
IMPROVED COMPARATIVE 
MODELLING USING PROTEIN 

STRUCTURE PREDICTION

VICTORIA ANN MCKENNA 
Molecules To Cells 

2007

A thesis submitted to the University of Manchester for the degree of Doctor of 
Philosophy in the Faculty of Life Sciences



ProQuest N um ber: 10996971

All rights reserved

INFORMATION TO  ALL USERS 
The q uality  of this reproduction  is d e p e n d e n t upo n  the qua lity  of the copy subm itted .

In the unlikely e v e n t that the au th o r did not send a c o m p le te  m anuscript 
and there are missing p ag es , these will be n o te d . Also, if m ateria l had to be re m o v e d ,

a n o te  will in d ic a te  the d e le tio n .

uest
ProQ uest 10996971

Published by ProQuest LLC(2018). C o p yrig h t of the Dissertation is held by the Author.

All rights reserved.
This work is protected  ag a in st unau thorized  copying under Title 17, United States C o d e

M icroform  Edition ©  ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway  

P.O. Box 1346 
Ann Arbor, Ml 4 8 1 0 6 -  1346





Table of Contents

T a b le  of  C o n ten ts

TITLE PAGE
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES
LIST OF EQUATIONS
LIST OF ABBREVIATIONS
ABSTRACT
DECLARATION
COPYRIGHT STATEMENT
ACKNOWLEDGMENTS

CHAPTER 1 INTRODUCTION
1.1 The Levels of Protein Structure
1.2 The Importance of Structure Prediction

1.2.1 Sequence, Structure and Function
1.2.2 Structural Genomics
1.2.3 Structure Prediction and Bioinformatics

1.3 Structure Prediction Methods
1.3.1 Ab Initio Structure Prediction
1.3.2 Structure Prediction with Threading
1.3.3 Structure Prediction with Comparative Modelling

1.3.3.1 Fold Assignment
1.3.3.2 Template Selection
1.3.3.3 Target-Template Alignment
1.3.3.4 Model Building and Side Chain Modelling
1.3.3.5 Evaluating Models
1.3.3.6 Areas for Improvement

1.4 Overview

CHAPTER 2 GENERAL RESOURCES AND DATABASES
2.1 Sequence Database - MEROPS
2.2 Structural Databases

2.2.1 PISCES
2.2.1.1 PDBaanr
2.2.1.2 cullPDB

2.2.2 ASTRAL Compendium
2.3 Sequence Database Searching

2.3.1 BLAST
2.3.2 PSI-BLAST

2.4 Sequence Clustering with BLASTCLUST
2.5 Assigning Secondary Structure Using DSSP
2.6 Predicting Secondary Structure

2.6.1 JPRED
2.6.2 ELEPHANT

2.7 Assigning Fold Using SCOP
2.8 Accessibility Calculations with NACCESS
2.9 Assigning Interface Residues with DACCESS
2.10 Shannon’s Entropy
2.11 Correlation Coefficient
2.12 Building Profiles Using the HMMER Suite
2.13 Aligning HMMs and Profiles

1
2
7
9

10
11
13
14
15
16

17
17
21
21
23
24
25
25
27
28
32
32
34
34
36
39
40

41
41
44
44
44
45
45
46
46
47
47
48
49
49
49
50
50
51
51
52
52
53

2



Table of Contents

2.13.1 The Profile-Prolile Method 54
2.13.2 HMMER 54
2.13.3 COACH 54

2.14 Sequence Based Alignment Methods 54
2.14.1 MUSCLE 54
2.14.2 CLUSTALW 55
2.14.3 BLAST 55
2,14.4 PSI-BLAST 55

2.15 Structure Based Alignment Methods 56
2.15.1 MAMMOTH 56
2.15.2 TM-align 56
2.15.3 CE 57

2.16 Assessing the Sequence Alignments Using NiRMSD 57
2.17 Comparative Modelling with MODELLER 58
2.18 Structural Superposition with STALIN 60

CHAPTER 3 SECONDARY STRCUTURE PREDICTION AND 
COMPARATIVE MODELLING

62

3.1 Aim 62
3.2 Introduction 62

3.2.1 Secondaiy Structure 62
3.2.1.1 The Alpha Helix 63
3.2.1.2 The Beta Sheet 63

3.3 Secondary Structure Prediction 64
3.3.1 Its Importance in Protein Structure Prediction 64
3.3.2 The Early Methods 64
3.3.3 Ab Initio or Linear Statistic Methods 65
3.3.4 Nearest Neighbour Methods 66
3.3.5 Hidden Markov Models and Machine Learning 

Methods
67

3.3.6 Consensus and Hybrid Approaches 68
3.3.7 Limitations in Secondaiy Structure Prediction 69
3.3.8 Advances in Secondary Structure Prediction 70
3.3.9 Assessing the Accuracy of Secondary Structure 

Prediction
72

3.3.10 Improving Secondary Structure Prediction 73
3.3.11 Protein Secondary Structure Prediction and 

Comparative Modelling
75

3.4 Methods and Materials 76
3.4.1 Fold Assignment 77
3.4.2 Selecting Templates 78
3.4.3 Target-Template Alignment 78
3.4.4 Model Building and Secondary Structure Restraints 78

3.4.4.1 Description of SST1 79
3.4.4.2 Description of SST2 79
3.4.4.3 Description of SST3 79
3.4.4.4 The Explicit Method 81
3.4.4.5 The Combined Method 81
3.4.4.6 Secondary Structure Assignment 81
3.4.4.7 Secondaiy Structure Prediction 82
3.4.4.8 Understanding how Fold Class Affects the Results 82
3.4.4.9 Assessing the Secondary Structure Predictions 82

3.4.5 Model Evaluation 83
3.5 Results and Discussion 84

3.5.1 Assessing the use of the JPRED Algorithm 84

3



Table of Contents

3.5.2 Assessing the use of the Improved Algorithm, 87
ELEPHANT

3.5.3 Fold Class and the Predictions 89
3.5.4 Model Evaluation 91

3.5.4.1 The Explicit Method 91
3.5.4.2 The Combined Method 93

3.6 Conclusions and Future Work 107

CHAPTER 4 ALIGNMENT PROTOCOLS 110
4.1 Aim 110
4.2 Introduction 110

4.2.1 The Importance of a High Quality Model 110
4.2.2 Sequence Identity and Alignment Errors 111
4.2.3 Alignments in Comparative Modelling 112
4.2.4 Different Alignment Techniques 112

4.2.4.1 Dynamic Programming 113
4.2.4.2 Global Alignments, Needleman and Wunsch 113
4.2.4.3 Local Alignments, the Smith-Waterman Algorithm 114
4.2.4.4 Pair-wise and Sequence-Sequence Alignments 114
4.2.4.5 The use of Multiple Sequence Alignments 114
4.2.4.6 Progressive Alignments and Iterative Optimisation 115
4.2.4.7 Sequence-Profile Alignments 116
4.2.4.8 Profile-Profile Alignments 117
4.2.4.9 The use of Hidden Markov Models 118

4.2.5 Including Structural Information 119
4.2.6 Improving Alignments 120
4.2.7 Selecting the Best Alignments 121
4.2.8 The Alignment Methods Used 122
4.2.9 Assessing Alignment Accuracy 122
4.2.10 Importance of Peptidases 124
4.2.11 Peptidase Inhibitors 125
4.2.12 Why Named Peptidases 125
4.2.13 Different Types of Peptidases 125

4.3 Methods and Materials 126
4.3.1 The Dataset 126

4.3.1.1 Selecting the Targets 127
4.3.1.2 Generating the Target-Template Pairs 128

4.3.2 Constructing the Target-Template Alignments 130
4.3.2.1 Calculating Percentage Sequence Identity 130
4.3.2.2 MAMMOTH 133
4.3.2.3 TM-align 133
4.3.2.4 CE 133
4.3.2.5 BLAST 133
4.3.2.6 PSI-BLAST 134
4.3.2.7 MUSCLE 134
4.3.2.8 Building the Hidden Markov Models 134
4.3.2.9 Sequence-Profile 136
4.3.2.10 Profile-Profile 136
4.3.2.11 COACH 137

4.3.3 Assessing the Alignments 137
4.3.3.1 Obtaining Equivalent Residues 137
4.3.3.2 Treatment of Gaps 138
4.3.3.3 Percentage Identity Calculations 138
4.3.3.4 Amount of Alignment Retained by the Different 139

Methods

4



Table of Contents

4.3.3.5 Calculating the Sensitivity and Specificity 139
4.3.3.6 Amount of Structural Overlap 139
4.3.3.7 Amount of the Alignment that is “Model-able” 139
4.3.3.8 Amount of the Alignment that is Unaligned Gaps 140

4.3.4 Obtaining and Defining the Interface Regions 141
4.3.4.1 Assessing the Interface Regions 143
4.3.4.2 Gaps in the Interface 144

4.4 Results and Discussion 144
4.4.1 The Amount of Sequence Retained 145
4.4.2 The Retained Alignment and Percentage Identity 146
4.4.3 The Amount of Interface Retained 151
4.4.4 The Number of Gaps Introduced 152
4.4.5 Gaps and Percentage Identity 153
4.4.6 Gapped Instances 154
4.4.7 The Amount of Interface Regions Containing Gapped 158

Instances
4.4.8 The Model-able Part of the Alignment 158
4.4.9 The NiRMSD of the Alignments 160
4.4.10 NiRMSD and Percentage Identity 161
4.4.11 The Accuracy of the Alignments 162
4.4.12 Alignment Accuracy of the Interface Regions 168

4.5 Conclusions and Future Work 174

CHAPTERS ALIGNMENT PROTOCOLS AND 178
COMPARATIVE MODELLING

5.1 Aim 178
5.2 Introduction 178

5.2.1 Loop Modelling 179
5.2.1.1 Ab Initio Methods for Loop Modelling 180
5.2.1.2 Database Search Techniques for Loop Modelling 180
5.2.1.3 Combined Approaches 181
5.2.1.4 Loop Modelling in MODELLER 181

5.3 Methods and Materials 182
5.3.1 Developing the Model Building Protocol 182
5.3.2 Building the Comparative Models 185
5.3.3 Assessing the Alignments and Comparative Models 185
5.3.4 Assessing the Interface Regions the and Comparative 186

Models
5.3.5 The Accessibility Calculations 186
5.3.6 Calculating the Sequence Entropy 186
5.3.7 The Correlation Coefficient Calculations 187
5.3.8 Structural Superposition 187
5.3.9 Assessing the Model Specificity 188

5.4 Results and Discussion 189
5.4.1 The Models Built 190
5.4.2 The Accuracy of the Models 191
5.4.3 The RMSD and the Percentage Sequence Identity 193
5.4.4 The RMSD and the Percentage o f Gaps 196
5.4.5 The Six Example Pairs 198
5.4.6 The Accuracy of the Different Refinement Levels 201
5.4.7 The RMSD and the Conservation Entropy 202
5.4.8 The RMSD and the Accessibility 205
5.4.9 The Specificity o f the Methods 207
5.4.10 An Example 216

5.5 Conclusions and Future Work 223

5



Table of Contents

CHAPTER 6 CONCLUSIONS AND OUTLOOK 229

CHAPTER 7 REFERENCES 234

APPENDIX 1 SUPPLEMENTARY DATA FROM CHAPTER 3 247

APPENDIX 2 SUPPLEMENTARY DATA FROM CHAPTER 4 251

APPENDIX 3 SUPPLEMENTARY DATA FROM CHAPTER 5 270

6



List of Figures

L ist of  F ig u r es

1.1a The Different Levels of Protein Structure 19
1.1b Helix and Sheet Structure 20
1.2 Applicability and Accuracy of Comparative Models 30
1.3 The Five Main Steps in Comparative Modelling 31
1.4 Single Versus Multiple Template Performance for Comparative 

Modelling
34

1.5 Errors in Comparative Modelling 40
2.1 Comparative Protein Modelling by Satisfaction of Spatial 

Restraints
60

3.1 Prediction and Assignment of Secondary Structure 76
3.2 Variations of Restraints: JPred, SST1, ELEPHANT and SST2 79
3.3 insertion of Gaps in the Target and Definition of SST2 and 

SST3
80

3.4 How well does Secondary Structure Prediction do? 86
3.5 Potential Models and Percentage Sequence Identity 87
3.6 The Improvement in Different SCOP Classes 90
3.7 The Number of Pairs with Lower RMSDs than SST2 97
3.8 The Improvement in RMSD 99
3.9 1 m2x__A PDB 100
3.10 1m2xA Models 101
3.11 1 m2xA Alpha-helices 102
3.12 1gy7_A PDB 103
3.13 1gy7A Models 103
3.14 1gy7A Alpha-helices 104
3.15 1 i2k_A PDB 105
3.16 1l2kA Models 106
3.17 1i2kA Alpha-helices 107
4.1 The Needleman-Wunsch Algorithm 114
4.2 The Datasets 129
4.3 The Different Lengths of the Sequence Used 130
4.4 The Construction of the Alignments 132
4.5 The Construction of the HMMs 136
4.6 Calculating Equivalent Residues: An Example 138
4.7 The Different Ways to Consider the Alignments 140
4.8 Counting Gap Instances 141
4.9 Defining the Interface 142
4.10 Example of Assigning the Interface 143
4.11 Counting Gap Instances 144
4.12 The Percentage of Sequence Retained Between the Target 

and the Template by the Different Protocols
147

4.13 The Percentage of Sequence Retained at Different Percentage 
Identities

150

4.14 The Percentage of Interface Retained 151
4.15 The Percentage of Gaps Introduced at Different Percentage 

Identities
154

4.16 The Number of Gap Instances Introduced into the Target 156
4.17 The Number of Gap Instances Introduced into the Template 157
4.18 The Percentage Identity and Percentage Model-able 160
4.19 The Percentage Identity and the NiRMSD 162
4.20 Percentage of Correctly Predicted Residues 164
4.21 Difference in Accuracy of the Interface Residues and Non­

interface Residues
169

4.22 The Accuracy of the Non-interface Residues and the Interface 171

7



List of Figures

Residues
4.23 The Percentage Identity and the Percent Correct of BLAST 

and COACH
173

5.1 The Modelling Protocol 184
5.2 Example of Averaging RMSDs 186
5.3 RMSD and Percentage Sequence Identity 196
5.4 RMSD and Percentage of Gaps in the Target 197
5.5 The RMSD and the Model Refinements 202
5.6 The RMSD and Conservation Entropy for all Models 203
5.7 The RMSD and Conservation Entropy for the Interfaces 204
5.8 The RMSD and Accessibility of the Interfaces 205
5.9 The RMSD and Accessibility 206
5.10 The Sensitivity and PPV of the Differences in Distances 215
5.11 The Alignments of 2sicE+1r64A 217
5.12 The Interface Assignments: 2sicE 218
5.13 The Models of 2sic 220
5.14 The Contacts of 2sic 222
A1.1 Example MODELLER Input File 248
A1.2 Number of Pairs with Lower RMSDs 249
A1.3 Average Improvement in RMSD 250
A2.1 Percentage of Sequence Retained at Different Percentage 

Identities
251

A2.2 The Percentage of Gaps in the Target Sequences 252
A2.3 The Percentage of Gaps in the Template Sequences 253
A2.4 The Percentage Identity and the NiRMSD for the BLAST 

method
254

A2.5 The Percentage Identity and the NiRMSD for the COACH 
method

255

A2.6 The Percentage Identity and the NiRMSD for the MUSCLE 
method

256

A2.7 The Percentage Identity and the NiRMSD for the Profile-Profile 
method

257

A2.8 The Percentage Identity and the NiRMSD for the PSI-BLAST 
method

258

A2.9 The Percentage Identity and the NiRMSD for the Sequence- 
Profile method

259

A2.10 Percentage of Correctly Predicted Residues for CE 260
A2.11 Percentage of Correctly Predicted Residues for MAMMOTH 261
A2.12 Percentage of Correctly Predicted Residues for CE, l-vs-l 262
A2.13 Percentage of Correctly Predicted Residues for MAMMOTH, I- 

vs-l
Percentage of Correctly Predicted Residues for TM-align, l-vs-l

263

A2.14 264
A2.15 The Accuracy of the Non-interface Residues and Interface 

Residues for the CE Method
265

A2.16 The Accuracy of the Non-interface Residues and Interface 
Residues for the MAMMOTH Method

266

A2.17 The Accuracy of the Non-interface Residues and Interface 
Residues for the CE Method for the l-vs-l set

267

A2.18 The Accuracy of the Non-interface Residues and Interface 
Residues for the MAMMOTH Method for the l-vs-l set

268

A2.19 The Accuracy of the Non-interface Residues and Interface 
Residues for the TM-align Method for the l-vs-l set

269

A3.1 The Sensitivity and PPV of the Differences in Distances for the 
Main chain -  Main chain

276



List of Equations

L ist  of  E q u a tio n s

2.1 E-value 47
2.2 Shannon’s Entropy 51
2.3 Pearson’s Correlation Coefficient 52
3.1 The Q3 Score 72
3.2 The SOV Score 72
5.1 Calculating the Sensitivity 189
5.2 Calculating the Positive Predicted Value (PPV) 189

10



List of Abbreviations

L ist of  A b b r e v ia tio n s

3D THREE Dimensional
BLAST Basic Local Alignment of Sequences Tool
BLOSUM BLOcks Substitution Matrix
CASP Critical Assessment of protein Structure Prediction
CDM Consensus Data Mining
CE Combinatorial Extension
CHARMM Chemistry at HARvard Molecular Mechanics
COACH Comparison Of Alignments by Constructing HMMs
CpFE Cumulative Pseudo-Free Energy
DNA DeoxyriboNucleic Acid
DSSP Dictionary of Secondary Structures for Proteins
EC Enzyme Commission
ELEPHANT EmpiricaL Enhancement of Predicted HelicAl N-Termini
E-VALUE Expectation VALUE
FRAGFOLD FRAGment FOLDing
GOR Gamier Osguthorpe and Robson
HMM Hidden Markov Models
HMMSTR Hidden Markov Models for connecting library of STRucture fragments
INDELS Insertions and Deletions
JPRED Jury PREDiction
MAMMOTH MAtching Molecular Models Obtained from THeory
MSA Multiple Sequence Alignment
Modelable The amount of the alignment which MODELLER will build
MUSCLE Multiple Sequence Comparison by Log-Expectation
NC-IUBMB Nomenclature of the International Union of Biochemistry and Moleculai 

Biology
NiRMSD Normalised Interaction RMSD
NMR Nuclear Magnetic Resonance
NN Neural Network
NNSSP Nearest Neighbour Secondary Structure Prediction
PAM Point Accepted Mutation
PDB Protein Data Bank
PHD Profile network HeiDlberg
PROCHECK PROgrams to CHECK the stereochemical quality of protein structures
PSI Protein Structure Initiative
PSI-BLAST Position Specific Iterative BLAST
PSSM Position Specific Scoring Matrix
Reference The original target and template sequences before submitting to 

alignment programs
Retained The amount of alignment each alignment method keeps
RMSD Root Mean Square Deviation
SCOP Structural Classification of Proteins
SOV Segment OVertap
SPACI Summary PDB ASTRAL Check Index
SPTREMBL Swiss-Prot TREMBL

11



List of Abbreviations

SST Secondary Structure
SST1 The d ssp  assignment of the target Secondary Structure
SST2 No Secondary STructure restraints used, the default in MODELLER
SST3 The template containing gaps inserted into it
SSTRUC Secondary STRUCture
STALIN protein STructural ALIgNment
SVM Support Vector Machine
TREMBL Translation of European Molecular Biology Laboratory nuclec 

sequence database

12



Abstract

A b s tr a c t

To understand the physiological role of proteins, a three-dimensional 

structure is a major asset. Given the expanding pool of sequences derived from 

genome sequencing projects, there is an increased demand to produce more 

accurate and effective comparative (homology) models of proteins. 

Comparative modelling exploits the concept that proteins with high sequence 

similarity adopt similar three-dimensional structures. The known protein 

structure can be used as a guide (or template) to predict the three-dimensional 

structure of the query protein (or target). The general accuracy of the model 

usually depends on the degree of similarity between the target-template 

sequences. The major limitation is that below approximately 30% sequence 

identity modelling becomes very difficult and errors in the sequence alignment 

become fatal. This would not prove to be a problem if most of the potential 

models existed at the higher percentage identity regions, but this is not the 

case. Secondary structure prediction can provide restraints to guide the model 

building process when an appropriate template cannot be found. The resulting 

models built with restraints were found to have lower RMSDs than those built 

without restraints, with more improvements seen in the region below 30% 

sequence identity. The accuracy of the starts of the helices was improved due 

to the ELEPHANT prediction algorithm, thus this increased the accuracy of 

some of the loops modelled. Various alignment protocols, including sequence 

and profile based, were assessed against structure based alignments. This 

revealed that profile and HMM methods outperformed sequence based 

methods, with the interface regions being more accurately aligned than the rest 

of the alignment, even with low sequence identity pairs. These alignments were 

then used in the comparative modelling protocol. The results suggested that the 

profile and HMM based methods could model the recognition region contacts 

more accurately than the sequence based methods, and the contacts could be 

modelled surprisingly accurately, even when the target-template pairs share 

modest similarity. This offered the potential for models to be built, using pairs 

stretching into the twilight zone, with modestly accurate interface areas even 

when the rest of the model may be deemed useless; providing predicted 

structures to extract functional information from.
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Introduction Chapter 1

1. In tr o d u c tio n
This project is focused on improving and assessing the prediction of 

protein tertiary structure from its amino acid sequence, primarily targeted at 

comparative modelling of amino acid sequences using template structures.

This introduction will cover the basics of protein structure and the main 

concepts of protein structure prediction will be introduced and discussed. This 

will include a brief overview of the main levels of protein structure, an insight 

into the importance of structure prediction and its context in the scientific 
community and a description of three-dimensional structure prediction methods 

focusing on comparative modelling. The results chapters will contain more 

information relevant to each project and the methods used, so alignment 

techniques, secondary structure prediction and MODELLER will not be 

discussed here.

1.1 THE LEVELS OF PROTEIN STRUCTURE
Proteins are the most versatile materials used by the cell to support 

biological activity. It is no surprise that so much effort is devoted not only to 

decoding genomes in terms of the identification and annotation of the encoded 

proteins, but also more importantly to understanding the functions of the 
proteins, their regulation and their interactions in the cell (Bolognesi & Smith, 

2006).

Proteins are polymers containing a main-chain of repeating peptides 

with a side-chain attached to each main-chain carbon. Natural proteins contain 

a basic repertoire of twenty amino acids. All of the twenty amino acids have in 

common a central, asymmetric ca rbon atom (Ca) to which are attached a 

hydrogen atom, an amino group (NH2), and a carboxyl group (COOH), the only 

exception being proline which does not have an amino group. Side-chains are 

attached to the asymmetric Ca atom in all amino acids except glycine, which 

has no side-chain group. The unique sequence of the side-chains on the 

peptide units gives each protein its individual characteristics. Natural proteins

17
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contain only L-isomers and the D-isomeric form is not seen. Proline is special 
because its side-chain is linked to the backbone by link closure. Amino acids 

are joined end to end during protein synthesis by the formation of peptide bonds 

when the carboxyl group of one amino acid condenses with the amino group of 

the next to eliminate water.

Protein structure exists in a hierarchical nature (Figure 1.1a and 1.1b). 

A set of primary chemical bonds joins the constituent amino acids together into 

what is termed the primary sequence or structure. The secondary structure is 

formed from regular twists and turns in the backbone into structures known as 

helices and strands. Hydrogen-bonding of the main-chain amides and carbonyl 

groups is responsible for these two major structural types. The next level is the 

tertiary structure of a single polypeptide protein chain which is the assembly and 

interactions of the helices and sheets into what is often termed a protein “fold”. 

For proteins composed of more than one subunit (more than one polypeptide 

chain) the overall assembly of the individual polypeptide monomers is termed 

the quaternary structure.

The hydrophobicity of an amino acid is a measure of the 

thermodynamic interaction between the side-chain and water. Hydrocarbon 

side-chains are electrically neutral and they interact unfavourably with water. 

This hydrophobic effect provides an important component of the driving force for 

protein folding, there is a tendency for the hydrophobic side-chains to sequester 

themselves in the interior of a protein away from contact with water, leaving 

polar residues on the surface of the protein. The accessible surface area of a 

protein is the area of molecular surface accessible to a water molecule 

(modelled as a sphere 1.4A in radius) and helps rationalise the hydrophobic 

contribution to the thermodynamics of protein folding and interactions.

18
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Figure 1.1a. The Different Levels of Protein Structure - A representation of the 1avg 
(Fuentes-Prior, et al., 1997) PDB structure. Shown at the centre (c) is the quaternary 
structure of all 4 domains of 1avg. The primary, linear amino acid sequence of Chain I 
(red) is (a) and the residue Lysine 10 of Chain I is shown (b). The secondary structure 
(d) of a helix (in pink) and sheet (in yellow) are displayed from chain H (green) and the 
tertiary structure of the domain from chain I is shown (e).
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Aniipanlltl

Figure 1.1b. Helix and Sheet Structure -  The structure of the alpha-helix (a) and the 
beta-sheet (b) can be seen. The alpha-helix has 3.6 amino acids per turn. All main 
chain amino and carboxyl groups are hydrogen bonded, and the R groups stick out 
from the structure in a spiral arrangement. If the amino termini are on the same end of 
each chain, the beta-sheet is termed parallel, and if the chains run in the opposite 
direction (amino termini on opposite ends), the sheet is termed antiparallel. Image 
accessed from <http://wiz2.pharm.wayne.edu/biochem/prot.html>.

Any possible conformation of the polypeptide chain of a protein places 

different sets of residues in proximity. The interactions of the amino acid side- 

chains with the main-chain backbone and with other solvents and ligands, 

determines the energy of the conformation. Proteins have evolved so that one

20
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Introduction Chapter 1

folding pattern of the chain produces a set of interactions that is significantly 

more energetically favourable than the others. This corresponds to the native 

state (Gto, 1976). It is this native structure that allows the protein to carry out its 

biochemical function (Floudas et a i , 2006). According to Anfinsen (1973) 

proteins are not assembled into their native structures by a biological process, 

but folding is a purely physical process that depends only on the specific amino 

acid sequence of the protein and the surrounding solvent. Anfinsen’s hypothesis 

implies that in principle protein structure can be predicted if a model of the free 

energy is available, and if the global minimum of this function can be identified. 

This idea defines the protein structure prediction problem well. Protein structure 

prediction remains utterly complex, since even short amino acid sequences can 

form an abundant number of geometric structures among which the free energy 

minimum has to be defined (Floudas et al.t 2006).

1.2 THE IMPORTANCE OF STUCTURE PREDICTION
The enormous increase in the availability of data brought about by large 

scale genomic projects is paralleled by an equally unprecedented increase in 

the expectations for new medical, pharmacological, environmental and 

biotechnological discoveries (Tramontano, 2003). Although the draft sequence 

of the human genome has been published, the role of the gene products it 

encodes is far from being fully understood. Being able to read the linear 

sequence is not directly related to understanding its meaning. Therefore, the 

attention of many biologists is now focusing on the functional analysis of 

genomes (Peitsch, 2003).

1.2.1 Sequence, Structure and Function
Acquiring the function of a protein is important since the function and 

the physiological role of the protein can provide the basis for the discovery of 

novel medicines and protein-based products with medical, industrial or 

commercial applications (Peitsch, 2003). Biological function can be defined at 

several different levels, but in order to interfere with the function for therapeutic 

or investigative purposes, it needs to be characterised at the molecular level to 

identify the precise role of the specific amino acids and chemical groups. The 

problem is further complicated by the fact that function rather than being an
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attribute of a single protein, is determined by the plethora of interactions that it 

establishes with other proteins and with its surrounding environment 

(Tramontano, 2003). Thus, a protein’s function is tightly linked to its three- 

dimensional structure, since this determines the spatial disposition of both the 

key chemical groups and the regions of the protein which can interact with 

partners. As residues located far apart in the primary sequence can be very 

close in space, and only a few residues are generally responsible for a protein’s 

function, insights into the three-dimensional structure of a protein can represent 

a key component of the functional analysis process. Consequently, an atomic 

level three-dimensional representation to assign roles to specific residues is a 

major asset, both for planning experiments and explaining observations 

(Peitsch, 2003).

It is widely assumed that a structural resemblance between proteins 

implies a functional similarity. It is also widely assumed that structural features 

are closely related to sequence composition. Although a protein with a given 

sequence may potentially exist in different conformations, the chances that two 

close sequences will fold into distinctly different structures are so small that they 

are often neglected in research practice (Krissinel, 2007). Structure based 

transfer of functional information is preferred over sequence based as the 

similarity in the structure is generally more conserved than the similarity in the 

amino acid sequence and the protein structure allows a more informative 

transfer of functional description than the sequence alone (Sanchez, et a/., 

2000).

Despite significant improvements in structure resolving methods, the 

gap between the number of known protein sequences and their resolved 

structures is rapidly increasing (Kazemian et a/, 2007). This is mainly due to the 

increase in genome sequencing projects currently being undertaken, producing 

large numbers of sequences. However, the experimental process of structure 

determination is still relatively slow, despite recent significant advances in the 

field (Westhead & Thornton, 1998). This means there is an evident demand for 

more structures to be solved, which is increasing with each new genome 

project.
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1.2.2 Structural Genomics
Structural genomics is a term that refers to high-throughput three- 

dimensional structure determination and analysis of biological macromolecules, 

which at this stage is primarily concerned with individual protein domains 

(Goldsmith-Fischman & Honig, 2003).

The ultimate aim of structural genomics is not to obtain the structures of 

all proteins, but to contribute to biology and medicine through functional 

annotation. Structural genomics focuses on delivering the st ructures of the 

complete protein repertoire of folds via X-ray crystallography and NMR 

experiments, so that all proteins are within homology-modelling range of one 

or more known experimental structures. Protein structure determination is an 

area of biology where both experimental and theoretical approaches 

complement each other (Sanchez, et a/., 2000). The major aims of structural 

genomics include (Watson et al., 2007):

■ High-throughput automation of protein production, structure 

determination and analysis;

■ Increased coverage of protein fold space and hence the number of 
protein sequences amenable to homology modelling methods;

■ Investigation of protein structure to elucidate function in health and 

disease;

■ Reduction of the cost of structure determination.

The re are several current structural genomics efforts, and this includes 

the PSI (the Protein Structure Initiative). The PSI started seven years ago, with 

the long-term goal of making three-dimensional structures easily available after 

DNA sequence determination. The pilot phase aimed to streamline structure 

determination methods. Now, in its second year of phase 2, the emphasis has 

shifted to high-throughput structure determination, with a strong focus on 

improved bioinformatics-guided target selection. These efforts are already 

projected to outstrip the number of unique structures determined in the pilot 

phase (PSI consortium, http://www.nigms.nih.gov/initiatives/PSI).
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Even though the efforts of the structural genomic projects are great, 

they will not be sufficient to determine the structures of all the proteins of 

interest. This is when protein structure prediction can be used. Structural 

genomics aims to solve the key structures representing all folds, thus structure 

prediction methods such as comparative modelling will be essential to 

determine the structures for the remaining homologous proteins.

1.2.3 Structure Prediction and Bioinformatics
Over time, evolution has produced families of proteins whose members 

share the same three-dimensional architecture and frequently have detectably 

similar amino acid sequences. This conservation allows a structural description 

of all proteins in a family to be made even when only the structure of a single 

member is known. It is possible after the structure is acquired to then infer 

function from homology. This means that if a protein of unknown structure is 

related to a protein of known structure, and the relationship is detectable and 

more than nominal (above 10% sequence identity), the known structure can be 

used as a guide for predicting the unknown structure. For this to be a very 

successful method an accurate prediction technique and an accurate 

experimentally determined model that represents a protein in each of the 

families is required. To obtain these representative structures the scientific 

community is determining a vast amount of structures; however the community 

is dependent on experimental protein structure elucidation. The usual 

approaches, both x-ray diffraction and NMR, are hampered by technical hurdles 

and limitations, and so prediction of structures is required (Peitsch, 2003).

In the life sciences, the sheer volume of raw data that is being 

generated from the genome sequencing projects in need of annotation is 

unprecedented. Computational biology is being called upon, now more than 
ever, to process these data and provide us with biochemical, physiological, and 

evolutionary context. Even though experimental high-throughput functional 

annotations techniques have advanced, the time and cost of determining the 

function of every single gene and gene product are prohibitive. Therefore, most 

of the functional annotation will be done with computational tools (Friedberg et 

a/., 2006). Bioinformaticians must work in close relation with experimental
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scientists that determine protein structures in the lab to improve the accurate 

prediction of protein structures using known structures as an ultimate guide.

1.3 STRUCTURE PREDICTION METHODS
The prediction of the three-dimensional structure of a protein when only 

the amino acid sequence is known has been a problem of major interest for 

many years. Approaches have ranged from ab initio methods that use physical 

and chemical principles to model a protein from its raw amino acid sequence, to 

homology methods that are dependant primarily on the information available in 

sequence and structural databases. Threading methods and comparative 

modelling methods lie between these two extremes and involve the 

identification of a structural template that most closely resembles the structure 

of the query protein (Al-Lazikani et al., 2001). Ab initio methods and threading 

will briefly be described before comparative modelling is introduced in greater 

detail later on.

1.3.1 Ab Initio Structure Prediction
The ‘Holy Grail’ of the protein modelling field has always been the 

construction of models of protein structures without the aid of a direct 

relationship to any experimentally known ones. The work of ab initio efforts is 

worthwhile for at least two reasons. Firstly, ‘pure’ structure prediction, even if 

only partially successful, provides a stringent test of our understanding of the 

principles of protein structure and energetics, and the role of folding pathways in 

attaining the functional conformation. Secondly, even when there is a database 

of structures representing all protein sequence families, ab initio techniques will 

still be required for modelling the differences between structures (Moult, 1999).

The native state of a protein represents the global free energy minimum 

that can be kinetically reached by the protein and, with rare exceptions, for 

example in chaperone-assisted folding (Feldman & Frydman (2000)), is solely 

determined by its amino acid sequence. The energetic terms that govern protein 
folding is not sufficiently understood to allow calculations of the minimum free 

energy structure for a given amino acid sequence. Ab initio methods carry out
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large-scale searches of conformational space for protein tertiary structures that 

are particularly low in free energy for the given amino acid sequence. The two 

key components of such methods are the procedure for efficiently carrying out 

the conformational search and the free energy function used for evaluating 

possible conformations. To allow rapid and efficient searching of conformational 

space, often only a subset of the atoms in the protein chain is represented 
explicitly; the potential functions must include terms that reflect the average 

effects of the omitted atoms and solvent molecules (Baker & Sali, 2001).

A particularly successful ab initio method is called Rosetta (Baker & 

Sali, 2001). Rosetta is based on the assumption that the distribution of 

conformations sampled for a given nine residue segment of the chain is 

reasonably well approximated by the sequence (and closely related sequences) 

in known protein structures. Fragment libraries for each three and nine residue 

segments of the chain are extracted from the protein structure database using a 

sequence profile-profile comparison method. The conformational space defined 

by these fragments is then searched using Monte Carlo procedure with an 

energy function that favours compact structures (Simons et al., 2001). This 

strategy resolves some of the problems with both the conformational search 

and the free energy function: the search is accelerated because the switching 

between different possible local structures can occur in a single step, and fewer 

demands are placed on the free energy function because the use of fragments 

of known structures ensures that the local interactions are close to optimal 

(Baker & Sali, 2001).

The precision needed in these calculations is not sufficient enough to 

discriminate between the energy of the native state and that of any other 

conformational states that the protein could assume. Leaving behind the idea of 

solving the problem on the basis of first principles, computational biology found 

other approaches based on the analysis of known protein structures (Peitsch, 

2002).
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1.3.2 Structure Prediction with Threading
While similar sequence implies similar structure, the converse is not 

necessarily true. In contrast, similar structures are often found for proteins for 

which no sequence similarity to any currently known protein structure can be 

detected. Fold recognition (or threading) methods are one class of structural 

modelling techniques that aim at predicting the three-dimensional folded 

structure for amino acid sequences for proteins which comparative modelling 

methods provide no reliable prediction (Floudas et al., 2006).

Threading is the prediction that two proteins with no significant pair wise 

sequence identity will have similar folds. That is, given a library of known 

structures, determining which of them shares a folding pattern with a query 

protein of known sequence but unknown structure. The optimal alignment of the 

sequence onto a structure is found and then the likelihood that the unknown 

sequence adopts each fold is assessed and scored, with the fold having the 

highest score being inferred as the structure that is the most similar to the 

native fold of the query protein. The results are a nomination of a known 

structure that has the same fold as the query protein, or a statement that no 

protein in the library has the same fold as the unknown query protein (Lesk, 

2002).

3D-PSSM (Bates et al., 2001) is a threading method designed to take a 

protein sequence and attempt to predict its three-dimensional structure and its 

probable function. The sequence of unknown structure is "threaded" onto each 

structure in a library of known protein structures and a score for compatibility is 

calculated in each case.

Skolnick and co-workers (Skolnick et al., 2004) developed an iterative 

approach that first aligns the target query protein and known structures in a 

database ignoring pair-wise residue interactions. In subsequent alignments, 

information from previous alignments is then used to evaluate pair-wise 

interaction energies. By identifying structurally similar regions in multiple 

template alignments, accurate regions of structure prediction can be 

distinguished from less accurate ones. They found that accurate fragments can
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be identified even if no template is convincing as a whole (Floudas et al., 2006). 

This introduces the concept of fragment assembly.

Fragment assembly methods do not compare a target sequence to a 

known protein structure, they compare fragments of a target to fragments of 
known template structures obtained from the PDB (Protein Data Bank). Once 

appropriate fragments have been identified, they are assembled into a complete 

structure, often with the aid of scoring functions and optimisation algorithms 

(Fioudas et al., 2006). FRAGFOLD (Jones & McGuffin, 2003) is based on the 

assembly of super-secondary structural fragments taken from highly resolved 

protein structures using a simulated annealing algorithm. In their new version of 

FRAGFOLD they attempt to greatly narrow the search of conformational space 

by pre-selecting super-secondary structural fragments from a library of highly 

resolved protein structures. FRAGFOLD selects favourable supersecondary 

structures of different lengths whereas ROSETTA () uses residues of nine 

amino acids in length. The generation of structures from these fragments is 

slightly different too.

1.3.3 Structure Prediction with Comparative Modelling
Comparative modelling is the method of choice for protein structure 

prediction, when the required known structural data is available, not only 

because of its higher accuracy compared to alternative methods, but also 

because it is possible to estimate a priori for the quality of the models that are 

produced, thereby allowing the usefulness of a model in a given functional role 

to be assessed beforehand (Cozzetto & Tramontano, 2005). Comparative 

modelling has already become one of the most effective computational 

approaches in facilitating structural/functional characterisation of many protein- 

coding sequences across genomes (Venclovas & Margelevicius, 2003). 

Approximately one half of all known sequences have at least one domain that is 

detectably related to at least one protein of known structure, and comparative 

modelling has the possibility to determine more structures than have been 

experimentally determined (Fiser & Sali, 2001). Comparative modelling aids 

functional classification of proteins without the use of experimentally determined 

structures and can reliably predict the three-dimensional structure of a protein
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with accuracy comparable to a low resolution experimentally determined 

structure. Errors are not a problem as such, since some aspects of function can 

be predicted from only coarse structural features of a model (Marti-Renom et 

al., 2001).

Comparative modelling is also known as homology modelling and is 

based on the idea that if proteins display a high degree of similarity between 

their amino acid sequences they tend to adopt similar three-dimensional folds. 

Comparative modelling is the prediction of the three-dimensional structure of a 

protein from the known structure of one or more related proteins where the 

known (template) and unknown (target) proteins have significant and detectable 

pair wise sequence identity, usually above 25%. The assumption is that the 

unknown protein and the known protein(s) have nearly identical backbone 

structures in the aligned regions. Thus, the task is to place the side chains of 

the target correctly into the backbone of the template(s) (Rost & O’Donoghue, 

1997). The results are a complete coordinate set for main chain and side chains 

intended to be a high quality model of the structure. The resulting models built 

using proteins with between 70% and 90% sequence identity are modestly 

accurate (comparable to medium resolution NMR structures and low resolution 

crystal structures). Th e accuracy of the model depends on the degree of 

similarity between the target and template sequence(s). The major limitation is 

that below 40% to 50% sequence identity modelling becomes very difficult and 

errors in the sequence alignment become fatal. Although comparative modelling 

is far from yielding perfect structures it is still seen as the most reliable method 

at present for three-dimensional prediction of proteins using homology.

The resulting models can be classified according to their correctness and 

accuracy, which in turn will impact their applicability and usefulness ( Lesk, 

2002). Figure 1.2 shows the applications of the models produced at different 

levels of accuracy. Within the low level accuracy range, models which are built 

using sequences sharing less than 30% sequence identity sometimes have less 

than 50% of their Ca atoms within 3.5A of their true positions. In the mid 

accuracy range models have approximately 30-50% sequence identity 

corresponding to 85% of the Ca atoms being modelled within 3.5A of their
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correct positions. The high accuracy range of models are based on target- 

template pairs with greater than 50% sequence identity, the average accuracy 

of these models will approach low resolution X-ray structures (3 A resolution) or 

medium resolution NMR structures.
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Figure 1.2. Applicability and Accuracy of Comparative Models (taken from 
Sanchez et al., 2000). The accuracies, and thus, applications for the comparative 
models produced are usually dependent on the sequence percentage identities 
between targets and templates.

There are five main steps involved in comparative modelling (Figure 1.3).
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Figure 1.3. The Five Main Steps in Comparative Modelling. Above five main steps 
in comparative modelling are listed these steps will be described in detail within this 
Chapter. There is the option to iterate over the model building process until a 
satisfactory model has been built.
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1.3.3.1 Fold Assignment
The first step in model building is finding related known protein 

structures for as many domains in the modelled query sequence of the 

unknown structure as possible. A search can be made of a structure database 

with the target sequence as the query. Alternatively, a search can be made of a 

sequence database. A useful and popular method that uses the target 

sequence to independently search the database using a pair wise sequence- 

sequence comparison is BLAST (Basic Local Alignment Search Tool) (Altschul 

et al., 1990). PSI-BLAST (Position Specific Iterative -  BLAST) relies on multiple 

sequence comparisons to improve the sensitivity of the search, usually finding 

more distant homologs than BLAST. Threading methods can be used when 

there are no sequences clearly related to the modelling target. These methods 

rely on pair-wise comparison of a protein sequence and a protein of known 

structure. The target sequence is threaded through a library of 3D folds (Marti- 

Renom et al., 2000).

1.3.3.2 Template Selection

The selection of one or more templates is based on several factors. One 

factor is the environment of the target and the template, for instance, some 

calcium-binding proteins undergo large conformational changes when bound to 

calcium. If a calcium-free template is used to model the calcium-bound state of 

the target, it is likely that the model will be incorrect irrespective of the target- 

template similarity or the accuracy of the template structure and the quality of 

the experimentally determined structure. The term environment is used in a 

broad sense and includes alt factors that determine protein structure, except its 

sequence, for example, solvent, ligands and pH. The quality of the experimental 

template structure is another important factor. The resolution and the R-factor of 

a crystallographic structure are indicative of its accuracy. The priorities of the 

criteria for template selection depend upon the purpose of the model. For 

instance, if a protein-ligand model is to be constructed, the template should 

contain a similar ligand, this is more important than the resolution. However, if it 

is for the analysis of the geometry of the active site of an enzyme the high 

resolution template should be used first (Fiser et al., 2001). The quality of the
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final model increases with the overall sequence similarity between the template 

and th e target, and decreases with the number and length of gaps in the 

alignment. A single target can be built based on the structure of several 

templates.The program MODELLER allows this in two ways, multiple template 

structures may be aligned with different domains of the target with little overlap, 

and the template structures may be aligned with the same part of the target. It is 

possible to generate and evaluate all the possible models and score them. The 

construction of a multiple sequence alignment and a phylogenetic tree can help 

in selecting a template (Sanchez & Sali, 1997).

Currently, the most widely used template selection methods involve the 

representation of templates as profiles. Profiles are a more accurate 

representation of the variability that can occur at individual positions of a protein 

sequence. This results in more sensitive detection of remote homologs (Petrey 

& Honig, 2005).

In theory, due to the greater coverage of conformational space, using 

more than one template should generate a model that is more accurate than 

any of the individual templates. However, CASP4 showed that only very 

occasionally were multi-template models more accurate than single-template 

models. The reasons for this are the choice of templates and sequence 

alignment errors (Tramontano e/a/., 2001). Contreras-Moreira, Paul W. Fitzjohn 

and Paul A. Bates (2003) produced a study on template selection and whether 

multiple (up to five templates) or single (based on the highest percentage 

identity to the target) should be used. They applied techniques of a genetic 

algorithm, with crossover and mutation to select the different parts of the 

templates. It was concluded that current methodology is not taking full 

advantage of the possibility of using several templates to build comparative 

models, however in general, multiple-template models are no better than their 

corresponding ideal single-template models and can be considerably worse 

(Figure 1.4). Only in a marginal proportion of cases were multiple-template 

models found to improve over the ideal single-template model showing no 

preference for any region in the sequence identity range.
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Figure 1.4. Single Versus Multiple Template Performance for Comparative 
Modelling (Contreras-Moreira et al., 2003). Models were built using between one and 
five templates from the same SCOP family, with sequence identities ranging from 80 -  
100%, 50-100%  and 20-100% (X-axis). The Y-axis corresponds to the total number of 
models in each bin. Multiple-template models are compared to the best single-template 
model.

1.3.3.3 Target-Template Alignment
The results from the database search contain high and low regions of 

sequence similarity between the query and the database hits. The resulting 

alignment from the fold assignment method is usually not the optimal alignment 

for comparative modelling; searching methods are usually tuned for detecting 

remote relationships, not for optimal alignments. The correct alignment is the 

one in which the structurally equivalent positions are correctly aligned. This 

means that once the templates have been selected, the target sequence and 
template structure will have to be realigned using specialised methods such as 

MUSCLE (Edgar, 2004), to obtain a structurally relevant alignment (Marti- 

Renom et al., 2002). More information on this step in the comparative modelling 

process can be found in the introduction section of Chapter 4.

1.3.3.4 Model Building and Side Chain Modelling
After the target-template alignment has been completed, the three- 

dimensional model can be built. A variety of methods can be used to construct a
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model for the target protein. The first and most widely used method is still rigid 
body assembly (Blundell et al., 1987; Greer, 1990). This method assembles a 

model from a smaller number of rigid bodies obtained from aligned protein 

structures. The second technique is modelling by segment matching (Jones & 

Thirup, 1986; Levitt, 1992). This technique relies on the approximate positions 

of conserved atoms in the templates. The basis for this is models can be 

constructed using a subset of atomic positions from template structures as 

“guiding” positions. The third method is the satisfaction of spatial restraints of 

the target protein and local molecular geometry. This technique is used by 

MODELLER. Restraints are obtained by assuming that the corresponding 

distances and angles between aligned residues in the template and the target 

are similar. The model is then derived by minimising the violations of all the 

restraints (Marti-Renom et al., 2003). More information on MODELLER can be 

found in chapter 2, section 2.17.

Other model building programs include SwissModel (Peitsch & 

Jongeneel, 1993), COMPOSER (Sutcliffe et al., 1987), 3D-JIGSAW (Bates et 

al., 2001), SegMod (Levitt, 1992), nest (Petrey et al., 2003), Builder (Koehl & 

Delarue, 1994), and SCWRL (Bower et al., 1997).

The accuracy of the various model building techniques are relatively 

similar when used optimally (Marti-Renom et a/., 2002). It is important that the 

model building method allows a degree of flexibility and automation to enable 

easy recalculation of a model when a change is made in the alignment; it should 

be easy to calculate models based on several templates; and the method 

should provide tools to incorporate prior knowledge about the target (Marti- 

Renom et al., 2000).

In a given fold family, structural variability is a result of substitutions, 

insertions, and deletions of residues during the evolution of members of the 

family. Such changes frequently correspond to exposed loop regions that 

connect elements of secondary structure in the protein fold. Thus, loops often 

determine the functional specificity of a given protein framework, and can 

contribute to active and binding sites. Consequently the modelling of loops is a
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major factor in determining the usefulness of comparative models in studying 

interactions between the protein and its ligands (Marti-Renom et aL, 2002). See 

Chapter 5, section 5.2 for more information on loop modelling.

Side-chain conformations can be predicted either from similar structures 

or from steric or energetic considerations. Two effects on side-chain 

conformation need to be considered. The first is the coupling between the main- 

chain and side chains, and the second is the trends in the distributions of the 

side-chain dihedral angles. Correlations between side-chain dihedral angle 

probabilities and backbone values are not dependent upon the secondary 

structure; rotamers (Summers & Karplus, 1989; Dunbrack & Karplus, 1993) can 

vary within the same secondary structure. As the sequence identity falls below 

30% there are more variable conformations of side-chain packing, even though 

the fold is still the same, hence a backbone with less than 30% sequence 

identity to the sequence being modelled is not sufficient to produce the correct 

packing of buried side-chains (Marti-Renom et al., 2000).

Programs that complete modelling by rigid body assembly are 30- 

JIGSAW (Bates et al., 2001) and SWISS-MODEL (Schwede et al., 2004). 

SWISS-MODEL is a fully automated web server 

(http://swissmodel.expasy.0rg//SWISS-MODEL.html). The rigid body assembly 

approach is where a model is assembled from a small number of rigid bodies 

(targe protein structure segments) obtained from the core of the aligned regions. 

The assembly involves fitting the rigid bodies onto the framework and rebuilding 

the non-conserved parts, i.e., loops and side chains. The main difference 

between the rigid body assembly programs lies in how side chains and loops 

are built.

1.3.3.5 Evaluating Models
As the similarity between the target and template sequences 

decreases, the errors that accumulate in the final model increase. Errors in 

comparative models can be divided into five main categories (Marti-Renom et 

a/., 2000):
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• Errors in side-chain packing. As the sequences diverge, the packing of 

the side chains in the protein core changes. Side-chain errors are critical 

if they occur in the key regions of a protein.

• Distortions and shifts in correctly aligned regions. Even if the fold 

stays the same between target and template, the main-chain 

conformation can be different. Therefore, it is possible that in some 

correctly aligned regions of the model, the template is locally different 

from the target, resulting in errors in that region.

• Errors in regions without a template. Segments of the target sequence 

that have no equivalent region in the template structure (i.e., insertions or 

loops) are the most difficult regions to model.

• Errors due to misalignments. The largest source of errors in modelling 

is misalignments, especially when the target-template sequence identity 

falls below 30%.

• Incorrect template. When distantly related templates are used selecting 

the correct template can prove a problem. Distinguishing between a 

model based on an incorrect template and a model based on an incorrect 

alignment with a correct template is difficult.

One of the criticisms that comparative modelling receives is that the final 

model is usually closer to the template used than the target-experimental 

structure.

The model can be evaluated as a whole or as individual regions. The first 

step in model evaluation is to see if the model has the correct fold. If the correct 

template has been chosen and the template has been aligned accurately with 

the target sequence then the model will usually have the right fold. To assess 

whether the fold prediction is likely to be right the target will usually share high 

sequence similarity with the closest template (Sanchez & Sali, 1998).
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After the fold has been proven correct, a more detailed evaluation of the 

overall model accuracy can be obtained based on the similarity between the 

target and template sequences. Above 30% sequence identity the similarity 

between the target and the template, due to the relationship between structural 

and sequence similarity of two proteins, is a relatively good predictor of the 
expected accuracy. In addition to target-template sequence identity, the 

environment and the target-template alignment can strongly influence the 

accuracy of the model (Sanchez & Sali, 1998).

Two types of evaluation can be carried out, internal and external. Internal 

evaluation consists of self-consistency checks to see whether a model satisfies 

the restraints used to calculate it. It tests whether the models have good 

stereochemistry; useful programs that perform this type of evaluation are 

p ro c h e c k  (Laskowski et al., 1998) and WHATCHECK {Hooft et al., 1996). The 

features checked by these programs include bond lengths, bond angles, 

peptide bond and side-chain ring planarities, chirality, main-chain and side- 

chain torsion angles, and clashes between non-bonded pairs of atoms. External 

evaluation relies on information that was not used in the calculation of the 

model. When using a model of less than 30% sequence identity to the template 

the first purpose of the external evaluation is to see if the correct template was 

used. A way to predict if the template chosen is the correct one is to compare 

the Z-score of the model (a measure of the compatibility between the sequence 

and its structure which indicates how far and in what direction, that item 

deviates from its distribution's mean). Another external evaluation method is the 

prediction of unreliable regions in the model -  the “pseudo energy" profile of a 

model, such as that produced by p r o s a l l  (Sippl, 1993). These spatial features 

have been derived from high resolution protein structures and large deviations 

from these are usually interpreted as being a good indicator for errors in the 

model. The features include packing, formation of a hydrophobic core, residue 

and atomic solvent accessibilities, spatial distribution of charged groups, 

distribution of atom-atom distances, atomic volumes, and main-chain hydrogen 

bonding (Sanchez & Sali, 2000).
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One of the main checks of model quality is to calculate the RMSD of the 

model. The RMSD is calculated between the alpha-carbons of the two protein 

structures unless otherwise stated. The RMSD is the root mean square 

deviation of the superposed atoms. It estimates the mean square distance 

between the equivalent alpha-carbons of the two superposed structures. The 

RMSD is a well established quantity to determine whether the model will be 

accurate enough to be used in applications such as protein-protein docking 

(Prasad et al., 2003).

The aim of these evaluation techniques is to determine whether or not 

the model is acceptable. If it is not acceptable, that is if the current model 

violates some restraints, fails the profile tests, or simply does not appear 

satisfactory, these evaluations should help to re-align the target sequence and 

the templates for the next cycle of modelling.

1.3.3.6 Areas for Improvement

It has been noted that the areas where most of the errors in 

comparative modelling accumulate are when selecting the appropriate 

templates and obtaining the structurally relevant alignment of the template to 

the target (Figure 2.4). The twilight zone, and below, contain most of the errors 

in comparative modelling. This sequence similarity range will be targeted in this 

project in the hope to identify methods that may improve modelling in this 

difficult area.

39



Introduction Chapter 1

100

°  60-

A Template - Target 
#  Model -Target

[3 T emplate - Target dfference 
H  Alignment error

100
% Sequence identity

Figure 1.5. Errors in Comparative Modelling (Sanchez et al., 2000a). The dotted 
line shows the actual experimentally determined structures and the solid line shows the 
modelled structures. The dark grey areas show the alignment errors and the light grey 
areas show errors due to template selection.

1.4 OVERVIEW
The work presented in this Thesis can be divided into three main areas 

all concerned with improving the process of comparative modelling in the 

twilight zone. Numerous programs and databases were used throughout this 

project and details can be found in Chapter 2. The first investigation (Chapter 3) 

includes insights into the improvement of the modelling of alpha-helices, in 

particular the N-termini of alpha-helices. This is aimed at improving the model 

building step of comparative modelling. Results suggest using the predicted 

secondary structure of the target improved the modelling of proteins within this 

non-trivial modelling area. Further experiments were completed for the target- 

template alignment step using peptidases as a test case. Chapter 4 evaluates 

different alignment protocols with respect to the overall alignment as well as 

evaluating residues at the interface between a protease and its inhibitor, 

concentrating on the results contained within the twilight zone. It was concluded 

that there are advantages of using some methods over others and that the 

majority of the alignment techniques could align the interface residues more 

accurately than the rest of the protein. These findings were then implemented in 

Chapter 5 in the model building step of comparative modelling. The conclusions 

drawn resulted in confirmation of certain alignment methods having increased

40



Introduction Chapter 1

alignment accuracy over other methods. The interface was more accurately 

modelled in the lower percentage identity areas when the contacts at these 

interfaces were tested. An example of a peptidase alignment pair and model is 

also presented in Chapter 5 to enhance understating of the results found in 

Chapters 4 and 5.
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2. G en er a l  R eso u r c es  a n d  Da ta b a s e s

A plethora of databases can be found that contain a wealth of biological 

sequence and structural information. The main databases and programs used 

within this thesis are described below. For a more detailed description about the 

implementation of the databases and programs please refer to the methods and 

materials section of each results chapter.

2.1 SEQUENCE DATABASE - MEROPS
MEROPS provided the sequence database of peptidases (28,445 

peptidases) for Chapter 4. MEROPS has been in existence since 1996 and can 

be found at http://merops.sanger.ac.uK/. The MEROPS database provides a 

system of classification for protein functional groups which can be developed 

and used as an organisational framework around which to assemble a variety of 

related information. Most enzymes are named and classified on the basis of the 

enzyme reaction they catalyse but this has not proved possible for peptidases, 

because the specificities of enzymes hydrolysing proteins are almost impossible 

to determine rigorously or describe in a simple name. Trivial names have been 

used for most proteolytic enzymes but these can lead to confusion (Rawlings & 

Barrett, 1999). Thus the MEROPS database was developed. MEROPS 

(Rawlings et al, 2006) is a protein resource for information on peptidases (also 

termed proteases, proteinases and proteolytic enzymes) and their inhibitors. 

Around 3,000 individual peptidases and inhibitors are included in the database 

(Table 2.1). Information is assigned to each protein ranging from the 

peptidases’ classification to literature references.
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Catalytic
Type

Sequences Identifiers Identifiers with 
EC Numbers

Identifiers with 
PDB entries

Aspartic 2915 191 31 36
Cysteine 8316 530 53 84
Glutamic 12 5 2 1
Metallo 15611 633 127 88
Serine 18812 880 112 152
Threonine 1744 64 21 22
Unknown 1560 22

Grand Total 48970 2325 346 383

Inhibitors 4745 559 100

Table 2.1. Total Numbers for Catalytic Types. Numbers for the different types of 
peptidases and peptidase inhibitors in the MEROPS database, release 7.60. There are 
a total of 184 peptidase families and 50 peptidase clans and 52 inhibitor families and 
33 inhibitor clans.

The three useful methods of grouping peptidases currently implemented 

in the MEROPS database are:

■ by the chemical mechanism of catalysis

■ by the details of the reaction catalysed

■ by molecular structure and homology

Peptidases can be grouped by the chemical mechanism of catalysis 

and can be described as of serine, cysteine, threonine, aspartic, glutamic, or 

metallo catalytic type. The names of clans and families in MEROPS are built on 

the letters S, C, T, A, G, M and U (unknown) that stand for the catalytic type. 

One advantage of this classification system is that every serine peptidase 

contains a serine residue that acts as the nucleophile at the heart of the 

catalytic site, and as a result many are affected by generic inhibitors of serine 

peptidases.

Peptidases can also be grouped by the reaction type they catalyse. 

Different peptidases catalyse the hydrolysis of different peptide bonds, showing 

selectivity for the bonds they will hydrolyse. One form of selectivity is for a bond 

at a particular position in the polypeptide chain of the substrate molecule, on 

this basis they can be classified into groups such as endopeptidases, omega-
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peptidases, exopeptidases, aminopeptidases, carboxypeptidases, dipeptidyl- 

peptidases, tripeptidyl-peptidases, peptidyl-dipeptidases and dipeptidases. They 

provide an essential part of the description of the activity of any peptidase since 

the classification of enzymes in the EC list, the Nomenclature Committee of 

IUBMB, is classified by the reaction catalysed.

Peptidases can be grouped by molecular structure and homology. This 

is the newest method for catalysing peptidases since it depends on the 

availability of data for amino acid sequences and three-dimensional structures 

in larger quantities than previously held. Rawlings and Barrett (1993) described 

a system in which individual peptidases were assigned to families and the 

families were grouped into clans. This scheme was developed to provide the 

structure of the MEROPS database and has been extended to include the 

proteins that inhibit peptidases (Rawlings et al, 2004).

The MEROPS database classifies its contents using hierarchical, 

structure-based schemes. Each peptidase is assigned to a Family (each family 

is built around a ‘type example’) on the basis of statistically significant 

similarities in amino acid sequence to at least one other member of the family, 

and the relationship exists in the peptidase unit that is most directly responsible 

for catalytic activity. This is necessary because some peptidases are chimeric 

proteins and thus could potentially contain a catalytic domain related to another 

in a different family. The peptidase unit is generally a contiguous sequence of 

about 200 amino acids. Some families are divided into subfamilies because 

there is evidence of a very ancient divergence within the family. Families are 

grouped together into a clan if they are thought to have evolutionary diverged 

from a single peptidase origin, having similar tertiary folds, but diverged so far 

that their relationship can no longer be proved through the comparison of their 

primary structures. The peptidases in a clan have similar protein folds and it 

contains the whole of an evolutionary tree: the peptidases in a clan seem to be 

unrelated to those in any other clan. A non-redundant library of protein 

sequences of the peptidase units and inhibitor units of all the peptidases and 

peptidase inhibitors that are included in MEROPS was available for download. 

This "pepunit.lib” file formed the main peptidase dataset for the alignment
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chapter (Chapter 4). MEROPS version 7.30 released on the 22/12/2005 was 

the current version at the time of use.

2.2 STRUCTURAL DATABASES
The structural databases represented “gold standards” for this thesis 

and provided high resolution structures to be used in the modelling protocol.

2.2.1 PISCES
PISCES (Wang & Dunbrack, 2003) is a protein culling server and can 

be found at http://dunbrack.fccc.edu/PISCES.php. Some important features of 

this service are as follows:

■ Sequence identities for PDB sequences are determined using PSI-BLAST 

against a non-redundant database (3 rounds, -h value of 0.0001) to create a 

position-specific substitution matrix which is then used to search the PDB to 

obtain alignments of all PDB sequences against the rest of the PDB.

■ PISCES’ alignments are therefore local, so that two proteins that share a 

common domain with sequence identity above a threshold will not be 

included in the output lists.

■ PISCES can also provide meaningful results at low sequence identity (15- 

30%).

■ PDB sequences, experiment type (X-ray, NMR and so on), resolutions and 

R-factors are obtained from the PDB’s Data Uniformity Site. These fields 

have been curated by the RCSB to establish uniform representation of all 

structure data from the 1000s of legacy files from the Brookhaven PDB.

■ Non-PDB sequences are culled with sequence identities from PSI-BLAST.

CullPDB and PDBaanr were obtained from PISCES.

2.2.1.1 PDBaanr
Only non-redundant sequences across all PDB files have unique entries 

in PDBaanr (Wang & Dunbrack, 2003), and the redundant chain identities from 

all other PDB files are added at the end of the title of the representative chain
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entries. Representative chains are selected based on the highest resolution 

structure available and then the best R-values. Non-X-ray structures are 

considered after X-ray structures. This set represents the whole of the PDB with 

known structures (possible templates). I n this project the query sequences 

(targets) would be used to search against this PDBaanr dataset. The PDBaanr 

was used instead of the entire PDB database to reduce redundancy and 

provide good quality structures.

2.2.1.2 cullPDB
CullPDB (Wang & Dunbrack, 2003) is a subset of the PDBaanr dataset 

and contains sequences sharing less than 20% sequence identity to another 

sequence within the subset, sequences that have below 2.0A resolution (if it 

has been determined by X-Ray Crystallography), and sequences that have a R- 

factor below 0.25. This set represents the possible targets. In a real world 

situation they would be of unknown structure, but when training they are 

required to have known structures. CullPDB uses BLAST to produce alignments 

so the sequence identities are based on local alignments. Culled lists that pass 

the sequence percentage identity cut-off are sorted according to resolution from 

best to worst. Structures with the same resolution are then sorted according to 

R-factor.

2.2.2 ASTRAL Compendium
ASTRAL (Chandonia et al, 2002) is partially derived from, and 

augments the SCOP database of protein domains. ASTRAL contains structures 

derived using X-ray crystallography, excluding peptides, it provides subsets of 

selected representative domains created using different thresholds and 

measures of similarity. To choose the highest quality representatives for these 

subsets, Summary PDB ASTRAL Check Index (SPACI) scores are used to 

provide a first order guide to resolution, R-factor and stereochemical accuracy 

of each determined structure.
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Version 1.67 of the ASTRAL SCOP genetic domain sequences was 

used for the Chapter 4 (the Alignment Chapter) and provided a representation 

of all PDB structures.

2.3 SEQUENCE DATABASE SEARCHING
To acquire target-template pairs to use in chapter 3 and chapter 4/5, 

BLAST and PSI-BLAST were implemented. These sequence-based searching 

methods were also used to provide sequence alignments for Chapter 4 and 

Chapter 5.

2.3.1 BLAST
Due to the vast amount of information contained within the different 

nucleic acid and protein databases a fast, qualitative and sensitive method to 

search and locate homologous sequences is needed. BLAST (Altschul et al 

1990, 1997) is one of the most common and widely used algorithms to complete 

this search. BLAST is a heuristic (uses shortcuts to perform the search faster 

and the solution is not always the optimal answer) that attempts to optimise a 

specific similarity measure and performs local alignments, providing a service 

which searches a database for sequences similar to a submitted query 

sequence. It checks each entry in the database independently against a query 

sequence (pair-wise sequence searching based on the Smith-Waterman local 

alignment algorithm (Smith & Waterman, 1981)). It looks for well-matching local 

regions, then using a substitution matrix and allowing no gaps (initially no gaps 

were introduced), it identifies short matching contiguous regions between the 

database and the query sequence, which are extended as much as possible. 

BLAST uses statistical theory to produce a bit score and expectation value (E- 

value) for each alignment pair. The bit score gives an indication of how good the 

alignment is; the higher the score, the better the alignment. In general terms, 

this score is calculated from a formula that takes into account the alignment of 

similar or identical residues, as well as any gaps introduced. A key element in 

this calculation is the ‘substitution matrix’, which assigns a score for aligning any 

possible pair of residues. The BLOSUM62 matrix is the default for most BLAST 

programs. Bit scores are normalised. The E-value (equation 2.1) gives an
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indication of the statistical significance of a given pair-wise alignment and 

reflects the size of the database and the scoring system used. The lower the E- 

value, the more significant the hit is.

E = Kmn

Equation 2.1. E-value. This would be the E-value for the score S of the local alignment 

in BLAST with sequence lengths m and n. The statistics of high scoring pairs are 

characterised by two parameters, K and lambda, which can be thought of as natural 

scales for the search space size and the scoring system respectively (Altschul et al., 

1990).

2.3.2 PSI-BLAST
In many cases PSI-BLAST (Altschul et al, 1997) is much more sensitive 

to weak but biologically relevant sequence similarities than the standard BLAST 

algorithm. Position specific iterative BLAST (PSI-BLAST) refers to a feature of 

BLAST 2.0 in which a profile (or position specific scoring matrix, PSSM) is 

constructed (automatically) from a multiple alignment of the highest scoring hits 

in an initial BLAST search. The PSSM is generated by calculating position- 

specific scores for each position in the alignment. Highly conserved positions 

receive high scores and weakly conserved positions receive scores near zero. 

The profile is used to perform a second (and more if required) BLAST search 

and the results of each ‘iteration’ used to refine the profile. This iterative 

searching strategy results in increased sensitivity.

2.4 SEQUENCE CLUSTERING WITH BLASTCLUST
In order to remove some of the redundancy within the selected 

databases used, the BLASTCLUST (Altschul et al, 1997) program was obtained 

from the main BLAST suite of programs and implemented locally.
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BLASTCLUST automatically and systematically clusters protein or DNA 

sequences based on pair-wise matches found using the BLAST algorithm. 

BLASTCLUST finds pairs of sequences that have statistically significant 

matches and clusters them using single-linkage clustering (which puts a 

sequence into a cluster if the sequence is a neighbour to at least one sequence 

in the cluster). BLASTCLUST uses the default values for BLAST: matrix 

BLOSUM62; gap opening penalty 11; gap extension penalty 1; no low- 

complexity filtering. Taking in a database formatted in FASTA style, it outputs a 

cluster of sequence identities, sorted from the largest to the smallest cluster, 

and are sorted from the longest to the shortest sequence within each cluster.

2.5 ASSIGNING SECONDARY STRUCTURE USING DSSP
SSTRUC (Smith & Thornton, 1989) is an implementation of the DSSP 

(Kabsch & Sander, 1983b) method designed to replace DSSP and is used for 

determination of amino acid secondary structure. DSSP assigns the secondary 

structure to a protein sequence (by looking at the hydrogen bonding patterns 

indicative to secondary structure states), geometrical features and solvent 

exposure are given in the atomic coordinates in PDB format, in 8 states:

H - Alpha Helix

B - Isolated Beta Bridge

E - Extended Strand

G - 3io helix

I  - n helix

T - Hydrogen Bonded Turn

S - Bend

C - Coil

This can be converted into 3 states for ease of comparison. The CASP 

states are: H (H G I), E (E B) and C (C T S).

SSTRUC gives the secondary structure assignment, which is seen as 

the correct assignment since it is taken from the PDB files of the experimentally
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determined structures. The resulting output consists of: main-chain hydrogen 

bonding; phi, psi and chi angles; disulphide bonds and Ca-Ca distances.

2.6 PREDICTING SECONDARY STRUCTURE
The protein secondary structure prediction programs used in Chapter 3 

are JPRED (Cuff et a/., 1998) and ELEPHANT (Wilson et al, 2004).

2.6.1 JPRED
JPRED (http://www.compbio.dundee.ac.uk/~www-jpred/) is a web 

server that takes as input a protein sequence or a multiple alignment of protein 

sequences and from these predicts the secondary structure using a neural 
network called JNET. The application of multiple sequence alignment profiles is 

used to improve protein secondary structure prediction. The prediction is the 

definition of each residue into either: alpha-helix, beta-sheet, or random coil 

secondary structures. The server is the result of a large scale comparative 

analysis of secondary structure prediction algorithms (Cuff et al, 1998). More 

information on JPRED can be found in Chapter 3.

2.6.2 ELEPHANT
ELEPHANT (Wilson et al, 2004) has been designed to work primarily on 

secondary structures predicted by JPRED or PHD. It uses empirical and 

database derived data to improve the prediction of the beginning of alpha- 

helical regions. The start positions of all predicted helices are analysed by 

considering alternative start positions up to four positions either side of the 

original predicted start position. Each potential start position is represented as 

the sum of the pseudo-free energies (known as the cumulative pseudo-free 

energy, CpFE) for residues that correspond to the N-cap, N1, N2 and N3 

residues (where N1 is the first residue in a helical conformation) as well as 

positional weighting term. Pseudo-free energies are derived from global 

propensities by transforming them using the Boltzmann equation. Again, more 

information can be found in Chapter 3.
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2.7 ASSIGNING FOLDS USING SCOP
The SCOP (Lo Conte et al, 2002) database provides a manually 

curated set of domains from all PDB entries, classified in a hierarchy indicating 
different levels of structural and evolutionary relationships between the 

domains. A domain is an evolutionary unit, in the sense that it is either observed 

in isolation in nature, or in more than one context in multi-domain proteins. A 

SCOP domain may include fragments from different PDB chains. In most cases 

this appears to be the product of a single gene. Protein domains in SCOP 

(Table 2.2) are grouped into species and hierarchically classified into families, 

superfamilies, folds, and classes. Families have clear evolutionary relationships, 

superfamilies have common evolutionary origin and folds share majority 

structural similarity (Suhrer et al, 2007).

Class Number of 
Folds

Number of 
Superfamilies

Number of 
Families

All alpha proteins 179 299 480
All beta proteins 126 248 462
Alpha and beta proteins (a/b) 121 199 542
Alpha and beta proteins (a+b) 234 349 567
Multi-domain proteins 38 38 53
Membrane and cell surface proteins 36 66 73
Small proteins 66 95 150
Total 800 1294 2327

Table 2.2. Total Numbers for the SCOP Database. Numbers for the classes in the 
SCOP database, release 1.65, August 2003. There are a total of 20,619 PDB entries and 
54,745 domains.

Another major structural database is that of CATH (Orengo et aL, 1997). One of 

the main differences between CATH and SCOP is in the way they define the domain 

units. In CATH all of the classification is done on individual domains, whereas in SCOP 

sometimes it is organised by individual domains and other times by whole multi-domain 

proteins.

2.8 ACCESSIBILITY CALCULATIONS WITH NACCESS
NACCESS (S.J. Hubbard, personal communication, University of 

Manchester, Bioinformatics group) calculates the residue accessible surface
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defined by rolling a probe of given size (usually the size of a water molcule) 

around a van der Waals surface. The residue accessibility is simply the 

summed atomic accessible surface areas over each protein residue. A PDB 

structure file is submitted to NACCESS. The average over a seven residue 

sliding window was calculated and assigned to the fourth position of that 

window. The first and last 3 residues in the structure will not have residue 

accessibility values. A sliding window of seven residues was used to allow the 

comparison of the accessibility of the residues to the RMSD values calculated in 

the project which also used a seven residue window. Using a sliding window 

also enabled edge structures to be distinguished from buried structures.

2.9 ASSIGNING INTERFACE RESIDUES WITH DACCESS
DACCESS (S.J. Hubbard, personal communication, University of 

Manchester, Bioinformatics group) compares the PDB file without the inhibitor 
bound to the PDB file with the inhibitor bound and any changes noted must be 

due to the binding of the inhibitor. DACCESS first calculates the residue 

accessible surface area, as in NACCESS, and then calculates the differential 

residue accessible surface area between multiple chains in a PDB protein 

structure file (in this case the peptidase chain and the inhibitor chain).

2.10 SHANNON’S ENTROPY
The concept of Shannon's Entropy (Shannon, 1948) comes from the 

field of Information theory. It measures the degree of uncertainty that exists in a 

system. In the case of multiple alignments, the Shannon entropy of each protein 

site can be computed according to equation 2.1. If a column is completely 

conserved then the Shannon entropy is 0.

Equation 2.2. Shannon’s Entropy. Where P/‘ is the frequency of the amino acid / in 
that site, n is 20 (the total number of possible amino acids).
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2.11 CORRELATION COEFFICIENT
The correlation coefficient is a measure of the correlation of two sets of 

variables X  and Y (X and Y can be arrays of values), measured on the same 

object, that is, a measure of the tendency of the variables to increase or 

decrease together. Pearson's correlation coefficient (Pearson, 1896) is usually 

signified by r(rho), and can take on the values from -1.0 to 1.0. Where -1.0 is a 

perfect negative (inverse) correlation, 0.0 is no correlation, and 1.0 is a perfect 

positive correlation.

Equation 2.3. Pearson’s Correlation Coefficient. N is the number of variables.

2.12 BUILDING PROFILES USING THE HMMER SUITE
Profile hidden Markov models (Krough et al, 1994) are statistical 

models of the primary structure consensus of a sequence family. They use 

position-specific scores for amino acids (or nucleotides) and position-specific 

scores for opening and extending an insertion or deletion. Traditional pair-wise 

alignment methods (for example, BLAST (Altschul et al, 1990)) use position- 

independent scoring parameters. This property of profiles captures important 

information about the degree of conservation at various positions in the multiple 

sequence alignment, and the varying degree to which gaps and insertions are 

permitted.

HMMER (Eddy, 2001) is a freely distributable implementation of profile 

hidden Markov models (HMM) software for protein sequence analysis. One 

common use of HMMER is to search a sequence database for homologues of a 

protein family of interest which requires a multiple sequence alignment.
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To construct a HMM using the HMMER package a profile needs to be 

built from the multiple sequence alignment using the hmmbuild program. The 

HMM is then calibrated using the program hmmcalibrate. This increases the 

sensitivity of the database search and returns an E-value. It is possible to 

search the sequence database for new homologues with hmmsearch giving a 

ranked list of the best scoring sequences, a list of the best scoring domains and 

alignments for these domains. Hmmalign enables one or multiple sequences to 

be aligned to a HMM. HMMER, version 2.3, was used in Chapter 4.

HMMER does not do local (Smith/Waterman) and global 

(Needleman/Wunsch) style alignments in the same way that most 

computational biology analysis programs do it. To HMMER, whether local or 

global alignments are allowed is part of the model, rather than being 

accomplished by running a different algorithm. By default, hmmbuild builds 

models which allow alignments that are global with respect to the HMM, local 

with respect to the sequence, and allows multiple domains to hit per sequence. 

Such models will only find complete domains.

Another use of profile HMMs is to create multiple sequence alignments 

of large numbers of sequences. A profile HMM can be built from a “seed” 

alignment of a small number of representative sequences, and this profile HMM 

can be used to efficiently align any number of additional sequences. This is in 

fact how the PFAM (Sonnhammer et al, 1997) database is updated as the main 

SPTREMBL database increases in size. The PFAM seed alignments are 

(relatively) stable from release to release; PFAM full alignments are created 

automatically by searching SPTREMBL with the seed model and aligning all the 

significant hits into a multiple alignment using hmmalign.

2.13 ALIGNING HMMs AND PROFILES
As part of the alignment investigation in Chapter 4 a profile-profile, 

sequence-profiie and multiple sequence-profile method was used.
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2.13.1 The Profile-Profile Method
This program produces a substitution matrix between two protein HMMs 

to be used in a pair-wise alignment. The matrix consists of Pearson’s correlation 

of all against all residue positions. The result was a profile-based sequence 

alignment between the target-template pair.

2.13.2 HMMER
The hmmalign algorithm described above in section 2.12 was to align a 

sequence (the target) to the profile of the template previously built using the 

HMMER package.

2.13.3 COACH
COACH (Comparison Of Alignments by Constructing HMMs; Edgar & 

Sjolander, 2004) is one algorithm that the Lobster 

(http://www.drive5.com/lobster/; Edgar, 2004) software implements for 

analysing protein sequences. It is used to align two multiple sequence 

alignments to each other. This alignment produces a score that can be used as 

a relatedness measure. The basic ideal behind the method is to construct a 

profile HMM from one alignment and align the other multiple sequence 

alignment to that HMM.

2.14 SEQUENCE BASED ALIGNMENT METHODS
The sequenqe-based alignment methods were used as input for the 

investigation into alignment quality. They provided a target-template sequence 

alignment to be compared against the profile-based alignment methods. 

CLUSTALW (Thompson et al, 1994did not provide alignments for Chapter 4 as 

the other methods do but was only used for alignments in Chapter 3 only.

2.14.1 MUSCLE
MUSCLE (Multiple Sequence Comparison by Log-Expectation; Edgar, 

2004) creates multiple alignments of protein sequences. Following guide tree
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construction, the fundamental step is pair-wise profile alignment, which is used 

first for progressive alignment then refinement. MUSCLE was found to be more 

accurate than CLUSTALW (Thompson et al, 1994) whilst being the fastest of 

the tested methods, and achieves accuracy statistically indistinguishable from 

T-COFFEE (Edgar, 2004). MUSCLE uses a /cmer distance (a contiguous 

subsequence of length k), where related sequences tend to have more /cmers in 

common than expected by chance. The MUSCLE software, source code and 

test data are freely available at: http://www.drive5.com/muscte.

2.14.2 CLUSTALW
CLUSTALW (Thompson et al, 1994) is a general purpose multiple 

alignment program for DNA or proteins. All sequences are compared to each 

other, then a dendrogram is constructed describing the approximate groupings 

of the sequences by similarity and finally the multiple alignment is carried out, 

using the dendrogram as a guide. CLUSTALW was used in Chapter 3.

2.14.3 BLAST
BLAST (Altschul et al 1990, 1997), as discussed above in section 2.3.1, 

finds local sequence similarities, which might lead to evolutionary clues about 

the structure and/or function of the query sequence. It produces a local 

sequence-based alignment, using the target as the query sequence, from which 

the target-template pair can be extracted. BLAST permits a trade-off between 

speed and sensitivity and in many cases is not as sensitive to weak but 

biologically relevant sequence similarities (Altschul et al, 1997).

2.14.4 PSI-BLAST
PSl-BLAST (Altschul et al, 1997) is a sequence-profile method that 

aligns a query sequence to a profile, generating an alignment to be used in 

Chapter 4. PSI-BLAST has been acknowledged as one of the most powerful 

tools for detecting remote evolutionary relationships by sequence 

considerations alone. Several iterations were used based on the fact that 

several iterations obtain better alignments, with higher sensitivity and no 

significant negative effect on the specificity (Friedberg et al, 2000). PSI-BLAST 

is described in more detail in section 2.3.2.
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2.15 STRUCTURE BASED ALIGNMENT METHODS
The structural alignment based methods provided gold standard 

alignments (alignments considered correct since they were based on the 

experimentally determined structures) to test the other sequence/profile based 

methods against in Chapter 4.

2.15.1 MAMMOTH
MAMMOTH (MAtching Molecular Models Obtained from THeory; Ortiz 

et al, 2002) is a method for sequence-independent structural alignment that 

allows comparison of modelled or experimental structures. MAMMOTH is 

sequence-independent, focusing on model Ca coordinates and avoiding 

references to sequence or contact maps. MAMMOTH is a heuristic method that 

computes the optimal similarity of the local backbone chain to establish residue 

correspondences between residues in both structures, it then computes the 

largest subset of residues found within a given distance threshold in Cartesian 

space. When the objective is the comparison of modelled structures with their 

experimental counterparts MAMMOTH can be an important tool due to its 

speed, insensitivity to differences in length, and rigorous evaluation score, 

particularly in those cases where partial or low-resoiution models are of interest 

(Ortiz et a/, 2002).

2.15.2 TM-align
TM-align (Zhang & Skolnick, 2005) is an algorithm developed to identify 

the best structural alignment between protein pairs that combines the TM-score 

rotation matrix (a rotation matrix which contains the best superposition of two 

structures as calculated using the TM-score) and dynamic programming. The 

TM-score weights the residue pairs at smaller distances relatively stronger than 

those at larger distances. Therefore, the TM-score is more sensitive to the 

global topology than the local structural variations and the value of the TM- 

score is normalised in a way that the score magnitude relative to random 

structures is not dependent on the protein’s size. The algorithm’s initial 

alignment is obtained by aligning the secondary structures of two proteins using 

dynamic programming, then, another type of initial alignment is generated
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based on the gapless matching of two structures and finally an initial alignment 

is obtained by dynamic programming using a gap-opening penalty where the 

score matrix is a half/half combination of the secondary structure score and the 

distance score selected in the gapless matching initial alignment.

2.15.3 CE

CE (Combinatorial Extension; Shindyalov, & Bourne, 1998) builds an 

alignment between two protein structures, obtaining an accurate three- 

dimensional structure alignment, including cases with low structure homology. 

The algorithm involves a combinatorial extension of an alignment path defined 

by alignment fragment pairs. Alignment fragment pairs are pairs of fragments, 

one from each protein, which confer structural similarity and are based on local 

geometry. Combinations of alignment fragment pairs that represent possible 

continuous alignment paths are selectively extended or discarded thereby 

leading to a single optimal alignment (Shindyalov & Bourne, 1998). In CE, the 

score is measured by the intra-structural distance of eight-residue fragments, 

and the alignment is built by gradually adding new eight-residue fragments to 

the existing alignment path (Zhang & Skolnick, 2005). Shorter alignments can 

be obtained with lower RMSD, or longer alignments with higher RMSD. It is also 

possible to take into account sequence information during the dynamic 

programming step (Shindyalov & Bourne, 2001).

2.16 ASSESSING THE SEQUENCE ALIGNMENTS USING 
NiRMSD

Armougom (2006) propose a new type of RMSD (part of the T-Coffee 

package (Notredame et al, 2000)), independent from any structure 

superposition and suitable for evaluating sequence alignments of proteins with 

known structures. They suggest that replacing the reference alignments (the 

gold standards) with an RMSD measure would be a more objective way to 

evaluate the sequence alignments of proteins, rather than setting one specific 

alignment as a reference. They imply that this method has two advantages of 

over standard methods: no dependence on a reference alignment and the
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possibility to quantify the structural correctness of any protein sequence 

alignments (provided the protein structures are known). The drawback of using 

the RMSD is the reliance on a structure superposition strategy: it offers many 

alternative solutions whose relative merits are difficult to estimate. Armougom et 

al redesigned the RMSD to make it independent from any structure 

superposition procedure, the iRMSD measure, which is based on intra­

molecular distance comparisons. The iRMSD evaluates alignments for their 

compatibility with the structural superposition they imply. The iRMSD is not 

suitable for comparing alternative alignments, as it tends to give a better score 

to alignments with long gaps and few aligned residues. To take into account the 

superposition accuracy and the extent of the alignment the iRMSD is 

normalised. The NiRMSD measures the difference in distances between every 

aligned pair of residues against every other aligned pair of residues and 

measures the average RMSD of these differences of distances, thus the lower 

the NiRMSD the better the alignment.

2.17 COMPARATIVE MODELLING WITH MODELLER
MODELLER (Sanchez & Sali, 1997) is a comparative modelling method 

designed to find the most probable structure for a sequence given its alignment 
with related structures.

MODELLER implements an automated approach to comparative 

protein structure modelling by satisfaction of spatial restraints (figure 2.1). The 

core modelling procedure begins with an alignment of the sequence to be 

modelled (the target) with related known three-dimensional structures (the 

templates). This alignment is usually the input to the program. The output is a 

three-dimensional model for the target sequence containing all main-chain and 

side-chain non-hydrogen atoms. Given an alignment the model is obtained 

without any user intervention. First, many distance and dihedral angle restraints 

on the target sequence are calculated from its alignment with template three- 

dimensional structures. The form of these restraints was obtained from a 

statistical analysis of the relationships between many pairs of homologous
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structures. These relationships were expressed as conditional probability 

density functions (pdfs) and can be used directly as spatial restraints. The pdfs 

restrain Ca- Ca distances, main-chain N-0 distances, main-chain and side-chain 

dihedral angles. The three-dimensional model of a protein is obtained by 

optimisation of the molecular pdf such that the model violates the input 

restraints as little as possible. The molecular pdf is derived as a combination of 

pdfs restraining individual spatial features of the whole molecule. An important 

feature of the method is that the spatial restraints are obtained empirically, from 

a database of protein structure alignments (Sali & Blundell, 1993). The spatial 

restraints include (i) homology-derived restraints on the distances and dihedral 

angles in the target sequence, extracted from its alignment with the template 

structures, (ii) stereochemical restraints such as bond length and bond angle 

preferences, obtained from the CHARMM-22 molecular mechanics force-field, 

(iii) statistical preferences for dihedral angles and non-bonded inter-atomic 

distances, obtained from a representative set of known structures, and (iv) 

optional manually curated restraints, such as those from NMR spectroscopy, 

rules of secondary structure packing (Jacobson & Sali, 2004). Next, the spatial 

restraints and CHARMM energy terms enforcing proper stereochemistry are 

combined into an objective function. Finally, the model is obtained by optimising 

the objective function in Cartesian space. The optimisation is carried out by the 

use of the variable target function method employing methods of conjugate 

gradients and molecular dynamics with simulated annealing. In this approach, 

the optimisation starts from a random initial conformation and initially uses only 

the sequentially local restraints. It then proceeds in a number of steps to 

increase the number of restraints, until, finally, all the restraints are included and 

their violations minimised. Several slightly different models can be calculated by 

varying the initial structure (Sali & Blundell, 1993).

More information on comparative modelling and MODELLER can be 

found in the Introduction chapter.
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1. Align sequence with structures

TEM GRISFFEDAGF-6HCYEC S SDC-NLQP 
TEM GKITFYEDRGFQGHCYECSSDC-NLQP 
TAR GKITFYEDRG RCYECSSDCPNLQP

2. Extract spatial restraints

GIUTFYEoiiorcyecssdcpNLQP

3. Satisfy spatial restraints

Figure 2.1. Comparative Protein Modelling by Satisfaction of Spatial Restraints.
First, the known template (TEM) structures are aligned with the target (TAR) sequence 
to be modelled. Second, spatial features, such as Ca-Ca distances, hydrogen bonds, 
and main-chain and side-chain dihedral angles, are transferred to the target from the 
template, thus a number of spatial restraints on its structure are obtained. Third, the 
three-dimensional model is obtained by satisfying all the restraints as well as possible 
(image reproduced from Sanchez & Sali, 2000).

2.18 STRUCTURAL SUPERIMPOSITION WITH STALIN
stalin  (S.J. Hubbard, personal communication, University of 

Manchester, Bioinformatics group) is a structural alignment program that aligns 

and superimposes two similar protein structures. The two structures are taken 

as input in the PDB format, and one PDB file is the resulting output, stalin  

calculates an optimal alignment with the two proteins provided, and so it is
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considered as a global alignment method and therefore has no need for an 

alignment as an input. The alignment is done by least squares fitting of short 

segments of the backbone of each protein against all possible similarly sized 

segments of the other protein to obtain a two-dimensional matrix of root mean 

square deviations. The program then finds the maximum pathway through the 

matrix (dynamic programming) and then superimposes one protein on the other 

based on this match. STALIN was not used as a structural gold standard since 

it was only used to quickly align two similar proteins and would struggle when 

aligning proteins in and around the twilight zone. STALIN works by simply fitting 

short windows of backbone structure in

one structure to all other windows of the same size in the other. 

This generates a matrix of RMSDs and STALIN then applies standard 

Needleman and Wunsch dynamic programming to find the optimal path 

(and hence alignment) through the matrix. Gap open and extension 

penalties can be applied in the usual way, although in this case a penalty of 0 

(for both GapOpen and GapExtend) was used to allow large insertions. STALIN 

was applied only for superposition

of models of the same sequences onto the original structure. As this 

is a relatively naive structural alignment program, it was deemed 
adequate for this task and gave good superpositions when viewed by the 

eye. Since this tool was already available in the research lab, and gave 

good results, we did not seek an alternative. Likewise, as it was 

unpublished and arguably inferior to tools such as SSAP and VAST 

as a structural alignment tool, its performance was not evaluated 

in the alignment chapter. We could have used PROFIT which 

also seems to work in a similar way, although unlike STALIN, it does 

not appear to offer the ability to produce simple structural alignments. 

STALIN is quite robust to small deletions and insertions, whereas 

PROFIT needs to be told which residues to fit together - STALIN 

can work this out independently.
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3. S e c o n d a r y  S tr u c tu r e  P r ed ic tio n  and  
C o m p a r a tiv e  M o d ellin g

3.1 AIM
This study focuses on improving an aspect of protein structure 

prediction, namely comparative modelling of protein structure from its amino 

acid sequence. In particular, the focus is on model building when the target- 

template sequence identity falls close to, or in to, the twilight zone. The use of 

secondary structure prediction was evaluated to try and improve the models, 

especially the N-termini of alpha helices. Models were built with and without 

secondary structure restraints to see how much, if any, improvement in the 

accuracy of the final models was seen. The introduction of this chapter includes 

background information on secondary structure prediction and how it may be 

potentially useful to improve the comparative modelling process.

3.2 INTRODUCTION
As discussed in Chapter 1 (the Introduction), comparative modelling is 

seen as arguably the most reliable structure prediction technique when the 

sequence of a known structure is closely related to the target sequence of 

unknown structure. It is also accepted that as the percentage sequence identity 

between this target-template pair decreases, the ability of the comparative 

modelling protocol to produce accurate models also decreases (Sali et al., 

2001). One of the steps in comparative modelling which has the potential to be 

improved is the model building step. This is the step where the known structure 

provides a template to guide the prediction of the target structure, and the more 

structural information available for the target, the better the prediction. This is 

where secondary structure prediction is potentially useful.

3.2.1 Secondary Structure
Secondary structure prediction is essentially a one-dimensional 

prediction of the conformational state of an amino acid in a protein sequence, 

classifying each residue into one of three states, helix (H), extended (E) or coil
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(C). After the primary amino acid sequence of a protein the first level of protein 

architecture is the secondary structure. The formation of regular secondary 

structure elements within the protein molecule solves the problem of exposing 

main-chain polar groups into a hydrophobic environment by the formation of 

hydrogen bonds. The secondary structure elements, formed this way and held 

together by the hydrophobic core, provide a rigid and stable framework, 

exhibiting relatively little flexibility with respect to each other. Such secondary 

structure is usually of two types: alpha he lices or beta sheets (Brandon & 

Tooze, 1999).

3.2.1.1 The Alpha Helix
The alpha helix (see figure 1.1b in the Introduction) is the classic 

element of protein structure and was first described by Linus Pauling in 1951. 

Alpha helices have 3.6 residues per turn with hydrogen bonds between the 

C -0  of residue n and NH of residue n+4, joining all NH and C’O groups with 

hydrogen bonds, except the first NH and the last C’O groups at the ends of the 

helix. This results in the ends of helices usually being polar and almost always 

on the surface of protein molecules (Brandon & Tooze, 1999). Many alpha 

helices present a hydrophilic face to the external aqueous solvent, and, on the 

opposite side, a hydrophobic face to the interior (Lesk, 2001).

3.2.1.2 The Beta Sheet

The second major structural element found in globular proteins is the 

beta sheet (see figure 1.1b in the Introduction). The alpha helix is built up from 

one continuous region of the polypeptide chain whereas the beta sheet is built 

up from several discontinuous, independent regions of the polypeptide chain, 

known as beta strands (Brandon & Tooze, 1999). Hydrogen bonds form 

between the carbonyl C’=0 groups of one strand and amide NH groups on an 

adjacent strand. Parallel or anti-parallel beta sheets can be formed, forming a 

pleated sheet. Parallel beta sheets are formed by strands which run in the same 

direction and anti-parallel from successive strands which have alternating 

directions. Beta strands occupy a broadly linear three dimensional path, so that 

the main chain backbone is broadly in an extended conformation; hence, the
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secondary structure state for both parallel and anti-parallel beta strands is 

usually classed as “extended” (E).

3.3 SECONDARY STRUCTURE PREDICTION
The prediction of the three-dimensional structure of a protein from its 

amino acid sequence is one of the oldest, yet still one of the most important, 
problems in structural bioinformatics. As a first step to solving this problem, 

many algorithms for predicting the local secondary structure, instead of the full 

global tertiary structure, have been developed (Lee, 2006).

3.3.1 Its Importance in Protein Structure Prediction
The prediction of the secondary structure of a protein from its amino 

acid sequence remains a key element in many different approaches to tackle 

the protein folding problem and to bridge the sequence-structure gap (Schulz, 

1978). It is often used to provide constraints for comparative modelling or can 

be used as a starting point for fold recognition (Rost, 1997). Accurate secondary 

structure information provides a useful baseline for fold recognition (McGuffin, 

2001). indeed, in CASP6 predicted secondary structure information was an 

integral part of the best performing schemes for the comparative modelling, fold 

recognition and new fold predictions tasks (Karypis, 2006). Over the years after 

its introduction in the late 1960s (Guzzo, 1965), secondary structure prediction 

has gone through generations of improvements in accuracy and algorithms, 

combining some of the state of the art techniques available at the time.

3.3.2 The Early Methods

Attempts were first made to predict secondary structure more than four 

decades ago. These early methods were based on either simple stereochemical 

principles (Lim, 1974) or statistics (Chou & Fasman, 1974; Gamier et al, 1978). 

Secondary structure prediction methods can be classified into one of the 

following categories accordingly (Ouali & King, 2000):

• Simple, linear statistics based either on residue or physicochemical 

properties or even both;

• Nearest neighbour approaches;

64



Secondary Structure Prediction and Comparative Modelling Chapter 3

• Machine learning and methods employing complex, non-linear statistics, 

including the application of neural networks and hidden Markov models.

3.3.3 Ab Initio or Linear Statistic Methods
This type of method predicts the secondary structure based on a single 

query sequence. It measures the relative propensity of each amino acid 

belonging to a certain secondary structure element (Xiong, 2006).

One of the most widely recognised early simple linear statistic methods 

is that of Chou and Fasman (Chou & Fasman, 1978). The predictions are based 

on differences in residue composition for three states of secondary structure: 

alpha helix, beta strand and turn (Higgins & Taylor, 2001). It determines the 

propensity or intrinsic tendency of each residue to be in the helix, strand and 

beta turn conformation based on the observations from the crystal structures. 

The propensity scores are derived from known crystal structures and a score of 

less than one indicates that the residue has less chance of being found (for 
example) in helices. The disadvantages to this method includes the statistics 

being used are naTve and the prediction rules being somewhat arbitrary 

(Sternberg, 1996).

Another early method was that of Lim. Lim’s (Lim, 1974) method was 

stereochemically orientated, relying on conserved hydrophobic patterns and 

thus a set of stereochemical prediction rules being developed for alpha helices 

and beta sheets based on their packaging as observed in globular proteins. The 

actual prediction rules developed are quite complicated but computer 

implementations now also exist (Sternberg, 1996).

The GOR (Garnier-Osguthorpe-Robson; Gamier et al, 1978) method 

has been particular popular due to the simplicity of implementing the method in 

software (Jones, 1999). GOR considers the statistics of flanking residues and 

the conformational state of a selected amino acid to be predicted. The GOR 

method has been shown to be more accurate than Chou-Fasman because it 

takes the neighbouring effect of residues into consideration (Xiong, 2006). A
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more recent GOR method is GOR V (Sen et al., 2006) which uses the 

evolutionary information provided by multiple sequence alignments.

These early ab initio methods were developed in the 1970s when 

protein structural data was very limited. The statistics derived from the limited 

data sets can therefore be rather inaccurate and the predictions solely rely on 

local sequence information and fail to take into account long range interactions; 

this limits the prediction accuracy to around 50%, with random predictions being 

around 40%. However, the methods are simple enough that they are often used 

to illustrate the basics of secondary structure prediction (Xiong, 2006). (had to 

remove this sentence as I couldn’t find the original citation)

3.3.4 Nearest Neighbour Methods
In nearest neighbour methods the secondary structure of a new primary 

sequence is classified to be the same as that of the closest primary sequence to 

it of known secondary structure, based on the idea that similar primary 

sequences will adopt similar secondary structures (Sternberg, 1996).

Yi and Lander (Yi & Lander, 1993) use substitution matrices and neural 

network methods to incorporate environmental factors and produce a probability 

distribution over the three secondary structure states. They exploit the 

underlying structural similarity between segments of different proteins to aid in 

the prediction of secondary structure resulting in a peak prediction accuracy of 

68%. The NNSSP (Salamov & Solovyev, 1995) method adopts the nearest 

neighbour approach of Yi and Lander for single sequences using multiple 

alignments (Higgins & Taylor, 2001).

The PREDATOR algorithm (Frishman & Argos, 1996) incorporates 

long-range interactions for beta strand prediction and employs propensities for 

all types of helices, improving the nearest neighbour method.

Methods of predicting protein secondary structure have improved 

substantially in the 1990s through the use of machine learning methods 

(Pollastri et al, 2002).
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3.3.5 Hidden Markov Models and Machine Learning Methods

Within the machine learning category are neural networks. These are 

used to generalise rules that relate protein primary structure to its secondary 

structure and then apply these rules to predict secondary structure. Neural 

networks are considered a popular method for predicting secondary structure; 

the network is trained on known examples and predicts the secondary structure 

for a central residue in a window of specific size. They have been applied to a 

variety of pattern recognition, classification and decision problems. One of the 

first simple neural network based method was NNPred (Kneller et al., 1990). A 

summary of a few key neural network and hidden Markov models prediction 

methods are described.This is by no means an exhaustive list of techniques but 

seeks to include some of prediction protocols that are more commonly used or 

were influential in the development of secondary structure prediction.

PSIPRED (Jones, 1999) is a neural network method that can be used to 

predict protein secondary structure based on the position specific scoring 

matrices generated by Psi-Blast. The prediction method is split into three 

stages: generation of a sequence profile, prediction of initial secondary 

structure, and finally the filtering of the predicted structure. According to the 

results of CASP3 the PSIPRED method is deemed to be superior to other 

methods, including PHD. PSIPRED has an upper accuracy limit of 78%.

SSpro (Pollastri et al, 2002) uses an ensemble of neural network 

architectures, Psi-Blast derived profiles, and a large non redundant training set 

to derive SSpro, a program for secondary structure classification into three 

categories with an accuracy reaching about 78%.

PHD (Rost, 1996) includes a machine learning technique to 

compensate for the well known composition biases of large low-similarity 

databases (Baldi et al, 1999). It is a web-based program that combines neural 

network with multiple sequence alignment. It takes into account flanking 

residues and makes final filtering by deleting extremely short helices and 

converting them into coils (Xiong, 1999).
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Hidden Markov models use probabilistic models based on the 

probability of the preceding residue being in a particular type of secondary 

structure (Krogh et al, 1994). Hidden Markov models have been incorporated 

into secondary structure prediction due to their strong statistical background 

(Martin et al., 2006).

HMMSTR (Bystroff, et al, 2000) builds a library of local stretches of 

residues with basic structure motifs and then assembles these local motifs 

(common to all protein families) through hidden Markov models, introducing 

structural context on the level of super-secondary structure (Rost, 2001).

YASSPP (Karypis, 2006) is a more recent method which incorporates 

SVMs (support vector machines) and claims to be more accurate than other 

widely used schemes such as PSIPRED and SSpro, achieving up to 78% 

accuracy. YASSPP uses an input that combines both position-specific and non­

position-specific information and captures the sequence conservation signals 

around the local window of each residue.

It is thought that combining predictors usually improves prediction 
accuracy (Pollastri et al, 2002). JPred (Cuff et al., 1998) is able to combine its 
predictions.

3.3.6 Consensus and Hybrid Approaches

Combinations of independent prediction methods seem to yield levels of 

accuracy higher than that of the single best method. However, for every protein, 

one method tends to be clearly superior to the combined prediction. It seems 

that choosing the combination of methods is not trivial; indeed, using inferior 

methods decreases the accuracy over the best methods, and when to include a 

method and when not to seems unclear (Rost, 2001).

The JPred server accepts a multiple sequence alignment and predicts 

the secondary structure of the sequence on top of the alignment. JPred takes, 

as input, a multiple sequence alignment, a hidden Markov model, PSI-BI_AST 

profiles and position-specific scoring matrices. It runs prediction programs such
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as: PHD; PREDATOR; Jnet and NNSSP. The query sequence is used to search 

the databases with PSI-BLAST for three iterations and redundant sequence hits 

are removed. The resulting sequence homologues are used to build a multiple 

sequence alignment from which a profile is extracted. The profile information is 

submitted to the six prediction programs. If sufficient methods predict an 

identical secondary structure for a given alignment position then that is the 

structure taken. If there is no majority in agreement in the prediction outputs, the 

PHD prediction is taken (Xiong, 2006). It produces predictions that are over 

76% accurate.

Sen and colleagues (Sen et al, 2006) proposed a novel hybrid algorithm 

called Consensus Data Mining (CDM) that combines their two previous 

methods. These were Fragment Database Mining, which exploited PDB 

structures, and GOR V, which is based on information theory, Bayesian 

statistics and multiple sequence alignments. In CDM, the target sequence is 

dissected into smaller fragments that are compared with fragments obtained 

from related sequences in the PDB. For fragments with a sequence identity 

above a certain threshold the Fragment Database Mining method is applied for 

the prediction. The remainder of the fragments are predicted by GOR V. The 

accuracy of CDM measured by Q3 (the equation for Q3 can be found in equation 

3.1) which ranges from 67.5% to 93.2% and depends on the availability of 

known structural fragments with sufficiently high sequence identity.

More recently, Pollastri and colleagues (Pollastri et al, 2007) proposed 

a high-throughput machine learning system for the prediction of protein 

secondary structure that exploits homology to proteins of known structure in the 

form of structural frequency profiles extracted from sets of PDB templates. They 

showed that structural information from templates greatly improved secondary 

structure and found that for sequence similarity exceeding 30%, secondary 

structure prediction quality was approximately 90%.

3.3.7 Limitations in Secondary Structure Prediction
The effectiveness of local secondary structure prediction depends upon 

the extent to which a protein’s structure, particularly the secondary structure, is
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determined by local, short-ranged interactions between residues closely spaced 

along the backbone, as opposed to non-local or long-ranged tertiary interactions 

(Crooks & Brenner, 2004).

Kihara (2005) discusses how earlier works mostly relied on the 

propensities of amino acids for three states of secondary structure and that one 

of the main reasons for the limitations in prediction accuracy comes from long- 

range interactions. These distant interactions may override the local sequence 

propensity of secondary structures, since most of the current methods assign a 

secondary structure to a window of a local segment and thus usually do not 

explicitly consider long-range interactions of amino acids. Using sliding windows 

in the prediction of secondary structure is thought to incorporate medium-range 

interactions to some limited extent.

The difficulty in considering long-range interactions in the prediction of 
secondary structure from the primary sequence explains the increased 

prediction accuracy of the alpha helix compared to the beta sheet, which 

contains more long-ranged interactions; regardless of different approaches 

used in prediction engines, beta strands have been predicted with less accuracy 

(Kazemian et al, 2007).

3.3.8 Advances in Secondary Structure Prediction
Although there are many different secondary structure prediction 

methods available in the literature, their cross-validated prediction accuracy is 

generally below 80% (Sen et al, 2006J, yet the improvement of prediction 

accuracy of the protein secondary structure is deemed essential for further 

developments of the whole field of protein research (Kazemian et al, 2007).

Major improvements in secondary structure prediction came about when 

the methods began to include multiple sequence alignments; the predictions 

improved by 9% compared to single sequence predictions. Multiple sequence 

alignments include evolutionary information through patterns of sequence 

variability and locations of insertions and deletions (Jones, 1999). Since major 

changes occur at the boundaries of secondary structure, this is where most
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errors are accumulated in contrast to the cores of the structures which can be 

predicted to quite a high accuracy. Most state-of-the-art methods include 

multiple sequence alignments to obtain higher accuracies. The main source of 

information in this approach to secondary structure prediction is obtained by 

observing that the most conserved regions of a protein sequence are those 

regions which are either functionally important, and/or buried in the protein core. 

By clustering the sequences in an aligned family, and assessing the degree of 

sequence variability observed between very similar pairs, the degree of solvent 

accessibility of an amino acid can be predicted with reasonable accuracy. 

Secondary structure can then be predicted by comparing the accessibility 

patterns generally associated with specific secondary structures when packed 

against a hydrophobic protein core. The prediction accuracy of methods based 

on multiple sequence alignments has been found to correlate with the degree of 

divergence present in the aligned set of sequences. Alignments which 

incorporate sequences with significantly low sequence similarity to a target 

protein produce more accurate predictions than those which incorporate 

sequences which are very closely related to the target (Jones, 1999).

Montgomerie's lab (Montgomerie et at., 2006) state that the accuracy of 

protein secondary structure prediction could be further improved by including 

structure (as opposed to sequence) database comparisons as part of the 

prediction process. They developed a method (PROTEUS) that performs 

structure-based sequence alignments as part of the prediction process. By 

mapping the structure of a known homologue onto the query protein’s 

sequence, it is possible to predict at least a portion of that query protein’s 

secondary structure. They find that by using both sequence and structure 

databases and by exploiting the latest techniques in machine learning it is 

possible to routinely predict protein secondary structure with an accuracy well 

above 80%.

The ability to produce profiles that include increasingly remote 

homologues using Psi-Blast has also contributed to performance improvement 

(Pollastri et al, 2002; Jones, 1999). Pollastri and colleagues (Pollastri et al, 

2007) later suggest that the use of larger training sets, the use of multiple

71



Secondary Structure Prediction and Comparative Modelling Chapter 3

predictors trained independently, and a more sophisticated machine learning 

techniques have all added to the slow, but steady improvement of secondary 

structure prediction methods.

3.3.9 Assessing the Accuracy of Secondary Structure Prediction
Various evaluation measures have been used to assess accuracy of 

secondary structure prediction, such as the Q3 score and segment overlap 

(SOV score).

The Q3 score (Equation 3.1) is a popular way to measure the accuracy 

of a secondary structure prediction and is conventionally used to score 

secondary prediction accuracy (Orengo et al, 1999). It is the percentage of 

helix, strand and coil correctly predicted compared to actual number of helix, 

strand and coil assigned.

Equation 3.1. The Q3 Score. Where N is the total number of residues predicted and P 
is the number of correctly predicted residues in state H, E or C. The Q3 score deals 
with the prediction accuracy of the whole secondary structure content of proteins 
regardless of the prediction accuracy of each secondary structure class. This is a 
global measurement (Kazemain et al, 2007).

Segment overlap (SOV, equation 3.2) values attempt to capture 

segment prediction quality rather than just individual residue-level prediction, 

and vary from an “ignorance" level of 37% (random protein pairs) to an average 

90% level for homologous protein pairs.

Equation 3.2. The SOV Score. Where N is the total number of residues, the SUM is 
taken over S all the pairs of segments (S1;S2), S(i) is the number of all the pairs of 
segments (S1;S2), where S1 and S2 have at least one residue in state i in common, 
Ml NOV is the actual overlap, with MAXOV is the extent of the segment. LEN is the 
length of segment 1. Delta is the accepted variation which assures a ratio of 1.0 where 
there are only minor deviations at the ends of segments.

Q3 = [(PH + PE + PC) / N] x 100%

SOV = SOV- MINOV(Sl;S2) + DELTA(S1;S2) 
MAXOV(51;S2)

• LEN(S1)
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The usual hindrance in comparing the accuracy of secondary structure 

prediction methods is that each group uses different datasets used in the 

training and testing stages, affecting the accuracy. Indeed, early methods 

generally tested the prediction accuracy on the sequences the rules were 

derived from. Fortunately, this was changed when Kabsch and Sander (Kabsch 

& Sander, 1983) tested all methods on different datasets, resulting in a 

decreased accuracy of all methods.

CASP (Critical Assessment of Protein Structure) meetings are held 

every two years. Structure predictions are submitted using proteins of unknown 

structure and released after being evaluated. JPred is one of the programs that 

is continually assessed and the methods are tested on new structures in the 

PDB.

Kazemian’s lab (Kazemian et al, 2007) introduced an index to evaluate 

the prediction accuracy of each secondary structure class based on an amino 

acid index, hoping to lead the groups to enhance the methods more objectively 

and expose more facts of prediction methods. An amino acid index is a set of 

numerical values representing any of the different physicochemical and 
biological properties of amino acids. Kazemian et al state that the “expertness” 

of the secondary structure prediction engines have been studied in three levels: 

the Q3 score, a global measurement of the whole secondary structure content of 

proteins regardless of prediction accuracy of each secondary structure class, 

the Qh, Qe and Qc criteria which evaluates the prediction accuracy of each 

secondary structure class (helix, strand and coil) separately, and the third level, 

which they introduce, evaluates the accuracy based on the amino acid index. 

They introduce this evaluation method to assess the overall strength or 

weakness of prediction regarding the type of amino acids, reiterating that beta 

strands are predicted with less accuracy, finding that despite the different 

prediction accuracy of different amino acids achieved by a certain engine, the 

orders of prediction accuracy of amino acids are almost the same in all 

prediction engines.
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3.3.10 Improving Secondary Structure Prediction
Secondary structure prediction methods are superior when long-range 

effects are minimal, hence are better at predicting helices. Beta strands involve 

more long-range interactions which are difficult to model. Including multiple 

sequence alignments mean that areas of poor sequence identity can be 

identified, which tend to represent loop regions connecting secondary structure 

elements; conserved positions are more likely to occur in regions of secondary 

structure with increased variation seen in loops and gaps in coil conformation. 

This means methods tend to fail when predicting the N-termini of alpha helices 

(Wilson et al, 2002). The study of Wilson and colleagues led to the development 

of an improved N-termini alpha helix secondary structure prediction method 

called ele p h a n t  (Wilson et af, 2004).

It is clear to see why correct identification of true N-termini of helices is 

important, since this will potentially improve predictions of loops that border the 

secondary structure. These are a key component for successful fold recognition 

and modelling, and it is anticipated that improved prediction of the N-termini of 

the helix would lead to better comparative models. An attempt using the 

empirical information regarding specific residue preferences at the N-termini of 

alpha helices has been employed to improve secondary structure prediction via 

the e leph an t  algorithm (Wilson et al., 2004). The termini of alpha helices show 

unique structural and energetic properties with distinct preferences for the 

fringes of the helices allowing this study to improve the prediction of these 

fringes. Indeed, the accuracy for predicting the N-termini of alpha helices rose 

from 30% to 36% whilst the overall prediction accuracy (Q3) remained the 

same, eleph an t  calculates the energies over a sliding window of four residues. 

It finds the most energetically favourable one to be in helical conformation 

(using the results of the previous study which found certain residues to have a 

preference for the N-cap of an alpha-helix) and assigns it to be the residue 

immediately preceding the first helical residue, the N-cap (Wilson et al, 2004). It 

should be noted that prediction accuracies at the fringes of secondary structure 

remain modest, and well below those obtained for proteins globally.
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3.3.11 Protein Secondary Structure Prediction and Comparative Modelling
Secondary structure prediction can be used to provide constraints for 

comparative modelling, aiding usually in the refinement of the model or to help 

search for distantly related proteins.

One previous study looked at using secondary structure prediction in 

comparative modelling with respect to the refinement procedure (Aloy et al, 

2000). Knowledge-based energy profiles combined with secondary structure 

prediction were applied to molecular modelling refinement. Aloy et al state that 

the methodology can be used to distinguish regions where comparative 

modelling may fail or to choose the best conformation when more than one 

model is considered. Regions miss-modelled in the experiment were detected 

and modified afterwards according to the secondary structure prediction. They 

describe an example of a case where comparative modelling by homology fails 

to predict the secondary structure of a connecting segment region, whilst the 

predictive methods of secondary structure are more accurate.

Contreras-Moreira and colleagues (Contreras-Moreira et al, 2003) 

include predicted secondary structure assignments for distantly related proteins 
of unknown structure. This is used to improve the alignments of the proteins. 

They offer an effective way to exploit the variability of templates and sequence 

alignments to produce populations of optimised models by artificial selection. 

Their method simulates artificial genetic selection on a population of single- 

template models created from different templates and different sequence 

alignments per template. Fitness for each member of the population is defined 

as a simple function of solvent accessibility and residue-residue pair potentials 

on a simplified side-chain representation. This new methods permits the 

identification of more favourable alignments and tertiary structure 
conformations.

Using the predicted secondary structure in the modelling process has 

generally been confined to aiding the search for distantly related proteins, 

refining the model once built and helping the target-template alignment to be 

improved. Therefore, using the predicted secondary structure of the target to
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guide the model building process is an under-exploited technique. It has always 

been thought previously that taking the actual structure of the template was 

more likely to provide a better starting point for comparative modelling.

Secondary structure prediction is not normally used with comparative 

modelling, however, with the program called m o d eller , it can provide restraints 

when an appropriate template cannot be found. Similarly, m o d eller  supports 

the use of secondary structure constraints in the general modelling process. 

However, the areas where predicted secondary structure may well be of 

assistance is in the so-called “twilight zone”, where the target and template 

sequence are relatively poorly conserved. If the predicted secondary structure 

of the target is to prove useful it will need to be closer in structure to the gold 

standard (i.e. the actual secondary structure of the target) than the assigned 

secondary structure of the template is to the gold standard (Figure 3.1).

TARGET SEQUENCE
arndcqeghilivywtrspfmklrnghilivyw

Prediction

A TEMPLATE SEQUENCE
irndcqeghilivvwtrspfniklrnghilivywdcqeghili

^Assignment

^VM/V\/*-
Gold Standard

Figure 3.1. Prediction and Assignment of Secondary Structure. The predicted 
secondary structure (shown in red) of the target will need to be closer in structure to the 
gold standard (displayed in gold) of the target than the secondary structure assignment 
of the template (the blue structure) for it to be useful in modelling.

3.4 METHODS AND MATERIALS
The first stage in this project was to obtain a dataset of target-template 

pairs that would provide input for comparative modelling, focusing on pairs with 

sequence identity stretching into the twilight zone.
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3.4.1 Fold Assignment
An initial dataset of template sequences, pdbaanr, contained 14,677 

protein sequences, representing a non-redundant set of all the PDB sequences 

available (obtained early in 2005). A subset of the pdbaanr dataset, cullpdb, 

was obtained representing potential targets. It is a precompiled dataset from 

PISCES (please refer to section 2.2.1 of Chapter 2 for an explanation of 

PISCES) containing sequences sharing less than 20% sequence identity, with 

structures better than 2.0A resolution and with R-factors below 0.25.

After removing the structures containing only Ca traces, proteins less 

than 50 residues in length and proteins less than 3.0A in resolution (from the 

pdbaanr dataset), the sets were reduced to the following numbers: 12,817 

sequences in the pdbaanr dataset and 1,448 in the cullpdb subset.

To reduce the sets further (making viable sets in which to complete 

modelling experiments) the pdbaanr set was submitted to b lastc lu st . After 

applying blastc lu st  to the cullpdb set, it was found that it could not be further 

reduced, even with the most stringent conditions set (pairs sharing more than 

80% sequence identity). The pdbaanr dataset was reduced again to a set of 

6,202 sequences, clustering similar sequences with 95% or greater pairwise 

identity to reduce redundancy.

Gen erally, the first step in comparative modelling is fold assignment, 

which requires finding related structures (templates) for as many domains in the 

modelled query sequence of unknown structure (target) as possible. A common 

way of finding homologous protein sequences is to use the BLAST tool (Altschul 

et al, 1997). The cullpdb sequences (targets) were searched with BLAST 

against the pdbaanr database (the templates) using an E-value of 0.001, 

filtering out low complexity regions and resulting in over 2,000,000 hits ( total 

hits between all targets and all templates). Templates containing ligands were 

removed.
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3.4.2 Selecting Templates
To select the most appropriate template(s) for each target, the BLAST 

hits were clustered into different percentage identity bins, over the 0-100% 

range in 10% intervals, allowing the effect of percentage sequence identity on 

improving comparative modelling using secondary structure prediction to be 

examined. From each bin, the six highest resolution structures were taken, 

giving potentially sixty templates f or each target (the six highest resolution 

structures in each of the ten 10% identity bins). Removing redundancy resulted 

in 1,756 pairs of templates and targets, for a total of 567 targets (not all targets 

had a template partner, or had one in each 10% bin).

3.4.3 Target-Template Alignment
The optimal alignment between target and template is the one in which 

the structurally equivalent positions are correctly aligned (most search methods 

are usually tuned for detecting remote relationships and not for optimal 

alignment). This means that once the templates have been selected, the target 

sequence and template structure will have to be realigned using specialised 

methods such as CLUSTALW, a dynamic programming algorithm, to obtain an 

alignment. Alignment pairs which did not have above 50% of the target 

sequence retained were removed (some alignment methods chop off parts of 

the target sequence thus if more than half of the target was lost in this process 

the alignment was discarded). In total, 293 protein sequence alignment pairs 

were left with high quality targets and varying percentage identities between the 

target and template pairs.

3.4.4 Model Building and Secondary Structure Restraints
Two methods were used to apply the secondary structure restraints of 

the alpha helices and the beta sheets to the alignments of the 293 pairs. Both 

techniques were applied to the four different alignments (SST1, SST2, JPred 

and eleph an t ) for each target-template alignment pair (see figure 3.2 and figure 

3.3, or the abbreviations section for explanations of SST1, SST2 and SST3). 

These four alignments contained different secondary structure restraints on the 

target, m o d eller  can use restraints calculated from the target’s predicted or 

assigned secondary structure in the hope to build a more accurate model.
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SEQ: vywtrspfmklrnghilivywmklrng TARGET

SST1: --HHHHH---- EEE-E-HHH-----HH----- TARGET

JPRED: ---- HHHH-------EEEE-HH-------HH----- TARGET

ELEPHANT — HHHHH------ EEEE-HHH-----HH----- TARGET

SEQ: vwrfmklghi iyw ln g lg i1hywwrft TEMPLATE

SST2: --HH---- EEE-E-HHH-HHH— HH----- TEMPLATE

-SST1 the dssp  assignment of the target secondary structure;
- JPred: the prediction of the target secondary structure;
- e l e p h a n t : the improved N-termini prediction of the target;
- SST2: no secondary structure restraints used, essentially the

secondary structure of the template.

Figure 3.2. Variations of Restraints: JPred, SST1, ELEPHANT and SST2 . The
different secondary structure restraints of the target (in green) are shown. The actual 
secondary structure of the target assigned by DSSP is shown in gold (SST1) and the 
secondary structure predictions by JPred and elephant shown in red. The SST2 (also 
in gold) is the actual secondary structure of the template (blue) which is equivalent to 
using no secondary structure restraints on the target.

3.4.4.1 Description ofSSTI
The first method (SST1) contained restraints from the target secondary 

structure supplied by dssp  (Kabsch & Sander, 1983) run on the target structure 

(i.e. the actual secondary structure restraints of the target). Normally, this is not 

known and hence this was used as the control. The third alignment method 

(JPred) used target restraints obtained from the JPred prediction program (Cuff 

et al, 1993) and the fourth (eleph an t ) from the eleph an t  prediction program. To 

impose the restraints, the starts and stops of every secondary structure element 

in the target was obtained and included in the m o deller  program.

3.4.4.2 Description of SST2

The second of the four different alignments used no specific secondary 

structure restraints (SST2). Instead, the actual secondary structure of the 

template was implicitly used -  this is the default behaviour in m o d e lle r .

3.4.4.3 Description of SST3
Since the inclusion of gaps in the target-template sequence alignment 

usually results in models with higher RMSDs, a fifth target-template alignment
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provided a potential control for inserting these gaps into the alignment: SST3 

(see figure 3.3 for a an example of SST3). SST2 was just the alignment of the 

target to the template with no secondary structure restraints applied (the default 

in MODELLER which will apply these restraints). SST3 contained the explicit 

secondary structure restraints of the template in the same way as the explicit 

restraints of the target; this was achieved by ‘masking’ out the template 

secondary structures and then reapplying the restraints in m o d e lle r . This was 

completed in the same way as the restraints of the target were applied for 

JPred, SST1 and eleph an t  (again see figure 3.2 and figure 3.3 for examples 

and explanations). A summary of SST1-SST3 can be found in the 

abbreviations.

(a)
SEQ: vyw trspfm klrngh ilivy TARGET

SEQ: vw rfm klghiiyw lng lg il TEMPLATE

SST2: --HH---- EEEEE— HHHHH- TEMPLATE

(b)
SEQ: vy—wtrsp-------- fmkl rng---------h il ivy TARGET

SEQ: vw rf— m klgh iiy-------- w ln g lg i— — 1 TEMPLATE
SST3: — HH-------- EEEEE------------ HHHHH---------- TEMPLATE

- SST2: no secondary structure restraints used, essentially the secondary 
structure of the template.

-  SST3: the template containing gaps inserted into it to remove the secondary

structure restraints of the template

Figure 3.3. Insertion of Gaps in the Target and Definition of SST2 and SST3. (a)
shows the original target-template alignment and the SST2 restraints, (b) shows the 
resulting alignment when gaps are inserted into the target (and the template to keep 
the alignment of the target-template residues the same) to ‘mask’ out the secondary 
structure restraints of the template, SST3.
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3.4.4.4 The Explicit Method

The first technique used to apply secondary structure restraints of the 

four different target-template alignments (Figure 3.2) for each protein pair 

included ‘masking’ out the secondary structure restraints of the template. In 

order for m o d eller  (Sali, 1993) to explicitly use the secondary structure 

restraints from the target, and not a combination of the target and the template 

restraints, the residues in the template that contained secondary structure 

information had to be aligned to gaps in the target (for an example see figure 

3.3) and then the secondary structure restraints of the target (either predicted or 

known) could be applied. Aligning the target residues to gaps in the template 

removed the secondary structure constraints from the template and allowed the 

secondary structure restraints of the target to be used in the model building 

stage. Removing the secondary structure restraints from the template meant 

that the all of the constraints from the template would be lost, which would 

probably result in models with lower accuracy.

3.4.4.5 The Combined Method
The second technique used to apply secondary structure restraints to 

the four different target-template alignments included a combination of the 

secondary structure restraints from the template and from the target. This was 

achieved by not explicitly stating the target restraints (that is, no gaps were 

inserted into the target when the corresponding template residues contained 

secondary structure information) but by just including the secondary structure 

information of the target; MODELLER would apply the restraints of both the 

template and the target. This meant for each target-template protein sequence 

alignment a total of nine models would be built: five for the explicitly defined 

target secondary structure restraints set (SST1, JPred, e le p h a n t , SST2 and 

SST3) and four for the combined set (SST1, JPred, e le p h a n t  and SST2). This 

meant there was a potential for 2637 (9x293) models to be built.

3.4.4.6 Secondary Structure Assignment
The most commonly used secondary structure assignment method, 

dssp  (Kabsch and Sander, 1983), was used to assign the secondary structure 

to the targets and the templates, sstruc  is an implementation of the dssp
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method used for the determination of amino acid secondary structure. The eight 

states from the dssp  assignments were converted to the usual three states; 

alpha helices (H), beta sheets (E)t and coil (C). These are considered the 

correct assignments for the secondary structure since they were taken from the 

PDB files of the experimentally determined structures.

3.4.4.7 Secondary Structure Prediction
The secondary structure predictions for the targets were carried out 

using the JPred (Cuff et al., 1998) server and the improved prediction method 

eleph an t  (Wilson et al, 2004). For more information on the prediction protocols 

please refer to chapter, section 2.6. The JPred predictions of the targets were 

predicted using the consensus method. Sequences were submitted in batches 

to the JPred server, which can be found at 

http://www.compbio.dundee.ac.uk/~www-JPred/. The eleph an t  target 

secondary structure predictions were completed using a local version.

3.4.4.8 Understanding how Fold Class Affects the Results

An investigation into the improvement of using the predicted secondary 

structure of the target rather than using the actual secondary structure of the 

template in terms of the fold class was completed. The protein targets were split 

into the secondary structure SCOP classes (all alpha helix, all beta sheet, alpha 

helix / beta sheet, alpha helix + beta sheet and 'others1) and percentage identity 

(between the target-template pair) bins to reveal how the different fold levels 

affect the improvement (if at all) in the Q3 score, at different percentage 

identities.

3.4.4.9 Assessing the Secondary Structure Predictions
The qualities of the secondary structure predictions were assessed 

using the Q3 and Qn (the N-termini residues predicted correctly) scores to 

calculate the overall accuracy and the N-terminal accuracy of the secondary 

structures. Obtaining these scores would reveal how much, if any, the elephant  

algorithm improves the quality of the predictions, and whether using the 

predicted secondary structure of the target might prove useful, specifically at the 

N-termini of the secondary structures (alpha helices in this case).
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3.4.5 Model Evaluation
The RMSDs of the alpha-carbons and main-chains were used as a 

guide to the model accuracy. As stated before, a highly successful model is 

usually considered to be one having an overall RMSD value of less than, or 

equal to, 2k over the whole protein fold; although, a model with lower accuracy 

(higher RMSD) can still prove useful. The models built using the predicted 

secondary structure restraints were compared to the models built using the 

secondary structure restraints for the template provided by d s s p . This enabled a 

comparison to be made to investigate whether using the predicted secondary 

structure of the target in the model building process resulted in more accurate 

models than using o nly the actual secondary structure of the template (no 

secondary structure restraints). These results were presented over various 

percentage sequence identities to find out where, if anywhere, the secondary 

structure predictions were most useful.

To evaluate the accuracy of the explicit method (the models built with 

the secondary structure restraints from the template ‘masked’ out, and the 

target secondary structure restraints applied) the models built with the 

secondary structure restraints from the target were compared to the models 

built with the secondary structure restraints from the template (the explicit way: 

SST3, see figure 3.3 for an explanation of SST3). They were also compared to 

the models built with the secondary structure restraints from the template (no 

restraints ‘masked’ out or applied). The combined method (the restraints from 

the target combined with the restraints from the template) was evaluated in the 

same way, but with only the models with the target restraints being compared to 

the models with the template restraints (no restraints were applied; essentially 

just the template). To assess the ability of eleph an t  to improve the helix N- 

termini, the residues in a helix conformation (or strand conformation for 

comparison) were assigned to be in a helical region if more than four helical 

residues existed in a seven residue window. The average RMSD from these 

residues was obtained, and a final average ‘helical’ RMSD was obtained for all 

of the helical regions in that sequence.
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3.5 RESULTS AND DISCUSSION
To assess how much improvement was made when using the predicted 

secondary structure of the target instead of the actual structure of the template 

during the model building stage in comparative modelling, the amount of 

improvement made by the predicted secondary structure over the actual 

secondary structure was obtained in by observing the differences in the Q 

scores. The results from the secondary structure prediction method JPred and 

eleph an t  were compared to one another and also to the secondary structure 

assignment results of dssp  to determine how much, if any, the eleph an t  

prediction method had improved the models. The different models were 

assessed using the RMSD values to determine whether using the secondary 

structure prediction actually improved the quality of the models.

3.5.1 Assessing the Use of the JPred Algorithm
By calculating the percentage of correctly predicted secondary structure 

(obtained by JPred) states of the target compared to the correctly assigned 

states (provided by dssp ) of the template, with respect to the target-template 

alignment, the results would reveal whether using the predicted secondary 

structure of the target was beneficial (Figure 3.4). It was noted that the 

improvement in accuracy increases as the percentage identity of the pair 

decreases. It is possible to see from graph (a) in figure 3.4 that, on average, 

using the predicted secondary structure of the target (when the percentage 

identity is above 50%) results in a lower Q3 score, and therefore actually makes 

the "prediction” worse in most cases, than when using the actual secondary 

structure of the template. This mean that using the assigned secondary 

structure restraints through alignment is more accurate than using the predicted 

secondary structure restraints when the alignment is easy (the sequences share 

high sequence similarity). T he situation is quite different for target-template 

pairs closer to and beyond the twilight zone in graphs b)-d). Here, there is an 

increasing proportion of target-template pairs where the predicted target 

secondary structure is closer to the true, target DSSP assignments than the 

template. Indeed, graph (d) shows the most improvement when using the 

predicted secondary structure, where this is upheld for the majority of the pairs.
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This is encouraging as a platform to improve the quality of models built at this 

similarity (below ~40% identity), where using the predicted secondary structure 

appears to outperform using the template’s implicit secondary structure as a 

basis for modelling. The improvement in the quality of the models could be due 

to real differences between the secondary structure of the target and the 

secondary structure of the template in pairs sharing low percentage sequence 

identity or it may be because the transfer of secondary structure information 

depends on the quality of the alignment and errors in alignments are more 

frequent and significant in these pairs. It is difficult to distinguish between these 

reasons for improvement but it would be interesting to optimise the alignments 

more before applying the secondary structure restraints to understand the 

reason for this improvement.
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Figure 3.4. How well does Secondary Structure Prediction do? The X-axis shows 
the percentage improvement in Q3 made when using the predicted states of the target 
from JPred compared to using the assigned states of the template (made by DSSP). 
The predicted JPred secondary structure of the target and the actual secondary 
structure of the template were compared to the actual (DSSP assigned) secondary 
structure of the template. The Y-axis is the percentage of protein pairs that this holds 
true for. These were split up into bins according to the percentage sequence identity 
between the target and template. The percentage identity bins are inclusive except for 
graph (a), all target-template pairs above 50% sequence identity. The others 
correspond to all pairs below 50% in (b), below 40% in (c) and below 30% in (d). 
Negative numbers indicate pairs where the predicted secondary structure of the target 
was less accurate than using the actual structure of the template -  the norm for pairs 
above 50%.

It is worth noting that the majority of typical sequence similarities for 

homologous protein pairings from a simple blast  search against PDB are in 

and around the twilight zone (Figure 3.5).
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20
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Figure 3.5. Potential Models and Percentage Sequence Identity. The plot shows 
that most of the models that can be built are in the lower region of percentage 
sequence identities (between 20-40%). A search of the PDB against itself, removing 
self-self hits, revealed potential homologues.

3.5.2 Assessing the Use of the Improved Algorithm, e l e p h a n t

Once it was established that using the predicted secondary structure of 

the target was more accurate than using the actual secondary structure of the 

template, at least for target-template pairs below 40% identity, the improved N- 

termini prediction program elephant  was evaluated. It was hoped that this could 

increase the accuracy of the secondary structure prediction of the target further. 

The hypothesis was that eleph an t  should improve the QN score (the N-termini 

residues predicted correctly) and the scores of the secondary structure whilst 

not affecting the Q3 score (the overall accuracy of the three predicted states - 

Helix, Strand, Coil). The results can be seen in Table 3.1.
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Percentage Number SST2 JPred e l e p h a n t

Identity of Pairs Q3 Qn Q3 Qn Q3 Qn

<=100 293 84.59 58.19 76.71 32.40 76.66 37.28

<=50 196 80.45 49.78 76.18 32.68 76.13 37.68

<=40 162 78.85 46.59 75.72 34.09 75.62 38.76

<=30 114 74.91 41.54 74.96 33.11 74.87 37.98

<=20 56 69.45 31.29 74.68 34.26 74.64 38.77

Table 3.1. Q3 and QN Scores. The resulting average Q3 and QN scores for the DSSP 
assignments of the secondary structure for the template and for the secondary 
structure predictions of the target from JPred and elephant are shown. Comparisons 
were made to the DSSP assignments of the target structure as the standard of truth. 
They are grouped into different percentage identity bins which are inclusive.

Table 3.1 displays the Q3 and the QN scores of the assigned, actual 

secondary structures of the template (SST2) and the predicted secondary 

structures of the target (JPred and eleph an t ) when being compared to the 

actual assigned secondary structures of the target. Overall, the accuracy of all 

of the methods (more evident with SST2) decreases as the percentage identity 

between the target and the template decreases; this holds true for the N-cap 

accuracy (QN) as well. The predictions from JPred and eleph an t  (regarding the 

N-cap and the overall accuracy) fail to improve upon the actual assignments 

from SST2 within all of the percentage identity bins (inclusive bins were used 

due to the relatively low numbers of proteins in each 

individual bin if the bin was split. Using exclusive bins would have meant fewer 

protein pairs in each bin making it harder to observe 

trends), except for below 20% identity. At this low sequence similarity level the 

predictions are more accurate by around 5%, on average, for the Q3 scores and 

around 3%-7% for the QN scores. Indeed, the QN scores improve by over 7% 

when the eleph an t  algorithm was used as the prediction method. It is indeed 

true that the N-caps of the elephant  predictions were improved on from the 

JPred predictions, whilst keeping the overall accuracy of the predictions the 

same. Improving the accuracy of secondary structure prediction at the N-termini 

of helices using the eleph an t  algorithm meant that regions at the start of loops
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should be better modelled, improving the trajectory of the end of the loop, 

leading to more accurate models being built.

3.5.3 Fold Class and the Predictions
The eleph an t  predictions showed the most improvement over the dssp  

assignments in alpha helices, with below 50% sequence identity to the template 

(Figure 3.6), and the least improvement was seen in the beta sheet classes. 

This is partly because beta sheet classes are where most prediction algorithms 

fail to predict with high accuracy. More obviously, the ele p h a n t  algorithm only 

attempts to improve predictions at the fringes of alpha helices.
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3.5.4 Model Evaluation
The explicit method was evaluated by comparing the models built with 

the explicit secondary structure restraints of the target (SST1, JPred and 

eleph a nt) to the models built using the explicit secondary structure restraints of 

the template (SST3) and the model built using just template sequence (no 
restraints explicitly assigned). Here, explicit means no other secondary structure 

restraints were used, that is, those restraints from the template were removed, 

and then those of the target were applied.

3.5.4.1 The Explicit Method
For the explicit method, five models per target-template pair were built: 

SST1, JPred, eleph a n t , SST2 and SST3. The number of models actually built 

in each of these cases can be seen in table 3.2. No method built the full 293 

alignment pairs, however SST2 built the most: 290 models, and SST1 the least: 

287 models. For some of the more difficult models (target-template pairs 

sharing below 20% sequence identity) MODELLER exceeded the maximum 

number of errors allowed during model building, thus the models did not build.

Percentage
Identity

SST1 JPred• ELEPHANT SST2 SST3

<=100
....................._....... .. ........... .

287 288 288 290 289

<=80 249 250 250 252 251

<=60 214 215

toC\j 217 216

<=40 157 158 158 160 159

<=30 110 111 111 112 112

<=20 53 54 54 54 54

Table 3.2. Number of Pairs Built for the Explicit Method. The total number of 
successful models built in the percentage identity bins (which are inclusive) using the 
different secondary structure restraints can be seen.

The average alpha-carbon RMSD over the different percentage identity 

bins for the different secondary structure restraints is shown in table 3.3.
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Percentage
Identity

SST1 (A) JPred (A) elephant SST2 (A) SST3 (A)

<=100 11.17 11.40 11.35 5.71 12.01

<=80 11.60 11.85 11.78 6.15 12.36

<=60 12.17 12.41 12.33 6.82 12.74

<=40 13.32 13.38 13.27
.........-.. ....................... .................................

8.08 13.72

<=30 14.36 14.40 14.34 10.05 14.66

<=20 16.07 15.80 15.86 12.68 16.31

Table 3.3. Average RMSDs for the Explicit Method. The average alpha-carbon 
RMSD over all of the models built using the different secondary structure restraints is 
displayed in inclusive bins.

The RMSD of the models increases as the percentage identity 

decreases (Table 3.3), most dramatically in the twilight zone where model 

building becomes less than trivial. Indeed, it increases from an average of 

12.01A (for the alpha-carbon explicit secondary structure of the template: SST3) 

in the below 100% sequence identity bin (inclusive bins) to an average of 

16.31 A, when the sequence identity between the target and the template drops 

below 20%. Improvement in the average RMSD is seen in all percentage 

identity bins when comparing the models built using predicted secondary 

structure of the target made by elephant to the models built using the actual 
secondary structure of the template (SST3). However, when the average RMSD 

of the models for the explicit method using the template restraints was 

compared to the average RMSD of the models built using only the template (no 

restraints applied: SST2), SST2 is more accurate. SST2 achieves an RMSD of 

5.71 A for the 100% percentage identity inclusive bin, whereas SST3 achieves 

an RMSD of 12.01A in the same percentage identity inclusive bin. The results 

for the average alpha-carbon helical and sheet RMSD over all of the models 

built using the different secondary structure restraints can be seen in Appendix 

1. Appendix 1 also contains the figures showing the number of pairs which have 

lower RMSDs than SST3, and a figure showing improvement in RMSD when 

comparing the resulting models built using the different secondary structure 

restraints to those models built using the restraints explicitly from the template.
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Evidently, the explicit method holds no improvement over just using the 

template structure because of the numerous gaps introduced when trying to 

explicitly assign the secondary structure of the target. This leads to the 

evaluation of the combined method.

3.5.4.2 The Combined Method
In the combined method, four models per target-template pair were 

built: SST1, JPred, elephant and SST2. The combined method refers to an 

approach where the template restraints were combined with either the predicted 

or actual restraints of the target (see section 3.4.4 for a more detailed 

explanation of the combined method). The number of models built in each of 

these cases can be seen in Table 3.4. JPred built the full 293 alignment pairs, 

with the remaining methods building 292 alignment pairs; an improvement over 
the number of successful models built with the explicit method.

Percentage
Identity

ELEPHANT SST2

<=100 292 293 292 292

<=80 254 255 254 254

<=60 219 220 219 219

<=40 161 162 161 161

<=30 113 114 113 113
<=20 55 56 55 55

Table 3.4. Number of Pairs Built for the Combined Method. The total number of 
successful models built in the percentage identity inclusive bins using the different 
secondary structure restraints can be seen.

Decreasing percentage identities of the target-template pairs was 

coupled with increasing RMSDs (Table 3.5). The average RMSD values for the 

pairs in the 100% bin increased from 5.69A to 12.19A for the SST2 models. 

SST1 and JPred consistently have lower average RMSDs than SST2. elephant 

improves over SST2 when the percentage sequence identity of the pairs drops
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below 60%. The SST1 results display the potential for improvement by using 

the actual secondary structure of the target combined with the actual secondary 

structure from the template, compared to only using the actual restraints from 

the template (SST2). The limiting factor was due to the introduction of errors 

(hence higher RMSDs) by the secondary structure prediction methods JPred 
and e leph a n t , thus JPred and elephant do not obtain the same, lower RMSDs 

that SST1 achieves. However, one must remember that SST1 represents a 

theoretical “optimal” performance, given that these are the known secondary 

structure restraints of the true structure.

Percentage
Identity

SST1(A) JPred(A)
.

elephant(A) SST2(A)

<=100 5.41 5.67 5.75 5.69

<=80 5.85 6.11 6.21 6.17

<=60 6.52 6.77 6.77 6.86

<=40 7.73 7.93 7.93 8.13

<=30 9.24 9.46
.

............................... ,.......................

9.47 9.78

<=20 11.65 11.72 11.79 12.19

Table 3.5. Average RMSDs (in Angstroms) for the Combined Method. The
average alpha-carbon RMSD over all of the models built using the different secondary 
structure restraints is displayed in inclusive bins.

To examine the ability of elephant  to improve the modeling of the N- 

termini of alpha helices, the average RMSD of all of the helical regions in the 

target structure was calculated and compared to the average RMSD of the 

helical regions of JPred and SST2 (Table 3.6). elephant  obtains lower average 

RMSDs than JPred for the helical regions when the percentage sequence 

identity falls below 30%; as an average it is marginal (0.02A and 0.03A) but the 

improvement of elephant over SST2 is found within all of the percentage 

identity inclusive bins. Below 20% sequence identity eleph a nt  obtains a 0.39A  

improvement over SST2.
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Percentage SST1(A) 
Identity

JPred (A)
;

e le p h a n t (A) SST2(A)

<=100 0.48 0.62 0.62 0.71

<=80 0.51 0.66 0.66 0.77

<=60 0.55 0.71 0.71 0.85

COdotTIIV

0.81 0.81 0.99

<=30 0.72 0.90 0.88 1.13

<=20 0.84 1.07 1.04 1.43

Table 3.6. Average Helical RMSDs (in Angstroms) for the Combined Method. The
average alpha-carbon helical RMSD over all of the models built using the different 
secondary structure restraints is displayed in inclusive bins.

The strand regions are modeled to similar accuracies for JPred and 

ELEPHANT (Table 3.7) as elephant does not alter the residues in beta strand 

conformation. Improvements over using the template secondary structure 

(SST2) can be seen only when incorporating the actual secondary structure 

restraints from the target (SST1). This emphasises the limitations of secondary 

structure prediction programs when predicting beta strand conformations (Levin 

& Gamier, 1988).

Percentage SST1 JPred ELEPHANT SST2
. -  *:>

<=100 0.72 0.80 0.80 0.73

<=80 0.79 0.86 0.86 0.79

<=60 0.82 0.93 0.93 0.88

<=40 0.93 1.07 1.06 1.01

<=30 1.18 1.26 1.25 1.19

<=20 1.51 1.57 1.56 1.52

Table 3.7. Average Strand RMSDs (in ngstroms) for the Combined Method. The
average alpha-carbon strand RMSD over all of the models built using the different 
secondary structure restraints is displayed in inclusive bins.
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The number of pairs improved when using the restraints from JPred, 

eleph an t  or SST1 (combined with using the restraints from the template) 

compared to using the restraints from the template alone (SST2) over the 

different percentage identity inclusive bins can be seen in figure 3.7. The overall 

number of pairs does vary, however this is only by one or two pairs (figure 3.4). 
For the global, helical and strand RMSD averages, the number of pairs where 

an improvement is seen decreases as the percentage identity of the pair 

decreases, this holds true for all of the predicted secondary structure programs. 

As the percentage identity decreases, the number of pairs with an improvement 

in the RMSD when using the JPred or elephant  secondary structure prediction 

programs, becomes almost equal to the number of improved pairs when using 

the actual secondary structure of the target (SST1). The number of pairs with 

lower global RMSDs built using the elephan t  secondary structure restraints 

(combined with the template secondary structure restraints) rather than using 

the template restraints alone, ranges from around 140 pairs in the 100% identity 

bin to around 50 pairs in the 20% identity bin. To examine the extent of the 

improvement, the average improvement in the RMSD of the models was 
calculated (Figure 3.8).
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Figure 3.7. The Number of Pairs with Lower RMSDs than SST2. (a) shows the 
number of pairs which have lower RMSDs (an improvement) than SST2 (the template 
with the secondary structure restraints obtained from DSSP), (b) displays the results for 
the regions which are in helical conformation and the graph in (c) shows the results for 
the regions in beta strand conformation. All RMSDs are between the alpha-carbons of 
the target and template and reflect the results when using the combined target and 
template restraints method.
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The average improvement in global RMSD (Figure 3.8a) increases as 

the percentage sequence identity decreases. For e le p h a n t, the RMSD ranges 

from -0.1 A (a minus indicates an increase in RMSD) to 0.6A, for JPred it ranges 

from 0A to 0.4A and for SST1, from 0.3A to 0.7A. The largest improvement is 

found in the lowest percentage identity bin; 20%, this holds true for all of the 

models that have been built from a combination of target secondary structure 

restraints and template secondary structure restraints. For the helical regions 

(Figure 3.8b) a similar trend is observed; as the percentage sequence identity 

decreases, larger improvements are seen. Larger improvements in the helical 

RMSDs exist in the models built using e le p h a n t restraints, rather than those 

built using JPred restraints sharing below 40% sequence identity (Figure 3.8b). 

Although more pairs are improved in the higher percentage identity bins (Figure 

3.7), greater improvements are seen in the lower percentage identity bins 

(Figure 3.8). Only slight improvements are seen for the strand regions when the 

models have applied the SST1 secondary restraints combined with the template 

restraints over using the template restraints alone (Figure 3.8c); E le p h a n t and 

JPred reduce the accuracy of the modelled beta strands in all instances. This 

may be because ELEPHANT only works on helices so the stands will not be 

improved by this method, it may also be due to beta strands being more difficult 

to predict (Ganier & Levin, 1988) and so the prediction methods apply restraints 

which are not as accurate as using the template actual restraints, even when 

the target-template sequence identities fall into the twilight zone. An example 

input for MODELLER can be seen in Appendix 1, Figure A1.1.

Overall, these results d emonstrate that comparative models can be 

improved by careful and judicial use of secondary structure restraints derived 

from predicted secondary structure. This can improve the overall quality of 

models, as well as local regions around the secondary structures themselves. In 

this case, particularly helical segments were improved. Although this effect is 

general for all evolutionary distances of the target-template pairs, it is clear to 

see that those closer to the twilight zone stand to benefit from the most 

improvement.
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Figure 3.8. The Improvement in RMSD. The graphs show the average 
improvement in RMSD when comparing the resulting models built using the different 
secondary structure restraints (combined with the template restraints) to those models 
built using just the restraints obtained from the template (SST2). (a) shows the average 
improvement in RMSD between the alpha-carbons of the target and template, (b) 
displays the RMSD results for the helical regions and (c) shows the average RMSD 
results for the beta strand regions.
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As noted, the use of predicted secondary structure (over using the 

template structure alone) does have some benefits for structure prediction and 

some specific examples are presented here. An example of a protein target- 

template pair (1m2x_A+1dxk_A) is shown in figure 3.9.

Figure 3.9. 1m2x_A PDB. The structure of the target of 1m2x chain A (taken from the 
PDB) is shown. Alpha helices are shown in red and beta sheets in yellow. The figure 
was produced using PyMOL (DeLano 2004).

The protein pair 1m2xA+1dxkA share 35% sequence identity. The 

resulting model built by ELEPHANT has an alpha-carbon RMSD of 1.62A. The 

protein shown in figure 3.9 (1m2xA) is a hydrolase containing a four layer 

sandwich of 219 residues. The model built using the predicted target secondary 

structure restraints made by ELEPHANT (using the combined method) was 

more accurate than the model built using only the secondary restraints from the 

template. The alpha-carbon RMSD of the model built using the template
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restraints was 2.30A compared to 1.62A when using the target restraints as 

well.

Including secondary structure prediction in the model building process 

has managed to improve some of the alpha helical structures (figure 3.10). The 

model built using the target secondary structure restraints made by ELEPHANT 

(right hand image in pink) is closer to the actual structure of the target (shown in 

blue in both images) than the model built just using the template secondary 

structure restraints (the left hand image, shown in pink).

Figure 3.10. 1m2xA Models. The PDB structure of the target of 1m2x, chain A, is 
shown in blue in both images. The left hand image contains the model built with the 
template structure (without any secondary structure restraints and shown in pink) 
superimposed on the actual structure of the target (in blue). The right hand image 
contains the model built with the secondary structure restraints of ELEPHANT in pink, 
superimposed onto the PDB structure of the target, again in blue. Notice the helix in the 
lower left-hand corner of the image is closer in structure to the actual structure in the 
ELEPHANT image. The N-termini of the alpha-helix which has been improved is the 
bottom of the helix in the left hand bottom corner of both figures. The image was 
created using Rasmol (Sayle, 1993).

101



Secondary Structure Prediction and Comparative Modelling Chapter 3

The helix of the model (target 1m2xA) has been isolated to display the 

difference in accuracy of the methods more clearly (Figure 3.11). The helix built 

using the ELEPHANT restraints of the target and the restraints of the template, 

is closer in structure to the PDB of the target, than the model built using only the 

restraints of the template.

Figure 3.11. 1m2xA Alpha helices. The PDB structure of the target of 1m2x chain A 
is shown in blue. The left hand image contains the model built with the template 
structure, in red, (without any secondary structure restraints) superimposed on the 
actual structure of the target (in blue). The right hand image contains the model built 
with the secondary structure restraints of ELEPHANT in red, superimposed onto the 
PDB structure of the target, again in blue. The N-termini of the alpha-helix is at the 
bottom of this figure.

In some cases, there is an improvement using the predicted secondary 

structure restraints from ELEPHANT over using the predicted secondary 

structure restraints from JPred. Figure 3.12 shows one of these examples. 

1gy7A shares 39% sequence similarity with the template 1qmaA, and the model 
built using restraints from JPred achieves an RMSD of 1.61 A, the ELEPHANT 

model obtains a lower RMSD of 1.41 A.
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Figure 3.12. 1gy7_A PDB. The structure of the target of 1gy7 chain A (taken from the 
PDB) is shown. Alpha helices are shown in red and beta sheets in yellow. The figure 
was produced using PyMOL (DeLano 2004).

Figure 3.13 shows the improvement made when using ELEPHANT over 

JPred in the model building process, particularly the start of the helix. For visual 

ease, this helix is isolated in figure 3.14.

Figure 3.13. 1gy7A Models. The PDB structure of the target of 1gy7 chain A is shown 
in blue in both images. The left hand image contains the model built with JPred 
secondary structure restraints shown in pink, which has been superimposed on the 
actual structure of the target (in blue). The right hand image contains the model built 
with the secondary structure restraints of ELEPHANT in pink, superimposed onto the 
PDB structure of the target, again in blue. Notice the N-termini of the centre helix The 
image was created using Rasmol (Sayle, 1993).
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The N-terminus of this particular helix was closer in structure to the 

target when the secondary structure restraints were obtained from ELEPHANT 

rather than JPred. This also improved the overall accuracy of the helix. The 

average RMSD value of the helices in the 1gy7A model when using the JPred 

restraints was 0.3 A and for ELEPHANT it was 0.24A.

Figure 3.14. 1gy7A Alpha helices. The PDB structure of the target of 1gy7 chain A is 
shown in blue. The left hand image contains the model built using the restraints of 
JPred, shown in red, superimposed on the actual structure of the helix from the target 
PDB (in blue). The right hand image contains the model built with the secondary 
structure restraints of ELEPHANT in red, superimposed onto the PDB structure of the 
helix, again in blue. Notice the improvement of the N-termini of the helix in the 
ELEPHANT model. The N-termini of the alpha-helix is at the bottom of this figure.

Another example where ELEPHANT was found to be an improvement 

over JPred was 1ik2A (Figure 3.15). 1ik2A and 1a0gA shared a modest 20% 

sequence identity. The average RMSD for the helix residues in the model 

produced when using the restraints from JPred was 0.83A, which was lowered 

to 0.76A when using the restraints from ELEPAHNT to build the model.
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a /

Figure 3.15. 1i2k_A PDB. The structure of the target of 1i2k chain A (taken from the 
PDB) is shown. Alpha helices are shown in red and beta sheets in yellow. The figure 
was produced using PyMOL (DeLano 2004).

The models produced by JPred and ELEPHANT superimposed onto the 

actual structure of the target can be seen in figure 3.16. The improvement in the 

N-termini of the helix in the top left hand corner can be seen (the model built 

using the ELEPHANT restraints is closer to the actual structure than the model 
built using JPred’s restraints).
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Figure 3.16. 1i2kA Models. The PDB structure of the target of 1ik2 chain A is shown 
in blue in both images. The left hand image contains the model built with JPred 
secondary structure restraints shown in pink, which has been superimposed on the 
actual structure of the target (in blue). The right hand image contains the model built 
with the secondary structure restraints of ELEPHANT in pink, superimposed onto the 
PDB structure of the target, again in blue. Notice the N-terminus of the top left helix. 
The image was created using Rasmol (Sayle, 1993).

The top left hand helix of the 1i2kA structure has been improved when 

using the restraints from ELEPHANT rather than the restraints from JPred 

(Figure 3.17).
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Figure 3.17. 1i2kA Alpha helices. The PDB structure of the target of 1i2k chain A is 
shown in blue. The left hand image contains the model built using the restraints of 
JPred, shown in red, superimposed on the actual structure of the helix from the target 
PDB (in blue). The right hand image contains the model built with the secondary 
structure restraints of ELEPHANT in red, superimposed onto the PDB structure of the 
helix, again in blue. Notice the improvement of the N-termini of the helix in the 
ELEPHANT model. It appears here that the structures have the same N-termini here 
however ELEPHANT has produced a model where the structure is closer to that of the 
actual structure and thus is still an improvement.

From the examples it has be shown that using the secondary structure 

restraints of the target combined with the secondary structure restraints of the 

template, more accurate models can be built than when using the restraints of 

the template alone. This has been possible even when the sequence identity of 

the pairs reaches into the twilight zone. The modelled N-termini of alpha helices 

was improved when the secondary structure restraints were obtained from the 

ELEPHANT algorithm rather than from the JPred algorithm.

3.6 CONCLUSIONS AND FUTURE WORK
The aim of this project was to improve structure prediction, more 

precisely comparative modelling. It is a non-trivial task to produce accurate 

comparative models when the target-template sequence identity falls below 

30%. It was proposed that by using the secondary structure of the target to 

guide the model building process it could be possible to improve the overall
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model accuracy. JPred provided secondary structure predictions of the target 

and eleph a nt  provided secondary structure predictions with improved N-caps. 

These predictions were assessed using the Q3 a nd QN sco res against the 

assigned secondary structure of the template provided by d s s p  to discern 

whether using the predicted secondary structure of the target offered more 

accurate results than using the actual secondary structure of the template. 

Models were built with the secondary structure restraints obtained from the 

JPred, elephant and d s s p  algorithms across a range of percentage sequence 

identities between the target and template.

The results of this project revealed that models built using the predicted 

secondary structure of the target and the combined secondary structure of the 

template, were closer to the actual structure of the target than those models 

built when using the actual secondary structure of the template alone. This held 

true for a large number of candidate modelling pairs. This worked using the 

combined method rather than the explicit method. For an explanation of the 

explicit and combined methods please refer to section 3.4.4.4 and 3.4.4.5. 

Additionally, elephant  improved some predictions of the N-caps of alpha 

helices over JPred. Furthermore, the actual niche for this improvement was 

established; sec ondary structure prediction improved the r egions where the 

target-template sequence identity was below 30%, this is indeed where 

comparative modelling tends to struggle at producing accurate models. Using 

the predicted secondary structure restraints in comparative modelling aimed to 

improve only the model building step of this process, it may be worth optimising 

the alignment between the target and template before applying these restraints.

In summary, this study has presented a method to increase the 

accuracy of comparative protein modelling when the target-template identity 

falls below 30-40%. It not only decreases the RMSD of the model but also 

increases the accuracy of the starts of the helices, thus potentially increasing 

the accuracy of the attendant loops modelled (this has not been shown directly 

in this project, but would be worth investigating in the future). This improvement 

is considered to be significant when trying to improve the comparative modelling
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of any protein which shares below 30% sequence similarity to its template. It is 

also plausible that this method could optimize the modelling of key loop regions 

where a misplacement of one residue can have significant detrimental effects 

on the region being modelled.

The next stage of this project would include learning how and when to 

ignore the actual secondary structure restraints of the template and just use the 

predicted restraints of the target. At present, the combined method uses the 

actual restraints of the template and then uses the predicted restraints 

additionally. A rather simplistic approach has been applied, but a more 

intelligent one would seek to find patterns or rules to decide when to use 

template structural restraints and when to use predicted properties from the 

target sequence itself.

This general approach, of using target-predicted features to guide 

comparative modelling, is not widely used in protein structure prediction, and 

this work suggests novel applications in comparative modelling protocols. 

Previously it has always been thought better to use the actual structure of the 

template rather than the predicted secondary structure of the target, and it is 

hoped that these proof-of-principle results can be fully exploited to improve the 

modelling process.
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4 . A lig n m en t P ro to c o ls

4.1 AIM
The aim of this study was to investigate various alignment techniques 

which included sequence-sequence based methods, sequence-profile based 

methods and profile based methods using peptidase sequences and 

structures. Alignments were assessed as a precursor to comparative model 

building, hence accuracy was expected to influence the overall quality of the 

models built. The accuracy of the overall alignment was assessed, as well as 

the accuracy of the interface regions, in order to extend the investigation into 

whether these methods can align the interface residues more accurately than 

they can align the rest of the sequence, and if so, which method can do this 

best. This chapter covers the introduction of the alignment methods used and a 

brief introduction on the importance of using peptidases as a test case. It also 

puts the use of alignments in the comparative modelling process in perspective. 

A more detailed explanation of comparative modelling can be found in the main 

introduction section (Chapter 1).

4.2 INTRODUCTION
The growth of experimentally determined protein structures is heavily 

outpaced by the growth of available protein sequences. One important role in 

reducing disparity between the volume of sequence and structural information 

belongs to computational methods. Of these, comparative modelling is usually 

the method of choice when it comes to structure prediction from protein 

sequences that are related to known structures (Venclovas & Margelevicius, 
2005).

4.2.1 The Importance of a High Quality Model
Acquiring the three-dimensional structure of a protein is an important 

asset to understanding its biological function and in turn aids drug discovery. 

Even when comparative modelling produces protein models of only modest 

accuracy, significant information about the ligand it binds can be extracted, as
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long as the interface region has been modelled to an acceptable level. This is 

because the quality of the alignment between target and template sequences is 

the single most important factor in determining the accuracy of the 3D model 

(Fiser et a/., 2001), it is of substantial interest to develop methods that can both 

provide highly accurate sequence alignments. Accuracy in the alignment of 
protein sequences is key to a number of biological problems, including those of 

gene annotation, phylogeny determination, protein structure modelling and 

protein function annotation (Mahusudhan et a/., 2006).

4.2.2 Sequence Identity and Alignment Errors
Modelling a target-template pair sharing high sequence similarity 

(usually considered above 40% pair-wise identity) is relatively trivial; it is the low 

percentage sequence identity, below 20%, (the twilight zone) pairs where major 
difficulties are encountered. In this range of sequence similarity, the largest 

errors in comparative modelling due to misalignments begin to appear (Sanchez 

& Sali, 1997). When proteins share 30-50% identity, significant shifts between 

different alignments emerge, mostly in loop regions (Jaroszewski et al., 2002). 

When sequence identity is below 30%, sequence alignments become very 

unstable, changing dramatically with scoring matrices and gap penalties (Vogt 

et al., 1995); they essentially become random for structurally similar proteins 

with undetectable sequence similarity (Holm et al., 1992). At very low sequence 

identity, structures diverge significantly enough so that some parts of the 

sequence al ignment lose meaning, thus there is a limit to how accurate a 

sequence alignment can be (Grishin, 2001). Studies have shown that protein 

sequence alignment methods often fail to align sequences accurately (Saqi et 

al., 1998), and that none of these techniques produce consistently good 

solutions for all cases (Rai & Fiser, 2006). CASP5 re-iterated the significance 

and difficulty of alignment errors: a number of structurally conserved regions in 

submitted models of remote evolutionary distance from the template were 

misaligned. Analysis of these errors indicates that the absolute majority of them 

occurred in regions deemed unreliable in the course of model building 

(Venclovas, 2003). An average misalignment of only one residue position could 

result in an error of approximately 4A in the model (Fiser & Sali, 2003) and any
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change in distance as large as this will result in a loss of function. One or two 

misplaced residues can substantially reduce a protein’s predicted affinity for its 

substrate (Kimura et al., 2001). This proves that structural errors seriously limit 

the value of the models in biological applications (Prasad et al., 2003).

4.2.3 Alignments in Comparative Modelling
Searching methods used during the target-template alignment stage of 

comparative modelling (step one in the modelling protocol) are usually tuned for 

detection of remote relationships, not for optimal alignments (Marti-Renom et 

al., 2003), and often include only regions of high similarity between the query 

sequence and the database hits. A simple and classic example is the BLAST 

algorithm, which finds homologues based on local alignment properties only. 

This means that it is usually necessary to realign the selected template to the 

target sequence (Tramontano, 1998), step two in the comparative modelling 

protocol. The “correct” sequence alignment is the alignment in which structurally 

equivalent positions are correctly aligned. Of course, in reality, the information 

about the structure of one of the proteins is not available and the alignment 

must be inferred from sequence alone (Tramontano, 1998).

4.2.4 Different Alignment Techniques
Alignments can be generated by a pair-wise alignment (aligning two 

sequences) or a multiple sequence alignment (aligning more than two 

sequences which share homology). Alignments may be generated by 

increasingly complex methods, which are usually coupled with increasing 

accuracy, in the form of a sequence-sequence alignment, a sequence-profile 

alignment, or a profile-profile alignment. The standard profile or position-specific 

sequence matrix (PSSM) can be replaced with a hidden Markov model (HMM) 

to produce a sequence-HMM alignment, or even a HMM-HMM alignment. 

Alignments can be global or local and can incorporate the use of dynamic 

programming. These protocols are discussed in the following sections.
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4.2.4.1 Dynamic programming
Dynamic programming (Needleman & Wunsch, 1970; Smith & 

Waterman, 1981) calculates the score of the optimal alignment between two 

protein sequences and provides a single alignment with this score (Jaroszewski 

et al., 2002). Dynamic programming optimises a scoring function that depends 

on residue-residue substitution scores and penalties for the creation and 

extension of gaps (Madhusudhan et al., 2006). It does not provide information 

about how many different alignments have scores close to the optimal one, and 

how different these alignments are. In principle this information is easily 

available in alignment algorithms based on high-scoring segment pairs, such as 

those used in BLAST (Jaroszewski et al., 2002). There is a great variety of 

protein sequence alignment methods, many of which are based on dynamic 

programming techniques (Barton & Sternberg, 1987; Taylor et al., 1994). 

Dynamic programming algorithms that use standard substitution matrices, such 

as PAM (Dayhoff & Eck, 1968) or BLOSUM (Henikoff & Henikoff, 1992) were 

the initial methods of choice. Although dynamic programming guarantees the 

optimal solution, the insensitivity and generality of the substitution matrices 

limited the usefulness of such methods to cases of high sequence identity 

(Marti-Renom et al., 2003).

4.2.4.2 Global Alignments, Needleman and Wunsch
The original and arguably still most popular method for sequence 

alignment is based on the dynamic programming algorithm of Needleman and 

Wunsch (Needleman & Wunsch, 1970). The Needleman and Wunsch global 

alignment algorithm (figure 4.1) determines the alignment and the alignment 

score of a pair of sequences by finding the highest score and the maximum 

match pathway that leads to the accumulation of the highest score in the two- 

dimensional array (Yang, 2002). It has since been built upon to improve its 

accuracy and speed (Thompson et al., 1994; Myers & Miller, 1988).
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C(MJ)

Figure 4.1. The Needleman-Wunsch Algorithm. The cells of the score matrix are 
labelled C(i; j) where i = 1, 2....N and j = 1, 2....M. The value of the cell C(i; j) depends 
only on the values of the immediately adjacent northwest diagonal, up, and left cells.

4.2.4.3 Local Alignments, the Smith-Waterman Algorithm
The Smith-Waterman algorithm (1981) is based on the Needleman and 

Wunsch global alignment algorithm. Instead of looking at each sequence in its 

entirety, this compares segments of all possible lengths and reports sub­

sequences which optimise the similarity measure hence, not all of the sequence 
is always retained.

4.2.4.4 Pair-wise and Sequence-Sequence Alignments
Pair-wise sequence alignment programs consider all possible 

alignments and gap positions and create the alignment with the highest score 

and the fewest gaps. In general, they use the alignment methods of Needleman 

and Wunsch (Needleman & Wunsch, 1970) or some modification of it 

(Tramontano, 1998). At 40% sequence identity, alignments by pair-wise 

methods are only 80% correct on average and this number drops sharply at 

lower similarity ranges; they especially become random for structurally similar 

proteins with “undetectable” sequence similarity (Holm et al., 1992; Orengo et 

al., 1997).

4.2.4.5 The use of Multiple Sequence Alignments
The use of multiple sequence alignments (Gribskov et al., 1987; 

Gribskov et al., 1990; Gribskov, 1994) has improved alignment accuracy 

considerably. This is because a multiple sequence alignment of homologous
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sequences contains more information about the sequence family than a single 

sequence (Soding, 2005). It hopefully aligns residues in a given column that 

share homology and may share a common functional role.

4.2.4.6 Progressive Alignments and Iterative Optimisation
ClustalW and T-Coffee remain popular choices for multiple sequence 

alignment. These programs employ progressive alignment (Dunbrack, 2006). 

The progressive algorithm (Hogeweg & Hesper, 1984), used for example in 

ClustalW (a global alignment program) (Thompson et ai, 1994), T-Coffee 

(Notredame et ai, 1998) and MUSCLE (Edgar, 1994) starts with the alignment 

of two sequences and then, adds other sequences one by one according to a 

predetermined order (Zhou & Zhou, 2005). This order is based on a guide tree 

of the sequences to be aligned. They employ a global alignment algorithm to 

construct an alignment over the entire length of the sequences and differ mainly 

in the procedure employed to determine the order of the alignment of the 

sequences (Chkrabarti et al., 2004). Often amino acids are misaligned by such 

methods because of small misalignments early in the process (Dunbrack, 

2006). More recent studies focused on iterative optimisation, for example, 

MUSCLE (Zhou & Zhou, 2005). Dunbrack found the MUSCLE program to have 

improved performance over other methods and that MUSCLE is more accurate 

than those when subjected to benchmarks and generally faster (Dunbrack, 

2006). Nuin (2006) also found MUSCLE to be superior to other alignment 

methods. They compared nine of the most often used protein alignment 

programs and found that sequence length did not affect alignment accuracy. 

However, they found that ClustalW had the steepest decline in accuracy when 

the sequence length was increased, especially when INDELs were present and 

had the worst accuracy. MUSCLE was found to be in the intermediary group, 

along with T-COFFEE. They determine that T-COFFEE generates good 

alignments but the processing time is the worst for every sequence size, 

whereas MUSCLE produced good quality alignments and was very fast. The 

MUSCLE authors also compared multiple sequence alignment methods (Edgar 

& Batzoglou, 2006). They considered the best current programs that are directly 

comparable to CLUSTALW in the global alignment tools to include MUSCLE
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and T-COFFEE. They add that MUSCLE was found to offer significant 

improvements in scalability with comparable accuracy and T-COFFEE had 

limiting factors of computation time and memory usage for larger alignment 

problems. This explains the choice of using MUSCLE in this project over the 

other T-COFFEE.

4.2.4.7 Sequence-Profile Alignments
The development of sequence-profile comparison methods such as 

PSI-BLAST has led to a great improvement in sensitivity over sequence- 

sequence comparison methods such as BLAST (Soding, 2005).

A profile is a representation of a group of related protein sequences, 

usually based on a multiple alignment of those sequences. Once the multiple 

alignment has been defined, the profile is constructed by counting the numbers 

of each amino acid at each position along the multiple alignment. These counts 

are transformed into probabilities by normalising the counts by the total number 

of amino acids and gaps observed at that position. These empirical probabilities 

reflect the likelihood of observing any amino acid k at position /'. Since the 

counts are based on a finite set of sequences it can happen that not all 20 
amino acids are observed at each position. Therefore, pseudo counts are 

introduced so that no amino acid has a zero probability to occur at position i 

(Yona & Levitt, 2002) as a zero probability would result in an error in the 

calculation when trying to divide zero by a whole number. Profiles can be 

variations of the 20 x L matrix used in PSI-BLAST, where L is the length of the 

generating sequence. These variations might include a gap character, for 

example (Dunbrack, 2006). Wang and Dunbrack (2004) found that removing 

positions in the profile with gaps in the query sequence results in better 

alignments. Tan (2006) found that a better amino acid similarity matrix can 

improve a profile itself.

Profile alignment methods allow efficient recognition of remotely related 

sequences. These methods “outperform” the ability of comparative modelling in 

a sense that they are able to locate remotely related template-target sequence

116



Alignment Protocols Chapter 4

pairs, that are sometimes identified only by a few short conserved segments, 

and for which no reliable comparative model can be built (Rai & Fiser, 2006).

The sequence alignment between the target and template is usually 

derived from a multiple sequence alignment using as many proteins of the 
family as possible. Its accuracy depends on the number and similarity 

distribution of the sequences of the protein family. Homology is transitive; 

therefore if two proteins are evolutionary related to a third protein, they are also 

evolutionary related to each other. This can be used to detect more distant 

evolutionary relationships in database searching strategies, by ‘hopping’ in 

sequence space from one homologous protein to the next and thus increasing 

the number of proteins that can be included in the family, a concept applied by 

the PSI-BLAST algorithm (Altschul etal., 1997; Cozzetto & Tramontano, 2005).

PSI-BLAST aligns the target sequence to a sequence profile 

constructed from a multiple sequence alignment of members of a protein family. 

PSI-BLAST uses the core BLAST algorithm to collect related sequences to the 

query sequence and iteratively scan a sequence database for more 

homologues to then construct its profile (Altschul et al., 1997). Sequence 

alignment profiles have been shown to be very powerful in creating accurate 

sequence alignments. More accurate and longer alignments have been 

obtained with profile-profile comparison (Wang & Dunbrack, 2004).

4.2.4.8 Profile-Profile Alignments
Ohlson and co-workers showed that profile-profile based methods 

perform at least 30% better than standard sequence-profile methods in the 

quality of the obtained alignments. This is probably because profile-profile 

scoring methods are better at distinguishing evolutionary related positions from 

non-related positions. For each alignment, a model of the query protein was 

created and compared with the structure of this model with the correct structure. 

The quality of the alignments was measured by MaxSub (Siew et al., 2000), a 

measure that should be one for a perfect model and zero for a completely 

wrong model. MaxSub finds the largest subset of atoms of a model that
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superimposes well over the experimental model (Ohlson et al., 2004).

Marti-Renom (2004) tested thirteen different protocols for creating and 

comparing profiles, including the correlation coefficient and the dot product, and 

eight different protocols for aligning sequences and/or profiles, including 

LOBSTER (Edgar, 2004), BLAST and PSI-BLAST. They found that in general 

the smaller the fraction of target modelled, the more accurate the model. 

Additionally, algorithms that are local (BLAST and PSI-BLAST) generally do not 

align whole sequences, but only regions that are quite similar to each other. 

Global protocols ensure an optimal alignment that is forced to cover whole 

sequences. Their results showed PSI-BLAST to out-perform BLAST and 

LOBSTER to out-perform PSI-BLAST (compared to their structural gold 

standard, generated using the CE algorithm), emphasising the improvement in 

alignment accuracy due to the inclusion of multiple sequence alignments and 

profiles. The correlation coefficient comparison scheme (Marti-Renom et al., 

(2004) was found to be the best.

4.2.4.9 The use of Hidden Markov Models

Hidden Markov models (HMM), a class of probabilistic models, can also 

be used to represent a multiple sequence alignment. Profile HMMs are similar 

to sequence profiles, but in addition to amino acid frequencies in the columns of 

a multiple sequence alignment they contain the position-specific probabilities for 

insertions and deletions along the alignment. Profile HMMs perform better than 

sequence profiles in the quality of alignments (Krough etal., 1994; Eddy, 1998). 

The higher sensitivity is due to the fact that position-specific gap penalties 

penalise the chance hits more than true positives which tend to have insertions 

or deletions at the same positions as the sequences from which the HMM was 

built (Soding, 2005). Soding showed that by aligning profile HMMs instead of 

simple sequence profiles the sensitivity of the alignment could be improved. By 

comparing BLAST and PSI-BLAST as popular representatives of sequence- 

sequence and sequence-profile methods, the sequence-HMM comparison 

package HMMer (Eddy, 2001) and the profile-profile methods COMPASS 

(Sadreyev & Grishin, 2003) and PROF_SIM ( Yona & Levitt, 2002), Soding
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notes that PSI-BLAST produces much better alignments than BLAST, the 

profile-profile methods perform better than PSI-BLAST and aligning profile 

HMMs instead of simple profiles Improves the alignment quality significantly. 

COACH is a hybrid method that compares a multiple sequence alignment with 

an HMM and is not strictly a ‘true’ HMM-HMM alignment method (Dunbrack, 

2006). Wistrand and Sonnhammer (Wistrand & Sonnhammer, 2005) compared 

the performance of HMMer and SAM (Hughey & Krogh, 1996) and found that 

although SAM models were better, HMMer model scoring was better. It is 

thought that including as many sequences of remote homology as possible in 

the multiple sequence alignment that generates the profile or HMM would be 

preferable, however, retaining sequences that are more divergent from the 

target than the chosen template might decrease the alignment accuracy. 

Johnston and Shields (Johnston & Shields, 2005) found that combining HMMs 

from multiple sequence subsets of a larger set of sequences performed better 

than using the single HMM built from an alignment of all of the sequences.

4.2.5 Including Structural information
In more difficult cases, it is frequently beneficial to rely on multiple 

structures and sequence information (Barton & Sternberg, 1987; Taylor et ai, 

1994). As with multiple sequence alignments, better profiles and HMMs can be 

built using structural alignments of remote homologues and by adding 

sequences of unknown structure that can be easily aligned with each structure 

(Dunbrack, 2006). The use of structural information for one of the sequences in 

a pair-wise alignment improves the accuracy of the alignment in the low 

sequence similarity range. Methods that employ this approach include threading 

and 3D template matching (Bowie et al., 1991; Godzik & Skolnick, 1992; Jones 

et ai, 1992; Kelley et al., 2000; Shi et ai, 2001 Fischer, 2003). Using structure 

alignment in combination with sequence alignment methods is more powerful, 

hence T-COFFEE being improved by the use of pair-wise structural alignments 

in 3D-COFFEE (O’Sullivan et ai, 2004). Dunbrack states that it is more 

important to combine sequence and structure information, rather than using 

structural information alone, due to the inherent ambiguities of deriving a 

sequence alignment from a structural superposition (Dunbrack, 2006). In
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contrast to a pair-wise sequence alignment that simply compares two strings of 

characters, a pair-wise structure alignment is a more difficult problem that 

optimally superimposes two sets of coordinates and finds the regions of closest 

overlap in the three-dimensional space (Chen et al., 2005).

There are also practical problems to consider when selecting algorithms 

for aligning sequences for comparative modelling. Some sequence-structure 

based methods can’t be used straightforwardly because they are implemented 

as web servers or are not generally available from the authors (Marti-Renom et 

al, 2004). Similar practical considerations in implementing them might also 

persuade users to select alternatives.

4.2.6 Improving Alignments
Jaroszewski and co-workers set up an experiment that sampled a huge 

conformational space of alternative alignments by combining an approach of 

varying parameters (for example, gap penalties) with an iterative approach that 

penalises regions of the sample space that have already been visited. The 

study states that there are alignments that exist that are of better quality than 

the original alignments for about 50% of the protein pairs with moderate-to-low 

sequence similarity, less than 45% identical (Jaroszewski et al, 2002).

There are ways to improve the alignments of sequences for 
comparative modelling, one such example is from the Sali lab (John & Sali,

2003). They refine an initial target-template alignment using a genetic algorithm 

protocol that starts with the initial alignments and then iterates through the re­

alignment, model building and model assessment to optimise a model 

assessment score. They found the average CE overlaps of their genetic 

algorithm protocol higher than those produced by PSI-BLAST. Another, more 

recent example, is that of Rai and Fiser (Rai & Fiser, 2006). These authors 

developed an optimal combination of alignments produced by alternative 

methods which are superior in certain segments but inferior in others when 

compared to each other.
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This project does not consider the ways in which to improve the 

alignments or selection of the alignments, but just evaluates various protocols 

for aligning sequences in terms of comparative modelling.

4.2.7 Selecting the Best Alignments
Other groups use the multiple model approach to test 16 pairs of 

distantly related proteins to focus on the question of whether a good (an 

alignment which contains useable information in it) alignment exists in a set of 

alternative alignments using a given method (Jaroszewski et al., 2002). They 

state that there is strong evidence that recognising the correct alignment is 

possible by building a protein model and evaluating it, however they take their 

research in this article no further and stop at obtaining a relatively small set of 

alignments that contains at least one significantly better alignment and do not 

address the issue of how to select this alignment.

Saqi and colleagues reveal that short stretches of high local identity 

may not always be reflected in the structure based alignment (Saqi eta i, 1998). 

Previously it was assumed that any misaligned regions, compared to the 

structure based alignment, occur in regions where the local sequence identity is 
lower than the global, usually in sequences where the global sequence identity 

is less than 40%. This means that sequence similarity may not always give 

clear indication of the resulting comparative model and that high local sequence 

identity can result in lower quality regions of the model. Following on from this, 

Contreras-Moreira et al prove that the optimal sequence alignment is not always 

the best for modelling (Contreras-Moreira et al., 2003). They analysed how 

often the optimal sequence alignment corresponded to the model with the 

lowest RMSD. They found that the alignment with highest sequence identity 

provided the lowest RMSD model in 42 cases (out of 58) but that the other 16 

would have been modelled more accurately using a suboptimal alignment. This 

suggests other alternative alignments should be considered in model 

construction. Contreras-Moreira and colleagues also propose the use of genetic 

algorithms for constructing a large number of alternative alignments by 

recombining an initial set of alignments (John & Sali, 2003). A common problem
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of these approaches however, is the selection of the “best” alignment to 

construct the final model.

4.2.8 The Alignment Methods Used
The alignment methods included in this current investigation were:

• BLAST to represent a standard sequence-sequence based method;

• PSI-BLAST to provide a sequence-profile protocol;

• MUSCLE to represent an accurate multiple sequence alignment method;

• MAMMOTH, CE and TM-align to provide gold standard structural 

alignments;

• COACH, a hybrid method similar to a MSA-HMM technique;

• a locally implemented HMM-HMM method;

• HMMer, as a sequence-HMM method.

Information on each of these methods, including versions used, can be found in 

Chapter 2, Resources.

4.2.9 Assessing Alignment Accuracy
Sequence alignment accuracy can be measured in different ways. 

Generally, the most common way involves structure-based alignment of the 

target-template pair, deriving a sequence alignment from this structure 

alignment, and comparing the predicted sequence alignment with the structure 

based alignment (Dunbrack, 2006).

Despite some ambiguities in the definitions of structural alignments 

(Godzik, 1996), structural alignments are often treated as the “standards of 

truth” in evaluating sequence alignments because it is generally accepted that, 

with increasing evolutionary distance, structures change less than do 

sequences (Vogt et al., 1995).

Protein structure comparisons are employed in almost all branches of 

contemporary structural biology, ranging from protein structure modelling to 

structure-based protein function annotation (Zhang & Skolnick, 2005). Many
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structure-based alignment methods have been developed (SSAP, Orengo et al., 

1996; CE, Shindyalov & Bourne, 1998; Dali, Holm & Sander, 1993). Generally 

there are two types of approaches to the structural alignment: coordinate-based 

and environment-based. In the coordinate-based approach, an alignment is just 

like aligning two sets of points, and the similarity is evaluated based on how well 

the two sets can be superimposed in 3D space. In the environment-based 

approach, structure-derived descriptors (for example, solvent accessibility and 

hydrogen bond strengths) rather than explicit Cartesian coordinate-based 

distances are used to generate the structure-based alignment (Chen & Crippen,

2005).

A further example is MAMMOTH (Ortiz et al., 2002). The authors 

conclude that MAMMOTH shows performance consistent with other structural 

alignment methods when comparing experimental protein structures - in this 

case, including, Dali (Holm & Sander, 1993). Another popular tool is the TM- 

align algorithm developed by Skolnick, which was concluded to be around four 
times faster than CE and 20 times faster than Dali and is considered to have 

resulting alignments with higher accuracy and coverage than those provided by 

these methods (Zhang & Skolnick, 2005).

TM-align and MAMMOTH were chosen to represent the gold standard 

structural alignment tools due to their higher accuracy and speed compared 

with other structural alignment methods available at the time. CE was also 

used, as it is a common local structural alignment method and different from the 

TM-align and MAMMOTH which produce structural alignments which are 

effectively global. TM-align was chosen as an ‘overall’ gold standard to compare 

alignments to as CE is a local alignment method and it was therefore difficult to 

compare the global alignment methods to CE and MAMMOTH chopped off end 

residues in the alignments.

In this project the sequence based alignments were tested by observing 

the similarity against the known structures (our standards of truth) and the use 

of iRMSD (see Chapter 2, the Resources chapter, for more information on the
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NiRMSD algorithm).

The datasets were generated using sequences and structures of 

peptidases. The importance and significance of using peptidases in this chapter 

are discussed below.

4.2.10 Importance of Peptidases
A peptidase is an enzyme that hydrolyses peptide bonds in proteins and 

peptides. They are ubiquitous, constituting around 2% of the genome proteins in 

all kinds of organisms. It has been estimated that 14% of the five hundred 

human peptidases are under investigation as drug targets and there are over 

550 active and putative peptidases in the human genome (Rawlings & Morton, 

2006). Peptidases are perhaps the largest class of enzyme to be used as 

targets for structure-based drug design (Mittl & Grutter, 2006). A well known 

example is the HIV protease, an aspartic protease responsible for the 

processing of the HIV viral proteins and the basis for the design of a variety of 

lead compounds against the virus. Peptidases cause irreversible modification or 

destruction of their substances that may be of biological importance in many 

different ways. Peptidases have been of interest to mankind for hundreds of 

years because of the many ways in which they are involved in human 

physiology, pathology and technology (Barrett et al., 2001). They are involved in 

blood clotting, apoptosis, pre/pro-hormone processing and digestion amongst 
many other biological functions.

Considering the functional relevance of peptidases it is not difficult to 

understand that a deficiency of these enzymes underlies several pathological 

conditions such as cancer, arthritis, neurodegenerative and cardiovascular 

disease. Moreover, many infectious micro organisms, viruses and parasites use 

peptidases as virulence factors. Accordingly, many peptidases or their 

substrates are an important focus of attention for the pharmaceutical industry as 

potential drug targets (Lopez-Otin & Overall, 2002).

Peptidases regulate the fate and activity of many proteins by controlling
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many appropriate intra- or extra-cellular localisation; shedding from cell 

surfaces; activation or inactivation of peptidases and other enzymes, cytokines, 

hormones or growth factors; conversion of receptor agonists to antagonists; and 

exposure of cryptic neoproteins (which is when the proteolytic cleavage 

products are functional proteins with roles that are distinct from the parent 

molecule). Hence peptidases initiate, modulate and terminate a wide range of 

important cellular functions by processing bioactive molecules and thereby 

directly controlling essential biological processes, such as DNA replication and 

cell proliferation (Lopez-Otin & Overall, 2002).

4.2.11 Peptidase inhibitors
Since the regulation of the activities of peptidases is crucial, the 

hundreds of proteins that inhibit them are equally relevant. The concept that 

peptidase inhibitors can make effective drugs has been validated most 

dramatically for retropePSIn, the processing endopeptidase of the human 

inmmunodeficiency virus, several inhibitors of which have been proved to be 

potent antiviral agents (Wlodawer & Vondrasek, 1998).

4.2.12 Why Named Peptidases
Peptidase is the most correct scientific term for the proteolytic enzymes 

that are colloquially called proteases or proteinases. Amongst the reasons for 

using the term peptidases is that this is the word recommended by the NC- 

IUBMB (Nomenclature of the International Union of Biochemistry and Molecular 

Biology, NC-IUBMB, 1992), as well as MEROPS, as well as the fact that it is the 

word that already forms the root of the names of the many different sub-types of 

peptidases: aminopeptidase, carboxypeptidase, and so on, and thus leads to a 

very rational and intuitive system of terminology.

4.2.13 Different Types of Peptidases
Peptidases are grouped by the chemical mechanism of catalysis. 

Peptidases can be described as of serine, cysteine, threonine, aspartic, 

glutamic, or metallo catalytic type. In peptidases of serine, threonine and 

cysteine type, the catalytic nucleophile is the reactive group of an amino acid
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side chain, either a hydroxyl group (serine and threonine peptidases) or 

sullfhydryl group (cysteine peptidases). As far as is known, the activity of all 

cysteine peptidases depends on a catalytic dyad of cysteine and histidine. The 

order of the cysteine and histidine residues in the linear sequence differs 

between families, and this is among the lines of evidence suggesting that 

cysteine peptidases have had many separate evolutionary origins (Rawlings & 

Barrett, 1994). In aspartic and metallo- peptidases, the nucleophile is commonly 

an activated water molecule, in aspartic peptidases, the water molecule is 

directly bound by the side chains of aspartic residues. In metallopeptidases, one 

or two metal ions hold the water molecule in place, and charged amino acid 

side chains are ligands for the metal ions. The metal may be zinc, cobalt or 

manganese, and a single metal ion is usually bound by three amino acid 

ligands. Metallopeptidases form the most diverse of the catalytic types of 
peptidases. About half of the families comprise enzymes containing the His-Glu- 

Xaa-Xaa-His (or HEXXH) motif that has been shown by X-ray crystallography to 

form part of the site for binding of the metal (normally zinc) atom in some 

families. Proline is never found in this region; ali of the available tertiary 

structures for metallopeptidases containing HEXXH show the motif in a helix, 

which would be broken by proline (Rawlings & Barrett, 1995). The glutamic 

peptidases seem to employ a Glu/GIn catalytic dyad.

4.3 METHODS AND MATERIALS
To allow the assessment of different alignment protocols using 

peptidases as a test case, a set of target-template pairs was required. Each of 

these pairs needed corresponding structures, to enable assessment of the 

quality of any subsequent comparative modelling, and importantly for this 
chapter, to obtain ‘gold standard’ alignment results, for both the target and the 

template.

4.3.1 The Dataset
The primary source of sequence information was the MEROPS database 

(Rawlings et al., 2006). The MEROPS “pepunit.lib” file formed the main 
peptidase dataset containing 28,445 peptidase sequences. All characters that
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would prove a problem being recognised by any of the alignment methods were 

removed; these included all Bs, Zs, J and Os, which were replaced with Xs. 

MEROPS sequences were then cross-referenced with structural information. In 

order to find structures for all of the sequences in the MEROPS database the 

astral dataset (Version 1.67, current release at the time, 

http://dunbrack.fccc.edu/PISCES.php) was used which contained all genetic 

domain sequences based on PDB ATOM records (versions and more 

information on the databases stated here can be found in the Resources 

chapter).

4.3.1.1 Selecting the Targets
Each sequence in the astral database (50,495 structures) PDB provided 

a query sequence to be used in standard BLAST search (e-value cutoff 0.001) 

against the whole of the pepunit.tib (MEROPS) database (28,445 sequences), 

to match PDB structures to a MEROPS sequence. This resulted in 5,337 top 

hits of which 4,314 were enzymes with no inhibitors, 1,023 were enzymes with 

bound inhibitors, corresponding to 5,337 PDB entries with at least one 

MEROPS sequence.

Potential matches between the MEROPS sequences and PDB domains 

were further filtered to ensure only true peptidase homologues were identified in 

the PDB. Different levels of coverage between the MEROPS domain sequence 

and the PDB sequence was tested. A trade-off between the coverage of the 

MEROPS domain sequence and the PDB sequence existed, for example, 75% 

coverage resulted in a total of 2,582 hits, whereas 90% coverage resulted in 

4,109 hits. To maximise the dataset, 90% coverage of the peptidase domain 

sequence by the PDB sequence was required in order for it to be considered a 

match and be chosen as a possible target or template candidate. After the PDB 

ATOM sequences (the hits) were found to share at least 96% sequence identity 

and 90% coverage to the MEROPS sequence, the astral PDB hit with the best 

e-value score was taken to represent the peptidase domain sequence. This was 

to ensure all the sequences had a corresponding structure.
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The database was split into two groups, those peptidase domains that 

had an inhibitor bound and those that did not. The “enzyme only" set (peptidase 

domain without an inhibitor bound) contained 3,495 matches to PDB, and the 

"enzyme + inhibitor” set just 614 hits. Metal ions were retained in the 

metallopeptidases if they were in the active site, or were part of the inhibitor. 

Occasionally a MEROPS sequence was assigned with multiple PDB files. The 

one with the best e-value score from the original BLAST hits, the longest 

sequence, and the best coverage was chosen. Finally, NMR structures were 

removed along with PDB files with only carbon alpha traces or with missing 

electron density (chain breaks -  missing residues).

4.3.1.2 Generating the Target-Template Pairs
Two datasets of target-template pairs were generated (Figure 4.2), one 

with peptidases with an inhibitor bound as the target and with peptidases with 

inhibitors bound as the template (the l-vs-l set), and another one with 

peptidases with an inhibitor bound as the target and with peptidases with no 

inhibitor bound as the template (the l-vs-S set). The two datasets were used to 

see how much having an inhibitor bound to the template affected the modelling 

results. A set with no inhibitor bound to the target was not used since the aim of 

this investigation was to find out how well methods could predict the structure of 

the interface region between the peptidase and the bound inhibitor. These were 

also generated using BLAST using astral-MEROPS cross-referenced data set. 

For candidate target-template pairs duplicates were removed. This left 

candidate 5,979 l-vs-l pairs and 62,501 l-vs-S pairs.
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l-vs-l

Target Template

Target Template

Figure 4.2. The Datasets. The l-vs-S dataset contains a target which consists of a 
peptidase chain (yellow) and an inhibitor chain (pink) and a template which only has a 
peptidase chain. In the l-vs-l set both the target and the template contain a peptidase 
(yellow) chain and inhibitor chain (pink). Produced using Pymol (DeLano 2004).

To remove trivial modelling pairs, those above 80% sequence similarity 

between the target and template were removed. This left 3,083 pairs (191 

unique PDB entries) in the l-vs-l set and 38,629 pairs (2,002 unique PDB 

entries) in the l-vs-S set.

For modelling purposes (Chapter 5), only PDB structures with 2.5A 

resolution or better were used. The number of pairs at different resolutions was 

calculated to enable a substantial dataset to be created. The majority of pairs 

existed at equal to or better than 2.5 A (2,440 in the l-vs-l set and 9,652 in the I- 

vs-S set) resolution. Too many pairs were lost when the resolution was better 

than 2.0A (1,280 in the l-vs-l set and 4,705 in the l-vs-S set).
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The redundancy at the 95% level between all the candidate templates 

for each target was removed and the PDB template with the best resolution was 

selected. The first hit (i.e. the longest sequence and the highest sequence 

identity) was not chosen since in this case for modelling purposes the template 

with the best resolution was more important than the template with the highest 

sequence identity. This left 3,789 pairs or 33 targets in the l-vs-S set and 609 

pairs or 29 targets in the l-vs-l set.

The targets were also clustered at the 95% sequence identity to remove 

similar pairs. The top hit in each cluster was chosen to leave 26 target-template 

pairs in the l-vs-l set and 144 pairs in the l-vs-S set.

4.3.2 Constructing the Target-Template Alignments
Alignments were retained as candidate target-template pairs if the 

sequence coverage between the target and template was >50%. Pair -wise 

alignments from multiple sequence-based protocols were extracted and cleaned 

up by removing “double gaps” (indicating insertion/deletion relative to other 

sequences in the multiple sequence alignment and not the target or template).

4.3.2.1 Calculating Percentage Sequence Identity
The percentage sequence identities of the alignments were calculated 

in the following ways:

I

Figure 4.3. The Different Lengths of the Sequence Used. An example of a target- 
template pair is shown with gaps displayed as dashes and the definition of alignment 
and equivalent lengths depicted. The method used to calculate the percentage identity 
was the “Length of the alignment method".

■ Shortest Sequence: This is the number of identical residues in the target 

and the template divided by the length of the shortest sequence.

Alignment Length 
<-------------------------

Equivalent Length
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■ Length of alignment: T he number of identical residues divided by the 

alignment length (Figure 4.3).

■ Mean length of the two sequences: This is calculated by dividing the 

number of identical residues by the mean length of the target and template 

sequences.

■ Equivalent positions: The identical residues divided by the equivalent 

length (Figure 4.3).

The method used to calculate the percentage identity was the “Length of the 

alignment method”. The percentage identity of TM-align alignment (the chosen 

gold standard method) was used.

A summary of the protocols described in this section which were used 

to generate the target-template alignment pairs can be seen in figure 4.4.

131



Alignment Protocols Chapter 4
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Figure 4.4. The Construction of the Alignments. The generation of the alignments
using the different protocols described.
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4.3.2.2 MAMMOTH
On occasion MAMMOTH missed residues off from the end of the 

alignment, in these cases the alignment was examined manually and the 

residue was added back on to the end of the alignment. For a few PDB files, 

e.g. 1ton_.pdb, 1h8dH, 1ueaA, 1h7IP, 4htcH and 4cpa_ one or two residues 

had side-chain coordinates missing. This caused MAMMOTH to miss these 

residues in the final alignment. MAMMOTH took the PDB files of the target and 

template as input. The different side-chain conformations displayed in the PDB 

file of the target and template were removed since MAMMOTH would leave out 

these residues in the final alignment. The default parameters were used.

4.3.2.3 TM-aiign

TM-align was run using the renumbered target and template PDB files 

(accepting these as input) which resulted in a structure-based sequence 

alignment between the target and template. The default parameters were used.

4.3.2.4 CE
The PDB files of the target and template provided the input for CE. 

Chain breaks were removed and the PDB files contained only the relevant 

peptidase chains were submitted to the CE algorithm. A structure-based 

sequence alignment of the target-template was obtained.

4.3.2.5 BLAST

The target sequences provided the query to be used to search the 

“pepunit.lib” database. Redundancy was removed at the 95% sequence 

similarity level. The MEROPS sequences in the “pepunit.lib” database were 

replaced with the PDB ATOM sequences of the targets and templates used in 

the study, as slight discrepancies exist between the MEROPS sequence 

database and the sequence of the PDB ATOM sequences. This meant that 

when extracting the alignment pairs, the sequences would be the PDB ATOM 

record structural ones rather than the MEROPS peptidase ones. Standard 

BLAST filtering was used, with the standard e-value cut-off of ten. T arget- 

template pairs were extracted from the output.
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4.3.2.6 PSI-BLAST
Each target sequence was searched against the MEROPS “pepunit.lib” 

database which included the template sequence for that given target-template 

pair. PSI-BLAST was run with an e-value cut-off of 1E-10 for up to 4 rounds. If 

the search did not generate a match to the chosen template after 4 rounds, the 
round number was lowered by one and the results examined. This was 

repeated until the template was found. If it was not, the e-value was increased 

to include more hits. The majority of searches produced hits at round 4, with a 

1E-8 cut-off. Once the template had been found, the iterations with lower e- 

values ceased and the target and template sequences were extracted as an 

alignment. The sequences of the target and template of the MEROPS database 

were replaced with the sequences derived from the ATOM records of the PDB 

file.

PSI-BLAST alignment accuracy was evaluated in comparison to 

structural alignments by Friedberg et al (Friedberg et al., 2000). They used 123 

pairs of proteins that were structurally similar but sequentially dissimilar, and 

evaluated them by determining the percentage of residues correctly aligned in 

the sequence alignment with respect to the structural alignment. They found it 

worthwhile to continue for several iterations to obtain better alignments, with 

higher sensitivity and no significant effect on the specificity.

4.3.2.7 MUSCLE
Multiple sequence alignments for target and template sequences were 

generated using MUSCLE after the second search against the MEROPS 

database, as described above in the building of the HMM. The target and 

template sequences were included in the multiple sequence alignment, and the 

target-template pair was then extracted from the MSA as a final step prior to 

assessment as a pair-wise alignment.

4.3.2.8 Building the Hidden Markov Models
HMMs were created for both target and template sequences. An initial 

set of homologues was generated using BLAST by searching the MEROPS
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database with an E-value cut-off of 1E-60. If fewer than 10 hits were obtained, 

the search was repeated with an E-value cut-off of E-55, or subsequently 

increased values until 10 or more hits were found. The target/template 

MEROPS sequences were replaced with the PDB ATOM sequence for 

consistency with structural mapping. A seed multiple sequence alignment was 

then generated using MUSCLE, prior to removal of redundancy (hits above 95% 

sequence identity). The HMMer suite (Eddy, 1998) was then used to build and 

calibrate the HMMs, prior to a second search of the MEROPS sequences using 

hmmsearch with an e-value of 0.0001. New sequence hits were then aligned to 

the HMM using hmmalign and the new HMM was recalibrated. This method 

generated HMMs or multiple sequence alignments that were used in the Profile- 

Profile method, the Sequence-Profile method, the MUSCLE algorithm and the 

COACH method. This protocol for building the HMMs can be seen in figure 4.5.
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Build HMM using HMMbuild

Calibrate HMM using HMMcalibrate

Recalibrate HMM using HMMcalibrate

Align new hits to HMM using HMMalign

Alignment of hits with MUSCLE to create seed MSA

Target search of MEROPS database using BLAST and stringent parameters

Using the calibrated HMM and HMMsearch, search MEROPS database for new hits

with less stringent parameters

Figure 4.5. The Construction of the HMMs. The building of the HMM is shown, the 
different steps and programs in the HMMer used are also displayed.

4.3.2.9 Sequence-Profile
The target sequence was aligned to the template HMM, constructed as 

above, using hmmalign from the HMMer suite. The target and template were 

then extracted as a pair-wise alignment.

4.3.2.10 Profile-Profile
A program was provided by Craig Lawless (Personal communication, 

University of Manchester, Bioinformatics group) that aligned two profiles using 

the method described by Sali and colleagues as optimal (Marti-Renom et al.,
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2004). This uses the correlation coefficient calculated between the columns of 

the HMMs to populate a distance matrix prior to dynamic programming to find 

the best match pathway. The target-template pair-wise alignment is then 

extracted from the trace back path in the dynamic programming algorithm. The 

HMMs of the target were generated in the same way as the template HMM, 
created as above in figure 4.4, and were submitted to this program as well the 

sequences of the target and template.

4.3,2.11 COACH
Again, the MSAs generated for the HMMer suite were used to construct 

HMMs for template sequences using the COACH algorithm (Edgar & Sjolander,

2004). The target multiple sequence alignments were then aligned to this HMM 

using COACH, extracting the pair-wise alignment between the given target and 

template for consideration. COACH was used to also represent profile-profile 

method as well as the above method obtained from personal communication.

4.3.3 Assessing the Alignments
The different pair-wise sequence and profile-based alignment methods 

for each set (set l-vs-S and set l-vs-l) were assessed against each of the gold 

standards (TM-align, CE and MAMMOTH). These gold standard structural 

alignments were also assessed against each other to measure the level of 

agreement (and hence estimate a structure-based error) between them. The 

alignments were also assessed using the NiRMSD measure (Armougom et at.,

2006) using each target-template sequence pair, together with the target and 

template corresponding PDB protein structures. This is a normalised measure 

of alignment accuracy which also accounts for length and gaps, and provides a 

better metric for inter-alignment comparisons.

4.3.3.1 Obtaining Equivalent Residues
When each alignment was assessed against a gold standard it was 

important to make sure that equivalent amino acids were compared, for 

example that Serine 123 of the alignment method was compared to Serine 123 

(or it’s equivalent residue, the number may differ if some of the alignment has
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been lost) of the gold standard.

TM-align Alignment
TARGET Al C2 D3 G4 A5 L6 L7 M8
TEMPLATE - - Al G2 Y3 L4 M5 L6

BLAST Alignment
TARGET Al C2 D3 G4 Al L2 L3 M4
TEMPLATE - - Al G2 Y1 L2 M3 L4

Figure 4.6. Calculating Equivalent Residues: an Example. The sequence residues 
of the target and template are represented as a single letter and are numbered to 
enable equivalent residues of the BLAST alignment compared to the TM-align 
alignment to be found. The green residues show the residues which BLAST has 
chopped off with respect to the gold standard TM-aiign.

As shown in figure 4.6 above, A1 (shown in blue) of the target in the 

BLAST alignment is equivalent to AS (shown in blue) in the target in the TM- 

align alignment (both are followed by LLM...) but the sequence numbering does 

not correspond (the BLAST position is 1, because the beginning of the 

alignment has been chopped off by BLAST: the green residues, but the TM- 

align position is 5). Therefore, to find equivalent residues, MUSCLE was used to 

align the target sequence of the alignment protocol against the target sequence 

of the gold standard protocol, the same method was applied to the template.

4.3.3.2 Treatment of Gaps
Gaps in the target or template sequence in the alignments were 

considered correct if there was also a gap in the same position in the gold 

standard structural alignment.

4.3.3.3 Percentage Identity Calculations
For comparative purposes, target-template pairs were separated into 

different percentage identity bins. The percentage identity of the gold standard 

TM-aiign pair was used for this, since this more accurately reflects the similarity 

between the two proteins, binning all pairs less than a given cut-off (<50%,
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<40%, <30% etc).

4.3.3.4 Amount of the Alignment Retained by the Different Methods
Some of the alignment protocols produced local alignments, and hence 

some sequence was “lost”. Therefore, the target and template sequences 

retained (See figure 4.7) by the various alignments were calculated by 

comparison to the reference target/template sequences (the actual sequence of 

the target and template before being submitted to an alignment method). This is 

an important step since it is undesirable to obtain 100% accuracy in an 

alignment if only 20% of the original sequence is retained. More importantly for 

this study, the alignment section that has been lost should not contain a portion 

of the recognition (interface) region. The assessment of the alignment methods 

thus included the number of correctly predicted residues in terms of how much 

of the original alignment sequences were retained.

4.3.3.5 Calculating the Sensitivity and Specificity
The number of correct pairs divided by the number of pairs in the 

predicted sequence alignment is effectively a measure of the specificity of the 

alignment, and the number of correct pairs divided by the number of pairs in the 

structure-based alignment, is a measure of the sensitivity of the predicted 

alignment.

4.3.3.6 Amount of the Structural Overlap
The structural overlap was obtained by comparing a given alignment 

with the structural alignment obtained from the Combinatorial Extension (CE) 

algorithm, the MAMMOTH algorithm and the TM-align algorithm. The 

percentage overlap between the two alignments was calculated as the percent 

of residue pairs aligned the same way in both alignments. To allow the different 

algorithms to be compared and general trends to be observed, the average 

values over the entire method was calculated.

4.3.3.7 Amount of the Alignment that is “Model-able”
To allow the alignments to be assessed in terms of how well they fare
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with respect to comparative modelling, the percentage of the sequence that was 

considered ‘model-able’ (See figure 4.7) was calculated. When MODELLER 

produces models based on the template structure, if the target has sequence 

present at the ends of the alignment but the template does not then 

MODELLER will just build loops with basic angles since there is no template 

structure to use. If only the template has sequence at the ends of the alignment 

MODELLER will not build anything, the model will start from where the target 

sequence starts. Figure 4.7 illustrates this in more detail.

Gold Standard Structural Alignment.
>Target
IVEGQDAEVGLSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLLYPPWDKNFTVDDLLVR
>Template
LIDGKMTRRGD S PWQWLL - DSKKKLACGAVLIH P SWVLTAAHCM---------D ESIRK ------------

Alignment produced by a given method (The “Retained” Alignment).
>Target
----------- AEVGLSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLLYPPWDKNFTVDDLLVR
>Template
LIDGKMTRRGDSPWQWLL-DSKKICLACGAVLIHPSWVLTAAHCM---------D ES------------------

“Model-able” Alignment
>Target
----- AEVGLSPWQVMLFEKSPQELLCGASLISDRWVLTAAHCLLYPPWDKNFTVDDLLVR
>Template
LIDGKMTRRGDSPWQWLL-DSKKKLACGAVXiIHPSWVLTAAHCM---- DES---------

Figure 4.7. The Different Ways to Consider the Alignments. The gold standard 
alignment contains the full, original sequences of the target and template. The 
alignment method is the resulting alignment of, for example, one of the local alignment 
methods that has lost some of its sequence from the target and template. The model- 
able alignment is the amount of the alignment that is model-able resulting from the 
alignment method. The red residues in the alignment method sequence correspond to 
the residues that the alignment method has retained compared to the gold standard. 
The blue residues in the model-able sequence show the residues which are model-able 
(no overhanging gaps) in the alignment. For a definition of the “retained”, “model-able” 
and “reference" alignments please see the abbreviations list.

4.3.3.8 Amount of the Alignment that is Unaligned Gaps
Gaps in alignments are usually portrayed as a disadvantage; affecting 

the alignment step and the modelling step negatively. To enable a greater
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understanding of the models produced, and any reasons for poorer quality 

models, the percentage of gaps and number of gapped instances in the target 

and the template sequence was calculated. The number of gapped regions was 

assessed as shown in figure 4.8.

>Target
-AEVG FRKS—ELASLISD-RWVLTAAHCL- -YPPVDDLLVR---------

Figure 4.8. Counting Gap Instances
The above target example would be considered to have a total of 16 gaps and 6 
gapped instances.

4.3.4 Obtaining and Defining the Interface Regions
For each dataset the interface regions on the enzyme were defined 

using the DACCESS program. DACCESS calculates the differential residue 

accessible surface area between multiple chains in a PDB protein structure file 

(in this case the peptidase chain and the inhibitor chain). Differential residue 

accessible surface areas greater than 5A2 were considered to be interacting. 

The residues in these protein surface areas were later assigned to the actual 

interface category, represented by “2” (See Figure 4.9 and Figure 4.10). In the I- 

vs-l set, it is possible for both the target and the template to have residues in 

the actual interface category “2”, since the target peptidase PDB file contains an 

inhibitor chain, as does the template PDB file. However, for the l-vs-S set it is 

only possible for residues in the target to be assigned as an actual interface 

(category “2”). The template can not have any residues in this category as its 

PDB file only contains a single peptidase chain. Residues either side of an 

actual interface (category "2”) were considered to be part of a wider interface 

region (category “1”). All other residues were defined as non-interface residues 

(category “0”). Variations of how to combine the interface regions from each 

aligned pairing of the target and the template were tested. It was decided that 

an interface between residues in the target and template would be assigned if
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the target residue position was an actual interface, category “2”, regardless of 

what category the template residue position was. An example can be seen in 

figure 4.9, where the "Y”s indicate that a residue position in the target and the 

corresponding residue in the template would be considered as an interface 

between the target and template.

The l-vs-l set.
N N N Y Y Y Y N N N N

Target 0 0 1 2 2 2 2 1 0 0 0

Template 0 0 0 0 1 2 2 1 0 0 0

The l-vs-S set.
N Y Y Y Y N N N N N N

Target 1 2 2 2 2 1 0 0 0 0 0

Template 0 0 0 0 0 0 0 0 0 0 0

Figure 4.9. Defining the Interface. A single categrory was assigned to each residue in 
the target and template. Category “2” was assigned if there was an interaction 
between enzyme and inhibitor at a distance iess than 5A, and category T ’ was  
assigned to adjacent positions. Category “0" indicates a non-interface residue. If more 
than three “2”s were found in the seven residue window about any given position, then 
that position was assigned as an interface (a “Y”).

A seven residue sliding window was used to determine the extended 

interface regions using the target sequence (the "Y"s). If there were more than 
three “2”s in the seven residue window, then the fourth residue in that window 

was assigned as an interface residue (a “Y”). The rest of the residues are 

considered as non-interface residues (“N"s). An example using the first five 

sliding windows is shown in figure 4.10.
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Length of Interface Assignments
M------------------------------------------------- ►

0 1 2 1 2 0 0 0 2 2 2 2 1 1 1 1 0 0 0 0 0  i______ _______i

N N N N Y Y Y Y Y N N N N N N

Figure 4 .10. Example of Assigning the Interface. The interface/non-interface is 
assigned at position four in the centre of the seven residue sliding window.

A seven residue window was chosen because six is similar to the size of 

protease inihbitor recognition loop and the number of residues that is 

structurally conserved in such a motif in serine protease (Hubbard et al., 1991). 

The sliding window provided consistency as the RMSDs used the same sliding 

window. This was extended by one residue to seven since this is an odd 

number and symmetrical about the window centre. The T s  were used in the 

initial assessment of the interface but were later discarded as they did not 

provide any extra information about the interface. We used a window to define 

the interface to test whether the interface is aligned and modelled better than 

the non-interface. However, if we just took the 

structurally defined regions of the interface then we would have an imblance, 

both in terms of numbers of residues, and the discontinuity (in sequence 

terms) of the regions. So to normalise we use fixed 

segments of sequence (7-mers). Structures were used to define the interfaces 

and this was then mapped back to the structures.

4.3.4.1 Assessing the Interface Regions
As some alignment methods lost part of the target or template 

sequence, it was important to check how much of the interface-assigned 

residues, if any, had been lost. Hence, the percentage of the extended interface 

regions (categories ‘T s  and “2”s) for the target and/or template was calculated 

for each method, for the full alignment and also for the "model-able” regions.

Ail alignment methods were compared to the three (structural) gold
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standards. The following percentages were calculated: the percentage correct 

(with respect to the gold standards) of the actual interface residues (“2”s) 
assigned to the target and template for both the l-vs-l and the l-vs-S set, and 

the percentage correct of the extended regions (using the seven residue 

window) for both sets. The percentage correct in terms of the amount of 

sequence retained, the original sequences and the model-able alignment was 

calculated as well.

4.3.4.2 Gaps in the Interface
The number of gaps and gapped instances that were introduced into 

the target interface regions was calculated as in figure 4.11. Gaps were 

considered to interrupt the interface region if they came between any “T’s or 

“2”s.

Target Sequence a e v g — f r s k s - e l l c g a d - r v l h c l - - l y p p w d k n f t v  

Interface Code 0012— 22100- 0000122- 122221— 21000000000

Figure 4.11. Counting Gap Instances. The above target example would be 
considered to have a total of 7 gaps and 4 gapped instances, with 3 gapped instances 
in the interface region.

4.4 RESULTS AND DISCUSSION
When assessing the different alignment protocols the amount of 

sequence retained (since some local methods frequently align only sub­

sequences, please see the abbreviations list or Figure 4.6 for an explanation of 

the retained and modelable alignments) was determined. In addition, the 

amount of “model-able” sequence and the number of gaps introduced into the 

target or template was also calculated. The resulting alignments from the 

different methods were assessed in comparison with the different gold 

standards to determine how much of the alignment, and/or interface region, was 

predicted correctly, again, in terms of the amount of sequence retained and the 

amount of sequence model-able.
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4.4.1 The Amount of Sequence Retained
Initially it was established whether each alignment protocol, when 

compared to all of the gold standard structural alignment protocols, retained 

100% of the submitted sequence. The gold standards were also compared to 

each other (for retention). The results can be seen in Table 4.1 where each 
method is split into two boxes, one for the target and one for the template.

I-vs-S Set. Gold Standards.
CE TM-align MAMMOTH Reference

CE N N N N N N ; -
TM-align N N ' Y Y - Y Y
MAMMOTH N > N ■ Y Y Y Y

I-vs-S Set. Other Methods.
BLAST COACH MUSCLE Profile-

Profile
PSI-
BLAST

Sequence-
Profile

Reference N Y Y Y Y N N Y N Y Y ,

I-vs-I Set. Gold Standards.
CE TM-align MAMMOTH Reference

CE N N N ■ N N N
TM-align N | N Y Y Y Y
MAMMOTH N N Y Y Y Y

I-vs-I Set. Other Methods.
BLAST COACH MUSCLE Profile-

Profile
PSI-
BLAST

Sequence-
Profile

Reference N N Y Y Y Y N [ N Y N Y Y

Table 4.1. Methods that Retain 100% of their Sequences. For both of the datasets, 
the amount of sequence retained after submitting the target-template sequence pairs to 
the methods was calculated against the reference sequence (the original sequence 
before submission to the method). The gold standards were also assessed against 
each other. Each method result is split into two boxes, the first box is the result for the 
target and the second box is the result for the template. A “Y” represents that that 
particular method did retain 100% of its sequence, an "N" indicates that it did not.

Referring to table 4.1, the gold standards retained 100% of both the 

target and the template sequence compared to the reference sequence and to
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one another, except CE. This is understandable since it is a local alignment 

method and MAMMOTH and TM-align are not. The gold standards TM-align 

and MAMMOTH retained 100% of the submitted reference sequences and so it 

is expected that they retained 100% with respect to each other. COACH, 

MUSCLE and the Sequence-Profile method all retained 100% of both the target 

and the template sequence, BLAST, which effectively produces a local 

alignment, and the Profile-Profile method retained less than 100% for both the 

target and the template sequences. PSI-BLAST retained 100% of all of its target 

sequences but not its template sequences. These observations hold true for 

both the l-vs-l set and the l-vs-S set. These results highlight the assessment 

issues required when comparing modelling protocols, since some will truncate 

the target and/or template sequences and not all the target sequence can 

therefore be modelled.

4.4.2 The Retained Alignment and Percentage Identity
For a greater understanding of the amount of sequence each alignment 

protocol retained compared to the original, full sequence, the percentage 

retained of the sequence was split into ten percent bins and the number of 

sequences in each bin was determined, figure 4.12.
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Figure 4.12. The Percentage of Sequence Retained Between the Target and the 
Template by the Different Protocols. The percentage of sequence retained for the 
targets and templates of the different alignment protocols for the l-vs-S set are shown, 
with the average percentage retained over all the sequences displayed in the lower 
right corner of each graph. Only those methods with average values below 100% 
sequence retained are shown.
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Figure 4.12 shows the percentage retained of the target or template 

sequence below 100%, and demonstrates the local aspect of some alignment 

techniques; some occasionally retain little of the original sequence submitted to 

the alignment protocol. This would be no cause for concern if the goal was only 

to build a model based on a local alignment. However, this is not the case and 

indeed, on average, less template sequence is retained than target with these 

methods. Despite this, in the majority of cases, above 90% of the sequence is 

retained. The most sequence “lost” is from CE where around 8 sequences (out 

of 144 sequences) have between 0 and 9 percentage sequence retained for 

both the target and the template. CE uses aligned fragment pairs and thus 

tends to opt for shorter alignments with lower RMSDs. The target-template pair 

which loses 80% or more of its target and template sequence in the BLAST 

method includes the target 2kaiA and different templates. 2kaiA is a relatively 

small sequence (80 residues in length) and the templates are larger (around 

200 residues). BLAST sometimes chops residues from the template as it is a 

local alignment search method. This may be the reason for the loss of 

sequence in the templates for the other pairs with different targets and 

templates. For the l-vs-l set, all of the different alignment methods retained over 

60% of their target and template sequences, with averages over all the 
alignments above 90%.

It was expected that the local alignment methods retained less of the 

sequence as the percentage identity of the target-template pair decreased, that 

is, as the alignment becomes increasingly difficult, figure 4.13. The number of 

sequences that are in each percentage identity bin for the l-vs-S set used are 
displayed in table 4.2.
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Number of Sequence Pairs

Percentage Identity Bin l-vs-S l-vs-l

<20 24 0

<30 51 1

<40 121 20

<50 135 21

<60 138 21

<70 142 23

<80 144 26

<90 144 26

<=100 144 26

Table 4.2. Number of Sequences in Each Percentage Identity Bin. For the l-vs-S 
and l-vs-l set, the number of protein sequence pairs in each of the percentage identity 
bins are shown, the bins are inclusive. The pairs with percentage identities above 80%, 
thus seen as trivial pairs to align, were removed originally.

Since the l-vs-l set contains less sequences than the l-vs-S set (Table 

4.2) and no pairs with percentage sequence identities below 20%, the majority 

of the alignment assessment takes place on the l-vs-S set; the aim of this study 

is to try and assess how well alignment methods compare in the twilight zone.
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Figure 4.13. The Percentage of Sequence Retained at Different Percentage 
Identities. The percentage retained of the target and template sequences versus the 
percentage identity of the aligned pair (from structural alignment). Data from the CE 
and BLAST alignment methods are displayed only from the l-vs-S set.
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Referring to figure 4.13, BLAST, as expected, retains less of the 

sequence as the percentage sequence identity decreases. The more difficult 

the alignment, the more of the sequence is not aligned. This holds true for all of 

the local alignment methods (including Profile-Profile, CE, BLAST and PSI- 

BLAST) in both sets. Only BLAST and CE from the l-vs-S set are shown as they 

contain the most sequences with below 20% of the alignment retained (see 

appendix 2, figure A2.1, for the graphs for the Profile-Profile method and for the 

PSI-BLAST alignment method). A larger fraction of the target tends to be 

retained compared to the template and more of the target and template 

sequence is lost from the CE alignments, in comparison to the other methods, 

at higher sequence percentage identity.

4.4.3 The Amount of Interface Retained
Loss of target or template sequence may prove problematic when 

assessing alignment methods for comparative modelling if a part, or the entire 

interface region, has been discarded by local alignment methods.

Blast Target
100

s 90-99
80-89

u
ZL 70-79

60-69
u
Uj
3

50-59
40-49

c 30-39
u 20-29
1— 10-19
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i i i i i i i

0 20 40 60 80 100 120 140 

Number of Sequences

C'E Target
u 100
c 90-99
•- 80-89
'J 70-79

— 60-69
uZJj 50-59

40-49
30-39

u 20-29
u!y 10-19

0-9
i i i i i i i
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Number of Sequences

Figure 4.14. The Percentage of the Interface Retained. The percentage of the 
interface sequence retained for the targets and templates of the different alignment 
protocols for the l-vs-S set, with the average percentage retained over all the 
sequences are shown. Only the positions assigned category “2” were considered. Only 
those methods with below 100% interface retained are displayed. There are no 
interface residues for the templates in the l-vs-S set.

Retaining interface residues is important for this study, and figure 4.14
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shows that in general the interface residues are retained, even in the cases 

where the whole sequence is not retained 100%. There are some exceptions for 

the BLAST and the CE target sequences, where worryingly in a few instances 

(more with the CE alignment method), less than 10% of the target interface 

residues remain. In the l-vs-l set all of the alignment methods retain over 70% 
(except CE, retaining above 40%) having an average interface retained of over 

90%.

4.4.4 The Number of Gaps Introduced
Each alignment method will introduce INDELs (insertions and deletions) 

into the target-tempiate sequence alignment, which were characterised for this 

project. Modelling a target-tempiate pair becomes more of a challenge if there 

are a large number of gaps in the pair. Gaps in the template sequence would 

mean those parts of the target do not use the restraints provided by the 

template. For the target sequences in the l-vs-S set, MUSCLE, COACH, the 

Sequence-Profile method and the Profile-Profile method all introduce more than 

20% (and less than 50%) gaps with respect to the target sequence (see 

appendix 2, figure A2.2, for the graphs). BLAST and PSI-BLAST alignments do 

not contain any target sequences having greater than 20% gaps, with an 

average for BLAST of 4.35% and PSI-BLAST of 4.23%. On average, 

Sequence-Profile introduced the most gaps with 18.19%, followed by COACH 

with 16.71%, TM-align with 15.70%, MUSCLE with 15.22% and Profile-Profile 

with the least at 11.02%.

In the l-vs-S set, the templates generally contain fewer gaps than the 

targets, with the single exception of PSI-BLAST, containing more than 20% 

gaps in some of its template sequences (see appendix 2, figure A2.3). The 

Sequence-Profile method has the largest number of gaps on average for the 

template sequence with 6.77%, followed by Profile-Profile with 5.31%, COACH 

5.16%, TM-align 4.10%, MUSCLE 3.50% and finally with BLAST introducing 

2.90% of gaps on average into the template sequence.

The gold standards CE and MAMMOTH alignments never contain more
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than 20% of gaps in their target or template sequences, with the majority 

containing less than 10%. On average CE contains 5.31% and 3.94% in their 

target and template sequences respectively. MAMMOTH contains 15.26% and 

3.61% gaps in its target and template sequences respectively. TM-align, 

however, contains up to 50% gaps in some of its target and template 

sequences for the l-vs-S set.

The l-vs-l data set target-tempiate alignments contain fewer gaps in 

general, with none of the methods (including the gold standard methods) 

introducing gaps constituting greater than 15% of the alignment into either the 

target or the template sequence. There are fewer sequence pairs in the l-vs-l 

set and on average they have higher percentage sequence identities, which 

explains this result. A target-tempiate pair sharing remote homology will, in 

general, be more difficult and tend to accumulate more INDELs than a pair 

sharing modest sequence similarity.

4.4.5 Gaps and Percentage Identity

As expected, there is a negative correlation between the percentage 

sequence identity of the target-tempiate pair and the percentage of gaps in the 

target or template. As the sequence identity decreases, the number of gaps 

increases. This trend can be seen for TM-aiign in the l-vs-S set in figure 4.15. 

The correlation is much stronger for the templates for every method, which have 

a higher percentage of gaps as described above. The l-vs-l set was not 

represented here as there are too few pairs having lower percentage sequence 

identities and this is the area of interest.
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Figure 4.15. The Percentage of Gaps Introduced at Different Percentage 
Identities. The percentage of gaps introduced into the target and the template 
sequences (calculated as a fraction of the sequence length) plotted against the percent 
identity of the target-tempiate pair..

4.4.6 Gapped Instances
The number of gapped instances (number of INDELs) was obtained for 

the target of each method, shown in figure 4,16. COACH, MUSCLE, Profile- 

Profile, Sequence-Profile, CE and TM-align all contain more than eleven 

gapped instances (a gapped instance is not how many INDELs there are 

individually, but how many INDEL regions exist in total) in their target 

sequences in the l-vs-S set. The Profile-Profile method introduces up to 19 

gapped instances, sharing the highest number on average, of seven gapped 

instances with the Sequence-Profile method. There are less gapped instances 

introduced into the templates than the target sequences. COACH, Profile- 

Profile, Sequence-Profile and TM-align contain more than eleven INDELs in
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their templates in the l-vs-S set (Figure 4.17). In the l-vs-i s et, for all the 

methods and both the target and template sequences, n o more than nine 

gapped instances were ever introduced (except for the TM-align target 

sequences which contained up to thirteen gapped instances). The alignments in 

this set all share a similar average of five or six instances.
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Figure 4.17. The Number of Gap Instances Introduced into the Target. The number 
of gapped instances introduced by the alignment methods, for the target of the l-vs-S 
set for the methods, containing over ten gap instances, with the average number of 
gapped instances (in the lower right hand corner of each graph) are shown.
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Figure 4.18. The Number of Gap Instances Introduced into the Template. The
number of gap instances introduced by the alignment methods for the template of the I- 
vs-S set for the methods containing over ten gap instances, with the average number 
of gap instances shown.

A key concern was that particular alignment methods introduced large 

numbers of INDELs into the interface regions. This could prove 

disadvantageous when modelling the target, if unnecessary gapped blocks 

were introduced, forcing extra loop modelling to be carried out. Therefore, to 

assess this, the percentage of gaps in the interface regions alone was obtained.
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4.4.7 The Amount of Interface Regions Containing Gapped Instances
The percentage of interface regions that contain a gapped instance is 

shown in table 4.3. The least insertions, as an average over all the pairs, is 

made by PSI-BLAST at 9.49% and the most made by Sequence-Profile at 

21.79%. It is not surprising that even though they are high quality alignment 

techniques, COACH and Profile-Profile seem to insert gapped instances into 

the interface more regularly than the supposedly inferior methods of BLAST and 

PSI-BLAST. This may be due to the fact these are local alignment algorithms 

and because local alignment methods tend to chop parts of sequences off it is 

more likely that they will include more gaps. Of course this may be due to the 

use of different gap penalties and scoring schemes.

Method Gaps(%)
Sequence-Profile 21.79

Profile-Profile 20.76

COACH 17.24

TM-align 16.09

CE 14.27

MUSCLE 12.19

BLAST 11.71

MAMMOTH 11.00

PSI-BLAST 9.49

Table 4.3. Gaps and Interfaces. The results of the l-vs-S set for the target only are 
displayed. Here, the percentage of interfaces that contain gapped instances are shown 
as an average percentage for all the target-tempiate pairs of that method.

4.4.8 The Model-able Part of the Alignment
An alignment that results in less than 100% of the target being aligned 

to the template, and therefore not capable of being modelled in its entirety, 

should be regarded as inferior to an alignment that would have its entire target 

length modelled. This holds if the purpose is to model a full alignment (rather 
than concentrating on the specificity of the interface region). Sometimes, even
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though a method may retain 100% of its sequence it is possible for it to produce 

an alignment where all the sequence may not be modelled. This usually 

happens when the target or template contains gaps at the start or end of the 

alignment. In the l-vs-S set COACH, MUSCLE, PSI-BLAST, Profile-Profile, 

Sequence-Profile, MAMMOTH and TM-align all contain alignments with less 

than 90% of the target being model-able (Table 4.4). I n contrast, CE and 

BLAST methods produce alignments with 100% of the aligned target being 

model-able. However, BLAST and CE are likely to have alignments that are 

100% model-able due to the reduced amount of the alignment that is retained. 

TM-align and MAMMOTH seem to have a more varied amount that is model- 

able. The l-vs-l set methods all produce alignments with more than 90% of it 

being model-able.

Method Percentage Model-able

100 100-90 90-80 80-70 70-60 60-50 50-40 40-30
BLAST 144 0 0 0 0 0 0 0

PSI-BLAST 37 105 0 0 1 1 0 0
MUSCLE 54 84 1 3 0 0 1 1

Sequence-Profile 32 104 0 5 0 2 1 0

Profile-Profile 51 87 5 0 0 1 0 0

COACH 16 116 10 1 0 0 1 0

TM-align 33 88 2 3 3 2 4 8

MAMMOTH 28 92 2 3 5 2 3 9

CE 144 0 0 0 0 0 0 0

Table 4.4. The Model-able Part of the Alignment. For the l-vs-S set, the number of 
sequences in that percentage model-able range. The one hundred percent column is 
the number of sequences obtaining exactly one hundred percent model-able, the other 
columns contain up to the highest value in that range but not including it.

To discern whether there was a trend between the amount of alignment 

that was model-able and the percentage sequence identity of the pair, figure 

4.18 was produced. The Pearson correlation coefficient was the highest for the
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TM-align method (0.56) compared to COACH (0.31), Profile-Profile (0.15), 

Sequence-Profile (0.33), PSI-BLAST (0.15), MUSCLE (0.22) and BLAST (no 

correlation since all sequences were 100% model-able). The amount of 

sequence that was model-able in the alignments produced by TM-align share a 

more varied distribution than the rest.
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Figure 4.18. The Percentage Identity and Percentage Model-able. For the l-vs-S set 
and the method TM-align, the correlation (lower right hand corner of graph) between 
the percentage identity of the alignment pair and the percentage model-able is shown.

4.4.9 The NiRMSD of the Alignments
The normalised iRMSD was calculated for all of the alignments and 

averaged for each method. The results for both sets can be seen in table 4.5. In 

both cases TM-align has the lowest NiRMSD, which indicates the best score for 

the alignments. The NiRMSD figures are virtually impossible to distinguish with 

the exception of MUSCLE (in the l-vs-S set) and BLAST (in the l-vs-l set), being 

slightly worse than the other sequence-based alignments, although PSI-BLAST
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seems to have a small edge over the other methods.

NiRMSD A

Alignment Method l-vs-S Set l-vs-l Set
TM-align 0.68 0.60

PSI-BLAST 0.76 0.66

BLAST 0.79 0.73

Sequence-Profile 0.80 0.67

COACH 0.81 0.69

Profile-Profile 0.82 0.67

MUSCLE 0.88 0.69

Table 4.5. The NiRMSD of the Alignments. For the l-vs-S and l-vs-l set the NiRMSD 
was calculated for the alignments.

4.4.10 NiRMSD and Percentage Identity
The correlation between the NiRMSD of the alignment and the 

percentage identity of the alignment is a negative one; as the percentage 
identity of the alignment pair increases, the accuracy (NiRMSD) decreases. The 

scores for each of the methods are as follows: BLAST -0.69, COACH -0.28, 

MUSCLE -0.67, Profile-Profile -0.19, PSI-BLAST -0.61, Sequence-Profile -0.61, 

TM-align -0.59. Since TM-align is the principal gold standard, the graph for the 

NiRMSD versus the percentage identity of the TM-align aligned pairs is shown 

in figure 4.19 and the graphs for the other methods can be seen in appendix 2, 

figures A2.4 -  A2.9.
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Figure 4.19. The Percentage Identity and the NiRMSD. For the l-vs-S s et, the 
average NiRMSD (the y-axis is measured in Angstroms) per pair was plotted for the 
TM-align method against the percentage identity of that alignment pair.

4.4.11 The Accuracy of the Alignments

The percentage of correctly aligned residues compared to the gold 

standard TM-align alignments is shown in figure 4.20 for the different methods, 

over varying percentage identity bins. The results of the alignment methods 

compared to CE and MAMMOTH graphs are in appendix 2, figure A2.10 and 

A2.11. It is worth noting that since CE is a local alignment method this 

prevented straightforward comparisons with global alignment methods. The 

MAMMOTH results were very similar to the TM-align results and the latter were 

chosen, as the initial results were more comparable with previous investigations 

and MAMMOTH displayed some minor inconsistencies, deleting terminal 

residues from some alignments. T he percentage of correctly predicted 

alignment residues was calculated three different ways: the percentage of
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correctly predicted residues across the whole alignment, the percentage of 

correctly predicted residues from the retained sequence in the alignment, and 

the percentage of correctly predicted residues as a subset of the model-able 

sequence (for a more detailed explanation see t he Methods and Materials 

Chapter, section 4.3.3).
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Figure 4.20. Percentage of Correctly Predicted Residues. Results for the 
percentage of correctly aligned residues by each alignment method, as an average 
across all pairs in the l-vs-S set, assessed against the gold standard TM-align are 
shown. The percentage identity bins are inclusive as indicated by the “less than” signs.
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In figure 4 .20, for the l-vs-S set, the percentage correct for all the 

alignment methods (assessed against TM-align, refer to section 4.4.11 for an 

explanation of why TM-align was chosen) decreases as the percentage 
sequence identity between the target and the template decreases. The 

percentage correct is the amount of alignment positions in the alignment 

method which are correct compared to the gold standard TM-align. This also 

includes the gold standard structural methods. This applies to the three different 

techniques for calculating the percentage of correctly aligned residues (please 

refer to figure 3.6 for a description of the three techniques, “whole 

alignment/reference”, “model-able” and "reference”. The gold standards, 

MAMMOTH and CE, are placed slightly apart from the other methods to aid 

visualisation. It is interesting to note that the gold standards CE and MAMMOTH 

represent the best possible alignments that the sequence-based methods could 

arguably achieve since they are derived from known structures. Indeed, in the 

majority of cases for all percentage identity ranges (albeit, all are below 80% 

sequence identity) they still only assign a maximum of 80% of residues correct 

when being assessed against TM-align. CE fares less well since it is a local 

alignment method. However, MAMMOTH might be expected to achieve near 

parity with TM-align and it is clear here that the 2 methods typically agree on 

only 80% of the aligned positions. This represents a theoretical "maximum" that 

the sequence-based methods might achieve, as well as the theoretical error or 

uncertainty in aligning two structures.

Only the Profile-Profile, CE, PSI-BLAST and BLAST results are affected 

by considering percentage retained assessments. Although CE’s, BLAST'S, 

PSI-BLAST’s and Profile-Profile’s score increases, this potentially could be a 

problem in future modelling assessments if the segments removed were part of 

the recognition interface (which is only the case for targets of the BLAST and 
CE methods, see figure 4.14). In essence, this means that the local alignment 

protocols do better than expected, with this caveat in mind. In the model-able 

graph (Figure 4.20) the number of correctly aligned residues is represented with 

the amount of the sequence that is considered model-able to hopefully assess 

each method in terms of modelling the correctly aligned residue positions. The
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most noticeable difference in the third graph and the second graph is that PSI- 

BLAST and BLAST seem to have a marked improvement, since the amount of 

sequence that is model-able is similar to other methods regardless of how much 

of the sequences has been retained. Unsurprisingly, MAMMOTH assigns more 

correct residues than all other methods in the percentage model-able, meaning 
more of the alignment can be potentially modelled compared to the abilities of 

the other alignment methods. Above the 20% identity bin cut-off there is a less 

varied distribution of correctly predicted residues on average, with the method 

order (the method with the most correct residues being listed first) of correctly 

predicted residues staying generally the same for the whole alignment: 

COACH, Sequence-Profile, MUSCLE, Profile-Profile, PSI-BLAST and BLAST, 

and for the retained alignment: PSI-BLAST, BLAST, Profile-Profile, Sequence- 

Profile and MUSCLE, and for the model-able alignment: PSI-BLAST, COACH, 

BLAST, Sequence-Profile, MUSCLE and Profile-Profile. It is clear that 

MAMMOTH always out-performs the other methods (with CE usually following) 

as these are the other gold standards. . Between the sequence-based methods 

BLAST is usually the worst. Below 20% there is more variation between the 

methods and the percentage of correctly predicted residues drops at least 10%, 

but still they stay in the same order of which methods predict the most residues 
correctly in the alignment. The methods can predict around 70% correct 

residues (Table 4.6) in the retained and model-able assessment stage, which is 

surprisingly good.

It is generally assumed that profile or HMM-based alignment protocols 
will outperform the single sequence based methods. Indeed, this seems to be 

the case here when the alignment is assessed as a whole, but take into 

consideration the amount of alignment that is retained and is actually deemed 

model-able and the results seem to surprisingly suggest PSI-BLAST is a worthy 

candidate for predicting alignments, even into the twilight zone, of course the 

Profile or HMM methods not affected by the amount of alignment retained still 

remain the best alignments to use over the sequence based alignments that are 

also not affected by the amount of sequence retained.
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Whole % Retained % Model-able %
MAMMOTH 70 70 86
COACH 55 55 55
Sequence-Profile 47 44 48
Profile-Profile 42 51 51
MUSCLE 40 40 42
CE 39 75 72

PSI-BLAST 38 74 71
BLAST 28 70 61

Table 4.6. The Percentage Correct for the Different Alignment Types. For the l-vs- 
S below 20% sequence identity, the percentage of correctly predicted residues 
assessed against the gold standard TM-align is shown.

These results and general findings concur with the findings of 

Jaroszewski’s lab (2002) who also found in their assessment of alignment 

methods that the distribution of alignment accuracy is very broad. Some of the 

alignment methods for this range of sequences were very accurate despite low 

sequence identity. However, none of the alignments were completely incorrect, 

even at low sequence identity and so all alignments were in agreement with the 

structural alignments to some extent. There is much less alignment accuracy 

variation with protein pairs with identities above the 30% threshold.

The same assessments were applied to the l-vs-l set. However, the i- 

vs-l set has only one sequence below 30-20% identity bin and none below 20% 

bin. Hence, it is difficult to observe any clear trends from such a small data set. 

The graphs for this set can be found in appendix 2, figure A2.12 - A2.14.

Once the accuracy of the alignments had been found, it was necessary 

to assess how well the interface residues were aligned compared to the rest of 

the alignment.
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4.4.12 Alignment Accuracy of the Interface Regions
In all cases bar one (BLAST in the retained alignment), interface 

segments were found to be more accurately aligned than the rest of the 

alignment (Figure 4.21). As the percentage identity of the target-tempiate pair 

decreases the difference in the amount of correctly aligned residues in the rest 

of the alignment compared to the interface decreases, suggesting that the 

interface is more conserved than the rest of the alignment, especially in the 

more challenging alignments (lower percentage identity). This effect is slightly 

reduced when the alignment being considered is the amount retained or model- 

able. In general, the method with the largest difference in accuracy of the 

alignment compared to the interface is the Profile-Profile method, with up to a 

40% increase in accuracy going from the alignment to the interface. This is 

encouraging, since this protocol was observed to be the best for alignment in 

general for comparative modelling (Marti-Renom et a/., 2004). This current 

investigation, however, is biased in some respect since the amount of interface 

residues is far smaller than the amount of non-interface residues in the 

alignment and with the local alignments benefiting from an increase in accuracy 

over the whole alignment assessment method. However, this is lost when 

looking at the retained and model-able alignment.
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Figure 4.21. Difference in the Accuracy of the Interface Residues and Non­
interface Residues. The different methods were displayed on the graph for the l-vs-S 
set with the average percentage identity of that bin plotted against the difference in the 
percentage of correctly predicted residues of the alignment (residues not included in 
the interface) compared to the interface region, as an average over all the pairs in that 
identity bin.
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A clearer representation that the interface residues are consistently 

more accurately aligned than the non-interface region can be seen in figure 

4.22. Ail of the methods more accurately predict the interface regions (except 

BLAST in the retained alignment, shown by the red coloured bar being added 

onto the empty, white bar). The larger the white bar is compared to the solid 

coloured bar, the more accurately aligned the interface is than the non­

interface. It is easier to see that with more challenging alignments, the accuracy 

of the interface outweighs the accuracy of the non-interface residues, with the 

profile and HMM methods outperforming the sequence based methods. The 

graphs for the other gold standards CE and MAMMOTH, together with the l-vs-l 

set can be found in appendix 2, figure A2.15 - A2.19.
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Figure 4.22. The Accuracy of the Non-interface Residues and Interface Residues.
The different methods were displayed on the graph with the percentage identity bins for 
the l-vs-S set, plotted against the percentage of correctly predicted residues of the 
alignment (non-interface residues; the solid coloured bars) with the percentage of 
correctly predicted interface residues (the white, empty bars).
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COACH aligned both the interface and the non-interface regions more 

accurately than the rest of the methods, not including the gold standards, and 

BLAST was the worst. The amount of correctly aligned residues in the interface 

and the non-interface decreases as the percentage identity of the alignment pair 

decreases, with the alignment residues being less accurately aligned than the 

interface residues (Figure 4.23). Althou gh the target sequence may not be 

aligned with a high accuracy, overall, the interface regions often are. Even at 

low percentage identities the interface can be aligned quite accurately. For 

example, using the COACH method and a target-tempiate pair having below 

20% sequence identity, the interface positions are aligned with up to 80% 

correct. The corresponding non-interface residues are aligned with around 50% 
accuracy.
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Figure 4.23. The Percentage Identity and the Percent Correct of BLAST and 
COACH. The individual pairs can be seen in the plots with the interface regions and the 
non-interface regions (alignment regions) for the l-vs-S set.
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4.5 CONCLUSIONS AND FUTURE WORK
A study on the alignment accuracy of various methods, including 

sequence-based methods, profile-based methods and HMM-based methods, 

was performed on two sets of peptidase proteins. One set included pairs where 

the targets consisted of a protein chain bound to an inhibitor chain and the 

templates contained a peptidase chain only (l-vs-S). The other set included a 

target and a template, both with inhibitors bound (l-vs-l). Unfortunately, the l-vs- 

I set did not contain enough target-template pairs with percentage identities 

stretching into the twilight zone (below 20% sequence similarity, where this 

project was aimed at investigating), thus, most of the presented results reflect 

the l-vs-S set. The challenge was to determine whether the different alignment 

protocols could align the interface residues between the peptidase and the 

inhibitor more accurately than they could align the non-interface residues. If the 

interface could be aligned more accurately, this offered the potential to model 

the recognition regions of these proteins with higher accuracy than is normally 

expected in and around the twilight zone.

As the percentage identity decreased, the alignment accuracy 

decreased. The more distantly related the proteins are, the less conserved the 

structures are, making it harder to align their corresponding sequences through 

sequence similarity, usually incorporating more gaps into the alignment. The 

amount of gaps and number of gapped instances introduced into the alignment 

increased, as noted by other groups (Prasad et al., 2003). Prasad’s group also 

state that as the percentage identity decreases, gaps and localised regions of 

total dissimilarity increase in size and number, making the modelling protocol of 

highly divergent sequences more complex and less accurate. The global 

alignment methods tend to insert more gaps and retain less of the alignment. 

Understandably the global methods produce alignments with more gaps since 

they are accommodating for the difference in length between the target and the 

template whilst retaining the entire sequences. The local methods will discard 

parts of the sequence if the alignment is more challenging and the lengths of 

the two sequences differ greatly. CE, on average, chopped off the most 

residues in the alignments. Lo cal alignment methods improved in accuracy
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when being assessed in terms of the amount of sequence retained and the 

amount model-able, allowing for the loss of sequence. Problems could occur if 

the discarded sequence included interface residues; the important residues 

needed for specificity and required for modelling. Only in a few instances CE 
and BLAST did not retain 100% of the interface residues, with the Profile-Profile 

and the HMM methods containing the most gapped instances in the interface 

region, this could be due to the need for more gap optimisation.

Increasingly complex alignments produced more accuracy variation 

between the methods and a smaller model-able portion of the alignment. With 

the more trivial alignments, the accuracy of the different methods is, in general, 

only marginal. At lower percentage identities the more advanced methods are 

tuned for remote homology detection and aligning the sequences, and 

outperform the other methods, giving a broader range of alignment accuracies 

between the protocols.

Overall, and as expected (because of their ability to contain more 
evolutionary information), the profile and the HMM methods were more accurate 

at aligning sequences. None of the methods spanning all the sequence 

identities were completely different than the gold standards, and even though 

the structural alignment algorithms represented the gold standards (and the 

maximum possible accuracy achievable by the other methods) they were still 

not 100% correct. Interestingly, when most hope for accurate alignments 

diminishes, the alignments are still fairly accurate. For example, COACH 

predicted up to 50% of the alignment correctly, which is not ideal, but the 

accuracy of the interface residues was much better.

The interface was more accurately aligned than the non-interface 

residues in the alignment, even below 20% sequence identity. A greater 

difference in accuracy between the interface and non-interface at lower 

percentage identities existed. Even though the overall accuracy of the alignment 

may not be high, the accuracy of the interface region surpassed the rest of the 

alignment. For example, below 20% sequence identity the accuracy of the
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interface residues can be up to 80%, and the non-interface residues up to 50%, 

whereas when the alignment was assessed overall, the accuracy (made by 

COACH in this case) only reached a maximum of 60% accuracy. The profile 

and HMM based alignment protocols were better at predicting the interface than 

the sequence-based methods. This increase in accuracy is because the 

interface is more conserved than the rest of the accessible surface of the 

peptidase, due to the additional evolutionary pressures exerted on them, and 

the profile/HMM methods are better at distinguishing evolutionary related 

positions from non-related positions.

Alignment of a target-template pair where only the template has a 

structure is of great importance in comparative modelling. The alignment step is 

seen as one of the most important steps where errors cannot be rectified at a 

later date. However, if the aim of the comparative modelling of a particular 

target was not to achieve an overall accurate model, but to enable specificity 

predictions through highly accurate aligned and modelled portions of the model, 

it would be plausible to envisage a target-template pair with homology reaching 

into the twilight zone achieving this. Of course, the alignment methods should 

be able to produce a satisfactory alignment with accurate interface residues 

regardless of the accuracy of the rest of the alignment. From these results, this 
seems to be the case.

Despite the progress in this chapter a few issues exist; since the writing 

of this chapter other alignment protocols may have been developed which can 

replicate the structural-based alignment better than the alignment techniques 
used here (refer to the Introduction of this chapter), also the parameters of 

these alignment methods were all set to default, so no optimisation of the 

individual methods was obtained (this was to ensure the results reflected the 

novice and general outcome of the methods). The gap optimisation plays an 

important role in the production of profiles and more optimisation could be 

beneficial. The definition and assignment of the interface residues and regions 

was investigated, yet more studies could be done. It would also be 

advantageous to obtain more pairs for the l-vs-l set to understand how both of
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the target and template sequences having an inhibitor bound would affect the 

alignment results. It may have been wise to use CE as the gold standards for 

the local alignment methods only, rather than for both the global and local 

methods since CE is a local alignment method and so it may be fairer to assess 

local alignment methods against a local gold standard method.

The next chapter looks at the modelling process of the alignment and 

tries to determine if the interface portion of the alignment is modelled 

accurately, even at lower identities, and to what extent can this information be 
used.
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5. A lig n m e n t  P r o to c o ls  a n d  C o m p a r a tiv e  

M o d ellin g

5.1 AIM
The aim of this work was to assess the quality of alignment methods 

(the alignments built in chapter 4) with respect to comparative modelling, in 

particular evaluating the predictive qualities of the models for the purposes of 

protease molecular recognition. The previously built alignments provided target- 

template pairs as input for comparative modelling, and a variety of models were 

built with different refinement levels to investigate the accuracy of these levels. 

The accuracy of the models was also assessed by comparing the models to the 

known structures of the targets in the PDB, as well as considering the accuracy 

of the interface regions independently. Various properties were considered 

including the RMSD of the models, the sequence conservation of the 

alignments, the accessibility of the residues in the structures, and the 

differences in distances in the contacts made between the modelled structures 

and the actual structures. The results were obtained in order to assess the 

specificity of the alignment protocols in terms of modelling at different 

percentage sequence identities, and whether the alignment methods could 

model the interface more accurately than the rest of the alignment. This chapter 

covers the introduction of loop modelling using MODELLER, whilst building, 

refining and evaluating comparative models in MODELLER and structural 

superposition can be found in the main introduction: Chapter 1.

5.2 INTRODUCTION
The introduction to this chapter is by no means an exhaustive 

description of comparative modelling, but aims to introduce in greater detail 

concepts unique or more relevant to this particular study.

The accuracy of a protein model is directly linked to the usefulness of 

the model, so it is of great importance that the resulting predicted structure is of
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as high accuracy as possible. One of the major limitations, and a potentially 

highly error prone step, of comparative modelling is the loop modelling step.

5.2.1 Loop Modelling
For the basics of comparative modelling please refer to the Introduction 

Chapter. It should be noted that strictly no specialist loop modelling was done, 

but the building and refinement of the loops were completed in MODELLER.

Currently, around 60% of all protein sequences can have at least one 

domain modelled on a related, known protein structure (Fernandez-Fuentes et 

a!., 2006). At least two-thirds of the comparative modelling cases are based on 

below 40% sequence identity between the target and the templates, and thus 

generally require loop modelling (Fernandez-Fuentes et al., 2006).

In comparative modelling, target sequences often have residues 

inserted relative to the template structures or have regions that are structurally 

different from the corresponding regions in the template. Thus, no structural 

information can be extracted from the template structures. These regions 

frequently correspond to surface loops, and show the greatest variation in the 

amino acid sequence. Loops often play an important role in defining the 

functional specificity of a given protein, forming the active and binding sites. The 

accuracy of loop modelling can be a major factor determining the usefulness of 

comparative models in applications such as ligand docking. Loop modelling can 

be seen as a mini protein folding problem because the correct conformation of a 

given segment of a polypeptide chain has to be calculated mainly from the 

sequence of the segment itself. However, loops are generally too short to 

provide sufficient information about their local fold. Some additional restraints 

are provided by the core anchor regions that span the loop and by the structure 

of the rest of the protein that cradles the loop (Jacobson & Sali, 2004).

There are two main techniques of loop modelling procedures: the ab 

initio me thods, an d the database search protocols. There are also "hybrid” 

methods that combine these two approaches. These will be described briefly in 

the next sections.
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5.2.1.1 Ab Initio Methods for Loop Modelling
The ab initio (CONGEN: Bruccoleri & Karplus 1987) loop prediction is 

based on a conformational search or enumeration of conformations in a given 
environment, guided by a scoring or energy function. There are many such 

methods: exploiting different protein representations, energy function terms, and 

optimisation algorithms. Loop prediction by optimisation is in principle applicable 

to simultaneous modelling of several loops and loops interacting with ligands, 

which is not straightforward for the database search approaches (Marti-Renom 

et a/., 2000).

ModLoop (Fiser & Sali, 2003b) is a web server for automated modelling 

of loops in protein structures. The server relies on the loop modelling routine in 

m odeller  that predicts the loop conformations by satisfaction of spatial 

restraints, without relying on a database of known protein structures. The 

method optimises the positions of all non-hydrogen atoms of a loop in a fixed 

environment.

5.2.1.2 Database Search Techniques for Loop Modelling
The database approach to loop prediction (COMPOSER: Sutcliffe et at., 

1987; SLoop: Burke et al., 2000; CAMAL: Martin et a/., 1989) consists of finding 

a segment of main-chain that fits the two stem regions of a loop. The stems are 

defined as the main-chain atoms that precede and follow the loop but are not 
part of it; they span the loop and are part of the core of the fold. The search is 

performed through a database of many known protein structures, not only 

homologues of the modelled protein. Usually, many different alternative 

segments that fit the stem residues are obtained, and possibly sorted according 

to sequence similarity, for example. The selected segments are then 

superposed and annealed onto the stem regions and then refined (Marti-Renom 

et ai., 2000). The database approach is limited to the size of the loops; the more 

residues, the more the possible conformations, reducing the size to seven 

residues or less for their conformations to be present in the database.
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5.2.1.3 Combined Approaches

Combined methods use both database search techniques and ab initio 

methods. The underlying idea is the use of database search methods to find 

candidate loops for a given target and subsequently evaluate and re-optimise it 

in the target protein (Fernandez-Fuentes etal., 2006)

The ArchPRED (Fernandez-Fuentes et al., 2006) server implements a 

fragment-search based method for predicting loop conformations. The inputs to 

the server are the atomic coordinates of the query protein and the position of 

the loop. The algorithm selects candidate loop fragments from a loop library by 

matching the length, the types of bracing secondary structures of the query and 

by satisfying the geometrical restraints imposed by the stem residues. 

Candidate loops are then inserted in the query protein framework where their 

side-chains are rebuilt and their fit is assessed by the RMSD of stem regions 

and by the number of rigid body clashes with the environment. The remaining 

candidate loops are ranked by a Z-score that combines information on 

sequence similarity and observed main-chain dihedral angle propensities. The 

final loop conformation is built in the protein structure and annealed in the 

environment. This method was benchmarked and it was found possible to 

predict loops of length 4, 8 and 12 with coverage of 98, 78 and 28% with at 

least 0.22, 1.38 and 2.47 of RMSD accuracy, respectively.

5.2.1.3 Loop Refining in MODELLER
The loop refining method first takes the generated model, and selects 

all standard residues around gaps in the alignment for additional loop modelling. 

An initial loop conformation is then generated by simply positioning the atoms of 

the loop with uniform spacing on the line that connects the main-chain carbonyl 

oxygen and amide nitrogen atoms of the N- and C-terminal anchor regions 

respectively (this model is written to a file with the extension .IL). Next, a 

number of loop models are generated, each taking the initial loop conformation 

and randomising it by +/-5A in each of the Cartesian directions. The model is 

then optimised thoroughly twice, firstly considering only the loop atoms and 

secondly with these atoms ‘feeling’ the rest of the system. Non-homology
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derived restraints are used in this procedure. Each loop model is written out 

with the .BL extension (Fiser et a/., 2000).

As this project focused on the comparative modelling of the peptidases, 

and m odeller  was used to build the comparative models, for ease and time 

factors, m odeller  was chosen to complete refinement of the loops.

5.3 METHODS AND MATERIALS
The target-template alignment pairs generated in the previous chapter 

provided input for the comparative modelling protocol: m o d eller . Models with 

as high accuracy as attainable needed to be built for each of these pairs. After 

the construction of the model, refinement of the model and the loops was 

required to enable the important interface regions to be modelled as close to the 

actual target structure as conceivable. Evaluation methods would have to 

distinguish how precise each alignment methods’ model was, as well as the 

modelled specificity of the interface regions.

5.3.1 Developing the Model Building Protocol
When building the comparative models in m o d eller , it is possible to 

construct multiple models for each target-template alignment pair. These 

models are able to have different refinement levels applied during the model 

building stage, m odeller  also allows the refinement of the loops once these 

models have been produced, with the possibility of more than one model being 

built with various loop refinements. The refinement levels in m odeller  refer to 

the optimisation approach of molecular dynamics with simulated annealing. 

More refinement contains more cycles of molecular dynamics and slower 

schedule for simulated annealing. The optimisation of the models and the loop 

models can be done to different degrees, with levels ranging from no refinement 

to maximum refinement (termed none, very_fast, fast, slow and very_slow in 

m odeller).
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To determine the best refinement levels plausible within certain time 
restraints, a small subset of the alignment pairs from both of the datasets (l-vs-l 

and l-vs-S) with low percentage sequence identities was taken, and different 

levels of refinement applied whilst building various numbers of models. A trade­

off between the accuracy of the resulting models and the amount of time it took 

to complete the refinement levels and build the multiple models existed. The 

chosen protocol used for each target-template pair consisted of building an 

initial ten models with "slow” refinement of the model, but no refinement of the 

loops, then building ten models which provided intermediate files for the loop 

refinement (file extension .IL), and then for each of the final ten models built, 

five loop models were built with “slow” loop refinement. Thus, for each 

alignment pair a total of seventy models were produced (figure 5.1).
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>Target
IVEGQDAEVGLSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLLYPPWDKNFTVDDLLVR
>Template
LIDGKMTRRGD S PWQWLL -  DSKKKLACGAVLIH PS WVLTAAHCM-----------DESIRK----------

10 models built with “slow” refinement

10 intermediate loop models built

(------------------------------------------------l
From 10 models built, 5 loop 
models built for each using “slow” 
refinement (total of 50 models)

▼

Figure 5.1. The Modelling Protocol. From the target-template alignment of each pair 
an initial 10 models were built using the “slow” refinement protocol in MODELLER, then 
10 intermediate loop models were built from each of the first 10 initial models. Finally 
the 10 intermediate loop models produced 5 loop models each, with “slow” refinement 
of the loops being applied.
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5.3.2 Building the Comparative Models
For all of the alignment methods (MUSCLE, PSI-BLAST, BLAST, 

Profile-Profile, Sequence-Profile, COACH and TM-align) and both datasets (I- 

vs-S and l-vs-l) a total of seventy models were built for every protein target- 

template pair. Only the gold standard TM-align alignments were built by 

comparative modelling, since TM-align was the chosen gold standard against 

which the alignments were assessed in chapter 4. Building the models of the 

gold standard alignment method TM-align meant that the other sequence and 

profile-based methods could be compared to the TM-align model as well as the 
actual structure of the target. This enabled the resulting models from each of 

the alignment techniques to be assessed against the gold standard of “truth” as 

well as the actual structure of the target PDB (this is important since the TM- 

align modelled structure represents the maximum "quality” the other alignment 

models could achieve -  since it is based on aligning the known target structure 

a priori to the template).

For the modelling process the template PDB structure files were the 

input with the target-template sequence alignment to m o d eller . For both 

datasets, the template structure file only contained information on the peptidase 
chain being modelled.

5.3.3 Assessing the Alignments and Comparative Models
To assess the final models, global and local RMSDs were calculated by 

comparing each of the models against the actual target structures. The local 

RMSDs were calculated over a seven residue sliding window, placing the 

average RMSD of the window at the fourth residue position of that window (see 

figure 5.2 for more detail on the seven residue sliding window and the reasons 

for using seven residues).. The local RMSDs of the structures were used as 

well as the global, since global RMSDs can be misleading; it is possible for the 

global RMSD to be quite poor and the local areas to have better RMSDs. Even 

if only a small local portion of the model has an error in it and the rest of the 

model has been modelled accurately it could result in an overall poor quality 

model. It is important in this project to be able to observe local RMSDs, to 

determine how well contiguous sections corresponding to interface residues
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have been modelled. The RMSD values between the backbone Ca-Ca, main 

chain -  main chain and for all of the atoms were obtained. It is of course 

possible that the opposite can be true, and that several well modelled local 

regions might not share the correct relative disposition to each other as in the 

true structure -  and hence the global RMSD should not be ignored as a quality 

assessment measure.

Length of Interface Assignments 
-̂------------------------------------------------►

N N N N Y Y Y Y Y N N N N N N
0 1 2 1 2 0 0 0 2 2 2 2 1 1 1 1 0 0 0 0 0

R R R R R R R R R R R R R R R  
<-------------------------------------------------------- ►

Length of RMSD Assignments

Figure 5.2. Example of Averaging RMSDs. The interface/non-interface status is 
assigned at position four of the seven residue sliding window, as is the average (local) 
RMSD value.

5.3.4 Assessing the Interface Regions and Comparative Models
To assess the modelling of the interface regions, the RMSDs of the 

residues considered to be part of the interface were found (please refer to 

chapter 4, section 4.3.4 for a more detailed description on how the interface 

regions were defined).

5.3.5 The Accessibility Calculations
The n a c c e ss  program (described in chapter 2, section 2.9) provided the 

residue accessible surface for all the residues in each of the targets in the 

target-template alignment pair. This made it possible to determine if a 

correlation existed between the RMSDs of the residues in the model and the 

accessibility of each residue.

5.3.6 Calculating the Sequence Entropy
The multiple sequence alignments generated for the hidden Markov 

models built in chapter 4 were used in the calculation of the sequence entropies
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as a measure of conservation. The normalised Shannon entropy (Shannon, 

1948) was calculated at each column in the alignment and averaged over a 

seven residue window (to provide consistency when comparing to the RMSD 

results which were also averaged over a seven residue window), assigning the 

average value to the fourth position. The lower the value, the more conserved 

that column is relative to the submitted multiple sequence alignment. 

Calculating this would enable any correlation (if one existed) to be found 

between the resulting local residue RMSDs of the models and the conservation 

of that residue position. Details of the Shannon entropy can be found in the 

chapter 2, section 2.10.

5.3.7 The Correlation Coefficient Calculations
The Pearson correlation coefficient (Pearson, 1896) determined the 

correlation between various results, including the accessibility of the residues 

and the RMSD of the residues, as well as the correlation between the 

conservation entropy of the residues and the RMSD of the residues. Details of 

Pearson’s correlation coefficient can be found in the chapter 2, section 2.11.

5.3.8 Structural Superposition
To enable contacts of the target PDB structure file (containing the 

contacts between the peptidase chain and the inhibitor chain) to be compared 

to the contacts between the modelled peptidase chain and inhibitor chain, a 

simple structural superposition "docking” procedure was used. Stalin (a 

program provided by Dr SJ Hubbard, University of Manchester, Bioinformatics 

group, see chapter 2, section 2.18) completed the structural superposition; the 

modelled peptidase chain was superposed onto the PDB peptidase chain, 

which had the inhibitor chain bound to it. The modelled peptidase chain and the 

original inhibitor chain were then copied from the Stalin  output file to a separate 

file, to compare with the actual PDB peptidase and inhibitor chain structure. The 

structural alignments created during the superposition were also checked 

manually, to ensure Stalin had made a plausible superposition from which to 

base any comparisons.

187



Alignment Protocols and Comparative Modelling Chapter 5

5.3.9 Assessing the Model Specificity
Using m o d c o n ta  (a program provided by Dr SJ Hubbard, University of 

Manchester, Bioinformatics group) the contacts between both the true and the 

modelled target peptidase and inhibitor chain were calculated. When five 

contacts are found within five Angstroms an interacting pair of residues is 

defined. The actual PDB file was submitted to m o d c o n ta  first, with a 

deliberately large distance cut-off of 8A (to allow all possible contacts to be 

found), reporting all contacts between the peptidase and inhibitor chain below 

this value. Secondly, the modelled file was submitted to the program with a 

threshold of 10A (this was used to allow all possible contacts to be found that 

were obtained with the actual PDB file and allows an error of 2 A above the 8 

A). Both the main chain-main chain and side chain-side chain contacts were 

calculated. All the contacts found using the PDB file below 5A (this was seen as 

a large enough distance to allow for errors but small enough to be contacting 

residues) were considered “correct” contacts. These contacts were noted as 

entirely “missed" by the modelled structure if the same contact could not be 

found below 10A distance within the models1 output. This allowed the model to 

have an error of +/- 5A. If the same contact from the PDB file (of below 5A) was 

found in the models’ contact output, then a correct match is assumed, and the 

difference in distance was computed. The number of correct matches was also 

calculated for three distance e rror ranges (difference in the distances); the 

number of contacts correctly found within +/- 1A, +/- 2k and +/- 3A (to test the 

specificity of the alignment method) of the PDB structure contacts was summed.

The sensitivity of the predicted contacts for each alignment method was 

also found (Equation 5.1). In this case a true positive was assigned when a 

contact found below 5A in the PDB file was below 6A (for the +/- 1A difference 

distance example) in the model file. A false negative was assigned for all of the 

contacts that the PDB file made below 5A that the model file did not find for a 

given cut-off (i.e. below 6A and above 4A, for the distance range of +/- 1A). 

ROC plots could not be calculated due to the difficulty of obtaining the number 

of true negatives which would be very large.
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Sensitivity = TP 
TP+FN

Equation 5.1. Calculating the Sensitivity. The equation used for calculating the 
sensitivity of the contacts. Where TP = true positives and FN = false negatives.

The positive predicted value (PPV, equation 5.2) contains false 

positives; if the model files contained contacts below 6A (again, +/- 1 A, for 

example) but the same contact could not be found in the PDB file of contacts 

below 5A.

PPV = TP
TP+FP

Equation 5.2. Calculating the Positive Predicted Value (PPV). The equation used 
for calculating the PPV of the contacts. Where TP is true positives and FP is false 
positives.

5.4 RESULTS AND DISCUSSION
As a first assessment of which alignment method produced the most 

accurate models, the global RMSDs between the modelled and actual 

structures were obtained. Further, to determine whether the protease interface 

could be modelled more accurately than the non-interface residues, the RMSDs 

for these residue subsets was also calculated. To aid understanding of the 

results, the sequence entropy of the residues and their accessibilities was also 

computed. The different model refinement methods were al so a ssessed by 

comparing RMSD results. Correlations between the RMSDs of the models and 

their target-template alignments, amongst others, were found. Since the l-vs-l 

dataset contained a limited number of alignment pairs (and a smaller number of 

pairs provides less reliable statistics), the results in this chapter reflect the l-vs- 
S set.
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5.4.1 The Models Built
Out of the 144 pairs in the l-vs-S set, all but the following pairs 

produced successful (models actually built by MODELLER) models under the 
MODELLER protocol:

■ 1jiwP+1afOA, BLAST
■ 1nw9B+1bmqA, COACH, Sequence-Profile, Profile-Profile

For each alignment pair a total of seventy models could be built, ten in 

the initial stage, another ten in the loop intermediate stage and a final fifty in the 

last stage. The initial ten will be referred to as the “standard" model set and the 

fifty referred to as the "loop” set (since these models contain loop refinement), 

the intermediate loop models will not be discussed, but will be known as the 

“intermediate" group. The intermediate group consists of models built by 

m odeller  as a stepping stone to the refined models, hence they are expected 

to be of lower quality that the refined “loop” set. The percentage sequence 

identity of the alignment pair is included in the results to help understand the 

potential difficulty of the modelling process and in this case the bins are 

inclusive. The percentage identity of the alignment pair was calculated as the 

number of positions containing matching amino acids, in terms of the alignment 

length. Some of the MODELLER methods did not produce all of the models 

(some of the low quality alignments exceeded the maximum violation of 

restraints value used in MODELLER). The numbers of models and pairs for the 

l-vs-S set in the different percentage identity bins can be seen in table 5.2. 

Please refer to table 4.2 in chapter 4 for the number of pairs in each percentage 

identity bin. The wide range of conformations built allowed the different model 

building techniques to be assessed. Difficulty in choosing the best conformation 

ensued and this would depend on what the resulting model was to be used for. 

For example, if it were to be used to investigate ligand docking the model with 

the highest resolution would be chosen.
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(a)
PID TM-

align
PSI-

BLAST
BLAST MUSCLE Sequence-

Profile
Profile-
Profile

COACH

<20 239 240 240 240 232 235 235
<30 509 510 510 510 502 505 505
<40 1199 1200 1200 1200 1182 1195 1195
<60 1369 1369 1360 1370 1352 1363 1365
<100 1439 1439 1430 1440 1422 1433 1435

(b)
PID TM-

align
PSI-

BLAST
BLAST MUSCLE Sequence-

Profile
Profile-
Profile

COACH

<20 1175 1200 1200 1200 1150 1155 1150
<30 2525 2550 2550 2550 2550 2505 2500
<40 5975 5975 6000 6000 6000 5955 5950
<60 6825 6825 6800 6850 6850 6755 6800
<100 7175 7175 7150 7200 7200 7105 7150

Table 5.1. Number of Pairs and Models. The PID is the percentage sequence identity 
of the alignment pair, the models are split into the PID bins which are inclusive 
(indicated by the below “<” symbol). Table (a) represents the “standard” set and table 
(b) the “loop” set.

5.4.2 The Accuracy of the Models
For all of the pairs in each method in the l-vs-S dataset, the average 

global Ca-Ca RMSD and the average global interface Ca-Ca RMSD of all the 

models were obtained (Table 5.4a). The main chain -  main chain and side 

chain -  side chain results are not shown. To see these results please refer to 

Appendix 3 (tables A3.1 and A3.2). The average local residue RMSDs were 

also computed (Table 5.4b).

(a)
Methods Standard Loop

All 1 All I
TM-align 2.66 2.31 2.91 2.65
PSI-BLAST 3.94 3.31 4.05 3.38
BLAST
MUSCLE
Sequence-Profile 3.85 3.34 3.92 3.42
Profile-Profile 3.92 3.36 4.07 3.54
COACH 3.91 3.24 4.04 3.38
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(b)
Methods Standard Loop

Nl 1 Nl I
TM-align 0.67 0.89 0.72 0.97
PSI-BLAST 0.82 1.07 0.83 1.09
BLAST
MUSCLE
Sequence-Profile 0.85 1.09 0.85 1.09
Profile-Profile 0.82 0.96 0.86 0.99
COACH 0.83 1.08 0.86 1.10

Table 5.2. The Global and Local RMSD Results. For the l-vs-S set, the global (table 
a) and the local (table b) carbon alpha - carbon alpha RMSDs are shown. “Standard” 
and “loop” refer to the ten or fifty models, respectively, and the refinement level these 
results were averaged over. “All” indicates the global RMSD value of all of the residues 
and “I” indicates the interface global RMSD result. “Nl” indicates the non-interface 
RMSD value of all of the residues that were not part of the interface and “I” indicates 
the interface local RMSD result. The green boxes highlight the best (lowest) RMSD 
result, the red, the worst -  ignoring the benchmarking TM-align which is a structural 
alignment method. The differences in these results are occasionally very small and 
become insignificant unfortunately no error statistics were completed on this set.

The Needleman & Wunsch (1970) algorithm was not used in this project 

as it has since been built upon to improve its accuracy and speed (Thompson et 

al., 1994; Myers & Miller, 1988) and so MUSCLE is seen as an improvement 

over CLUSTALW which is an improvement over the Needleman & Wunsch 

algorithm (Thompson et al., 1994).

The results shown in table 5.4(a) seem to suggest, on average and 

based on the global RMSD, BLAST produces the most accurate model and 

MUSCLE the worst performance. This is also reflected in the local RMSD 

results as well (table 5.4(b)). Table 5.4(a) reveals that the interface (I) is more 

accurately modelled than the whole structure (All) in terms of global results, 

again with BLAST producing the best models and MUSCLE the worst. BLAST 

seems to produce models with better RMSDs than PSI-BLAST even though 

PSI-BLAST produced more accurate alignments than BLAST, this may be due 

to BLAST chopping off the more difficult regions to model of the target 

sequence than PSI-BLAST does (figure 4.11). When the local RMSD results 

(the interface and non-interface residues are placed into separate categories to
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be evaluated) are observed the non-interface residues consistently result in 

lower RMSDs. Accessibility calculations and conservation calculations were 

completed in order to try and explain these results, the graphs and tables of 

which can be found later on in this section. The explanation for this is that 

interface regions would be expected to be more accessible, closer to the 

surface, and perhaps therefore modelled less accurately on average than non­

interface which might contain more buried residues. Of course, none of the 

alignment methods produce a model with precision and accuracy as high as 

with the gold-standard alignment method, TM-align. This does confirm how 

important it is to have accurate alignments in the comparative model building 

process. The “standard” models seem to outperform the "loop” models 

consistently, this suggests it may not always be advantageous to refine the 

loops in the models. This may be because the loop refinement step was not 

optimised to a very high level to allow for time constraints. The limited "loop" 

modelling we implemented in Modeller was

not able to improve the models at the modest levels of sequence identity 

we were investigating. There is not a significant improvement in RMSDs. 

However, no full loop modelling or any optimisation of sidechains was 

completed in the modelling. The preliminary conclusion is that such high level 

modelling and

refinement appears to be of limited use when modelling such divergent 

protein pairs.

5.4.3 The RMSD and the Percentage Identity
As the sequence similarity between the target-template alignment pairs 

decreases, the RMSD of the comparative model increases; the model becomes 

less reliable (Table 5.3). The RMSDs of the models within the "<20%” sequence 

identity bin are almost double than those of the sequences in the “<100%” 

sequence identity bin. Again, on average BLAST seems to produce the most 

reliable models and MUSCLE the least. There seems to be a slight decrease in 

RMSD values for the “loop” set compared to the "standard” set, suggesting loop 

refinement does improve the accuracy. For both of the "standard" and “loop" 

sets the trend is very similar; as the percentage sequence identity decreases, 

the profile and HMM based methods become more accurate than the sequence
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based methods. For the higher percentage identity bins (<100 and <60%) the 

lowest average RMSD is found to be BLAST followed by the Sequence-Profile 

method, COACH, the Profile-Profile method, PSI-BLAST, and finally MUSCLE. 

However, for the 20% bin ("loop” set), the method order changes to: BLAST, 

COACH, PSI-BLAST, Profile-Profile, Sequence-Profile and MUSCLE. The best 

and the worst methods remained the same, but the profile and HMM methods 

become more accurate. As the percentage identity decreases, the more 

sophisticated methods, containing more evolutionary information, outperform 

the sequence based methods. BLAST and PSI-BLAST may appear more 

accurate because they do not retain 100% of their sequence alignment (BLAST 

on average retains ~93% of its target sequences and PSI-BLAST ~86%, figure 

4.11, chapter 4), making the remaining sequence alignment simpler to model. 

This is because it might be expected to concentrate on “easier-to-align” sections 

of the model with strong local conservation, a consequence of using local 

alignment-based protocols. Results for the main chain - main chain results and 

for all atoms (Appendix 3, tables A3.1 and A3.2) display generally poorer RMSD 

values but with TM-align having the lowest RMSD values in all but one case. 

MUSCLE still has the highest RMSD values.
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M
PID TM-

align
PSI-

BLAST
BLAST MUSCLE Sequence-

Profile
Profile-
Profile

COACH

<20 3.12 5.79 6.72 6.36 6.22
<30 3.21 5.22 5.50 5.18 5.16
<40 2.85 4.31 4.17 3.58 4.19
<60 2.76 4.09 4.01 4.08 4.07
<100 2.66 3.94 3.85 3.92 3.91

M
PID TM-

align
PSI-

BLAST
BLAST MUSCLE Sequence-

Profile
Profile-
Profile

COACH

<20 3.11 5.98 6.65 6.29 5.92
<30 3.37 5.36 5.49 5.30 5.13
<40 3.12 4.42 4.22 3.90 4.31
<60 3.02 4.20 4.08 4.24 4.20
<100 2.91 4.05 3.92 4.07 4.04

Table 5.3. RMSD and Percentage Sequence Identity. PID is the percentage 
sequence identity of the alignment pair. The models were split into inclusive PID bins. 
The average Ca-Ca RMSD for each method is displayed. Table (a) refers to the results 
for the “standard” set, and table (b) for the “loop” set. Again, the green boxes indicate 
the method with the lowest RMSD in that PID bin, the red indicates the highest RMSD.

Figure 5.3 demonstrates the correlation that exists between the RMSD 

of the models and the percentage sequence identity of the target-template 

alignment; as the percentage sequence identity decreases, the RMSD 

increases. Surprisingly, BLAST is able to produce models sharing below 20% 

sequence identity with the template with RMSDs below 3A, although, it is 
expected these alignment pairs will not have retained 100% of their sequences, 

investigations into this are completed later in this chapter. Although the trends 

are quite clear visually, the actual correlations are modest (and negative, as 

expected), again reflecting the possibility to produce both high and low quality 

models are low sequence identities. This is clearly shown in Figure 5.3 below 

and s similar graph can be seen in Martin et al., 1997.
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Figure 5.3. RMSD and Percentage Sequence Identity. The average RMSD and 
percentage identity results for all of the pairs, using the BLAST alignment method are 
shown for each of the refinement level sets (“standard, “intermediate” and “loop”). The 
Pearson’s correlation coefficient has been placed in the key

5.4.4 The RMSD and the Percentage of Gaps
As expected, the more gaps introduced into the alignment, the higher 

the RMSD becomes. The correlation between the amount of gaps in the 

alignment and the RMSD of the model is higher for the target (Figure 5.4) than 

the template (on average), although this is probably due to the fact that the 

target tends to contain more gaps than the template (Section 4.4.4, chapter 4) 

and gaps in the target are more of a problem since MODELLER will produce a
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loop in the target model where there is no template structure to use the 

restraints from.

10

6 -

Qco
Dd

4 -

^  Standard Set (0.58) 
a  Intermediate Set (0.58) 
X  Loop Set (0.57)
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Figure 5.4. RMSD and Percentage of Gaps, Target. The average RMSD for each 
pair in the different refinement sets, “standard”, “intermediate” and “loop” plotted 
against the percentage of gaps contained within the alignment pair.
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5.4.5 Six Example Pairs

For some of the results, an example subset of the l-vs-S set was 

chosen to enable more thorough observations to be made and to further 

understand the results. Six pairs were picked, essentially randomly, 

representing a range of percentage sequence identities. The sequence 

identities have been calculated as in figure 4.2 in chapter 4. A summary of the 

global RMSDs and the lengths of the targets and templates are also shown in 

table 5.5. Usually, if the target sequence length is very different to the template 

sequence length INDELs become a problem and the alignment and modelling 

steps suffer. The first three pairs sharing below 30% sequence identity have 

large differences in the lengths of the target compared to the template lengths, 

which hinder the modelling process. A single model (from the seventy 

generated for each alignment pair) with the lowest global RMSD was chosen to 

use in the calculation of the results.

l-vs-S Set 
Pairs

Percentage 
Sequence 

Identity Between 
the TM-align 

Alignment

Percentage
Sequence

Identity Over the T . Target' • .. ■

Sequence Length
.....................

Target Template

2kaiA+1cvwH 10.6 33.8 80 254
2sicE+1r64A 13.8 24.4 275 481
1stfE+1cs8A 26.4 40.1 212 316
1ppfE+1pytD 30.5 35.8 218 251
1avgH+1autC 37.4 38.2 259 240
1f34A+1htrB 48.3 50.3 326 329

Table 5.4. The Six Example Pairs. The six pairs chosen over a range of percentage 
sequence identities from the l-vs-S set to be used in the results. The length in number 
of residues for the target and template is shown. The percentage sequence identity 
calculated over the target is shown as well.

The global RMSDs for the six pairs range from 1.51 A (1stfE+1cs8A, 

Profile-Profile) to 8.09A (2sicE+1r64A, BLAST), as shown in Table 5.6. The 

RMSDs for the lower percentage sequence identity pairs, and the global 

alignment methods, are usually higher than those pairs which share more 

sequence similarity. Surprisingly, 2kaiA+1cvwH which shares a modest 10.63% 
sequence identity can achieve a global RMSD of 3.52A with the Profile-Profile
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alignment method and 2.01A with BLAST. Equally as surprising, is 1f34A+1htrB 

(48.28% sequence identity) which has an RMSD of 5.65A when using TM-align. 

2kaiA does however, have a relatively short length of 80 residues and 1f34A, 

326 residues. The TM-align alignment between 1f34A and 1 htrB has a limited 

amount of gaps and shares similar lengths to one another (the target and the 

template), hence it would be seen as a fairly easy model to build. The alignment 

between 2kaiA and 1cvwH generated by BLAST is a short alignment (most of 
the template sequence has been removed to minimise gaps) with only a few 

gaps in the alignment, whereas the Profile-Profile alignment has retained the 

whole template sequence and so has many more gaps inserted into the shorter 

target sequence, making it a much harder model to build.

Pairs TM- BLAST MUSCLE PSI- Sequence- Profile- COACH
align BLAST Profile Profile

2kaiA+1cvwH
2sicE+1r64A
1stfE+1cs8A
1ppfE+1pytD
1avgH+1autC
1f34A+1htrB

Table 5.5. The RMSD of the Six Example Pairs. Shown are the global RMSDs for the 
six pairs for the standard set.

The six target-template pairs, and for all the various methods, all 

achieved alignments with over 90% (90% or above of the target-template 

alignment) classified as being “model-able” (please refer to the abbreviations list 

or chapter4 section 4.3.3.7 for an explanation of ‘model-able’), except in the 
following small number of cases:

■ TM-align: 2kaiA+1cvwH (34.65%) and 2sicE+1r64A (69.69%)

■ Sequence-Profile: 2sicE+1r64A (73.12%)

■ COACH: 2kaiA+1cvwH (84.25%)

The TM-align pair 2kaiA+1cvwH only has 34.65% of its alignment that is 

model-able, this means that the starts or the ends of the target or template 

sequence are aligned to gaps in the other sequence. This is because all of the 

gaps in the target are placed at the end of the target sequence, and the
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difference between the target and template sequence length is great. This does 

mean that modeller  will ignore the gaps placed at the end and so the target 

model will not suffer. However, the other methods, for the same alignment pair, 

place the gaps within the target sequence, resulting in an alignment that has a 

higher model-able percentage but more gaps within the target sequence, and 
hence lower quality models (higher RMSDs).

The percentage of gaps (the number of gaps placed within the target 

sequence compared to the length of the target sequence) in the aligned target 

sequence for the six pairs can be seen in Table 5.7.

Pairs TM-
align

BLAST MUSCLE PSI-
BLAST

Sequence
-Profile

Profile-
Profile

COACH

2kaiA+1cvwH 68.50 8.57 68.63 5.88 68.63 66.67 68.50
2sicE+1r64A 43.30 10.70 43.65 14.33 50.72 25.37 45.97
1stfE+1cs8A 34.16 6.31 34.16 5.78 35.37 7.11 2.77
1ppfE+1pytD 14.84 8.79 13.83 9.17 15.15 10.29 15.83
1avgH+1autC 2.26 0.40 0.38 0.38 0.38 3.54 2.26
1f34A+1htrB 4.12 0.92 1.21 0.91 3.83 2.15 1.51

Table 5.6. The Percentage of Gaps in the Target for the Six Pairs. The percentage 
of gaps placed in the target sequence, for each of the chosen six pairs is displayed.

The global alignment methods: (which are unable to discard any of the 

target or template sequence) TM-align, MUSCLE, Sequence-Profile and 

COACH all result in a much higher percentage of gaps (gap penalties were not 

optimised though) being introduced into the target, increasing in number as the 

percentage sequence identity decreases. The local alignment methods, which 

are capable of removing some of the alignment, tend to contain fewer gaps than 

the global methods, especially in poor alignment quality cases. The same holds 

true for the template, but with far less gaps being inserted (below 15%, except 

for COACH: 2kaiA+1cvwH 34.77%).

The percentage of the target and template sequences retained 

compared to the sequences before submission to the alignment methods is 

shown in Table 5.8 for the six pairs. Only those methods with below 100% 

sequence retention w ere i ncluded. T he lower percentage sequence identity 

pairs lose more sequence, with most lost in the template sequence for the pair
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2kaiA+1cvwH. More importantly, above 95% of the target is retained for all of 
the methods and pairs except for BLAST: 2kaiA+1cvwH and 2sicE+1r64A, the 

pairs sharing below 20% sequence similarity. Losing sequence from the 

template might not be a problem if only non-interface regions are being 

removed.

Pairs BLAST PSI-BLAST Profile-Profile
Target Template Target Template Target Template

2kaiA+1cvwH 80.00 27.17 100 33.07 100 93.70
2sicE+1r64A 88.00 55.09 100 64.86 92.00 65.90
1stfE+1cs8A 98.11 68.67 100 68.99 98.58 68.67
1ppfE+1pytD 100 94.42 100 94.42 100 93.23
1avgH+1autC 96.53 97.50 100 94.49 94.59 98.75
1f34A+1htrB 99.08 98.78 100 99.70 97.55 97.26

Table 5.7. The Percentage Retained for the Six Pairs. The percentage of sequence 
retained for the chosen six pairs.

5.4.6 The Accuracy of the Different Refinement Levels
The refinement levels of the models (standard, intermediate and loop) 

seem to make only marginal differences to the quality of the models in our 

hands. Indeed, generally, they only slightly reduce the model quality when more 

refinement is used, particularly in the global quality of the models (Figure 5.5). 

BLAST and MUSCLE are chosen since they have the best and worst overall 

RMSD values, respectively (Table 5.4). For the pairs with low sequence identity, 

the “loop” set (having the most refinement on the loops) have lower RMSDs, 

with a broader range of RMSD values (indicated by longer bars in figure 5.5). 

The loop set tends to have a more varied range of RMSD values and the model 

with the lowest RMSD is more accurate than any of the models in the other 

sets. The spread of RMSDs is not particularly useful unless the best one can be 

selected correctly which is not a trivial task. Ho wever, the model with the 

highest RMSD is also generally higher than any of the models in the other sets.
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Figure 5.5. The RMSD and the Model Refinements. The minimum, maximum and 
average (shown as squares) values for the RMSD for all of the models in that set for 
the six pairs are shown as error bars. “S” indicates the standard set, “I” is the 
intermediate set and “L” is the loop set. The pairs and percentage identity can be found 
at the top of the graph.

5.4.7 The RMSD and the Conservation Entropy.
The more conserved a region of a sequence is in a multiple sequence 

alignment, the more accurate the model built from that sequence will be in 

general (Figure 5.6). For each target, the average sequence entropy for each 

position in the target sequence in the multiple sequence alignment (the multiple 

sequence alignment used in the generation of the HMMs used in Chapter 4) 

was calculated. If a target sequence was relatively more conserved in the 

multiple sequence alignment, compared to another target in a different multiple 

sequence alignment, it would be likely that the more conserved target would 

have a template closer in structure than the less conserved one, and so would 

produce a higher quality model. Valdar (2002) review and compare different 

conservation scoring methods which may suggest entropy is not the optimal 

method since it does not account for amino acid similarity and suggest the use
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of Scorecons which calculates the degree of amino acid variability in each 

column of the alignment.

Correlation Coefficient = 0.30
>  < 4 %  /  ♦ ♦

<»♦ *
♦ ♦ ♦

----
3 4

Conservation Entropy

Figure 5.6. The RMSD and Sequence Entropy for all Models. The average (local) 
RMSD over a seven residue window for all of the models in the different refinement 
levels was calculated for the TM-align method and plotted against the average 
sequence entropy for the same seven residue window in the same target sequence.

The interface regions of the six pairs generally contained residue 

segments with both high RMSDs and low RMSDs, coupled with complementary 

low and high conservation entropies (Figure 5.7). This meant that whilst some 

regions of the interface are highly conserved and are well modelled (with low 

RMSDs), the other parts of the interface are more variable and contribute to 

higher local RMSDs. This may explain the results in Table 5.3; the local 

interface RMSDs are higher than the local RMSDs of the non-interface regions 

(the rest of the alignment which is not interface). This may be a result of the fact 

that some of the interface is necessarily highly variable in order to give different 

specificities to each peptidase. The correlations between RMSD and sequence 

entropy for the other four pairs (TM-align method) are:

■ 1avgH+1autC =0.19
■ 2kaiA+1cvwH =0.16
■ 1f34A+1htrB =0.35
■ 1ppfE+1pytD =0.42

203



Alignment Protocols and Comparative Modelling Chapter 5

All of these correlations are positive, and although they are modest it 

does suggest that regions of the proteins which are well conserved across the 

family are better modelled.

Correlation Coefficient = 0.63

{

80 100 120 

Residue Number
140 160 180 2 0 0 -

Correlation Coefficient = 0.40

“ i-------------- “ T*---- 1— ----------1---------- "  r

20 40 60 80 100 120 140 160 180 200 220 240 260

Residue Number
Conservation Entropy 

■RMSD

Figure 5.7. The RMSD and Conservation Entropy for the Interfaces. The average 
RMSD and conservation entropy for each residue is shown (both averaged over a 
seven residue window) for TM-align. The pink rectangles show the positions of the 
interface. Graph (a) refers to pair 1stfE+1cs8A sharing 26.40% sequence identity and 
graph (b) to pair 2sicE+1r64A sharing 13.81%.
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5.4.8 The RMSD and the Accessibility
Figure 5.8 displays the accessibility of the residues (again averaged 

over a seven residue window) and the RMSDs of the residues (for the example 

pair 1stfE+1cs8A). The interface has relatively highly accessible residues and 

quite high RMSDs. A correlation between the RMSD and the accessibility of the 

residues was also found, shown graphically for one example (Figure 5.9) and 

for the pairs considered here (Table 5.9).

- •  100

-■ 50 •(/)

Residue Number Accessibility 
Standard RMSD 
Intermediate RMSD 
Loop RMSD

Figure 5.8. The RMSD and Accessibility for the Interfaces. For the method TM-align 
of the 1stfE+1cs8A pair and the different refinement levels, the accessibility and RMSD 
are shown. The pink rectangles show the positions of the interface.

The interface residues for the pair 1stfE+1cs8A (method TM-align) were 

found to have a lower RMSD, on average, than the non-interface residues 

(Figure 5.9). This would support the idea that the interface should be better 

modelled than the non-interface residues; however, out of the six pairs for the 

method TM-align, this is the only case where this applies.
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Figure 5.9. The RMSD and Accessibility. For the method TM-align of the 
1stfE+1cs8A pair, the accessibility and RMSD are shown. The pink square shows the 
average RMSD and accessibility for the interface residues.

The residue accessible surface for each of the six pairs and the 

correlation between the accessible surface and the local RMSDs of the pair was 

calculated (Table 5.8). There is a correlation; the more accessible the surface, 

the higher the RMSD. This is more pronounced with the method TM-align, 

which would be expected to produce the best alignments between target and 

template. Hence, the trend is most evident when the alignment is closest to the 
one expected to be correct, and the trend is partly reduced by poorer 

alignments. The BLAST correlation is negative this may be because residues 

are counted as accessible in the partial model but should not be.

Pairs TM-align BLAST MUSCLE

2kaiA+1cvwH 0.40 -0.27 0.05
2sicE+1r64A 0.41 0.35 0.43
1stfE+1cs8A 0.43 0.37 0.37
1ppfE+1pytD 0.40 0.39 0.35
1avgH+1autC 0.45 0.41 0.43
1f34A+1htrB 0.24 0.22 0.22

Table 5.8. The Correlation Between the RMSD and Accessibility. The Pearson's 
correlation coefficient between the RMSD and the accessibility of the six pairs for the 
standard set is shown.
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5.4.9 The Specificity of the Methods
In order to assess how well the alignment methods could model the 

interface regions, the contacts between the peptidase chain and the inhibitor 

chain in the target model output file were assessed in comparison with those 

present in the actual PDB structure file of the target with an inhibitor bound. 

Comparisons were made to the contacts between the peptidase and inhibitor 

chain found in the actual PDB structure below 5A. It is worth noting that no 

contacts were lost when the local alignment methods did not retain 100% of 

their sequences.

The percentage of correct contacts for the PDB obtained through the 

modelling process is displayed in Table 5.9. This is dependent on the alignment 

method used. In this table, the correct contacts are defined as contacts made in 

the target PDB structure file between the peptidase chain and the inhibitor chain 

below 5A which are also found in the model (built using the alignment methods) 

below 10A; this allows an error of +/- 5A. A large tolerance on the contact 

distance was used in the first instance, as the modelling process is deliberately 

quite crude, with a simplistic “docking” step and no attempt has been made to 

refine the "docked" co-ordinates with any energy minimisation or similar. The 

results shown are for side chain -  side chain contacts, because more specificity 

is defined by the side chain contacts rather than just main chain contacts. The 

main chain results can be found in Appendix 3, Table A3.3.

For the six pairs in Table 5.9, the total number of contacts found in the 

PDB structure file varies between 227 (1f34A+1htrB) and 36 (2kaiA+1cvwH), 

There is a question of the reliability of the results from only viewing six of the 

results this is taken into consideration and the results were chosen at random. 

The percentage of correct contacts does not fall below 63%, even in the low 
percentage sequence identity pairs (2sicE+1r64A and 2kaiA+1cvwH), although 

2kaiA+1cvwH only has 36 contacts. Unsurprisingly, the sequence pairs with 

higher percentage identities achieve better results than the lower sequence 

identity pairs, except 2kaiA+1cvwH (probably due to the small number of total 

contacts) and 1stfE+1cs8A, where at least three of the methods achieve 100% 

of the contacts. The pairs above 20% sequence identity seem to have a varied
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range of which methods are the best at predicting the most correct contacts, 

with BLAST apparently being the best method for predicting the most correct 

contacts and COACH being the worst. In the two lower sequence identity pairs, 

BLAST is consistently the worst method and it could be deduced that PSI- 

BLAST is the best method. In all but one case (1f34A+1htrB) the gold standard 

method TM-align achieves a higher percentage of correct contacts than the 

other methods. This however, will have to be put into context by viewing the 

distances of these correct contacts, and which methods can predict them with 

more specificity. It is expected that if BLAST obtains more correct contacts then 

PSI-BLAST should as the PSI-BLAST algorithm is based on the BLAST 

algorithm.

Methods 1f34A 
+1 htrB

1avgH
+1autC

1stfE 
+1cs8A

2sicE
+1r64A

2kaiA 
+1cvwH

85.46
COACH
MUSCLE
Profile-
Profile

86.34 82.29 73.47

PSI-BLAST 88.55 83.85 72.79

78.13

85.30 95.31 76.87

Sequence
Profile
TM-align

Table 5.9. The Percentage of Correct Contacts. The percentage of correct contacts 
made by each method for the six pairs. The total number of contacts made in the PDB 
structure file below 5A distance is shown in the top row. The highest (best) score for 
each pair (column) is shown in green, the worst in red. The results are for side chain -  
side chain contacts.

Once the total number of correct contacts had been established, the 

difference between the distances of these correct contacts in the models built 

by the various alignment protocols and the distances of the contacts in the PDB 

structure file was computed (Table 5.10).
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Methods 1f34A 
+1 htrB

1avgH
+1autC

1PPfE 
+1pytD

1stfE
+1cs8A

2sicE
+1r64A

2kaiA
+1cvwH

BLAST 1.89 1.22 1.26
COACH 1.95 1.58 1.30
MUSCLE 1.87 1.62 1.12 0.68 1.44 1.60
Profile-
Profile

1.90 1.83 0.72 1.41 0.89

PSI-
BLAST

0.70 1.08

Sequence-
Profile

0.98 0.61 1.24 1.02

TM-align 1.76 1.86 0.86 0.63 1.04 0.57

Table 5.10. The Average Difference in Distances of Correct Contacts. The average 
difference in distance, in Angstroms, (between the method and the PDB structure file) 
for the contacts made below 5A distance is shown. The lowest (best) score for each 
pair (column) is shown in green, the worst in red. The results are for side chain -  side 
chain contacts.

Table 5.10 reveals the differences in distances between the contacts 

modelled by the methods and the actual contacts in the PDB structure file; the 

smaller the distances, the more accurate the modelling. The pairs sharing over 

30% sequence similarity have marginal difference in distances between the 
methods, probably because there is less variation in the different alignments 

produced. There appears to be less importance in the choice of alignment 

method for these pairs (notably 1f34A+1htrB and 1avgH+1autC). PSI-BLAST 

however, has a small edge over the other methods. 1stfE+1cs8A (sharing ~26% 

sequence identity) is unusual; BLAST outperforms the other methods with 

COACH being the method worst by far. The pairs sharing below 20% sequence 

identity have a broader range of differences in the distances and have a clear 

favourite: COACH, differing by distances of 1.01 A and 0.76A (pairs 

2sicE+1r64A and 2kaiA+1cvwH, respectively). The worst methods are BLAST 

(2sicE+1r64A, 1.53A and PSI-BLAST (2kaiA+1cvwH, 2.45A).

The specificity of the methods was also tested, as the contacts of the 

models were assessed within ranges of +/- 1A, +/- 2A and +/- 3A distances from 

the correct contacts in the structure PDB file. The results for the difference in 

distance in the contacts which fall into the range of +/- 1A are listed in Table 

5.11, which shows the percentage of correctly identified contacts within +/ 1A.
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1f34A
+1htrB

Methods 1avgH
+1autC

1stfE 
+1cs8A

2sicE
+1r64A

2kaiA 
+1cvwH

42.19 41.50
COACH 37.50 51.02
MUSCLE 34.80 39.06 46.94 83.44 49.43
Profile-
Profile

33.92 73.51 46.59

36.12 86.09 47.16 52.78

30.21 51.02 78.15 52.84 69.44

33.33 54.42 79.47 58.52 88.89

PSI- 
BLAST 
Sequence- 
Profile 
TM-align 36 56

Table 5.11. The Percentage of Correct Contacts Within +/- 1A. The percentage of 
correct contacts made by each method for the six pairs, these are the contacts which 
are only a distance of +/- 1A from the correct contact in the PDB file. The total number 
of contacts made in the PDB structure file below 5A distance is shown in the top row. 
The highest (best) score for each pair (column) is shown in green, the worst in red. The 
results are for side chain -  side chain contacts.

Rather surprisingly, the percentage of “correct” contacts (made within 

+/- 1A, Table 5.11) appears to decrease with increasing percentage identity. 

PSI-BLAST alignments produce models with highest number of correct contacts 

for two of the pairs (above 30% sequence identity) and Profile-Profile the least. 

COACH and the Sequence-Profile methods predict the least correct contacts for 

1f34A+1htrB, managing to obtain only 32.60% of the correct contacts. For the 

two pairs under 20% sequence identity COACH, in both instances, predicts the 

most correct contacts and BLAST the least (in the 2kaiA+1cvwH instance, only 

predicting a small 13.89% correct contacts), with the Profile-Profile method also 

predicting 75% of the contacts correct in the pair 2kaiA+1cvwH.

It should be noted here that these distances refer to side chain-side 

chain contacts, and that little attempt to optimise side chain geometry has been 

made in the modelling protocol. In practice it would be advantageous to also 

optimise side chain geometry. Therefore, the “trend” of decreasing quality with 

increasing percentage identity may be artefactual. It is clear, however, that no 

single method outperforms any other and that achieving the correct alignment, 

even at low percentage identities, can lead to highly successful models with 

over 85% of the native contacts broadly correct. Similarly, even in this small
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subset of structures, it is clear that some target-template pairs are “easier” to 

model no matter which alignment method is selected. The obvious example 

here is the 1stfE-1cs8A pair.

Methods

BLAST 
COACH 
MUSCLE 
Profile- 
Profile 
PSI- 
BLAST 
Sequence- 
Profile 
TM-align

1ppfE
+1pytD

lavgH
+1autC

1f34A
+1htrB

1stfE 
+1cs8A

2kaiA 
+1cvwH

2sicE
+1r64A

0.68 1.60 1.44
0.72 0.89 1.41

0.70 1.08

0.61 1.02 1.24

0.63 0.57 1.04

Table 5.12. The Average Difference in Distances of Correct Contacts. The average 
difference in distance, in Angstroms, (between the method and the PDB structure file) 
for the contacts made below 5A distance. The lowest (best) score for each pair 
(column) is shown in green, the worst in red. The results are for side chain -  side chain 
contacts.

Table 5.12 shows the average difference in the distances of the correct 

contacts. Here the results are varied but do show some large differences in the 

distances of the contacts correctly predicted, revealing no one alignment 

method to be consistently the best at modelling the contacts. For the alignments 

sharing the lowest sequence identity (2kaiA+1cvwH and 2sicE+1r64A) COACH 

always achieves the lowest difference in distances by a significant amount (over 

0.2of an Angstrom and 0.13 of an Angstrom). For the pairs sharing modest 

sequence similarity PSI-BLAST, BLAST and MUSCLE out-perform the other 

methods and the Sequence-Profile, Profile-Profile and COACH method seem 

perform the worst.

The differences in distances for these correct contacts (contacts within 

+/- 1A of the PDB file contacts) can be seen in table A3.6. Again, for the higher 

sequence identity pairs (above 20% sequence identity) the best method (Table 

A3.6) at predicting contacts closest to the actual contact varies between the
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pairs; MUSCLE and Sequence-Profile do achieve the best results for two out of 

four pairs and Profile-Profile predicts the worst contacts for two out of four pairs, 

bearing in mind, only up to around 55% of the contacts are correct. 

2sicE+1f64A (13.81% sequence identity) implies BLAST predicts the most 

accurate contacts, at an average of only +/- 0.36A difference in distances to the 

correct contacts, and Profile-Profile and PSI-BLAST the least accurate. It is 

however, worth noting that in this instance that BLAST may have an average of 

+/- 0.36A, but this is only for 33.52% of the 176 contacts made in the PDB 

structure file. If the rest of the methods were investigated (all, including the gold 

standard TM-align predicting around 50% of the contacts correctly) COACH and 

the Sequence-Profile methods would be more accurate than BLAST. For 

2kaiA+1cvwH the methods order (the most accurate first, having the lowest 

difference in distance) would be: Profile-Profile, COACH, MUSCLE, Sequence- 

Profile, BLAST, and finally PSI-BLAST. This does need to be put in context with 

the amount of correct contacts predicted though; BLAST only predicts 13.89% 

of the contacts correctly, and MUSCLE only 38.89%. The rest of the methods 

achieve above 50% correct with COACH and Profile-Profile reaching 75% 

correct.

The results for the side chain -  side chain correct contacts that were 

obtained with an error of +/- 2A and +/- 3A can be seenin Appendix 3, Tables 

A3.4 and A3.5. It was important to assess the side chain results even if the side 

chains were not optimised as the side chains interact with the ligand upon 

binding. These results show similar trends to the results for an error distance of 

+-/ 1A, with BLAST and PSI-BLAST predicting the contacts with the largest 

difference in distance from the PDB structure file contacts, and COACH and 

Profile-Profile predicting the smallest difference in distances for the pairs below 

20% sequence identity. The results do show more contacts are predicted 

correctly within an error distance of +/- 2A and +/- 3A, but this is found to be a 

trade-off with specificity, since the increase in correct contacts leads to a 

decrease in the accuracy of the contacts (the difference in distances increases).

For the main chain -  main chain interactions (which use the same 

distance cut-offs) the results can be seen in Appendix 3, Table A3.3 the total
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number of contacts found in the PDB structure was less compared to the side 

chain -  side chain interactions. The percentage of correct contacts is better 

than the side chain -  side chain results in the majority of instances, except for 
pair 2sicE+1r64A and alignment method MUSCLE (49.32%) and BLAST 

(39.19%). With the side chain -  side chain interactions MUSCLE achieved 

65.34% and BLAST 77.27% for the same pair. 2sicE+1r64A does share a small 

13.81% identity and has a relatively high number of main chain -  main chain 

contacts (148) compared to the number of main chain - main chain contacts of 

the other pairs. Again, TM-align outperforms the other methods when aiming to 

obtain as many correct contacts as possible.

The average differences in distances between the contacts modelled by 

the methods and the actual contacts in the PDB structure file for the main chain 

-  main chain interactions were consistently smaller than for the side chain -  

side chain interactions for the TM-align method, except for the pair 

2sicE+1r64A. This could be due to the relatively high number of main chain -  

main chain interactions of the pair 2sicE+1r64A compared to the number of side 

chain -  side chain interactions of the other pairs. In the majority of instances the 

differences in distances (for all of the methods) for the main chain -  main chain 

interactions are better (smaller distances) than for the side chain -  side chain 

interactions (Appendix 3, Table A3.6).

For the percentage of correct contacts made by each method for the six 

pairs (these are the contacts which are only a distance of +/- 1A from the 

correct contact in the PDB file) the main chain -  main chain results are 

consistently better. For the pair 2kaiA+1cvwH (10.63% sequence identity) and 

methods COACH, Profile-Profile, Sequence-Profile and TM-align, 100% of the 

main chain -  main chain contacts are correctly modelled to within +/-1A of the 

actual PDB contacts, compared to 75% for COACH, 75% for Profile-Profile, 

69% for Sequence -  Profile and 89% for TM-align. The differences in distances 

improved as well, for example improving from 0.52A to 0.34A for TM-align, pair 

2sicE+1r64A, which has 148 main chain -  main chain contacts compared to 

176 side chain -  side chain contacts. See Appendix 3 Table A3.6 the main 

chain -  main chain, +/- 1A results.
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Again, for the main chain -  main chain contact results for the distances 

of +/-2A and +/3A were an improvement over the side chain -  side chain 

results, especially in the case of TM-align, even more correct contacts were 

obtained with smaller differences in distances than the side chain -  side chain 

results. See Appendix 3, Tables A3.7 and A3.8, for the main chain -  main chain 

results.

The specificity and positive predicted value (formulas and description of 

calculations in section 5.3.9) have been calculated for the difference in distance 

ranges one to three, for the side chain -  side chain correct contacts; figure 5.10. 

ROC plots could not be produced for this data as the value for true negatives 

(contacts not predicted which were correct) would be very high and result in 

insignificant values.
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Figure 5.10. The Sensitivity and PPV of the Differences in Distances. The
sensitivity and positive predicted value of the different alignment methods as an 
average over the six pairs, for the side chain -  side chain correct contact results.

The main chain -  main chain graphs for sensitivity can be found in 

Appendix 3, Figure A3.1. As the sensitivity of the methods increases (Figure
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5.10), the positive predicted value decreases; more correct contacts are 

predicted but more incorrect contacts are made as well. For the +/- 1A range, 

COACH outperforms all the other methods (except the gold standard TM-align) 

with Sequence-Profile and PSI-BLAST, Profile-Profile, MUSCLE and BLAST 

following in decreasing sensitivity (Figure 5.10a). This alters as the difference in 

distance increases; PSI-BLAST seems to increase in sensitivity above the other 

methods, with most of the methods becoming equally as effective at predicting 

the contacts. Again in the +/- 1A range, BLAST is the poorest predictor, with 

little difference between the other methods, as the range increases, the PPV 

decreases and the difference in PPV between the methods becomes negligible. 

It is interesting to note that when the average performance is assessed in terms 

of contacts, the methods that use multiple sequence alignments and profiles are 

able to produce the most “useful" alignments, as measured by their ability to 

produce models with contacts closer to the true ones.

5.4.10 An Example

To provide a fuller understanding of the procedures used in this project, 

for chapters 4 and 5, it is useful to consider one example (chosen at random) in 

more detail for the methods BLAST, COACH and TM-align, and the 

2sicE+1464A is described here. The alignments made by the three methods are 

shown in Figure 5.11. When assessing these alignments the positions had to be 

equivalent (a residue in the target for one method must be assessed against the 

same residue in the target in another method, on occasion they will be aligned 

differently if the method chops off some of the target sequence), and hence in 

Figure 5.11 the starts of the COACH and BLAST alignments for the target have 

been placed so they align with the starts of the TM-align target sequence. This 

means that in the BLAST alignment the target residues “DGSGQY” are aligned 

to the template residues "DITTEY”, whereas in TM-align "DGSGQY” are aligned 

with “G-DITT”, resulting in an incorrect alignment for these residues. In COACH, 

however “DGSGQY" in the target sequence, is aligned with "GD-ITT”, the 

placement of the gap means that the "GS" residues are incorrectly aligned with 

“-D" instead of “D-“, but the rest of the four residues are aligned correctly.
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(a)
>2sicE

SQIKAPALHSQGYTGSNVK
VAVIDSGIDSSHPDLK VAGGASMVP S ETN PFQDNNSHGTHVAGTVAAL--NNSIGVLGVAPSA
SLYAVKVLGADGSGQ------------- Y SW IIN G I------EWAIANNMDVINMSLGGPSG----- SAALKAAVDKAVA
SGWWAAAGNEGTSGSSSTV-GYPGKYPSVIAVGAVDSSNQRASFS SVGPELDVMAPGVSIQST
- LPGNKYGAYNGTSMAS PHVAGAAALILSKHPN- - WTNTQVRS SL
>1r64A

SDINVLDLWYNNITGAGW
AAIVDDGLDYENEDLKDNFCAEGSWDFNDNTNLPKPRLSDDYHGTRCAGEIAAKKGNNFCGV-GVGYNA
KISGIRILSGDITTEDEAASLIYGLDVNDIYSCSWGPADD GRHLQGPSDLVKKALVKGVTEGRDS
KGAIYVFASGNGGTRGDNCNYDGYTNSIYS-ITIGAIDHKDLHPPYSEGCSAVMAVTYSSGSGEYIHSS
DINGRCSNSHGGTSAAAPLAAGVYTLLLEANPNLTWRDVQYLSIL

(b)
>2sicE
-----------------------------------------------AQSVPYGVSQIKAPALHSQGYTGSNVKVAVIDSGIDSSHPDL—KV-
-  -AGGASMVPSETN----------PFQDNNSHGTHVAGTVAAL - NNSIGVLGVAPSASLYAVKVLGADGSGQYS
WIINGIEWAIANNMDVINMSLGGPSGS AALKAAVDKAVASG------------------ WWAAAGNEGTSGS
SSTV GYPGKYPSVIAVGAVDSSNQRASFSSVGPELDVMAP GVSIQSTLP-GNKYGAYNGTS
MAS PH VAGAAALIL S KHPNWTNTQVRS SLENTTTKLGD......................- --------------------------------------------

------------------ SFYYGKGLINVQAAAQ
>1r64A
LLPVKEAEDKLSINDPLFERQWHLVNPSFPGSDINVLDLWYNNITGAGWAAIVDDGLDYENEDLKDNF
CAEGS- WDFNDNTNLPKPRL SDDYHGTRCAGEIAAKKGNNFCGVGVGYNAKISGIRILSGD- IT T E
DEAA-SLIYGLDV-NDIYSCSWG-PADDGRHLQGPSDLVKKALVKGVTEGRDSKGAIYVFASGNGGTR- 
-GDNCNYDG-YT-NSIYSITIGAIDHKDLHPPYSEGCSAVMAVTYSSGSGEYIHSSDINGRCSNSHGGT 
SAAAPLAAGVYTLLLEANPNLTWRDVQYLSILSAVGLEKNADGDWRDSAMGKKYSHRYGFGKIDAHKLI 
EMSKTWENVNAQTWFYLPTLYVSQSTNSTEETLESVITISEKSLQDANFKRIEHVTVTVDIDTEIRGTT 
TVDLISPAGIISNLGW RPRDVS SEGFKDWTFMSVAHWGENGVGDWKIKVKTTENGHRIDFHSWRLKLF 
G ESIDSSK TE--------------------------------

(c)
>2sicE

-------------AQ_SV- -  PYGVS--------------------------- QIKAPALHSQGYTGSNVKVAVIDSGID
SSHPDL-K-VAG--GASMVPSETNPFQDN--NSHGTHVAGTVAALNN-SIGVLGVAPSASLYAVKVLGA
DGSGQYSWIINGIEWAIANNMDVINMSLGG---------- PSG - SAALKAAVDKAVAS----------- GVWVAAAGN
EGTSGSSSTV-GYPGKYPSVIAVGAVDSSNQRASFSSVGPELDVMAPGV SIQSTLPGNKYG-AYN
GTSMASPHVAGAAALILSKHPNWTNTQVRSSLENTTTKL G -D ------------------ SFYYGICGLINVQA
AAQ----------------------------------------------------------------------------------------------------------------------------------------

>1r64A
LLPVKEAEDKLSINDPLFERQWHLVNPSFPGSDINVLDLWYNNITGAGWAAIVDDGLD

YENEDLKDNFCAEGSWDFNDNTNLPKPRLSDDYHGTRCAGEIAAKKGNWFCGVGVGYNAKISGIRILS-
G-DITTEDEAASLIYGL-DVNDIYSCSWGPADDGRHLQGPSDLVKKALVKGVTEGRDSKGAIYVFASGN
GGTRG-DNCNYDGYTNSIYSITIGAIDHKDLHPPYSEGCSAVMAVTYSSGSGEYIHSSDINGRCSNSHG
GTSAAAPLAAGVYTLLLEANPNLTWRDVQYLSILSAVGLEKISrADGDWRDSAMGKKYSHRYGFGKIDAHK
LIEMSKTWENVNAQTWFYLPTLYVSQSTNSTEETLESVITISEKSLQDANFKRIEHVTVTVDIDTEIRG
TTTVDLISPAGIISNLGWRPRDVSSEGFKDWTFMSVAHWGENGVGDWKIKVKTTENGHRIDFHSWRLK
LFGESIDSSKTE

Figure 5.11. The Alignments of 2sicE+1r64A. The alignments made by (a) BLAST,
(b) COACH and (c) TM-align for the pair 2sicE+1r64A. Equivalent target residues are in 
blue, template residues in red.
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For this pair, sharing only 13.81% sequence similarity, BLAST retained 

88% of its target and 55% of its template, whilst TM-align and COACH retained 

100% of both sequences. However, 100% of the target sequence from the 

BLAST alignment was model-able compared to 93% from COACH and 69% 

from TM-align. COACH and TM-align both share around 45% gaps in their 

target sequence in the alignment whilst BLAST only has around 10%. BLAST 

also has 10 and 3 gapped instances in the target and template sequence, 

respectively, whilst COACH has 11 and 10 and TM-align has 19 and 3 gapped 

instances in their target and template sequences. This suggests (in this 

instance anyway) that retaining all of the alignment and having more gapped 

instances in the target sequence rather than the template sequence is important 

for a more accurate (or strictly, more useful) alignment (TM-align being the gold 

standard and COACH outperforming BLAST when looking at the contacts, not 

overall). It also implies that the amount of alignment that is model-able and the 

amount of gaps in the target aren’t necessarily as important, since TM-align and 

COACH have less model-able alignment and more gaps introduced into the 

target than BLAST has. COACH seems to have difficulty in aligning the last part 

of the target sequence and introduces a large gap at the end of the target 

sequence. This could be due to the lack of optimisation of the gap penalties in 

the sequence alignment.

>2sicE
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 1 2 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 1 2 2 2 2 2 2 1 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 2 2 2 2 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 2 2 1 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AQSVPYGVSQIKAPALHSQGYTGSNVKVAVIDSGIDSSHPDLKVAGGASMVPSETNPFQDNNSHGTHVA
GTVAALNNSIGVLGVAPSASLYAVKVLGADGSGQYSWIINGIEWAIANNMDVINMSLGGPSGSAALKAA
VDKAVASGWWAAAGNEGTSGSSSTVGYPGKYPSVIAVGAVDSSNQRASFSSVGPELDVMAPGVSIQS
TLPGNKYGAYNGTSMASPHVAGAAALILSKHPNWTNTQVRSSLENTTTKLGDSFYYGKGLINVQAAAQ

Figure 5.12. The Interface Assignments: 2sicE. The interface assignments used for 
the target 2sicE. 1r64A does not have any since it is the template in the l-vs-S set. 
Highlighted in blue are the residues used in the explanation.

The interface was assigned for 2sicE (+1r64A) as in Figure 5.12, and 

has been assigned four interface regions in total. This is not counted as six
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since the small interface regions (121) will not reach the threshold of three or 

more category “2”s in the seven residue sliding window. After assessing the 

alignments relative to the TM-align gold standard, it was found that BLAST 

correctly aligned 25% of the target correctly, with 43% of the interfacial positions 

being correct. By comparison COACH obtained 42% of the alignment correctly, 

with 65% of the interfacial positions aligned correctly. In Figure 5.11, the 

residues “DGSGQY” of the target 2sicE, described in the assessment of the 

alignments as an example, are shown in blue. These residues are assigned as 

being part of the interface, and BLAST fails to align any of these interface 

residues correctly whilst COACH aligns four out of six correctly. Although a 

Serine residue is present in this interface it is not the active site Serine (Serine 

221).

Once the models were built with the different alignment protocols, they 

were assessed. Models built from BLAST alignments had an average global 

RMSD (over all of the standard refinement models) of 8.09A, those from 

COACH alignments an average global RMSD of 6.93A and from TM-align 

1.97A, with a global interfacial residues RMSDs of 7.12A, 4.12A, 2.32A for 

BLAST, COACH and TM-align alignments respectively. However, the average 

local RMSDs were 1.89A, 1.61 A, 0.86A for the interface regions of the 

alignments and 1.57A, 1.15A, 0.67A for the non-interface regions of the 

alignments for BLAST, COACH and TM-align respectively. In this case, for the 

pair 2sicE+1r64A, as with the overall trend, the interface appears to be 

modelled more accurately than the non-interface only on a global scale, but not 

when assessing the model’s quality using local RMSDs. The structures of the 

models for BLAST, COACH and TM-align compared to the PDB target actual 

structures can be seen in figure 5.13. It is possible to see that overall the 

alignment method TM-align produces a model (red structures) closer in 

structure to the PDB structure (blue structures) than either BLAST or COACH, 

with COACH outperforming BLAST, paying particular attention to the helices at 

the front of the peptidase chain structures and to the lower right hand loop.
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Figure 5.13. The Models of 2sicE. The blue structures are the PDB structure of the 
peptidase chain of 2sic, the red structures are the modelled structures of the peptidase 
chain of 2sic, and the black structure is the PDB structure of the inhibitor chain of 2sic. 
(a) compares the BLAST modelled structure with the PDB structure, (b) is COACH’S 
modelled structure and (c) is TM-align’s. SPDB Viewer was used to create these 
images ( http://www.expasy.org/spdbv).
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The contacts made between the peptidase chain and the inhibitor chain 

in the target PDB were compared to the modelled structure contacts. Overall 

(contacts correctly predicted within +/- 5A error of the actual contacts) BLAST 

achieves an average accuracy of 65.34% contacts reproduced in the model, 

COACH an accuracy of 75.70% and TM-align 90.34% for the 2sic structure, 

with average difference in distances of 1.26A, 1.01 A and 1.04A for BLAST, 

COACH and TM-align respectively. Although COACH obtains a lower difference 

in distance than TM-align, TM-align gets around 15% more of the contacts 

correct. When the error is reduced to + /-1 A, BLAST’S accuracy falls to 33.52%, 

COACH’S to 56.82% and TM-align’s to 58. 52%. As the margin for error is 

increased to +/- 3A, the accuracy also increases, as might be expected since 

the distance cut-off is now more generous. As the margin of error decreases, 

fewer of the correct contacts are modelled, but it is still possible for COACH to 

obtain 56.82% of the contacts correctly that exist within + /-1 A, having an 

average difference in distance of 0.52A. Figure 5.14 displays the side-chains 

that participate in contacts made between the inhibitor chain and the peptidase 

chain of the target 2sic; for clarity, the inhibitor chain is not shown. There are a 

few instances where it appears that COACH models side-chains better than 

TM-align (the green and yellow structures of COACH are closer to one another 

than the green and yellow structures of TM-align), but overall BLAST models 

the contacts worse than COACH, and COACH models the contacts worse than 

TM-align.
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Figure 5.14. The Contacts of 2sicE. The yellow structures of the side-chains involved 
in contacts between the peptidase chain and inhibitor chain are from the PDB structure, 
the green from the modelled structure, (a) compares the BLAST side-chains involved in 
modelled contacts with the PDB structure contacts, (b) is COACH’S modelled side- 
chains and (c) is TM-align’s.
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5.5 CONCLUSIONS AND FUTURE WORK
This chapter covers the investigation into the ability of different 

alignment protocols to produce models using the resulting alignment. The 
alignments were assessed in chapter 4. The results in this chapter reflect just 

the l-vs-S set since, as explained previously, not enough target-template 

alignment pairs existed sharing below 20% sequence in the l-vs-l set. For each 

target-template alignment generated by the various alignment protocols, a total 

of seventy models were built, representing numerous refinement levels of the 

models and the loop structures within the models. These models were then 

tested globally and locally with respect to the actual structure of the target in 

terms of the RMSDs of the models overall and residue segments. The contacts 

made between the inhibitor chain and the peptidase chain of the target were 

also validated by determining the number of correctly predicted contacts, as 

well as the difference distance these contacts were predicted in relation to the 

actual contacts. Six alignment target-template pairs were chosen from the l-vs- 

S dataset to assess in more detail, eventually leading to one pair which was 

examined in more detail. The aim was to find out how accurate the interface 

residues could be modelled in and around the traditional "twilight zone", 

compared to the non-interfacial residues, and which alignment method would 

lead to models with the most precision in these recognition regions. This 

potentially could lead to an optimal protocol for modelling the interface regions 

to an acceptable level of accuracy into the twilight zone, even though normally 

modelling is not expected to be generally high quality with such distance 

homologues as templates.

After the completion of this project, it has been concluded that 

modelling into the twilight zone is by no means a trivial task, with results being 

complex to decipher. There are however, a few concepts that present 

themselves with some consistency.

Only MUSCLE provided alignments which resulted in all of the models 

being built for every pair. It was not possible to obtain all of the models using 

the other alignment protocols. Fewer models were built in the loop set, these
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proved more difficult to build than the standard models. This was probably due 
to more challenging modelling tasks presented to MODELLER, whereby the 

solution of spatial restraints could not be satisfied and the modelling protocol 

failed.

As the percentage identity between the target and template decreases, 

as expected, the quality of the models produced from this alignment also 

decreases. Models produced from alignments sharing below 20% sequence 

similarity had RMSDs nearly double of those sharing below 80% sequence 

identity, however these RMSDs are still considered useable.

On average, and based on the global RMSDs of the models, it appears 

that BLAST is consistently the best alignment method to use across all of the 

percentage identities and MUSCLE the worst. However, this somewhat 

surprising result must be examined in context, and considered properly in the 

context of the problem at hand in this study. This result is likely a consequence 

of BLAST retaining the least of its alignment, which in turn leads to a lower 

RMSD. Fewer residue positions are therefore evaluated in the RMSD 

calculation, and moreover, they will probably be the easiest to align and most 

conserved as a consequence of BLAST being a local alignment algorithm. 

Hence, this will lead to a lower global RMSD for BLAST alignments. In 

comparison MUSCLE retains all of its target sequence in the alignment and 

MODELLER therefore builds even the most difficult models/segments. 

Additionally, more of the target sequences are “lost" as the percentage 

sequence identity decreases. As the percentage identity of the pairs decrease, 

the profile and HMM methods (containing more evolutionary information) 

achieve lower RMSDs than the sequence based methods. It is also evident that 

more gaps are introduced into the alignment as the percentage sequence 

identity decreases and the model becomes less reliable. This is because gaps 

in the template mean that the equivalent portion of the target has no equivalent 

structure onto which to build the model. Fewer gaps tend to occur in the local 

alignment methods, offering some advantage over the global methods, which 

have to retain both of the sequences in the alignment.
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Usually the percentage of alignment that is model-able is not an issue, 

unless a particularly difficult alignment is attempted, with sequences of greatly 

differing length. TM-align, when faced with this prefers to reduce the number of 
gapped instances and increases the gap penalty, resulting in a small 

percentage of the original alignment being model-able. MODELLER can not 

build the start and/or end of the models if there are overhangs of gaps at the 

start and end of the alignment. However, as TM-align prefers, it is more 

productive to have an alignment which is less model-able and has fewer 

gapped instances in the alignment breaking up the target sequence.

Using loop refinement seems to increase the average RMSD values of 

the models, and increases the variation of the resulting RMSDs of the different 

models. If there are alignment errors at the stem residues, loop modelling is not 

likely to result in an accurate model. This means loop modelling is most useful 

for target sequences that share more than 30% sequence identity with the 
template structures (Fiser et al., 2000).

The importance of obtaining highly accurate alignments in terms of 

comparative modelling is demonstrated by the result that TM-align (the gold 

standard) always outperforms the other methods in every way. This is not only a 

reassuring result, but highlights the optimal theoretical performance that could 

be achieved by any comparative modelling performance based on this target- 

template pairing. The fact that all methods do not achieve the model accuracy 

of the gold standard TM-align suggests that there is still room for improvement, 

even in the most accurate of alignment protocols. Although in most cases, even 

TM-align does not build models with 100% accuracy, allowing for the errors 

being introduced in comparative modelling in the other steps o f the model 

building process.

When the global RMSD of the interface was compared to the global 

RMSD of the whole (interface and non-interface residues) modelled structure, 

the RMSD of the interface was always lower than the whole structure and 

BLAST provided the best models and MUSCLE the worst. The increase in 

accuracy for the interface may, in part, be a result of fewer residues being
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assessed. However, the recognition region is made up from discontinuous 

segments of the protein in all cases, and therefore it still remains challenging to 

build these with high quality just like the protein fold as a whole. In other words, 

it is still challenging for MODELLER to locate the different segments that make 

up the recognition surface with the correct relative disposition to each other. 

This suggests that this result is not really artefactual, but genuinely represents 

superior performance in structure prediction at the protease recognition 

interface. Nevertheless, the local, average, RMSDs were also calculated; this 

consistently resulted in the non-interface region having lower RMSDs. Th is 

result too, needs careful consideration. Firstly, the non-interface regions cover 

much of the protein, including both accessible surface and buried core. As 

shown in Figure 5.9, highly accessible regions of the protein are not generally 

modelled as well as those in the core. Hence, given that recognition regions are 

by definition accessible, the comparison between interface and non-interface 

might be biased against the interface regions. Another factor to consider is that 

peptidase active sites contain interface regions with both highly variable 

positions as well as highly conserved regions. The key residues in the 

mechanistic catalytic part of the active site will be conserved, but those in the 

specificity pockets which give each protease its primary cleavage rules must be 

more variable across a protein family, to provide the diversity in function which 

is observed in biological systems. The variable conservation of interface results 

in low and high accuracy regions, thus, higher accessible regions of the 

interface can also contribute to lower precision in the modelling of the interface. 

This is a major challenge for predicting protease function, since arguably the 

most interesting residues which provide specificity to the enzyme are the 

hardest to model.

The contacts between the peptidase chain and the inhibitor chain of the 

models could be predicted with relatively high accuracy, even if the rest of the 

model was not so precise at low percentage identities. Indeed, in one instance, 

the COACH alignment resulted in a model with 56.82%  of the contacts correctly 

within +/-1A (averaging a distance of 0.52A) of error for a pair sharing only 

around 13% sequence identity. COACH appears to be the most accurate and 

BLAST the worst method at modelling these contacts. As the percentage
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sequence identity increases, the method to choose for accurate contact 

modelling becomes less clear, with all of the methods modelling contacts to 

similar accuracies. There is a trade-off between the amount of correctly 

modelled contact residues and the accuracy of these contacts; the more 

contacts that are correctly modelled, the less accurate the contacts become.

Overall, trying to predict an accurate comparative model is a non-trivial 

task, involving many different steps. When trying to model accurate interface 

regions of an alignment pair with a sequence identity in the twilight zone, the 

important aspects include: keeping gapped instances in the alignment to a 

minimum, some refinement being applied to the whole model, choosing the 

model with the lowest global RMSD in this case as the structure is known 

(taking into consideration the local RMSDs may not always reflect this choice), 

and choosing an alignment method which uses profiles or HMMs. This is by no 

means a protocol to be used in every modelling task, but hopes to provide a 

better understanding of the important concepts to consider when building a 

comparative model with an accurate interface using an alignment sharing a 

sequence identity falling into the twilight zone.

Building comparative models accurately has important applicability, 

amongst others, drug design is one area. It has been said that most proteins to 

be modelled fall into the twilight zone and one of the downfalls of comparative 

modelling is the difficulty in obtaining an accurate model when the sequence 

identity of the alignment pair reaches into the twilight zone. Most models are 

deemed useless when their alignment shares less than 20% sequence identity. 

If the interactions between a protein and its inhibitor could be modelled to 

modest accuracy, regardless of the accuracy of the global structure, specificity 

predictions could be useful, even with pairs sharing low sequence similarity. 

This chapter has hopefully revealed that this is plausible.

In order to extend the progress in this chapter, it may be beneficial to 

investigate loop modelling and side-chain modelling further. If the results here 

suggest the interface can still be modelled fairly accurately in the twilight zone, 

with minimal loop refinement and no loop modelling or side-chain modelling, it is
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plausible that the interface accuracy could be improved. Since the interface 

contains regions of highly similar and variable regions, one suggestion to 

improve loop modelling would be to attempt loop modelling on the conserved 

regions first, then complete fragment assembly on the variable regions, finally 

applying a loop closure method to model the loops. More work could be done 

on finding better ways to assess the models, for example, finding a way to 

normalise the RMSD results. Improvements could be made in the modelling 

stage of the project, a more forma! loop modelling method would be beneficial 

as well as incorporating multiple templates into the model building step. There is 

also the possibility of identifying regions which are likely to result in poor models 

(or high quality ones) from the alignments and of assessing the model quality 

for low quality regions.
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6. C o n c lu s io n s  a n d  O utlook

The prediction of protein structure is an important step to help bridge 

the sequence-structure gap that exists at present in structural biology, and is 

also an essential asset in obtaining structures for understanding protein 

function. The three-dimensional structure of a protein is important for precisely 

predicting the binding mode between a protein and its ligand. This knowledge 

also plays a key part in accurately designing drugs to bind in a desired manner 

(DeWeese-Scott & Moult, 2004).

Comparative modelling is seen as one of the most accurate methods for 

protein structure prediction (Venclovas & Margeievicius, 2003) and is most 

useful when target-template pairs share above 30% sequence identity. This 

would be appropriate if most potential modelling pairs existed above 30% 

sequence identity but most actually exist below 30% identity (section 3.5.1).

One of the major limiting factors of comparative modelling is producing 

good quality models within the twilight zone. Errors accumulate in the alignment 

step and frequently, when building non-trivial models, in the loop regions. Even 

if the resulting models aren’t perfect, it is still possible to extract useful 

information in most cases. Modelling loop regions accurately, which tend to 

correspond to interface regions, is important for ascertaining the function of the 

protein.

Thus, this project was focused on improving protein structure prediction 

using comparative modelling in the twilight zone. It also aimed at improving the 

prediction of loop regions (more specifically the N-termini of alpha-helices) and 

determining me thods for accurately aligning target -template pairs w ithin th e 

twilight zone. The distinction between methods for predicting the interface more 

accurately than the rest of the protein was made, resulting in useful implications 

in comparative modelling.
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Secondary structure prediction was used to improve the modelling of 

proteins sharing below 30% sequence similarity. Using the improved secondary 

structure prediction program ELEPHANT (Wilson et af., 2004) to provide 

restraints in the model building process, loop regions (specifically the N-termini 

of alpha-helices) were modelled more accurately. ELEPHANT was found to 
improve the fringes of alpha-helices whilst maintaining the overall accuracy of 

the secondary structure. The ELEPHANT algorithm worked on the basis that 

secondary structure is based on multiple sequence alignments, and secondary 

structure prediction methods frequently identify the correct core regions but not 

the fringes of the secondary structures due to the difference in lengths in protein 

families. A comparison of the target secondary structure predicted by JPRED 

and ELEPHANT and the secondary structure of the template assigned by DSSP 

was compared to the actual (assigned by DSSP) secondary structure of the 

target, revealing the predicted secondary structure of the target (combined with 

the actual secondary structure of the template) being closer in structure to the 

actual structure of the target than the actual secondary structure of the template 

(the secondary structure of the template alone). This was completed across a 

range of percentage sequence identities. More improvement was found in and 

around the twilight zone where most potential models exist. It was found that 

using the ELEPHANT secondary structure restraints to model the N-termini of 

alpha-helices produced more accurate models than using the JPred secondary 

structure restraints. This offered the potential for improved comparative 
modelling, particularly of loop fringes, stretching into the twilight zone with 

implications in drug design.

To help benefit from accurately predicted models, a study on various 

alignment protocols was completed, including sequence based and profile 

based methods. The alignments were assessed as a whole, as well as local 

regions containing interface residues. This was completed in the hope that the 

recognition regions would be modelled more accurately than expected in and 

around the twilight zone. On average, as the percentage identity decreased, the 

alignment accuracy decreased, with more gaps (and frequently of longer 

lengths) being inserted into the alignments. Local alignment methods did not 

retain all of the sequence submitted, however, only CE and BLAST were found
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to discard parts of interface. Lower percentage identity pairs increased the 
alignment accuracy variation between the methods, the more sophisticated 

profile ones outperforming the sequence based. COACH performed the best in 

the 20% and under sequence identity category, with 50% of the residues being 

correctly aligned with reference to TM-align.

The interface regions of the alignment were more accurately aligned 

than the rest of the alignment, even below 20% identity. Again, profile methods 

and methods based on hidden Markov models were better at aligning interface 

regions than the other methods. This increase in accuracy may be due to parts 

of the interface being more conserved than the rest of the peptidase. This is a 

result of the additional evolutionary pressures exerted on the recognition 

regions, and the profile/HMM methods are better at distinguishing evolutionary 

related positions from non-related positions. For example, using the COACH 

method and a target-template pair having below 20% sequence identity, the 

interface positions were aligned up to 80% correct. The corresponding non­

interface residues were aligned with around 50% accuracy.

The alignments were then used to build comparative models. The ability 

of the different alignment protocols to produce accurate comparative models 

was assessed. Also their ability to model the interface regions more accurately 

than the non-interface regions at low percentage sequence identity was 

determined. Different refinement levels were applied to models and to the loops 

in the models in the hope that the interface regions may be modelled more 

precisely.

As the percentage sequence identity stretched into the twilight zone, the 

average RMSDs of the models nearly doubled in comparison to those pairs 

sharing above 20% sequence identity. Increasing numbers of gaps in the 

alignment resulted in higher global RMSDs. The more conserved the multiple 

sequence alignment was in the building of the alignment used in the modelling 

process, the more accurate the model was. A correlation also existed between 

the accessibility of the proteins and the RMSD; as the accessibility increased, 

the RMSD also increased. These trends were more pronounced for TM-align.
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Model refinement and loop refinement reduced the global RMSDs in a 
small percentage of pairs, broadening the minimum and maximum RMSD of the 

multiple models built. Even TM-align did not achieve models with 100% 

accuracy; errors in the other steps in the modelling process were introduced.

It appeared that the local alignment method BLAST was the best at 

producing models with the lowest global RMSDs in all of the percentage identity 

areas. This may be due to the more difficult aspects of the alignment being 

discarded, as well as some of the important recognition regions, which is not 

advantageous. Since this project was focused on obtaining high quality 

interface regions rather than globally correct models, the local RMSDs of the 

recognition regions were also obtained. The RMSDs of the local interface 

regions seemed to be higher than the RMSDs of the local non-interface region, 

this may be due to highly variable and also surface regions of the peptidase .

To assess the modelled interfaces in more detail, the number of 

correctly modelled contacts and the contact difference in distances was 

obtained for six pairs; two having below 20% sequence identity. As percentage 

sequence identity increased, the most reliable method to model the contacts 

became less clear. Well into the twilight zone, trends emerged; when modelling 

the contacts, the profile methods performed better than the sequence based 

methods, and COACH outperformed ail of the other methods, achieving more 

correct contacts and smaller average differences in distances. In one instance, 

the COACH alignment resulted in a model with 56.82% of the contacts correctly 

within +/-1A (averaging a distance of 0.52A) of error for a pair sharing only 

around 13% sequence identity. The more contacts modelled (increasing the 

distance range) the greater the difference in distances between the actual 

contacts and the modelled contacts; a trade-off between specificity and 

sensitivity occurred.

It may be advantageous to assess the area of template selection in 

comparative modelling; this is another step where errors are present. Using 

multiple templates may improve the building of models. One suggestion would 

be to try and combine multiple templates after investigating which ones, and
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which parts, would be the best to use. It is thought that these hybrids could 

include secondary structure predictions of the target and the actual secondary 

structure of the template, s o experiments into how these hybrids could be 

combined would be needed. The use of more profile based methods in the 

construction of the alignments and more optimisation for the individual methods 

would probably result in more accurate models, as would the use of loop and 

side-chain modelling with more emphasis on the refinement procedure. 

Investigations into the definition and assignment of interface residues may 

result in more accurate model building. This may be aided by some form of loop 

modelling being performed on the conserved regions of the interface, followed 

by fragment assembly on the variable regions, using a loop closure method to 

complete the loop. Assessing the contacts of more pairs and pairs where both 

of the target and template contained an inhibitor would also be interesting.

In structural genomics, a major goal is to obtain a set of useful models 

for all protein domains. One definition of “useful" is that the functional 

information that can be deduced from the model approaches that which could 

be obtained from an experimental structure (DeWeese-Scott & Moult, 2005). It 

is clear from the analysis presented in this Thesis that modelling proteins below 

and within the twilight zone is a non-trivial task, with many variables to consider. 

The success of aiding the prediction process of loop regions using secondary 

structure prediction, and determining methods more suited to the prediction and 

modelling of interface regions within the twilight zone may provide the basis for 

an enhanced approach to this prediction process.
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Percentage
Identity

SST1 JPred ELEPHANT
. . .  
. '

SST2
*

SST3
: .■

<=100 0.88 1.26 1.25 0.73 2.30

<=80 0.89 A r\-j 
127 1.26 0.79 2.32

<=60 0.90 1.28 1.28 0.88 2.35

<=40 0.94 1.33 1.33 1.02 2.41

<=30 0.97 1.32 1.33 1.16 2.43

<=20 0.98 1.36 1.35 1.47 2.59

Table A1.1. Average Helical RMSDs for the Explicit Method. The average alpha- 
carbon helical RMSD over all of the models built using the different secondary structure 
restraints is displayed.

e Identity
SST1 JPred
: .. '• " ELEPHANT

•.

SST2
-

■ -

SST3

<=100

h-T
—

T
—

CD 1.71 0.72 1.93

<=80 1.66 1.74 1.73 0.79 1.96

<=60 1.69 1.76 1.75 0.87 1.98

<=40 1.73 1.79 1.80' 1.00 2.03

<=30 1.77 1.84 1.85 1.18 2.09

<=20 1.95 2.02 2.02 1.52 2.26
    ______________________
Table A1.2. Average Sheet RMSDs for the Explicit Method. The average alpha- 
carbon sheet RMSD over all of the models built using the different secondary structure 
restraints is displayed.
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INCLUDE
SET ALNFILE = 'la28_A.le3g_A.ali'
SET KNOWNS = 'le3g_A'
SET SEQUENCE = 'la28_A'
OUTPUT_CONTROL = 11112 
READJV10DEL = ' le3g_A'
SEQUENCE_TO_ALI
WRITE_ALIGNMENT FILE = 'le3g_A'
SET PDB_EXT = ' .Ie3g_A_ELE_AB.modpdb'
SET STARTING_MODEL = 1
SET ENDING_MODEL = 1
SET DEVIATION =4.0
SET LIBRARY_SCHEDULE = 1
SET MAX_VAR_ITERATIONS = 3 00
SET MD_LEVEL = 'refine_3'
SET REPEAT_0PTIMIZATION = 3, MAX_MOLPDF = 1E6 #Repeat the
whole cycle 3-times and do not stop unless obj.func. > 1E6 
SET FINAL_MALIGN3D = 1
SET RAND SEED = -12312 # to have different models from another
TOP file
CALL ROUTINE = 'model'
CALL ROUTINE = 'special_restraints'
SUBROUTINE ROUTINE = 'special_restraints' 

SET ADD_RESTRAINTS = on
MAKE_RESTRAINTS RESTRAINT_TYPE = 'alpha', RE SIDUE_IDS = 9 ' ' 16 1
MAKE_RESTRAINTS RESTRAINT_TYPE = 'alpha', RESIDUE_IDS = 37' '5 6  '
MAKE_RESTRAINTS RESTRAINT_TYPE = 'alpha', RESIDUE_IDS = 67 ' ' 90 '
MAKE_RESTRAINTS RESTRAINT_TYPE = 'alpha', RESIDUE_IDS = 1 1 7 ' ' 134  '
MAKE_RESTRAINTS RESTRAINT_TYPE = 'alpha', RESIDUE_IDS = 13 8 ' ' 149  '
MAKE_RESTRAINTS RESTRAINT_TYPE = 'alpha', RESIDUE_IDS = 1 6 1 ' ' 181  '
MAKE_RESTRAINTS RESTRAINT_TYPE = 'alpha' RESIDUE_IDS = 190  ' ' 22 0  '
MAKE_RESTRAINTS RESTRAINT_TYPE = 'alpha', RESIDUE_IDS = 22 9  ' ' 23 7  '
MAKE_RESTRAINTS RESTRAINT_TYPE = 'alpha', RESIDUE_IDS = 242  ' ' 246  '
MAKE_RESTRAINTS RESTRAINT_TYPE = 'strand' , RESIDUE_IDS = ' 98 ' ' 1 0 0 '
MAKE_RESTRAINTS 
RETURN

RESTRAINT JTYPE = 'strand' , RESIDUE_IDS = '2 5 1 1 '2 5 2

END SUBROUTINE

Figure A1.1. Example MODELLER Input File. This file shows how the secondary 

structure restraints are applied in the model building process.
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(a) 300

250

ro 200
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E 100

100% 80% 60% 40% 30% 20%

Percentage Sequence Identity

(b) 300

250

12
■«5 200 Q.
® 150

£ 100

100% 80% 60% 40% 30% 20%

Percentage Sequence Identity

(c) 300

250

«  200

"  150

E 100

100% 80% 60% 40% 30% 20%

Percentage Sequence Identity

ELEPHANT

I JPRED

□ SST1
□ SST2

Figure A1.2. Number of Pairs with Lower RMSDs. (a) shows the number of pairs 
which have lower RMSDs than SST3 (the template with explicit secondary structure 
restraints), (b) displays the results for the regions which are in helical conformation and 
the graph in (c) shows the results for the regions in beta strand conformation. All 
RMSDs are between the alpha-carbons of the target and template.
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(a)

-

n f m m a r M m
100 80 60 40 30

Percentage Sequence Identity
20

80 60 40 30

Percentage Sequence Identity

■■■■ ■ ELEPHANT 

JPred
□ SST1

□ SST3
80 60 40 30

Percentage Sequence Identity

Figure A1.3. Average Improvement in RMSD. The graphs show the average 
improvement in RMSD when comparing the resulting models built using the different 
secondary structure restraints to those models built using the restraints explicitly from 
the template (SST2). (a) shows the average improvement in RMSD between the alpha- 
carbons of the target and template, (b) displays the RMSD results for the helical 
regions and (c) shows the average RMSD results for the beta-strand regions.
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E Whole Alignment Reference vs PsiBlast

100

C

a  Target Retained 
Q Template Retained

SO 100600 20 40

Percentage Identity of Gold Standard TMalign

E Whole Alignment Reference vs ProfileProfile

100

OD

a Target Retamed 
Template Retamed

1008020 40 600
Percentage Identity of Gold Standard TMalign

Figure A2.1. The Percentage of Sequence Retained at Different Percentage 
Identities. The percentage retained of the target and template sequences versus the 
percentage identity of the aligned pair (from structural alignment). Data from the PSI­
BLAST and Profile-Profile alignment methods are displayed only from the l-vs-S set.
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Figure A2.2. The Percentage of Gaps in the Target Sequences. The percentage of 
gaps introduced into the target sequences by the different alignment methods. This is 
for the I vs S set.
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Figure A2.3. The Percentage of Gaps in the Template Sequences. The percentage 
of gaps introduced into the template sequences by the different alignment methods. 
This is for the I vs S set.
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XiRMSD vs Percentage Identity. Set E BlastEiRMSD

%
CL

£
4*

is
a

2

Percentage Identity of Gold Standard TMalign

Figure A2.4. The Percentage Identity and the NiRMSD for the BLAST method. For
the l-vs-S set, the average NiRMSD per pair was plotted for the BLAST method against 
the percentage identity of that alignment pair.
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NiRMSD vs Percentage Identity. Set E CoachEiRMSD

A #

Percentage Identity of Gold Standard TMalign

Figure A2.5. The Percentage Identity and the NiRMSD for the COACH method. For
the l-vs-S set, the average NiRMSD per pair was plotted for the COACH method 
against the percentage identity of that alignment pair.
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NiRMSD vs Percentage Identity. Set E MnscleEiRMSD

Sa£
z

Percentage Identity of Gold Standard TMalign

Figure A2.6. The Percentage Identity and the NiRMSD for the MUSCLE method.
For the l-vs-S set, the average NiRMSD per pair was plotted for the MUSCLE method 
against the percentage identity of that alignment pair.
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NiRMSD vs Percentage Identity. Set E ProfileProfileEiRMSD

m

a +

Percentage Identity of Gold Standard TMalign

Figure A2.7. The Percentage Identity and the NiRMSD for the Profile-Profile 
method. For the l-vs-S set, the average NiRMSD per pair was plotted for the Profile- 
Profile method against the percentage identity of that alignment pair.
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NiRMSD vs Percentage Identity. Set E PsiBlastEiRMSD

na.
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' £

Percentage Identity of Gold Standard TMalign

Figure A2.8. The Percentage Identity and the NiRMSD for the PSI-BLAST method.
For the l-vs-S set, the average NiRMSD per pair was plotted for the PSI-BLAST 
method against the percentage identity of that alignment pair.
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NiRMSD vs Percentage Identity. Set E SeqPi ofileEiRMSD

1

*

t /* * . <

0 0 10 20 50 60 70 8040
Percentage Identity of Gold Standard TMalign

Figure A2.9. The Percentage Identity and the NiRMSD for the Sequence-Profile 
method. For the l-vs-S set, the average NiRMSD per pair was plotted for the 
Sequence-Profile method against the percentage identity of that alignment pair.
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E CE Percentage Correct Whole Alignment

Percentage Coirect

:e-Profd«
Profile

E CE Percentage Correct Retained Alignment

E C'E Percentage Correct Modelable .Alignment

Figure A2.10. Percentage of Correctly Predicted Residues for CE. Results for the 
percentage of correctly aligned residues by each alignment method, as an average 
across all pairs in the l-vs-S set, assessed against the gold standard CE are shown. 
The percentage identity bins are inclusive as indicated by the “less than” signs.
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E Mammoth Percentage Correct Whole Alignment
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Figure A2.11. Percentage of Correctly Predicted Residues for MAMMOTH. Results 
for the percentage of correctly aligned residues by each alignment method, as an 
average across all pairs in the l-vs-S set, assessed against the gold standard 
MAMMOTH are shown. The percentage identity bins are inclusive as indicated by the 
“less than” signs.
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I CE Percentage Correct Whole Alignment

I CE Percentage Correct Retained .Alignment

I C E Percentage Correct Modelable .Alignment

Figure A2.12. Percentage of Correctly Predicted Residues for CE, l-vs-l. Results 
for the percentage of correctly aligned residues by each alignment method, as an 
average across all pairs in the l-vs-l set, assessed against the gold standard CE are 
shown. The percentage identity bins are inclusive as indicated by the “less than” signs.
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I Mammoth Percentage Correct Whole Alignment

ice-Profil*
-Profile

I Mammoth Percentage Correct Retained .Alignment

I Mammoth Percentage Correct Modelable .Alignment

Figure A2.13. Percentage of Correctly Predicted Residues for MAMMOTH, l-vs-l.
Results for the percentage of correctly aligned residues by each alignment method, as 
an average across all pairs in the l-vs-l set, assessed against the gold standard 
MAMMOTH are shown. The percentage identity bins are inclusive as indicated by the 
“less than” signs.
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I TMalign Percentage C orrect Whole Alignment

: e-Prof 
Profilt

I TMalign Percentage Correct Retained .Alignment

I TMalign Percentage Correct Modelable .Alignment

Figure A2.14. Percentage of Correctly Predicted Residues for TM-align, l-vs-l.
Results for the percentage of correctly aligned residues by each alignment method, as 
an average across all pairs in the l-vs-l set, assessed against the gold standard TM­
align are shown. The percentage identity bins are inclusive as indicated by the “less 
than” signs.
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E CE Percentage Difference Whole Alignment

E CE Percentage Difference Whole Alignment

E CE Percentage Difference Whole Alignment

Figure A2.15. The Accuracy of the Non-interface Residues and Interface 
Residues for the CE Method. The different methods (using CE as the gold standard) 
were displayed on the graph with the percentage identity bins for the l-vs-S set, plotted 
against the percentage of correctly predicted residues of the alignment (non-interface 
residues; the solid coloured bars) with the percentage of correctly predicted interface 
residues (the white, empty bars).
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Figure A2.16. The Accuracy of the Non-interface Residues and Interface 
Residues for the MAMMOTH Method. The different methods (using MAMMOTH as 
the gold standard) were displayed on the graph with the percentage identity bins for the 
l-vs-S set, plotted against the percentage of correctly predicted residues of the 
alignment (non-interface residues; the solid coloured bars) with the percentage of 
correctly predicted interface residues (the white, empty bars).
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I CE Percentage Difference Whole Alignment

I CE Percentage Difference Retained Alignment

Percentage Difference

I CE Percentage Difference Modelable Alignment

Figure A2.17. The Accuracy of the Non-interface Residues and Interface 
Residues for the CE Method for the l-vs-l set. The different methods (using CE as 
the gold standard) were displayed on the graph with the percentage identity bins for the 
l-vs-l set, plotted against the percentage of correctly predicted residues of the 
alignment (non-interface residues; the solid coloured bars) with the percentage of 
correctly predicted interface residues (the white, empty bars).
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Figure A2.18. The Accuracy of the Non-interface Residues and Interface 
Residues for the MAMMOTH Method for the l-vs-l set. The different methods (using 
MAMMOTH as the gold standard) were displayed on the graph with the percentage 
identity bins for the l-vs-l set, plotted against the percentage of correctly predicted 
residues of the alignment (non-interface residues; the solid coloured bars) with the 
percentage of correctly predicted interface residues (the white, empty bars).
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Figure A2.19. The Accuracy of the Non-interface Residues and Interface 
Residues for the TM-align Method for the l-vs-l set. The different methods (using 
TM-align as the gold standard) were displayed on the graph with the percentage 
identity bins for the l-vs-l set, plotted against the percentage of correctly predicted 
residues of the alignment (non-interface residues; the solid coloured bars) with the 
percentage of correctly predicted interface residues (the white, empty bars).
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(a)
Methods Standard Loop

All I All I
TM-align
PSI-BLAST 3.91 3.28 4.01 3.35
BLAST 3.05 2.93 3.14 3.03
MUSCLE
Sequence-Profile 3.81 3.31 3.88 3.39
Profile-Profile 3.89 3.34 4.03 3.52
COACH 3.88 3.23 4.02 3.36

(b)
StandardMethods

TM-align
PSI-BLAST0.87
BLAST
MUSCLE
Sequence-Profile 0.90 1.15 0.91 1.05
Profile-Profile 0.88 1.01 0.91 1.05
COACH 0.89 1.14 0.91 1.16

Table A3.1. The Global and Local RMSD Results for the Main chain -  Main chain.
For the l-vs-S set, the global (table a) and the local (table b) main chain -  main chain 
RMSDs are shown. “Standard" and “loop” refer to the ten or fifty models, respectively, 
and the refinement level these results were averaged over. “All” indicates the global 
RMSD value of all of the residues and “I” indicates the interface global RMSD result. 
“Nl” indicates the non-interface RMSD value of all of the residues that were not part of 
the interface and “I” indicates the interface local RMSD result. The green boxes 
highlight the best (lowest) RMSD result, the red, the worst -  ignoring the benchmarking 
TM-align which is a structural alignment method.
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(a)
StandardMethods

TM-align
PSI-BLAST
BLAST
MUSCLE
Sequence-Profile 4.53
Profile-Profile
COACH

4.24
4.58

4.07
4.11

4.39
4.72

4.26
4.25

(b)
Methods Standard Loop

Nl I Nl I
TM-align 1.71 1.95 1.78 2.07
PSI-BLAST 4.65 4.19 1.91 2.21
BLAST 3.80 3.83 1.75 2.00
MUSCLE 2.30
Sequence-Profile I 4.53 4.17 1.93 2.23
Profile-Profile W B i 184 ] 1.75
COACH I 1.89 2.17 1.94 2.23

Table A3.2. The Global and Local RMSD Results for All Atoms. For the l-vs-S set, 
the global (table a) and the local (table b) all atoms RMSDs are shown. “Standard” and 
“loop” refer to the ten or fifty models, respectively, and the refinement level these 
results were averaged over. “All” indicates the global RMSD value of all of the residues 
and “I” indicates the interface global RMSD result. “Nl” indicates the non-interface 
RMSD value of all of the residues that were not part of the interface and “I” indicates 
the interface local RMSD result. The green boxes highlight the best (lowest) RMSD 
result, the red, the worst -  ignoring the benchmarking TM-align which is a structural 
alignment method.
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Methods 1avgH
+1autC

1f34A
+1htrB

ippfE
+1pytD

1stfE
+1cs8A

2kaiA
+1cvwH

2sicE
+1r64A

PDB 14 175 119 94 30 148
BLAST 100 87.43 78.99 100 96.67 39.19
COACH 100 86.29 78.99 100 100 74.32
MUSCLE 100 87.43 80.67 100 100 49.32
Profile-
Profile

100 87.43 78.99 100 100 66.22

PSI-BLAST 100 87.43 78.99 100 100 95.95

Sequence-
Profile

100 86.29 79.83 100 100 67.57

TM-align 100 86.86 100 100 100 97.30

Table A3.3. The Percentage of Correct Contacts. The percentage of correct contacts 
made by each method for the six pairs. The total number of contacts made in the PDB 
structure file below 5A distance is shown in the top row. The results are for main chain 
-  main chain contacts.

Methods 1avgH
+1autC

1f34A
+1htrB

IppfE
+1pytD

1stfE
+1cs8A

2kaiA
+1cvwH

2sicE
+1r64A

BLAST 0.85 0.76 0.71 0.49 1.11 0.80
COACH 0.80 0.80 0.51 0.57 0.52 0.52
MUSCLE 0.74 0.80 0.52 0.48 0.73 0.59
Profile-
Profile

0.88 0.84 0.68 0.54 0.47 0.68

PSI-BLAST 0.66 0.81 0.54 0.55 0.93 0.70

Sequence-
Profile

0.82 0.80 0.57 0.53 0.64 0.58

TM-align 0.99 0.81 0.57 0.54 0.52 0.73

Table A3.4. The Average Difference in Distances of Correct Contacts Within +/-
2A. The difference in distances of correct contacts made by each method for the six 
pairs, these are the contacts which are only a distance of +/- 2A from the correct 
contact in the PDB file. The results are for side chain -  side chain contacts.
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Methods 1avgH
+1autC

1f34A
+1htrB

1ppfE
+1pytD

1stfE
+1cs8A

2kaiA
+1cvwH

2sicE
+1r64A

BLAST 1.06 1.08 0.93 0.53 1.31 0.88
COACH 0.94 1.14 0.62 0.82 0.68 0.65
MUSCLE 1.09 1.17 0.73 0.55 1.15 0.76
Profile-
Profile

1.21 1.15 0.94 0.62 0.53 0.82

PSI-BLAST 0.92 1.12 0.71 0.63 1.08 1.01

Sequence-
Profile

1.03 1.14 0.79 0.57 0.64 0.60

TM-align 1.26 1.12 0.76 0.63 0.57 0.89

Table A3.5. The Average Difference in Distances of Correct Contacts Within +/-
3A. The difference in distances of correct contacts made by each method for the six 
pairs, these are the contacts which are only a distance of +/- 3A from the correct 
contact in the PDB file. The results are for side chain -  side chain contacts.

Methods 1f34A
+1htrB

1avgH
+1autC

1ppfE 
+1pytD

1stfE
+1cs8A

2sicE
+1r64A

2kaiA
+1cvwH

BLAST 0.48 0.47 0.39 0.39 0.36 0.45
COACH 0.47 0.50 0.38 0.39 0.41 0.38
MUSCLE 0.48 0.43 0.29 0.37 0.42 0.40
Profile-
Profile

0.51 0.46 0.41 0.34 0.45 0.32

PSI-
BLAST

0.44 0.45 0.35 0.34 0.45 0.55

Sequence-
Profile

0.47 0.43 0.36 0.33 0.41 0.41

TM-align 0.46 0.52 0.37 0.37 0.52 0.41

Table A3.6. The Average Difference in Distances of Correct Contacts Within +/-
1A. The difference in distances of correct contacts made by each method for the six 
pairs, these are the contacts which are only a distance of +/- 1A from the correct 
contact in the PDB file. The results are for side chain -  side chain contacts.
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Methods 1avgH
+1autC

1f34A
+1htrB

1ppfE
+1pytD

1stfE
+1cs8A

2kaiA
+1cvwH

2sicE
+1r64A

BLAST 0.19 0.46 0.28 0.28 0.53 0.22
COACH 0.29 0.47 0.25 0.27 0.23 0.29
MUSCLE 0.81 0.45 0.26 0.26 0.52 0.26
Profile-
Profile

0.17 0.46 0.25 0.31 0.34 0.37

PSI-BLAST 0.47 0.45 0.17 0.27 0.16 0.26

Sequence-
Profile

0.92 0.47 0.24 0.28 0.38 0.28

TM-align 0.28 0.40 0.25 0.28 0.26 0.34

Table A3.7. The Average Difference in Distances of Correct Contacts Within +/-
1A. The difference in distances of correct contacts made by each method for the six 
pairs, these are the contacts which are only a distance of +/- 1A from the correct 
contact in the PDB file. The results are for main chain -  main chain contacts.

Methods 1avgH
+1autC

1f34A
+1htrB

1ppfE
+1pytD

1stfE
+1cs8A

2kaiA
+1cvwH

2sicE
+1r64A

BLAST 0.65 0.67 0.33 0.30 1.04 0.45
COACH 0.82 0.75 0.34 0.28 0.23 0.60
MUSCLE 1.03 0.67 0.31 0.27 0.71 0.5
Profile-
Profile

0.68 0.65 0.34 0.33 0.34 0.64

PSI-BLAST 1.12 0.64 0.24 0.28 0.20 0.46

Sequence-
Profile

1.38 0.75 0.28 0.28 0.38 0.46

TM-align 0.58 0.64 0.39 0.28 0.26 0.58

Table A3.8. The Average Difference in Distances of Correct Contacts Within +/-
2A. The difference in distances of correct contacts made by each method for the six 
pairs, these are the contacts which are only a distance of +/- 2A from the correct 
contact in the PDB file. The results are for main chain -  main chain contacts.

274



Chapter 5 - Supplementary Data Appendix 3

Methods 1avgH
+1autC

1f34A
+1htrB

1ppfE
+1pytD

1stfE
+1cs8A

2kaiA
+1cvwH

2sicE
+1r64A

BLAST 1.35 1.15 0.44 0.30 1.28 0.62
COACH 0.82 1.22 0.55 0.28 0.23 0.78
MUSCLE 1.73 1.21 0.41 0.27 0.71 0.69
Profile-
Profile

0.68 1.16 0.53 0.33 0.34 0.71

PSI-BLAST 1.78 1.15 0.35 0.28 0.20 0.60

Sequence-
Profile

1.67 1.22 0.48 0.28 0.38 0.50

TM-align 0.84 1.08 0.66 0.28 0.26 0.70

Table A3.9. The Average Difference in Distances of Correct Contacts Within +/-
3A. The difference in distances of correct contacts made by each method for the six 
pairs, these are the contacts which are only a distance of +/- 3A from the correct 
contact in the PDB file. The results are for main chain -  main chain contacts.
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Figure A3.1. The Sensitivity and PPV of the Differences in Distances for the Main 
chain -  Main chain. The sensitivity and positive predicted value of the different 
alignment methods as an average over the six pairs, for the main chain -  main chain 
correct contact results.
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