Generating sets for polynomial
rings as modules over the divided
differential operator algebra D

By
Xiao,Suo

Department of Mathematics

A Thesis Submitted to the University of Manchester
for the degree of Doctor of Philosophy

in the Faculty of Science and Engineering

January 1999




ProQuest Number: 10996891

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 10996891

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346






Contents

1 Introduction 8
2 The background 16
2.1 The divided differential operator algebra . . . . . . . .. .. ... 16
2.2 Young diagrams and tableaux . . ... .. ... ... ... ... 22
2.3 Specht modules and their construction in polynomial rings . . . . 23
2.4 Symmetric functions and the algebraic Thom map . . . . . . . .. 29
3 Some general results 32
3.1 Combinatorial lemmas . . . ... .... ... .. ......... 32
3.2 Some general results on the hit problemover @ . .. ... .. .. 35
3.3 Some general results on the hit problem over F, . . . ... .. .. 42

4 The hit problem on polynomial rings of 3 and 4 variables over Q 44

4.1 The hit problem on.a polynorrﬁa,l ringv of 3 variables over Q . . . . 44
4.2 The hit problem oh a polynomial ring of 4 variables over Q@ . . . . 47
4.3 Monomialsindegrees > 11 . . . . . . ... ... ... ... .... 48
44 Monomijalsindegrees <10 . . . .. .. ... ... ... 52

5 The hit problem on polynoi’niéi rihgs of 2 and 3 variables over

I | - 64
5.1 The hit problem on a polynomial ring of 2 variables over F . .. 64
5.2 The hit problem on a polynomial ring of 3 variables over Fs . . . 67
5.3 Some general results for the 3 variablecase . . . . .. .. . .. .. 67
5.4 Generating elements for degrees < 6. . . . . . .. .. ... ... 70
5.5 Monomials in degrees 2™ and 2™ +1form>2 . .. .. ... .. 72




5.6 Monomials in the form [a(2%)1] . . ... ... ... ... 78

5.7 Monomials in the form [a(2* — 1)1}, k>2 .. ... ... .. ... 80
5.8 Representations of the cokernels for the 2 and 3 variable cases .. 83
The hit problem on a polynomial ring of 4 variables over F, 86
6.1 Some general results for the 4 variablecase . . . . . ... ... .. 86
6.2 Monomialsindegrees <10. . ... ... ... ... ........ 90
6.3 Monomials in the form [a(2))(2¥)1] for I>k>1 ... . ... ... 95
6.4 Monomials in the forms [¢211] and [a111] . . ... ... ... .. 100
6.5 Monomials in the form [a321]) . ... ... ... ... ... .... 104
6.6 Monomials in the form [@311] . .. ... ... ... ... . ..., 108
6.7 Monomials in the forms [a(2% — 1)(2%)1]

and [a(2* —)(2F+1)1) ... 112
6.8 Some results on the cokernel and some conjectures . . . . . . . . . 118
The hit problem on polynomial rings of 2 and 3 variables over
I, 122
7.1 'T'he hit problem on a polynomial ring of 2 variables over |, . . . 122
7.2 The hit problem on a polynomial ring of 3 variables over F, ... 125
Appendix 133
Table of Kostka numbers for n =2, 3, 4. 133
Decomposition table of 5S¢ in terms of M* and Sp* 134
References 135




Abstract

This work is about finding minimal generating sets for polynomial rings as mod-
ules over the divided differential operator algebra D. This problem is referred to
as the hit problem. We will discuss the hit problem of D on polynomial rings in
2, 3 and 4 variables over the rational field QQ and the finite field Fy. We will also
give some results of the hit problem on polynomial rings of 2 and 3 variables over

I, for an odd prime p.
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1 Introduction

Let M = P 5, M? be a graded left module over a graded ring R = @, R Let
R* =Dy R¢ be the positively graded part of R. A hit element is an element
m € M which can be expressed by m = Z rsm;, where r; € R, m; € M which
have strictly lower grading than that of m.iThe hit elements form a submodule H
of M. A closely related problem is to find an additive basis of the quotient module
C = M/H. The set of representatives of such a basis is a minimal generating set
of M as a R-module. We will call an element of M, which is not hit, a non-hit
element. The problem of finding a basis of the quotient module C is referred to
as the “hit problem” [23, Section 7).

Research on the hit problem for polynomial rings under the action of the
Steenrod algebra over a finite field I, has been going on for some years. The
Steenrod algebra over [y, Aj, is generated under composition by the Steenrod
squares S¢°. The Steenrod squares were introduced by N.E.Steenrod [19] as linear

operators on ordinary cohomology H*(X) for some topological space X over Fy,
Sq® . HY(X) — H"TE(X),

which have the following properties: for homogeneous z, y € H*(X),
(1) S¢® = 1.
(2) If 4 = dim(z), Sqi(z) = 2%
(3) If i > dim(z), Sq¢i(z) = 0.
(4) Cartan formula:

Sq"(wy) = Y Sq()S¢(v)-

T+S5=n




(5) Adem relations:

S¢S = Z (j Z"-_kz-;c 1) Sgti~k St
0<k<|$)
for 0 < 4 < 27, where the binomial coefficients are taken modulo 2.

Let X = RP* x ... x RP*, the product of n copies of infinite real projective
space. Over Iy, H*(X) is isomorphic to Iy [z, zs, - - -, 2], the polynomial ring of
n variables over Iy

The hit problem related to the Steenrod algebra was brought to attention by
a conjecture made by F.Peterson [13]. The conjecture offers a set of monomials
of By |21, %2, . .., Z,] containing the generating elements under the action of the
Steenrod algebra over Fy. The conjecture has been proved [25]. Here we state a

stronger form of the result.

Theorem 1.1 [3, Theorem 2.1] Let W,, = Fyz1,22,...,%,] be the polynomial
ring in n variables over Wy. Let f = a3z .- .2% be a monomial in W, with r
exponents odd. Let d = ay +ag +...+a, be the degree of f. If a(r +d) > r then

[ is in ATW,,, where a(t) is the number of 1’s in the binary ezpansion of t.
Let N={1,2,... } be the set of natural numbers.

Example 1.2 [26, Section 2.3] Under the action of As, a minimal generating set
of By [z, 1] consists of monomials in the forms 12 ~1y2"2~1 gnd g2 —1y22-2171-1

where ay, as =0 or a;, az €N, by, by € N and by > b;.

@) _ an _ _ . . . .
P12 g2 -1 which is called a spike, never appears in

A monomial z
the image of any operation of A7 [25].

Over I, for an odd prime p, the Steenrod reduced power operations are lin-
ear transformations P : W4 —s Wit~ with the following properties [18,

Chapter VI.1]:




0 —

(1
(2
(3
(4

it = (D)oo

P
PE(f) = f? if deg(f) = k and P*(f) = 0 if deg(f) < k.
P
Cartan formula:

)
)
)
)

Pk, (fg Z Pz Pk-—z

where f, g € W,.
(5) Adem relations:
pipi — Z (—1)i+k ((P - 1?(3' —k)— 1) piti—kpk
0<k<| L)
for 0 < ¢ < pj, where the binomial coefficients are taken modulo p. When p = 2,
P* is Sq*. By the Steenrod algebra over Iy, A,, we mean the algebra generated
by the Steenrod reduced power operations subject to the Adem relations [18,
Chapter V1.4].

Let p be an arbitrary prime. The action of 4, commutes with the action
of the general linear group G = GL(n,F,) over F,. Hence the Steenrod alge-
bra can be seen as a set of F,G—module homomorphisms on the polynomial
ring Fp[z1, %2,...,2,]. A theorem of Mitchell [12] shows that each irreducible
F,G—module appears in the polynomial ring. By Schur’s lemma, the first occur-
rence of an irreducible I, G—module is not hit. Hence the cokernel of the action
of A, on Fy[z1, Za, . . ., ,] includes among its composition factors a complete set
of inequivalent irreducible IF, G—modules.

Now we consider an algebra, the divided differential operator algebra D [23]
[24]. D contains the Steenrod algebra as a subalgebra over a finite field. D is an

algebra which is generated by the differential operators defined as follows:

Z mk+1
Oxz;
=1
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with respect to both wedge product and composition (Section 2.1). The natural
coproduct ¥(Dy) = 1 ® Dy + D ® 1 makes D into a Hopf algebra with respect
to both the composition and the wedge product. Under the composition D is
isomorphic to the Landweber-Novikov algebra [24]. Let T', be the semigroup
consisting of all linear transformations on the polynomial ring of n variables
which have the following property: when they act on the set {z1,2s,...,z,}, for
¢ € I'y, then either ¢(z;) = z; or ¢(z;) = 0. The action of D on polynomial rings
commutes with the action of I';. The symmetric group X, is a subgroup of T,
[20]. Hence D can be seen as a set of ¥, —module homomorphisms when it acts
on a polynomial ring.

Let K be a field and Dg = D ®y K. Let M, = K[z, ..., T,], the polynomial
ring of n variables over K. We may view M, as a Dgx—module. A minimal
generating set under the action of D on M, is a set N C M,, with DgN = M,
and there is no proper subset U of N which satisfies Dl = M, over K. We
say a polynomial f € M, is hit under the action of Dy if f = Z 0:(g;) for some
d; € ’D}g and g; € M,, which has lower degree than f. Let S, = :czl -« » g, M, which
is a Dg—submodule of M,,. Then the hit problem on M, can be reduced to the
hit problem on Sy, since M,, is the union of S; for all S; C M, where 1 <7 < n.

Suppose the field is Q. We consider S, as a Dg—module, then we write
H, = Da? Sy, the set of hit elements in S, under the action of Dg. We write the
quotient module C, = S,,/H,. We will prove that C,, is finite dimensional for all

n in Theorem 3.9. We denote by {zi,...,2} a set of representatives of a basis

i
of C,,, then Z’Din = S,. Let A, be the ring of symmetric polynomials in n
i=1
variables. A, is a subring of M,. We denote by A} the positively graded part
of A,. We may view S, as a A,—module under the normal multiplication. Let

Jo = A}S,, then J, is the set of hit elements in S, under the action of A,. A

11




basis for the quotient module A, = S,,/J,, is known [16]. The basis is finite and
is called the Artin basis which was found by E.Artin [2, IL.G]. The Artin basis

has a set of representatives:

{ai=x§1m§2---xi§lIOSiijf‘”“lSjS”}’

n(n+1)
2
The Artin elements form a minimal generating set of S,, under the action of A,

where the degree of a; < . We call the representatives the Artin elements.
and S, = @._, Ana;, where 7 = n! [2, ILG]. Furthermore the Artin basis gives a
regular representation of L, [16].

Hence 5, is an additive group which carries two module structures As an

A,—module, every element of S, can be expressed uniquely by Z fia;, where
=1

fi € Ay, As a Dg—module, every element of S, can be expressed by Zc?,;zi,
i=1
where §; € Dg. We think we can take the set of z; to be the set of a;.
Conjecture 1.3 [23, Conjecture 7.3] Let H be the set of hit elements under the
action of the divided differential operator algebra Do on S, and let C = S, /H,

then the Artin basis is a basis of C.

We will verify Conjecture 1.3 up to n = 4. We will also look into the hit
problem over a finite field F,. We denote D ®z F, by D,. By Theorem 5.4 and
Theorem 7.4, a minimal generating set for a polynomial ring of two variables
under the action of D, is an infinite set over IF,. Hence we get that a minimal
generating set for a polynomial ring of more than one variable under the action
of D, is an infinite set. Since A, is a subalgebra of D, the set of the hit elements
for the action of 4, is a subset of the hit elements for the action of Dy,

The action of D is a set of 33, — module homomorphisms. If L is an irreducible

K3.,—module in a polynomial ring over a field K, then the action of D either

12




maps L to 0 or maps L isomorphically to some higher degree of the polynomial
ring. Hence results on the hit problem might be used in the study of the structure
of irreducible K, —modules, especially over F,.

This thesis is concerned with the hit problem of D ®z K on polynomial rings
in a small number of variables over a field K.

In Section 2.1, we will state definitions related to the divided differential
operator algebra D. We will give generating sets of Dg and D, under composition.
Then we will discuss the action of D on polynomial rings. We will define the
conjugation x on D which is an anti-isomorphism of the Hopf algebra. We will
give some formulas related to the conjugation. These formulas are very useful in
calculations of the hit problem. In Section 2.2, we will define Young diagrams
and tableaux. In Section 2.3, we will give the abstract definition of the Specht
module. The Specht modules corresponding to all partitions of n form a complete
set of irreducible representations of the symmetric group X,, over Q. Then we will
give a method to construct Specht modules in a polynomial ring. In Section 2.4,
we will discuss symmetric functions and the algebraic Thom map. The algebraic
Thom map gives an isomorphism of vector spaces between the divided differential
operator algebra and the ring of syminetric functions.

In Section 3, we will give some combinatorial results and some general results
on the hit problem. These results will be often used. The main result in this

section is Theorem 3.9, due to G. Walker and R. M. W. Wood.

Theorem 3.9 A minimal generating set of S, under the action of Dg is finite

for all n.

In Section 4, we will find minimal generating sets for polynomial rings of 3

and 4 variables under the action of Dg. These results show that Conjecture 1.3

13




is true for polynomial rings up to n = 4. The main methods we use to prove
that a monomial is hit are Corollary 3.8 and Theorem 2.9, which is called the “y

trick”. Let © = z1, y = z9, 2 = z3 and ¢ = z4. The main results in this section are:

Theorem 4.1 A minimal generating set of S3 under the action of Dg is

{zyz, 2%yz, oy’z, 2lyz, 2, x3y2z}.

Theorem 4.2 A minimal generating set of Sy under the action of Dy is

{z'yizFt | 1<i<4,1<5<3, 1<k<2}

In Section 5, we will prove some results on the hit problem over F,. We have
found minimal generating sets for 2 and 3 variable cases. The basic method we
use to prove that a monomial is hit is to show the monomial is congruent to a
monomial which is known to be hit, modulo the hit elements which we already

know aver Iy,

The main results in this section are:

Theorem 5.4 {1, =z 2y, 32"y | m € N} is a minimal generating set
) ? y)

of Bz [z, y] under the action of Ds.

Theorem 5.5 A minimal generating set of Folz,y, zlzyz under the action of
. I k__ k_ k R k.
D, is: {zyz, 32yz, 212, 22yz, 2y’z, 22y°z, 22 y¥ "1z, xy? "%, ¥y 1z,

$2k+1yz2k—1J my2k+1z2k—1 |2 <keN}.

In Section 6, we will give some results for the 4 variable case over F,. From

these results we have a general view on the cokernel of the action of Dy on

14




T (2,9, 2,t]. Main results in this section are:

Theorem 6.6 If a monomial f of n variables can be written as a product of
non-hit monomials of 2 variables and there are no two monomials having com-

mon variables, then f is not hit under the action of D,.

Theorem 6.16 A monomial x%y°z°t% with two exponents even is hit under the

action of D, if it is in o degree > 11 which is not 2™,

Based on Theorem 6.6 and the related results we have got on the rational
case which show that the product of two monomials in independent variables
which are not hit is still not hit, we give a conjecture on the product of non-hit
monomials with no common variables in general (Conjecture 6.30).

In Section 7, we will discuss the hit problem over I, for an odd prime p. We
have found a minimal generating set for the 2 variable case. The result is very
similar to the result of the 2 variable case over ;. We believe that the minimal
generating set for the 3 variable case over I, is also close to the result over Fy.
We have also tried to get some results for the 3 variable case. But it seems much
harder to find out hit elements over F,. It is difficult to follow methods we have
used over F,. Since coefficients and signs all matter over I, it is more difficult
to cancel some terms in the image of an operation of D, and to make the image
simpler.

The main result in this subsection is:

Theorem 7.4 {1, z, vy, zy, =2y, 27 ~ly | m € N} is a minimal generating

set of By [z, y] under the action of D,.

15




2 The background

In this section, we will give some related background. In Section 2.1, we will
define the divided differential operator algebra D and products on 2 which are
the composition and the wedge product. We will give the minimal generating
sets of D under the composition over Q and F,. We will also discuss the action
of the divided differential operator algebra on polynomial rings. Then we will
introduce the conjugation x of D and some formulas related to y. These formu-
las will be useful in the later content. In Section 2.2, we will give definitions of
Young diagrams and tableaux. In Section 2.3, we will give the abstract definition
of the Specht module which is indexed by partitions, then give a method to con-
struct Specht modules in polynomial rings. Finally we will introduce symmetric

functions and the algebraic Thom map in Section 2.4.
2.1 The divided differential operator algebra

Let X = {z1, 22,... } be an infinite sequence of variables. Let
My, = P M = Kz, ..., 5]
d=0

be the polynomial ring in n variables of X over the field K, where M¢ consists
of all the homogeneous polynomials of degree d. Hence M, is a graded ring with
the grading given by the degree. The differential operator D, : M, — M,,
for any n > 1 is defined by

o o]
0
_ r+1
D=2 a5
i=1 Ti

16




where is the ordinary partial differential operator with respect to all z; € X

a
8335
[23, Section 2].

The wedge product V of D, is defined in the following way: let the derivative
of the first operator D, pass the variable coeflicients of the second operator D,
without acting. That is [23, Section 2]:

[ee)

DD, = (Lt g v (e = 3 a2 ]

Py s Oz; Oz,

The composition of D, and Dy is written as D, o D; or simply D,D; which is:

6 = 0
(Zl fl?’ +1 Z m;—i_l ao:j )
i= j=1

This is equal to [23, Section 2]:

S T 8 62
(s+1) Zx”‘ Fa)+ Z gyl T = (s+1)Dyyr + Dy V D, (1)
i,5=1

So the composition and the wedge product are related. In general we have
the following formula of the wedge product: [24, Lemma 3.3]:
ak
D, VD, V.. = Y apt gt

21.. a !
Ziy - O,
"“1:7'21 ﬂ'k 1 k

where the sum is over all 4; for ¢; € N. The k—fold wedge product of D,, DY*
can be derived from the above formula [24, Lemma 3.4]:

K O
D;/ = Z (mil"'mik)r+

b}
'ill'iZ:"',ik aivzl 81;”'

where the sum is over all ¢; for i; € N. From the above formula, we can also see

that the image of DY* is divisible by k! when it acts on an arbitrary monomial.
vis

]\_l
Let d be a non-negative integer. We denote A to be a partition of d. We

write A = (A1, Az, -« ., An) With Ay > X > ... > A, > 0 where \;'s are integers

17




and || = i/\i = d. We will identify (A, Az,...,A), where X\; # 0, with
(A1, A, - .,/Z\T:O, ...,0). We say a partition A = 0 if A = (0,0,---). The length
of a partition A, {(}\), is the number of the non-zero parts of \.

We say A is a composition of d if A = (A, g, ..., A,) and |A| = d, where
0 < A € Z for all . Obviously, every partition of d is a composition of d as
well. The lezicographical order > on compositions is defined as follows: A > u
if A\ = por ;> p; for the least j for which A; # u;. For two partitions
A= (A, Ag,..,An) and g = (1, oy« -5 pn), A+ 4 is a partition with parts
ALy A2y ooy Apy 1y 12y -« oy e

For a partition of a particular integer n, we will omit commas between parts
of the partition. For example we write (221) = (2,2,1). Let £ = (k*k52 ... &)

which is a partition with r; parts of distinct &; for 1 < i < n. The divided

differential operator algebra D over Z is defined as follows:

Definition 2.1 [23, Section 2.1] The divided differential operator algebra D over

Z is the algebra which is generated under the wedge product by the divided differ-

vk
ential operators ﬁ
VEk1 Vka Vkn
The elements D(k) = f‘— Y% kr Z=V...V l:'“' form an additive basis of D,
it 2! on!

for all partitions k.

Theorem 2.2 [24, Theorem 3.13] The divided differential operator algebra D is

closed under composition.

Let f and g be two polynomials in n variables {1, %g,..., Zn}. The Leibniz
formula for the wedge product applied the product of f and g can be derived
from the formula of the k—fold wedge product [24, Lemma 3.5]:

X k 5 ;
prun= ¥ (5)Prnnro @)
i+i=k

18




In general we have:

DN(f9)= Y, D %)(9)- (3)
K=
vk
We write EF = k"" . Then by the formula of the k—fold wedge product, we

get:
Example 2.3 Form >k,

BE@™) = —m(m = 1)+ (m — b + D)™™ = (m)m

1
k! k

and for m < k, E¥(z™) = 0.

From (2), we get:
CEF(fg)= > Ei(f 4)

ij=k

Let x = 27 and y = x». From (4) and Example 2.3, we get:

) ) . b . ,
BHay) = 3 BB = 3 (1)()er,
i+i=k i+i=k J
In general, we have:
g 9n) == &1 a2 a nTrin
E,lf(a‘:‘lllgpg'a’ SRR ey ) == Z (tl) (tz) e (t:) wtltl+rt1$(2zz+rtz . 33?1 +rt . (5)

Zi ti=k

The Lie bracket of Dy and D; is defined as follows: [Dy, D)) = DD, — Dy D;.

From the definition of Dy we have:
Lemma 2.4 [23, Lemma 2.3] [Dy, Dj] = (I — k) Dyy.
Let K be a field and Dg =D @z K. We have the following theorem.

Theorem 2.5 {23, Theorem 2.5] Dq is generated by Dy and Dy under the com-

position.

19




In [9], P.S. Landweber defined the cobordism operator By which acts on poly-
nomial rings in the following way: By(z;) = zFt. Let u = plps2... ™ be a
partition. The cobordism operator B,, is defined in the following way to act on
polynomial rings:

Bu(fe) = 3 Ba(f)Bulo), (6)

AE=p

where f, g are arbitrary monomials and B, (z;) = 0 for all ¢ if 1 has two or more
non-zero parts.

The set of B, is called the set of the basic cobordism operations and it is a
basis of the Landweber—Novikov algebra A* with multiplication the composition
[9]. A* is isomorphic to D under the composition {24]. Comparing (6) with (3),
we can see that B, corresponds to D(u) under the isomorphism between A* and

D.

Theorem 2.6 [9, Theorem 7.1] A minimal set of generators of A* ® F, is:
{Bit, Box | k=10r k=p™, m e N}

If p is an odd prime, there is another minimal generating set besides the above

one:

{Bi, By | k=1o0r k=p™, meN}.
Since By is EF and By is E%, we get:
Theorem 2.7 D, has a minimal generating set under the composition:
{E¥, B¥ | k=10r k=p™, me N}
If p @5 a odd prime, there is another minimal generating set:
{EF, E®* | k=1or k=p™, mc N}

20




From the definitions we have, EY is the Steenrod square Sq* over F; and E¥_,
is P* over F, when they act on polynomial rings. So .4, is a subalgebra of D,.
When 7 =1 and p = 2, the formula in (4) is the Cartan formula.

The natural coproduct 4(D,) = 1® D, + D, ® 1 makes D into a Hopf algebra
with respect to both the composition and the wedge product. The operators D,
are primitives of the Hopf algebra [24, Section 3]. The conjugation x of the Hopf
algebra D with respect to the composition is defined as follows [23, Lemma 2.18]:

xDON) == 3 D(r)xD(n). (7)

ref =,
aFEG

Example 2.8 By the above formula, we can derive:
k
—x(By) = ZE:X(Eﬁ—Z): x(Dy) = =Dy, x(EY) = D,D, — EZ.
i=1
By (1), DDy = (r + 1)Dg + D, V D, = (r + 1)Dq, + 2E2. Hence over Fa,
D,D, =0 if r is odd and x(E?) = E? for an odd r. Hence
X(E¥) = —E} 4+ E2D; — D1(x(F?) = E3 + E2Dy + D, E? (mod 2).
From the Adem relations, we get D1 E? = E? (mod 2). Hence we get
x(E3) = E2D; (mod 2).

The conjugation is an anti-isomorphism on the Hopf algebra D. Hence for §;,
82 € D, x(8102) = x(d2)x(1) [4, Section 7]. Let f be a monomial in a polynomial
ring with n—variables over an arbitrary field. Every monomial in x(8)(f) is in
the same degree as the degree of monomials in §(f) for any 6 € D. Let f, g be

two polynomials. we say f = g (mod hit) if f — g is hit under the action of D

over K.

Theorem 2.9 [23, Theorem 7.6] For any ¢ € D,

fé(g) = (x(8)(f))g (mod hit).
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Let I'y, be the semigroup consisting of all linear transformations on the set
X = {@1, %2, ..., &,} which have the following property: for any ¢ € T', and
z;, z; € X, either ¢(z;) = z; or ¢(z;) = 0. We can identify I, with the set of
n x n matrices with at most one 1 in each row and all 0’s elsewhere. The action
of the divided differential operator algebra D on polynomial rings commutes with

the action of I';, [20]. Let M be a polynomial ring, then we have the following

commutative diagram:

M 2 M

B O 11

|7 - V'

2.2 Young diagrams and tableaux

Let A be a partition. A Young diagram [A] corresponding to A is a diagram:

% % ... % %% A\ nodes

* % ... % % Ay nodes
[Al =

* ... % An nodes

We write \' to be the transpose of \. It is a partition with the Young diagram

obtained by the reflection through the diagonal of the Young diagram of A.
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Example 2.10 ) = (211), X" = (31).

A A—tableau is obtained from a Young diagram by replacing each node with
an integer of the set {1,2,...,d} in a square frame. We call an integer in a
Young diagram an entry of the Young diagram. Let A be a partition of d. If the
sequence of entries counted down columns and along rows from the left to the
right of a A—tableau T is 41,49, ...,1q, we write [i] = 41,%,...,%4. We denote by
T @ A—tableau with entries [i]. The content of Ty is a sequence of numbers

p= pipsg. ..My, where p; equals to the number of U’s in [i], pe equals to the
]

number of 2's in [i], and so on. Also Z“i = d, i.e. the content of Ty is a

1
composition of d.

Example 2.11 )\ = (211), [z] =1,3,2,1. Then

1

T =

[no]co|me

The content of Ty 4s (211).

When we draw a Young diagram of T);, we may just denote the Young
diagram by T}, since the content is shown in the diagram. We say Ty [;) is semi-
standard if entries of T), ;) are strictly increasing down columns and monotonic
increasing along rows from the left to the right. T} is standard if entries of Ty

are strictly increasing down columns and along rows from the left to the right.

2.3 Specht modules and their construction in polynomial

rings

Let G be a finite group, € be the field of complex numbers. CG is the group

algebra of G over C which is the regular representation of G.
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Theorem 2.12 [8, Section 11.9] Suppose that CG = @, k;U;, a direct sum of
irreducible CG—modules, then k; = dim U;, where k;U; = U; P ---PU;, the

direct sum of k; copies of Us;.

Lemma 2.13 (Schur’s Lemma) [1, Section 5] Let R be an arbitrary ring. Any

non-zero homomorphism between simple R—modules is an R—isomorphism.

Theorem 2.14 (Maschke’s Theorem) [1, Section 5] Let G be a finite group
and K be a field. Suppose the characteristic of K is either zero or coprime to
\G|. If U is o« KG—module and V is a KG—submodule of U, then V is a direct

summand of U as KG—modules.

Definition 2.15 [6, Section 3.9] A tabloid is an equivalence class of \—tableaus.
The equivalence relation is defined by T, ~ 1), if corresponding rows contain the

same entries.

We denote the equivalence class of Ty by {Th}.

Example 2.16 For a A—tableau Ty = ; 3 | 4|

we write the corresponding tabloid as follows:

1 3 4
{h}=——
2
We have:
1 3 4 1 4 3 314 3 41 4 1 3 4 3 1
2 2 2 2 2 2

Let A = (A1, Ag,..., Ar) be a partition of n.
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Definition 2.17 [6, Section 4.2] Let K be an arbitrary field, M?> is the vector
space over K whose basis elements are the set of all A—tabloids, each \—tabloid

corresponds to a A — tableau with distinct entries.

Let 2, be the symmetric group on the set {1, 2, ..., n}. The permutation
module M? is a cyclic ¥, —module, generated by any one of the A—tabloids. We
have

. A n'
dim M” = Mgl

Let CI(A) be the column permutation group. The action of CI()\) on a
A—tableau is shown as follows: we mark positions of squares of the ith column of
the A—tableau T} [j with {1,2,---, Al} for 1 <4 < I(X) from top to bottom. Let
Cl; = By, then we write Cl(A) = Cly X Cly x - -+ x Clyyy. For m € Cly, 7Ty 1s
the tableau obtained by permuting marks of squares along with their entries in

the ith column of T} [; by 7 and keeping other columns unchanged.

Definition 2.18 [6, Section 4.3] The polytabloid er, is defined as follows:

er, = Y (sign m){m(T})}.

TECL)

w

Example 2.19 Let T, = ! 5!

135 2 35 1 45 2 45
Then er, = - - +

2 4 1 4 2 3 13

Definition 2.20 [6, Section 4.5] The Specht module Sp* is the ©,,—module which

is spanned by polytabloids generated by A—tableaus.
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The following theorem shows that the dimension of Sp* is equal to the number

of standard A—tableaux.

Theorem 2.21 [6, Section 8.4] The Specht module Sp* has a basis
{ en, | T\ is a standard X — tableau }.

Over Q, the Specht modules indexed by all distinct partitions of n give a
complete set of the ordinary irreducible representations of X,,.

Let <, > be the bilinear form on M? where for tabloids a, b,

1 ifa=0b
<a,b>=

0 otherwise

Let Sp* C M*. We denote by Sp*! the submodule of M* where for any
o' € Sptt, < a' a >=0 for all a € SpH.
Lemma 2.22 [6, Section 4.9] Let K be an arbitrary field. F* = ——‘S?i—— 18
’ Spr N Sprt
zero or irreducible. If Sp* N S;p"l is mot zero then Sp* N Sp*t is the unique

mazimal submodule of Sp*.

A partition A is p—row regular if [A] has no p rows which have the same
number of nodes. Over a field of characteristic p, F* is non-zero if X is p—row
regular. This set of F*’s gives a complete set of irreducible representations of %,

over any field K.

Theorem 2.23 (Young’s rule) [6, Section 14.1] Owver Q, the multiplicity of
Spt as a direct summand of M* equals the number of semistandard \—tableauz

of content L.
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The multiplicity of Sp* in M* is called a Kostka number K u- We list the
tables of Kostka numbers for n = 2, 3, 4 in Appendix A.

By Theorem 2.12, Theorem 2.21 and Young’ rule, we get that M1") is a
regular representation of 33,,.

Let K be a field and M,, = K[z, ...,%,). Let S, = ®S% = ;... 3, M, where
S¢ contains all the homogeneous polynomials of degree d divisible by =1 ... 2,. S
is a graded X, — module. The module action is defined as follows: for d € %, and
shgd | ghoe S, §(zPad . gl = -77?%1)37??2) .. -‘Eg?n)- We denote by Xgit1,..n}
the subgroup of ¥, which permutes {7 +1,...,n} and leaves {1,...,i} fixed and
define Xy, ;3 similarly.

Definition 2.24 We call the set of monomials {o(z{* ...z%) | o € X, } the set
of monomials in the form [ay---a,]. By [{a1:-a;}{air1--an}], we mean the

set of monomials {o1(3}! - - &{*)oa (w3l -+ 2ir) | 01 € By, 02 € Dpr,my )

Example 2.25 We call all monomials obtained from permutations of x3y%2%t
under the action of ¥4 the monomials in the form [3221]. We call the follow-
ing 4 monomials x3y%2%t, x?y2%, 23?212, 2yt 2t? the monomials in the form

[{32H{21}]-

Definition 2.26 For ¢ monomial

e = (5121 ces :vdl)‘“ (a:dlﬂ N mdz)“z s (xd:—1+1 .. .:thl)a‘
where a1, Qa, - .., are distinct, we define a composition p = pils ... 4, where
pi = d;y — d; with dy = 0. Let X, be the symmetric group on {1,...,l} and
A =w(u) be a partition for somew € L,. Then we say that e and the permutations

of e under the action of L, are monomials of the exponent type A.

Example 2.27 Since 23y?2%t = z°(yz)*t, we get a composition (121). Hence all

the monomials in the form [3221] are monomials of the ezponent type (211).
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Let A be a partition of n. In S¢, all monomials of exponent type A form a
¥,—module which is isomorphic to M*. Hence S¢ can be dicomposited into a

direct sum of M*’s.

We denote by A(n) in variables z;, 3, -+, =, the Van der Monde determi-
nant:
1 1 1
ml 1"2 ) xﬂ
=] — =)
i<y
:C111,—1 $121,—1 . xz—l

We can see that A(1) =1 from the above definition.
Definition 2.28 [17] Let 1o = (p1, peo, .., ) be a partition of n. Let

Alp) = Ap) Apa) - - - Alu),

where A(py) is in variables 1, ..., T, Aus) is in variables Ty 11, ., Tpytp

and so on.

This polynomial was firstly considered by W. Specht. It is now called the
Specht polynomial.

Theorem 2.29 [17, Satz 1] Ower a field K of characteristic 0, the polynomial

T1%g -+ T A(1) generates an irreducible KX, —submodule, which is isomorphic

to the Specht module Sp*, in Se™) where A = woand o(\) = 2 P

2
This irreducible module generated by A(u) gives the first occurrence of Sp*
in S,,. The following example shows how we decompose a permutation module

into a direct sum of Specht modules in a set of monomials.
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Example 2.30 In S%, zizizs, 132902, 2323%s, 222023, 12522, 717273 have the
ezponent type (111) and any of them generates a QX3 —submodule MM, It is

the regular representation of X3 over Q. Sp® is generated by
3,2 3, .2, ,2 2 2
TIT5T3 + T ToTE + TITHTs + TiTexd + 317375 + T 7oL,

By Definition 2.26, the 1st occurrence of Sp\V) in Sy is generated by:

1 1 1
xyzA(?;) =X1TeT3 | 1 Ty Ty | = T1T2T3 H(QLJ - lL‘z)
i<g
%2 32 a2 !
1 2 3

— 3.2 3, »2 2, .3 23 3,.2 2,.3
= T1T3T3 — Tyl -+ TITeTy — TITHT3 + T1T503 — T1T5%5.

There are two semistandard (21)—tableauz with content (111). So the dimen-
sion of Spt?Y) s two and there are two copies of SpY in MY, We give Q—bases

of the two Sp?Y) which are direct summands of MY as follows:

2.8 _ 2. .3 3,2 _ 2.3 2, .3 2.3 4 3. 2 3.2
{12525 — T{T2x3 + B10505 — TITZT3, TITT3 — T1T5T; + TITaTs — L]THT3 )

and

2 2 2
{z2323 — 23adms + oiwend — myada?, 22mead — adxley 4+ zi22ad — 232yal}.

We give a table of decomposition of S§ for 4 < d < 10 in terms of M> and

Sp*, where \ ranges over all partitions of 4, in Appendix B.
2.4 Symmetric functions and the algebraic Thom map

Let X be a partition of d and X* = z* -+ ). Let my(z1, ..., 2p) = ZX“
n
where each p is a permutation of A and summed over all distinct permuta-

tions of A. Let A, be the ring of symmetric polynomials of n variables. The
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ma(z1, ..., zp) for all N’s where {(\) < n form a Z—Dbasis of A,. The ring of

symmetric functions is the inverse limit of the sequence of Z—modules A,;:
A=1limA,
—

where the homomorphism pp,, @ Ay — Ay, sends z; to 0 for all m > ¢ > n and
the other z; to themselves. Then we have a projection p, : A — A, by sending
z; t0 0 for all 2 > n and the other z;'s to themselves.

The monomial symmetric function my is defined by p,(my) = ma(z1, ..., 2n)
for each n. We denote Fy; the power sum where Py = m = mef We
denote eq the elementary symmetric function where e = ma). we define
Ex = €xE) €, We denote hy the complete symmetric function of homo-

geneous degree d where hg = Z my,. Also we define hy = hy hy, -+ by, .
|psf=a
Let s = x12y - - - Tp, the product of n variables. We define a map @, : D — A,

where

®,.(D(N) = E-O;lsl =mx(Z1, ..., Tn)-

Note that for all A where () > n, @,(D()\)) = 0.
Example 2.31 Let A= (21) and n = 3, then

By(D(21)) = mlm (Ds V Dy) (21573)

1
2 3, 2 2,.3 2 2., 3 2,.3
= (230533 + Y02l + 23T + T173T; + Tiwe] + T12523)
T1T2T3

2 2 2, 2 2 2 _
= %1%g + T1T3 + 2125 + T5%3 + T1T5 + Ta25 = Mya1) (@1, To, T3).

The following diagram commutes:
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(Dn-i-l \/ \( (I)n

Anya Pr+i,n Ap

The algebraic Thom map @ is defined by: @ = liin ®,,. Then ®(D(X)) = m,
and hence @ is a group isomorphism between P and A. The following results

show correspondences between A and D under @ [23, Example 3.1]:
®(Dy) = Py, ®(EF) = e, ®(D(N)) =my, B(DF) = hy.

We may consider ®,, = p, o P.
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3 Some general results

In this section, we will give some results which will be used in Section 4 to Section
7. Firstly we will prove several combinatorial identities in Section 3.1. In Section
3.2 and Section 3.3, we will give some results on the hit problem. These results
will often be used in the remaining sections. We will give a minimal generating
set of Q[z,y] under the action of Dg. From that we will generalize Proposition
3.7 which is an important result for the rational case. By Proposition 3.7, we get
Theorem 3.9 which states that a minimal generating set for a polynomial ring of
n variables is finite for any n under the action of Dg. Theorem 3.10 has been
proved in [23, Example 3.4]. Here we give a different proof. In the remaining
content, when we write 2* where z is a variable, if we do not define the exponent

k, then k € N,

3.1 Combinatorial lemmas

The following two results are standard combinatorial results. We list them since

they will be applied in many places in the remaining content.

Theorem 3.1 [5, Theorem 3.4.1] Let p be o prime number and let a, . ..a1a0

and by, ...bby be p—expansions of a, b. Then
(5) =T1() oan

Theorem 3.2 [5, Example 3.13] Let k, m, n be non—negative integers. Then

> (D)= (")
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Lemma 3.3 Let t, k be non—negative integers and let p be a prime number.

Suppose u + v + tk = p™ where u, v € N. Then

3 (u+ti) (1:) (;’) =Y (v+tj) (7;) C’) = 0 (mod p).

itj=k itj=k
Proof:
Zera(0)6) =20 6)+ 20 0)

=2 ()0) 2 G20 - () ~(52)

i1

_u(utv+tk) futv—1
- k k-1 )

But v+ v +tk =p™ and k < p™, so

v(u+v+tk) fu+v—1\ _
—]s__—( o1 ):O(modp).

Also because

e (D)) Zera()()

=k
= Z (u+ v +tk) o (U) = (u+ v+ tk) I (mod p),
i+j=k YN )
we get

Z (v +tj) (?D (Z)) = 0 (mod p).

i+i=k

—1 4 (1 +4y)'/?
2
in the solution and expand the right hand side of the equation, the coefficient of

Let y = 2% + = and we get ¢ =

. If we choose the plus sign

1 2
y™ is called the nth Catalan number ¢,, where ¢, = ] (;) [23, Example
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—1+ (1 + 4y)V/2
2
nurmbers, which gives = Z(—l)“cny”*l.

n>0

3.4]. The equation z =

is the generating function for Catalan

Example 3.4 ¢co=1,¢c1=1,¢c=2,¢c3=05, g = 14, c5 = 42, c5g = 132.

For a € Q, let |a| be the greatest integer < a and let [a] be the least integer
> a.

L5

1—
Lemma 3.5 Z (—1)mF (n + A k) Cnte = 0.
i=0

—1+ (14 4y)+/?

Proof: Expand the right hand side of the equation z = 3 , we

get x = Z(—l)iciyi+1. Then we substitute y by 22 + = and get
i>0

z= Y (~1)iei(m + 1) o, (8)
i>0
The coefficient of 2* is 0 for all ¢ > 1 in the right hand side of (8). We look

at the coeficient of ™! for n > 1 in (8). The term z™*! is in the expansion of

(—1)ci(z+ 1)+ only if i < nand 2(i--1) > n+1 which is 4 > [n—;——l] This

—1
gives the range of 7 : [—n—Q——] < 1% < n, which should be considered. Suppose

11 ‘
some ¢ is in the range, then (:L_l_ ) is the coefficient of 2™ in the expansion of
—1
(z +1)"*! and so the coefficient of z™t! in the expansion of (—1)ic;(z 4 1) z*+!
. (i+1
is (—1)*05( + )
n—1

n . . 1
Hence the coefficient of "1 in (8) is Z (-1)* (Z + ) ¢; which is 0. So we

= n—i
=271

i (—1)i (;ilz) 6 = 0. ©)

i=[2541

get

n= 1] = E, when 7 is odd,
2 2

— 1
. Hence n — [n 5 1] = Ln;— |. By changing the

Let k = n —i. When n is even, we have n — |
n+1
2

-1
we have n — fn2 1=
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index of (9) to k, we get
LnglJ

> (=nk (n * i B A) ent = 0.

k=0

3.2 Some general results on the hit problem over Q

The hit problem of Dg on K[z] for an arbitrary field K is simple. For any z¢,

we have % = Dy_1(x). Hence z is the only generator.

Theorem 3.6 A minimal generating set of Qz,y] under the action of Dg is

finite. One minimal generating set is {1, =, vy, zy, z*y}.
Proof: For any monomial z°y* € Q[z,y], a, b # 0, by Theorem 2.9,
2" = 2°Dy_1{y) = x(Dp-1)(z%)y = —Dy_1 (2%)y = —az** 'y (mod hit).

So we need only to consider the monomials in the form z%y. We have the

following equations:

Bi(e™y) = (- Doy + 2 ly?

e G T

2

-2 1
(a—)z(a—l_-__) is the determinant of the coefficient matrix of the above equa-

tions. It is not zero if @ > 2. Hence x*y is hit for any a > 2. When a = 2, we
have only one equation: Dq(zy) = z%y + zy?, with two unknowns z?y and zy?.
So we need one of them to be a generator, we choose z2y. We already know that
x generates ¥ and y generates y* for all k, hence a minimal generating set for

Qlz,y] is {1, =, vy, zy, °y}. a




We can use the above method to generalize to a useful result. When we try

to show a monomial z7*z3? - - - 2% for some m € N is hit by using E¥ operations

over Q , we write the monomial as z¢f, where @ = a; and f = 25?---z%=. By

the formula (4) in Section 2.1, we have the following equations:

A

’

ENz$"f) = (a— 7))z f + 25" EBLHF)

B2 (o} f) = ("' "22’") 21 f + (@ = 2r)at T EH(f) + o4 B()

B f) = (“ - i’") 23f + (Cf B ) 2 EL(f)
) 7 —1
+.ot (@ —in)ad T EIN(E) + 28T B (S)

Eq(1)

If the degree of f is less than 4, then Ef(f) = 0 for all ¢ > <. Hence every

entry in the ¢th column for all ¢ > ¢ is 0 in the coefficient matrix of the equation

system Fq(1). We denote by Al (a) the determinant of the leading % x 7 submatrix

of the coefficient matrix of the equation system FEq(1), where r indicates we use

E* operations. We have:

a—7 1 0 0
a — 2r
( 9 ) a— 2r 1
Al(a) = : 0
: 1
a—ir a—ir o—ir
7 2
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Proposition 3.7
A;’(a):(aﬂ_%_l)—r(afz—l)
7 7—1
_a——ri at+i1—1 _a—ri ati—1
g i-1 ] a i )

Proof: We expand AZ(a) by the last row to get:

£}(a) = (@~ ir)AY4(a) - ( 57 )an

b G0 (4T ) ata+ o= (7). (10)

It is convenient to define Af(a) = 1 which satisfies the formula

We argue by induction on 7. Suppose up to 7 — 1 the formula holds. We

rewrite (10) as follows:

S (") s =0

=0

If for ¢ the formula Af(a) = (a, + :, B 1) -7 (a jﬁ; 1) still holds, then we

have:

S (T (T e () () @

We now show that the equation (11) holds. The left hand side of (11) is the

coefficient of z° in the product of polynomials:

Een( e £

=0 t=0

() ()

t=0
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where s = ¢ — £. This agrees with the expansion of the product of power series:

(1—=)e . (1-2)" = (1 - z)7" up to the term z*. The coefficient of z* is

((7" + 1375 - 1) in (1 —z)"%. Hence

g(_ly(a—tw) (a+2:z—1) _ ((r+1i)¢u1)_

The right hand side of (11) is the coefficient of z¢ in the product of polynomials:

Ti(—l)t a—ir ﬁti ati-t—1Y
t i—t—1

t=0 t=0

i ) i

a—1r a—+s

=r E —1)t ¢ E s
t=0 s=0

where s =4 — ¢ — 1. This agrees with the expansion of product of power series:

(1 —g)2 - g(1l —2)"% ! = rz(l — )" up to the term of 2°. The coefficient

of 71 in r(1 — z)~"~1 is T(z(r +1) -1

i1 ) This is the coefficient of z* in the

expansion of rz(1 — z)~"~'. But
(1) =1 _dr (it 1) =1\ _ (ir+1) -1
i—1 g i—1 B i

gzcw+1yaj::£@w+1yauumw+nzzC&+}%—W.

i\ -1 i (i— 1) i

since

Hence the equation (11) holds for i. This is equivalent to say that the formula

i —1 — 1 '
Al(a) = (a +Z ) - (a -:_z 1 ) holds for ¢. By the induction hypothesis,
the formula holds for all n € N. Finally

a+1—1 _ a+1—1 _(g )a+i—1 _a—ri a+i1—1
i "\ JTNTU 421 )T T i—1 )

and

a+i1—1 at+i1—1 . fat+i—1 a—7rifa+i—1
i - . =(1——’I"-—) . = . .
% 1 —1 a 2 @ 1

O
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Corollary 3.8 A monomial 7' x3* - - - 22 is hit under the action of D over Q,

n
of some a; > 1+ E ;.
1<i<n, j#

Proof: Let & = 1 + Z a; and let f = z{* a2l - 2%, then
1<j<n, j#£i

Ef(f) = 0. Let af'f, zf'EY(f), ..., s¥ "E¥2(f) be k unknowns. By

Proposition 3.7, we have
—kfa;+k—-1
Al i—— ’
o) = (M ETY) 20

since k£ < a;. Suppose we have the equations shown in Fq(1) withr =1, ¢ =k
and a = a;. Then because A}(a;) # 0, we can solve those equations and show

each of the above & unknowns is = 0 (mod hit), especially =i f = 0 (mod hit). O

We have shown that a minimal generating set is finite for the 2 variable case.

We now generalize this result:

Theorem 3.9 [21] A minimal generating set of S, under the action of Dg is

finite for all n.

Proof: If we can show for some d large enough, every monomial in degrees
> d in S, is hit, then a minimal generating set for S, is finite. We argue by

induction on n. Suppose up to n — 1, a minimal generating set of .S, _; is finite.

Let {g1, g2, ---, gr} be a minimal generating set of S,_1 and let d be the highest
degree of g; for 1 < j < k. Let f=2f* ... 3:,;'1’}_‘1 z¢* be a monomial in S;, where
k
deg(f) > 2d+1 and let g = 2" ... z,~;'. By the assumption, g = Z5j(gj) for
j=1

some J; € Dg. Then

v k
f=zrg=ay Zaj(gj) = Z( (6; M (x5 ))g Z ;2% g; (mod hit),
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where rja:f{ = x(d;)(z%) for r; € Q. Each term rjmf{' g; is in the same degree
as the degree of f. Since deg(f) > 2d + 1, every b; > deg(g;} + 1, so each term
rja:f{ gj is hit by Corollary 3.8. Hence f is hit and hence the minimal generating
set for S, is finite. By the induction -hypothesis, the minimal generating set for

Sy, is finite for all n. 0

Lemma 3.10 [21] x(E¥)(z) = (—1)kcpz®*t where ¢, is the k—th Catalan num-

ber.

Proof: We will prove the theorem by induction. We can easily calculate

X(Dl)(x) = —D1 (z) = —2®. Assume the result is true for all & < n — 1. Since

—x(BE?)(x ZE{X EP ) (z) and x(BT ) (z) = (=1)"tcy_iz™ !, we get
i=1

X(BD) (@) = (=1 Bi(am ) = S (—1)tig, (") gmn,
' 2
=1 i=1

n—1t+1

Note that ( ;

) = 0if ¢ > 2] So we can write the equation as

follows
(=)

. —i+1

XE?(%) — Z (_1)71—':—{-1 (n ;‘l‘ )Cn—imn-H — (—1)n%mn+1, (12)
i=1

by Lemma 3.5. Hence we get the equation x(E?)(z) = (—1)"c,z"*. By the

induction hypothesis, the result holds for all & € N. 0

The following two results work over an arbitrary field.

Lemma 3.11 z$'z%%...2% is hit if ay, ag,...,a, have a common factor k > 1.
1 %2 n 1, (42, y Un

Proof: Let d = a; + a2 + ...+ a,. Suppose k is a common factor of

ay, Qg,..., Qp, then




B (@l el ) = B P B @3 ) . B ()

=gzy'z ... T

an
n *

O

Theorem 3.12 Let f be a monomial in K[z, %2, . . ., %,] where K is an arbitrary
field. If f is not hit under the action of D over K then Tni1f is not hit in

I([.’El,ivg, v ,1?,,,{_1].

Proof: By Theorem 2.5 and Theorem 2.7, { E¥, E% | k € N} form a generating
set of D under the composition over any field, since a field either contains I, or

contains Q. Suppose x,41f is hit, then
Tngrf =Y Y (r(6,5)Ei(g55) + w(i, §) B ), (13)
i ]

where g;;, h;; are monomials € K[zy,%9,. .., Zpe] and (4, 7), w(i,j) € K. Let
gij = o280y, ; and hy ; = &8, ;, where u; ;, v; ; are monomials in K{zy, zs, . . ., Tal.
Then by (4) in Section 2.1, we have
Bi(0:5) = anid Biwig) + Y BB (usy).
stt=i, s>1
Similarly
By(hig) = et Bivg) + Y B3(ani) Bh(usy).
sHt=i, 521
Some of a(%, 7) or b(%, §) are equal to 1, since we must get z,1f after cancel-
lation in the right hand side of (13). We pick up all the terms with the exponent
of Z,41 to be 1 and rewrite (13) as follows:

Tn1f = Tpy1 E ("" :.7 uz,]) + ’LU( 7.7) é('ui,j)) + S,

i1, §
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where S is a sum in which every term has the exponent of z,,1 > 2 and the

summation takes on all 2 > 1 and j where 2,41 F%(u;;) is in Z zr(z‘, 7)E%(gi4)
i g

and $n+1E§('Ui,j) is in Z Z’lﬂ(’b,j)E;(hz,j) in (13)

ig
Since S has to be cancelled out itself, we get

f= Z i, ] El(uw +’U)(Z J)EZ('UH))

i>1,7

But f is not hit. So the assumption that 2, f is hit leads to a contradiction.

O

3.3 Some general results on the hit problem over T,

Lemma 3.13 A monomial 7' x5% ...z is hit under the action of Dy, if n —1

exponents are divisible by p and all a; > 1 for 1 <i < n.

Proof: If all exponents of f = z{*z5?...x% are divisible by p, then f is hit
by Lemma 3.11. Suppose a; is not divisible by p, and all a;’s are divisible by
p for j # 4. Since a; > 1, Dy,—1(2:59) = 2 g + 2:Ds,-1(9) = [ (mod p) where
g = f/zd, since Dg,_1(g9) =0 (mod p). O

Lemma 3.14 A monomial f = z7'x5* .. 2% is hit over I, if the degree of

n

f> np+1andn—1 exponents of f are divisible by p with some a; = 1.

Proof: Suppose a; = 1, and all a;’s are divisible by p for j # 7. There exists
an a; with pla; and a; > 2p for 1 < j # 4 < n, since the degree of f > np+1

and every a; is divisible by p for j # 4. Let ¢t = a; — p + 1. Then we have

Dy a(zfa3? .. 2., .ah. . aom) =tf +aPay? .. .2l .. .3k, 2 (mod p).
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In the second term, all exponents are divisible by p except ¢. But now ¢ > 1,
hence x7' x5’ ... o} ... a% ... x% is hit by Lemma 3.13. So ¢f is hit and hence f is

hit too, since ¢t =1 (mod p). m|

The following result is well known in the hit problem of the Steenrod algebra.

We also give a proof of it.

Lemma 3.15 Let a be a non—negative integer. Suppose there are k 1’s in the
binary ezpansion of a. Then z* = D(z%~1) (mod 2) where D is a composition

of some Ei’s for i > 0.

Proof: If a = 2¥ — 1, then D = 1. Suppose @ # 2* — 1 for any k£ > 1 and there
are k 1’s in the binary expansion of a. Let a,a,_1...ap be the binary expansion
of a. We can write @ = 2% +2% + || 4+ 2% wheren=d; >dy>...>dy >0
and each 2% corresponds to that ag = 1. Observe that 2¥ — 1 has the same
number of 1’s in its binary expansion as the binary expansion of a. Starting with
B2 (z2°-1) = 224271 (;mod 2), we can use a sequence of Fi on #2°~! where

each 4 is twice of the previous one until i = d; — 1. Then we get
Efdrl .- -ElzkEfk_l(xzk“l) = g2 2T (mod 2).

Let & = B2 ... B2 B2, Then 6, moves the 1st 1 counted from the left of
the binary expansion of 28 —1 to the dyth position. Let § = E2™" ... B2 g2°7%
Then 8(z21 271 -1y = g2 +2242° 71 (1,54 9) which moves the 2nd 1 counted
from the left of the binary expansion of 2% — 1 to the dyth position, ..., finally let
O = Elzcz"_1 .-+ E?E; which moves the kth 1 counted from the left of the binary
expansion of 28 — 1 to the dith position. Note that if @ is odd, then the last 1
in the binary expansion of a counted from left will not move. Then EY where k&
is odd is not in any of d;’s mensioned above for all j. Let D = §j - -9, then

2% = D(z2" 1) (mod 2). 0
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4 The hit problem on polynomial rings of 3 and

4 variables over QQ

In this section, we will give some results on the hit problem over Q. We will find
a minimal generating set for the action of Dy on polynomial ring of 3 variables
in Section 4.1 and find a minimal generating set for the action of Dg on the
polynomial ring of 4 variables in Section 4.2 to Section 4.4. The results we
have got verify Conjecture 1.3 up ton = 4. We set z = z1, y = x3, 2 = 23,
t = z4. Then ¥, acts on the set {z,y, 2,7} in the same way as it acts on the set

{931, T2, T3, 374}-

4.1 The hit problem on a polynomial ring of 3 variables

over Q

Theorem 4.1 A minimal generating set of Ss under the action of Dq is

{zyz, 22yz, sy, oPyz, 282z, 23y%2).

>

Proof: By Theorem 3.6, yz, y*z generate all monomials of S, with variables

y, z under the action of Dg. By Theorem 2.9, we have:
a2 = 2°(d1(y2) + G2(y®2)) = (x(d1) (2%))yz + (x(02)(z))y’z (mod hit),

for some &1, 0y € D (x(61))(z*) and (x(J2))(2*) are monomials in & since 6y, d,
are homogeneous elements of D. We get: 3°y°2° = riafyz + rea® 19?2z (mod hit)
where 71, 7 € Q and kK = a+ b+ ¢ — 2. So it is sufficient to consider whether

monomials of forms z%yz and z%y%z are hit or not in each degree.
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By Corollary 3.8, the monomial z%yz is hit if ¢ > 3 and the monomial z%y%z

is hit if @ > 4. So all monomials in degrees > 8 are hit.

In degree 7, monomials in the form [511] are hit by Corollary 3.8. We have

El(z%y%2) = 3aty?z + 223y%2 + 239222,
By Theorem 2.9,
2%y3z = B} (zy)z = zy(x(E2)(2)) = 3zy2° (mod hit),
since x(F2)(2) = (D2Dy — E2)(z) = 32°. Now we have
#*y*2? = 2’ B} (yz) = (x(BY)(2®))yz = 92°yz (mod hit),

since x(B2)(2®) = (D1D1 — E?)(z®) = 122° — 32° = 9z°. Hence z3y%z, z8y%22
are hit and hence z*y?2 is hit too. So all monomials in degree 7 are hit.

Now we check degrees < 6. Obviously zyz is not hit. In degree 4, we have
only one equation: Di(zyz) = x?yz + xy?z + xy2® with three unknowns z2yz,
zy*z and 3y2%. So we need any two generators. We choose z?yz and zy?z. Recall
that Dg is generated under the composition by Dq, Dy (Theorem 2.5), so it is
enough to just check operations D; and Dj. In degree 5, we have four equations
involving Dy and Day:

Di(z?yz) = 25%yz + 3%y%2 + xly2?
Dy(zy?z) = 2%y%z + 2zy%2 + zy?22
Dy (zy2?) = x2y2® + zy?2® + 22y2°

Dy(zyz) = 23yz + zy3z + zy2®

\
We rewrite the above equations as follows:

)
223yz + 2%y%z + 2%y2? = 0

2,,2 3 2,2 —
zy°z + 2zxy°z + zyczt =0
3 Y v Y (mod hit)
22yz2? + zy?2? + 2ayd =

22yz +xydz + 2y =0
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The coeflicient matrix is as follows:

(mf’yz s’z ay2® iz Py’ a:yzzQ\

2 0 0 1 1 0
o 2 0o 1 0 1
o o 2 0o 1 1

\111000/

The matrix has rank 4. There are 6 unknowns, so we need 2 generators.
We choose z3yz, x?y?z. After checking in the equation system, we see they are
generating elements in this degree.

Finally in degree 6, the monomials in the form [222] are hit by Lemma 3.11,
the monomials in the form [411] are hit by Corollary 3.8. From Example 2.30,
we know monomials in the form {321] span Sp(!')) which is the first occurrence
of this irreducible module in S3. Hence monomials in the form [321] are not hit

by Schur’s lemma. We have:

Dy (z3yz) = 3ztyz + 23?2 + 2%y2® = 23y?z + 23y2? (mod hit),

Dy(zy?2) = 2zyz + 2322 + zy?2® = 29’2 + 2y®2® (mod hit).

The first equation gives z%y%z = —(23)2%y?2 (mod hit) and the second equa-
tion gives z3y%z = —(13)z3y%z (mod hit) for (13), (23) € X3. Since (13), (23)
generate £3, any monomial mx3y?z for € 33 is congruent to (mod hit) z3y%z up
to sign. Hence z3y%z generate all monomials in the form [321]. So the minimal

generating set of S3 under the action of Dy is:

{zyz, 2%yz, 9’2, Pyz, 2292, B3y’ 2}
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4.2 The hit problem on a polynomial ring of 4 variables

over QQ

In this section, we will prove the following theorem:
Theorem 4.2 A minimal generating set of Sy under the action of Dg is
{zhi2Ft | 1<i<4,1<5<3, 1<k<2}

By the result of Theorem 4.1 and a similar argument as we used in the proof

of Theorem 4.1, for an arbitrary monomial in Ss, we have

k—2,3

4l = p aPyzt + roat Ty 2t + ety 22t + raxt 2y 2t

T2tz
+r51 29?22t + rezt3y3 22t (mod hit),

where 7; € Q and k = a -+ b0+ c+ d — 3. Hence we only need to check monomials

of the forms: [al1l], [a211], [a221], [a311], [a321].
Lemma 4.3
gi0yi0040 = g iy b+ EHADE=D) (mod pat)
1%y°2"t° = ryxyF (mod hit),
where a, b, ¢, k €N, ry, ro € Q and F is o polynomial in the variables z and t.
Proof: By Theorem 2.9, we get:
ity 0b = FHITL (g )i = giyd 5 (y (BT (1))
= 1oty 20O (mod hit),
2y 2"t = (B (2y))2"° = zy(x(Bo_,) (2't°)) (mod hit),

where x(E2_,)(2t°) is a polynomial in z and t¢. O
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4.3 Monomials in degrees > 11

Proposition 4.4 Every monomial of Sy in degrees > 11 is hit under the action

Of'DQ.

Proof: By Corollary 3.8, monomials in the form [a¢111] are hit if a > 4,
monomials in the form [@211] are hit if ¢ > 5, monomials of the forms [¢311] and
[a221] are hit if @ > 6 and monomials in the form [@321] are hit if a > 7. So all

monomials in degrees > 13 are hit.

(1) Degree 13:

In degree 13, there are monomials of the following forms: [10,111], [9211],
[8311), [8221], [7411], [7321], [7222], [6511], [6421], [6331], [6322], [5521]], [5431],
[5422], [5332], [4441], [4432], [4333].

Monomials in the forms [10,111], [9211], [8311], [8221] are hit by Corollary
3.8. By Lemma 4.3, we get:

24 = rix'%zet (mod hit), z'y?23t® = rea®yet (mod hit),

zTy?z
pytatt = raxy 2t (mod hit), y32%t = ruxy2t® (mod hit),

18y3 2% = ryadyPat (mod hit), zPy*2*? = rexy?zt (mod hit),

gty 2 = ryay? 28t (mod hit), 2"ytzt = rexy®2*t® (mod hit),
for r; € Q.

Hence monomials in the forms [7222], [4333], [4441], [6331], [6322], [5422],
{4432] and [7411] are hit as well.

We need to show monomials in the forms [7321], [6511], [6421], [5521], [5431],
[5332] are hit. Let ¢; be the ith Catalan number. By Theorem 2.9 and Lemma
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3.10, we have

csz®y®zt = (x(B) ()22t = yEi(a82t) (mod hit)

6 6 6
= (4) 0yt + (3) 20y (22 + 2t%) + (2) 3y 2212,

The 3 terms are hit so 2%y°2t is hit. Hence all monomials which have two ez-
ponents 1 are hit. By Lemma 4.3, we get that all monomials with two equal

exponents are hit. By Theorem 2.9 and Lemma 3.10,
—cszbyt 2%t = (x(BD)(z))y*2%t = s B (y*2%t) = 8zy 252 + 6xy°242 (mod hit),
cezy 2212 = (x(BS)(y))22®t? = yES(2%2) = 22y25* (mod hit),  (14)

we get

—cscerbytz?t = 8a%y2btt 4 6egzyS2t? (mod hit). (15)
Since a monomial with two equal exponents is hit, we get:
Dy(z*yz*t") = 22%y2%t* + 22254 (mod hit),

Ds(28y2%t) = 1Py 2% + 2%y2%* (mod hit).

Hence

22y 28t = -2yt = 289*2% (mod hit). (16)
Also

Ds(zyz*t?) = 2%y2*? + 29822 (mod hit),

Dg(28yzt?) = ay* 2t + 289242 (mod hit),

Dy (aPy?2t) = a%y*2t% 4 25y*2%t (mod hit).
Hence

2y®24? = —aby2? = 2Sy'21® = —aSy*2% (mod hit). (17)
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By (15), (16), (17) and Example 3.4, we get
(cscs — Bcg + 8)zPy*2%t = 47602%y*2%t = 0 (mod hit).
So z%y%22t is hit. By (14), monomials in the form [7321] are hit as well.
Finally by Theorem 2.9, we get:
25°y* 2%t = (D2(y?))2° 2% = y*(x(Dy) (z°2°t)) (mod hit)
= —y? Dy (a°2%t) = —ba"y22%t — 3259225t — 2022345,

The last three monomials in the above equation are hit by the previous argu-

ment, so z°y*z%¢ is hit. Hence every monomial in degree 13 is hit.

(2) Degree 12:

In degree 12, there are monomials in the following forms: [9111], [8211], [7311],
[7221], [6411], [6321], [6222], [5511], [5421], [5331], [5322], [4431], [4422], [4332],
[3333]. Monomials in the forms [9111], [8211], [7311], [7221] are hit by Corollary
3.8 and monomials in the forms [6222], [4422], [3333] are hit by Lemma 3.11.

—cszlytzt = (X(BY) (z))y*at = o B (y*at) = myP (2%t + 2t%) + doy" 28 (mod hit),

the last three monomials in the above equation are hit so z%y%zt is hit. Hence

monomials in the form [6411] are hit.

By Theorem 2.9 and Lemma 3.10,
ey’ zt = (}(B})(z))y°2t = xEi(y°2t) (mod hit)

= 5y’ 2t + 102y° (2% + 21?) + 102y" (2%%),

the last three monomials in the above equation are hit so z%y5zt is hit. Hence

monomials in the form [5511] are hit. Hence all monomials which have two
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ezponents 1 are hit. By Lemma 4.3, monomials with two equal exponents are
hit as well. So monomials in the forms [5331], [6322], [4431], [4332] are hit.
Hence
Dy (zy®2*?) = 5xy®2%* + 3zy®2*? (mod hit), (18)
—c5zy° 2%t = ((x(B)))(2))y* 22t = s EX (y327t) = 22y5234% 4 3zy52*4* (mod hit),
we get by subtraction c;z%y®2%t = 3zy°23¢% (mod hit).
Note that in the above equation, the monomial in the right hand side is the

monomial of the left hand side with all exponents shifted cyclically one position

to the right. By symmetry, cs2y°2%t? = 322y2%® (mod hit). Hence
cs zPy 2t = 3esay®23t? = 92%y25® (mod hit).
For the same reason, we get: cs2x2y2%t® = 92%¢y322¢t. Hence
(cs* — 81)3%92%t = 0 (mod hit).

Since ¢ = 42, the coefficient of z%y322t is obviously not 0, 2822t is hit. From

(18) zy®2*#? is hit. Hence all monomials in degree 12 are hit.
(3) Degree 11:

In degree 11, there are monomials in the following forms: [8111], [7211], [6311],
[6221], [5411], [5321], [5222], [4421], [4331], [4322], [3332]. Monomials in the forms
[8111], [7211] are hit by Corollary 3.8. By Lemma 4.3, we get

23y22%t? = riabyzt (mod hit)  zPy32%12 = roayzt’ (mod hit)

for some r1, o € Q. So monomials in the forms [5222], [3332] are hit as well .

Hence by Theorem 2.9 and Lemma 3.10, we have:




53’y ot = (X(E? ) (2))y’zt = s B2 (yP2t) = 295247 = ay® B2 (2t)

= (x(B})(zy®))2t = (D1Dy — E3)(xy®))2t = 25%y®2t (mod hit), (19)

since the other terms in ((DyDy — E2)(xy®))zt are 2%y"2t and zySzt which are

hit.
Note that in the above equation, the monomial of the right hand side is the

monomial of the left hand side with exponents 6 and 3 interchanged. By repeating

the procedure once more on z3y%z¢, we get:
(c2 — 4)a%y®2t = 176022t = 0 (mod hit).

Hence z%y®2t is hit and hence monomials in the form [6311] are hit. By (19),

monomials in the form of [6221] are hit too. By Theorem 2.9 and Lemma 3.10,
caa’ytat = (x(E})(2))y'2t = o B (y*21)

= zy®zt + 4oy’ (22t + 212) + 62y°2%% = 0 (mod hit),

the last four terms are hit so z°y*z is hit. Hence monomials in the form [5411]
are hit. Since all monomials in this degree which have two exponents 1 are hit, by

Lemma 4.3, monomials in the forms [4421], [4331], [4322] are hit as well. Hence
Dy (zy2%t) = 425y 2%t + 3xty*2%t + 22%y®2%t + 2'yB 2212 = 4aPy®2?t (mod hit).

Now we have shown every monomial whose total degree > 11 is hit. |

4.4 Monomials in degrees < 10

Let Hy be the set of hit elements and let Cy = S;/Hy be the cokernel. By the

discussion of section 1, the set of representatives of a basis of C, is a minimal
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generating set of Sy as an Dg—module. Suppose, for 7 € N, {f;} is a finite set of
monomials which span a Q-—subspace F' of S;. If the set of f; and hit elements
span Sy, i.e. F'+4 Hy = Sy, then F/(F N Hy) ~ Cy4. Then {f;} contains a set
of representatives of a basis of Cy. Hence {f; + H} is a Q—spanning set of Cy.
Equivalently we may also say {f;} (mod hit) is a Q—spanning set of Cy. We
grade the cokernel Cy = C§ by C¢ ={ f+ H € Cy| deg(f) =d }.

Proof of Theorem 4.2:

Now we consider monomials in degrees < 10.

(1) Degree 4 and degree 5:

In degree 4, zyzt is obviously not hit. In degree 5, there is only one equation
Dy (zyzt) = 22yzt + zy?zt + y2®t + wyzt? with 4 unknowns z?yzt, zy?zt, zyz2t

and zyzt2. Hence we need three generators. We choose z?yzt, xy?zt, zyz?t.
(2) Degree 6:

In degree 6, there are monomials in the forms [3111] and [2211]. By Appendix
A and Appendix B, monomials in the form [2211] span M©®?), In M@ a sub-
module Sp®® which is two dimensional is the first occurrence of Sp®2 in Sy.
Hence the submodule Sp®? is not hit by Schur’s lemma. So monomials in the
form [2211] are not hit. There is only one Sp®Y) in the degrees lower than 6 and
there are two Sp®)’s in degree 6, so one copy of Sp®Y) which is three dimen-
sional is not hit. Hence Cf is at least five dimensional. We choose the following

5 monomials:

2dyzt, zydat, a?y’zt, Py, vyt
and we will show that they are the representatives of a basis of C§. Consider the
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Q-—subspace N of S¢ spanned by the above 5 monomials and the hit elements
in Sf. We will show that the subspace is equal to S. Hence the 5 monomials
(mod hit) span Cf. Since Cf has dimension > 5, the 5 monomials (mod hit) form

a basis of CY. We have:
Dy (z?yzt) = 23%y2t + 2Py?2t + 2?y2t 4 2?yzt? = 2?yzt? (mod N) (20)

Dy (zy?zt) = z®y’zt + 2zy° 2t + zy?2%t + 2y?2t? = 29%24® (mod N).

We have now accounted for 5 monomials in the form [2211]. We can have the

remaining one by
E%(zyzt) = x2y%2t - 2ly2%t + 2?yat® + my?2*t + ay?at® + zy2td.

Hence monomials in the form [2211] are hit (mod N). Also monomials in the

form [3111] are hit (mod N) as well by (20) and its permutations.
(3) Degree 7:

In degree 7, there are monomials in the following forms [4111], [3211], [2221].
From Appendix A and Appendix B, the three dimensional Sp®) in M) which
is spanned by monomials in the form [3211] is the first occurrence in Sy. Hence
monomials in the form [3211] are not hit.

Since D; and D, form a generating set of Dg (Theorem 2.5), if an irreducible
Y;—module is hit in S, then it has a preimage in degree 5 or degree 6. By
Appendix B, there are four copies of SpCY) in S] and there are three copies of
SpBY in S§ and S§. Hence at least one copy of Sp®? is not hit. So C] is at least

6-dimensional. We choose the following 6 monomials:

x4yzt, $3y2zt, :vsyzzt, mzyazt, my3z2t, w2y2z2t




as the generating set. We will show that the Q—subspace N of S7 spanned by
the above 6 monomials and the hit elements in S} is equal to SI. Hence the 6
monomials (mod hit) span C] so they form a minimal generating set. By Theorem

2.9 and Lemma 3.10,
w22 = 2B} (yzt) = (x(BY) (z))yzt = —cszlyzt =0 (mod N),  (21)
Dy (z2y?2t) = 25°y?2t + 22y 2t + 2?y?2%t + 2%zt = 22y%2t® (mod N), (22)

E¥(myat) = a2y?2%t + o®y?2t? + o2y + P22

We get that monomials in the form [2221] are hit (mod N), so monomials in
the form [4111] are hit (mod N) by (21) and symmetry. By applying suitable
permutations on (22) and since monomials in the form [2221] are hit (mod N), we
get that every monomial in the form [3211] is congruent (mod N) to a monomial of
the same form with opposite sign by interchanging exponents 2 and 3. Hence we
only need to consider the following 6 monomials: z3y%zt, z3y2%t, $3yzt2, zy2%t,

zy2t?, yz3t?, after taking modulo N. Because z3y%2t, 23y22t, zy32% are in N,

the problem is reduced to z3yzt?, zy321* and zy23t* (mod N). By
Dy (zyzt) = x®y®st + 3zytat + 1y 2% + 2y 21? = 2Pzt (mod N),
Dy (zyzt) = 3atyat + 2dyzt + 2Pyt + 23yt = 23y2t? (mod N),
Dy(zy2t?) = gyzt® + zy’2t? + zy2*t? + 2oyt = 2y2>t? (mod N).

We get that monomials in the form [3211] are hit (mod N). So N = S7.
(4) Degree 8:

In degree 8, there are monomials in the following forms: [5111}, [4211], [3311],
[3221], [2222]. Monomials in the form [2222] are hit by Lemma 3.11. Monomials

in the form [5111] are hit by Corollary 3.8. By Appendix B, there are two copies
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of Sp®V) in S§ and there is only one copy of Sp?!?) in lower degrees, there are
three copies of Sp®? in S§ and there are only two copies of Sp(®? in lower degrees.
So there are one copy of Sp®®® and one copy of Sp@!) in S8 which are not hit,

and hence C¥ is at least 5 dimensional.

We have the following equations involving monomials in the form [4211]:

Ds(zy?2t) = zy?2t + zy?2tt + zy?att
D3 (zy2*t) = sty2?t + zy2%t 4 zy22tt
Ds(zyzt?) = ztyzt? + sytat? 4 cyztt?
J Dy (z%yzt) = g?ytat + zyztt + 2yt (rmod hit)
Dy (ztyzt) = zty?at + zty22t + alyzt?
Dy (zytzt) = sytat -+ oyts?t 4 vytat?
Dy (zyzit) = 2yt + zy?2%t 4 sy2tt?
Dy (zyztt) = glyztt + zy?att + oyt

The coefficient matrix of the above equations is:

(4211 4121 4112 2411 1421 1412 2141 1241 1142 2114 1214 1124
1 0 0 0 0 0 0 1 ¢ 0 1 0

0
0
0
1
0
0
0

o o o = O O
[ RN T - = =)

0
1
0
1
0
0
0

o ©C O O O © =

0 0 0
1 0 1
0 1 0
0 0 0
1 0 0
0 1 1
0 0 0

o = O O o o ©o

0
0
1
0
0
0
1

-0 O O © O ©o
= o o o o o =

My

M; has rank 7. We will show the subspace N spanned by the following 5

monomials: zy%zt, $lyz2t, x3y32t, 23y?2%, %%2% and the hit elements in S§ is
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equal to S8. By Theorem 2.9, Lemma 3.10 and by writing cs = 5,
—5z2yztt = (x(E3)(t))ztyz = (B3 (2y2))t = aty?zt + xty2®t + 22%9%2°%

= —gtyzt? + 223?22t (mod hit),

since D (ztyzt) = z*y?2t + 24y22t + zy2t? (mod hit). Hence we get:
223y? 2%t = ztyat® — balyzt* (mod hit). (23)
By interchanging = and y, we get
20%° 2%t = wytat? — Swy?att (mod hit). (24)
By interchanging y and ¢, we get
223y 2*? — otyPat + 5zy*at = 0 (mod hit). (25)

By symmetry every monomial in the form [3221] is congruent (mod hit) to a
linear combination of two monomials in the form [4211].

By Theorem 2.9, Lemma 3.10 and by writing ¢; = 2,
2039° 2t = (}(BE)(y))z® 2t = Ei(2®2t)y = 3(a*y2’t + xtyzt?) + 23y 2% (mod hit),

we get:

233932t + 3xtyPat — 2y2*® = 0 (mod hit). (26)

By (25)+2(26), we get:
4x3y®zt = —5aty?zt — 5a®ytat (mod hit). (27)
By symmetry every monomial in the form [3311] is congruent (mod hit) to a

linear combination of two monomials in the form [4211].
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Now we add 5 rows to M; corresponding to coeflicients of monomials in the

form [4211] in the following equations:
z'y*zt =0 (mod N), z'yz* =0 (mod N), (23) =0 (mod N),

(24) =0 (mod N), (27) =0 (mod N).

We get the following matrix:

4211 4121 4112 2411 1421 1412 2141 1241 1142 2114 1214 1124
1 0 0 0 0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0 1] 0 0 1
0 0 1 0 0 1 0 0 1 0 0 0
v} ¢ 0 1 0 0 1 0 0 1 1] (]
1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1
1 Q 0 0 0 0 0 1] 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 (] 0 -5 0 0
0 0 0 0 0 1 0 0 0 0 -5 0

-5 0 0 -5 0 0 0 0 0 0 0 0
My

My has rank 12, hence every monomial in the form [4211] is hit (mod N).
By the above discussion, the monomials in the forms [3311] and [3221] are hit

(mod N) as well. So z*y?zt, zly22t, 3y3zt, 239222, £2y®2%t span (mod hit) S§.
(5) Degree 9:

In degree 9, there are monomials of the following forms: [6111], [5211], [4311],
[4221], [3321], [3222]. x%yzt is hit by Corollary 3.8. z®y?2%t? = raSyzt (mod hit)
by Lemma 4.3 for some r € Q. Hence monomials in the form [3222] are hit as

well. By Appendix B, there are four cdpies of Sp) in S and there are only
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three Sp'Y)’s in degree 7 and degree 8. Hence one Sp®?) is not hit. Since SpELD)
is 3 dimensional, C{ is at least 3 dimensional. We have the following equations

involving monomials of the form [5211]:

’

Dy (z%yzt) = gPy?2t + 2Py2*t + ziyat?
Dy (zySzt) = 229y%2t + xy®22t + zy2t?
Dy (zy2°t) = 22y2% + ay?2%t + zyz542
) D1 (zyzt®) = zy2t® + zy?2t5 + zy22t0 (mod hit) Eq(2)
Dy(2?yzt) = 22y%2t + 2225 + 22y2t°
Dy(zy?2t) = a5y%2t + zy?2%t + zy?2t

Dy(zyz*t) = aby2®t + ay®2%t + zy22t°

Dy(zyzt?) = abyzt? + zy®21? + zyzSt?

By Theorem 2.9, Lemma 3.10 and by writing ¢4 = 14,
la?y2t® = 2Pyz(x(B7) () = tEL(z%yz) = z'y*2*t (mod hit),

we get

z'y?2%t = 142%y2t® (mod hit). (28)

By applying suitable permutations on (28), we get

2?2 = 14ayz?° (mod hit), (29)
22y?ztt = 14zy2°t* (mod hit), (30)
r?y*2*t = 14zy?2t° (mod hit), (31)
22y = 14ay®2t* (mod hit), (32)

we also get that any monomial in the form [4221] is congruent (mod hit) to a

monomial in the form [5211]. We add two more equations:
Ds(z?y?2t) = 225922t + 22%y°2t + 2222 + 1?y?2t?, (33)
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Ds(z?y2*t) = 225y22%t + o2y 2%t + 2%y 20t + 22y 2%t2, (34)

Putting (29) to (32) into (33) and (34) we get:
23°y% 2t + 202952t + 1dzy2*° + 14zy2°t® = 0 (mod hit), (35)
23y 2%t + 1day?2t® 4 222y 2%t 4 14xy522 = 0 (mod hit). (36)

Together with the equations of E¢(2), we get the following coefficient matrix:

5211 5121 5112 2511 1521 1512 2151 1251 1152 2115 1215 1125
1 0 0 0 0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0 0 0 0 1
0 0 1 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 1 0 0
1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 1] 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 0 0 7 0 0 7
0 1 0 0 0 7 1 0 0 0 7 0

Ms

M3 has rank 9. Let N be a subspace spanned by zy%2t, 224222t 2°y%2°t and
the hit elements in S;. We will show N = 5.

By Theorem 2.9, Lemma 3.10 and by Writing c3 = b,
~Bztylzt = (X(E?)(x))yP2t = 2 B3 (y32t) = 3wyP22t4-3ny® 2t 4-3xy* 2% (mod hit),
Dy (zy°2t) = zy°2*t + zy®2t* + 2?y%2t (mod hit)
and by applying a suitable permutation to (28), we get:
5xtyPat = 3a%yPat — 425%y%at (mod hit). (37)

Hence, by symmetry, every monomial in the form [4311] is a linear combina-

tion of two monomials in the form [5211]. By Theorem 2.9,
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2'y’2%t = (B (2y))2°t = zy(x(E3)(<t))
= 2y(DaDy — E2)(2%t) = zy(22*® + 32%°) (mod hit),

we get

'y’ 2%t — 2wy2*t® — 3zy2*45 = 0 (mod hit). (38)

By applying a suitable permutation on (37), we get
5zy2*t® = 3oyz*® — 422y2°2 (mod hit). (39)
By putting 5 (38) + 2(39), we get
53y 2%t = 21ayz™t° — 84zy2°t? (mod hit). (40)

Hence every monomial in the form [3321) is congruent (mod hit) to a linear
combination of two monomials in the form [5211]. Now we add 3 rows corre-
sponding to the coefficients of monomials in the form [5211] in the right hand

sides of equations (28), (37) and (40) to M3 and get a 12 x 12 matrix as follows:

5211 5121 5112 2511 1521 1512 2151 1251 1152 2115 1215 1125
0 0

o o - O o O +H o o ©
=

o o HOo O Qo H o o O

o o O N O - © c 0 H o o
=
=~

|
i~
[ &)
(=]

o o O = OO O O @ = O o = O
o O O 0 o O O O = & = o
o W o o = S O = O FHF O o o
o O o0 o o o O = o o O B o
o o o =N o o o = O O - O
o O Qo = © O = o o +H O O ©
o O O o o o = o C o o o -
Do O N o - O O O O o ©
SO O N -2 O O O O o +H o

(=1

|
oo
b
(=]
o)
—

My
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M, has rank 12. Hence z*y32t, x*y?2%t and 2°y%2%t span (mod hit) monomials

in the form [5211] and hence span (mod hit) Sj.
(6) Degree 10

In degree 10, there are monomials in the following forms: [7111], [6211], [56311],
[56221], [4411], [4321], [4222], [3331], [3322]. Monomials in forms [7111] and [6211]
are hit by Corollary 3.8. z%y?22¢? is hit by Lemma 3.11. Also by Lemma 4.3,
z3y32% = ray2t” (mod hit) for some r € Q, hence monomials in the forms [4222]
and [3331] are hit as well. By Appendix B, Sp") is the first occurrence in Sy, so
monomials in the form [4321] are not hit. By Theorem 2.9, Lemma 3.10 and by

writing ¢, = 14,
1432t = (x(Bi(z))y32t = B (yP2t) = 329°2%* (mod hit) (41)

2y 2212 = wyS B2 (2t) = x(E?)(2y®) 2t = 22392t (mod hit),
we get

14zy32t = 62°y°2t (mod hit).

Repeating the procedure once more to z3y%2t in the above equation, we get
16025932t = 0 (mod hit). Hence monomials in the form [5311] are hit, and mono-

mials in the form [5221] are hit as well by (41). Also by writing ¢z = 5,
—5rtytat = (x(EB3)(z))y'zt = B3 (y*2t) = day®2%t* = 0 (mod hit),

so monomials in the form [4411] are hit. Since every monomial with two exponents
1 is hit, by Lemma 4.3, monomials in the form [3322] are hit as well. We will
show that z*y®2%t is a generator of S}°. Let (12), (13), (14) be elements in X,.
From

Dy (22y2%t) = 3aty® 2%t + 323y*2%t (mod hit),
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Da(z?y?2%t) = 259322 + 2073 2* (mod hit),
Dy(zy®2%t) = z'y®2%t + 2y®2%* (mod hit),

we get:

ztyP2it = —(12)2a*y® 2%t (mod hit),
gtyP2it = —(13)a'y22%t (mod hit),
ztyP2 i = —(14)2'y3 2%t (mod hit).

As (12), (13), (14) generate X4, for any m € Xy,
zty322t = sign(m)zty®22t (mod hit).

Hence z*y®2?t generates all monomials in the form [4321] under the action of
Dg so it generates S;°. Putting the above results together, we have proved the

theorem 4.2. O
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5 The hit problem on polynomial rings of 2 and

3 variables over F,

In this section, we will give the minimal generating sets under the action of D,
on polynomial rings of 2 and 3 variables over Fy. The results we have got show
that a generating set under the action of Dy on Iy [z1, 2, . . ., ] is an infinite set
for all n > 2. We have proved some general results for the n variable case, for
example: a monomial of any number of variables with 2 odd exponents is not hit
if it is in degree 2™ for m € N. In Section 5 and Section 6, when we write 2™,
if we do not specify m, then m € N. When we write an integer k into its binary
expansion, k& = kpk,_1 ... ko, we call ky the Oth digit of the binary expansion of
k, ky the 1st digit of the binary expansion of £ and so on. Let p be any prime
number. In the remaining sections, if we work over I,,, when we write “mod hit”

we mean “mod p” as well.

5.1 The hit problem on a polynomial ring of 2 variables

over [y

Proposition 5.1 Over Fy, 2%° is hit if any of a, b is divisible by 2 and a-+b > 3.

Proof: By Lemma 3.13 and Lemma 3.14. O

Proposition 5.2 In degree 2™ with m € N, a monomial z%y® is not hit under

the action of Dy if a, b are odd.
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Proof: Let N be the number of monomials which have two odd exponents in

the equation EF(z%y¥) = Z (u) (U> iyt where w4+ v 4+ rk = 2™ and
itg=k N0/ N
r =1, 2. Then

N= iﬂZ;k(u + i) (?) (;’) ,;+;,Z=k(v +77) (7:) C’) (mod 2).

This is because v + r¢ and v + 7§ are either both even or both odd. Hence

all terms with even exponents will be cancelled out by the coefficient u + r¢ or
v +7j. By Lemma 3.3, N =0 (mod 2).

Recall that {E2°, EZ° | k =0 or k € N} is a generating set of D, (Theorem
2.7). Suppose an arbitrary monomial f in degree 2™ is hit under the action of
D,. Then we can write

F=D 0 B (i) + D0 ) B3 (gg) (mod 2),
20 j i>0
where f;;, ¢i; € Fa[z,y]zy. Then the number of non-zero terms with 2 odd
exponents in f must be even, since each E2 ( fij) or EZ (gi,) in the right hand side
of the above equation has an even number of non-zero terms with odd exponents
in it.
Hence if dz®y® with a, b odd is hit under the action of Dy, then d = 0 (mod 2).

Hence z%y” is not hit in degree 2™. O

a1 .02

Proposition 5.3 In degree 2™, ¢ monomiel x7*x3? ... x%», with at least two ez-

el

ponents odd, is not hit under the action of Ds.

Proof: Suppose a; is not divisible by 2. We take an operator 7 € I',, which
maps «; to z; and maps the other variables to x; where j # 4 (Section 1). Then
7 commutes with the action of Dy. Suppose z*25* ... % is hit over Iy, then we

have

D 6u(fe) = 2Ptz ..zl (mod 2) (42)




where each f; is a monomial in Fy[zq, %2, ...,%,] and each & € DF. Then we

apply 7 to the left hand side of (42) and get

ﬂZ&,(ft) = Zé‘m(ft) = Z&t(gt),

where each g, is a monomial in IFy [sci, z;]. We apply 7 to the right hand side of (42)
and get m(z'z3? ... 20) =z m "% Hence we get mgiwjz.m_“i = Z 8:(g:) (mod 2).
But :c;-l"w?m_“" is not hit under the action of Dy, since it is in degree 2™ and a; is

odd. So the assumption that z7'x52 ... z% is hit leads to a contradiction. O

Theorem 5.4 {1, z, y, 2%y, =" ~ly | m € N} is a minimal generating set of

Fy [z, y] under the action of Ds.

Proof: Since we know the 1 variable case, we only need to find a minimal
generating set for Fy[z, y]zy. Suppose b > 1, then D,_;(2%) = z%y® + az®t*~1y.
So we get %" = az***'y (mod hit). Hence {z%y | a € N} is a generating set of
Fy [z, y]zy over Fs.

In degree 3, there is only one equation Dy (zy) = zy+ay? with two unknowns

zy, wy*.

So we need z?y in the generating set. Obviously zy is not hit. Let
a > 2. By Proposition 5.2, 2y is not hit in degree 2™. By Proposition 5.1, a
monomial z%y is hit if @ is even where a > 2. Hence we only need to consider
monomials in the form [al] where 2 { @ and a # 2™ — 1. We write the binary
expansion of @ as an,a,—1...a¢ with a, # 0. As a+ 1 # 2™, some a; # 1 for

1 <i<n. Letag;, for 1 <4 <n—1, be the first digit of the binary expansion of

o which is equal to 0 counted from right. As 1 > 0, we have

i, a—oi g — 20 a a— 2 ae
E{ (z 2y):( i )x y—i—(zi_l)w g2,

Since a; = 0, the ith digit of the binary expansion of (a — 2%) is 1, we have

4 _‘2 0 (mod 2). By Proposition 5.1 % !9? is hit, so 2%y is hit as well.
22
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Hence {z%y, 22"~y | m € N} is a minimal generating set of IF; [z, y]zy under the

action of Ds. 0

5.2 The hit problem on a polynomial ring of 3 variables

over Iy

We will prove the following theorem:

Theorem 5.5 A minimal generating set of W[z, y, 2]zyz under the action of
. k ok__ R _ k k k__
Dy is: {zyz, 2%yz, zyiz, 3yz, zyiz, 3%z, ¥ y? iz, ay® 1%, 2 iy -1y,

g2ty g2 =1 g2l 201 | 2 <k eN}.

5.3 Some general results for the 3 variable case

For a monomial z%y®z°, choosing a largest exponent among a, b and ¢, we may

assume a > b, c. We can express it by:

zoyb2¢ = z° (Z dk(yzk“lz) + 6(y2z))
%

= 3706 5%y 12+ (x(6) (%)= (mod. hit),
k

where @ > 28 — 1, k € N and §;, § € Ds. So when we want to know which

monomial is hit in Fy[z,y, 2]zyz, it is enough to check monomials in the forms

[a(2F — 1)1] and [a21].

Lemma 5.6 A monomial x%y°z° in degrees > T is hit over Wy, if two of a, b, c

are even and the remaining one s odd.
Proof: By Lemma 3.13 and Lemma 3.14. 0
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This lemma will often be used in the remaining part of this section. If a
monomial in degrees > 7 is a term of the image of any operation of Dy on

Fy |z, y, z]zyz and has two even exponents, we will consider it hit and omit it

(mod hit).

Lemma 5.7 If k is even and a4+ b+ k > 6, then
b , X
E¥(z%ybz) = Z (a,) () Tyt (mod hit)
iygmr NN

over Iy,

Proof: From the formula (5) of Section 2.1,

B atyba) = Z (‘Z) (3) gyt 4 | Z | (‘:) (;’) o tighti 2, (43)
i+i=k itj=k—1

We look at the second sum in (43). Since & is even, ¢+j = k—1 is odd. Hence
one of 7, 7 is odd. Suppose a-+b is even, then either both a and b are odd or both
a and b are even. So one of a + 4 and b+ j is even. By Lemma 5.6, 3%+iyb+iz2
has two even exponents so it is hit since the total degree > 7. Suppose a + b is
odd. If both a + ¢ and b+ 7 are odd, then we must have either: a is even, i is
odd and b is odd, j is even or: @ is odd, 7 is even and b is even, j is odd. But in

b
both cases (?) (]) = 0 (mod 2). Hence the second sum in (43) = 0 (mod 2). O

We can generalize the above result as follows:

Lemma 5.8 In E}(z%y?2") where k is even and u +v +w +k > 7, a term
Uiy vt 2wt ith nonzero coefficient is hit under the action of D, if any of

u+1, v+ 7 orw+tis even with corresponding u, v or w odd.

Proof: From the formula (5) of Section 2.1, we have

B a2y = Y C") (’;’) (f) gy, (44)

i+jt=k
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Since k is even, either 4, 7, ¢ are all even or exactly two of them are odd. If
i, J, t are all even, then there is no odd w, v or w which will change to even
in the right hand side of (44). We may assume that 7, j are odd and ¢ is even.

Suppose a term (7:) (;)) (Z}) g Ty 0+ £ 0 (mod 2). Then u, v must be

odd, otherwise either (?: =0 (mod 2) or (U> = 0 (mod 2). Hence u + ¢ and
J
v + j are even. So the term has two even exponents and it is hit by Lemma 5.6.

|

This lemma will often be used. In the remaining part of this section, when we
write out E¥(z%y?2z”) where k is even and u+v +w +k > 7, we will use Lemma,
5.8 without further comment and omit (mod hit) every term z%y’z° where a, b or
¢ is even with corresponding u, v or w odd. By the above lemma, we can use Ef
with &k even to change the number and position of 1’s in the binary expansions
of a, b and ¢ and get a monomial which is congruent (mod hit) to the original

monomial. In the following examples, we repeatedly use Lemma 5.7 and Lemma

5.8.

Example 5.9 From
EHz®™y"2) = 2**y"2 + 220y 2 (mod hit),

E}(2*y2) = «*y 2 + 2292 (mod hit),
E}(2My°2) = 3%y°2 + zMy' "2 (mod hit),

we get:

2MyTz = 2Py 2 = 2%29%2 = 2y 2 (mod hit).
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We write a, b, ¢ into binary expansions: ¢ = an@p—1 - Qg, b = bybm_1 - - - by,
€= CpCrp—1 - - Co. We may represent 2%y°2¢ by the following diagram:
Gplp—1 """ Qg
bmbm——l Lt bO ]
CkCr—1''+Co

with apn, bm, cg # 0.
5.4 Generating elements for degrees < 6

Proposition 5.10 A minimal generating set of monomials in degrees < 6 in

Foz,y, zlzyz is {zyz, %Yz, 3y*z, 2dyz, 2932, 23y?2}.

Proof: By Theorem 2.7, we only need to check the following operations: Efk,
E2 fork=0orkeN.

In degree 4, there is only one equation
Dy (zyz) = 2?yz + zy’z + ayz®

with 3 unknowns z%yz, zy*z and zy2?. We choose z?yz and zy?2 to be generators.
Notice that this is the degree of 22, We list all operations whose images are in

degree 5:

Dy(z%yz) = 2%y%2 + 32

D (zy?z) = Y%z + ay?2?

$ Dy(zy2?) = zPy2? + oy’ 2? (mod 2)
Dy(zyz) = 2%yz + 293z + zy2®

Ei(zyz) = 1%y%z + 22y2? + zy?2?

\

From the above equations, we get that monomials in the form [221] are hit.

We have only one equation which involves z%yz, zy%z and zy2®. So we choose

70




two generators z°yz and zy3z. Note that not are Artin elements contained in the
cokernel of the D, action, since the Artin element z%y?z is hit.

In degree 6, since E2(2y2) = z'yz (mod hit) by Lemma 5.8, monomials in
the form [411] are hit. By Lemma 3.11 2%y%2® is hit. We have the following

equations which involve monomials in the form [321]:

;

Dy (z3yz) = 39?2 + 23y2?

Dy (zy°2) = 2*y’z + zy’2?

(mod hit)
Dy(ay

.D2 (iC

= 22982 + 12y28

z) =
Dy (zy2®) = 2?y23 + 2?28
2) = 23y?z + xy2®

z)
D (zy2?) = z¥y2? + my322

\

The coefficient matrix of the above equations is as follows:

/w3y2z Py 2tz TR 2y oy \
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 1 0 1 0
1 0 0 0 0 1
\ o 1 o 1 0o o0 )

The matrix has rank 5. If we add one row to the matrix with 1 in the last
column and 0 elsewhere, then we get a matrix with determinant # 0 (mod 2).
Hence xy?z® generates the monomials in the form [321] and so does z3y%z by

symmetry. Summing up the results of this section, we get the generating set. O
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5.5 Monomials in degrees 2™ and 2™ + 1 for m > 2

For the remaining content of this section, we may assume degrees are > 7.

Proposition 5.11 In degrees 2™, 2™+ 1, a monomial x%y°z with at least one of

a, b odd is not hit under the action of Dsy.

Proof: By Prdposition 5.3 and Theorem 3.12. O

Proposition 5.12 Any monomial 2%y%z in degree 2™ or 2™ -+ 1, where b is odd
and has k 1’s in its binary ezpansion, is congruent (mod hit) to a monomial in

the form z'y’z where u =2™ — 28+ forr =0 or 1 and v = 2F — 1.

Proof: Suppose b # 2" — 1 for any n. By Lemma 3.15, y* = D=1 (mod 2)
where D is a composition of some E’s and % is the number of 1’s in the binary

expansion of b. Then by Theorem 2.9,
2’z = 22D (¥ ) = (x(D)(3%2))y* ™! (mod hit).

x(D) is a sum of some compositions of F?’s, since x is the anti—isomorphism
on the Steenrod algebra generated by all E%’s.

In (x(D)(z°2))y?" !, suppose the exponent of z of a term changes, it can only
change to 2 firstly and then remains even. Suppose £%z is in degree 2™. Then
a is even and the exponent of % is always even in every term of (y(D)(z%2))y* 1.
If the exponent of z of a term changes to even, then the term is hit by Lemma
5.6. Suppose 2%’z is in degree 2™ + 1, then ¢ is odd. If the exponent of z of a
term changes to even, a has to change to even as well since total degree is odd.
Again the term is hit by Lemma 5.6. Hence z%y’z = la®y* ~12z (mod hit), where
I=0o0r1landa =2m—2¥+7 for r = 0 or 1 since the degree of z%y’z is 2™ or

2™ 4 1. We have [ = 1 since 2%y is not hit by Proposition 5.11. a
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Proposition 5.13 Suppose a = 2™ — 28 4 ¢ where v = 0 or 1 and m > k,

b=2% — 1, then a%y’z = 2" +7y2"'~13 (mod hit).

Proof: By Lemma 5.8, F2(z% 2yb2) = 2%z + 2% 2¢y"+ 22 (mod hit), we get

zoybz = %22z (mod hit) and

1-..101.--1r
g0 224y = 10--.01 ,
1

where @ — 2 =2m — 2% — 2 4 p,
We claim that 202211y = 2" ' =2412" 41y (mod hit). We argue by
induction on the exponent of y. There is nothing to prove in the case k =m — 1.

So we may assume k < m — 1. By Lemma 5.8 we have,
E¥ (g2 =22 20y = g2y 201, 222 2 (0 hit),  (45)

2k 11
because for j even, ( ;L ) = 1 (mod 2) only if j = 0, 2* and if j = 0,
m __ ok+l _
(2 2 ) 2+T> =1 (mod 2). Hence
ok

- k m__ok+t1__ . okl .
g2y = g7 T P4 (mod hit).

By the induction hypothesis, we must reach

_ k m—1__ m—1 .
g% 2y Ny = T T2 (mod hit).

2m—1 __2+7.y2m—1+1

T z 1s a monomial as follows:
Jeeeleeodr
10---0---01 .
1
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Finally by Lemma 5.8,

5 -1 __ m~-1__ n—1 4 . -1_ —-1__ -1 .
E%(z? Ty 12) =2 YR T Ty 4 T 2T Ty (mod hit).

Hence

m—1_ - nm—1 ain—1 _y m—1__ .
gtylz = ¥ YR T Ly = 2B T 1y (mod hit).

Proposition 5.14 The dimension of the cokernel of the action of Dy in the

degree 2" for m > 3 of B3|z, v, 2] is 2.

Proof: By Proposition 5.12 and Proposition 5.13, any monomial z%y’z with
1 < b odd in degree 2™ is congruent (mod hit) to a monomial z°" y2" 1z,

There are 6 monomials in the form [(2™1)(2™! — 1)1]. Because

gm—1

Dym-1_o(z™ yz) = 27 y?" T e 4 2%y T L (mod 2),

we get

217?.—1 2m-1__1 2112,—1 c)m—l__]_

z= yz* (mod hit).

Hence there are three monomials in this form which generate all the z%y%z

with 1 < b odd in degree 2™ under ‘operations of D;. They are:
(1) mzm—-lyznt-—l_lz’ (2) z2m-1_1y2m—lz, (3) mzm—l_lyz2m—l.

If b = 1, there are three monomials in the forms: 22" “2yz, zy?" 2z, zyz?" 2.
) Y Y Y

They are also generated by (1), (2) and (3). For example:

n— 2m—1_1 2m—-1

Dom-1_1(z”" " "lyz) = 2¥" 2yz + z vz + 2T 2" (mod 2).

So #*"~?yz = (2)+(3) (mod hit). We will have similar results for zy*" 2z

and zyz?" 2. Hence every monomial in degree 2™ is generated by (1), (2) and

(3) over Fy. So the dimension of the cokernel in degree 2™ is < 3.
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Any single one of (1), (2) and (3) is not hit by Proposition 5.3. Also a sum

of any two of them is not hit. For example: writing & = 271,
Di(zyF1281) = okl gyb bl gyf128 (mod 2).

Since Dy_o(zy*2) = 2P 1y*z + ayF2b~! (mod 2), zyF2*' = (2) (mod hit).
Similarly zy*~'z* = (3) (mod hit). So (2) + (3) = 2?y*~12% (mod hit), which
is not hit by Proposition 5.3. By a similar argument, (1) + (2} and (1) + (3) are

not hit. Because
Dk 2($2yk lz)Emzy% 3z+$2yh 1 k-1 (mod 2),

and also by Proposition 5.12 and Proposition 5.13, 22y* 3z = z*y* 1z (mod hit).
We get
(2) +(3)

(1) (mod hit).

Hence (1), (2), (3) are linearly dependent (mod hit). So the cokernel is two

dimensional. O

Proposition 5.15 In degree 2™ + 1 with m > 2, the number of monomials in
the form z®y°z, where a, b are odd, is even in the image of any operation of Ds.

Proof: By EF(ztyvz% Z EL(z"y*)EI(2Y), a m‘onomial in the form z%y’z
only appears in the situationz;;’}::n 1=k, j =0and w= 1. Hence the number of
monormials in the form z%y’z with a, b odd in E¥(3¥y"z) is equal to the number
of monomials in the form [ab] with a, b odd in E¥(z*y"). Because u+uv+k = 2™,
by the proof of Proposition 5.2, the number of monomials in the form [ab], where
a, b are odd, is even in E®(z%y"z). Since {E¥, E¥ | k € N} form a generating set
of Dy (Theorem 2.7), we always get an even number of monomials in the form

[abl] with a, b odd in the image of any operation of Ds. O




Theorem 5.16 A monomial 7' 25* ... x% in degree 2™ + 1 is not hit under the

action of Day, if it has ot least three odd exponents and some a; = 1.

Proof: Let z7'23*...2% be such a monomial. Suppose a; = 1, ay, ag are
odd, we have a map 7 € I, (Section 1) which maps z; to =1, T2 to x5 and all the
other x; to z3 for ¢ = 3, 4, ..., n. Then m commutes with the action of D,. If

129 ... 2% is hit under the action of Dq, then we have
T .. .ze =) §i(f;) (mod 2), (46)
i

where each §; is in D3 and each f; is a monomial in Fy [z, 2o, . . ., T,)].

Then we apply 7 to the right hand side of (46) and get
mY &£ =D &m(fi) = 6ilg),

n

where g; € Fy[z1, T, z3]. Let k = Z a;. We apply 7 to the left hand side of (46)
i=3

and get

a; anY az .k
m(T1zg? .. To) =z 25Ty,

Hence we get 3125725 = 3, 6;(g:) (mod 2). But z123°z% is not hit under the
action of Dy by Proposition 5.11. So the assumption that z,23% . .. z%" is hit leads

to a contradiction. O

Proposition 5.17 In degree 2™ + 1 with m > 3, the dimension of the cokernel

of B[z, y, 2|zyz under the action of Dy is 3.

Proof: For a monomial £°y°2¢ in degree 2™ + 1 with m > 3, if one of the
exponents is even, there must be another even exponent. So all monomials with
any even exponents are hit by Lemma 5.6. We only need to consider monomials

with all odd exponents. By Proposition 5.12 and Proposition 5.13, any monomial
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z%y’z with a, b odd and b > 1 in this degree is congruent (mod hit) to the

monomial z#~1y*+z with & = 2!, Also by Lemma 5.8,
E2(xbyk12) = ohlyhy 4 2yl (mmod hit).

So there are 3 monomials in the form [(k + 1)(k — 1)1] which span all %’z
with @, b odd and b > 1 under operations of Dy and none of them is hit by

Proposition 5.11. They are:
(1) zhtyktly, (2) zhlyat+, (3) zyFlahH,
If b = 1 then we have:
Di(aty2) = 2% lyz + o lyb+ly 1 gbLy b+ (mod 9).,
Hence 2%~ lyz = (1) + (2) (mod hit). Similarly we get
zy* 1z = (1) + (3) (mod hit), zyz*1 = (2) + (3) (mod hit).

Hence every monomial with all three exponents odd in degree 2™+ 1 is congruent,
(mod hit) to a linear combination of (1), (2) and (3) over F2. So the dimension
of the cokernel is < 3. We claim that a sum of two or three of the monomials (1),
(2) and (3) is not hit. By Proposition 5.15, there is always an even number of
monomials in the form z%°z with a, b odd in the image of any operation in Ds.
So zF~1y**1y always appears in the image of any operation of D, with another
monomial 2%y’z where 1 < a, b are odd. Hence (1)+(2) and (1)+(3) are not hit
since there is only one monomial in each of the sums which has the exponent of
z to be 1. It is similar for the monomials (2) or (3). Hence the sum of any two
of (1), (2) and (3) is not hit. The sum of three of them is not hit for the same

reason. Hence the cokernel is three dimensional. O




Proposition 5.18 A monomial 2°y°z° with a, b, ¢ > 1 in degree 2™ + 1 is hit

under the action of D,.

Proof: If there exists an even exponent in 2%°z¢, then there must be two even
exponents since the total degree of £°y°z° is odd. Then the monomial is hit by

Lemma 5.6. Hence we only need to consider the case where a, b, ¢ are odd.

Do 1(z%y2) = a%y’2° + 2t Lybz + 2%ty (mod 2).

By Proposition 5.12 and Proposition 5.13, both z*t*~14%z and z%y+¢~1z are

congruent to " T1y2" =1z (mod hit). So
zo’2¢ = 222" Hy?" T 1y = 0 (mod hit).

Hence 2%yz¢ is hit. O

5.6 Monomials in the form [a(2%)1]

We need to check monomials in the form [a21]. Also we will check monomials in

the form [a(2*)1] for some k > 1, since the result will be used in Section 5.7.

Proposition 5.19 A monomial in the form [all] with a > 5 is hit over By, f it

s not in degree 2™ or 2™ + 1 for some m > 3.

Proof: Suppose we have a monomial z%yz with ¢ > 5, we write the binary
expansion of @ = a,a,—1 + - - ap with a,, # 0. If x%z is not in degrees 2™ and 2™+1,
then there is an a; = 0 for 1 < i < n. Let u = a — 2, then (;) # 0 (mod 2).
We have E? (z'yz) = z%yz (mod hit) by Lemma 5.8. If all a; =1 for 1 < i < n,
then the monomial is either in degree 2™ if ay = 0 or in degree 2™+ 1ifgy=1.

O




Proposition 5.20 A monomial in the form [a21] is hit under the action of Ds,

ifa > 7 and a = 3 (mod 4).
Proof: Let a > 7 and a = 3 (mod 4), we have:
Dy(z%Yy?z) = 392z + 2% y%2° (mod 2), (47)
Dy(z°2y2?) = a%y2® + 3% 2y%2% (mod 2),
E3(2°*y2?) = 2%y2® + 272322 + 5% Yy28 (mod 2),
since ag = a; = 1. This gives that %~ %yz® is hit. Also:
Dy (2% ty2%) = 2% Y28 + 2% 3y25 + 2974225 (mod 2).
So % 3y2z® = 1%7%y225 (mod hit). But
E2(2°%y25) = 27325 + 19759228 (mod 2)

and z%5322% is hit by Lemma 3.11.

Hence 2 3y2z® is hit so 2% %y22® is hit and hence z%?z is hit by (47). O

Proposition 5.21 : A monomial in the form [a21] with a > 4 is hit under the

action of Dq if it is not in degree 2™.

Proof: Let ay - -ajap be the binary expansion of a. By Lemma 5.6, z%y%z is
hit if @ is even. Let a be odd. By Proposition 5.20, z%y?z is hit if a; = 1.

Let ag = 1, and a; = 0. Suppose there is an ¢; = 0 for 2 <7 < n. By Lemma

5.8,

S L S R A G a—2" .54 — 02 .
E} (2% % y“2) = o )TV ET g _ o) y*z = z®y*z (mod hit),

since (;;_22) = 0 (mod 2) as the 1st digit of the binary expansion of 2! — 2 is

1 and the 1st digit of the binary expansion of a — 2¢ is 0. Hence we only need to
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consider an a which has a; = 0 and a; = 1 for j # 1. But this case is in degree

2™. So monomials in the form [a21] with @ > 4 are hit except in degree 2™. O
Proposition 5.22 A monomial in the form [a(2%)1] in degrees > T with k > 1

is hit under the action of Da, if it is not in degree 2™.

Proof: We claim that z%y2'z is either hit or = 2°+2°~2y2z (mod hit). We

argue by induction on the exponent of y. By Lemma 5.8, for & > 1,

E¥ (@ ) = (21?*1) g2y 4 3992 (mod hit),

2k—1
since ( . ) = ( except i = 0, 2°71,
= (22—1) = 0 (mod 2), then 2% 7 is hit, otherwise
2%y 2 = 27y 72 (mod hit).

Hence z%y% 7 is either hit or = %72 'y2* 'z (mod hit). By the induction
Y Y
hypothesis, we get that 2%y z is either hit or = 22" ~2y%z (mod hit). But

£o+2* =202 is hit by Proposition 5.21, hence 42"z is hit. 0O

5.7 Monomials in the form [a(2% — 1)1], k& > 2

Proposition 5.23 : A monomial in the form [abl] with a > b is hit under the

action of Dy, ifa =3 (mod 4), b=2* -1 and k > 1.
Proof: We have the following equations:

Db_l(xa—b+1ybz) = :anbz + wa—b+ly2b—1z + wa.—b—l—l,ybzb (mod 2),

30

.




a—b+1

8.6t g = (7

)$a+b—lyz + (CI, — b+ 1)(:170'be + mayzb) + ma-—b+1ybzb
= 3%’z + 3%z’ + 22"y (mod 2),

since a —b+1 = 1 (mod 4) and (a—;)+1) = 0 (mod 2). Hence we get:

zyzt = o1y %=1y (mod hit). But:

E? (:z:"'_”_ly%_lz) = g0 bty -1, (mod hit),

-1
by Lemma 5.8 and (2b 5 ) = 0 (mod 2) since the 1st digit of the binary

expansion of 2b — 1 is 0. Hence % *192*~12 is hit and hence z®yz® is hit. O

By the above proposition, a spike in the form [(2!—1)(2¥—1)1] wherel > k > 1

is hit under the action of Ds.

Lemma 5.24 A monomial in the form [abl] with a even, a+b > 7 and b = 2 —1

where k > 1, which is not in degree 2™, is hit over IF,.
Proof: We have
Dy(z“ tyb2) = (a—1)z%yP2+ b2 Lyt 420 1y02? = 1%yP2+2971y%2? (mod hit),
since b+ 1 = 2% and z% 1y*+1z is hit by Proposition 5.22. Now
Dy1(z°7tyz?) = 2 yb2% 4+ 297 2y22 (mod 2),

and by Proposition 5.21 z2+"=2y22 is hit. Hence % '¢®2? is hit and hence z%y’z

is hit as well. O

Proposition 5.25 Let a,, - --aiaq be the binary ezpansion of a. A monomial in

the form x%y®z with a odd, b = 2¥ — 1 and k > 1 is hit over Fy, if there are two

0’s between a and a,_,.




Proof: Let @ = a, -+ -ai1a¢. Suppose a; =a; =0for k <i<j<n-—1. Then

by Lemma 5.8,

. , _ 9
E¥ (2% % qb2) = 2%tz + Z (GJ _Qt) ( )m““’yb”z (mod 2).

0<t<
97
But each (2 t) = 0 (mod 2) since the 7th digit of the binary expansion of
a — 27 is 0 and the ith digit of the binary expansion of 2/ — ¢ is 1. i

Proposition 5.26 A monomial in the form [a31] with a odd is hit under the

action of Da, if it is not in degree 2™ 4+ 1 where m > 1.

Proof: By Proposition 5.23, %4z is hit except for the a where a; = 0. We
may assume that @ = 1 (mod 4). By Proposition 5.25, 2943z is hit except the
a where there is at most one 0 between @y and a,—1. Let a; = a; = 0 for

2<j3<n-—1. Then
; —9f — 97
BY (@ ¥y’2) = (a 9 )ﬂia?f’z + (;j B 2) 1 %y’z = 1°y°z (mod hit),

—d
by Lemma 5.8 and (;j 2) = 0 (mod 2) since the Ist digit of the binary
expansion of a — 27 is equal to a; = 0 as j > 2 and the 1st digit of the binary
expansion of 2/ — 2 is 1. The only case left is that a; = 1 for ¢ # 1 and a; = 0,

but then 2%y3z is in degree 2™ + 1. O
Proposition 5.27 A monomial in the form [abl] with b = 2F — 1, a odd and
k > 1 is hit under the action of Dq, if it is not in degree 2™ -+ 1 where m > 1.

Proof: Let a = ay, - - - a1ap. If a; = 1 then 2%y is hit by Proposition 5.23. So

we only consider an a where a; = 0. We have

E2 (2% 2yb2) = a2 + 2° %% 1z (mod hit).
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We claim that 29-2¢y%**15 is either hit or = z%t3y32 (mod hit). We argue
by induction on the exponent of y.

Suppose k > 1. By Lemma 5.8,

k—1 _ k—1 — & k—1_ k-1 .
EY (2% %% la) = a2y 4ot 22y (mod hit),

k—1 1
since for j even, _+ ) = 0 (mod 2) except § = 0 or 5 = 27! Here

J
-2 .
A . If 7 = 0 (mod 2) then z°2y**+17 is hit otherwise r = 1 (mod 2)

ok—1
and 292y 1y = go=22 7027, (0 Bit). Hence 72y +1z is either hit
or = g2t (mog hit). By the induction hypothesis, we finally must
reach either 2°-2y?*+1z is hit or = z%+=3y32 (mod hit). By Proposition 5.26,

3%+0=3137 is hit since it is not in degree 2™ + 1. Hence x%yz is hit. O

Now putting the results which we have got together we have proved Theorem

9.9.

5.8 Representations of the cokernels for the 2 and 3 vari-

able cases

In the following argument, we will use the results in the decomposition matrices
of Specht modules over Fy in [7].

There is only one irreducible F, Xy —module, F& ~ Sp(). For the 2 variable
case, since the cokernel in degree 2™ is 1—dimensional, the cokernel has to be one

gm—1

copy of F®, Also from Dym—1(zy) = 27" 'y + 22", we geb
(12)(z*"y) = 2y®" = 2"y (mod hit),

where (12) € ©p. Hence 22"y generates (mod hit) a FyXy—module F®,
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There are two isomorphism classes of irreducible Fy ¥3—modules, F'(®) =z Sp®)

and FY ~ §pY which is 2—dimensional.

Lemma 5.28 The monomials in the form [all] span (mod hit) a Fy33—modules

which is isomorphic to F®Y in the cokernel.

Proof: Obviously a single monomial in the form [¢11] is not hit since it is in
the cokernel. From D,y (zyz2) = z%yz + zy®2z + 2y2°, we get that the sum of any
two monomials in the form [a11] is not hit as well. The monomials in the form
[a11] span a I, ¥3—module which is isomorphic to F(21) where z%yz and zy%z

form a basis. We may check this by,
(12)(z%yz) = =y,  (23)(z"yz) = zyz,

(13)(z%yz) = zyz® = z%yz + zy®z (mod hit),

since (12), (13) and (23) generaté Ys. From the above relations we can see that
z%yz and zy®z generate an irreducible two dimensional IFy X3 —module. Since the

module is 2—dimensional, it has to be isomorphicv to F1), O

The module structure of the cokernel for the 3 variable case is as follows.

In degree 4, there are 2 generators of the cokernel which are z?yz and zy?=.
By Lemma 5.28, the cokernel in this degree is isomorphic to F®Y where z?yz
and zy%z are basis vectors.

In degree 5, there are 2 generators of the cokernel which are z3yz and zy®z.
Hence the cokernel in this degree is also isomorphic to F(?!) where z%yz and zy°z

are basis vectors.

In degree 6, since the cokernel is 1—dimensional, it has to be isomorphic to

F©®) where a generator can be any monomial in the form [321].




By the results of Section 5.6, the cokernel is 2—dimensional in degree 2. A
monomial in the form [(2™ — 2)11] is not hit. By Lemma 5.28, the cokernel in

2m -2

degree 2™ is isomorphic to F(Y where 22" ~2yz and zy?" 2z are basis vectors.

In degree 2™ + 1, the cokernel is 3—dimensional. Again by Lemma 5.28, the
monomials z2" ~lyz and zy?" "'z form basis of a submodule F®Y. Recall the

proof of Proposition 5.14, there are 3 generators for the cokernel in degree 2™ +1,
(1) m2k—1y2k+1z, (2) mzk“lyzzkH, (3) wyzk—1z2k+1'.

The submodule which is isomorphic to F®) is generated by (1)+(2)+(3). Hence

the cokernel in degree 2™ -+ 1 is a direct sum of one copy of F®)) and one copy

of FG3),




6 The hit problem on a polynomial ring of 4

variables over I,

In this section, we will explore the hit problem of the 4 variable case over Fs.
By Theorem 5.5, there is a generating set of Fa{x, v, 2, t]zyzt under the action
of D, whose elements are in the following forms: [alll], [a211], [e311], [a321],
[a(2¥) (2% — 1)1}, [a(2F + 1)(2F — 1)1] for k > 2. We have determined the hit
elements of the above forms except some cases for the monomials in the form
[a(2® + 1)(2F — 1)1]. The results we have got give a general view of the location
of the hit elements for the 4 variable case over Fy. From our results, we can see
that the cokernel of the 4 variable case is much more complex compared with the
2 variable case and the 3 variable case. This is because in the 4 variable case,
the product of two non-hit monomials with no common variables is still a non-hit

monomial, which can be in any degree 2™ + 2™.
6.1 Some general results for the 4 variable case

Lemma 6.1 In degrees > 8, a monomial x®y’2°t* with at least three exponents

even is hit under the action of Ds.

Proof: By Lemma 3.13 and Lemma 3.14. O

Again this result will often be used. If a monomial is a term of the image
of any operation of Dy on Fy[z,y, z]zyz and has three even exponents in degrees

> 8, we will consider it hit and omit it (mod hit).
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Lemma 6.2 A monomial z°y*2°t? is not hit over Ty, if the monomial is in degree
2™ where at least two of a, b, ¢, d are odd, in degree 2™+ 1 where three of a,b, ¢, d
are odd and one of them 1s 1 or in degree 2™ + 2 where all a,b, ¢, d are odd and

at least two of them are 1’s.

Proof: By Proposition 5.3, Theorem 5.16 and Theorem 3.12. |

Lemma 6.3 In Ef(z%y"2¥t°) where k is even and one of u, v, w, s is even and
u+v+w+s+k > 8, anonzero term x%y’z%¢ is hit under the action of Do, if

any a, b, ¢ or d is even where the corresponding u, v, w or s is odd.

Proof: By (5) of Section 2.1, we have

s = 5 ((0)(2) (2o

ik rm=tk J m
Let (7::) (j) (;U) (;) gty pwtlstm 1o 5 term in (48) which has a non-

zero coefficient. We can never change an even exponent of z"y"2"t* to odd in the
image of E¥, since, for example, if u is even and ¢ is odd, then (?) = 0 (mod 2).
Hence if three of u, v, w and s are even then every term in (48) is hit by Lemma
6.1. Suppose at least two of u, v, w and s are odd. Assume that u is odd where
u + 4 is even. Then % is odd and hence one of 4, [, m is odd, since & is even.
Suppose j is odd, then v has to be odd in order that the coefficient is not O.
Because at least one of w, s is even, {, m have to be both even. So one of w + 1

and s+m is even. Hence the term has three even exponents so it is hit by Lemma

6.1. O

Lemma 6.4 A monomial x%y°2%t is not hit under the action of Dy, if a+b = 2™
for m > 1 and both a, b are odd. In particular, x*y*zt and z°y3z%t are not hit

over Fy ifu+1=2™ and v+ 3 = 2™,
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Proof: Suppose we want 2°y°2%t, where a, b are odd and a + b = 2™, in the
image of the action of Dy. We either use EF(z¥y"2%) for r = 1, 2 or Ef(z%y°2t)
by Theorem 2.7. Suppose we use

E¥(z¥y?2%) = Z (’Z’) (;)) gt 22 4+ S (mod hit),
itj=k
where S is a sum whose terms do not have z7t.
The number of monomials in the form z%y°2%t with a, b odd in E*(z%y"2%t) is

congruent (mod 2) to Z (u+1) (u) (U) , since u+¢ and v -+ j are both even or
L ? ¥)
i+i=k

both odd. By Lemma 3.3, Z (u+1) (ZL) (j) = 0 (mod 2), since u+v+k = 2™.
‘ i+j=k
Also monomials in the form z°y°2¢? do not appear in Ef(z*y”2%t). So the number

of monomials in the form [{ab}{21}] with a, b odd in EF(z*y?2%t) is even.

Suppose we use

Bf(z"y’at) = Y Ei(z“y®)E(at)
itj=k
= E¥(z"y”)zt + (B¥(a"y")) (2%t + 2t2) + (E¥2(a%y?)) 2282,

where v+ v+ k = 2™ — 1. A monomial in the form z®y®2%t always appears with
a monomial in the form z%y°zt2. Hence the number of monomials in the form
[{ab}{21}] with a, b odd in Ef(z*y’zt) is even.

Hence the number of monomials in the form [{ab}{21}] is always even in the

image of any operation of D,. Hence z%y°2?t is not hit. m]

Proposition 6.5 Suppose a monomial fg € Bz, y, 2, t|zyzt satisfies that f, g
have no common variables and both are not hit under the action of Dy, then fg

15 not hit.

Proof: If one of f, ¢ has 3 variables, then the other one is a single variable

of degree 1. Hence fg is not hit by Theorem 3.12. Suppose f, g both have two
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distinct variables and f and g are not hit. Let f be in the form [a;b;] and ¢ be
in the form [asbs)].

If one of f, g isin the form [11], fg is not hit by applying Theorem 3.12 twice.
If both f, g are monomials of the form [12], then fg is not hit. The detail can
be seen in Section 6.2.

If f is a monomial in the form [21], g is in a degree > 4 and is not hit, i.e. g is
in degree 2™ for m > 2 and has two odd exponents by Theorem 5.4. By Lemma
6.4 fg is not hit. Similarly for the case in which ¢ is a monomial in the form [21]
and f has two odd exponents and is in degree 2" for m > 2. Hence fg is not hit.

Suppose both f, g are in degree 2™ for m > 2. By the proof of Proposition 5.2,
monomials in the form [a;b;] and [agbs] appear in even numbers under operations
of E¥ where r =1, 2.

Suppose we try to have fg in E*(fyg;) where r = 1, 2 and fi, g have 2
distinct variables. Then there are an even number of monomials in the form
[{a1b1}{azby}] in each BF(frgr) = 3iy 0k Bi(fs) Bl (gx) where 7 =1, 2. Because
at least one of 7, j 3£ 0, so we have either there are an even number of monomials
in the form [a1b;] in any E¥(fi) or there are an even number of monomials of form
[agbo} in any Fi(gy). Hence there are an even number of monomials in the form
[{a1b1}{azb:}] in the image of E¥ for r = 1,"2. So there are an even number of
monomials in the form [{a;b; }{azb2}] in the image of any operation of Ds, since
the set {EF | k> 1, 7 =1, 2} generates D, (Theorem 2.7). Hence fg is not hit.

|

Theorem 6.6 If a monomial f of n variables can be written as a product of non-
hit monomials of 2 variables and there are no two monomials having common

variables, then f is not hit under the action of Ds.
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Proof: Let m = n/2. We write f = [[i~, g: where each ¢; is a monomial in
two variables and g;, g; have no common variables if ¢ # j. Let f; = [[;_; o
where 1 < s < m and f,, = f. We will prove f is not hit by induction on s.
Suppose f; is a monomial in the form of [{ajag}{ --- --- Hags—1a2:}. By the
proof of Proposition 5.2, we assume up to s, f; is not hit and the monomials in the
form [{arag}{ --+ --- Hasgs—1a2:}] appear in even numbers under operations of
E% where r = 1, 2. If s < m and g, is a monomial in the form [a2s+102542], then
fs+1 = fs9s+1 is a monomial in the form [{aiag}{--- -~ Hags—102s Haosw102542 .

Suppose we try to have foyq in

D BN wew) =Y Y Ei(un)E(w),
k koitj=k
where r = 1, 2. Here u; has the same variables as f; and v, has the same
variables as gsy1. Since k > 0, we have that either there is an even number of
monormials in the form [{aiag}{ -+ +-- Hags1a2:}] in BEi(ug) or there are an
even number of monomials in the form [ags41a2s42] in Ei(vy). Hence there are an
even number of monomials of the form [{a;az}{ -+ -+ - Hazs—102: }{a2s+1a2512}]
in each EF(ugvy), hence there must be an even number of monomials in this
form in Z E*(ugvy). Hence f,. is not hit. By the induction hypothesis and by

ki
Theorem 2.7, f is not hit under the action of D,. O

6.2 Monomials in degrees < 10

By Theorem 2.7, we only need to check the operations E%k and E%’” fork=0or
ke N
Degree 4 is trivial. In degree 5, there are 4 unknowns in the form [2111] and

only one operation D;(zyzt) which has image in this degree. Hence three of the

90




monomials in the form [2111] need to be generators.

In degree 6, we need to consider the following equations which involve the

monomials in the form [2211]:

¢

Dy (z2yzt) = 2%y 2t + 2°y22t + 22y2t?
Dy (zy?2t) = g2y?2t + y?2%t + xy?21?

§ Di(zy2?t) = 2?y22t + ay? 2%t + zy2t? (mod 2)

(
Dy (zyzt?) = a?yzt® 4+ zy?at? + zy22t?
(

E2(zyzt) = 22922t + 22y2%t + 2?yzt® + 2y?2%t + ayat? + oy2?t?

The coefficient matrix of the above equations has rank 4, hence 2 of the
monomials in the form [2211] need to be generators. Note that there are 3 Artin
elements in the form [2211]. There is only one equation involving the monomials

in the form [3111], which is
Dy(zyzt) = 2Pyzt + zyat + zy2 st + cyztd.

Hence we need 3 of the monomials in the form [3111] to be generators. Note
that there are only 2 Artin elements in the form [3111].

In degree 7, by Theorem 2.9, we have

2?27 = (B3 (zy2))t = 2y2(x(E))(t) = zy2t* (mod hit). (49)

We need to consider the following equations which involve the monomials in

the form [4111] and [2221]:




Dy (z%y%2t) = 2?y?2%t + zy?2t?

Dy (z2y2?t) = 2y?2% + 2?y2??

Dy (z?y2t?) = z2y?21? + 2?y22?

Dy(zy?2%t) = 22y?22t + ay? 2%

Dy (zy?2t?) = 22y?2t? + zy? 222

J Duley’at) = 2% Y (mod. 2)
Dy (zy2t?) = 32y22t? + oy?2%12

EX(z’yzt) = atyat + a?y?2% + 12y?at? + xy2?t?
Ei(zy?at) = zy*at + 229?22 + 22y2242 + 2?2242

E2(zyz*t) = syztt + 2?y?2%t + 2?y2212 + 292222

Ei(zyzt?) = zyztt + 22y%212 + glyz*? + zy?22%t?

In the last 4 equations, we can substitute the monomials in the form [4111]
by the monomials in the form [2221], based on some suitable permutations on
(49). Then we get that the right hand sides of the last 4 equations of the above
equations are identical, so we only include one of them. Hence the coeflicient

matrix of the above equation system is:

(a:‘?y?‘th 22212  xlyz2t? $y2z2t2\

1 1 0 0




The matrix has rank 3, so we need one monomial in the form [2221] to be a

generator.

We have the following equations involving monomials in the form [3211],

,

Dy (z3y2t) = ztyzt + 23922t + 23yt + 23yat?
Dy (xyPzt

22y32t + zytat + 2y 22t + zydt?
D1 (zyzt

Ii

2y23t + zy?23t + wy2tt + vy2Se?

Dy (zyzt?) = g?yat® + zy?2t® + oyt + wyat?

(mod 2)

Do (zy?2t

322t + 3y 23t + zy? ot

)

)

)

)

Dy(z2yat) = a3zt + 22y23t + x2y2t®

)

Do(zyz2t) = 23y22 + 29822 + 2y22td
)

Dy (zyzt?) = sdyzt? + xy2t? 4 zy23t?

\

If the monomials in the form [4111] are given, then the coefficient matrix
indexed by the monomials in the form [3211] of the above equation system has
rank 7. Hence 5 monomials in the form [3211] need to be generators. So the
cokernel is 6 dimensional in this degree. Note that there is no monomial to be
hit in degrees < 7.

In degree 8, by Lemma 3.11 and Lemma 6.2, monomials in the form [2222] are
the only monomials which are hit. In degree 9, monomials in the forms [6111],
[5211], [4311] and [3321] are not hit by Lemma 6.2. Monomials in the forms [4221]
and [3222] are hit by Lemma 6.1. In degree 10, by Lemma 6.2, monomials in the
forms [7111] and [5311] are not hit. Monomials in the form [4222] are hit by
Lemma 3.11. By Lemma 6.3, EZ(z%y*2t) = z'y*2t (mod hit). Hence monomials

in the form [4411] are hit. By Theorem 2.9,
2*y’ 2t = B3 (wy2)t = syz(x(B3)(t) = syz(E3 + B3 Da + Dax(B3))(t)

= oyz(B2iD; + Dy Dy Dy)(t) = 0 (mod hit),

93




hence monomials in the form [3331] are hit. From
Dy(23y2%1?) = 25y222 + 2393 2%2 (mod 2),
Dy(zy®2*t%) = 23y 2% + 2y° 2% (mod 2),
we get
3Pyz2’t? = o2yt 2 = 2y 22 (mod hit). (50)
Also
E2(z?y?2t) = aPy22t + 2282t + 22223 (mod hit), (51)
s°y2* = sy Ei(at) = (x(BY))(2°y))2t
= (F2(2®y)) 2t = 2822t (mod hit), (52)

by Theorem 2.9. By applying a suitable permutation on (52), we get
zy® 2t = 2%y%2t (mod hit), (53)

By (50), (51), (52) and (53), we get z%y?23¢3 is hit. So the monomials in the form
[3322] are hit and monomials in the forms [6211] and [5221] are hit as well by the
above relations.

We have carried out some calculation with << Maple >>. By our calculation
result, the dimension of the cokernel in degree 8 and the dimension of the cokernel
in degree 9 are 6, the dimension of the cokernel in degree 10 is 7. Monomials
in the form [4321] are not hit. Any monomial in the form [4321] generates all
monomials in the form [4321} and 6 monomials in the form [5311] generate the
other non—hit monomials. We will give a proof for the general case of the cokernel

in degree 2™ 4+ 2 in Section 6.8.
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6.3 Monomials in the form [a(2)(2¥)1] for [ > k> 1

We need to check the monomialsin the form [a221]. We will firstly check monomi-
als in the form {a421], the result is needed for the [a221] case. We will also check
a general case for the monomials in the form [a(2')(2%)1], the result is needed in

the proofs of some other results in the remaining content of this section.

Proposition 6.7 A monomial in the form [a421] is hit under the action of Ds,

ifa>7 and a = 3 (mod 4).

Proof: Look into the proof of Proposition 5.20, the operations used in the

proof are Dy’s, E? and E2, they have no effect on y*. So we have:
Dy(z° 2y 2t?) = aytat? + 2972942342 (mod 2).
E2(z°*ytat?) = atytat® + a2yt 232 4 20yt 2t (mod 2).
We have that 2% 4y*24% is hit. Also
Dy(z*y*2%) = a%y*2% + 2%yt 225 (mod 2).
Dy(a“ gt 2t5) = 2% 3y 215 4+ 2%yt + 1%y 2t (mod 2).

We get x%y*2%t + 27 3y*2t5 = 0 (mod hit). By Lemma 6.3,
2&—545_5 a—3, 4 7 a—5 a3, 4 45 — _a—3, 4 _15 .
Ef(z* ™y =) = 9)% yrat’ + 5 )% y*zt® =z y 2> (mod hit),
. : : . 5
since the 1lst digit of the binary expansion of a — 5 is 1 and (2) = 0 (mod 2).
Hence 2% 3y*2t5 is hit, and so 2%y*2%t is hit. O
Note that z%y*2¢ in degree 2™ + 2 for m > 4 is hit by Proposition 6.7.

Proposition 6.8 A monomial in the form [a421] is hit under the action of D

if it 48 not in degree 2™ and a > 4.




Proof: By Lemma 6.1 and Proposition 6.7, we only consider an a where a; = 0,

ap =1, ie. a =1 (mod 4).
(1) Suppose there is an a; = 0 for 3 < i < n — 1. By Lemma 6.3,

i i — 9t

E¥ (z* % y*2%t) = ay*2%t + (; 4) 194822 (mod hit), (54)
a— 2
2t — 2
odd exponents must change to even as well, and then the term is hit by Lemma

9
6.1. Also ( ) = 0 (mod 2) unless gz = 1. Then the 2nd digit of the binary

Q
2t —4
expansion of a — 4 is 0. So by Lemma 6.3,

since aq = 0, ( ) = 0 (mod 2) and hence if 2? changes to z* then the two

-4 —4
Ef(:c“"‘ly‘lzzt) = (a 4 )w“y4z2t -+ (a 5 )m“"2y4z4t + x4y %t
= 3 %22t (mod hit),
since the 1st and the 2nd digits of the binary expansion of a — 4 are 0’s, we have

- ,— 4
(a A 4) = (a 4 ) = 0 (mod 2). Hence 2% %822t is hit and by (54) z%y*2%t is

hit as well.

(2) Suppose a3 = 0 and a; = 1 for £ 1, i.e. a =2™ — 3 for m > 3. Then by

Lemma, 6.3,
B2 (3 2y'2%t) = 2%y* 2% + 2" 2y*2* (mod hit), (55)
and
a2yttt = Bi(y2)a* %t = (x(F2)(2°7%t))y2
= g Myzt + 2% y2t* (mod hit), (56)

since x(B%) = E2 (mod 2) by Example 2.8.

By Lemma 6.1 and since (;) = (a

3) = 0 (mod 2), we get

E{(ayzt) = 2%y 222 + 1Myzt = 2 Myt (mod hit),
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hence x%*y2t is hit. Also
B}z yzt?) = 2Tyt + 2°Fy2t? (mod hit). (57)

Now a + 3 = 2™ for m > 3, so

B}z Tyzt?) = (a 0

)$a+1y2t4 + 2%y zt? = 2%y 2t? (mod hit),

by Lemma 6.3 and (a ; 1) = 0 (mod 2). Hence z% 1yzt* is hit by (57) and
2% 2y%2% is hit by (56). Finally x%y*2?¢ is hit by (55).

(3) The only case left isa; =as =0and a; =1 fori# 1,2,ie. a =2m -7

for m > 4. But then z%y*z?t is in degree 2™, O

Proposition 6.9 A monomial in the form [a221] is hit under the action of Dy

of a > 6 and it is not in degree 2™.
Proof: If a is even, then z%y?z?t is hit by Lemma 6.1. Let 7 < a be odd.

(1) Suppose there is an a; = 0 for 2 # ¢ > 1. Let a; be the first 0 counted
from the right for 2 # 4 > 1, then by Lemma 6.3 and Proposition 6.8,

EZ (0% 22%) = o222 + 29 2yt22t + 10 2y220 + rat Tty

= z%%2% + ra®*y2't (mod hit),
a—4
2t —4
Proposition 6.8,

where r = ( ) If r = 0 then z°y?2?t is hit, otherwise by Lemma 6.3 and

-4
E(xv Yyt 2%) = oyttt + (a 5 )w““2y4z2t = 2% Yy*2*t (mod hit).

Hence z%y%2%¢ is hit in this case.




(2) If @ = 2™ — 1 for m > 3, then by Theorem 2.9 and Lemma 6.3 we have

the following equations,
z%y? 2%t = 2%t Ei (yz) = x (B (2%)yz = 2 2yat 4 2T y2t? (mod hit), (58)

B (z° %yzt) = 2% ?yat (mod hit), (59)

By (zByzt?) = 2 Tyzt® + (a ; 3) g lyztt = 2 yzt? (mod 2). (60)

-2
For (59), (a ; ) = 0 (mod 2) for 1 <14 < 4, unless ¢ = 1 or 4. For (60),

(a ; 3) = 0 (mod 2) since the 1st digit of the binary expansion of a — 3 is 0. By
(58), (59) and (60) z*y*2*¢ is hit.

(3) The only case left is a; = 0 and a; = 1 for j # 2. But then the monomial

is in degree 2™. O

Proposition 6.10 A monomial in the form [a(2%)(27)1] fori, j > 1 is hit under

the action of Ds, if it is in a degree > 11 which is not 2™.

Proof: By the previous discussion, we may assume that i+ j > 4. If @ is even,
then z%% 22t is hit by Lemma 6.1. Let a be odd. We may assume that j > 7. If

i =1, we go to (2). Suppose i > 2.

(1) We claim that %2 22 ¢ is either hit or = z*"2~4y%2?¢ (mod hit). We
argue by induction on the exponent of y. If ¢ > 2, by Lemma 6.3 and since

i—1
(23 ) =0 (mod 2) unless s = 0, or 271,

BN (22 T 2V t) = 2% 2Pt 4 rav T 2 2 ¢ (mod Rit),

where r = (231), note that the operation has no effect on the exponent of z

since 7 < j.
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We get that if 7 = 0 (mod 2) 2°y% 22't is hit, otherwise
:c“ygiz?‘j.t = 22272t (mod hit).
By the induction hypothesis, we must get %92 2% ¢ is either hit or
zy? 2 t = 2P~y ¢ (mod hit). (61)
Then also by Lemma 6.3

R (a2 ) = gt E Ay (a - 221 - 4) 2@t 22,24 (mod hit).

2
hit by (61). Otherwise

2t — 4 i
If (a, + ) = 0 (mod 2) then z*+2'~4y%7?'t is hit and hence %y* 2%t is

,y2 zzjt — a+2 —d 4 23t = ‘Ea+2 -2 222-7.[’. (mod hzt)

and the 1st digit of the binary expansion of @ +2¢ — 4 is 1. So the 1st digit of the

binary expansion of a + 2! — 2 is 0.

(2) Let ' = a + 2¢ — 2. We claim that either 2% y22?¢ is hit or
a2 2% t = P 6254 (mod hit).

We argue by induction on the exponent of z. By Lemma 6.3 and since

271 .
( s ) = 0 (mod 2) unless s =0 or 2771

i1, o 9 oi- a ' ygie .
EY (2% ) = (Qj—1 B 2):1:“ T2 40y | g2 gy g T2,
= 2% y22Y t + ra¥ 2 222 Tt (mod hit),

a' a : . :
where r = (23‘—-1)' (23'—1 _ 2) = 0 (mod 2) since the 1st digit of the binary
expansion of o' is 0. Hence z%y%2% ¢ is hit if # = 0 (mod 2), otherwise

2¥y?2¥ t = 2 7 22% 't (mod hit).
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Note the 1st digit of the binary expansion of the exponent of a' + 271 is still
0 for 7 > 2, we can repeat again if the exponent of 2 > 4. By the induction

hypothesis, we must get either 2% y2z? ¢ is hit or
z¥ 2% t = 2" y22% (mod hit), (62)

where a” = a + 27 + 2¢ — 6. %" y22% is hit by Proposition 6.8, since it is not in

degree 2™. Hence z%y? 22t is hit by (61) and (62). 0

Corollary 6.11 A monomial in the form [ab(2)(27)] for 4, § > 1 is hit under

the action of Dy if it is in a degree > 11 which is not 2™.

Proof: If any of a, b is even then the monomial is hit by Lemma 6.1. If one
of @, b = 1, then 2%°2*1?is hit by Proposition 6.10. Suppose 1 < a, b are
odd. Dy_q(zyz*t?) = o922 ¥ +2ot-1y224% (mod 2). ot~ 1yz2't? is hit by

Proposition 6.10, hence z%y*22#? is hit. O

6.4 Monomials in the forms [a211] and [al111]

Proposition 6.12 A monomial in the form [a211] is hit under the action of Ds,

if a > 8 and there is an a; = 0 for i > 2 in the binary expansion of a.

Proof: Suppose a; = 0 for some % > 2, then
a— 2
20— 2

— 9t
by Lemma 6.3. Hence 3%zt is hit if (gl B 2) =0 (mod 2).

Efi (a2 y?2t) = 222t + ( )xa_2y4zt (mod hit),

Suppose (gi—__zz) # 0 (mod 2) then a; =1 for 1 < j <4 — 1. Hence the 1st

digit of the binary expansion of @ — 2 is 0. So

Ei(z" 2yP2t) = (a 0 )m“yzzt + 2% 2yt = %%yt 2t (mod hit),
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a— 2

by Lemma 6.3 and ( 5

) = 0 (mod 2). Hence z°y%2t is hit. O

Proposition 6.13 A monomial in the form [a211] is hit under the action of Dy,

if 8 < a is even and it is not in degree 2™.

Proof: Dy(z% 'y2zt) = z%y%zt + 2% (y22% + y?2t® + y2%t?) (mod 2). But

monomials in the form [(a — 1)221]} are hit by Proposition 6.9. O

Proposition 6.14 A monomial in the form [a211] is hit under the action of Dy

if a > 8 and it is not in degrees 2™, 2™ + 1 and 2™ + 3.

Proof: A monomial in the form [a211] is not hit if it is in degrees 2™, 2™ 4 1
and 2™ + 3 by Lemma 6.2 and Lemma 6.4. By Proposition 6.12 and Proposition
6.13, the only case which has not been discussed isa; =0 and a; =1for¢# 11in

the binary expansion of a, but then the degree is 2™ + 1. O

Proposition 6.15 A monomial in the form [alll] for a > 8 is hit under the

action of Ds, if it is not in degrees 2™, 2™ -} 1 and 2™ - 2.

Proof: If 2%yzt is in degrees 2™, 2™ 41 and 2™+ 2, it is not hit by Lemma 6.2.
Let anan—1 ...ag be the binary expansion of a. Suppose z*yzt is not in degrees
2m 2™ 4+ 1 and 2™ + 2, then there is an a¢; = 0 for ¢ > 2 or a9 = a; = 0 in the

binary expansion of a.
(1) Suppose ay = a; = 0, then
B (2 2yzt) = xyat + 22 (y22% + 22t 4 y22t?) (mod hit).

But monomials in the form z%~?422?¢ are hit by Proposition 6.9. Hence z%yzt

is hit in this case.




(2) Suppose a; = 0 for some ¢ > 2 and if ¢ > 2 then a; =1 for 2 < j < i.
a) If ap = 0, then

EZ (2% % yat) = ayat + 12 2 (122% + yP2t® + yz2t%) = x%yzt (mod hit),

again by Proposition 6.9.
b} If ap = 1, then

B (2% % yzt) = ayat 4+ 227 (g2t + y2°t + yat®) + 222 (222 + y22t? + y22t?)
= 2%zt + 2% (yP 2t + y2it + y2t?) = 2yt (mod hit),
by Proposition 6.9 and since D1 (2% yzt) = 2% (y?2t + yz2t + yzt?) (mod 2).

Hence z°yzt is hit and so monomials in the form [a111] are hit if they satisfy

the condition. O

Theorem 6.16 A monomial z%y*z°t® with two exponents even is hit under the

action of D, if it is in a degree > 11 which is not 2™.

Proof: If three or four of a, b, c, d are even then x%y%2°t? is hit By Lemma 6.1.
Let two of a, b, ¢, d be even and the other two be odd. We may assume that a,

b are even and ¢, d are odd. Since
Dy_i (2%y2%t) = 2%9P2°? + 2%y 241t (mod 2), (63)

we may only consider the monomials in the form [abcl] where a, b are even and

¢ is odd.

(1) If ¢ = 2F — 1, we move to (2). Suppose ¢ # 2" — 1 for any n > 1.
Let & be the number of 1’s in the binary expansion of ¢. Then by Lemma 3.15,
2° = D(2%1) (mod 2) where D is a composition of some E7’s. Hence by Theorem

2.9,
a2yt 2% = (D(22 "))zt = 221 (x(D))(z"y"t) (mod hit). (64)
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Let D' = x(D) which is a sum of some compositions of E]’s. We may see this
by considering x to be the conjugate of the Steenrod algebra since there are only

E7 operations involved in D. We have
2 YD (%)) = 22 (D' (2 Zfz #~1¢ (mod hit), (65)

where each f; is a monomial in z, y which has two even exponents. This is
because that a, b are even and D’ is a sum of some compositions of E]’s, if the
exponent of ¢ of a term in 22°~1D'(2%y*t) changes, it can only change to 2 firstly.
Then the term is hit by Lemma 6.1. So we shall only consider the terms which
have the exponent of ¢ remaining unchanged. Also the exponents of = and y will
remain even in the process. So we only consider monomials in the form :L‘“y”zzk“lt

where u, v are even in 2% ~1D'(z%)"t).
(2) Now
Dl(m”‘ly”zzk_lt) = glig¥s% g 4 gu iy 2 o g lyv 2 12 (mod hit). (66)
Let s be the number of 1’s in the binary expansion of u — 1. By Lemma 3.15,

there is a D which is a composition of E}’s and D(z*~!) = z%~! (mod 2). Hence

by a similar argument as what is used in part (1),
i1 ok, 25-1\\, 0, 2%, _ 291 v, 2F ;
Y2t = (D )y e t = 2% (D)) Y 2Y) (mod hit).

Since x(D) is a compositions of E7’s, so each ET acts on y“z2k, #% can ei-
ther remain unchanged or be squared, and the exponent of y of each term in
(x(D))(y*2%") remains even. Hence we get

gyt = 0y y"2%) (mod hit), (67)
i

where all v;’s are even. Then for each term z* ~1y%22'¢, we have

Dl(:v s 3 vl--l 2t t) 221 Yz it—i—mz y'u,-—-l 9¢ t+ 2 —lyv,—l 2t 2 (mod 2)
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But the last 2 terms are hit by Corollary 6.11. Hence every z% ~ly¥2z2't in

(67) is hit and so 2% 1y?22°¢ is hit. For %~ 1y*22°~12, we have
Do _o(z* Yy 28%) = 2 347212 4 519722 12 (mod 2). (68)

By Lemma 3.15, we may write %23 = D(z%~1) (mod 2) for some D which
is a composition of E{’s and s is the number of 1’s in the binary expansion of

u + 2% — 3. Then by a similar argument,

g3y ? = (D(a® 7))y et = 0¥ La(x(D)) (1)

$25—1z(z y*2) (mod hit). (69)

i

Also by a similar argument, every term in the form £2*~1zy%4¢% in (69) is hit.
Hence z%t2°=3y242 is hit and 2% 'y”22 42 is hit by (68). So every monomial
in the form z%y®z2" =1t in 22"7~1D'(z¥y%¢) is hit by (66). By (63), (64), (65),

z%°2°t¢ is hit. |

6.5 Monomials in the form [a321]

Before we prove the [a321] case, we will firstly prove the following lemma which
is needed for the proof of the [a321] case and for some of remaining part of this

section.

Lemma 6.17 A monomial in the form [ub21] is hit under the action of Dy, if

4<u,u=0 orl (mod 4) and the monomial is not in degree 2™ or 2™ + 1.

Proof: Let %, ...ujtg be the binary expansion of v and u; = 0. Since uy = 0,

w# 2™ — 5, x¥y52%t is not hit if u = 2™ — 5 by Lemma 6.4. z%y°2%t is not hit
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if it is in degree 2™ or 2™ + 1 by Lemma 6.2. If u is even then z%y°22t is hit by
Theorem 6.16. Hence we only consider the case where u is odd.

Suppose z%y°z%t is not in degrees 2™, 2™ + 1 and u; = 0.
a) Suppose ug = 1, then u > 5. By Theorem 2.9,
sy’ 2*t = B (2 1y) 2% = 2"y (x(BD)) (%)
= 2" Yy (B2 + DyD,)(2%t) = 2" y20% + 2¥y2%° (mod hit). (70)
By Lemma 6.3,
Bz Yy2%) = 2% *y2'% (mod hit),
and
Ef (@ Yy2%5) = 2¥ *y2%t° (mod hit),
since the 1st and the 2nd digits of the binary expansion of v — 4 are 0’s and

2
coeficients in Fj(z"~1y25t). Hence x%y5z%t is hit by (70).

5
( ) = 0 (mod 2), the terms contain z*~* are the only terms having nonzero

b) Suppose uy = 0, then v > 9. If there is an u; = 0 for some j > 2, then by
Lemma 6.3,

W w20 5 2.\ — u—=27\ s 54
EV (z yzt)_(2j_2)x Y2t + o]

29
B 4) wu—‘lygz?t

- 21 [ .
+ (g ; 6) g Sy0 24 + ¥y 2%t = 2¥y®2%t (mod hit),

— 97
because (u s) = 0 (mod 2) for s = 2, 4, 6 since the 1st and the 2nd digits

9 _
of the binary expansion of u — 27 are 0’s. Hence z*y®2%¢ is hit in this case.

¢) If uy = us = 0 and all u; = 1 except for j =1, 2, then the monomial is in
degree 2™ 4 1.

Hence we have proved the result. 0




Proposition 6.18 A monomial in the form [a321] with a > 6 is hit over Wy, if

it 4s not in degrees 2™, 2™ + 1 and 2™ + 3.

Proof: z%y%2%t is in degree 2™ if a = 2™ — 6. z%52%¢ is in degree 2™ + 1 if
a = 2™ — 5. They are not hit by Lemma 6.2. %>zt with a = 2™ — 3 in degree
2™ 4 3 is not hit by Proposition 6.5.

Suppose z%y*2*t is not in degrees 2™, 2™ 4+ 1 and 2™ 4+ 3. Let a,Gn—1 ... ag
be the binary expansion of a. If @ is even, then x%y%2%¢ is hit by Theorem 6.16.

Suppose a is odd, we have the following cases:

(1) Suppose a; = 0 for some ¢ > 3, then a > 16. By Lemma 6.3,

7

Ez*' a—2i 3 24) = 0 24
Pty = oty ()

)( a—2y z2t+ma“2y3z4t)

+ (;;_24) %4524 (mod hit). (71)

26— 2
the 1st digit of the binary expansion of @ — 2 is 0. Then by Lemma 6.3,

— 9t ' ‘
Suppose (a ) # 0 (mod 2) then a; = 1for 1 < j <¢— 1. Since a3 = 1,

E (2% 2%) = o %y° 2% + 29 2y3 2% (mod hit). (72)

By (71) and (72), we get:

) 24524 = 0 (mod hit). (73)

a3, 2
t .
Yy z +(21_4

If (a_g) iO(modZ)thenaj—lfo12<j<z—1 Let ag = 1, then the

2nd digit of the binary expansion of a — 4 = 0. Then

i —4 =9
Ef (:Ea—zi 2 41&) = 4o 4y A4 (a v )(m“_sygz"‘tﬂ-wa“syszst)

—4 -2
+ (a 9i g ) 1@ 1299281 = 1074524 + 297 129%28¢ (mod hit), (74)
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by Lemma 6.3 and ( 224_ 42 ) = 0 (mod 2), since the 2nd digit of the binary

expansion of 2' — 4 is 1 and the 2nd digit of the binary expansion of a — 4 — 2 is
a—4—2
0. Al .
S0 ( oi _ g
of the binary expansion of a — 4 — 2% are 1’s. Then

) =1 (mod 2) since the digits between the third to (¢ — 1)th

Eao12%4) = (a—412) w8954 4 (Z) 2012413 44
+a% 12928 = 19712428 (mod hit), (75)

4
is hit, hence x%y%2?¢ is hit by (73).

by Lemma 6.3 and (“ _412) = (g> = 0 (mod 2). By (74) and (75), 2% 4y52%

(2) Let a = 2™ — 1 for m > 3, then a > 7. By the equations
Dy(2° 2 2%) = 227 + 1% 2 2% 4 2% %222 (mod 2),
B3 (a 2y2%t) = a%y®2%t + a%y2 + 2% 2yP 2% + 1% 2y2% (mod hit),

we get:

$y2°t? = g 2y%2% + 2% 2yt = 2% %y2%t (mod hit), (76)

by Lemma 6.17, since the 1st digit of the binary expansion of ¢ — 2 is 0. For

2% 2y25¢, we have:
Dy (2% 2y2%t) = 2% Ly28t 4+ 2% 2y 28 4 207225 (vt + yt?)
= 2 Ly2°t + 2 2y2% (mod hit), (77)
again by Lemma 6.17.
E2(z% 'y2%) = 2% 1y2t + 3% y2%t (mod hit). (78)
a+1=2™ for m > 3, then

Ef(2*3y2’t) = 2yt + ( )x“"lyzst = 2°ty2%t (mod hit),

2
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by Lemma 6.3 and the Oth and the 1st digits of the binary expansion of ¢ — 3 are
0’s so (a ; 3) = 0 (mod 2). Hence % 1yz% is hit by (78) and z22y2z5¢ is hit
by (77). So z%y2zt? is hit by (76) and z%y*2%t is hit as well by symmetry.

(3) If an odd a # 2™ — 1, 2™ — 3, 2™ — 5 and all the a; = 1 for 7 > 3, then
ag=1and g =ay =0,ie. a=2"—T7{form > 4.

B (20 %y32%) = 2% 2% + (a, o

)m“*Q (y522t + y324) + 2% ty5 24
= z%32%t + 2"y 2 (mod hit),
a—4
by Lemma 6.3 and ( 9 ) =0 (mod 2). Then
B2 (s %522 = a—4, 5,4 a—4\ 4259 S a-t,7.2
: y°2°t) = 2 Y2 + o )¢ yEt + NE y 2%t
= %42 (mod hit),

by Lemma 6.3 and (a, _2- 4) = (2) = 0 (mod 2). Hence % *y52*t is hit and so

x%y32%t is hit in this case. O

6.6 Monomials in the form [a311]

Corollary 6.19 A monomial in the form [abll], where a = 2! — 1, b = 2F — 1,

s not hit under the action of Dsy.

Proof: By Proposition 6.5. O

Proposition 6.20 A monomial in the form [a431] is hit under the action of Dy,

if it is not in degree 2™ or 2™ 4 1.




Proof: Let a,...aq be the binary expansion of a. A monomial z%y>z%t is hit

if a is even and the degree is not 2™ by Theorem 6.16. We may assume that a is

odd.
(1) Suppose a; = 1. By Theorem 2.9,
sty’2tt = (B (a° %y)) 2"t = o Pyx(B3) (=)
= g ?y(F3 + DaDy)(2%) = 2% 2y2*° (mod hit).
By Lemma 6.3,
E2(2% 2y2*%) = 2 2y2*® (mod hit),

since (a ; 2\) = (3) = 0 (mod 2) as the 1st digit of the binary expansion of

a — 2 is 0. Hence the monomial z%y3z*¢ is hit in this case.
(2) Suppose a; = 0. Then by Lemma 6.3,
E?(zy?2%) = ay® 2t + 2%%2% = 2% 2 (mod hit),

since x®y52%¢ is hit by Lemma 6.17 as the degree is not 2™ + 1.
Hence monomials in the form [a431] are hit, if it is not in degree 2™ or 2™ + 1.

O

Proposition 6.21 A monomial in the form {a311] is hit under the action of Dy,
if it is not in degrees 2™, 2™ 4 1, 2™ +2 and 2™ + 4.

Proof: z%y3zt is in degree 2™ if a = 2™ — 5. 29932t is in degree 2™ + 1 if
a = 2™ — 4. x%3%2t with a = 2™ — 3 is in degree 2 + 2. They are not hit by

Lemma 6.2. 3%y32t with @ = 2™ —1 in degree 2™ +4 is not hit by Proposition 6.5.
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We only need to decide those cases in which a # 2™ —1, 2™ —3, 2™ —4, 2™ -5,

Let @y, . ..a1a¢ be the binary expansion of a.

(1) Suppose a is even. a # 2™ — 4.

a) If there is an a; = 0 for ¢ > 2, then

i i - 2é ;
EZ (2 % y32t) = a%y32t + . a*"*y°2t (mod hit),
1 2t — 2

by Lemma 6.3. If (gi—— 22) # 0 (mod 2) then a; = 1for 1 < 7 <i—1. So the

1st digit of the binary expansion of a — 2 is 0, so

B3 2yPzt) = (a R

2
5 )m“y?’zt + 27252t = 2%y 2t (mod hit),

—2
by Lemma, 6.3 and (a 5 ) = 0 (mod 2). Hence % 2y5z¢ is hit and so z%y3zt is

hit as well.

b) If aqp =0 and all ¢; =1 for ¢ > 1, i.e. @ = 2™ — 2. By Theorem 2.9 and

Lemma 6.3, we get
E3(z?" Syt = 2" %P2t 4 2 Bytat 4+ o7 T3yR2%

+22" B2t + ¥ Sy0 2t + 27 ~Sy5 2%t (mod hit),
B} (@™ Pyt = o™ 0y (BY)) (8)
= 22" Sy32(E2D, () = 2¥" ~Sy*2t* = 0 (mod hit),

by Proposition 6.20. Hence

w2"1—2y3zt + 332"1_33/4275 + $2m—3y3z2t + $2""—4y5zt

422" 5982t + ¥ 5y%2%t = 0 (mod hit). (79)
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By Lemma 6.3 and since (2) = (27”2" 3) = 0 (mod hit),
E2 (2" 5521) = 2" 452t (mod hit), (80)
E2 (22" 3y%2t) = 22" “3ytat (mod hit). _ (81)
By Theorem 2.9 and Proposition 6.20,
(@0 + 5P = (B (@) = 2P (x(B) ()
= 2" Sy3(E2)(2%) = 27" 759324 = 0 (mod hit), (82)

Hence by (79), (80), (81) and (82), we get:

2" 2Pt + 22" 5y% %t = 0 (mod hit). (83)
By
Eg(mzm_5yz2t) = mzm_lyzzt + 27211\1_3,9,32215
+22" 3y 243 4 2 Sybt 4 2?5323 (mod 2),
Dy(z?" 3y2?t) = 2™ 1yt + 27 T3P+ 27 Pyt (mod 2),
we get,
m2m—5yzst = x2m*5y322t3 (mod hzt) (84)
From

Dy(2?" PP 2%) = o 3yP2% 4 2™ TPy5 22 + ¥ P22 (mod 2),

and (82), we get
12" 593223 = 0 (mod hit). (85)

By (83), (84) and (85) %" ~%*y32t is hit in this case.

(2) Suppose @ is odd and @ # 2™ —1, 2™ — 3, 2™ — 5. We have the following

cases:
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c¢) If there is an a; = 0 for ¢ > 3, then by Theorem 6.16,

Efi (a:““2iygzt) = z%>2t + (g;_é) 2 25 2t (mod hit). (86)

— 2 — 9@
If (; B 2) = 0 (mod 2), then z%y32¢ is hit. If (gz _ 2) # 0 (mod 2), then

a; = 1, so the Ist digit of the binary expansion of a — 2 is 0. Then
E2(z %3 2t) = 2 %52t (mod hit), (87)
we truncate the remaining terms by Theorem 6.16. Hence z% 2y%zt is hit and

hence z%y3z¢ is hit by (86) in this case.

d) Ifallg;=1fori >3 and a # 2™ -1, 2™ — 3, 2™ — 5, then a; = a; =0,

i.e. a=2™ — 7. For this case,
4 _
E}(z**y’2t) = oy 2t + (a, N )x“"zyszt = g%’ 2t (mod hit),
—4
we truncate the remaining terms by Theorem 6.16 and (a 5 ) =0 (mod 2). So
2%y3zt is hit.

Hence monomials in the form z%y%zt are hit if they satisfy those conditions.

a

6.7 Monomials in the forms [a(2F — 1)(2%)1]

and [a(2F — 1)(2% 4+ 1)1]
Proposition 6.22 A monomial in the form [a(2¥ — 1)(2%)1] for & > 2 is hit
under the action of Dy, if it is not in degree 2™ or 2™ + 1.

Proof: A monomial z%y2 2% =1t is hit, if @ is even and the degree is not 2™ by

Theorem 6.16. Suppose a is odd. Let ana,-1 .. .ap be the binary expansion of a.

We have the following cases:




(1) If ap = a3 = 1 then because operations Dqy:_5 and E;k_z have no effect on

ok .
z*, we get:

_ok E_q ok 13 _ok k+l_q ok
Dzk_g(ﬂ)a 2 +2y2 122 t) =g y2 -1 2 t__l_xa 2 +2y2 3z2 $

gt 22212820 (6 9), (88)
k
Egk N o242 y 22 t) = (a - 22 + 2) pot2 —2y 224

+:c“y2 -1 2 t+ 2° yz t2 +$a—2k+2y2k—1zzkt2k—1
a, 2k_1 2 k ook 1 a—2k42 ok_1 ok ok 1
=% t+ 2%y T b Yy Tzt (mod 2), (89)

2k
by Lemma 6.3 and (j ) =0unless j =0forj < 2. Alsosince a; = 1and k > 2,

(“_2;4“2) = 0 (mod 2).

y (88) and (89), we get: atyz2 121 = go-2"4292" =32 (164 hit). Then

k+1
Ei". (ma—2’”‘y2k‘?1—3z2’*t) = ma—2k+2y2’"‘+1—322’“t + (2 2_ 3) ma.—Z'“'y‘,Z’”"*‘l—le"t

g0 2203 2k (mod hit),

]

9k+1 _ -
by Lemma 6.3 and ( 5 3) = 0 (mod 2). Hence z%yz2"t2°~1 is hit, and by

symmetry, z%% ~122°t is hit too.

(2) Suppose ag = 1 and a; = 0. Note that the total degree is not 2™+ 3, since

a; = 0. By Lemma 6.3,
B2 (2% 2% 12%°1) = 2% 12"t + 22 2P P22 (mod hit) (90)

We claim that either £o-2y2+122"¢ is hit or = 22 ~44322"t (mod hit). We

argue by induction on the exponent of y. By Lemma 6.3

h—1 _ k-1 k _ k—1__ k—1 & .
Ef (ma 2y2 +1Z2 t) = xa 2'lJ2 +1 ok t-{-’.’“ﬂ?‘H—Q 2y2 +122 (mod h?,'lf),




—2 2F1 41
where r = (aZk—l ), since 3+ ) = 0 (mod 2) unless s = 0, 2%~ for s even.

If r = 0 (mod 2), then 2% 2y* +122"¢ as well as 299?122t is hit. If r = 1 (mod 2),
g0 2P 2y = et T2 2020y o o4 hit).

We may repeat the procedure on z@t2 =22 '+1,2 ¢ if I _ 1 > 1. By the

induction hypothesis, we finally will get either z°~2y%**+122"¢ is hit or

g2y 2 P2 = et 2 3,2 (od ). (91)

Let o’ = a+ 2F — 4. Note that the 1st digit of the binary expansion of o’ is 0,

since a; = 0 and &k > 2.

We claim that either z%y322°¢ is hit or
:B“'y?’zzkt = 2%y°2* (mod hit)

where u = a' +2F —4 = a4 2¥+1 — 8. We argue this by induction on the exponent
of z. Suppose k > 2, by Lemma 6.3,

!

Efk"1($“'y3z2k"1t) = a:“'szzkt - (

1 k—1_ k=1
k=1 _ 2) o 2?/532 t

CLI N s — y— 3 a’ ’ y s —
+(2k_1):1:” T2 By = a3, (2k_1) a2 7822 (mod hit).
This is because that the 1st digit of the binary expansion of o' = 0, so
! 2k—1
(2’“—? 2) = 0 (mod 2) and ( j ) = 0 (mod 2) unless j = 0, 2k 1 If
1
(2;(:—1> = 0 (mod 2), 2%y32%"t is hit otherwise
7% y3z2kt = m“'“k"ly?’zzk*lt (mod hit).

We may repeat the procedure on z%+2 322" ¢ with E**™* if k—1 > 2. By

the induction hypothesis, we finally will get either z%'y®22"¢ is hit or

a¥yP 2t = gt 83,4 = 0 (mod hit), (92)
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by Proposition 6.20.

Hence by (90), (91) and (92), z°y2‘~122"¢ is hit and hence the monomials in
the form [a(2% — 1)(2%)1] are hit. O

We have got a partial result for the monomials in the form [a(2F —1)(2%+1)1].

For the cases we have not proved, we have a conjecture on them in Section 6.8.

Proposition 6.23 A monomial m“y?'k“zzk“lt in degrees > 11, where k > 2 and
4<a=0 orl (mod4), is hit under the action of Ds, if the monomial is not in

degree 2™ or 2™ + 1.
Proof: By Theorem 6.16,
E2 (2072222 1) = g0t 22 Y 4 00722 2 Y (mod Rat). (93)

Note that the ist digit of the binary expansion of ¢ — 2 is 1. We now consider

the monomial z2¢2" 152" +1¢,
(1) Suppose ¢ is odd. Then by Theorem 2.9,
wa—2y2k+1 L2y (B2, (y2))z* 2t
= y2(x(E%))(a°7%t) = y2(Ed + Doy Dy ) (3°%1)
=y z(xa+2’“+1—2t 4 gpot2E 22l Do ($a+2’~‘—2t + ma—2t2k+1))
= y2(z® T 2L 4 2022 ) (mod hit). (94)

2F 1
By Theorem 6.16 and ( :- ) # 0 (mod 2) unless r = 0 or 2" for r even,

E¥ (1% 22t ) = (a o )x“+2k"2yzt2k+1 + 222922 " (mod hit).  (95)
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-2 ' :
If (“ o ) % 0 (mod 2), then by (93) and (94), z%y? +122°~1f is hit. In
particular, 392 +122"~1¢ is hit when @ = 2™ — 281 4+ 1 for m > k + 1, i.e. the
monomial is in degree 2™ + 2.

2
Suppose (G ) = 0 (mod 2) and so the degree is not 2™ + 2. Then

ok
272y 227+ s hit by (95), so from (93) and (94),

ma.y2'°+1 21y = $a+2k—2y 22" (mod hit). (96)

We claim that z0+2"~2y212°+1 ig either hit or = 2%t2"" ~1y213 (mod hit). We
argue by induction on the exponent of £.

251 41
By Theorem 6.16 and ( s+ ) # 0 (mod 2) unless s = 0 or 2! for s

L even,

[ k_ k-1 By ok—1_ k—1 k_ b )
\ B2 7 (a0 2 72y 2 HL) = pg 0BT 2y g2 g0k 2020 042 (mod hit),

a+2F~2

where r = ( o1

) . Hence if 7 = 0 (mod 2), 32" ~2y2t2°+1 is hit, otherwise
g2 =2y 2T = et 204282, 2L (0 Bit).

If k > 2, we may repeat the procedure by applying E2*™" on @2 +287 2 257141

By the induction hypothesis we get either z¢2*~2y2¢2*+1 is hit or
gt =2y 2 = ot B8 (od hit).

Since the 1st digit of the binary expansion of « is 0, the 1st digit of the binary
expansion of @ + 2¥*1 — 4 is 0. Hence the monomial 22" ~4y213 is in degree
a-+2%+1 41 which is # 0 (mod 4), hence it is not in degree 2™ +4. By Proposition
6.21, m“+2k+1“4yzt3 is hit if it is not in degrees 2™, 2™ + 1, 2™ + 2 and 2™ + 4.
We know that 292" ~4y2¢3 is not in degrees 2™, 2™ + 1 and 2™ + 2 as well.

Hence 222" ~4y2t3 is hit and so *t2°~2yz2*+1 is hit. Then finally by (96),

k k_ . o, s .
x%y? T122°~1¢ ig hit in this case.




(2) Suppose a is even, i.e. a =0 (mod 4). Then by Theorem 2.9,
a—g9 2k 3 o, a—
g PYP N = (B (y2))at T = ya(x(B5)) (2°7%t)
= y2(Bx + Doy Das) (2°%t) = (21" 2t 4 Dy (2 22 11))
= ya(z®t?" "2 4 2032 (mod hit). (97)

By Lemma 6.15, 2%+2"' =2y is hit since it is not in degrees 2™, 2m41, 2m4-2.
By a similar argument as the part (1) of this proof, we get z® 2yzt2""'+1 is

at+2k+i_4

either hit or =« yzt® (mod hit). Also the monomial is not in the degree

9™ + 4 since the degree of the monomial is odd. Hence z%~2y%*+122"+1¢ is hit and

3oy 2 +122°=1¢ jg hit for this case. O

Proposition 6.24 A monomial in the form z%* =122+t for k > 2 is not hit

under the action of Ds, if a is one of the following cases:
(1) 2™ — 2%+ where m > k + 1.
(2) 2m — 2k 1 where m >k + 1.
(3) 2™ — 1, where m > 1.
(4) 2™ — 2% — 1, where m > k.

Proof: For case (1), the monomial is in degree 2™ + 1. For case (2), the
monomial is in degree 2™. They are not hit by Lemma 6.2. For case (3), % and
y2“ 12241 are not hit. For case (4), %22+ and y® ~'¢ are not hit. Hence they

are not hit by Proposition 6.5. (|
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6.8 Some results on the cokernel and some conjectures

In this subsection, we will analyse the cokernel in degree 2™ + 2 for m > 4. This
is the simplest case of the degrees which contains a set of representatives of a
subspace of the cokernel. Then we will give some conjecture for the monomials

which we have not proved.

Proposition 6.25 In degree 2™ + 2, every monomial %zt where a, b are odd
is congruent (mod hit) to a monomial in the form of :z:zm'zkﬂyzk_lzt where k is

the number of 1’s in the binary expansion of b.

Proof: z%y’zt is not hit by Lemma 6.2. By Lemma 3.15, there is a D which
is a composition of some E¥s, such that D(y*~!) = y® (mod 2) where k is the

number of 1’s in the binary expansion of b. By Theorem 2.9,
ztylzt = (D(y* N))atat = y* " (x(D)) (5°2t) (mod hit),

where x(D) is a sum of compositions of E} operations. Since the degree of
(x(D))(z%2t) is odd, in (x(D))(z%2t), if an exponent of a term f is even then
there are two even exponents in f. Then fyzk_l is hit by Theorem 6.16. By a

similar argument as the proof of Proposition 5.12,
y? 7 (x(D)) (z°2t) = y* et(x(D))(z) (mod hit).

Then (x(D))(2%) has to be 2™ ~2°+1 since the degree is 2™+ 2 and the mono-

mial is not hit. O

Proposition 6.26 In degree 2™ + 2, a monomial 22" ~2+1y2* =141 is congruent

(mod hit) to g2 Fly2" T =1y,




Proof: The argument is similar with the proof of Proposition 5.13, since the
operations in that proof are Ei’s for 4 > 2. Hence the exponents of z and ¢
of a term in the image of an operation in the process will keep to be 1’s, since

otherwise the term is hit by Theorem 6.16. O

Proposition 6.27 In degree 2™ + 2 for m > 4, the cokernel is 6 dimensional

and a basis is given by the following 6 monomials:

2m—1_|__1 2m—1__1 2177,-—1+1 2m—-1ﬁ1 2m—1+1 2m.—1__1
Y zt, o JY2z t, T yzt ,

T

m—1 m—1__ m m—1__
2 +lzt2 1 ZQ +1t2 1 ]

me—1 m—1__
$y2 +122 1.[/.’

TY y TY

Proof: By the previous results, monomials in degree 2™ - 2 are hit, except
the monomials in the form [abll] where a, b are odd. By Proposition 6.25 and
Proposition 6.26, every monomial in the form [ab11] is congruent (mod hit) to a
monomial in the form [(2™~ + 1)(2™~! — 1)11].

By Theorem 6.16,

EX (@7 1y T ) = o T T T 4 2?7 12 T gt (mod hat). (98)

Since m > 4, we are able to apply Theorem 6.16 and truncate the remaining

terms in (98). If m < 4, the result is not true. For example, suppose m = 3,
B (2PyPat) = 2°yPat + 2%y° 2t + o'y 22 + a'yP2t? (mod hit).

But a monomial in the form [4321] is not hit.

By applying suitable permutations to (98), we get
2?" Tty 2T Y = g2 1y 2T Y (mod hit),

m—1 m—1__ m—1__ m—1 N
g2 My T =T Tyt M (mod hit),
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-1 —1_ —1_ -1 .
ay® T = T L2 e (mod hit),
m—1 m—1__ -1_ m—1 N
gy?" T Tt T T =y T 1 (mod hit),

2m—1+1 2m—1_1 . 2m~—1_1 2m~—~1+1 .
TYZ t = zyz t (mod hit).

Hence the 6 monomials mentioned above generate all monomials in the form
[(2™1 4 1)(2™1 — 1)11] and hence generate all monomials in degree 2™ + 2 by
Proposition 6.25 and Proposition 6.26.

Any of the 6 monomials is not hit by Lemma 6.2. A sum of any combination
of the 6 monomials is not hit too. For example, suppose z2™ +lyz2" "'~ ig a
term in f which is a sum of some of the 6 monomials. #*"  *1y2™ =1zt is the
only monomial in the form z®y®zt where 1 < a, b are odd and @ + b = 2™ in f.
But the monomials in the form x%y’zt where 1 < a, b odd and a+b = 2™ always

appear in even numbers in any image of the action of D,. Suppose we want z%y’zt

where 1 < a, b odd and a + b = 2™ in E¥(z“y2t) = Z Ei(z%y")Ei(zt) for
iki=k
r=1or 2 and k > 1. Then z%y"zt appears only in the term EF(z%y®)zt. By the

proof of Proposition 5.2, the number of monomials in the form z%y® with a, b
odd and a-+b = 2™ in EF(z%y") is even. So the number of monomials in the form
3%y’zt in the image of EF operations is even.

Since 22" 192" ' ~12¢ is the only monomial in the form z%y’zt in f, f is not

hit under any EF operations for r = 1, 2 and hence is not hit under any operation

of Dy by Theorem 2.7. 0

In the 3 variable case, the cokernel in degree 2™ for m > 2 or in degree 2™ +1
for m > 3 is a constant. We think that the same thing happens in the 4 variable

case. By the calculation in Section 6.2, we pose the following conjecture,

Conjecture 6.28 The cokernel in degree 2™ or 2™ + 1 for m > 3 is 6 dimen-

sional.
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By the results we have got, we have a conjecture as follows:

Conjecture 6.29 The non-hit elements in degrees > 8 of Wo|z,y, 2, t]zyzt lie in

odd degrees 2™ + 1, 2™ + 3 and in even degree 2™, 2™ + 2% where m > k > 1.

Over Q, the product of two Artin elements in sets of distinct variables is
obviously an Artin element. For the product of two non-hit monomials which are
not Artin elements in cases we have explored, we can rearrange the exponents and
malke it into an Artin element. Over Fy, from the results we have got, the non-hit
monomials always appear in even numbers in the image of any operation of Ds.
So the product of two non-hit monomials is not hit since it does not appear alone

in the image of any operation of D,. Hence we pose the following conjecture:

Conjecture 6.30 Let X = {z1,%2,...%,} and Y = {y1,Y2,...Ym} be two dis-

joint sets of variables where X NY = {}. If z7* 25> -+ - 2% and Yoyl ybm gre

not hit under the action of D over an arbitrary field K, where a;,b; € N, then

a1 ,.a2 Q. bl b2
Ty Tp™ T Yy Yoo

oybm 4s ot hit as well.




7 The hit problem on polynomial rings of 2 and

3 variables over [,

In this section we will investigate the action of D, on polynomial rings over an
odd prime field IF,. We will give a minimal generating set for the 2 variable case
(Theorem 7.4) and a partial result for the 3 variable case. In this section, if we
write p™ without defining m, then we mean m € N. We write the p—expansion
of a as apa,_1---ag with a, # 0, we call q; the ith digit of the p—expansion of
a. The problem seems harder for the odd prime case. Because there are more
elements in the field in I, for an odd prime p, when we apply an operation of D,
to a monomial, there are more terms in the image in general. So it is difficult to

follow the method we used over F,.

7.1 The hit problem on a polynomial ring of 2 variables

over [,

Over a finite field F,, a generating set under the action of D, on IF,{z,y] is an
infinite set. From Dj;_;(z%) = z%y® + az®+*~ 1y, we get that the set of monomials

in the form [al] is a generating set of F, [z, y]zy.
Lemma 7.1 OverF,, z°y" is hit if either of a,b is divisible by p and a+b > p+1.

Proof: By Lemma 3.13 and Lemma 3.14. (W

Lemma 7.2 In degree p™, a monomial %y’ is not hit under the action of Dy, if

a, b are not divisible by p.
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Proof: Recall {E¥ | k € N} is a generating set of D, (Theorem 2.7).

Suppose an arbitrary polynomial f in degree p™ of F, [z, y]ay is hit. Then we

can write
=30 r(i,5)Ei(g:5) (mod p), (99)
P
where every r(i,7) € F, and every g;; is a monomial in F,[z,y]zy. For each
FEi(g;;) in (99), let g;; = z%y”. Then we have

. U v
HEDEDS (S) (t)w““y““,

s+t=1i

where u+v-+4i = p™. Note that Z (u+3) (Z)(:) = 0 (mod p), by Lemma 3.3.
Hence the sum of the products s;ft :tzhe coefficient of a monomial in (99) and the
exponent of z in the monomial = 0 (mod p) where sum takes over all monomials
in (99). |

So if any polynomial f in degrée p™ of F,[z, y]ry is hit under the action of
Dy, then the sum, which takes over all‘ monomials in f, of the products of the
coefficient of a monomial in f and the exponent of z in every monomial in the
monomial is = 0 (mod p). Suppose dz%y’ is hit for some d € F,, where a, b are
# 0 (mod p) and a + b = p™. Then we must have ad = 0 (mod p) and hence
d = 0 (mod p) since a # 0 (mod p). This completes the proof. In particular

2P" ~ly is not hit. O

Lemma 7.3 Monomials in the form z%y wherea=kp™ — 1, 2 <k <p-—1 are

hit over |, for an odd p.

Proof: We have the following equations:

m - a—p™ a—p™ _
s (e ()

Di(s%1y) = (a — L)aty + o 1y?
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The determinant of the coefficient matrix is:

a—p™\ fa—p"
e

=(k-2)—-(a—-1)=k#0 (mod p),

since a = kp™ — 1 for k£ > 2. So we can solve those equations to get that xz%y is

hit. (]

Theorem 7.4 {1, z, vy, 2y, %y, 2*" 'y | m € N} is a minimal generating set

of B[z, y] under the action of D,.

Proof: We only need to find a minimal generating set for F, [z, y]zy, since we
know {1,z} or {1,y} is minimal generating set in the 1 variable cases for variable
x or y. Now consider 2%y of degree d < p-+1, if a = p— 1, then d = p and z%y is

not hit by Lemma 7.2. Consider the following equations:

Ei(z*ty) = (a— 1)a°y + 2 'y
R G AR P

The determinant of the coeflicient matrix is (@ — 2)(a + 1)/2. By Lemma
7.1, a monomial z®y is hit if p|a where a > p. By Lemma 7.2, 2%y is not hit
in degree p™. We only need to consider monomials in the form z*y where p { a
and a4 1 # p™. Fora =por 2 < a < p—1, the determinant is not congruent

to 0 (mod p). Hence 2%y is hit in these cases. When ¢ = 2, there is only
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So z%y’2¢ = —aztelybz — bxtyPtelz (mod hit). i
Lemma 7.6 In degree > 2p+2, a monomial z%y*2° with two of a, b, ¢ divisible
by p is hit over IF,.

Proof: By Lemma 3.13 and Lemma 3.14. ' O

Proposition 7.7 In degree p™, a monomial z1*x3? ...zt , which has at least two

exponents not divisible by p, is not hit over If,.

Proof: The proof is similar to the proof of Proposition 5.3 and by Lemma 7.2.

O

Hence in degree p™, a monomial z%y’z¢, where two of a, b, ¢ are not divisible
D, Yy, s Oy

by p, is not hit over F,.

Lemma 7.8 In degree p™ + 1, a monomial zy°z with pta,b is not hit over I,.

Proof: By Theorem 3.12 and Thelorem 7.2. J

Lemma 7.9 A monomial z°yPz, where a = kp* — 1 for k > 2, is hit over F,.
Proof: Let a,, - - - a1ag be the p—expansion of @ and let ¢ = (p—1)/2. We have
Dy(zyt2) = az™ iyt z + (£ + 1)ayPz + 2y 2 (100)

We will show that the 1st and the 3rd terms of the above equation are hit
and hence z®y*z is hit since ¢ + 1 # 0 (mod p).

(1) For the monomial z%ytt!z, we have the following cases:
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(a) Suppose the 2nd digit of the p—expansion of a + ¢ 7 1. Then

E{ﬂ (xa—l-t—Pz yt+1 z) — (“ + ?52— Pg) ma+t,yt+1 2
p

t—p t+1
i Z (a—l— )( '|8‘ )$a+t—syt+1+sz

1<s<t1 pr—s

att—p tH1Y\ apeso1 tiigs 2
+ Z (p —3—1)( s )m Yy z* (mod p).

0<s<t+1
But

(a+t_—$p2) = 0 (mod p)

2
forl<s<t+1and

a+t—p?

(p2—8—1

) =0 (mod p)

for 0 < s < t+1. Since the st digits of the p—expansions of p? — s and p? —s—1
are p— 1 and the 1st digit of the p—expansion of a+%—p? is 0. Also since the 2nd
digit of the p—expansion of a +¢ 7# 1 and hence the 2nd digit of the p—expansion
of a +t— p? # 0, we get ( att- ) # 0 (mod p). So z¢**y*1z is hit for this

case.

(b) Suppose the 2nd digit of the p—expansion of a +¢ = 1. Then

2
Efp ( att— 2p2yt+1 )= (a +t—2p ) 0t

2p? v
n Z (a+t”2p)(t+1)$a+t—syt+1+sz
1<s<t+1 2p?—s §
a+t—2 t+1 e
+ Z ( _3__p1)( : )wa+t s 1,yt+1+.9z2 (mod p).
0<s<t+1 2p?
Again

a-+t— 2p?

( 22— s ) = 0 (mod p)

for1<s<t+1and

a+t—2p*\

(2p2 —s—l) = 0 (mod p)
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for 0 < s < t+ 1, since the 1st digits of the p—expansions of 2p? — s and

2p? —s—1 are p—1 and the 1st digit of the p—expansion of a -+t — 2p? is 0. Also
a+t—2p?

( 2p?

and hence the 2nd digit of the p—expansion of a +¢ — 2p? = p — 1 > 2 for any

) = 0 (mod p), since the 2nd digit of the p—expansion of a +¢ =1

odd prime p.

Hence z%*y**1z in (100) is hit.

(2) For the monomial z%y**12**!, by Theorem 2.9,
gty 2 = o B (y2) = ((EY)(s"))yz

= ((DyD; — E})(z*))yz = (ala +t) — (;) )z* 2y z = 2%y 2z (mod hit),

since a(a + t) — (g) £ 0 (mod p).

For the monomial %+%yz, we have the following cases:

(c) Suppose the 2nd digit of the p—expansion of a + 2t # 1. Then

2
E;fz (ma+2t-p2yz) = (a‘ + 22— p ):l:a+2tyz
p

+ 2t — p? 3 a -+ 2t — p? -
+(a el 117 )$a+2t Loz + y2?) + ( i 2P )wa+2t 20252 (mod p).
But

a+2t—p*\ _ fa+2t—p*\ _
( p2—1 ):( p2—2 :O(modp),

since the 1st digit of the p—expansion of a 4 2t — p? is 0 and the 1st digits of the
2t — p?

p—expansions of p? — 1 and p? — 2 are p — 1. Also (a + 2 b ) # 0 (mod p)

since the 2nd digit of the p—expansion of @ + 2t — p? # 0. Hence z%t*yz is hit

for this case.
(d) Finally the 2nd digit of the p—expansion of a + 2¢ = 1, then
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2
Efpz (ma+2t—2p2 yz) = (ﬂ + 2t —2p ) $a+2t,y 2

2p?
a+2t=2p*\ i1, 9 2 a+2t—2p"\ 10 09
+( op? — 1 )m (y°z +yz°) + 2P — 2 FH=225
= 224222 (mod p).
a + 2t — 2p? a + 2t — 2p? . -
= = h t
We see that ( op? — 1 ) ( 2p? — 9 0 (mod p) since the 1st digi

of the p—expansion of a + 2t — 2p? is 0 and the 1st digit of the p—expansion of

2t — 2p?
2p2 —1or 2p>—1isp—1. Also (a + 29 P ) # 0 (mod p) since the 2nd digit
of the p—expansion of @ + 2t — 2p? is p — 1 > 2. Hence z°y**12**1 in (100) is hit.

By the results of (1), (2) and the equation (100), z%y"z is hit. )

Lemma 7.10 Let a,0,_1'-ag be the p—ezxpansion of a. A monomial x°yPz is

hit over F, if a > 2p* — 1 and either a; <p—3 orag <p— 1.
Proof: If ay # p — 1, then
Dy 1(z% P yP2) = (a — p+ 1)z%yP2z + 3> PP = (a — p+ 1)z%yPz (mod hit),

by Lemma 7.6. Hence 2%y z is hit in this case. Suppose ap = p—1 and a; < p—3.

We have the following cases:

(1) If a,, > 1 then we set k = p™.

(2) If a,, = 1, then n > 3 since a > 2p® — 1. For this case, if a,—1 > 1 we set
kE=p""'andif ap_; = 1 we set k= 2p" L.

Because (‘2) = 0 (mod p) unless s = 0 or p, we get

~ k) —k
E¥(zFyP2) = (a , IM) zyPz + (Z _ 1) 01y 22

+ (Z :f;) x0 Py (k i; _k; 1) g2 P Ly 2 (mod p).
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The 1st digit of the p—expansion of a — k = a; < p — 3 and the 1st digits of

the p—expansions of k — 1, k—p, k—p—1are > (p— 2), so

(25)=Goy)=(p k) =0 o

Also (a ; k) # 0 (mod p). It is obviously true for case (1) and case (2)

—92 n—1
¢ 2p'“£1 ) # 0 (mod p), since

the (n — 1)th digit of the p—expansion of a — 2p™ ! is p — 1 which is > 2. So

where a,_1 > 1. For case (2) where a,; = 1, (
z%yPz is hit. |

Proposition 7.11 A monomial z°yPz where a > 2p? — 1 is hit over F, if it is

not in degree kp™ for 1 <k <p-—1.

Proof: By the last two lemmas, we only consider an a where g = p — 1
and a; = p — 2. Because the monomial is not in degree kp™, for some i where
2 <i<n-—1, there is an a; < p — 1. Again because (ZSJ ) = 0 (mod p) unless
s =0 or p, we have:

i PN a—(p—1)p a—p{p—1 _

E£_1($a (p—1)p ypz) = ( (pi ) )m“ypz-{— ( 5 (_ ) ) z® p+1ypzp

—(p—1)pt . ~(p—1)pf .

= (a. — - Lp )x“ypz (mod hit),

by Lemma, 7.6 and since the 1st digit of the p—expansion of a — p*(p—1) isp— 2
and the 1st digit of the p—expansion of p* —pisp — 1,

(a ~p'(p— 1)) = 0 (mod p).

pi—p

2

Also (a - (p— 1)29) % 0 (mod p), since a; # p — 1, the ith digit of the

p—expansion of a —pi(p—1) > 1. O
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Proposition 7.12 A monomial 2% Ptz, where a > 2p° — 1 and t > 1, is hit over
Yy D

F, if it is not in degree kp™ with 1 <k <p-—1.

Proof: We argue by induction on the exponent of y. Suppose ¢ > 1. Because

t—-1
(p ) =0 (mod p) unless s = 0 and p*~*, we have
$

_ ~ a — -

+ (pt—la_ 1) mg,+(p—1)(pt_1——1),ypt—1zp = fL‘a’ypt,Z—{- (pta;l) wa-l—(p—l)pt_lypt"lz (mod h'&t),

by Lemma 7.6. This gives

Py =~ (pi_l) gD (mod hit).

If (:t) # 0 (mod p) and t — 1 > 1, then we can repeat the procedure
again. By the induction hypothesis, we must get that z%P z is either hit or

= rg®t? ~PyPy (mod hit) for some r € F,, which is hit by Proposition 7.11.

Theorem 7.13 A monomial 2°yz, where a > 2p* +p — 1, is hit over I, if it is

not in degree kp™ and kp™ +1 with 1 <k <p—1.

Proof: Because 2%yz is not in degree kp™+1, some a; # p—1for0 <i<n-—1
in the p—expansion of a = a,a,.-1...a9 where a, # 0. Suppose a; is the first
digit counted from right which is not equal to p — 1. Since z%yz is not in degree
kp™, by Lemma 7.6 and Proposition 7.11,

i 2 _— _— 1 i _ _ 1 )
BY_y(a* " yz) = (a (Z,,; )r )w“yz + (a p(ip 1 ) )m“(?ﬂ‘z +y2P)

N (a —p(f:;)p ):L.aypzp = (a —(p ;m Lp )m“yz (mod p),
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—(p— 1) :
but (a (Z;z )P ) # 0 (mod p), since a; # p — 1 and hence the ith digit of the

p—expansion of a — (p— L)p* > 1. a

We have not found results for some monomials in the form [al1], monomials
in the form [¢21] and monomials in the form [a(p™ — 1)1] for the 3 variable case
over F,. Over F,, we solved monomials in the form [a(2™)1] in Section 5.6, then
we used the result in Section 5.7 to solve monomials in the form [a(2™ — 1)1].
Because for a monomial 222" ~1z, we may either change the exponent of y to 2™
or change the exponent of = to 2 by using some E¥ operations. But over F,, it
is difficult to do similar thing to z%y?" ~'z, because there is no such an operation
which either increases p™ — 1 to p™ or increases the exponent of 2 to p, since p—1
is no longer equal to 1. We have got a partial result for the monomials in the
form [a(p™)1] for m > 0 and we can only use the result to get a partial result for

the monomials in the form [al1].
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8 Appendix

A Table of Kostka numbers forn =2, 3, 4

n=2
p\A| (A1) (2)
(11) | 1 1
(2) 0 1
n=3
pA\A (A1) (21) | (3)
(11| 1 | 2 |1
(21) 0 1 1
(3) 0 0 1
n=4
p\A | (1111) | (211) | (22) | (31) | (4)
(1111) 1 3 2 3 1
(211) 0 1 1 2 1
(22) 0 0 1 1 1
(31) 0 0 0 1 1
(4) 0 0 0 0 1

Note that the numbers in the first row corresponding to each column index A

of a table are also numbers of standard A--tableaux.
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B Decomposition table of S¢ in terms of M* and Sp*

We give the decomposition table of S§ in terms of M* and Sp* for d < 10.

d | The decomposition of S¢ into M* The decomposition of S into Sp*

4 | M@ Sp)

5 | MED Sp @ SpD

6 | MG g (22 25p4) @ 25pB) @ Sp(22)

7 | 206 @ et 355 & 45p0) & 50D @ SpELD

8 | MW @ MO @2mM ) ¢ 122 55p™ @ 6Spt) @ 35p*) @ 25p(*1Y)

9 | 2B @ 4a(1Y) 65p @ 105p3L) @ 45p(2) @ 45p211)

10 3N (1) @ o A(22) @ apf(211) @ M) QSp(4) @ 14Sp[31) o 7Sp(22) @ ()‘Sp(211) ® Sp(1111)
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