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Abstract

Sequence databases such as EMBL are enormous, and growing rapidly (at the 

time of writing EMBL is doubling in size approximately every nine months). 

This, combined with the demands placed by new technologies such as ESTs, 

genomic sequencing and Single Nucleotide Polymorphism (SNP) analysis places 

great demands on the computers used to search and compare sequences.

This thesis describes a novel algorithm RAPID, designed to address some of 

these issues by performing fast word based searches of biological sequences. 

RAPID has been shown to be about an order of magnitude faster than BLAST, 

but to perform with similar sensitivity. During the development of the algorithm 

an investigation of the distribution of words within biological database was 

undertaken. The work demonstrates that a simple model of biological sequences 

that views them as random sequences with differing residue frequencies is unable 

to accurately represent the distribution of words within sequences. This has some 

important implications for word searching algorithms.

RAPID is supported by a set of companion tools -  a pair of alignment tools that 

generate gapped and ungapped alignments, weighted by word frequencies, and a 

‘coarse grained dot plotter’ that provides a view of similarity between long 

sequences such as genomes, chromosomes and contigs.
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1 Introduction

This thesis describes the design and implementation of a set of software tools for 

Expressed Sequence Tag (EST) analysis, and their generalisation to other tasks 

including the identification of vector contamination and the comparison between 

large sequence fragments such as genomes and assembled contigs. The design of 

these tools involved two distinct considerations: Firstly, the development of a set 

of algorithms to perform sensitive and efficient sequence comparison. Secondly, 

the intended use of these algorithms, their role within the field of bioinformatics 

and the resultant user-interface and software design issues.

1.1 General considerations

Bioinformatics is a term used to describe the development and use of software 

tools for the biological sciences. It is a broad discipline encompassing areas as 

diverse as protein structure prediction (Sayle and Milner-White 1995; Sussman et 

ol. 1998; Sternberg et al. 1999), sequence analysis (Schuler 1998), taxonomy 

(Doolittle 1999), and expression analysis (Fields and Stemglanz 1994: Kurian et 

a l 1999; Nature Genetics Editorial 1999), amongst others. These research areas 

are distinct, but they are united by a number of common issues that result from 

the need to manage large amounts of complex data distributed across a network. 

These problems are compounded by the fact that the data are often poorly 

understood, rapidly changing and of varying quality.

Bioinformatics is an exploratory discipline in which a set of tools and data 

sources are used to answer ad hoc queries which cannot be pre-determined. Thus,

12



it is necessary to consider general modes of operation as well as specific queries 

and analyses.

Bioinformatics software is also united by its role as a service provider: it exists to 

support the biological scientist in his/her work. In many cases, the user has not 

had any formal training in computing, so that the software must be accessible to a 

novice with little computational experience beyond the use of a word processor 

or web browser.

As a result, the software designer is faced with a set of contradictory challenges 

which arise from the tension between the need to apply sophisticated computer 

science techniques and the need to render the software accessible to a non­

computer scientist.

The following two chapters provide a review of the issues, principles, and current 

work in the field. The first considers the biological processes that are used to 

generate sequence data, with particular emphasis placed on Expressed Sequence 

Tags (ESTs) and genomic sequencing. The second, a review of current sequence 

analysis algorithms.

1.2 Motivations

The DNA sequence database EMBL (Stoesser et al. 1999) is a large repository 

which, at the time of writing, contains about 4 Gb of sequence data and in recent 

years, has been doubling in size every nine months or so. The major contributors 

to this growth are Expressed Sequence Tags (ESTs), which now make up about

13



2/3 of public domain sequences. Commercial databases such as Incyte’s 

‘LifeSeq’ (http://www.incyte.com) are entirely EST driven and are growing even 

more rapidly than their public domain peers -  at the time of writing, Incyte 

contains about 4,000,000 EST sequences.

It is unlikely that the growth rate of biological databases is going to decline in the 

near future -  ESTs will continue to be sequenced at an increasing rate, and other 

technologies such as whole genome sequencing and Single Nucleotide 

polymorphism (SNP) analysis will further add to the mass of new data.

It is also the case that the number of requests made of sequence database servers 

has been growing systematically -  with a corresponding increase in the load 

placed on their hardware and software.

Thus, to simply maintain the status quo, the computers that handle sequence data 

need to more than double in power every nine months, and to continue to do this 

for the foreseeable future.

Given that Moore’s law predicts that computer hardware will double in power 

every eighteen months, there is likely to be an increasing shortfall between 

hardware capacity and server demand. In order to meet this challenge it will 

either be necessary to buy increasingly expensive hardware, or to develop 

software that can:
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1. Perform the same tasks as current algorithms but significantly faster,

2. do this in a way that scales favourably with the growth in data and

3. make efficient use of available computer hardware.

Thus, significant advances are required merely to maintain the status quo. The 

issue becomes even more pressing when future demands on sequence analysis 

tools are considered. This is because bioinformatics is a discipline that is moving 

beyond the analysis of individual gene sequences and into a ‘post genome era’ in 

which consideration of the behaviour and interactions of multiple genes/proteins 

is becoming increasingly important.

As a result, there is a requirement to make bulk queries against sequence 

databases in which, for example, an entire genome, a set of interacting proteins, 

or a gene family need to be searched against a database rather than a single 

sequence.

So, sequence analysis tools are faced with a significant challenge if they are to 

meet the demands of the next millennium -  they must be capable of managing 

enormous and rapidly growing data sets, an increasing user base and significantly 

more complex queries.

In order to meet these challenges, computer technology needs to continue to 

increase in performance, in concert with the development of novel, faster 

similarity search tools.
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This thesis describes the design, implementation, analysis and assessment of a set 

of algorithms and software tools designed to address the issues described above.
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2 The generation of DNA sequences

This section describes the biological processes used to generate a DNA sequence. 

Its purpose is to provide a general overview of techniques so that the subsequent 

chapters on bioinformatics have a sufficient grounding in the principles 

underlying the creation of biological sequences.

The first section provides an overview of DNA cloning and the different types of 

vector system that are employed. The second describes Sequence Tagged Sites or 

STSs. The third introduces the notion of Expressed Sequence Tags or ESTs, and 

the fourth describes the methods used to produce the complete sequence of a 

large DNA molecule such as a chromosome or bacterial genome.

2.1 Cloning

DNA cloning allows multiple copies of a DNA sequence to be produced. It is 

essential for operations such as DNA sequencing, and allows the production of 

libraries. Libraries are large collections of cloned DNA fragments from a 

particular organism, tissue, organ or cell type, maintained within a host such as 

E. coli. Libraries production results in a large DNA sequence being broken up to 

make a set of smaller fragments which are suitable for sequencing. Cloning can 

also facilitate the production of single stranded template DNA suitable for 

dideoxy sequencing if a vector such as M13 is used. The cloning process can 

result in the production of erroneous sequences; it is introduced here in 

preparation for the section on vector contamination in Chapter 6.
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Cloning involves the use of a host organism such as E. coli and a cloning vector. 

A cloning vector is a DNA molecule into which a DNA fragment can be 

introduced, in vitro. The resultant molecules can then be introduced into living 

cells in which they can be propagated. Many cloning vectors exist, most of which 

are based around bacteriophages or plasmids. Bacteriophages are bacterial 

viruses. Plasmids are genetic elements composed of DNA or RNA that exist in 

both prokaryotes and eukaryotes. They carry genetic information, are not part of 

the chromosome, but can propagate themselves autonomously.

The DNA sequence to be cloned is first digested using a restriction enzyme, or 

randomly sheared using a method such as sonication. This results in a set of 

fragments, each of which can be cloned, or alternatively, multiple copies of a 

single fragment can be selected by cutting its band from an agarose gel.

The cloning vector is also cut, using a restriction enzyme that has a single 

recognition point within the vector sequence. The DNA fragments and the 

linearised vector sequences are ligated together to produce a sequence containing 

the vector and the clone, which is referred to as the insert.

The resultant recombinant DNA molecules are introduced into the host bacteria 

either by transformation, enhanced by soaking the cells with calcium chloride, or 

via infectious bacteriophage particles (in vitro packaging, see below). Once the 

vectors have been inserted, they direct the production of multiple copies of 

themselves. The replication process is such that only one recombinant molecule
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can propagate within a single host, so that after a period of time, each host 

contains multiple identical copies of a single recombinant DNA molecule.

Cloning vectors are typically less than 10Kb in length (before insertion). This 

makes them easier to manipulate, and also allows a restriction enzyme to be 

found which only has one recognition site within the sequence. This is because 

the longer a sequence, the more likely a given restriction enzyme site will occur 

more than once. For example, an 8 base pair restriction site will have an average 

occurrence in a random sequence of once every 48=65536 base pairs. Cloning 

vectors must also replicate efficiently. Plasmids and bacteriophages fit these 

criteria for bacterial hosts, but plasmids are uncommon in eukaryotes. Thus, 

eukaryotic vectors tend to be derived from viruses.

Vectors have marker genes that allow cells containing the vector to be identified, 

and also for recombinant DNA molecules to be distinguished from those which 

do not contain an insert. A number of different markers exist, such as antibiotic 

resistance, histochemical markers (which result in a colour change) and 

nutritional markers which allow transformed cells to grow on media lacking a 

specific nutrient that would otherwise be required.
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Figure 1 Diagram show ing the cloning process using the plasmid vector pUC8.

For example, pUC8 is a plasmid vector with a cluster of recognition sites for the 

restriction enzymes HindlU, Pstl, Sail, AccI, Hincll, BamHl, Smal, Xmal and 

EcoRl. These occur within the LacZ’ gene which codes for the enzyme (3- 

galactosidase. In plasmids which have had a sequence successfully inserted, this 

gene is inactivated, p-galactosidase cleaves the disaccharide X-gal (5-bromo-4- 

chlor-3-indolyl-p-D-galactopyranoside), which is similar to lactose, into its 

component sugars -  one of which is coloured blue. Thus, cells grown on agar 

containing X-gal form blue colonies if they do not contain an insert in the LacZ’ 

gene, whilst those with an insert are white. pUC8 also contains a gene for 

ampicillin resistance. Together these markers allow colonies from bacteria which 

contain vector and insert to be distinguished from other colonies. This process is 

summarised in Figure 1.
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2.1.1 X p h a g e  vectors

Plasmid vectors over about 10Kb in size are liable to undergo rearrangement, and 

become difficult to work with. An alternative system based on the vector X phage 

can handle inserts of up to 18Kb (an upper bound placed by the size of the phage 

particle) (Brown 1999). The X genome is 48.5Kb, of which a 15Kb central 

segment contains genes that are only necessary for the integration of the phage 

DNA into the E. coli genome. Thus, this region can be removed without 

interfering with the phage’s ability to replicate. The X genome is linear, so that 

the removal of its central segment results in two arms between which DNA is 

inserted.

Three types of X systems exist: insertion vectors, replacement vectors and cosmid 

vectors. Insertion vectors consist of the two arms joined at a restriction site that is 

used for the insertion of new DNA. Replacement vectors contain a ‘stuffer 

fragment’ that is replaced by the insert when it is ligated into the vector.

2.1.2 Cosmid vectors

Cosmid vectors are produced by incorporating the X cos site into a plasmid. X cos 

is a site required for the assembly of a DNA sequence into a phage particle. 

Ligation is arranged so that when DNA is cloned into the cosmids, they join 

together to form linear chains. When placed in the appropriate Hn vitro 

packaging mix’, these chains rearrange into ‘X-genomes’. The packaging mix is a 

set of proteins that self assemble into phage particles in the presence of X cos.
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Since the original plasmid can be as short as 8Kb, a cosmid can accept an insert 

of up to 44Kb.

2.1 .3  M13 p h a g e  vectors

The M l3 phage has a single stranded DNA genome that, after infection of the E. 

coli bacterium is converted into a double stranded replicative form. This 

replicates until approximately 100 copies exist, and the copy number is 

maintained after cell division by further replication. At the same time, the cell 

continues to secrete single stranded M l3 phage particles -  approximately 1000 

per generation. M13 is of particular interest because it produces single stranded 

DNA which is required for Chain Termination sequencing. M l 3 systems suffer 

from rearrangement when the inserts are greater than about 3Kb.

2.1.4 P h ag em id s

Phagemids are produced by incorporating the origin of M l3 (or another single 

stranded phage) into a plasmid vector, as well as the plasmid’s own origin. When 

accompanied by a helper phage, carrying genes for the phage replication enzymes 

and coat proteins, an E. coli cell produces single stranded copies of the phagemid 

DNA. This system avoids the instabilities associated with M13 vectors (allowing 

inserts of up to 10Kb to be successfully cloned), whilst producing single stranded 

DNA suitable for sequencing.

Although the vectors described above are sufficient for cloning the relatively 

short sequences required for shotgun sequencing, vectors which can handle larger
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inserts are required for techniques such as Clone Contig Sequencing1 - see 

section 2.4.2 on page 12.

2.1.5 Y eas t  Artificial C h ro m o so m es

Yeast artificial chromosomes or YACs (Burke et a l  1987) consist of a 

centromere, a pair of telomeres and at least one origin of replication. These are 

linked together with one or more marker genes and a restriction enzyme site at 

which new DNA is inserted. These components can be placed in a DNA 

molecule of about 12Kb in length.

Standard YACs are able to take inserts of 600Kb, with recent ones able to handle 

fragments as large as 1400Kb. Unfortunately, YACs are prone to problems with 

insert stability and sometimes become rearranged by recombination. (Anderson 

1993).

2.1.6 Bacterial Artificial C h ro m o so m es

For this reason, Bacterial Artificial Chromosomes or BACs (Shizuya et a l 1992) 

are the preferred vector for many tasks, such as the Human Genome Project

1 Some small genomes have been sequenced using cosmid vectors, notably, 

Saccharomyces cerevisiae (Oliver et al., 1992). However, the process is 

laborious, and the desire for larger inserts has resulted in the development of a 

number of vectors capable of taking much longer sequences.
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(Cohen et al. 1993) which has abandoned YACs in favour of BACs because of 

fears over instability. BACs are derived from the E. coli F plasmid, which is 

relatively large. They can accept inserts of up to 300Kb.

Other vectors, such as bacteriophage PI (Sternberg 1990), Pl-derived artificial 

chromosomes or PACs (Ioannou et al. 1994) and Fosmids (Kim et a l 1992) are 

also of interest because of their ability to take relatively large inserts.

2.1 .7  S um m ary

DNA cloning is a complex multistage process. The complexity introduces a 

number of potential sources of error, most notably from contamination of or by 

host or vector sequences. Different host organisms and vectors are used in 

different circumstances so that a large number of different erroneous sequences 

can be introduced into a sequence database. The type and level of contamination 

that results from cloning errors is discussed in chapter 6.

2.2 Sequenced Tag Sites or STSs

When sequences are generated manually the electrophoresis process places an 

upper bound of about 1500 residues (although this is rare -  typically resolution is 

up to about 400bp) before the bands on the gel become too close to be resolved. 

Automatic sequencers have an upper bound of about 400 residues; with a 

significant increase in error rates after about 300.
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The region of a template that is sequenced is determined by the type of 

sequencing primer that is used. Universal primers adhere to the vector adjacent to 

the insert. Thus, universal primers can be used to sequence either end of the 

insert, up to a length determined by the resolution of the autoradiograph. Internal 

primers anneal within the insert itself and can be used to generate the whole 

sequence by using a set of different primers to generate sequences distributed 

across the insert. These can be assembled into the complete sequence.

Once an insert has been sequenced, it is desirable to place it on a physical map of 

a genome or chromosome. This is typically done by relating its position to the 

location of a sequence-tagged site, or STS. STSs are short (~500bp) regions of 

DNA that have known sequence and are known to occur uniquely within a 

genome. There are a number of possible sources for Sequenced Tag sites:

• ESTs (see below), from genes which are known to be unique, or from the 3’ 

non-coding region of the gene, which is less well conserved between 

multicopy genes than the coding region.

• Simple Sequence Length Polymorphisms or SSLPs. These are repeat regions 

that show different lengths.

• Random sequences taken from a database.

STS mapping takes a library of sequence fragments and identifies those that 

contain individual STSs. This allows the fragments to be ordered by identifying
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shared STSs. The resolution of the map is determined by the fragment size. There 

are various possible sources of fragments, but for genomic sequencing, the contig 

library is eminently suitable, because the information derived from STS mapping 

can then be used to identify overlapping clones, which facilitates assembly.

2.3 Expressed Sequence Tags or ESTs

The work described in this thesis arose from the need to manage and interpret the 

large amount of data produced by EST sequencing.

ESTs are of particular interest because they represent the portion of a genome 

which is being transcribed into mRNA. For human beings, this represents less 

than 5% of the total genomic DNA (Gerhold and Caskey 1996).

ESTs are generated by the partial sequencing of randomly selected cDNA clones, 

and thus represent fragments of expressed genes. cDNA clones are produced by 

selecting mRNAs from a cell by means of their poly(A) tails and then using 

reverse transcriptase to copy them into cDNA. The resultant cDNAs are cloned 

into plasmids and replicated in E. coli. The relative abundance of specific cDNAs 

in the library is therefore related to the proportions of mRNAs expressed in a cell 

(Goodfellow 1995).

The correlation between mRNA and protein levels is, however, not entirely 

straightforward. One reason for this is that gene expression involves both 

transcription and translation; only the former is considered by cDNA analysis. 

Another reason is that post translational modification often means that the
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protein transcript is not the one that is finally exhibited in a cell. Finally, mRNA 

degredation rates vary significantly: mRNA that exists in a cell for a long time 

will produce more protein than one that is rapidly degraded. For example Lange 

and Hengge-Aronis (1994) show that the cellular concentration of the sigma S 

subunit of RNA polymerase in E. coli is dependent on transcription, translation 

and protein stability. Gammie et al. (1999) draw the same conclusion for 

karyogamy transcription factor Kar4p in yeast.

Given the above provisos (especially when the difference in expression is being 

measured), the analysis of random cDNA clones is a useful technique that has a 

long pedigree stretching back to Costanzo et al. (1983), who used it to investigate 

liver proteins.

EST sequencing itself is a relatively new technology, originally described by 

Wilcox et al. (1991) and Okubu et al. (1992). Recently it has been pursued 

vigorously by Venter at the National Institute of Health (NIH) (Adams et al. 

1992) and forms the basis of companies such as Incyte and Celera.

EST sequencing relies on the use of automation to rapidly produce sequences 

from randomly selected cDNA clones. The sequences are generated in a single 

pass using universal primers and are typically about 300-400 bp long -  sufficient 

to identify the gene they code for.

Large scale sequencing projects such as Merck-WashU, and Incyte’s LifeSeq 

database are exploiting this technology to provide rapid coverage of coding
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regions in a number of genomes including H. sapiens. At the time of writing, 

LifeSeq contains 4,000,000 ESTs, representing between 100,000 and 120,000 

human genes (which Incyte claim to be over 90% of the expressed genes in the 

human genome).

ESTs can be sequenced from either the 5’ or 3’ end of the cDNA insert. 

Typically, mRNAs are purified from total RNA by using an oligo(dT)-linked 

Sephadex column. This is a device which extracts mRNA by passing it through a 

column which contains a primer that anneals to the mRNA’s poly(A) tail. The 

primer is physically bonded to a substrate, so that the mRNA anneals to the 

primer and becomes attached to the column. First strand synthesis of the cDNA is 

primed using an oligo(dT) that anneals to the poly(A) tail of the mRNA. Creation 

of the cDNA by reverse transcription results in a set of sequences all ending at 

the 3’ end but of varying lengths. A primer containing a restriction enzyme such 

as IscoRl is annealed at the 5’ end. The oligo(dT) primer has a different 

restriction enzyme such as Not! included and, with the 5’ end primer allows the 

cDNA to be cloned with a fixed direction into a vector. The vector has a pair of 

(different) primers on either side of the insert site, which allows the cDNA to be 

sequenced either from the 5’ or the 3’ end. The 3’ poly(A) terminus does not 

normally contain a coding region. Thus, ESTs sequenced from the 3* end 

typically do not contain coding sequence; instead they contain the tail of the 3’ 

untranslated region, or UTR. ESTs sequenced from the 5’ end contain varying 

regions of the same gene, and typically represent a portion of the gene’s coding 

region.
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Many libraries are normalised to reduce the abundance of highly expressed 

mRNA in order to cut the amount of redundancy, which otherwise results in the 

same gene being sequenced many times at the expense of lowly expressed genes 

(Soares et al. 1994).

2.3.1 Differential E xpression  A nalysis

Systematic cDNA sequencing offers the potential for differential expression 

analysis, but quantification at low expression levels requires a large amount of 

sequencing: genes at the 1:10,000 abundance level requires the sequencing of 

between 50,000 and 100,000 clones for each library. (Jordan, B 1998). 

Alternative approaches using hybridisation probes and large arrays of targets 

offer the chance to analyse the expression of large quantities of genes in one 

experiment. These technologies are mentioned briefly here because they depend 

on ESTs, either for their source data or in the analysis of their results.

• High density membranes are prepared by spotting bacterial colonies onto 

Nylon filters (Nguyen et al. 1995; Zhao et al. 1995; Pietu et al. 1996; Gress 

et al. 1992). The bacteria are grown and treated using standard techniques to 

extract, prepare and attach the bacterial DNA to the support. It is also 

possible to spot PCR amplified cDNA directly onto the membrane.

• Microarrays are produced by placing 0.5 -  1.0 kb cDNAs onto a glass 

substrate. In effect they are the high density membrane technique writ small 

(Southern et al. 1992).
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• Oligonucleotide chips are generated by synthesising short oligonucleotide 

probes onto a glass membrane (Khrapko et al. 1991). Fodor et al. (1991) have 

developed a technique which allows these to be generated in situ using photo­

lithographic techniques.

All these technologies benefit from large libraries of EST sequences, representing 

a high proportion of human genes, both in the decision as to which probes to 

place on the substrate, and in the analysis of the results of an experiment. It is 

likely that the trend away from expression profiling using completely 

uncharacterised clones will continue as EST libraries increase in size and as the 

ESTs themselves are combined with mapping data.

2.3 .2  M apping

ESTs themselves are useful for mapping -  those representing the 3’ untranslated 

region of genes are used as STSs in the production of a high resolution map of a 

genome (Boguski and Schuler 1995). 3’ UTRs are used because:

• they do not contain introns -  their PCR product is the same size as that 

produced from a genomic template.

• Their sequences are less well conserved than coding regions, so that it is 

easier to distinguish between multi-copy genes.

30



Like many other applications of ESTs, mapping is complicated by the high 

redundancy of EST data. For this reason, the NCBI embarked on the UniGene 

project which clusters ESTs around genomic sequence data.

2.3 .3  Positional Cloning

Related to mapping is the desire to identify ‘interesting’ regions of a genome that 

are, for example, involved in a particular disease state. Positional cloning is a 

strategy used to isolate a gene whose gene product is completely unknown. It 

starts from a knowledge of the gene’s position on the chromosome. Since ESTs 

represent the coding regions of a genome, they can be used to rapidly identify 

regions of a genome. ESTs offer the opportunity to speed up positional cloning, 

by allowing a region of genomic DNA to be rapidly ‘skimmed’ by low density 

EST sequencing. This allows the region to be searched for putative genes that can 

then be matched to known genomic/EST sequences. Combined with linkage 

analysis, which attempts to correlate the position of polymorphic markers with a 

disease gene (typically within 1-10 Mb), such an approach offers great potential 

for therapeutic sequence analysis.

EST sequences also offer the oppoitunity to localise genes to large genomic 

DNA clones such as YACs, BACs, and PACs by hybridising genomic probes to 

arrays of ESTs spotted on nylon membranes.
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2 .3 .4  Error ra te s

Whilst automation and high throughput techniques are attractive in that they are 

able to produce large amounts of data quickly and inexpensively, the approach 

results in relatively ‘dirty5 data.

In an analysis of sequences in dbEST (Boguski et al. 1993), the EST subset of 

GenBank (Benson et al. 1999), Wolfsberg and Landsman (1997) searched the 

database using 15 human genomic gene sequences. The resulting ESTs were 

aligned to the genomic DNA, and the alignments studied. For one gene, 73% of 

the ESTs which derive from spliced or partially spliced transcripts contained 

introns or were spliced at previously unreported sites. Other genes showed 

differing amount of variation. In a related analysis of pairs of ESTs purporting to 

arise from the same gene, 26% do not both align with the appropriate piece of 

genomic DNA. The authors suggest that this is a result of artefacts in the EST 

process and urge caution in the treatment of EST data.

One side effect of the high throughput process by which ESTs are generated is 

that they have a relatively high sequencing error rate. The average fidelity is 

being about 97%.

The analysis of artefacts in EST data is taken further by Aaronson et al. (1996). 

They compared ESTs to a set of human transcripts from EGAD, the Expressed 

Gene Anatomy Database (White and Kerlavage 1996). Within the set of ESTs 

which showed similarity (by BLAST (Altshul et al. 1990) and Smith-Waterman
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alignment (Smith and Waterman 1981) to EGAD, they identified a number of 

sequencing anomalies:

1. Reversed clones, mislabelled ends

2. Lane tracking errors

3. Insert size

4. Internal priming/alternative translation

These are discussed in more detail in the following sections.

2.3.4.1 Reversed clones/mislabelled ends.

The EST libraries used in their analysis were derived from unidirectionally 

cloned inserts and labelled to be 5*-3* or 3’-5 \ By comparing the sequences to 

genomic DNA, Aaronson et a l were able to determine ESTs within the database 

which were incorrectly labelled. Labelling of the ESTs in the database was 

varied: either by placing “5”’ or “3”’ labels as unstructured text in the 

dbEST/GenBank entries, or by placing ‘s/r’ in the read_id suffix to encode 375’.

0.39% of the sequences they analysed used both methods of annotation, and they 

were conflicting -  signifying errors at the annotation stage. Since sequences are 

represented in the direction they are read from the gel, 3’ ends should match to 

the non-coding strand of the genomic sequence, 5’ ends to the coding strand. A 

reversed clone appears as a 5’ sequence labelled as a 3’, or a 3’ sequence labelled
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as a 5’. In order to analyse reversal, the set of ESTs from a clone were aligned 

with genomic DNA, and the direction determined by the alignment compared to 

their annotation. Whilst the majority of clones were correctly annotated, 5% were 

entirely reversed and 0.5% were mixed reversed/non-reversed. In general 

normalised (Soares et al. 1994) libraries showed higher rates of reversal than 

non-normalised libraries.

2.3.4.2 Lane tracking errors

Associating a sequence with the correct lane on a sequencing gel is clearly a pre­

requisite of successful annotation. In order to asses the level of lane tracking 

errors, Aaronson et al. identified 5’ and 3’ sequences from the same clone which 

align to different genes. Approximately 1% of sequence pairs behaved in this 

way -  assuming that only one of each sequence pair is incorrectly assigned, this 

corresponds to an error rate of about 0.5%.

2.3.4.3 Insert size

The WashU-Merck project associates insert size with ESTs. If the 3’ and 5’ end 

of an insert are known, it is possible to determine the insert size by matching the 

ends to a known transcript sequence. This is complicated by the fact that insert 

size can vary as a result of alternative splicing, and care needs to be taken with 

multicopy genes. Aaronson et al. report an average error rate in the determination 

of insert size of 21.5%.
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2.3.4.4 Internal priming/alternative translation

The 3’UTR region of mRNA is the most varied part of the sequence and it is 

considered to be possible to use it to uniquely map a clone to a transcript. Since 

3’ ESTs are generated by priming from an oligo(dT) primer that anneals to the 

poly(A) tail, all 3’ ESTs should be anchored to the poly(A) tail. This is not 

always the case, for a number of reasons:

Internal priming to A-rich regions upstream of the poly(A) tail during reverse 

transcription can result in 3’ ESTs which are generated from upstream of the 3’ 

terminus of the sequence.

Alternative 3’ ends. The poly(A) tail of an mRNA is added by the cell to pre- 

mRNA on recognition of a terminal signal in the pre-mRNA sequence. Some 

transcripts contain a number of canonical poly(A) signals, resulting in alternative 

3’ ends.

In order to assess the abundance of sequences resulting from these events, 

Aaronson et a l  identified ESTs which did not fall at the 3’ end of transcripts. 

These were classified into three sets: (1) near a canonical poly (A) signal, 

suggesting an alternative 3’ end. (2) near a poly(A) rich region, suggesting an 

internal priming event. (3) neither near an A-rich region or near a canonical 

poly(A) signal. The latter subset may contain sequences that result from an 

internal priming event not adequately described by the poly(A) rich criterion 

described above. Internal priming was observed to occur with a rate approaching 

3%.
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2.3 .5  Sum m ary

Section 2.1 described the process by which sequences are cloned and drew 

attention to the process as a source of potential sequencing errors. ESTs are a 

rapidly generated resource and tend to be relatively unreliable. Given their 

potential as a resource for biological research there is an incentive to generate 

methods for screening ESTs for contaminations and errors. This is discussed in 

more detail in chapter 6.

2.4 Genomic Sequencing

2.4.1 S hotgun  S eq u en c in g

Shotgun sequencing simply takes the results from a set of sequencing 

experiments and assembles them into one large sequence by finding the overlaps 

between fragments. It does not require any kind of physical map or prior 

knowledge about a sequence. However, the number of comparisons which must 

be made is equal to n2 -  2 n , where n is the number of fragments the original 

sequence is split into. Thus, the number of inter-fragment comparisons can 

become prohibitively large as the size of the sequence increases.

In 1995, Fleishmann et a l (1995) demonstrated the validity of the approach by 

sequencing the entire 1.803 Mb Haemophilus influenzae genome entirely by 

using the shotgun method.

The genome was first split into fragments using sonication. The fragments were 

sorted using electrophoresis, and those between 1.6 kb and 2.0 kb were cloned
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into a plasmid vector, resulting in a library containing 19,687 clones. 23,643 

individual sequences were produced from the library, by sequencing from the 

vector using universal primers. Thus, the ends of the inserts were sequenced, 

corresponding to a total length of 11.6 Mb. These were assembled to produce 140 

conti gs.

A number of methods were employed to close the gaps between contigs. Firstly, 

the library was searched for inserts whose ends were located in different contigs. 

For these inserts, the sequence was closed by sequencing across the insert using 

internal primers. This closed 99 of the gaps, leaving 42 physical gaps which 

corresponded to sequences that did not occur in the clone library -  probably as a 

result of sequence instability.

Physical gaps were closed by preparing a new library using a different vector (A, 

phage). Appropriate clones to sequence were selected by a combination of two 

approaches. Firstly, oligonucleotide primers corresponding to the ends of the 

contigs were used to probe the library. Clones to which a pair of primers 

annealed were selected. These corresponded to a gap and were sequenced using 

internal primers. Alternatively, pairs of primers were used to carry out PCR. Only 

sequences that contained the template for the primer pair produced a PCR 

product. The PCR product corresponded to a gap and was sequenced.

Shotgun sequencing is eminently suitable for sequencing small genomes; its 

strength is its speed and lack of dependence on a physical map.
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Its principal shortcomings are the complexity of the data analysis, and the issues 

that arise from repetitive regions within a sequence - which can result in mis- 

assembly. Directed shotgun sequencing (see section 2.4.3) offers potential 

solutions to some of these problems.

2.4 .2  C lone Contig S equen c in g

The clone contig approach breaks a large sequence into smaller fragments (of 

about 5 Mb) which are then sequenced using a shotgun approach. These large 

fragments are generally anchored onto a physical map so they can be identified 

and analysed using features such as STSs. The clone contig approach relies on 

cloning vectors such as YACs and BACs that are capable of handling large 

inserts.

2.4.2.1 Chromosome Walking

Chromosome walking starts with a clone, identifies a second clone from the 

library which overlaps with the first clone, a third clone which overlaps with the 

second, and so on. One way to do this is to use the insert from a clone as a 

hybridisation probe with which to screen the other clones in the library. Problems 

arise when the probe contains repetitive DNA which hybridises with DNA in a 

number of different clones. This can be reduced by pre-hybridising with 

unlabelled, repetitive, genomic DNA, but this is not effective with the large 

inserts from YACs or BACs. In this situation, the end of an insert is used as a 

probe (it is shorter, so less likely to contain a repetitive sequence). The probe can 

be sequenced in advance to confirm that it does not contain a repetitive region. If
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the end has been sequenced, PCR can be used to identify a neighbouring clone 

instead of hybridisation.

This approach is generally used for positional cloning, where the objective is to 

walk to a gene that is some distance (15 Mb, for example) away in the physical 

map. It is generally too slow to be applied in situations where there are more than 

15 contigs to be walked.

2.4.2.2 Clone Fingerprinting

Clone fingerprinting identifies neighbouring clones by generating a coarse map 

of some features in each clone and then identifies similar patters between clones. 

The map can be generated by a number of methods, such as:

• restriction patterns,

• repetitive fingerprints, which carries out Southern hybridisation experiments 

using probes for various known genome wide repeats

• Repetitive DNA PCR which generates PCR products from the clone using 

primers to genome wide repeats. Since repeats are not evenly spaced, 

different sized products are produced, and these can be used as a fingerprint.

• STS content mapping. STS mapping uses primers directed at different STSs. 

If each STS is unique, then two clones that contain the same STS must
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overlap. STS mapping is also appealing because it allows contigs to be 

anchored to a physical map.

2.4 .3  D irected S ho tgun  S equencing

Shotgun sequencing results in about 8 times as much sequence being produced as 

the original genome being sequenced. For the human genome, this corresponds to 

about 70 million 500 base pair sequences. This is a tractable amount of data, but 

it is considered too hard to assemble the fragments in the correct order, partly 

because of repetitive regions and partly because of the computational effort 

required to perform the assembly. For this reason, the directed shotgun approach 

has been proposed, which makes use of the physical map during assembly 

(Venter et a l 1998). This is currently underway using a combination of 2Kb and 

lOkb clones in a different plasmid vectors. The 10Kb clones are large enough to 

entirely contain the majority of repetitive sequences found in human DNA; they 

should help resolve the problems of mis-assembly when sequencing around these 

regions. It is believed that by using the STS map of the human genome, it will be 

possible to assemble the master sequence correctly. However, doubts as to 

whether this is achievable mean that the human genome project continues, using 

BACs as the principal vehicle for cloning.

2.5 Summary

This chapter has described the principal methods used for obtaining DNA 

sequences from biological samples. From a bioinformatics perspective, it is 

important to recognise the complexity of the process. Errors can arise at many
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stages and vary in range from mis-reading of a sequencing gel or trace, 

contamination by vector or host DNA, through to complex biological processes 

such as alternative splicing and inversion. As a result, sequence data are not the 

pure repository of information a computer scientist would like them to be, and 

there are many pitfalls to traps a naive user. Part of the motivation for the work 

described in this thesis was to generate tools capable of searching through the 

vast amount of sequence data in order to identify errors such as contamination, 

and to generate cleaner DNA databases. The results of these endeavours are 

presented in chapter 6. Fast algorithms are also required to locate the overlapping 

ends of sequences and to assemble them into contigs. This is particularly true 

with shotgun and directed shotgun sequencing, where there is a lack of mapping 

information to help with the ordering of the sequences.
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3 Current bioinformatics sequence analysis tools

At the time of writing, the EST subset of EMBL (release 60) contains 3.95Mb 

nucleotides and is continuing to grow exponentially as it has done since its 

inception -  see Figure 2. (Stoesser et al. 1999). It is of a size that defies manual 

analysis.
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Figure 2  Growth o f  the EM BL D N A  database since its inception in 1982.

Databases perform a number of services to the biological community. At one 

extreme, they are simply a repository of experimental results in which scientists 

can submit their data for peer review and analysis. At the other, they are valuable
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data sources for performing in silico biology. Both views of databases provide 

significant challenges to the information management community.

3.1.1 R eposito ries

A database which is being used as a repository needs to represent the complex, 

diverse and interconnected information which drives biology. This is exemplified 

by the fact that only about 30% of a database such as EMBL is sequence: the rest 

is annotation describing things such as gene function, tissue type, organisms and 

bibliographic references. Simply representing such information is sufficient if the 

only mode of access is by browsing, or by reference to a previously identified 

entry. For example, a user might follow a link to a specified entry by using an 

accession number quoted in a paper, or presented in the output of a similarity 

search tool (see below).

However, a database such as EMBL, cannot be browsed — it contains over 4.7 

million entries. For this reason it is necessary to do more than just represent the 

data: infrastructure is also required to allow it to be searched for records which 

match a specified criterion.

Unfortunately, this is difficult with biological systems. One reason is that, with a

few notable exceptions (Rodriguez-Tome and Lijunzaad 1997; Skupski et al.

1999; Blake et al. 1999; Attwood et al. 1999), the majority of bioinformatics

databases are supplied as flat files without a generic query engine or a published

schema. This is unfortunate given the amount of effort that has been spent over

the last 29 years (Codd E.F. 1970; Chen P 1976) developing relational database
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technologies for representing large amounts of information in a principled and 

structured manner, and for extracting data from the resulting databases. The 

situation is made more complex by the fact that some databases, such as EMBL, 

are stored in a relational database, but are not available in that form. Instead, ad 

hoc systems have developed for the indexing and querying of flat files. Currently, 

the most widely used of these is the indexing and search software SRS (Etzold et 

al. 1996), which is a sophisticated system for performing text based searches on 

partially structured text files.

It is also the case, however, that bioinformatics data is significantly more 

challenging to represent than the kind of information that is carried in typical 

relational databases such as airline booking and payroll systems. This is because 

biology is a discipline based on knowledge, and that knowledge is complex -  

describing amongst other things, the form, function and interaction of proteins 

and small molecules.

This kind of information is generally represented in databases as a mixture of free 

text and partially structured hierarchies based on keyword taxonomies, such as 

that found in SWISS-PROT (Bairoch & Apweiler 1999). The expressive nature 

of the English language makes this kind of representation less than ideal for 

databases that are going to be searched by computer. For example, a search to 

retrieve all transposable elements from EMBL requires searches for transposon, 

transposase, mariner, ty element and probably many others. Further, the content 

and integrity of some databases are not effectively controlled, so that, for
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example, fields intended to be annotated using a controlled vocabulary contain 

unauthorised entries.

Consequently, there is considerable interest in the bioinformatics community in 

representing biological knowledge in a formally structured framework that allows 

relationships such as ‘transposon and mariner are both types of transposable 

element’ to be expressed unambiguously. In order to do this effectively it is 

necessary to represent relationships other than isAKindOf, such as isAPartOf, 

interactsWith and islmplicatedln.

For example, EcoCyc (Karp et a l  1998) uses a frame based system developed by 

Artificial Intelligence researchers to represent metabolic pathways in E. coll 

RiboWeb (Chen et a l 1997) is a knowledge base of the most common 

experiments used to study the structure of RNA/Protein complexes. TAMBIS 

(Baker et al. 1998; 1999) uses a representation of key concepts in bioinformatics 

and the relationships between them to facilitate the generation of database 

queries which can then be performed across multiple information sources. 

INTERACT (Eilbeck et al. 1999) uses an Object Oriented Database Management 

System (OODBMS) to represent information on protein-protein interactions 

derived from a number of sources such as yeast 2-hybrid and co- 

immunoprecipitation. The system uses ‘wrappers’ to provide a relatively uniform 

interface to a set of resources distributed across the Internet. Information is 

extracted from these resources and placed in a data warehouse built around the 

interaction data. This warehouse contains information such as protein 

homologues, motifs, and bibliographic references.
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3.1 .2  R e so u rc e s  for in Silico biology

Sequence databases are very much more than simply being electronic filing 

cabinets, they are resources in their own right. They can be used to help identify 

the function, behaviour or properties of proteins, genes and other sequences 

elements such as polymorphisms and promoter sites. The principal methods 

employed involve comparing protein or DNA sequences in an attempt to find 

ones which are similar. The hypothesis is that similar sequences have similar 

properties and hence are likely to perform a similar function. Similarity searches 

across sequences in a database are the main method of identifying database 

records and can be viewed as providing the ‘hooks’ that allow entries to be 

retrieved and browsed by a user. Thus, an uncharacterised sequence is searched 

against a database of sequences with known function to provide a set of 

annotations, which, it is hoped, will provide information that can be used to infer 

the function of the initial query.

A number of pattern-matching algorithms have been developed for comparing 

DNA and protein sequences against each other; this section details the principal 

ones, after a brief discussion of the relationship between sequence similarity and 

homology.

3.2 Similarity vs. homology

States and Boguski (1991) highlight the distinction between similarity and 

homology:
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“Similarity is a descriptive term which implies that two sequences, by some 

criterion, resemble each other and carries no suggestion as to their origin or 

ancestry. Homology refers specifically to similarity due to descent from a 

common ancestor. ”

They point out that although the words ‘similarity’ and ‘homology’ are often 

used interchangeably they have different implications, and that whilst it may be 

possible to infer homology from sequence similarity, "...outside o f an explicit 

laboratory model system, descent from a common ancestor remains 

hypothetical. ” They use an information theoretical argument to show that the 

length and combinatorial nature of a protein sequence implies that it is unlikely 

that two random sequences would carry ‘the same message’.

They argue - with reference to (Patterson, 1988) - that convergent evolution at the 

molecular scale should be extremely rare, and that the observation of similar 

sequences of sufficient length can be accepted as evidence for homology. The 

same argument can be made to generalise to (longer) DNA sequences.

They also explore what can be deduced from an implied homology between two 

sequences. In the examples that follow it is demonstrated that:

• homologous sequences do not necessarily perform a similar function: 

Haptoglobin is not a functional proteinase although it is often considered part 

of the Serine Proteinase family.
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• even in proteins where the majority of the sequence has been replaced, it may 

be possible to establish homology from the sequence which remains (e.g. 

trypsin vs. chymotrypsin).

• homology may occur between whole proteins, or just between one domain 

amongst many: trypsin vs. prothrombin.

• structural similarity need not infer homology, because migration of 

exon/intron junctions can introduce or delete sequences and structural motifs 

(Craik et al., 1983).

In a brief discussion of the meaning and implications of ‘homology’, three 

different biological properties are considered: function, structure and

evolutionary relationships. Only the latter is a direct consequence of sequence 

homology, the other two are properties which might (or might not) be predicted 

as a result of an inferred homologous relationship.

When other properties of sequences are taken into account (such as: cleavage 

sites, promoter sites, areas of contamination, repeat regions, likelihood of primer 

adhesion, protein sorting, gene transposition and intron/exon prediction), it is 

apparent that there is a large set of biological questions which might be asked of 

a sequence analysis program.

Thus, there are many interesting biological relationships apart from homology -  

and homology is not necessarily the most useful basis for their investigation.
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This means that whilst percentage similarity is often a useful basis with which to 

infer homology, in situations where the question that is really being asked is a 

different one -  such as function prediction, for example, - an alternative metric of 

similarity might be more useful. One motivation behind the work described in 

this thesis was to explore whether alternative methods of similarity searching 

might in some situations perform better than an alignment based approach.

States and Boguski, by exploring the difference between similarity and 

homology, also draw the distinction between a mathematical algorithm and the 

biological relationship the algorithm is intended to infer. A necessary implication 

of this is that any consideration o f the ability o f an algorithm to answer a 

biological question must be judged in terms o f biology, not just a statistical 

analysis o f the algorithm.

The rest of this chapter considers some of the different tools and techniques that 

have been produced for sequence analysis.

Sequence comparison techniques can be divided into five distinct types: 

graphical methods, alignments, word-searching, profiling and motif searching.

3.3 Graphical methods

Graphical methods make use of a human being’s ability to spot patterns in 

images. The most common technique -  the Dot Plot -  is generally attributed to 

Gibbs and McKintyre, with numerous modifications and improvements by other 

groups (Gibbs and McKintyre 1970; McLachlan 1971, 1972, 1983; Maizel and
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Lenck 1981; Staden 1982; Pustell and Kafatos 1982, 1984; Argos 1987; Reisner 

andBucholtz 1988).

In its simplest form, the dot plot represents similarity between a pair of sequences 

by:

1. placing each sequence on the axis of a plane, and

2. plotting a point on the plane p{i, j )  whenever residue i of sequence x  is the 

same as residue j  of sequence y.

In the resultant image, diagonal lines with a gradient of 1 represent regions of 

similarity between the two sequences, and repetitive regions appeal' as a grid-like 

section of the image containing a regular pattern of diagonal lines which appeal' 

off the main diagonal -  refer to Figure 3.

50



500

- \

500

Figure 3 A  dot p lot o f  human L D L  receptor against itse lf showing a repeat region.

This simple form of dot plot suffers from problems with noise — particularly at 

the DNA level where (assuming equal base composition) one in four residues are 

likely to match. Improvements can be made by scanning a window across each 

sequence and scoring the match between the windows. Points are then plotted 

with intensity as a function of score. The simplest scoring scheme simply counts 

the number of matching residues between each window so that, for example:

‘ACGACA’

‘AAGAGA’
scores 4/6.

Dot plots provide an instantaneous and easy to interpret view of similarity, but in 

their simplest form do not offer any kind of automation. Attempts have been
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made to estimate the statistical significance of dot plots by performing a Monti 

Carlo analysis of windowing scores (Lipman and Pearson 1985; Pearson 1990). 

The analysis contrasts the distribution of scores produced by comparing a pair of 

sequences with the distribution of scores produced after randomly shuffling the 

sequences (which maintains residue frequencies). The result of such a 

comparison is a set of outlier points representing ‘interesting’ sequences, or 

alternatively a set of z-scores. Other techniques estimate significance by 

comparing the scores to a theoretical model based on random sequences. Argos 

uses real protein sequences to generate statistics for significance tests (Argos 

1987).

3.4 Optimal alignments

Alignments represent similarity by writing a pair of sequences next to each other 

and highlighting matching residues. Generally, alignments allow gaps to be made 

in the sequences. Since gaps may be of arbitrary length, and may be inserted 

between any pair of residues, a large number of different alignments may be 

produced from a pair of sequences. Alignments are scored; the highest scoring 

one being referred to as the optimal alignment.

If it is assumed that the sequences to be aligned have length N , a comparison 

without gaps has a time complexity of 0 ( N 2). When gaps are allowed, this 

comparison must be repeated 2N times giving a complexity 0 ( N 3) . Needleman 

and Wunsch (1970) introduced ‘dynamic programming’ to significantly reduce 

the time complexity of a gapped alignment to 0 ( N 2) .
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Dynamic programming is a standard computational technique that keeps a record 

of previous steps in a calculation so that they might be used in the future, 

avoiding the same result being recomputed many times. It is often used to solve 

optimisation problems that satisfy the principle o f optimality: in an optimal 

sequence of decisions or choices, each subsequence must also be optimal 

(Brassard and Bratley 1988).

The scoring system used in the Needleman and Wunsch algorithm satisfies this 

by using the following recursive definition of the alignment score:

3.5 Optimal alignment scores

The score S0 for an alignment ending in residue i from sequence 1 and residue j

from sequence 2 is calculated as follows:

t - i  j —i

s ij = s ij +maxj m a x ( 5 i - r i + w,-i)
2<.v<i

max(5.-iy-)' + wy~0
2 < y < j

where su is the score for aligning residue i with /, and

[1]

WxtW, are the scores for making gaps of length x and y, respectively, in 

sequences 1 and 2.

Dynamic programming is often referred to as a ‘bottom up’ technique, in that it

usually starts with the smallest subinstances of a bigger problem. The Needleman

and Wunsch algorithm proceeds by calculating the scores for alignments of

increasing size, and recording those scores in a matrix M  , where each cell
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M (i, j )  = S iJ-. Thus, the addition of a pair of residues to the alignment can be 

found by computing , and finding ,S! jL7 l from the matrix. The insertion of a

gap in sequence 2 corresponds to a horizontal jump through the matrix of length 

x, (to find S(_x j ), and a gap in sequence 1 corresponds to a vertical jump of 

length y.

When the algorithm is complete, the optimal alignment score is represented by 

the largest cell at the edge of M.

If the alignment itself (rather than just its score) is required, it is necessary to 

maintain a record of the path taken through the matrix. This can be done by using 

a ‘traceback’ matrix T} which records the move made to generate each cell in M.

A diagonal move is typically represented by the value ‘O’, a horizontal one by 

recording -x, and a vertical one by recording y.
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3.6 Gap penalties

The way the gap penalty W is calculated can have a significant effect on the 

alignment produced. Needleman and Wunsch applied a single penalty that was 

the same irrespective of the length of the gap. Sellers used a penalty that was 

proportional to length (Sellers 1974), and Smith and Waterman (1981) use a 

penalty wx:

wx = g + lx  [2]

where g is a gap opening penalty,

I is a gap extension penalty, and 

x is the length of the gap.

This is considered to provide a better model of insertions and deletions because 

gaps can be represented as being hard to open initially, but easy to extend once 

open. Modifying the gap opening and extension penalties can have a significant 

effect on the alignment that is produced: it is often advisable to perform an 

analysis a number of times with different penalties.

3.7 Global vs. local alignments

The Needlman and Wunsch algorithm described above produces a ‘global 

alignment5 in which all the residues in the sequences are aligned. Such an 

alignment can result in a situation where a short but well conserved region is 

missed because it is out-weighed by the rest of the alignment. In a significant 

modification to Needlman-Wunsch, Smith and Waterman produced a ‘local 

alignment5 algorithm designed to find short conserved regions between pairs of
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sequences (Smith and Waterman, 1981). The algorithm modifies Needlman- 

Wunsch by requiring that:

1. Mismatch scores must be negative.

2. The minimal value a cell in the alignment matrix takes is zero.

3. The optimal alignment may end anywhere in the matrix, not just in the final 

row or column.

3.8 Scoring schemes

The score assigned to a match between two residues also has a significant effect 

on an alignment. For global alignments of DNA sequences it is common to use 

an identity scheme that simply scores 1 for a match and 0 for a mismatch. For 

local alignments, where the mismatch score must be negative, it is usual to score 

a match 1 and a mismatch -1. For protein sequences, identity matrices ignore the 

fact that different amino acids share similar biological properties, so that, for 

example, it is common to see one hydrophobic residue substituted by another. As 

a result, a number of scoring schemes have arisen based on the chemical or 

mutational properties of amino acids.

3.8.1 PAM m atrices

Point Accepted Mutation (PAM) matrices (Dayhoff et al. 1978) model 

evolutionary change as a set of uncorrelated amino acid point mutations. The 

PAM-1 matrix tabulates the observed probability for each amino acid that it will 

mutate to each of the other amino acids, when the average rate of mutation is 1 in 

100 residues. This data set was produced by examining the alignments of a set of
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proteins that were more than 85% similar (closely related sequences were chosen 

so that they could be unambiguously aligned). Since the mutations are considered 

to be uncorrelated, the PAM model of evolution allows the PAM-1 matrix to be 

used to generate matrices for situations where the average rate of mutation is 

greater than 1%. For example, the PAM-120 matrix can be produced by 

multiplying the PAM-1 matrix by itself 120 times. PAM matrices are often 

represented as a log odds matrix, where each cell corresponds to the probability 

of the mutation occurring divided by the probability that the two residues may be 

aligned by chance. For mathematical convenience, the logarithm of this value is 

taken.

PAM matrices have been criticised for a number of reasons:

Firstly, the model assumes that all residues in a protein are equally likely to 

mutate. This is certainly not the case, as can be seen by examining a multiple 

alignment of proteins, where certain residues are clearly conserved. Secondly, by 

starting with a set of proteins that were highly conserved, Dayhoff et a l  produced 

data for the most mutable residues in the proteins -  which may be an incorrect 

starting point, given it is the highly conserved residues that are of interest when 

comparing diverse sequences. Finally, the initial data set was based on small 

globular proteins; the applicability of data derived from this set to other protein 

families has been questioned (States, DJ. and Boguski, MS. 1991).
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3.8 .2  BLOSUM m atrices

Blocks Substitution Matrices (BLOSUM) matrices provide an alternative to 

PAM matrices for representing amino acid substitutions (Henikoff & Henikoff 

1992). The matrices are often preferred to PAM matrices because they are 

designed to represent mutations for distant relationships - something that can 

only be inferred from a PAM matrix.

BLOSUM matrices are derived from 'blocks' in the Blocks database (Henikoff et 

a l  1999a; Henikoff et a l  1999b). A block is an ungapped section of a multiple 

alignment representing a conserved region of a protein family. The first step in 

the production of the matrix is to compile a table of the observed amino acid 

substitution frequencies for columns in a block. This is used to calculate a log 

odds matrix representing the odds ratio between observed frequencies and those 

to be expected by chance. In order to reduce multiple contributions to amino acid 

pair frequencies from the most closely related members of a family, sequences in 

a block are clustered according to percentage ID. Thus, for example, with a 

threshold of 80%, sequences A and B will be placed in a cluster if they are more 

than 80% similar. Sequence C will be placed in the same cluster if it is similar to 

either A, or B.

All sequences in a cluster are counted as a single sequence in the computation of 

the BLOSUM matrix, so that their contribution to the matrix is reduced.

By varying the clustering threshold, a family of matrices can be produced - 

BLOSUM80 for example, represents a matrix built with a threshold of 80%.
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3.9 Heuristic alignment tools

Even with the use of dynamic programming to reduce the complexity of optimal 

algorithms such as Smith-Waterman, the size of biological databases has resulted 

in a desire for faster methods of alignment generation.

Heuristic algorithms such as BLAST (Altschul et cil 1990) and FASTA (Pearson 

& Lipman 1988) satisfy this demand by trading optimality for speed.

The algorithms use a heuristic (a rule of thumb) to rapidly identify potentially 

high scoring alignments from the much larger set of possible alignments. This 

prunes the search space that has to be considered by the algorithm, reducing its 

time complexity. However, because the algorithm uses a heuristic, it is no longer 

guaranteed to produce the optimal alignment. Generally, the alignment is good 

enough -  particularly since the speed of the algorithm allows it to be produced in 

circumstances where it would otherwise be too expensive to generate.

Both BLAST and FASTA use ‘word’ searches to identify short matching regions 

between sequence pairs. A word is simply a k residue sub-sequence of a larger 

one. Thus, a word that is shared between a pair of sequences can be viewed as a 

short (k long) alignment. Both BLAST and FASTA use matching words to ‘seed’ 

alignments which are then scored and ranked. The difference between the 

algorithms lies in the scoring method they employ and the way the initial word- 

matching phase is performed.
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3.9.1 BLAST

BLAST (Altschul et al. 1990) is a program that finds high scoring alignments 

between a query sequence and a target database. BLAST is able to do this very 

quickly because it is only required to find a good alignment, rather than an 

optimal one.

BLAST works on the principle that an optimal alignment is likely to contain at 

least one short region of identities. It uses this heuristic to first generate a set of 

shoit sequences which would match the query sequence with a score greater than 

a specified threshold (for DNA these sequences are typically 11 bp long, for 

proteins, 3 residues). The words are subsequently compared against the database 

to be searched. Each time a match is found, the algorithm attempts to extend the 

match at either side to generate an ungapped local alignment. The alignments are 

scored, sorted and presented to the user as a text file -  although a number of front 

ends now exist which parse the output file and make it more attractive, for 

example, Power BLAST (Zhang and Madden 1997).

3.9.1.1 BLAST statistics

BLAST’S similarity measure begins with a matrix of similarity scores for all 

possible residue pairs. For protein sequences the PAM family of matrices 

(Dayhoff et al. 1978), or BLOSUM (Henikoff and Henikoff 1992), are generally 

used; for DNA, identities are typically scored +5, mismatches -4.

A maximal segment pair (MSP) is defined as the highest scoring pair of identical

length segments chosen from two sequences. An MSP is scored by generating the
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sum of the matrix scores for each residue pair in the MSP. BLAST calculates this 

score heuristic ally, and attempts to find the set of MSPs which score above a 

specified threshold.

The statistical significance of an MSP score is calculated with respect to a 

random model (Karlin & Altschul, 1990; Altshul et a l  1990) which considers 

MSP scores to be an extreme value distribution. For random sequences this can 

be shown to be the case.

3.9.1.1.1 Extreme value distributions

If two sequences are compared using a tool such as BLAST, a set of Segment 

Pairs are produced, each with its own score. If it is assumed that the Segment 

Pairs are independent of one another, their scores can be considered to be 

independent and identically distributed. This means that the sum of their scores 

should tend to a normal distribution.

BLAST, however, generates and scores Maximal Segment Pairs, or MSPs -  

which are the highest scoring Segment Pairs in a search. It can be shown that 

these tend to an Extreme Value Distribution (Altshul and Gish 1996; Altshul et 

a l  1994):

P(S <x) = exp(—e~X{x~u)) [3]
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The equation gives the probability that the optimal sub-alignment score from the 

comparison of two random sequences of length m and n is less than some score,

j*;.

The distribution is described by two parameters, the characteristic value, u, 

which can be thought of as the centre of the distribution, and the decay constant, 

X, which is a scaling parameter, u and X can be determined analytically: X is the 

unique positive solution for x in:

where the distribution of residues in the sequences are defined by p l ,p 2—p r , 

and the score for a paiiwise match between residues is su (as determined by a 

scoring matrix such as a PAM or BLOSUM matrix).

u may be calculated from the size of the sequences, m, and n:

u-{\r\Km n)IX  ^

K  is a constant which, like X, is dependent on the sequence composition of the 

database and the scoring matrix employed.

Combining [3] and [5] allows u to be eliminated; the probability that the optimal 

ungapped alignment score S > x can then be written:

E4]
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P(S > jc) = 1 — exp(—jKtkti e [6]

3.9.1.1.2 Expectation Score

It is possible to compute the expected number of MSPs for a pair of sequences 

with lengths m and n respectively using the following formula:

3.9.1.1.3 p-score

The following formula gives the probability of a score greater than or equal to x 

occurring by chance:

p  gives the probability that a pair of sequences would result in a score greater 

than x. For a search against an entire database containing D sequences, it is 

necessary to consider the fact that a high p-value can occur between the query 

sequence and any of the database sequences. If it is assumed the sequences in the 

database are random, this can be modelled using a Poisson distribution:

P ~ 1 -  e~Dp which, for p < 0.1 approximates to D p . [9]

An alternative approach considers the database to be populated by a set of 

proteins which consist of multiple domains. With this view of the data, D should 

be replaced by N/n, where N  is the number of residues in the database, and n is

E  = Kmne xs [7]

p  = l-e x p (e  A(v 10) [8]
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the length of the region of interest. For DNA sequences, such a normalisation is 

particularly relevant - since the database entries do not typically represent natural 

units of sequence.

Finally, a pair of sequences may generate more than one MSP. BLAST assumes 

that the number of MSPs matching between a pair of sequences with a score 

greater than x  is distributed as a Poisson distribution e~Mx~tt}. Note that p-scores 

and E  values are basically the same thing: /?-scores are simply E  values scaled by 

the database size.

3.9 .2  FASTA

The other widely used heuristic algorithm is FASTA, (Pearson, W.R. & Lipman, 

D.J. 1988: Pearson, W.R. 1990). FASTA proceeds first by identifying all 

identically matching words between a pair of sequences via a lookup table. For 

DNA, words are typically 4-6 bp long, for proteins, 1 or 2 residues.

Once matching words have been identified, the algorithm places them in an xy

plane, one sequence per axis. The diagonals of this plane are searched to find

regions that contain a high density of matching words, using the ‘diagonal

method’ (Pearson, W.R. & Lipman, D.J. 1988) which counts word matches on a

diagonal whilst penalising intervening mismatches. These regions constitute an

ungapped local alignment between the sequence pair. The ten highest scoring

regions are re-scanned using a similarity matrix (such as PAM250 for proteins);

the top scoring region is referred to as the initl score. This is treated as a measure

of pair-wise similarity and is used for ranking the hits against database
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sequences. Finally, FASTA attempts to combine regions together by looking on 

nearby diagonals for another region that could be incorporated by means of an 

insertion or deletion. This is assessed by using a ‘joining’ penalty which is 

similar to the gap penalty employed by other algorithms. This alignment of initial 

regions is computed using a dynamic programming algorithm, and produces the 

initn score which FASTA uses to rank its hits.

3.9.2.1 FASTA statistics

FASTA presents a histogram of scores generated by searching a query sequence 

against a library of target sequences. It also calculates the score’s mean and 

standard deviations. The FASTA package comes with the program RDF2 that 

compares the query sequence with randomly shuffled versions of the potentially 

similar database sequence. It can be used to further explore the statistical 

significance of the match.

3 .9 .3  A d iscussion  of statistical significance

Much has been made of the various levels of statistical rigor employed by 

different sequence comparison algorithms, and it is worth considering this in 

some detail. Firstly, Needlman-Wunsch, Smith-Waterman, BLAST and FASTA 

all score their matches in a similar way - by generating an alignment score based 

on summing the match/mismatch scores for the aligned residues. In this respect, 

the difference between the algorithms is dependent only on how close they get to 

the optimal alignment score for a pair of sequences.
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It is in their estimates of statistical significance that the algorithms differ. So, 

when Altschul et al. say “This tractability to mathematical analysis is a crucial 

feature of the BLAST algorithm” they are referring to the fact that a statistical 

model has been created which allows an estimate to be made of the probability 

that a given match occurred by chance. BLAST uses this estimate (the so-called 

p-value) to rank its hits, and to provide an appropriate cut-off below which 

matches are not returned.

Karlin and Altschul (1990) refer to their statistical model as ‘appropriate’. It is 

built on a theory for a single sequence which is produced by sampling from an 

alphabet A-{aj,a 2 ...ar}, with probabilities [pj, p2...pr}- Thus, the sequence is 

random, with no Markov dependency between successive elements (although it 

has generalisations to models that do have a Markov dependence). The results in 

chapter 4 of this thesis show that the composition of sequences in biological 

databases is far from random, and that the independence of residues assumed by 

the Karlin-Altschul model is not an accurate representation of biological 

sequences. It cannot be used to predict the distribution of subsequences within a 

database.

It is also interesting to consider the relationship between p-scores and alignment 

scores. In general, as an alignment score is increased (either by raising the % 

identity, or the length of the alignment), the p-score will decrease. This is 

because the better the alignment, the less likely it is to have occurred by chance. 

Thus, there is a rough inverse-mapping between alignment score and p-score. 

The mapping is not exact because individual residue frequencies are used to
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generate the random model upon which p-scores are based. The use of residue 

frequencies means that an alignment that contains a high proportion of common 

residues will have a higher p-score than other alignments consisting of rarer 

residues. So, p-scores provide a similar metric to alignment scores except that:

• they make a correction for biases in residue frequencies

• they provide a method for determining a cut-off below which hits can not be 

considered to be statistically significant.

This draws into question the whole utility of p-value statistics in the evaluation of 

similarity between biological sequences. Firstly, the cut-off required by the 

Karlin-Altschul model is generally ignored by biologists because biologically 

interesting relationships do not typically appear with p-values above about 0.001 

- three orders of magnitude greater than predicted by the model. In other words, 

the cut-off is almost always set to be much more stringent than required by 

Karlin-Altschul statistics. Secondly, we must consider the effect that a p-value’s 

correction for residue bias has on the ranking of a BLAST hit, and the user’s 

perception of it. The correction has the effect of changing a sequence’s ranking in 

the set of hits. When sequences are highly similar, the difference in p-value is 

inconsequential -  the match is definitely interesting, and the difference between a 

p-score of 10'162 and 10'165 is meaningless. When the matches are much less 

similar (~10'4 for example) a biologist must apply their expertise to the problem, 

and again, the relative ordering imposed by the p-value scoring system is not a 

relevant discriminator. Thus, rigorous statistics such as Karlin-Altschul, are of
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interest mathematically, but should not be used as a reason to choose one 

algorithm over another.

3.9.3.1.1 Bit scores

Perhaps in recognition of the problems associated with p-scores, recent versions 

of BLAST (Altschul et al. 1997) no longer report them in their output. Instead, 

they produce a bit-score. Bit scores attempt to unite different scoring schemes by 

normalising them onto a common curve defined by the extreme value 

distribution. Placing an arbitrary scoring scheme into a framework which has a 

common set of units allows the results of using a particular algorithm to be 

assessed without knowing its inner workings. Thus, for example, an alignment 

score computed with a PAM matrix may be directly compared with one 

generated using a BLOSUM matrix.

Bit scores can be calculated using the formula:

A S - \ n K
[I0]

3.10 Word searching

In the introduction to this thesis, a need for high-speed sequence comparison 

algorithms was identified. The previous sections of this chapter described 

alignment methods and the use of heuristics to improve the speed of database 

searches.
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The approach also avoids the computational complexity of computing an 

alignment -  again offering a significant performance increase over alignment 

programs.

3.10.1 EMBLSCAN

Bishop & Thompson (1984) devised a sequence comparison program, 

EMBLSCAN which did not attempt to compute alignments. Instead, it counted 

the number of common words between two sequences and used this as a measure 

of sequence similarity. Avoiding the overhead required to produce alignments 

results in an algorithm which approaches a time of OQi), where n is the product 

of the sequence lengths. Since unrelated sequences are likely to share a number 

of words by chance, it ranked scores according to the predicted number of chance 

hits on the matching words.

The search process works on a pre-computed datastructure representing the 

position and identities of all the unique subsequences of length 7 which occur in 

the database to be searched. The data-stmcture represents the database as an array 

of lists - one for each possible word - allowing all the sequences which contain a 

particular word to be found by supplying the correct index into the array.

A statistical model is described which allows the number of matches expected by 

chance to be estimated.
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EMBLSCAN’s statistics

Consider a specific sub-sequence, q , length d. Each nucleotide in q is 

independently assigned a type (A,C,G or T) with possibly varying probabilities. 

The probability of q occurring in a sequence is defined as P(q).

For a long sequence of n nucleotides, a, a binary sequence I  is defined such that:

I  j (q) = 1 if the subsequence starting at the / h position of S is q, and 

I j  {q) = 0 otherwise.

The number of times q occurs within a is then:

Further, since we assume nucleotide independence P{Ij(q) = 1) = P{q) for each 

j, and the expected number of occurrences of q is

The distribution of repeats is harder to deal with, since the overlapping of words 

renders them non-independent. It is modelled as a Poisson distribution, justified 

by the following argument about the independence of words in a .

[ i n

m(q) = (n — d + 1 )P(q) = nP{q) . [12]

Each Ij{q) is dependent only on the Ik(q)with 1 < \k -  j\ < d , since only then 

do the words stalling at j  and k have positions in common. The occurrence of a
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word at position j, has a strong influence on the chances of it occurring at 

position k.

For most words, which cannot overlap,

?(/ , (*) = 1| (3) = 1) = 0 [13]

However, the effect of a word not occurring is minimal. That is:

[14]

The combination of limited length dependence and the small effect of zero values 

together imply that the probability that only one of the I }-(q) is 1 differs very

little from that given by independence of Ij (q) .

The probability that a word occurs exactly once in a sequence is modelled by a 

Poisson distribution with mean m(cj) :

Bishop & Thompson note that “such a distribution is not accurate when large 

numbers of repeats occur because, in this situation, many of the Ij(q) are 1”.

They also point out that under the assumption of independent nucleotide types, 

such probabilities are minute - where large numbers of repeats occur, these 

assumptions are invalid.

P(qX) = s(q) = m(q)e m{n) [15]
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Using these statistics, Bishop and Thompson derive the expected number of 

matches M  between two sequences:

M  = ^ 4sl(q)s2(q) = nl(q)m2(q)e~0,h(q)+"h-<-‘1))
* « [16]

EMBLSCAN functions with a word length of 7, and assumes that all words occur 

with equal probability (of 4-7). This allows values of M to be rapidly computed, 

reaching a maximum when the sequence length is equal to the number of distinct 

sequences - for 7-mers this is 47 = 16384 .

Hits where the number of matches are greater than the expected value M  are then 

selected for further analysis.

3 .10 .2  FLASH

FLASH is an algorithm for generic pattern recognition which uses ‘probabilistic 

indexing’ into a Hash Table (Rigoutsos and Califano 1994). It has been applied 

to tasks such as:

• speech recognition

• fingerprint recognition

• text retrieval

• searching DNA and protein sequence databases
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It is the latter application that will be discussed here.

FLASH proceeds through two stages. The first, an offline single pre-processing 

step, computes a hashtable representing the database to be searched using an 

indexing scheme described below. In the second phase it searches that hashtable 

for a given query string using the same indexing string. The aim is to find all 

sequences in the database that are within a specified edit distance, m, from the 

query sequence. Edit distance is defined simply as the number of residues that 

must be changed to mutate from one string to another.

For a given string, S, FLASH uses the hashing function X to generate an index 

into the hashtable, A, for each token in S. X may create more than one index 

for each token; this is represented by:

dj is the index density, describing the number of indexes generated per token. 

Each index defines a bin into which is stored the position, i , of the token being 

indexed and the identity of the string from whence it came. This process is 

repeated for all the strings in the database.

Once the hashtable has been built, the same index function is used to generate the 

set of indexes for a query sequence, Q. These indexes are used to index into A, 

and identify the location of all matching tokens to Q.

[17]
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Since FLASH is aiming to find the alignment between Q and S which has the 

minimal edit distance (and hence the optimal %ID), a further step is required. 

The indexing positions on the query and database sequences define a point in a 

dot plot representing where both sequences match. Thus, by subtracting the 

indexing position on the query sequence from those on the database sequence and 

plotting the resultant ‘absolute alignment positions’, it is possible to find the 

alignment with the largest number of matching tokens. Note that this is similar to 

the ‘diagonal method’ employed by FASTA.

In its simplest form, FLASH generates a single index for each token, which is 

just the integer value of the word beginning at i . This approach has a number of 

problems; three of which are listed by Rigoutsos and Califano:

• The algorithm’s speed is proportional to the size of the database.

• Most of the hits against A do not correspond to actual matches; rather, they 

are false matches between sequences which happen to share a word. As the 

database size increases the number of false matches increases.

• There is a maximum of one index per token. As a result, a minimal change in 

the query sequence can drastically reduce the number of matching tokens.

For these reasons, FLASH uses an alternative indexing function that generates a 

set of tokens for each position in the query sequence. It does this by scanning a 

window across the sequence to generate a set of words of size w . From this it
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generates the set of v-tuples (where v < w) that start with the same residue as w, 

and are built from contiguous residues in w. For example, the 5-mer ACGTG 

generates the 3-mers ACG, ACT, ACG, AGT, AGG and ATG. The use of 

multiple indexes per token increases redundancy and hence allows the algorithm 

to find matches between more dissimilar sequences than the hashing scheme 

described above. This is done at the expense of significantly increased database 

size. It is not clear from the paper why increasing the number of indexes serves to 

reduce the speed/size dependency.

FLASH provides fast computation at the expense of high memory overhead. Like 

BLAST and FASTA, it attempts to generate an alignment -  and by using the 

‘diagonal method’, that alignment is a global one centred on the diagonal with 

the largest number of matching words.

3.10 .3  T he D2 algorithm

D2 is another word-based algorithm that works on the hypothesis that similar 

sequences share words (Tomey et al. 1990).

D proceeds by counting the number of times (multiplicity) each word occurs 

within a sequence and contrasting distributions between pairs of sequence to 

generate a similarity score. The algorithm allows words to be weighted to adjust 

their significance within the scoring system. The difference in multiplicity 

distributions, d 2 is used as a measure of dissimilarity between sequences:
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[18]
n= 1 i

u =maximal word size, 

n -subsequence length,

P/i (w/) =weight for word z,

//?D(w(.) =multiplicity for word i in the database sequence and 

mfi(w(.) ^multiplicity for word i in the query sequence.

Thus, if two sequences share identical distributions they will generate a score of 

0, and as the distributions become less and less similar, the score increases.

3.10.3.1 An application of D2

The square root of the score is a distance metric suitable for clustering sequences, 

leading to the algorithm being employed in the Sequence Tag Alignment and 

Consensus Knowledgebase (STACK) project (Hide et a l  1999). STACK adds 

value to data in the Genome Sequence Database (GSDB) by performing analysis 

of EST sequence data. In particular it:

• Provides ESTs clustered according to 90% similarity.
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• Alignments of EST clusters.

• Consensus ESTs (contigs) mapped to parent cDNAs or genomic sequences 

(where available).

• Annotation of alternate splice sites and consensus alternate splice sites

D2 is used near the start of the STACK pipeline to generate initial clusters of 

ESTs which are then subjected to further analysis by other algorithms. Since D2 

does not consider the position of words within a sequence it is able to spot 

similarity between EST sequences that are similar but have undergone inversions 

and alternative splicing. This is a significant advantage over alignment 

algorithms such as FASTA.

3.10 .4  Sum m ary

Word searching algorithms avoid the need to compute alignments, a 

computationally intensive task. As such, they offer a potential route to the 

solution of the problems described in the introduction: the need to successfully 

search and manipulate the vast amount of information that is starting to swamp 

bioinformatics. It is generally assumed that word-searching algorithms, whilst 

being faster, are not as sensitive as alignment methods. The next chapter explores 

the way words are distributed in biological sequences in an attempt to generate a 

model of word distributions which can be used to augment a word-searching 

algorithm and increase its sensitivity.
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4 The distribution of sub-sequences within biological 

databases

This chapter examines the distribution of sub-sequences within biological 

databases. It develops a statistical model designed to represent the distribution of 

words observed in biological databases, and shows that a simple model such as 

that upon which Karlin-Altschul statistics is based (Karlin & Altschul 1990) is 

not necessarily appropriate for modelling word distributions in databases. This 

has important consequences for the design and analysis of word matching 

algorithms and forms the basis of RAPID, which is described in Chapter 5.

4.1 A simple statistical model

As an initial step, a simple model is created which predicts the occurrence of sub­

sequences by assuming biological sequences to be essentially random, with 

independence between adjacent residues. This is similar to the model upon which 

Karlin-Altschul statistics is based (Karlin & Altschul 1990).

Consider a random sequence, S, of length L, sampled from an alphabet of letters 

A = {av a2...ar} with probabilities {pl-,p2--Pr} •

This section derives a simple model based on S, which is used to predict the 

distribution of &-mers within a biological database. In the next section, this 

distribution is compared to the real distribution observed in the yeast genome.

First, consider a specific subsequence, w, of length k .
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It is assumed that the effect of overlapping words is not significant (with the 

same justification as that made in section 3.10.1.1).

4.1.1 Even letter com position

If the composition of letters in S is equal, then the distribution of w in S can 

simply be modelled by a Poisson distribution with mean L f  rk. This is confirmed 

by Figure 4 which shows a random sequence of length 13,390,000 and a Poisson 

distribution with mean 13,390,000/49. The graph (and the subsequent graphs in 

this chapter) shows a histogram of word frequencies normalised to have an area 

of 1. Thus, in Figure 4 the majority of words occur just over 50 times in the 

sequence, and almost all words occur between 30 and 75 times. The graph also 

justifies the assumption that the effect of word-overlaps does not significantly 

change the chance of their occurrence -  and hence their distribution within 

sequences.
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Figure 4 Comparison between a Poisson distribution mean 13 ,390 ,000 /49, and the distribution 
o f  9mers in a random D N A  sequence length 13,390,000 built with equal residue com position. 
The graph is normalised to have an area o f  1. The graph show the proportion o f  words that 
occur a specified number (N) o f  times For example, the majority o f  words in yeast occur just 
under 50 times, and alm ost all words occur betw een about 30 and 75 times.

4.1 .2  U neven letter com position

If the distribution of letters in a sequence is not equal, then a Poisson distribution 

is not sufficient to model the distribution of k-mers within that sequence. This is 

shown in Figure 5 which depicts the distribution of 9-mers in the yeast genome: 

yeast has a skewed residue composition (19% ‘c \  19% ‘g \  31 % ‘a’, 31% ‘t’).
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Figure 5  D istribution o f  9mers in the yeast genom e. The data in this figure and the others in this 
section were generated using R A PID , a word searching algorithm described in the next 
chapter.

The rest of this section develops a simple representation of word distributions 

that attempts to model an uneven residue composition and compares that model 

with the real observed distribution for yeast.

Since letters in S are assumed to be independent, the probability of w is 

dependent only on the relative abundance of letters, rather than their ordering.
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Let n be a vector such that n. is the number of times letter occurs in w. Then,

p(w) = p(n) = Y [ p " i
[19]

In a sequence, length L, the probability p(w,m) that w occurs m times is 

represented by the binomial distribution:

p(w,m) = Ll [20]
m!(L —m) 1

Since p(w,m) «  1 and L »  1 this can be approximated by a Poisson 

distribution with mean A = p { w )L :

p(w,m) = -----— [21]
m!

Since, typically, 0 < m < 500, m\ can be large. As a result m is approximated by 

Stirling’s approximation:

lnm ln27T
ln(m!) = m In m + + —- — , [22]

and the logarithm of the Poisson distribution is computed:

In p(w,m) = mln A -  — —-— [23]
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This gives the distribution of a specific word, w. As a consequence of assuming 

residue independence, p(w) is dependent on the number and probability of the 

word’s constituent letters, not their order. Thus, all words with the same letter 

composition have the same probability of occurrence (‘AACCGGTT’ and 

‘TTGGCCAA’, for example). The consequence of this is a number of sets of 

words, where each member of a given set has the same probability of occurrence.

The overall distribution of words in R  is the sum of P(m) for all such sets -  i.e. 

the sum of the probability distributions where 

n = { (0,0,0, ft), (0,0,1, ft - 1), (0,1,1, ft -  2 ) , . . . } .

The number of words with a given letter composition is CJ and can be calculated 

as follows:

ft!
c(n) — r r  , [24]

i i ni •i

Thus, the probability of finding any word with a given base composition 

occurring m times in R is:

P(n,m) = c(n). p(n,m) [25]

This is shown in Figure 6.
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Figure 6 Statistical m odel o f  9mer distribution in yeast. The curve show s a histogram o f  9mer 
frequencies for a sequence the same length as the yeast genom e built with 19% a, 31% c, 31%  
g, and 19% t.

In order to confirm that the model above is correct, and that even with a highly 

skewed base composition the effect of overlapping words is insignificant, the 

graph in Figure 7 was generated. It shows a comparison between the distribution 

derived above and a random sequence with the same parameters.
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Figure 7 A com parison between the statistical m odel in Figure 6 and a random sequence the 
same length, with the same residue com position.

In order to assess the quality of the model, the curves were compared with that 

produced by the real yeast genome. This can be seen in Figure 8. Clearly, the 

model is only a crude approximation to distribution of words in real biological 

sequences.

85



0.025

yeast genome 
random skewed

0.02

~  0.015

0.01

0.005

0 20 40 60 100 160 180 20080 120 140
N

Figure 8 Comparison betw een 9mer distribution in yeast and a random sequence o f  the same 
length, with the same residue com position.

4.2 Reality

The peaks in the curve occur because it was assumed that the adjacent residues in 

R are independent. This results in sets of words, each containing words with the 

same probability of occurring, and the same distribution of occurrence. Each of 

these sets corresponds to one of the peaks in Figure 8. Thus, the simple model 

that assumes residue independence is not capable of modelling the distribution of 

words in a skewed sequence such as yeast. The next section considers the 

model’s ability to represent words in databases with an even residue composition 

such as the human subset of EMBL.
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4.2.1 Even residue composition revisited
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Figure 9 D istribution o f  9mers in the human subset o f  EMBL.

The graph in Figure 9 shows the observed distribution of 9mers in the human 

subset of EMBL, which has an even residue composition. It can be seen that this 

distribution is significantly different from the distribution in Figure 4 generated 

for a random sequence with even residue composition. Thus, the simple model 

which assumes independence between adjacent residues is not sufficient to 

model DNA with either an even or a skewed residue composition.

In the next section, a more sophisticated model is derived which better predicts 

the distribution of words within the database.
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4.3 A more complex statistical model

The above analysis makes the assumption that the chance of a base occurring in a 

DNA sequence is independent of the bases that preceed it. One consequence of 

this is that a number of different words have the same probability of occurring -  

leading to the peaks in Figure 8. If the probability of a symbol’s occurrence is 

related to adjacent symbols, two words with the same base composition no longer 

occur with the same frequency. This has the effect of widening and flattening 

each peak in Figure 8.

This section develops a model that allows for dependencies between residues in a 

sequence starting with the simplest case: di-mers.

The non-independence of residues is modelled as follows:

For a string w, of length k, the probability of th e /7' residue being, x, given that the 

j - l th residue was y is:

p(Sj = x\sM -  y) for 1 < j  < k . [26]

This is calculated using Bayes’ formula:

p{sj = x | s = y) = -----— — [27]
p(Sj)
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The probability of a word occurring is now:

p(w) = p(s2 | ^i)-XT P(si I si-i )
2<i<k

This can be used as before, to calculate the probability of a word, w, occurring m 

times, and to calculate the probability of finding any word occurring m times.

The probability, p(Sj_{\Sj), is determined empirically by counting di-mer 

frequencies in the sequence to be modelled.

In order to test the model above, the di-mer composition of the yeast genome was 

deteimined empirically, and used to generate the probabilities required by the 

above model. The distribution that arises is plotted in Figure 10.
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Figure 10 The predicted distribution o f  9mers in the yeast genom e generated by using a set o f  
empirically determ ined di-mer frequencies contrasted to the actual distribution.

The di-mer model can be generalised to arbitrary length dependencies as follows:

Let / be the length of dependency -  in the previous model, 1=2. Y is a consecutive 

sequence in S, of length I.

p(si? /)
p (^  = ^ u _, = r ) =  u  ' [29]

This can be calculated from /-mer and (l-l)-mer frequencies.
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Once again, the model was assessed by producing real / and (l-l)-mer 

distributions and generating a predicted k-mer distribution.

Figure 11 shows 3-mer predictions and Figure 12 shows 4-mer predictions. These 

graphs are misleading because of yeast’s highly skewed base composition; they 

are included for completeness.
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Figure /1 The predicted distribution o f  9mers in the yeast genom e generated by using a set o f  
empirically determ ined tn-m er frequencies contrasted to the actual distribution.
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Figure 12 The predicted distribution o f  9mers in the yeast genom e generated by using a set o f  
empirically determined quad-mer frequencies contrasted to the actual distribution

If the same method is used to predict the 9-mer composition in the human subset 

of EMBL (in which all bases occur with approximately equal abundance), the 

distribution that arises is not an accurate model of reality, even if 5-mers are used 

to predict the 9-mer distribution. Figure 13 shows how the model performs with 

5-mers.
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Figure 13 D istribution o f  9mers in the human subset o f  EMBL compared to that predicted by 
using 5mers. Both curves have been normalised to have an area o f  1.0.

4.4 Summary

As word lengths are increased the shape of the word distribution changes 

dramatically (see Figure 14 which shows the distribution of different sized words 

in the yeast genome).
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Figure 14 D istribution o f  words o f  different lengths in the yeast genom e. The curves show the 
number o f  words which occur a given number o f  times — so that, for example, the majority o f  
9mers occur about 17 times. A ll the curves are normalised to have an area o f  1.0.

When words are short, the distribution is essentially flat, with all words occurring 

with similar abundance. However, as their length is increased, the distribution 

changes shape, taking on a skew.

One of the reasons for this is the non-independence of bases within DNA. This 

suggests that statistical models which assume biological sequences to be random 

and composed of independent residues should be treated with a good deal of 

caution.
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A residue’s influence is quite far ranging, preventing models based on short 

words (less than seven residues) to be used to predict the distribution of 9-mers 

in a biological database.

In summary, the distribution of residues in biological databases is complex and 

cannot be effectively modelled. This is not really that surprising given that 

sequences exist to carry complex biological information. The analogy between 

biological sequences and language is persuasive, as is the analogy to information- 

carrying sequences (Shannon 1948). Both suggest the application of 

mathematical techniques to the analysis and representation of biological 

sequences.

However, these analogies suggest that the message and the medium are 

independent -  the information earned in a piece of text is the same irrespective 

of whether it is typed, printed on a computer screen or spoken. This is not the 

case with biological sequences. For example, RNA and DNA both fold into 3D 

structures which affect the way the sequences are treated by a cell. Codon biases 

affect annealing temperature and hence the optimal temperature in which 

organisms can live. Coding regions can contain signals which result in alternative 

splice sites, they contain alternative consensus sequences which instruct the cell 

to attach poly(A) regions to pre-mRNA and genes can contain multiple promoters 

within introns. Whilst it might be possible to generate a model that took all of 

these (and the multitude of others that have not been mentioned here) into 

account, such a model would require a large amount of context and high level 

knowledge -  such as how the ‘meaning’ of a sequence changes depending on
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whether it is occurring in DNA, transcribed mRNA or translated to a protein

sequence.

The results of this chapter show that a statistical model of word frequencies is 

hard to generate, and suggest that the best way to obtain a distribution is simply 

to measure it empirically. This has profound implications for word searching 

algorithms and the statistics used to evaluate the significance of their results. The 

following chapter describes RAPID, a word-searching algorithm that makes use 

of an empirically determined distribution.
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5 RAPID Analysis of Pre-lndexed Databanks

In the first chapter of this thesis, it was established that there is a requirement for 

a highly efficient method of performing similarity searching at the DNA level. 

This chapter describes the design and implementation of a novel word-based 

search algorithm that is an order of magnitude faster than BLAST on the same 

hardware, but which performs with similar sensitivity.

5.1 The RAPID algorithm

Word matching can be seen as a very rough approximation to computing an 

alignment - it is the number of £-long alignments that can be made between two 

sequences. By counting the number of short alignments between two sequences 

without considering any kind of relative position, a similarity search algorithm 

can reduce the amount of information it needs to consider and, as a result, make 

considerable gains in speed. Unfortunately, throwing so much information away 

also results in an algorithm which is rather insensitive.
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In order to increase the sensitivity of a word-searching algorithm it is necessary 

to augment the raw matches with something else. Rather than use positional 

information to compute local alignments (as BLAST and FASTA do), RAPID 

uses statistical measures of word frequencies based on an 72-gram analysis of a 

large amount of real data. This allows word matches to be scaled according to the 

likelihood of them occurring by chance and results in a surprisingly sensitive 

algorithm.

An analogy can be made to the task of comparing two newspaper articles: if they 

share a number of rare words like ‘Michael’, ‘Howard’, ‘creature’, and ‘night’, 

they are likely to be talking about the same thing, but if they only share common 

words such as ‘the’, ‘and’, and ‘because’ they are probably not. The scoring 

system employed by RAPID is based on an analogous assumption.

5.2 RAPlD’s scoring system

RAPID compares two sequences, a and b, by counting the number of words, N  , 

occurring one or more times in a which also occur one or more times in b. This is 

compared to an estimate, E , of the number of such “matches” we would expect 

to occur by chance.

A DNA sequence of length L contains L ~ k  + 1 overlapping words, which we 

consider as a listK ,, K 2 . . .K L_k+l. Consecutive words in this list s h a re ^ -1  

bases. The algorithm ignores words containing unknown bases (normally 

represented by the letter ‘n’ in sequence databases) with the result that a sequence 

containing a large number of unknowns has a relatively small number of unique 

words.
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It is assumed that the probability of a word, K t , being w is simply P{w) , the 

probability of w occurring next in an arbitrary DNA sequence, and we model the 

distribution of words within a DNA sequence as a Poisson distribution in a 

fashion similar to EMBLSCAN (Bishop & Thompson 1984). Thus, the 

probability of a word, w , occurring n times in a sequence of length L  is given 

by a Poisson distribution with mean P{w)L :

So that the probability of a word occurring one or more times is:

P(w,n > 1) = 1 -  P(w,0) = 1 -  e~P(w)L [31]

With typical values, e~nw)L is of the order e1/500 so [31] can be approximated by 

expanding e~P{w)L and ignoring all but the first two terms. Thus the probability 

of a word occurring one or more times in a sequence of length L  reduces to:

P (w ,n > l)  = P(w)L [32]

The experiments in chapter 4 demonstrate that this assumption is reasonable 

when k is of the order 9 -  the sort of word size which RAPID is designed to use.
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5.2.1 T he  num ber of m a tch es  to b e  ex pec ted  by ch an c e

Let W a and W b, sizes La and Lb respectively, be the sets of words which occur

one or more times in two sequences, a and b.

The total number of matches E  between a sequence, a, and an unrelated 

sequence, b, is estimated using [32]:

The significance of a match is estimated by taking the ratio S of the number of 

matches actually found to the number of matches expect by chance:

S is highly dependent on the length of the sequences. With long sequences, small 

but significant matching regions are masked by chance matches from the rest of 

the sequences. Conversely, matches on very short sequences are assigned a 

higher score than they appeal* to warrant. For this reason, RAPED treats a long 

sequence as a set of independent, short, overlapping fragments (typically 500bp 

long), and adopts a modification of S which normalises it for the lengths of the 

subsequences:

L, Lr

E=YJL,p{wn=h1,pwn [33]
1=0

S = N I E [34]

[35]
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where Ca and C/> are the size of the segments. Dividing long sequences into 

shorter segments places an upper bound on the size of segment that is considered 

by the algorithm. When segments are smaller than the segment size, the scaling 

factor reduces the significance of their scores.

Note that S and S'  are the same for all but very short sequences, where S is 

considerably larger than S ' , Whilst S is a statistically robust estimate of 

significance, it is highly length dependent. The modification resulting in S'  

produces a score has been found to be more useful in practice.

Crucial to the calculation of E  are the chosen values of P(w). Chapter 4 of this 

thesis compared the distribution of words in biological sequences to the 

distribution in random sequences generated with statistical models of varying 

complexity. The chapter showed that the distribution of long words ( > 8 bp) is 

skewed in a complex fashion. It cannot be modelled by assuming that adjacent 

residues in a sequence are independent of one another, nor can it be modelled by 

using the distribution of short words (<6 bp) to predict the effects of 

neighbouring residues in a sequence.

For this reason, RAPID estimates the probability of a pair of sequences matching 

by chance using an empirically determined table of word frequencies. Ideally, 

these would be found by counting the occurrence of words in a large, 

representative and non-redundant set of DNA. One possible source would appear 

to be the yeast genome, but its highly skewed base composition (38% A+T) is 

reflected in an unusual word distribution. At present, the problems of redundancy
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are accepted; the probability table is generated by simply determining the 

distribution of words in an EMBL subset. Redundancy has the effect of making 

words which occur in sequences repeated in the database appear more likely than 

they should. It is necessary to put this in perspective; some words occur 

thousands of times more often than others, and it is matches due to these words 

that really need to be discounted. It is shown in the next chapter that the program 

functions well with less than perfect word probabilities.
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Figure 15 The average probability o f  words occurring in the mammalian subset o f  EMBL  
against Shannon Entropy (Shannon, C. 1948) used as a measure o f  com plexity. Entropy is

calculated by H — — p i log p( , where pt is the number o f  times a base occurs in the
i€a,r,g,t

word, divided by its length. Since a number o f  different words have the same entropy, we plot 
the mean word probability for each o f  the values o f  H. The standard error in the mean is 
insignificant.

Intuition suggests that a search tool should scale down matches between low 

complexity regions (such as a telomere repeat). This would occur if P(w) was 

inversely proportional to complexity. Figure 15 shows that this is indeed the case. 

The use of probabilities rather than entropy has the advantage that common
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regions which have a relatively high complexity (such as microsatellite repeats) 

are also scaled down. This is demonstrated in the next chapter.

5.3 Implementation of RAPID

The mathematical system described above provides a method for measuring pair­

wise similarity between sequences. It can be summarised as a two step process:

1. Measuring the number of words which occur in sequence a that also occur in 

sequence b, and

2. Scaling that score by a statistical estimate of the number of words that occur 

by chance.

5.3.1 C ounting th e  m a tch es

In order to perform the first task it is necessary to determine, for each word in 

sequence a , the presence or absence of that word in sequence b. For a search of a 

single sequence against a database, it is necessary to determine the presence or 

absence of each word in a for every sequence in the database. Since a number of 

pairwise comparisons need to be made, the list of words in a needs to be used 

many times (one for each comparison), whilst the list of words in each of the 

database sequences is required only once. This suggests generating a 

datastructure which ‘remembers’ the words in a so that they only need to be 

generated once. This is the approach taken by BLAST, which generates a Trie. 

Refer to Figure 16. A Trie represents lists of symbols (such as DNA sequences)
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as a tree structure, in which each arc of the tree represents a transition from one 

symbol to the next. So, the grey nodes in Figure 16 represent the sequence 

‘acccg’. Tries are very efficient data structures which allow a ^-residue sequence 

to be looked up in k operations. However, the need to store a pointer for each arc 

makes them fairly memory intensive.

Figure 16 A  Trie, with the sequence ‘acccg’ highlighted by the grey nodes.

BLAST generates a Trie for the query sequence to be searched, and then matches 

each database sequence against it to identify ‘seeds’ from which to generate 

MSPs. This is a very efficient operation for a single-sequence against database 

search.

Unlike BLAST, however, RAPID is designed to be particularly fast for database- 

against-database rather than single-sequence-against-database comparisons. In 

this situation, not only is each word in the query-sequence-set re-used many
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times, each word in the database-sequence-set is also required more than once. 

This suggests that it would be efficacious to produce a structure which represents 

the words that occur in each database sequence in such a way that they can be 

rapidly found during a search. One possibility would be to use a Trie, but given 

the potential size of a database, a more compact datastructure is appropriate. For 

this reason RAPID generates a simple array which represents, for every possible 

word, the list of the database sequences in which it can be found. The array is 

arranged so that indexes into this array can be rapidly generated. The approach 

taken is to treat each word as a base four number, so that ‘aaaaaaaaa’is 

represented by the number 0, and ‘ttttttttt’ is represented by the number 49. Even 

though this results in some very large indexes (49=262144) this approach is valid 

because computer memory is relatively cheap. To put this in perspective, it is 

possible to search all of EMBL against a database of vector sequences in a few 

hours on a desktop PC with 256Mb of memory, which costs less than £1500 at 

today’s prices.

In order to evaluate the algorithms described above an initial implementation was 

produced which uses the hashing technique described above to locate word lists 

within a table.

5.3 .2  R ecording the  statistics

The same index which is used to find the appropriate word list is also used to 

index into a table that lists the probability of occurrence for each possible word. 

For each query sequence, the sum of all its word probabilities are recorded by
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incrementing a variable as the search proceeds. This is used in concert with the 

query and database lengths to generate an E value for the query sequence.

The whole process is summarised in Figure 17.

The bins are scanned to generate the score

sequence, the 
number o f ^

1 tains a  word, a  bin is incremented.

The hashtable records 
tor each possible word, 
the sequences in which 
it is present

Which are jgpated as base 4 
numbers and turned into indexes 
into the hash table

A window is 
scanned across 
the query 
sequence to 
generate a set of 
overlapping 
words...

Figure 17 Summary o f  R A P ID ’s implementation.

5.3 .3  M anagem en t of th e  H ash tab le

In advance of a search, the software builds a database of word lists which 

records, for each of the 4k possible words, the sequences in which that word 

occurs. The database is stored as a disk file. The use of this pre-computed data 

significantly reduces the amount of work required during a search.

For database against database searches, the low cost of memory would make it 

feasible to load the entire database into memory, where searches can be 

performed with no disk accesses. In the case of a single sequence search, where
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only a small proportion of the possible words need to be looked up, the time 

taken to load the entire database into memory would be prohibitive; a preferred 

solution would be only to load a word list when it was required. RAPID meets 

these conflicting demands by using memory mapped IO to map the database file 

into its (virtual) address space. When the mapping takes place, no disk to 

memory transfer is initiated. Instead, page faults are generated each time the 

software accesses a word list which is on a page of the address space that has not 

been previously loaded into physical memory (RAM), and the operating system 

loads the required page into physical memory.

Memory mapped IO has a number of advantages. Firstly, only the sections of the 

database which are required are loaded into RAM. Secondly, the number of 

actual disk accesses is reduced to one-per-page as opposed to one-per-read with 

traditional file IO and, thirdly, traditional file operations perform a certain 

amount of buffering which results in repeated copying of the data being read. 

Direct memory access is, by its nature, unbuffered, and does not incur these 

costs.

5.4 Time complexity

Given a sequence a length La , the La - k +1 words it contains can be generated 

in O(La). These are used to index into a table comprising of 4* lists that record 

the sequences in the database which contain them. In a database containing n 

sequences and N  nucleotides these lists are, on average:
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elements long, if the mean probability of a word occurring is {P(w) ) .

For each element the only operation required is to increment a few counters in 

the results array which is scanned at the end of the search in 0(?i).

This gives a time complexity:

Since n is proportional to Ny the search scales linearly with the length of the 

search sequence and the database size. If the output is required to be sorted, the 

complexity is 0 { N \o g N ) , but it is possible to do better than this because it is 

not necessary to sort the entire set of results, only the significant ones, which 

form a far smaller subset.

A pair of graphs showing how RAPID scales with database size can be found in 

Figure 26 page 142.

5.5 Input & Output

The software has a simple command line interface, and accepts an EMBL or 

FASTA file as input. Different probability tables can be loaded allowing the 

word weighting scheme to be changed if desired. One problem associated with a 

large search is the amount of data produced; it is not appropriate to present all of 

this simply as a long text file. In order to address this, RAPID generates a tree of

C = O(LN) + 0 (n ) . [36]
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web pages containing the results of a search. The root page shows the top hit for 

each query sequence which has matched against at least one database sequence. 

Below this is a set of pages describing, for each query sequence, all the hits that 

have been found. These pages intentionally resemble the list produced at the top 

of a BLAST output file, and links through to a set of pages, each containing an 

alignment for a query/database pair.

5.6 Summary

RAPID is implemented using a highly efficient set of data-structures that exploit 

the relative cost advantages of computer memory with respect to processor speed. 

The algorithm is also one that lends itself to cheap parallel hardware. The nature 

of the search process is such that it can be divided into a set of coarse-grained 

computations that can be conducted independently of one another. The final 

answer is produced by combining the results from each sub-computation. This 

means that such an implementation will run efficiently on a multi-computer 

system (which is effectively a set of individual computers, or nodes, connected 

by a fast network).

A number of alternative programming libraries exist to allow this kind of 

hardware to be used: the most appealing of which is the Linux-Beowulf project 

(http://www.beowulf.org) which enables a multi-computer system to built out of 

a set of cheap PCs connected by a fast Ethernet link. RAPID could be 

implemented on such a system by dividing the hashtable into fragments, each of 

which is placed on a separate node. One node acts as a ‘master5 that serves to co­

ordinate the work performed by the other nodes, which are referred to as the
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‘slaves’. The master sends a message to each slave containing the query sequence 

which is then searched by the salves in parallel against each of the database 

fragments. The result of each individual sub-search is then sent back to the 

master, which then combines them to produce the final result. If inter-process 

communication is too great (resulting in inefficiencies) more than one sequence 

can be searched before the results for all the sequences are combined. Thus, the 

only traffic on the network is to distribute a packet of sequences, followed by a 

set of partial results being returned to the master by each slave node. To make 

sure that some nodes aren’t sitting idle whilst others are computing, care needs to 

be taken to divide the database into appropriate sized fragments. The probability 

table can be used to perform this calculation, because it states, for each word, the 

probability of its occurrence -  and hence the likelihood that it is going to be 

looked up in the hash table.

The current implementation has not been designed to run on parallel hardware, 

although work is underway to produce one that does.

5.7 User Interface considerations

The algorithm, RAPID, presents its result as nothing more than a score. 

Subsequent sections describe the design and implementation of a set of 

companion tools that provide alternative ways of viewing similarity between 

sequences, and their use to augment and corroborate the results generated by 

RAPID. The principal method of presenting similarity to users is via an 

alignment. The rest of this section describes why this choice was made.

I l l



Although several different approaches exist for similarity searching -  dot-plots, 

word searching and alignments -  it is alignments that predominate. One reason 

for this is the mathematical rigor that has been applied to the analysis of their 

algorithms, allowing alignments to be scored effectively, and that score to be 

used to rank database hits. Another reason, which has been somewhat neglected 

in reviews of similarity searching techniques, is that an alignment provides a 

justification of the score assigned to a pair of sequences.

Experience from the realm of expert systems, shows that software which 

provides an ‘audit trail’, documenting why a particular decision has been made, 

is more likely to be accepted by a user base than software which simply presents 

its result in an opaque fashion. For example, MYCIN was an interactive program 

that diagnoses certain infectious diseases and prescribes anti-microbial therapy. 

One of its key features was its ability to explain its reasoning in detail - it would 

have been unrealistic to expect a physician to prescribe treatments without being 

able to understand the reason why a particular drug had been chosen (Shortliffe, 

1976).

Part of the role played by alignments in a BLAST/FASTA report is similar -  they 

provide an accessible explanation of why a score has been assigned to a pair of 

sequences. The reassurance which results from this is an important feature of 

alignment algorithms and one that needs to be considered in the design of 

alternative sequence searching strategies. One implication from this is that search 

tools which are not alignment-based may still use alignments as ‘corroborative 

evidence’ when presenting their results. In this situation, alignments exist to
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improve the user interface, rather than to generate a score that is used during the 

database search. As a result, alignments (which have a significant computational 

overhead) need only be generated for those sequences in which a user is 

interested.

5.8 Visualisation and analysis tools

The previous section discussed the role that alignments play in the user interface 

of a tool such as BLAST -  that they helped a user understand the score that the 

algorithm had assigned to a pair of sequences. Given that RAPID only provides a 

numeric score detailing the strength of a match, it was decided that an important 

part of its user interface would be the generation of alternative mechanisms for 

depicting sequence similarity.

Three strategies were explored: ungapped alignments, gapped alignments and 

‘coarse grained dot-plots’. The alignment tools are described in the next two 

sections, an analysis of coarse grained dot-plots and their use in comparative 

studies of genomes and gene fragments can be found in section 6.1.

5.8.1 A lignm ent tools

These algorithms are designed to form part of a user interface -  they do not exist 

to produce similarity scores for use in actual comparing sequences. This means 

that they do not have to produce optimal alignments, and do not have to use 

scoring schemes that are statistically rigorous. Instead, they are required to show 

the similarity between a pair of sequences in a way which helps a user rapidly
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assess the nature of match, and in a manner they are comfortable with. One 

reason for developing a pair of alignment tools was that they are a ubiquitous 

user interface device that the majority of bioinformatics users will be familial' 

with.

The fact that RAPID appeal's to be a fast and sensitive algorithm for performing 

similarity searching, and that the use of word weighting is part of the reason for 

this, suggests that the use of word probabilities might be a way of improving a 

standard alignment tool.

Two tools are described: the Probabilistic Hough Alignment Tool (PHAT) which 

generates ungapped alignments similar to a BLAST Maximal Segment Pair 

(MSP), and the Smart Probabilistic Alignment Tool (SPLAT) which is derived 

from the Smith-Waterman algorithm, and generates gapped alignments.

5.8.1.1 PHAT (Probabilistic Hough Alignment Tool)

One of the earliest techniques used to determine sequence similarity was the dot 

plot (Gibbs, A. & McIntyre, G. 1970). Given two sequences a and b, a 

point p{x, y) is placed in the xy plane whenever ax = by. This results in regions of

similarity appealing as diagonal lines angled at 45 degrees to the axes.

Rather than plot such an image, it is possible to apply a spatial transformation 

and, for each point in xy space, plot lines in me space which satisfy the equation c 

= y-mx.
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A set of points which lie on a line in conventional space appear as a set of 

intersecting lines in me space. The point where these lines intersect gives the 

gradient and the y-axis crossing point of the original line.

This technique, known as a Hough transform (Hough, P. 1962), provides an 

efficient method for finding regions of similarity, when it is recognised that only 

lines with a gradient of 1 are of interest. These correspond to points in me space 

on the line m = 1. It is similar to the ‘diagonal method’ employed by FASTA.

When DNA sequences are compared in this way, the small number of symbols 

(A,C,G,T) result in a large number of points occurring by chance. In order to 

avoid this, PHAT only considers &-mer matches between two sequences.

PHAT plots histogram H c:

where c - y - x ,  and s is the score assigned to a match between the fc-mers 

stalling at cixa n d b .

A large value of H c corresponds to a significant match on the line y = x + c.

Once an interesting diagonal has been determined, PHAT runs along it searching 

for the most significant alignment, offsetting the sequences by an amount 

determined by the point at which the diagonal crosses the y axis. The alignment 

is found by computing a vector M , where:

[37]
.V y
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M [38]

The alignment ends where Mris maximum, and starts at the first preceeding 

point where M r is zero.

m„ib is the score assigned to a match between the bases at ax andby.

Iav and I  are ‘interest factors’ assigned to each nucleotide, determined as 

follows:

where k is the word length, p(w ) is the probability of a word occurring (as used 

by RAPID), and p(max) is the probability of the most common word occurring.

Thus, a base in a common region, such as a telomere repeat, is assigned an 

interest factor close to zero, whereas bases occurring in less common regions are 

assigned higher interest factors. The interest factor is used to weight the match 

and mismatch scores, both in the computation of the histogram, and the 

alignment matrix. In both cases, the raw (mis)match score is multiplied by the 

average interest factor of the two bases being compared.

p(max)
k

[39]
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PHAT displays an alignment as coloured text, with each nucleotide being 

assigned a colour temperature according to its interest factor. Thus, bases in rare 

regions are coloured yellow, whilst those in common regions are coloured blue.
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5.8.1.2 SPLAT (Smart Probabilistic Local Alignment Tool)

- AWTapp <2

D on e

iDone

Figure 18 A lignm ents produced by the SPLAT applet showing how  word probabilities change 
the alignment produced for a pair o f  sequences. The bottom  alignment is produced by an 
im plem entation o f  Smith-W ateman, the top by SPLAT, using word frequencies (both are 
generated with the same pair o f  query sequences). Word frequencies cause SPLAT to insert 
gaps opposite low  com plexity regions, allowing shorter higher com plexity regions to be 
aligned in preference.

SPLAT is a modification of the Smith-Waterman (Smith, T.F. & Waterman, 

M.S. 1981) alignment algorithm. Match/mismatch scores are modified using 

interest factors, as described in the previous section, and alignments are displayed
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using a colouring scheme similar to that of PHAT. In an optimisation similar to 

that employed by FASTA, SPLAT limits the maximum gap length which the 

program will attempt to identify. The tool performs differently from Smith- 

Waterman when aligning sequences containing low complexity regions and 

repeats -  see Figure 18.
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6 Results

RAPID is able to present the similarity between a pair of large sequences such as 

genomes by generating ‘coarse-grained dot plots’. These are described in the next 

section.

RAPID has also been used to conduct a systematic survey of sequence 

contamination in the DNA database EMBL. An evaluation of RAPID’s ability to 

perform this task can be found in section 6.2. Contamination due to vector 

sequence is discussed in section 6.3; genomic E. coli in section 6.4.

6.1 Coarse Grained Dot-Plots

Some of the earliest software tools for sequence analysis represented similarity 

by graphical methods, such as those of Fitch, McLachlan and Gibbs and 

McIntyre (Fitch 1966, Fitch 1969, McLachlan 1971, McLachlan 1972, Gibbs and 

McIntyre, 1970). In their simplest form, these tools constructed dot plots by 

placing two sequences on the axes of a plane and plotting a point whenever a 

matching residue occurred. Thus, regions of similarity appear in such a tool as 

diagonal lines. Other features such as repetitive regions, insertions and deletions 

are also easily identified. The early dot plotters did not offer any computational 

measure of similarity, they simply attempted to represent the relationship 

between a pair of sequences in a way which helped a user visualise it. They were 

successful because they were able to rely on a human being’s own perceptual 

apparatus to perform the pattern recognition necessary to identify interesting 

regions. Although dot plotters were developed which produced a numerical
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measure of similarity (Staden 1982, Pustell and Kafatos 1982, Pustell and 

Kafatos 1984, Argos 1987), tools such as Smith-Waterman (Smith, T. F. and 

Waterman, M. S. 1981) BLAST (Altschul et a l 1990) and FASTA (Lipman, 

D.J. and Pearson, W.R. 1985) became the tools of choice for tasks that required 

the comparison of a single sequence against a set of other sequences (such as 

similarity searching within a database).

At the time of writing, 32 genomes have now been completely sequenced. This 

provides the opportunity for comparative studies between genomes, and a desire 

to perform a detailed analysis of the similarities and differences between a pair of 

gene sequences. Part of such a study can be seen as analogous to the kind of 

analysis that can be performed using dot plots -  except that now the sequences 

are at least three orders of magnitude longer.

This section describes a novel tool that produces ‘coarse grained dot plots’ 

showing similarity between sequence pairs. It shows that graphical methods 

similar to those used for the detailed analysis of short sequences can be fruitfully 

employed in the comparison and analysis of entire genomes.

The tool takes a pair of sequences which it segments into a set of fragments 

(typically lOOObp long). These are compared using RAPID. The resulting set of 

matching sequences are represented as dots within a plane, which are colour- 

coded to represent the level of similarity. The results of the analysis are 

represented as an HTML image map; dots are clickable and link to an alignment 

of the relevant region.
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The tool is interesting for a number of reasons. Firstly, each dot represents a 

match somewhere within a fragment, computed by a similarity search tool which 

is both fast and sensitive. Thus, even weak matches between regions are 

displayed within the image, but by virtue of their colour coding, they can be 

distinguished from stronger matches. This makes the tool different from that of 

Delcher et a l  (1999) which relies on sequences being of high similarity.
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Reverse strand of Pyrococcus abyssiForward strand of Pyrococcus abyssi

Figure 19 show s genom e com parisons performed with RAPID and the coarse grained dot 
plotter, on two species o f  Pyrococcus, abyssi and horikoshii. Inset is an alignment produced  
when one o f  the dots is clicked. Box A is an enlargement showing repeat tR N A  sequences 
which show  up clearly as a line o f  red dots. Box B shows repeated sequences from a 
comparitive genom e plot o f  Bacillus subtilis. Box C is a feature from the com parison o f  
chrom osom es 12 and 16 from Saccharomyces cerevisiae illustrating the T y l transposable 
elem ents. Box D  is an example o f  telomeric sequences from the Plasm odium  falciparum  
chrom osom e 3 against itself. B ox E shows a cluster o f  five similar SERA antigen/papain like 
proteases from Plasm odium falciparum which are identified by searching chrom osom e 2 
against itself.

Like the original dot plots, many relationships between sequences become 

instantly apparent. Figure 19 shows some examples of the kind of features that 

become apparent when a set of RAPID hits is presented using a dot-plot. 

Conserved ‘gene strings’ appear as diagonal lines in the plot (see Figure 21), with 

insertions or deletions appearing as ‘staggers’ in the diagonal line. Horizontal 

and vertical lines show evidence of repeat regions: refer to Figure 20.
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Figure 20  D o t plot o f  Chlamydia trachomatis against itself. It is possible to discern a coarse 
structure in the genom e where the first and last 170,000 base pairs show  a set o f  very weak 
matches to each other, and the central region o f  the genom e show s a set o f  weak matches to 
itself.

Many of the points (such as those which make up the horizontal lines of weakly 

repetitive sequence) are of extremely low similarity. The dot plot allows these 

weak regions to be treated as a set, because they can be related pictorially (see 

Figure 21). If the same set of results were presented in linear form (such as a 

BLAST output, for example) these matches could not easily be distinguished 

from statistical noise.
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Figure 21 A  plot o f  a human chrom osom e 12p l3  vs. m ouse chrom osom e 6.

Many more such plots can be found at http://www.bioinf.man.ac.uk/rapid. 

including E. coli, Bacillus subtilis, and a set of all sixteen yeast chromosomes 

against each other.

6.2 Evaluation

This chapter describes the methods that were used to assess RAPID performance 

both in terms of its speed/memory usage, and also its sensitivity as a similarity 

search tool. In section 3.2, it was noted that ‘similarity’ between biological
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sequences can mean a number of different things apart from an implied 

homology. In order to test the ability of an algorithm to perform a comparison, it 

is necessary to determine the particular question being asked. For example, the 

test set used to evaluate a tool’s ability to predict function by similarity ought to 

be different from the test set used to determine a tool’s ability to correctly 

identify sequences which contain erroneous vector sequence.

Database search engines operate by analysing the arrangement of residues, 

represented as lists of letters. This process is purely syntactic - it involves pattern 

recognition without any attempt to represent the biological ‘meaning’ of a 

particular piece of DNA.

Since the questions normally asked of a database search are about biological 

form or function, a database search carries with it an implicit assumption that 

similar syntactic structure indicates similar semantic content. This is sensible, 

because:

1. It is not possible to accurately predict function from DNA, so that there is no 

way of generating a semantic representation with which to make 

comparisons.

2. It has been shown to work relatively well.

Given that the majority of database searches are looking for semantic 

relationships such as function, a test set should address the ability of a syntactic 

tool to find semantic relationships.
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6.2.1 Functional classification

6.2.1.1 Artificial Test Sets

Artificially constructed test sets have the potential to be rigorously defined, 

characterisable and precise.

They are either produced from scratch or derived from real biological data using 

a mathematical model. The model is designed to produce a set of sequences 

which simulate the kind of patterns which could be expected in the real world.

Since the semantics of DNA are not well understood, it is not possible to produce 

model sequences which would be biologically viable; all that can be done is to 

produce sequences with letters arranged in a way which, according to the 

statistical methods available, are representative of real DNA.

The algorithm Evolve (Slater 1996) attempts to simulate evolution, and so test a 

tool’s ability to determine similarity due to homology. It translates a coding 

region to the protein level and then uses a PAM matrix to randomly ‘mutate’ 

amino acids before translating the sequence back to the DNA level. The use of 

PAM data lends the process a minimal amount of semantics, but with no 

understanding of structural and functional constraints, the resulting sequences are 

unlikely to be biologically representative.

The algorithm has been used by Anderson and Brass to test the sensitivity of 

three algorithms -  BLAST, FASTA and BIC_SW, a parallel implementation of 

Smith-Waterman running on a biocelerator, a specialist piece of hardware
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designed for running fast Smith-Waterman searches (Anderson and Brass 1998). 

In order to do this, Evolve was used to create a set containing artificial sequences 

at varying PAM distances away from a real primate sequence. These sequences 

were searched against the primate subset of EMBL (which contained the original 

unmutated sequence) in order to determine the level of mutation required before 

a search tool was no longer able to find a match. This process was repeated ten 

times with different sequences.

The results were in line with expectation - Smith-Waterman identified the largest 

number of correct relationships, BLAST with a word size of six identified less, 

but, by virtue of its statistical model, had the smallest number of false positives. 

FASTA came a close third with default parameters. All tools were capable of 

identifying sequences at an artificial distance of about PAM130.

An attempt to evaluate RAPID’s performance, with the same test set yields 

different results -  not one of the artificial sequences was correctly identified. A 

discussion as to why this is the case can be found in section 6,2.1.3, on page 130.

6.2.1.2 Real data

RAPID has also been evaluated using a test set based on real DNA sequences -

again based on the work of Anderson and Brass (1998). The evaluation was

designed to assess a tool’s ability to assign function to a sequence, and was

conducted as follows: a database was created by removing all the tyrosine

phosphatases from the primate subset of EMBL. Eight of these sequences were

selected and used for the evaluation. Seven of the sequences were added to the
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database and the eighth used to search the database for the other seven. This 

process was repeated eight times, so that each of the sequences was used to 

search for its peers. Ideally, a tool should, given one sequence, be able to find the 

other seven and return them as the top hits. It should also be possible to correctly 

pick a score threshold that allows sequences to be classified into two sets -  

‘tyrosine phosphatase’, and ‘not tyrosine phosphatase’. The task is a demanding 

one because some of the query sequences were a sizeable evolutionary distance 

apart (the PAM distances of their corresponding protein sequences have been 

estimated as being between 60 and 400), and none of the current tools performed 

this search particularly well,

RAPID however, performed marginally better than its contemporaries, 

identifying 13 out of the 64 possible matches, whilst the other tools only 

identified 10. The results of the search are detailed in Table 1.
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ID A B C D E F G

A M33685 ✓

B LI 1329 ✓

C S78086

D U 16996 ✓

E X68277

F L18983

G D 13540

Table 1 Shaded squares are found as top hits by RAPID. Ticks are found as top hits by Smith- 
Waterman, BLAST, BLAST2 and FASTA.

6.2.1.3 Conclusion and discussion

The stark contrast between RAPED’s performance on the real test set and the 

artificial one demonstrate that the artificial test set is not appropriate for testing a 

word based search tool. This is a consequence of the artificial test set which was 

designed to test the performance of alignment algorithms, and should not 

necessarily be expected to work well with a word based algorithm. The approach 

makes it possible to determine the maximum edit distance at which alignment 

tools can be expected to find similarity, and to define this in terms of PAM 

distances.

Evolve assumes that the rate of evolution across a sequence is constant. As a 

result, it generates DNA sequences in which increasingly more bases have 

changed, distributed evenly across the sequence. This is exactly the kind of 

relationship that alignment algorithms ought to be able to find. By contrast, a
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word search tool with a long word size is particularly bad at finding this kind of 

relationship; instead, it is able to find small highly conserved regions.

In conclusion, mathematically generated test sets must be treated with caution 

since they carry with them implicit assumptions which were made when the 

mathematical model was conceived.

6.2.1.4 Vector Contamination

One potential application for an algorithm designed to rapidly compare databases 

against each other is the task of identifying database entries that show high 

similarity to vector sequence. It is unfortunate that a small, but significant, 

proportion of the data is contaminated by vector sequences. Vector 

contamination can result in a number of errors including incorrect contig 

assembly and false functional assignment due to spurious matches on vector 

sequence.

The problems of vector contamination have been studied by a number of

researchers (Lamperti et al. 1992; Harger et al. 1998). Harger et al. found that of

nearly 100,000 sequences from GSDB, 0.36% contained vector contamination.

Although the overall level of vector contamination was found to remain constant

over a 5 year period (at less than 1 %) more than 50% of the contamination

incorporated into the database came from EST and STS sequences. However,

even though more than 50% of the contaminated sequences identified by Harger

et al. were EST and STS sequences, 43.8% of the sequences added to EMBL

between March 1996 and March 1998 were EST and STS sequences (see Table
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1). This implies that EST and STS sequences are only marginally more 

contaminated than other sequences submitted to the database.

T ota l s i z e  in E S T s S T S s Total g ro w th  o f % g ro w th  d u e  to

n u c le o tid e s g ro w th E S T s + S T S s E S T + S T S

E M B L  R e l .  4 6  M a r  '9 6 4 7 3 M 1 5 2 M 9 M - - -

E M B L  R e t ,  5 4  M a r  '9 8 1 4 2 8 M 5 6 1 M 1 8 M 9 5 4 M 4 1 8 M 4 3 . 8

Table 2  An analysis o f  the growth o f  the EM BL database showing the proportion o f  the last two 
years’ growth w hich can be attributed to EST and STS sequences.

Clearly, the correct identification and annotation of vector contaminations is a 

task which is important if the integrity of sequence databases is to be improved. 

At present, this involves comparing each database entry against a database of 

vector sequences using a tool such as BLAST or FASTA, and examining any 

sequences which show similarity to a vector sequence; a time consuming task.

The algorithms described in this thesis are particularly well suited to the rapid 

identification of vector contamination. This section describes the evaluation 

process that was undertaken to see how well the algorithms performed the task of 

identifying vector contamination, and the methods used to determine the optimal 

parameters for identifying vector contamination.

In order to assess the software’s efficacy, a test set was produced by artificially 

introducing progressive amounts of vector sequence into a set of uncontaminated 

DNA sequences. The test set was used to determine RAPID's ability to correctly 

classify sequences as being contaminated or uncontaminated, and to determine 

the optimum score threshold and word size for identifying vector contamination.
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The test set was also used to compare the performance of raw matches vs. 

statistically weighted ones. The specific task addressed in this thesis is that of 

identifying vector contaminations; a different task is likely to demand different 

parameters.

The test set was produced by taking an uncontaminated EST and replacing 

progressive amounts of the sequence with that of a vector, resulting in twenty one 

sequences containing between zero and two hundred base pairs of contamination. 

This process was repeated with six ESTs and five different vectors, producing 

630 entries. 612 uncontaminated sequences were added to this, to give a test set 

containing 1242 sequences. No attempt is made to mimic sequencing errors (such 

as mutations or insertions/deletions). Since sequencing error rates are generally 

about 3%, and RAPID can identify matches of 30bp, we do not consider this to 

be a significant flaw in the test set. A sequence was considered to be 

contaminated if it contained over 30bp of contamination.
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Figure 22  RAPID scores from a search against vector-ig with an artificial test set containing 
different levels o f  contam ination. The point X refers to the sequence A F011925 which was 
included in the test set before its similarity to vector was discovered.

Figure 22 shows RAPID scores resulting from a comparison of the artificial test 

set against vector-ig.
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6.2.1.5 Receiver Operator Characteristic (R.O.C.) analysis

o
,+

Figure 23  Receiver Operator Characteristic (R.O.C.) curves for searches against vector-ig with 
an artificially contam inated test set. A contaminated sequence contained at least 30bp o f  
contam ination. Filled circles represent weighted 9mers, triangles 8mers. Unfilled circles 
represent unweighted 9mers. lOmers were left o ff  the graph for clarity.

Receiver Operator Characteristic (R.O.C.) curves (Figure 23) can be used to 

determine a search tool’s ability to correctly classify sequences by calculating the 

tool’s sensitivity and selectivity for different score thresholds.
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Given a score between a test sequence Q and a vector sequence, 0  , and a score 

threshold ©r , the test sequence can be assigned to one of four sets:

t+: true positive; © > 0 r , Q is contaminated.

f: true negative; 0  < ©f , Q is not contaminated.

/*": false positives; 0  > 0 r , Q is not contaminated.

/ :  false negatives; 0  < 0 r , Q is contaminated.

The number of sequences in each of these sets (F , T , F+, F  ) can be determined 

for a particular value of ©c , allowing P+ and P \ sensitivity and selectivity, to be 

determined for different score thresholds:

T
P+ = — -------- [40]

T ++F~

P~ = ---------   [41]
T~ + F

With a sufficiently low value of ©c, every sequence is judged to be 

contaminated (they have a score above ©f ), resulting in P + - 1  and P~ = 0 . 

Conversely, for a sufficiently high threshold, every sequence is judged to be 

uncontaminated, so that P + = 0 and P~ = 1. An ideal tool would have a score 

threshold which allowed it to correctly identify all contaminated sequences 

without mis-classifying any uncontaminated ones (P+= l and P'=l). In reality, 

such a tool does not exist, and it is useful to investigate the relationship between 

P+ and P" for different score thresholds. Such a curve is known as a receiver
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operating characteristic (R.O.C.) and ideally should have an area of 1.0. (Shah, I. 

& Hunter, L. 1997), (Swets 1982).

R.O.C. curves of RAPID scores were produced for k=8, 9, 10 and for the raw 

number of matches for k=9 (i.e. without any probabilistic weighting). The area 

under the curve was 0.96 for k = 8-mers, 1.00 for 9-mers and 0.99 for 10-mers. 

Unweighted 9-mers also produced a curve with area 1.00. However, the test set 

did not contain any sequences with significant low complexity regions. When 

these are considered it is evident that probabilistic weighting significantly 

reduces the scores due to these matches (see Figure 24).
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Figure 24  A set o f  microsatellite repeats (filled circles) and non-repeat D N A  sequences (unfilled 
circles) were searched against vector-ig. Repeat regions which hit against the database were 
consistently assigned a much lower score than non-repeat regions w hich matched with a 
similar number o f  words.

Although 9-mers and 10-mers have similar discriminatory ability, 9-mers place 

smaller demands on memory. Thus, k = 9 with probabilistic weighting was 

selected for spotting vector contaminations. The optimal value for the score 

threshold ©( was determined to be 10 for 9-mers. This is in keeping with the 

results in Figure 22.
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6.2.1.6 Comparison with BLAST

Having established RAPID’s ability to correctly classify sequences from the test 

set, we compared the scores produced by RAPID and BLAST for a number of 

real sequences.

This was done by taking five randomly selected ESTs which showed varying 

amount of similarity to vector sequences and using them to search against vector- 

ig with both algorithms. Each EST hit against a number of vector sequences, 

resulting in a total of 1803 pair-wise comparisons. A graph of RAPID vs. BLAST 

scores for each EST/vector pair was plotted (see Figure 25). The approximate 

straight line demonstrates that RAPID and BLAST identify the same set of 

matches with a given probe sequence and that the matches are ordered in an 

equivalent way.
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Figure 25  A com parison o f  R APID and BLAST scores for sequences with different levels o f  
similarity to those in vector-ig. Each point represents a hit between a query sequence and a 
particular database sequence. Filled circles: C l5000, unfilled circles: X 93604, filled triangles: 
C14014, unfilled triangles: C 15706, filled squares: C14077.

6.2.1.7 Speed, memory, and disk usage

Two factors which contribute to the time and space performance of the algorithm 

are the query database size (which affects the number of times the algorithm
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needs to look up a word in the target database) and the target database size 

(which affects the length of the word lists the algorithm has to process).

The number of table lookups made by the RAPID algorithm is proportional to the 

number of fc-mers in the query database, which in turn is approximately 

proportional to the number of nucleotides it contains.

The time taken to process a table lookup is proportional to the number of 

sequences which contain that ft-mer. If it is assumed that the &-mer composition 

of the query database is uniform then the time taken to perform a search should 

be proportional to the number of &-mers in the query.

The size of a given word list, assuming even £-mer composition, is slightly sub- 

linear with respect to database size. This is because words which occur more than 

once in a sequence are only recorded once by the algorithm. Thus search time 

should be linear with respect to target database size, and the overall memory 

usage should also be linear.
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Figure 26  The time taken and mem ory usage w hen clustering 10k, 20k 40k and 80k ESTs on a 
P200 Pro running RAPID .

This is confirmed by the results shown in Figure 26, produced by clustering 

varying numbers of ESTs.

If it is assumed that the databases are of even composition, then the total number 

of query-target matches which score above a threshold should also be 

proportional to query and target database sizes. Thus, if alignments are required, 

the number of calls to the alignment algorithm should also be proportional to 

query and target database sizes.

A conservative estimate based on the results in Figure 26 suggests that the EMBL 

DNA database (currently containing about 1.9Gb) could be clustered in about 

6Gb of RAM.
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6.2.1.8 Index files

Since the implementation uses memory-mapped IO, the index file on disk is 

similar in size to the program’s memory image. In addition to the index file, the 

implementation stores the sequence description lines, a probability table, a 

compressed representation of the DNA sequences in the database and their 

constituent k-mers (the last two files are used by the alignment tools). For the 

EMBL EST subset, estl0.dat (which contains 50,000 ESTs), this totals 282Mb: 

about 30% bigger than the original EMBL file.

Indexing times are also fast: estl0.dat is indexed in 187 seconds on a P200Pro 

running LINUX.

6.2.1.9 Comparison with BLAST

Timings were taken using the UNIX t im e  command. In order to compare the 

speed of RAPID and BLAST, estl0.dat was searched for vector contaminations 

by using each tool to compare it against vector-ig. Parameters were set so that 

each tool only identified and aligned the top hit for each matching EST. RAPID 

generated ungapped alignments using PHAT. On a Sun Ultra 5 with 256Mb, 

RAPID takes approximately 33 minutes to perform this search; NCBI BLAST 

version 2.05, 493 minutes.
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6.3 Vector contamination in EMBL

A search of the entire EST subset of EMBL release 54 (which contained 

1,506,038 sequences) against vector-ig identified 4096 sequences. This 

corresponds to an estimated error rate of 0.27%, which is broadly in keeping with 

Lamperti et a l  (1998). Parameters were as determined in section 6.2.1.4 -  a score 

threshold of 10.0 and a word size of 9.

A more detailed analysis was conducted for one of the EST subsets: estl0.dat. 

The subset contained 50,000 sequences, of which 412 were identified as having 

significant similarity to vector -  a contamination rate of 0.82%.

A total of 66% of the contaminated sequences identified were found to have been 

submitted as part of two batch sequencing projects (Nathans J,, 1996 

unpublished; Lanfranchi et al. 1997). This proportion is greatly in excess of their 

overall contribution to the estl0.dat subset (14.5%). Two percent of Lanfranchi’s 

sequences and 2.8% of Nathan’s showed significant match to vector.

Of the sequences identified, 171 (41.5%) contained <100 bp of vector, and are 

likely to be simple editing errors where regions flanking the insert have not been 

removed before submission. If a restriction site is present in one of these 

sequences, the vector/insert junction can be identified and the vector cleanly 

removed.
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A total of 241 (58.5%) of the sequences contain >100bp of vector. 131 of these 

were submitted by Nathans. 55 of these showed significant similarity to the OP 

region of X phage (A.gtlO was used as the cloning vector).

6.4 A systematic survey of EMBL database contamination by E. 

coli

Since the majority of DNA sequences are cloned into E. coli, there is a possibility 

of sequences being contaminated by fragments from the E. coli genome. The 

recently completed E. coli genome sequence makes it possible to perform a 

systematic search to assess the degree of such contamination and to compare it to 

previously reported levels of contamination caused by the failure to remove 

vector sequences.
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Figure 27  Histogram illustrating the distribution o f  E. coli contam inations in EMBL. The graph 
shows for a given position on the genom e, the number o f  EM BL sequences which matched. 
The largest peak corresponds to sequences that hit against the EacL gene, and is due to vector 
contam ination. In order to allow the smaller peaks to be seen more clearly, it has been 
truncated on this graph -  it extends to 709 hits.

Figure 27 was generated by searching the EST subsets of EMBL release 59 

against the E. coli genome and recording the position where they matched. The x 

axis shows position on the genome, the y axis, the number of contaminations that 

were found due to E. coli sequence from that region. The largest peak 

corresponds to LacZ and is due to sequences that have not had vector beyond 

their restriction enzyme sites removed before being submitted to the database. 

From the graph, it is clear that a significant amount of contamination arises from 

regions of E. coli that are not near the insert site: an alternative mechanism is 

responsible for sequencing contamination by genomic E. coli. In order to 

differentiate between contaminations caused by vector sequences and those 

caused by genomic E. coli, sequences which showed a high similarity to vector
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were first identified and removed using the methods described in the previous

section.

SOURCE OF CONTAMINATION NUMBER OF HITS % CONTAMINATION

Vector 8005 0.32

Insertion sequences 123 0.005

E. coli genomic (not vector/LacZ or 

insertion)

1736 0.06

Total 0.4

Table 3 Levels o f  contam ination determined in the com bined EST subsets o f  the EM BL  
databank.

The remaining sequences were then searched against a database of transposable 

elements; 123 sequences matched and were also eliminated. The final subset was 

compared against the entire E. coli genome. Table 3 shows the distribution of 

matches found against the combined EST subsets of EMBL containing 2,516,840 

sequences.

Further analysis of this data showed that a number of the E. coli matches are 

associated with particular EST projects. For example, 73 sequences from an 

Arabidopsis cDNA sequencing project match a region between positions 

1617000 and 1618000 on the E. coli genome, bounded by Sail and Not!
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restriction enzyme sites - the restriction enzymes used in the cloning of the 

Arabiclopsis library. It therefore seems likely that the vector DNA was 

contaminated with a small amount of E. coli genomic DNA, fragments of which 

were then cloned into the vector. In order to investigate this further, other 

contaminated sequences were examined to determine whether this might in fact 

be a relatively common mechanism for producing sequencing artifacts. To do this 

the sequences were searched to see whether there were commonly used 

restriction enzyme sites near* to the start of the sequences. Analysis showed that 

31% of the E. coli matches had such a site within 20 bases of the start of the 

sequence.

From this study it can be concluded that the degree of sequence contamination is 

higher than previously reported. Whilst the majority of contaminations arise 

from vector sequence, a significant but previously unreported subset are probably 

caused by contamination of materials used in the production of libraries. In order 

to maintain the integrity of sequence databases it is important that submissions 

should be routinely screened against both the E.coli genome and a database of 

vector sequences.

6.5 EMBLScalar

As a consequence of the two surveys described above, it was decided to produce

a database EMBLScafor, derived from EMBL by removing contaminated

sequences. Producing a database such as this requires a number of significant

decisions to be made. Firstly, because it is not possible to find an ideal

discriminant between contaminated and not-contaminated, there is a choice
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between whether to produce a database which contains (ideally) no contaminated 

sequences, but from which a number of uncontaminated sequences have also 

been removed, or alternatively one which has not lost any clean sequences but 

still contains contaminants. It was decided with EMBLscalar to produce a 

database that minimised the number of mis-classifications. Therefore, sequences 

which scored above 10.0 using a RAPID search, and which aligned with greater 

than 95% similarity were considered contaminated.

The second decision was whether to attempt to clean sequences or to simply 

eliminate them from the database. Given that often sequences are not annotated 

with vector or restriction enzymes, it was decided that cleaning up sequences was 

a difficult task to perform with a sufficient degree of reliability. Since only a 

small minority of database sequences are contaminated, it was decided to 

eliminate any sequences which were selected by the search, rather than to try to 

clean them up.

The database is available at http://www.bioinf.man.ac.uk/emblScalan along with the 

software used to generate it, and a list of the restriction enzyme sites used in the 

analysis of genomic E. coli contamination.
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6.6 Discussion of issues arising from the surveys of vector and 

genomic E. coli contamination

An analysis of the vector contamination in the entire EST subset of EMBL found 

an overall contamination rate of 0.27%. The approach relies on the vector 

database having sufficient coverage to hit against every contaminated sequence in 

the EST database. As a result, it is possible that a number of sequences were 

missed. However, given that many sequences are submitted without the cloning 

vector, lab host, and restriction enzyme site being included in their annotation, it 

is not possible to assess how many.

In many cases, even if the actual vector used for sequencing a given clone is not 

in the database, a similar (but non-identical) sequence will exist. The A-gtlO 

contaminations discussed earlier are an example of this: the hits found were 

actually against A, phage.

The work on searching sequences against E. coli shows that there is a significant 

amount of contamination arising from genomic E. coli sequence, probably as a 

result of impure vector DNA being used in library production.

It is important to stress the role that sequence annotation plays in the whole

process: poor annotation results in the need to search each sequence against a

database of possible contaminations, rather than just the relevant host and

cloning vector. The lack of consistent, machine-readable documentation

describing the restriction enzyme used during cloning makes it impossible to

automatically remove vector sequences from partially dirty database entries.
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Analysis of the contaminations shows that the majority arise from a small 

number of projects which have submitted data without an appropriate level of 

quality control. Although the increasing use of well designed cloning kits should 

help reduce the number of errors, quality control is still necessary, and should 

routinely involve scanning sequences for vector and genomic E. coli before 

submission.

It could be argued that a sequence database acts as a repository for experimental 

results, allowing an experimental scientist to submit their data to a public site for 

peer review and analysis. If this view is taken, then it is correct to submit 

contaminated sequences. However, this should not be an excuse to submit 

contaminated sequences to a database without annotating them clearly and 

unambiguously as such.
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7 Discussion and conclusions

The initial motivation behind the work described in this thesis was to develop an 

algorithm for fast and sensitive comparison of high volumes of DNA sequence, 

such as those generated by the automatic sequencing of Expressed Sequence 

Tags. In order to do this, a word based approach was considered -  leading to the 

analysis of word distributions in EMBL described in chapter 4. The analysis 

produced results that suggest that DNA sequences are complex, context sensitive, 

and hard to model mathematically. This is not surprising given the nature and 

purpose of DNA. One consequence of this study is that the statistical models 

used to assess significance of matches need to be considered carefully: a simple 

random model is probably not an appropriate basis to start with when designing 

the statistics for a word matching algorithm such as RAPID.

Another interesting outcome is that the distributions of subsequences described 

in chapter 4 are reminiscent of word distributions for the English language; as 

seen in the ‘Word Frequency Book’ by Carroll, Davies and Richman (1971), a 

pivotal text for the Information Retrieval community. This similarity suggested 

that a word based algorithm that scaled matches according to their rarity might 

prove to be an interesting tool, and led to the development of RAPID, the 

algorithm described in chapter 5. Analysis of RAPID’s performance showed that 

it is an order of magnitude faster than BLAST but that it performs with similar 

sensitivity. Although this meets the initial aims of the project, a number of 

improvements were made. Firstly, RAPID presents its output as simply a score. It 

was decided that this was not acceptable, and that a user would require

152



significantly more justification before they were prepared to consider that two 

sequences were similar. For this reason three visualisation tools were developed. 

Of these, two were alignment tools -  partly because alignments are a ubiquitous 

device within bioinformatics, and therefore familiar to the majority of users, and 

partly because there was a desire to investigate whether word probabilities could 

be used to lend context to an alignment and thus increase their utility. The third 

tool, and perhaps the most interesting one, was a ‘coarse grained dot-plotter’ that 

allows similarity between two large sequences such as complete genomes, 

chromosomes and large gene fragments to be presented in a way that allows 

many feature to be rapidly identified.

The work in this thesis shows that an extremely fast search tool allows a number 

of useful tasks to be performed that would otherwise be effectively impossible. 

The database EMBLscalar can only be produced by performing a database 

against database sequence comparison: and it is possible to perform this on a PC. 

The comparative dot plots also require a database against database search, and 

can also be performed on a PC. The analysis of genomic E. coli contamination in 

EMBL has not been performed before -  it was made possible by the existence of 

a tool fast enough to do the job.

Throughout this thesis, emphasis has been placed on the need for speed. This is, 

of course, not the only way to deal with some of the problems presented by the 

size of databases. An alternative approach is to partition the database into subsets 

and search against these. One possibility is to perform this partitioning by 

clustering at the sequence level, but this imposes a subjectivity on the databases
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which results from the particular algorithm used to perform the partitioning. It is 

also the case that, when trying to assign function to an unknown sequence, what 

is required is a set that is diverse at the sequence level, but similar in terms of 

biological behaviour. For example, a database of G-protein coupled receptors 

(GPCRs) would be useful for predicting the function of a putative GPCR, but, 

because the families are sequentially distant, it is unlikely that such a database 

could be built solely by similarity searching. It is also the case that the 

appropriate database is dependent on the task in hand. There are a large number 

of possible databases and they cannot be pre-determined.

Instead, a more desirable approach would be to select sequences in terms of their 

annotation so that the molecular biologist can build ad hoc databases for the 

specific query they wish to make. This kind of approach is possible using tools 

such as SRS, but is limited by the unstructured text that forms the majority of 

sequence annotation. An interesting approach to the problems of size is to use 

formal, structured representations such as Description Logics, Conceptual 

Graphs, First Order Predicate Calculus or Frame Systems to represent the 

knowledge earned in sequence annotation. Presenting the information in a 

structured form offers the opportunity to significantly enhance database retrieval 

tasks. It also has the advantage of rendering the information accessible to 

algorithmic attack, and hence allows that information to be used by analysis 

tools.

Both RAPID and BLAST both perform with a similar level of sensitivity, even 

though they work in significantly different ways. This implies that there is not
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much more information that can be deduced from sequence data alone, in order 

to improve the performance of a search. Instead, it will be necessary to use higher 

level knowledge such as (and this is not meant to be an exhaustive list) 2D 

structure, co and contra expression, metabolic pathways, phylogenetics, protein 

interactions, linkage analysis and bibliographic data.

It is also important to note bioinformatics tools do not work in isolation. They are 

used in a heterogeneous, distributed environment. Results produced by a set of 

different tools, in different locations on a network, often need to be considered 

together, so that for example, sequence analysis packages are required to produce 

data that is subjected to further analysis by other software. Currently, all this 

must be undertaken in an environment that is almost totally devoid of standards. 

Different programs require different file formats, typically inter-converted using 

PERL scripts, and the standard technique for inter-operation across a network is 

the parsing and production of HTML forms. This is less than ideal. Devising 

systems and standards that allow a software tool access to such information, and 

that allow the tool to render it’s data accessible to its peers is one of the 

significant challenges facing bioinformatics as we approach the next millennium.
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Appendix A -  Glossary

This glossary has been adapted from Terri Attwood’s ‘Protein sequence analysis 
A practical guide “A taste of bioinformatics’” which can be found at 
http://www.bioinf.man.ac.uk/bioactivitv/prefacefrm.htrnl. It is included with her kind 
permission.

Adenine (A) A nitrogenous base, one member of the base pair A-T (adenine- 
thymine).

Algorithm The logical sequence of steps by which a computational task can be 
performed.

Alleles Alternative forms of a genetic locus; a single allele for each locus is 
inherited separately from each parent (e.g., at a locus for eye color the allele 
might result in blue or brown eyes).

Amino acid Any of a class of 20 molecules that are combined to form proteins in 
living things. The sequence of amino acids in a protein and hence protein 
function are determined by the genetic code.

Amino acid sequence The order of amino acids in a protein molecule.

Amplification An increase in the number of copies of a specific DNA fragment; 
can be in vivo or in vitro. See cloning, polymerase chain reaction.

Antibody An immunoglobulin molecule that forms part of the body’s response 
to a foreign substance (see antigen), to which it binds specifically.

Antigen A substance recognised as ‘foreign’ by the immune system and which is 
bound by the variable regions of an antibody.

Arrayed library Individual primary recombinant clones (hosted in phage, 
cosmid, YAC, or other vector) that are placed in two- dimensional arrays in 
microtiter dishes. Each primary clone can be identified by the identity of the plate 
and the clone location (row and column) on that plate. Arrayed libraries of clones 
can be used for many applications, including screening for a specific gene or 
genomic region of interest as well as for physical mapping. Information gathered 
on individual clones from various genetic linkage and physical map analyses is 
entered into a relational database and used to construct physical and genetic
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linkage maps simultaneously; clone identifiers serve to interrelate the multilevel 
maps. Compare library, genomic library.

Autoradiography A technique that uses X- ray film to visualize radioactively 
labeled molecules or fragments of molecules; used in analyzing length and 
number of DNA fragments after they are separated by gel electrophoresis.

Autosome A chromosome not involved in sex determination. The diploid human 
genome consists of 46 chromosomes, 22 pairs of autosomes, and 1 pair of sex 
chromosomes (the X and Y chromosomes).

Backup A copy of data or a program made in case a computer crashes. 

Bacteriophage See phage.

Base pair (bp) Two nitrogenous bases (adenine and thymine or guanine and 
cytosine) held together by weak bonds. Two strands of DNA are held together in 
the shape of a double helix by the bonds between base pairs.

Base sequence The order of nucleotide bases in a DNA molecule.

Base sequence analysis A method, sometimes automated, for determining the 
base sequence.

Bioinformatics The study of the application of computer and statistical 
techniques to the management of information. In genome projects, bioinformatics 
includes the development of methods to search databases quickly, to analyze 
DNA sequence information, and to predict protein sequence and structure from 
DNA sequence data.

Biotechnology A set of biological techniques developed through basic research 
and now applied to research and product development. In particular, the use by 
industry of recombinant DNA, cell fusion, and new bioprocessing techniques.

Boot Boot-strap - to restart a computer after it has crashed.

bp See base pair.

Bug An error within a program that causes it to misbehave or crash.
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Carbonyl group >C=0, occurring in the peptide groups of the main chain of a 
protein and also in some side chains. Carbonyl groups are polar because the 
oxygen atom is strongly electronegative.

Catalytic site The region of an enzyme where a chemical reaction takes place, so 
changing the structure of the enzyme’s substrate.

cDNA See complementary DNA.

Centimorgan (cM) A unit of measure of recombination frequency. One 
centimorgan is equal to a 1% chance that a marker at one genetic locus will be 
separated from a marker at a second locus due to crossing over in a single 
generation. In human beings, 1 centimorgan is equivalent, on average, to 1 
million base pairs.

Centromere A specialized chromosome region to which spindle fibers attach 
during cell division.

Chromosomes The self-replicating genetic structures of cells containing the 
cellular DNA that bears in its nucleotide sequence the linear array of genes. In 
prokaryotes, chromosomal DNA is circular, and the entire genome is carried on 
one chromosome. Eukaryotic genomes consist of a number of chromosomes 
whose DNA is associated with different kinds of proteins.

Clone bank See genomic library.

Clones A group of cells derived from a single ancestor.

Cloning The process of asexually producing a group of cells (clones), all 
genetically identical, from a single ancestor. In recombinant DNA technology , 
the use of DNA manipulation procedures to produce multiple copies of a single 
gene or segment of DNA is referred to as cloning DNA.

Cloning vector DNA molecule originating from a virus, a plasmid, or the cell of 
a higher organism into which another DNA fragment of appropriate size can be 
integrated without loss of the vectors capacity for self-replication; vectors 
introduce foreign DNA into host cells, where it can be reproduced in large 
quantities. Examples are plasmids, cosmids, and yeast artificial chromosomes; 
vectors are often recombinant molecules containing DNA sequences from several 
sources.

cM See centimorgan.
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Code See genetic code.

Codon See genetic code.

Complementary DNA (cDNA) DNA that is synthesized from a messenger RNA 
template; the single-stranded form is often used as a probe in physical mapping.

Complementary sequences Nucleic acid base sequences that can form a double­
stranded structure by matching base pairs; the complementary sequence to G-T- 
A-C is C-A-T-G.

Configuration The arrangement of connecting bonds in a molecule. The 
configuration of a molecule can only be changed by breaking and remaking 
covalent bonds (e.g., L- and D-amino acids differ in configuration). See 
conformation.

Conformation The shape of a protein molecule created by rotations about single 
bonds. See configuration.

Conserved sequence A base sequence in a DNA molecule (or an amino acid 
sequence in a protein) that has remained essentially unchanged throughout 
evolution.

Contig map A map depicting the relative order of a linked library of small 
overlapping clones representing a complete chromosomal segment.

Contigs Groups of clones representing overlapping regions of a genome.

Cosmid Artificially constructed cloning vector containing the cos gene of phage 
lambda. Cosmids can be packaged in lambda phage particles for infection into E. 
coli; this permits cloning of larger DNA fragments (up to 45 kb) than can be 
introduced into bacterial hosts in plasmid vectors.

Covalent bond A bond between atoms formed by sharing of their electrons.

Crash An unexpected failure of a computer program, or of the operating system 
itself.

Crossing over The breaking during meiosis of one maternal and one paternal 
chromosome, the exchange of corresponding sections of DNA, and the rejoining
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of the chromosomes. This process can result in an exchange of all eles between 
chromosomes. Compare recombination.

Cytosine © A nitrogenous base, one member of the base pair G-C (guanine and 
cytosine).

Debug To remove bugs from a program. See bug.

Deoxyribonucleotide See nucleotide.

Diploid A full set of genetic material, consisting of paired chromosomes one 
chromosome from each parental set. Most animal cells except the gametes have a 
diploid set of chromosomes. The diploid human genome has 46 chromosomes. 
Compare haploid.

Discriminator An abstraction of a conserved motif, or motifs (e.g., a regular 
expression pattern, or a fingerprint), within an alignment used to search either an 
individual query sequence or a full database for the occurrence of that same, or 
similar, motif.

Discriminating power or diagnostic performance A measure of the ability of a 
discriminator to identify true matches, either in an individual query sequence or 
in a database.

Disk drive The apparatus that contains a hard disk, or into which a floppy disk is 
inserted.

DNA (deoxyribonucleic acid) The molecule that encodes genetic information. 
DNA is a double-stranded molecule held together by weak bonds between base 
pairs of nucleotides. The four nucleotides in DNA contain the bases adenine (A), 
guanine (G), cytosine (C), and thymine (T). In nature, base pairs form only 
between A and T and between G and C; thus the base sequence of each single 
strand can be deduced from that of its partner.

DNA probes See probe.

DNA replication The use of existing DNA as a template for the synthesis of new 
DNA strands. In humans and other eukaryotes, replication occurs in the cell 
nucleus.
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DNA sequence The relative order of base pairs, whether in a fragment of DNA, a 
gene, a chromosome, or an entire genome. See base sequence analysis.

Domain A discrete portion of a protein with its own function. The combination 
of domains in a single protein determines its overall function.

Double helix The shape that two linear strands of DNA assume when bonded 
together.

Down The condition of a computer system following a crash.

E. coli Common bacterium that has been studied intensively by geneticists 
because of its small genome size, normal lack of pathogenicity, and ease of 
growth in the laboratory.

Electrophoresis A method of separating large molecules (such as DNA 
fragments or proteins) from a mixture of similar molecules. An electric current is 
passed through a medium containing the mixture, and each kind of molecule 
travels through the medium at a different rate, depending on its electrical charge 
and size. Separation is based on these differences. Agarose and acrylamide gels 
are the media commonly used for electrophoresis of proteins and nucleic acids.

Endonuclease An enzyme that cleaves its nucleic acid substrate at internal sites 
in the nucleotide sequence.

Enzyme A protein that acts as a catalyst, speeding the rate at which a 
biochemical reaction proceeds but not altering the direction or nature of the 
reaction.

EST Expressed sequence tag. See sequence tagged site.

Ethernet System for the connection of computer networks.

Eukaryote Cell or organism with membrane-bound, structurally discrete nucleus 
and other well-developed subcellular compartments. Eukaryotes include all 
organisms except viruses, bacteria, and blue-green algae. Compare prokaryote. 
See chromosomes.

Evolutionarily conserved See conserved sequence.
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Exogenous DNA DNA originating outside an organism.

Exons The protein-coding DNA sequences of a gene. Compare introns.

Exonuclease An enzyme that cleaves nucleotides sequentially from free ends of 
a lineai* nucleic acid substrate.

Expressed gene See gene expression.

False positive A sequence incorrectly identified by a discriminator as possessing 
a particular motif or pattern.

FISH (fluorescence in situ hybridization) A physical mapping approach that 
uses fluorescein tags to detect hybridization of probes with metaphase 
chromosomes and with the less-condensed somatic interphase chromatin.

Flow cytometry Analysis of biological material by detection of the light- 
absorbing or fluorescing properties of cells or subcellular fractions (i.e., 
chromosomes) passing in a narrow stream through a laser beam. An absorbance 
or fluorescence profile of the sample is produced. Automated sorting devices, 
used to fractionate samples, sort successive droplets of the analyzed stream into 
different fractions depending on the fluorescence emitted by each droplet.

Flow karyotyping Use of flow cytometry to analyze and/or separate 
chromosomes on the basis of their DNA content.

Format To prepare a floppy disk for use.

Gamete Mature male or female reproductive cell (sperm or ovum) with a haploid 
set of chromosomes (23 for humans).

Gene The fundamental physical and functional unit of heredity. A gene is an 
ordered sequence of nucleotides located in a particular position on a particular 
chromosome that encodes a specific functional product (i.e., a protein or RNA 
molecule). See gene expression.

Gene expression The process by which a genes coded information is converted 
into the structures present and operating in the cell. Expressed genes include 
those that are transcribed into mRNA and then translated into protein and those 
that are transcribed into RNA but not translated into protein (e.g., transfer and 
ribosomal RNAs).
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Gene families Groups of closely related genes that make similar products.

Gene library See genomic library.

Gene mapping Determination of the relative positions of genes on a DNA 
molecule (chromosome or plasmid) and of the distance, in linkage units or 
physical units, between them.

Gene product The biochemical material, either RNA or protein, resulting from 
expression of a gene. The amount of gene product is used to measure how active 
a gene is; abnormal amounts can be correlated with disease-causing alleles.

Genetic code The sequence of nucleotides, coded in triplets (codons) along the 
mRNA, that determines the sequence of amino acids in protein synthesis. The 
DNA sequence of a gene can be used to predict the mRNA sequence, and the 
genetic code can in turn be used to predict the amino acid sequence.

Genetic engineering technologies See recombinant DNA technologies.

Genetic map See linkage map.

Genetic material See genome.

Genetics The study of the patterns of inheritance of specific traits.

Genome All the genetic material in the chromosomes of a particular organism; 
its size is generally given as its total number of base pairs.

Genome projects Research and technology development efforts aimed at 
mapping and sequencing some or all of the genome of human beings and other 
organisms.

Genomic library A collection of clones made from a set of randomly generated 
overlapping DNA fragments representing the entire genome of an organism. 
Compare library, arrayed library.

Guanine (G) A nitrogenous base, one member of the base pair G-C (guanine and 
cytosine).
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Haploid A single set of chromosomes (half the full set of genetic material), 
present in the egg and sperm cells of animals and in the egg and pollen cells of 
plants. Human beings have 23 chromosomes in their reproductive cells. Compare 
diploid.

Head crash Collision of the reading head of a disk drive with the surface of the 
disk.

Heterozygosity The presence of different alleles at one or more loci on 
homologous chromosomes.

Homeobox A short stretch of nucleotides whose base sequence is virtually 
identical in all the genes that contain it. It has been found in many organisms 
from fruit flies to human beings. In the fruit fly, a homeobox appears to 
determine when particular groups of genes are expressed during development.

Homologous chromosomes A pair of chromosomes containing the same linear 
gene sequences, each derived from one parent.

Homologous sequences Sequences that are related by divergence from a 
common ancestor. Homology is not a synonym for similarity.

Human gene therapy Insertion of normal DNA directly into cells to correct a 
genetic defect.

Human Genome Initiative Collective name for several projects begun in 1986 
by DOE to (1) create an ordered set of DNA segments from known chromosomal 
locations, (2) develop new computational methods for analyzing genetic map and 
DNA sequence data, and (3) develop new techniques and instruments for 
detecting and analyzing DNA. This DOE initiative is now known as the Human 
Genome Program. The national effort, led by DOE and NIH, is known as the 
Human Genome Project.

Hybridization The process of joining two complementary strands of DNA or 
one each of DNA and RNA to form a double-stranded molecule.

Hydrogen bond A weak electrostatic bond between a hydrogen atom attached to 
an electronegative (e.g., oxygen or nitrogen) atom, and another electronegative 
atom.

Hydrophilic group A chemical group that makes favourable interactions with 
water, generally through hydrogen bonds.

164



Hydrophobic group A chemical group that cannot make favourable interactions 
with water, generally because it is non-polar and cannot form hydrogen bonds.

imino group >N-H, occurring in the peptide groups of the main chain of a 
protein and also in some side chains.

Informatics See Bioinformatics.

In situ hybridization Use of a DNA or RNA probe to detect the presence of the 
complementary DNA sequence in cloned bacterial or cultured eukaryotic cells.

Interphase The period in the cell cycle when DNA is replicated in the nucleus; 
followed by mitosis.

Introns The DNA base sequences interrupting the protein-coding sequences of a 
gene; these sequences are transcribed into RNA but are cut out of the message 
before it is translated into protein. Compare exons.

In vitro Outside a living organism.

Karyotype A photomicrograph of an individuals chromosomes arranged in a 
standard format showing the number, size, and shape of each chromosome type; 
used in low-resolution physical mapping to correlate gross chromosomal 
abnormalities with the characteristies of specific diseases.

kb See kilobase.

Kilobase (kb) Unit of length for DNA fragments equal to 1000 nucleotides.

Library An unordered collection of clones (i.e., cloned DNA from a particular 
organism), whose relationship to each other can be established by physical 
mapping. Compare genomic library, arrayed library.

Linkage The proximity of two or more markers (e.g., genes, RFLP markers) on a 
chromosome; the closer together the markers are, the lower the probability that 
they will be separated during DNA repair or replication processes (binary fission 
in prokaryotes, mitosis or meiosis in eukaryotes), and hence the greater the 
probability that they will be inherited together.
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Linkage map A map of the relative positions of genetic loci on a chromosome, 
determined on the basis of how often the loci are inherited together. Distance is 
measured in centimorgans (cM).

Localize Determination of the original position (locus) of a gene or other marker 
on a chromosome.

Locus (pi. loci) The position on a chromosome of a gene or other chromosome 
marker; also, the DNA at that position. The use of locus is sometimes restricted 
to mean regions of DNA that are expressed. See gene expression.

Macrorestriction map Map depicting the order of and distance between sites at 
which restriction enzymes cleave chromosomes.

Mapping See gene mapping, linkage map, physical map.

Marker An identifiable physical location on a chromosome (e.g., restriction 
enzyme cutting site, gene) whose inheritance can be monitored. Markers can be 
expressed regions of DNA (genes) or some segment of DNA with no known 
coding function but whose pattern of inheritance can be determined. See RFLP, 
restriction fragment length polymorphism.

Mb See megabase.

Megabase (Mb) Unit of length for DNA fragments equal to 1 million 
nucleotides and roughly equal to 1 cM.

Meiosis The process of two consecutive cell divisions in the diploid progenitors 
of sex cells. Meiosis results in four rather than two daughter cells, each with a 
haploid set of chromosomes.

Messenger RNA (mRNA) RNA that serves as a template for protein synthesis. 
See genetic code.

Metaphase A stage in mitosis or meiosis during which the chromosomes are 
aligned along the equatorial plane of the cell.

Mitosis The process of nuclear division in cells that produces daughter cells that 
are genetically identical to each other and to the parent cell.
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Motif A consecutive string of amino acids in a protein sequence whose general 
character is repeated, or conserved, in all sequences in a multiple alignment at a 
particular position. Motifs are of interest because they may correspond to 
structural or functional elements within the sequences they characterise.

mRNA See messenger RNA.

Multifactorial or multigenic disorders See polygenic disorders.

Multiplexing A sequencing approach that uses several pooled samples 
simultaneously, greatly increasing sequencing speed.

Mutation Any heritable change in DNA sequence. Compare polymorphism.

Nitrogenous base A nitrogen-containing molecule having the chemical 
properties of a base.

Non-polar molecule A molecule that has uniform distribution of electronic 
charge.

Nucleic acid A large molecule composed of nucleotide subunits.

Nucleotide A subunit of DNA or RNA consisting of a nitrogenous base (adenine, 
guanine, thymine, or cytosine in DNA; adenine, guanine, uracil, or cytosine in 
RNA), a phosphate molecule, and a sugar molecule (deoxyribose in DNA and 
ribose in RNA). Thousands of nucleotides are linked to form a DNA or RNA 
molecule. See DNA, base pair, RNA.

Nucleus The cellular organelle in eukaryotes that contains the genetic material.

Oncogene A gene, one or more forms of which is associated with cancer. Many 
oncogenes are involved, directly or indirectly, in controlling the rate of cell 
growth.

Overlapping clones See genomic library.

PCR See polymerase_chain reaction.

Phage A virus for which the natural host is a bacterial cell.
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Physical map A map of the locations of identifiable landmarks on DNA (e.g., 
restriction enzyme cutting sites, genes), regardless of inheritance. Distance is 
measured in base pairs. For the human genome, the lowest-resolution physical 
map is the banding patterns on the 24 different chromosomes; the highest- 
resolution map would be the complete nucleotide sequence of the chromosomes.

Plasmid Autonomously replicating, extrachromosomal circular DNA molecules, 
distinct from the normal bacterial genome and nonessential for cell survival 
under nonselective conditions. Some plasmids are capable of integrating into the 
host genome. A number of artificially constructed plasmids are used as cloning 
vectors.

Polar molecule A molecule that has non-uniform distribution of electronic 
charge, resulting in partial positive charge in one part of the molecule and 
complementary negative charge in another part.

Polygenic disorders Genetic disorders resulting from the combined action of 
alleles of more than one gene (e.g., heart disease, diabetes, and some cancers). 
Although such disorders are inherited, they depend on the simultaneous presence 
of several alleles; thus the hereditary patterns are usually more complex than 
those of single-gene disorders. Compare single-gene disorders.

Polymer A large molecule formed by joining small molecules (monomers) in a 
long chain.

Polymerase chain reaction (PCR) A method for amplifying a DNA base 
sequence using a heat-stable polymerase and two 20-base primers, one 
complementary to the (+)-strand at one end of the sequence to be amplified and 
the other complementary to the (-)-strand at the other end. Because the newly 
synthesized DNA strands can subsequently serve as additional templates for the 
same primer sequences, successive rounds of primer annealing, strand 
elongation, and dissociation produce rapid and highly specific amplification of 
the desired sequence. PCR also can be used to detect the existence of the defined 
sequence in a DNA sample.

Polymerase, DNA or RNA Enzymes that catalyze the synthesis of nucleic acids 
on preexisting nucleic acid templates, assembling RNA from ribonucleotides or 
DNA from deoxyribonucleotides.

Polymorphism Difference in DNA sequence among individuals. Genetic 
variations occurring in more than 1 % of a population would be considered useful 
polymorphisms for genetic linkage analysis. Compare mutation.
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Primary structure See amino acid sequence.

Primer Short preexisting polynucleotide chain to which new 
deoxyribonucleotides can be added by DNA polymerase.

Probe Single-stranded DNA or RNA molecules of specific base sequence, 
labeled either radioactively or immunologically, that are used to detect the 
complementary base sequence by hybridization.

Prokaryote Cell or organism lacking a membrane-bound, structurally discrete 
nucleus and other subcellular compartments. Bacteria are prokaryotes. Compare 
eukaryote. See chromosomes.

Promoter A site on DNA to which RNA polymerase will bind and initiate 
transcription.

Prosthetic group A chemical group additional to the polypeptide chain of a 
protein that is essential for its activity.

Protein A large molecule composed of one or more chains of amino acids in a 
specific order; the order is determined by the base sequence of nucleotides in the 
gene coding for the protein. Proteins are required for the structure, function, and 
regulation of the body’s cells, tissues, and organs, and each protein has unique 
functions. Examples are hormones, enzymes, and antibodies.

Protein fingerprint A group of conserved motifs excised from a sequence 
alignment, used to build a characteristic signature of family membership.

Protein pattern A single consensus expression derived from a conserved region 
of a sequence alignment, used as characteristic signature of family membership.

Purine A nitrogen-containing, single-ring, basic compound that occurs in nucleic 
acids. The purines in DNA and RNA are adenine and guanine.

Pyrimidine A nitrogen-containing, double-ring, basic compound that occurs in 
nucleic acids. The pyrimidines in DNA are cytosine and thymine; in RNA, 
cytosine and uracil.

Quaternary structure The arrangement of subunits in a protein molecule.
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Rare- cutter enzyme See restriction enzyme cutting site.

Recombinant clones Clones containing recombinant DNA molecules. See 
recombinant DNA technologies.

Recombinant DNA molecules A combination of DNA molecules of different 
origin that are joined using recombinant DNA technologies.

Recombinant DNA technologies Procedures used to join together DNA 
segments in a cell-free system (an environment outside a cell or organism). 
Under appropriate conditions, a recombinant DNA molecule can enter a cell and 
replicate there, either autonomously or after it has become integrated into a 
cellular chromosome.

Recombination The process by which progeny derive a combination of genes 
different from that of either parent. In higher organisms, this can occur by 
crossing over.

Regular expression See protein pattern.

Regulatory regions or sequences A DNA base sequence that controls gene 
expression.

Resolution Degree of molecular detail on a physical map of DNA, ranging from 
low to high.

Restriction enzyme, endonuclease A protein that recognizes specific, short 
nucleotide sequences and cuts DNA at those sites. Bacteria contain over 400 such 
enzymes that recognize and cut over 100 different DNA sequences. See 
restriction enzyme cutting site.

Restriction enzyme cutting site A specific nucleotide sequence of DNA at 
which a particular restriction enzyme cuts the DNA. Some sites occur frequently 
in DNA (e.g., every several hundred base pairs), others much less frequently 
(rare-cutter; e.g., every 10,000 base pairs).

Restriction fragment length polymorphism (RFLP) Variation between 
individuals in DNA fragment sizes cut by specific restriction enzymes; 
polymorphic sequences that result in RFLPs are used as markers on both physical 
maps and genetic linkage maps. RFLPs are usually caused by mutation at a 
cutting site. See marker.
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RFLP See restriction fragment length polymorphism.

Ribonucleic acid (RNA) A chemical found in the nucleus and cytoplasm of 
cells; it plays an important role in protein synthesis and other chemical activities 
of the cell. The structure of RNA is similar to that of DNA. There are several 
classes of RNA molecules, including messenger RNA, transfer RNA, ribosomai 
RNA, and other small RNAs, each serving a different purpose.

Ribonucleotides See nucleotide.

Ribosomai RNA (rRNA) A class of RNA found in the ribosomes of cells.

Ribosomes Small cellular components composed of specialized ribosomai RNA 
and protein; site of protein synthesis. See ribonucleic acid (RNA).

RNA See ribonucleic acid.

Secondary structure Regions of local regularity in the fold of a protein 
sequence, such as alpha-helices and beta-sheets.

Sequence See base sequence or amino acid sequence.

Sequence alignment A linear comparison of amino (or nucleic) acid sequences 
in which insertions are made in order to bring equivalent positions in adjacent 
sequences into the correct register. Alignments are the basis of sequence analysis 
methods, and are used to pin-point the occurrence of conserved motifs.

Sequence tagged site (STS) Short (200 to 500 base pairs) DNA sequence that 
has a single occurrence in the human genome and whose location and base 
sequence are known. Detectable by polymerase chain reaction, STSs are useful 
for localizing and orienting the mapping and sequence data reported from many 
different laboratories and serve as landmarks on the developing physical map of 
the human genome. Expressed sequence tags (ESTs) are STSs derived from 
cDNAs.

Sequencing Determination of the order of nucleotides (base sequences) in a 
DNA or RNA molecule or the order of amino acids in a protein.

Sex chromosomes The X and Y chromosomes in human beings that determine 
the sex of an individual. Females have two X chromosomes in diploid cells;
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males have an X and a Y chromosome. The sex chromosomes comprise the 23rd 
chromosome pair in a karyotype. Compare autosome.

Shotgun method Cloning of DNA fragments randomly generated from a 
genome. See library, genomic library.

Single- gene disorder Hereditary disorder caused by a mutant allele of a single 
gene (e.g., Duchenne muscular dystrophy, retinoblastoma, sickle cell disease). 
Compare polygenic disorders.

Somatic cells Any cell in the body except gametes and their precursors.

Southern blotting Transfer by absorption of DNA fragments separated in 
electrophoretic gels to membrane filters for detection of specific base sequences 
by radiolabeled complementary probes.

STS See sequence tagged site.

Super secondary structure The arrangement of alpha-helices or beta-strands in a 
protein sequence into discrete folded structures: e.g., beta-barrels, or beta-alpha- 
beta-motifs.

Tandem repeat sequences Multiple copies of the same base sequence on a 
chromosome; used as a marker in physical mapping.

Technology transfer The process of converting scientific findings from research 
laboratories into useful products by the commercial sector.

Telomere The ends of chromosomes. These specialized structures are involved 
in the replication and stability of linear DNA molecules. See DNA replication.

Tertiary structure The overall fold of a protein molecule.

Thymine (T) A nitrogenous base, one member of the base pair A-T (adenine- 
thymine).

Transcription The synthesis of an RNA copy from a sequence of DNA (a gene); 
the first step in gene expression. Compare translation.
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Transfer RNA (tRNA) A class of RNA having structures with triplet nucleotide 
sequences that are complementary to the triplet nucleotide coding sequences of 
mRNA. The role of tRNAs in protein synthesis is to bond with amino acids and 
transfer them to the ribosomes, where proteins are assembled according to the 
genetic code earned by mRNA.

Transformation A process by which the genetic material earned by an 
individual cell is altered by incorporation of exogenous DNA into its genome.

Translation The process in which the genetic code earned by mRNA directs the 
synthesis of proteins from amino acids. Compare transcription.

tRNA See transfer RNA.

True positive A sequence correctly identified by a discriminator as possessing a 
particular motif or pattern.

Uracil A nitrogenous base normally found in RNA but not DNA; uracil is 
capable of forming a base pair with adenine.

van der Waals forces Weak forces that occur between any pair of atoms. The 
forces are attractive when the atoms are close, but become repulsive when they 
are too close.

Vector See cloning vector.

Virus A noncellular biological entity that can reproduce only within a host cell. 
Viruses consist of nucleic acid covered by protein; some animal viruses are also 
surrounded by membrane. Inside the infected cell, the virus uses the synthetic 
capability of the host to produce progeny virus.

VLSI Very large-scale integration allowing over 100,000 transistors on a chip. 

YAC See yeast artificial chromosome.

Yeast artificial chromosome (YAC) A vector used to clone DNA fragments (up 
to 400 kb); it is constructed from the telomeric, centromeric, and replication 
origin sequences needed for replication in yeast cells. Compare cloning vector, 
cosmid.
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