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A b stract

U N IV E R S IT Y  OF M A N C H E S T E R

A B S T R A C T  O F  T H E S IS  subm itted  by N e il G a te n b y  for th e  Degree of Doc­

to r of Philosophy in C om puter Science and entitled O p tim is in g  D is c o n tin u ity  

M e sh in g  R a d io s i ty

M onth and Year of Submission: January  1995

Radiosity, in com puter graphics, is a rapidly-exp an ding area of research. From 

its m eagre beginnings in 1984, modelling an em pty room w ith  N  patches, using 

0 ( N 2) storage and tim e, it has progressed to  a stage where highly complex scenes 

can be modelled, fully accounting for occlusion, w ith only linear storage and tim e 

costs. Energy transfer is evaluated hierarchically, basis functions can be high 

order polynomials, and discontinuities can be accurately modelled.

This thesis presents a review of such algorithm s, focussing on those m ethods 

which address the  problem s of discontinuities in the  radiosity function. A num ber

17



A bstract 18

of problems w ith existing m ethods, are identified, and a num ber of optim isations 

and alternatives are presented.
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C hapter 1

In trod u ction

C om puter generated images, which an observer might m istake for a photograph of

a real scene, are becom ing more and more commonplace in th e  developed world. 

T he borders betw een w hat is com puter generated, and w hat is no t, are becoming 

m ore and more blurred: the  people developing the  algorithm s, used to generate 

the  images, have th e  benefit of m ore th an  20 years of com puter graphics litera tu re  

to  peruse, and access to s ta te  of the  art hardw are which is cheaper, bigger and 

faster th an  ever before. No surprise then , th a t the  images being produced are 

attain ing th e  goal of those producing them : realism.

1.1 P h ysica lly  correct versus P ercep tu a lly  ac-

the  generation of realistic images, using com puters. W hat is m eant by realistic

In order to  reach a goal, one m ust first define it: this thesis concerns itself w ith

23



C hapter 1. In troduction 24

in this context? How does one decide which image generation m ethod produces 

the  m ore realistic image? T he rem ainder of this section addresses these issues.

‘Photorealism ’ is a word m uch used in com puter graphics litera tu re , and less 

often qualified. Literally, a photorealistic image is one which a person might 

m istake for a photograph of a real scene. The question arises: is it possible, 

using a com puter, to  generate a photorealistic image of a scene1, given only a 

detailed description of th e  scene, b u t given no access to  a cam era, or the  scene 

itself (which m ay be no more th an  some plans 011 a designer’s desk)? Indeed, are 

‘photorealistic im ages’ quite w hat th e  people generating th e  images are striving 

for? Is a ‘photorealistic com puter generated im age’ indistinguishable from  a 

photograph of the  scene being modelled? For a  large num ber of applications, the  

answer to these last two questions is ‘no ’ ! W hat is often required is an image 

which only:

• gives th e  observer so m any perceptual cues th a t they  instan tly  recognise all 

of th e  objects m aking up the  scene, as well as their relative sizes, orienta­

tions, etc., and

• minimises those features in th e  image which m ight trigger perceptual re­

sponses th a t te ll the  observer th a t th e  image is com puter generated.

These requirem ents only address the  issue of perception; no m ention of accuracy 

has been made: how closely does th e  modelled light d istribution correspond to

th e  actual d istribution in  the  real world? [5, 69] Indeed, how should one m easure

1For the purposes of this thesis, a “scene” is a description of a collection of “objects” , 
some of which will (typically) be emitting light. The gas occupying the space around the 
objects is assumed to play 110 part in the way in which the objects become illuminated.

Optim ising D M R 1.1. Physically co rrect/P ercep tually  acceptable



C hapter 1. In troduction 25

this ‘closeness’? [43] Suppose, for example, th a t some scene is being modelled 

using two different rendering system s, each producing an im age using th e  same 

view. Given any point in  the  scene, the  first rendering system  can very accu­

rately  estim ate how m uch light, of a given wavelength, is leaving th e  point in 

a given direction. T he second rendering system , is unable to  provide any such 

inform ation. Suppose further, th a t when a large sample of people were asked to 

com pare the  two images, and say which was com puter generated, and which was 

not, the  m ajority  chose th e  first system ’s image as being com puter generated, 

and the  second system ’s im age as being the  ‘real th ing ’. W hich image is the 

more realistic?

For th e  purposes of this thesis, where 'physical accuracy is a m ajor concern, the  

preferred image is th e  first one. For the  purposes of film and T V  special effects, or 

product advertising, where hum an perceptual issues are param ount, th e  preferred 

image would be th e  second one.

I t should be noted, however, th a t concentrating on physical accuracy, ra ther th an  

on w hat is perceptually  pleasing, does not m ean th a t th e  resulting images will ap­

pear unrealistic. Q uite the  contrary: where th e  physically-based approach differs 

from the  perceptually-based approach is in its route to  visual realism -  reached 

via a ttem pting  to  m odel w hat is actually happening to  th e  light in between it 

leaving a light source, and arriving at the  eye. If th e  physical m odel is accu­

ra te  enough, the  im age will appear realistic. The more accurate th e  modelling, 

the  m ore realistic the  image. Indeed, one could assert th a t th e  physically-based 

approach is the  more certain rou te to  realism.
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1.2 M od ellin g  reality

So, ‘physical accuracy is a m ajor concern in this thesis: prim ary applications of 

the  work described here include lighting, heating2 and arch itectu ral design. These 

are real-world applications, requiring real-world physical units to  work with. For 

example, when an architect is designing a building, they would like to  m ake use 

of a com puter system  which can tell them  about the  light d istribution across the 

desktops (say) in a room: are they well-lit by daylight? Are ex tra  light fittings 

needed? Are the  windows too small, or poorly positioned? W hat difference does 

it m ake w hen a particu lar wall is moved? W hen a particu lar column is added? 

In sum m ertim e? In w inter? How does the  situation change when th e  walls are 

painted? W hen th e  carpet is changed? . . .  Any num ber of com binations can be 

tried  out on the  com puter. As long as the  simulation is physically accurate, the 

result should be a well-designed building, whose lighting is ideally suited to those 

who use it.

Exactly  how does one proceed, when creating a physically accurate model of 

illum ination in th e  real world, using a com puter?

Modelling is achieved by storing a com puter representation of the  shape, posi­

tion and orientation of the  surfaces th a t make up the  scene, together w ith their 

em ittance and reflectance properties (figure 1.1). This representation, hereinafter 

referred to  as the  scene mode/, is repeatedly referenced to  determ ine quantities 

such as in ter-object visibility, separation, and orientation, as well as various sur­

face properties. These values, in tu rn , are inserted into a m athem atical model

2A change of wavelengths is all tha t is needed.
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(i) The scene being modelled

human ob:

(ii) The model ot the scene

::::::::::::::::

virtual camera

: • ••• :
: ::::::::::::::::::::::::::::::::::::::

iiiiiii;( X 4 . y 4 . Z 4 ;

Figure 1.1: Some differences between the real scene, and the  scene model
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(the transport m odel) which defines how light in teracts w ith  th e  scene. The 

transport m odel takes inform ation gleaned from the  scene m odel and retu rns in­

form ation about how various parts  of the  scene illum inate other parts . Typically, 

this process iterates un til enough inform ation to  create an image, of the  desired 

accuracy, has been found. Often, this is carried out for a num ber [74, 48] of 

different wavelengths of visible light, so th a t colour images can be generated.

The com plexity of the  scene geometry, and the  intricacy of the  em ittance and 

reflectance inform ation, are th e  factors which determ ine how difficult the  prob­

lem will be to  solve. The physical lim its of the  com puter, together w ith tim e 

lim itations th a t th e  user has, m ean th a t it is only possible to  obtain  illum ination 

inform ation for a  finite set of points in the  scene. The physical lim its of the 

display device, m eans th a t it is only necessary to  have a solution for a finite set 

of points. Lim itations such as these, m ake simplifications usual in th e  scene and 

transpo rt models. F igure 1.1 illustrates some typical simplifications:

T h e  o b server

• In th e  real world, there is an observer: several feet ta ll, usually w ith 

binocular vision, and generally not very reflective! Their very presence 

will affect th e  fight distribution in the  scene.

• In th e  com puter model, th e  observer is replaced by a v irtual cam era, 

which has no affect w hatsoever on the  modelled fight distribution, and 

typically only provides one view of the  scene.

O b ject d e ta il

3Although this is hardly an issue for radiosity algorithms.
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• Some objects in th e  scene being modelled m ay have very complex 

shape (e.g., the  table legs).

•  It m ay be th a t th e  modeller is not interested in modelling small details 

in th e  scene (e.g., table leg shape, pencil on table) and these m ay be 

simplified or ignored in the  model.

R eflec ta n ce  p ro p ertie s

• In the  real scene, surfaces m ay well change the ir reflectance properties 

as a function of position, incoming and outgoing directions, wavelength 

an d /o r tem peratu re.

• In th e  model, it is unlikely th a t all of these will variables be accounted 

for.

To conclude; some simplifications are unavoidable, some are desirable, and some 

will have a m ore significant effect on th e  results th an  others. T he subsequent 

sections detail th e  development of a transport model for com puter-generated 

images, bearing these lim itations in mind.

1.3 P h ysica lly -b ased  rendering

In order to  m odel the  steady-sta te4 light distribution in  a scene T, one m ust first 

construct a transpo rt m odel which: not only handles how the  light sources in T 

illum inate the  other objects ( direct illum ination); bu t also how inter-object re­

flections an d /o r transm issions (indirect illum ination) affect th e  final distribution.

4Throughout this thesis, all quantities are assumed to be time-independent.
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It is im portan t to  decide how m any degrees of freedom are to  be allowed in the 

m odel being constructed  -  do we w ant to  know how m uch light, of any given 

wavelength, leaves any given point in T in  any given direction? Or, will th e  total 

am ount of light, leaving each object in T, regardless of direction, be sufficient? 

Or, should the  m odel cater for som ething in between these two extrem es? The 

answer is th a t th e  ideal model will be application and environm ent dependent: 

for radiation heat transfer applications [99, 103], the  less accurate approach m ay 

well be sufficient, bu t for m any com puter graphics applications [100], something 

nearer the  first approach will be needed. The ‘environm ent dependency’ refers 

to  the  hardw are being used to  run  the  model; it simply m ay not be practical, on 

some platform s, to  run too in tricate  a model.

W hat follows, is a derivation of th e  rendering equation5, first in troduced to  the 

com puter graphics com m unity by K ajiya in [61]. For now, few simplifying as­

sumptions are m ade, only th a t the  surfaces are opaque, and the  solution is steady 

(i.e., is not varying w ith tim e).

1.3.1 S om e n o m en c la tu re  and u n its

As has already been sta ted , the  resulting model m ust be able to  provide the  user

w ith inform ation which can be directly applied to real-world situations: a set of

physical units is needed, which can describe all relevant quantities. One m ust be

able to quantify:

5Also known as the radiance equation [98].
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• how m uch light leaves th e  various light sources, and  how this is spectrally 

and directionally distributed;

• how different surfaces reflect light incident upon them : how does this vary 

w ith position, incoming and outgoing directions, wavelength?

W ith  these criteria in m ind, this section introduces a num ber of definitions, term s 

and units which can be used to  quantify the  flow of light through th e  scene. Most 

of th e  term inology is taken  from the  illum ination engineering com m unity because, 

unlike the  therm al radiation heat transfer com m unity -  which spawned the  early 

radiosity work in com puter graphics [43], they  have standardised the ir term inol­

ogy [89], and it is now becoming th e  norm  to  use it for com puter graphics [98, 84]:

d ir e c t io n a l  n o ta t io n :  W hen referring to the  direction in which light is travel­

ling, relative to  a point x  on some surface in th e  scene, a local spherical 

coordinate system  is assumed. This system  is centred a t x , and measures 

an angle 6 between the  direction and the  surface norm al at x , and an angle 

(j> betw een th e  direction and some fixed, arbitrary, surface tangen t at x  (see 

figure 1.2). T he single bold character 0  denotes th e  pair (0, <f>).

so lid  an g le : T he solid angle subtended by an object, at a point, is equivalent to 

th e  surface area of the  radial projection of th e  object, onto th e  unit sphere 

about the  point. Normally referred to  by the  symbol lo, it is m easured in 

s t e r a d i a n s  (s r) , and can be regarded as a sort of ‘fleld-of-view’ indicator.

r a d ia n t  flu x : Light is a form  of electrom agnetic radiation. R adiation is a flow 

of energy — a flux. The energy of a packet of light rays is referred to as 

its radiant energy (Q ), and is m easured in  jo u l e s  (J ) .  T he ra te  at which
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this how of rad ian t energy changes w ith  tim e, is known as th e  radiant flux  

(3? =  d Q /d t), and is m easured in jo u l e s  p e r  seco n d  ( J s -1 ), or w a tts  

(W ). R adiant hux corresponds to  power; the  am ount of energy per un it 

tim e, and is often referred to  as th e  radiant power [77, 98].

r a d ia n t  in te n s i ty :  W hilst, at first sight (sic), radiant hux  m ay seem like a su it­

able quan tity  for th e  transpo rt model under construction, one should note 

th a t it has no dependence on viewing angle, which should be incorporated 

into th e  model. T he quantity  radiant intensity  (I  — d$/do j)  is a m easure 

of th e  rad ian t hux  per un it solid angle. This is m easured in w a t ts  p e r  

s t e r a d i a n  (W sr-1 =  J s “ 1s r " 1) and represents th e  rad ian t how from  a 

point source, along a particu lar direction.

r a d ia n t  e x ita n c e :  T he quantity  used to  m easure how rad ian t hux  varies as 

a function of surface area, is radiant exitance (M ); m easured in w a tts  

p e r  m e tre  s q u a re d  (W m ~ 2). This measures the  rad ian t hux  leaving a 

surface, per un it surface area. In heat transfer (and consequently com puter 

graphics) nom enclature, this is referred to as radiosity  (B  =  d ^ ovAjd A )  -  a 

te rm  th a t shall be adopted for th e  rem ainder of this thesis.

ir ra d ia n c e :  W hereas radiosity  is a m easure of rad ian t hux  leaving a surface, 

irradiance (E  = d<&‘m/d A ),  also m easured in w a tts  p e r  m e tre  sq u a re d  

(W m ~ 2), is a  per-unit-area m easure of th e  rad iant hux  incident on the 

surface.

ra d ia n c e : W hilst rad ian t intensity  details how rad iant hux  varies w ith viewing 

angle, and radiosity details how it varies w ith surface area, a te rm  which 

covers how rad ian t hux  varies w ith both these quantities is still needed. The
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dA

Figure 1.2: Terms used in the definition of radiance.

radiance

L =
1 d2§

( i . i )
cos 9 dAdio

along a specified direction © =  (#,</>), is the radiant flux per projected 

surface area per unit solid angle, and is m easured in w a tts  p e r  m e tre  

sq u a re d  p e r  s t e r a d i a n  (W m ~ 2s r ~l ). See figure 1.2. N ote also, th a t 

radiance is the  rad ian t intensity per projected surface area (L  = ^ -q^ ) -  

R adiance closely corresponds to the ‘colour1 of an object, as noted by a 

hum an observer, bu t is independent of the size of the  object being viewed, 

and the distance to it. As such, it is ideal for use in the model under 

construction.

reflectan ce: To quote from [77]: “Reflection  is the process by which electrom ag­

netic flux, incident on a stationary  surface or m edium , leaves th a t surface 

or m edium  from the incident side w ithout change in frequency. Reflectance 

is the fraction of the incident flux th a t is reflected.11
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It is common practise, in com puter graphics, to  assume th a t no (monochro­

m atic) light which is incident upon a stationary  surface will leave th a t sur­

face from  the  incident side with a change in frequency. This simplification 

m eans th a t each wavelength of in terest can be modelled separately, con­

siderably easing the  com putational difficulty. W hen referring to  any of the 

term s in troduced in  this section on a ‘per w avelength’ basis, the  word ‘spec­

tra l’ should be placed in front of the  te rm  to  indicate th a t this is the  case 

(spectral radiant f lu x , spectral radiant in tensity , e tc., ...). However, wher­

ever these term s appear in this thesis, it is the  spectral quan tity  th a t is 

being referred to  -  the reader should take it as being im plicitly present.

b id i r e c tio n a l  r e f le c ta n c e -d is t r ib u t io n  fu n c tio n : W hilst reflectance reveals 

some inform ation about how a surface reflects light, it does not incorporate 

th e  directional dependence which is needed by the  tran sp o rt m odel un­

der development. T he bidirectional reflectance-distribution function (com­

monly abbreviated  to  brdf ( / r ), units are s r -1 ) is the  reflected radiance 

along some outgoing direction, divided by th e  casual irradiance from  some 

incoming direction.

/r (X, © ,, ©o, A) =  (1.2)
Lt-(x, ©;, A)duji cos tq

F urther details of any unfam iliar term s can be found in  figure 1.3 and 

tab le 1.1.

It is w orth noting th a t the  brdf satisfies the  Helmholtz reciprocity rule [99], 

which asserts th a t swapping the  incoming and outgoing directions will not

affect th e  fraction of light being reflected:

fr  (x, © ;, ©o, A) -  / r (x, ©o, © i, A) (1.3)
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Q uantity Symbol Units Explanation
radiant energy Q J energy carried by packet of rays.
radiant flux $ W ra te  of change of Q w .r.t. time.
rad iant in tensity I UCsr-1 radiant flux per un it solid angle.
rad iant exitance M W r r r 2 see radiosity.
radiosity B W m ~ 2 leaving surface, per un it area.
irradiance E W m ~ 2 $  reaching surface, per un it area.
radiance L W  m _2s7’_1 $  per projected  surface area 

per un it solid angle.
brdf fr

—1sr reflected radiance along © Q over causal 
irradiance from  ©;.

Table 1.1: Illum ination Engineering nom enclature used th roughout this thesis.

Numerous a ttem p ts  a t deriving a useful analytic form ulation for the  brdf 

(in term s of incom ing/outgoing directions and m ateria l param eters) have 

been described in the  com puter graphics and optics lite ra tu re  over a num ber 

of years [114, 113, 117, 86, 12, 26, 60, 51, 126, 122, 68, 91]. Not all of these 

form ulations are physically-based, and few have been applied to  models 

which sim ulate global illum ination. O thers, however, have taken  great care 

to  observe issues of physical accuracy [51, 122, 68, 91]. M any of these 

models are discussed in [36],

1.4 T he rendering eq u ation

W ith  this com prehensive nom enclature in m ind, w hat can one assert about the  

radiance leaving a  point x  (in T), along the  direction 0 O — (0O, <j>0), due to  light 

incident from  the  direction © z =  (0*, ff)  only? From the  definition of brdf, (1.2),
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dA

Figure 1.3: Terms used in the definition of brdf.

one can see:

dT0(x, © 0, A) =  f r (x, 0,-, 0 O, A)L,(x, © ,, A) cos Oidwi (1.4)

In order to account for contributions from all fight incident at x , not ju st th a t 

which is incident from the direction © ,, one m ust in tegrate (1.4) over the hem i­

sphere of incoming directions, fl,, above x:

Lo( x , 0 o, A) =  /  / r (x , © ,, 0 O, A)Lt( x ,© t, X) cos Oidwi (1.5)
JSli

Adding in one ex tra  term , Le, to account for fight being em itted  from x, in the 

relevant direction, gives a simple version of the rendering equation:

L0(x, 0 O, A) =  £ e(x, © 0, A) +  /  / r (x, © ,, 0 O, A)L,(x, © ,, A) cos Oidujt (1.6)

U nfortunately, the equation is not very useful in this form: th e  aim is to  solve 

for X0, but the  integral is still in term s of T, -  the radiance incident at x.
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For the  purposes of this thesis, the  m edium  in which th e  scene sits is being 

regarded as a vacuum. This means th a t the  radiance incident a t x , along the  

direction 0 t, is equal to  the  radiance leaving some point x 7, in T, found by tracing 

a ray from  x  down the  direction ©;:

L*-(x, ©,-, A) =  T0(x7, ©i, A) (1.7)

Figure 1.4 illustrates this point, and shows how it is possible to  change the  in te­

grand in (1.6) so th a t ra ther th an  considering the  radiance arriving at x  from all 

directions visible to  it, one considers th e  radiance leaving all points x 7 visible to 

it, and travelling towards it. This change of integrand,

cos#7<M(x7) .
dui = -------------------------------------------------------- (1.8)

||x  — x'll

together w ith a  change of in tegration limits, so th a t the  in tegration now takes 

place over those points in T which can see x  (the set F (x , T)), results in:

L0(x, © 0, A) =  Le(x, © 0, A)+ [  f r (x, ©,-, ©o, A)L0(x7, 0 t , A) C° S C° S^ dA(x.')
Jv(x,r) ||x  —x '||

(1.9)

The right-hand side of the  equation is now in term s of T0, as desired, bu t the  in te­

gration limits are still odd (how does one determ ine which points lie in V (x, T)?). 

The in tegration lim its can be changed to  cover the  whole of F (a superset of 

y ( x , r ) )  and a visibility te rm  # ( x ,x 7) is introduced. This new te rm  takes the 

value 1 if th e  straight line joining x  and x 7 passes through no o ther p a rt of T, and 

zero, otherwise. This leaves, the  fundam ental result of this section, th e  rendering 

equation:

r cos f) • cos
L0(x, © 0, A) =  Le(x, © 0, A)+ /  # (x , x 7) / r (x, ©*, ©o, A)L0(x 7, ©*, A)—— !— —^ d A ^ ' )

Jr 11 x  “ X

(1.10)
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direction,..©.

Figure 1.4: Geom etrical considerations when changing th e  in tegrand in th e  ren­
dering equation.

This equation expresses the  radiance leaving any point in th e  scene, in any di­

rection, in term s of the  same quan tity  for all o ther points (and directions) in the 

scene. The recursive n a tu re  of th e  equation is clear: in order to  find one value 

of L 0 (for some point and direction), one m ust first find enough other values of 

L a (for appropriate points and directions) to  be able to  evaluate th e  integral on 

the  right hand side of (1.10). In order to  find any of these o ther values, one m ust 

first .... (recursion).

1.4.1 A  d ifferen t p a ra m eter iza tio n

The rendering equation is often seen param eterized differently to  (1.10) where, 

ra ther th an  thinking in  term s of directions relative to  th e  point x , the  problem  

is form ulated solely in term s of points on surfaces in T  (figure 1.5):

T 0(x ,x " ,A ) =  Le(x ,x " ,A ) +  [  ff(x, x , x", A)£0(x ', x , A)--p— C° ^  dA(x!)
J r  llx — x '||

(1.11)
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L0 from x \  
reflected towards X”

x

Figure 1.5: U nderstanding th e  spatial param eterization of the  rendering equation.

Here, the  radiance X0( x ,x //, A), leaving x  in  the  direction of some other point x", 

is w ritten  as th e  sum  of:

• any em itted  radiance leaving x  which is travelling tow ards x", and

• the  radiance which has left points x ' in T, only to  be reflected at x  towards 

x".

N ote th a t th e  brdf is now w ritten  in term s of three points, ra th e r th a n  one point 

and two directions. Schroder and H anrahan [94] have coined th e  term s directional 

and spatial param eterizations for (1.10) and (1.11), respectively.

1.5 A lgorith m  classification

Recall (1.10):

cos 6; cos a/
L 0(x , © 0, A) =  L e(x , ©o, A)+ /  g (x , x ' ) f r (x , © i, © 0, A)L 0(x ', ©,-, A)— —T dA(x!)

x  — xM
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Some of the  surfaces in th e  scene, I \  will be em itting light (the subset Ti,), the  

rem ainder will not (the subset T r ) .  Expressing th e  rendering equation in term s 

of these two distinct subsets:

L0(x ,© 0, A) =  L e(x ,© 0,A) +

f  g (x , x ') / r (x ,  © ,, © 0, A)L0(x', ©i, A) C° S CO*f2 d A (x ')  +
Tl llx  — x  II

/  s ( x , x ' ) / r ( x ,  © i ,  0 O, A )L „(x ', © i ,  A )C° s6I' C0^  (L4(xt)L.12)
J rR |[x  -  x ' | |

(1 .1 3 )

The integral over T^ represents th e  p a rt of L0(x, © Q, A) which is due to light 

em itting  surfaces only. The T r  integral details how th e  non-em itting surfaces 

contribute. The way in which different illum ination algorithm s handle these two 

integrals can be used to  place them  into two separate categories:

• Those algorithm s which m ake no real effort to  evaluate th e  T r  integral 

at all, and approxim ate th e  T l  integral by replacing th e  radiance term  

T0(x ', © i, A) inside th e  integral w ith its emissive com ponent only (Le^x.', ©{, A)), 

are known as local illum ination  models.

• Those algorithm s which m ake a genuine a ttem p t to  solve bo th  of th e  in te­

grals in  (1.13), are known as global illum ination  models.

Local illum ination models concern themselves only w ith how each light source 

illum inates each point of interest. Global illum ination models recognise th a t not 

only will those surfaces visible to  th e  light sources be directly illum inated, bu t 

also th a t th e  surfaces visible to  these surfaces will be indirectly illum inated, and 

so on, ad in fin itum . Local models are of no fu rther in terest here, the ir failure to
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account to  for in ter-object illum ination means th a t they  re tu rn  inaccurate  results 

in all bu t th e  m ost simple scenes6. They are, however, discussed in  some detail 

in [36],

Illum ination algorithm s m ay be fu rther classified, by exam ining how they ap­

proach th e  problem  under consideration. Those algorithm s th a t first establish 

which regions of the  scene are of in terest to  the  viewer, and then  go on to es­

tablish how those regions are illum inated, are known as image space algorithms. 

Those algorithm s which calculate how the  light sources have illum inated each 

surface in th e  scene, before considering th e  viewer, are known as object space 

algorithms.

Image space algorithm s m ay very well not find out any inform ation about how 

large areas of a scene are illum inated; the  areas being of little  relevance to the 

particu lar view. O bject space algorithm s always have a t least some inform ation 

about how every point in the  scene is fit.

This thesis is prim arily concerned w ith global illum ination, object space, models. 

Global illum ination because accuracy is im portan t, and object space because 

not all applications are solely concerned w ith image quality; m any being equally 

in terested  in  having d a ta  on exactly how th e  various surfaces in the  scene were

illum inated.

6A single convex object, for example.
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1.6 T h esis ou tlin e

T he rendering equation, derived in this first chapter, is th e  fundam ental transport 

m odel upon which all global illum ination algorithms are based. T he rem ainder of 

this thesis devotes itself to  exam ining various solution m ethods for equations of 

this type, w ith a  particu lar emphasis being placed on m ethods which specifically 

account for discontinuities in the  solution [54].

C hapter 2 examines some classical solutions of the  rendering equation. ‘Classical’, 

in  this sense, refers to  algorithm s which were published before th e  research for 

this thesis, began. Various radiosity and ray tracing algorithm s are exam ined, 

com pared and contrasted.

C hapter 3 reviews th e  theory and practise of higher order radiosity m ethods. 

T h a t is, algorithm s which are am enable to  approxim ating th e  radiosity across 

a surface by a piecewise polynom ial function, ra ther th a n  simply a piecewise 

constant function. C hapter 3 covers Galerldn radiosity, collocation radiosity and 

wavelet radiosity.

C hapter 4 looks at th e  theory  of discontinuities in the  radiosity function being 

modelled, and examines which of these discontinuities should be regarded as 

being significant. A review is presented, of a num ber of algorithm s which have 

accounted for such discontinuities in their meshing, solution and rendering phases.

C hapter 5 presents a num ber of optim isations for the  m ethods described in chap­

te r 4. These optim isations are the  central premise of this thesis. Some results, 

dem onstrating th e  effectiveness of th e  various im provem ents, are also presented.

Optim ising D M R 1.6. Thesis outline
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C hapter 6 is th e  concluding chapter.

A ppendix A presents a precis of binary space partitioning trees and shadow vis­

ibility b inary space partitioning trees. An explanation of th e  winged-edge d a ta  

s tructu re  is given in appendix B, and appendix C contains images and statistics 

from the  im plem ented code.

Optim ising D M R 1.6. Thesis outline
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Solving th e  rendering equation: 

classical so lu tions

This chapter presents a review of classical solution m ethods for the  rendering 

equation (1.10). For all b u t th e  simplest scenes, equations of this type have no 

known analytic solution, and num erical approxim ation m ethods are the  norm. 

This chapter emphasises th e  radiosity m ethod, since it is of m ost relevance to 

th e  rem ainder of the  thesis, bu t com peting solution strategies are also exam ined, 

and their various m erits discussed.

2.1 R ad iosity  from  radiance

It is clear th a t the  rendering equation (1.10) would be a lot simpler to solve if the 

directional dependence was taken  out of the  brdf. Not all applications will have
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surfaces whose reflectance properties are so complicated. For exam ple, m any sur­

faces will have reflectance characteristics which do not vary as a function of <f> 

(figure 1.3) In other appHcations, reflectance properties m ay be closely approxi­

m ated  by a m uch simpler m odel th a n  precisely the  brdf: if th e  height of surface 

irregularities is of the  order of a wavelength or more, th e  reflectance is m ostly 

diffuse —  if the  irregularities are small relative to  a wavelength, m ost of th e  light 

is reflected specularly [10].

W hatever the  reasons are, and some of them  are historical (the simpler problem  

was solved first), th e  following steps detail how the  rendering equation (1.10) 

changes, when all surfaces are assum ed to be ideal L am bertian  em itters and 

reflectors.

2.1 .1  Id ea l L am b ertian  surfaces

Lam bertian surfaces, by definition, obey L am bert’s Law [64], which states th a t 

‘the  lum inous intensity  in  any direction from any element of area of th e  surface 

is equal to th e  in tensity  of the  elem ent seen in the  direction of th e  norm al to 

the  surface m ultiplied by th e  cosine of th e  angle between th e  norm al and the  

direction considered’. A change of units, and the  in troduction of pro jected  area, 

rewords this assertion: The reflected radiance does not vary as a func tion  o f out­

going direction, 0 O =  (0O,<̂ O), from  no m atter direction the element is irradiated  

(figure 2.1).

O ptim ising D M R 2.1. R adiosity from  radiance
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radiance = constant

radiant intensity a  cos90

Figure 2.1: An ideal Lam bertian surface.

C o n s ta n t  brdf

Recall (1.5), which expresses the  reflected radiance in term s of th e  incident irra ­

diance and the  brdf:

L0(x, © 0, A) =  / f r (x , ©;, © 0, A)L*-(x, ©*•, A) cos 0t-dw;

T he surface now being considered is ideal Lam bertian, so th e  left-hand side is 

known to  be independent of th e  outgoing direction, © G. The only te rm  on right- 

hand  side which has any dependence on © 0, is the  brdf] so this too m ust be 

independent of outgoing direction:

L 0(x, A) =  / r (x , © i, A)Li(x, © i, A) cos (2.1)

Recall, however, th a t the  Helmholtz reciprocity rule (1.3) asserts th a t one can 

swap th e  incoming and outgoing directions, and the  value of th e  brdf will rem ain 

the  same. I t follows th a t, for an ideal Lam bertian surface, th e  brdf is independent 

of bo th  incoming and outgoing directions:

/ r (x, ©*, © 0, A) =  / r,d(x, A) (2.2)

Optim ising DM R 2.1. Radiosity from  radiance
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2 .1 .2  T h e ra d io sity  eq u a tio n

The fraction of incident radiance from  a given incoming direction th a t is reflected 

anywhere, is th e  directional hemispherical reflectance (p j) [77], and  is given by1:

pd(x,© £, A) =  /  / r (x , 0 ; ,  ©o, A) cos 0o dujQ (2.3)
J 2tt

B ut, for an ideal L am bertian  surface, / r (x, © ;, 0 O, A) =  / r,d(x, A), so:

pd(x, ©i,A) =  / r,d(x, A) /  cos d0 duj0
J 2'k

p2ir /■'7t/2
— /r.</(x, A) /  /  cos sin 0O d6>0 d<f>0

Jo Jo

= *r/r,d(x,A) (2.4)

Recall th e  rendering equation (1.10):

r cos cos
L0(x, © 0, A) =  Le(x, ©o, A)+ /  p (x ,x ') / r (x, 0 t, ©o, A)Xo(x/, © t, A)—— -— - 2-<M(x')

llx  —x ll

If the  surfaces now being dealt w ith are all ideal Lam bertian, then  the  rendering 

equation loses its dependence on outgoing directions, and the  brdf can be replaced 

by directional hem ispherical reflectance:

L0(x, A) = Le(x, A) -j- pd(x, A) f  p (x ,x ')L 0(x', A) C°S *̂ CQS ^  <L4(x') (2.5)
J r  7r||x — x '||

Now th a t th e  radiance no longer varies as a function of outgoing direction from 

a surface, it seems a strange unit to  m aintain. Consider th e  following, recalling 

definition (1.1):

1 d2§
L  =

cos 0 dAdto

1The notation (f 2 ’ indicates integration over a hemisphere of directions.
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cos 9 d to \  dA J
f

— /  LcosO dto  (2-6)
dA  J2ir '

The left-hand side of (2.6) is the  radiosity (B ) expressed in  term s of the  radiant 

flux, $ . For an ideal Lam bertian surface, the  integral on th e  right-hand side can 

be trivially evaluated, because th e  radiance is isotropic:

B  = L  [  cos Bdu =  7tL  (2-7)
J 2tt

Carrying out a similar integration for all the  term s in (2.5):

B 0(x , A) =  R e(x, A) +  ^ ( x ,  A) f  < /(x ,x ')^ 0(x /, A)C° S °l C° S^ <L4(x') (2.8)
JT 7T 11 x  — x' 11

Equations (1.10), and  (2.8) are bo th  linear Fredholm integral equations o f the 

second kind. These are discussed in greater detail in chapter 3; suffice to  say 

here th a t they  are equations in which the  unknown function appears bo th  in­

side and outside an integral, and th a t except for a few special cases [103, 93], 

there is no known analytic solution to problem s of this type; num erical solution 

m ethods, however, abound [28, 6, 56]. In classical radiosity [58, 43], th e  problem  

is simplified, by imposing the  additional assum ption th a t th e  scene can be split 

into a finite num ber (N ) of regions (patches) across each of which the  radiosity 

only varies as a function of wavelength (figure 2.2). W ith  this assum ption in 

operation, in tegrating (2.8) over the  j th patch  (containing th e  point x) gives:

W  r r cos 9' cos 9^
= A i E i W  + p d A x ) J 2  B i=(x ) I I  s ( x > —̂ ^ 2 dj4(x ' ) ^ ( x )*=l JAjJAk 7T||X —X'||

(2.9)

W here B j ( A) is the  radiosity across the  j th patch, E j ( A) is th e  radiosity being
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emitted  from  this patch , and the  integral over th e  whole scene has been w ritten  

as a sum  of integrals over each patch, k, in  the  scene.

If the  fo rm  fa c to r2 Fjk is introduced:

^  1 t  f  m cos Oi cos 9f , , . .. , , . .
F>k = ^ ~  /  ^ (x ’x  )d A (x )  (2.10)A j J A j J A k  7T11X — X ' [ |

... th en  (2.9) simplifies even further:

N
B j ( A) =  E j { \ )  +  Wrf(A) £  B k(X)F3k (2.11)

k=1

The form  factor Fjk is th e  fraction of energy leaving the  j th pa tch  which impinges 

directly on th e  k th p a tch3. Numerous m ethods [36] exist for evaluating the  N 2 

form  factors th a t appear in equations (2.11), bu t it is clear th a t once th e  form 

factors are known, there  rem ains a linear of system  of N  equations, which can be 

solved using any num ber of m ethods to  find th e  N  unknowns, B j .

It is an interesting aside to  note th a t whilst (2.11) has been th e  m ainstay of 

classical radiosity [58, 43, 22], its derivation has typically involved taking a more 

simplistic view of th e  situation from  th e  s ta rt, and (2.11) is reached w ithout 

resorting to  in tegral equations (see, for exam ple [36]).

2.2 C onstant rad iosity  algorithm s

This section presents a review of com puter graphics algorithm s which are based

upon (2.11). Algorithms of this type, where the  radiosity is approxim ated as a

2Also known as angle factor [103], or configuration factor [99]
3The form factor definition described by (2.10) is valid only for patches across which 

the radiosity does not vary as a function of position.
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>

Figure 2.2: Approxim ating radiosity as a piecewise constant function.

piecewise constant (step) function, were first introduced to  the com puter graphics 

com m unity by Goral et al in [43]. W hilst this early m ethod did not account for 

inter-object occlusion (the problem  was only solved for a simple cubic room), 

more complex algorithm s were quick to follow:

2.2 .1  Form  factors

The problem  encountered by Goral et al, w ith regard to  in ter-object occlusion, 

was their inability to evaluate the form factor between a pair of patches which 

were partially  occluded. Goral et al applied Stoke’s theorem  [27] to the dou­

ble area integral in (2.10)4 in order to  convert it to a double contour integral, 

thereby making the  evaluation trac tab le (the patches all being planar quadri­

laterals). If the two patches had been partially occluded, application of Stokes’ 

theorem  [103] would not have been possible: discontinuities in the kernel, caused

by the occlusion, invalidate its application [65].

4with #(x, x') =  1
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G oral’s paper was quickly followed by Cohen and G reenberg’s classic hemi-cube 

paper [22], which offered a fast num erical approxim ation to  (2.10), accurate pro­

vided th a t [8]:

• the  patches are small com pared to  their separation distance,

•  the  patches are not partially occluded, and

• a suitable level of num erical precision is in use.

The hem i-cube has been th e  dom inant m ethod of form factor evaluation for some 

tim e, even given its drawbacks [8] and a num ber of com peting m ethods introduced 

bo th  before and since [81, 72, 8, 101, 120, 104, 38, 93]. Form  factor evaluation 

m ethods are discussed in depth  in [36]. T he pertinent point here is th a t, even w ith 

in ter-object occlusion, the  desired form  factors can be found; w ith no shortage 

of evaluation m ethods to  choose from.

2 .2 .2  F ull m a tr ix  ra d io sity

Recall (2.11). This describes how the  j th patch  is illum inated by all th e  other 

patches in th e  scene: patch  j  gathers light from the  patches around it. Notice 

from  (2.11), th a t in order to  see how th e  whole scene illum inates one patch, an 

entire row {Fjk}k=it...tN of the  form factor m atrix  is needed. In order to  evaluate 

th e  radiosity of every patch , th e  whole form  factor m atrix  m ust first be evaluated. 

Consequently, algorithm s of this type are known as fu ll m atrix  (FM ) radiosity 

m ethods: N 2 form  factors are evaluated before any images are generated.
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T he question remains; given the  form factor m atrix , how does one utilise (2.11) 

to  actually obtain a solution, and thence an image?

Re-arranging (2.11), w ith a view to solving for B ji

B j W  ~  P d A A) £  B k { \ ) F jk =  E j ( A)
k ~ l

Now, taking th e  wavelength dependency as being im plicit, and re-w riting in vec­

to r/m a trix  notation:

(1  — Pd, l-^ ll)  ~ P d ,  1-^12

~ P d , 2^21  (1 — pd ,2 ^ 2 2)

~Pd,lFlN  

— pd,2F2N

 ̂ ~pd,N ^N l Pd>N^N2 (1 — Pd,NFNN) J B N j

B 1

B 2

y E n  y
(2.12)

This system  of equations can either be solved directly, which is typically an 0 ( N 3) 

problem , or iteratively, in which case convergence can be achieved in  0 ( N 2) steps. 

One particu lar iterative m ethod, Gauss-Seidel iteration [33], has been especially 

favoured as a solution strategy  for (2.12). The strong diagonal dominance of the 

m atrix , typically ensuring rapid convergence. The coding simplicity of th e  Gauss- 

Seidel m ethod, has also ensured its continued popularity  w ithin th e  graphics 

com m unity [125, 24].

Note th a t, if rendered, a  solution of (2.11), would appear noticeably ‘bloclcy’. 

Such a solution is, after all, a representation of the  radiosity as a piecewise con­

stan t function. Given small enough patches, such a solution can always be m ade 

arbitrarily  accurate. Typically, however, this is not th e  case, and th e  visually 

displeasing ‘bloclcy’ appearance is avoided by extrapolating pa tch  radiosities to
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patch  vertices, and then  using linear in terpolation [46] across patches, when ren­

dering [43]. This approach does not increase th e  accuracy of th e  solution, bu t 

it does remove the  discontinuities in value from the  rendered im age —  which 

hum an observers find so noticeable [7].

P a tch es  and  E le m en ts

Discretizing the  original scene geom etry into N  flat patches is discussed in greater 

detail in la te r chapters. Typically, the  discretization is based on th e  program m er’s 

experience of such issues (e.g., lots of patches where shadows are expected, few 

where they  are no t), or on the  shape of the  surface being discretized, in  the 

case of curved, or otherwise-com plicated, surfaces. I t is only in recent years 

th a t consideration has been given to  exactly where these patches might best be 

situated  for com putational efficiency [14, 54, 70].

The notions of accuracy and arbitrarily positioned patches seem to  be a t odds w ith 

one another: F igure 2.3 shows a surface across which the  radiosity  is represented 

by four patches, and across which th e  tru e  radiosity is varying rapidly. T he use 

of only four patches results in the  expected ‘bloclcy’ appearance. Also shown, 

is the  same surface represented by 64 patches -  w ith th e  expected im provem ent 

in appearance. U nfortunately, solving (2.11) is an 0 ( N 2) problem , so increasing 

the  num ber of patches in th is way, has a dram atic effect on th e  com plexity of the 

problem.

This situation was som ewhat im proved, w ith the  in troduction  of elements [23] 

-  which patches can be divided up into. An element is some sub-region of a
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(i) true radiosity being modelled (ii) patches only

5

(iii) naive subdivision (iv) adaptive subdivision

Figure 2.3: Patches subdivided into elements.

patch. Elem ents receive energy the  same way patches do, by accum ulating all 

the contributions from the patches in the scene, but they distribute their energy 

via their parent patch, whose radiosity is the area-weighted average of its element 

children. Consider how the first two subdivisions shown in figure 2.3, would 

influence the  radiosity across other surfaces in the scene. Cohen et al [23] assert 

th a t it makes little  difference to most other surfaces w hether the  contribution of 

the subdivided surface is taken patch by patch (4 calculations), or element by

element (64 calculations, in this exam ple). The cheaper option results in some

impressive images and run-tim es, w ith little error.

If the N  patches are split into a to ta l of M  elements, then  the  algorithm  proceeds 

as follows:

1. Find the M N  elem ent-to-patch form factors.
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2. Use area-weighted averaging to  find the  N 2 patch-to-patch  form  factors.

3. Solve for th e  patch  radiosities.

4. Use th e  pa tch  radiosities and the  elem ent-to-patch form  factors to  find the 

elem ent radiosities.

5. Render, using th e  elements.

This is an 0 ( N ( M - \ - N ) )  problem , which is much b e tte r th a n  0 ( M 2) for M  N.

The m ethod can be fu rther improved, by building a hierarchy of elem ents, where 

some initia l subdivision is used to  reach a fairly coarse solution. This solution is 

then  exam ined, and  patches or elements across which the  radiosity  seems to  be 

varying significantly are subdivided further. This is known as adaptive subdivi­

sion  [23]. W hilst it is by no means obvious w hat subdivision criterion should best 

be applied [118], the  m ethod can lead to  pictures as realistic as those generated 

using simple subdivision, bu t for far less cost (figure 2.3.iii). It is interesting to  

note, th a t whilst adaptive subdivision results in a hierarchy of elements, con­

tained w ithin their parent patch , it is only the  leaf elements of this hierarchy 

which take place in energy transfer. This situation is im proved upon in [50].

2.2 .3  P ro g ressiv e  re fin em en t rad iosity

The radiosity m ethods described in the  preceding sections, resulted  in some im ­

ages which were unsurpassed, at th a t tim e, in term s of accuracy and realism. 

However, th e  m ethod still had two m ajor flaws: storage costs and tim e. Before 

one spends 0 ( N 2) tim e solving th e  linear system  of equations (2.11), one m ust
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Figure 2.4: A schem atic comparison of gathering and shooting (after [21]).

first spend 0 ( N 2) tim e evaluating the  form factor m atrix , and devote 0 ( N 2) stor­

age to  keeping those values in the  machine. These costs soon becom e prohibitive, 

for useful scenes, on even th e  largest com puters.

Fortunately, a reform ulation of th e  problem  —  again due to  Cohen et al [21] — 

overcomes some of these difficulties. Using this new form ulation, images are seen 

to  appear quickly on the  screen and, if left long enough, can converge to  usefully 

accurate solutions in O ( N )  time. Recall (2.11):

N
Bj  ~  Bj  +  pd,j ^ 2  B kFjk 

k= 1

It is clear th a t the  contribution to  th e  j th patch, due to  th e  k th patch  only , is the 

am ount:

pd, jBkF j k (2.13)

This means th a t if only th e  kth column of the  form factor m atrix  ({Fjk} 

is evaluated, then  one can find th e  contribution of patch  k to  th e  whole scene, 

in only O ( N )  calculations. W hereas in full m atrix  radiosity, a gathering  process 

takes place, this new approach —  progressive refinement (PR ) radiosity [21] —
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can be regarded as patch  k shooting its energy out into the  scene (figure 2.4).

A flaw w ith the  m ethod, as it has been described thus far, is th a t form fac­

to r evaluation m ethods will re tu rn  a row of the form  factor m atrix  in a single 

iteration, not a column. This problem  can be circum vented by evaluating the  

k th row of the  form  factor m atrix , and applying the  form factor

reciprocity relation [36] (A jF jk = A kF kj) to  evaluate th e  requisite column. The 

am ount (2.13) now becomes:

pdj Fk Ff~j Af~ jAj

It is simple enough to ensure th a t patch  k is ail im portan t em itter; the  patches 

can be ordered according to  A j B j .  The result of this single shoot can now be 

rendered, giving an im age of the  scene, locally illum inated by th e  patch  k.

In order to  achieve some graceful process, by which the  first im age is seen, as 

successive shoots take place, to smoothly progress to a converged solution, Cohen 

et al [21] calculate th e  contribution due to the  increase in  i?*,, since patch  k last 

shot:

A  B j + =  pd:jA B k F k jA k /A j (2.14)

Here A B j  is the  unshot radiosity of patch  j ;  the radiosity gathered at patch  j ,  

which has not yet been shot.

M ost P R  radiosity systems evaluate form factors on th e  fly, only storing one 

column of th e  form  factor m atrix  at a tim e, so storage costs are kept linear too.

A pplication of th e  reciprocity relation to  a row of form  factors, which are all
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num erical approxim ations, has its own costs in term s of accuracy: P R  m ethods 

generally do not converge to  quite th e  same solution as the ir costlier, bu t m ore ac­

curate, FM  counterparts. Careful evaluation of the  row entries can help alleviate 

this problem  [8].

P a tc h -to -v e r te x  form  factors

A significant im provem ent was m ade to  P R  radiosity, when patch-to-vertex  form 

factors were incorporated  into the  algorithm  [120]. Previously, having established 

th e  radiosity values for each patch /elem ent, these values are ex trapo lated  to  the 

vertices in th e  patch /e lem en t d a ta  s tructu re , and linear in terpolation  is then  used 

to  sm ooth shade the  patches. E xtrapolating data, however, introduces errors; so 

the  vertex  radiosities which are used to  render th e  scene all too often lead to 

irrita ting  anomalies such as light leaks and shadow leaks [7].

In th e  approach outlined by Wallace et al [120], they evaluate th e  contribution 

of the  current shooting patch  to  every patch  vertex in  th e  scene, and then  use 

this (accurate) d a ta  to  in terpolate across patches. This approach has rem ained 

popular, and has carried on into the  work described here, in th a t th e  contribu­

tion of th e  current shooting patch  is evaluated on a vertex-by-vertex basis: no 

extrapolation takes place. More details are presented in chapters 4 and 5.

2 .2 .4  H ierarch ica l ra d io sity

Hierarchical radiosity [49, 50] was the  first of a glut of innovative algorithm s, 

which have flooded the  radiosity com m unity w ithin the  last few years, and have
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done m uch to  im prove the  m ethod’s accuracy and perform ance.

H ierarchical radiosity was inspired by efficient solution m ethods developed for the 

N-body problem. In the  7V-body problem , there are N  particles, each exerting a 

gravitational/electrom agnetic force on all the  N  — 1 other particles: the  problem 

is to com pute the  to ta l force on each particle. There are a  num ber of similarities 

between th e  iV-body problem  and radiosity:

• In bo th  problem s, there is a to ta l of N ( N  — l ) / 2  pairwise interactions.

• G ravitational an d /o r electrom agnetic forces bo th  fall off according to  1 / r 2. 

The same fall off ra te  is true  of form factors.

• G ravitational forces are equal and opposite. The form  factor reciprocity 

relationship details a similar situation for form factors.

W hilst th e  two problem s are not w ithout their differences, it becam e apparent 

to  H anrahan [49], at least, th a t recent speed-up m ethods for solving th e  iV-body 

problem , m ight be usefully applied to  radiosity. The two m ain lessons learnt 

being:

• N um erical form  factor evaluation m ethods are subject to  error. Conse­

quently, one need only a ttem p t to  model light tran sp o rt to  w ithin some 

given precision.

• The light leaving a cluster of elements, reaching some d istan t point, can be 

often be calculated, to  w ithin the  given precision, by a single te rm  which 

represents th e  contribution of th e  cluster taken as a whole.
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To begin w ith, consider only the  case where there is no in ter-object occlusion:

H ierarchical radiosity m ethods begin by looking at each pair of patches (j, k) in 

th e  scene, and making low-cost estim ates on the  upper-bounds of th e  form  factors 

Fjk and Fkj. If b o th  of these estim ates are smaller than  some pre-dehned Fe, then  

the  two patches are linked , to  indicate th a t the  calculated energy transfer between 

them , will be w ithin th e  desired level of accuracy. If one of th e  estim ates is larger 

than  Fe: th en  th e  pa tch  w ith the  larger form factor (patch  j , if Fjk > Fkj, say) 

is subdivided5 and th e  procedure recurses until either th e  Fe condition is m et, 

or the  subpatches becom e too small. Subpatches which becom e too small to 

subdivide (their area is less th a n  some predefined A s) are linked regardless. This 

stops infinite subdivision around, say, the  corners of a room.

The result of this in itia l refining and linking process, is th a t patches in the  scene 

will now not only have a hierarchy of subpatches, as per [23], b u t each patch  j  wiU 

have a link, somewhere in its hierarchy, to  every p art of every o ther patch  k in th e  

scene, for which Fjk >  0 (ah other patches, in the  unoccluded case: figure 2.5).

Careful error analysis [49, 50] reveals th a t this m ethod provides an automatic 

means of calculating, to  w ithin a fixed error tolerance, th e  form  factor between 

two unoccluded patches. The m ethod ensures th a t th e  form  factor evaluation 

m ethod (which is known to be subject to  num erical error) is only applied where 

it is going to  be accurate. If the  algorithm  deems a transfer faUs outside of the  

desired error tolerance, it will force it to  take place lower down th e  hierarchy. At

the  same tim e, interactions are encouraged to  take place as high up th e  hierarchy

5Unless the patch has already been subdivided, when evaluating its interaction with 
some patch other than k.
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Figure 2.5. Possible hierarchical subdivision of two patches (after [49]). 

as possible.

R ather th an  having a form  factor m atrix , detailing how different patches will 

transfer energy to  one another, hierarchical radiosity results in a d a ta  s tructu re  

which details exactly how different parts  of the  scene in teract w ith  one another. 

Furtherm ore, H anrahan  et al [49] assert th a t each patch  will only in teract w ith 

a constant num ber of other patches, making a to ta l of O ( N )  in teractions — 

effectively representing the  form  factor m atrix  as a collection of O ( N )  blocks’, 

where each block describes how one sub-region of a patch  exchanges energy w ith 

another.

Once th e  patches have been refined relative to  one another, and th e  finks created, 

it is possible to  tou r all th e  finks of one patch  j , and add in the  contribution of
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each link patch  k using:

Bj  - j - —  pdjFjfcBk

It is im portan t to note, however, th a t patch  j  is not linked to  all of the  scene 

via its links, it is linked to  the  rest of the  scene via its subpatch  links; so this 

gathering process m ust be repeated  for all subpatches of j ,  a t every level of 

granularity, before moving onto th e  next iteration.

Because each subpatch is only linked to  some subset of th e  scene, th e  energy 

gathered by each subpatch  does not represent the total energy incident on the  

region represented by it. Consider th e  top left subpatch in figure 2.6.iii —  this 

region receives some of its energy via its paren t p a tch ’s links, and the  rest via 

its own links. In order to  store th e  subpatch energy collected by the  parent with 

th e  subpatch (and th e  energy collected by th e  subpatch w ith th e  parent) it is 

necessary to  tou r th e  hierarchy (figure 2.6), pushing  the  energy of paren t patches 

down to  the ir children, and pulling  the  element contributions up to  their parents 

(using area-weighted averaging).

T he question of occlusion, in hierarchical radiosity, is now addressed. H anrahan 

et al [50] simply cast a constant num ber of rays between patches to  get a visibility 

estim ate Ve £  [0,1]. This is then  m ultiplied by the  unoccluded form  factor to 

get the  desired form  factor estim ate. I t is easy to  see how a num ber of m ethods6 

could be applied to  speed up this p a rt of the  calculation -  H anrahan et al used 

BSP trees.

6BSP trees [112], octrees [40], shaft culling [47], etc. [42]
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Figure 2.6: Hierarchical radiosity: push  and pull

M u lti-g r id d in g , B  F - r e f i n e m e n t  and im p o rta n ce . Hierarchical radiosity 

can be fu rther enhanced by incorporating multi-gridding  into the  algorithm  [50]. 

M ulti-gridding is a technique borrowed from the finite elem ent m ethod [88], and 

is a process whereby a converged solution is found for a coarse discretization of 

the scene, and is then used as a starting  point for the costlier iterations which 

result when the mesli is refined further. A solution for a coarse mesh can be 

found quickly. A solution for a finer mesh, using the coarse m esh solution as 

its starting  point, will also be efficient. In tu rn , this solution can be used as 

the starting  point for an even finer mesh, and so on, until the  desired level of 

accuracy is reached. This proves a much cheaper approach th an  solving for the 

finest level from scratch, and has the added advantage th a t the various solutions 

can be viewed as and when they become available.
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H ierarchical radiosity requires little  modification to incorporate m ulti-gridding — 

in order to itera te , simply refine using smaller and smaller values of Fe, deleting 

those links which were present at th e  previous iteration, b u t where now refinement 

is called for.

W ith  m ulti-gridding, a series of solutions is available, and so-called B F -refinem en t 

can be incorporated  into the  solution process [50]. W ith  i?i^-refinem ent, the  de­

cision as to  w hether to  link or refine, is not based upon th e  form  factor estim ate 

(F ), bu t upon th e  product of F  w ith th e  current radiosity estim ate (B ). Effec­

tively, transpo rt is only evaluated accurately where reasonable am ounts of energy 

are involved; th e  transpo rt of small am ounts of energy is evaluated at a coarser 

level. T he solution m ethod has now been tailored so th a t shooting and gathering 

are all bu t indistinguishable: all in teractions involve roughly th e  same am ount 

of energy (B F  E [BeF e/A, B eFe] '), m aking their ordering according to  brightness 

som ewhat superfluous.

A nother effective criterion for refining the  links in the  radiosity m ethod has been 

described by Smits et al [102], where th e  notion of importance is introduced. 

W hereas th e  radiosity of a patch  details how favourably it is positioned w ith re­

spect to the  various light sources, and th e  rest of the  scene; a p a tch ’s importance 

details how favourably it is positioned w ith respect to th e  current view, and th e  

rest of the  scene. M athem atically, im portance is th e  dual [84] of radiosity. Es­

sentially, those interactions which prove im portan t to th e  particu lar view take 

place fu rther down th e  hierarchy, as do those which involve large am ounts of 

energy. Interactions which m atch  bo th  of these criteria take place a t the  finest 

level of refinem ent. The m ethod does not only solve for th e  radiosity of each
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patch, bu t also for its im portance, so th a t it can be incorporated  into the  re­

finem ent criterion of the  m ulti-gridding m ethod. W hat results, is an algorithm  

which devotes as little  effort as possible to  finding out how ‘ou t of sight’ surfaces 

are lit, whilst m aintaining accurate inform ation for those th a t appear in  th e  cur­

rent view, or which are im portan t contributors to visible surfaces. T he tim e and 

m em ory savings over simple 5 T-refinem ent are impressive [102].

To conclude, hierarchical radiosity is notable because not only does it take great 

care to ensure th a t its results satisfy some predefined error tolerance, bu t also 

because it reaches those results in linear tim e, w ith linear storage costs.

C on stan t rad iosity : so m e c losin g  rem arks

The way in  which the  radiosity m ethod has progressed, since its in troduction to 

the  com puter graphics community, has im pressed many. S tarting  as an G (N 2) 

algorithm , only capable of handling scenes w ithout occlusion, it has progressed 

to  hierarchical radiosity —  an algorithm  capable of rendering accurate, realistic 

images, of complex scenes w ith occlusions, in only O ( N )  tim e.

Throughout the  development of the  radiosity m ethod, the  algorithm ’s only com­

petition  for th e  title  of best global illum ination algorithm  have been the  various 

ray tracing approaches. These are outlined in the  following section, and com pared 

and contrasted  w ith th e  radiosity m ethod in the  closing section of the  chapter.
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2.3 R ay  tracing

Traditionally, in th e  com puter graphics community, ray tracing has taken  a back 

seat to radiosity in term s of a ttem pting  to  take a physically accurate (as opposed 

to perceptually  pleasing) approach to  realistic rendering. This is less true  of 

m odern ray tracers [61, 123, 98], where physical accuracy is carefully accounted 

for, and im pressive images result.

2.3 .1  W h itte d  ray tra c in g

W hilst ray tracing was first in troduced by Appel [3] in 1968, th e  m ethod  was not 

extended to  account for any kind of global illum ination effects un til W h itted ’s 

algorithm  [127] was in troduced in 1980.

W hitted , like m any others [124], models the  brdf of a surface by splitting it into 

two parts: one which represents the  diffuse (uniform) p art of th e  reflected fight, 

and another which represents the  specular (mirror-like) part:

f r (x, 0 O, ©*, A) =  /?d(x, A) +  ps(x , ©o, ©*, A)

Ray tracing relies on classical optics’ ray m odel of fight transpo rt: rays of fight 

leave the  fight sources, travel in  straight fines except when they  in teract w ith the  

scene, and eventually some of them  reach the  eye of the  observer. Unfortunately, 

tracing rays from  th e  fight source, in  a large range of directions, in  th e  hope th a t 

enough rays to m ake a useful image eventually reach the  v irtual cam era, stretches 

the  lim its of even the  m ost powerful com puters.
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W h itted ’s cheaper approach [127] (now known as light-backwards ray tracing) 

traces eye rays from the  eye of th e  observer7 back into th e  scene. A recursive 

routine is used, whereby having found the  im pact point on th e  first surface h it by 

a ray, the  algorithm  generates a reflected specular ray and a refracted  transm itted  

ray, which are then  recursively traced  through the  environm ent un til either:

• a wholly diffuse, opaque surface is encountered,

•  some m axim um  depth  of recursion is reached, or

• th e  ray misses every surface.

As well as spawning a  specular and a  transm itted  ray, those rays which h it a 

surface w ith pd >  0, also generate shadow rays. Shadow rays are cast between 

the  im pact point and the  point light sources, to  establish which sources have 

an unoccluded view of th e  point. Those which have a clear view, contribute to  

th e  radiance leaving this point. T he direct contribution, from  the  sources, is 

diffusely reflected a t th e  im pact point. This is, in fact, th e  only account m ade 

for diffuse reflection in  the  algorithm  —  diffuse surfaces do not illum inate other 

diffuse surfaces; only light sources illum inate diffuse surfaces (figure 2.7). The 

radiance re tu rned  for each im pact point is a linear com bination of these three 

contributions (specular, tran sm itted  and direct diffuse).

H eckbert [52] in troduced a useful no ta tion  for categorising th e  different paths

th a t light can take in between leaving a light (L),  and arriving a t th e  eye (E).

Photons will either go directly to  th e  eye, or bounce off any num ber of diffuse

(D)  and specular (S ) surfaces on their way there. T he set given by th e  regular

7i.e., the virtual camera.
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expression8 L (D \S )* E  describes all such possible paths, and is useful when clas­

sifying different global illum ination algorithm s. W hitted  ray  tracing accounts for 

only the  L (D ‘?)S*E  paths. A simple ambient contribution, designed to  account 

for these shortcom ings, can be included when evaluating each contribution.

Effectively, when illum inated directly, the  surfaces behave like ideal Lam bertian 

surfaces. W hen illum inated indirectly th e  surfaces behave like perfect mirrors. 

Simply pu t, w hat results is an algorithm  which shows diffusely-shaded objects, 

and reflections of diffusely-shaded objects.

A detailed review of W hitted  ray tracing is given in [36]. T he pertinen t points 

here are th a t it is physically unsound, and it only a ttem p ts  to  gather global 

illum ination inform ation for surfaces visible in a particu lar view.

2 .3 .2  D is tr ib u tio n  ray tra c in g

D istribution ray tracing9 [25] is a te rm  used to  describe those ray tracing al­

gorithm s which use M onte Carlo10 integration m ethods to  evaluate the  integral 

te rm  found in th e  rendering equation (1.10). For each pixel m aking up th e  image, 

a num ber of rays are traced  from  the  eye, through the  pixel, back into the  scene; 

the  way in which each of these rays (and th e  rays they  spawn) are reflected, 

when they  h it a surface in the  scene, is controlled by a probability  distribution

function [62] which effectively describes the  shape of th e  surface’s brdf.

8The regular expression A* describes 0 or more occurrences of the character A 
(e.g., A, A A ,. . . ,  AAAAA,...) . The regular expression tA \By indicates ‘either A or B \  
whereas A? refers to 0 or 1 instances of A [67].

9 Originally called distributed ray tracing, the name has been changed to avoid confu­
sion with algorithms describing ray tracing on distributed memory parallel computers.

10More usually, quasi-Monte Carlo [128].

Optim ising D M R 2.3. R ay tracing



C hapter 2. Solving the  rendering equation: classical solutions 69

* \

direfet contribution

indirect.contribution \

'7777777777777777777777777777777777777777777777777,
(i) Whitted ray tracing

direct
contributions

indirect
contributions

77777777777777777777T77j' / / / / / / / / / / / / / / / / / / / / / / / / / ,  

(ii) Distribution ray tracing

Figure 2.7: W hitted  ray tracing vs D istribution ray tracing.

Ideally, for each ray /surface intersection, one should sample th e  whole hem isphere 

of directions above th e  im pact point, to  establish how th e  rest of th e  scene il­

lum inates this point. In distribution ray tracing, the  sam ple points are chosen 

by distributing the  rays around the  reflection direction, according to  th e  surfaces 

reflection properties. Typically, th e  whole hem isphere is not sam pled (figure 2.7).

Ray tracing has expensive overheads -  each ray has the  O ( N )  problem  of finding

which surface in th e  scene it will h it first11 -  if each im pact point were to  spawn a

large num ber of rays to  sample its reflection hem isphere, th en  th e  algorithm  would

quickly grind to  a halt: this is th e  reason W hitted  rejected th e  approach [127].

In distribution ray tracing, each dimension being sam pled is only allo tted  one

11 This cost can be lowered with hierarchical data storage.
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ray: the  large num ber of eye rays cast then  ensure th a t each of th e  dimensions 

are sensibly sampled. Care is taken  not to resam ple the  same p a rt of the  same 

dimension m ore th a n  once.

D istribution ray tracing was introduced prim arily as an anti-aliasing technique: 

Cook et aVs original algorithm  [25] only handled glossy reflection and transm is­

sion —  no a ttem p t was m ade to  m odel diffuse interreflection. A num ber of follow- 

up papers addressed th e  question ‘how m any rays are enough?’ [66, 29, 87, 75, 83], 

bu t none of these m ethods are modelling any light paths other th a n  those m od­

elled by W hitted  (L (D '!)S*E ). Instead, they concern them selves w ith which 

L (D 1 )S * E  paths will result in a cheap, accurate solution. T he difficulty for a ray 

tracer, w ith diffuse interreflection, comes w ith the  sampling of large solid angles, 

and one of the  recursion stopping conditions:

• In order to  m odel glossy surfaces, one need only sample some reasonably 

small solid angle around the  m irror and refraction directions —  accounting 

for diffuse interreflection involves sampling solid angles which m ay one or 

two orders of m agnitude larger th a n  this.

• M ost ray  tracers will not spawn reflec ted /transm itted  rays when a  parent 

ray hits a purely diffuse surface: modelling diffuse interreflection would 

remove this stopping condition, considerably increasing the  dep th  of the  

average ray tree [127, 36] in th e  image.
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2 .3 .3  R ay  tra c in g  and d iffuse in terreflec tio n

T he first a ttem p t to  solve the  rendering equation in  its entirety, was m ade by 

K ajiya in 1986 [61]. K ajiya overcame the  com putational hurdle of repeatedly 

sampling large solid angles, by combining a modified d istribution ray tracer w ith 

the  elegant application of some M onte Carlo variance reduction techniques. The 

la tte r  allowed th e  relevant integrals to  be solved satisfactorily, w ith  fewer samples 

th an  would have been possible using a naive m ethod.

K ajiya’s modified ray tracer differs from  others in th a t when a ray hits a sur­

face, ra th e r th an  spawning a specular ray and a tran sm itted  ray, only one ray 

is generated and traced  through the  scene. This new approach, dubbed path 

tracing by K ajiya, does not propagate as expensively as conventional distribu­

tion ray tracing, even though it carries out the  ex tra  task  of sam pling indirect 

diffuse illum ination (figure 2.8). To proceed, each surface stores its diffuse, spec­

ular and transm ission coefficients (pj, ps and pt). These are th en  used to  ensure 

th a t p roportionate am ounts of work are pu t into sampling each of th e  dimensions 

corresponding to  the  th ree coefficients. Effectively, for each ray /su rface  intersec­

tion, th e  new algorithm  generates a uniform  random  variable (T ) in  the  range 

[0,/)j +  ps +  pt], then:

• if T  6 [0, pd\t a diffuse ray is spawned,

•  if T  G [pd, pd +  Ps]j a specular ray  is spawned,

• otherwise, a transm itted  ray is spawned.

N ote th a t th e  new algorithm  is integrating the  same dimensions as conventional
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Figure 2.8: N um ber of rays cast: ray tracing vs p a th  tracing. (A fter K ajiya)

distribution ray tracing12, bu t is being far more conservative w ith  its m ethod 

of spawning samples (figure 2.8). The large num ber of eye rays cast, and the  

discrete n a tu re  of the  solution, ensure th a t (all else being equal) the  two differ­

ent sampling m ethods will re tu rn  th e  same results. Fortunately, all else is not 

equal: K ajiya’s m ethod (correctly) integrates one ex tra  dim ension, by generat­

ing rays which sam ple diffuse interrefiection (DI). The slowly varying na tu re  of 

indirect diffuse illum ination should help to  ensure th a t its im portan t features are 

efficiently captured  by the  hierarchical integration approach adopted by Kajiya. 

W hilst th e  m ethod results in impressive images, and is certainly an elegant piece 

of work in itself, the  com putational costs are still large: K ajiya gives th e  rendering 

tim e for one simple scene as being m ore th an  20 C PU -hours13.

12i.e., specular reflection & transmission
13On an IBM 3081
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A m ore successful a ttem p t at modelling DI using ray tracing, was in troduced by 

W ard et al [123]. Here, it was recognised th a t ray trac ing ’s poor perform ance 

in accounting for DI was due to  its insistence on solving for this com ponent on 

a pixel by pixel basis: indirect diffuse illum ination is the  least local, and m ost 

slowly varying, of th e  all th e  com ponents th a t need to be accounted for. By 

evaluating it on a pixel by pixel basis, a lot of work is being needlessly repeated.

W ard et al [123] separate how the  different lighting com ponents are calculated, 

choosing to evaluate the  indirect diffuse p art globally (i.e., view independently), 

and then  storing the  inform ation w ith th e  scene for inclusion in  th e  conventional 

pass. DI is not being hastily  evaluated on the  fly, from scratch, for each pixel: the  

pertinen t inform ation is found as and when it is needed, and stored for possible 

la ter use in an octree d a ta  structure .

W ard et al also in troduce an estim ate for the  gradient of th e  indirect diffuse 

com ponent of th e  radiance across a surface, based on scene geometry. A small 

gradient is im plied by no nearby objects, a  large gradient is assum ed near object 

boundaries, and sharp corners, where the  function usually changes rapidly. Now, 

if the  indirect diffuse com ponent is needed at some point P , and values have 

already been stored a t nearby points, then  the  value at P  can be taken as a 

weighted average of th e  neighbouring values, using th e  inverse of the  nearby 

gradient estim ates to weight th e  different contributions. Indeed, th e  weights can 

be used to  decide exactly which points are neighbours of P . W hilst a simple 

radiance in terpolation scheme was used in [123], this is im proved upon in [121].

A similar approach to  modelling indirect diffuse illum ination, has been adopted 

by Shirley [97, 98], and others [63]. These approaches take advantage of the  fact
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th a t indirect diffuse illum ination changes slowly, and m odel it using a modified 

radiosity approach —  which requires only a coarse discretization of the  scene to 

capture its slowly varying features. The radiosity algorithm  used, is a modified 

progressive refinem ent m ethod, whereby having shot from  all th e  light sources, 

the  accum ulated radiosity of each patch  is set to  0, whilst the ir unshot radiosities 

are left alone. T he algorithm  then  progresses to a solution, as usual. This results 

in  th e  indirect diffuse com ponent being stored in  the  patches, for la te r inclusion 

in the  ray tracing step.

Bi-directional ray  tracing [4, 16, 52] is an otherwise conventional ray tracing 

algorithm  which incorporates a  light-forwards pre-process designed to  establish 

how the  various surfaces are indirectly diffusely illum inated. As its nam e sug­

gests, light-forwards ray tracing involves spraying rays out from th e  light sources, 

into the  scene. Each ray has associated w ith  it  some portion  (E ( A)) of the  light 

source’s energy; as th e  ray makes it way through the  scene, it deposits a  fraction 

(P d (\)E ( \ )) of this energy onto each surface it m eets (except for th e  first bounce, 

which is not indirect). The ray continues around the  scene un til its associated 

energy falls below some threshold. The numerous energy deposits on the  vari­

ous surfaces are stored in illum ination m aps , which are stored w ith the  surface: 

these are essentially ju s t tex tu re  m aps which store illum ination inform ation [4]. 

Once this inform ation is stored in the  illum ination m aps, it can be retrieved in a 

conventional light-backw ards ray tracing pass, as per [97, 63].
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2.4 C losing rem arks: rad iosity  vs ray tracing

As described thus far, the re  are some very striking differences betw een th e  con­

stan t radiosity algorithm s, and th e  ray tracing m ethods:

• W hereas the  ray tracing algorithm s have trouble modelling diffuse inter- 

reflection (due to  their point-sam pling approach), the  radiosity algorithms

(with their area sampling approach) model little  else.

• T he radiosity algorithm s discretize th e  scene into a num ber of f la t14 patches,

while th e  ray tracing algorithm s are content w ith a  large range of object 

prim itives.

• Radiosity is an object-space approach, whereas ray tracing  is an image- 

space approach.

This last point does not apply to  all of the  ray tracing algorithm s described: 

some researchers have recognised th a t indirect diffuse illum ination is a very slowly 

varying quantity  —- once light is reflected diffusely, any detail th a t m ight have 

present in  the  incident light is lost (figure 2.9). The consequent problem s, for ray 

tracers, have already been m ade clear; the  various solutions principally having 

involved taking an object-space approach to  solving for this com ponent.

Now, whereas ray  tracing m ethods have to  take special steps to  account for in­

direct diffuse illum ination, radiosity m ethods are ideally suited to  modelling this 

com ponent: they  model, in fact, diffuse illum ination only. None of the  radios­

ity  m ethods described thus far have m ade any a ttem p t to  account for specular

14The patches being flat is only a consequence of the form factor evaluation method, 
not the radiosity method per se.
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indirect diffuse illumination

direct illumination

diffuse floor

Figure 2.9: D etail th a t is present in the incident light is lost after diffuse reflection 
making indirect diffuse illum ination, a particularly slowly-varying quantity.

transport. M any such m ethods [59, 119, 96, 101] are reviewed in [36]. W ith  the 

exception of Im m el’s algorithm  [59] all of these approaches recognise the im prac- 

ticality of trying to solve the rendering equation globally15, and only a ttem p t to 

account for the specular reflections which reach the eye of the observer. This 

is accomplished by extending form factors so th a t light which leaves one diffuse 

surface, and arrives at another via a num ber of specular reflections, is accounted 

for in the form factor. Having evaluated the extended form factors, the  radiosity 

equation can be solved in a first pass , and a d istributed ray tracing (i.e., image 

space) second pass can then capture the  desired specular effects. It has been 

pointed out [123] th a t this still does not account for all possible light paths (e.g., 

L S S D E ), bu t m ore comprehensive extensions can overcome even this [17].

Essentially, the ray tracing algorithm s, which are prim arily image-space ap­

proaches, find th a t they have to  incorporate an object-space pass if they are

to correctly handle the  light transport in the scene. The converse is true  of

15More recently, the wavelet method, described in the next chapter, has been ex­
tended to do exactly this [94, 85].
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radiosity algorithm s.

T he rem ainder of this thesis concerns itself w ith the  accurate solution of the  

rendering equation in diffuse environm ents. Care is taken to  ensure th a t direct 

lighting effects (figure 2.9) are accurately modelled, and th a t th e  constant ra ­

diosity assum ption [110] is not allowed to  adversely affect th e  accuracy of the 

solution. C oncentrating on diffuse surfaces only, in this way, can be justified 

w ith a  num ber of reasons. In  order to  find useful real-world applications for the  

type of work described in  this thesis, an object-space algorithm  seems essential; 

im plying radiosity. Also, recent work relating finite elem ent m ethods to  radios­

ity  (described in  the  next chapter) have opened up new and in teresting fields 

of research, which bear close investigation. A final justification, is th a t lim iting 

oneself to  diffuse tran sp o rt only, in the  first instance, does not prevent one in­

corporating specular transpo rt at a la ter stage — considering diffuse-only scenes 

should simply be regarded as a good starting  point.
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H igher order rad iosity  m eth o d s

T he previous chapter described a collection of radiosity m ethods, all of which 

relied on th e  prem ise th a t the  radiosity across a surface can be represented as 

a piecewise constant function. This premise, in tu rn , necessitated  th e  use of 

(inappropriate1) in terpolation in order to  achieve images which appeared per­

ceptually acceptable. This chapter describes algorithm s which recognise the  

need for a consistent, higher order, radiosity representation, if accuracy is to 

be achieved. Such a representation would be used throughout th e  solution and 

rendering phases.

In order to  m eet accuracy dem ands, the  constant radiosity algorithms of chapter 

2, used a large num ber of patches in regions where the  radiosity was varying 

rapidly. The radiosity algorithm s of th is chapter approxim ate th e  tru e  radiosity 

using (piecewise) higher order polynomials, ra ther th an  simple step functions.

The com putational com plexity of handling a large num ber of constant functions,

1Using linear interpolation on a solution which is piecewise constant, is inconsistent: 
a hack.

78



C hapter 3. Higher order m ethods 79

is replaced by the  com putational complexity of handling a smaller num ber of 

higher order functions. The relative m erits of the  two approaches are discussed.

Before considering th e  specifics of higher order radiosity m ethods, some back­

ground theory  on th e  solution of integral equations, is presented as a framework:

3.1 In tegral E quations

Much of th e  following discussion, on integral equations and associated solution 

m ethods, deals w ith  functions of a single variable: whilst this typically will not 

include th e  radiosity across some surface in a 3D scene, the  results do generalise 

to  functions of m ore th a n  one variable [54]. The reader is referred to  [28] or [6] for 

a fuller discussion of th e  issues covered in this section. For a com puter graphics- 

specific discussion, see [54] or [55].

An integral equation is one in which th e  unknown function appears inside an 

integral. W hen the  lim its of th e  in tegration are definite, th e  equation is known

as a Fredholm  in tegral equation. Further, where the  equation is linear in th e  un­

known function, it is called a linear Fredholm  integral equation. Linear Fredholm 

integral equations take th ree distinct forms:

rb
y(s) = / K( s f i ) x ( t ) d t

J a
rb

x (s ) =  y { s ) +  /  K{ s f i ) x ( t ) d t
J a

x(s) ~ f  K ( s f i ) x ( t ) d t  (3-1)
J a

These are known as linear Fredholm  integral equations of th e  f i r s t , second , and 

third kinds, respectively. The functions y (s ) and K ( s f i )  are bo th  known; x(s)  is
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th e  unknown. The function y ( s ) is known as the  driving te rm , th e  function K (s, t ) 

is known as the  kernel [28]. T he region [a, b] is the  domain  under consideration.

Integral equations are often w ritten  in term s of integral operators. For example, 

a linear Fredholm  integral equation of the  second kind, of which th e  rendering 

equation (1.10) is an exam ple, might be w ritten:

x — y -f K x  (3-2)

Here, the  dependence of the  unknow n function x on some param eter (s) is taken

as being im plicit, and the  integral operator K, is defined by:

rb
()Cx)(s) = I t ) x( t )dt  (3.3)

Ja

W hen a second kind integral equation is w ritten  in th e  form  of (3.2), it is easy 

to  see how, if X  is th e  identity  operator, a solution m ight take th e  form:

x = ( l - K ) ~ 1y  (3.4)

If, in  some sense, \\K\\ <  1, then  th e  in tuitive solution

x  =  y -1- K y  +  K 2y + ------ 1- K ly +  • • • (3.5)

seems to  follow from  (3.4).

W hy ‘in tu itive’? Well, in the  case of the  rendering equation, this corresponds 

to the  concept of light leaving the  sources (y), bouncing off th e  surfaces in the  

scene (ICy), then  this light bouncing again (/C2y), and again (!C3y), ad inf. So, 

the  light incident a t any point in th e  scene consists of a direct illum ination part, 

a once-reflected p a rt, a twice-reflected part, . . . .  Also, (3.5) seems to  follow
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from (3.4) because (3.5) looks very m uch like the  binom ial expansion has been 

applied to  (3.4).

This thesis is concerned only w ith functions and kernels which are in some sense 

well behaved. The only functions, z (s ), th a t will be considered, are such tha t:

cf>
/  l*WI:Ja

ds < oo

In the  case of radiosity, we ta lk  about functions of fin ite  energy. The set of all 

such functions define the  function space £ 2(a,6). The function x(s)  is known 

as an C? function. Suitable definitions of ‘equality’ and a  ‘null function’ can be 

combined w ith the  set of C2 functions to  form a com plete linear vector space [28].

Similarly, th is discussion will only consider kernels K ( s yt ) which are such th a t:

f  f  \K ( s f i ) \2dsdt
J a Ja

<  oo

T he L 2 norm, of an C2 function x(s)  is given by:

j
In tu rn , this function norm 2 can be used to  define a norm  for the  in tegral operator 

K  which m aps the  C2 function x onto th e  C? function Kx\

ll^ll =  SUP (3.6)

I t has been shown [28], th a t when ||/C} I <  1, the  N eum ann series (3.5) does in

fact provide an exact solution to  the  integral equation (3.2):

OO

x  = y + Y ,K . ty  (3.7)
1 = 1

!The subscript 2 is taken as being implicit, in this thesis.
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K ajiya [61] has noted the  sim ilarity between th e  N eum ann series expansion and 

the  iterative solution m ethods common to  full m atrix  (FM ) radiosity  m ethods 

(section 2.2.2), Several iterations being equivalent to  sum m ing early term s in 

expansion (3.7). It is easy to  visualise how, in th e  case of th e  radiosity equation, 

th e  norm  of th e  kernel is less th an  unity: here, the  kernel describes how light is 

reflected off th e  surfaces in the  scene, and the  conservation of energy applies -  

so no more light can be reflected th an  was incident (i.e., j|/Ca;|| <  ||:c||). In real 

scenes, th e  reflected energy will always be strictly  less than  the  incident energy, 

i.e., ||/Ca;|| <  ||a:||. Inserting this inform ation into definition (3.6), it becomes clear 

th a t \\JC\\ "n 1 for the  ladiosity  kernel j thereby validating th e  application of the 

N eum ann series [28].

The following definition, whose relevance will become m ore apparent in th e  next 

section, is for the  inner product of two C2 functions x  and y over th e  domain 

[a, &]:
rb

< x ,y  > =  / x( t )y( t )dt  (3-8)
J a

Two (non-zero) functions x  and y are said to  be orthogonal when <  x ,y  > =  0.

3.2 M eth o d  o f w eigh ted  residuals

Recall (3.2):

x = y +  JCx

The aim now is to  solve (3.2) £as best we can’ (in some sense) by restricting 

the solution to  a fam iliar function space — one which contains functions whose
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behaviour

• comes close to  th e  complexity estim ated of the  true solution function, and

• is well understood.

In general, th e  exact solution lies in an infinite-dimensional (H ilbert) function 

space. The m ore complex th e  restric ted  subspace, the  closer, one presum es, this 

approach will get to  the  true  solution.

As yet, little  effort has been m ade to  define the  notion of closeness, as it has 

been used here; a clearer outline is given now.

3.2 .1  T h e  a p p ro x im a tio n  fu n ctio n

T he quantity

x(s)  = ^ 2 w iN i(s )  (3.9)
i = i

is referred to  as a trial function  [32] for the  equation in question (3.2). The n  

functions {iV,-}*■!:” are known basis functions  which, together, define th e  span of 

the  space th a t the  tria l function has been restric ted  to. T he weights are

not yet known; they  are the  scalars by which th e  basis functions are weighted to  

ensure th a t th e  tria l function x is as close as possible to  th e  exact solution, x.

Algorithms which adopt this approach are known as projection methods —  the  

idea being th a t th e  tria l function is the  projection of the  exact solution into the 

chosen, finite-dim ensional, function space.
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(i) The function, and nodal values

]\ \

(ii) The basis functions - one for each node (iii) The scaled basis functions

(iv) The trial function & the original function

Figure 3.1: Building a tria l function from linear basis functions (after [24]).

A choice m ust now be m ade about which basis functions are to  be used —  effec­

tively choosing the  function space th a t th e  solution is to  be restric ted  to. Some 

approaches use basis functions w ith global support (i.e., non-zero anywhere) [32]. 

A nother approach is to  utilise basis functions w ith only local support — i.e., those 

which are zero everywhere, except in some small region of th e  domain. I t is these 

last functions, which have gained huge popularity  through the ir use in  finite ele­

m ent m ethods [32, 6, 82], th a t are considered here. Not only are they  simple to 

visualise, they  are also com putationally robust and easily generated, even for the 

m ost complex geom etric shapes.

A one-dimensional exam ple of a tria l function is shown in figure 3.1. Here, the 

basis functions each have local support and are linear. The function is sampled 

a t seven points, known as nodes: th e  weights are found, in th is case, by

Optim ising DM R 3.2. M ethod of weighted residuals



C hapter 3. Higher order m ethods 85

evaluating th e  function at each of th e  nodes. The domain has been split up into a 

num ber of elem ents , which are the  regions used to limit th e  support of the  basis 

functions. As can be seen from figure 3.1, each basis function is associated w ith 

a single node, and a basis function is non-zero only on those elem ents which are 

adjacent to  its corresponding node. Notice also, th a t each basis function is zero 

when evaluated at any node other th an  its ‘own’.

A m ore com plicated case, for a two-dimensional domain3, is shown in figure 3.2. 

Again, the  basis functions are linear, b u t now the  elements are quadrilaterals, 

having nodes at the ir vertices. Again, th e re  is one basis function for each node, 

and each basis function is zero when evaluated at any node o ther th a n  its own.

In general, th e  nodes are positioned at various points w ithin, and on th e  bound­

aries of, th e  elements. In tu rn , th e  elements are chosen according to  th e  geom etric 

complexity of th e  surface being modelled (their shape), and th e  expected com­

plexity of the  function being modelled (their order: th e  num ber of nodes per 

elem ent). W hilst figure 3.2 shows only the  linear case, cubic basis functions (say) 

across a quadrilateral elem ent would require at least 12 nodes per elem ent (m any 

being shared w ith  neighbouring elements) [131]. The greater th e  accuracy re­

quired, the  smaller the  elements, and the  more nodes per elem ent. I t is easy to 

see how such a set-up m ight be used to  m odel radiosity varying across a  surface.

In bo th  of th e  exam ples m entioned thus far (figures 3.1 and 3.2) whenever a basis

function has been evaluated a t a node other than  its own, it has been zero. This

3Any parameters (s ,t)  or domain limits (a, 6) can now be regarded as 2D vectors. 
So the parameter s can be regarded as the ordered pair s — ( s * ,^ ) ,  where si and S2 

are both reals. The domain [a, b] becomes [ai ,&J X [a2 ,t>2], the integral J^ds  should 
be regarded as f a* dsjds2 , and so on. Similarly for higher dimensions. Since little
is gained by expansions of this type, the notation will remain unchanged, in the main.
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1

>

(i) scaling a linear basis function by a nodal value

w ^N ifx ) +  w2*N2(x) +  w3*N3(x) +  w4*N4(x)

(ii) combining scaled basis function across an element

Figure 3.2: Building a 2D trial function from linear basis functions (after [24]). 

typical of basis functions with local support [131, 57].

Having settled  on a set of basis functions, and evaluated the weights correspond­

ing to  each one, w hat has effectively been finalised is how the  trial function 

interpolates. In order to  find out exactly which values it in terpolates, one m ust 

evaluate the tria l function at each node ({-s»}j="). It is for this reason (com pu­

ta tional ease) th a t basis functions are usually chosen where Nj(s{) = Sij — the 

Kronecker delta, for in this case we have simply: x(5,) =  u;,.
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3 .2 .2  Error co n sid era tio n s

Now, inserting th e  tria l function (3.9) into the  integral equation (3.2) gives:

x y +  JCx

0 w x  — JCx — y (3.10)

T he am ount by which (3.10) falls short of zero, at any given point, defines the  

residual function r:

r — x  — JCx — y (3.11)

Ideally, the  weights should be chosen so th a t the  residual function is

identically zero. Alas, whilst the  tria l function is restric ted  to  a particu lar finite­

dimensional function space, this is not tru e  of the  exact solution, and therefore 

neither is it tru e  of th e  residual. So, realistically, the  weights should be chosen 

so th a t the  residual is as small as possible everywhere. In fact, they  are chosen 

so th a t th e  residual is forced to  zero in some average sense [32]:

A num ber of independent weighting functions  {Wj-(s)} *•“ ” can be chosen, and the  

residual m inimised w ith respect to  these functions by setting

<  W i,r  > =  0, V i G { l , . . . , n }  (3.12)

Inserting the  residual definition (3.11) into (3.12) gives, for each i € {1, . . .  , n}:

0 =  <  Wi, x — JCx — y >

=  <  W i , £  w j N j  -  £  Wj K Nj  -  y >
j ~  1  3 = 1

n n
=  Wi, N j > - J 2  Wj  <  W i t K,Nj  > - < W i , y >  (3.13)

j = i  i = i
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Let us define th e  n  X n  m atrices M  and K , whose i th row, j th column, entries are 

given by:

Mij =< N j >= t  W i(s)N j(s )ds  (3.14)
Ja

and,

K ij = <  W i ,K N j  >= f  Wi{s) t  K {s ,t)N j{ t)d td ,s  (3.15)
J a J a

respectively.

The m atrix  M  is th e  m ass, or stiffness, m atrix . The m a trix  K  is the  discretized 

kernel m atrix .

If we also define two column vectors w  and y , whose i th row entries are given by 

W{ and, yi = <  Wi, y >  respectively, then  (3.13) can be rew ritten  in m a trix /vecto r 

form:

( M - K ) w  =  y  (3.16)

T he n x n  m a trix  ( M —K )  is known as th e  generalised stiffness matrix  -  its entries 

can all be found by utilising known inform ation in some num erical quadratu re 

m ethod. Similarly for th e  vector y . This leaves only th e  vector w  unknown, 

and it becomes apparent why exactly n  weighting functions were chosen: the 

system  (3.16) represents a linear system  of n  equations in th e  n  unknowns .

Solving this system  gives weights which pu t the  tria l function very close to  the  

exact solution, in some average sense.

Exactly which weighting functions are chosen depends on th e  specifics of the  prob­

lem at hand, and the  effort one is willing to  devote to  reaching a solution. Two 

common choices are found in th e  collocation method  and th e  Galerkin method.
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B oth of which are now reviewed.

3.2 .3  C o llo ca tio n  m eth o d

Suppose the  n  nodes are positioned at s — Si, S2, . . . ,  sn . In  th e  collocation 

m ethod, the  n  weighting functions are:

1 if s = Si
Wi(s) = (3.17)

0 otherwise

Inserting these weighting functions into (3.12), forces th e  condition r(s{) — 0. So 

this choice of basis function am ounts to  ensuring th a t the  residual is zero at each 

of th e  nodes.

How do th e  collocation weighting functions affect the com ponents in the  linear 

system  of equations (3.16)? T he mass m atrix  is now given by:

Mij  = <  WitNd >= Nj(s{) (3.18)

Clearly, these entries are trivial to  find -  one need only evaluate a set of known 

functions at a set of known points. Typically, N j( s {) =  £tj, so th e  mass m atrix  

will be th e  identity  m atrix  (as is the  case in classical radiosity (2.12)).

From (3.15) and  (3.17), the  discretized kernel m atrix  is given by:

K {j = <  WiyJCNj >= (JCNMsi) = f b K f a ^ N j t y d t  (3.19)
J a

In order to evaluate each of these entries, an integral m ust be evaluated. Typi­

cally, this will involve some form  of num erical quadrature procedure [28]. How­

ever, th e  basis function Nj(t ), having only local support, will be zero for much of
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t E [a, 6], so th e  problem  is not as daunting as it m ight first appear.

T he i th com ponent of th e  vector y  is simply y (s i) which, again, is simply evalu­

ating a  known function a t a known point.

Once th e  generalised stiffness m atrix  (M  — K ), and vector (y ), corresponding 

to  th e  driving term , have been evaluated, it remains only to  solve th e  linear 

system  of equations (3.16) for the  weights W{. These can th en  be used to build 

the  approxim ate solution x  (3.9) which is close to  the  exact solution in th a t the  

residual is guaranteed to vanish at each of the  nodes.

C o llo c a tio n  r a d io s i ty

In order to  apply this theory  to  solve for the  radiosity across a surface, regard the 

function x(s)  as representing the  radiosity across the  surfaces th a t m ake up th e  

environm ent. T he driving te rm  y ( s ) represents em itted  radiosity, and th e  kernel 

function is given by (figure 3.3):

__. . / x / \ cos OJt) cos 8t (s)
K ( s , t )  = P i(s )g (3 ,t)  ‘Kl ‘w  (3.20)

7r r*

Consider the  following approach. The environm ent is split up into n  elements

{[ '̂7 ^l] j [̂ 25 ^ 2]) ■ • • j [bij &]} 1

each containing a single node s t E (/;, U{) .

Now, if th e  basis functions N j  in (3.9) are chosen to  be constant:

1 if s E 17,-, uA 
N i ( a ) = {  (3.21)

0 otherwise
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dt =dt1dt;

surface
normal *  ^ 7

separation  
distan ce, r

surface
normal

diffuse reflection 
coefficient, pd(s)

s

Figure 3.3: P atch-to -P atch  form  factor geometry, in  param etric  term s.

then  the  mass m atrix  (3.18) is the  identity  m atrix  =  6^-), th e  discretized 

kernel m atrix  K  is given by (3.19):

K ij = f  J K ( s i , t ) d t  

and the  vector y  is evaluated using yi = y(s{).

Forcing th e  residual function to  be zero at each node results in (3.16), the  n  

constraints:

J2j=1 wj{M ij — K i j ) =  yi 

Wi =  yi +  X)”=i WjKij

Wi -  y i  +  E " =  1 w j  I ? /  K ( & h  t ) d t  

Wi =  Vi +  / > < , ( * )  T , u  W j  g ( s , ( 3 . 2 2 )
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The com bination of choosing simple basis functions, com bined w ith  even simpler 

weighting functions, has brought us back to the  radiosity equation (2.11) of chap­

te r 2. There, the  proxim ity assum ption, combined w ith the  visibility assum ption, 

led to  a system  of equations identical to  (3.22). The integral in (3.22) is the  form 

factor as it evaluated by m ost num erical algorithm s [22], the  weights W{ are the 

patch  radiosities, and the  iji are th e  patch  em ittances.

The first application of th e  collocation m ethod (per se) to  solve for th e  radiosity 

distribution in a scene, was on a 2-dimensional flatland radiosity environm ent 

in [54, 55]. M ax et al [73, 116] have subsequently used th e  collocation m ethod 

for 3D radiosity, w ith linear basis functions defined over triangular elements — 

effectively talcing the  classical radiosity m ethod [22, 23] one step forward, by using 

G ouraud shading [46] from  th e  solution phase onwards; thereby  superseding its 

(otherwise inappropriate) use in the  rendering phase.

3 .2 .4  G alerk in  m eth o d

The Galerkin m ethod is another commonly-used weighted residual m ethod. Here, 

the  weighting functions are chosen to  be th e  basis functions which span the  

function space from  which the  tria l function is chosen (i.e., Wi — Ni). W ith  this 

choice of weighting function, th e  mass m atrix  becomes:

Mij = <  N i , N j >= [ b N i ^ N ^ d s  (3.23)
J a

T he discretized kernel m atrix  is given by:

= <  N ; , K N j  > =  / Ni(s)  [ bK { s , t ) N j { t ) d t d s  (3.24)
Ja Ja
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And th e  homogeneous vector, y  by:

y i —< N i 1y > =  f  N i(s)y(s)ds  (3.25)
Ja

Notice th a t whilst (3.24) m ust now be evaluated for n 2 different pairs of basis 

functions, these functions all have only local support, and therefore the  in te­

gral (3.24) need only be evaluated over a fraction of [ a ,  b] X [ a ,  b].

Again, (3.16) holds, and it is by solving this linear system  for th e  scalar weights 

W{ th a t the  tria l function which ‘b e s t’ satisfies (3.2) is found. In order to  evalu­

ate (3.23), (3.24) and (3.25) one m ust invariably resort to  num erical quadratu re 

m ethods, although (com putationally intensive) closed-form solutions are avail­

able, for constant basis functions [93].

If the  basis functions are chosen so th a t

<  Ni, N j  >=  8{j (3.26)

—  the  basis functions form an orthonormal set.

W ith  orthonorm al basis functions, the  mass m atrix  for the  G alerkin m ethod 

becomes th e  identity  m atrix  (regardless of the  order of th e  basis functions), w ith 

its obvious cost benefits. Details of different orthonorm al basis sets are of little  

in terest here, suffice to  say th a t a num ber are available —  (normalised) Legendre 

and Jacobi polynomials are two sets which can satisfy (3.26) for problems of 

a rb itrary  (finite) dimension [129].

I t is interesting to  com pare (3.19) and (3.24) —  the discretized kernels (K ) from 

th e  collocation and Galerkin m ethods, respectively. One striking feature is the  

double integral in th e  Galerkin kernel m atrix  com pared to  only a single integral
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for th e  collocation m ethod. This superior sampling of th e  dom ain, ensures the 

Galerkin m ethod achieves are surer representation of th e  in tegral operator K,  

th an  its collocation counterpart. Clearly, the  increased accuracy is accom panied 

by a consequent increase in com putational expense.

A n  a n a lo g y

The following scenario is offered as a 3-space analogy for w hat th e  Galerkin 

m ethod is try ing to  do in function space.

One end of a spring is fixed at a point above a table. A heavy weight is fixed to 

the  other end of the  spring. This weight lies on the  table. The tab le is of such 

a size, and other physical factors are such th a t, no m a tte r w here on the  table 

the  weight is placed, it rem ains there. No m atte r where th e  weight is placed, the 

spring is stretched  beyond its n a tu ra l length.

For reasons which are beyond our ken, the  people who live on the  flatland world 

of th e  tab le  top, wish to  minimise the  energy stored in  th e  spring. This energy 

is directly proportional to  am ount by which the spring is s tretched  beyond its 

na tu ra l length [109]. In order to  minimise th e  energy, the  people on the  table top 

move th e  weight to  he directly beneath  the  point where th e  spring is fixed.

The flatland tab le top world is spanned by th e  unit vectors i and  j. The extension 

of the  spring is described by the  vector x . The people m erely set x  ■ i and 

x  • j  to  zero, and their goal was achieved as best at it could be, while being 

restric ted  to  the  tab le top. Essentially, the  scalar (inner) products of the  quantity  

to  be m inimised, w ith  th e  basis vectors, were forced to  zero. This is exactly
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fixed pt

table top

WeightJ

/
x .i

Figure 3.4: A 3-space analogy for the  Galerkin m ethod.

w hat is happening in th e  Galerkin m ethod. Even though th e  function to  be 

m inimised (the residual) is more com plicated th an  th e  chosen function space can 

accom m odate, its inner product, w ith each basis function in  the  chosen space, is 

forced to  zero. This minimises th e  function as best we can.

G alerk in  rad io sity

In th e  com puter graphics community, H eckbert [54, 55], drawing on a wealth 

of radiation heat transfer research, was the  first to  propose using the  Galerkin 

m ethod for modelling radiosity. As w ith collocation radiosity, H eckbert only 

im plem ented the  m ethod in  a 2-dimensional flatland  world.

Subsequently, th e  m ethod has been used to  solve for th e  radiosity distribu­

tion across a set of bi-param etric surfaces, comprising a 3-dimensional scene,

IfjOHN ' vinc li
O ptim ising D M R |  {j|y« ' , J 3.2. M ethod of weighted residuals
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Figure 3.5: A singularity in  th e  radiosity kernel: As r  -5- 0, K (s ,  t) —► oo.

by Zatz [129, 130]. Zatz reports some impressively accurate results, whilst at the  

same tim e drawing a tten tion  to  some problems inherent in applying th e  m ethod 

to  the  radiosity equation.

By using basis functions of high enough order, Zatz concludes th a t radiosity 

transfer can be calculated w ith arb itrary  accuracy between m ost pairs of surfaces. 

Problem s arise, however, when the  two surfaces m eet along an edge or, less often, 

a t a point. In these cases, the  radiosity kernel (3.20) approaches infinity as a 

pole of order two as the  area elements on the  adjacent surfaces approach one 

another (figure 3.5). Such singularities in th e  kernel, can drastically affect the  

convergence of a quadratu re rule being used to  evaluate an in tegral involving the 

kernel —  specifically, the  Kij of (3.24).

Thus far, we have only considered inner products of th e  form (3.8):

<  x , y  > =  f  x
J a
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Zatz overcomes th e  singularity problem  by using a weighted inner product

<  x , y  > w =  f x(s)y (s)W (s)d s  (3.27)
Ja

whose weighting function W  is specifically chosen to  cancel out th e  pole.

A drawback of th e  m ethod is th a t th e  weighting function W , which is chosen to 

have a zero of m ultiplicity two along the  problem  edge, actually  behaves like this 

along all edges, and so tends to  make surfaces look overly dark near their edges, 

and bright in th e  middle.

W hen the  chosen basis functions are the  Legendre polynom ials, th e  un-weighted 

inner product (3.8) is used, and singularities can cause convergence problems. 

W hen the  (more com putationally expensive) Jacobi polynomials are used, the 

weighted inner product (3.27) is used, the  singularity is circum vented, b u t instead 

of convergence problem s, ‘dark edge’ problem s result. In order to  balance the 

pros and cons of the  two approaches, Zatz [129] uses a hybrid approach, whereby 

energy transfer between surfaces is evaluated using Legendre basis functions, 

unless th e  surfaces share a common edge. In this case, the  problem  is couched in 

term s of Jacobi polynomials, th e  singular transfer is evaluated, and th e  results 

converted back into Legendre bases.

A nother problem  Zatz encountered, was w ith discontinuities in the  radiosity ker­

nel, caused by occlusion. W hilst th e  tru e  radiosity across a surface m ay exhibit 

discontinuities (of various orders [54]) in and around shadow regions, mimicking 

this behaviour w ith a linear com bination of continuous basis functions, is not 

possible. W hen one a ttem p ts such a projection, a phenom enon known as Gibbs 

ringing [129] becomes evident. T he shadow region appears as one m ight expect it
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to, bu t the  area around th e  shadow exhibits ripples which are clearly erroneous. 

T he higher th e  order of the  basis functions being used, th e  less objectionable the 

error becomes, b u t it never goes away completely.

Zatz circum vented the  problem  by taking a step backwards, and  removing the 

visibility te rm  from  the  radiosity kernel, so th a t it could be handled separately. 

Energy interchange between surfaces takes place w ithout considering occlusion, 

then  th e  result is weighted by a shadow m a sk , defined over th e  receiving surface. 

T he shadow m ask is effectively a tex tu re  m ap defined over th e  receiver, taking 

values in the  range [0,1] — 0 for um bra regions, 1 for lit regions, w ith in term ediate 

values inside the  penum bra. This approach improves the  appearance of images, 

bu t does so using a particularly  crude technique.

T he next section describes an extension of the  higher order algorithm s presented 

thus far. These new wavelet algorithm s a ttem p t to  incorporate th e  positive as­

pects of the  higher order m ethods, whilst trying to  steer clear of some of their 

pitfalls.

3.3 W avelet rad iosity

In th e  previous chapter, it was shown how hierarchical radiosity (HR) ou tper­

formed other constant radiosity algorithms: even though th e  environm ent m ay 

be split up into a large num ber of small elements, H R exploits the  fact th a t if 

these elements are grouped hierarchically, energy interchange can be accurately 

evaluated by allowing, where appropriate, groups of elements to  in teract w ith 

other groups —  thereby reducing an 0 ( N 2) problem  to  O (N ) .  Similarly, the
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preceding sections of this chapter have shown th a t trea ting  th e  radiosity function 

as being piecewise polynomial, ra ther th an  piecewise constant, can also lead to 

im provem ents. Wavelet radiosity [45, 92] unifies these two approaches, allowing 

not only piecewise polynom ial basis functions of order >  0, bu t also a h ierar­

chical trea tm en t of th e  way in which th e  basis functions in teract. Furtherm ore, 

th e  (hierarchical) bases are specifically constructed so th a t th e  discretized kernel 

m atrix , which details how energy is exchanged between different basis functions, 

contains m any negligible entries —  allowing particularly  fast solution m ethods.

3.3 .1  F u n ction  p ro jectio n s

As w ith all the  radiosity m ethods exam ined thus far, th e  aim is to  find a function 

x (s), which lies (inaccessibly) in H ilbert space. A m ore accessible function space 

Vm spanned by the  known basis functions {A*}*-^” , is considered instead, w ith 

a;(s) being approxim ated by th e  linear combination:

Pv„x(s) =  =  E  ^ ( s )  (3-28)
t=l

T he approxim ate function x(s)  is the  projection  of x(s)  into the  basis set { A t*}*-f", 

th e  operator which achieves the  projection is Pyn.

If <  x — x, Ni > =  0 for all basis functions A;, then  x(s)  is an orthogonal projection 

of x(s)  into {At-}^". If the  chosen basis functions form an orthonorm al set, then  

this orthogonal projection relation can be used to  find the  unknow n coefficients

X { .

< x  — x, Ni >=  0
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< x , N i  >  ! x5 <  N j , N i  > =  0

Xi = <  x t N{ >

PVnx {s ) =  £ (s) -  E L i  < x ,N i  > Ni{s)  (3.29)

In the  case of radiosity, th e  integral equation to  be solved is:

x(s) = y(s)  +  f  K ( s i t)x ( t )d t  (3.30)
J a

W here x (5) represents the  final radiosity and y ( s ) th e  em itted  radiosity.

The equation

®(5) =  y { s ) +  ^ 2  < f  K (s , t)x (t)d t, Ni(s) >  N i( s ) (3.31)
i Ja

is known as the  related integral equation. Notice how the  kernel has been allowed 

to operate on th e  approxim ate function £(s); an operation which will typically 

not leave th e  result in our chosen finite dimensional function space Vn , so this 

has been repro jected  back into W? as per (3.29).

Solving (3.31) for th e  unknowns Xi —<  x ,N {  > can be done as soon as the  discrete 

kernel coefficients

K{j = f  N{(s) f  K ( s , t )N j( t )d td s  (3.32)
Ja Ja

have been found. Notice th a t (3.32) is exactly (3.24), and th a t ensuring the

projection <  x — x, N{ >  is orthogonal for every basis function N{ has simply

resulted in a  different derivation of th e  Galerkin m ethod. The projection m ethod 

derivation has been included here, because th e  notion of projecting a function 

into different basis sets is an im portan t one, which can lead to  com putational 

savings.
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All th a t rem ains, is to choose a suitable set of basis functions, evaluate th e  AT̂ -, 

and thence solve for th e  X{. Notice th a t m any different sets of basis functions can 

span the  same function space —  simply deciding to  use n  (orthogonal) polyno­

mials of degree 0 , . . . ,  n  — 1, is a long way short of uniquely identifying a suitable 

basis set. Different bases m ay represent a given function m ore efficiently than  

others. One family of basis sets, specifically constructed to  yield efficient repre­

sentations of a function, by exploiting any smooth  sections it m ight have, are the  

wavelet bases:

3 .3 .2  W avelet b ases

W avelet bases [11, 2] are a relatively new tool, even in the  signed processing 

field, where they  originated. W avelet bases form hierarchical basis sets which, 

unlike the  hierarchical bases discussed thus far [49, 50] (figure 3.6), do not simply 

represent each basis function as being the  average of its children on the  level 

below. Instead, the  basis functions a t each level in th e  hierarchy record w hat 

detail is lost between this level and th e  finer level, below.

To begin w ith, consider th e  Haar  wavelet basis. Given two box functions:

1 if s E [si, s 2]
M s )  = ;

0 otherwise

1 if s £  (32, 53]
- M s )  =  { (3.33)

0 otherwise

It is clear th a t these two functions span some simple function space, and th a t
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f(s)4

Tnri s
! M-J

25

25

25

5l

6.25

7.25

Figure 3.6: S tandard  hierarchical basis. A function is shown a t five levels in  a 
hierarchy. T he values of th e  basis functions, which simply average the ir children’s 
values, are shown.
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any function a;(s) lying in  this space can be w ritten  as a linear com bination:

x(s)  =  a<f)lt0(s) +  /5^i,i(s) (3.34)

It is also clear th a t (3.34) can be m anipulated  to  give:

x (s ) — 2_^ ( ^ 1>°(,s) ^  (^-dC3) ~  ^ i f i i3)) (3.35)

Introducing <$>o(s) =  <^i,o(s)+^i,i(s) and-00,0(3) =  4>i,i{s ) ~ ^i,o(5) if becomes clear 

th a t </)q(s) and ^ 0,0(3) together, span exactly the  same space as {</»i,o(s), <̂1,1(3)}. 

W hilst this observation m ay not seem significant in itself, and th e  subscripts may 

seem overly complex, th e  point to  note is th a t the  original box basis set has been 

replaced by one function (<j)0) which represents the  average of th e  function over 

the  interval, and another ( 1̂ 0 ,0 ) which expresses how the  function differs from  the 

average.

The construction of the  H aar basis (figure 3.7) begins w ith n  =  2L (finest level) 

box functions {^l,.7‘(<s)}j'=o 1 which span the  chosen finite dim ensional function

space Vn. As described in the  last paragraph, a "pair of these functions 

<f>L,2j+i can be replaced by a (f>L-i,j ‘average’ function and a tpL-i,j ‘difference’ 

function. Pairwise replacem ent of all of the  in this way results in  n /2  <j>L-i,j 

functions (similar to  th e  4>Ltj,  bu t twice as wide) and n /2  ipL~i,j functions, which 

record how th e  differ from th e  In exactly th e  sam e way, th e  function

space spanned by the  n /2  4>L~\,j functions can now be replaced by n /4  <f> functions 

and n /4  if) functions. This process recurses, until we are left w ith a single function 

<f)0 which represents the  average of the  function over the  whole domain, and a 

hierarchy of functions {ipijYiZoJ=o~2 which record th e  detail lost between the
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Figure 3.7: The (recursive) construction of th e  H aar basis set.

various levels of th e  hierarchy. Together, these n  functions span th e  original space 

Vn, and are known as th e  standard H aar basis set.

The (f>ij are known as smooth  functions, whereas the  t/jij are referred to as detail 

functions.

The non-standard  H aar basis consists of th e  standard  H aar basis, together w ith 

all of the  functions (i =  1 , . . . ,  L — 1) which were discarded and replaced by 

detail functions when creating th e  s tandard  basis. N on-standard basis sets are 

discussed in section 3.3.5.
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0o
0o,o
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0 2 , 0  0 2 , 1  0 2 , 2  0 2 , 3

0 L —1,0 0 L —1,1 ’ ’ * 0 L - l , 2 i “ 1- 2  0 L - l , 2 i - i - l

Figure 3.8: T he standard  wavelet basis can be regarded as a pyram id.

T he H aar basis is th e  sim plest of a whole family of wavelet bases, all of which are 

constructed in an analogous fashion —  starting  w ith a finest level th a t consists 

of a  single sm ooth function, transla ted  n — 1 tim es, to  give th e  n = 2L functions 

<f>L,j (figure 3.7.i). The functions in this finest level are linearly combined to  give 

th e  n /2  sm ooth and n /2  detail functions a t level L  — 1. This process recurses, 

as in th e  construction of the  H aar basis. Finally, these bases consist of a  single, 

coarsest level, sm ooth function 0o(s), together w ith a pyram id of detail functions 

0 i , i ( s )  (figure 3.8).

The sm ooth functions from one level (z) uniquely define th e  sm ooth and detail 

functions a t the  next m ost coarse level (z — 1):

0 t - l,j ~  hfc-27 0j,fc
k

0i-i,i = Y^3k-2j(f>i,k (3-36)
k

The sequences h and g, which give the  0 and 0  functions, respectively, can be 

thought of low-pass and high-pass filters, respectively. The relationship (3.36) is 

known as the  two-scale relationship for the  basis in question.

T he two-scale relationship is constructed to  ensure th a t any  function in  th e  non­

standard  basis can be expressed as a single function (defined over [0,1]) suitably 

scaled and translated . T h a t is, one function (0) for the  sm ooth functions, and
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one (if>) for th e  detail functions:

< /M s ) =  2‘/2 ^ (2 's  -  j )

V>,,y(s) =  2 ^ ( 2 <s -  j )  (3 .3 7 )

This means th a t <f>i-ij is identical to  except it is twice as wide, and l / \ / 2  

tim es as ta ll —  proportions which ensure th a t the  inner products <  (f)^ >

rem ain independent of i. In the  H aar basis, the  original sm ooth function (<̂ 0 

in  figure 3.7) is a simple box function, and th e  original detail function (t/’o.o in 

figure 3.7) is th e  difference of two adjacent box functions.

3.3 .3  P ro jec tio n s  in to  w a v ele t bases

The upshot of all this theory, is th a t not only can an arb itrary  function x ( s ) be 

pro jected  into an T-level wavelet basis using

L—1 2‘—1
PLx(s)  = x(s)  = <  x, (j)o >  (f>0(s) > ' f e ( s )  (3.38)

j—0

b u t also, th a t costly quadratu re routines need not be employed to  evaluate the 

inner products which appear. Once th e  inner products <  x,<j)Ltj > have been 

found by solving th e  related integral (3.31) w ith Ni = th en  the  two-scale 

relationship (3.36) can be used to  evaluate the  coefficients corresponding to  the 

detail functions fu rther up the  hierarchy.

A 'pyramid algorithm  will, given th e  n coefficients <  x , <j)i,j > , apply th e  two-scale 

relationship to  these coefficients, talcing 0 ( n ) steps to find th e  n /2  coefficients 

<  x, (f>L-i,j > together w ith the  n /2  coefficients <  x ^ L - i , j  >• T he algorithm  can 

then  take th e  <  x , > coefficients and re-apply th e  two-scale relationship.
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In this way, a pyram id of inner products is re tu rned  by th e  algorithm  in 0 ( n  -f- 

f  +  5 H b 1) =  0 (n )  steps.

Reversing th e  process is also possible. Here, the  two-scale relationship is utilised 

to  re tu rn  the  coefficients corresponding to  the  sm ooth functions of level i, given 

only the  coefficients corresponding to the  sm ooth and detail functions of level 

i — 1.

Because a standard  wavelet basis stores detail functions in  its hierarchy, if a 

function is well approxim ated, over some p art of its domain, by th e  sm ooth 

function 4>i,j (say), then  the  coefficient corresponding to  th e  detail function ipij, 

which records how the  function differs from  the sm ooth function, will have to  

be very small. If sufficiently small coefficients are ignored (i.e., set to  zero) then  

functions which are suitably sm ooth can be represented by approxim ate wavelet 

projections, w ith few non-zero coefficients — a saving which can prove m ost 

valuable (figure 3.9).

Clearly, th e  m ore near-zero coefficients in  (3.38), th e  cheaper is th e  approxim a­

tion. W ill th e  cost of th e  projection4 vary for different wavelet bases? T he answer 

is yes: consider the  inner product <  > , one of the  coefficients from (3.38):

rb
< a / x(s)xf)i}j(s)ds  (3.39)

Ja

Now, if the  function a;(s) is closely approxim ated (wherever ipij is non-zero) by 

some polynomial:

M—1

lwhere ‘cost’ equates to the number of significant coefficients in (3.38)
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Figure 3.9: P ro jecting  a function into a  wavelet basis m ay lead to  only a small 
num ber of significant coefficients. From bottom  to top, m ore and more basis 
functions are included, only 11 coefficients are non-zero in this example.
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then  (3.39) can be re-w ritten:

M —l

fc=0 Ja

And it becomes clear th a t a sufficient condition for the  inner p roduct (3.39) to 

be small is:
eb

/  ij)i,3(s)skds = 0 ,  Wk =  0 , . . . ,  M  — 1 (3.40)
Ja

Functions ifrij which satisfy (3.40) are said to  have M  vanishing moments.  Wavelet 

bases whose detail functions have M  vanishing m om ents will generate near-zero 

coefficients in regions where the  function can be closely approxim ated by a poly­

nomial of degree M  — l.  The H aar wavelet basis has one vanishing m om ent, 

and (consequently) detail coefficients are small wherever th e  function is nearly 

constant, over a suitable region of th e  domain. In figure 3.9, 11 H aar coeffi­

cients com pletely describe a function which one might have expected to  take 16 

coefficients.

3.3 .4  F la t le ts  and m u ltiw a v e le ts

Two families of wavelet bases whose detail functions can have an arb itra ry  num ber 

of vanishing m om ents are the  flatlets [45, 92] and the  multiwavelets  [1].

F latle t bases, like the  H aar basis, are m ade up entirely of piecewise constant func­

tions. Unlike th e  H aar basis, a flatlet basis is not, stric tly  speaking, a wavelet 

basis, since its detail functions will not all be scales of a single shape 'ifi(s). For 

example, the  flatlet basis whose detail functions each have 2 vanishing mo­

m ents, is constructed  by taking translates of 2 adjacent box functions <̂1, <̂>2, 

then  constructing a two-scale relationship which ensures th a t th e  next level up
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Figure 3.10: C onstructing the T i  flatlet basis.

th e  hierarchy consists of box functions twice as wide as the  original ones, and 

detail functions which each have 2 vanishing m om ents (see figure 3.10). This 

two-scale relationship can be conveniently represented in m atrix /v ec to r form:

/  . . _ _ w
1 1 0  0 

0 0 1 1  

- 1 3 - 3  1

- 1 1 1 - 1

v
v

v.

1 \ ( #  \
^2 j

h i _

2j+l

2j+l  / v j

(3.41)

The first two rows of this m atrix  have been chosen to  give th e  two wide box 

functions. The second two rows have been constructed to  give functions w ith 2 

vanishing m om ents (i.e., the  rows are orthogonal to constant and linear variation; 

represented by the  vectors (1, 1 , 1 , 1) and (0 , 1 , 2 , 3 ), respectively).

Similarly, the  flatlet basis ^ 3, whose 3 detail functions each have 3 vanishing 

m om ents, is constructed  by taking translates of 3 adjacent box functions, and 

building a two-scale relationship (a 6 x 6 m atrix , now) whose top  3 rows ensure 

3 box functions twice as wide as th e  originals, and each of whose bo ttom  3 rows
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gives a detail function w ith at least 3 vanishing m om ents. Clearly, in constructing 

each of these bo ttom  rows, there  are 5 degrees of freedom, b u t only th e  need to  

keep them  orthogonal to  constant, linear and quadratic variation (for 3 vanishing 

m om ents). The ex tra  degrees of freedom  are accounted for by forcing one detail 

function to  have 5 vanishing m om ents, another to  have 4 vanishing m om ents 

and be orthogonal to  the  first, and th e  last to  have 3 vanishing m om ents and 

be orthogonal to  the  first two. In fact, the  generalisation of this construction 

m ethod can be used to  generate a two-scale relationship for flatlets J~m  whose 

detail functions each have at least M  vanishing m om ents [92].

Notice th a t (figure 3.10) since the  degree of the  flatlet basis functions remains 

constant (0), it is necessary to widen their support as M  increases, w ith a conse­

quent increase in  com putational cost.

T he m ultiwavelet family of bases which, like th e  flatlets, are not stric tly  wavelets, 

are where hierarchical m ethods m eet higher order m ethods. A M ultiwavelet basis 

A4m , is constructed by taking translates of the  first M  Legendre polynomials, 

and combining them  w ith  a suitable two-scale relationship to  give sm ooth func­

tions which are scaled Legendre polynomials, and detail functions which each 

have M  vanishing m om ents. The A t2 m ultiwavelet basis functions are shown in 

figure 3.11. Its (normalised) two-scale relationship is given by:

2 ^ 2

2 0 2 0 ^ to to.

(

1 V3 1 <5‘?-i ,*

0 - 2 0 2 $ i t2 j+ l %

1 V3 - 1 V3 j y ^ i , 2 j+ l  J { ' t i - u  )

(3.42)
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Figure 3.11: C onstructing the  M ,2 m ultiwavelet basis.

W hereas th e  m ultiwavelets necessitate higher order quadratu re m ethods, for func­

tion projections, they  do offer the  advantages of increased convergence rates [28] 

and sm ooth basis functions w ith which to  represent th e  (m ainly sm ooth, in the  

case of radiosity) results.

The bases T \  and A ti are bo th  identical to  the  H aar wavelet basis.

3.3 .5  F la tla n d  ra d io sity  w ith  w avelets

T he previous sections have outlined how wavelet (and related) bases can be used 

to  represent a one-dimensional function, to a high degree of accuracy, w ith less 

term s th a n  one would norm ally expect, given the  dimension of th e  function spaces 

under consideration. In order to  m odel radiative transfer betw een surfaces, using 

wavelets, it will not only be necessary to  develop two-dim ensional wavelet bases 

w ith which to  m odel the  radiosity across a bi-param etric surface, b u t also a four­

dim ensional wavelet basis for th e  corresponding discretized kernel function. The 

hope is th a t (as was th e  case w ith one-dimensional functions) representing the
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kernel in a wavelet basis will result in m any near-zero term s which, when ignored, 

will lead to  faster algorithm s which do not suffer unduly from  loss in accuracy.

Before tackling those problem s, this section will consider th e  case of flatland  

radiosity [54], where th e  radiosity along a line, ra ther th an  across a surface, is 

considered, and th e  discretized kernel can be represented in  a two-dim ensional 

function space:

Recall the  projection (3.38) of an arb itrary  function a;(s) into an T-level (n =  2l 

dimensional) wavelet basis:

L —l  2 £- l

PLx(s)  =  x(s)  ~ <  X, (f)Q > 4>q(s) +  <  X^ i ,3 >  f e ( S)
i = 0  j = 0

In the  related in tegral equation (3.31) th e  kernel is first allowed to  act on the  

projected  function x, and then  the  resulting function is pro jected  back into Vn, 

th e  function space we are restricting ourselves to. So, whereas the  original integral 

equation can be w ritten:

x  = y -f  K x

The related  integral equation can now be w ritten:

x — y +  Pl K,Pl x

T he two applications of the  operator Pj_, (one before the  application of the  kernel, 

and one after) ensure th a t

1. th e  kernel only operates on th e  basis functions of in terest, and

2. ra th e r th an  obtaining th e  full function th a t results from  this lim ited appli­

cation of the  kernel, the  result is confined to the  function space of interest.
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S tan d ard  b asis kernel

If the  operator P; denotes projection into the  basis {^ijYjZo  _1? aild Qi denotes 

projection into the  basis {ipijYjZq _1, then  the  operator Pl K P l  can be expanded, 

using the  iden tity  PL =  P0 -\- Q i’

L- 1 L—l
Pl K P l  =  ( P o + E W P o + E W

i=1 i=1
Lf—1 L—1 L—1

=  PoKPo +  E  PolCQi +  E QiKPo +  E Q X Q k  (3-43)
i= l  i= l  i,fc=l

Each of the  term s L K R  in the  above expansion5 describes how th e  kernel projects

a function lying in th e  space corresponding to  L  into the  space corresponding to 

R. The expansion effectively represents a projection into th e  space spanned by 

the  basis functions:

M s ) M t )
(3.44)

W here i, k =  0 , . . . ,  L  — l , j  =  0 , . . . ,  2* — 1, and I =  0 , . . . ,  2k — 1.

The discretized kernel coefficients corresponding to this basis, can be found from 

the  coefficients of the  m atrix  (3.32) —  which maps the  {^LjYjZo  _1 onto them ­

selves. This is achieved by taking one column of the  m a trix  at a tim e and, as 

was done in the  one-dimensional case, recursively applying th e  two-scale rela­

tionship (3.36). The j th such column (transform ed) describes th e  projection of 

K4>l j  in to  th e  wavelet basis. T he discretized kernel now describes a m apping 

from  {4>LjYj^o _1 i11̂ 0 {^o, _1- The desired m a trix  is achieved by

repeating th e  recursive application of the  two-scale relationship on th e  rows of th e

5where L  & R  are operators which project a function into one of the rows of fig­
ure 3.8.
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<MS) Vi,o(t)

Vi,o(s ) Vo,o(l) Vo,o(s) Vl.l(t)

Vi,o(s) toW

Vo.o(s) Wo(t)

V l , l ( s )  Vo.O^

Figure 3.12: The eight unique functions of the standard  2d H aar basis, for the 
case L  =  2. The o ther eight functions, which are shared w ith the  non-standard 
basis, can be seen in figure 3.13

recently colum n-transform ed m atrix . Each of the term s L K R  in expansion (3.43) 

represents a block of this projected kernel m atrix.

It is now possible to store all radiosity functions (along a Hue) in a one-dimensional 

wavelet basis, and use this (hopefully sparse) projected kernel to solve directly 

in term s of the wravelet basis.

The standard  two-dimensional wavelet basis (3.43) has not proved popular, how­

ever, when com pared to the non-standard  version [11, 45, 92]. By first column- 

transform ing the  original m atrix , and then  carrying out transform ations on rows 

consisting of already-transform ed entries, it was felt [92] th a t any smoothness 

present in the rows m ay have been lost during colum n-transform ation, and so 

was not being exploited. A more rigourous argum ent is given in [11], where it is 

shown th a t whilst one can ignore (i.e., set to  zero) all bu t the  biggest 0 {n \o g  n)
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s

Figure 3.13: The eight functions common to both  the standard  and non-standard  
2d H aar bases, for the  case L = 2. See also figures 3.12 and 3.14

term s in the standard  kernel, this figure is only 0 (n )  for the non-standard  kernel. 

It is for these reasons th a t the non-standard option is now exam ined.

N o n -sta n d a rd  basis kernel

As has already been briefly m entioned, the one-dimensional non-standard  wavelet 

basis consists of all those functions found in the standard  basis, together w ith all 

of the sm ooth functions (generated by application of the two-scale relationship) 

which were discarded when constructing the standard  basis, i.e.,

i i  / I i = L —1,7=2' —1 XViJi i,j=0

This6 is b e tte r viewed as an over-representation of a basis set, ra ther than  as

a basis set per se, since if either of the pyram ids were discarded, the

6The function <£0,o is simply 4>o, and appears in this thesis with a double-zero wher­
ever a single zero would lead to overly-complex indexing.
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t s

Figure 3.14: The eight unique functions of the non-standard  2d H aar basis, for 
the case L =  2. The other eight functions, which are shared w ith the  standard  
basis, can be seen in figure 3.13

rem aining functions would still span the same space.

In order to  overcome the problems which seem to have arisen, by first column- 

transform ing the whole m atrix  and then row-transforming, the transform ations 

in the different directions are interleaved. As before, the operator of interest is 

Pl JCPl - Consider the following, which is identically true:

i = L —1

P l ICPl = Po/CPo + £  (C.+1/CP,+1 -P ./C P .)
i=0

B ut, by definition; P,+i =  Pt +  Qi, so:

Pl+1/CPi+1 -  P./CP, =  (P, + Qt))C(Pt + Q t) -  Pt)CPt

= P{)CQi + QiJCPi + QiJCQi
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A nd so:

Pl K P l  =  P0K P 0 +  ’" f f  P K Q i  + '  Q X P i  + '  j P  Q iK Q i  (3.45)
i= 0  i= 0 j=0

W hich represents a projection into the  space spanned by th e  basis functions:

(3.46)

W here i =  0 , . . .  , L  — 1, j , l  — 0 , . . . ,  2l — 1.

Notice now th a t only functions on the  same level in the  basis hierarchy in teract 

w ith one another. Practically-speaking, such a kernel is obtained by taking the 

usual kernel m atrix  (m apping the {(f>L,jYjZo _1 onto themselves) and applying the  

two-scale relationship once to  every row, and then  once to  each of the  resulting 

columns. The resu ltan t m atrix  maps th e  {<f>L-i,j, onto themselves —

specifically, the  m atrix  will consist of four n /2  x n /2  blocks which describe how 

the  kernel maps:

• the  {<f>L-i,j} onto the  {ipL-i,j} ?

• the  {i>L~i,j} onto the

• the  onto themselves, and

• th e  onto themselves.

The first th ree  of these blocks correspond to  term s in expansion (3.45): P l - i ^ Q l - i -, 

Q l - i JCPl - i and Q l - i ^ Q l - i  respectively. To obtain the  rest of the  term s in (3.45), 

the  interleaved transform ation procedure recurses w ith the  fourth  block (corre­

sponding to  P l - xK P l - i ) ,  resulting in four n /4  X n /4  blocks, corresponding to the
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■ Vl-1,1 I L̂-1J I - VL-2J •• I •• *5*1-2,) -  [ -■ I -■ I

Q l-i '■'CQl-i Pl-1 3CQl-1

QL-i 5CPl-i

p L-2^'Q L-2

Q L-25CPl-2

Figure 3.15: Re-arranging the  kernel m atrix  for a non-standard  wavelet basis.

term s P l - 2 ^ Q l - 2 , Q l~ 2 ^CPl~2 , Q l - 2 ^ Q l - 2  and Pl ^ 2^ P l ~ 2  in  (3.45). Always 

recursing w ith the  PiJCPi block eventually accounts for all of th e  term s in the 

expansion (3.45) of th e  projected  kernel.

Arranging these term s in an n  X n  m atrix  does not m ake m atrix /v ec to r m ulti­

plication convenient w hen th e  vector is expanded in term s of th e  non-standard  

basis. Consequently, th e  blocks are arranged as per figure 3.15, w ith all entries 

outside th e  blocks being equal to zero. W hilst this m atrix  is twice as wide and 

twice as high as th e  original m atrix , it has no more non-zero, and m any more 

near-zero, entries.

Each trip le t of blocks (figure 3.15) describes how one level of th e  wavelet hierarchy 

in teracts w ith itself. Consequently, there  are L  such groupings, in to ta l, together 

w ith a solitary en try  corresponding to PqJCPq. The individual entries in  the  i th 

such trip le t are given by:
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Q iK Q i  b lock: K ^ k = K ^ u ^ i>k =  K{s, t)xl ) i^ { s ) ^ ^ k {t)dsdt  

PiK Q i  b lock: K ? jik =  K { s , t ) ^ iij{ s ) ^ h{t)dsdt

QiKPi  b lock: K ^ k =  K ^ j ^ i>k =  /« /* K(s,t)*l>itj(s)(f>iik( t )dsd t

where j ,  k — 0 , . . . ,  21 — 1.

The solitary entry, corresponding to  P qK P q is given by:

= f  f  K(s,t)(f>o(s)<f)Q(t)dsdt 
Ja Ja

E n erg y  tran sfer

Now th a t th e  kernel m a trix  can be directly m anipulated so th a t it corresponds 

to  th e  non-standard  wavelet basis, how can this be used to  solve for th e  radiosity 

distribution along th e  lines th a t m ake up th e  two-dimensional fLatland scene?

If the  radiosity along some line is given by the  function a;(s), th en  the  projection

of this function into the  T-level non-standard wavelet basis is given by:

L —l  2 ‘ —1

£(5) =< x, <j>o > M s) + X X < fe > h A s)
i= 1 j —0

+  X ) < X> >  ^ i ,A S) (3-47)
i = 0  j —0

Allowing the  projected  kernel to  act on this function, we have:

Pl K P l x {s )  =  K '!' <  X,  r/;0 > rA0(.s) +  E f j j1 Ej'feo K “j j ,  < x > to *  >  toAs)+ 
E.i-01 E|,?io K&J, < X ,  fa  > fa(s) + Efco1 E l?i0 Kfa < to* > to Am )

It is im portan t to  rem em ber, however, th a t whilst (3.48) contains n 2 entries 

from the  pro jected  kernel m atrix  Pl K P l -, great care has been taken  to  project
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the  kernel into a  basis which will result in m any of these entries being near­

zero. If th e  effect of th e  projected  kernel is only needed to  w ithin some finite 

precision, then  all bu t the  largest m  (say) of these term s can be set to  zero, and 

m atrix /vec to r m ultiplication becomes an 0 ( m )  problem , ra th e r th a n  0 ( n 2).

K  = p r o je c tK e r n e lO  ;
<C X, fpLJ ^  ^  V 5 $L,j '->)
w h ile  ( n o t  co n v erg ed  )

(<  x , (j>it5 > ,  < x,Tpi}j >) = P u l l (  <  x, (j)L)j  >  );
(<  9, 4>i,j >> <  9,i> ij >) -  G a th e r  ( K , < x , f c j  > , <  x , >  );
<  9, > = P u sh ( <  g, > , <  g, ^  >  );
<  X ,  <f>L,j >  =  <  9 , <l>L,j >  +  < ? / ,  4>L,j  > ;

D isp la y  ( <  x,<j>L,j > ) ;

Figure 3.16: Radiosity pseudo-code for a non-standard  wavelet basis

How can this be usefully applied to solve for the  unknown x(s)  in  th e  related 

integral equation (3.31)? G ortler et al [45, 92] describe a three-phase algorithm , 

using term inology from previous hierarchical algorithms [50]:

P u ll:  P ro ject x(s)  in to  the  non-standard  wavelet basis: Given th e  n  inner prod­

ucts <  X) (j>L,j > 5 recursively apply th e  two-scale relationship (3.36) until 

th e  2n inner products which appear in (3.47) have been found.

G a th e r :  Allow th e  projected  kernel P^JCPl  to  operate on th e  p ro jected  function 

x(s) ,  using (3.48). This corresponds to  one bounce, of light around the  scene, 

or accounting for a single te rm  in th e  N eum ann expansion (3.7).

P u s h :  P ro ject the  resulting function back into the  basis q1; an operation

needed betw een each G a th e r and also for the  displaying of the  results. This 

involves recursive use of th e  inverse two-scale relationship which, given 2*“ 1 

functions and 2*-1  functions will re tu rn  th e  2* <f>ij functions
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from th e  next-m ost-fine level in  the  basis function hierarchy.

This Pull-Gather-Push process can be w rapped in a loop and repeatedly  applied 

until convergence —  i.e., Jacobi iteration: This algorithm  (figure 3.16) is specific 

to  the  non-standard  basis. The Push and Pull operations are only inside the  

while loop because of the  presence of the  the  functions in  th e  non-standard  

basis: these functions represent th e  average over some region, so th e  energy col­

lected at one level (as w ith conventional hierarchical radiosity [50]) cannot be 

regarded in isolation. A t first glance, th e  presence of th e  Push/Pull routines 

inside the  while loop m ay seem excessive, b u t they  account for th e  energy in­

terchange between functions at different levels of the  basis hierarchy — which 

was specifically not accounted for in  the  non-standard  p ro jec ted  kernel m atrix  

(expansion (3.45)). W ith  the  s tandard  basis, this is not th e  case, b u t the  cost 

for taking th e  Push/Pull routines outside of the  while loop comes in  the  form 

of log n  tim es m ore links in the  Gather routine: intuitively, each level now links 

w ith every other level in  the  hierarchy (L  =  log2 n  levels). It was for this reason 

th a t the  standard  basis was shunned in the  first place.

3.3 .6  3D  ra d io sity  w ith  w a v ele ts

For 3D radiosity, w here th e  radiosity across a surface is now regarded as being a 

function of two variables, th e  algorithm  proceeds exactly as described in  th e  last 

section, b u t w ith  th e  radiosity now being represented by a 2D wavelet basis, and 

th e  kernel now a function of 4 variables.

How can the  radiosity across some surface be represented in a wavelet basis?
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Consider a p rojection of the  radiosity function x(s,  t ) into some finest-level, tensor 

p roduct, 2D basis:

2l - 1

£ (s }t) =  Y j < (3.49)
J,fc=0

Tliis can be represented as an n  X n  m atrix  of inner products which can be 

transform ed (to represent a basis change into a 2D non-standard  wavelet basis) 

in  exactly the  same way th e  two-dimensional kernel m atrix  was transform ed in the  

flatland case. This results in a  2n  x  2n  m atrix  arranged as shown in figure 3.15. 

This is a 2D P u l l  routine, a  2D Push  routine can be similarly constructed  using 

th e  inverse two-scale relationship.

The basis change for th e  four-dimensional kernel m atrix  (stored in a 4D array 

w ith entries Kijki) is achieved in a m anner analogous to  the  2D case: th e  two- 

scale relationship is first applied to  each of n 3 vectors {/Cj/cjKTq1 (fixed j ,  k, 

I). A similar transform ation  is then  carried out on th e  {K ijki}”~o: then  the 

{Kijki}kZo, and finally th e  • This process then  recurses w ith  the  (n /2 )4

entries which represent Pl ^ P l - i JCPl - i Pl - I j exactly as per th e  2D case. The 

transform ed kernel m atrix  can now be incorporated into a 4D G a th e r routine, 

and the  solution process proceeds exactly as in the  flatland case.

0 ( m )  k ern el co n stru c tio n

One problem  is apparent: th e  ‘bo ttom -up’ kernel construction algorithm  just 

described will require 0 ( n 4) storage and tim e, since no m a tte r  how few entries 

are significant a t the  end of th e  process, we begin w ith n 4 such term s. If the  

wavelet kernel m atrix  contains m  significant term s, then  figure 3.16 certainly
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describes an 0 ( m ) solution  process — ideally, this should be accom panied by an 

0 ( m )  algorithm , for th e  construction  of the  projected  kernel m atrix .

A ‘top-dow n’ approach, which utilises a decision-making oracle, is proposed by 

G ortler et al [45], in an a ttem p t to reduce the  com plexity of constructing the 

pro jected  kernel m atrix .

A quadtree algorithm  is im plem ented, as per conventional hierarchical radios- 

ity  [49, 50]. Given two patches (or parts  thereof) th e  oracle m ust decide w hether 

or not the  region of the  kernel responsible for the  in teraction of th e  two patches7 

is sufficiently sm ooth, or not. If the  wavelet basis being used, has detail functions 

w ith M  vanishing m om ents, then  the  oracle m ust decide w hether th e  region of 

th e  kernel under consideration can be reasonably represented by a polynom ial of 

degree M  — 1 or less.

In conventional hierarchical radiosity (i.e., M  — 1), inform ation concerning the 

size, orientation, separation distance, and inter-visibility of the  two patches was 

used to  construct a similar oracle [49, 50]. This was possible because it is well 

understood how all of th e  these quantities contribute to  th e  fraction of energy 

leaving one patch  which reaches another. In the case of wavelets, particularly  

those flatlets and multiwavelets which have such desirable vanishing m om ent 

properties, it is not well-understood how such geom etric snippets can be used to 

reach conclusions about the  function under consideration.

G ortler et aVs oracle [45] begins by try ing to establish in teraction  between the

two patches at a coarse level of detail and then, if th a t proves unsatisfactory,

7Actually, the basis functions whose domains correspond to the two patches.
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recurses to  th e  patches’ children and checks if they will in teract a t the  next- 

most-fine level. In order to  establish w hether the  current level of in teraction is 

fine enough, their oracle directly evaluates the  p a rt of th e  kernel corresponding 

to  th e  current level and the  two patches8, using a Gauss-Legendre quadrature 

rule [28]. A polynom ial of degree M  — 1 is then  used to  in terpolate  between the 

values sam pled during quadrature. A second quadratu re rule, which samples in  

between those points used by the  Gauss-Legendre routine, is th en  employed to 

obtain a m easure of how much th e  interpolating function differs from  the  Gauss- 

Legendre result —  an error measure. If this error is too large, the  oracle advises 

recursion, otherwise it is assum ed th a t the  kernel is sufficiently sm ooth.

N ote th a t th e  p a rt of the  projected  kernel m atrix , which corresponds to the 

in teraction between two patches, actually covers sixteen different interactions 

(corresponding to  {AB1CCD}A,B,c>D=P{,Qi) between th e  different 2D wavelet basis 

functions whose domains define the  patches. B ut since the  inner products which 

detail these interactions can all be expressed as a linear com bination of th e  inner 

products:

- / / / /
(3.50)

— which describe the  projection P{+iP i+iJCPi+iP i+i. It is only the  these inner 

products which ever need be directly evaluated in any top-dow n P ro  j  e c tK e rn e l () 

algorithm . It is for this reason th a t G ortler et aVs algorithm  establishes w hether

the  patches’ parent level is sm ooth before storing the  inner p roduct (3.50) w ith a

8The level determines which triplet is being dealt with (figure 3.15), the patches 
determine which rows/columns within the three blocks are of interest — in flatland 
terms, at any rate.
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link joining th e  two patches. In a quadtree algorithm , th e  radiosity  across a patch  

is (similarly) found by applying the  two-scale relationship to  th e  inner products 

/  /  stored w ith their im m ediate children9. A G a th e r  con­

sists of moving these values across th e  kernel links, scaling them  by th e  K f+1 j k l m 

as they  go. This is very similar to  th e  conventional hierarchical algorithm  [50].

Visibility is accounted for exactly as it was in the  conventional algorithm ; by 

spraying a constant num ber of rays between patches to give V  G [0,1], which is 

used to  scale energy transfer across the  appropriate link.

3.4 C losing rem arks

As proved to  be th e  case w ith non-hierarchical higher order radiosity m eth ­

ods [129], values for this visibility te rm  V  which are other th a n  0 or 1 can cause 

problem s. If a discontinuity10 exists, in  the  radiosity function across a surface, 

then  th e  difference between sm ooth (averaging) functions at adjacent levels will 

often be significant, and th is prevents negligible coefficients for the  detail func­

tions. Visibility discontinuities are thus a m ajor source of non-negligible term s 

in th e  pro jected  kernel m atrix  — an issue worsened by th e  use of higher or­

der flatlets which, having such wide support, are more likely to  encounter such 

discontinuities.

T he algorithm s of this chapter m ark a fundam ental change in  th e  approach the

com puter graphics com m unity is taking, to solving the  rendering equation: the

9The only inner products which get stored.
10Due, say, to a major difference in the view nearby points on the surface have of an 

im portant emitter.
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trend  is very m uch tow ards setting th e  problem  in a sound m athem atical context 

and, by considering th e  problem  in these term s, exploring any solution m ethods 

which apply to  problem s of this type. It is the  au th o r’s view th a t it is exactly the  

algorithm s described in this, and the  next, chapter which illu stra te  this tren d  in 

the  radiosity community. I t is for this reason th a t care has been taken  to  describe 

the  algorithm s in such detail.

T he first p a rt of this chapter looked a t the  non-hierarchical higher order radiosity 

m ethods. W hilst no shattering conclusions were reached about th e  superiority 

of these m ethods over conventional approaches, some clear im provem ents have 

resulted:

A ccu racy: By using piecewise polynomial, ra ther th an  piecewise constant func­

tions, it is possible to  represent the  radiosity across m uch of the  scene, to 

w ithin a very high degree of accuracy. Incorporation of interpolation  into 

th e  solution process, ra ther th a n  th e  rendering phase, removes an anomaly 

th a t has long been present in constant radiosity algorithm s. The in troduc­

tion of th e  Galerkin m ethod, ra ther th a n  the  more conventional collocation 

approach, results in a m ore accurate kernel m atrix  th a n  is typically found 

in classical m ethods.

Fram ew ork: By couching the  problem  in term s of in tegral equations, and re­

stricting th e  solution of these equations to  m anageable function spaces, the  

higher order radiosity m ethods have set the  problem  in  a solid m athem ati­

cal framework. In tu rn , this allows researchers to  m ake concrete assertions 

about the  validity of their results, as well as clearly categorising the  prob­

lem at hand, so th a t research efforts can be usefully directed into other
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fields; which m ay already have solved some of th e  problem s faced by the  

com puter graphics community.

C o n v e rg e n c e : W hilst each iteration, in  th e  solution process, m ay be m ore costly 

th a n  a com patible iteration  in a constant radiosity algorithm , th e  higher 

order solution will converge in less iterations th an  its piecewise constant 

counterpart [28].

S to ra g e  co s ts : Higher order polynomials remove much of th e  need to  m esh a 

surface: Zatz [129] reported  solutions which differed little  from  high-quality, 

conventionally-produced, solutions for the same scene, bu t which required 

an order of m agnitude less m em ory to  store.

These im provem ents have not been w ithout their costs:

D is c o n tin u itie s :  Gibbs ringing behaviour results when finite order polynomials 

a ttem p t to m odel significant discontinuities in the  radiosity function across 

a surface.

E x p e n s e : Energy interchange between higher order polynomials m ay require 

a very large num ber of samples before a solution is possible. If th e  two 

polynomials are of order IV, then  (N  +  l ) 4 samples are required before 

energy exchange can be evaluated —  it is easy to  see how this figure could 

soar to unacceptable levels.

T he second p a rt of this chapter has been devoted to  wavelet radiosity which,

by using a hierarchy of basis functions, of arb itrary  order, has inherited  all of

the  advantages of conventional higher order m ethods, whilst keeping storage and

Optim ising D M R 3.4. Closing rem arks



C hapter 3. Higher order m ethods 129

speed costs down. N on-standard wavelet m ethods result in linear algorithm s, 

bo th  in storage and tim e, and whilst energy interchange betw een high order 

polynomials rem ains expensive, the  m ethod ensures th a t all such transfers are 

significant to  th e  final result.

The common problem  shared by all of th e  radiosity algorithm s discussed thus 

far concerns the  difficulties th a t arise when discontinuities exist in  th e  radiosity 

function:

•  In constant radiosity algorithm s, shadow leaks and fight leaks occur;

• In th e  conventional higher order algorithm s, Gibbs ringing results;

• In wavelet radiosity, large num ber of significant kernel entries result;

• In all m ethods, convergence rates are adversely affected.

It is apparent th a t correct handling of these discontinuities could help m ost of 

th e  algorithm s discussed thus far. A careful look at such discontinuities seems in 

order. T he nex t chapter describes algorithm s which locate these discontinuities 

a p r io r i, and which utilise higher order basis functions constructed  so th a t their 

support does not cross over any discontinuity deemed to  be significant.

Optim ising DM R 3.4. Closing rem arks



C hapter 4

D iscon tin u ity  m esh ing rad iosity

Thus far, this thesis has described a num ber of radiosity algorithm s which, whilst 

each having their own good and bad points, have all shared a com mon stum bling 

block: the ir inability to  handle shadows properly — particularly  sharp shadows. 

It is not, however, shadows per se which are the  problem; it is th e  inability of a 

piecewise constan t1 function to  accurately model a significant discontinuity lying 

w ithin the  support of one of its basis functions. Figure 4.1 shows an example 

where linear basis functions have been used to  model a function twice; once w ith 

uniform ly-positioned nodes, and again w ith carefully-positioned nodes. I t is clear 

th a t simply by taking care over node positioning (ensuring th a t discontinuities 

lie between elements ra th e r th a n  within  them ) a considerable increase in accuracy 

can be achieved.

This chapter describes algorithm s which recognise the  need for careful positioning

of nodes/elem ents across th e  support of the  function being modelled, and which

1or low order polynomial
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Figure 4.1: A ccurate modelling of th e  underlying function is not so m uch a
problem  of choosing th e  order of the  basis functions, and the ir num ber, bu t of
carefully choosing their supports.

use geom etric inform ation to  calculate these positions before light transfer takes 

place.

W hat constitutes a significant discontinuity in th e  radiosity function across a sur­

face? How can discontinuities be located an d /o r quantified? A num ber of term s 

and definitions are now introduced which should help answer these questions.

4.1 D iscon tin u ities  and their sign ificance

A function x ( s ) is said to be C° across th e  domain if:

V s  6 lim(a;(,s) — x (s  ±  8)) — 0 (4.1)

Functions which satisfy (4.1) are continuous in value. Functions whose k th deriva­

tive satisfy (4.1) are known as C k functions — continuous in  th e  kth degree. A 

function which is continuous in  every degree is said to  be C°°.
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A function x(s)  which fails to  satisfy (4.1) exhibits a discontinuity in value, and 

is called a D° function. A function whose (k  — l ) th derivative satisfies (4.1), but 

whose k th derivative does not, is known as a D k function, and is said to  exhibit 

a discontinuity in  the k th degree.

In  th e  case of th e  radiosity function across a surface, w here are these discon­

tinuities, if anywhere, likely to occur? Consider the  radiosity across a receiver 

surface r e v  lit by an em itter s rc .  The final radiosity across r e v  is the  sum  of 

any em itted  radiosity together w ith w hatever arrives from  s r c  (scaled by r e v ’s 

diffuse reflectance). Consequently, a discontinuity in

• the  em itted  radiosity, or

• th e  diffuse reflectance, or

•  a  surface norm al, or

• the  visibility te rm  between r e v  and s r c

are all likely to  cause discontinuities in  th e  final radiosity function.

In this thesis, it is the  last of these possibilities th a t is of interest. Such discontinu­

ities, in the  visibility te rm  between two surfaces, correspond to  visual events [39]. 

W hilst th e  o ther listed reasons m ay well cause discontinuities in scenes we wish 

to render, they  do not commonly cause problems w ith im age quality, or even 

accuracy. This is not true  of shadow discontinuities, caused by discontinuities 

in the  visibility te rm  between r e v  and s r c ,  and due to  th e  presence of one or 

more occluders lying between the  two: all of the  radiosity m ethods exam ined 

thus far have encountered difficulties w ith shadow discontinuities. T he hum an
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eye is particularly  a ttu n ed  to  contrast, ra ther th an  absolute in tensity  [115] and, 

as such, finds th e  absence of th e  perceptual cues usually provided by shadows 

(one of the  chief areas of contrast in m any scenes) m ost noticeable. Indeed, the  

im portance of realistic shadows, in  com puter-generated im ages, has long been 

apparent to  those creating the  images: shadow algorithm s are alm ost as old as 

rendering algorithm s [108].

The im portance of discontinuities in  gradient, to a hum an observer’s perception 

of an im age, is well known to those familiar w ith M ach banding — a feature not

uncom m on to  com puter-generated images. W ith  M ach banding, it is th e  presence 

of a discontinuity in gradient, where it was not expected, th a t a ttra c ts  th e  hum an 

eye. W ith  a  D 1 shadow discontinuity, it is the  absence of th e  discontinuity where 

it was expected, th a t th e  observer finds so noticeable.

Early radiosity algorithm s were praised [13] for their realistic, soft, area light 

source, shadows. Not all shadows are soft, however, b u t if th e  radiosity m ethod 

were able to  m odel all significant shadows in a scene, th en  th e  realism of the  

resulting images would surely be impressive. It is the  desire to  accurately account 

for all significant shadow discontinuities w ithin the radiosity m ethod, th a t drives 

this study.

Heckbert [54] has shown th a t in an arb itrary  environm ent, th e  radiosity function 

is capable of exhibiting discontinuities of every degree. I t is easy to  visualise 

a situation where a scene has a num ber of light sources, none of which exhibit 

discontinuities of any degree, which then  directly illum inate all surfaces visible 

to  them , and these surfaces then  illum inate all th e  surfaces they  can see, and so 

on (iteratively accounting for m ore and m ore term s in th e  N eum ann series (3.7)).
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However, shadow discontinuities will typically appear across th e  surfaces lit di­

rectly by the  sources, because of discontinuities in visibility betw een source and 

receiver. These discontinuities will then  propagate to  other surfaces (on the  next 

application of the  kernel function) and this transfer too will encounter obstacles; 

causing m ore discontinuities in th e  radiosity function. As the  process continues, 

and m ore and m ore term s in the  N eum ann series (3.7) are accounted for, more 

and more discontinuities of higher and higher order will appear in th e  radiosity 

function. A m ore form al proof, by counter-exam ple, can be found in  [54].

It should be clear th a t specifically accounting for an infinite num ber of disconti­

nuities, in the  function being modelled, will not be practical. Instead, only those 

discontinuities which are deem ed significant are accounted for. T he following 

sections exam ine some low order discontinuities in the  radiosity function, w ith a 

view to establishing which, if any, of these discontinuities should be accounted 

for when meshing an illum inated surface into elements.

4.1 .1  D °  D isco n tin u itie s

Discontinuities in value are a common feature of images rendered using the  ra ­

diosity m ethod2. M ost often visible in th e  form of light leaks or shadow leaks, they  

occur where different parts  of the  same elem ent3 have a radically different view of 

the  scene (figure 4.2). For exam ple, a floor in our scene m ay have been uniformly

meshed into a num ber of elements, and then  a box placed on th e  floor. Unless the

2They are even visible on the cover photograph of [24]; a highly-respected book on 
the radiosity method.

3Using finite element nomenclature, rather than classical radiosity nomenclature 
(patch).
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(i)

wall

light source

) o - : / / v

uniformly meshed floor
i  i
►shadow leak

light leak-

light source

light source 
\

shadow leaking from underneath box

Figure 4.2: Light leaks and shadow leaks occur when different parts  of the  same 
elem ent have radically different views of th e  scene.
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vertical sides of th e  box m eet th e  floor along elem ent/elem ent boundaries, then  

different parts  of any elements lying partially under the  box will certainly have 

radically different views of the  scene (figure 4.2.ii). Consider one such element, 

w ith some of its nodes hidden under the  box, and some of its  nodes well lit. It is 

easy to see how, when th e  nodal values are in terpolated across the  elem ent, light 

from the  lit nodes will leak under the  box, and ‘shadow ’ (for w ant of a b e tte r 

word) from th e  dark  nodes will leak out and appear on th e  floor, beside the  box.

In the  correct radiosity function across the  floor, there is a discontinuity in value 

along the  box/floor boundary. It is th e  failure of th e  uniform  elem ent m esh 

to  coincide w ith this boundary th a t causes the  problems. Figure 4.3 shows an 

exam ple of a D° discontinuity in the  radiosity function across a  surface. Also 

shown is a graph depicting the  radiosity along a line A B  in  th e  surface —  th e  

discontinuity is clearly visible as a ‘s tep ’ in th e  graph. A scene containing e edges, 

and hence 0 (e )  faces, can have 0 ( e 2) such critical boundaries, since 0 (e )  edges 

could intersect w ith each face in this way. In reality, the  figure is unlikely to ever 

be this large.

The problem  rem ained largely unaddressed, in the  radiosity com munity, until 

B aum  et al took a careful look at D° discontinuities in [7]. B aum  et al pre- 

processed their scenes w ith some intelligent m esh-generation code; ensuring th a t 

im plicit surface boundaries (such as the  box/floor case, ju s t discussed) did coin­

cide w ith boundaries in the  mesh. T hey also accounted for th e  D° discontinuities 

caused by situations such as a  carpet lying on a floor, as well a num ber of other 

awkward cases th a t can crop up if databases are rendered naively.

Once th e  surfaces to  be rendered have been successfully pre-processed, generating
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Figure 4.3: An exam ple of a discontinuity in value. The discontinuity (cor­
responding to the  polygon-meets-floor boundary) is clearly visible in the lower 
graph.
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*a mesh whose boundaries do coincide w ith any possible D° discontinuities, the  

application of th e  usual solution m ethod should now lead to  an im age free from 

any light or shadow leaks. Care m ust still be taken, however, w hen evaluating 

the  radiosity at those nodes positioned on the  critical boundaries: floating-point 

precision can cause problem s here, and th e  node m ay feel its  view of im portan t 

sources is being blocked by the  ‘box’^ c a rp e t’ causing the  discontinuity. As long 

as nodes lying on critical boundaries are labelled as such, and care is then  taken 

when evaluating how they  are lit, such problem s can be avoided [70].

4 .1 .2  D l  and  D 2 D isco n tin u itie s

Having established th a t D° discontinuities are of significance, and should be in­

corporated into th e  meshing process, w hat conclusions can be reached about 

higher order discontinuities? Figures 4.4 and 4.5 show, respectively, examples of 

first and second order discontinuities in the  radiosity function. Such discontinu­

ities occur when, as one is moving across th e  shadowed surface, th e  view of th e  

fight source changes dram atically  —  a visual event occurs. In order to expand 

on this point, let us in troduce some simple terminology:

• A lit region is one in which every point in the  region has a wholly unoccluded 

view of th e  entire fight source.

• A penumbra  region is one in which every point in th e  region can see some, 

b u t not all, of the  fight source.

•  An umbra  region is one in which every point in  the  region can see no p art 

of the  fight source.
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Figure 4.4: An exam ple of a first order discontinuity in the  radiosity function 
across a surface. The accompanying graph — which plots the  derivative of ra­
diosity along the line A B , shows the  discontinuities as sudden jum ps in value.
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Figure 4.5: An exam ple of a second order discontinuity in the radiosity function 
across a surface. The accompanying graph — which plots the  second derivative of 
radiosity along the line A B , shows the discontinuities as sudden jum ps in value.
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Clearly, when moving across a lit region, no dram atic changes will occur in  the  

view one has of th e  light source. Consequently, the  radiosity function across a 

lit region is com pletely free of shadow discontinuities. However, when crossing 

from  a lit region in to  a shadowed region, or vice versa , it is easy to see how 

w hatever occluder is casting th e  shadow m ust affect one’s view of th e  source, and 

thus discontinuities are to  be expected here. Similarly for the  boundary between 

um bra and penum bra regions.

A com prehensive study of visual events; covering where and why they  are likely to 

occur, was m ade by Gigus and Malik [39], who constructed th e  aspect graphs for 

polyhedral objects, for an application in machine vision. For polyhedral scenes in 

th ree  dimensions, Gigus and Malik identified two distinct types of visual event: 

edge-vertex (EV) events, and edge-edge-edge (EEE) events, bo th  of which define 

three-dim ensional critical surfaces. Because of the  difficulties associated w ith 

locating critical surfaces for anything other polyhedral scenes, this thesis (as 

others have done [54, 70, 31]) lim its itself to  such scenes.

EV events correspond an inter-visible edge e and vertex  v. T he critical surface 

corresponding to  such an event is a subset of the  plane which passes through e 

and v (figure 4.6(i)). Specifically, given any point P  on e, all points which he on 

the  straight line P u , bu t which do not he between P  and w, He in th e  EV critical 

surface. This surface is referred to  as an EV wedge, for obvious reasons. In fact, 

because of occlusion, th e  wedge m ay no t extend as far as figure 4.6(i) im phes — 

as iU ustrated by figure 4.6(ii).

E E E events correspond to  th ree inter-visible skew edges. T he critical surface 

corresponding to such an event is the  locus of a view-point from  which all th ree
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poly(e)poly(v)

Figure 4.6: (i) An edge-vertex (EV) visual event, w ith its corresponding wedge- 
shaped critical surface, (ii) Note how the rest of the scene m ay clip the critical 
surface.

edges are seen to  cross at a point (figure 4.7). This defines a quadric ruled 

surface [39].

Figure 4.8 illustrates three visual events involving a light source, where shadow 

discontinuities are expected. The figure shows the view from the  shadowed sur­

face, looking towards the light source:

D 2 E V : Figure 4.8(i) shows an EV event where, as one moves from an um bra 

region, into a penum bra region, a vertex of the source rises over the  hori­

zon (which is an edge of the  occluder). The fu rther one moves into the 

penum bra region, the more one can see of the source — its (triangular) 

visible area increasing quadratically with distance moved along the shad­

owed surface. This quadratic increase implies a second order discontinuity 

along this um bra /penum bra  boundary. Figure 4.5 shows an exam ple of this 

phenom enon; the graph showing eight sudden jum ps in value where the line
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®i

EEE critical surface

EEE critical curve

viewing plane

Figure 4.7: An edge-edge-edge (EEE) visual event, w ith its corresponding critical 
surface.

A B  has crossed a D 2 discontinuity.

D x EV : Figure 4.8(ii) shows an EV event where, as one moves from an um bra 

region, into a penum bra region, an edge of the source rises over the  horizon 

(which is an edge of the occluder). This is a special case of the  EV event 

ju st described: everything is the same, except th a t now, one of the source 

edges th a t subtends the ‘rising’ vertex, is parallel to  the  ‘horizon-edge’ of 

the occluder. In general, in such cases, the visible portion of the source is a 

trapezium , and so increases linearly in size, w ith distance moved along the 

shadowed surface. This linear increase implies a firs t order discontinuity 

along the um bra /penum bra  boundary. One can regard this (more severe) 

discontinuity as being due to  the  superposition of two second order discon­

tinuities of the type ju st described: each due to the  ‘horizon-edge’ of the 

occluder, and one end of the ‘rising’ source edge (figure 4.8(ii)). Figure 4.4
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f Key: \

occluder: [ 1 fsSSil

^  source: 1 1 )
Figure 4.8: The figure shows three views moving out of an um bra region into a 
penum bra region, looking from the shadowed surface, towards the  source. The 
source can be seen rising over the horizon formed by the edge(s) of the  occluder(s). 
Each case corresponds to  a different visual event.
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shows an exam ple of this phenom enon; the  four sudden jum ps in the  graph 

m arking w here th e  line A B  has crossed a D 1 discontinuity.

D 2 E E E : Figure 4.8(iii) shows an E E E event where, as one moves from  the  um ­

b ra  region into th e  penum bra region, an edge of th e  source rises over the  

horizon (consisting of edges from two occluders). T he fu rth er one moves 

in to  the  penum bra region, th e  m ore one can see of th e  source -— its (trian ­

gular) visible area increasing quadratically  w ith distance moved along the 

lit surface. This quadratic increase implies a second order discontinuity 

along th is u m bra /penum bra  boundary.

Critical surfaces, corresponding to  visual events such as those ju s t described, de- 

line th e  boundaries betw een regions across which the  visible portion  of th e  source 

rem ains topologically constant [39] (figure 4.9 illustrates this point, and figure 4.5 

shows a graph which dem onstrates such discontinuities). Across such regions, no 

dram atic change ever occurs in the  view one has of th e  source. Consequently, 

critical surfaces define the  boundaries between regions where one can expect the  

radiosity function to  be well-behaved.

In a scene containing e edges, there  can be as m any as 0 ( e 2) EV  critical surfaces, 

each of which m ay in tersect w ith a face, making a to ta l of 0 ( e 3) EV  critical 

curves. Similarly, there m ay be up to  0 ( e 3) EEE critical surfaces, w ith up to  

0 ( e 4) E E E critical curves. These figures seem prohibitively large. By lim iting 

our in terest to  critical surfaces which involve a single light source only, there  m ay 

be up to 0 ( e 2) EV  critical curves, and as m any as 0 ( e 3) E E E  critical curves. In 

m ost scenes, occlusion (which invalidates inter-visible) and parallel edges (which 

invalidates skew) will result in a m uch smaller num ber of critical curves.
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polygon representing the 
topology of the visible portion 
of the light source

Figure 4.9: Visual events correspond to  a change in the topology of the visible 
portion of the light source.

4.2 D iscon tin u ity  m esh ing

Consider a mesh, across any shadowed surface, constructed by evaluating the 

intersection of the surface with all relevant critical surfaces. One can reason­

ably expect the radiosity function, across the elements in such a mesh, to be 

well-enough behaved to  validate the approxim ation of the  function, across each 

elem ent, by some low order polynomial. If this transpires not to be the case, 

then  one can be confident th a t this is not because of a shadow discontinuity ly­

ing within the support of the element. If this discontinuity mesh  is now used as 

the basis for a radiosity solution of the scene, then all shadow discontinuities of 

first and second order, in the  radiosity function, will have been cap tured  by the 

mesh, and a highly accurate solution should result.
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Such an approach, first proposed by H eckbert (a colleague of Gigus) in [54], 

and im plem ented for the  flatland  case only, constitutes discontinuity meshing  

radiosity (DM R).

A num ber of algorithm s have come close to  im plem enting DM R, w ithout actually 

doing so. N ishita and Nalcamae [T9]4 used um bra and penum bra volumes to 

classify vertices in  their m esh as being either in um bra or penum bra, bu t did 

not actually incorporate the  shadow boundaries into their mesh. Cam pbell [15], 

following on from  his earlier work w ith  Fussell [14], used th e  sam e shadow volumes 

used by N ishita and Nakamae, bu t did incorporate th e  shadow boundaries into 

his meshing process. T he only discontinuities within  th e  penum bra, modelled 

by Cam pbell, were um bra EV events. U nfortunately, bo th  of these approaches 

were unable to  ex tract any useful object-space ordering from  the ir d a ta  structures, 

and so every polygon being classified as shadow ed/not-shadow ed had  to  be tested  

against th e  shadow volumes of all o ther polygons in the  scene.

This situation was im proved upon somewhat by Chin and Feiner [20], who split 

the  light source by the  planes of those polygons which were visible to  it and whose 

planes passed through it. This resulted in  a num ber of source fragm en ts , from 

which one could tou r th e  scene in a unique front-to-back order, by utilising the  

BSP tree  [35] in  which th e  scene was stored. This avoided redundant shadow- 

volum e/polygon comparisons, b u t had to  be repeated for each source fragm ent. 

Also, Chin and  Feiner’s algorithm  only dealt w ith direct illum ination.

A m ore detailed account of BSP trees and SVBSP trees [19], is given in ap­

pendix A.

following on from their previous work with point and linear sources [80].
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H eckbert [53] and Lischinski et al [70] were the first to im plem ent DM R for a 

three-dim ensional scene; the ir work having been carried out separately, b u t si­

multaneously. B oth  papers describe algorithm s which do not handle E E E events, 

th e  reasoning being th a t:

1. Such events are difficult to  locate; much simpler algorithm s can be used for 

EV events: an EV  critical surface lies in a plane, an E E E  critical surface 

lies in a quadric (figure 4.7).

2. Such events constitu te second order discontinuities, and these are the  least 

significant of th e  th ree  orders being modelled.

3. Such events always occur w ithin the  penum bra, which is bounded by EV 

critical surfaces, so EEE critical lines are not so noticeable w hen excluded.

More recent algorithm s [30, 105] have included EEE events, arguing th a t they  are 

im portan t because, w hen they  are present, they  define p a rt of th e  boundary of the  

um bra region. Ignoring E E E  events leads to  small parts  of the  u m bra  region being 

incorrectly classified as penum bra —  an error soon rectified when one a ttem p ts 

to  find out how the  source illum inates this region. Ignoring E E E  events am ounts 

to a trade-off: wasteful sampling of the  source versus expensive location and 

m anipulation of quadric surfaces. H eckbert [53], Lischinski et al [70], and the 

work described here, all opt for the  form er option; E E E events are ignored.
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4.2 .1  M esh in g  co n sid era tio n s

Having decided to  lim it th e  critical surfaces under consideration to  those which 

correspond to an EV event, one is left w ith the  problem  of locating these (semi- 

infinite) wedges, and finding the  line segments where th e  (possibly clipped) 

wedges m eet th e  scene polygons.

Heclcbert [53] describes an algorithm  where one evaluates ‘all significant’ EV 

wedges a p r io r i, and then  proceeds w ith a  hem i-cube-based, linear elem ent, col­

location radiosity solution, as per [73]. H eckbert gives no indication of how one 

determ ines which wedges are ‘significant’ and, when presenting his paper, freely 

adm itted  th a t th e  work was not com plete and only considers a  single light source. 

For this reason, it is Lischinski et aVs algorithm  [70] which is of m ore in terest 

here.

Lischinski et al describe an algorithm  where one does not a ttem p t to locate 

all, or all significant, discontinuities a priori. Instead, they  adopt a progressive 

refinem ent [21] approach whereby:

• A discontinuity m esh is built corresponding to an im portan t light source;

• The light then  illum inates the  mesh;

• A new source is chosen and a new mesh created and illum inated;

• The new m esh and the  original mesh are merged, and th e  process repeats.

In this way, the  final m esh will certainly contain all significant EV  discontinuity 

lines, and the  user will have been able to view the  scene as ex tra  meshes were
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added, ra th e r th an  waiting for a lengthy meshing and solution process before 

seeing an image. Also, th e  progressive refinement approach has the  added ad­

vantage th a t th e  user can stop th e  solution process as soon as th e  image seems 

‘good enough5.

By considering the  visual events associated w ith one polygon only (some im por­

ta n t em itter), th e  num ber of EV critical surfaces to  be evaluated drops from 

0 ( e 2) to O (e), for a scene w ith e edges. T here m ay still be as m any as 0 ( e 2) 

critical lines due to  this single source.

Considering only one polygon at a tim e pu ts a som ewhat different complexion 

on EV events in general: recall figure 4.6(i). The p art of th e  EV wedge which 

lies to  the  left of u, represents a discontinuity in  the radiosity which is leaving 

p o ly (e ) , heading towards v. The p a rt of the  EV wedge to right of e, represents a 

discontinuity in th e  radiosity which is leaving poly(t>), heading tow ards e. Once 

it is known th a t poly(i>) (say) is the  light source and th a t p o ly (e )  is unlit, the  

left hand  p a rt of the  wedge no longer represents any such discontinuity, only the 

right hand  p a rt represents a real discontinuity. T he converse is tru e  if p o ly (e ) is 

the  em itter, and p o ly (u ) is unlit. Dealing with the  emission from  each polygon 

in separate steps, splits th e  EV wedge of figure 4.6 into two distinct pieces.

A change of no ta tion  is called for, in order to  represent this situation  throughout 

the  rem ainder of this thesis. A visual event which involves an edge of an em itter 

and a vertex  of a non-em itter, is referred to as an edge-vertex (EV) event — 

w ith its associated critical surface, an EV wedge. A visual event which involves 

a vertex  of an em itter and an edge of a non-em itter, is referred to as a vertex- 

edge (VE) event — w ith its associated critical surface, a  V E wedge (figure 4.10).
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W hen referring to  visual events involving one edge and one vertex, regardless of 

where th e  em itter is, the  te rm  EV E will be used.

4 .2 .2  M esh  g en era tio n  u sin g  B S P  tree s

Having decided to  find all significant EV E critical lines on a per-polygon ba­

sis, there  rem ains th e  problem  of efficiently locating these lines, given a single 

polygonal source.

H eckbert’s algorithm  [53] com pared all polygons in the  scene w ith each critical 

wedge, resulting in a  num ber of 2D spans lying in th e  plane of th e  wedge — each 

corresponding to  the  intersection of th e  wedge w ith a scene polygon. In order to 

account for parts of th e  wedge being clipped away (figure 4.6(ii)) a 2D sweepline 

algorithm  was used, to  determ ine which parts  of these spans were hidden from 

the  wedge vertex.

A m ore efficient algorithm  was outlined by Lischinski et al [70], who utilise the  

fact th a t only polyhedral scenes are being considered, by storing the ir scene 

in a BSP tree  [35]. This means th a t one can traverse th e  scene front-to-baclc, 

from th e  vertex  of each VE wedge, visiting each BSP polygon5 in  order. The 

wedge is te sted  against each polygon encountered in the  front-to-baclc traversal 

—  if an intersection is found, a discontinuity line is added to  th e  m esh of the  

polygon, th e  wedge is clipped, and th e  traversal continues. Traversal can stop as 

soon as th e  wedge is com pletely clipped away; saving unnecessary wedge/polygon

comparisons. Notice th a t a w edge/polygon intersection, in such a  routine, should

5Notation: a BSP polygon is a polygon stored at a node of the BSP tree; this may 
be an original scene (OS) polygon, or may be some fraction of an OS polygon.
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VE w edge EV w edge

no discontinuity lines here

discontinuity lines here

Figure 4.10: Occluders lying between edge and vertex clip the  critical surface, 
bu t no discontinuity hue results. Occluders which intersect the critical surface 
result in a discontinuity line.

only result in a discontinuity Hue being added to the polygon’s mesh if the polygon 

lies behind the occluding polygon causing the wedge. O therw ise, the  wedge should 

be clipped, bu t no discontinuity Hue added (figure 4.10).

Lischinski et al [70] are not clear about how they actually go about deciding which 

VE wedge to process. In the im plem entation described here, BSP trees are used 

to m ake this selection, and to decide w hether or not a w edge/polygon intersection 

should result in a discontinuity hue, or not. By giving the  V E wedge front-to- 

back routine a list of current wedges to  carry (initially NULL), the  au th o r’s 

im plem entation (figure 4.11) makes a front-to-back traversal of the scene, from 

each source vertex, which at each BSP node:

1. Decides which polygons stored at the node are facing the  source vertex,
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2. Compares each polygon w ith  each wedge on the  curren t wedge list, adding 

a discontinuity line and clipping a wedge, for each intersection. Clipping 

m ay remove wedges from  the  current wedge list.

3. G enerates a list of new wedges, corresponding to  the  edges of the  polygons 

currently  being considered6 —  each wedge is tagged w ith  a pointer to the  

original scene polygon th a t is causing it.

4. Clips each of th e  new wedges by th e  polygons responsible for th e  wedges on 

the  current wedge list. Clipping m ay remove wedges from  th e  new wedge 

list.

5. Adds th e  new wedges to  th e  current wedge list, before continuing with 

recursion.

Lischinski et al are also unclear about how they  process EV wedges, saying this 

‘requires only m inor changes to  the  algorithm  used to  process V E events’ [70]. 

This is som ew hat misleading, since it implies th a t EV wedges are different to , 

b u t no m ore of a problem  than , V E wedges. This is not th e  case. Problem s w ith 

EV wedges include:

• F inding which occluders m ight provide the  vertex for such a wedge, and

• Finding th e  polygons which lie betw een the source edge and th e  occluder 

vertex: these polygons m ust clip th e  wedge before it is used to  generate any 

discontinuity lines.

6Some of these edges are not original scene edges, but have resulted from the con­
struction of the BSP tree: these edges are ignored.
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void VEfront-to-back ( VElist, pt, tree )

if ( tree == HULL ) 
return;

if ( in-front( pt, tree.plane ) {
VEfront-to-back ( VElist, pt, tree.pos ); 
disc-edges ( VElist, tree.posPolys );
new-wedges ( VElist, tree.posPolys );
VEfront-to-back ( VElist, pt, tree.neg );

} else if ( behind ( pt, tree.plane ) ) {
VEfront-to-back ( VElist, pt, tree.neg );
disc-edges ( VElist, tree.negPolys );
new-wedges ( VElist, tree.negPolys );
VEfront-to-back ( VElist, pt, tree.pos );

} else {
VEfront-to-back ( VElist, pt, tree.neg );
VEfront-to-back ( VElist, pt, tree.pos );

>
}

Figure 4.11: Pseudocode for the  au th o r’s m ethod of handling all V E wedges due 
to  a single source vertex. The routine disc-edges compares th e  current wedges 
w ith  the  pertinen t polygons; th e  routine new-wedges generates new wedges, clips 
them , and updates the  current wedge list.
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W ith  V E wedges, bo th  of these problems were neatly  handled by the  object- 

space ordering inherent in the  BSP front-to-back routine. W hilst the  first of 

these problem s can be handled fairly cheaply (clip the  edge w ith the  occluder’s 

plane), th is is not tru e  of the  second problem.

Before an EV  wedge can be taken through the  scene, front-to-back w ith  respect 

the  wedge (occluder) vertex, it m ust be clipped by all those polygons lying between 

the  source edge and th e  occluder vertex  (figure 4.10). Regardless of how this is 

done, it is a considerable com putational task, and makes EV  wedges m arkedly 

more expensive th a n  V E wedges to process. One approach which suggests itself, 

is to  traverse th e  scene front-to-back (from the vertex, as far as the  edge) to clip 

the  wedge, and then  pass those wedges which survive this clipping routine to 

the  V E front-to-back routine, to  go through the scene creating EV discontinuity 

lines. A nother approach is suggested in section 5.1.1. Suffice to  say here th a t EV 

wedges are not as cheap to  process as V E wedges.

4 ,2 .3  M esh in g  an orig in a l scen e  p o ly g o n

Now th a t routines which can generate EV E critical lines are available, the  prob­

lem of incorporating these lines into a useful mesh, across each polygon in the  

scene, rem ains. Following Lischinski et aVs [70] example, th e  au th o r’s im plem en­

ta tion  utilises a discontinuity meshing tree (DM -tree) for this purpose.

A D M -tree consists of th e  union of a 2D BSP tree, w ith a winged-edge da ta  

s tructu re  [9, 41] (W EDS). Each in ternal node of the  2D BSP tree  (hereinafter 

uvBSP  tree) contains the  2D line equation of an edge in th e  mesh, and pointers
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to  the  regions which He on either side of this line. Each leaf node of the  uvBSP 

tree  points to  a face of th e  W EDS (figure 4.12). A D M -tree is stored w ith each 

original scene (OS) polygon.

D uring the  construction of the  scene BSP tree, the  face representing the  OS 

polygon m ay be split, in which case the  single leaf node in th e  tree  is replaced by 

an interned node storing the  2D Hne equation of this split, and th e  tree  now has 

two leaf nodes, w ith  pointers to  the  faces which resulted from  the  spht.

W hen adding a  discontinuity Hne to  the  tree, th e  Hne segment representing th e  

discontinuity is filtered down the  tree, possibly being spht in to  a num ber of 

smaller segments in the  process, until finally every such segment arrives at a leaf 

node of the  tree. T he W EDS face representing such a leaf will now usually7 

be spht in two, and an edge representing the  discontinuity inserted  into the  

W EDS. If the  edge does not com pletely span the  face being spht, then  ex tra  

construction  edges are inserted into the  W EDS to keep it consistent (this is 

shown in figure 4.12). Each discontinuity edge is labelled w ith  th e  order of the 

discontinuity it represents.

Having processed all EV E wedges for the  current fight source, each scene polygon

has a m esh consisting of a num ber of construction edges, and probably a num ber

of discontinuity edges. I t now rem ains only to fit appropriate low-order elements

across each W EDS face in  the  mesh, and evaluate the  contribution of th e  fight

source at each node.

7A new edge may fie along an existing edge.
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Figure 4.12: T he figure shows a D M -tree for an OS polygon as two discontinuity 
edges are added to  th e  tree. Bold lines represent discontinuity edges; th inner 
lines are construction edges.
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M esh  illu m in a tio n

Because of th e  way th e  mesh across a receiver polygon was constructed, one 

can be certain  th a t the  resulting m esh faces, whilst all being convex, will vary 

massively in size, shape and num ber of edges. For these reasons, th e  faces are 

triangulated , to  m ake elem ent-fitting practicable. Heclcbert [53], Lischinski et 

al [70], and the  work described here, have all opted for triangulation  of th e  mesh.

In  [70], m esh faces are triangulated  by finding the  m id-point of th e  longest di­

agonal, and joining this new vertex  to  th e  remaining face vertices. This simple 

approach certainly yields a valid triangulation of the  mesh, bu t is far from  opti­

mal. A num ber of im provem ents are suggested in  th e  nex t chapter.

Having triangulated  th e  scene, elements of any order can now be chosen to  fit 

across each triangular face. Because of th e  inability of constant and linear ele­

m ents to  resolve second order discontinuities, which we have gone to  great lengths 

to accurately model, quadratic elements are used by the  au thor and by [70]. 

Q uadratic triangular elements require 6 radiosity values to  be stored for each 

wavelength of in terest —  one for each vertex, and one corresponding to  the  m id­

point of each edge [131]. The W EDS provides an ideal storage vessel for such 

values, since radiosity values can be stored w ith a vertex  (edge) in the  W EDS, 

and these can then  be easily accessed by faces which share th e  same vertex  (edge).

For a constant emission polygonal fight source, Lischinski et al evaluate the  con­

tribu tion  of the  source, to  a single point on the  receiver, using th e  analytic form 

factor form ula in troduced to  th e  com puter graphics com m unity by [8], originally
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from  [58]:

FdAr~A, =  f  2  C° i ^ (R ‘! 1p ^ 'l ) (R .ei X Hi) • Nr (4.2)
2tt- _̂_q ||R i0 i x  R J

This gives the  fraction of energy leaving the  n -sided source A s which arrives a t 

the  elem ental region d A r on the  receiver. The vector R* joins d A r to the  source’s 

ith vertex. T he symbol ‘0 ’ denotes addition modulo n. T he in terested  reader is 

referred to  [36] for a derivation of this formula from first principles.

If the  view of th e  source, from  the  point being lit, is unoccluded, then  (4.2) can be 

applied directly. If th e  view is partially  occluded, then  th e  occluders are pro jected  

onto th e  light source plane, where they are used to  clip away th e  hidden parts 

of th e  source —  (4.2) can then  be applied to  the  source fragm ents th a t remain. 

Using an analytic form ula, in this way, guarantees th e  accuracy of th e  radiosity 

values stored w ith th e  mesh nodes.

Lischinski et al [70] are unclear about how they go about establishing w hether 

the  node being illum inated can actually see the source, or not. It seems th a t they 

com pare th e  entire scene w ith the  frustum  defined by the  source and th e  node — 

presum ably after having clipped away all polygons lying behind th e  source and 

behind th e  receiver, and possibly after culling those polygons which lie outside 

of a shaft [15, 47] joining th e  two. This is still an O (e) problem , for a scene w ith 

O (e) polygons, and  seems an expensive solution, particularly  when one considers 

how m any tim es the  operation has to be carried out. An alternative approach, 

im plem ented by the  author, is described in the next chapter.

In la te r iterations of the  progressive refinement routine, after light has been shot 

from all the  sources, the  shooting polygon’s radiosity will be represented by a
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DM -tree. As such, the  radiosity across its surface is likely to  be far from con­

stan t, thereby invalidating any simple application of (4.2). Lischinski et al [70] 

are sketchy about how they  account for this case, saying they  use an algorithm  

‘similar to ’ Tam pieri and Lischinski’s algorithm  [110] which adaptively splits the 

source until th e  radiosity across each fragm ent is roughly constant, then  sums 

the  contribution from  each fragm ent. Presum ably, ‘similar to ’ m eans they  utilise 

the  uvBSP struc tu re  of th e  source’s DM -tree to  fragm ent th e  source, ra ther than  

a quadtree (which was used in [110]), b u t one cannot be sure.

A d a p tiv e  su b d iv is io n

Given an initial triangulation  of th e  discontinuity mesh across a receiver surface, 

one cannot guarantee the  user’s desired level of accuracy, sim ply by fitting a 

quadratic elem ent across each triangle in the  mesh. Large triangles, poorly- 

shaped triangles, and triangles across which the  radiosity is varying rapidly, can 

all lead to situations where the true  radiosity function is ill-represented by the  

quadratic element.

In order to account for such situations, a routine is needed w hereby one establishes 

which triangles are causing problem s, and either:

• replaces the  quadratic element w ith an element better-ab le  to  represent the  

true  radiosity function across the  triangle, or

•  subdivides the  triangle into a num ber of smaller triangles, so th a t the  single 

quadratic elem ent is replaced by a  num ber of smaller quadratic  elements.
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Lischinski et al [70] opted for th e  la tte r  option. Salesin et al [90], when faced 

w ith an identical problem , opted for th e  form er option; replacing th e  quadratic 

elem ent w ith a Clough-Tocher elem ent, consisting of th ree  triangular cubic ele­

m ents m anipulated so as to  ensure C 1 continuity across those elem ent/elem ent 

boundaries w here it is expected. The im plem entation described here currently 

employs th e  subdivide option.

Having decided to  subdivide problem  triangles, there  rem ains th e  problem  of 

efficiently locating these triangles. Lischinski et al [70] approxim ate th e  infinity- 

norm  error m etric, which gives the  m axim um  absolute difference betw een the  true  

radiosity and the  in terpo lated  radiosity, across the  elem ent. This approxim ation 

is achieved by evaluating th e  tru e  radiosity a t the  centroid of th e  triangle, and 

com paring this value w ith the  in terpolated  value there (subdivide if this is larger 

th an  some user-defined threshold). Clearly, this is an expensive option, requiring 

the  location of any occluders which m ay lie between the  centroid and the  source, 

before any contribution can be evaluated. W hilst this m ethod has been success­

fully im plem ented by the  author, an alternative (cheaper) stra tegy  is suggested 

in th e  next chapter.

W hatever m ethod is used to  locate problem  triangles, a suitable algorithm  for 

actually subdividing the  triangle is still needed. As per [70], th e  au thor has 

im plem ented R ivara’s [88] 2-triangle subdivision m ethod. R ivara’s algorithm  was 

designed for m ulti-gridding in finite element analysis (described in section 2.2.4), 

w hereby an initial m esh is selectively refined until th e  desired level of accuracy is 

reached —  m aking it ideally suited to  the  problem at hand. R ivara’s algorithm  

is particularly  appropriate since it leads to  well-shaped triangles, and guarantees
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[deally, a triangle is split by joining the mid-point of its 
longest edge (M-|) to the opposite vertex (A)

A

B

Unfortunately, such a subdivision may lead to a 
neighbouring triangle with one of its shorter edges 
split - in this case, its longest edge is split at its mid­
point (M2) and this is joined both to the problem ver­
tex (M-j) and to the opposite vertex (B)

Figure 4.13: R ivara’s 2-triangle subdivision m ethod.

a sm ooth transition  from  large triangles to  small triangles —  bo th  desirable 

properties for our m esh [8]. R ivara’s algorithm  is outlined in  figure 4.13.

Once a m esh has been refined to the  satisfaction of th e  user, an im age can be 

generated by ray tracing (eye rays only) th e  BSP tree containing the  scene. Be­

cause of the  object-space ordering one is able to ex tract from  a BSP tree, ray 

tracing BSP trees is a particularly  fast form of ray tracing [112]. W hilst Lischin­

ski et al [70] generated their images using ray  tracing, an even faster im age could 

probably be achieved by im plem enting th e  front-to-back BSP display m ethod 

described in [44].

M esh  m erg in g

As has already briefly been m entioned, Lischinski et al [70] im plem ented a system  

whereby at each iteration:
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• the  contribution from  the  shooting polygon, on a receiver, is stored in a 

DM -tree;

• this is then  merged w ith the  m esh (DM -tree) corresponding to  the  contri­

butions of previous iterations.

In order to  achieve th is m esh merging , Lischinski et al [70] take  th e  two discon­

tinu ity  meshes, ex tract th e  discontinuity edges from each, and build a new mesh 

using these edges as its s tarting  point. This new m esh is then  triangulated , and 

quadratic elements are fitted  across each triangle, as before. In order to  calculate 

the  radiosity value stored a t each node in th e  new mesh, no source sampling 

need be carried out. Instead, interpolated values, corresponding to  the  node’s 

location, are ex tracted  from each of the  first two meshes, and th en  simply added 

together. The first two meshes can now be deleted, an im age (if called for) can 

be generated, and th e  code can move on to the  next iteration.

W hilst such a mesh-m erging approach seems fine in theory, in practise this tra n ­

spired not to  be the  case. Lischinski et al [70] report being able to achieve 

converged solutions for simple scenes, b u t for larger scenes their code was un­

able to handle th e  excessive m em ory requirem ents. They report results for a 

com plicated8 scene after only two iterations —  one of which produced a p ar­

ticularly simple mesh, being due to  a  small, d istant, polygon representing th e  

sun. In  order to  merge meshes, it  is necessary, at the  end of each iteration , to 

sim ultaneously store three DM -trees on each scene polygon: th e  old mesh, the 

la test itera tion  mesh, and the  m erged mesh. Once merging has been com pleted,

two of these meshes can be deleted, bu t it is easy to see how th ree  winged-edge

81382 polygons
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d a ta  structures (even w ithout their accompanying uvBSP trees) could take up 

an awful lot of space (see appendix B). An alternative approach is suggested by 

th e  author, in  th e  next chapter.

A  clo sin g  rem ark

In chapter 3, th e  Galerkin m ethod was shown to be an im provem ent over the  col­

location m ethod, because the  Galerkin m ethod makes a m ore stringent evaluation 

of the  kernel function. W hilst th e  m ethod described here am ounts to a re tu rn  

to  the  collocation m ethod (in th a t radiosity is evaluated on a vert ex-by-vert ex 

basis) it is im portan t to note th a t great care has accom panied th e  positioning  

of these vertices and, because of this, the  earlier sta tem ents about the  relative 

accuracy of the  collocation m ethod are not pertinent here.

4.3 C om bin ing d iscon tin u ity  m esh in g  and h i­

erarchical rad iosity

Recognising some of the  deficiencies in their own m ethod, and th e  advantages 

of hierarchical radiosity [50], Lischinski et al produced a second paper [71]; de­

scribing a com bination of the  two m ethods. The illum ination p a rt of their new 

algorithm  is split in to  two distinct parts: a global pass and a local pass.

Their global pass proceeds exactly as per H anrahan’s hierarchical algorithm  [50] 

(described in section 2.2.4 of this thesis) w ith the  exception th a t ra th e r th an  using 

a quadtree subdivision m ethod, Lischinski et al [71] use a B SP-based subdivision
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m ethod which favours division along known lines of discontinuity in th e  radiosity 

function. This is achieved by storing, w ith each node in the  hierarchy, a list of 

prim ary discontinuities which lie in th e  region represented by th e  node. P rim ary 

discontinuities are D° discontinuities and D 1, D 2 shadow discontinuities due to 

prim ary  light sources. Discontinuities due to  surfaces which are not prim ary 

light sources are not modelled by their algorithm . In th is way, when a node 

needs subdividing, one can:

• exam ine th e  list of discontinuities stored w ith th e  node, and choose one 

which is of low order9 and which m ost-nearly bisects the  region represented 

by the  node;

•  create two new lists of discontinuities by splitting those on th e  current list 

w ith th e  hne ju st chosen;

• subdivide the  node along the  chosen Hne, giving each child one of the  new 

lists.

Subdividing a node which has no discontinuities is even simpler —  one need only 

consider the  geom etry of the  problem. Having refined the  hierarchy in this way, a 

da ta  s truc tu re  results which is identical to  H anrahan’s [50], except for its binary 

na tu re  and its lists, and so th e  system  can now be solved by passing radios­

ity  values down the  da ta  s tru c tu re ’s links. This results in a piecewise constant 

approxim ation to  th e  global illum ination in the scene. This approxim ation is 

m arkedly m ore accurate [71] th an  a com parable conventional hierarchical solu­

tion, because the  new algorithm  is so quick to separate regions which have an

9i.e., the order of preference being D°, D 1, D 2.
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occluded view of th e  prim ary sources from  those which do not —  a m ajor source 

of error in m ost radiosity systems.

T he local pass, which follows th e  global, is designed to  accurately  reconstruct the 

radiosity function across each polygon in the  scene, using th e  global solution as 

its s tarting  point. The local pass begins by triangulating each polygon. This is 

achieved using a constrained D elauney triangulation (CD T) [18] routine, which 

takes a  set of points, and a set of edges, and makes an optim al triangulation of 

th e  points which includes all of th e  given edges. Given a tree  representing th e  

radiosity across a polygon, the  CDT routine is passed th e  vertices of the  leaf- 

node regions in th e  tree, plus any discontinuity edges stored in the  tree. Once 

this triangulation  has been carried out, one can fit quadratic  elements across 

each resulting triangle, and it only rem ains to evaluate accurate radiosity values 

for the  e-nodes10 of every such element; using the  inform ation stored during the  

global pass.

Lischinski et al [71] describe a num ber of m ethods for im plem enting this last step; 

the  different m ethods varying considerably in term s of bo th  accuracy and cost. 

T hey begin w ith an analysis of the  causes of error in such a situation, m aking 

the  observation th a t: given a constant representation for the  radiosity across a 

receiver, due to  some source, the am ount by which the  true value, a t any point 

on the  receiver, varies from  the  constant value, depends on:

• how m uch th e  radiosity varies across the  source,

• how m uch the  (unoccluded) form  factor between receiver and source varies

10Tlie term e-node is introduced so tha t one can distinguish between nodes of a 
quadratic element and nodes in the hierarchical representation of the radiosity across 
a polygon.
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over th e  receiver, and 

• how the  visible fraction of the  source varies over th e  receiver.

Lischinski et al [71] point out th a t, when developing an algorithm  to  accurately 

evaluate the  radiosity a t some point on a receiver, im proving the  way th e  algo­

rithm  evaluates any of these th ree  variables, will improve th e  overall accuracy of 

th e  m ethod.

Based on this analysis, four different m ethods for evaluating th e  contribution of 

th e  global pass solution to the  e-nodes created in the  local pass, are described. 

These are:

m e th o d  A : If an e-node lies entirely w ithin the region corresponding to a leaf 

node, take the  node’s radiosity value. If an e-node lies on the  boundary of 

two or m ore leaf node regions, average th e  nodes’ radiosity values.

m e th o d  B : Unlike conventional hierarchical radiosity, links do no t store a single 

form factor value, bu t an unoccluded form factor (from the  centre of one 

node’s region to  the  other node’s region) and a corresponding visibility te rm  

V  6 [0,1]. In  Lischinski et aVs second local pass m ethod, they  recalculate 

the  unoccluded form factors on all links of nodes containing the  e-node 

(from th e  e-node itself), b u t still use the  visibility te rm  stored w ith the 

links.

m e th o d  C : Taking m ethod B one step further, the  th ird  m ethod  not only re­

calculates unoccluded form  factors, ignoring the  values stored w ith th e  links, 

bu t also re-calculates th e  visibility term s from th e  point of view of the  e- 

node, not the  centre of the  some node in the  hierarchy.
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m e th o d  D : T he last m ethod describes tries to reduce costs by using m ethod C 

for links to  prim ary light sources, whilst using m ethod B for all other links.

To te st the ir different local pass strategies — designed to  give the  user an op­

portun ity  to  trad e  accuracy for speed —  Lischinski et al took th ree  different 

hierarchical (global pass) solutions of a test scene (low, m edium  and high accu­

racy) and applied th e  different local pass m ethods to  each one.

Their results indicate th a t, even given a  coarse hierarchical solution, by including 

all discontinuity edges in the  local pass, and using m ethod C, a surprisingly 

accurate solution results. M ethod B and m ethod A are quicker, b u t less accurate, 

and m ethod D (which is all b u t indistinguishable from  m ethod C) is hardly  more 

costly th an  m ethod B, b u t noticeably m ore accurate. T heir results also confirm 

th a t th e  local pass is well w orth th e  tim e spent carrying it out: a m edium  accuracy 

global pass solution, when passed to  th e  m ost expensive local pass routine, still 

produced an im age far faster th an  and m ore accurate than , a high accuracy global 

pass solution followed by the  simplest of the  local pass routines.
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O ptim ising  d iscon tinu ity  

m esh in g  rad iosity

T he previous chapter gave a comprehensive account of discontinuity meshing 

radiosity, as it has been im plem ented by others [53, 70, 71]. In this chapter, the  

au th o r’s work is described in greater detail; w ith the  em phasis on those areas 

where th e  algorithm  differs from previous approaches.

Essentially, the  algorithm  described here is similar to  th a t described in [70], w ith 

a num ber of notable differences. How the  new algorithm  differs, and how the 

overheads of discontinuity meshing radiosity have been consequently reduced, is 

described in  detail in this chapter. Briefly, the  enhancem ents include:

S h adow  classification : Unlike m any previous DM R algorithm s, each element 

in  every D M -tree is classified as being either lit, in  penumbra  or in  um bra , 

before any effort is m ade to  illum inate the  mesh. Those elements which lie 

in penum bra, store a list of the  polygons in whose shadow they  lie.
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M in im u m  c a n d id a te  lis ts : A novel ordering is ex tracted  from  th e  BSP tree 

in which the  scene is stored. I t has long been possible to  m ake an in-order 

traversal of the  polygons stored in  a BSP tree, w ith the  respect to a given 

point [35], The same has not been true  of a traversal w ith respect to a 

given polygon [20]. The new algorithm  goes some way tow ards addressing 

this problem .

M e s h  t r i a n g u la t io n :  Two new triangulation  schemes are in troduced  —  bo th  of 

which seem to exhibit a num ber of advantages over the  m ethod  im plem ented 

by Lischinski et al in  [70].

M e s h  m e rg in g : In the  last chapter, the  m emory requirem ents associated w ith 

m esh merging were shown to be considerable. Because of th e  difficulties of 

m erging DM -trees, th e  im plem entation described here stores DM -trees in 

layers. The storage savings of such an approach are significant.

5.1 O p tim isin g  m esh  illu m in ation

There is a surprising feature of discontinuity meshing radiosity (DM R) algo­

rithm s [53, 70, 71], which separate them  from their predecessors [79, 15]. W hilst 

D M R algorithm s expend great effort in  accounting for lines of probable discon­

tinu ity  in  shadow regions, only in very recent algorithm s [37, 30, 105] are any 

actual shadow regions located.

T he advantages of knowing exactly which regions are fit, which are shadowed, and 

w hat is casting th e  shadow, becom e apparent as soon as one tries to  illum inate 

a D M -tree. For every e-node of a triangular m esh elem ent, it  is necessary to
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establish which polygons, if any, He between th e  e-node and the  source. W ithout 

this inform ation, it is impossible to  tell:

• w hether one should be applying (4.2, pg 159) directly, or

• w hether regions of th e  source are hidden from the  e-node, and so one should 

only apply (4,2) to  the  source’s visible parts, or

• w hether th e  source is completely hidden from th e  e-node, and any fu rther 

com putation will be wasteful.

In order to  find any occluding polygons, and w hether or not they  completely, 

or only partially, hide the  e-node’s view of the  source, one m ust build, for each 

(source, receiver) pair, a candidate list of polygons which He betw een the  two. 

Then, for every e-node in th e  receiver’s DM -tree, one m ust build th e  frustum 1 

defined by th e  source edges and the  e-node itself. This frustum  can now be 

com pared w ith every polygon on the  candidate fist to estabfish w hether th e  e- 

node is Ht, in penum bra, or in  um bra (figure 5.1).

Given the  regularity w ith which th e  code will need to  illum inate an e-node by

a given source, it is clear th a t short, cheaply-obtained, candidate Hsts would be

desirable. Traditionally [15, 47], candidate Hsts are obtained by com paring every

polygon in th e  scene w ith th e  plane containing the  source and the  plane containing

the  receiver — any polygon lying to tally  behind either of these planes is excluded

from further consideration. An optional fu rther step is to  shaft cull [47] those

polygons which rem ain.

1possibly chpped by the plane containing the receiver
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source

occluder clips frustum

frustum

e-node;

receiver

Figure 5.1: T he frustum  corresponding to  each e-node on a  receiver m ust be 
com pared w ith  all polygons which m ay block th e  node’s view of th e  source.

5.1 .1  M in im u m  ca n d id a te  lis ts

In the  algorithm  im plem ented by the  author, a similar2 clip /clip /cu ll procedure 

is carried out. However, ra th e r th an  beginning the  process by considering every 

polygon in th e  scene, an ordering is ex tracted  from th e  scene BSP tree  which 

allows th e  algorithm  to  ignore m any scene polygons which would otherwise have 

to regarded as po ten tial occluders. These m inim um  candidate lists can then  

be com pared w ith  source and receiver planes, and shaft-culled, as before. T he 

following paragraphs outline the  process for obtaining these lists.

W hen generating V E wedges, for a particu lar polygonal light source, the  scene

BSP tree  is traversed once for each source vertex. For each such traversal a list

(a vertex ordering), storing th e  order in which the  routine visited th e  BSP tre e ’s

nodes, is generated. A bit-m ask is stored w ith each BSP tree node, and this is

2to shaft-culling [47]
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void VEfront-to-back ( VElist, pt, tree, ordering ) 
{

if ( tree == HULL ) 
return;

if ( in-front( pt, tree.plane ) ) •{
VEfront-to-back ( VElist, pt, tree.pos, ordering ) ,* 
ordering = ordering + tree; 
update ( tree.bits, PQS ); 
disc-edges ( VElis, tree.posPolys ); 
new-wedges ( VElist, tree.posPolys ); 
VEfront-to-back ( VElist, pt, tree.neg, ordering ); 

else if ( behind ( pt, tree.plane ) ) {
VEfront-to-back ( VElist, pt, tree.neg, ordering ); 
ordering = ordering + tree; 
update ( tree.bits, MEG ); 
disc-edges ( VElis, tree.negPolys ); 
new-wedges ( VElist, tree.negPolys ); 
VEfront-to-back ( VElist, pt, tree.pos, ordering ); 

else ■{
VEfront-to-back ( VElist, pt, tree.neg, ordering ); 
VEfront-to-back ( VElist, pt, tree.pos, ordering );

>

Figure 5.2: The V E wedge front-to-back routine is altered to  re tu rn  a vertex 
ordering, and to  record a t each BSP node how the  node was seen by each source 
vertex.

updated  during each traversal so th a t one can tell:

•  which orderings th e  node appears on, and

• w hether the  various source vertices he in front of, or beh ind2, th e  plane 

stored  w ith  th e  node.

Notice th a t bo th  these pieces of inform ation come for free, if one is making a

front-to-back traversal of a  BSP tree  (figure 5.2). In th e  current im plem entation,

2If a source vertex lies in  the plane of a BSP tree node the node will not appear on 
the list corresponding to the vertex.
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src

front-to-back(x) = B+, D\ F+, E', C' 
front-to-back(y) = B+, C+, D', F+, E'

min-candidate-list(B) = NULL, 
min-candidate-list(C) = 1, 4, 6 
min-candidate-list(D) = 1,2 
min-candidate-list(E) = backfacing 
min-candidate-list(F) = 1,2,4

Figure 5.3: The m inim um  candidate list algorithm  applied to a simple scene. 
Nodes which face 0 source vertices and which have no back-facing polygons, can 
be ignored (node E).

sources w ith up to four vertices are considered, so each node has four bits in­

dicating which orderings the node appears on, and four bits indicating w hether 

the vertex lay in front of, or behind, the node’s plane. Once these orderings 

one for each source vertex  — have been generated, it is possible to combine the 

ordering inform ation, encapsulated in each list, to obtain a m inim um  candidate 

list for the polygons stored with each node.

Most nodes will appear on an ordering. The only nodes which appear on no 

orderings correspond to  polygons which he in the plane of the light source.

Given any node which appears on at least one ordering, the m inim um  candidate 

list algorithm  proceeds as follows: For every ordering containing the  node, step

O ptim ising DMR 5.1. Optim ising mesh illum ination
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youngest common ancestor

Figure 5.4: T he youngest common ancestor of two BSP tree  nodes.

through th e  ordering until the  ta rge t node is reached. W hilst stepping through 

the  orderings, if a node is encountered whose bit-m ask tells us is front-facing 

w ith respect to  th e  ordering’s vertex, then  the  node’s front-facing polygon(s) are 

added to  the  candidate list. If a node is encountered which is back-facing w ith 

respect to  the  ordering’s vertex, th e  node’s back-facing polygon(s) (if any) are 

added to  the  candidate list. Notice th a t this approach autom atically  excludes any 

polygons which are facing away from  the  source (polygons 3 &: 5, in figure 5.3). A 

simple alteration  would result in a similar algorithm  which excluded all polygons 

facing the  source. This algorithm  m ay well try  to add the  sam e polygon to  th e  

candidate list m ore th a n  once, b u t this is trivially guarded against.

How can one be sure th a t th e  polygons, generated by the  algorithm  ju s t described, 

include all polygons lying ‘betw een’ the  source and the  receiver? The algorithm  

assumes th a t th e  vertex  orderings capture all possible orderings of the scene, 

from points on th e  source: this is affirmed by the  following theorem .

Theorem: Consider a polygonal light source, from each of whose vertices a

front-to-back traversed of a BSP tree is made. Each traversal is recorded in  a 

separate vertex ordering. Now, if a front-to-back traversal of th e  BSP tree, from
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any point A on th e  source, encounters a node rij before some o ther node then  

there is a t least one vertex  ordering which encounters those nodes in  this same 

order.

P roof: Let n yca he th e  BSP tree  node which is the  youngest common ancestor

of rij and n^. This common ancestor m ay be nj  or (figure 5.4). Let P  be the 

plane stored w ith n yca-

All front-to-back traversals, from points which He on the  sam e side of P  as A, 

will visit ri j  before n^.  All traversals from  points which He on th e  opposite side 

wifi visit 7ik before ri j .

If the  source Hes whoHy on one side of P ,  then  e v e r y  vertex Hes on th e  same side 

of P  as A, so every vertex  ordering will encounter rij  before rik-

If P  passes through th e  source then , because the  source is a polygon, there  is at 

least one vertex  which Hes on the  same side of P  as A, or Hes in  P  w ith A, and 

th e  ordering corresponding to  this vertex wiH visit rij before

Q.E.D.

The algorithm  apphes to  convex and concave polygons afike. In fact, a short-cut 

is possible for concave polygons whereby only orderings corresponding to  a vertex 

of the  source’s convex hull, are considered by the  algorithm .

Polygons close to  the  vertex end up w ith very short candidate Hsts (em pty Hsts 

are not uncom m on, for such polygons). Polygons which are fu rther from  the 

source end up w ith longer Hsts. The m ean length of a  candidate Hst, for the

Optim ising DM R 5.1. O ptim ising m esh iHumination
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Figure 5.5: E xtracting  object-space ordering inform ation from  the  scene BSP 
tree can prevent testing hopeless polygons for occlusion.

scenes tested  by the  au thor, is usually somewhere between 1 /4  and 1/2 of the 

to ta l num ber of polygons in  th e  scene (figure 5.5). Long candidate hsts result 

when the  source is split by th e  plane of a node close to  th e  root of th e  scene BSP 

tree  —  in which case radically different vertex orderings arise.

The algorithm  can also be used to  establish which polygons m ay He between the  

edge and th e  vertex  of an EV wedge —  a problem  discussed in section 4.2.2. 

Each source edge corresponds to two vertex orderings: these orderings can be 

processed exactly as before to give a list of polygons which m ay He between
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the  source edge and th e  occluder vertex. The EV wedge can be clipped by these 

polygons, before going front-to-back through the  scene (from th e  occluder vertex) 

to  generate discontinuity lines.

Having generated a  m inim um  candidate list for a (source, receiver) pair, th e  list 

could be used naively, and every e-node/source frustum  could be com pared with 

the  list. This is not th e  approach taken  here: the  list is used to  efficiently establish 

which polygons are shadowing which parts  of the  receiver, so th a t  each e-node 

can consult its own (tailored) candidate list.

5.1 .2  Shadow  c la ssifica tio n

If each elem ent in the  D M -tree stores th e  specifics on how it is shadowed, then  

one can establish very quickly w hether an e-node is lit, in penum bra or in um bra. 

Only in  th e  second of these cases need one proceed any fu rther, and look-up the  

list of occluders in  whose penum bra this e-node Hes. This Hst of occluders can 

then  be used to  chp th e  e-node/source frustum , so th a t only visible parts  of the  

source contribu te to  the  illum ination of the  e-node.

Initially, it had  been hoped th a t it would be possible to  shadow classify mesh 

elements simply by touring their edges and examining th e  inform ation stored 

there: which wedge caused the  edge; which (if any) shadow volume did the  

wedge bound; which occluder was involved. Early results were promising, bu t 

it becomes apparent th a t whilst such approaches are suitable for finding th e  

boundary of shadow regions [31], they  are not practical for estabfishing accurate 

occluder candidate Hsts for the  region. An occluder can shadow a region w ithout
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actually having any EV E wedges intersect w ith it. An alternative approach was 

sought.

In the  im plem entation described here, original scene (OS) polygons store two 

shadow visibility BSP (SVBSP) trees [19]; one for the  penum bra (due to the 

current source) and one for th e  um bra. T he shadow volumes are constructed 

incrementally, as the  EV E shadow wedges are processed:

•  when a wedge is created, the  im plem entation first decides w hether its plane 

bounds the  penum bra volume, the  um bra volume, or neither.

• If the wedge plane does bound a shadow volume, then  th e  plane is added 

to  the  appropriate SVBSP tree, for use later.

SVBSP tree-building is particularly  cheap; each tree is built solely from planes 

which are a by-product of EV E wedge processing. W hen discontinuity meshing 

is complete, all OS polygons have two shadow volumes stored.

Not all polygons have a non-em pty um bra volume. These polygons are quickly 

found by exam ining the  bit-m asks3 stored w ith each BSP tree  node (figure 5.6): 

some nodes will face towards some source vertices, and away from  others; some 

nodes will not appear on all orderings. T he relevant polygons, stored w ith such 

nodes, have the ir um bra volumes deleted.

In order to  generate a list of polygons which actually cast a shadow on a given

receiver, the  BSP node at which the  receiver is stored is passed to  th e  minim um

candidate hst routine. The resulting candidate hst is then  clipped by th e  source

3set when handling the VE wedges
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Node polygons lie in source plane

Node.negPoIys are facing source 
source is behind Node.posPolys

Node.posPolys are facing source 
source is behind Node.negPoIys

Node.negPoIys are facing source 
Node plane passes through a source edge ... no umbras

Node.posPolys can see verts 1 & 2.
Node.negPoIys can see vert 3 
Node plane passes through vert 4 .... no umbras

Figure 5.6: Some conclusions which can be reached by exam ining BSP bitm asks 

and receiver planes, and shaft culled [47].

The polygons left on th e  pruned candidate hst are now used to  classify each ele­

m ent in the  receiver’s D M -tree as being either lit, in penum bra, or in  um bra: Hsts 

of occluders are stored w ith penum bra regions. One could utilise th e  hierarchical 

n a tu re  of the  DM -tree to  achieve this, as Cam pbell has done [15]. The current 

im plem entation, however, does not.

Shaft cu llin g

Shaft-culling takes num erous forms [47, 15]. Essentially, given a (source, receiver) 

pair, shaft-culling involves th e  creation of a set of planes which enclose, as snugly 

as possible, all th e  line segments obtained by joining a point on th e  receiver to 

a point on the  source. Given this collection of planes, one can shorten a given 

candidate Hst by excluding all those polygons on th e  Hst which He outside of the 

shaft defined by the  planes.

A num ber of different m ethods have been proposed for creating the  shaft planes 

betw een a polygonal source and receiver. Haines and Wallace [47] exam ine the  

axis-aHgned bounding boxes of the  two polygons, and build a shaft from planes

| O n  ord er in g?  ; F ron t-facin g?  |

0 0 0 0 ? I ? ?

1 1 1 1 0 0 0 0
;

1 1 1 1 1 1 j 1 1

0 1 1 I o 0 0

0 1 1 1 ? 0 1 1
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which pass through an edge of each box. W hilst this is suitable for polygons 

and non-polygons alike, and probably optim al for polygons w ith  large num bers 

of vertices, a polygon-specific approach is described in [15]: C am pbell’s shaft 

culling produces a tighter-fitting set of planes, by choosing th e  planes which 

bound the  convex hull of the  source and receiver, taken  together.

N either of these m ethods are ideal for th e  problem  a t hand, because they  necessi­

ta te  the  com putation  of th e  planes which m ake up the  shaft. Ideally, inform ation 

which has already been stored should be used to  prune a candidate list. This 

is achieved by com paring the  receiver w ith the  penum bra volum e (SVBSP tree) 

of every polygon on the  candidate list. Note th a t, for four-sided polygons, the 

penum bra volumes will consist of between between four and eight planes, so 

pruning a candidate list containing c polygons will involve betw een 4c and 8c 

polygon/plane comparisons. This is exactly th e  cost of b o th  of th e  other shaft 

culling m ethods [15, 47].

As well as avoiding any unnecessary com putation, a second advantage of this 

culling approach is th a t when th e  receiver lies wholly inside a  shadow volume, 

the  whole polygon can be classified as lying in penum bra4. Such conclusions 

cannot be draw n when using either of th e  other two culling m ethods [15, 47] — 

a polygon either shadows, or not — ex tra  work has to be done to  establish how

an occluder shadows th e  receiver.

4These polygons can then be tested against the occluder’s umbra volume, if present, 
and possibly classified as being wholly in umbra
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5.2 O ptim isin g  m esh  triangu lation

A fter all EV E discontinuity lines have been located, stored in DM -trees, and the  

resulting elements shadow classified, the  elements are m eshed into triangles, so 

th a t quadratic elements can be easily fitted  across them . T he elements which 

need triangulating will vary considerably in size, shape and num ber of vertices; 

bu t all will be convex.

Lischinski et al [70] triangulate  elements by finding the  m id-point of th e  longest 

diagonal, and joining this to  all rem aining vertices. A num ber of problem s are 

associated w ith this approach, and th e  situation was im proved upon in  [71], where 

constrained D elauney triangulation  is used to  triangulate the  mesh.

In th e  im plem entation described here, two alternative triangulation m ethods are 

exam ined. T he original triangulation scheme, involving the  m id-point of the  

longest diagonal, was deem ed unsuitable for a num ber of reasons:

•  An ex tra  vertex  is created for each element being triangulated .

• T he num ber of triangles produced often seems excessive.

• T he m ethod does not produce particularly  well-shaped triangles.

B oth  of the  new algorithm s involve choosing a diagonal, splitting th e  element by 

this diagonal, and recursing w ith th e  two resulting halves un til triangles result. 

The new m ethods only differ in  their choice of diagonal: in  th e  first m ethod, the  

shortest diagonal is chosen; in the  second m ethod a heuristic is used to  m ake this 

choice (figure 5.7). T he heuristic is designed to  favour diagonals which:
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0.6

0.4

0.2

0.0

interior angle

Figure 5.7: The plot shows h-values corresponding to  a ttem p ts  to  split th e  angles
7r/4, tt/2 , 37t/4 and w by a diagonal. Large angles are favoured over small ones.
U nequal splits are punished,

1. split large interned angles of th e  element;

2. bisect th e  angles being split.

By favouring those vertices of the  elem ent where the  in ternal angle is large, the 

aim is to  avoid triangles w ith  in ternal angles which are very small. By favouring 

th e  equal splitting of an in ternal angle, the  heuristic aims to  avoid the  same 

problem  arising from  a particularly  uneven split.

If a diagonal splits an in ternal angle into two angles Q\ and 02> th e  h-value given 

to  this end of th e  diagonal is:

( m in (s in # i,s in 02)
\m ax (s in  sin 02)

m in (sin 6\ , sin $2) (5.1)

The value given to  a choice of diagonal is the  p roduct of th e  h-values given 

to its ends. In this way, a value in the  range [0,1] is obtained, which is large
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when bo th  ends of th e  diagonal nearly-bisect large angles. As w ith  th e  other two 

m ethods (shortest and longest diagonals), every possible diagonal is tested , and 

th e  diagonal w ith  th e  largest heuristic (5.1) value is used to  split th e  element.

5.2 .1  C om p arison  o f  tr ia n g u la tio n  sch em es

In order to  m easure th e  com parative effectiveness of th e  th ree  m ethods, all th ree 

algorithm s were im plem ented, and the  resulting meshes (after adaptive subdivi­

sion) were com pared. T he comparison concerned itself with:

•  the  num ber of resulting triangles, and

• how well-shaped these triangles were.

During adaptive subdivision, a triangle is subdivided when the  com puted radios­

ity  value at its centroid differs from the  in terpolated  value there  by m ore th an  

some user-specified threshold value. Figure 5.8 shows a graph com paring this 

threshold value to  th e  to ta l num ber of m esh triangles in a te st scene, for each 

triangulation scheme.

In order to  decide how well-shaped a particu lar triangle was, its radius-ratio 

was calculated: the  ratio  of its inscribed circle radius to its circum scribed circle 

radius [7] (figure 5.10). In order to decide how well-shaped a particu lar scene 

triangulation was, radius-ratios were obtained for every triangle in every mesh 

in the  scene, and the ir m ean was evaluated. Figure 5.9 shows a graph depicting 

how these m ean values vary w ith triangulation scheme and user-specified error 

threshold, for a te st scene.
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Figure 5.8: M ethod 1 is longest diagonal, M ethod 2 is shortest diagonal, M ethod 
3 is heuristic diagonal. E ither of th e  new m ethods produce m arkedly less triangles 
for th e  same error.
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0.240

method 2
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method 1method 3

0.220
0.0 0.00001 0.0010.0001

error threshold

Figure 5.9: M ethod 1 is longest diagonal, M ethod 2 is shortest diagonal, M ethod 3 
is heuristic diagonal. E ither of th e  new m ethods produce better-shaped  triangles 
for the  same error.
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circumscribed circle

inscribed circle.

Figure 5.10: One can judge how ‘w ell-shaped’ a triangle is by evaluating the ratio 
R i /R c  e  (0,0.5].

Each triangulation scheme was applied to  five test scenes, w ith eight different 

threshold values — a to ta l of forty runs per triangulation scheme. S tatistics re­

lating the num ber of mesh triangles, and m ean radius-ratios, to the user-specified 

error threshold were recorded. A full account of these findings is presented in ap­

pendix C. Suffice to say here th a t figures 5.8 and 5.9 give a fair indication of 

the situation vis-a-vis the  three triangulation schemes: either of the  new m eth ­

ods will not only mesh to  the required tolerance with less triangles than  the 

previous m ethod, bu t will do so with better-shaped triangles. In particular, the 

shortest-diagonal algorithm  seems to have the best characteristics for the task in 

hand.

5 .2 .2  O th er tr ia n g u la tio n  th o u g h ts

Two other points which relate to the optim isation of mesh triangulation, are now 

considered. N either of these algorithm s have been im plem ented by the author, 

bu t are included here in an effort to  give a fuller picture of how this crucial part
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of D M R can be optimised.

D ec id in g  w h en  to  su b d iv id e

W hen building a DM -tree, it is usually not sufficient to  simply triangulate  th e  

mesh which results from the  location of discontinuities. O ften, the  quadratic 

elements [131] across the  triangles in a mesh will not m atch  the  tru e  radiosity 

across the  triangle closely enough, and  th e  triangle is subdivided. In  section 4.2.3, 

the  im plem ented m ethod  for establishing which triangles are subdivided, was 

described.

The im plem ented m ethod is expensive, because finding the  exact radiosity value 

anywhere on a receiver is expensive. Shadow classification makes th e  process 

cheaper, because m any centroids are known to have an unoccluded view of the 

source, and those which do not, can quickly find which polygons are blocking the 

view. There is, however, some more inform ation available, which m ay help in the  

search for a cheap algorithm  to  decide w hether a triangle should be subdivided. 

By locating all D °y D 1 and D 2 discontinuities in  the radiosity function across the 

receiver, one can assert th a t the  radiosity across edges which do not represent 

such discontinuities, should be at least C 1 [90]. For triangles w ith  such edges, a 

subdivision algorithm  which proceeds as follows, seems practicable:

• For each edge not corresponding to a discontinuity, find th e  norm al to  the  

quadratic in terpolan t surface at the  m id-point of the  edge.

• Using th e  winged-edge d a ta  s tructu re , find th e  elem ent lying on th e  other 

side of this edge.
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Figure 5.11: The figure shows an image whose colour m ap has been altered so as 
to highlight isolux contours, in the in terpolant surfaces across a polygon which 
has been poorly subdivided: the discontinuities in gradient, in the in terpolated 
surface, are clearly visible.

• Find the norm al to  the interpolant surface of the adjacent elem ent, at the 

m id-point of the edge.

• Com pare the two normals:

— if they are nearly parallel, all is well;

— if not, subdivide the  triangles which share this edge.

For triangles w ithout such edges, Lischinski et aVs approxim ation [70] to the 

Lqo error norm  could be applied. A further degree of flexibility still remains: 

in how finds the  norm al to an interpolant surface. One first needs to find two 

tangent vectors to the surface, at the point of interest, and then  find their cross 

product. These tangent vectors could either be found analytically, by taking 

partial derivatives, or numerically, by examining points close to  the point of 

interest. Since the in terpolant surface is only a quadratic, it m ay well be th a t 

the num erical approach would be optim al. These issues require fu rther research.
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Figures 5.11 and 5.12 each show an image which has had  its colour m ap altered, 

so as to  highlight isolux contours in th e  in terpolant surface representing the  true  

radiosity. Each im age shows a different situation where poor m esh quality appears 

to be linked to  D 1 discontinuities in the  in terpolant surface.

P ro b lem s w ith  D M -tr e e s

W hilst the  D M -tree allows one to  construct a mesh containing discontinuity lines 

particularly  efficiently [15, 70], it is not w ithout its drawbacks [15, 53]. W hen 

building th e  tree , discontinuity edges arise which do not fully span th e  face to 

which they  are being added. Such edges are augm ented by construction edges 

which he along th e  same line, bu t which reach out to  th e  edges of the  face 

(figure 4.12). C onstruction edges can cause problems when a num ber of small, 

parallel, discontinuity edges (due, say, to  a num ber of V E wedges involving the 

same edge) are added to  a large face in the  DM -tree. Faces result which are very 

long and th in  and which lead to particularly  poorly-shaped triangles (figure 5.12).

One possible solution m ight be to  split th e  location of discontinuity fines into two 

passes: a  first which dealt only w ith wedges forming p art of a penumbra  volume, 

and a second which handled all other wedges. In this way, wedges which do not 

form  p a rt of a shadow boundary will not force their presence into those parts  

of the  m esh which are fit, and the  resulting mesh should consist of m arkedly 

better-shaped  elements (figure 5.13). The use of front-to-back vertex  orderings, 

to  generate m inim um  candidate fists, facilitates such an approach: one would not 

have to repeat front-to-back traversals of th e  BSP tree  in the  second pass, one 

could simply step along the  vertex  orderings.
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A

B

Figure 0.12. Long thin triangles affect image quality. The mesh used to generate 
this image has long thin triangles stretching from A, towards B. The colour map 
has been altered to em phasise the anomalies.

penumbra first no special order

Figure 5.13: Mesh quality could be im proved by handling penum bra wedges first.
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A second possible solution to  poorly shaped meshes m ay be to  precede disconti­

nuity meshing by a coarse prem eshing of the  surfaces [31, 106]. This would avoid 

underm eshing (figure 5.11) and localise any mesh anomalies like long th in  trian ­

gles (figure 5.12). A com bination of th e  coarse pre-m eshing w ith  a penum bra-first 

approach, m ay be doubly beneficial.

5.3 M erging versus layering

Probably the  m ost fundam ental difference between th e  algorithm  described here, 

and radiosity as it has been im plem ented elsewhere, is th e  way in  which th e  

contribution from  each light source is stored, w ith a receiver polygon. As w ith 

Lischinsld et aVs algorithm  [70], each fight source results in a m esh on all those 

receiver polygons which can see it. Each m esh stores th e  contribution of this 

particu lar fight source to the  receiver. In [70], th e  m esh from  one fight source 

is merged w ith th e  m esh from th e  next source — a process which proved pro­

hibitively expensive. In th e  im plem entation described here, th e  meshes from 

different fight sources are not merged, b u t are stored separately, in layers .

T he reasons for the  adoption of a layering, ra ther th an  a m erging, approach are 

multifarious. T he driving force behind th e  development of th e  algorithm  was 

the  fact th a t th e  merging approach was reported, by Lischinski et al [70], to 

have failed for sensibly large scenes. In th e  merging approach, th e  need to  merge 

meshes, due to  different fight sources, is m ade trac tab le  by th e  winged edge da ta  

struc tu re  (W EDS, appendix B) in  which much of th e  m esh is stored. If one 

forgoes m erging, then  whilst one still needs a W EDS (or similar) to  build the
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mesh, no such constraint applies to  its storage. After a m esh has been created, 

th e  only task  ever requested of it is to re tu rn  a radiosity value, given a point on 

the  receiver.

5.3 .1  L ayering sp ec ifics

W ith  this reasoning in m ind, the  im plem entation builds, for each light source, 

a triangulated , adaptively subdivided DM -tree, on every polygon visible to  the 

source. Every such DM -tree consists of a uvBSP tree whose leaf nodes point to 

a W EDS face. Before moving on to  th e  next source, the  new algorithm:

• replaces th e  W EDS vertex  ring w ith  an array of compressed vertices which 

store only a (u, v) position, and a radiosity value;

• replaces th e  W EDS edge ring w ith an array of compressed edges which store 

only a pointer to  th e  edge’s (u, u) line equation, and a radiosity  value;

•  replaces each W EDS face by a compressed face , which stores a boolean 

indicating w hether the  face is lit a t all, and an array  of 6 integers which 

index into the  vertex  and edge arrays. This array is NULL if th e  face is 

dark —  m aking um bra nodes particularly  cheap to  store. Each leaf node of 

the  uvBSP tree now points to  a compressed face;

• deletes th e  W EDS;

• adds th e  uvB SP tree  and accompanying da ta  to  an array  of layers stored 

w ith each OS polygon;

•  re-initialises th e  D M -tree ready for the  next shoot.

O ptim ising D M R 5.3. M erging versus layering



C hapter 5. Optim ising discontinuity meshing radiosity 193

800,000

600,000

200,000

1,500,000500,000 1,000,000

WEDS storage (bytes)

Figure 5.14: T he compressed da ta  s tructu re  takes up m arkedly less storage th an  
its W EDS counterpart.

T he new com pressed d a ta  s tructu re  (CDS) takes up m arkedly less space th an  

a  W EDS (figure 5.14). W hen seeking the  radiosity value, at some point on a 

receiver across which th e  radiosity is stored in layers, one simply looks up a value 

in each layer and adds th e  values together.

Leaves of the  uvBSP tree  representing um bra regions are known as umbra nodes.

A further storage optim isation should be possible, w hereby one traverses the

uvBSP tree  associated w ith a particu lar CDS, and recursively deletes (bottom

up) all sister5 um bra nodes —  changing their parent node into an (um bra) leaf

node. This m ay well p rune the  tree considerably, bu t has not yet im plem ented

by the  author.

5Leaf nodes which share the same parent node.
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5 .3 .2  A d v a n ta g es o f  layering

A num ber of advantages are associated w ith layering.

S im p lic ity : The compressed d a ta  s truc tu re  is very simple, and one avoids the 

(non-trivial) task  of merging meshes.

A c c u ra c y : Mesh m erging constitutes resampling of in terpo la ted  data. As such, 

accuracy is lost. This does not occur w ith layering.

S to ra g e : A CDS takes up about half as much space as its causal W EDS. Also, 

merging two meshes requires the  simultaneous storage of th ree  DM -trees; 

w ith layering this cost is avoided.

E ffic ien cy : R ivara’s tw o-triangle m ethod [88], which is used during adaptive 

subdivision, results in a triangulation where the  transition  between large 

and small triangles is sm ooth. A m erged mesh, which contains shadow 

inform ation from  m any light sources, will have few regions which are far 

from  a shadowed (densely meshed) area. Consequently, a m erged mesh 

will be hard-pushed to  have large triangles anywhere. If th e  shadows from 

different sources are kept separate (layered), th e  sam e problem  is less likely 

to  arise (figure 5.15).

P a ra l le l ism  : The layering approach lends itself particularly  well to  being par­

allelised.

U m b ra s : W hen layering is combined w ith th e  shadow classification of m esh ele­

m ents, as in th e  im plem entation described here, one need never triangulate
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A

Figure 5.15: Separate layers are more likely to have efficiently m eshed regions. 
Merged meshes have shadows almost everywhere.

um bra regions. Being kept separate from other sources, and therefore al­

ways representing a contribution of 0, one need never in terpo late  in these 

regions. This can greatly reduce the num ber of triangles in the  mesh. Such 

regions take up next to no storage in a CDS.

C o m p le x ity : In theory, a scene w ith / light sources and e polygon edges can 

result in O(le)  discontinuity lines on each polygon. W hen merged into a 

single mesh, these lines could result in a mesh containing 0 ( l 2e2) elements. 

W hen stored in seperate meshes, the to ta l num ber of elem ents can only 

be G{le2). These are, however, worse-case figures [71]; fu rther research is 

needed to establish which approach is actually optim al.
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5.3 .3  C on verged  so lu tio n

One feature of the  layering m ethod, as it has been described thus far, is apparent: 

no m ention of convergence has yet been m ade —- the  m ethod simply locally 

illum inates th e  scene, by each of the  prim ary light sources. W hilst such images are 

visually im pressive (appendix C), this is a long way short of global illum ination, 

which is th e  au th o r’s aim. One could continue, as Lischinski et al [70] did, and 

keep on building layers, and adding6 them  into the  whole, b u t this does not 

seem a promising approach: th e  storage costs will simply keep on building up, 

eventually becom ing prohibitive.

W hilst the  code im plem ented thus far, only deals w ith the  prim ary  light sources, 

and does not reach a converged solution, a strategy for doing so is now outlined.

Two things are im m ediately apparent.

• If th e  shadow discontinuity lines, found by trea ting  every polygon as a 

source, are accounted for, then  the  m emory costs will alm ost certainly be­

come crippling [70].

•  One cannot ascertain  a priori which polygons should be trea ted  as im por­

ta n t sources [63].

The solution outlined here proposes th a t one first accounts for the  direct illumi­

nation, due to  th e  prim ary light sources, and then  solves for th e  indirect diffuse 

illum ination, in  th e  scene. The prim ary light sources are handled as has already

been described, in  an iterative, layering algorithm , accounting for all D ° , D 1 and

6Merging, in the case of [70], layering here.
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D 2 shadow discontinuities. Note, however, th a t once the  prim ary light source 

layers are in  s itu , th e  only illum ination left unaccounted for, in  a diffuse scene, is 

indirect diffuse illum ination (IDI). Also, recall the  discussion of section 2.3.3 and 

figure 2.9; here it was noted th a t ID I is the  most slowly-varying of all the  various 

illum ination com ponents and, as such, is particularly  cheap to  m odel [97, 63],

Consider how a layer is built, from scratch: the  highest nodes in the  uvBSP 

tree  correspond to  splits which occurred during the  building of the  scene BSP 

tree, and  to  D° discontinuity edges. The next group of nodes down th e  uvBSP 

tree, correspond to  splits which occurred when discontinuity meshing. The nodes 

nearest th e  leaves of th e  tree, correspond to  splits m ade during triangulation, and 

adaptive subdivision (figure 5.16).

Now consider how a uvBSP tree was constructed in Lischinski et aVs hierarchical 

algorithm  [71]. The first discontinuity lines added to  their tree  are th e  D° lines. 

T he next lines added are the  D 1 lines, then  th e  D 2 lines, and then  the  CDT lines. 

The point being, th a t the  two trees (the layers described here, and th e  DM -trees 

in [71]) share a  common feature: bo th  are quick to separate um bra, penum bra 

and lit regions.

As noted in [71] (section 4.3), the  fact th a t shadow regions and lit regions are 

separated  near th e  top of the  tree, makes the  hierarchy ideally suited to  a hier­

archical radiosity solution. By 'pulling th e  leaf radiosity inform ation up a uvBSP 

tree (using area-weighted averaging) one can store radiosity values w ith nodes 

throughout th e  tree. A standard  [50] refining and finking process can now take 

place; th e  initial finking only involving those nodes w ith a radiosity value above 

some user-defined B e. This means only nodes near th e  top  of tree  will take p art
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Splits near the top of the tree occur during BSP tree creation: 0
The next splits down the tree occur when handling D° edges: •
The next splits down the tree occur when handling D1/D2 edges: §
The lowest splits in the tree correspond to mesh triangulation: A

Figure 5.16: T he 2D line represents a 3D polygon. T he D M -tree which results 
from th e  m ethod described in  this work, quickly separates lit and  shadow regions.

in  in itial linking, and links will have to  be m ade betw een all layers on all (inter- 

visible) scene polygons. A hierarchical radiosity solution can now proceed exactly 

as described in [50, 71], th e  final radiosity values stored a t th e  nodes being pushed 

down to  th e  leaves, for display.

This approach has a num ber of advantages:

• Because the  only transpo rt being accounted for in the  hierarchical solution, 

is IDI, th e  solution can proceed w ith a fairly large error threshold, confi­

dent th a t this will be sufficient to  model the  relevant tran sp o rt. If p scene 

polygons each have I layers, then  0( l p )  links m ay be required: in fact, the 

large error threshold should keep this figure m anageable.

•  T he user does not have to  wait for initial linking before an im age is available.
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Images from  each iteration  of the  progressive refinem ent (direct illum ina­

tion) pass, are available quickly: only when an im pressive im age has already 

been achieved, does one have to  wait for a converged solution.

• One need never concern oneself w ith reconstructing the  radiosity func­

tion across a  polygon: re-calculating form factors, or visibility term s (sec­

tion 4.3); th e  nature of th e  radiosity across the  surface has already been 

established in th e  direct illum ination pass.

•  D uring th e  hierarchical solution, one need never split a  node when an a t­

tem p t to  link fails to  satisfy th e  error criterion; one sim ply recurses down 

th e  uvBSP tree. Links can be forced at leaf/leaf interactions.
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C onclusions

6.1 P rev iou s work

This thesis has presented a review of recent innovations in th e  radiosity m ethod 

in com puter graphics, together w ith a num ber of optim isations which have helped 

to  im prove th e  perform ance of one of the  m ore complex algorithm s.

Beginning w ith th e  development of a physically-based tran sp o rt model, the  ren­

dering equation [61], th e  aim from the  s ta rt has been to  reach conclusions which 

would be applicable to  problems found in real-world applications, such as lighting 

and architectural design.

An investigation, of a num ber of classical solutions to  th e  rendering equation, was 

m ade in chapter 2. W hilst m any impressive images have resulted from  the  con­

stan t radiosity and ray tracing algorithm s of chapter 2, th e  la tte r  are somewhat 

deficient in th a t they  struggle to reach a tru ly  global solution, and th e  form er are
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somewhat deficient in th a t they suffer from  a num ber of accuracy problems; due 

to  their insistence on representing th e  radiosity across a surface as a piecewise 

constant function.

In chapter 3, a thorough investigation of higher order radiosity m ethods, based 

on finite elem ent theory, was presented. A num ber of advantages, to  such an 

approach, were indentified:

• W hen representing th e  radiosity as a piecewise polynom ial, ra th e r than  

piecewise constant, function, the  true  radiosity m ay be very closely repre­

sented by th e  solution function, across much of th e  scene. T he same can 

rarely be said of classical radiosity.

• Convergence rates are impressive when using higher order polynomials.

• Far less patches are required th a n  in classical radiosity; storage costs are 

m uch reduced.

T he weighted residual radiosity m ethods of chapter 3 also represent a slightly 

more subtle im provem ent in the  radiosity m ethod: by setting  th e  problem  in a 

sound m athem atical fram ew ork , th e  problem  becomes well-defined, and its limi­

tations clear. Avenues for im provem ent can be sought w ithin th e  context of the 

new framework.

Wavelet theory, and a discussion of how it m ight be applied to  radiosity, was 

also covered in  chapter 3. W avelets were found to be a particu larly  powerful 

tool for the  discrete representation of functions and operators, in a num ber of 

dimensions. By projecting  th e  radiosity function, across a bi-param etric surface,
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into a wavelet basis, one obtains a cheap, accurate representation  of the  function 

— m ade possible by th e  wavelet basis’ ability to represent sm ooth  regions very 

cheaply. By projecting the  kernel function into a com patible basis, which also 

results in a highly sparse representation, an 0 ( n )  solution process is possible.

W hilst th e  m ethods of chapter 3 were shown to be a m arked im provem ent over the 

constant radiosity algorithm s of chapter 2, they  are not w ithout the ir problems:

•  Evaluating energy interchange between two order N  basis functions is an 

0 ( N 4) problem . W hilst one m ight expect a typical scene to  include less 

higher order basis functions, th an  if constant basis functions were used, it 

is not yet clear w hether this advantage will be dragged down by the  high 

costs of calculating energy interchange.

• As yet, wavelet m ethods cannot be applied to  triangular m esh elements, 

which m ay m ake their useful application problem atic.

All of th e  radiosity m ethods exam ined, in  chapters 2 and 3, share a common 

stum bling block. This concerns the  inability of a piecewise polynom ial function 

to  accurately represent any sort of significant discontinuity, w ithin th e  span of 

one its basis functions. Unless care is taken to  avoid such situations, they  will 

invariably occur, and the  costs can be severe:

• in constant radiosity algorithm s, light and shadow leaks result;

• in conventional higher order m ethods, Gibbs ringing results;

• in wavelet radiosity, th e  sparseness of the  kernel is adversely affected;
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• In all of th e  approaches exam ined, convergence rates are ham pered.

A closer look at such discontinuities, seemed in order.

C hapter 4 presented an exam ination of discontinuities in th e  radiosity function, 

th e  conclusion being reached th a t shadow discontinuities, up to  order 2, should 

be explicitly accounted for during th e  radiosity solution. A review of previous 

discontinuity meshing radiosity (DMR) algorithm s was presented, w ith clarifi­

cation being given by th e  au thor on a num ber of issues left unclear, by others. 

W hilst the  D M R algorithm s of chapter 4 are impressive in and of themselves, 

they were found to  be lacking in a num ber of respects:

•  W hilst great effort is expended finding shadow discontinuity edges, m any 

algorithm s reached no conclusions about which regions He in shadow.

• The costs of th e  non-hierarchical approach were seen to  be prohibitive.

• The m esh building and illum ination was often far from  optim al.

6.2 A u th o r’s work

All of these issues were addressed in chapter 5, where th e  au th o r’s optim isations 

for D M R were presented. T he m ajor optim isations being:

M in im u m  c a n d id a te  lis ts : A new algorithm  for extracting object-space order­

ing from  a BSP tree  was presented. The algorithm  is simple to  im plem ent, 

and allows one to  exclude between 50% and 75% of the  polygons in a  scene,
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when building an occluder candidate list for a (source, receiver) pair. The 

inform ation used to  build these lists was shown to be a by-product of dis­

continuity meshing, and so costs are low.

S h a d o w  c la ss ific a tio n : Each m esh element is classified as being either lit, in 

penum bra, or in  um bra. Elem ents which lie in  penum bra store a  list of 

polygons in whose shadow they  He. Shadow classification involved the  use 

of SVBSP trees, which were also used to  shaft cull occluder candidate Hsts. 

T he planes used to  build these trees were shown to  be a by-product of 

discontinuity meshing, and so costs are minimal.

M e s h  la y e r in g : A new m ethod for handhng contributions from  m ultiple Hght 

sources, in DM R, was presented. By layering th e  contributions from  each 

source, a host of advantages were shown to  have em erged. T he layering 

m ethod was shown to  be simpler, have lower storage costs, be more accu­

rate , and have a lower complexity, then  the  merging approach.

M e s h  t r ia n g u la t io n :  Two new m esh triangulation schemes were presented, 

bo th  of which were shown to  result in meshes containing less triangles, 

for a given error tolerance, th a n  the  previous m ethod. B oth  m ethods were 

also shown to  produce better-shaped  triangles, for a given error tolerance, 

th a n  th e  previous m ethod.

C hapter 5 also presented a suggestion for a hierarchical indirect diffuse illum ina­

tion pass, to  follow the  direct Hghting, layering, pass. This seems a particularly  

promising approach, due to  th e  slowly-varying na tu re  of th e  illum ination compo­

nent being handled by th e  pass.
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6.3 T h e fu ture

A num ber of issues rem ained unaddressed, the  foremost of which is the  modelling 

of indirect diffuse illum ination. T he author would very m uch like to  persue the 

hierarchical algorithm  described in section 5.3.3, which he is confident would lead 

to  a converged, global solution.

T he one overriding thought in th e  au th o r’s m ind which rem ains, a t th e  conclusion 

of this work, concerns the  sheer complexity of discontinuity m eshing radiosity. 

The vast num ber of problem  cases th a t can arise, once th e  scene geom etry be­

comes in tricate, far exceeded the  num ber envisioned by th e  au thor at th e  outset 

of this research. This m ight suggest a lim ited application the  DM R, where dis­

continuity meshing takes place only in those parts of th e  scene where it is deemed 

necessary. W hether a hum an or a m achine would decide w here such meshing was 

necessary, or a com bination of th e  two, is an open question: bo th  options seem 

plausible.

D iscontinuity meshing radiosity is still lim ited in th a t it can only handle polygonal 

scenes. Extensions to curved surfaces seem unlikely, given the  complexities of the  

polygonal case, bu t if such meshing is only being applied in  areas w here it was 

deemed im portan t, then  perhaps such extensions should be investigated.

A nother area for im provem ent involves the  reflection properties of the  surfaces 

being considered. In th e  same way th a t previous radiosity algorithm s have been 

extended to  handle specular reflection, D M R could be extended.
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Parallelism  is another area which deserves close atten tion . W hilst D M R algo­

rithm s are complex, they are certainly manageable, perhaps a parallel approach 

would m ake the  costs of D M R more acceptable. The layering m ethod, introduced 

in this thesis, seems are particularly  likely candidate for parallelism .

W hatever the  fu tu re  holds for discontinuity meshing radiosity, th e  au thor is con­

fident th a t it has earned its place there: radiosity m ethods which do not account 

for discontinuities will always encounter problems. The radiosity community, and 

the  com puter graphics com m unity in  general, have recognised, in  recent years, 

the  im portance of setting their work in a sound theoretical fram ework if work is 

to  progress; th e  results so far, have been impressive. The fu tu re  holds no bounds.
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A p p en d ix  A

B inary Space P artition in g  trees

M any of th e  algorithm s, described in th is thesis, are based around th e  notion of 

B inary Space Partition ing  (BSP) trees. This appendix presents a precis of BSP 

trees; how to  build them , their advantages, and their uses as they  rela te  to  this 

thesis.

BSP trees have been used extensively in  th e  com puter graphics com m unity for 

m any years; the ir success has probably been helped by their simplicity. Also, th e  

ease w ith which they  allow one to  ex tract order from th e  seeming chaos which 

is th e  d a ta  being processed. BSP trees can be used in  an arb itra ry  dimensional 

space, bu t this discussion will concentrate on the  three-dim ensional case.

In three dimensions, a BSP tree  represents a hierarchical partition ing  of 3-space 

by a set of planes. Clearly, a BSP tree is binary, each node storing: a plane, 

a list of polygons which lie in this plane, and pointers to two branches. Each 

node represents a region of space; the  root node represents th e  whole of whatever 

space is being partitioned . The plane stored w ith each node splits the  space,
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represented by the  node, into two half-spaces —  one wholly in front of th e  plane, 

and one wholly behind it.

Given a list of polygons, a BSP tree is constructed as follows (figure A .l):

• select a  polygon from the  fist;

• note th e  plane in which this polygon lies; store this plane w ith a new node;

• create two new lists, corresponding to

1. polygons which lie in front of the  chosen plane, and

2. polygons which lie behind it.

Any polygons which fie across the  plane, are split by it, and each half is

added to  the  appropriate fist. Any polygons which fie in  the  plane are

stored w ith the  new node.

• C reate the  new node’s positive branch by recursing w ith  th e  first list;

• create th e  new node’s negative branch by recursing w ith th e  second list.

Such an approach was first form ulated by Fuchs et al in [35, 34]; their research 

having been m otivated  by Schumacker et aVs earlier work [95]1. N otice th a t, 

because polygons are split during the  construction of a BSP tree, th e  polygons 

stored in  th e  tree  m ay not be exactly those polygons which were originally pro­

vided. T hroughout this thesis, polygons stored at th e  node of a BSP tree are 

referred to  as B SP  polygons, to  distinguish them  from original scene (OS) poly­

gons.

1 described in [108]
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( y /  = NULL pointer)

3+

Figure A .l: Building a binary space partitioning tree.

If a polygon is regarded as having distinct front and back sides, then  one can 

store two lists of coplanar polygons w ith each BSP tree node: one for polygons 

which share the same norm al as the plane stored with the  node, and one for 

polygons which share the  opposite normal. This second list is often empty. Such 

an approach is im plem ented in the work described here.

The raison d'etre of BSP trees, is th a t they allow an observer to m ake conclusions 

about the relative position  of the scene polygons. Given any point, in the space 

represented by a BSP tree, it is possible to create an ordering of the  polygons 

stored in the tree, whereby: the point has a wholly unoccluded view of the 

i th polygon in the ordering, as long as the only candidates for occlusion are 

the (i +  l ) t/l, ( i  +  2)th, . . .  polygons in the ordering. This a front-to-back [35] 

ordering. A reverse (back-to-front) ordering is also possible, where the  point has 

an unoccluded view of the i th polygon as long as the only candidates for occlusion
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v o id  f r o n t —to -b a c k  ( p t , t r e e  )

i f  ( t r e e  == HULL ) 
r e t u r n ;

i f  ( i n - f r o n t ( p t , t r e e .p l a n e  ) ) { 
f r o n t —to -b a c k  ( p t , t r e e .p o s  ) ;  
o u tp u t ( t r e e .p o s P o ly s  ) ;  
f r o n t - to - b a c k  ( p t } t r e e .n e g  ) ;

} e l s e  {
f r o n t - to - b a c k  ( p t , t r e e .n e g  ) ;  
o u tp u t ( t r e e .n e g P o ly s  ) ;  
f r o n t - to - b a c k  ( p t , t r e e .p o s  ) ;

}
>

Figure A .2: Pseudocode for the  front-to-back traversal of a  BSP tree, 

are th e  (i — l ) t/l, (i — 2)th, . . . ,  1st polygons.

Fuchs et al [35] employed a baclc-to-front ordering to  im plem ent a p a in ter’s ren­

dering algorithm . In such an approach, th e  scene is traversed back-to-front w ith 

respect to  th e  eye/cam era position, and polygons are ou tpu t directly to  th e  im ­

age buffer —  w ithout any regard for which pixels have already been w ritten  to. 

T he n a tu re  of th e  ordering ensures th a t th e  resulting im age hides (and shows) 

th e  correct regions of the  scene. A problem  w ith such an approach, is th a t any 

one region of the  buffer m ay be w ritten  to m any times. Polygons m ay be ren­

dered, only to  be com pletely obscured later; this can becom e expensive when 

large scenes are involved [44]. Gordon and Chen [44] im proved on the  situation 

by employing a front-to-back approach, where care was taken  to  w rite to  buffer 

locations once only.
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A .l  B S P  ray tracing

One area where th e  front-to-back ordering of scene polygons has proved highly 

beneficial, is in  ray  tracing. T hibault [112] described an algorithm  whereby a ray 

is trea ted  like a line segm ent as it is filtered down a BSP tree; th e  plane stored 

w ith each node being used to  clip the  ray2, as it recurses down th e  tree.

F iltering a ray  (a directed line segment) down a BSP tree  is no t as simple as 

th e  previous front-to-back algorithm  considered (figure A .2), bu t it is not too far 

removed. Essentially, whenever a node plane splits a line segm ent (representing 

some p a rt of th e  ray) the  algorithm  recurses, w ith the  half which lies nearest the 

ray origin, into th e  half-space containing this p a rt of th e  ray. If this recursion 

fails to  find an intersection, th e  ray is com pared w ith th e  polygons stored at the 

node. If this fails to  find an intersection, th e  algorithm  recurses w ith  th e  other 

ray half into th e  other half-space (figure A .4).

If th e  axis-aligned bounding box of all the  polygons stored in  a BSP branch, is 

stored w ith th e  b ranch’s root node, a fu rther optim isation is possible; by carrying 

out a ray /b o x  comparison before recursing. This has also been im plem ented by 

the  author.

In  such an approach th e  firs t ray/polygon h it found, is th e  nearest h it the  ray 

has to  its origin. This is a great plus com pared to m any ray  tracing  algorithm s, 

which m ust com pare th e  ray  w ith other parts  of the  scene before they  are able

to ascertain which h it is closest.

2 A ray is defined by an origin, a direction, and two reals which specify the particular 
segment of the ray being considered: these give the distance from the ray origin of the 
segment’s two ends (initially iinjn = 0 and tinax — oo).
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dmin > 0 dmin — 0 ! dmjn < 0

case: action:

1,2,3,6.... 11: Omin̂ max] near

4 [tmin-tmax] vs. neari posPoiys test

5 Omin.tint] vs. naar: posPoiys test; [tint,tmax] vs. far

12 [tmin-tmax] vs- near: negPolys test

13 [tmin-tind vs. near; negPolys test; [tint,tmax] vs. far

Figure A .3: By carefully handling each of the th irteen  cases th a t can arise when 
ray tracing BSP trees, an optim al algorithm  results.

As can be seen from figure A .3, the algorithm  is not quite as simple as recently de­

scribed — there are th irteen  possible cases th a t can arise when com paring a plane 

with a directed line segment. The im plem entation described here (figure A.4) is 

different from T h ib au lt’s original algorithm , which worked on an augm ented BSP 

tree [111, 107], where the  ray was tested  against the objects stored at the  leaves, 

not the polygons stored at each node.

Sung and Shirley [107] who, like T hibault [111] im plem ented a ray tracer for an 

augm ented BSP tree, have described ray tracing with BSP trees as outperform ing 

‘all of the spacial subdivision approaches we have experienced’.
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Tboolean ray_int_bsp ( ray, tmin, tmax, tree )
i

if ( tree == NULL ) 
return ( FALSE );

dmin = signed_dist ( ray, tmin, tree.plane ); 
dmax = signed_dist ( ray, tmax, tree.plane ) ;

if ( dmin > 0 OR (dmin == 0 AND dmax > 0) ) {  
near = tree.pos; 
far = tree.neg; 
candidates = tree.posPoiys;

> else {
near = tree.neg;
far = tree.pos;
candidates = tree.negPolys;

>

if ( ray_in_plane ( ray, tree.plane ) ) /* ray lies in node.plane */
return ( ray_int_bsp ( ray, tmin, tmax, near ) );

tint = ray_intersect_plane ( ray, tree.plane );

if ( tmin < tint < tmax ) { /* cases 5 and 13 */
if ( ray_int_bsp ( ray, tmin, tint, near ) )

return ( TRUE );

if ( ray_vs_polys ( ray, candidates, &hit_pt, &hit_pol) ) 
return ( TRUE );

return ( ray_int_bsp ( ray, tint, tmax, far ) ); 
y else if ( tint != tmax ) /* cases 1 , 2 , 3 , 6 , 7 , 9 , 1 0  and 11 */

return ( ray_int_bsp ( ray, tmin, tmax, near ) ); 
else /* cases 4 and 12 */

if ( ray_int_bsp ( ray, tmin, tmax, near ) )
return ( TRUE ); 

else
return ( ray_vs_polys( ray, candidates, &hit_pt, &hit_pol) );

>

Figure A.4: By comparing eacli end of tlie ray segment with the node plane, one 
only tests the segment against polygons which it can possibly intersect.
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A .2 Shadow  v is ib ility  B S P  trees

T he uses of BSP trees are not simply restric ted  to ordering algorithm s. Thus 

far, algorithm s have been described which filter points down BSP trees, and 

another which filters a line segment. This section concerns algorithm s which 

filter polygons down a BSP tree.

In [111]j T h ibau lt & Naylor extended BSP trees so th a t a tree  could be used to  

represent a polyhedron. In their approach, each leaf node is labelled as such; and 

similarly for each in ternal node. Each node represents a region of space; if the  

polygons used to  build th e  tree  are th e  faces of a polyhedron, then  some leaf nodes 

will correspond to  regions w ithin th e  polyhedron, and others will correspond 

to regions w ithout. By labelling leaf nodes as being either i n  or o u t, a BSP 

polyhedron representation results.

T hibault & Naylor used the ir representation to evaluate set operations on poly- 

hedra. Originally, their work combined a B-rep w ith a BSP tree, b u t la ter they 

extended the ir work to  deal solely w ith the  BSP representation [76]. This exten­

sion entailed th e  development of a general algorithm  for merging BSP trees [76] 

—  an algorithm  which has since proved m ost useful to researchers dealing w ith 

shadow volumes [15, 20].

Shadow volumes, originally introduced by N ishita and N akam ae [78], define re­

gions of space where th e  view of a particu lar source is affected by a  particular 

occluder. A 'penumbra volume defines a region where this occlusion m ay only 

be partial; an umbra volume defines a region where this occlusion is to ta l (fig­

ure A .5). N ishita and Nakam ae recognised th a t the  surface bounding such a
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occluder

✓ ✓ /  
✓ /

X.

penumbra

Figure A .5: The penum bra and um bra shadow volumes for a polygonal source 
and polygonal occluder.

penum bra region, has the source wholly in front of it, and the  occluder wholly 

behind it. The surface bounding an um bra region has bo th  the  source and the 

occluder lying in front of i t3.

W hen the  source and occluder are bo th  polygons, or polyhedra, the  penum bra 

volume is bounded by a set of planes , satisfying the in -fron t/beh ind  condition, 

and chosen from those which either:

• pass through a source vertex and an occluder edge, or

• pass through a source edge and an occluder vertex;

The um bra volume, in this case, consists of the set of planes (satisfying the in­

front/in-front condition) which pass through a source vertex  and an occluder

3Clearly, the notions of ’in front’ and ’behind’ are somewhat ambiguous here, but if 
the side containing the source is defined as being the front side, this ambiguity vanishes.
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edge. A m ore rigid analysis of the  planes which hound such shadow volumes, is 

presented in  [15].

W hilst shadow volumes were used by N ishita and N akam ae to  aid w ith their 

shading calculations, it was Chin and Feiner [19] who first exploited their full 

potential, w ith  th e  in troduction  of shadow visibility BSP (SVBSP) trees: Chin 

and Feiner [19] built an extended BSP tree  [111, 112], using those planes which 

bound the  um bra volume of a polygonal occluder, due to  a point fight source. 

In this way, any point filtered down th e  tree  will end up a t a  leaf node labelled 

either i n  (the point is in shadow) or o u t (the point is not in shadow).

By filtering a polygon down such a tree  —  splitting th e  polygon by each node 

plane as its recurses, and taking one half down each branch —  Chin and Feiner 

could very quickly establish which parts of the  polygon were fit, and which were in 

shadow. T hey stored the ir (polygonal) scene in a BSP tree and incorporated their 

shadow classification approach into a  front-to-back traversal of th e  tree , from  the  

point source. In this traversal, a merged SVBSP tree is carried; representing the  

combined shadow of all polygons encountered thus far on the  traversal (initially 

a single o u t node). As each polygon is encountered, it is filtered down the 

SVBSP tree; its shadowed parts  are classified as such, and its fit parts  are noted. 

An SVBSP tree  is now built for each fit pa rt, and this is m erged into the  tree 

representing the  combined shadow, using an algorithm  from  [111].

SVBSP trees are m ore efficient th an  finked fists for com paring a num ber of planes 

w ith a polygon [15]. Also, in Chin and Feiner’s approach, th e  front-to-back 

traversal ensures th a t no polygon is tested  against the  shadow volum e of a polygon 

which lies behind it. Such an approach is generally not possible w ith area sources,
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as there is not usually a single ordering of the  scene polygons available [20, 37].

SVBSP trees were extended to  model th e  shadow volumes due to  polygonal light 

sources by Cam pbell [15], who combined th e  shadow volum e planes used by 

N ishita and Nakamae [78, 79] w ith the  da ta  structu re  in troduced  by Chin and 

Feiner [19]. W ith  polygonal sources, each occluder has two SVBSP trees; one 

representing the  penum bra, and one representing the  um bra. By testing  for 

penum bra regions before um bra regions, one can avoid com paring lit regions w ith 

the  um bra volume.

Merging SVBSP trees, due to  polygonal ra th e r th a n  point sources, is not as simple 

as the  problem  solved by Chin and Feiner [19]. Nevertheless, Cam pbell [15] 

obtained such a m erged shadow volume by utilising another algorithm  due to 

T hibault et al [76], Cam pbell used the  merged SVBSP tree  to  shadow classify 

the  polygons in the  scene, bu t w ithout the  aid of the  object space ordering th a t 

Chin and Feiner had been able to  exploit, for a point source [19].

The m ost recent development in shadow volume usage, apart from  the  work 

described in this thesis, is again due to  Chin and Feiner. In the ir im proved 

algorithm  [20], polygonal sources are used, and object space ordering is included. 

This last point is m ade possible by storing the scene in a BSP tree , and then 

splitting the  source by all those polygons which he in front of it, and whose planes 

pass through it. This results in  a num ber of source fragm ents , from  which one can 

traverse th e  scene in a unique front-to-back order; finding shadowed regions and 

building a m erged shadow volume as one proceeds. The obvious drawback w ith 

such an approach is th a t one m ay have to  m ake very m any traversals before the  

scene is shadow classified w ith respect to  th e  whole source, and not ju s t one of its
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fragm ents. T he SVBSP trees used are exactly those used by Cam pbell [15], bu t 

the  merging process is again th e  simpler algorithm  due to  T hibau lt et al [111]; 

m ade possible by th e  object space ordering employed.
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W inged  E dge D a ta  S tru ctu re

T he winged-edge d a ta  s truc tu re  (W EDS) is not new to  com puter graphics. Orig­

inally developed by B aum gart [9] in  1975, for an application in com puter vision, 

it has since becom e popular not only for th e  representation of polyhedra (for 

which it was originally intended) bu t also for a  num ber of other structu res where 

a consistent representation of faces, edges, and vertices, is required. One such 

structu re , is th e  elem ent m esh from  the  radiosity algorithm  described in this 

thesis.

T he central concept of the  W EDS, is an edge. An edge stores m ost of the  infor­

m ation which allows one to  tou r the  d a ta  structure . Given a  face, one can use 

the  inform ation stored in the  W EDS to:

• visit all of edges which bound th e  face, or

• visit all of the  vertices which bound th e  face, or

• visit all of th e  faces which share a common edge w ith th e  face, or

219



A ppendix B. W inged Edge D ata  S tructure 220

• visit all th e  faces which share a  common vertex w ith the  face.

Any num ber of o ther traversals are also possible.

T he W EDS (as im plem ented by B aum gart [9]) consists of th ree  doubly-linlced 

lists: one storing all the  faces, one storing all the  edges, and one storing all the 

vertices. As well as storing all th e  application-dependent d a ta  th a t they  need, 

each face, edge and vertex in a W EDS stores topological inform ation, which 

enables th e  traversal of the  data: each vertex, stores a poin ter to an edge (of 

which it  is one end); each face stores a pointer to an edge (which lies on its 

boundary); each edge stores:

• Pointers to  th e  vertices, at its ends. These are ordered; one is th e  previous 

vertex , th e  other is the  next vertex. In this way, each edge is directed.

•  Pointers to  the  faces which he on either side of it. Because the  edge is 

directed, these can be labelled as lying on either th e  left (previous) or right 

(next) side of th e  edge.

• A pointer to  th e  adjacent edge, on th e  previous face, which is reached by 

going clockwise around th e  face, from the  edge.

• A pointer to  the  adjacent edge, on the  previous face, which is reached by 

going counter-clockwise around the  face, from the  edge.

• A pointer to  the  adjacent edge, on the  next face, which is reached by going 

clockwise around the  face, from  the  edge.

• A pointer to  th e  adjacent edge, on the  next face, which is reached by going 

counter-clockwise around the  face, from the  edge.
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pCW

pCC'
pFace- —

pVertV
nVert

nFace
nCCW

WEDS

Figure B .l: The figure illustrates (i) An edge, and the inform ation it stores; also 
shown are the  edge pointers stored by vertices and faces, (ii) A symbolic diagram  
of the whole d a ta  structure; consisting of a face, edge and vertex  ring. One edge, 
face and vertex (shaded) are each shown with their ‘topology’ pointers.

These last four are known as the edge’s wings (figure B .l) .

It is plain to see, th a t whilst such a s tructu re  gives one trem endous scope, when 

traversing the da ta  stored therein, the storage costs of such a scheme, are con­

siderable.

By using a num ber of generic routines (for tasks such a splitting an edge by a 

given vertex, splitting a face by a given edge), the otherwise laborious task of 

building and m aintaining a W EDS, as da ta  is and deleted, becomes trac tab le  [41].
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R esu lts

This appendix presents a num ber of images and graphs which support tlie original 

work described in chapter 5. A few of these are repeated  elsewhere in  the  thesis, 

bu t this is not tru e  in th e  main. Any timings given refer to  C code running on a 

clustered HP9000/735crx48z.

C .l  M esh  op tim isa tion  sta tistics

This section presents a  series of graphs which relate to the  th ree  triangulation 

schemes described in section 5.2. Two series of five graphs are presented, one 

series showing how th e  num ber of mesh elements varies for the  different tr ian ­

gulation schemes, and one showing how th e  shape of the  m esh triangles vary 

for the  different schemes. Each of the  five graphs, in a series, corresponds to  a 

different te st scene. T he test scenes varied considerably in  complexity, th e  five 

scenes being:
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Figure C .l: Test scene f l a t .  2 polygons.

f la t: A simple (source, receiver) pair; no occlusion (2 polygons).

b o x es : Two boxes, lit by a single light source, both  boxes casting a shadow 

onto the floor, the high box also casting a shadow onto the lower box (14 

polygons).

ta b le :  A table, lit by a single source, casting a shadow onto the  floor (34 poly­

gons).

c h a ir : A chair, lit by a single source, casting a shadow onto the  floor (65 poly­

gons).

f lo a t: A table and five chairs, fit a single source. Four chairs are at the table, 

one chair is floating above the  table (214 polygons).

Figures C .l to  C.5 show the five test scenes.
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Figure C.3: Test scene t a b le .  34 polygons.
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Figure C.4: Test scene c h a i r .  65 polygons.

Figure C.5: Test scene f l o a t .  214 polygons.
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Figures C.6 to  C.10 show graphs illustrating how the  num ber of mesh triangles 

varies w ith  user-defined error tolerance, for the  different triangulation  schemes 

(section 5.2) running on the  five test scenes. Each graph shows th ree  plots: one 

for each triangulation  scheme. Each plot is labelled as being due to  either m ethod 

1, m ethod 2 or m ethod 3; these refer to longest-diagonal, shortest-diagonal and 

heuristic-diagonal, respectively. All of these graphs, w ith th e  exception of fig­

ure C.6, show th a t th e  two new triangulation schemes result in meshes which 

satisfy a given error tolerance, using m arkedly less triangles th a n  th e  original [70] 

scheme. T he au thor is content to  regard figure C.6 as being anomolous, since it 

corresponds to  a scene which is completely free from occlusion. W hilst the  differ­

ence betw een the  two new schemes (shortest-diagonal and heuristic-diagonal) is 

tiny, it seems th a t shortest-diagonal manages to mesh to  a  given error tolerance 

using slightly less triangles than  heuristic-diagonal.

Figures C . l l  to C.15 show graphs which consider how well-shaped th e  m esh tr ian ­

gles were, for th e  different triangulation schemes running on th e  five test scenes, 

at a selection of error tolerances (section 5.2.1). W hilst shortest-diagonal and 

heuristic-diagonal bo th  consistently produce b e tte r shaped meshes th an  longest- 

diagonal (apart th e  anomolous test scene f l a t ) ,  shortest-diagonal only comes out 

as a close-run winner.

T he tail-off in  bo th  graphs involving test scene f l o a t  are due to  the  large num ber 

of subdivisions which were prevented because the  elem ent size was too small.
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Figure C.6: Com paring th e  num ber of m esh elements in  each of 3 triangnlation 
schemes (test scene f l a t ) .
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Figure C.7: Com paring th e  num ber of mesh elements in each of 3 triangulation  
schemes (test scene t a b le ) .
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Figure C.8: Com paring th e  num ber of mesh elements in each of 3 triangulation  
schemes (test scene boxes).
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Figure C.9: Com paring th e  num ber of mesh elements in each of 3 triangulation  
schemes (test scene c h a i r ) .
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Figure C.10: Com paring the  num ber of mesh elements in each of 3 triangulation 
schemes (test scene f l o a t ) .
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Figure C .l l :  Com paring the  m ean inscribed/circum scribed ratio  for th e  different 
triangulation schemes (test scene f l a t ) .
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Figure C.12: Com paring th e  m ean inscribed/circum scribed ratio  for th e  different 
triangulation  schemes (test scene boxes).
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Figure C.13: Com paring the  m ean inscribed/circum scribed ratio  for th e  different 
triangulation  schemes (test scene ta b le ) .
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Figure C.14: Com paring the  m ean inscribed/circum scribed ratio  for th e  different 
triangulation schemes (test scene c h a ir ) .
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Figure C.15: Com paring the  m ean inscribed/circum scribed ratio  for the  different 
triangulation  schemes (test scene f l o a t ) .
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Figure C.16: Two light sources, test scene ta b le ;  radiosity solution: 1 second; 
ray-traced rendering: 175 seconds.

C.2 M esh  layering

This section presents a num ber of images corresponding to  test scenes lit by 

m ultiple light sources.

Figures C.16 and C.17 show the t a b l e  test scene lit by two and th ree polygonal 

sources, respectively.

Figures C.18 and C.19 show the c h a i r  test scene lit by two and four polygonal 

sources, respectively.

Figures C.20 and C.20 show the f l o a t  test scene lit by two and th ree polygonal 

sources, respectively.

Optim ising DMR C.2. Mesh layering
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Figure C.17: T hree light sources, test scene table; radiosity solution: 2 seconds; 
ray-traced rendering: 162 seconds.

Figure C.18: Two light sources, test scene c h a ir ;  radiosity solution: 14 seconds; 
ray-traced rendering: 140 seconds.
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Figure C.19: Four light sources, test scene c h a ir ;  radiosity solution: 29 seconds; 
ray-traced rendering: 113 seconds.

Figure C.20: Two light sources, test scene f l o a t ;  radiosity solution: 116 seconds; 
ray-traced rendering: 185 seconds.
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Figure C.21: Three light sources, test scene f l o a t ;  radiosity solution: 138 sec­
onds; ray-traced rendering: 174 seconds.

C .3 Shadow  classification

Three scenes are presented which illustrate various stages of the  solution pro­

cess. A test scene (spiral staircase) is shown (figure C.22) flat-shaded, w ith dark 

discontinuity lines and light construction hnes. The same figure is shown af­

te r shadow classification (figure C.23), with the shadow regions shown darker. 

Finally, a ray-traced version is shown (figure C.24).

O ptim ising DMR C.3. Shadow classification



A ppendix C. Results 236

Figure C.22: A test is shown with discontinuity and construction hnes only.

Figure C.23: A test is shown with discontinuity and construction hnes, and 
shadow-classified mesh elements.

O ptim ising DMR C.3. Shadow classification
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Figure C.24: The final version of the spiral staircase, ray traced.
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