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A bstract

This work is about finding minimal generating sets for polynomial rings as mod­

ules over the divided differential operator algebra V. This problem is referred to 

as the hit problem. We will discuss the hit problem of V  on polynomial rings in 

2, 3 and 4 variables over the rational field Q and the finite field F2 . We will also 

give some results of the hit problem on polynomial rings of 2 and 3 variables over 

Fp for an odd prime p.
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1 Introduction

Let M  — © d>0 M d be a graded left module over a graded ring R  = © d>0 R d. Let 

— ©d>i R d be the positively graded part of R. A hit element is an element 

m  G M  which can be expressed by m  =  E rim,i, where r* G R +, ra  ̂ G M  which
i

have strictly lower grading than that of m. The hit elements form a submodule H  

of M. A closely related problem is to find an additive basis of the quotient module 

C — M /H . The set of representatives of such a basis is a minimal generating set 

of M  as a .R-module. We will call an element of M, which is not hit, a non-hit 

element. The problem of finding a basis of the quotient module C is referred to 

as the “hit problem” [23, Section 7].

Research on the hit problem for polynomial rings under the action of the 

Steenrod algebra over a finite field Fp has been going on for some years. The 

Steenrod algebra over F2, vA2, is generated under composition by the Steenrod 

squares Sqk. The Steenrod squares were introduced by N.E.Steenrod [19] as linear

operators on ordinary cohomology H*(X) for some topological space X  over F2,

Sqk : H n(X) — > B.n+k(X),

which have the following properties: for homogeneous x, y G H*(X),

(1) Sq° = 1.

(2) If i = dim{x), Sqz(x) — x2.

(3) If i > dim (x)1 Sql(x) =  0.

(4) Cartan formula:

Sqn(xy) = ^ 2  $qr(x)Sq3{y).
r+ s= n
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(5) Adem relations:

:Sqh\ l — ZAC /
0<A<UJ

for 0  < z < 2 j ,  where the binomial coefficients are taken modulo 2 .

Let X  =  MP00 x • • • x RP°°, the product of n copies of infinite real projective 

space. Over F2 , H*(X) is isomorphic to F2 [a:i, x2> * * •, xn], the polynomial ring of 

n variables over F2 .

The hit problem related to the Steenrod algebra was brought to attention by 

a conjecture made by F.Peterson [13]. The conjecture offers a set of monomials 

of F2 [£i, x2} ■ • • ,#«] containing the generating elements under the action of the 

Steenrod algebra over F2. The conjecture has been proved [25]. Here we state a 

stronger form of the result.

T heo rem  1.1 [3, Theorem 2.1] Let Wn =  F2 [a;i,;c2 >' . . ,  be the polynomial

ring in n variables over F2. Let f  ~  x ^ x ^ 2 ■ ■ ■ x“n be a monomial in Wn with r 

exponents odd. Let d — ai +  a2 -F . . .  +  an be the degree of f .  I f  a(r +  d) > r then 

f  is in A 2 Wn} where a(t) is the number of l ’s in the binary expansion o ft.

Let N = { l , 2 , . . . } b e  the set of natural numbers.

E xam ple 1.2 [26, Section 2.3] Under the action of A 2 , a minimal generating set 

ofW2[x,y] consists of monomials in the forms a;2ai_1y2a2_1 and x2bl~1y2b2~2bl~1~1 

where ai, a2 — 0 or ai, a2 E N, 6 1 , b2 G N and b2 > b±.

A monomial a;2ai_1a;2a2~ 1 . • . a2**"-1, which is called a spike, never appears in 

the image of any operation of A 2 [25].

Over Fp for an odd prime p, the Steenrod reduced power operations are lin­

ear transformations P n : W!f — > with the following properties [18,

Chapter VI. 1]:



(1) p °  =  1.

(2) P h(f) =  f ” if deg(f) =  k and P k(f)  =  0 if deg(f) < k.

(3) P k{xd) =

(4) Cartan formula:

where / ,  g G Wn.

(5) Adem relations:

p i p i  = ( - l ) i+i! ( (P ~ W  ~Jt'> ~  1 j

for 0 < i < pj, where the binomial coefficients are taken modulo p. When p =  2, 

P k is Sqk. By the Steenrod algebra over Fp, A p, we mean the algebra generated 

by the Steenrod reduced power operations subject to the Adem relations [18, 

Chapter VI.4].

Let p be an arbitrary prime. The action of A p commutes with the action 

of the general linear group G — GL(n, Fp) over Fp. Hence the Steenrod alge­

bra can be seen as a set of ¥PG—module homomorphisms on the polynomial 

ring Fp[iCi, £2 , . . . ,  a;n]. A theorem of Mitchell [12] shows that each irreducible 

WPG—module appears in the polynomial ring. By Schur’s lemma, the first occur­

rence of an irreducible FpG—module is not hit. Hence the cokernel of the action 

of Ap on Fp[a:i, 3:2 , ,  a?n] includes among its composition factors a complete set 

of inequivalent irreducible ¥PG—modules.

Now we consider an algebra, the divided differential operator algebra V  [23] 

[24]. V  contains the Steenrod algebra as a subalgebra over a finite field. V  is an 

algebra which is generated by the differential operators defined as follows:

d

i=l

10
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with respect to both wedge product and composition (Section 2.1). The natural 

coproduct = 1 <g> ® 1 makes V  into a Hopf algebra with respect

to both the composition and the wedge product. Under the composition V  is 

isomorphic to the Landweber-Novikov algebra [24]. Let Tn be the semigroup 

consisting of all linear transformations on the polynomial ring of n variables 

which have the following property: when they act on the set {aq, oq, . . . ,  £n}, for 

4> £ r n, then either = Xj or <fi(xi) = 0. The action of V  on polynomial rings 

commutes with the action of r„ . The symmetric group is a subgroup of Tn 

[20]. Hence V  can be seen as a set of module homomorphisms when it acts 

on a polynomial ring.

Let K  be a field and V k  — K . Let Mn = K [xi, . . . ,  arn], the polynomial 

ring of n variables over K. We may view Mn as a V k ~ module. A minimal 

generating set under the action of V k  on Mn is a set N  C Mn with T>k N  =  Mn 

and there is no proper subset U of N  which satisfies V KU =  Mn over K . We 

say a polynomial /  £ Mn is hit under the action of V k  if /  =  £  5i(gi) for some
i

Si £ and Qi £ Mn which has lower degree than / .  Let Sn =  • * • xnMn which

is a V k ~submodule of Mn. Then the hit problem on Mn can be reduced to the 

hit problem on Sn, since Mn is the union of Si for all Si C Mn, where 1 < i < n.

Suppose the field is Q. We consider Sn as a V q—module, then we write 

Hn = V ^ S n, the set of hit elements in Sn under the action of V q. We write the 

quotient module Cn = Sn/H n. We will prove that Cn is finite dimensional for all 

n  in Theorem 3.9. We denote by {aq,. . .  a set of representatives of a basis
t

of Cn, then =  Sn. Let An be the ring of symmetric polynomials in n
i—1

variables. An is a subring of Mn. We denote by A+ the positively graded part 

of An. We may view Sn as a An—module under the normal multiplication. Let 

Jn =  AnSn, then Jn is the set of hit elements in Sn under the action of An. A

11



basis for the quotient module A n = Sn/J n is known [16]. The basis is finite and 

is called the Artin basis which was found by E.Artin [2, II.G]. The Artin basis 

has a set of representatives:

{a* =  ■ • • x% | 0 < ij < j  fo r  1 < j <  n},

where the degree of a* < -----------. We call the representatives the Artin elements.

The Artin elements form a minimal generating set of Sn under the action of An 

and Sn — © i=1 Andi, where r  =  n\ [2, II.G]. Furthermore the Artin basis gives a 

regular representation of En [16].

Hence $n is an additive group which carries two module structures. As an
r

An—module, every element of Sn can be expressed uniquely by where
*=1 t

fi £ An. As a Dq—module, every element of Sn can be expressed by 5jZj,
i=1

where 6i €= X>q. We think we can take the set of Z{ to be the set of a*.

Conjecture 1.3 [23, Conjecture 7.3] Let H  be the set of hit elements under the 

action of the divided differential operator algebra V q on Sn and let C = Sn/H ,  

then the Artin basis is a basis of C .

We will verify Conjecture 1.3 up to n — 4. We will also look into the hit 

problem over a finite field Fp. We denote V  Fp by V p. By Theorem 5.4 and 

Theorem 7.4, a minimal generating set for a polynomial ring of two variables 

under the action of V p is an infinite set over Fp. Hence we get that a minimal 

generating set for a polynomial ring of more than one variable under the action 

of Vp is an infinite set. Since A p is a subalgebra of V py the set of the hit elements 

for the action of A.p is a subset of the hit elements for the action of V p.

The action of V  is a set of £ n— module homomorphisms. If L  is an irreducible 

KT>n—module in a polynomial ring over a field A, then the action of V  either

12



maps L  to 0 or maps L  isomorphically to some higher degree of the polynomial 

ring. Hence results on the hit problem might be used in the study of the structure 

of irreducible K En—modules, especially over Fp.

This thesis is concerned with the hit problem of V  K  on polynomial rings 

in a small number of variables over a field K.

In Section 2.1, we will state definitions related to the divided differential 

operator algebra V. We will give generating sets of X?q and V p under composition. 

Then we will discuss the action of V  on polynomial rings. We will define the 

conjugation x  on D which is an anti-isomorphism of the Hopf algebra. We will 

give some formulas related to the conjugation. These formulas are very useful in 

calculations of the hit problem. In Section 2.2, we will define Young diagrams 

and tableaux. In Section 2.3, we will give the abstract definition of the Specht 

module. The Specht modules corresponding to all partitions of n  form a complete 

set of irreducible representations of the symmetric group £„ over Q. Then we will 

give a method to construct Specht modules in a polynomial ring. In Section 2.4, 

we will discuss symmetric functions and the algebraic Thom map. The algebraic 

Thom map gives an isomorphism of vector spaces between the divided differential 

operator algebra and the ring of symmetric functions.

In Section 3, we will give some combinatorial results and some general results 

on the hit problem. These results will be often used. The main result in this 

section is Theorem 3.9, due to G. Walker and R. M. W. Wood.

T heorem  3.9 A minimal generating set of Sn under the action of&Q is finite 

for all n.

In Section 4, we will find minimal generating sets for polynomial rings of 3 

and 4 variables under the action of X>q. These results show that Conjecture 1.3

13



is true for polynomial rings up to n =  4. The main methods we use to prove 

that a monomial is hit are Corollary 3.8 and Theorem 2.9, which is called the “x 

trick” . Let x — xi, y =  x 2, z — X3 and t = x 4 . The main results in this section are:

Theorem  4.1 A minimal generating set of S 3 under the action o fV q  is 

{x y z , x 2 y z , xy 2 z, x 3 y z , x 2 y2 z , x 3 y 2 z}.

Theorem 4.2 A minimal generating set of Si under the action of V q is 

{xY zH I 1 < i < 4, 1 < j  < 3, 1 < A: < 2}.

In Section 5, we will prove some results on the hit problem over F2. We have 

found minimal generating sets for 2 and 3 variable cases. The basic method we 

use to prove that a monomial is hit is to show the monomial is congruent to a 

monomial which is known to be hit, modulo the hit elements which we already 

know over F2.

The main results in this section are:

Theorem  5.4 {1, x , y> x 2 y , x2m~ly \ m  G N} is a minimal generating set 

o /F 2[a;, y] under the action ofT>2 -

Theorem  5.5 A minimal generating set of W2 [x,y> z]xyz under the action of

T>2 is: {xyz, x 2 yz, xy 2 z, x syz, xy 3 z, x 3 y 2 z, x ^ y ^ ^ z ,  x y ^ ^ z 2̂ , x ^ ^ y ^ ^ z ,  

X2L+lyZ2 k~l ̂  Xy 2h + lZ2k~l \ 2 < k e  N}.

In Section 6, we will give some results for the 4 variable case over F2. From 

these results we have a general view on the cokernel of the action of T>2 on

14



¥2[x, y , £]. Main results in this section are:

Theorem  6.6 I f  a monomial f  of n variables can be written as a product of 

non-hit monomials of 2 variables and there are no two monomials having com­

mon variables, then f  is not hit under the action ofT>2.

Theorem  6.16 A monomial xaybzctd with two exponents even is hit under the 

action of V 2} if it is in a degree > 11 which is not 2m.

Based on Theorem 6.6 and the related results we have got on the rational 

case which show that the product of two monomials in independent variables 

which are not hit is still not hit, we give a conjecture on the product of non-hit 

monomials with no common variables in general (Conjecture 6.30).

In Section 7, we will discuss the hit problem over ¥p for an odd prime p. We 

have found a minimal generating set for the 2 variable case. The result is very 

similar to the result of the 2 variable case over F2. We believe that the minimal 

generating set for the 3 variable case over Wp is also close to the result over F2. 

We have also tried to get some results for the 3 variable case. But it seems much 

harder to find out hit elements over Fp. It is difficult to follow methods we have 

used over F2. Since coefficients and signs all matter over Wp, it is more difficult 

to cancel some terms in the image of an operation of T>p and to make the image 

simpler.

The main result in this subsection is:

Theorem  7.4 {1, x , y , x y , x2y , xpm~xy \ m  G N} is a minimal generating 

set o f¥ p[x,y] under the action o fV p.

15



2 T he background

In this section, we will give some related background. In Section 2.1, we will 

define the divided differential operator algebra V  and products on V  which are 

the composition and the wedge product. We will give the minimal generating 

sets of V  under the composition over Q and Wp. We will also discuss the action 

of the divided differential operator algebra on polynomial rings. Then we will 

introduce the conjugation % of V  and some formulas related to x- These formu­

las will be useful in the later content. In Section 2.2, we will give definitions of 

Young diagrams and tableaux. In Section 2.3, we will give the abstract definition 

of the Specht module which is indexed by partitions, then give a method to con­

struct Specht modules in polynomial rings. Finally we will introduce symmetric 

functions and the algebraic Thom map in Section 2.4.

2.1 T he d ivided  differential operator algebra

Let X  = {#1 , #2 , ■ ■ • } be an infinite sequence of variables. Let

oo
Mn =  K[xi , x2, . . . , xn\

d=0

be the polynomial ring in n variables of X  over the field K , where consists 

of all the homogeneous polynomials of degree d. Hence Mn is a graded ring with 

the grading given by the degree. The differential operator Dr : Mn — > Mn+r 

for any n > 1 is defined by



d
where —— is the ordinary partial differential operator with respect to all Xi E XOjCi
[23, Section 2].

The wedge product V of Dr is defined in the following way: let the derivative 

of the first operator Dr pass the variable coefficients of the second operator Ds 

without acting. That is [23, Section 2]:

OO OQ OO Q

d t v d . = (E T 1̂ )  v (E*i+1̂ )  = E  TTs+1̂ t^t-
z=l z=l i,j=1 J

The composition of Dr and Ds is written as Dr o Ds or simply DrD s which is:
OO r j  OO r i

z=l J=1 J

This is equal to [23, Section 2]:
OO o  OOf) °°

( s  + 1)(Ea;i+<+1̂ :) + E ®i+1®5+1&rar =  {-s  +  1 '> D s + i ' +  D s V  D r ■ ^i—1 1 i,j=1 ^

So the composition and the wedge product are related. In general we have 

the following formula of the wedge product: [24, Lemma 3.3]:

dk
Dn  V D,-2 V . . .  V Dn  =  E r t + i

dxiA • • • dxit 5

where the sum is over all ij for ij E R  The A:—fold wedge product of Dr , D ^k 

can be derived from the above formula [24, Lemma 3.4]:

dkr+1
dxix • ■ * dxik ’

where the sum is over all ij for ij E N. From the above formula, we can also see

that the image of D ^k is divisible by k\ when it acts on an arbitrary monomial. 
D^k

We call - j j -  a divided differential operator.

Let d be a non-negative integer. We denote A to be a partition of d. We 

write A =  (Ai, A2 , - - •, An) with Ai > A2 > . . .  > An > 0 where Â ’s are integers

17



n

and |A| =  ^ ^Aj  =  d. We will identify (Ai, A2j . . . ,  An), where Ai /  0, with
i=l

(Ai, A2, . . . ,  An, 0 , . . . ,  0). We say a partition A =  0 if A =  (0,0, • ■ •). The length 

of a partition A, l(A), is the number of the non-zero parts of A.

We say A is a composition of d if A =  (Ai, A2, . . . ,  A„) and |A| =  d, where 

0 < Ai € Z for all i. Obviously, every partition of d is a composition of d as 

well. The lexicographical order > on compositions is defined as follows: A >  p 

if A =  /x or A j > (ij for the least j  for which A j ^  pj. For two partitions 

A =  (Ai: A2, . . . ,  An) and p = (p^ p2y • • * ? Mn)? A +  p is a partition with parts 

Ai, A2, .. •, An, pi, /i2, . . . ,  pn.

For a partition of a particular integer n, we will omit commas between parts 

of the partition. For example we write (221) =  (2,2,1). Let k = (kvi k 22 • ■ ■ ftf?) 

which is a partition with p* parts of distinct for 1 < i < n. The divided 

differential operator algebra V  over 7L is defined as follows:

D efin ition  2.1 [23, Section 2.1] The divided differential operator algebraV over

Z is the algebra which is generated under the wedge product by the divided differ- 
D ff

ential operators -y p -
rC!

£)Vfci £)V/c2 £)Vkn
The elements D (k)  = ■ ri V / 2 V . . .  V -  , form an additive basis of £>,

kx\ k2l kn\
for all partitions k,.

T heorem  2.2 [24, Theorem 3.13] The'divided differential operator algebra V  is 

closed under composition.

Let /  and g be two polynomials in n  variables {a?i, x 2, . . . ,  The Leibniz 

formula for the wedge product applied the product of /  and g can be derived 

from the formula of the A;—fold wedge product [24, Lemma 3.5]:

Av*(/s)=  E  ( f j Dr V ) D vrj (g). (2)
i+j=k ^

18



In general we have:

)(fg) =  Y ,  D(p,)(f)D(K)(g). (3)

D™
We write E k = Then by the formula of the /c—fold wedge product, we

get:

E xam ple 2.3 For m > k ,

E k(xm) =  — 1) ■ • • (m — k +  l )x rk+Tn = xrk+m7

and for m  < k , E k(xm) =  0.

From (2), we get:

, Et( fg)  = E  W
i+j=k

Let x = £i and y — x 2 - From (4) and Example 2.3, we get:

In general, we have:

,o i+ r i i  rra2+rt2

The Lie bracket of Dk and Di is defined as follows: [Dk, A] =  A  A  — A  A- 

From the definition of Dk we have:

Lem m a 2.4 [23, Lemma 2.3] =  (I — k)Dk+i.

Let K  be a field and T>k  = V  We have the following theorem.

T heorem  2.5 [23, Theorem 2.5] Aq> is generated by A  and A  under the com­

position.

19



In [9], P.S. Landweber defined the cobordism operator Bk which acts on poly­

nomial rings in the following way: B k{xf) =  x^+1. Let p, =  i f f  p?2 . . .  jJ%1 be a 

partition. The cobordism operator B^ is defined in the following way to act on 

polynomial rings:

B„Vg)  =  £  Bx(f )BK(g), (6)

where f ,g  are arbitrary monomials and B ^ x f)  = 0 for all % if p  has two or more 

non-zero parts.

The set of Bp is called the set of the basic cobordism operations and it is a 

basis of the Landweber—Novikov algebra A* with multiplication the composition 

[9]. A* is isomorphic to V  under the composition [24]. Comparing (6) with (3), 

we can see that B M corresponds to D(p) under the isomorphism between A* and 

V.

Theorem  2.6 [9, Theorem 7.1] A minimal set of generators of A* is:

{Bp, B 2k | k =  1 or k = pr,\  m  £ N}.

I f  p is an odd prime, there is another minimal generating set besides the above 

one:

{Bik, B X2k \ k — 1 or k — pm, m  £ N}.

Since Bik is E * and B 2k is E^, we get:

Theorem  2.7 V p has a minimal generating set under the composition:

{E±, E^ | k — 1 or k =  pm, m  £ N}.

I f  p is a odd prime, there is another minimal generating set:

E fk \ k  = l  or k = pm, m £ N}.

20



Prom the definitions we have, E k is the Steenrod square Sqk over IF2 and E k_Y 

is P k over Fp when they act on polynomial rings. So A p is a subalgebra of V p. 

When r = 1 and p = 2, the formula in (4) is the Cartan formula.

The natural coproduct ip{Dn) =  1 ® Dn + Dn <g> 1 makes V  into a Hopf algebra 

with respect to both the composition and the wedge product. The operators Dn 

are primitives of the Hopf algebra [24, Section 3]. The conjugation x  the Hopf 

algebra V  with respect to the composition is defined as follows [23, Lemma 2.18]:

XD(A) = - J 2  D (K)XD(U.)- (7)

E xam ple 2.8 By the above formula, we can derive:
k

x{E kT) = x (Dr) = - D r, X(E?) =  DrDr -  E r2.
i=1

By (1), DrDr =  (r +  +  Dr V Dr = (r +  l)D 2r +  2E%. Hence over F2;

DrDr =  0 if r is odd and x(-^v) = E* f or an odd r. Hence

X(El) =  - E l  +  E \D i -  D i(x (El)) =  E \ + E%Di + D XE \  (mod 2).

From the Adem relations, we get D iE f — E± {mod 2). Hence we get

X(®i) =  E lD i {mod 2).

The conjugation is an anti-isomorphism on the Hopf algebra V. Hence for 

S2 £ 'Et x(^i^2) =  x fe M ^ i)  [4, Section 7], Let /  be a monomial in a polynomial 

ring with n —variables over an arbitrary field. Every monomial in x W ( / )  ls in 

the same degree as the degree of monomials in 6{f) for any 5 £ V.  Let / ,  g be 

two polynomials, we say /  =  g {mod hit) if /  — g is hit under the action of V  

over K.

T heorem  2.9 [23, Theorem 7.6] For any 5 G V,

/ % )  =  (xW(/))0 {mod hit).
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Let Fn be the semigroup consisting of all linear transformations on the set 

X  = {xi, x 2, - ■., £„} which have the following property: for any ^ G Tn and 

Xit Xj 6 X ,  either (f>(xi) = Xj or (j){xj) =  0. We can identify with the set of 

n x n  matrices with at most one 1 in each row and all 0’s elsewhere. The action 

of the divided differential operator algebra V  on polynomial rings commutes with 

the action of Fn [20]. Let M  be a polynomial ring, then we have the following 

commutative diagram:

M  A  M

; r r ; r T

M v M

2.2 Y oung diagram s and tab leaux

Let A be a partition. A Young diagram [A] corresponding to A is a diagram:

* * Ai nodes 

* * . . . * *  A2 nodes

W =  . . .

* . . .  * An nodes

We write A# to be the transpose of A. It is a partition with the Young diagram 

obtained by the reflection through the diagonal of the Young diagram of A.
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Exam ple 2.10 A =  (211), A* — (31).

A A—tableau is obtained from a Young diagram by replacing each node with 

an integer of the set {1,2, . . . ,d}  in a square frame. We call an integer in a 

Young diagram an entry of the Young diagram. Let A be a partition of d. If the 

sequence of entries counted down columns and along rows from the left to the 

right of a A—tableau T  is A, z2). . . ,  id, we write [z] =  A, H, ■ ■ ■ > id- We denote by 

^A,[*] a A—tableau with entries [z]. The content of T\,[i] is a sequence of numbers 

H =  - - - Hi, where Hi equals to the number of l 5s in [z], H2 equals to the
i

number of 2’s in [z], and so on. Also =  d, i.e. the content of TAĵ j is a
i

composition of d.

Exam ple 2.11 A =  (211), [i] — 1, 3,2,1. Then

1

t—
1

C
O

to

The content ofTx^i] is (211).

When we draw a Young diagram of T ^ ], we may just denote the Young 

diagram by Tx, since the content is shown in the diagram. We say T ^ ] is semi­

standard if entries of T \t[i] are strictly increasing down columns and monotonic 

increasing along rows from the left to the right. T \^  is standard if entries of Txt[i\ 

are strictly increasing down columns and along rows from the left to the right.

2.3 Specht m odules and their con stru ction  in  p olynom ial 

rings

Let G be a finite group, C be the field of complex numbers. CG is the group 

algebra of G over C which is the regular representation of G.
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T heorem  2.12 [8, Section 11.9] Suppose that (CG — a direct sum of

irreducible CG—modules, then hi =  dim Ui, where kiUi — E/*©-■•©?/*, the 

direct sum of ki copies o ffy .

Lem m a 2.13 (Schur’s Lem m a) [1, Section 5] Let R  be an arbitrary ring. Any 

non-zero homomorphism between simple R —modules is an R —isomorphism.

T heorem  2.14 (M aschke’s T heorem ) [1, Section 5] Let G be a finite group 

and K  be a field. Suppose the characteristic of K  is either zero or coprime to 

|t?|. I f U is a K G —module and V  is a K G —submodule ofU,  then V  is a direct 

summand of U as K G —modules.

D efinition 2.15 [6, Section 3.9] A tabloid is an equivalence class of X—tableaux. 

The equivalence relation is defined by T \± ~  T \2 if corresponding rows contain the 

same entries.

We denote the equivalence class of T\ by {T\}.

E xam ple 2.16 For a X—tableau T\ 3 4

we write the corresponding tabloid as follows:

1 3  4m =-----

We have:

1 3 4  1 4 3  3 1 4  3 4 1  4 1 3  4 3 1
-------------    r\-/   rv     rv--------------

Let A =  (Ai, A2j • • • j Ar) be a partition of n.
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Definition 2.17 [6, Section 4.2] Let K  be an arbitrary field, M x is the vector 

space over K  whose basis elements are the set of all X—tabloids, each X—tabloid 

corresponds to a X — tableau with distinct entries.

Let S n be the symmetric group on the set {1, 2, . . . ,  n}. The permutation 

module M x is a cyclic module, generated by any one of the A—tabloids. We 

have

dim MX = AiUal— A 

Let Cl (A) be the column permutation group. The action of Cl(A) on a 

A—tableau is shown as follows: we mark positions of squares of the zth column of 

the A—tableau T\,[j] with {1,2, • • *, AJ} for 1 < i < l(X') from top to bottom. Let 

Ck = then we write Cl(A) =  Cl\ x Oh x • • • x Clpyy  For 7r e Ck, 7rTx>[j] is 

the tableau obtained by permuting marks of squares along with their entries in 

the iih  column of TXj[j] by 7r and keeping other columns unchanged.

Definition 2.18 [6, Section 4.3] The polytabloid is defined as follows:

eTx =
TTZClx

E xam ple 2.19 Let Tx

Then =
1 3 5

1 
^

1 3 5 1 4 5 1r to 
1

4 5

2 4 1 4

1 
1:0 

1 1
3

1
1 3

D efin ition  2.20 [6, Section 4.5] The Specht module Spx is the T>n—module which 

is spanned by polytabloids generated by X—tableaux.
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The following theorem shows that the dimension of Spx is equal to the number 

of standard A—tableaux.

T heorem  2.21 [6, Section 8.4] The Specht module Spx has a basis 

{ erA | T\ is a standard A — tableau }.

Over Q, the Specht modules indexed by all distinct partitions of n  give a 

complete set of the ordinary irreducible representations of

Let <, > be the bilinear form on M x where for tabloids a, b,

f 1 i f  a = b 
< a,b > =  <

I 0 otherwise

Let Sp1* C M x. We denote by SpM'L the submodule of M x where for any 

a1 G S p < o', a > =  0 for all a G Sp1*.

SpxL em m a 2.22 [6, Section 4.9] Let K  be an arbitrary field. F x — ^  x ^  g  x± 

zero or irreducible. I f  Spx D Spx± is not zero then Spx fl Spx± is the unique 

maximal submodule of Spx.

A partition A is p —row regular if [A] has no p rows which have the same 

number of nodes. Over a field of characteristic p, F x is non-zero if A is p—row 

regular. This set of F x,s gives a complete set of irreducible representations of En 

over any field K.

T heorem  2.23 (Y oung’s ru le) [6, Section 14.1] Over Q, the multiplicity of 

SpM as a direct summand of M x equals the number of semistandard A—tableaux 

of content p,.
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The multiplicity of SpM in M A is called a Kostka number K x p. We list the 

tables of Kostka numbers for n — 2 , 3, 4 in Appendix A.

By Theorem 2.12, Theorem 2.21 and Young’ rule, we get that is a

regular representation of E„.

Let K  be a field and Mn =  K[xi , . . . ,  icj. Let Sn =  ©SJJ = X\ . . .  x nMn: where 

S d contains all the homogeneous polynomials of degree d divisible by x i . . .  xn. Sn 

is a graded En— module. The module action is defined as follows: for d G En and 

x f 1 x ^  . . .  xf* G Sn, S ix ^ x ^ 2 . . .  xfr) = • • • x d̂ny  We denote by Ep+1)>>.)Il}

the subgroup of En which permutes {i +  1 , . . . ,  n} and leaves {1 , . . . ,  i} fixed and 

define Ep,...^} similarly.

D efin ition 2.24 We call the set of monomials .. .x^n) \ a  G En} the set

of monomials in the form [cp • • ■ a„]. By [{ai • • • ai}{ai+i • • • an}L we mean the 

set of monomials {^(icj .1 • • • ^ ^ ( a ^ Y  ■' - < n) I oi e  ^ 2  G Ep+li..M„}}.

E xam ple 2.25 We call all monomials obtained from permutations of x 3 y 2 z2t 

under the action of E4 the monomials in the form [3221]. We call the follow­

ing 4 monomials x 3 y 2z 2 t, x 2 y3 z 2 t, x 3 y 2 zt2, x 2 y 3zt2 the monomials in the form 

[{32}{21}].

D efin ition  2.26 For a monomial

e =  (a* . . .  xdl)ai(a;dl+i . . .  x d 2 ) a2 • • • (xdl_1+i • ■ • x dl)ai

where ai, . . . ,  ai are distinct, we define a composition p =  P\P2 • Pi, where 

Pi — di — d ^ i  with do =  0- Lei Ei be the symmetric group on {1, . . .  ,Z} and 

A =  tt(iLt) be a partition for some tv G E*. Then we say that e and the permutations 

of e under the action ofY±n are monomials of the exponent type A.

E xam ple 2.27 Since x 3 y 2 z2t = x 3 (yz)2 t, we get a composition (121). Hence all 

the monomials in the form [3221] are monomials of the exponent type (211).
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Let A be a partition of n. In S all monomials of exponent type A form a

module which is isomorphic to M x. Hence SjJ can be dicomposited into a 

direct sum of M A,s.

We denote by A(n) in variables xi, £2, ■ • •, x n the Van der Monde determi­

nant:

We can see that A (l) — 1 from the above definition.

D efinition 2.28 [17] Let p = (pi, /a2, ■ ■., fJ-i) be a partition of n. Let

where A(/ai) is in variables xi, . . . ,  x ^ ,  A is in variables a^+ i, . . . ,  x ^ ^  

and so on.

This polynomial was firstly considered by W. Specht. It is now called the 

Specht polynomial.

T heorem  2.29 [17, Satz 1] Over a field I{ of characteristic 0, the polynomial 

x i % 2 ■ ■ • xnA(p) generates an irreducible KYjn—submodule, which is isomorphic 

to the Specht module Spx, in Sn^  where A =  p! and cr(A) =  i\j.

in Sn. The following example shows how we decompose a permutation module 

into a direct sum of Specht modules in a set of monomials.

1 1 1

xi x 2

A (/a) =  A(/ai) A(/a2) • • • A (hi)

This irreducible module generated by A (p) gives the first occurrence of Spx
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E xam ple 2.30 In S^, a:fa;2^ 3 , ^ 1^ 2 ^35  have the

exponent type (111) and any of them generates a Q £3 —submodule M^in \  It is 

the regular representation of S 3 over Q. S p ^  is generated by

x\x%X$ +  X1X2X3 +  X̂ X̂ X̂  +  x \ x2X̂  +  X1X2X3 4- xixfal -

By Definition 2.26, the 1st occurrence of Sp^111̂ in S 3 is generated by:

xyzA(3) = X1 X2 X3 X i  X 2 X 3

2 9 2O' r>'
^1 Jj2 3

=  X i X 2 X $ Y { ( x j  -  X i ) .  

i < j

=  x\x\x$  — x \x 2 x\  +  x \x 2 x\  — x\x\x$ 4- x \x \x \  — Xix\x\.

There are two semistandard (21)—tableaux with content (111). So the dimen­

sion of Sp(21̂ is two and there are two copies of S p ^  in M^1U\  We give Q— bases 

of the two Sp(21̂ which are direct summands of M (U1) as follows:

{ a ^ a ;^  — x \x 2 x\  +  x \x \x \  — x \x \x 3 , x^x2xl — x \x \x \  4  x \x 2 x\  — a ^ a ;^ }

and

{a^a^a^ — arfa^a^ 4  x \x 2 x\  — x \x \x \,  x \x 2x\ — x\x\x$  4  x \x \x \  — x \x 2 x%}.

We give a table of decomposition of £ 4  for 4 < d < 10 in terms of M x and 

Spx, where A ranges over all partitions of 4, in Appendix B.

2.4 Sym m etric functions and th e  algebraic T hom  m ap

Let A be a partition of d and X x = x Xt • "  xXn. Let m\{x\, . . . ,  a;n) — X ^  

where each p is a permutation of A and summed over all distinct permuta­

tions of A. Let An be the ring of symmetric polynomials of n variables. The
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mx{x i ,  . . . ,  xn) for all A’s where /(A) < n form a Z —basis of An. The ring of 

symmetric functions is the inverse limit of the sequence of Z —modules An:

A =  lim A„

where the homomorphism pmin : Am —»■ An sends x  ̂ to 0  for all m  > i > n  and 

the other to themselves. Then we have a projection pn : A —> An by sending 

Xi to 0  for alH  > n and the other x f s to themselves.

The monomial symmetric function m \  is defined by pn(rrix) =  m \(x  . . . ,  xn)
E,xf. We

denote the elementary symmetric function where ea — m^dy  we define 

ex =  eAieA2 ' ’ ‘eA„- We denote hd the complete symmetric function of homo­

geneous degree d where hd = Also we define h\  =  h \ 1 h \ 2 • • • h \n.
\n\~d.

Let s — X\X2 -' - xn, the product of n variables. We define a map : V  An 

where

$ n(£>(A)) =  D ^ ( sl  =  m x(x i ,  . . . ,  xn). 
s

Note that for all A where 1(A) > n, § n(D(A)) =  0.

E xam ple 2.31 Let A — (21) and n  =  3, then

$ 3(£>(21)) =  1 —(D2 V £>i)(aim2m3)X1X2 X3

— --- 1--- (x^X^Xs +  x \x 2 xl +  X^X^Xa +  X\x\x\ +  x \x 2 x\  +  X\X%x\)
X\X2 X̂

— x lx 2 +  x \x 3 4- X\x\ +  x\x$ + ^ 1 ^ 3  +  ^2 ^ 3  =  771(21) (®1, X2, X3) •

The following diagram commutes:
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V

^ + l /

-A-n+1 Pn+l,i A„

The algebraic Thom map $  is defined by: $  — lim<I>n. Then $(D(A)) =  m \  

and hence $  is a group isomorphism between V  and A. The following results 

show correspondences between A and V  under $  [23, Example 3.1]:

$(£>*) =  P„, $ (£ * )  =  ek, §(D(X)) =  mA, ) =  hk.

We may consider <3>n =  pn o <h.
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3 Som e general results

In this section, we will give some results which will be used in Section 4 to Section 

7. Firstly we will prove several combinatorial identities in Section 3.1. In Section 

3.2 and Section 3.3, we will give some results on the hit problem. These results 

will often be used in the remaining sections. We will give a minimal generating 

set of Q[o;, y] under the action of V q. From that we will generalize Proposition

3.7 which is an important result for the rational case. By Proposition 3.7, we get 

Theorem 3.9 which states that a minimal generating set for a polynomial ring of 

n variables is finite for any n  under the action of V q. Theorem 3.10 has been 

proved in [23, Example 3.4]. Here we give a different proof. In the remaining 

content, when we write x h where a; is a variable, if we do not define the exponent 

k , then k G N.

3.1 C om binatorial lem m as

The following two results are standard combinatorial results. We list them since 

they will be applied in many places in the remaining content.

T heorem  3.1 [5, Theorem 3.4.1] Let p be a prime number and let an . . .a ia 0 

and bn .. .b\bo be p—expansions of a, b. Then

T heorem  3.2 [5, Example 3.13] Let k , m, n be non—negative integers. Then
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Lem m a 3.3 Let t, k be non—negative integers and let p be a prime number. 

Suppose u +  v +  tk — pm where u, v G N. Then

J >  + *0 g) g) = (» +  «) g) g) - 0 (mod p).

Proof:

£ (“+“> C ) G ) = ,£ " C ) G ) +‘ £ ‘C)C)
G) G ) +-  G:  0  G) ■ • ((“ r ) +\ .

i>l

u(u -hv-htk) (u  + v — 1

k -  1

But u-\-v + t k = p m and k < pm, so

n(n +  U +  £&) (u -\-v  — 1

g l ” i 1) s 0  (Tnodp)■

Also because

i ) G
i+j=ft

we get

£<«+̂ )G)+J>+«G

=  ^ 2  (u +  v +  tk) g ^  g ^  — (u -I- v + tk) g  ^  g  = 0  (mod p),

E  (v + *•?') g) g) = 0 (mod p>-
i + j —k

□

— 1 ±  (1  -f 4y) 1/ 2
Let y =  x 2 +  x and we get x = ----------  . If we choose the plus sign

z
in the solution and expand the right hand side of the equation, the coefficient of

1 ( 2 n \
yn is called the nth Catalan number cn, where cn =    I [23, Example

n 4 - 1 \  n }
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_ 1  4- (1  +  4y)V2
3.4]. The equation x = ------ —  ----------- is the generating function for Catalanz
numbers, which gives x  =  l )ncnyn+1.

n>  0

E xam ple 3.4 c0 =  1, cx — 1 , c2 = 2 , c3 =  5, c4 =  14, c5 =  42, c6 =  132.

For a G Q, let [aj be the greatest integer < a and let \a\ be the least integer 

>  a.
[n+lj

Lem m a 3.5 (~ l)n_A: ( n +  * ^  cra_fc =  0 .
i= 0  ' Y

_1 +  (1 + 4  u) 1/ 2
Proof: Expand the right hand side of the equation x  = ----------------- -— , we

2
get a; =  l)*Cjy*+1. Then we substitute y by x 2 +  x  and get

£>0

x =  +  1)<+1*<+1- (8)
i> 0

The coefficient of x 1 is 0 for all i > 1 in the right hand side of (8 ). We look

at the coeficient of x n + 1  for n > 1 in (8 ). The term £ n + 1  is in the expansion of
n — 1

(—l)*Ci(a; +  l ) r+1a; l+ 1  only if i < n and 2(z +  l) > n + 1  which is i > [—-—]. This
71— 1

gives the range of i : [—-—] < i < n, which should be considered. Suppose
z

some % is in the range, then i .) is the coefficient of xn~l in the expansion of
\ n ~ y

(x +  l ) l+ 1  and so the coefficient of £ n + 1  in the expansion of (—l)*c*(a; +  l) t+1a4+1 

is (- l)* C i^  +  1'i ' n — %
n ( i  +  1 \Hence the coefficient of x n + 1  in (8 ) is (“ I ) 1 ( •) c% which is 0 . So we

get

t <»>

77 — 1 77Let k =  77 — i. When n is even, we have n  — \—-—] =  —, when n  is odd,

we have n — —] =  -  ^ . Hence n — \n  -] =  By changing the
z z z z
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index of (9) to k, we get

l ^ J

3.2 Som e general resu lts on th e hit problem  over Q

The hit problem of T>k on K[x] for an arbitrary field K  is simple. For any x a, 

we have xa = Da_ igr). Hence x  is the only generator.

T heorem  3.6 A minimal generating set o/Q[a;,y] under the action of Vq is 

finite. One minimal generating set is {1, x, y, xy, x 2 y}.

Proof: For any monomial xayb £ Q[^,y], a, b ^  0, by Theorem 2.9,

x ayb =  x aDb-i(y) = x{Db- i) (x a)y = - D b̂ i(xa)y = - a x a+b~ly (mod hit).

So we need only to consider the monomials in the form x ay. We have the 

following equations:

jE'J;(a;a~1y) =  (a — 1 )xay +  xa~1 y 2 

E \ (xa~2 y) = ( ^  2  2^ aV +  (a -  2)ir0-y

—-------------- ). is the determinant of the coefficient matrix of the above equa-

tions. It is not zero if a > 2 . Hence x ay is hit for any a > 2. When a = 2 , we 

have only one equation: Di(xy) = x2y +  xy2, with two unknowns x2y and xy2. 

So we need one of them to be a generator, we choose x 2 y. We already know that 

x generates xk and y generates yk for all k, hence a minimal generating set for 

Q[x,y] is {1 , x, y, xy, x 2 y}. □
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We can use the above method to generalize to a useful result. When we try 

to show a monomial x ^ x ^ 2 • ■ - x ^  for some m G N is hit by using E* operations 

over Q , we write the monomial as X if,  where a — ai and /  =  x ^  * -  . By

the formula (4) in Section 2.1, we have the following equations:

'  E}.(xa1 - rf )  =  (« -  r ) x V  +  x r rE}(f)

E ? ( x r 2rf )  =  ( °  ~2 2 T) x U  +  (a -  2 r ) ® T ^ ( / )  +  ^ ~ 2rE 2 (f)

< E i{x \- irf )  =  ~ %ry i f + ( “r ^ ) s r r-Ei ( f )

+  . . .  +  (a — ir)xi~^~l>)1 E*rl (f)  +  xl~lTEl ( f )

<

Eq{ 1)

If the degree of /  is less than i, then E*(f) =  0 for all t  > i. Hence every 

entry in the ith  column for al l t  > i is 0  in the coefficient matrix of the equation 

system Eq( 1). We denote by (a) the determinant of the leading i x i submatrix 

of the coefficient matrix of the equation system Eq( 1), where r indicates we use 

Ef  operations. We have:

0

0  

1

a — ir

a — r 1 0
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Proposition 3.7

a  r r  \  i a  +  z — 1 \  / a  -f- i  — 1

a — ri ( a i  — l \  a — r i f a  + i — 1 

i — 1

Proof: We expand A 1(a) by the last row to get:

Ai(“) =  ( a - ^ ) Ai-i(«) -  ( 0  2 *r ) A<-2(°)

+ . . . + ( _ i  r 2 ( a. : ; r ) Au a ) + ( - i )‘- i ( a 7 r ) .  do)

It is convenient to define Ag(a) =  1 which satisfies the formula

We argue by induction on i. Suppose up to i — 1 the formula holds. We 

rewrite (1 0 ) as follows:

E ( - D ( ( a 7 r ) A U « )  =  o.
t= 0  '  '

If for i the formula A£ (a) =  holds, then we

have:

We now show that the equation (1 1 ) holds. The left hand side of (1 1 ) is the 

coefficient of x l in the product of polynomials:



where s = i — t. This agrees with the expansion of the product of power series:

(1 — x)a~‘ir > (I — x)~a = (1 — x)~'ir up to the term xl. The coefficient of x 1 is 
/(r  +  1); - 1 j  in (1 _  a)_jr_ Hence

The right hand side of (1 1 ) is the coefficient of x% in the product of polynomials:

D - i ) ‘ 7  k T ,  •t o V  4 /  « - t - l

7 ry-£(ats>’
t= 0  '  '  s= 0  ^ '

where s — i — t — 1 . This agrees with the expansion of product of power series: 

r ( l  — x)a~%r • a;(l — a; ) - a - 1  =  rx( 1 — a; ) -77* "1 up to the term of x %. The coefficient 

of x 1" 1 in r ( l  — a; ) -M ‘- 1  is r ^  ^  ^ . This is the coefficient of x 1 in the

expansion of ra;(l — a;)""2,7" '1. But

i(r +  1 ) — 1 \  _  ir fi{r  +  1 ) — 1 \  _  / i(r + 1 ) — 1

i — 1 J ~ 7 v  i -  1 /  V i

since

ir f  i(r +  1 ) — 1 \  ir (i(r +  1 ) — 1 ) • • • (ir +  1 ) f i ( r  + 1 ) — 1

i — 1 J i (i — 1 )!

Hence the equation (11) holds for i. This is equivalent to say that the formula 

Af(a) =  ^ — 1 h°lds for L By the induction hypothesis,

the formula holds for all n 6  N. Finally

a + i — l \  ( a i  — 1 \  ,a . fa -\- i  — X\ a — r i f a  + i — 1

M , ■, =  (t  - r )i } \  i ~  1  J i V i — 1 / i \  i — 1

and

a +  z — 1 \  + i v / a  +  i — a — r i f a  + i — 1

i /  \  1 /  Ta {  i )  a \  i f

□
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C oro llary  3.8 A monomial x^fx ^ 2 ■ • -x% 1 is hit under the action ofT> over Q, 

if some > 1 4 - aj.

Proof: Let k = 1 4- a3- and let f  = x ^ 1 ■ ■ • ’ ' ' xnl> then

E*(f)  =  0. Let x ? f ,  x ^ E K f ) ,  . . .  , x ? ~ h + 1  E * " 1 ( /)  be k unknowns. By 

Proposition 3.7, we have

A 1 / \ ~ k f  k — l \A*W = — k _ l  J^O.

since k < a*. Suppose we have the equations shown in Eq(l) with r = I, i = k 

and a = ai. Then because ^  0, we can solve those equations and show

each of the above k unknowns is =  0  (mod hit), especially x ^ f  = 0  (mod hit). □

We have shown that a minimal generating set is finite for the 2  variable case. 

We now generalize this result:

T heorem  3.9 [2 1 ] A minimal generating set of Sn under the action of Dq is 

finite for all n.

Proof: If we can show for some d large enough, every monomial in degrees 

> d in Sn is hit, then a minimal generating set for Sn is finite. We argue by 

induction on n. Suppose up to n — 1 , a minimal generating set of Sn - 1  is finite. 

Let {#!, g2, .. -, gk} be a minimal generating set of Sn~i and let d be the highest 

degree of gj for 1 <  j  < k. Let f  — x ^ 1 . . .  x^S f x“n be a monomial in Sn where
k

deg(f) > 2d +  1 and let g ~  x ^ 1 . . .  x^Si • By the assumption, g = ^  $j{9 j) f°r 

some 5j € T>q. Then

fc /c Aj
/  =  Xan 9  =  Xnl ^ 2 Sj(9j) = ^2(x(Sj){Xnn))9j =  9j (mod hit)>

j=1 j=1 j=l
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where rjXn =  x($j)(xnl) for rj £ Q- Bach term TjX^gj is in the same degree 

as the degree of / .  Since deg(f) > 2 d +  1 , every bj > deg{gf) +  1, so each term 

rjXn gj is hit by Corollary 3.8. Hence /  is hit and hence the minimal generating 

set for Sn is finite. By the induction hypothesis, the minimal generating set for 

Sn is finite for all n. □

L em m a 3.10 [2 1 ] x(-®i)(:r) =  (—l^CkX^ 1 where C& is the k —th Catalan num­

ber.

Proof: We will prove the theorem by induction. We can easily calculate 

x(-Di)(£) =  =  — £2- Assume the result is true for all k < n  — 1 . Since
n

~ x {^ i){ x )  =  i~ l){x) and x W ' I W  =  ( - l ) n_ic„_;:r7l_i+1, we get
i=l

'n — i +  1

1 i~  1 ^

Note that I . j =  0 if i > L^ J *  So we can write the equation as

follows

XE?(x) =  J 2  ( - l ) n _ i+ 1  ( "  J +  X)  cn- iX n+l  =  ( -1  ) ncnx n+1, (12)
*=1 V  ̂ /

by Lemma 3.5. Hence we get the equation x { ^ i ) { x ) ~  (~ l )ncnxn+1. By the 

induction hypothesis, the result holds for all fceN . □

The following two results work over an arbitrary field.

Lem m a 3.11 â 1^ 2 • • • xnl *s dit if ai, a2, . . . ,  an have a common factor k > 1.

Proof: Let d — a± +  a2 +  . . .  +  an. Suppose A: is a common factor of 

cq, a2, . . . ,  an, then
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E% \{xlllhx ? lk . . . x ^ k) = ^ ( x T /k)E^Jk(xt2/k) ■ ■ ■ E^_/k( x ^ k)

□

T heorem  3.12 Let f  be a monomial in K[xi, ^2, • • ■ > £n] where K  is an arbitrary 

field. I f  f  is not hit under the action of V  over K  then xn+i f  is not hit in 

I<[x 1 , x 2, . . .  , x n+i\.

Proof: By Theorem 2.5 and Theorem 2.7, {E±} E% \ k £ N} form a generating 

set of V  under the composition over any field, since a field either contains Fp or 

contains Q. Suppose xn+\ f  is hit, then

i j

where hij are monomials £ K[x i , x2, . . .  , 2^+ 1] and r(i, j) ,  w(i, j )  £ K.  Let

%n + l f  —

gLj  =  x^+i ui,j ancl hij  =  x!^{ Vjj, where uwj, vtj  are monomials in K\x%, xn\.

Then by (4) in Section 2 .1 , we have

s-j-t—i, s > l

Similarly

s-{-t=i, s>  1

Some of a(i,j)  or 6 (z, j)  are equal to 1, since we must get x n+i f  after cancel­

lation in the right hand side of (13). We pick up all the terms with the exponent 

of a;n+i to be 1 and rewrite (13) as follows:

Xn + 1 f  =  Xn+!  ^ 2  ( r ( h j ) E l  (Un )  +  W ( h j ) E 2 ( Vi , j ) )  +

i >  1. 3
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where S  is a sum in which every term has the exponent of x n+\ > 2  and the 

summation takes on allz > 1 and j  where is in
* J

and xn+1 E*2 (vij) is in j )E l(h i}j) in (13),
i j

Since S  has to be cancelled out itself, we get

/  =  +«'(*. i)-®2 (^ j))-
*>1»3

But /  is not hit. So the assumption that ®„+i/ is hit leads to a contradiction.

□

3.3 Som e general resu lts on th e hit problem  over ¥p

Lem m a 3.13 A monomial x*lx %2 .. .x^n is hit under the action o fV p, if n — 1 

exponents are divisible by p and all ai > 1 for 1 < i < n.

Proof: If all exponents of /  — x ^ x 2̂ .. .x^n are divisible by 2?, then /  is hit 

by Lemma 3.11. Suppose a* is not divisible by p, and all a /s  are divisible by 

p for j  ^  i. Since a» > 1, Dai- i ( ^ )  =  %V9  +  ajiL>ai-i(^) =  /  (™ d p) where 

£ =  f / x i \  since A ti-ife) =  0  (mod p). □

L em m a 3.14 A monomial f  =  x ^ x 2 2 . . . x i s  hit over Fp, if the degree of 

f  > np +  1 and n  — 1 exponents of f  are divisible by p with some oj =  1 .

Proof: Suppose a* =  1, and all a f  s are divisible by p for j  ^  i. There exists 

an aj with p\aj and aj > 2p for 1 < j  ^  i < n, since the degree of /  > np H- 1 

and every aj is divisible by p for j  i. Let t = aj — p +  1. Then we have

Dp- i M 1^ 2 . . .  Xi . . .  Xj . . .  x^n) = t f  +  x ^ x ^  . . .  x\  . . .  Xj . . .  a;" 11 (mod p).
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In the second term, all exponents are divisible by p except t. But now t > 1 , 

hence • • • %hn is hit by Lemma 3.13. So t f  is hit and hence /  is

hit too, since t =  1 (mod p). □

The following result is well known in the hit problem of the Steenrod algebra. 

We also give a proof of it.

L em m a 3.15 Let a be a non—negative integer. Suppose there are k 1 }s in the 

binary expansion of a. Then x a ~  D{x2,k~1) (mod 2) where D is a composition 

of some E { ’s for i > 0 .

Proof: If a =  2k — 1 , then D = 1 . Suppose a ^  2 k — 1 for any k > 1 and there 

are k l ’s in the binary expansion of a. Let anan~i . . .  ao be the binary expansion 

of a. We can write a = 2 dl +  2d2 +  . . .  +  2dh) where n ~  d\ > d,2 > . . .  > > 0

and each 2dj corresponds to that — 1. Observe that 2 k — 1 has the same 

number of l ’s in its binary expansion as the binary expansion of a. Starting with 

E \k 1 {x2k~l) =  x 2k+2,k 1 - 1  (mod 2), we can use a sequence of E\ on a;2fc-1 where 

each i is twice of the previous one until i =  di — 1. Then we get

• • ■ E f E f - \ x 2k~1) =  i  ( m o d  2 ) .

Let <$x — E \dl 1 * • • E 2‘k E 2k 1, Then moves the 1st 1 counted from the left of 

the binary expansion of 2 k — 1 to the c^th position. Let 6 2  =  E ^ 2~x • • ■ E 2k~xE fk 2. 

Then 5 2 (x2dl+2k 1_1) =  x 2dl+2d2+2k 2" 1 (mod 2 ) which moves the 2nd 1 counted 

from the left of the binary expansion of 2 k — 1 to the e^th position, . . . ,  finally let 

5k — E 2dk 1 • • • E 2Ei which moves the kth. 1 counted from the left of the binary 

expansion of 2k — 1 to the d*th position. Note that if a is odd, then the last 1 

in the binary expansion of a counted from left will not move. Then E k where k 

is odd is not in any of S f  s mensioned above for all j.  Let D = 5k • • • <525i, then 

xa = D(x2k~x) (mod 2 ). □

43



4 The hit problem  on polynom ial rings of 3 and  

4 variables over Q

In this section, we will give some results on the hit problem over Q. We will find 

a minimal generating set for the action of Dq on polynomial ring of 3  variables 

in Section 4.1 and find a minimal generating set for the action of V q on the 

polynomial ring of 4 variables in Section 4.2 to Section 4.4. The results we 

have got verify Conjecture 1.3 up to n = 4, We set x — rri, y = x 2, z =  x 3, 

t — x 4 . Then £ 4  acts on the set {a;, y , z, t} in the same way as it acts on the set 

{a;i, x2, xs, £4 }.

4.1 T h e h it problem  on a polynom ial ring o f 3 variables 

over Q

T heorem  4.1 A minimal generating set of S 3 under the action of 7)q is 

{xyz, x 2 y z , xy 2 z , x 3 yz, x 2 y 2 z } xBy 2 z}.

Proof: By Theorem 3.6, y z , y2z generate all monomials of S 2 with variables 

?/, z  under the action of Vq. By Theorem 2.9, we have:

x aybzc = x a(5i(yz) +  52 {y2 z)) = {x(^i)(xa))yz +  ix{h ){xa))y2z (mod hit),

for some 5lt 52 € V ^ .  {x($i)){%a) and (x(<y)(£a) are monomials in x  since Si, S2 

are homogeneous elements of V. We get: xaybz° =  r%xkyz  +  r2 x k~1y2z  (mod hit) 

where ri, r2 G Q and k — a +  b +  c — 2 . So it is sufficient to consider whether 

monomials of forms x ayz  and xay2z  are hit or not in each degree.
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By Corollary 3,8, the monomial xayz  is hit if a > 3 and the monomial xay2z 

is hit if a > 4. So all monomials in degrees > 8  are hit.

In degree 7, monomials in the form [511] are hit by Corollary 3.8. We have

E l(x sy 2 z) =  3x 4 y2z  *f 2 x 3 y3z +  x 3 y 2 z2.

By Theorem 2.9,

x 3 y3z = E^(xy)z ~  xy(x{E%)(z)) =  3xyz 5 (mod hit),

since x ( ^ 2 )(z ) — (D2 D 2 — E 2 )(z) = 3z6. Now we have

x 3 y 2 z 2 =  x 3 E 2 (yz) = (x(E 2 )(x3))yz = 9x5yz  (mod hit),

since x C ^ i)^ 3) =  (D1 D 1 — E 2)(x3) =  1 2 a;5 — 3a;5 =  9a;5. Hence x 3 y 3 z , x 3 y 2 z 2  

are hit and hence x^y2z is hit too. So all monomials in degree 7 are hit.

Now we check degrees < 6 . Obviously xyz  is not hit. In degree 4, we have 

only one equation: Di(xyz) ~  x2yz  +  xy2z 4 - xyz 2 with three unknowns x 2 yz, 

xy2z and xyz2. So we need any two generators. We choose x 2yz  and xy 2 z. Recall 

that T>q is generated under the composition by D x, D 2 (Theorem 2.5), so it is 

enough to just check operations Dx and D 2 . In degree 5, we have four equations 

involving D x and D 2 '
/

Dx(x2 yz) =  2 x3yz  +  x 2y2z  +  x 2 yz 2 

D \(xy 2 z) =  x 2 y2z +  2 xy3z +  xy 2 z 2 

Dx(xyz2) = x 2 yz 2 +  xy 2 z 2 -f 2 xyz 3 

I ^ ( x y z )  =  x3yz  +  xy3z +  xyz 3

We rewrite the above equations as follows:

2  x 3yz  +  x 2 y2z +  x 2 yz 2 = 0  

x 2 y2z  +  2  xy3z  +  xy 2 z2 = 0
(mod hit)

x 2 yz 2 +  xy 2 z 2 +  2  xyz 3 =  0  

x 3yz  +  xy3z  +  xyz 3 =  0\

45



The coefficient matrix is as follows:

x3yz xy3z xyz 3 x 2 y2z 9 9x y z xy 2 z 2

2 0 0 1 1 0

0 2 0 1 0 1

0 0 2 0 1 1

1 1 1 0 0 0

The matrix has rank 4. There are 6  unknowns, so we need 2  generators. 

We choose x 3 y z , x 2 y2 z . After checking in the equation system, we see they are 

generating elements in this degree.

Finally in degree 6 , the monomials in the form [222] are hit by Lemma 3.11, 

the monomials in the form [411] are hit by Corollary 3.8. From Example 2.30, 

we know monomials in the form [321] span S p which is the first occurrence 

of this irreducible module in S3 . Hence monomials in the form [321] are not hit 

by Schur’s lemma. We have:

D i(x 3 yz) =  3x Ayz  +  x 3 y2z  +  x 3 yz2 =  x 3y2z +  x 3 yz 2 (mod hit),

D 2 (xy2 z) = 2 xyAz +  x 3y2z  +  xy 2 z 3 =  x 3y2z +  xy 2 z 3 (mod hit).

The first equation gives x 3 y2z =  —(23)x3y2z (mod hit) and the second equa­

tion gives x 3 y2z  =  — (13)a;3y2̂  (mod hit) for (13), (23) e S3. Since (13), (23) 

generate S 3, any monomial 7rx 3 y2z  for 7r e S 3 is congruent to (mod hit) x 3 y2z  up 

to sign. Hence x 3 y2z generate all monomials in the form [321]. So the minimal 

generating set of S 3 under the action of Vq  is:

{xyz, x 2 yz, xy 2 z, x 3 yz, x 2 y 2 z, x 3 y 2 z}.

□
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4.2 T he h it problem  on a polynom ial ring o f 4 variables 

over Q

In this section, we will prove the following theorem:

T heorem  4.2 A minimal generating set of S4 under the action of is 

{x%y^zkt | 1 < i < 4, 1 < j  < 3, 1 <  & < 2 }.

By the result of Theorem 4.1 and a similar argument as we used in the proof 

of Theorem 4.1, for an arbitrary monomial in S4 , we have

xaybz°td =  r\Xkyzt +  r2 xk~1 y2zt  +  r^xk~1yz2t +  r4 Xk~2 y3zt

+rsxk~2y2z2t + rQXk~~zyzz2t (mod hit),

where r* € Q and h = a + b + c + d ~  3. Hence we only need to check monomials 

of the forms: [a lll], [a2 1 1 ], [a221], [a.311], [o321].

Lem m a 4.3

xi*yjazatb =  na;y rf6+(i+j+l)(«-l) (morf hit^

xayazbt° =  ryxyF (mod hit),

where a, b, c, k 6  N, ri, r2 G Q and F  is a polynomial in the variables z and t.

Proof: By Theorem 2.9, we get:

xiay’azatb =  B f ^ l (xiyiz)tb =  -s(x( ) (*6))

=  r1xiyjztb+(-i+j+1'l(-a- 1'1 (mod hit), 

x “y“zbr  = ( E l ^ x y ^ F  =  (mod hit),

where is a polynomial in z and t. □
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4.3 M onom ials in degrees >  11

P ro p o sitio n  4.4 Every monomial of S4 in degrees > 1 1  is hit under the action 

o fV Q.

Proof: By Corollary 3.8, monomials in the form [n lll] are hit if a > 4, 

monomials in the form [a211] are hit if a > 5, monomials of the forms [a311] and 

[a2 2 1 ] are hit if a > 6  and monomials in the form [a321] are hit if o > 7. So all 

monomials in degrees > 1 3  are hit.

(1) Degree 13:

In degree 13, there are monomials of the following forms: [10,111], [9211], 

[8311], [8221], [7411], [7321], [7222], [6511], [6421], [6331], [6322], [5521]], [5431], 

[5422], [5332], [4441], [4432], [4333].

Monomials in the forms [10,111], [9211], [8311], [8221] are hit by Corollary 

3.8. By Lemma 4.3, we get:

x 7 y2 z2 t 2 =  r ix10yzt  (mod hit), x 4 y3 z 3 t3 = r2 Xl0yzt  (mod hit), 

x 4 y 4 z4t = r^xyzt10 (mod hit), x 6 y3 z3t =  r^x2 yzt9 (mod hit), 

x 6 y 3 z 2 t 2 = r$x3 y8zt (mod hit), x 5 y 4 z 2 t2 = r§x9 y2zt (mod hit), 

x 4 y 4 z3 t 2 = r^x2 y 2 z8t (mod hit), x 7 y4zt = r^xy8 z 2 t 2 (mod hit), 

for Ti E Q.

Hence monomials in the forms [7222], [4333], [4441], [6331], [6322], [5422], 

[4432] and [7411] are hit as well.

We need to show monomials in the forms [7321], [6511], [6421], [5521], [5431], 

[5332] are hit. Let q be the zth Catalan number. By Theorem 2.9 and Lemma
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3.10, we have

c±xGybzt =  (x(EA)(y))xQzt = y E A(xGzt) (mod hit)

= ( 4 )  xl°yzt +  x 9 y(z2t +  zt2) +  x 8 yz 2 t2.

The 3 terms are hit so xGy5zt is hit. Hence all monomials which have two ex­

ponents 1 are hit. By Lemma 4.3, we get that all monomials with two equal 

exponents are hit. By Theorem 2.9 and Lemma 3.10,

—c^xGyAz2t =  (x(E\)(x))yAz2t  =  xE f(yAz 2 t) ~  8 xy 7z 8 t2 +  6 xyGzAt 2 (mod hit),

CQxy7 zst2 =  (x(EG)(y))xz3 t2 =  y E G(xz8 t2) — x 2 yzGtA (mod hit), (14) 

we get

—c§c§xGyAz2t =  8 x 2 yzGtA +  6 cQxyGzAt2 (mod hit). (15)

Since a monomial with two equal exponents is hit, we get:

D^(x2 yz 2 tA) = 2xGyz2 tA +  2x 2 yzGtA (mod hit),

D$(xGyz 2 t) =  xGyAz2t  -f xGyz 2 tA (mod hit).

Hence

x 2 yzGtA =  —xGyz 2 t ‘4 =  xGyAz2t (mod hit). (16)

Also

Ds(xyzH2) ~  x GyzAt2 +  xyGzAt 2 (mod hit),

D$(xGyzt2) = xGyAzt2 +  x GyzAt2 (mod hit),

D i(x 6 y4 zt) =  xGyAzt2 + xGyAz2t (mod hit).

Hence

xyGzAt 2 = —xGyzAt 2 ~  xGyAzt2 = —xGyAz2t (mod hit). (17)
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By (15), (16), (17) and Example 3.4, we get

(C5C6 — 6 ce 4- 8 )x6 y4 z2t = 4760xGyAz2t =  0 (mod hit).

So x 6 yAz2t is hit. By (14), monomials in the form [7321] are hit as well.

Finally by Theorem 2.9, we get:

2x 5yAz3t =  (D2 (y2 ))x5 z st  =  y2 (x(D 2 )(x5 z 3 t)) (mod hit)

~  —y2 D 2 (x6 z 3 t) =  —5 x 7 y 2z 3t — 3 x 5 y 2 z5t — x 5y 2 z 3 t3.

The last three monomials in the above equation are hit by the previous argu­

ment, so x 5 yAz3t is hit. Hence every monomial in degree 13 is hit.

(2) Degree 12:

In degree 1 2 , there are monomials in the following forms: [9111], [8211], [7311], 

[7221], [6411], [6321], [6222], [5511], [5421], [5331], [5322], [4431], [4422], [4332], 

[3333]. Monomials in the forms [9111], [8211], [7311], [7221] are hit by Corollary

3.8 and monomials in the forms [6222], [4422], [3333] are hit by Lemma 3.11.

—c5 xQyAzt — (x(Ef)(x))yAzt = xE \(yAzt) =  xys(z2t  +  z t2) +  4xy 7 z 2 t2 (mod hit),

the last three monomials in the above equation are hit so xGyAzt  is hit. Hence 

monomials in the form [6411] are hit.

By Theorem 2.9 and Lemma 3.10,

CiX5 y6zt =  (x(EA)(x))y5zt =  x E A(y5 zt) (mod hit)

= 5xy9zt +  1 0  xy 8 (z2t + zt2) +  1 0  xy 7 (z2 t2),

the last three monomials in the above equation are hit so x 5 y5zt is hit. Hence 

monomials in the form [5511] are hit. Hence all monomials which have two
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exponents 1 are hit. By Lemma 4,3, monomials with two equal exponents are 

hit as well So monomials in the forms [5331], [5322], [4431], [4332] are hit. 

Hence

D i(xy 5 z 3 t2) = 5xy 6 z 3 t 2 +  3xy 5 z 4 t 2 (mod hit), (18)

—c5 x 6 y3 z2t — ((x(Ei))(x))y 3 z2t = xE \(y 3 z 2 t) = 2xy 6 z 3 t 2 +  3xy 5 zAt 2 (mod hit),

we get by subtraction c^xGy3 z2t = Sxy6 z 3 t 2 (mod hit).

Note that in the above equation, the monomial in the right hand side is the 

monomial of the left hand side with all exponents shifted cyclically one position 

to the right. By symmetry, c5 xyGz 3 t2 =  3x2 yzGt3 (mod hit). Hence

c52x Gy3z2t — 3c5xyGz3t2 = 9x2yzGt3 (mod hit).

For the same reason, we get: c5 2x 2 yz 6 t 3 =  9x 6 y 3 z 2 t. Hence

(c54 — 81 )xGy3z2t = 0  (mod hit).

Since c& =  42, the coefficient of xGy 3 z2t is obviously not 0, x 6 y 3 z 2t  is hit. From 

(18) xyGzH 2 is hit. Hence all monomials in degree 12 are hit.

(3) Degree 11:

In degree 11, there are monomials in the following forms: [8111], [7211], [6311], 

[6221], [5411], [5321], [5222], [4421], [4331], [4322], [3332]. Monomials in the forms

[8111], [7211] are hit by Corollary 3.8. By Lemma 4.3, we get

x5y2z2t2 — r\X3yzt (mod hit) x3y3z3t2 = r2xyzt7 (mod hit)

for some rq, r 2 € Q. So monomials in the forms [5222], [3332] are hit as well .

Hence by Theorem 2.9 and Lemma 3.10, we have:
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—c5x 6 y3zt — (x(El)(x))y3zt  =  xE f(y 3 zt) ~  xyGz 2 t 2 = xy 6 E 2 (zt)

=  (x(E \)(xyG))zt =  ((DiDi — Ef)(xy6))zt =  2x 3 yGzt (mod hit), (19)

since the other terms in ((DiDi — E 2 )(xy6))zt are x 2 y7zt  and xy&zt  which are 

hit.

Note that in the above equation, the monomial of the right hand side is the 

monomial of the left hand side with exponents 6  and 3 interchanged. By repeating 

the procedure once more on x 3 y 6 zt, we get:

(c§ — 4)xQy3zt = 17Q0x6y3zt =  0 (mod hit).

Hence x 6 y3zt is hit and hence monomials in the form [6311] are hit. By (19), 

monomials in the form of [6221] are hit too. By Theorem 2.9 and Lemma 3.10,

c ^ y ^ z t  =  (x(E*)(x))y4zt ~  xE$(y*zt)

= xy8zt +  Axy7 (z2t +  zt2) +  6 xy 6 z 2 t 2 = 0 (mod hit),

the last four terms are hit so x 5 y4z  is hit. Hence monomials in the form [5411] 

are hit. Since all monomials in this degree which have two exponents 1  are hit, by 

Lemma 4.3, monomials in the forms [4421], [4331], [4322] are hit as well. Hence

D i(x 4 y 3 z 2 t) =  4x 5 y 3 z2t +  3xAyAz2t +  2xi y 3 z3t +  x Ay 3 z 2 t 2 ~  4x 5 y 3 z2t (mod hit).

Now we have shown every monomial whose total degree >  11 is hit. □

4.4  M onom ials in degrees <  10

Let # 4  be the set of hit elements and let C4 =  S 4 /H 4 be the cokernel. By the 

discussion of section 1 , the set of representatives of a basis of C4 is a minimal
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generating set of £ 4  as an V q —module. Suppose, for i 6  N, {/<} is a finite set of 

monomials which span a Q—subspace F  of S4 . If the set of fi and hit elements 

span 5 *4 , i.e. F  +  # 4  — S4,  then F/ ( F  n  Hf) & C4 . Then {f i} contains a set 

of representatives of a basis of C4 . Hence {fi  +  H}  is a Q—spanning set of C4 . 

Equivalently we may also say {/$} (mod hit) is a Q—spanning set of C4 . We 

grade the cokernel C4 — C$ by Cf = { f  + H  e  C±\ deg(f) = d }.

Proof of Theorem 4.2:

Now we consider monomials in degrees <10.

(1) Degree 4 and degree 5:

In degree 4, xyzt  is obviously not hit. In degree 5, there is only one equation 

Di(xyzt) — x2yzt -f xy2zt +  xyz2t +  xyzt 2 with 4 unknowns x 2 y z t: xy 2 z t , xyz2t 

and xyz t 2 . Hence we need three generators. We choose x2y z t , xy2z t , xyzH.

(2) Degree 6 :

In degree 6 , there are monomials in the forms [3111] and [2211]. By Appendix 

A and Appendix B, monomials in the form [2211] span M^22K In M^22\  a sub- 

module S p W  which is two dimensional is the first occurrence of Sp(22̂ in S4 . 

Hence the submodule is not hit by Schur’s lemma. So monomials in the

form [2 2 1 1 ] are not hit. There is only one Sp(31) in the degrees lower than 6  and 

there are two Ap(31) \s in degree 6 , so one copy of S p ^  which is three dimen­

sional is not hit. Hence C4 is at least five dimensional. We choose the following 

5 monomials:

x 3 yz t , xy 3 z t , x 2 y 2z t , x 2 yz 2 t , xy 2 z2t 

and we will show that they are the representatives of a basis of Cf. Consider the
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Q—subspace N  of Sf spanned by the above 5 monomials and the hit elements 

in £4 . We will show that the subspace is equal to £ |.  Hence the 5 monomials 

(mod hit) span Cf. Since Cf has dimension > 5, the 5 monomials (mod hit) form 

a basis of Cf. We have:

D 1(x2yz t) =  2x3yzt  +  x 2y2zt +  x2yz2t +  z 2y;rf2 =  x2yzt2 (mod N)  (20)

D i(xy2zt) = x2y2zt +  2xy3zt +  xy2z2t +  xy2zt2 = xy2z t2 (mod N).

We have now accounted for 5 monomials in the form [2211], We can have the 

remaining one by

E\(xyzt)  =  x2y2zt -f- x 2yz2t +  x2yzt2 +  xy2z2t  +  xy2z t2 +  xyz2t2.

Hence monomials in the form [2 2 1 1 ] are hit (mod N). Also monomials in the 

form [3111] are hit (mod N)  as well by (20) and its permutations.

(3) Degree 7:

In degree 7, there are monomials in the following forms [4111], [3211], [2221]. 

Prom Appendix A and Appendix B, the three dimensional Sp(211̂  in M^211̂ which 

is spanned by monomials in the form [3211] is the first occurrence in £ 4 . Hence 

monomials in the form [3211] are not hit.

Since D\ and H2 form a generating set of V q (Theorem 2.5), if an irreducible 

D4—module is hit in Sj, then it has a preimage in degree 5 or degree 6. By 

Appendix B, there are four copies of £p(31) in and there are three copies of 

S p ^  in £f and £f. Hence at least one copy of £p(31) is not hit. So C\ is at least 

6 -dimensional. We choose the following 6 monomials:

x^yzt, x sy2z t , xzyz2t , x2y3zt, xysz2t } x 2y2z2t
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as the generating set. We will show that the Q— subspace TV of S i  spanned by 

the above 6  monomials and the hit elements in 5 | is equal to S\. Hence the 6  

monomials (mod hit) span Cj so they form a minimal generating set. By Theorem

2.9 and Lemma 3.10,

xy2z2t2 =  x E 3(yzt) =  (x(E\)(x))yzt — —c ^ y z t  =  0 (mod TV), (2 1 )

D i(x2y2zt) = 2x3y2zt +  2x2y3zt -f x 2y2z2t T  x2y2zt2 =  x 2y2zt2 (mod TV), (22) 

E\(xyzt)  =  x2y2z2t +  x2y2zt2 +  x2yz2t2 +  xy2z2t2.

We get that monomials in the form [2221] are hit (mod TV), so monomials in 

the form [4111] are hit (mod N ) by (21) and symmetry. By applying suitable 

permutations on (2 2 ) and since monomials in the form [2221] are hit (mod N), we 

get that every monomial in the form [3211] is congruent (mod N)  to a monomial of 

the same form with opposite sign by interchanging exponents 2 and 3. Hence we 

only need to consider the following 6  monomials: x 3y2z t , x3yz2t, x syz t2, xy3z2t, 

xy3zt2} xyz3t2, after taking modulo N. Because x 3y2z t , x3yz2t, xy3z2t  are in N, 

the problem is reduced to x3yzt2, xy3zt2 and xyz3t2 (mod N). By

D i(xy3zt) = x 2y3zt +  3xyAzt +  xy3z2t +  xy3zt2 =  xy3z t2 (mod N ),

D i(x3yzt) =  3xAyzt +  xsy2zt +  x3yz2t +  x 3yzt2 =  x3yzt2 (mod TV),

D ^ x y z t2) = x 3yzt2 +  xy3zt2 -f xyz3t2 +  2xyztA = xyz3t2 (mod N).

We get that monomials in the form [3211] are hit (mod TV). So TV — Si-

(4) Degree 8 :

In degree 8 , there are monomials in the following forms: [5111], [4211], [3311], 

[3221], [2222]. Monomials in the form [2222] are hit by Lemma 3.11. Monomials 

in the form [5111] are hit by Corollary 3.8. By Appendix B, there are two copies
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of Sp(211̂ in 5f and there is only one copy of S ^ 211) in lower degrees, there are 

three copies of S p ^  in Sf  and there are only two copies of S p ^  in lower degrees. 

So there are one copy of S p ^  and one copy of Sp^211̂ in which are not hit, 

and hence (7f is at least 5 dimensional.

We have the following equations involving monomials in the form [4211]:

Ds{xy2zt) =  x4y2zt +  xy2zAt +  xy2zt4 

Ds(xyz2t) ~  x4yz2t +  xy4z2t +  xyz2t4 

Dz{xyzt2) =  x4yzt2 +  xy4zt2 +  xyzH2 

D%{x2yzt) =  x 2y4zt  +  x2yz4t +  x2yz t4 

D i(x4yzt) =  x4y2zt +  x4yz2t -f x4yzt2 

D i(xy4zt) =  x 2y4zt +  xy4z2t +  xy4zt2 

D i(xyz4t) =  x 2yz4t -f xy2z4t +  xyz4t2 

D \(xyzt4) = x 2yzt4 +  xy2zt4 +  xyz2t4

{mod hit)

The coefficient matrix of the above equations is:

( 4211 4121 4112 2411 1421 1412 2141 1241 1142 2114 1214 1124 \

Mi

Mi has rank 7. We will show the subspace N  spanned by the following 5 

monomials: x4y2z t , x4yz2t : x syszt, x3y2z2t , x2y^z2t and the hit elements in is
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o

equal to S$. By Theorem 2.9, Lemma 3.10 and by writing C3 =  5,

—5 x 2yzt4 =  (x(Ef)(t))x2yz = (Ef(x2yz))t = x4y2zt  +  x 4yz2t +  2  x 3y2z2t

=  —x4yzt2 +  2 x3y2z2t (mod hit) , 

since D i(x4yzt) =  x4y2zt 4 - x4yz2t +  x4yzt2 (mod hit). Hence we get:

2x zy2z2t =  x4yzt2 — bx2yzt4 (mod hit). (23)

By interchanging x and y , we get

2x 2ysz2t = xy4z t2 — 5xy2zt4 (mod hit). (24)

By interchanging y and t, we get

2x 3yz2t2 — x4y2zt +  5x 2y4zt =  0 (mod hit). (25)

By symmetry every monomial in the form [3221] is congruent (mod hit) to a

linear combination of two monomials in the form [4211].

By Theorem 2.9, Lemma 3.10 and by writing c% =  2,

2 x 3y3zt = (x{El)(y))x3zt =  E \(x3zt)y =  3 (a;4y2 2t+ a ;4?/^2) +  rc3?/£2t2 (mod hit),

we get:

2 x sy3zt + 3x4y2zt — x3yz2t2 =  0  (mod hit). (26)

By (25)+2(26), we get:

4 T37/3£i =  — 5 a;4y2 2 £ — 5x 2y4zt (mod hit), (27)

By symmetry every monomial in the form [3311] is congruent (mod hit) to a

linear combination of two monomials in the form [4211].

57



Now we add 5 rows to Mi corresponding to coefficients of monomials in the 

form [4211] in the following equations:

xAy2zt =  0 (mod TV), xAyz2t =  0 (mod TV), (23) =  0 (mod TV),

(24) =  0 (mod TV), (27) =  0 (mod TV).

We get the following matrix:

( 4211 4121 4112 2411 1421 1412 2141 1241 1142 2114 1214 1124 \

1 0 0 0 0 0 0 1 0 0 1 0

0 1 0 0 1 0 0 0 0 0 0 1

0 0 1 0 0 1 0 0 1 0 0 0

0 0 0 1 0 0 1 0 0 1 0 0

1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 - 5 0 0

0 0 0 0 0 1 0 0 0 0 - 5 0

5 0 0 - 5 0 0 0 0 0 0 0 0 /

M2

M2 has rank 1 2 , hence every monomial in the form [4211] is hit (mod TV). 

By the above discussion, the monomials in the forms [3311] and [3221] are hit 

(mod TV) as well. So x i y2zt, xAyz2t , x3y3zt, x3y2z2t, x 2y3z2t span (mod hit) S®.

(5) Degree 9:

In degree 9, there are monomials of the following forms: [6111], [5211], [4311], 

[4221], [3321], [3222]. x Qyzt  is hit by Corollary 3.8. x 3y2z2t2 =  rx6yzt (mod hit) 

by Lemma 4.3 for some r  £ Q. Hence monomials in the form [3222] are hit as 

well. By Appendix B, there are four copies of Sp(211̂ in Sf and there are only
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three Sp^21l^s in degree 7 and degree 8 . Hence one 5p(211) is not hit. Since

is 3 dimensional, Cf  is at least 3 dimensional. We have the following equations

involving monomials of the form [5211]:

D \(xbyzt) =  x 5y2zt +  x byz2t +  x5yzt2 

D i(xy5zt) = x 2y5zt +  xybz2t +  xy5z t2 

DiixyzH) = x 2yzbt +  xy2z5t +  xyzH2 

D i(xyzt5) =  x 2yzt5 +  xy2z tB +  xyz2t5 

D±(x2yzt) =  x 2y5zt +  x 2yz5t +  x2yzt5 

D±(xy2zt) =  x 5y2zt  +  xy2z5t 4 - xy2zt5 

D$(xyz2t) =  x 5yz2t +  xy5z2t +  xyz2t5 

D^{xyzt2) =  x 5yzt2 +  xy5z t2 +  xyzH2

(mod hit) Eq( 2 )

By Theorem 2.9, Lemma 3.10 and by writing C4 =  14,

14rr2?/2d5 =  a ^ ^ x ^ iJ O O )  =  ^ i(® 22/^) — xAy2z2t  (mod hit),

we get

xAy2z2t =  14z2?/2d5 (mod hit).

By applying suitable permutations on (28), we get

x 2y2zAt =  14a;?/£2i5 (mod hii), 

x 2y2ztA =  14:c7/£5£2 (mod hii), 

x2yAz2t = 14xy2zt5 (mod hit), 

x2yz2tA =  14xy5zt2 (mod hit),

(28)

(29)

(30)

(31)

(32)

we also get that an?/ monomial in the form [4221] is congruent (mod hit) to a 

monomial in the form [5211]. We add two more equations:

Ds(x2y2zt) = 2 x5y2zt +  2 x2y5zt +  x2y2zAt  +  x2y2ztA, (33)
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D3(x2yz2t) — 2x5yz2t 4- x 2y4z2t 4 - 2 x2yz5t  4 - x2yz2tA, (34)

Putting (29) to (32) into (33) and (34) we get:

2x5y2zt +  2x2y5zt  4- XAxyzH5 +  14on/£5£2 =  0 (mod hit), (35)

2x6yz2t +  14x?/2̂ 5 4- 2x2yzH  4- 14a;?/5̂ t2 =  0 (mod hit). (36)

Together with the equations of £#(2), we get the following coefficient matrix:

/  5211 5121 5112 2511 1521 1512 2151 1251 1152 2115 1215 1125 \

0 

1 

0 

0 

0 

0 

0 

1 

7 

0 }
Mz

M 3 has rank 9. Let N  be a subspace spanned by x Ay3zt, xAy2z2t, x3y3z2t  and 

the hit elements in 5 |. We will show N  — Sf.

By Theorem 2.9, Lemma 3.10 and by writing C3 =  5,

—bxAy3zt  =  (x(E \)(x))y3 zt =  xE^(y3zt) =  3xy5z2t+Zxyhzt2+3xy4z2t2 (mod hit),

D i(xy5zt) = xy5z2t  4 - xy5z t2 4 - x2y5zt (mod hit) 

and by applying a suitable permutation to (28), we get:

5xAy3zt =  3x2y5zt — 42x5y2zt (mod hit). (37)

Hence, by symmetry, every monomial in the form [4311] is a linear combina­

tion of two monomials in the form [5211]. By Theorem 2.9,
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x3y3z2t =  (El(xy))z2t = xy(x(E f)(z2t))

=  xy(D2D2 — E%)(z2t) =  xy(2zH3 +  3£2£5) (mod hzifc),

we get

x3y3z2t — 2;q /24£3 -  3xyzH5 = 0  (mod hit). (38)

By applying a suitable permutation on (37), we get

5xyzH3 =  3xyz2t5 — 42xyzH2 (mod hit). (3 9 )

By putting 5 (38) +  2(39), we get

5x3y3z2t  =  21xyz2t3 — 84xyz^t2 (mod hit). (40)

Hence every monomial in the form [3321] is congruent (mod hit) to a linear 

combination of two monomials in the form [5211]. Now we add 3 rows corre­

sponding to the coefficients of monomials in the form [5211] in the right hand 

sides of equations (28), (37) and (40) to M3 and get a 12 x 12 matrix as follows:

5211 5121 5112 2511 1521 1512 2151 1251 1152 2115 1215 1125 ^

1 0 0 0 0 0 0 1 0 0 1 0

0 1 0 0 1 0 0 0 0 0 0 1

0 0 1 0 0 1 0 0 1 0 0 0

0 0 0 1 0 0 1 0 0 1 0 0

1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1

1 0 0 1 0 0 0 0 7 0 0 7

0 1 0 0 0 7 1 0 0 0 7 0

0 0 0 0 0 0 0 0 0 14 0 0

- 4 2 0 0 3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 -8 4 0 0 to J—
1

Ma
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M± has rank 12. Hence x 4y3zt, x i y2z2t and x3y3z2t span (mod hit) monomials 

in the form [5211] and hence span (mod hit) Sf.

(6 ) Degree 10

In degree 10, there are monomials in the following forms: [7111], [6211], [5311], 

[5221], [4411], [4321], [4222], [3331], [3322]. Monomials in forms [7111] and [6211] 

are hit by Corollary 3.8. x4y2z2t2 is hit by Lemma 3.11. Also by Lemma 4.3, 

x 3y3z3t =  rxyzt7 (mod hit) for some r £ Q, hence monomials in the forms [4222] 

and [3331] are hit as well. By Appendix B, S p ^  is the first occurrence in *$4 , so 

monomials in the form [4321] are not hit. By Theorem 2.9, Lemma 3.10 and by 

writing C4 =  14,

14x5y3zt ~  (x(E4(x))y3zt =  x E 4(y3zt) ~  3xy6z2t2 (mod hit) (41) 

xybz2t2 — xy5Ef(zt)  =  x{E\){xy5)zt =  2x3y5zt (mod hit),

we get

14x5y3zt =  6x5y5zt (mod hit).

Repeating the procedure once more to x 3y5zt  in the above equation, we get 

160x5y3zt =  0 (mod hit). Hence monomials in the form [5311] are hit, and mono­

mials in the form [5221] are hit as well by (41). Also by writing C3 =  5,

—hxi y4zt = (x{El)(x))y4zt = xE\{yAzt) =  4xy5z2t2 =  0 (mod hit),

so monomials in the form [4411] are hit. Since every monomial with two exponents 

1 is hit, by Lemma 4.3, monomials in the form [3322] are hit as well. We will 

show that x4y3z2t is a generator of S']0. Let (12), (13), (14) be elements in XJ4. 

From

Di(x3y^z2t) ~  3x4y3z2t-\- 3x3y4z2t (mod hit),
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D2{x2y3z2t) ~  2x4y3z2t +  2 x2y3z4t {mod hit),

D${xy3z2t) =  x4y3z2t -f xy3z2t4 (mod /lit),

we get:

x4y3z2t = — {12)x4y3 z2t (mod hit), 

x4y3z2t =  — (13)a;4y3£2£ (mod /wi), 

x4y3z2t = ~(14)x4y3z2t (mod hit).

As (1 2 ), (13), (14) generate S 4, for any 7r € XU,

x4y3z2t  =  sign{,K)x4y3z2t {mod hit).

Hence x^y3z2t generates all monomials in the form [4321] under the action of 

V q s o  it generates S']0. Putting the above results together, we have proved the 

theorem 4.2. □
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5 The hit problem  on polynom ial rings o f 2 and  

3 variables over F2

In this section, we will give the minimal generating sets under the action of V 2 

on polynomial rings of 2  and 3 variables over F2. The results we have got show 

that a generating set under the action of V 2 on F2 [a:i, rc2}. . . ,  x n] is an infinite set 

for all n > 2. We have proved some general results for the n  variable case, for 

example: a monomial of any number of variables with 2  odd exponents is not hit 

if it is in degree 2 m for m  e N. In Section 5 and Section 6 , when we write 2 m, 

if we do not specify m, then m  £ N. When we write an integer k into its binary 

expansion, k =  knkn_ i . . .  k0: we call ko the Oth digit of the binary expansion of 

ki the 1 st digit of the binary expansion of k and so on. Let p be any prime 

number. In the remaining sections, if we work over Fp, when we write “mod hit” 

we mean “mod p” as well.

5.1 T he h it problem  on a polynom ial ring o f 2 variables 

over F2 o

P ro p o sitio n  5.1 Over ¥2 , xayb is hit if any o/a, b is divisible by 2  and a + 6  > 3. 

Proof: By Lemma 3.13 and Lemma 3.14. □

P ro p o sitio n  5.2 In degree 2m with m  £ N, a monomial xayh is not hit under 

the action ofT>2 if a, b are odd.
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Proof: Let N  be the number of monomials which have two odd exponents in

the equation E^(xuyv) =  ^  (  ) ( V\ x u+riyv+rj, where u +  v +  rk = 2m and
i+j=k w  W

r =  1, 2 . Then

* s £ (“+ri) (3  G )=yjv+rj) (“) G ) (mod 2)-
This is because u +  ri and v +  r j  are either both even or both odd. Hence 

all terms with even exponents will be cancelled out by the coefficient u H- ri or 

v +  rj. By Lemma 3.3, N  = 0 (mod 2).

Recall that {E fh, E$k \ k =  0 or k £ N} is a generating set of X>2 (Theorem 

2.7). Suppose an arbitrary monomial /  in degree 2 m is hit under the action of 

V 2. Then we can write

/ = E  E  E? ( fa )+E  E  E? (»j) (mod 2) >
i> 0  j  i> 0  j

where f i j ,  g^j G W2[x,y]xy. Then the number of non-zero terms with 2 odd 

exponents in /  must be even, since each E f  (fij)  or E f  (gij) in the right hand side 

of the above equation has an even number of non-zero terms with odd exponents 

in it.

Hence if dxayb with a, b odd is hit under the action of V 2, then d =  0  (mod 2 ).

Hence x ayb is not hit in degree 2m. □

P ro p o sitio n  5.3 In degree 2m, a monomial x ^ x ^ 2 .. -%nn> with at least two ex­

ponents odd, is not hit under the action o fV 2.

Proof: Suppose a,j is not divisible by 2. We take an operator n <G Tn which 

maps Xi to Xi and maps the other variables to Xj where j  ^  i (Section 1). Then 

7r commutes with the action of X>2. Suppose x ^ x 22 . . .  x®n is hit over F2, then we 

have

y Z  W t )  =  %TA2 • ■ • < n (mod 2) (42)
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where each f t is a monomial in F2[a?i}a;2, . . .  ,* J  and each St € T>£. Then we 

apply 7r to the left hand side of (42) and get

t  t  t

where each gt is a monomial in F2 [a;*, Xj]. We apply 7r to the right hand side of (42) 

and get ^ ( x ^ x ^ 2 . ■. x^n) = x ^ x 2m~ai. Hence we get $t(gt) (mod 2).
t

But x ^ x 2™-1* is not hit under the action of V 2, since it is in degree 2m and a* is 

odd. So the assumption that • • • Xn11 ^  leads to a contradiction. □

T heorem  5.4 {1, x , y, x 2y, a;2™-1?/ \ m  E N} is a minimal generating set of 

F2 [:e,?/] under the action o fV 2.

Proof: Since we know the 1 variable case, we only need to find a minimal 

generating set for W2[x,y]xy. Suppose b > 1, then D i-i(xay) — x ayb +  a x ^ ^ y .  

So we get xayb = axa+h~xy (mod hit). Hence {xay \ a G H} is a generating set of 

F2 [a;, y]xy over F2.

In degree 3, there is only one equation Di(xy) — x 2y-\-xy2 with two unknowns 

x 2y, xy2. So we need x2y in the generating set. Obviously xy  is not hit. Let 

a > 2. By Proposition 5.2, xay is not hit in degree 2m. By Proposition 5.1, a 

monomial x ay is hit if a is even where a > 2. Hence we only need to consider 

monomials in the form [al] where 2 f a  and a 7  ̂ 2 m — 1 . We write the binary 

expansion of a as anan- i . . .  ao with an 7  ̂ 0. As a +  1 7  ̂ 2 m, some ai 7  ̂ 1 for 

1 5: i < n - Let ai, for 1 <  7 < n — 1, be the first digit of the binary expansion of 

a which is equal to 0  counted from right. As i > 0, we have

E ? (x a~2'y) =  ^  2 . 2  ^jxay +  Q . ^ ^ j x ^ y 2.

Since =  0, the ith digit of the binary expansion of (a — 2%) is 1 , we have 
a ~  2 *\

{ 1 ^  0 (mod 2). By Proposition 5.1 x a~1y2 is hit, so x ay is hit as well.
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Hence {x 2y , a;2”' 1y \ m  E N} is a minimal generating set of F2 [a;, y]xy under the 

action of X>2. □

5.2 T he h it problem  on a polynom ial ring o f 3 variables 

over F2

We will prove the following theorem:

T heorem  5.5 A minimal generating set of F2 [a;, y, z]xyz under the action of 

V 2 is: {xyz, x2yz, xy2z, x zyz, xy3z, x 3y2z ; x2Ky2k~lz, xy2k~lz 2h, x ^ ^ y ^ ^ z ,  

x ^ ^ y z 2*1” 1, x y 2kJrlz 2k~ l  | 2 <  k  G Ff}.

5.3 Som e general resu lts for th e  3 variable case

For a monomial x aybz c, choosing a largest exponent among a, b and c, we may

assume a > b, c. We can express it by:

x aybz° = xa ( J ^]8k(y2k~lz) + 5(y2z) )
V k /

=  {mod hit),
k

where a > 2k — 1, fc e N and 5k, 5 e V 2. So when we want to know which 

monomial is hit in F2 [a;, y, z]xyz, it is enough to check monomials in the forms 

[u(2 fc — 1 ) 1 ] and [a2 1 ].

Lem m a 5.6 A monomial xaybz° in degrees > 7 is hit over F2; if  two of a, b, c 

are even and the remaining one is odd.

Proof: By Lemma 3.13 and Lemma 3.14. □

67



This lemma will often be used in the remaining part of this section. If a 

monomial in degrees > 7 is a term of the image of any operation of V 2 on 

W2 [x,y, z]xyz and has two even exponents, we will consider it hit and omit it 

(mod hit).

L em m a 5.7 I f  k is even and a +  b +  k > 6 , then

E ’£(x°-ybz) =  Y i ( " )  ( ^ ) x a+iyb+jz  (mod hit)

over F2 .

Proof: From the formula (5) of Section 2.1,

= E t ( “)  f i )  (4 3 )

We look at the second sum in (43). Since k is even, i + j  =  k — 1 is odd. Hence 

one of i , j  is odd. Suppose a-I bis even, then either both a and b are odd or both 

a and b are even. So one of a +  i and b +  j  is even. By Lemma 5.6, x a+lyh+̂ z2 

has two even exponents so it is hit since the total degree > 7. Suppose a -\-b is 

odd. If both a + i and b +  j  are odd, then we must have either: a is even, i is 

odd and b is odd, j  is even or: a is odd, i is even and b is even, j  is odd. But in 

both cases ^ =  0  (mod 2 ). Hence the second sum in (43) =  0 (mod 2 ). □

We can generalize the above result as follows:

Lem m a 5.8 In E i(x uyvzw) where k is even and u v +  w +  k > 7, a term 

xu+iyV+jzw+t nonzero coefficient is hit under the action of £>2, if any of 

u +  i, v +  j  or w +  i is even with corresponding «, v or w odd.

Proof: From the formula (5) of Section 2.1, we have

=  Y  ( f )  ( " )  { Wf f i u+iyv+iz w+t. (44)
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Since k is even, either i, j, t are all even or exactly two of them are odd. If 

i, j , t are all even, then there is no odd u, v or w which will change to even 

in the right hand side of (44). We may assume that i, j  are odd and t is even. 

Suppose a term xu+lyv+:i zw+t ^  0 (mod 2). Then u , v must be

odd, otherwise either =  0  (mod 2 ) or =  0 (mod 2 ). Hence u +  i and 

v +  j  are even. So the term has two even exponents and it is hit by Lemma 5.6.

□

This lemma will often be used. In the remaining part of this section, when we 

write out (xuyvzw) where k is even and u + v-\-w + k >  7, we will use Lemma 

5.8 without further comment and omit (mod hit) every term x aybzc where a, b or 

c is even with corresponding u, v or w odd. By the above lemma, we can use E f 

with k even to change the number and position of l ’s in the binary expansions 

of a, b and c and get a monomial which is congruent (mod hit) to the original 

monomial. In the following examples, we repeatedly use Lemma 5.7 and Lemma 

5.8.

E xam ple 5.9 From

E i(x20y7z) =  x2iy7z +  x20yn z (mod hit),

E 2(x22y7z) =  x2Ay7z  +  x22y9z  (mod hit),

E^(xu y9z) =  x 22y9z +  x u y17z (mod hit),

we get:

x2Ay7z = x2Qy n z = x 22y9z =  x u y17z (mod hit).
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We write a, b, c into binary expansions: a = anan - 1  • • • a0, b =  bmbm_i - * * 60, 

c =  CicCk-i • "Co. We may represent xaybz° by the following diagram:

1 * ^0  

bm,bm— 1  * bo J 

^k^k—1 ’ ’ ’ Cq

with an, 6m> ck ^  0 .

5.4 G enerating elem ents for degrees <  6

Proposition 5.10 A minimal generating set of monomials in degrees < 6 in 

W2[x,y, z]xyz is {xyz, x2yz, xy2z, x3yz, xy3z, x3y2z } .

Proof: By Theorem 2.7, we only need to check the following operations: E fk, 

E f fc for k = 0  or k E N.

In degree 4, there is only one equation

D\ (xyz) = x2yz  +  xy2z +  xyz2

with 3 unknowns x2y z , xy2z and xyz2. We choose x2yz  and xy2z to be generators. 

Notice that this is the degree of 22. We list all operations whose images are in 

degree 5:
/

D i(x2yz) =  x2y2z  +  x 2yz2 

D i(xy2z) =  x2y2z  +  xy2z2 

< D i(xyz2) “  x 2yz2 +  xy2z2 (mod 2)

D2(xyz) = x 3yz  +  xyzz -f xyz 3 

E 2(xyz) =  x2y2z 4 - x2yz2 +  xy2z2

From the above equations, we get that monomials in the form [221] are hit. 

We have only one equation which involves x3y z , xyzz and xyzz. So we choose
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two generators x3yz  and xy3z. Note that not are Artin elements contained in the 

cokernel of the V 2 action, since the Artin element x 2y2z  is hit.

In degree 6 , since E 2(x2yz) = x4yz  (mod hit) by Lemma 5.8, monomials in 

the form [411] are hit. By Lemma 3.11 x2y2z2 is hit. We have the following 

equations which involve monomials in the form [321]:

/
D i(xsyz) = x3y2z  +  x3yz2

D i(xy3z) = x2y3z  +  xy3z2

D i(xyz3) =  x2yz3 +  xy2z3 
< (mod hit)

D2(x2yz) =  x2y3z +  x2yz 3 

D2{xy2z) =  x3y2z  +  xy2z3 

D2(xyz2) = x3yz2 +  xy3z2

The coefficient matrix of the above equations is as follows:

 ̂ x 3y2z Q 9x yz x2y3z xy3z2 9 3x*yz* xy2z3 ^

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

0 0 1 0 1 0

1 0 0 0 0 1

V 0 1 0 1 0 0  /

The matrix has rank 5. If we add one row to the matrix with 1 in the last 

column and 0  elsewhere, then we get a matrix with determinant ^  0  (mod 2 ). 

Hence xy2z3 generates the monomials in the form [321] and so does x 3y2z by 

symmetry. Summing up the results of this section, we get the generating set. □
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5.5 M onom ials in degrees 2m and 2m +  1 for m  >  2

For the remaining content of this section, we may assume degrees are > 7.

P ro p o sitio n  5.11 In degrees 2m, 2m +  l, a monomial x aybz with at least one of 

a, b odd is not hit under the action ofT>2.

Proof: By Proposition 5.3 and Theorem 3.12. □

P ro p o sitio n  5.12 Any monomial xaybz in degree 2m or 2m +  1, where b is odd 

and has k 1 ’s in its binary expansion, is congruent (mod hit) to a monomial in 

the form x uyvz where u = 2m — 2k +  r for r — 0  or 1 and v =  2k — 1 .

Proof: Suppose b ^  2n — 1 for any n. By Lemma 3.15, yb =  D(y2k~1) (mod 2 ) 

where D  is a composition of some E^s  and k is the number of l ’s in the binary 

expansion of b. Then by Theorem 2.9,

xaybz = x azD(y2k~L) =  (x(T>)(.'rtt̂ ))y2^ - 1  (mod hit).

X(D) is a sum of some compositions of l ^ ’s, since x  is the anti—isomorphism 

on the Steenrod algebra generated by all E{}s.

In (x(T))(ic°^))y2fc-1, suppose the exponent of ^ of a term changes, it can only 

change to 2  firstly and then remains even. Suppose xaybz is in degree 2 m. Then 

a is even and the exponent of a; is always even in every term of (x{D)(xaz))y2k~1. 

If the exponent of z of a term changes to even, then the term is hit by Lemma 

5.6. Suppose x aybz is in degree 2m +  1 , then a is odd. If the exponent of z of a 

term changes to even, a has to change to even as well since total degree is odd. 

Again the term is hit by Lemma 5.6. Hence x aybz = lxa>y2k_1z (mod hit), where 

I =  0  or 1 and a1 — 2m — 2k +  r  for r  =  0  or 1 since the degree of xaybz is 2m or 

2m +  1. We have I =  1 since x aybz  is not hit by Proposition 5.11. □
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P ro p o sitio n  5.13 Suppose a = 2m — 2k T r  where r = 0 or 1 and m  > k, 

b = 2k — 1, then xaybz = x2™ 1+ry2™ 1 - 1  z (mod hit).

Proof: By Lemma 5.8, E \{xa~2yb z) =  xaybz  +  x a~2yb+2z {mod hit), we get 

xaybz  =  a;a-2?/2fc'1"1̂  (mod /lit) and

1 • • • 1 0 1  • •■l r
xa-2y2k+iz ^  1 0 . . .  0 1  ,

1

where a — 2 =  2m — 2k — 2 +  r.

We claim that £a~2y2fc+12: =  ^ 2m_1~2'l'ry2Tn""1+1̂  {mod hit). We argue by 

induction on the exponent of y. There is nothing to prove in the case k =  m  — 1. 

So we may assume k < m  — 1. By Lemma 5.8 we have,

E f  [x2m~2k+1~2+ry2k+1z) = x a~2y2k+1z + ^ - a ^ - a + r ^ + i ^  ( w  ^ (45) 

/ 2 * + 1 \
because for j  even, I . ) =  1 {mod 2) only if j  =  0 , 2k and if j  =  0 ,
/orri __ ofc+ 1  _  O I r \
( J =  1 {mod 2 ). Hence

xa~2y2k+1z =  rc2m- 2fc+1- 2+ry2fc+1+12; (mod /lit).

By the induction hypothesis, we must reach

xa~2y2k~>rlz = x2m 1_2+ry2m 1+1 z {mod hit). 

x 2 m~1- 2 +ry2m 1+iz a mon0rnial as follows:

1 • • • 1 •••l r

1
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Finally by Lemma 5.8,

= a r - '+ y " " 1- 1* +  x^ - 2 + r y^ + i z  (mod m ) '

Hence

xaybz ~  x 2™ 1~2+ry2m 1+1 z =  x 2™ 1+i'y2m 1- i z  ^moc( fcj-y

□

P ro p o sitio n  5.14 The dimension of the cokernel of the action of V 2 in the 

degree 2m for m  > 3 ofW2 [x}y,z] is 2.

Proof: By Proposition 5.12 and Proposition 5.13, any monomial xaybz with 

1 < b odd in degree 2 m is congruent (mod hit) to a monomial x 2™ 1y2™‘~1~1z . 

There are 6  monomials in the form [(2m“ 1)(2m - 1  — 1 ) 1 ]. Because

D2™-i-2 (x2m 1yz) = x2m ly2m 1- 12 -\-x2m 1yz2m 1 - 1  (mod 2 ),

we get
o m —1 n i n - 1  -i n m - 1  n m - 1  i  , ,  , . ..x y z = x yz“ (mod hit).

Hence there are three monomials in this form which generate all the x aybz 

with 1 < b odd in degree 2m under'operations of £>2 . They are:

(1) x 2™"1 y2,m~1~1z J (2) x2m~1~ly2™~1 z, (3) x ^ ^ y z 2̂ .

If b — 1 , there are three monomials in the forms: x2m~2yz, xy2m~2z , xyz2m~2. 

They are also generated by (1 ), (2 ) and (3). For example:

, o m —l _ i  i o r a _ o  om  —1 0 ™ ~ 1 _ 1  o ™ " 1 / i ^  \jD2m-i_i(a: yz) = x yz + x y z + x yz [mod 2 ).

So x 2m~2yz  =  (2)+(3) (mod hit). We will have similar results for xy2™~2z 

and xyz2m~2. Hence every monomial in degree 2m is generated by (1), (2) and 

(3) over F2. So the dimension of the colcernel in degree 2 m is < 3.
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Any single one of (1), (2 ) and (3) is not hit by Proposition 5.3. Also a sum 

of any two of them is not hit. For example: writing k = 2m~1,

D1(xyk~1 zfc_1) =  x2yk~lz k ~ 1 +  xykz k ~ 1 +  xyk~xzk (mod 2 ).

Since Dk_2 (xykz) = xk~1ykz +  xykzk~1 (mod 2 ), xykzk~1 — (2 ) (mod hit). 

Similarly xyk~1zk ~  (3) (mod hit). So (2) +  (3) =  a;2^ - 1 ^ - 1  (mod hit), which 

is not hit by Proposition 5.3. By a similar argument, (1) +  (2) and (1) +  (3) are 

not hit. Because

Dk~2 (%2yk lz) =  x2y2k~3z +  x 2yk~1zk~1 (mod 2),

and also by Proposition 5.12 and Proposition 5.13, x2y2k~3z =  x kyk~1z  (mod hit). 

We get

(2) +  (3) =  (1) (mod hit).

Hence (1 ), (2 ), (3) are linearly dependent (mod hit). So the cokernel is two 

dimensional. □

P ro p o sitio n  5.15 In degree 2m +  1 with m  > 2, the number of monomials in 

the form xaybz, where a, b are odd, is even in the image of any operation o/XV

Proof: By E k(xuyvzw) — E*(xuyv)Eij.(zw), a monomial in the form x aybz
i+ j= k

only appears in the situation when i ~  k, j  — 0 and w =  1. Hence the number of 

monomials in the form x aybz with a, b odd in E k(xuyvz) is equal to the number 

of monomials in the form [ab] with a, b odd in E k(xuyv). Because u + v + k =  2m, 

by the proof of Proposition 5.2, the number of monomials in the form [ab], where 

a, b are odd, is even in E k(xuyvz). Since {E k, E k \ k G M} form a generating set 

of V 2 (Theorem 2.7), we always get an even number of monomials in the form 

[abl] with a, b odd in the image of any operation of T>2 . C3
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T heorem  5.16 A monomial x ^ x ^ 2 ■ -. x%1 in degree 2 m +  1 is not hit under the 

action ofT>2, if  it has at least three odd exponents and some — 1 .

Proof: Let x ^ x ^ 2 be such a monomial. Suppose ai =  1, a2, a3 are

odd, we have a map tt £ (Section 1 ) which maps xi to aci, X2 to x 2 and all the 

other Xi to # 3  for % =  3, 4, . . . ,  n. Then 1r commutes with the action of X>2. If 

X1 X2 2 . . .  x^n is hit under the action of V 2y then we have

x tx ^2 . . .  x ann = ^ 2 Si(fi) (mod 2), (46)
i

where each Si is in and each fi is a monomial in F2 [^i, x2, . . . ,  a:n].

Then we apply 7r to the right hand side of (46) and get

== = Y l 6i 9̂i^
i i i

n

where gi £ F2 [a;i, x 2, £3]. Let k =  ai. We apply n to the left hand side of (46)
*=3

and get

7r(xiX22 . . .  < n) =  X\X*2X\.

Hence we get — Yli $i(9i) (mod 2). But x \ x ^ x \  is not hit under the

action of V 2 by Proposition 5.11. So the assumption that X1X2 2 • ■ • x^n is hit leads 

to a contradiction. □

P ro p o sitio n  5.17 In degree 2m +  1 with m  > 3, the dimension of the cokernel 

ofW2[x,y,z]xyz under the action o fV 2 is 3.

Proof: For a monomial xaybzc in degree 2m +  1 with m  > 3, if one of the 

exponents is even, there must be another even exponent. So all monomials with 

any even exponents are hit by Lemma 5.6. We only need to consider monomials 

with all odd exponents. By Proposition 5.12 and Proposition 5.13, any monomial
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xaybz  with a, b odd and 6 > 1 in this degree is congruent (mod hit) to the 

monomial x k~lyk+1z  with k =  2 m_1. Also by Lemma 5.8,

E 2{xk~1yk~1z) =  xk~1yk+1z +  xk+1yk~1z (mod hit).

So there are 3 monomials in the form [{k + l)(k — 1)1] which span all x aybz 

with a, b odd and b > 1 under operations of V 2 and none of them is hit by 

Proposition 5.11. They are:

(1) xk~xyk+1z , (2) x k~xyzk+1, (3) xyk~1zk+1.

If b — 1 then we have:

Dk{xk~xyz) =  x 2k~lyz  +  xk~lyk+1z +  x k~xyzk+l (mod 2).

Hence x 2k~lyz  =  (1 ) +  (2 ) {mod hit). Similarly we get

xy2k~lz  =  (1) +  (3) {mod hit), xyz2k~l =  (2 ) +  (3) {mod hit).

Hence every monomial with all three exponents odd in degree 2m + 1 is congruent 

{mod hit) to a linear combination of (1 ), (2 ) and (3) over W2. So the dimension 

of the cokernel is < 3. We claim that a sum of two or three of the monomials (1 ),

(2) and (3) is not hit. By Proposition 5.15, there is always an even number of 

monomials in the form x aybz with a, b odd in the image of any operation in V 2. 

So xk~xyk+1z  always appears in the image of any operation of T>2 with another 

monomial xaybz  where 1 < a, b are odd. Hence ( l)+ ( 2 ) and (l)+(3) are not hit 

since there is only one monomial in each of the sums which has the exponent of 

z to be 1. It is similar for the monomials (2) or (3). Hence the sum of any two 

of (1 ), (2 ) and (3) is not hit. The sum of three of them is not hit for the same 

reason. Hence the cokernel is three dimensional. □
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P ro p o sitio n  5.18 A monomial xaybzc with a, b} c > 1 in degree 2m +  1 is hit 

under the action o fV 2.

Proof: If there exists an even exponent in xaybzc, then there must be two even 

exponents since the total degree of xaybz° is odd. Then the monomial is hit by 

Lemma 5.6. Hence we only need to consider the case where a, 6 , c are odd.

Dc_i (xaybz) =  x aybz° + £ a + c - 1 ?/62  +  x ayb+c~1z {mod 2 ).

By Proposition 5.12 and Proposition 5.13, both a;a+c_1y&2: and xayb+c~1z are 

congruent to x2m~1+1y2m~x~xz {mod hit). So

xaybzc = 2x2m l+1y2™ 1~1z = 0  (mod hit).

Hence x aybz° is hit. □

5.6 M onom ials in th e form  [a(2fc)l]

We need to check monomials in the form [a2 1 ]. Also we will check monomials in 

the form [a(2 /s)l] for some k > 1 , since the result will be used in Section 5.7.

P ro p o sitio n  5.19 A monomial in the form [all] with a > 5 is hit over 1 2 , if it 

is not in degree 2m or 2m +  1 for some m > 3 .

Proof: Suppose we have a monomial xayz  with a > 5, we write the binary 

expansion of a =  anan_i • • • ao with an /  0. If xayz  is not in degrees 2 m and 2 m+ l ,  

then there is an ai = 0 for 1 < i < n. Let u = a — 2 \  then =£ 0 {mod 2).

We have E f  {xuyz) =  x ayz {mod hit) by Lemma 5.8. If all â  =  1 for 1 < i < n, 

then the monomial is either in degree 2 m if ao =  0  or in degree 2 ™ +  1 if ao =  1 .

□
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P ro p o sitio n  5.20 A monomial in the form [o2 1 ] is hit under the action o f V 2 , 

if a >  7 and a = 3 (mod 4).

Proof: Let a > 7  and a = 3 (mod 4), we have:

since ao =  ax = 1. This gives that xa~~Ayz6 is hit. Also:

D i(xa~Ayz5) =  x a~i yz6 -1- x a~syz 5 +  xa~Ay2z5 (mod 2 ).

So x a~zyz 5 =  xa~Ay2z5 (mod hit). But

E f(x a~5yzb) =  xa~3yz 5 +  xa~by2zG (mod 2 )

and x a~5y2z6 is hit by Lemma 3.11.

Hence x a~3yz 5 is hit so x a~Ay2zh is hit and hence xay2z  is hit by (47). □

Proposition 5.21 : A monomial in the form [a21] with a > 4 is hit under the 

action o fV  2 i f  it is not in degree 2 m.

Proof: Let an • • • aiao be the binary expansion of a. By Lemma 5.6, x ay2z  is 

hit if a is even. Let a be odd. By Proposition 5.20, xay2z is hit if a\ =  1.

Let a0 =  1, and ax = 0. Suppose there is an m — 0 for 2 < i < n. By Lemma

D ^ x 0, Ay2z) =  x ay2z jr x a Ay2z 5 (mod 2 ) (47)

£>2 (2 “ 2yz2) =  x ayz 2 +  £a 2y3z2 (mod 2 ), 

E \(x a~Ayz2) =  x ayz2 +  x a~2y3z2 +  xa~4yzQ (mod 2 ),

5.8,

since
fa  — 2 iN\since I , J =  0  (mod 2 ) as the 1 st digit of the binary expansion of 2% — 2  is

1 and the 1st digit of the binary expansion of a — 22 is 0. Hence we only need to
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consider an a which has ai =  0 and aj = 1 for j  ^  1 . But this case is in degree 

2m. So monomials in the form [a2 1 ] with a > 4 are hit except in degree 2 m. □

Proposition 5.22 A monomial in the form [a(2 fe)l] in degrees > 7 with k > 1 

is hit under the action ofT>2 , if it is not in degree 2m.

Proof: We claim that xay2kz is either hit or =  x a+2,k~2y2z (mod hit). We 

argue by induction on the exponent of y. By Lemma 5.8, for k > 1 ,

E 2k 1(xay2k *z) = ^ 2 fe^-i^a;a+2fc 1yZk 1 z x ay2k z {mod hit),

since I . 1 = 0  except i =  0 , 2K \

If ~  ^ {m °d 2)> xay2kz  is hit, otherwise

x ay2kz = xa+2k 1y2,k 1z  (mod hit).

Hence x ay2kz is either hit or =  £ a+2fc~ 1 y2̂ 1 z {mod hit). By the induction 

hypothesis, we get that xay2kz is either hit or =  xa+2,h~2y2z {mod hit). But 

xa+2k~2y2z is hit by Proposition 5.21, hence xay2kz is hit. □

5.7 M onom ials in th e  form  [a(2k — 1)1], k > 2

Proposition 5.23 : A monomial in the form [ahl] with a > b is hit under the 

action o fV  2 , if a =  3 {mod 4), b = 2k — 1 and k > 1.

Proof: We have the following equations:

Dj)- i{ x a~b+1ybz) =  xaybz -f- rca_6+1y2&_1̂  +  x a~b+1ybzb {mod 2),
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E*b-i(xa b+1Vz ) =  xyz  +  (a — b-\- l )(xaybz  +  x ay z h) +  r c °  b+1y bz b

= xaybz  +  x ayzb +  x a~b+1ybzb (mod 2),

since a — b + 1 =  1 (mod 4) and  ̂ =  0 (mod 2). Hence we get:

x ayzb ~  xa~b+ly2b~x z (mod hit). But:

E f(x a~b~xy2b~xz) =  xa- b+xy2b- xz (mod hit),
/ 2 £  j \

by Lemma 5.8 and f J =  0 (mod 2) since the 1st digit of the binary

expansion of 2b — 1 is 0. Hence £a--H-i^2b-i z js and hence xayzb is hit. □

By the above proposition, a spike in the form [(2* — 1)(2* —1)1] where I > k > 1 

is hit under the action of V 2 .

Lemma 5.24 A monomial in the form [afrl] with a even, a-\-b > 7 and b =  2k — 1 

where k > 1 , which is not in degree 2m, is hit over F2 .

Proof: We have

D i(xa~lybz ) =  (a — l )x aybz+bxa~1yb'hlz + x a~1ybz2 = xaybz + x a~1ybz2 (mod hit),

since b +  1 =  2k and xa~xyb+xz is hit by Proposition 5.22. Now

D ^ i Y ^ y z 2) =  xa~xybz2 +  xa+b~2yz2 (mod 2 ),

and by Proposition 5.21 xa+b~2yz 2 is hit. Hence xa~lybz2 is hit and hence x aybz 

is hit as well. □

Proposition 5.25 Let an • ■ • diao be the binary expansion of a. A monomial in 

the form xaybz with a odd, b =  2k — 1 and k > 1 is hit over F2 , if there are two 

0 ’s between aj. and an_i.
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Proof: Let a =  an • • • aiUo. Suppose ai = aj = 0 for k < i < j  < n — 1 . Then 

by Lemma 5.8,

D  P “_2̂  ^ L “- y +iZ (mod 2 ).
0<t<2i ' /  V /

/ a _  2 -?\
But each ( ^  1 = 0  (mod 2) since the zth digit of the binary expansion of

a — 2J is 0  and the zth digit of the binary expansion of 2 J — t  is 1 . □

Proposition 5.26 A monomial in the form [a31] with a odd is hit under the 

action of V 2, if it is not in degree 2m +  1 where m > 1 .

Proof: By Proposition 5.23, xay3z  is hit except for the a where a\ — 0. We 

may assume that a =  1 (mod 4). By Proposition 5.25, xay3z is hit except the 

a where there is at most one 0 between a2 and an- 1 . Let =  aj ~  0 for 

2 < j  <  n — 1. Then

E f  (xa~23y3z) =  ^  ^  ^ xay3z  +  ^ ^ J x a~2ybz  =  x ay3z  (mod hit),

(a  — 2A
by Lemma 5.8 and I 1 = 0  (mod 2) since the 1st digit of the binary

expansion of a — 2 J is equal to ai =  0  as j  > 2  and the 1 st digit of the binary

expansion of 2 J — 2  is 1 . The only case left is that ft* =  1 for i ^  1 and ai = 0 ,

but then x ay3z  is in degree 2 m +  1 . □

Proposition 5.27 A monomial in the form [a&l] with b = 2k — 1, a odd and 

k > 1 is hit under the action o fV 2} if  it is not in degree 2m -f- 1 where m >  1 .

Proof: Let a — an * • * aia0. If ai =  1 then xaybz is hit by Proposition 5.23. So 

we only consider an a where ai = 0 . We have

E f (xa~2ybz) = xaybz  +  x a~2y2k+1z (mod hit).
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We claim that xa 2y2k+1z  is either hit or =  £a+& 3y3z (mod hit). We argue 

by induction on the exponent of y.

Suppose k > 1. By Lemma 5.8,

E 2k ]~(xa~2y2k 1+1jz) = xa~2y2k+lz + rxa+2k 1~2y2k 1+1 z {mod hit),

/ 2k~1 -f A
since for j  even, I 1 = 0  {mod 2) except j  =  0 or j  = 2k~l . Here

r =  • If t =  0  {mod 2 ) then x a~2y2k+1z  is hit otherwise r = 1 {mod 2 )

and x a~2y2k+1z = x a~2+2k ly2k 1+1 z {mod hit). Hence x a~2y2k+1z is either hit 

or =  x a~2+2k ly2k 1+1 z {mod hit). By the induction hypothesis, we finally must 

reach either x a~2y2k+1z is hit or =  xa+b~3y3z {mod hit). By Proposition 5.26, 

^g+6- 3 ^3 ,̂ sinCe it is not in degree 2m +  1 . Hence xaybz is hit. □

Now putting the results which we have got together we have proved Theorem

5.5.

5.8 R ep resen tation s o f th e  cokernels for th e  2 and 3 vari­

able cases

In the following argument, we will use the results in the decomposition matrices 

of Specht modules over F2 in [7].

There is only one irreducible F2 £ 2 —module, ps S p ^ .  For the 2 variable

case, since the cokernel in degree 2m is 1 —dimensional, the cokernel has to be one 

copy of F^2\  Also from D2m~i{xy) = x 2™~1y +  on/2”1-1, we get

(1 2 ) (rr2™ 1y) =  xy2m 1 =  x 2™ 1y {mod hit),

where (1 2 ) €E £ 2 - Hence a;2m_1y generates {mod hit) a F2£ 2—module F^2\
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There are two isomorphism classes of irreducible F2 £ 3 —modules, F ^  «  S p ^  

and «  S p ^  which is 2 —dimensional.

L em m a 5.28 The monomials in the form [all] span (mod hit) a F2 S 3 —modules 

which is isomorphic to i ^ 21) in the cokernel.

Proof: Obviously a single monomial in the form [all] is not hit since it is in 

the cokernel. From Da„i(xyz) — x ayz +  xyaz  -+■ xyza, we get that the sum of any 

two monomials in the form [all] is not hit as well. The monomials in the form 

[all] span a F 2 S 3 —module which is isomorphic to F ^  where xayz  and xyaz 

form a basis. We may check this by,

(12 ){xayz) =  xyaz, (23 )(xayz) =  x ayz,

(13)(£a2/£) =  xyza = xayz  +  xyaz (mod hit)}

since (12), (13) and (23) generate S 3 . From the above relations we can see that 

xayz and xyaz  generate an irreducible two dimensional F2 S 3 —module. Since the 

module is 2 —dimensional, it has to be isomorphic to F^21\  □

The module structure of the cokernel for the 3 variable case is as follows.

In degree 4, there are 2 generators of the cokernel which are x 2yz  and xy2z. 

By Lemma 5.28, the cokernel in this degree is isomorphic to F (21) where x 2yz  

and xy2z  are basis vectors.

In degree 5, there are 2 generators of the cokernel which are xsyz  and xyzz. 

Hence the cokernel in this degree is also isomorphic to F^21) where x zyz and xysz 

are basis vectors.

In degree 6 , since the cokernel is 1—dimensional, it has to be isomorphic to 

,p(3) where a generator can be any monomial in the form [321].
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By the results of Section 5.6, the cokernel is 2—dimensional in degree 2 m. A 

monomial in the form [(2m — 2)11] is not hit. By Lemma 5.28, the cokernel in 

degree 2 m is isomorphic to .M21) where x2m~2yz  and xy2m~2z are basis vectors.

In degree 2m +  1, the cokernel is 3—dimensional. Again by Lemma 5.28, the 

monomials x2'n~lyz  and x y ^ ^ z  form basis of a submodule F ^ .  Recall the 

proof of Proposition 5.14, there are 3 generators for the cokernel in degree 2 m +  l,

(1) (2) s 2‘- V 2t+ \  (3) xy2" - ^ * 1:

The submodule which is isomorphic to is generated by (l)+(2)+(3). Hence 

the cokernel in degree 2m +  1 is a direct sum of one copy of jF(21) and one copy 

of
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6 T he hit problem  on a polynom ial ring o f 4 

variables over F2

In this section, we will explore the hit problem of the 4 variable case over F2 . 

By Theorem 5.5, there is a generating set of W2 [x,y, z,t]xyzt  under the action 

of V 2 whose elements are in the following forms: [a lll], [a211], [a311], [a321], 

[a(2fc)(2& — 1 )1 ], [a(2 fc +  l)(2fc — 1 )1 ] for k > 2. We have determined the hit 

elements of the above forms except some cases for the monomials in the form 

[a(2/c +  1)(2* — 1)1]. The results we have got give a general view of the location 

of the hit elements for the 4 variable case over F2. Prom our results, we can see 

that the cokernel of the 4 variable case is much more complex compared with the 

2 variable case and the 3 variable case. This is because in the 4 variable case, 

the product of two non-hit monomials with 110 common variables is still a non-hit 

monomial, which can be in any degree 2n +  2m.

6.1 Som e general resu lts for th e  4 variable case

Lem m a 6.1 In degrees > 8 , a monomial x aybzctd with at least three exponents 

even is hit under the action of U2 .

Proof: By Lemma 3.13 and Lemma 3.14. □

Again this result will often be used. If a monomial is a term of the image

of any operation of Z>2 on F2 [2?, 2/, z]xyz and has three even exponents in degrees

> 8 , we will consider it hit and omit it (mod hit).
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Lem m a 6 . 2  A monomial xaybzctd is not hit over F2 , if the monomial is in degree 

2m where at least two of a, b, c, d are odd, in degree 2 m + 1  where three of a, b, c, d 

are odd and one of them is 1 or in degree 2m +  2  where all a, 6 , c, d are odd and 

at least two of them are 1 ’s.

Proof: By Proposition 5.3, Theorem 5.16 and Theorem 3.12. □

Lem m a 6.3 In E^(xuyv zwts) where k is even and one ofu, v, w , s is even and 

u + v + w + s + k >  8 , a nonzero term xaybzctd is hit under the action of V 2 , if 

any a, b, c or d is even where the corresponding u, v, w or s is odd.

Proof: By (5) of Section 2.1, we have

E$(xuyvzwts) = ( “)  ( ”)  ( A  ( ^ ) i “+y +V ”+,is+ro. (48)

Let (  S )  xlt+lyV+̂  zw+lts+m be a term in (48) which has a non­

zero coefficient. We can never change an even exponent of xuyvzwts to odd in the 

image of E±, since, for example, if u is even and i is odd, then =  0  (mod 2 ). 

Hence if three of u, v, w and s are even then every term in (48) is hit by Lemma

6 .1 . Suppose at least two of u, v , w and s are odd. Assume that u is odd where 

u +  i is even. Then i is odd and hence one of j, I, m  is odd, since k is even. 

Suppose j  is odd, then v has to be odd in order that the coefficient is not 0 . 

Because at least one of w, s is even, I, m  have to be both even. So one of w +  I 

and s +  m is even. Hence the term has three even exponents so it is hit by Lemma

6.1. □

L em m a 6.4 A monomial xaybz2t is not hit under the action of V 2 , if a + b = 2m 

for m  > 1 and both a, b are odd. In particular, xuy2zt and x vysz2t are not hit 

over F2 if u +  1 =  2m and v +  3 — 2m.
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Proof: Suppose we want x aybz2t , where a, b are odd and a +  b =  2 m, in the 

image of the action of T>2- We either use E^(xuyvz2t) for r  =  1, 2  or 

by Theorem 2.7. Suppose we use

£ r‘ ( i “j V i )  =  ^  ( “'j ( V\ x u+y +jz2t + S  (mod /lit),
i+j=j, W  W  

where S' is a sum whose terms do not have zH.

The number of monomials in the form xaybz2t with a, b odd in E* (xuyvz2t) is 

congruent (mod 2 ) to (u +  &) I ^ ^ > since u +  i and v + j  are both even or

both odd. By Lemma 3.3, ^  (w-H) ( U ) ( V J =  0 (mod 2), since u-\-v-hk = 2m.

Also monomials in the form xaybzt2 do not appear in E^{xuyvz2t). So the number 

of monomials in the form [{ab}{21}] with a, b odd in E^(xuyvz2t) is even. 

Suppose we use

E ^ t f z t )  = E[(xuyv)E[{zt)
i+ j = k

=  E^{xuyv)zt +  (E f - 1(xuyv))(#lt +  z t2) +  { E ^ ^ i/ ^ zH2,

where u + v k = 2 m — 1 . A monomial in the form x aybz2t always appears with 

a monomial in the form xaybzt2. Hence the number of monomials in the form 

[{a6}{21}] with a, b odd in E \{xuyvzt) is even.

Hence the number of monomials in the form [{a&}{21}] is always even in the 

image of any operation of V 2. Hence x aybz2t is not hit. □

Proposition 6.5 Suppose a monomial fg  6 W2[x,y, z,t]xyzt satisfies that / ,  g 

have no common variables and both are not hit under the action o f V 2} then fg  

is not hit.

Proof: If one of / ,  g has 3 variables, then the other one is a single variable 

of degree 1. Hence fg  is not hit by Theorem 3.12. Suppose / ,  g both have two



distinct variables and /  and g are not hit. Let /  be in the form [ai&i] and g be 

in the form [0 ,26 2]-

If one of / ,  g is in the form [11], fg  is not hit by applying Theorem 3.12 twice. 

If both / ,  g are monomials of the form [12], then fg  is not hit. The detail can 

be seen in Section 6 .2 .

If /  is a monomial in the form [21], g is in a degree >  4 and is not hit, i.e. g is 

in degree 2 m for m > 2 and has two odd exponents by Theorem 5.4. By Lemma 

6.4 f g  is not hit. Similarly for the case in which g is a monomial in the form [2 1 ] 

and /  has two odd exponents and is in degree 2 m for m  > 2. Hence f g  is not hit.

Suppose both / ,  g are in degree 2 m for m > 2 . By the proof of Proposition 5.2, 

monomials in the form [oi&i] and [0 2 6 2] appear in even numbers under operations 

of E f  where r =  1 , 2 .

Suppose we try to have fg  in Ef(fkgk) where r = 1 , 2  and /&, Qk have 2  

distinct variables. Then there are an even number of monomials in the form 

[{ai&i}{a2&2}] in each E f{ fkgk) =  J2i+j=k EUfk)E^{gk) where r =  1, 2 . Because 

at least one of i, j  ^  0 , so we have either there are an even number of monomials 

in the form [ai6 j  in any E^fif)  or there are an even number of monomials of form 

[0,2^2] in any E^(gif). Hence there are an even number of monomials in the form 

[{a-i£>i}{a2&2 }] in the image of for r = 1, 2 . So there are an even number of 

monomials in the form [{ai&i}{a2&2}] in the image of any operation of T>2, since 

the set {j5y | k > 1, r =  1, 2} generates V 2 (Theorem 2.7). Hence fg  is not hit.

□

T heorem  6 . 6  I f  a monomial f  o fn  variables can be written as a product of non­

hit monomials of 2  variables and there are no two monomials having common 

variables; then f  is not hit under the action o fV 2-
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Proof: Let m  = n / 2. We write /  =  1151=1 Qt where each gt is a monomial in 

two variables and gj have no common variables if i ^  j . Let f s ~  IIt=i 9t 

where 1 < s < m  and f m — f .  We will prove /  is not hit by induction on s.

Suppose f s is a monomial in the form of [{aia2} { ...........}{^ 2s - ia2s}]. By the

proof of Proposition 5.2, we assume up to s, f s is not hit and the monomials in the

form [{ai<i2} { ...........}{&2s-i&2s}] appear in even numbers under operations of

E!? where r  =  1, 2 . If s < m  and g8+i is a monomial in the form [a2s+ia2s+2]j then

fa+i =  fs9s+i is a monomial in the form [{aia2} { ............}{a2s_ia2s}{a2s+ia2s+2}].

Suppose we try to have f s+1 in

= E E K { u k ) E i { v k ) ,

k k i + j —k

where r = 1, 2. Here Uk has the same variables as f s and Vk has the same 

variables as gs+i- Since k > 0 , we have that either there is an even number of

monomials in the form [{aia2} { ...........}{u2s-i^ 2s}] in E*(zik) or there are an

even number of monomials in the form [a2s+ia2s+2] in E*(vk). Hence there are an

even number of monomials of the form [{aia2} { ............ }{a2s -ia 2s}{a2s+ia2s+2}]

in each E^(ukVk)y hence there must be an even number of monomials in this 

form in E^Uf-vif). Hence f s+1 is not hit. By the induction hypothesis and by
k

Theorem 2.7, /  is not hit under the action of X?2. □

6.2 M onom ials in degrees <  10

By Theorem 2.7, we only need to check the operations E f '  and E f  for k — 0  or 

A; G N.

Degree 4 is trivial. In degree 5, there are 4 unknowns in the form [2111] and 

only one operation D\(xyzt) which has image in this degree. Hence three of the
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monomials in the form [2 1 1 1 ] need to be generators.

In degree 6 , we need to consider the following equations which involve the 

monomials in the form [2 2 1 1 ]:

/
D 1(x2yzt) = x2y2zt +  x2yz2t +  x2yzt2 

D 1(xy2zt) =  x 2y2zt -f- xy2z2t +  xy2z t2 

i Di{xyz2t) =  x 2yz2t +  xy2z2t -\- xyz2t2 (mod 2)

D \(xyzt2) = x 2yzt2 +  xy2zt2 +  xyz2t2

E 2(xyzt) ~  x2y2zt +  x2yz2t +  x2yzt2 +  xy2z2t +  xy2z t2 +  xyzH2

The coefficient matrix of the above equations has rank 4, hence 2 of the 

monomials in the form [2211] need to be generators. Note that there are 3 Artin 

elements in the form [2 2 1 1 ]. There is only one equation involving the monomials 

in the form [3111], which is

D 2 (xyzt) = x^yzt +  xy3zt  +  xyz^zt +  xyz t3.

Hence we need 3 of the monomials in the form [3111] to be generators. Note 

that there are only 2 Artin elements in the form [3111].

In degree 7, by Theorem 2.9, we have

x2y2z2t = (Ef (xyz))t ~  xyz(x(El))(t)  =  xyztA (mod hit). (49)

We need to consider the following equations which involve the monomials in 

the form [4111] and [2221]:
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D i(x2y2zt) =  x2y2z2t +  x 2y2zt2

D\{x2yz2t) = x2y2z2t +  x 2yz2t2

D i(x2 t/2 i2) =  x2y2zt2 +  x 2yz2t2

D i(xy2z2t) = x2y2z2t +  xy2z2t2

D i(xy2z t2) =  x2y2zt2 +  xy2z2t2

D i(xyz2t2) = x 2yz2t2 +  xy2z2t2

E \(x 2yzt) = x^yzt +  x 2y2z2t +  x 2y2zt2 +  x2yz2t2

E 2(xy2zt) = xy^zt +  x 2y2z2t +  x 2y2zt2 +  xy2z 2t2

E 2(xyz2t) = xyzH  +  x 2y2z2t +  x 2yz2t2 +  xy2z 2t2

E 2(xyzt2) = xyz t4 +  x2y2zt2 +  x2yz2t2 +  xy2z2t2

In the last 4 equations, we can substitute the monomials in the form [4111] 

by the monomials in the form [2 2 2 1 ], based on some suitable permutations on 

(49). Then we get that the right hand sides of the last 4 equations of the above 

equations are identical, so we only include one of them. Hence the coefficient 

matrix of the above equation system is:

1 1 0  0  

1 0  1 0  

0  1 1 0  

1 0  0 1 

0 1 0  1 

0 0 1 1
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The matrix has rank 3, so we need one monomial in the form [2 2 2 1 ] to be a 

generator.

We have the following equations involving monomials in the form [3211],

D i(x3yzt) = x4yzt +  x 3y2zt 4-  x3yz2t +  x3yzt2

D i(xy3zt) ~  x2y3zt +  xy4zt +  xy3z2t +  xy3z t2

D\{xyz3t) = x2yzH  +  xy2z3t +  xyzH  +  xyz3t2

D i(xyzt3) =  x2yzt3 +  xy2zt3 +  xyz2t 3 +  xyzt4 
< (mod 2)

D 2 (x2yzt) =  x2y3zt +  x 2yz3t +  x2yzt3 

D 2 {xy2zt) = x3y2zt +  xy2z3t +  xy2z tz 

D 2 (xyzH) = x3yz2t +  xy3z2t +  xyz2t3 

D 2 {xyzt2) ~  x3yzt2 +  xy3zt2 +  xyz3t2<

If the monomials in the form [4111] are given, then the coefficient matrix 

indexed by the monomials in the form [3211] of the above equation system has 

rank 7. Hence 5 monomials in the form [3211] need to be generators. So the 

cokernel is 6  dimensional in this degree. Note that there is no monomial to be 

hit in degrees <  7.

In degree 8 , by Lemma 3.11 and Lemma 6.2, monomials in the form [2 2 2 2 ] are 

the only monomials which are hit. In degree 9, monomials in the forms [6111], 

[5211], [4311] and [3321] are not hit by Lemma 6 .2 . Monomials in the forms [4221] 

and [3222] are hit by Lemma 6.1. In degree 10, by Lemma 6.2, monomials in the 

forms [7111] and [5311] are not hit. Monomials in the form [4222] are hit by 

Lemma 3.11. By Lemma 6.3, E 2(x2y4zt) =  x4y4zt (mod hit). Hence monomials 

in the form [4411] are hit. By Theorem 2.9,

x 3y3z3t =  El{xyz)t = xyz(x(El)(t)) ~  xyz(E \ +  E^D2 +  D2x{^1)) W 

=  xyz(E 2D 2 +  D 2 D 2 D 2 )(t) = 0  (mod hit),
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hence monomials in the form [3331] are hit. Prom

D2(x3yz2t2) =  xByz2t2 +  x3ysz2t2 (mod 2),

D2(xy3z2t2) = x3y3z2t2 +  a:y5z2t2 (mod 2 ),

we get

x5yz2t2 — x 3y3z2t2 ~  xy5z2t2 (mod hit). (50)

Also

E 2 (x2y2zt) = x Gy2zt  +  x2yQzt 4- x2y2z3t 3 (mod hit), (51)

xbyz2t2 -  xbyEl(zt)  =  {(x(E2))(x5y))zt

=  (E2(x5y))zt = x 6y2zt (mod hit), (52)

by Theorem 2.9. By applying a suitable permutation on (52), we get

xy5z2t2 =  x2y6zt (mod hit), (53)

By (50), (51), (52) and (53), we get x 2y2zHs is hit. So the monomials in the form

[3322] are hit and monomials in the forms [6211] and [5221] are hit as well by the

above relations.

We have carried out some calculation with < <  Maple > > . By our calculation 

result, the dimension of the cokernel in degree 8  and the dimension of the cokernel 

in degree 9 are 6 , the dimension of the Cokernel in degree 10 is 7. Monomials 

in the form [4321] are not hit. Any monomial in the form [4321] generates all 

monomials in the form [4321] and 6  monomials in the form [5311] generate the 

other non—hit monomials. We will give a proof for the general case of the cokernel 

in degree 2 m +  2  in Section 6 .8 .
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6.3 M onom ials in th e  form  [a(2*)(2fc)l] for I > k  > 1

We need to check the monomials in the form [a221j. We will firstly check monomi­

als in the form [a421], the result is needed for the [a221] case. We will also check 

a general case for the monomials in the form [a(2 z)(2 fc)l], the result is needed in 

the proofs of some other results in the remaining content of this section.

Proposition 6.7 A monomial in the form [a421] is hit under the action o fD 2 , 

if a, > 7  and a =  3 (mod 4).

Proof: Look into the proof of Proposition 5.20, the operations used in the 

proof are Djf s, E f  and E f , they have no effect on yA. So we have:

D2(xa~2yAzt2) = xayAzt2 +  xa~2yAz3t2 (mod 2).

E 2{xa~ Y z t 2) =  x ayAzt2 +  xa~2i /zH 2 +  x a~ Y z t Q (mod 2 ).

We have that x a~AyAztG is hit. Also

D±(xa~AyAz2t) =  x ayAz2t -f £a“4y4£2£5 (mod 2).

D i(£a- y  zt5) =  x a~3yAzt5 +  xa~ \ / z H 5 +  xa~ Y z t 6 (mod 2 ).

We get x ayAz2t H- xa~3yAzt5 =  0 (mod hit). By Lemma 6.3,

a ^ =  xa~3yAzt5 (mod hit),

since the 1st digit of the binary expansion of a — 5 is 1 and =  0 (mod 2). 

Hence x a~3yAzt5 is hit, and so x ayAz2t is hit. □

Note that x ayAz2t in degree 2m +  2 for m  > 4 is hit by Proposition 6.7.

Proposition 6.8 A monomial in the form [a421] is hit under the action of V 2 

if it is not in degree 2m and a > 4.
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Proof: By Lemma 6.1 and Proposition 6.7, we only consider an a where a\ — 0, 

a0 =  1, i.e. a =  1 [mod 4).

(1) Suppose there is an = 0 for 3 < i < n  — 1. By Lemma 6.3,

E f1 (xa~2ly4z2t) =  xayAz2t +  ^  ^ ^ jx a~Ay8z2t (mod hit), (54)

fa — 2 ®\
since ai =  0 , f ^  2  / ^  ^ (m °d 2 ) and hence if z2 changes to zA then the two

odd exponents must change to even as well, and then the term is hit by Lemma 
fa  — 2 *\

6.1. Also I . 1 = 0  (mod 2) unless a<i — 1. Then the 2nd digit of the binary

expansion of a — 4 is 0. So by Lemma 6.3,

^ v w * ) = (° 4 4Lv 22*+
=  xa~Ay8z2t (mod hit),

a  ̂ ^  x a 2yAzH +  x a Ay8z2t

since the 1st and the 2nd digits of the binary expansion of a — 4 are 0’s, we have

 ̂ ^  ^  ^ ^  =  0  (mod 2 ). Hence xa~Ay8z2t is hit and by (54) x ayAz2t is

hit as well.

(2 ) Suppose a\ = 0 and =  1 for i ^  1 , i.e. a — 2 m — 3 for m  > 3. Then by 

Lemma 6.3,

E 2 (xa~2yAz2t) =  xayAz2t +  xa~2yAzH (mod hit), (55)

and

xa~2yAzH — E l(yz)xa~2t =  ( x ( ^ 2)(xa~2t))yz

=  xa+Ayzt +  x a+1yztA (mod hit), (56)

since x (^ f)  =  ^ 3  (mod 2 ) by Example 2.8.

By Lemma 6.1 and since =  0 (mod 2 ), we get

E f(x ayzt) = x a+1y2z2t2 +  xa+Ayzt = x a+iyzt (mod hit),
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hence x a+Ayzt  is hit. Also

E f(x a+1yzt2) =  xa+1yztA +  xa+3yzt2 (mod hit). (57)

Now a H- 3 =  2 m for m  > 3, so

E f(x a~1yzt2) = ^ ^ j x a+1yztA ~\~xa+3yzt2 = x a+3yzt2 (mod hit),

b , L.m .  6 . 3 - ( • ; ' ) = •  2). H . .«  I. bit to  (67)

cca 2yAzH is hit by (56). Finally x ayAz2t is hit by (55).

(3) The only case left is a\ = a,2 =  0  and ai =  1 for i /  1, 2 , i.e. a = 2m — 7

for m  > 4. But then x ayAz2t is in degree 2 m. □

Proposition 6.9 A monomial in the form [u221] is hit under the action of T>2 

if a > 6  and it is not in degree 2m.

Proof: If a is even, then xay2z2t is hit by Lemma 6.1. Let 7 < a be odd.

(1 ) Suppose there is an ~  0 for 2  ^  i > 1 . Let ai be the first 0 counted

from the right for 2  ^  i > 1 , then by Lemma 6.3 and Proposition 6 .8 ,

E f  (xa~2ly2z2t) = xay2z2t -f x a~2yAz2t +  xa~2y2zH +  rxa~AyAzAt

= xay2z2t -f rxa~AyAzAt  (mod hit),

where r = f  . , | . If r  =  0 then xay2z2t is hit, otherwise by Lemma 6.3 and
\2 l — 4 / y J

Proposition 6 .8 ,

Ef (xa~AyAz2t) = xa~AyAzH +   ̂ ^ xa~2yAz2t = x a~AyAz4t (mod hit).

.a„,2 „2Hence x ay z t is hit in this case.
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(2) If a =  2m — 1 for m  > 3, then by Theorem 2.9 and Lemma 6.3 we have 

the following equations,

x ay2z2t — xatEf{yz) = x{Ei)(%at)yz  =  xa+2yzt -f x a+1yzt2 (mod hit), (58)

E\{xa~2yzt) =  xa+2yzt {mod hit), (59)

E* {xa~3yzt2) = xa+1yzt2 +  ^  ^  xa~1yztA ~  x a+1yzt2 (mod 2 ). (60)

For (59), ^  ^ =  0 (mod 2) for 1 < i < 4, unless i =  1 or 4. For (60),

 ̂ ^  = 0  (mod 2) since the 1st digit of the binary expansion of a — 3 is 0. By 

(58), (59) and (60) xay2z 2t is hit.

(3) The only case left is 0,2 =  0  and aj =  1 for j  ^  2 . But then the monomial 

is in degree 2m. □

P ro p o sitio n  6 . 1 0  A monomial in the form [a(2*)(2J)l] fo r i,  j  > 1 is hit under 

the action o fV  2, if it is in a degree > 1 1  which is not 2 m.

Proof: By the previous discussion, we may assume that i-\- j  > 4. If a is even, 

then xay2%z23t  is hit by Lemma 6.1. Let a be odd. We may assume that j  > i. If 

i =  1 , we go to (2 ). Suppose i > 2 .

(1) We claim that xayTz23t is either hit or =  x a+2t ~4y4 z231 {mod hit). We 

argue by induction on the exponent of y. If i > 2, by Lemma 6.3 and since 

^  ^ =  0 {mod 2) unless 5  =  0, or 2*“ 1,

Ei 1 {xay21 1z2,Jt) = xay2lz23t  +  rxa+2* 1y2' 1 z2Jt {mod hit),

where r = 5 no^e °Pera^ on ^as n 0  effect on the exponent of z

since i < j.
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We get that if r  =  0 (mod 2) xay2*z23t  is hit, otherwise 

xay2tz23t =  xa+T 1y2,1 1 z23t (mod hit).

By the induction hypothesis, we must get x ay2'z23t  is either hit or

xay2iz2jt = x a+2i~ Y * 2it {mod hit). (61)

Then also by Lemma 6.3

E\{xa+2l~Ay2z231) =  xaA'2l~AyAz231 +   ̂ ^ Sj x a+2,t~2y2z 231 (mod hit).

+  2  4^ ^   ̂ (mod 2 ) then xa+2l~AyAz231 is hit and hence xay2* z23t is

hit by (61). Otherwise

x ay2% z23t = x a+2%~AyAz 231 = x a+2l~2y2z231 (mod hit)

and the 1 st digit of the binary expansion of a +  2 * — 4 is 1 . So the 1 st digit of the 

binary expansion of a +  2l — 2  is 0 .

(2 ) Let a' = a +  2l — 2. We claim that either xa'y2z23t is hit or 

xa'y2z23t ~  x a+2j+2'~6y2zAt {mod hit).

We argue by induction on the exponent of z. By Lemma 6.3 and since
. 7 - r

^  ^ =  0  (mod 2 ) unless s = 0  or 2 5 1,

E f  1(xa'y2z23 *£) =  ^ j_i 2 j xa'+23 1 2y^z2J lt + x a'y2z23t- \-rxa'+23 1y2z23 1t

=  xa'y2z23t +  rxa'+23 1y2z23 *t {mod hit), 

a' \  (  a'
where r =  2 /  ^  ^ {mod 2 ) since the 1 st digit of the binary

expansion of a' is 0. Hence x a'y2z23t is hit if r = 0 {mod 2), otherwise

xa'y2z231 =  rca,+2J 1y2z23 *t {mod hit).
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Note the 1st digit of the binary expansion of the exponent of o! +  2J _ 1  is still 

0 for j  > 2, we can repeat again if the exponent of z > 4. By the induction 

hypothesis, we must get either xa'y2z23t is hit or

xa'y2z23t =  x a"y2zAt (mod hit), (62)

where a" — a +  2J +  T  — 6 . x a"y2zAt  is hit by Proposition 6 .8 , since it is not in 

degree 2 m. Hence x ay21 z23t is hit by (61) and (62). □

Corollary 6.11 A monomial in the form [ab{2*)(2J*)] for i, j  >  1 is hit under

the action of V 2 if  it is in a degree > 1 1  which is not 2 m.

Proof: If any of a, b is even then the monomial is hit by Lemma 6.1. If one 

of a, 6  =  1, then x aybz2lt23 is hit by Proposition 6 .1 0 . Suppose 1 < a, b are 

odd. Db-i{xayz2%t23) ~  x aybz2tt23 + xa+b~1yz2lt2i (mod 2). xa+b~lyz2Xt23 is hit by

Proposition 6.10, hence x aybz2lt23 is hit. □

6.4 M onom ials in th e  form s [a211] and [a lll]

P ro p o sitio n  6.12 A monomial in the form [a211] is hit under the action of 7)2 , 

if a > 8  and there is an =  0  for i > 2  in the binary expansion of a.

Proof: Suppose a* =  0 for some i > 2, then

E f ( x a~2%y2zf) = xay2ztA- ^  ^ ^ jx a~2y4zt (mod hit),

( a — 2 iN\
2i 2 ) ^  ^ {mod 2).

fa  — 2 ^\
Suppose I ^ 1 ^ 0  {mod 2) then aj = 1 for 1 < j  < i  — 1. Hence the 1st

digit of the binary expansion of a — 2 is 0. So

E 2{xa~2y2zt) =   ̂ ^ xay2zt +  xa~2yAzt =  xa~2yAzt {mod hit),
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by Lemma 6.3 and y  ^ j  = 0 (mod 2). Hence x ay 2z t  is hit. □

Proposition 6.13 A monomial in the form [a211] is hit under the action ofT>2, 

i f  8 < a is even and it is not in degree 2m.

Proof: D 1{xa~1y2zt) =  xay2zt 4 - x a~1{y2z2t 4 - y2zt2 4 - yz2t2) (mod 2 ). But 

monomials in the form [(a — 1)221] are hit by Proposition 6.9. □

Proposition 6.14 A monomial in the form [a211] is hit under the action o fV 2 

if a > 8  and it is not in degrees 2m, 2m 4-1 and 2m 4- 3.

Proof: A monomial in the form [a211] is not hit if it is in degrees 2m, 2m 4 -1 

and 2m 4 - 3 by Lemma 6.2 and Lemma 6.4. By Proposition 6.12 and Proposition 

6.13, the only case which has not been discussed is a\ =  0 and =  1 for i ^  1 in 

the binary expansion of a, but then the degree is 2 m +  1 . □

Proposition 6.15 A monomial in the form [a lll] for a > 8 is hit under the 

action of V 2) if it is not in degrees 2 m, 2m 4 -1 and 2m 4 - 2 .

Proof: If x ayzt  is in degrees 2m, 2m +  l  and 2m +  2, it is not hit by Lemma 6.2. 

Let anan- i . . .  a0 be the binary expansion of a. Suppose x ayzt  is not in degrees 

2 m, 2m +  1 and 2 m 4 - 2 , then there is an at — 0  for i > 2 or ao = a± = 0  in the 

binary expansion of a.

(1) Suppose a0 =  a\ =  0, then

E\{xa~2yzt) = xayzt  4 - xa~2{y2z2t  +  y2zt2 +  yz2t2) {mod hit).

But monomials in the form x a~2y2z2t are hit by Proposition 6.9. Hence xayzt 

is hit in this case.
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(2) Suppose a,i = 0 for some i > 2 and if i > 2 then dj — 1 for 2 < j  < i.

a) If dQ — 0, then

E i'(xa~2*yzt) = x ayzt +  x a~2(y2z2t +  y2zt2 +  y2 2t2) =  x ayzt (mod hit),

again by Proposition 6.9.

b) If do =  1, then

E f  (xa~2lyzt) ~  x ayzt  +  xa~1(y2zt  +  yz2t +  yzt2) +  x a~2(y2z2t  +  y2 ^ 2 +  yz2t2) 

= x ayzt  +  a;a_1 (y2̂ t +  yz2t +  yzt2) = xayzt  (mod hit),

by Proposition 6.9 and since D \(xa~lyzt) =  xa~1(y2zt  +  yz2t +  yz t2) (mod 2 ).

Hence rray2:t is hit and so monomials in the form [a lll] are hit if they satisfy 

the condition. □

T heorem  6.16 A monomial xaybzctd with two exponents even is hit under the 

action o fV 2 , if it is in a degree > 1 1  which is not 2 m.

Proof: If three or four of a, b, c, d are even then x aybzctd is hit by Lemma 6.1. 

Let two of a, b, c, d be even and the other two be odd. We may assume that a, 

b are even and c, d are odd. Since

Dd-i(xaybz ct) = xaybzctd +  xaybzd+c~1t (mod 2 ), (63)

we may only consider the monomials in the form [abcl] where a, b are even and 

c is odd.

(1 ) If c =  2h — 1, we move to (2 ). Suppose c /  2n — 1 for any n > 1. 

Let k be the number of l ’s in the binary expansion of c. Then by Lemma 3.15, 

zc =  D (z2k" 1) (mod 2) where D is a composition of some E [’s. Hence by Theorem 

2.9,

xaybz°t = (D(z2k~1))xaybt =  z2k~1(x(D))(xaybt) (mod hit). (64)
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Let D' ~  x{D) which is a sum of some compositions of 2S[’s. We may see this 

by considering x to be the conjugate of the Steenrod algebra since there are only 

E[ operations involved in D. We have

z2k~1(Df(xaybt)) = z2k~H(Dr(xayb)) =  fiZ2k~H (mod hit), (65)
i

where each fi is a monomial in x , y which has two even exponents. This is 

because that a, b are even and D’ is a sum of some compositions of E{Js, if the 

exponent of t of a term in z2h~1D,(xaybt) changes, it can only change to 2  firstly. 

Then the term is hit by Lemma 6.1. So we shall only consider the terms which 

have the exponent of t remaining unchanged. Also the exponents of x and y will 

remain even in the process. So we only consider monomials in the form xuyvz 2k~1t 

where u, v are even in z2k~1D'(xaybt).

(2) Now

D 1(xu~1yvz2k~1t) =  xuyvz2k~H +  xu~lyvz2kt  +  xu~lyvz2k~H2 (mod hit). (6 6 )

Let s be the number of l ’s in the binary expansion of u — 1. By Lemma 3.15, 

there is a D  which is a composition of E ^s  and D(x2S~1) =  a;“ _ 1  (mod 2). Hence 

by a similar argument as what is used in part (1 ),

xu~1yvz2kt ~  (D(x2S~1))yvz2kt ~  x2$~1t(x(D))(yvz2k) (mod hit).

Since x (^ )  is a compositions of E[*s, so each E[ acts on yvz2k, z2k can ei­

ther remain unchanged or be squared, and the exponent of y of each term in 

(x(D))(yVz2k) remains even. Hence we get

xu~1yvz2kt =  x23~ H (J 2 y Viz2i) i^o d  hit), (67)
i

where all v fs  are even. Then for each term x 2S~lyViz2%t, we have



But the last 2  terms are hit by Corollary 6.11. Hence every x 2* 1yVizT t  in 

(67) is hit and so xu~1yvz2kt is hit. For xu~1yvz2k~1t2, we have

D2*_2{x',- 1yvzt2) =  x ^ - ^ z t 2 + xu~1yvz2'‘~H2 (mod 2). (68)

By Lemma 3.15, we may write xu+2 3 — (mod 2 ) for some D  which

is a composition of E['s and s is the number of l ’s in the binary expansion of 

u +  2k — 3. Then by a similar argument,

xu+2k~syvz t2 = (D(x2S~1))yvzt2 =  x2S~1z(x (^ )){y vt2)

=  x2*~1z ( ^ 2 y Vit2') {mod hit). (69)
i

Also by a similar argument, every term in the form x ^ ^ z y ^ t 2' in (69) is hit. 

Hence xu+2k~3yvzt2 is hit and xu~1yvz2,k~1t2 is hit by (6 8 ). So every monomial 

in the form xuyvz2,k~1t in z2k+2~1D,{xuyvt) is hit by (6 6 ). By (63), (64), (65), 

x aybz°td is hit. □

6.5 M onom ials in th e  form  [a321]

Before we prove the [a321] case, we will firstly prove the following lemma which 

is needed for the proof of the [a321] case and for some of remaining part of this 

section.

L em m a 6.17 A monomial in the form [n521] is hit under the action of T>2 , if 

4 < u, u = 0 or 1 {mod 4) and the monomial is not in degree 2m or 2m +  1.

Proof: Let un . . .  u\Uq be the binary expansion of u and U\ =  0. Since u\ =  0, 

u 2m — 5. x uy5z2t  is not hit if u — 2m — 5 by Lemma 6.4. x uy5z2t is not hit
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if it is in degree 2m or 2m +  1 by Lemma 6.2. If u is even then xuy5z 2t is hit by 

Theorem 6.16. Hence we only consider the case where u is odd.

Suppose xuy5z2t is not in degrees 2m, 2 m +  1 and Ui =  0.

a) Suppose = 1, then u > 5. By Theorem 2.9,

=  E K x S y t  = x “- iy (x(El))(zH)

=  xu~Ay{E\ +  D±D$){z2t) = xu~4yz10t +  xu~Ayz2t° (mod hit). (70) 

By Lemma 6.3,

E^(xu~4yzGt) = xu~*yz10t (mod hit),

and

E i(xu~4yz2t5) ~  xu~4yz2t9 (mod hit), 

since the 1st and the 2nd digits of the binary expansion of u — 4 are 0’s and
g\

J =  0 (mod 2), the terms contain are the only terms having nonzero

coefficients in E f(xu~4yzGt). Hence xuyGz2t is hit by (70).

b) Suppose U2 =  0, then u > 9. If there is an Uj — 0 for some j  > 2 , then by 

Lemma 6.3,

+  (^ T .2̂ )““" V * 1* + =  xuybz2t  (mod hit),

/ u _  2  A
because f . j =  0 [mod 2) for s =  2, 4, 6  since the 1st and the 2nd digits 

of the binary expansion of u — 2J are 0’s. Hence xuyGz2t is hit in this case.

c) If Ui = U2 =  0 and all Uj =  1 except for j  =  1, 2, then the monomial is in 

degree 2 m 4 - 1 .

Hence we have proved the result. □
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Proposition 6.18 A monomial in the form  [a321] with a > 6 is hit over ¥ 2 , if

it is not in degrees 2m, 2m +  1 and 2m +  3.

Proof: xay3z2t is in degree 2m if a — 2m — 6 . x ay3z2t is in degree 2m +  1 if 

a = 2m — 5. They are not hit by Lemma 6,2. xay3z2t with a =  2m — 3 in degree 

2m +  3 is not hit by Proposition 6.5.

Suppose x ay3z2t is not in degrees 2m, 2m +  1 and 2m 4 - 3, Let anan- i . .. a0 

be the binary expansion of a. If a is even, then xay3z2t is hit by Theorem 6.16. 

Suppose a is odd, we have the following cases:

(1) Suppose ftj =  0 for some i > 3, then a > 16. By Lemma 6.3,

the 1st digit of the binary expansion of a — 2 is 0. Then by Lemma 6.3,

(71)

Suppose 1 ^ 0  (m °d 2) then aj — 1 for 1 < j  < i — 1. Since a\ = 1,

E 2{xa 2y3z2t) =  x a 2y5z2t +  x a 2y3zH (mod hit). (72)

By (71) and (72), we get:

(73)

( a _  2Z\
If ( 2 » 4  j ^  0 {mod 2 ) then aj — 1 for 2  < j  < i — 1 . Let 0 ,2 =  1 , then the

2nd digit of the binary expansion of a — 4 =  0. Then

E l \ x a- 4~2ly5zH) = xa~Ay5zH +.0 —4—21 5 „4. a -  4 -  2l 
2 * - 4 {xa 8y9zH  +  xa 8y5z8t)

x a~l2y \ H  =  x a~ \ / z H  +  x a~12ygz8t {mod hit), (74)
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/ a _  4  _  2 m
by Lemma 6.3 and f . ^ 1 = 0  {mod 2), since the 2nd digit of the binary

expansion of 2l — 4 is 1 and the 2nd digit of the binary expansion of a — 4 — 2Ms

0 . Also ( “ "  4_ "  2  )  ee 1 ( m o d  2) since the digits between the third to (i -  l)th  

of the binary expansion of a — 4 — 2Z are l ’s. Then

Ei(xa- 12y9z4t) = ( a ~ 12)i*"8!/V t+  Q a M V V i

-\-xa~~12y9z8t =  xa~12y9z8t {mod hit), (75)

fa  — 12\ /9 \
by Lemma 6.3 and ( j =  ( J =  0 {mod 2). By (74) and (75), x a~AybzAt

is hit, hence x ay3z2t is hit by (73).

(2) Let a =  2 m — 1 for m > 3, then a > 7. By the equations

D2{xa~2y3z2t) = xay3z2t +  x a~2y5z2t +  xa~2y3z2t3 {mod 2),

E 2 {xa~2yz2t) =  x ay3z2t 4- xayz2t3 +  x a~2y3z2t3 +  x a~2yz6t {mod hit), 

we get:

xayz2t3 =  xa~2y5z2t  +  x a~2yzH = xa~2yzH {mod hit), (76)

by Lemma 6.17, since the 1st digit of the binary expansion of a — 2 is 0. For 

xa~2yz6t, we have:

Di{xa~2yz5t) = x a~1yz5t +  xa~2yzH  +  xa~2z6{y2t  +  yt2)

=  £g_1?/2 5£ +  x a~2yz6t {mod hit), (77)

again by Lemma 6.17.

E \{xa'~1yz3t) = xa~'1yz5t +  a;a+1y^3£ {mod hit). (78)

a +  1 — 2m for m  >  3, then

E f{xa~3yz3t) =  a:a+1?/^3£ +  ^  =  rca+1?/£3£ {mod hit),
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by Lemma 6.3 and the Oth and the 1st digits of the binary expansion of a — 3 are 

0’s s o (  2 ^ = 0  {mod 2). Hence x a~1yz5t is hit by (78) and x a~2yz6t is hit

by (77). So x ayz2t 3 is hit by (76) and x ayzz2t is hit as well by symmetry.

(3) If an odd 2 m — 1 , 2 m — 3, 2m — 5 and all the ai =  1 for i > 3, then

clq — 1 and a\ = a2 =  0, i.e. a =  2m — 7 for m > 4.

E f {xa~4y3z2t) =  xay3z2t +  ^  2  ^ x a~2{y5z2t +  y3zH) +  xa~4y5zH

=  £a?/ 2  i +  cca 2/ 2; t {mod hit), 

by Lemma 6.3 and ^  2  ^  ~   ̂ {mod 2). Then

El{xaS / z 2t) =  xaS f z H  + ( “ “  4)  xa- \ / z h  +  (®) xa~4y7z2t

= x a~4y5zH {mod hit),

bj' Lemma 6.3 and  ̂ ^  — ^2^ — 0 {mod 2 ). Hence x a~Ay5zH is hit and so 

x ayzz2t is hit in this case. □

6.6 M onom ials in th e  form  [a311]

Corollary 6.19 A monomial in the form [a&ll], where a — 2l — 1, b =  2k — 1, 

is not hit under the action o fV 2.

Proof: By Proposition 6.5. □

Proposition 6.20 A monomial in the form [a431] is hit under the action o fV 2} 

if it is not in degree 2m or 2 m +  1 .
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Proof: Let an . . .  a$ be the binary expansion of a. A monomial xay3z4t is hit 

if a is even and the degree is not 2m by Theorem 6.16. We may assume that a is 

odd.

(1) Suppose =  1 . By Theorem 2.9,

x ay3z4t =  {E2{xa 2y))z4t = x a 2yx{E2){zH)

x a~2y(El  +  D2D2){zH) ~  xa~2yzH5 {mod hit).

By Lemma 6.3

E \{xa 2yz2t5) = x a 2yzH5 (mod hit)

since
a  —  2 

2
0  {mod 2 ) as the 1 st digit of the binary expansion of

a — 2 is 0. Hence the monomial xay3z4t is hit in this case.

(2 ) Suppose ai = 0. Then by Lemma 6.3,

E \{xayzz2t) =  xay3z4t T  x ay5z2t = x ay3zAt {mod hit),

since x ay5z2t is hit by Lemma 6.17 as the degree is not 2m +  1.

Hence monomials in the form [cz431] are hit, if it is not in degree 2m or 2m +1.

□

P ro p o sitio n  6 . 2 1  A monomial in the form [u311] is hit under the action ofT>2, 

if it is not in degrees 2m, 2m +  1 , 2m +  2 and 2m +  4.

Proof: x ay3zt  is in degree 2m if a = 2m — 5. xay3zt is in degree 2m +  1 if 

a = 2m — 4. xay3zt  with a — 2m — 3 is in degree 2 m +  2 . They are not hit by 

Lemma 6 .2 . x ay3zt with a — 2m — 1 in degree 2m +  4 is not hit by Proposition 6.5.
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We only need to decide those cases in which a ^  2m — 1 , 2m — 3, 2m — 4, 2m — 5. 

Let an . . .  a ia 0 be the binary expansion of a.

(1) Suppose a is even, a 7  ̂2 m — 4.

a) If there is an a* =  0 for i > 2, then

15i*(a;a”2’y32tf) =  ^ a ; a_2y5 2:t (mod hit),

/ a  — 2 *\
by Lemma 6.3. If f  ̂ J 7* 0 (mod 2 ) then aj = 1 for 1 < j  < i — 1. So the 

1 st digit of the binary expansion of a — 2  is 0 , so

E 2{xa~2y3zt) = ( ^  2  ^ V ^  +  £a“V ^  =  x a~2ybzt {mod hit),

by Lemma 6.3 and ^  2  ^  =  0 (mod 2 ). Hence x a~2y5zt is hit and so x ay3zt is 

hit as well.

b) If clq — 0 and all — 1 for i > 1, i.e. a = 2m — 2. By Theorem 2.9 and 

Lemma 6.3, we get

E 3{x2m~ V z ) t  = x2m~2y3zt +  a T - V z t  +  x 2™~3y3z2t

+x2™~Ay6zt +  x 2™~6yGzt +  x2m~5y5z2t {mod hit),

E 3{x2m- h / z ) t  ee x 2m- y z { X{E3)){t)

= x2rn~5y3z{ElDi{t)) = x 2™~5y3zt‘4 =  0  (mod /rzt), 

by Proposition 6.20. Hence

x2m~2y3zt +  z2m- y  +  x2'n~3y3z2t +  z2m- y

+a;2m_5y6zt +  x 2m~5y5z2t =  0 (mod hit). (79)
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By Lemma 6.3 and since ^  ^ ^  =  0 {mod hit),

E 2{x2m~6y 5zt) = x 2m~4y 5z t  {mod hit), (80)

Ef{x 2m~3 y 2 zt) = x 2m~3 y4zt (mod hit). (81)

By Theorem 2.9 and Proposition 6.20,

(o;2m- y  +  x 2m~5 y 5 )z2t =  (E 2 (x2m~5 y 3 ))z2t = x 2m~5 y 3 {x{E2 )){z2 t)

= x 27n~3 y 3 (E\)(z 2 t) =  x 2™~5 y 3 z4t = 0 (mod hit), (82)

Hence by (79), (80), (81) and (82), we get:

x 2m~2 y3zt 4 - x 2m~5 y6zt = 0 (mod hit). (83)

By

E%(x2m~5 yz 2 t) =  x 2m~1yz2t 4 - x 2™~3 y 3 z2t 

4 -x2m~3 yz 2 t 3 4 - x 2 m~3 yz6t 4 - x 2m~5 y 3 z2t3 (mod 2 ),

D 2 (x2m~3 yz 2 t) =  x 2™'~1yz2t 4- x 2m~3 y 3 z2t 4 - x 2m~3yz2t3 (mod 2 ),

we get,

x 2™~5 yz6t =  x 2™~5y 3z 2 t 3 (mod hit). (84)

Prom

D 2 {x2m~6 y 3 z 2 t) =  x 2m~3 y 3 z2t 4 - x 2m~5y 5 z2t 4- x 2m~5 y 3 z 2 t 3 {mod 2), 

and (82), we get

x 2m~ V z 2 t 3 =  0 {mod hit). (85)

By (83), (84) and (85) x 2™~2 y3zt is hit in this case.

(2 ) Suppose a is odd and a ^  2 m -  1 , 2m — 3, 2 m — 5. We have the following

cases:
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c) If there is an a* — 0 for i > 3, then by Theorem 6.16,

Ef* (xa~2% y 3 zt) =  x ay3zt -f (mod hit). (8 6 )

fa  — 2 iN\ fa  — 2{\
K ( 2* — 2 J ~  ° m̂°d 2^  th0n X̂ zt is hit. If f ^ j ^  0 (mod 2 ), then 

ox — 1) so the 1st digit of the binary expansion of a — 2 is 0. Then

E\{xa~2 y 3 zt) =  x a~2 y5zt (mod hit), (87)

we truncate the remaining terms by Theorem 6.16. Hence x a~2 y5zt is hit and

hence x ay3zt is hit by (8 6 ) in this case.

d) If all Oj =  1 for i > 3 and a ^  2m -  1, 2m — 3, 2m — 5, then a\ = a2 = 0,

i.e. a — 2m — 7. For this case,

E 4 (xa~4 y 3 zt) =  x ay3zt +  ̂ ^ j x a~2 y3zt =  xay3zt (mod hit),

we truncate the remaining terms by Theorem 6.16 and ^  2  ^  ~  ^ (mod 2 ). So 

x ay3zt is hit.

Hence monomials in the form xay3zt are hit if they satisfy those conditions.

□

6.7 M onom ials in th e  form s [a(2k — 1)(2&)1] 

and [a (2 * -l) (2 *  +  l) l]

P ro p o sitio n  6.22 A monomial in the form [a(2 fc — l)(2fc)l] for k > 2 is hit 

under the action of'D2) if it is not in degree 2 m or 2 m +  1 .

Proof: A monomial xay2k z2k~H is hit, if a is even and the degree is not 2m by 

Theorem 6.16. Suppose a is odd. Let anan- 1 . . .  a0 be the binary expansion of a. 

We have the following cases:
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(1) If a0 =  ai =  1 then because operations D 2k_ 2 and E 2k _ 2 have no effect on 

z2k, we get:

+ xa- 2k+2y2'‘- 1z2kt2h- 1 {mod 2), (88)

£ & _ 2(s“ - 2‘ +V ‘ *) =  ( “  _  ^  +  2)  xa+2k~2yz2ht 

+ x ay2k~1z2kt +  xayz2kt2k~1 + x ^ + Y ^ z ^ t * - 1

=  x Y ^ ^ t  +  xayz2k1?k- 1 +  x ^ + Y ' - ' z ^ t 2' - 1 (mod 2), (89)

f 2 k\
by Lemma 6.3 and I . 1 = 0  unless j  — 0 for j  < 2. Also since ai =  1 and k >  2, 

2 + 2 ^  0 (m od2 ).

By (8 8 ) and (89), we get: a;a?/2 2fct2fc_1 =  £a_2fc+22/2fc+1_3 2 2fct (mod hit). Then

E K x ^ y ^ ^ z ^ t )  =  a:‘‘“2ft+2y2t+1- 3 / ' ‘t +  ( ^ ^  3 )a ;“- 2y * +1- V ‘t

=  a;0-2* +2y2l!+1 ~3z2kt {mod hit),
/  2 ^ + 1  3\

by Lemma 6.3 and ( j =  0 (mod 2). Hence x ayz 2kt2k~ 1 is hit, and by

symmetry, x ay 2k~1 z2kt is hit too.

(2 ) Suppose a0 =  1 and ai =  0. Note that the total degree is not 2 m +  3, since 

a± = 0. By Lemma 6.3,

E \{xa~2 y2,k~1 z 2 kt) — x ay 2,k~'1 z2kt +  xa~2 y 2k+1 z2kt. (mod hit) (90)

We claim that either x a~2 y2 k+1z2kt is hit or =  xa+2k~4 y3 z2kt  (mod hit). We 

argue by induction on the exponent of y. By Lemma 6.3

E f~ 1{xa- 2y2k̂ +1z2kt) =  xa~2y2k+1z2kt +  rxa+2kl~2y2k~l+1z2kt {mod hit),
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f a -  2 \  / 2 k~l + 1 \  . .
where r = I ^ k_ x I , since I I =  0  (mod 2 ) unless s =  0 , 2 *' for s even.

If r =  0 (mod 2), then x a~2 y 2 k + 1  z2ht as well as x ay 2k~1z2,kt  is hit. If r =  1 (mod 2),

x a~2 y 2k+1z2kt =  a;a+2fc 1~2y2,k l+1 z2kt  (mod hit).

We may repeat the procedure on za+2A:~1~2?/2A:-1+1;>:2̂  if k — 1 > 1. By the 

induction hypothesis, we finally will get either xa~2 y 2k+1 z2kt  is hit or

x a~2 y 2 k + 1  z2kt = x â 2k~^yzz2kt (mod hit). (91)

Let a' — a 4- 2h — 4. Note that the 1st digit of the binary expansion of a' is 0, 

since ax =  0  and k > 2 .

We claim that either xa’y 3z2kt is hit or

xa>y 3 z2kt  =  x uy3zH (mod hit)

where u = a' +  2 k — 4 =  a-H 2 k + 1  — 8 . We argue this by induction on the exponent 

of z. Suppose k > 2 , by Lemma 6.3,

= xa'y3t ? t  + L _ “'_

+  x'‘‘+2h V v 1 11 = xa'y'^z^i +  (rf. 4) xa'+?,L 1y3z2>‘ ' t  (mod hit).

This is because that the 1st digit of the binary expansion of a' =  0, so 

^ 2 *-^ 2 )  ^  ^ {mod, 2) and ^  ^ =  0  (mod 2 ) unless j  =  0 , 2 k~1. If

= 0  (m °d 2 ), xa' y 8 z2kt is hit otherwise

xa'y 3z2kt = x a'+2k 1y3 z2h *t (mod hit).

We may repeat the procedure on x a'+2k kyzz2k kt with E fk 2, if k — 1 > 2. By 

the induction hypothesis, we finally will get either x a'y 3z 2kt is hit or

x a'y 3 z2Kt ~  x a + 2 k + 1 ~8y3zH =  0 (mod hit), (92)
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by Proposition 6.20.

Hence by (90), (91) and (92), xay 2k~1z2kt is hit and hence the monomials in 

the form [a{2 k -  l ) ( 2 fc)l] are hit. □

We have got a partial result for the monomials in the form [a(2k — l)(2fc +  l)l]. 

For the cases we have not proved, we have a conjecture on them in Section 6 .8 .

Proposition 6.23 A monomial x ay 2>i+1z2k~1t in degrees > 11, where k > 2  and 

4 < a =  0 or 1 (mod 4), is hit under the action ofT>2 , if the monomial is not in 

degree 2 m or 2 m +  1 .

Proof: By Theorem 6.16,

E 2 (x“~2 y 2 k + 1  z2 t ~1t) =  + x ^ y ^ + ' z ^ + H  (m o d  hit). (93)

Note that the 1st digit of the binary expansion of a — 2 is 1. We now consider 

the monomial xa~2 y 2k+1 z 2k+1t.

(1) Suppose a is odd. Then by Theorem 2.9,

xa~2 y 2h+1z2k+1t ~  (E\k{yz))xa~2t

= yz(x{E 2k))(xa~2 t) =  yz(E 2k +  D 2kD2k)(xa~~2 t)

=  yz{xa+2k+l~2t  +  xa+2k~H2 k + 1  +  D 2k{xa+2k~2t +  x a~2 t2k+1))

=  yz(xa+2k~2 t2k+l xa~2 t2k+1+1) (mod hit). (94)

^  0  (mod 2 ) unless r = 0  or 2 k for r  even,By Theorem 6.16 and
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If ^ 2 * :^  ^  ^ {mod 2), then by (93) and (94), xay 2,k+1 z2k~1t is hit. In 

particular, xay 2 k + 1  z2k~H is hit when a =  2 m — 2 k + 1  +  1 for m  > k +  1 , i.e. the 

monomial is in degree 2 m +  2 .

Suppose ^ 2 * :^  =  ® {mod 2) and so the degree is not 2m +  2. Then 

x a~2 yzt2 k + 1 + 1  is hit by (95), so from (93) and (94),

x ay 2k+1 z2k~H = xa+2k~2 yzt2 k + 1  {mod hit). (96)

We claim that x a+2k 2yzt2 k + 1  is either hit or =  £ a+2,:+1 4yzt3 {mod hit). We

argue by induction on the exponent of t.
f2 k~l 4 -1\

By Theorem 6.16 and ( j ^  0 {mod 2) unless s =  0 or 2k~x for s

even,

E 'f  1 {xa+2k~2 yzt2k 1+1) =  rxa+2,k+2k x~2 yzt2k 1+1 +  x a+2k~2 yzt 2 k + 1  {mod hit) ,

where r  =  ^  ’ ^ ence if  ̂=  0  {mod 2 ), x a+2k~2 yzt2 k + 1  is hit, otherwise

x a+2 k~2 yzt 2 k + 1  = xa+2fc+2fc"1- 2y^ _ 1 + 1  {mod hit).

If A: > 2 , we may repeat the procedure by applying E fk 2 on ^a+2/J+2fc l~2 yzt2k 1+1. 

By the induction hypothesis we get either xa+2 k~2 yzt2 k + 1  is hit or

xa+2k~2 yzt2 k + 1  = x ^ ^ y z t 3 {mod hit).

Since the 1st digit of the binary expansion of a is 0, the 1st digit of the binary 

expansion of a +  2k + 1  — 4 is 0. Hence the monomial x â 2k*x~^yztz is in degree 

a + 2 fc+1-f 1 which is ^  0 {mod 4), hence it is not in degree 2m +  4. By Proposition 

6.21, x a+2k+1~4 yzts is hit if it is not in degrees 2m, 2m +  1, 2m +  2 and 2m +  4. 

We know that x a+2k+x~Ayzt3 is not in degrees 2m, 2m +  1 and 2m +  2 as well. 

Hence x ^ ^ ^ y z t 3 is hit and so xa+2 k~2 yzt2 k + 1  is hit. Then finally by (96), 

x ay2 k+1 z2k~1t is hit in this case.
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(2) Suppose a is even, i.e. a = 0 (mod 4). Then by Theorem 2.9, 

x a- 2 y 2k+1 z2k+1t = (E 22k(yz))xa~2t = yz (x (E 22k))(xa~H)

= yz(E2k +  D 2kD2k)(xa~2 t) = yz(xa+2k+1~2t +  D 2 k(xa~2 t2k+1))

=  yz(xa+2k+1~2t +  xa~2 t2k+1+1) (mod hit). (97)

By Lemma 6.15, x a+2k+1~2yzt is hit since it is not in degrees 2m, 2 m+ l,  2 m+ 2 . 

By a similar argument as the part (1) of this proof, we get x a~2 yzt2 k + 1 + 1  is 

either hit or =  x a + 2 k + 1  ~Ayzts (mod hit). Also the monomial is not in the degree 

2 m +  4 since the degree of the monomial is odd. Hence xa~2 y 2k+1z 2k+1t is hit and 

x ay 2k+lz2k~1t  is hit for this case. □

P ro p o sitio n  6.24 A monomial in the form xay 2k~1 z2,k+1t for k > 2 is not hit 

under the action o fV 2, if a is one of the following cases:

(1 ) 2 m — 2 fc+1? where m > k +  1 .

(2 ) 2 m — 2 fc+1 — 1 , where m  > k +  1 .

(3) 2 m — 1 ; where m  > 1 .

(4) 2 m — 2 k — 1 , where m  > k.

Proof: For case (1), the monomial is in degree 2m +  1. For case (2), the 

monomial is in degree 2 m. They are not hit by Lemma 6.2. For case (3), xat and 

y 2k- i z 2k+i are n0£ por case (4 ^  ^ a ^ + i  an(j are not hit. Hence they

are not hit by Proposition 6.5. □
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6.8 Som e resu lts on th e  cokernel and som e conjectures

In this subsection, we will analyse the cokernel in degree 2 m 2 for m  > 4. This 

is the simplest case of the degrees which contains a set of representatives of a 

subspace of the cokernel. Then we will give some conjecture for the monomials 

which we have not proved.

P ro p o sitio n  6.25 In degree 2m -f 2 ; every monomial x ayhzt where a, b are odd 

is congruent (mod hit) to a monomial in the form of x 3sm~^>+1 y2k~1zt where k is 

the number of 1 *s in the binary expansion of b.

Proof: x aybzt is not hit by Lemma 6 .2 . By Lemma 3.15, there is a D  which 

is a composition of some s, such that D(y2k~1) = yb (mod 2) where k is the 

number of l ’s in the binary expansion of b. By Theorem 2.9,

xaybzt = (D(y2k~1 ))xazt =  y2k~1 (x(D))(xazt) (mod hit),

where x(D)  is a sum of compositions of E\ operations. Since the degree of 

(x(D))(xazt) is odd, in (x(D))(xazt), if an exponent of a term /  is even then 

there are two even exponents in / .  Then /y 2*- 1  is hit by Theorem 6.16. By a 

similar argument as the proof of Proposition 5.12,

y2 ^ 1 {x(D))(xazt) = y 2k~1 zt(x(D))(xa) (mod hit).

Then (x(-D))(£a) has to be x 2m ~ 2 k + 1 since the degree is 2m +  2 and the mono­

mial is not hit. □

P ro p o sitio n  6.26 In degree 2 m +  2 , a monomial x 2m~2 kJrly2k~xzt is congruent 

(mod hit) to x 2™ 1+1y2m 1_1 zt.
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Proof: The argument is similar with the proof of Proposition 5.13, since the 

operations in that proof are E \}s for i > 2 . Hence the exponents of z  and t 

of a term in the image of an operation in the process will keep to be l ’s, since 

otherwise the term is hit by Theorem 6.16. □

P ro p o sitio n  6.27 In degree 2m +  2 for m > 4, the cokernel is 6  dimensional 

and a basis is given by the following 6 monomials:

x y ^ - ^ z ^ - H ,  x yV '- '+ 'z iT -1- 1, x y z^ + H 2̂ 1- 1.

Proof: By the previous results, monomials in degree 2m +  2 are hit, except 

the monomials in the form [a&ll] where a, b are odd. By Proposition 6.25 and 

Proposition 6.26, every monomial in the form [a&ll] is congruent (mod hit) to a 

monomial in the form [(2 m _ 1  +  l) ( 2 m - 1  — 1 )1 1 ].

By Theorem 6.16,

E f(x 2m 1~ l y 2m 1~1 zt) = x2™ 1+1y 2™ l~lz t J\- x2™ l~ly2™ 1+1zt (mod hit). (98)

Since m > 4, we are able to apply Theorem 6.16 and truncate the remaining 

terms in (98). If m  < 4, the result is not true. For example, suppose m — 3,

E l(x 3 y 3 zt) = x 5 y3zt  +  x 3 y5zt +  x^yzz2t +  x 4iy 3 zt2 (mod hit).

But a monomial in the form [4321] is not hit.

By applying suitable permutations to (98), we get

x ^ ^ y z ^ - H  =  z 2m"1- 12/2 2ro-1+1i (mod hit),

x ^ + h y z t 2™ - 1 - 1 = x ^ - h j z t 2 ™ - 1 * 1 (mod hit),
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xy2™ l+1 z2m 1 H = xy2m 1 1z2™ 1+1t (mod hit), 

x y ^ - ' ^ z t 2™ - 1 - 1 ~  xy 2,m~1~1zt 2 m ~ 1 + 1  (mod hit), 

x y z ^ + H 2 ™ - 1 - 1 =  xyz 2™ - 1 - 1 ^ - 1* 1 (mod hit).

Hence the 6  monomials mentioned above generate all monomials in the form 

[(2 m~i +  l) ( 2 TTl“ 1 — 1 )1 1 ] and hence generate all monomials in degree 2 m +  2  by 

Proposition 6.25 and Proposition 6.26.

Any of the 6  monomials is not hit by Lemma 6 .2 . A sum of any combination 

of the 6  monomials is not hit too. For example, suppose x 2™ 1^ 1yz2m 1-1t is a 

term in /  which is a sum of some of the 6  monomials, x 2™ 1+1y2m 1~1zt  is the 

only monomial in the form x aybzt where 1 < a, b are odd and a +  b =  2 m in / .  

But the monomials in the form xaybzt where 1 < a, b odd and a +  b — 2m always 

appear in even numbers in any image of the action of V 2 . Suppose we want xaybzt 

where 1 < a, b odd and a +  b — 2m in E^(xuyvzt) = E f(xuyv)E 3 (zt) for
i + j = k

r = 1 or 2 and k > 1. Then xaybzt  appears only in the term E^(xuyv)zt. By the 

proof of Proposition 5.2, the number of monomials in the form x ayb with a, b 

odd and a + b = 2 m in E^(xuyv) is even. So the number of monomials in the form 

xaybzt in the image of E£ operations is even.

Since x2™ 1+1y2m 1~1zt is the only monomial in the form xaybzt  in / ,  /  is not 

hit under any Elf: operations for r — 1, 2 and hence is not hit under any operation 

of X>2 by Theorem 2.7. □

In the 3 variable case, the cokernel in degree 2 m for m > 2  or in degree 2 m + 1  

for m > 3 is a constant. We think that the same thing happens in the 4 variable 

case. By the calculation in Section 6.2, we pose the following conjecture,

Conjecture 6.28 The cokernel in degree 2m or 2m +  1 for m  >  3 is 6 dimen­

sional.
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By the results we have got, we have a conjecture as follows:

C on jec tu re  6.29 The non-hit elements in degrees > 8  ofW2 [x, y>z> t]xyzt lie in 

odd degrees 2m +  1, 2m -f 3 and in even degree 2m, 2m +  2k where m  > k > 1.

Over Q, the product of two Art in elements in sets of distinct variables is 

obviously an Artin element. For the product of two non-hit monomials which are 

not Artin elements in cases we have explored, we can rearrange the exponents and 

make it into an Artin element. Over F2 , from the results we have got, the non-hit 

monomials always appear in even numbers in the image of any operation of XV 

So the product of two non-hit monomials is not hit since it does not appear alone 

in the image of any operation of V p. Hence we pose the following conjecture:

C on jec tu re  6.30 Let X  — { x i ,x 2, .. .x n} and Y  — {2/1, 2/2»■ • -Um} be two dis­

joint sets of variables where X  Pi Y  =  {}. I f  x ^ x ^ 2 ■ • ■ x^n and y^f/22 * • * are 

not hit under the action of V  over an arbitrary field K , where ai,bi G N, then 

x i lxT ' ' '  ’ ' '  Vm1 is n°t hit as well.
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7 T he hit problem  on polynom ial rings o f 2 and  

3 variables over ¥ p

In this section we will investigate the action of T>p on polynomial rings over an 

odd prime field Fp. We will give a minimal generating set for the 2  variable case 

(Theorem 7.4) and a partial result for the 3 variable case. In this section, if we 

write pm without defining m, then we mean m E N. We write the p—expansion 

of a as anan- i  • • • no with ^  0 , we call ai the ?th digit of the p —expansion of 

a. The problem seems harder for the odd prime case. Because there are more 

elements in the field in Fp for an odd prime p, when we apply an operation of V v 

to a monomial, there are more terms in the image in general. So it is difficult to 

follow the method we used over F2.

7.1 T h e h it problem  on a polynom ial ring o f 2 variables  

over Fp

Over a finite field Fp, a generating set under the action of T>p on Fp[:c,p] is an 

infinite set. From Db~i(xay) =  x ayb + axa+b~ly, we get that the set of monomials 

in the form [al] is a generating set of Fp[a;, y]xy.

Lem m a 7.1 Over¥p, x ayb is hit if either of a, b is divisible by p and a-\-b > p+1. 

Proof: By Lemma 3.13 and Lemma 3.14. □

L em m a 7.2 In degree prn, a monomial xayb is not hit under the action ofT)p, if  

a, b are not divisible by p.
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Proof: Recall {E± \ k G N} is a generating set of Vp (Theorem 2.7).

Suppose an arbitrary polynomial /  in degree pm of Fp[a;, y]xy is hit. Then we 

can write

/ - E E  r (iJ ) E i(9i,j) (modp), (99)
i  3

where every r(i , j)  € and every g^j is a monomial in Wp[x,y]xy. For each 

El(gitj) in (99), let g ^  = xuyv. Then we have

3 ( * v ) =  E
s + t—i V /  V /

where u-\-v-\-i ~  pm. Note that ^ ^ ( u + s )  =  0 (modp), by Lemma 3.3.

Hence the sum of the products of the coefficient of a monomial in (99) and the 

exponent of x  in the monomial =  0  (mod p) where sum takes over all monomials 

in (99).

So if any polynomial /  in degree pm of F'p[x,y]xy is hit under the action of 

V p, then the sum, which takes over all monomials in / ,  of the products of the 

coefficient of a monomial in /  and the exponent of x in every monomial in the 

monomial is =  0 (mod p) . Suppose dxayb is hit for some d 6  Fp, where a, b are 

^  0 (mod p) and a +  b = pm. Then we must have ad = 0 (mod p) and hence 

d =  0 (mod p) since a ^  0 (mod p). This completes the proof. In particular
xpm- ly  Q

Lem m a 7.3 Monomials in the form xay where a — kpm — 1, 2 < k < p — 1 are 

hit over Fp for an odd p.

Proof: We have the following equations:



The determinant of the coefficient matrix is:

a — pr 
Pm

a — 1

a — p'n 
pm _  x

a — p' 
pm

a — p'n
pm -  1

{a  —  1)

=  {k — 2 ) — (a — 1 ) =  k ^  0  {mod p),

since a = kpm — 1 for k > 2 . So we can solve those equations to get that xay is 

hit. □

T heorem  7.4 {1 , y , xy, x 2 y , xpm 1y \ m  G N} is a minimal generating set

o/FP[ x,y] under the action o fV p.

Proof: We only need to find a minimal generating set for ¥p[x, y]xy, since we 

know {1 , z} or {1 , is minimal generating set in the 1 variable cases for variable 

x  or y. Now consider xay of degree d < p -1- 1, if a — p — 1, then d = p and xay is 

not hit by Lemma 7.2. Consider the following equations:

!-Ej(o;a_:Ly) =  (a — 1 )xay +  x a~1y 2 

E 2 {xa~2 y) “  ^  2  °°ay +  (a _  2 )xa~1 y 2

The determinant of the coefficient matrix is (a — 2 ) (a +  1 )/ 2 . By Lemma 

7.1, a monomial x ay is hit if p\a where a > p. By Lemma 7.2, x ay is not hit 

in degree pm. We only need to consider monomials in the form x ay where p \ a 

and a +  1 ^  pm. For a — p or 2 < a < p ~  1, the determinant is not congruent 

to 0  {mod p). Hence x ay is hit in these cases. When a = 2 , there is only
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So xaybz° =  —axa+c xybz — bxayb+c 1z (mod hit). □

Lemma 7.6 In degree > 2 p + 2 , a monomial x aybzc with two o /a, 5, c divisible

by p is hit over Fp.

Proof: By Lemma 3.13 and Lemma 3.14 ^

Proposition 7.7 In degree pm, a monomial x ^ x 2̂ . . .  x%1, which has at least two 

exponents not divisible by p, is not hit over Fp.

Proof: The proof is similar to the proof of Proposition 5.3 and by Lemma 7.2.

□

Hence in degree pm, a monomial xaybz°, where two of a, 6 , c are not divisible 

by p, is not hit over Fp.

Lemma 7.8 In degree pm +  1, a monomial x aybz with p \  a, b is not hit over Fp.

Proof: By Theorem 3.12 and Theorem 7.2. □

Lemma 7.9 A monomial xayvz, where a =  kp2 — 1 for k > 2 , is hit over Fp .

Proof: Let a\ao be the p—expansion of a and let t = (p —1)/2. We have

Dt(xayt+1 z) = axa+tyt+1z  +  (t +  1 )xaypz  +  xayt+1 zt+1. (1 0 0 )

We will show that the 1st and the 3rd terms of the above equation are hit 

and hence x aypz  is hit since t +  1 ^  0  (mod p).

(1) For the monomial x a+tyt+1 z, we have the following cases:

126



(a) Suppose the 2nd digit of the p—expansion of a + 1 ^  1. Then

E (  {xa+t- p2yt+1z) = ( a + p2 p2) z a+y +1z

+ e  (‘v y - ^
l < s < t + l  x *  7 x  7

0 < s < i+ l  ^  /  \  /

But
a + 1 — p2'. n , , N

2 ) =  0  (mod p)

2 i f =  0  (mod p)

p* — s
for 1 < s < t  +  1 and

'a + 1  — p2' 
j )2 — s — 1 /

for 0 < s < t  + 1 . Since the 1 st digits of the p—expansions of p2 — s and p2 — s — 1 

are p — 1 and the 1 st digit of the p —expansion of a +  t — p2 is 0 . Also since the 2 nd 

digit of the p —expansion of a 4 - 1 ^  1 and hence the 2 nd digit of the p—expansion
( CL d- t  — P 2>\of a +  t — p2 0, we get ( 2 1 ^ 0  {mod p). So xa+tyt+1z is hit for this

case.

(b) Suppose the 2nd digit of the p —expansion of a d- 1  = 1. Then

Elp\ x a+t- 2”2yt+1z) = ( 0 + 2pi 2p2) a:0+V +12

+ e
l<a<t+l V 7 x 7

0 < s < t + l  ^ y  7 '  7

Again
fa  + 1 — 2p2 

V 2p2 — s

for 1 < s < t + 1  and
'a + t -  2p2

2 p 2 — s  — 1

. — 0  (mod p)

2  ̂ , =  0  {mod p)
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for 0 < s < 4 4-1, since the 1st digits of the p—expansions of 2p — s and

2p2 — s — 1 are p — 1 and the 1 st digit of the p~expansion of a + 1 — 2 p2 is 0 . Also 
a 4- t  — 2 p2

2 p

and hence the 2 nd digit of the p—expansion of a +  t — 2 p2 — p — 1 >  2  for any

, ^  0  (mod p), since the 2 nd digit of the p—expansion of a + 1 =  1

odd prime p.

Hence £a+tyt+ 1 2  in (100) is hit.

(2 ) For the monomial xayt+1 zt+1, by Theorem 2.9,

Z V + V + 1 =  x ^ ( y z )  =  (x (£ t2)(s“))yz

= ((DtDt — E 2 )(xa))yz =  (a(a 4-4) — ^ j ) x a+2tyz  =  rra+2ip0  (mod /w4),

since a(a +  4) — ^  0  (mod p).

For the monomial xa+2ty z , we have the following cases:

(c) Suppose the 2nd digit of the p—expansion of a 4- 24 ^  1. Then 

X£p2 (:ca+2t“p2y2:) =  ^  ^ 2 ^

(y2̂  +  yz2) +  ^  P ^ xa+2t 2 y 2 z 2 (mod p).

But
'a +  2 t — p2\  (a  + 2 t — p2

=  0  (mod p),
p — i  /  \  p * )

since the 1st digit of the p—expansion of a +  24 — p2 is 0 and the 1st digits of the
/  q _|_ 24 — p2\

p—expansions of p2 — 1 and p2 — 2  are p — 1 . Also f 1 ^  0 (mod p)

since the 2nd digit of the p—expansion of a +  21 — p2 ^  0. Hence x a+2tyz  is hit 

for this case.

(d) Finally the 2nd digit of the p—expansion of a +  2t =  1, then
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=  xa+t 2y 2z 2 (mod p ) .. a + i - 2.,2 Jl

of the p—expansion of a +  2 t — 2p2 is 0  and the 1st digit of the p —expansion of

n (m.nr!. m) sinnp thp 1st rlicnt

^  0  (mod p) since the 2 nd digit

of the p—expansion of a +  2t — 2p2 is p — 1 > 2. Hence xayt+1 z t + 1  in (100) is hit.

Lem m a 7.10 Let anan_1 • • - ao 6 e the p—expansion of a. A monomial x aypz is 

hit over Fp if a > 2p2 — 1 and either ai < p — 3 or ao < p — 1.

Proof: If ao ^  p — 1, then

by Lemma 7.6. Hence x aypz is hit in this case. Suppose ao =  p — 1 and a\ < p —3. 

We have the following cases:

(1 ) If an > 1 then we set k — pn.

(2) If an = 1, then n > 3 since a > 2p2 — 1. For this case, if a„_i > 1 we set 

k = pn~x and if an_i =  1 we set k =  2pn_1.

By the results of (1), (2 ) and the equation (100), xaypz  is hit. □

Dp^i(xa p+1ypz) = (a — p +  l):ra't/p£ 4 - x a p+1ypzp = (a — p +  l)£ a7/p£ (mod hit),

Because 0  (mod p) unless s =  0  or p, we get

p2p£ 2 (mod p)



The 1st digit of the p—expansion of a — k = ai < p — 3 and the 1st digits of 

the p —expansions of A: — 1, k — p, k — p — 1 are > (p — 2), so 

a — k \  { a — k \  (  a — k
j t - i y  -  \ k - p j ~  \ k - P - i j  

Also ( f  ^  0 (mod p). It is obviously true for case (1) and case (2)
f  Q _

where a„_i > 1. For case (2) where an_i =  1, (  ̂ n_x 1 ^ 0  {mod p), since

the (n — l)th  digit of the p —expansion of a — 2 pn ~ 1 is p — 1 which is > 2 . So 

x aypz  is hit. □

P ro p o sitio n  7.11 A monomial xaypz where a > 2 p2 — 1 is hit over Fp if it is 

not in degree kpm for 1 < k < p — 1 .

Proof: By the last two lemmas, we only consider an a where a0 =  p — 1 

and ai =  p — 2. Because the monomial is not in degree kpm, for some i where 

2  < i < n — 1, there is an a* < p — 1. Again because =  0 (mod p) unless 

s =  0  or p, we have:

E%l1(xa- (l‘- 1)ll‘ypz) =  P  ~ ^ P’) x ay”z + ( f

+  f a ~ ( p -  !)P‘\  X a - P 2+ P y P * Z  + { a ~ ( p ~  x P - P 2+ l y P 2Z P ( m o d  p)
\  P% ~P J \  P ' - P -  1 /

= ( f - { v - l)piy y*z(m odhit) ,

by Lemma 7.6 and since the 1st digit of the p—expansion of a — p%{p — 1) is p — 2  

and the 1 st digit of the p—expansion of p1 — p is p — 1 ,

Also ^  ^  ^ 0 (mod p), since a* ^  p — 1 , the ith digit of the

p —expansion of a — pl{p — 1 ) > 1 . □
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P ro p o sitio n  7.12 A monomial x ayptz, where a > 2p2 — 1 and t > 1, is hit over 

if  it is not in degree kpm with 1 <  k < p — 1 .

p t  l

s

Proof: We argue by induction on the exponent of y. Suppose t > 1. Because 

^ =  0  (mod p) unless s =  0  and pi_1, we have

Ep_i (xaypt 1 z) =  x ayptz +  ^ a;0"*"^” 1^ 4 1ypt A

+ i p * - ' -  x) xa+(j,~l W ~i~l)ypt~1zp = xayp‘z+ { j A  (mod hit),

by Lemma 7.6. This gives

xayptz  =  — ^ ^  1yp< 1jz [mod hit).

If ^  0 (mod p) and t — 1 > 1, then we can repeat the procedure
£

again. By the induction hypothesis, we must get that x ayp z  is either hit or 

=  rxa+pt~pypz  (mod hit) for some r G Fp, which is hit by Proposition 7.11.

□

T heorem  7.13 A monomial x ayz, where a > 2p2 -f p — 1, is hit over Fp if it is 

not in degree kpm and kpm +  1 with 1 < k < p — 1 .

Proof: Because x ayz  is not in degree &pm + 1, some a i / p  — l f o r O < i < n  — 1 

in the p—expansion of a =  anan„ i . . .  ao where an ^  0. Suppose â  is the first 

digit counted from right which is not equal to p — 1 . Since xayz  is not in degree 

kpm 7 by Lemma 7.6 and Proposition 7.11,

E ^ A x ^ - ^ y z )  = ^ ~  1)P^  xayz  +  ^  xa(vPz +  V#)

+  ^  ^ xaypzp =  ^ xayz (mod p),
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( a  — ( p  —
but f . \ ^  0  (mod p), since a,i ^  p — 1 and hence the ith  digit of the

p—expansion of a — (p — l)pl > 1 . □

We have not found results for some monomials in the form [oil], monomials 

in the form [a21] and monomials in the form [a{jpm — 1)1] for the 3 variable case 

over Fp. Over F2 , we solved monomials in the form [a(2 m)l] in Section 5.6, then 

we used the result in Section 5.7 to solve monomials in the form [a(2 m — 1)1]. 

Because for a monomial x ay 2m~1 z, we may either change the exponent of y to 2m 

or change the exponent of 2; to 2 by using some operations. But over Fp, it 

is difficult to do similar thing to xaypm~1z, because there is no such an operation 

which either increases pm — 1 to pm or increases the exponent of z to p, since p — 1 

is no longer equal to 1. We have got a partial result for the monomials in the 

form [a(pm) 1 ] for m  >  0  and we can only use the result to get a partial result for 

the monomials in the form [all].
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8 A ppendix

A Table of Kostka num bers for n = 2, 3, 4

n = 2  : _______________
f i \ A (11) (2)

(11) 1 1

(2) 0 1

n =  3 :
A4 \  A ( H I ) (21) (3)

(111) 1 2 1

(21) 0 1 1

(3) 0 0 1

n =  4 :
f i \A (H U ) (2 1 1 ) (2 2 ) (31) (4)

(1 1 1 1 ) 1 3 2 3 1

(2 1 1 ) 0 1 1 2 1

(2 2 ) 0 0 1 1 1

(31) 0 0 0 1 1

(4) 0 0 0 0 1

Note that the numbers in the first row corresponding to each column index A 

of a table are also numbers of standard A—tableaux.
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B  Decom position tab le  of Sf  in term s of M x and Spx

We give the decomposition table of S f  in terms of M x and Spx for d < 10.

d The decomposition o f into M x The decomposition o f  5^ in to  Spx

4 SpW

5 M (31) SpW  © S p W

6 © M l22) 2SpW  © 2S p W  © S p W

7 2M<31> © M (211) 3,5p{4) © 4Sp(31) © Sp(22̂  © Sp(211̂

8 © M<31) © 2Af(211> © M (22) b S p ^  © 65p(31) © 35'p^22  ̂ © 2i?p(211i

9 2M (31) © 4M (211) G S^4) © 105p(31  ̂ © 4Sp(22) © 4Sp<211>

10 3M t31) © 2M<22) © 3M<211) © M<i m > 9Sp(4̂  © l4Sp(31̂  © 7Sp(22̂  © GS'p̂ 211  ̂ © 5p (m i )
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