reach conclusions about the function under consideration.

Gortler et al’s oracle [45] begins by trying to establish interaction between the

two patches at a coarse level of detail and then, if that proves unsatisfactory,

7 Actually, the basis functions whose domains correspond to the two patches.
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recurses to the patches’ children and checks if they will interact at the next-
most-fine level. In order to establish whether the current level of interaction is
fine enough, their oracle directly evaluates the part of the kernel corresponding
to the current level and the two patches®, using a Gauss-Legendre quadrature
rule [28]. A polynomial of degree M — 1 is then used to interpolate between the
values sampled during quadrature. A second quadrature rule, which samples in
between those points used by the Gauss-Legendre routine, is then employed to
obtain a measure of how much the interpolating function differs from the Gauss-
Legendre result — an error measure. If this error is too large, the oracle advises

recursion, otherwise it is assumed that the kernel is sufficiently smooth.

Note that the part of the projected kernel matrix, which corresponds to the
interaction between two patches, actually covers sixteen different interactions
(corresponding to { ABKCD} 4 B c,p=p;,q;) between the different 2D wavelet basis
functions whose domains define the patches. But since the inner products which
detail these interactions can all be expressed as a linear combination of the inner

products:

Kbagmam = [ [ [ [ 5(st0,0)8i405(5)e014(8) 121,12 bi11,m(a)dsdltdpd
(3.50)

— which describe the projection Py P11 KPip1Piyq. It is only the these inner
products which ever need be directly evaluated in any top-down ProjectKernel ()
algorithm. It is for this reason that Gortler et al’s algorithm establishes whether

the patches’ parent level is smooth before storing the inner product (3.50) with a

8The level determines which triplet is being dealt with (figure 3.15), the patches
determine which rows/columns within the three blocks are of interest — in flatland
terms, at any rate.
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link joining the two patches. In a quadtree algorithm, the radiosity across a patch
is (similarly) found by applying the two-scale relationship to the inner products
[ Ja(s,8)div1,3(8)is1k(t) stored with their immediate children®. A Gather con-
sists of moving these values across the kernel links, scaling them by the K 15’11’ ikdom

as they go. This is very similar to the conventional hierarchical algorithm [50].

Visibility is accounted for exactly as it was in the conventional algorithm; by
spraying a constant number of rays between patches to give V € [0, 1], which is

used to scale energy transfer across the appropriate link.

3.4 Closing remarks

As proved to be the case with non-hierarchical higher order radiosity meth-
ods [129], values for this visibility term V which are other than 0 or 1 can cause
problems. If a discontinuity!® exists, in the radiosity function across a surface,
then the difference between smooth (averaging) functions at adjacent levels will
often be significant, and this prevents negligible coefficients for the detail func-
tions. Visibility discontinuities are thus a major source of non-negligible terms
in the projected kernel matrix — an issue worsened by the use of higher or-
der flatlets which, having such wide support, are more likely to encounter such

discontinuities.

The algorithms of this chapter mark a fundamental change in the approach the

computer graphics community is taking, to solving the rendering equation: the

°The only inner products which get stored.
Due, say, to a major difference in the view nearby points on the surface have of an
important emitter.
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trend is very much towards setting the problem in a sound mathematical context
and, by considering the problem in these terms, exploring any solution methods
which apply to problems of this type. It is the author’s view that it is exactly the
algorithms described in this, and the next, chapter which illustrate this trend in
the radiosity community. It is for this reason that care has been taken to describe

the algorithms in such detail.

The first part of this chapter looked at the non-hierarchical higher order radiosity
methods. Whilst no shattering conclusions were reached about the superiority
of these methods over conventional approaches, some clear improvements have

resulted:

Accuracy:l By using piecewise polynomial, rather than piecewise constant func-
tions, it is possible to represent the radiosity across much of the scene, to
within a very high degree of accuracy. Incorporation of interpolation into
the solution process, rather than the rendering phase, removes an anomaly
that has long been present in constant radiosity algorithms. The introduc-
tion of the Galerkin method, rather than the more conventional collocation
approach, results in a more accurate kernel matrix than is typically found

in classical methods.

Framework: By couching the problem in terms of integral equations, and re-
stricting the solution of these equations to manageable function spaces, the
higher order radiosity methods have set the problem in a solid mathemati-
cal framework. In turn, this allows researchers to make concrete assertions
about the validity of their results, as well as clearly categorising the prob-

lem at hand, so that research efforts can be usefully directed into other
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fields; which may already have solved some of the problems faced by the

computer graphics community.

Convergence: Whilst each iteration, in the solution process, may be more costly
than a compatible iteration in a constant radiosity algorithm, the higher

order solution will converge in less iterations than its piecewise constant

counterpart [28].

Storage costs: Higher order polynomials remove much of the need to mesh a
surface: Zatz [129] reported solutions which differed little from high-quality,
conventionally-produced, solutions for the same scene, but which required

an order of magnitude less memory to store.
These improvements have not been without their costs:

Discontinuities: Gibbs ringing behaviour results when finite order polynomials
attempt to model significant discontinuities in the radiosity function across

a surface.

Expense: Energy interchange between higher order polynomials may require
a very large number of samples before a solution is possible. If the two
polynomials are of order N, then (N + 1)* samples are required before
energy exchange can be evaluated — it is easy to see how this figure could

soar to unacceptable levels.

The second part of this chapter has been devoted to wavelet radiosity which,
by using a hierarchy of basis functions, of arbitrary order, has inherited all of

the advantages of conventional higher order methods, whilst keeping storage and
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speed costs down. Non-standard wavelet methods result in linear algorithms,
both in storage and time, and whilst energy interchange between high order
polynomials remains expensive, the method ensures that all such transfers are

significant to the final result.

The common problem shared by all of the radiosity algorithms discussed thus
far concerns the difficulties that arise when discontinuities exist in the radiosity

function:

In constant radiosity algorithms, shadow leaks and light leaks occur;

e In the conventional higher order algorithms, Gibbs ringing results;

In wavelet radiosity, large number of significant kernel entries result;

In all methods, convergence rates are adversely affected.

It is apparent that correct handling of these discontinuities could help most of
the algorithms discussed thus far. A careful look at such discontinuities seems in
order. The next chapter describes algorithms which locate these discontinuities
a priori, and which utilise higher order basis functions constructed so that their

support does not cross over any discontinuity deemed to be significant.
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Chapter 4

Discontinuity meshing radiosity

Thus far, this thesis has described a number of radiosity algorithms which, whilst
each having their own good and bad points, have all shared a common stumbling
block: their inability to handle shadows properly — particularly sharp shadows.
It is not, however, shadows per se which are the problem; it is the inability of a
piecewise constant' function to accurately model a significant discontinuity lying
within the support of one of its basis functions. Figure 4.1 shows an example
where linear basis functions have been used to model a function twice; once with
uniformly-positioned nodes, and again with carefully-positioned nodes. It is clear
that simply by taking care over node positioning (ensuring that discontinuities
lic between elements rather than within them) a considerable increase in accuracy

can be achieved.

This chapter describes algorithms which recognise the need for careful positioning

of nodes/elements across the support of the function being modelled, and which

lor low order polynomial
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Figure 4.1: Accurate modelling of the underlying function is not so much a
problem of choosing the order of the basis functions, and their number, but of
carefully choosing their supports.

use geometric information to calculate these positions before light transfer takes

place.

What counstitutes a significant discontinuity in the radiosity function across a sur-
face? How can discontinuities be located and/or quantified? A number of terms

and definitions are now introduced which should help answer these questions.

4.1 Discontinuities and their significance

A function z(s) is said to be C° across the domain ) if:
Vse, }Siir(l)(:v(.s) —z(s£46))=0 (4.1)
Functions which satisfy (4.1) are continuous in value. Functions whose k™ deriva-

tive satisfy (4.1) are known as C* functions — continuous in the £ degree. A

function which is continuous in every degree is said to be C'*.
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A function z(s) which fails to satisfy (4.1} exhibits a discontinuity in value, and
is called a D° function. A function whose (k — 1)** derivative satisfies (4.1), but
whose k** derivative does not, is known as a D* function, and is said to exhibit

a discontinuity in the k** degree.

In the case of the radiosity function across a surface, where are these discon-
tinuities, if anywhere, likely to occur? Consider the radiosity across a receiver
surface rcv lit by an emitter src. The final radiosity across rcv is the sum of
any emitted radiosity together with whatever arrives from src (scaled by rcv’s

diffuse reflectance). Consequently, a discontinuity in

the emitted radiosity, or

the diffuse reflectance, or

¢ a surface normal, or

the visibility term between rcv and src

are all likely to cause discontinuities in the final radiosity function.

In this thesis, it is the last of these possibilities that is of interest. Such discontinu-
ities, in the visibility term between two surfaces, correspond to visual events [39].
Whilst the other listed reasons may well cause discontinuities in scenes we wish
to render, they do not commonly cause problems with image quality, or even
accuracy. This is not true of shadow discontinuities, caused by discontinuities
in the visibility term between rcv and src, and due to the presence of one or
more occluders lying between the two: all of the radiosity methods examined

thus far have encountered difficulties with shadow discontinuities. The human
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eye is particularly attuned to contrast, rather than absolute intensity [115] and,
as such, finds the absence of the perceptual cues usually provided by shadows
(one of the chief areas of contrast in many scenes) most noticeable. Indeed, the
importance of realistic shadows, in computer-generated images, has long been
apparent to those creating the images: shadow algorithms are almost as old as

rendering algorithms [108].

The importance of discontinuities in gradient, to a human observer’s perception

of an image, is well known to those familiar with Mach banding — a feature not

uncommon to computer-generated images. With Mach banding, it is the presence
of a discontinuity in gradient, where it was not expected, that attracts the human
eye. With a D! shadow discontinuity, it is the absence of the discontinuity where

it was expected, that the observer finds so noticeable.

FEarly radiosity algorithms were praised [13] for their realistic, soft, area light
source, shadows. Not all shadows are soft, however, but if the radiosity method
were able to model all significant shadows in a scene, then the realism of the
resulting images would surely be impressive. It is the desire to accurately account
for all significant shadow discontinuities within the radiosity method, that drives

this study.

Heckbert [54] has shown that in an arbitrary environment, the radiosity function
is capable of exhibiting discontinuities of every degree. It is easy to visualise
a situation where a scene has a number of light sources, none of which exhibit
discontinuities of any degree, which then directly illuminate all surfaces visible
to them, and these surfaces then illuminate all the surfaces they can see, and so

on (iteratively accounting for more and more terms in the Neumann series (3.7)).

Optimising DMR 4.1. Discontinuities and their significance




Chapter 4. Discontinuity meshing radiosity 134

However, shadow discontinuities will typically appear across the surfaces lit di-
rectly by the sources, because of discontinuities in visibility between source and
receiver. These discontinuities will then propagate to other surfaces (on the next
application of the kernel function) and this transfer too will encounter obstacles;
causing more discontinuities in the radiosity function. As the process continues,
and more and more terms in the Neumann series (3.7) are accounted for, more
and more discontinuities of higher and higher order will appear in the radiosity

function. A more formal proof, by counter-example, can be found in [54].

It should be clear that specifically accounting for an infinite number of disconti-
nuities, in the function being modelled, will not be practical. Instead, only those
discontinuities which are deemed significant are accounted for. The following
sections examine some low order discontinuities in the radiosity function, with a
view to establishing which, if any, of these discontinuities should be accounted

for when meshing an illuminated surface into elements.

4.1.1 D° Discontinuities

Discontinuities in value are a common feature of images rendered using the ra-
diosity method?. Most often visible in the form of light leaks or shadow leaks, they
occur where different parts of the same element? have a radically different view of
the scene (figure 4.2). For example, a floor in our scene may have been uniformly

meshed into a number of elements, and then a box placed on the floor. Unless the

2They are even visible on the cover photograph of [24]; a highly-respected book on
the radiosity method.

3Using finite element nomenclature, rather than classical radiosity nomenclature
(patch).
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Figure 4.2: Light leaks and shadow leaks occur when different parts of the same
element have radically different views of the scene.
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vertical sides of the box meet the floor along element/element boundaries, then
different parts of any elements lying partially under the box will certainly have
radically different views of the scene (figure 4.2.ii). Consider one such element,
with some of its nodes hidden under the box, and some of its nodes well Lit. It is
easy to see how, when the nodal values are interpolated across the element, light
from the lit nodes will leak under the box, and ‘shadow’ (for want of a better

word) from the dark nodes will leak out and appear on the floor, beside the box.

In the correct radiosity function across the floor, there is a discontinuity in value
along the box/floor boundary. It is the failure of the uniform element mesh
to coincide with this boundary that causes the problems. Figure 4.3 shows an
example of a D° discontinuity in the radiosity function across a surface. Also
shown is a graph depicting the radiosity along a line AB in the surface — the
discontinuity is clearly visible as a ‘step’ in the graph. A scene containing e edges,
and hence O(e) faces, can have O(e?) such critical boundaries, since O(e) edges
could intersect with each face in this way. In reality, the figure is unlikely to ever

be this large.

The problem remained largely unaddressed, in the radiosity community, until
Baum et al took a careful look at D° discontinuities in [7]. Baum et al pre-
processed their scenes with some intelligent mesh-generation code; ensuring that
implicit surface boundaries (such as the box/floor case, just discussed) did coin-
cide with boundaries in the mesh. They also accounted for the D° discontinuities
caused by situations such as a carpet lying on a floor, as well a number of other

awkward cases that can crop up if databases are rendered naively.

Once the surfaces to be rendered have been successfully pre-processed, generating
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Figure 4.3: An example of a discontinuity in value. The discontinuity (cor-
responding to the polygon-meets-floor boundary) is clearly visible in the lower
graph.
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+a mesh whose boundaries do coincide with any possible D® discontinuities, the
application of the usual solution method should now lead to an image free from
any light or shadow leaks. Care must still be taken, however, when evaluating
the radiosity at those nodes positioned on the critical boundaries: floating-point
precision can cause problems here, and the node may feel its view of important
sources is being blocked by the ‘box’/‘carpet’ causing the discontinuity. As long
as nodes lying on critical boundaries are labelled as such, and care is then taken

when evaluating how they are lit, such problems can be avoided [70].

4.1.2 D' and D? Discontinuities

Having established that D° discontinuities are of significance, and should be in-
corporated into the meshing process, what conclusions can be reached about
higher order discontinuities? Figures 4.4 and 4.5 show, respectively, examples of
first and second order discontinuities in the radiosity function. Such discontinu-
ities occur when, as one is moving across the shadowed surface, the view of the
light source changes dramatically — a visual event occurs. In order to expand

on this point, let us introduce some simple terminology:
e A lit region is one in which every point in the region has a wholly unoccluded
view of the entire light source.

o A penumbre region is one in which every point in the region can see some,

but not all, of the light source.

¢ An umbra region is one in which every point in the region can see no part

of the light source.
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Figure 4.4: An example of a first order discontinuity in the radiosity function
across a surface. The accompanying graph — which plots the derivative of ra-
diosity along the line 4 B, shows the discontinuities as sudden jumps in value.
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Figure 4.5: An example of a second order discontinuity in the radiosity function
across a surface. The accompanying graph — which plots the second derivative of
radiosity along the line 4 B, shows the discontinuities as sudden jumps in value.
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Clearly, when moving across a lit region, no dramatic changes will occur in the
view one has of the light source. Consequently, the radiosity function across a
lit region is completely free of shadow discontinuities. However, when crossing
from a lit region into a shadowed region, or wice versa, it is easy to see how
whatever occluder is casting the shadow must affect one’s view of the source, and
thus discontinuities are to be expected here. Similarly for the boundary between

umbra and penumbra regions.

A comprehensive study of visual events; covering where and why they are likely to
occur, was made by Gigus and Malik [39], who constructed the aspect graphs for
polyhedral objects, for an application in machine vision. For polyhedral scenes in
three dimensions, Gigus and Malik identified two distinct types of visual event:
edge-vertez (EV) events, and edge-edge-edge (EEE) events, both of which define
three-dimensional critical surfaces. Because of the difficulties associated with
locating critical surfaces for anything other polyhedral scenes, this thesis (as

others have done [54, 70, 31]) limits itself to such scenes.

EV events correspond an inter-visible edge ¢ and vertex v. The critical surface
corresponding to such an event is a subset of the plane which passes through e
and v (figure 4.6(i)). Specifically, given any point P on e, all points which lie on
the straight line Pv, but which do not lie between P and v, lie in the EV critical
surface. This surface is referred to as an EV wedge, for obvious reasons. In fact,
because of occlusion, the wedge may not extend as far as figure 4.6(i) imphes —

as illustrated by figure 4.6(ii).

EEE events correspond to three inter-visible skew edges. The critical surface

corresponding to such an event is the locus of a view-point from which all three
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poly(v) poly(e)

Figure 4.6: (i) An edge-vertex (EV) visual event, with its corresponding wedge-
shaped critical surface, (ii) Note how the rest of the scene may clip the critical
surface.

edges are seen to cross at a point (figure 4.7). This defines a quadric ruled

surface [39].

Figure 4.8 illustrates three visual events involving a light source, where shadow
discontinuities are expected. The figure shows the view from the shadowed sur-

face, looking towards the light source:

D2 EV: Figure 4.8(i) shows an EV event where, as one moves from an umbra
region, into a penumbra region, a vertex of the source rises over the hori-
zon (which is an edge of the occluder). The further one moves into the
penumbra region, the more one can see of the source — its (triangular)
visible area increasing quadratically with distance moved along the shad-
owed surface. This quadratic increase implies a second order discontinuity
along this umbra/penumbra boundary. Figure 4.5 shows an example of this

phenomenon; the graph showing eight sudden jumps in value where the line
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EEE critical curve
viewing plane

Figure 4.7: An edge-edge-edge (EEE) visual event, with its corresponding critical
surface.

A B has crossed a D2 discontinuity.

Dx EV: Figure 4.8(ii) shows an EV event where, as one moves from an umbra
region, into a penumbra region, an edge of the source rises over the horizon
(which is an edge of the occluder). This is a special case of the EV event
just described: everything is the same, except that now, one of the source
edges that subtends the ‘rising’ vertex, is parallel to the ‘horizon-edge’ of
the occluder. In general, in such cases, the visible portion of the source is a
trapezium, and so increases linearly in size, with distance moved along the
shadowed surface. This linear increase implies a first order discontinuity
along the umbra/penumbra boundary. One can regard this (more severe)
discontinuity as being due to the superposition of two second order discon-
tinuities of the type just described: each due to the ‘horizon-edge’ of the

occluder, and one end of the ‘rising’ source edge (figure 4.8(ii)). Figure 4.4
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Figure 4.8: The figure shows three views moving out of an umbra region into a
penumbra region, looking from the shadowed surface, towards the source. The
source can be seen rising over the horizon formed by the edge(s) of the occluder(s).
Each case corresponds to a different visual event.
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shows an example of this phenomenon; the four sudden jumps in the graph

marking where the line AB has crossed a D! discontinuity.

D? EEE: Figure 4.8(iii) shows an EEE event where, as one moves from the um-
bra region into the penumbra region, an edge of the source rises over the
horizon (consisting of edges from two occluders). The further one moves
into the penumbra region, the more one can see of the source — its (trian-
gular) visible area increasing quadratically with distance moved along the
lit surface. This quadratic increase implies a second order discontinuity

along this umbra/penumbra boundary.

Critical surfaces, corresponding to visual events such as those just described, de-
fine the boundaries between regions across which the visible portion of the source
remains topologically constant [39] (figure 4.9 illustrates this point, and figure 4.5
shows a graph which demonstrates such discontinuities). Across such regions, no
dramatic change ever occurs in the view one has of the source. Consequently,
critical surfaces define the boundaries between regions where one can expect the

radiosity function to be well-behaved.

In a scene containing ¢ edges, there can be as many as O(e?) EV critical surfaces,
each of which may intersect with a face, making a total of O(e®) EV critical
curves. Similarly, there may he up to O(e®) EEE critical surfaces, with up to
O(e*) EEE critical curves. These figures seem prohibitively large. By limiting
our interest to critical sﬁrfaces which involve a single light source only, there may
be up to O(e?) EV critical curves, and as many as O(e®) EEE critical curves. In
most scenes, occlusion (which invalidates inter-visible) and parallel edges (which

invalidates skew) will result in a much smaller number of critical curves.
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polygon representing the
topology of the visible portion
of the light source

Figure 4.9: Visual events correspond to a change in the fopology of the visible
portion of the light source.

4.2 Discontinuity meshing

Consider a mesh, across any shadowed surface, constructed by evaluating the
intersection of the surface with all relevant critical surfaces. One can reason-
ably expect the radiosity function, across the elements in such a mesh, to be
well-enough behaved to validate the approximation of the function, across each
element, by some low order polynomial. If this transpires not to be the case,
then one can be confident that this is not because of a shadow discontinuity ly-
ing within the support of the element. If this discontinuity mesh is now used as
the basis for a radiosity solution of the scene, then all shadow discontinuities of
first and second order, in the radiosity function, will have been captured by the

mesh, and a highly accurate solution should result.
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Such an approach, first proposed by Heckbert (a colleague of Gigus) in [54],
and implemented for the flatland case only, constitutes discontinuity meshing

radiosity (DMR).

A number of algorithms have come close to implementing DMR, without actually
doing so. Nishita and Nakamae [79]* used umbra and penumbra volumes to
classify vertices in their mesh as being either in umbra or penumbra, but did
not actually incorporate the shadow boundaties into their mesh. Campbell [15],
following on from his earlier work with Fussell [14], used the same shadow volumes
used by Nishita and Nakamae, but did incorporate the shadow boundaries into
his meshing process. The only discontinuities within the penumbra, modelled
by Campbell, were umbra EV events. Unfortunately, both of these approaches
were unable to extract any useful object-space ordering from their data structures,
and so every polygon being classified as shadowed /not-shadowed had to be tested

against the shadow volumes of all other polygons in the scene.

This situation was improved upon somewhat by Chin and Feiner [20], who split
the light source by the planes of those polygons which were visible to it and whose
planes passed through it. This resulted in a number of source fragments, from
which one could tour the scene in a unique front-to-back order, by utilising the
BSP tree [35] in which the scene was stored. This avoided redundant shadow-
volume/polygon comparisons, but had to be repeated for each source fragment.

Also, Chin and Feiner’s algorithm only dealt with direct illumination.

A more detailed account of BSP trees and SVBSP trees [19], is given in ap-

pendix A.

4following on from their previous work with point and linear sources [80].

Optimising DMR 4.2. Discontinuity meshing




Chapter 4. Discontinuity meshing radiosity 148

Heckbert [53] and Lischinski et al [70] were the first to implement DMR for a
three-dimensional scene; their work having been carried out separately, but si-
multaneously. Both papers describe algorithms which do not handle EEE events,

the reasoning being that:

1. Such events are difficult to locate; much simpler algorithms can be used for
EV events: an EV critical surface lies in a plane, an EEE critical surface

Hes in a quadric (figure 4.7).

2. Such events constitute second order discontinuities, and these are the least

significant of the three orders being modelled.

3. Such events always occur within the penumbra, which is bounded by EV

critical surfaces, so EEE critical lines are not so noticeable when excluded.

More recent algorithms [30, 105] have included EEE events, arguing that they are
important because, when they are present, they define part of the boundary of the
umbra region. Ignoring EEE events leads to small parts of the umbra region being
incorrectly classified as penumbra — an error soon rectified when one attempts
to find out how the source illuminates this region. Ignoring EEE events amounts
to a trade-off: wasteful sampling of the source versus expensive location and
manipulation of quadric surfaces. Heckbert [53], Lischinski et al [70], and the

work described here, all opt for the former option; EEE events are ignored.
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4.2.1 Meshing considerations

Having decided to limit the critical surfaces under consideration to those which
correspond to an EV event, one is left with the problem of locating these (semi-
infinite) wedges, and finding the line segments where the (possibly clipped)

wedges meet the scene polygons.

Heckbert [53] describes an algorithm where one evaluates ‘all significant’ EV
wedges a priori, and then proceeds with a hemi-cube-based, linear element, col-
location radiosity solution, as per [73]. Heckbert gives no indication of how one
determines which wedges are ‘significant’ and, when presenting his paper, freely
admitted that the work was not complete and only considers a single light source.
For this reason, it is Lischinski et al’s algorithm [70] which is of more interest

here.

Lischinski et al describe an algorithm where one does not attempt to locate
all, or all significant, discontinuities a priori. Instead, they adopt a progressive

refinement [21) approach whereby:

A discontinuity mesh is built corresponding to an important light source;

The light then iluminates the mesh;

¢ A new source is chosen and a new mesh created and illuminated;

The new mesh and the original mesh are merged, and the process repeats.

In this way, the final mesh will certainly contain all significant EV discontinuity

lines, and the user will have been able to view the scene as extra meshes were
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added, rather than waiting for a lengthy meshing and solution process before
seeing an image. Also, the progressive refinement approach has the added ad-
vantage that the user can stop the solution process as soon as the image seems

‘good enough’.

By considering the visual events associated with one polygon only (some impor-
tant emitter), the number of EV critical surfaces to be evaluated drops from
O(e?) to O(e), for a scene with e edges. There may still be as many as O(e?)

critical lines due to this single source.

Considering only one polygon at a time puts a somewhat different complexion
on EV events in general: recall figure 4.6(1). The part of the EV wedge which
lies to the left of v, represents a discontinuity in the radiosity which is leaving
poly(e), heading towards v. The part of the EV wedge to right of e, represents a
discontinuity in the radiosity which is leaving poly(v), heading towards e. Once
it is known that poly(v) (say) is the light source and that poly(e) is unlit, the
left hand part of the wedge no longer represents any such discontinuity, only the
right hand part represents a real discontinuity. The converse is true if poly(e) is
the emitter, and poly(v) is unlit. Dealing with the emission from each polygon

in separate steps, splits the EV wedge of figure 4.6 into two distinct pieces.

A change of notation is called for, in order to represent this situation throughout
the remainder of this thesis. A visual event which involves an edge of an emitter
and a vertex of a non-emitter, is referred to as an edge-vertez (EV) event —
with its associated critical surface, an EV wedge. A visual event which involves
a vertex of an emitter and an edge of a non-emitter, is referred to as a wertez-

edge (VE) event — with its associated critical surface, a VE wedge (figure 4.10).
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When referring to visual events involving one edge and one vertex, regardless of

where the emitter is, the tertn EVE will be used.

4.2.2 Mesh generation using BSP trees

Having decided to find all significant EVE critical lines on a per-polygon ba-
sis, there remains the problem of efficiently locating these lines, given a single

polygonal source.

Heckbert’s algorithm [53] compared all polygons in the scene with each critical
wedge, resulting in a number of 2D spans lying in the plane of the wedge — each
corresponding to the intersection of the wedge with a scene polygon. In order to
account for parts of the wedge being clipped away (figure 4.6(ii)) a 2D sweepline
algorithm was used, to determine which parts of these spans were hidden from

the wedge vertex.

A more efficient algorithm was outlined by Lischinski et al [70], who utilise the
fact that only polyhedral scenes are being comsidered, by storing their scene
in a BSP tree [35]. This means that one can traverse the scene front-to-back,
from the vertex of each VE wedge, visiting each BSP polygon® in order. The
wedge is tested against each polygon encountered in the front-to-back traversal
— if an intersection is found, a discontinuity line is added to the mesh of the
polygon, the wedge is clipped, and the traversal continues. Traversal can stop as
soon as the wedge is completely clipped away; saving unnecessary wedge/polygon

comparisons. Notice that a wedge/polygon intersection, in such a routine, should

SNotation: a BSP polygon is a polygon stored at a node of the BSP tree; this may
be an original scene (OS) polygon, or may be some fraction of an OS polygon.
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no discontinuity lines here

discontinuity lines here
Figure 4.10: Occluders lying between edge and vertex clip the critical surface,

but no discontinuity hue results. Occluders which intersect the critical surface
result in a discontinuity line.

only result in a discontinuity Hue being added to the polygon’s mesh if the polygon
lies behind the occluding polygon causing the wedge. Otherwise, the wedge should

be clipped, but no discontinuity Hue added (figure 4.10).

Lischinski et al [70] are not clear about how they actually go about deciding which
VE wedge to process. In the implementation described here, BSP trees are used
to make this selection, and to decide whether or not a wedge/polygon intersection
should result in a discontinuity hue, or not. By giving the VE wedge front-to-
back routine a list of current wedges to carry (initially NULL), the author’s
implementation (figure 4.11) makes a front-to-back traversal of the scene, from

each source vertex, which at each BSP node:

1. Decides which polygons stored at the node are facing the source vertex,
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2. Compares each polygon with each wedge on the current wedge list, adding
a discontinuity line and clipping a wedge, for each intersection. Clipping

may remove wedges from the current wedge list.

3. Generates a list of new wedges, corresponding to the edges of the polygons
currently being considered® — each wedge is tagged with a pointer to the

original scene polygon that is causing it.

4. Clips each of the new wedges by the polygons responsible for the wedges on

the current wedge list. Clipping may remove wedges from the new wedge

list.

5. Adds the new wedges to the current wedge list, before continuing with

recursion.

Lischinski et al are also unclear about how they process EV wedges, saying this
‘requires only minor changes to the algorithm used to process VE events’ [70].
This 1s somewhat misleading, since it implies that EV wedges are different to,
but no more of a problem than, VE wedges. This is not the case. Problems with

EV wedges include:

e Finding which occluders might provide the vertex for such a wedge, and

e Finding the polygons which lie between the source edge and the occluder
vertex: these polygons must clip the wedge before it is used to generate any

discontinuity lines.

6Some of these edges are not original scene edges, but have resulted from the con-
struction of the BSP tree: these edges are ignored.
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void VEfront-to-back ( VElist, pt, tree )
{
if ( tree == NULL )
return;

if ( in-front( pt, tree.plane ) {
VEfront-to-back ( VElist, pt, tree.pos );
disc-edges ( VElist, tree.posPolys );
new-wedges ( VElist, tree.posPolys );
VEfront-to-back ( VElist, pt, tree.neg );
} else if ( behind ( pt, tree.plane ) ) {
VEfront-to-back ( VElist, pt, tree.neg );
disc-edges ( VElist, tree.negPolys };
nev-wedges ( VElist, tree.negPolys );
VEfront-to-back ( VElist, pt, tree.pos );
} else {
VEfront-to-back ( VElist, pt, tree.neg );
VEfront-to-back ( VElist, pt, tree.pos );
}

Figure 4.11: Pseudocode for the author’s method of handling all VE wedges due
to a single source vertex. The routine disc-edges compares the current wedges
with the pertinent polygons; the routine new-wedges generates new wedges, clips
them, and updates the current wedge list.
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With VE wedges, both of these problems were neatly handled by the object-
space ordering inherent in the BSP front-to-back routine. Whilst the first of
these problems can be handled fairly cheaply (clip the edge with the occluder’s

plane), this is not true of the second problem.

Before an EV wedge can be taken through the scene, front-to-back with respect
the wedge (occluder) vertex, it must be clipped by all those polygons lying between
the source edge and the occluder vertex (figure 4.10). Regardless of how this is
done, it is a considerable computational task, and makes EV wedges markedly
more expensive than VE wedges to process. One approach which suggests itself,
is to traverse the scene front-to-back (from the vertex, as far as the edge) to clip
the wedge, and then pass those wedges which survive this clipping routine to
the VE front-to-back routine, to go through the scene creating EV discontinuity
lines. Another approach is suggested in section 5.1.1. Suffice to say here that EV

wedges are not as cheap to process as VE wedges.

4.2.3 Meshing an original scene polygon

Now that routines which can generate EVE critical lines are available, the prob-
lem of incorporating these lines into a useful mesh, across each polygon in the
scene, remains. Following Lischinski et al’s [70] example, the author’s implemen-

tation utilises a discontinuity meshing tree (DM-tree) for this purpose.

A DM-tree consists of the union of a 2D BSP tree, with a winged-edge data
structure [9, 41] (WEDS). Each internal node of the 2D BSP tree (hereinafter

uvBSP tree) contains the 2D line equation of an edge in the mesh, and pointers
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to the regions which e on either side of this line. Each leaf node of the uvBSP
tree points to a face of the WEDS (figure 4.12). A DM-tree is stored with each

original scene (OS) polygon.

During the construction of the scene BSP tree, the face representing the OS
polygon may be split, in which case the single leaf node i the tree is replaced by
an internal node storing the 2D line equation of this split, and the tree now has

two leaf nodes, with pointers to the faces which resulted from the split.

When adding a discontinuity line to the tree, the line segment representing the
discontinuity is filtered down the tree, possibly being split into a number of
smaller segments in the process, until finally every such segment arrives at a leaf
node of the tree. The WEDS face representing such a leaf will now usually”
be split in two, and an edge representing the discontinuity inserted into the
WEDS. If the edge does not completely span the face being split, then extra
construction edges are inserted into the WEDS to keep it consistent (this is

shown in figure 4.12). Each discontinuity edge is labelled with the order of the

discontinuity it represents.

Having processed all EVE wedges for the current light source, each scene polygon
has a mesh consisting of a number of construction edges, and probably a number
of discontinuity edges. It now remains only to fit appropriate low-order elements
across each WEDS face in the mesh, and evaluate the contribution of the light

source at each node.

"A new edge may lie along an existing edge.
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Figure 4.12: The figure shows a DM-tree for an OS polygon as two discontinuity
edges are added to the tree. Bold lines represent discontinuity edges; thinner
lines are construction edges.
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Mesh illumination

Because of the way the mesh across a receiver polygon was constructed, one
can be certain that the resulting mesh faces, whilst all being convex, will vary
massively in size, shape and number of edges. For these reasons, the faces are
triangulated, to make element-fitting practicable. Heckbert [53], Lischinski et

al [70], and the work described here, have all opted for triangulation of the mesh.

In {70}, mesh faces are triangulated by finding the mid-point of the longest di-
agonal, and joining this new vertex to the remaining face vertices. This simple
approach certainly yields a valid triangulation of the mesh, but is far from opti-

mal. A number of improvements are suggested in the next chapter.

Having triangulated the scene, elements of any order can now be chosen to fit
across each triangular face. Because of the inability of constant and linear ele-
ments to resolve second order discontinuities, which we have gone to great lengths
to accurately model, quadratic elements are used by the author and by [70].
Quadratic triangular elements require 6 radiosity values to be stored for each
wavelength of interest — one for each vertex, and one corresponding to the mid-
point of each edge [131]. The WEDS provides an ideal storage vessel for such
values, since radiosity values can be stored with a vertex (edge) in the WEDS,

and these can then be easily accessed by faces which share the same vertex (edge).

For a constant emission polygonal light source, Lischinski et al evaluate the con-
tribution of the source, to a single point on the receiver, using the analytic form

factor formula introduced to the computer graphics community by [8], originally
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from [58]:
1 =2 cosHRugr - Ry)
Funon, = —
e = g 2 [ Fagr x B

(Rig1 x R:) - N, (4.2)

This gives the fraction of energy leaving the n-sided source A; which arrives at
the elemental region dA, on the receiver. The vector R; joins dA, to the source’s
th

@' vertex. The symbol ‘@’ denotes addition modulo n. The interested reader is

referred to [36] for a derivation of this formula from first principles.

If the view of the source, from the point being lit, is unoccluded, then (4.2) can be
applied directly. If the view is partially occluded, then the occluders are projected
onto the light source plane, where they are used to clip away the hidden parts
of the source — (4.2) can then be applied to the source fragments that remain.
Using an analytic formula, in this way, guarantees the accuracy of the radiosity

values stored with the mesh nodes.

Lischinski et al [70] are unclear about how they go about establishing whether
the node being luminated can actually see the source, or not. It seems that they
compare the entire scene with the frustum defined by the source and the node —
presumably after having clipped away all polygons lying behind the source and
behind the receiver, and possibly after culling those polygons which lie outside
of a shaft [15, 47] joining the two. This is still an O(e) problem, for a scene with
O(e) polygons, and seems an expensive solution, particularly when one considers
how many times the operation has to be carried out. An alternative approach,

immplemented by the author, is described in the next chapter.

In later iterations of the progressive refinement routine, after light has been shot

from all the sources, the shooting polygon’s radiosity will be represented by a
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DM-tree. As such, the radiosity across its surface is likely to be far from con-
stant, thereby invalidating any simple application of (4.2). Lischinski et al [70]
are sketchy about how they account for this case, saying they use an algorithm
‘similar to’ Tampieri and Lischinski’s algorithm {110] which adaptively splits the
source until the radiosity across each fragment is roughly constant, then sums
the contribution from each fragment. Presumably, ‘similar to’ means they utilise
the uvBSP structure of the source’s DM-tree to fragment the source, rather than

a quadtree (which was used in [110]), but one cannot be sure.

Adaptive subdivision

Given an initial triangulation of the discontinuity mesh across a receiver surface,
one cannot guarantee the user’s desired level of accuracy, simply by fitting a
quadratic element across each triangle in the mesh. Large triangles, poorly-
shaped triangles, and triangles across which the radiosity is varying rapidly, can
all lead to situations where the true radiosity function is ill-represented by the

quadratic element.

In order to account for such situations, a routine is needed whereby one establishes

which triangles are causing problems, and either:

e replaces the quadratic element with an element better-able to represent the

true radiosity function across the triangle, or

e subdivides the triangle into a number of smaller triangles, so that the single

quadratic element is replaced by a number of smaller quadratic elements.
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Lischinski et al [70] opted for the latter option. Salesin et al [90], when faced
with an identical problem, opted for the former option; replacing the quadratic
element with a Clough-Tocher element, consisting of three triangular cubic ele-
ments manipulated so as to ensure C! continuity across those element/element
boundaries where it is expected. The implementation described here currently

employs the subdivide option.

Having decided to subdivide problem triangles, there remains the problem of
efficiently locating these triangles. Lischinski et al [70] approximate the infinity-
norm error metric, which gives the maximum absolute difference between the true
radiosity and the interpolated radiosity, across the element. This approximation
is achieved by evaluating the true radiosity at the centroid of the triangle, and
comparing this value with the interpolated value there (subdivide if this is larger
than some user-defined threshold). Clearly, this is an expensive option, requiring
the location of any occluders which may lie between the centroid and the souxce,
before any contribution can be evaluated. Whilst this method has been success-
fully implemented by the author, an alternative (cheaper) strategy is suggested

in the next chapter.

Whatever method is used to locate problem triangles, a suitable algorithm for
actually subdividing the triangle is still needed. As per [70], the author has
implemented Rivara’s [88] 2-triangle subdivision method. Rivara’s algorithm was
designed for multi-gridding in finite element analysis (described in section 2.2.4),
whereby an initial mesh is selectively refined until the desired level of accuracy is
reached — making 1t ideally suited to the problem at hand. Rivara’s algorithm

is particulaily appropriate since it leads to well-shaped triangles, and guarantees
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Ideally, a triangle is split by joining the mid-point of its
longest edge (M) to the opposite vertex (A)

Unfortunately, such a subdivision may lead to a
neighbaouring triangle with one of its shorter edges
split - in this case, its longest edge is split at its mid-
point (M5) and this is joined both to the problem ver-
tex (M) and to the opposite vertex {B)

Figure 4.13: Rivara’s 2-triangle subdivision method.

a smooth transition from large triangles to small triangles — both desirable

properties for our mesh [8]. Rivara’s algorithm is outlined in figure 4.13.

Once a mesh has been refined to the satisfaction of the user, an image can be
generated by ray tracing (eye rays only) the BSP tree containing the scene. Be-
cause of the object-space ordering one is able to extract from a BSP tree, ray
tracing BSP trees is a particularly fast form of ray tracing [112]. Whilst Lischin-
ski et al [70] generated their images using ray tracing, an even faster image could
probably be achieved by implementing the front-to-back BSP display method

described in [44].

Mesh merging

As has already briefly been mentioned, Lischinski et al [70] implemented a system

whereby at each iteration:
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e the contribution from the shooting polygon, on a receiver, is stored in a

DM-tree;

e this is then merged with the mesh (DM-tree) corresponding to the contri-

butions of previous iterations.

In order to achieve this mesh merging, Lischinski et al [70] take the two discon-
tinuity meshes, extract the discontinuity edges from each, and build a new mesh
using these edges as its starting point. This new mesh is then triangulated, and
quadratic elements are fitted across each triangle, as before. In order to calculate
the radiosity value stored at each node in the new mesh, no source sampling
need be carried out. Instead, interpolated values, corresponding to the node’s
location, are extracted from each of the first two meshes, and then simply added
together. The first two meshes can now be deleted, an image (if called for) can

be generated, and the code can move on to the next iteration.

Whilst such a mesh-merging approach seems fine in theory, in practise this tran-
spited not to be the case. Lischinski et al [70] report being able to achieve
converged solutions for simple scenes, but for larger scenes their code was un-
able to handle the excessive memory requirements. They report results for a
complicated® scene after only two iterations — one of which produced a par-
ticularly simple mesh, being due to a small, distant, polygon representing the
sun. In order to merge meshes, it is necessary, at the end of each iteration, to
simultaneously store three DM-trees on each scene polygon: the old mesh, the
latest iteration mesh, and the merged mesh. Once merging has been completed,

two of these meshes can be deleted, but it is easy to see how three winged-edge

81382 polygons
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data structures (even without their accompanying uvBSP trees) could take up
an awful lot of space (see appendix B). An alternative approach is suggested by

the author, in the next chapter.

A closing remark

In chapter 3, the Galerkin method was shown to be an improvement over the col-
location method, because the Galerkin method makes a more stringent evaluation
of the kernel function. Whilst the method described here amounts to a return
to the collocation method (in that radiosity is evaluated on a vertex-by-vertex
basis) it is important to note that great care has accompanied the positioning
of these vertices and, because of this, the earlier statements about the relative

accuracy of the collocation method are not pertinent here.

4.3 Combining discontinuity meshing and hi-

erarchical radiosity

Recognising some of the deficiencies in their own method, and the advantages
of hierarchical radiosity {50], Lischinski et al produced a second paper [71]; de-
scribing a combination of the two methods. The illumination part of their new

algorithmn is split into two distinct parts: a global pass and a local pass.

Their global pass proceeds exactly as per Hanrahan’s hierarchical algorithm [50]
(described in section 2.2.4 of this thesis) with the exception that rather than using

a quadtree subdivision method, Lischinski et al [71] use a BSP-based subdivision
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method which favours division along known lines of discontinuity in the radiosity
function. This is achieved by storing, with each node in the hierarchy, a list of
primary discontinuities which lie in the region represented by the node. Primary
discontinuities are D° discontinuities and D', D? shadow discontinuities due to
primary light sources. Discontinuities due to surfaces which are not primary
light sources are not modelled by their algorithm. In this way, when a node

needs subdividing, one can:

o examine the list of discontinuities stored with the node, and choose one
which is of low order® and which most-nearly bisects the region represented

by the node;

o create two new lists of discontinuities by splitting those on the current list

with the line just chosen;

o subdivide the node along the chosen line, giving each child one of the new

lists.

Subdividing a node which has no discontinuities is even simpler — one need only
consider the geometry of the problem. Having refined the hierarchy in this way, a
data structure results which is identical to Hanrahan’s [50], except for its binary
nature and its lists, and so the system can now be solved by passing radios-
ity values down the data structure’s links. This results in a piecewise constant
approximation to the global illumination in the scene. This approximation is
markedly more accurate [71] than a comparable conventional hierarchical solu-

tion, because the new algorithm is so quick to separate regions which have an

%i.e., the order of preference being D°, D', D2,
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occluded view of the primary sources from those which do not —— a major source

of error in most radiosity systems.

The local pass, which follows the global, is designed to accurately reconstruct the
radiosity function across each polygon in the scene, using the global solution as
its starting point. The local pass begins by triangulating each polygon. This is
achieved using a constrained Delauney triangulation (CDT) [18] routine, which
takes a set of points, and a set of edges, and makes an optimal triangulation of
the points which includes all of the given edges. Given a tree representing the
radiosity across a polygon, the CDT routine is passed the vertices of the leaf-
node regions in the tree, plus any discontinuity edges stored in the tree. Omnce
this triangulation has been carried out, one can fit quadratic elements across
each resulting triangle, and it only remains to evaluate accurate radiosity values
for the e-nodes'® of every such element; using the information stored during the

global pass.

Lischinski et al [71] describe a number of methods for implementing this last step;
the different methods varying considerably in terms of both accuracy and cost.
They begin with an analysis of the causes of error in such a situation, making
the observation that: given a constant representation for the radiosity across a
receiver, due to some source, the amount by which the true value, at any point

on the receiver, varies from the constant value, depends on:

e how much the radiosity varies across the source,

e how much the (unoccluded) form factor between receiver and source varies

19The term e-node is introduced so that one can distinguish between nodes of a
quadratic element and nodes in the hierarchical representation of the radiosity across
a polygon.
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over the receiver, and

e how the visible fraction of the source varies over the receiver.

Lischinski et al [71] point out that, when developing an algorithm to accurately
evaluate the radiosity at some point on a receiver, improving the way the algo-
rithm evalnates any of these three variables, will improve the overall accuracy of

the method.

Based on this analysis, four different methods for evaluating the contribution of
the global pass solution to the e-nodes created in the local pass, are described.

These are:

method A: If an e-node lies entirely within the region corresponding to a leaf
node, take the node’s radiosity value. If an e-node lies on the boundary of

two or more leaf node regions, average the nodes’ radiosity values.
b

method B: Unlike conventional hierarchical radiosity, links do not store a single
form factor value, but an unoccluded form factor (from the centre of one
node’s region to the other node’s region) and a corresponding visibility term
V € [0,1]. In Lischinski et al’s second local pass method, they recalculate
the unoccluded form factors on all links of nodes containing the e-node
(from the e-node itself), but still use the visibility term stored with the

links.

method C: Taking method B one step further, the third method not only re-
calculates unoccluded form factors, ignoring the values stored with the links,
but also re-calculates the visibility terms from the point of view of the e-

node, not the centre of the some node in the hierarchy.
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method D: The last method describes tries to reduce costs by using method C

for links to primary light sources, whilst using method B for all other links.

To test their different local pass strategies — designed to give the user an op-
portunity to trade accuracy for speed — Lischinski et al took three different
hierarchical (global pass) solutions of a test scene (low, medium and high accu-

racy) and applied the different local pass methods to each one.

Their results indicate that, even given a coarse hierarchical solution, by including
all discontinuity edges in the local pass, and using method C, a surprisingly
accurate solution results. Method B and method A are quicker, but less accurate,
and method D (which is all but indistinguishable from method C) is hardly more
costly than method B, but noticeably more accurate. Their results also confirm
that the local pass is well worth the time spent carrying it out: a medium accuracy
global pass solution, when passed to the most expensive local pass routine, still
produced an image far faster than and more accurate than, a high accuracy global

pass solution followed by the simplest of the local pass routines.
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Chapter 5

Optimising discontinuity

meshing radiosity

The previous chapter gave a comprehensive account of discontinuity meshing
radiosity, as it has been implemented by others [53, 70, 71]. In this chapter, the
author’s work is described in greater detail; with the emphasis on those areas

where the algorithm differs from previous approaches.

Essentially, the algorithm described here is similar to that described in [70], with
a number of notable differences. How the new algorithm differs, and how the
overheads of discontinuity meshing radiosity have been consequently reduced, is

described in detail in this chapter. Briefly, the enhancements include:

Shadow classification: Unlike many previous DMR algorithms, each element
in every DM-tree is classified as being either lit, in penumbra or in umbra,
before any effort is made to illuminate the mesh. Those elements which lie

in penumbra, store a list of the polygons in whose shadow they lie.
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Minimum candidate lists: A novel ordering is extracted from the BSP tree
in which the scene is stored. It has long been possible to make an in-order
traversal of the polygons stored in a BSP tree, with the respect to a given
point [35]. The same has not been true of a traversal with respect to a

given polygon [20]. The new algorithm goes some way towards addressing

this problem.

Mesh triangulation: Two new triangulation schemes are introduced — both of

which seem to exhibit a number of advantages over the method implemented

by Lischinski et al in [70].

Mesh merging: In the last chapter, the memory requirements associated with
mesh merging were shown to be considerable. Because of the difficulties of
merging DM-trees, the implementation described here stores DM-trees in

layers. The storage savings of such an approach are significant.

5.1 Optimising mesh illumination

There is a surprising feature of discontinuity meshing radiosity (DMR) algo-
rithms [53, 70, 71|, which separate them from their predecessors [79, 15]. Whilst
DMR algorithms expend great effort in accounting for lines of probable discon-
tinuity in shadow regions, only in very recent algorithms [37, 30, 105] are any

actual shadow regions located.

The advantages of knowing exactly which regions are lit, which are shadowed, and
what is casting the shadow, become apparent as soon as one tries to illuminate

a DM-tree. For every e-node of a triangular mesh element, it is necessary to
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establish which polygons, if any, lie between the e-node and the source. Without

this information, 1t is impossible to tell:

e whether one should be applying (4.2, pg 159) directly, or

e whether regions of the source are hidden from the e-node, and so one should

only apply (4.2) to the source’s visible parts, or

e whether the source is completely hidden from the e-node, and any further

computation will be wasteful.

In order to find any occluding polygons, and whether or not they completely,
or only partially, hide the e-node’s view of the source, one must build, for each
(source, receiver) pair, a candidate list of polygons which lie between the two.
Then, for every e-node in the receiver’s DM-tree, one must build the frustum®
defined by the source edges and the e-node itself. This frustum can now be
compared with every polygon on the candidate list to establish whether the e-

node is lit, in penumbra, or in umbra (figure 5.1).

Given the regularity with which the code will need to illuminate an e-node by
a given source, it is clear that short, cheaply-obtained, candidate lists would be
desirable. Traditionally [15, 47], candidate lists are obtained by comparing every
polygon in the scene with the plane containing the source and the plane containing
the receiver — any polygon lying totally behind either of these planes is excluded
from further consideration. An optional further step is to shaft cull [47] those

polygons which remain.

Ipossibly clipped by the plane containing the receiver
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source

occluder clips frustum

frustum

receiver

Figure 5.1: The frustum corresponding to each e-node on a receiver must be
compared with all polygons which may block the node’s view of the source.

5.1.1 Minimum candidate lists

In the algorithm implemented by the author, a similar? clip/clip/cull procedure
is carried out. However, rather than beginning the process by considering every
polygon in the scene, an ordering is extracted from the scene BSP tree which
allows the algorithm to ignore many scene polygons which would otherwise have
to regarded as potential occluders. These minimum candidate lists can then
be compared with source and receiver planes, and shaft-culled, as before. The

following paragraphs outline the process for obtaining these lists.

When generating VE wedges, for a particular polygonal light source, the scene
BSP tree is traversed once for each source vertex. For each such traversal a list
(a vertex ordering), storing the order in which the routine visited the BSP tree’s

nodes, is generated. A bit-mask is stored with each BSP tree node, and this is

to shaft-culling [47]
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void VEfront-to-back ( VElist, pt, tree, order
{
if ( tree == NULL )
return;

if ( in-front( pt, tree.plame ) ) {
VEfront-to-back ( VElist, pt, tree.pos,
ordering = ordering + tree;
update ( tree.bits, POS );
disc-edges ( VElis, tree.posPolys );
new-wvedges ( VElist, tree.posPolys );
VEfront-to-back ( VElist, pt, tree.neg,
else if ( behind ( pt, tree.plane ) ) {
VEfront-to-back ( VElist, pt, tree.neg,
ordering = ordering + tree;
update ( tree.bits, NEG );
disc-edges ( VElis, tree.negPolys );
nev-wedges ( VElist, tree.negPolys );
VEfront-to-back ( VElist, pt, tree.pos,
else {
VEfront-to-back ( VElist, pt, tree.neg,
VEfront-to-back ( VElist, pt, tree.pos,

ing )

ordering );

ordering );

ordering );

ordering ) ;

ordering );
ordering );

Figure 5.2: The VE wedge front-to-back routine is altered to return a vertex
ordering, and to record at each BSP node how the node was seen by each source

vertex.

updated during each traversal so that one can tell:

e which orderings the node appears on, and

o whether the various source vertices lie in front of, or behind?, the plane

stored with the node.

Notice that both these pieces of information come for free, if one is making a

front-to-back traversal of a BSP tree (figure 5.2). In the current implementation,

2If a source vertex lies 4n the plane of a BSP tree node the node will not appear on

the list corresponding to the vertex.
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Src

front-to-back(x) = B+, D\ F+ E', C'
front-to-back(y) = B+, C+, D', F+, E'

min-candidate-list(B) = NULL,
min-candidate-list(C) = 1 4 6
min-candidate-list(D) =
min-candidate-list(E) = ackfacmg
min-candidate-list(F) =

Figure 5.3: The minimum candidate list algorithm applied to a simple scene.
Nodes which face 0 source vertices and which have no back-facing polygons, can
be ignored (node E).

sources with up to four vertices are considered, so each node has four bits in-
dicating which orderings the node appears on, and four bits indicating whether
the vertex lay in front of, or behind, the node’s plane. Once these orderings

one for each source vertex — have been generated, it is possible to combine the
ordering information, encapsulated in each list, to obtain a minimum candidate

list for the polygons stored with each node.

Most nodes will appear on an ordering. The only nodes which appear on no

orderings correspond to polygons which he in the plane of the light source.

Given any node which appears on at least one ordering, the minimum candidate

list algorithm proceeds as follows: For every ordering containing the node, step
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youngest common ancestor
-— of njand ny ———n,

Nk
Figure 5.4: The youngest common ancestor of two BSP tree nodes.
through the ordering until the target node is reached. Whilst stepping through
the orderings, if a node is encountered whose bit-mask tells us is front-facing
with respect to the ordering’s vertex, then the node’s front-facing polygon(s) are
added to the candidate list. If a node is encountered which is back-facing with
respect to the ordering’s vertex, the node’s back-facing polygon(s) (if any) are
added to the candidate list. Notice that this approach automatically excludes any
polygons which are facing away from the source (polygons 3 & 5, in figure 5.3). A
simple alteration would result in a similar algorithm which excluded all polygons
facing the source. This algorithm may well try to add the same polygon to the

candidate list more than once, but this is trivially guarded against.

How can one be sure that the polygons, generated by the algorithm just described,
include all polygons lying ‘between’ the source and the receiver? The algorithm
assumes that the vertex orderings capture all possible orderings of the scene,

from points on the source: this is affirmed by the following theorem.

Theorem: Consider a polygonal light source, from each of whose vertices a
front-to-back traversal of a BSP tree is made. Each traversal is recorded in a

separate vertez ordering. Now, if a front-to-back traversal of the BSP tree, from
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any point A on the source, encounters a node n; before some other node nyg, then
there is at least one vertex ordering which encounters those nodes in this same

order.

Proof: Let nyca be the BSP tree node which is the youngest common ancestor
of n; and ng. This common ancestor may be n; or ny (figure 5.4). Let P be the

plane stored with nyca.

All front-to-back traversals, from points which lie on the same side of P as A,
will visit n; before ng. All traversals from points which lie on the opposite side

will visit ng before n;.

If the source lies wholly on one side of P, then every vertex lies on the same side

of P as A, so every vertex ordering will encounter n; before ny.

If P passes through the source then, because the source is a polygon, there is at
least one vertex which lies on the same side of P as A, or lies in P with A, and

the ordering corresponding to this vertex will visit n; before ny.

Q.E.D.

The algorithm applies to convex and concave polygons alike. In fact, a short-cut
is possible for concave polygons whereby only orderings corresponding to a vertex

of the source’s convez hull, are considered by the algorithm.

Polygons close to the vertex end up with very short candidate lists (empty lists
are not uncommon, for such polygons). Polygons which are further from the

source end up with longer lists. The mean length of a candidate list, for the
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Figure 5.5: Extracting object-space ordering information from the scene BSP
tree can prevent testing hopeless polygons for occlusion.

scenes tested by the author, is usually somewhere between 1/4 and 1/2 of the
total number of polygons in the scene (figure 5.5). Long candidate lists result
when the source is split by the plane of a node close to the root of the scene BSP

tree — in which case radically different vertex orderings arise.

The algorithm can also be used to establish which polygons may lie between the
edge and the vertex of an EV wedge — a problem discussed in section 4.2.2.
Each source edge corresponds to two vertex orderings: these orderings can be

processed exactly as before to give a list of polygons which may lie between
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the source edge and the occluder vertex. The EV wedge can be clipped by these
polygons, before going front-to-back through the scene (from the occluder vertex)

to generate discontinuity lines.

Having generated a minimum candidate list for a (source, receiver) pair, the list
could be used naively, and every e-node/source frustum could be compared with
the list. This is not the approach taken here: the list is used to efficiently establish
which polygons are shadowing which parts of the receiver, so that each e-node

can consult its own (tailored) candidate list.

5.1.2 Shadow classification

If each element in the DM-tree stores the specifics on how it is shadowed, then
one can establish very quickly whether an e-node is lit, in penumbra or in umbra.
Only in the second of these cases need one proceed any further, and look-up the
list of occluders in whose penumbra this e-node lies. This list of occluders can
then be used to clip the e-node/source frustum, so that only visible parts of the

source contribute to the illumination of the e-node.

Initially, it had been hoped that it would be possible to shadow classify mesh
clements simply by touring their edges and examining the information stored
there: which wedge caused the edge; which (if any) shadow volume did the
wedge bound; which occluder was involved. Early results were promising, but
it becomes apparent that whilst such approaches are suitable for finding the
boundary of shadow regions [31], they are not practical for establishing accurate

occluder candidate lists for the region. An occluder can shadow a region without
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actually having any EVE wedges intersect with it. An alternative approach was

sought.

In the implementation described here, original scene (OS) polygons store two
shadow visibility BSP (SVBSP) trees [19]; one for the penumbra (due to the
current source) and one for the umbra. The shadow volumes are constructed

incrementally, as the EVE shadow wedges are processed:

e when a wedge is created, the implementation first decides whether its plane

bounds the penumbra volume, the umbra volume, or neither.

e If the wedge plane does bound a shadow volume, then the plane is added

to the appropriate SVBSP tree, for use later.

SVBSP tree-building is particularly cheap; each tree is built solely from planes
which are a by-product of EVE wedge processing. When discontinuity meshing

1s complete, all OS polygons have two shadow volumes stored.

Not all polygons have a non-empty umbra volume. These polygons are quickly
found by examining the bit-masks® stored with each BSP tree node (figure 5.6):
some nodes will face towards some source vertices, and away from others; some
nodes will not appear on all orderings. The relevant polygons, stored with such

nodes, have their umbra volumes deleted.

In order to generate a list of polygons which actually cast a shadow on a given
receiver, the BSP node at which the receiver is stored is passed to the minimum

candidate list routine. The resulting candidate list is then clipped by the source

3set when handling the VE wedges
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Figure 5.6: Some conclusions which can be reached by examining BSP bitmasks

and receiver planes, and shaft culled [47].

The polygouns left on the pruned candidate list are now used to classify each ele-
ment in the receiver’s DM-tree as being either lit, in penumbra, or in umbra: lists
of occluders are stored with penumbra regions. One could utilise the hierarchical
nature of the DM-tree to achieve this, as Campbell has done [15]. The current

implementation, however, does not.

Shaft culling

Shaft-culling takes numerous forms [47, 15]. Essentially, given a (source, receiver)
pair, shaft-culling involves the creation of a set of planes which enclose, as snugly
as possible, all the line segments obtained by joining a point on the receiver to
a point on the source. Given this collection of planes, one can shorten a given
candidate list by excluding all those polygons on the list which lie outside of the

shaft defined by the planes.

A number of different methods have been proposed for creating the shaft planes
between a polygonal source and receiver. Haines and Wallace [47] examine the

axis-aligned bounding boxes of the two polygons, and build a shaft from planes
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which pass through an edge of each box. Whilst this is suitable for polygons
and non-polygons alike, and probably optimal for polygons with large numbers
of vertices, a polygon-specific approach is described in [15]: Campbell’s shaft
culling produces a tighter-fitting set of plamnes, by choosing the planes which

bound the convex hull of the source and receiver, taken together.

Neither of these methods are ideal for the problem at hand, because they necessi-
tate the computation of the planes which make up the shaft. Ideally, information
which has already been stored should be used to prune a candidate list. This
is achieved by comparing the receiver with the penumbra volume (SVBSP tree)
of every polygon on the candidate list. Note that, for four-sided polygons, the
penumbra volumes will consist of between between four and eight planes, so
pruning a candidate list containing c¢ polygons will involve between 4c¢ and 8¢
polygon/plane comparisons. This is exactly the cost of both of the other shaft

culling methods [15, 47].

As well as avoiding any unnecessary computation, a second advantage of this
culling approach is that when the receiver lies wholly inside a shadow volume,
the whole polygon can be classified as lying in penumbra*. Such conclusions
cannot be drawn when using either of the other two culling methods [15, 47] —
a polygon either shadows, or not — extra work has to be done to establish how

an occluder shadows the receiver.

“These polygons can then be tested against the occluder’s umbra volume, if present,
and possibly classified as being wholly in umbra
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5.2 Optimising mesh triangulation

After all EVE discontinuity lines have been located, stored in DM-trees, and the
resulting elements shadow classified, the elements are meshed into triangles, so
that quadratic elements can be easily fitted across them. The elements which
need triangulating will vary considerably in size, shape and number of vertices;

but all will be convex.

Lischinski et al [70] triangulate elements by finding the mid-point of the longest
diagonal, and joining this to all remaining vertices. A number of problems are
associated with this approach, and the situation was improved upon in [71], where

constrained Delauney triangulation is used to triangulate the mesh.

In the implementation described here, two alternative triangulation methods are
examined. The original triangulation scheme, involving the mid-point of the

longest diagonal, was deemed unsuitable for a number of reasons:
e An extra vertex is created for each element being triangulated.

e The number of triangles produced often seems excessive.

¢ The method does not produce particularly well-shaped triangles.

Both of the new algorithms involve choosing a diagonal, splitting the element by
this diagonal, and recursing with the two resulting halves until triangles result.
The new methods only differ in their choice of diagonal: in the first method, the
shortest diagonal is chosen; in the second method a heuristic is used to make this

choice (figure 5.7). The heuristic is designed to favour diagonals which:
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Figure 5.7: The plot shows h-values corresponding to attempts to split the angles
/4, v /2, 3x /4 and 7 by a diagonal. Large angles are favoured over small ones.
Unequal splits are punished.

1. split large internal angles of the element;

2. bisect the angles being split.

By favouring those vertices of the element where the internal angle is large, the
aim 1s to avoid triangles with internal angles which are very small. By favouring
the equal splitting of an internal angle, the heuristic aims to avoid the same

problem arising from a particularly uneven split.

If a diagonal splits an internal angle into two angles 6; and 6,, the h-value given

to this end of the diagonal is:

( min(sin 6, sin 62)

max(sin 64, sin 65)

) min(sin 8y, sin §,) (5.1)

The value given to a choice of diagonal is the product of the h-values given

to its ends. In this way, a value in the range [0,1] is obtained, which is large

Optimising DMR 5.2. Optimising mesh triangulation




Chapter 5. Optimising discontinuity meshing radiosity 184

when both ends of the diagonal nearly-bisect large angles. As with the other two
methods (shortest and longest diagonals), every possible diagonal is tested, and

the diagonal with the largest heuristic (5.1) value is used to split the element.

5.2.1 Comparison of triangulation schemes

In order to measure the comparative effectiveness of the three methods, all three
algorithms were implemented, and the resulting meshes (after adaptive subdivi-

sion) were compared. The comparison concerned itself with:

o the number of resulting triangles, and

e how well-shaped these triangles were.

During adaptive subdivision, a triangle is subdivided when the computed radios-
ity value at its centroid differs from the interpolated value there by more than
some user-specified threshold value. Figure 5.8 shows a graph comparing this
threshold value to the total number of mesh triangles in a test scene, for each

triangulation scheme.

In order to decide how well-shaped a particular triangle was, its radius-ratio
was calculated: the ratio of its inscribed circle radius to its circumscribed circle
radius [7] (figure 5.10). In order to decide how well-shaped a particular scene
triangulation was, radius-ratios were obtained for every triangle in every mesh
in the scene, and their mean was evaluated. Figure 5.9 shows a graph depicting
how these mean values vary with triangulation scheme and user-specified error

threshold, for a test scene.
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Figure 5.8: Method 1 is longest diagonal, Method 2 is shortest diagonal, Method
3 is heuristic diagonal. Either of the new methods produce markedly less triangles
for the same error.
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Figure 5.9: Method 1 is longest diagonal, Method 2 is shortest diagonal, Method 3
is heuristic diagonal. Either of the new methods produce better-shaped triangles
for the same error.
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circumscribed circle

inscribed circle.

Figure 5.10: One can judge how ‘well-shaped’ a triangle is by evaluating the ratio
Ri/Rc e (0,0.5].

Each triangulation scheme was applied to five test scenes, with eight different
threshold values — a total of forty runs per triangulation scheme. Statistics re-
lating the number of mesh triangles, and mean radius-ratios, to the user-specified
error threshold were recorded. A full account of these findings is presented in ap-
pendix C. Suffice to say here that figures 5.8 and 5.9 give a fair indication of
the situation vis-a-vis the three triangulation schemes: either of the new meth-
ods will not only mesh to the required tolerance with less triangles than the
previous method, but will do so with better-shaped triangles. In particular, the
shortest-diagonal algorithm seems to have the best characteristics for the task in

hand.

5.2.2 Other triangulation thoughts

Two other points which relate to the optimisation of mesh triangulation, are now
considered. Neither of these algorithms have been implemented by the author,

but are included here in an effort to give a fuller picture of how this crucial part
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of DMR. can be optimised.

Deciding when to subdivide

When building a DM-tree, it is usually not sufficient to simply triangulate the
mesh which results from the location of discontinuities. Often, the quadratic
elements [131] across the triangles in a mesh will not match the true radiosity
across the triangle closely enough, and the triangle is subdivided. In section 4.2.3,

the implemented method for establishing which triangles are subdivided, was

described.

The implemented method is expensive, because finding the exact radiosity value
anywhere on a receiver is expensive. Shadow classification makes the process
cheaper, because many centroids are known to have an unoccluded view of the
source, and those which do not, can quickly find which polygons are blocking the
view. There is, however, some more information available, which may help in the
search for a cheap algorithm to decide whether a triangle should be subdivided.
By locating all D°, D' and D? discontinuities in the radiosity function across the
receiver, one can assert that the radiosity across edges which do not represent
such discontinuities, should be at least C? [90]. For triangles with such edges, a

subdivision algorithm which proceeds as follows, seems practicable:

e For each edge not corresponding to a discontinuity, find the normal to the

quadratic interpolant surface at the mid-point of the edge.

¢ Using the winged-edge data structure, find the element lying on the other

side of this edge.
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Figure 5.11: The figure shows an image whose colour map has been altered so as
to highlight isolux contours, in the interpolant surfaces across a polygon which
has been poorly subdivided: the discontinuities in gradient, in the interpolated
surface, are clearly visible.

* Find the normal to the interpolant surface of the adjacent element, at the

mid-point of the edge.

* Compare the two normals:

—if they are nearly parallel, all is well;

—if not, subdivide the triangles which share this edge.

For triangles without such edges, Lischinski et aVs approximation [70] to the
Lgo error norm could be applied. A further degree of flexibility still remains:
in how finds the normal to an interpolant surface. One first needs to find two
tangent vectors to the surface, at the point of interest, and then find their cross
product. These tangent vectors could either be found analytically, by taking
partial derivatives, or numerically, by examining points close to the point of
interest. Since the interpolant surface is only a quadratic, it may well be that

the numerical approach would be optimal. These issues require further research.
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Figures 5.11 and 5.12 each show an image which has had its colour map altered,
so as to highlight isolux contours in the interpolant surface representing the true
radiosity. Eachimage shows a different situation where poor mesh quality appears

to be linked to D' discontinuities in the interpolant surface.

Problems with DM-trees

Whilst the DM-tree allows one to construct a mesh containing discontinuity lines
particularly efficiently [15, 70], it is not without its drawbacks {15, 53]. When
building the tree, discontinuity edges arise which do not fully span the face to
which they are being added. Such edges are augmented by construction edges
which lie along the same line, but which reach out to the edges of the face
(figure 4.12). Construction edges can cause problems when a number of small,
parallel, discontinuity edges (due, say, to a number of VE wedges involving the
same edge) are added to a large face in the DM-tree. Faces result which are very

long and thin and which lead to particularly poorly-shaped triangles (figure 5.12).

One possible solution might be to split the location of discontinuity lines into two
passes: a first which dealt only with wedges forming part of a penumbra volume,
and a second which handled all other wedges. In this way, wedges which do not
form part of a shadow boundary will not force their presence into those parts
of the mesh which are lit, and the resulting mesh should consist of markedly
better-shaped elements (figure 5.13). The use of front-to-back vertex orderings,
to generate minimum candidate lists, facilitates such an approach: one would not
have to repeat front-to-back traversals of the BSP tree in the second pass, one

could simply step along the vertex orderings.
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Figure 0.12. Long thin triangles affect image quality. The mesh used to generate
this image has long thin triangles stretching from A, towards B. The colour map
has been altered to emphasise the anomalies.

penumbra first no special order

Figure 5.13: Mesh quality could be improved by handling penumbra wedges first.
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A second possible solution to poorly shaped meshes may be to precede disconti-
nuity meshing by a coarse premeshing of the surfaces [31, 106]. This would avoid
undermeshing (figure 5.11) and localise any mesh anomalies like long thin trian-
gles (figure 5.12). A combination of the coarse pre-meshing with a penumbra-first

approach, may be doubly beneficial.

5.3 Merging versus layering

Probably the most fundamental difference between the algorithm described here,
and radiosity as it has been implemented elsewhere, is the way in which the
contribution from each light source is stored, with a receiver polygon. As with
Lischinski et al’s algorithm [70], each light source results in a mesh on all those
receiver polygons which can see it. Each mesh stores the contribution of this
particular light source to the receiver. In [70], the mesh from one light source
is merged with the mesh from the next source — a process which proved pro-
hibitively expensive. In the implementation described here, the meshes from

different light sources are not merged, but are stored separately, in layers.

The reasons for the adoption of a layering, rather than a merging, approach are
multifarious. The driving force behind the development of the algorithm was
the fact that the merging approach was reported, by Lischinski et al [70], to
have failed for sensibly large scenes. In the merging approach, the need to merge
meshes, due to different light sources, is made tractable by the winged edge data
structure (WEDS, appendix B) in which much of the mesh is stored. If one

forgoes merging, then whilst one still needs a WEDS (or similar) to build the
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mesh, no such constraint applies to its storage. After a mesh has been created,
the only task ever requested of it is to return a radiosity value, given a point on

the receiver.

5.3.1 Layering specifics

With this reasoning in mind, the implementation builds, for each light source,
a triangulated, adaptively subdivided DM-tree, on every polygon visible to the
source. Every such DM-tree consists of a uvBSP tree whose leaf nodes point to

a WEDS face. Before moving on to the next source, the new algorithm:

e replaces the WEDS vertex ring with an array of compressed vertices which

store only a (u,v) position, and a radiosity value;

e replaces the WEDS edge ring with an array of compressed edges which store

only a pointer to the edge’s (u,v) line equation, and a radiosity value;

e replaces each WEDS face by a compressed face, which stores a boolean
indicating whether the face is lit at all, and an array of 6 integers which
index into the vertex and edge arrays. This array is NULL if the face is
dark — making umbra nodes particularly cheap to store. Each leaf node of

the uvBSP tree now points to a compressed face;
e deletes the WEDS;

o adds the uvBSP tree and accompanying data to an array of layers stored

with each OS polygon;

e re-initialises the DM-tree ready for the next shoot.
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Figure 5.14: The compressed data structure takes up markedly less storage than
its WEDS counterpart.

The new compressed data structure (CDS) takes up markedly less space than
a WEDS (figure 5.14). When seeking the radiosity value, at some point on a
receiver across which the radiosity is stored in layers, one simply looks up a value

in each layer and adds the values together.

Leaves of the uvBSP tree representing umbra regions are known as umbra nodes.
A further storage optimisation should be possible, whereby one traverses the
uvBSP tree associated with a particular CDS, and recursively deletes (bottom
up) all sister® umbra nodes — changing their parent node into an (umbra) leaf

node. This may well prune the tree considerably, but has not yet implemented

by the author.

*Leaf nodes which share the same parent node.
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5.3.2 Advantages of layering

A number of advantages are associated with layering.

Simplicity: The compressed data structure is very simple, and one avoids the

(non-trivial) task of merging meshes.

Accuracy: Mesh merging constitutes resampling of interpolated data. As such,

accuracy is lost. This does not occur with layering.

Storage: A CDS takes up about half as much space as its causal WEDS. Also,
merging two meshes requires the simultaneous storage of three DM-trees;

with layering this cost is avoided.

Efficiency: Rivara’s two-triangle method [88], which is used during adaptive
subdivision, results in a triangulation where the transition between large
and small triangles is smooth. A merged mesh, which contains shadow
information from many Light sources, will have few regions which are far
from a shadowed (densely meshed) area. Consequently, a merged mesh
will be hard-pushed to have large triangles anywhere. If the shadows from

different sources are kept separate (layered), the same problem is less likely

to arise (figure 5.15).

Parallelism : The layering approach lends itself particularly well to being par-

allelised.

Umbras: When layering is combined with the shadow classification of mesh ele-

ments, as in the implementation described here, one need never triangulate
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A

Figure 5.15: Separate layers are more likely to have efficiently meshed regions.
Merged meshes have shadows almost everywhere.

umbra regions. Being kept separate from other sources, and therefore al-
ways representing a contribution of 0, one need never interpolate in these
regions. This can greatly reduce the number of triangles in the mesh. Such

regions take up next to no storage in a CDS.

Complexity: In theory, a scene with / light sources and e polygon edges can
result in O(le) discontinuity lines on each polygon. When merged into a
single mesh, these lines could result in a mesh containing 0 (/2e2) elements.
When stored in seperate meshes, the total number of elements can only
be G{le2). These are, however, worse-case figures [71]; further research is

needed to establish which approach is actually optimal.

Optimising DMR 5.3. Merging versus layering



Chapter 5. Optimising discontinuity meshing radiosity 196

5.3.3 Converged solution

One feature of the layering method, as it has been described thus far, is apparent:
no mention of convergence has yet been made — the method simply locally
iluminates the scene, by each of the primary light sources. Whilst such images are
visually impressive (appendix C), this is a long way short of global illumination,
which is the author’s aim. One could continue, as Lischinski et ol [70] did, and
keep on building layers, and adding® them into the whole, but this does not
seem a promising approach: the storage costs will simply keep on building up,

eventually becoming prohibitive.

Whilst the code implemented thus far, only deals with the primary light sources,

and does not reach a converged solution, a strategy for doing so is now outlined.

Two things are immediately apparent.

e If the shadow discontinuity lines, found by treating every polygon as a
source, are accounted for, then the memory costs will almost certainly be-

come crippling [70].

e One cannot ascertain a prior: which polygons should be treated as impor-

tant sources [63].

The solution outlined here proposes that one first accounts for the direct illumi-
nation, due to the primary light sources, and then solves for the indirect diffuse
illumination, in the scene. The primary light sources are handled as has already

been described, in an iterative, layering algorithm, accounting for all D°, D' and

6Merging, in the case of [70], layering here.
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D? shadow discontinuities. Note, however, that once the primary light source
layers are n situ, the only llumination left unaccounted for, in a diffuse scene, is
indirect diffuse ilumination (IDI). Also, recall the discussion of section 2.3.3 and
figure 2.9; here it was noted that IDI is the most slowly-varying of all the various

illumination components and, as such, is particularly cheap to model [97, 63].

Consider how a layer is built, from scratch: the highest nodes in the uvBSP
tree correspond to splits which occurred during the building of the scene BSP
tree, and to D° discontinuity edges. The next group of nodes down the uvBSP
tree, correspond to splits which occurred when discontinuity meshing. The nodes
neatrest the leaves of the tree, correspond to splits made during triangulation, and

adaptive subdivision (figure 5.16).

Now consider how a uvBSP tree was constructed in Lischinski et al’s hierarchical
algorithm [71]. The first discontinuity lines added to their tree are the D° lines.
The next lines added are the D! lines, then the D? lines, and then the CDT lines.
The point being, that the two trees (the layers described here, and the DM-trees
in [71]) share a common feature: both are quick to separate umbra, penumbra

and lit regions.

As noted in [71] (section 4.3), the fact that shadow regions and lit regions are
separated near the top of the tree, makes the hierarchy ideally suited to a hier-
archical radiosity solution. By pulling the leaf radiosity information up a uvBSP
tree (using area-weighted averaging) one can store radiosity values with nodes
throughout the tree. A standard [50] refining and linking process can now take
place; the initial linking only involving those nodes with a radiosity value above

some user-defined B.. This means only nodes near the top of tree will take part
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Figure 5.16: The 2D line represents a 3D polygon. The DM-tree which results
from the method described in this work, quickly separates lit and shadow regions.

in initial linking, and links will have to be made between all layers on all (inter-
visible) scene polygons. A hierarchical radiosity solution can now proceed exactly

as described in [50, 71], the final radiosity values stored at the nodes being pushed

down to the leaves, for display.

This approach has a number of advantages:

e Because the only transport being accounted for in the hierarchical solution,
is IDI, the solution can proceed with a fairly large error threshold, confi-
dent that this will be sufficient to model the relevant transport. If p scene

polygons each have [ layers, then O(lp) links may be required: in fact, the

large error threshold should keep this figure manageable.

¢ The user does not have to wait for initial linking before an image is available.

0
.
&
A
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Images from each iteration of the progressive refinement (direct illumina-
tion) pass, are available quickly: only when an impressive image has already

been achieved, does one have to wait for a converged solution.

e One need never concern oneself with reconstructing the radiosity func-
tion across a polygon: re-calculating form factors, or visibility terms (sec-
tion 4.3); the nature of the radiosity across the surface has already been

established in the direct illumination pass.

e During the hierarchical solution, one need never split a node when an at-
tempt to link fails to satisfy the error criterion; one simply recurses down

the uvBSP tree. Links can be forced at leaf/leaf interactions.
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Conclusions

6.1 Previous work

This thesis has presented a review of recent innovations in the radiosity method
in computer graphics, together with a number of optimisations which have helped

to improve the performance of one of the more complex algorithms.

Beginning with the development of a physically-based transport model, the ren-
dering equation [61], the aim from the start has been to reach conclusions which
would be applicable to problems found in real-world applications, such as lighting

and architectural design.

An investigation, of a number of classical solutions to the rendering equation, was
made in chapter 2. Whilst many impressive images have resulted from the con-
stant radiosity and ray tracing algorithms of chapter 2, the latter are somewhat

deficient in that they struggle to reach a truly global solution, and the former are
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somewhat deficient in that they suffer from a number of accuracy problems; due
to their insistence on representing the radiosity across a surface as a piecewise

constant function.

In chapter 3, a thorough investigation of higher order radiosity methods, based
on finite element theory, was presented. A number of advantages, to such an

approach, were indentified:

e When representing the radiosity as a piecewise polynomial, rather than
piecewise constant, function, the true radiosity may be very closely repre-
sented by the solution function, across much of the scene. The same can

rarely be said of classical radiosity.
e Convergence rates are impressive when using higher order polynomials.

e Far less patches are required than in classical radiosity; storage costs are

much reduced.

The weighted residual radiosity methods of chapter 3 also represent a slightly
more subtle improvement in the radiosity method: by setting the problem i a
sound mathematical framework, the problem becomes well-defined, and its limi-
tations clear. Avenues for improvement can be sought within the context of the

new framework.

Wavelet theory, and a discussion of how it might be applied to radiosity, was
also covered in chapter 3. Wavelets were found to be a particularly powerful
tool for the discrete representation of functions and operators, in a number of

dimensions. By projecting the radiosity function, across a bi-parametric surface,
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into a wavelet basis, one obtains a cheap, accurate representation of the function
— made possible by the wavelet basis’ ability to represent smooth regions very
cheaply. By projecting the kernel function into a compatible basis, which also

results in a highly sparse representation, an O(n) solution process is possible.

Whilst the methods of chapter 3 were shown to be a marked improvement over the

constant radiosity algorithms of chapter 2, they are not without their problems:

o Evaluating energy interchange between two order N basis functions is an
O(N*) problem. Whilst one might expect a typical scene to include less
higher order basis functions, than if constant basis functions were used, it
is not yet clear whether this advantage will be dragged down by the high

costs of calculating energy interchange.

e As yet, wavelet methods cannot be applied to triangular mesh elements,

which may make their useful application problematic.

All of the radiosity methods examined, in chapters 2 and 3, share a common
stumbling block. This concerns the inability of a piecewise polynomial function
to accurately represent any sort of significant discontinuity, within the span of
one its basis functions. Unless care is taken to avoid such situations, they will

invariably occur, and the costs can be severe:

¢ in constant radiosity algorithms, light and shadow leaks result;
e in conventional higher order methods, Gibbs ringing results;

¢ in wavelet radiosity, the sparseness of the kernel is adversely affected;
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e In all of the approaches examined, convergence rates are hampered.

A closer look at such discontinuities, seemed in order.

Chapter 4 presented an examination of discontinuities in the radiosity function,
the conclusion being reached that shadow discountinuities, up to order 2, should
be explicitly accounted for during the radiosity solution. A review of previous
discontinuity meshing radiosity (DMR) algorithms was presented, with clarifi-
cation being given by the author on a number of issues left unclear, by others.
Whilst the DMR. algorithms of chapter 4 are impressive in and of themselves,

they were found to be lacking in a number of respects:

e Whilst great effort is expended finding shadow discontinuity edges, many

algorithms reached no conclusions about which regions lie in shadow.

e The costs of the non-hierarchical approach were seen to be prohibitive.

e The mesh building and illumination was often far from optimal.

6.2 Author’s work

All of these issues were addressed in chapter 5, where the author’s optimisations

for DMR were presented. The major optimisations being:

Minimum candidate lists: A new algorithm for extracting object-space order-
ing from a BSP tree was presented. The algorithm is simple to implement,

and allows one to exclude between 50% and 75% of the polygons in a scene,
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when building an occluder candidate list for a (source, receiver) pair. The
information used to build these lists was shown to be a by-product of dis-

continuity meshing, and so costs are low.

Shadow classification: Each mesh element is classified as being either lit, in
penumbra, or in umbra. Elements which lie in penumbra store a list of
polygons in whose shadow they lie. Shadow classification involved the use
of SVBSP trees, which were also used to shaft cull occluder candidate lists.
The planes used to build these trees were shown to be a by-product of

discontinuity meshing, and so costs are minimal.

Mesh layering: A new method for handling contributions from multiple Light
sources, in DMR, was presented. By layering the contributions from each
source, a host of advantages were shown to have emerged. The layering
method was shown to be simpler, have lower storage costs, be more accu-

rate, and have a lower complexity, then the merging approach.

Mesh triangulation: Two new mesh triangulation schemes were presented,
both of which were shown to result in meshes containing less triangles,
for a given error tolerance, than the previous method. Both methods were
also shown to produce better-shaped triangles, for a given error tolerance,

than the previous method.

Chapter 5 also presented a suggestion for a hierarchical indirect diffuse illumina-
tion pass, to follow the direct lighting, layering, pass. This seems a particularly
promising approach, due to the slowly-varying nature of the illumination compo-

nent being handled by the pass.
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6.3 The future

A number of issues remained unaddressed, the foremost of which is the modelling
of indirect diffuse illumination. The author would very much like to persue the
hierarchical algorithm described in section 5.3.3, which he is confident would lead

to a converged, global solution.

The one overriding thought in the author’s mind which remains, at the conclusion
of this work, concerns the sheer complexity of discontinuity meshing radiosity.
The vast number of problem cases that can arise, once the scene geometry be-
comes intricate, far exceeded the number envisioned by the author at the outset
of this research. This might suggest a limited application the DMR, where dis-
continuity meshing takes place only in those parts of the scene where it is deemed
necessary. Whether a human or a machine would decide where such meshing was
necessary, or a combination of the two, is an open question: both options seem

plausible.

Discontinuity meshing radiosity is still imited in that it can only handle polygonal
scenes. Extensions to curved surfaces seem unlikely, given the complexities of the
polygonal case, but if such meshing is only being applied in areas where it was

deemed important, then perhaps such extensions should be investigated.

Another area for improvement involves the reflection properties of the surfaces
being considered. In the same way that previous radiosity algorithms have been

extended to handle specular reflection, DMR could be extended.
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Parallelism is another area which deserves close attention. Whilst DMR algo-
rithms are complex, they are certainly manageable, perhaps a parallel approach
would make the costs of DMR more acceptable. The layering method, introduced

in this thesis, seems are particularly likely candidate for parallelism.

Whatever the future holds for discontinuity meshing radiosity, the author is con-
fident that it has earned its place there: radiosity methods which do not account
for discontinuities will always encounter problems. The radiosity community, and
the computer graphics community in general, have recognised, in recent years,
the importance of setting their work in a sound theoretical framework if work is

to progress; the results so far, have been impressive. The future holds no bounds.

Optimising DMR 6.3. The future




Appendix A

Binary Space Partitioning trees

Many of the algorithms, described in this thesis, are based around the notion of
Binary Space Partitioning (BSP) trees. This appendix presents a précis of BSP
trees; how to build them, their advantages, and their uses as they relate to this

thesis.

BSP trees have been used extensively in the computer graphics community for
many years; their success has probably been helped by their simplicity. Also, the
ease with which they allow one to extract order from the seeming chaos which
is the data being processed. BSP trees can be used in an arbitrary dimensional

space, but this discussion will concentrate on the three-dimensional case.

In three dimensions, a BSP tree represents a hierarchical partitioning of 3-space
by a set of planes. Clearly, a BSP tree is binary, each node storing: a plane,
a list of polygons which lie in this plane, and pointers to two branches. Each
node represents a region of space; the root node represents the whole of whatever

space is being partitioned. The plane stored with each node splits the space,
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represented by the node, into two half-spaces — one wholly in front of the plane,

and one wholly behind it.

Given a list of polygons, a BSP tree is constructed as follows (figure A.1):

e select a polygon from the list;
e note the plane in which this polygon lies; store this plane with a new node;
e create two new lists, corresponding to

1. polygons which lie in front of the chosen plane, and

2. polygons which lie behind it.

Any polygons which lie across the plane, are split by it, and each half is
added to the appropriate list. Any polygons which lie in the plane are

stored with the new node.
e Create the new node’s positive branch by recursing with the first list;

e create the new node’s negative branch by recursing with the second list.

Such an approach was first formulated by Fuchs et al in [35, 34]; their research
having been motivated by Schumacker et al’s earlier work [95]'. Notice that,
because polygons are split during the construction of a BSP tree, the polygons
stored in the tree may not be exactly those polygons which were originally pro-
vided. Throughout this thesis, polygons stored at the node of a BSP tree are
referred to as BSP polygons, to distinguish them from original scene (OS) poly-

gons.

ldescribed in [108]
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('y / =NILpointer)

Figure A.l: Building a binary space partitioning tree.

If a polygon is regarded as having distinct front and back sides, then one can
store two lists of coplanar polygons with each BSP tree node: one for polygons
which share the same normal as the plane stored with the node, and one for
polygons which share the opposite normal. This second list is often empty. Such

an approach is implemented in the work described here.

The raison d'etre of BSP trees, is that they allow an observer to make conclusions
about the relative position of the scene polygons. Given any point, in the space
represented by a BSP tree, it is possible to create an ordering of the polygons
stored in the tree, whereby: the point has a wholly unoccluded view of the
ith polygon in the ordering, as long as the only candidates for occlusion are
the (i + )t/(i + 2)th,... polygons in the ordering. This a front-to-back [35]
ordering. A reverse (back-to-front) ordering is also possible, where the point has

an unoccluded view of the ith polygon as long as the only candidates for occlusion
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void front-to-back ( pt, tree )

{
if ( tree == NULL )
return;

if ( in-front( pt, tree.plane ) ) {
front-to-back ( pt, tree.pos );
output ( tree.posPolys );
front-to-back ( pt, tree.neg );

} else {
front-to-back ( pt, tree.neg );
output ( tree.negPolys );
front-to-back ( pt, tree.pos );

}

Figure A.2: Pseudocode for the front-to-back traversal of a BSP tree.

are the (1 — 1), (z — 2)t", ..., 1st polygons.

Fuchs et al [35] employed a back-to-front ordering to implement a painter’s ren-
dering algorithm. In such an approach, the scene is traversed back-to-front with
respect to the eye/camera position, and polygons are output directly to the im-
age buffer — without any regard for which pixels have already been written to.
The nature of the ordering ensures that the resulting image hides (and shows)
the correct regions of the scene. A problem with such an approach, is that any
one region of the buffer may be written to many times. Polygons may be ren-
dered, only to be completely obscured later; this can become expensive when
large scenes are involved [44]. Gordon and Chen [44] improved on the situation
by employing a front-to-back approach, where care was taken to write to bufter

locations once only.
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A.1 BSP ray tracing

One area where the front-to-back ordering of scene polygons has proved highly
beneficial, is in ray tracing. Thibault [112] described an algorithm whereby a ray
is treated like a line segment as it is filtered down a BSP tree; the plane stored

with each node being used to clip the ray?, as it recurses down the tree.

Filtering a ray (a directed line segment) down a BSP tree is not as simple as
the previous front-to-back algorithm considered (figure A.2), but it is not too far
removed. Essentially, whenever a node plane splits a line segment (representing
some part of the ray) the algorithm recurses, with the half which lies nearest the
ray origin, into the half-space containing this part of the ray. If this recursion
fails to find an intersection, the ray is compared with the polygons stored at the
node. If this fails to find an intersection, the algorithm recurses with the other

ray half into the other half-space (figure A.4).

If the axis-aligned bounding box of all the polygons stored in a BSP branch, is
stored with the branch’s root node, a further optimisation is possible; by carrying
out a ray/box comparison before recursing. This has also been implemented by

the author.

In such an approach the first ray/polygon hit found, is the nearest hit the ray
has to its origin. This is a great plus compared to many ray tracing algorithms,
which must compare the ray with other parts of the scene before they are able

to ascertain which hit is closest.

2A ray is defined by an origin, a direction, and two reals which specify the particular
segment of the ray being considered: these give the distance from the ray origin of the
segment’s two ends (initially tmin = 0 and tpmax = 00).
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dmin > 0
case:
1,2,3,6....11:
4
5
12

13

dmin —0 ! dmjn < 0
action:

Omin”max] near

[tmin-tmax] VS. neari posPoiys test

Omintint] vs. naar: posPoiys test; [tint,tmax] vs. far
[tmin-tmax] vs-near: negPolys test

[tmin-tind vs. near; negPolys test; [tint,tmax] vs. far

Figure A.3: By carefully handling each of the thirteen cases that can arise when
ray tracing BSP trees, an optimal algorithm results.

As can be seen from figure A.3, the algorithm is not quite as simple as recently de-

scribed — there are thirteen possible cases that can arise when comparing a plane

with a directed line segment. The implementation described here (figure A.4) is

different from Thibault’s original algorithm, which worked on an augmented BSP

tree [111, 107], where the ray was tested against the objects stored at the leaves,

not the polygons stored at each node.

Sung and Shirley [107] who, like Thibault [111] implemented a ray tracer for an

augmented BSP tree, have described ray tracing with BSP trees as outperforming

‘all of the spacial subdivision approaches we have experienced’.
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Tboolean ray_int_bsp ( ray, tmin, tmax, tree )

{
if ( tree == JULL )
return ( FALSE );
dmin = signed_dist ( ray, tmin, tree.plane );
dmax = signed_dist ( ray, tmax, tree.plane );
if ( dmin > 0 OR (dmin == 0 AND dmax > 0) ) {
near = tree.pos;
far = tree.neg;
candidates = tree.posPolys;
} else {
near = tree.neg;
far = tree.pos;
candidates = tree.negPolys;
}
if ( ray_in_plane ( ray, tree.plame ) ) /% ray lies in node.plane */
return ( ray_int_bsp ( ray, tmin, tmax, near ) );
tint = ray_intersect_plane ( ray, tree.plane );
if ( tmin < tint < tmax ) { /% cases 5 and 13 */
if ( ray_int_bsp ( ray, tmin, tint, near ) )
return ( TRUE );
if ( ray_vs_polys ( ray, candidates, &hit_pt, &hit_pol) )
return ( TRUE );
return ( ray_int_bsp ( ray, tint, tmax, far ) );
} else if ( tint '= tmax ) /% cases 1,2,3,6,7,9,10 and 11 */
return ( ray_int_bsp ( ray, tmin, tmax, near ) );
else /* cases 4 and 12 */
if ( ray_int_bsp ( ray, tmin, tmax, near ) )
return ( TRUE );
else
return ( ray_vs_polys( ray, candidates, &hit_pt, &hit_pol) );
}

Figure A.4: By comparing each end of the ray segment with the node plane, one
only tests the segment against polygons which it can possibly intersect.
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A.2 Shadow visibility BSP trees

The uses of BSP trees are not simply restricted to ordering algorithms. Thus
far, algorithms have been described which filter points down BSP trees, and
another which filters a line segment. This section concerns algorithms which

filter polygons down a BSP tree.

In [111], Thibault & Naylor extended BSP trees so that a tree could be used to
represent a polyhedron. In their approach, each leaf node is labelled as such; and
similarly for each internal node. Each node represents a region of space; if the
polygons used to build the tree are the faces of a polyhedron, then some leaf nodes
will correspond to regions within the polyhedron, and others will correspond
to regions without. By labelling leaf nodes as being either in or out, a BSP

polyhedron representation results.

Thibault & Naylor used their representation to evaluate set operations on poly-
hedra. Originally, their work combined a B-rep with a BSP tree, but later they
extended their work to deal solely with the BSP representation [76]. This exten-
sion entailed the development of a general algorithm for merging BSP trees [76]
— an algorithm which has since proved most useful to researchers dealing with

shadow volumes [15, 20].

Shadow volumes, originally introduced by Nishita and Nakamae [78], define re-
gions of space where the view of a particular source is affected by a particular
occluder. A penumbra volume defines a region where this occlusion may only
be partial; an umbra volume defines a region where this occlusion is total (fig-

ure A.5). Nishita and Nakamae recognised that the surface bounding such a

Optimising DMR A.2. Shadow visibility BSP trees




Appendix A. Binary Space Partitioning trees 215

occluder

penumbra

Figure A.5: The penumbra and umbra shadow volumes for a polygonal source
and polygonal occluder.

penumbra region, has the source wholly in front of it, and the occluder wholly
behind it. The surface bounding an umbra region has both the source and the

occluder lying in front of it3.

When the source and occluder are both polygons, or polyhedra, the penumbra
volume is bounded by a set of planes, satisfying the in-front/behind condition,

and chosen from those which either:

* pass through a source vertex and an occluder edge, or

* pass through a source edge and an occluder vertex;

The umbra volume, in this case, consists of the set of planes (satisfying the in-

front/in-front condition) which pass through a source vertex and an occluder

3Clearly, the notions of ’in front’ and ’behind’ are somewhat ambiguous here, but if
the side containing the source is defined as being the front side, this ambiguity vanishes.
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edge. A more rigid analysis of the planes which bound such shadow volumes, is

presented in [15].

Whilst shadow volumes were used by Nishita and Nakamae to aid with their
shading calculations, it was Chin and Feiner [19] who first exploited their full
potential, with the introduction of shadow visibility BSP (SVBSP) trees: Chin
and Feiner [19] built an eztended BSP tree [111, 112], using those planes which
bound the umbra volume of a polygonal occluder, due to a point light source.
In this way, any point filtered down the tree will end up at a leaf node labelled

either in (the point is in shadow) or out (the point is not in shadow).

By filtering a polygon down such a tree — splitting the polygon by each node
plane as its recurses, and taking one half down each branch — Chin and Feiner
could very quickly establish which parts of the polygon were lit, and which were in
shadow. They stored their (polygonal) scene in a BSP tree and incorporated their
shadow classification approach into a front-to-back traversal of the tree, from the
point source. In this traversal, a merged SVBSP tree is carried; representing the
combined shadow of all polygons encountered thus far on the traversal (initially
a single out node). As each polygon is encountered, it is filtered down the
SVBSP tree; its shadowed parts are classified as such, and its lit parts are noted.
An SVBSP tree is now built for each lit part, and this is merged into the tree

representing the combined shadow, using an algorithm from [111].

SVBSP trees are more efficient than linked lists for comparing a number of planes
with a polygon [15]. Also, in Chin and Feiner’s approach, the front-to-back
traversal ensures that no polygon is tested against the shadow volume of a polygon

which lies behind it. Such an approach is generally not possible with area sources,
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as there is not usually a single ordering of the scene polygons available [20, 37].

SVBSP trees were extended to model the shadow volumes due to polygonal light
sources by Campbell [15], who combined the shadow volume planes used by
Nishita and Nakamae [78, 79] with the data structure introduced by Chin and
Feiner [19]. With polygonal sources, each occluder has two SVBSP trees; one
representing the penumbra, and one representing the umbra. By testing for
penumbra regions before umbra regions, one can avoid comparing lit regions with

the umbra volume.

Merging SVBSP trees, due to polygonal rather than point sources, 1s not as simple
as the problem solved by Chin and Feiner [19]. Nevertheless, Campbell [15]
obtained such a merged shadow volume by utilising another algorithm due to
Thibault et ol [76]. Campbell used the merged SVBSP tree to shadow classify
the polygons in the scene, but without the aid of the object space ordering that

Chin and Feiner had been able to exploit, for a point source [19].

The most recent development in shadow volume usage, apart from the work
described in this thesis, is again due to Chin and Feiner. In their improved
algorithm [20], polygonal sources are used, and object space ordering is included.
This last point is made possible by storing the scene in a BSP tree, and then
splitting the source by all those polygons which lie in front of it, and whose planes
pass through it. This results in a number of source fragments, from which one can
traverse the scene in a unique front-to-back order; finding shadowed regions and
building a merged shadow volume as one proceeds. The obvious drawback with
such an approach is that one may have to make very many traversals before the

scene is shadow classified with respect to the whole source, and not just one of its
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fragments. The SVBSP trees used are exactly those used by Campbell [15], but
the merging process is again the simpler algorithm due to Thibault et al [111];

made possible by the object space ordering employed.
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Winged Edge Data Structure

The winged-edge data structure (WEDS) is not new to computer graphics. Orig-
inally developed by Baumgart [9] in 1975, for an application in computer vision,
it has since become popular not only for the representation of polyhedra (for
which it was originally intended) but also for a number of other structures where
a consistent representation of faces, edges, and vertices, is required. One such
structure, is the element mesh from the radiosity algorithm described in this

thesis.

The central concept of the WEDS, is an edge. An edge stores most of the infor-
mation which allows one to tour the data structure. Given a face, one can use
the information stored in the WEDS to:

o visit all of edges which bound the face, or

o visit all of the vertices which bound the face, or

e visit all of the faces which share a common edge with the face, or
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o visit all the faces which share a common vertex with the face.

Any number of other traversals are also possible.

The WEDS (as implemented by Baumgart [9]) consists of three doubly-linked
lists: one storing all the faces, one storing all the edges, and one storing all the
vertices. As well as storing all the application-dependent data that they need,
each face, edge and vertex in a WEDS stores topological information, which
enables the traversal of the data: each vertex, stores a pointer to an edge (of
which it is one end); each face stores a pointer to an edge (which lies on its

boundary); each edge stores:

e Pointers to the vertices, at its ends. These are ordered; one is the previous

vertez, the other is the nezt vertez. In this way, each edge is directed.

e Pointers to the faces which lie on either side of it. Because the edge is
directed, these can be labelled as lying on either the left (previous) or right

(next) side of the edge.

e A pointer to the adjacent edge, on the previous face, which is reached by

going clockwise around the face, from the edge.

e A pointer to the adjacent edge, on the previous face, which is reached by

going counter-clockwise around the face, from the edge.

e A pointer to the adjacent edge, on the next face, which is reached by going

clockwise around the face, from the edge.

o A pointer to the adjacent edge, on the next face, which is reached by going

counter-clockwise around the face, from the edge.
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pCC'
pFace- —
pVertV
nVert
nCCW nFace
WEDS

Figure B.l: The figure illustrates (i) An edge, and the information it stores; also
shown are the edge pointers stored by vertices and faces, (ii) A symbolic diagram
of the whole data structure; consisting of a face, edge and vertex ring. One edge,
face and vertex (shaded) are each shown with their ‘topology’ pointers.

These last four are known as the edge’s wings (figure B.l).

It is plain to see, that whilst such a structure gives one tremendous scope, when

traversing the data stored therein, the storage costs of such a scheme, are con-

siderable.

By using a number of generic routines (for tasks such a splitting an edge by a
given vertex, splitting a face by a given edge), the otherwise laborious task of

building and maintaining a WEDS, as data is and deleted, becomes tractable [41].
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Results

This appendix presents a number of images and graphs which support the original
work described in chapter 5. A few of these are repeated elsewhere in the thesis,

but this is not true in the main. Any timings given refer to C code running on a

clustered HP9000/735crx48z.

C.1 Mesh optimisation statistics

This section presents a series of graphs which relate to the three triangulation
schemes described in section 5.2. Two series of five graphs are presented, one
series showing how the number of mesh elements varies for the different trian-
gulation schemes, and one showing how the shape of the mesh triangles vary
for the different schemes. Each of the five graphs, in a series, corresponds to a

different test scene. The test scenes varied considerably in complexity, the five

scenes being:
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Figure C.lI: Test scene flat. 2 polygons.

flat: A simple (source, receiver) pair; no occlusion (2 polygons).

boxes: Two boxes, lit by a single light source, both boxes casting a shadow
onto the floor, the high box also casting a shadow onto the lower box (14

polygons).

table: A table, lit by a single source, casting a shadow onto the floor (34 poly-

gons).

chair: A chair, lit by a single source, casting a shadow onto the floor (65 poly-

gons).

float: A table and five chairs, fit a single source. Four chairs are at the table,

one chair is floating above the table (214 polygons).

Figures C.1 to C.5 show the five test scenes.

Optimising DMR C.l. Mesh optimisation statistics
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Figure C.3: Test scene table. 34 polygons.
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Figure C.4: Test scene chair. 65 polygons.

Figure C.5: Test scene float. 214 polygons.
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Figures C.6 to C.10 show graphs illustrating how the number of mesh triangles
varies with user-defined error tolerance, for the different triangulation schemes
(section 5.2) running on the five test scenes. Each graph shows three plots: one
for each triangulation scheme. Each plot is labelled as being due to either method
1, method 2 or method 3; these refer to longest-diagonal, shortest-diagonal and
heuristic-diagonal, respectively. All of these graphs, with the exception of fig-
ure C.6, show that the two new triangulation schemes result in meshes which
satisfy a given error tolerance, using markedly less triangles than the original [70]
scheme. The author is content to regard figure C.6 as being anomolous, since it
corresponds to a scene which is completely free from occlusion. Whilst the differ-
ence between the two new schemes (shortest-diagonal and heuristic-diagonal) is
tiny, it seems that shortest-diagonal manages to mesh to a given error tolerance

using slightly less triangles than heuristic-diagonal.

Figures C.11 to C.15 show graphs which consider how well-shaped the mesh trian-
gles were, for the different triangulation schemes running on the five test scenes,
at a selection of error tolerances (section 5.2.1). Whilst shortest-diagonal and
heuristic-diagonal both consistently produce better shaped meshes than longest-
diagonal (apart the anomolous test scene f£lat), shortest-diagonal only comes out

as a close-run winner.

The tail-off in both graphs involving test scene float are due to the large number

of subdivisions which were prevented because the element size was too small.
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Figure C.6: Comparing the number of mesh elements in each of 3 triangulation
schemes (test scene flat).
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Figure C.7: Comparing the number of mesh elements in each of 3 triangulation
schemes (test scene table).
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Figure C.8: Comparing the number of mesh elements in each of 3 triangulation
schemes (test scene boxes).
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Figure C.9: Comparing the number of mesh elements in each of 3 triangulation
schemes (test scene chair).
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Figure C.10: Comparing the number of mesh elements in each of 3 triangulation
schemes (test scene float).
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Figure C.11: Comparing the mean inscribed/circumscribed ratio for the different
triangulation schemes (test scene flat).
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Figure C.12: Comparing the mean inscribed/circumscribed ratio for the different
triangulation schemes (test scene boxes).
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Figure C.13: Comparing the mean inscribed/circumscribed ratio for the different
triangulation schemes (test scene table).
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Figure C.14: Comparing the mean inscribed/circumscribed ratio for the different
triangulation schemes (test scene chair).
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Figure C.15: Comparing the mean inscribed/circumscribed ratio for the different
triangulation schemes (test scene float).
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Figure C.16: Two light sources, test scene table; radiosity solution: 1 second;
ray-traced rendering: 175 seconds.

C.2 Mesh layering
This section presents a number of images corresponding to test scenes lit by
multiple light sources.

Figures C.16 and C.17 show the table test scene lit by two and three polygonal

sources, respectively.

Figures C.18 and C.19 show the chair test scene lit by two and four polygonal

sources, respectively.

Figures C.20 and C.20 show the float test scene lit by two and three polygonal

sources, respectively.
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Figure C.17: Three light sources, test scene table; radiosity solution: 2 seconds;
ray-traced rendering: 162 seconds.

Figure C.18: Two light sources, test scene chair; radiosity solution: 14 seconds;
ray-traced rendering: 140 seconds.
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Figure C.19: Four light sources, test scene chair; radiosity solution: 29 seconds;
ray-traced rendering: 113 seconds.

Figure C.20: Two light sources, test scene float; radiosity solution: 116 seconds;
ray-traced rendering: 185 seconds.
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Figure C.21: Three light sources, test scene float; radiosity solution: 138 sec-
onds; ray-traced rendering: 174 seconds.

C.3 Shadow classification

Three scenes are presented which illustrate various stages of the solution pro-
cess. A test scene (spiral staircase) is shown (figure C.22) flat-shaded, with dark
discontinuity lines and light construction hnes. The same figure is shown af-
ter shadow classification (figure C.23), with the shadow regions shown darker.

Finally, a ray-traced version is shown (figure C.24).
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Figure C.22: A test is shown with discontinuity and construction hnes only.

Figure C.23: A test is shown with discontinuity and construction hnes, and
shadow-classified mesh elements.
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Figure C.24: The final version of the spiral staircase, ray traced.
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