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A bstract

The temporal linear stability of Newtonian flows is studied in channels and pipes 

bounded by compliant walls using a kinematic formulation. An existing kinematic 

method is extended to incorporate necessary and sufficient conditions for the 

existence of an instability which is physically realisable in any parallel shearing 

flow bounded by a simple-stretched-membrane wall. Consequently, bounds on the 

wall parameters (density, tension and damping) are found for which the above 

instability may arise.

The resulting kinematic extended eigenvalue problems are solved numerically 

for both channel and pipe flows. A Tchebychev collocation method is employed 

to evaluate the eigenfunctions and a Newton-Raphson method used to find the 

eigenvalue from an appropriate initial point.

Four classes of unstable numerical solution modes are found:

• Tollmien-Schlichting (TS) modes • Kelvin-Helmholtz (KH) modes

• Transitional modes • Resonant (R) modes

Analytical solutions are found for the long-wave and low Reynolds number 

limits. Instabilities in these regimes belong to the KH and R classes only.

For all solutions, methods of choosing wall parameters to eliminate instabilities 

are discussed and comparisons made with studies of the fully coupled fluid-wall 

systems.
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C hapter 1

Introduction

Much of the considerable interest in flows past flexible walls has stemmed from 

the experiments performed by Kramer in the 1950s and 1960s [38], [39], [40], [41], 

[42]. In his research, Kramer compared the drag on a rigid projectile with that 

on a similar projectile where sections of the outer shell were replaced by a flexible 

material. Projectiles of the same size and shape were towed through the sea by 

a boat. Despite the similarity in the geometry of the projectiles, a significant 

reduction in the drag was found for many of those with flexible walls.

Kramer attributed the improved efficiency of the flow to a reduction in the 

growth rate of the Tollmien-Schlichting waves which lead to transition in flow over 

rigid surfaces. Hence, with the correct choice of wall properties, the transition 

to turbulence could be postponed to higher Reynolds numbers or at the extreme 

bounds of possibility, eliminated altogether.

Some subsequent experimental studies, for example Smith and Blick [70], 

Fischer, Weinstein, Bushnell and Ash [20], were able to demonstrate a drag re­

duction in turbulent boundary-layer flows. However, early attempts to reproduce 

Kramer’s results were unable to find any significant drag reductions in laminar 

flows. Differences in the experimental set up can explain the findings of such

19



CHAPTER 1. INTRODUCTION 20

studies, as illustrated by Carpenter and Garrad’s comments [11] on the experi­

ments by Puryear [59], Nisewanger [56], Ritter and Messum [61] and Ritter and 

Porteous [62]. It should be noted that in some of the above cases the introduction 

of a flexible wall actually resulted in an increase in the drag.

Kramer’s claim that laminar flow could be maintained for higher Reynolds 

number flows using compliant walls was confirmed by Babenko and Kozlov [1] 

and by Gaster [24], These experimental studies showed that indeed the growth 

rates of the Tollmien-Schlichting waves were reduced. In the case of Gaster’s 

research the route to transition came from amplification of flutter disturbances 

in the wall surface itself.

Thus, it is now accepted that passive compliant walls can maintain laminar 

flows to higher Reynolds numbers and hence reduce the drag therein. Given that 

Gaster, Babenko and Kozlov used a visco-elastic wall material, unlike Kramer 

who used a composite wall which was essentially a spring-backed plate with a 

damping substrate fluid [11], it is clear that more than one type of wall is capable 

of exhibiting drag-reducing properties. However, given the large number of walls 

studied without drag-reducing properties, it is obvious that the choice of wall 

parameters, e.g. wall density, is critical to flow stabilisation.

The first theoretical studies to fully appreciate the complexity of the instabili­

ties which arise in compliant-walled flows were undertaken by Benjamin [2], [3], [4] 

and Landahl [49]. They extended the existing linear hydrodynamic stability the­

ory in flows over rigid walls derived by Tollmien [74], [75] and Schlichting [66]. 

This extension included the incorporation of the more complex boundary condi­

tions obeyed by flows over flexible walls.

Benjamin [3] and Landahl [49] used a threefold classification for the instabilites 

they found. The instabilities belong to class A, class B or class C depending
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on whether the energy required to activate them is negative, positive or zero, 

respectively. Those belonging to class A are similar to the Tollmien-Schlichting 

modes for flows past rigid walls. The class B modes depend only on the flexibility 

of the wall obey an essentially inviscid theory. Finally, class C instabilities occur 

for highly flexible walls and are also termed Kelvin-Helmholtz instabilities.

Since the modes of Tollmien-Schlichting type belonging to class A are desta­

bilised by energy dissipation, damping effects in the flexible wall will cause these 

waves to grow more rapidly. Conversely, wall damping is beneficial in supressing 

the existence of any class B surface instabilities. Thus, Benjamin and Landahl 

showed that it was highly unlikely that a general-purpose flexible wall could be 

found which would lead to flow stabilisation for all Reynolds numbers.

Understandably, many subsequent studies concentrated on boundary-layer 

flow since Kramer’s original experimental flows were of this type. Carpenter 

and Garrad [11] showed that the dynamics of Kramer’s walls could be modelled 

by a relatively simple single equation relating the displacement of the wall and 

the perturbation of the pressure from its mean at any point along the length of 

the surface. They also used data from Kramer’s papers to calculate the values 

of the wall parameters in the resulting model. They then went on to determine 

the effects of varying these parameters on the Tollmien-Schlichting instabilities 

(TSI) using a combination of an approximate theory and numerical solutions of 

the Orr-Sommerfeld equation.

Carpenter and Garrad followed this research with another paper [12], this time 

studying what they termed the flow-induced surface instabilites (FISI). These 

could be subdivided into static divergence (SD), travelling wave flutter (TWF) 

and a subclass of combined TSI/TW F modes. They used an inviscid theory 

combined with numerics to show that the SD modes are absolutely unstable, as 

are some of the TWF modes. However, the combined TSI/TW F modes, although
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only convective, gave rise to the fastest-growing instabilities.

The above had built on the works of Landahl and Kaplan [50] and Gyorgy- 

falvy [31]. They had shown that although it was possible to make significant 

reductions in the drag via a reduction in the wave amplification rates, any par­

ticular wall would only be effective over a small range of values of the Reynolds 

number.

At about the same time as Carpenter and Garrad’s studies on Kramer-type 

walls were published, Yeo [78] was researching boundary-layer flow over visco­

elastic walls. Encouraging results were found with regard to overall flow stabili­

sation. The TSI were found to be stabilised by a thickening of the visco-elastic 

wall. The compliance-induced flow instabilities (CIFI), the same as Carpenter 

and Garrad’s FISI, were stabilised by wall damping and the use of multi-layered 

visco-elastic walls with one stiffer, thinner layer above a thicker softer layer. Yeo 

suggested that by embedding such a plate-like layer in a thick wall, substantial 

reduction of disturbance growth might be obtained.

Yeo and Dowling [81] then extended Howard’s semi-circle theorem [34] and 

Hpiland’s theorem [33] to invscid parallel-shearing basic flows over a generalised 

passive compliant wall. Yeo [80] also derived an equivalent of Fjprtoft’s cite- 

rion [21] for the same type of basic flows over the same wall type.

Subsequent papers by Yeo [79], Yeo, Khoo and Chong [82] and Yeo, Khoo 

and Zhao [83] proceeded to look at the effects of wall anisotropy, the effects of 

boundary-layer growth and the existence of absolute instabilities, repsectively, all 

for boundary-layer flows over visco-elastic walls.

Many other aspects of boundary-layer flow over compliant surfaces have been 

studied. These include multi-deck approaches as employed by Carpenter and 

Gajjar [10], who were able to use the upper branch stability properties to find 

scalings for the TWF modes.
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Starting with Landahl [49], there have also been numerous studies on the op­

timisation of the wall parameters to achieve the maximum stabilising effect on 

boundary-layer flow. This mantle was also taken up by Carpenter [9] who was 

able to show that, for water flows, a two-panel wall was able to outperform a single 

optimised panel. Carpenter used a Kramer-type wall but Dixon, Lucey and Car­

penter [17] were able to show that visco-elastic walls also could be optimised. In 

addition, they confirmed Yeo’s findings [78] that multi-layered visco-elastic walls 

out perform single-layered ones with two-and-a-half- and five-fold increases in the 

critical Reynolds numbers for single- and doubled-layered walls, respectively.

A most encouraging area not yet discussed is that of numerical simulations 

of boundary-layer flow over finite panels. Carpenter’s paper [9] was on work in 

this area. An earlier study by Ellen [19] showed that the way in which the pan­

els were attached to adjacent wall surfaces had a fundamental effect on the flow 

stabilisation properties. The later studies of Metcalfe, Rutland, Duncan and Ri­

ley [54] have looked at the use of active stabilisation and more recently Wiplier 

and Ehrenstein [76], [77] have looked at the use of spatial linear stability theory in 

conjunction with numerical simulations and discovered the existence of absolute 

instabilities in flows over Kramer-type walls. Most importantly, though Davies 

and Carpenter [16] have shown that finite panels of the order of a single wave­

length in streamwise extent are capable of stabilising TS modes. In conjunction 

with Carpenter’s results [9], this suggests that designing a multi-panelled wall 

with optimised parameters for the mean Reynolds number over each section is 

among the most promising means of improving flow stabilising surfaces in the 

future.

In addition to the potential transition-delaying aspect of using compliant walls 

in channel flow, there is another reason for studying flexible-channel flows. This
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is the potential for collapse of compliant channels conveying fluid flows. Grotberg 

and Davis [27], Grotberg and Shee [30], Grotberg and Reiss [28], [29] and Larose 

and Grotberg [52], amongst others, have used flows through compliant channels 

to model the collapse of airways in the lung. This is thought to lead to wheezing.

However, we shall be concentrating more on the flow stabilisation properties 

of compliant walls when used in channel flows. Therefore, we shall review works 

in this area.

Hains and Price [32] were the first to consider the possibility of flow stabil­

isation in channel flows using compliant walls. They obtained the equivalent of 

Benjamin’s results [3] for the TSI by numerically integrating the Orr-Sommerfeld 

equation.

Korotkin [37] then developed an analytic theory for compliant channel flows 

but failed to apply the correct streamwise boundary condition. Green and Ellen 

[26] also encountered some difficulties since they were unable to identify some of 

their instabilites as belonging to the TWF class.

Progress was made when Rotenberry and Saffman [64] demonstrated that an 

extension of Squire’s theorem [72] could be made for channels with compliant 

walls which could be modelled as spring-backed plates. Thence, it was necessary 

only to study two-dimensional disturbances in order to know the overall stability 

of flows in such channels.

Later, Gajjar and Sibanda [22] adapted the multi-deck approach of Carpen­

ter and Gajjar [10] for flows in compliant channels. Gajjar and Sibanda were 

able to demonstrate that such an approach was applicable to the TSI. They also 

were able to predict the existence of a fast travelling wave in the presence of 

high wall damping. Additionally, they showed that previous studies, for exam­

ple Rotenberry [63] and Ehrenstein and Rossi [18], which retained only spring 

terms (neglecting inertia and tension) could be misleading. However, Gajjar and
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Sibanda’s asymptotic approach did not allow them to make a full decription of 

the FISI, though they were aware of this.

It was Davies and Carpenter [15] who brought the previous studies together 

and showed that all of the mode classes present in boundary-layer flow over a 

compliant flat plate are also present in compliant channel flow. They adopted 

the classification system employed by Carpenter and Garrad [11], [12] and thus 

found TSI, SD, TWF and combined TSI/TW F instabilities.

Davies and Carpenter studied disturbances whose stream function was sym­

metric about the channel centreline. They argued that this was sufficient for the 

TSI since the symmetric TSI are less stable than the anti-symmetric TSI. How­

ever, they were aware that anti-symmetric FISI might cause transition to occur 

at lower Reynolds numbers. Recently, Nagata and Cole [55] have shown that 

anti-symmetric instabilities may well cause transition to occur at lower Reynolds 

numbers than would the symmetric modes on their own. However, their findings 

have yet to be confirmed in the literature.

Fully developed flow in a rigid pipe has been shown to be linearly stable 

by Corcos and Sellars [13], Gill [25], Salwen and Grosch [65], and Garg and 

Rouleau [23], for example. The papers by Davey and Nguyen [14], Itoh [35] 

and Sen, Venkateswarlu and Maji [68] have also shown that fully devloped pipe 

flow is stable to sufficiently small finite-amplitude disturbances. Therefore, the 

study of flows in compliant pipes is mainly linked with biological applications 

such as the aforementioned collapse of airways in the lung studied by Grotberg 

and Davis [27], Grotberg and Shee [30], Grotberg and Reiss [28], [29] and Larose 

and Grotberg [52], using channel flows.

Experiments by Krindel and Silberberg [43] showed that the behaviour of 

the flow in gel-walled tubes differed considerably from the flow in rigid tubes.
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Similarly, many modes of instability were observed by Bertram [5], [6] during 

the collapse of flexible tubes due to a difference between the internal and exter­

nal pressures. These instabilities were later classified by Betram, Raymond and 

Pedley [7].

Subsequently, the collapsing tube problem was studied theoretically by Reyn 

[60] and Jensen and Pedley [36], who found good agreement between the theory 

and the experimental observations.

Kumaran [45], [44], [46] studied the stability of axisymmetric disturbances 

for a tube modelled on Krindel and Silberberg’s experimental tubes. A rigid 

cylindrical outer casing was lined on the inside by a visco-elastic material with 

fluid flow at the core of the tube. The first of Kumaran’s papers [45] studied 

the viscous flow in such a pipe and found that instabilities could arise as a result 

of the basic-flow shear at the fluid-solid interface. The second paper [44] then 

looked at the problem for high Reynolds numbers. The third paper [46] derived 

the equivalent results for axisymmetric modes in invscid compliant-pipe flow that 

Yeo and Dowling [81] and Yeo [80] had found for inviscid compliant-channel flow.

Later Kumaran studies looked at the effects of varying the elastic shear mod­

ulus, the wall viscosity and the wall thickness for intermediate Reynolds number 

flows [47] and also at the asymptotic nature of the wall modes for high Reynolds 

numbers.

Shankar and Kumaran [69] have subsequently extended Kumaran’s conditions 

for inviscid flows [46] to include non-axisymmetric disturbances.

All the above studies simultaneously formulated and solved both the solid and 

fluid problems, which are coupled by the continuity conditions at the solid-fluid 

interface. However, Sen and Arora [67] took a radically different approach to 

formulating the linear stability problem of boundary-layer flow over a compliant
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surface. They obtained the so called “Kinematic Problem” by introducing an 

extra parameter, (f)w, which corresponded to the complex amplitude of the stream 

function at the wall for two-dimensional disturbances. Accordingly, the boundary 

conditions for the fluid at the compliant wall were then formulated in terms of

$w

Under this formulation, all values of <j)w gave rise to disturbances which were 

valid for the fluid bounded by a wall response of the same wave-number and phase 

velocity. However, not all values of <pw necessarily gave rise to solutions which 

obey the necessary dynamical continuity conditions at the solid-fluid interface, 

i.e. at the compliant wall, for a given wall model. Hence, the boundary conditions 

imposed were purely kinematic, as suggested above. Therefore, by considering 

all values of <f>w, a superset of the physically realisable solutions were obtained.

This enabled the two systems to be decoupled. The fluid problem could then 

be solved independently, knowing that any solution to the coupled system, for 

any wall, must also be a solution to the kinematic fluid problem.

Having obtained the solutions to the kinematic problem for all </>w, the solu­

tions relevant to a particular wall model could then be found from the dynamical 

conditions at the solid-fluid interface. This was done by using a concept known as 

the admittance, which is used in acoustics to indicate the response of a solid to an 

incoming sound wave. Landahl [49] was the first to use it in flows over compliant 

surfaces and many subsequent studies have followed his lead. The admittance is 

generally defined as —V '/P 1, where V' is the normal velocity of the fluid/solid at 

the fluid-solid interface and P' is the pressure perturbation from the basic flow. 

This is easily found from the solutions of the fluid problem. This was matched 

by Sen and Arora to the admittance for the solid wall which could be calculated, 

for a generic set of wall parameters, from its governing equation. In this way, 

the wall parameters required to produce the given fluid solution could be back
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calculated and checked to determine whether they were physically realistic. For 

the simple stretched membrane model used by Sen and Arora, this meant that 

the mass per unit area, the tension and for a passive wall, the damping must all 

be positive.

With the above method, Sen and Arora were able to find four classes of 

instability, which they named the Tollmien-Schlichting (TS) class, the Kelvin- 

Helmholtz (KH) class, the Transitional class and the Resonant class. The TS 

modes were the same as the TSI of Carpenter and Garrad’s nomenclature [11], [12] 

and the R modes were a flutter instability. However, the Transitional and KH 

instabilities were not so easy to identify with previous studies’ classifications. The 

KH modes share some properties with Carpenter and Garrad’s SD instabilities 

and the Transitional modes can exhibit very large growth rates like the combined 

TSI/TW F instabilities but further study is required to make the necessary links.

As previously mentioned, many studies have attributed the drag reducing 

properties of compliant walls to a delay in transition to a higher Reynolds number, 

Re. Although no single theory has been developed to describe the transition to 

turbulence for a general flow, the following is relevant to transition in rigid-walled 

channels and/or pipes.

For a rigid-walled channel, the flow is of plane-Poiseuille type and is stable 

to infinitesimal disturbances for low Re. However, two-dimensional disturbances 

develop in the flow as Re is increased to approximately 5772 =  Recr [58]. This flow 

regime is in turn susceptible to three-dimensional dimensional oscillations [73]. 

Weakly non-linear theory shows that small but finite amplitude oscillations of 

this type are governed by a Stuart-Landau equation [51]:

=  27 |A|2 -  « |A |4 . (1.1)

Here, \A\ is the amplitude and 7 is the growth rate of the oscillation, and a is
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the Landau constant.

The fixed point of equation (1.1) yields \A\qq = the amplitude of the

oscillation for large t. This shows that the small but finite amplitude oscillations 

exist and are stable for Re > Re'cr where Re'cr < Recr (typically, Re'cr = O(102) 

for channel flows [51], [73]). Therefore, the critical Reynolds number for finite am­

plitude initial disturbances is lower than that for infinitesimal initial disturbances. 

This can lead to hysteresis: if the flow is controlled so that finite amplitude os­

cillations are eliminated as Re is increased then plane-Poiseuille flow will become 

unstable as Re passes Recr. If Re is then held at just above Recr and the per­

turbations are allowed to develop then their amplitude will tend towards |A|oo 

after a sufficiently long time. The oscillations are now finite in amplitude and so 

if the Reynolds number is reduced then steady plane-Poiseuille flow will only be 

regained once Re falls below Re'cr, not Recr.

The weakly non-linear theory is only valid for Re up to just greater than i?ecr, 

and hence, like the linear theory for infinitesimal disturbances, it is insufficient 

to describe the transition to turbulence. It is at this point (i.e. for Re signifi­

cantly greater than Recr) that no general theory exists. However, one proposed 

mechanism for transition is that of a succession of period doubling bifurcations 

of the finite amplitude oscillations, the details of which are given in Landau and 

Lifshitz [51]. This theory does describe the rapid cascade of frequencies which 

occurs in practice as Re is increased, with turbulence setting in as a transitional 

Reynolds number, Retr say, is passed.

The route to transition in a pipe is similar to that in a channel, with one 

or two differences. Steady Hagen-Poiseuille flow is stable to infinitesimal and 

sufficiently small finite-amplitude disturbances, as mentioned above. Therefore, 

only initial disturbances larger than this will grow with time. Thus, the flow 

will experience a sudden increase in the drag. Conversely, channel flow where



CHAPTER 1. INTRODUCTION 30

the linear modes are excited first will experience a smooth increase in the drag. 

Another difference in the flows is that there is no Squire’s theorem for the pipe 

and so it cannot be assumed that two-dimensional disturbances will be the least 

stable in Hagen-Poiseuille flow.

The above shows that linear theory is insufficient in itself to predict the tran­

sition to turbulence in channel and pipe flows. However, it also shows that linear 

theory is still important in predicting the growth of sufficiently small disturbances 

and hence in providing the first step in understanding the process of transition 

in such flows.

1*1 A im s Of Thesis

We wish to apply Sen and Arora’s [67] kinematic approach to the problems of 

channel and pipe flows bounded by compliant walls. The instabilities found 

in these problems will be compared with those for boundary-layer flow over a 

compliant surface. This comparison will include the effects that introducing wall 

compliance has on the TSI and the classification of the instabilities.

Landahl’s results [49] suggested that some instabilities may persist for low 

Reynolds number flows. Despite this, very little research has been performed 

for such regimes. Only Kumaran [45] appears to have looked at instabilities in 

viscous flows over compliant surfaces for boundary layers, channels or pipes. An 

additional aim, therefore, is to study the potential for instabilities in compliant 

channels and pipes for very low Reynolds number flows.
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The K inem atic Approach

In this chapter we develop some of the more general ideas and concepts which we 

shall employ in formulating the temporal linear stability problem for both channel 

and pipe flow bounded by normally compliant walls. The numerical approach to 

solving the resulting equations and some aspects of the interpretation of the 

solutions are also considered here.

2.1 Boundary C onditions

As mentioned in chapter 1, Sen and Arora [67] took a radically different approach, 

compared to previous studies, when formulating the linear stability problem of 

boundary-layer flow over a compliant surface. Since we shall be applying the 

same kinematic formulation to both the problems of the linear stability of channel 

and pipe flows bounded by compliant walls, it seems prudent to introduce the 

mathematical concepts once, in isolation. The specific cases of channel and pipe 

flow then may be dealt with much more briefly when they are encountered.

In order to proceed, we need to assume a wall geometry and basic flow that

31
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are more general than but which apply to both the compliant channel and pipe. 

We shall need to make certain further assumptions which are also given below.

We shall start by assuming that we can find a co-ordinate system such that 

the x* axis is aligned with the basic flow, which is uni-directional. Furthermore, 

we shall assume that the y* axis is normal to the wall in its undisturbed state, 

so that the equation of the wall at rest can be written in the form y* =  yo, a 

constant. The remaining axis, which we shall label the z* axis, is such that aq, 

y*, z* form a right-handed, orthogonal co-ordinate system.

Next, we shall assume that we are considering a Newtonian fluid and hence 

its flow is governed by the Navier-Stokes equations. It also will be assumed that 

we are looking for disturbances to a shearing basic flow of the form:

where dpB/dx  is the constant pressure gradient driving the flow and p0 is a con­

stant background pressure, which can be taken to be zero without loss of gener­

ality. Here, x * is a unit vector in the rr* direction and the velocity must obey the 

no-slip condition at the compliant wall in its undisturbed state, i.e. uB(y0) — 0. 

A flow consistent with these assumptions can be seen in figure 2.1.

Finally, we shall assume that the equations governing small disturbances from 

the basic flow permit solutions of the form:

UB =  (?/*)£* , (2.1a)

(2.1b)

, i (a(x*— c t*)+ /?2*)

and that these governing equations may be written in the form:

iaRe(uB — c)u +  Re(DuB)v = —iaRep  +  Ai(y*, u ) , (2.3a)

iaRe(uB — c)v =  —Re Dp +  £ 2(2/*, v, w ) , (2.3b)

iaRe{uB -  c)w = f\(y*)Rep +  Lz(y*,v,w) , (2.3c)

ia u  + Li(y^ v) +  f 2 (y*)w = 0 . (2.3d)
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mean

flow

Figure 2.1: Basic flow for a generalised geometry.

Here, u'Xm, u'y% and u'Zt are the three velocity components of the disturbance, p' is 

the pressure disturbance and Re is the constant Reynolds number for the flow. 

Here also, a and (3 are respectively the x * and z* components of the wave number, 

c is the phase velocity of the wave, u , v, w and p are complex amplitude functions 

and .4 <C 1 is a positive real constant which ensures that the disturbances are 

small enough to be governed by a linear theory. The functions, fi  and / 2 are 

known, L1? L2 and L3 are linear differential operators which are second order in 

the total derivative, D = d/dy* and L4 is a linear differential operator which is 

first order in D.

For two-dimensional disturbances, i.e. when w(y*) =  (3 = 0, it is possible to 

find the solutions in terms of a stream function, if), which automatically obeys 

the relevant form of the continuity equation (2.3d) for such perturbations. We 

shall assume that, in our geometry, the equations defining the stream function
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are of the form:

(2.4b)

(2.4a)

where, /* is a known function which is 1 at y = y$. Hence, given the normal mode 

decomposition for u'Xt and u'ŷ , the stream function must also have a normal mode 

decomposition, which we shall write as

Here, (f) is the complex amplitude of the stream function and as before A  <C 1 

is the real number indicating the small size of the disturbances. Combining 

equation (2.5) with our expressions (2.2), (2.4a) and (2.4b), for u'x  ̂ and u'y^  the 

relations

are obtained, where again D =  d/dy*.

Expressions (2.6) allow us to introduce the parameter, (j>w, as employed by 

Sen and Arora [67]. The kinematic boundary conditions at the compliant wall 

then may be formulated in terms of (f)w. In order to do this we need to consider 

the displacement of the compliant wall with respect to its undisturbed position, 

y* = y0. This must take a similar normal mode form to the stream function and 

hence we may write the equation of the compliant surface, y*s, as

where a is the complex amplitude of the wall displacement. Now, given that 

<l>w = we obtain

ip =  . (2.5)

(2.6a)

(2.6b)

y„ = ya +  A a e , (2.7)

${yo) &W j (2 .8)
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to leading order in powers of A. This enables us, henceforth, to evaluate the 

stream function at the wall in its rest state rather than in its disturbed state.

The first boundary condition that we shall obtain is the kinematic condition 

which equates the normal velocity component of the fluid at the wall, u’ \ytf—y#a 

to the normal velocity of the compliant wall itself, dy+a/dt*. From our stream- 

function representation of v (2.6b) we obtain the normal velocity of the fluid at 

the wall,

v (y*s) =  -

If we Taylor expand about t/* — y0 and then linearise this expression with respect 

to A, using equation (2.7), we find that

v{yo) -  -ia f*(yQ)(f)w = ~ia(f)w . (2.9)

Using expression (2.7) for y*s, we obtain dy*3/dt* = — 2aA.acexp(za:(:r* — ci*)) 

as the normal velocity of the wall. Thus, equating the normal fluid and wall 

velocities and linearising with respect to A yields

v(yo) =  —iaac (2.10)

and hence, we can deduce that

(pw = ac , (2.11)

which enables us to eliminate the unknown, a from all subsequent formulae.

The other condition at the compliant wall is given by the no-slip condition 

for the streamwise velocity component, ub +  u’x  ̂ — 0 at j/* — y*s. Again using 

our decomposition for y+s (2.7) and expanding about y* =  yo in powers of A, we 

obtain u(yo) = —aDits(yo)- Substituting (2.11) for a, we arrive at the second 

wall condition
(f)wDuB(y0)

u{yo) = -----------------• (2.12)



CHAPTER 2. THE KINEMATIC APPROACH 36

Thus, we have deduced the necessary boundary conditions at the compliant 

wall for a two-dimensional perturbation from the basic flow (2.1). These are 

expressions (2.9) and (2.12), which correspond to the normal and streamwise 

velocity components of the disturbance, respectively.

We can extend this method of formulating the boundary conditions to three- 

dimensional disturbances, i.e. for w(y*),{3^ 0, by defining a pseudo-stream- 

function, which we shall denote by ip, as before. We shall define \j) using a normal 

mode decomposition identical to the two-dimensional decomposition (2.5), such 

that <p(y*) is related to v(y*) via equation (2.6b). Hence, using equation (2.8) 

and linearising, as before, once again we obtain equation (2.9) as the boundary 

condition for the normal velocity at the compliant wall.

Further justification for this approach to formulating the boundary conditions 

for three-dimensional disturbances at the compliant surface can be gained by 

looking at equation (2.9). For the two-dimensional case, we specified the stream- 

function amplitude at the wall, <j>w and found v(yQ) in terms of it, but we could 

just as well have specified v(yo) directly. For three-dimensional disturbances, we 

may also specify v(yo) directly and use equation (2.9) to write it in terms of the 

amplitude of a pseudo-stream-function, <f>w.

Since equation (2.10) is independent of the formulation of the boundary con­

dition from the fluid side of the interface, we may, without further justification, 

use it to reproduce equation (2.11) for three-dimensional disturbances and hence 

again we may eliminate the amplitude of wall oscillation, a. It is then a trivial 

extension to show that again equation (2.12) is the relevant boundary condition 

for the streamwise velocity component of a three-dimensional disturbance.

For a three-dimensional disturbance there is a third velocity component for
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which we need to find a boundary condition at the compliant wall. This, the 

boundary condition for the velocity amplitude function, w, is easily obtained 

from the 110 slip condition u'z  ̂ =  0. Using the normal mode decompositions

(2.2) and (2.7) for u'Zst and y*s respectively, the condition becomes

w(y0) = 0 ,  (2.13)

to leading order in A.

With the inclusion of the above condition it has been shown for both two- 

and three-dimensional disturbances, that the kinematic boundary conditions at 

a compliant wall can be formulated in terms of a parameter, <j)w. However, there 

are a few more analytical considerations which are relevant to both the channel 

and pipe problems and so again it seems prudent to deal with these together 

rather than in isolation.

The first of these considerations concerns a normalisation condition. The 

linear nature of the governing stability equations (2.3) implies that if a solution, 

(u,u,ie,p) — (w*, u*, w*,p*), is found for a given set of parameters a, /?, Re and 

phase velocity, c, then so is (u , v , w,p) =  (fi*, u*, w*,p*) =  K*(u*, u*, ru*,p*), where 

If* is any constant. Now, for the case of flow near a rigid wall, the boundary 

conditions for disturbances are homogeneous. It follows that if we fix the wave 

numbers a and (5 and the Reynolds number, Re, then we have an eigenvalue 

problem for the phase velocity, c, with associated eigenfunctions u, v, w and p. 

Therefore, in order to differentiate between eigenfunctions which are independent 

solutions and those that differ merely by a common factor, it is necessary to 

impose a further, normalisation condition. This may take one of many forms 

which include fixing the value of one of the eigenfunctions at a point where it is 

known to be non-zero.
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However, our problem has homogeneous boundary conditions only for the 

specific case when <f>w =  0 and hence is only an eigenvalue problem then. For 

non-rigid walls, i.e. for cf>w ^  0, the compliant problem can be thought of as an 

extended eigenvalue problem, as explained by Sen and Arora [67]. This is il­

lustrated by considering the two solutions of the linear stability equations (2.3), 

namely (u*, u*, ?n*,p*) and (u*, -0*,fi)*,p*), above. The solution, (u*,n*, ic*,p*), 

obeys the linear stability equations (2.3) with the fixed values of o;, /3, Re and 

phase velocity, c and must also obey the kinematic boundary conditions (2.9), 

(2.12) and (2.13), for some value 4>w = say. In order for the boundary con­

ditions at the compliant wall to be consistent (fi*, n*, tu*,P*) must obey the same 

linear stability equations (2.3), for the same parameters a', j3, Re and phase 

velocit}'-, c but with the wall stream function, (j)w — <j)w  ̂ —

Since, for our kinematic formulation of the problem, (f>w can take any value in 

the complex plane, (n*, fi*, fi)*,p*), is also a valid solution to the same compliant 

problem. Hence, as for an eigenvalue problem, we need to apply a normalisation 

condition in order to differentiate between independent eigenfunction solutions 

and those which differ only by a constant factor. We shall use the type of normal­

isation condition mentioned above, whereby the value of one of the eigenfunctions 

is fixed at a point where it is known to be non-zero, though the details will be 

left until the relevant chapters.

The final consideration that we have to make in regard to the problem for­

mulation pertains to the remaining boundary conditions for the eigenfunctions, 

u, v, w, p. For two-dimensional disturbances is it possible to eliminate the pres­

sure from the stream-function formulation of the linear stability equations (2.3). 

The result is a fourth-order ordinary differential equation for 4> which, in the
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case of a Cartesian co-ordinate system, is the well known Orr-Sommerfeld equa­

tion [57], [71]. Hence, we require four boundary conditions in order to fix <fi. For 

three-dimensional disturbances, equations (2.3) can be reduced to a sixth-order 

ordinary differential equation for one of the eigenfunctions and hence we need 

six boundary conditions in order to fix the solution. In either case, in order to 

fix a solution for the kinematic compliant problem, we require as many more 

conditions again as we have at a single compliant wall. In the case of channel 

flow, these conditions may take one of two forms: the velocity components may 

be specified at the other wall or in the case of the symmetric channel, i.e. where 

the other wall is also compliant, symmetry conditions for each of the velocity 

components may be specified. For the case of pipe flow, symmetry conditions 

are specified about the axis of the pipe for the velocity components. Again, the 

details for each case will be left to the relevant chapters.

The above completes the analytical aspects of the kinematic approach. How­

ever, when considering numerical solutions especially, it is not always possible to 

consider all values of (fiw, as required above. It is then convenient to decompose 

the complex amplitude into the form <j>w = \4>w\ exp(i<9w), where \<f>w| is the real 

modulus and 6W is the real argument, of (f>w. By letting 8W take values in the 

range [0, 2-7rm] where m is the number of branches of the solution, and letting 

\(j)w\ take values increasing from zero to some suitably large 1^1 max (about 25 

is large enough for boundary-layer flow), all the possible flow configurations can 

then be found.
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2.2 N um erical M ethods

2.2.1 T h e T chebychev C ollocation  M eth od

For the compliant channel it is possible to non-dimensionalise the governing 

equations in such a way that, in their rest positions, the walls are at y* = — 1 

and y* = 1. Similarly, for the compliant pipe problem, it is possible to non- 

dimensionalise the governing equations so that axis of the pipe is at y* =  0 and 

the wall is at y* =  1. Using the transformation y' =  2y* — 1, the solution domain 

can then be mapped from (0, 1) to (—1, 1) and hence both problems lend them­

selves readily to solution via a Tchebychev collocation method. This method, 

the details of which may be found in Canuto, Hussaini, Quarteroni and Zang [8], 

relies on the ability to expand any smooth function, /  say, in the form
OO

f(y*) = faTk{y*),
k=—oo

over the interval (—1,1). Here, Tk is the kth. Tchebychev polynomial of the first 

kind. In such a series, the expansion coefficients, f k decay faster than any inverse 

power of k. This implies that truncation of the series after only a small number 

of terms should give an extremely accurate approximation for / .  This property 

is known as the “spectral accuracy” of the Tchebychev collocation method.

We shall use expansions of the above type for each of our eigenfunctions u, v, 

w and p in order to solve the kinematic problem. The method we shall use will 

be to make an initial approximation to the phase-velocity eigenvalue, c and then 

to solve the linear stability equations (2.3) in conjunction with all the boundary 

conditions bar the streamwise condition (2.12) (since the problem is over specified 

unless c, is an eigenvalue and u, v, w and p are eigenfunctions). If c is close to the 

eigenvalue then the error in condition (2.12) will be small. If the error is below 

an acceptable tolerance, then we will assume that the errors in the eigenvalue, c 

and the eigenfunctions u^v^w and p are also within an acceptable tolerance and



CHAPTER 2. THE KINEMATIC APPROACH 41

so we shall take these to be our approximations to the solution. If however, the 

error is outside the accepted tolerance then we shall use a Newton-Raphson type 

of method on the condition (2.12) in order to refine our approximation to c, the 

details of which are given in the next subsection. By successive refinements of c 

we should eventually arrive at a solution to the kinematic problem.

Returning to our general function, / ,  the expansion coefficients, fk depend 

on all the values of /  in the interval (—1, 1) and so they they cannot be cab 

culated exactty. The solution to this problem is to find approximations, fk, 

to a finite number of expansion coefficients, fk, by using the values of /  at a 

finite number of selected points. The truncated terms have expansion coeffi­

cients which are approximated to be zero and hence the series expansion becomes 

/(?/*) =  Y2k=o fkTk(y*), where N  +  1 is the number of selected points.

This procedure defines a discrete transform between the values of /  at the 

selected points in physical space and the set of approximate discrete expansion 

coefficients, fk in transform space.

There are many ways to implement the discrete transform procedure but as 

mentioned above, we shall use the collocation method. This requires that our 

approximation to / ,  namely / ,  is equal to /  at each of the specified collocation 

points. Thus, /  is then the interpolating polynomial for the function, /  at the 

collocation points.

Also, /  will obey the equations (2.3) plus the boundary and normalisation 

conditions at each of the collocation points if it is any of our approximations to 

the solutions for the quantities u, v>w and p.

Obviously then, we have
N

f{y*j) =  ^ 2 fk T k{y*j),

where is the j th collocation point.
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For convenience, we shall use the Tchebychev-Gauss-Lobatto points where

y,j =  cos ( ^ )  . (2.14)

This choice of collocation points takes advantage of one of the properties of 

Tchebychev polynomials, namely Tk(y*) — cos(/c cos-1?/*) and hence

- lTkiv.j) = cos

at the jth  collocation point. Here, C~1 is the transformation matrix from Tcheby­

chev to physical space. The inverse transformation, i.e. from physical to Tcheby­

chev space, is represented by the matrix

2 f  7r j k\  _ I 2 j  =  0 or iV,
Ncjck V Nc ik =  i ^ n r cos I ~YF I . where =  ,

1 I < j < N - l .

With this set of collocation points, we denote the value of u at ?/* • by Uj, which 

we compute along with v3 and Wj> which are defined similarly. However, since we 

have no boundary conditions for the pressure, we use a pressure correction type of 

method and compute p at each of the points — y*j+1/2 for j  — 0 , . . . ,  iV — 1, 

instead of computing p at each of the i/* ■. The matrix transforming from Tcheby­

chev space to (half-point) physical space is given by

M Y 1 +C 2 =  cos ‘ v 1
jfc V N  J

and hence the inverse matrix, transforming from (half-point) physical space to 

Tchebychev space, is given by

^  -  N-Cj C0S ( N  ) ■

So, now we have to find the 4iV +  3 unknowns u3, Vj and w3 for j  — 0 , . . . ,  N  

and Pj> for j ' = 0 , . . . ,  N  — 1. Hence, we need 4TV +  3 equations to find a unique
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solution. We obtain these equations from the momentum-derived stability equa­

tions (2.3) at each point, y* • except for the points y* • =  —1,1; plus the normalisa­

tion condition and the five boundary conditions where we exclude the streamwise 

condition (2.12) at a compliant wall; plus the continuity-derived stability equa­

tion (2.3d) at each of the half points, y' ..

Finally, in order to compute solutions to the linearised stability equations we 

need to know how to deal with derivatives. Following Canuto et. al. [8], this can 

be done in matrix form via the formula

i-o
where, as before, /  is any smooth function. For the Gauss-Lobatto points

We can now consider our solutions for u, v and w as the vectors u , v, w , 

with the j-th  component equal to the value of u, v, w at ?/* ■, for j  = 0 , . . . ,  N, 

respectively. If also, we consider p as the vector p , with j- th  component equal 

to the value of p at y*j+1/2) for j  =  0 , . . . ,  IV — 1, then using the form of the 

boundary conditions along with equations (2.3), we can write our equations as

N

(DNf)  (y,j) =

(V vji, 2(i-y*/)
2JV2+1

(2.15)

2jV2+ l
6 i = j  = N,

X I u  +  Y l v  +  W lp  — r l ,

Y2v  +  Z2w  +  14^2  ̂=  r  2,

Y3v  +  Z3w  +  W3p =  r3

X4u  +  Y 4u 4- Z4lW — r 4.
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We can combine these four equations into a single matrix equation of the form

L<p =  r , (2.16)

where
XI Y 1 0 W1 ' H
0 Y2 Z2 W  2 V r2

, 4> = , r =
0

CO Z3 W3 w r3

X4 Y4 Z4 0 J w
Here, the only non-zero elements of r refer to the normalistion condition and the 

normal velocity boundary condition(s) (2.9) at a compliant wall.

We can find 0  by inverting the matrix L. This can be done by any one of a 

number of methods but we shall choose LU factorisation and implement it using 

the NAG library routine F04ADF.

2.2.2 T he N ew ton-R ap h son  Iterative M eth o d

Unless c is an eigenvalue of the problem, the relaxed boundary condition for the 

axial velocity at the compliant wall will not be obeyed. Eliminating (j)w from (2.12) 

and (2.9), this is equivalent to the condition

X(c) -  c u(y0) -  DUB ĴqK (ij0) ^  0. (2.17)
i a

However, if c is sufficiently close to the eigenvalue, we can find it iteratively using a 

Newton-Raphson technique. In this method, the Taylor expansion for x (c +  Ac), 

about c, is used to find the new approximation for the eigenvalue, c +  Ac. The 

two term Taylor expansion for x  is

X{c +  Ac) =  x(c) +  A +  0((A c)2) .

We wish to find Ac such that x(c +  Ac) =  0, so to leading order in Ac

A c = - f  .£X
dc
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If our original estimate for c is sufficiently close to the eigenvalue then c +  Ac 

will be a closer approximation to it. However, the explicit form of dx/dc , calcu­

lated from equation (2.17) is

dx , ,  du DuB{yo)dv 
T c = u (y o) +  C a > ) - —

and so we need to find the values of du/dc\y„=yo and dv/dc\y^=yo. This can be 

done by partially differentiating equation (2.16) with respect to c to get

dd> dL dr , .L —— h </>—  =  —  =  0 . (2.18)oc oc oc

The elements of dL/dc can be calculated from equation (2.16) and hence so

can d<fi/dc by inverting the above equation. We can then find du/dc\ŷ =yo and

dv/ dc\ŷ =yo from the relevant elements of d<f>/dc and hence we can calculate Ac 

and with it, the next approximation to the eigenvalue.

By iteratively using this whole procedure, we should find an accurate approx­

imation to the phase velocity eigenvalue, c and the associated eigenfunction, 

when the size of the adjustment to the phase velocity, |Ac| is smaller than some 

suitable tolerance. We shall use a tolerance of 10~6jc|.

Before we start to generate results we will need to check the validity of our 

numerical scheme. In chapters 3 & 4 we shall do this in two ways:

• We shall check the eigensolutions which we obtain for (j)w = 0 with those 

previously obtained for rigid flows.

• We shall check the eigensolutions which we obtain for non-zero <j>w with the 

analytical results derived later.
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2.3 Physical R ealisability

2.3.1 In trodu ction  O f T he W all D ynam ics

We are now in a position to find numerical solutions to the kinematic problem. 

However, in chapter 1 we mentioned that the kinematic formulation only takes 

account of the necessary kinematic conditions at a compliant surface and so the 

solutions to the kinematic problem form a superset of those which occur in reality. 

Physically realisable modes must also obey the necessary dynamical conditions 

at the fluid-solid interface. This requires us to introduce the dynamics of the 

wall, at this stage, in order to make the reduction from kinematic to physically 

realisable solutions.

We shall choose to use the example of the simple stretched membrane in 

order to study physically realisable modes. Using this wall model will allow a 

comparison with many earlier works, including those of Landahl [49], Davies & 

Carpenter [15] and Sen & Arora [67], which studied wall models of a similar type. 

The equation of motion obeyed by the simple stretched membrane may be written 

in non-dimensional form as

r w  ~tTS? + < 1 1 9 >

where m  is the (non-dimensional) mass per unit area of the wall, T is the (non- 

dimensional) tension per unit length applied to the wall, J  is a (non-dimensional) 

damping coefficient based on a unit area of the wall and p'w is the pressure pertur­

bation at the wall. The following analysis may be extended to other, more com­

plex, stretched membrane models by following the analysis of Sen and Arora [67].

The theoretical basis for the use of such models for Kramer’s wall was laid 

down by Carpenter and Garrad [11], who showed that m  =  0(1) for Kramer’s 

walls and hence the wall density is usually chosen to correspond to such values 

of m  for the majority of the cases considered herein.
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We can now relate the above wall dynamics to our kinematic results by using 

the concept of admittance. This concept is used in acoustics to quantify the 

motion of the surface of a solid material in response to an in coming sound wave. 

As mentioned in chapter 1, Landahl [49] was the first to propose its use in the 

stability theory of flow over a compliant surface. The admittance, Y, is defined 

as the ratio of minus the normal wall velocity perturbation to the wall pressure 

perturbation, i.e. Y  = -(u'yJ w/p'w.

We may calculate the admittance from the fluid side of the wall, Y t by using 

the solutions of the kinematic problem. Since the kinematic solutions are in the 

form of the normal mode eigensolutions given by equation (2.2), this tells us that 

the admittance must be independent of the normalisation applied to the solutions. 

Therefore, we may equate the admittance calculated from the kinematic problem 

to that which we shall now calculate from the wall dynamics.

Using equations (2.2), (2.7), (2.10) and (2.19), we can deduce the expression 

for the admittance from the wall side, To, given by Sen and Arora [67],

y o = ---------- (C\  ■ (2 -2 0 )m a  (eg ~  cz — i ~ j

Here, Cg =  T /m  and d = d/m. Then the dynamics can be formally introduced 

into the problem now by considering one of the kinematic solutions and imposing 

the extra wall condition U0 — Y  at y* =  y§. This enables us to back calculate the 

wall parameters, m, Cq and d, which would give rise to this mode. Interpretations 

of such parameters are given in the next subsection.

2.3.2 P h ysica l R ealisab ility  C onditions

Now that we have introduced the dynamic conditions which also must be satisfied 

by the solutions, we can make the necessary reduction of the set of kinematic 

solutions to those that may be physically realised. This we do by imposing
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certain constraints on the back calculated wall parameters found by the method 

mentioned above.

The physical readability constraints that we need to impose for a passive 

compliant surface are certainly m, d, Cg > 0 and in practice these should be strict 

inequalities, since the wall must have some mass, it must be under tension for 

waves to propagate and there will be some damping effects.

From our expression for the admittance from the wall-side (2.20), we can ob­

tain expressions for two of the wall parameters in terms of c, Yo and the remaining 

wall parameter. If we do this for d and Cq in terms of m  (and c and Y0) we obtain

Co =  (4  +  4 )  ( l  -  mQ,Ct (yr2 +  y.2) )  > (2'21b)

where c = cr T icz and Y0 = Yr +  %Yi.

We could now choose a physically realisable value for m  and calculate the 

corresponding values of d and c§ to see if they too were physically realistic (i.e. 

greater than zero). However, we can use the physical realisabilit}' inequalities 

and equations (2.21) to find a single condition which determines whether any 

particular unstable mode can be realised by some set of wall parameters. We 

can also deduce upper and lower bounds for all three of the wall parameters, for 

which the given unstable modes can be found in practice.

In order to find the above condition and bounds we must also restrict ourselves 

to non-rigid modes, i.e. those modes where Y0 /  0. Since we are concerned with 

the effect of compliance on the rigid case, in which m, d, Cq —> oo, this is not a 

severe restriction to make. In the case of the basic flow being Hagen-Poiseuille 

flow in a pipe, the rigid modes are stable and so the above restriction actually 

has no effect upon the generality of the results.
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Now for physically realisable modes we have already stated that we must 

require d > 0. This immediately allows us to obtain an upper bound for m, since 

equation (2.21a) then gives

1 r Cr  T 1 i Ci

mcr ( I f  +  I f )

Hence,

> 2a'C,'.

Yr cr T 1 i c i > m ,
ZOLCrd ( I f  +  I f )

since a > 0 and for unstable modes, c* > 0. In a similar fashion, the lower bound 

for m can be obtained from equation (2.21b), since c\ > 0 requires

x _________ * _______
mOLCr ( I f  +  Y?)

because c2 +  cf > 0 for unstable modes. Thus,

Yim >
acr (Yr2 + I f )  ’

but we must also have m > 0 and so we may write our limits for m  in the form

YrCr+Yid f Yi A  /n> m > max <  j—-— rvnT, 0 > . (2.22)
2aCrCi ( I f  +  I f )  -  “  I acr ( I f  + I f )

From this inequality we can deduce the single condition for determining whether 

an unstable mode is physically realisable for some set of wall parameters or not. 

To do this, first we note that 2a ( I f  +  I f )  is strictly greater than zero, since 

a > 0 and for non-rigid modes ( I f  + I f ) > 0. Hence, multiplying through by 

the above noted quantity, we obtain the inequality

— H— - > 2a ( i f  + i f )  m > max 1 2—, o l  . (2.23)
Ci Cj. 1 Cr J

So, ignoring the middle term of the above inequality and subtracting Yi/cr from

both sides yields
Yr . (Yi Yi— > max < —, -----
C{ ( Cr Cr
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and hence
Y  Y-EL> -  . (2.24)
Ci Cj-

We may reverse all the steps of the above argument, noting that given in­

equality (2.24) and that 2a (Y.2 4- Y?) > 0, for non-rigid modes, then we can find 

a positive m  such that inequality (2.23) is obeyed and hence we may recover the 

conditions dt Cq > 0. Therefore, expression (2.24) is a necessary and sufficient 

condition for non-rigid unstable modes to be physically realisable in flow past a 

stretched-membrane wall.

Equation (2.24) is consistent with Benjamin’s result [3] that Yi should be large 

and negative and that Yr should be as small as possible in order for a flexible 

wall to be effective at stabilising flows. However, the above result also leaves the 

possibility that if Yi is large and positive with Yr still small then the flow may be 

stabilised.

We can now use our inequalities for m to find further restrictions on the values 

of d and c§ that give rise to the unstable mode under consideration. This we must 

do for the two different cases, Yi/cr < 0 and Yi/cr > 0:

Case 1:

Here, Yi/cr < 0 and so

m“ U(£W )'o}=°-
Hence, inequality (2.22) yields

1 ^  2a c r d  ( I f  +  Y?) Q'
m ~ YrCr +  YiCi ~

for unstable modes of this type. Now, multiplying through by the quantity, 

(Wcr +  YiCi)/cr (Yr2 +  Y 2) > 0 and subtracting 2etc* yields

d > 0,
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and so we do not gain any extra information about d. However, if we multiply 

through by —Yi/acr ( I f  +  I f )  instead and use — 15/c r > 0, then we find that

-15 . - 215c,> ■ > 0 .
m acr ( I f  + I f )  -  YrCr + YiCi

Adding one to each term in the inequality and then multiplying through by 

c2 +  cf > 0 we obtain an extra set of conditions on ĉ :

Case 2:

Here, 15/ c r > 0 and so

max { a c r ( f  +  *?) ’ ° }  =  oc, ( f +  Y?)  >  0 ■

Hence, inequality (2.22) yields

a c r t t f  + Y?) 1 2 a c c iO e  + Y?)
Y, - m -  YrCr + YiCi -  '

for unstable modes of this type. If, again, we multiply through by the quantity, 

(Yrcr + YiCi)/cr ( I f  4- Y 2) > 0 and subtract 2cue*, as before, then this time we 

obtain

Hence we get an upper bound for the damping that we can apply and still 

obtain the unstable mode under consideration. If we follow the procedure for 

obtaining the bounds on c§, i.e. we multiply the inequality for m  through by 

—Yi/aCr (I5.2 +  If2), using —If/c r < 0, and then we add one and multiply through 

by c2 +  c2 > 0, we obtain

0 \ (  1 7’ C7' 1 j Ci \ o2W 77 * M > cl > 0 .(c ,2 +  C2 )  > (c2 +  4) ( y
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Sum m ary

We can summarise the above results as follows:

1. if
Yi

— > — 1 > 0 ,Ci Cy

then we have the following set of bounds on the wall parameters:

 YrCr +  YiCi >m > 0
2acrCi (Y? +  Y ?) - ” 1 “  ’

oo > 0 ,

OO >cl >  (c2 +  c2) ( f '  f ’ )  > (4  + 4 )  >  0 . (2.25)
\  * r^r ' J

2. if
Yr Yi n
— > — > o,
Ci Cy

then we have a different set of bounds on the wall parameters, thus:

\ rcr +  Y{Ci
>m >

2acrCi ( I f  + I f )  “  “  a'cr (5f  + I f )  ’

(c2 +  4 ) > (4 +  4 ) ( f ’ _ f  f  >4 > 0 • (2.26)

Having formulated the kinematic problem for a generalised geometry and hav­

ing discussed the general numerical approach to solving the resulting equations, 

now we can consider the specific cases of flow in channels and pipes bounded by 

compliant walls.



C hapter 3

C om pliant Channel P roblem

Using the ideas introduced in chapter 2, now we can approach the specific prob­

lems of channel and pipe flow bounded by compliant walls. First, we shall tackle 

the problem of channel flow bounded by one or more compliant surfaces, since 

this is the simpler geometry and also because there is a larger array of literature 

with which to compare our results.

In this chapter, we shall start by formulating the compliant channel problem 

with reference to the methods employed in chapter 2. Next, we shall proceed 

to apply the numerical methods, given in the previous chapter, to solving the 

kinematic compliant channel problem. Then, we shall be in a position to find 

solutions to the kinematic compliant channel problem and we shall investigate 

the different classes of modes into which the numerical solutions may be divided. 

Finally, we shall conclude this chapter by investigating various analytical solu­

tions in some cases where one or other of the problem parameters asymptotically 

approaches given limits.

53
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3.1 Flow G eom etry

We shall start by choosing a Cartesian co-ordinate system in which x* is the di­

mensional co-ordinate with axis in the streamwise direction, y* is the dimensional 

co-ordinate perpendicular to the compliant channel wall(s) in its/their rest state 

and the dimensional co-ordinate is measured in the direction of the depth of 

the channel. The channel is then formed by two pairs of parallel walls whose ex­

tent in the x* direction is infinite: one rigid pair a distance, 2d apart at constant 

values of z*} which we may take to be — d and d\ plus one pair of walls, a distance 

2L apart, at constant values of y*) which we may take to be at — L and L. Of 

this second pair, at least one wall is compliant and hence we need to consider two 

geometries:

1. the symmetric channel where both walls are compliant;

2. the asymmetric channel where only one wall is compliant.

We will then assume that d L and so we may also assume that the effects of 

the pair of rigid side walls on the flow are negligible over the bulk of the channel.

With our chosen co-ordinate system, the incompressible flow in a rigid channel 

is described by the pressure, p*, and the three velocity components, u*., u** and 

u**, in the x*, y* and ;?* directions respectively. All four of these quantities may 

depend on x*, y*, z* and £*, the dimensional time.

We shall now choose to formulate the kinematic compliant channel problem 

with the non-dimensional quantities x, y, z t t, ux, uy, uz and p which are related 

to the above dimensional variables via the linear relations x * =  L x , y* = Ly , 

z* =  Lz, t* =  L t/U , u** =  UuXi u** = Uuy and u*. =  Uuz. Here, U is the max­

imum (centreline) velocity of the basic flow. For the remaining relation, that of 

the pressure, we have two options. These are an inertial scaling and a viscous 

scaling. However, initially, we shall be concerned with finite Reynolds number
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flows and so the inertial scaling p* = pU2p is suitable, where p is the constant 

density of the fluid.

In the non-dimensional co-ordinate system, the top and bottom walls of the 

channel are at y =  — 1 and y =  +1, respectively and hence the geometry of the 

symmetric channel is as shown in figure 3.1 and the geometry of the asymmetric 

channel is as shown in figure 3.2.

mean

Figure 3.1: The symmetric channel. 

y=+1 /  / /  / /  / /  / /  / /  / /  / /  / /  / /  / /  / /  /

mean

Figure 3.2: The asymmetric channel.
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Following chapter 2, we shall consider the incompressible flow of a Newto­

nian fluid in such a geometry and so the flow is governed by the Navier-Stokes 

equations, thus:

dux dux dux dux dp 1 f  d2ux d2ux d2ux\
+  +  uv ^ T  +  uz~EN7 “  +  ~NZ I ) » (3-la )dt ' dx dy dz dx Re \  dx2 dy2 dz2

duy dUy dUy dUy dp i f  ^  Uy Uy , U%
dt +U^  + UyW  + Uz^ ~ ~ d ^  + R ~ e { ' W + W  + ^ r ' ’ {3' lb)
duz t duz ( duz duz _  dp 1  f  d2uz d2uz d2uz , (o 1  ̂

+  ux~z. 1- Uy-  h uz—— — — —--- 1- I „ +  ■   \r H—zrzr I j (3.1c)dt x dx y dy z dz dz Re \  dx2 dy2 dz2 

where Re =  pUL/p  is the Reynolds number of the flow and p is the constant 

dynamic viscosity of the fluid.

In addition to the Navier-Stokes equations (3.1), the fluid must also obey the 

continuity equation
dux duy duz . .

a ^  +  ^ + a 7 - ° ’ ( 3 -2)

which ensures that mass is conserved in the flow.

3.2 Basic Flow

For a rigid channel, the boundary conditions for the Navier-Stokes equations (3.1) 

are

u — (ux,uy,uz) = 0 at y = ± 1 . (3-3)

The x and z components correspond to no-slip at the wall and the y component

corresponds to impermeability of the wall.

These conditions, along with the Navier-Stokes equations (3.1) and the con­

tinuity equation (3.2), permit a uni-directional solution for all Re. This is the 

well-known Plane-Poiseuille flow, where:

uB = ( l - y 2) x , (3.4a)
2

pB{ x ) = p o - — x.  (3.4b)
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Here, x  is a unit vector in the x direction and p0 is an abitrary constant that 

corresponds to a background pressure. We can, without loss of generality, take 

Po to be zero.

In practice, this is the flow found for smaller values of the Reynolds number 

but it becomes unstable as Re is increased and eventually turbulence sets in. 

We can proceed to considering the effects of compliant walls on the stability of 

Plane-Poiseuille flow, by looking at small perturbations from the solution given 

by equations (3.4). This we do in the next section.

3.3 Linear Stability A nalysis

Now we shall consider solutions which are small perturbations from Plane-Pois­

euille flow (3.4). These may be written in the form u  =  u B +  u r and p =  pB +  p', 

where \u'y\, \u'z\, |p'| <C 1.

If we substitute this form of solution into the Navier-Stokes equations (3.1) 

and the continuity equation (3.2) and we ignore all terms of second order in urx, 

u'y) u'z or p', since they are much smaller than the remaining terms, then we obtain

I U  ^  I d U B  -  d p '  I 1  ( I 9 2 <  ] 0 2 “ ' ^  (O  r . N-w  + UB—  + u —  +  _  +  _ J  , (3.5a)

du[ du\ dp' 1 ( d2u' d2u' d2u' \
+  +  -HZ ( T T  +  I , (3.5b)dt dx dy Re \  dx2 dy2 dz2

du' du' dp' 1 ( d2u' d2u' d2u' ,
+  « f l- 5 f  =  - £  +  -5I -5 i£  +  - 5 - r  +  - o r r  - 3.5cdt dx dz Re \  dx2 dy2 dz2

du' du' du'
i r  + i r  +  P  =  0 ' 3J5dox dy dz

once we have subtracted the equations obeyed by the basic flow quantities (3.4).

By Fourier transforming equations (3.5), using the fact that the boundary 

conditions and uB, DuB are independent of x and t for rigid channel flow, it is 

possible to show that the solutions must be in the form of normal modes and
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hence may be written as

Here u, v, w and p are 0(1) complex amplitude functions and A  1 is a real 

number indicating the small size of the disturbances. Also, a  and (3 are positive 

real wavenumbers. The quantity c — cr +  ici is the complex phase velocity which 

determines the stability of the solution: if the growth rate, lj =  ckq > 0 then the 

basic flow is unstable, i.e. the perturbations grow with time; if uj < 0 then the 

basic flow is stable, i.e. the perturbations decay with time; if w =  0 then the basic 

flow is neutrally stable, i.e. the perturbations have a constant magnitude as the 

time increases.

The phase speed, cr determines in which direction the disturbance propa­

gates: if cr > 0 then the wave travels downstream; if cr < 0 then the wave travels 

upstream; if cr — 0 then the wave is stationary.

Substituting this form of solution into the stability equations (3.5), or equiv­

alently performing the necessary Fourier transformation, we obtain a set of equa­

tions for the unknowns u, v, w and p:

Here, D =  d/dy , ub =  1 — y2 is the scalar velocity component ux of the basic 

flow (3.4) and y2 =  a2 +  (32.

In a Cartesian co-ordinate system, we can find the velocity components of a 

two-dimensional disturbance in terms of a stream function, -0 , which is defined

iaRe(us — c)u +  Re(Dun)v = —iaRep  +  (_D2 — y2) u , 

iaRe(uB — c)v =  —Re Dp +  (D2 — y2) v , 

iaRe(us — c)w =  —ijdRep +  (D2 — y2) w ,

(3.7a)

(3.7b)

(3.7c)

(3.7d)iot u +  Dv +  ij3 w =  0 .
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by:

, _  <¥
Ux dy 5

/ _
Uy 8x ’

whence u'x and u'y automatically obey the continuity equation (3.7d). Since u'y 

has a normal mode decomposition, the stream function must also have a normal 

mode decomposition, which we may write as

i> = A<j>(y)eial-X~cî .

3.3.1 B oundary C onditions

If we now recap and compare with chapter 2, we see that the formulation of 

the channel problem, so far, is a specific case of the kinematic approach given 

therein: we have found a set of axes in which x — x* is the co-ordinate in the 

direction of the basic flow, with axis parallel to the channel walls; the second, 

y — axis is perpendicular to the channel walls in their rest state, so that the 

equation of the lower wall is given by y =  —1, i.e. yo =  —1 here; similarly, the 

equation of the upper wall in its rest state is y =  1, i.e. yo =  1 here; also, we have 

chosen the final, z =  z* axis to form a right-handed set of axes with the x and y 

axes; the fluid is assumed to be Newtonian and hence the governing equations are 

the Navier-Stokes equations which, combined with the zero wall velocity bound­

ary conditions, give rise to a basic flow of the type given by equations (2.1), 

where ub{v) — 1 ~ y2\ by considering small perturbations from the basic flow, 

it has been shown that such disturbances may be found in the form of normal 

modes given by equation (2.2) and also that the equations governing these nor­

mal modes are in the form given by equations (2.3), where Li(y, u) =  (D2 — j 2)u, 

L2(y,v,w) = (D2 - 72)u, Lz(y,v,w) =  (D2 — 7 2)u>, fi(y) = - i f t  and f 2{y) =i{3.
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with D — d/dy\ finally, we have formulated two-dimensional disturbances in terms 

of a stream function of the form given by equations (2.4), with f*(y) =  1.

Therefore, we have formulated the channel problem in a way which is fully 

consistent with the kinematic approach described in chapter 2 and hence we may 

proceed to use the results therein without further justification. We must now use 

these results to formulate the boundary conditions for and hence close, the channel 

problem. This we must do for each of the various geometrical possibilities that 

may arise for the solution modes. There are three cases that we need to consider, 

which are:

1. Symmetric channel, symmetric modes:

Here, both walls are compliant and the stream function is symmetric about 

the centreline of the channel and hence we have 4>(—y) = </>(y) or equiva­

lently, D(p( 0) =  D3(f>( 0) =  0.

The pertubations of the wall from its rest state must take the form of 

normal modes. This follows from the kinematic condition requiring the 

normal velocity of the fluid at the fluid-solid interface to be equal to the 

normal wall velocity at the same point, as discussed in chapter 2. Therefore, 

the positions of the lower wall, y^i and the upper wall, yi may be given as:

y_i =  - 1  +  A c i ^ e ^ - ^ + W  ,

2/1 =  1 +  A a 1e W x~ct)+fiz ) ,

where a_i and oq are the complex amplitudes of the perturbations of the 

lower and upper walls, respectively. As before, A is the real number indi­

cating the small nature of the perturbations.

If the values of the stream-function amplitude at the lower and upper walls
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are </>_i and 01} respectively, then the anaylsis of chapter 2 shows that:

</>_! =  a_ic, (3.8a)

4>i = aiC. (3.8b)

Since cf) is symmetric, we know that <p-i = 4>i — 4>w an(l hence we find that 

a_i = a,i = a} say.

Hence from equation (2.11), we may immediately write down the boundary 

conditions for the normal velocity component as:

i>(—1) =  —ia(j)w , (3.9a)

v(l) = —ia(f)w . (3.9b)

The corresponding boundary conditions for the streamwise velocity compo­

nent are:

u ( - l )  =  P H  (3.10a)
c

«(1) =  ^ .  (3.10b)

The remaining boundary conditions, for the transverse velocity, are:

w(—l) — 0 , (3.11a)

im(1) =  0. (3.11b)

Finally, a suitable normalisation condition for a symmetric function is to fix

its value at zero and hence we shall choose to fix cf> to be 1 at the centreline

of the channel, which may be written alternatively as

u(0) =  —ia . (3.12)

This completes the set of conditions required to produce independent eigen- 

solutions of the channel problem.
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Now we can choose to further utilise the symmetric nature of the modes 

under consideration in order to further simplify the problem and ease the 

numerical calculations. By replacing conditions (3.9b), (3.10b) and (3.11b), 

with the symmetry conditions

it(0) =  0 , (3.13a)

D2u(0) =  0 , (3.13b)

w (0 )= 0 , (3.13c)

we can halve the size of the domain and hence we can halve the number of 

points used in calculating the numerical results.

2. Symmetric channel, antisymmetric modes:

Here, both walls are compliant and the stream function is antisymmetric 

about the centreline of the channel and hence we have <j>(—y) =  —<j>{y) or

equivalently, 0(0) =  D 20(O) =  0. Following the above case for the symmet­

ric modes, the analysis of chapter 2 gives the equations for the positions of

the lower wall, y_x and the upper wall, yi as:

= -1  +  i4a_ie<(a(a!- ct)+̂ ) , 

yx = 1 +  A c n e ^ - 0̂ ^  .

Here again, a-X and a± are the complex amplitudes of the perturbations of 

the lower and upper walls, respectively. As before, A  is the real number 

indicating the small nature of the perturbations.

If the values of the stream-function amplitude at the lower and upper walls 

are 0_i and 01, respectively, then the anaylsis of chapter 2 shows that:

0_i =  a_ic, (3.14a)

0i =  aic. (3.14b)
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Since now, <j> is antisymmetric, we know that </>_i =  — </>i = <f>w and hence 

we find that a_i =  —eq. =  a, say.

Hence again from equation (2.11), we may immediately write down the 

boundary conditions for the normal velocity component as:

u(—1) — —ia(j)w } (3.15a)

v(l) = ia4>w . (3.15b)

The corresponding boundary conditions for the streamwise velocity compo­

nent are:

u(~  1) =  — —  , (3.16a)

«(l) =  - ^ i .  (3.16b)
c

The remaining boundary conditions, for the transverse velocity, are again:

iu(~l) =  0, (3.17a)

w{l) = 0. (3.17b)

Finally, a suitable normalisation condition for an antisymmetric function is 

to fix its derivative at zero and hence we shall choose to fix Dcj) to be 1 at 

the centreline of the channel, which may alternatively be written as:

u(0) =  l .  (3.18)

This completes the set of conditions required to produce independent eigen- 

solutions of the channel problem.

As for the symmetric modes we can further utilise the antisymmetric na­

ture of the modes under consideration in order to further simplify the prob­

lem and ease the numerical calculations. By replacing conditions (3.15b),
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(3.16b) and (3.17b), with the antisymmetry conditions

v(0) =  0 

D 2v (  0) =  0 

w(0) =  0

(3.19a)

(3.19b)

(3.19c)

we can halve the size of the domain and hence we can halve the number of 

points used in calculating the numerical results.

3. Asymmetric channel modes

Here, only one wall is compliant, which we shall take, without loss of gener­

ality, to be the lower wall. In this case there is no symmetry in the stream 

function for the disturbances. Following the above cases for the symmetric 

and antisymmetric modes, the results of chapter 2, allow us to write the 

equation of the lower wall, i, as

where a is the complex amplitude of the perturbations of the lower wall. As 

before, A is the real number indicating the small nature of the perturbations.

If the value of the stream-function amplitude at the lower wall is <pw, then 

the anaylsis of chapter 2 shows that

Hence again from equation (2.11), we may immediately write down the 

boundary conditions for the normal velocity component as:

y-i = - 1 +  AaeiWx- ct)+fiz),

(3.20)

u ( - l )  =  ,

u ( l )  -  0 .

(3.21a)

(3.21b)
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The corresponding boundary conditions for the streamwise velocity compo­

nent are:

« ( - l )  =  (3.22a)

li(l) =  0 . (3.22b)

The remaining boundary conditions, for the transverse velocity, are:

w ( - l ) = 0 ,  (3.23a)

w(l) — 0. (3.23b)

Finally, a suitable normalisation condition for an asymmetric function is 

to fix its value at zero and hence we shall choose to fix 0 to be 1 at the 

centreline of the channel, which may alternatively be written as:

v(0) =  - i a ,  (3.24)

which completes the set of conditions required to produce independent

eigensolutions to the channel. In this case we cannot further simplify the

problem since there is no symmetry of which to make use.

Now that we have found the boundary conditions for all the possible modes for 

the kinematic compliant channel problem, we could find solutions to the system 

of linearised stability equations (3.7), with the above conditions applied. This 

we could do by fixing a, and Re and solving the resulting problem for the 

eigenvalue, c and the eigenfunctions, u, v} w and p. However, we can make a 

significant simplification by invoking the theorem due to Squire [72]. This states 

that for any plane parallel shearing flow in which there exists a three-dimensional 

instability, that there exists a two-dimensional instability which occurs at a lower 

Reynolds number. Therefore, to determine the overall stability of the flow, we 

need only consider two-dimensional disturbances.
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3.3.2 Squ ire’s T heorem

Squire’s theorem applied originally to flows with rigid boundaries and it is not 

obvious that it can be extended to a basic flow of a plane parallel shearing type, 

bounded by compliant walls. However, Rotenberry and Saffman [64] showed 

that such an extension could be made for the coupled fluid/simple-stretched- 

membrane system, provided that the governing equation for the membrane was 

non-dimensionalised in a certain, given way. We shall use the Squire transforma­

tion, also given by Lin [53], in order to show that the extension can be made for 

the kinematic formulation, too.

Suppose we have an unstable three-dimensional disturbance with velocity 

components, u, v, w and pressure, p which occurs at a Reynolds number Re, 

with wavenumbers, a = a ^  0 and f3 — (3 ^  0 and phase velocity, c. This distur­

bance must obey the linearised stability equations (3.7), plus the relevant set of 

boundary conditions from subsection 3.3.1, which may be re-written as

~ ( - ^ ^ i ? ) ± l ( 0 t w ) ± l  ~ • ~ / 7 \ ~ p. /q nr\u = -----------------------, v =  — w = 0, (3.25)
c

at y = ±1, respectively. If the channel is asymmetric then (4>w)i =  0 at the rigid 

wall, y = 1. As stated in section 3.3.1, suitable normalisation conditions are that 

the eigenfunctions obey are v = —ia  at y =  0 for symmetric or asymmetric modes 

and u ~  1 at y =  0 for antisymmetric modes.

Now following Lin [53], we shall construct a two-dimensional disturbance 

which occurs at a lower Reynolds number by introducing the quantities

(3 ~ ~ 7~ „ . 72 ~u =  u +  —to, v =  — v, w =  0,  p = — p ,
a  a or

where, 72 =  a2 +  /32.

By adding equation (3.7a) to j3/a times equation (3.7c) we obtain an equation 

involving only u, v and p. Equation (3.7b) can immediately be rewritten in terms
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of v and p and similarly, equation (3.7d) can be rewritten in terms of u and v. 

Hence, we obtain the set of equations:

ij(uB — c)u +  ( D u b ) v  = —ijp  +  (D2 — q2) u , (3.26a)
Re

ij(uB — c)v =  —Dp +  - i -  ( p 2 — q2) v , (3.26b)
Re

iju  +  Dv =  0 , (3.26c)

where Re = aR e/j.  The boundary conditions (3.25) then imply that:

~ (^ D U b ^ )± l (0 io )± l  ~ \ ~ n /q 0 7 ^w =  } v =  -m ^ w )± i, w =  0, (3.27)c

at y =  ± 1, respectively.

If we now consider a disturbance with wavenumbers, a  =  7 and f3 =  0, phase 

velocity, c = c and complex amplitude functions, u} v} w — 0 and p, for a flow 

with Reynolds number, Re} i.e.

{Ux>u 'yiuz>P') = (̂^(2/)Jv(s/),0,p(2/))e4(7(!C“ct)),

then we see that this must obey equations (3.26), along with the boundary con­

ditions (3.27). The normalisation conditions, v — —ia at y =  0 for symmetric 

or asymmetric modes and u = 1 at y — 0 for antisymmetric modes, are consis­

tent since, from equation (3.19c), w(0) — 0 on the channel centreline and hence 

u = u = 1 here.

It is easy to verify that the dynamic condition equating fluid and solid admit­

tances , Y  — Yo, at a compliant wall, is also consistent, provided that the damping 

coefficient is non-dimensionalised such that d = do/Re, where do is independent 

of the Reynolds number. This assumes that Cq is a constant. However, it is not 

the case for plates, where c§ oc a~2 for low wave numbers. A simple extension 

using the scalings employed by Rotenberry and Saffman [64] can be made in order 

to incorporate this type of wall.
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Since the phase velocity is the same for both disturbances, we have con­

structed an unstable two-dimensional solution to the kinematic linearised stabil­

ity equations. Also, since a < 7 , this instability occurs at a Reynolds number, 

Re =  aR e/7 , which is strictly less than the Reynolds number at which the 

three-dimensional disturbance occurs. Hence, for any unstable three-dimensional 

disturbance in the compliant channel, we can find an unstable two-dimensional 

disturbance at a lower Reynolds number. Therefore we can limit ourselves to 

looking at two-dimensional disturbances in order to determine the overall stabil­

ity of compliant channel flow.

3.4 A pplication Of Num erical M ethods

Now we shall use the ideas of section 2.2 to formulate the problem of finding two- 

dimensional numerical solutions to the linearised stability equations (3.7) with 

the relevant boundary and normalisation conditions from section 3.3.1.

3.4.1 T h e T chebychev C ollocation  M eth od

Given that the compliant channel problem is defined on the interval [—1,1], it is 

ideally suited to solution by the Tchebychev collocation method which, as stated 

in chapter 2, is valid over the same domain.

Since we need only look for two-dimensional disturbances, the numerical so­

lutions, must be of the form:

N  N  N

u :i =  Y Z ^ T k { y j ) , Vj =  Y 2  V k T k { y j ) , P j + 1 / 2  =  Y Y ^ k T k ^ H  1/ 2 ) ■
k—Q k= 0 k= 0

Here, the i/j are the Tchebychev-Gauss-Lobatto points defined by (2.14), TIt is 

the /c-th Tchebychev polynomial of the first kind, Uj =  u(yj), Vj =  v(yj), for 

j  = 0 , . . . ,  N  and pj+1/2 = 1/2), for j  =  0, . . . ,  7V -  1.
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Not only do we gain from the simple nature of the Tchebychev polynomials 

for the Tchebychev-Gauss-Lobatto points but also the spacing is such that these 

points are concentrated near the extremes of the interval, [—1,1]. This is ad­

vantageous for the problem of compliant channel flow as large variations in the

eigenfunctions often occur near the walls, as shown by the asymptotic analyses of

Carpenter and Gajjar [10], Gajjar and Sibanda [22] and Kumaran [48]. Hence a 

concentration of points near the walls enables the detail of the eigenfunctions to 

be obtained with a lower total number of points than for a uniform discretisation.

Now, we can formulate the numerical problem by expressing the linearised 

stability equations (3.7) as

[iaRe(uB{yj) — c) +  a2]uj -  {D2N)jkuk (3.28a)

+  ReDuB(yj)vj +  iaRe{C~l)jk{C^)kiVi -  0, 

[iaRe(uB(tjj) -  c) +  a2]vj -  (D2N)jkvk (3.28b)

+  Re(DN)jk(C~1)ki{C^)impm =  0 ,

where there is no summation over j  and the matrices, C-1 , C1/2 and Dat, are as 

defined in section 2.2.1. It is necessary to calculate the pressure at each collocation 

point, from the values at the half-points, yj+1/2. It is for this reason that the 

matrix, C 1/2, converting from the values of p at the half points to Tchebychev 

space and the matrix, C -1, calculating the values of p at the collocation points 

from the Tchebychev coefficients, occur in equations (3.28).

The above equations (3.28) are both calculated for j  =  1 , . . . ,  IV — 1, giving 

2N  — 2 of the 3N  +  2 equations required to find the eigenfunctions, Uj} Vj and 

P j + 1/ 2'

The continuity equation is applied at the half-points, yj+x/2 for j  = 0 , . . . ,  N-l,
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as mentioned in section 2.2.1 and hence may be written in the form

i a ( C * ) j i C hlu, +  {C l* ) ; t C hl(D N)lmvm = 0. (3.29)

The remaining four required equations are obtained from the boundary and nor­

malisation conditions and must be considered for the three cases:

1. Symmetric channel, symmetric modes.

Here we can use the symmetry conditions (3.13) to reduce the calcula­

tion domain to [—1,0]. We do this by introducing the new co-ordinate, 

yr — 2y +  1, which maps the interval [—1, 0], representing the lower half­

channel, to the interval [—1, 1], which is required to use the transformation 

matrices, C and C 1/2. Then we evaluate each of the numerical stability 

equations (3.28) and (3.29) at the points y'j, where y'Q = 1 corresponds to 

j/o — 0 and y'N = — 1 corresponds to yn =  — 1.

With this transformation of co-ordinate, the derivative operator, DN, is 

modified to D'N ~  DN/ 2, where differentiation is now with respect to y'.

Hence, now the boundary and normalisation conditions can be applied at 

the lower wall and the centreline of the channel only. Thus,

uq — 0 , (3.30a)

(D'l)0kuk =  0 , (3.30b)

vn = -ia(j)w , (3.30c)

vq =  —i a , (3.30d)

where, as in chapter 2, the streamwise velocity condition, un = 2<j)w/c  ̂ is 

relaxed here and used later to find the eigenvalue, c.

2. Symmetric channel, antisymmetric modes.

Here also, we can use symmetry conditions, in this case conditions (3.19),
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to reduce the calculation domain to [—1, 0] using the change of co-ordinate, 

y' =  2y +  1. Again, with this transformation of co-ordinate, the derivative 

operator, Dm, is modified to D'N =  Djv/2, where differentiation is now with 

respect to y'.

Hence, now the boundary and normalisation conditions can be applied at 

the lower wall and the centreline of the channel only. Thus

wo^O,  (3.31a)

(D N)okvk — 0 , (3.31b)

Vn = , (3.31c)

wo =  1» (3.31d)

where again the streamwise velocity condition, um = 2<fiw/c , is relaxed here 

and used later to find the eigenvalue, c.

3. Asymmetric channel modes.

In this case there are no symmetry conditions of which we can make use in 

order to simplify the numerical calculations. Therefore, we have to use the 

full set of normalisation and boundary conditions, which are

uQ =  0 , (3.32a)

w0 =  0 , (3.32b)

vn =  —ia(f>w , (3.32c)

vn/ 2 = —ioct (3.32d)

where N  must be even for the normalisation condition (3.32d) to be applied 

at the channel centreline, y — y^ / 2  =  0. Again the streamwise velocity con­

dition, Wat =  2(j)w/c, is relaxed here and used later to find the eigenvalue, 

c. For later simplicity of notation we shall also introduce primed variables 

here, where y' =  y and hence D'N = Dm-
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Hence, for all three types of channel mode, we have now found the 3N  +  2 

conditions required to calculate the numerical solutions, uj , vj for j  =  0, . . . ,  N  

and P j+ 1 / 2  for j  = 0 , . . . ,  N  — 1. These may be re-written in the form:

X l u  + Y l v + W l p  = r l ,

Y  2v + W2p =  r 2,

X 4u  +  Y4v — r4 ,

where the solutions have now been written as vectors, u , v and p  with the j th  

element corresponding to the value of the functions, u, v> at y'j and p at Vj+i/^y 

respectively. Rows 1 to N  — 1 of matrices X I , Y I  and W 1 are obtained from 

equation (3.28a), rows 1 to N  — 1 of matrices Y 2 and W2 are obtained from 

equation (3.28b) and all rows (0 to N  — 1) of matrices X4 and Y"4 are obtained 

from equation (3.29). The elements of the rows 0 and N  of matrices, W1 and 

TT2, are all zero and the elements of the same rows of matrices, X I, HI and Y 2, 

are determined by the relevant set of conditions (3.30), (3.32) or (3.32). Thus, 

all the elements of the right-hand-side vectors, r l ,  r2 and r4 , are zero except 

those which correspond to normalisation conditions or the compliant condition, 

vn - —ioL(f)w.

Therefore, we may re-write the stability equations for calculating numerical 

solutions in the form given by equation (2.16), i.e.

L<fi = v ,

where here

f x i

i—1 W l \ f u \ ( r l \
L = 0 Y2 W2 , 0  = V , r = r2

\X 4 Y  4 0 ) \ p ) 7̂*4 J
since we need only consider two-dimensional disturbances.
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3.4.2 T he N ew ton -R ap h son  Iterative M eth od

As mentioned in chapter 2, unless c is an eigenvalue of the problem, the relaxed 

boundary condition for the streamwise velocity at the compliant wall, will not 

be obeyed. Now since the numerical problem has been formulated in such a way 

that the calculations, for all mode types, only have one set of compliant wall 

conditions, namely those at y =  — 1, this is equivalent to

X ( c )  =  c u ( - 1) -  — u ( - l )  ^  0. ta

Following section 2.2.2, if c is sufficiently close to the eigenvalue, then we can 

use a Newton-Raphson method to find successively closer approximations to the 

eigenvalue. So we want to find Ac such that x (c +  Ac) =  0 and therefore to 

leading order in Ac

a _  *
Ac “  dx >

dc

where

dc dc lade

The values of du/dc\y- - i  and dv/dc\y=-i are found using equation (2.18), where 

the elements of dLjdc  are calculated from equations (3.28). The relevant elements 

of dcjj/dc are then (du/dc)n and (dv/dc)n .

By iteratively using this whole procedure, we should find successively more 

accurate approximations to the phase velocity eigenvalue, c and the associated 

numerical eigenfunction vector, </>. When the size of the adjustment to the phase 

velocity, |Ac| is smaller than a tolerance of 10- 6|c|, the solution is assumed to be 

suitably accurate.

Finally in this section, the number of points, iV, was chosen so that no change 

in the profiles of the eigenfunctions was observed if it were increased. Taking 

N  =  49 for the modes in the symmetric channel and N  =  100 for the asymmetric 

channel modes usually sufficed.
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3.5 N um erical R esults

We have been able to identify four distinct classes of mode and a further class 

of transitional modes, in which two or more of the modes of the distinct classes 

coalesce. The four identified distinct mode classes appear to be the same as 

those identified by Sen and Arora [67] as the Tollmien-Schlichting (TS) class, the 

Kelvin-Helmholtz (KH) class, the low speed stable (LSS) class and the Resonant 

(R) class.

The low-speed stable modes are obviously of least interest when considering 

the stabilisation and control of the flow as a whole and so we shall start this 

section with a description of each of the four remaining, potentially unstable 

mode classes.

3.5.1 T ollm ien-Schlichting (TS) M odes

The Tollmien-Schlichting class of modes are modes of the same type that exist for 

the rigid-walled channel and other parallel flows past rigid walls [74], [75], [66]. 

These modes are induced by the viscosity of the fluid and exist in the limit as 

a —> 0. The relevant condition from (3.8a), (3.14a) or (3.20) then implies that 

4>w -4 0. In this limit c —> c*, the eigenvalue for the rigid-walled channel.

For non-zero but small values of a and <j)w, i.e. for |a|, \<j>w\ <C 1, the phase 

velocity eigenvalue then takes the form c — c* +  Sc, where |he| <C |c*|.

Sym m etric Channel, Sym m etric M odes

A typical symmetric TS mode for the symmetric channel can be found for a 

Reynolds number, Re = 8000.0 and a wave number, a = 1.0. Here, the least- 

stable, rigid TS mode has a phase velocity, c = 0.24708 +  0.00267i, Hence, this 

mode grows slowly with time and the overall flow is linearly unstable. The effect 

that compliance has on this mode, i.e. the effects of introducing non-zero <f>W}
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can be seen in figures 3.3(a) and 3.3(b). These plot the phase speed, cy and the 

growth-rate, u = a q , against 9W, respectively, for various values of \<f)w\. Here, 

<i>w — \<f>w\exp(«0lo) is the decomposition introduced in chapter 2.

0.35

0.3

0.2

0 . 15,
270 360

(a) Phase Speed

0.05

3

- 0 .05,
270 360

(b) Growth Rate

Figure 3.3: Symmetric TS modes for the symmetric channel.

> \&w\ 0? \4>w\ =  0.1, - X-, \(f)w\ — 0.2j I , \(f)w\ — 0.3.

For non-zero values of \<j>w\, the phase velocity oscillates about the rigid value
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when 0VJ is varied from 0 to 360°. The profiles of the graphs for both cr and to 

are very similar in shape to those obtained by Sen and Arora [67] for TS modes 

in boundary-layer flow.

Prom figure 3.3(b) it can be seen that for values of 9W in the approximate 

range 180° to 360°, the effect of the compliance is to destablise the rigid mode 

and hence the flow remains unstable. However, for the remaining values of 0W7 

the effect of compliance is beneficial with regard to flow stabilisation. Above a 

certain critical value of \(f>w\, a range of values of 9W give rise to negative values 

of the growth rate, to. As 1^1 is increased further, the stable region continues to 

grow until the point where the TS mode coalesces with a mode from the KH class 

to form a mode of the transitional class, as can be seen in section 3.5.3. Hence, 

by using wall parameters which to correspond to such values of <pw, where the 

growth rate, w, is negative, we may stabilise the given rigid TS mode, according 

to the linear stability theory.

This leads us to the question of the physical realisability of the modes in the 

above examples. As stated in chapter 2 we shall consider the physical realisability 

of the kinematic modes by wall which can be modelled by the simple stretched 

membrane. Then, we can follow one of the approaches employed by Sen and 

Arora [67] in which a physically realisable value of the mass per unit area area 

of the wall, ?7̂ , is chosen and then the quantities, d and Cq, are back-calculated. 

This we can do for the case |Ao| = 0.2, with m =  2.0, the results of which are 

given in figure 3.4. Now, for passive walls we have the conditions, d, Cq > 0, which 

then require that 9W lies in the region between 180° and 270°, approximately. In 

this physically realisable region, to is mainly positive but there is a small range of 

values of 9W close to 180° for which to is negative. This is the channel equivalent of 

the “stable pocket” found by Sen and Arora [67] for the TS modes in boundary- 

layer flow. By using wall parameters corresponding to values of (f)w in the stable
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pocket, the mode under consideration may be stabilised using a simple stretched 

membrane.

0.5

- 0.5

270 360

Figure 3.4: Physical realisability for m  == 2.0.

—, 10 x w; -o-, d] -x-, Cq.

For values of m  smaller than 2, the wall parameters, d and Cq, vary like 1/m 

for each 9W, as might be expected from equations 2.21. Hence, there is little 

qualitative change in the profiles of d and c§. This includes little change in the 

size and position of the “stable pocket” . However, as m  is increased beyond 2, Cq 

increases for each value of 9W and hence the region of physically realisable modes 

grows in size. Unfortunately, for smaller increases in m, this growth in the size of 

the physically realisable region occurs initially where the growth rate is positive. 

Therefore, it is not particularly useful with respect to flow stabilisation.

For m > 10 (see figure 3.5(a)), Cq is positive for all 9W and hence physical 

realisability depends only on the sign of d. At m  «  10, another small “stable 

pocket” appears near 9W =  0°. As m  is increased beyond 10, the profiles of d 

and Cq undergo a significant qualitative transformation, given in figures 3.5(b) 

and 3.5(c), such that for sufficiently dense walls, the vast majority of physically 

realisable modes are stable, with only two small “unstable pockets” , as illustrated



CHAPTER 3. COMPLIANT CHANNEL PROBLEM 78

by figure 3.5(d). This is not unexpected since equations 2.21 imply that d —> — 2uu 

and Cq —» + cf as m —>■ oo.
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0.1
0.1

0.05
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- 0.1

-0.15 - 0.1
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(a) m  =  10.0 (b) m  — 15.0

0.12

0.08 0.05

0.04

-0.05

-0.04 - 0.1180 270 360 180 270 360

(c) m  — 25.0 (d) m — 50.0

Figure 3.5: The effect of varying m on physical realisability.

UJ\ -O-, d\ -X-, Cq.

Hence, we can conclude that an increase in the mass per unit area of the 

wall, ?n, of about, one or two orders of magnitude, should greatly increase the 

range of the remaining wall parameters which will stabilise the TS mode. This is 

consistent with previous studies, for example Carpenter and Garrad [11], which
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have shown that an increase in the mass per unit area of Kramer-type walls (of 

which the simple stretched membrane is a specific case) is generally stabilising 

towards symmetric TS modes. Manufacturing walls of this considerably greater 

density may be 110 trivial matter, however but is beyond the scope of this thesis.

I11 chapter 2, we showed that the physical realisability conditions lead to 

bounds on the quantities, m, d and Cq, for which a particular unstable mode can 

occur. These bounds allow us to confirm the above result, as follows.

If we plot the bounds against 6W for the above mode where \cf)w\ = 0.2, as in 

figure 3.6, then we see that the physically realisable unstable region is divided 

into two parts. For lower values of 0W, the bounds correspond to those for case 1

0.4

225 270 315 360ew

Figure 3.6: Physical realisability bounds on m, d and Cq.
—, 10_1 x d lower bound;

-o-, 10-2 x m lower bound; 10-2 x m upper bound;
-x-, 102 x Cq lower bound; 102 x c§ upper bound.

in section 2.3.2, whereas for higher values of 9W, the bounds correspond to those 

for case 2. We see also that the upper bound for m only exceeds 40 in two 

small regions where 6W lies between 198° and 204° or between 351° and 357°, 

approximately. However, in the first of these two regions the lower bound for 

Cq is never below 0.092 and in the second region the upper bound never exceeds 

0.042. Therefore, if we were to choose any combination of wall parameters where
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m > 40 and 0.042 < Cq < 0.092, which correspond to a wall stream function with 

\<f>w\ =  0.2 (e.g. take m  =  50 with the values of d and Cq at 6W =  90°, namely 

0.0246 and 0.0588 respectively), then we eliminate the possibility of an unstable 

TS mode. This is consistent with figure 3.5(d), since the two “unstable pockets”

0.8
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-©• 0.4

0.2

- 0 . 2 ’
- 0.1 - 0.6 - 0.2- 0.4
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(a) Real Part

- 0.1

- 0 .2-
-0 .I - 0.6 - 0.4 - 0.2

y

(b) Imaginary Part

Figure 3.7: Eigenfunctions for the symmetric TS modes.
- ,  6̂  =  0°; -o-, Gw = 90°; -x-,  0W = 180°; - + - , 6̂  =  270°.

occur close to the extrema for Cq. The required variations in the wall parameters



CHAPTER 3. COMPLIANT CHANNEL PROBLEM 81

may be achieved by using different membrane materials to vary the wall density, 

changing the tension applied to the membrane in order to vary the free-wave 

speed, Co and using different substrate fluids in order to vary the damping.

Sample eigenfunctions are given in terms of the stream function, </>, in fig­

ure 3.7. Again there are similarities when compared with boundary-layer flow. 

However, the similarities between the eigenfunctions are confined to the region 

close to the compliant wall, where the velocity disturbances and their gradients 

are greatest, since there is a significant difference in the domains and hence where 

the boundary conditions are applied.

Sym m etric Channel, A ntisym m etric M odes

The phase speed and growth rate of typical antisymmetric TS modes for the 

symmetric channel are given in figures 3.8. The same values of the parameters, 

Re, a and \4>w\ were used as for the symmetric TS modes in figure 3.3. The

0.35

o  0.3

0.25,
180 270 360

3  -0.05

- 0 . 1,
360180 270

(a) Phase Speed (b) Growth Rate

Figure 3.8: Antisymmetric TS modes for the symmetric channel.
—, -o-, \(j)w\ = 0.1; -x-, \(f)w\ =  0.2; -+-, |0„,| =  0.3.

value of the phase velocity for the least stable antisymmetric rigid TS mode is

0.29521 — 0.00535i As for the symmetric modes, the phase velocity oscillates
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about, the rigid value for 11011-zero |0W|, as 9W is varied.

Figures 3.3(b) and 3.8(b) suggest the possible existence of antisymmetric 

modes which may be less stable than their symmetric counterparts (see, for exam­

ple, the regions about 6W = 180° for |0U,| = 0.2, 0.3). However, back calculating d 

and Cq for fixed m shows that these modes correspond to different wall parameters. 

This is illustrated bv figure 3.9 where, \(/)w\ = 0.2 and m = 2.0.

0.5

-0.5

180 270 360

Figure 3.9: Physical realisability for m = 2.0.
—, 10 x cj; -o-, 10-1 x d; -x-, 10-1 x Cq.
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Figure 3.10: Eigenfunctions for the antisymmetric TS modes.

- ,  6̂  =  0°; -o-, 9W = 90°; -x-,  9W = 180°; -+ -,0 ^  =  270°.
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Since we can stabilise a given unstable symmetric TS mode so that its growth 

rate is greater than the least stable antisymmetric mode, we can afford to ignore 

the antisymmetric TS modes when considering the overall stablilisation of the 

flow. This approach has been taken in most previous studies of compliant channel 

flow, e.g. Davies and Carpenter [15].

For completeness, a sample of the eigenfunctions for the antisymmetric modes 

is given in figure 3.10, where again the greatest velocity disturbances are found 

near the walls, where the shear in the mean flow is greatest.

A sym m etric  C hannel M odes

The most remarkable aspect of the asymmetric TS modes is that the phase ve­

locities seem to be directly related to those for the symmetric modes in the sym­

metric channel. If the phase velocity of a symmetric TS mode is csym for a set of

0.35

0.3

0.2

0.15
180 270 360

0.05

3

-0.05
270180 360

(a) Phase Speed (b) Growth Rate

Figure 3.11: Asymmetric TS channel modes.
IW  = 0; -o-, \(f)w \ =  0.2; -x-, \(j>w\ = 0.4; -+-, \<f>w \ = 0.6.

kinematic parameters Resym, Qsym and (f)w = (4>w)sym, then it appears that there 

exists an asymmetric TS mode with phase velocity csym for the set of kinematic
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parameters Resym, <asym and (f)w = {(f)w)asym = 2(0li,)sym. Moreover, this hypothe­

sis appears to be true for modes of all classes, as shown in later subsections and 

is consistent with all of the analytical results given in section 3.6. However, we 

have been unable to find an explicit form for the connection between the eigen­

functions of the symmetric and asymmetric modes. Hence, this is one potential 

area for further work. Figure 3.11 illustrates this property of the asymmetric TS 

modes when it is compared to figure 3.3.

Though there may be a direct link between the phase velocities of the sym­

metric TS modes in the symmetric channel and the asymmetric channel modes, 

the eigenfunctions are different, in particular the pressure disturbance. Hence, 

the wall parameters giving rise to the same phase velocity will be different for the 

two geomterical cases. This is shown in figure 3.12, where the wall parameters, d 

and Cq, are back-calculated for m =  2 and \4>w\ = 0.4, respectively.

0.6

0.4

0.2

- 0.2

-0.4

- 0 .6,
270180 360

Figure 3.12: Physical realisability for m  =  2.0.
— , 1 0  x  u\ - o - ,  d; - x - ,  Cq.

If, also, we plot the physical realisability bounds for the same asymmetric 

modes (see figure 3.13), we see that here they all correspond to case 2 in sec­

tion 2.3.2. Hence, these asymmetric TS modes can be stabilised purely by ensur­

ing that the free-wave speed, c0, is large enough such that Cq is greater than the 

maximum value of the upper bound for Cq in figure 3.13. Choosing such a value
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of Cq, the correponding values of m and d can be found using equations (2.21) to 

obtain a stable asymmetric TS mode where \<f>w\ = 0.4.

0 6

0.4

02

225 270 315 360

Figure 3.13: Physical realisability bounds on m, d and Cq.
—, 10“ 1 x d lower bound; -o-, 10-2 x m lower bound; -0 -, 10-2 x m upper 

bound; 10 x Cq upper bound.
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Figure 3.14: Eigenfunctions for the asymmetric TS modes.
—, 0W =  0°; -o-, 6»w = 90°; -x-,  6W = 180°; - + - , 6̂  =  270°.

The eigenfunctions of the asymmetric channel modes show one marked differ­

ence from the modes in the symmetric channel. Although the velocity gradients 

are still greatest near the walls, both compliant and rigid, the disturbances are 

significantly larger near the centre of the channel, than for the other geometries. 

This can be seen in figure 3.14.
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Finally in this section on the asymmetric TS modes, we may be able to make 

use of the above hypothesis relating the asymmetric and symmetric modes. If it 

can be proven, then we may be better off attempting to stabilise channel flows 

using only a single compliant wall. This would eliminate the need to consider 

antisymmetric modes in case any such mode, of any class, is more unstable than 

its symmetric counterpart. The hypothesis would then make it quicker to compute 

solutions in the asymmetric channel problem.

We have shown in this section that we can stabilise a given TS mode in a 

channel with one or more compliant walls. However, in order to stabilise the 

flow as a whole, we must choose wall parameters which stabilise all unstable TS 

modes, for each value of a. Also, we must ensure that no stable rigid TS mode is 

destabilised sufficiently to become unstable and that no other types of instability 

are introduced to the flow. It is to the latter of these two problems which we 

shall now turn our attention.

3.5.2 K elv in -H elm holtz (K H ) M odes

The Kelvin-Helmholtz class of modes also exists for <j>w —)■ 0. However, for KH 

modes c —> 0 and a —»■ a* /  0 in this limit and so we obtain a stationary wave 

in the compliant surface with amplitude a*, spatial wave number a  and which is 

neutrally stable. Hence modes of this class are associated with instabilities in the 

compliant surface itself.

For non-zero but small values of <j>Wi i.e. for | ^ |  <C 1, the values of the phase 

velocity eigenvalues are also small, i.e. |c| <C 1 and so we obtain a surface wave 

which is either stationary or slow moving. Here also, a — a* +  5a, where da <  a*.

There are, therefore, similarities between the KH modes and the static di­

vergence modes of more conventional studies, e.g. Davies and Carpenter [15].
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However, the results of section 3.6 show that there are modes in the KH class 

which obey a purely viscous theory, as opposed to the inviscid theory which is 

obeyed by the static divergence modes. This lends support to Sen and Arora’s 

hypothesis [67] that the KH class of modes may be a superset of the static di­

vergence modes. There is still, though, the possibility, also put forward by Sen 

and Arora [67], that the classification of the kinematic modes and those of other 

studies could be entirely separate endeavours. If this were so, such a comparison 

between the mode classes of the different approaches would be meaningless.

Sym m etric C hannel, Sym m etric M odes

We can look at the KH modes for the same parameters as for the TS modes,

i.e. for Re — 8000 and a = 1.0. Plots of the phase speed, cr and the growth-rate, 

co, against 9W) for various values of \<j>w\ can be seen in figures 3.15(a) and 3.15(b), 

respectively. As predicted, the phase velocity oscillates about zero and as for the 

TS modes, the similarity of the profiles when compared with boundary-layer 

flow [67] is quite marked. As for the TS modes, an increase in \cf)w\ leads to an 

increase in the amplitude of the oscillations, too. Also like the TS modes, as \(j)w\ 

is increased the range of values of 9W which lead to unstable modes shrinks.

Again, we seek values of the wall parameters which lead to flows where all 

modes are stable, for all a and hence we shall now look at the physical realisability 

of the KH modes.

Back calculating the values of d and Cq for m ~  2.0 and 1^1 =  0.2 we obtain 

the profiles given in figure 3.16. The biggest difference between these and the 

TS modes is the existence of two singularities, at 98° and 310°. That these 

singularities correspond to the stationary (cr =  0) modes can be deduced from 

figure 3.15(a) and equations (2.21). With no stationary TS modes in section 3.5.2 

there are no corresponding singularities in the wall parameters, d and c§.
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Figure 3.15: Symmetric KH modes for the symmetric channel.

— \<f>w\ =  0.1; -o-, \(j)w\ = 0.2; -x-, \(j>w\ =  0.3.

The passive wall conditions, d, Cq > 0, require that 0W lies in the region be­

tween the singularity at 98° and 270°, approximately. In this region uj is mainly 

negative but there is also a significant unstable region too, which exists for the 

larger values of 0W. As for the TS modes, for values of m smaller than 2, d and
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Figure 3.16: Physical realisability for m = 2.0.
—, 10 x -o-, 10-1 x d\ -x-, Cq.

Cq vary like 1/m but there is no qualitative change in the profiles when plotted 

against 9W. However, as in is increased from 2, d increases for 9W < 98° until an­

other physically realisable region emerges here (see figure 3.17(a)). Fortunately, 

in terms of flow stabilisation, this physically realisable region occurs where the 

modes are stable. As m -* oo the effects of the singularities confined to vanish­

ingly thin regions and d -» — 2a;, Cg —> c2r -I- cf. As a result, the unstable region 

reduces to an “unstable pocket” for large values of m (see figures 3.17), as is the 

case for the symmetric TS modes.

If we plot the bounds for m, d and Cg against 9W for \4>w\ =  0.2 (see figure 3.18), 

we see that, as for the TS modes, the potentially physically realisable unstable 

region is divided into two. For the modes where 219° < 9W < 268°, the bounds 

correspond to those for case 1 in section 2.3.2, whereas for 268° < 9W < 288°, the 

bounds correspond to those for case 2.

The main difference between the bounds for the symmetric KH modes and 

those for the symmetric TS modes is that as the upper value of 9W is approached, 

the upper bound for m tends to a finite limit for the KH modes as opposed 

to infinity for the TS modes. Linked with this, the lower bound for m tends
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to the same limit as for the upper bound and this occurs at the point where 

Yt /c{ =  Yi/cr . Also at this point, the upper bounds for Cg and d both tend to 

zero.
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0.6 0.6

0.4 0.4

0.2 0.2

- 0.2 - 0.2

-0 4 -0.4,
180 270 360 270180 360

(c) m  =  100.0 (d) m  =  10000.0

Figure 3.17: The effect of varying m  on physical realisability.
—, 10 x cj; -o-, d\ -x-, Cq.

These differences actually make it easier for us to choose wall parameters 

which will eliminate the above unstable modes in the KH class. Choosing a 

value of in above about 100 will eliminate all unstable modes corresponding to 

\<j>w\ = 0.2, except those in the approximate range 219° < 0W < 250°. However, in 

order to eliminate modes in this remaining region we can choose Cg below 0.0007.
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Figure 3.18: Physical realisability bounds on m, d and Cq.

—, 10 x d lower bound;

-o-, 10-2 x m  lower bound; -<(>-, 10-2 x m  upper bound;

-x-, 10'3 x Cq lower bound; 10:3 x Cq upper bound.

Therefore, we need only impose two restrictions on the wall parameters in 

order to eliminate unstable KH modes where o: =  1.0 and \<j>w\ =0.2. The re­

striction on the wall density, m, does require an increase in its value of about 

two orders of magnitude, which again poses questions with regard to the manu­

facturing of the wall. However, the large range of values of 9W for which stable 

physically-realisable modes can be found suggest that it should be possible to 

find wall parameters for which the symmetric TS modes are stabilised and which 

also lead to stable symmetric KH modes.

Sample eigenfunctions are given in figures 3.19. These show some similarities 

with the KH mode eigenfunctions for boundary-layer flow, with the similarities 

again most marked in the near wall region, where the velocity disturbances are 

at their greatest.



CHAPTER 3. COMPLIANT CHANNEL PROBLEM 92

0.6

0.4

0.2

-0.2’
- 0.6- 0.8 -0.4 - 0.2

y

(a) Real Part

0.3

- 0.1

-0.2-
- 0 . I - 0.6 -0.4 - 0.2

y

(b) Imaginary Part

Figure 3.19: Eigenfunctions for the symmetric KH modes.

—, 0W = 0°; -o-, 9W = 90°; -x-, 6W = 180°; 0* =  270°.

Sym m etric Channel, A ntisym m etric M odes

The phase speed and growth rate of the antisymmetric KH modes in the symmet­

ric channel are given in figures 3.20(a) and 3.20(b), respectively, where Re =  8000
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and a = 1.0. These show that the antisymmetric modes resemble their symmet­

ric counterparts if 6W is shifted by 180°. The amplitude of the oscillations of the 

antisymmetric modes are of smaller magnitude about zero than for the symmet­

ric modes with the same value of \(f)w\. Hence, in some sense, the antisymmetric 

KH modes are more stable than the symmetric KH modes. However, it is not 

necessarily the case that the antisymmetric KH mode is more stable than its 

symmetric counterpart for a given set of wall parameters and hence there is a 

need to study these modes.
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Figure 3.20: Antisymmetric KH modes for the symmetric channel.
5 \4>w \ — 0.1; -o-, \(j>w \ =  0.2; -x-, |0W| =  0.3.

The wall-parameter bounds are plotted in figure 3.21, for a wavenumber, 

a? =  1.0 and stream functions where \(f)w \ =0.2. This plot shows the bounds 

to be qualitatively similar to those for the symmetric KH modes. If a shift in 6W 

of 180° is considered, then the physically realisable regions of the antisymmetric 

KH modes are approximately the same as those for the symmetric KH modes, for 

both cases of the bounds. However, there is a significant difference in the values 

of the bounds themselves.

The qualitative similarity between the bounds of the antisymmetric KH modes
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Figure 3.21: Physical realisability bounds on ra, d and Cq.
—, d lower bound;

-o-, 1CT3 x m  lower bound; -<(>-, 10-3 x m  upper bound;
-x-, 103 x Cq lower bound; -+-, 103 x Cq upper bound.

and those of the symmetric KH modes implies that we need only apply two re­

strictions in order to eliminate unstable antisymmetric KH modes corresponding 

to |(J)w| =  0.2. These two restrictions are that m must be large enough to elim­

inate all of the case 2 instabilities and most of the case 1 instabilities. If the 

free-wave speed, Co, is then made small enough, the remaining case 1 instabilities 

will be eliminated, too. However, the required value of m  is at least twice that 

used for the symmetric case, which poses further practical questions.

0.5

-0.5

180 270 360

Figure 3.22: Physical realisability for m = 2.0.
—, 10 x cj; -o-, 10-1 x d\ -x-, Cq.

The back-calculated values of d and c§ are plotted in figure 3.22 against 0W,
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for a =  1.0, \<j>w\ =  0.2 and m = 2.0. These, too, are qualitatively similar to 

their symmetric counterparts, if 6W is shifted by 180°. There is a small region, 

36° < 9W < 90°, approximately, where unstable physically-realisable modes exist, 

as can be predicted from figure 3.21.

A sample of the eigenfunctions for the antisymmetric KH modes is given in 

figure 3.23 and shows that, like all of the modes previously encountered, the 

largest velocity disturbances and their gradients are to be found in a small region 

nearest the walls.

0.8i i 1 . .----------------  0.4i----------------1---------------- 1---------------- 1----------------*----------------

0.2"

° -1  -0.8 -0.6 -0.4 -0.2 0y

(a) Real Part (b) Imaginary Part

Figure 3.23: Eigenfunctions for the antisymmetric KH modes.
- 0 W = 0°; -o-, 9W = 90°; -x-, 6W = 180°; -+ -,0^  =  270°.

A sym m etric Channel M odes

As stated in section 3.5.1, some relief from the problem of needing to consider 

modes of different symmetries could be obtained by using an asymmetric channel 

where no symmetry considerations need to be made. The observation that there 

appears to be a one-to-one correspondence between the symmetric TS modes for 

the symmetric channel and the asymmetric TS channel modes shows that study­

ing the former is also tantamount to studying the latter. The same observation
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holds for the asymmetric KH modes. This is illustrated in figure 3.24 where the 

phase speed and growth rate are plotted against 6W for values of l ^ l  which are 

twice those of the symmetric KH modes in the symmetric channel.
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-0.1, 180 270 360SO
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(a.) Phase Speed (b) Growth Rate

Figure 3.24: Asymmetric KH channel modes.
—, \(pw\ — 0.2; -0-, I0 J  =  0.4; -X-, \(j)w\ =  0.6.

The bounds on the wall parameters are plotted in figure 3.25, for a = 1.0 and 

\<pw\ = 0.4. The quantitative difference between these and the bounds for the 

symmetric KH modes with a — 1.0 and =  0.2 is very small. Plots of the

240 270

Figure 3.25: Physical realisability bounds on ???,, d and Cq.
—, 10 x d lower bound;

-o-, 10-2 x m  lower bound; 10~2 x m  upper bound;
-x-, 103 x Cq lower bound; 103 x c2 upper bound.
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Figure 3.26: Physical realisability for m =  2.0.
—, 10 x cj; -o-, 10-1 x d; -x-, Cq.

back-calculated values of d and Cq against 0W also appear to exhibit this same 

property, as shown in figure 3.26. Further investigation is required to determine 

exactly why this is so, since the eigenfunctions differ. Most importantly, this 

difference is significant for the pressure at the wall, which differs by about one 

part in ten. Hence, one would expect the admittance and the wall parameters 

should differ significantly, as is the case for the TS modes.
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Figure 3.27: Eigenfunctions for the asymmetric I\H modes. 
ew = 0°; -0-, 9W = 90°; -x-, 9W = 180°; 0W = 270°.
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The stream function is given in figure 3.27, for \(f)w\ =  0.4. Unlike the asym­

metric TS modes, the velocity disturbances and their gradients are not particu­

larly pronounced at the centre of the channel. There is, though, the same region 

near the compliant wall where the disturbances are at their greatest.

3.5.3 T ransitional m odes

Modes of the above two classes occur for smaller values of However, as

|<pw\ is increased from zero, the phase velocities for the Tollmien-Schlichting and 

Kelvin-Helmholtz classes become closer until they coalesce at a critical value of 

\<})w\. Thus, a solution is then formed, with two branches in the complex 4>w plane. 

Further increasing of 1^1, leads to the occurence of more solution branches. The 

resulting set of multi-valued solutions for mid range \(f)w\ in boundary-layer flow 

was termed the transitional class of modes by Sen and Arora [67].

Sym m etric Channel, Sym m etric M odes

This class of modes is exceedingly complex and further work is necessary to gain 

a fuller understanding of the relationship between it and the classes given in 

previous studies. Additionally, numerical difficulties were often encountered in 

calculating solutions for modes of this class. An increase in N  was sometimes 

necessarj'. More often though, the distance between adjacent values of 9W was 

dramatically reduced. This was necessary since the value of the phase velocity 

changes much more rapidly with 6W for the transitional modes than for the modes 

of any other class.

Given the complex nature of these solutions it is not possible to give an 

example of a generic transitional mode and so we shall give only a couple of 

examples with differing numbers of branches. Again, we shall use the parameter 

values, a =  1.0 and Re — 8000.0. Then, \4>w\ — 0.4 and \4>w\ =  0.6 give rise to
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double- and triple-valued phase velocities, respectively. The phase speed and

0.5

-0 .:
720(60 -180 360 540

(a) Phase Speed

0 4
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-0 .4  L-  
-360 -180 720360 540

(b) Growth Rate

Figure 3.28: Symmetric Transitional modes for the symmetric channel.
-o-, \< f )w \ =  0.4; -x-, \ ( f ) w \ =  0.6.

growth rate are plotted against 6W for both of these modes in figure 3.28. The 

first branch of each mode lies in the region —360° < 6W < 0°, the second branch in 

the region 0° < 9W < 360° and the third branch, of the mode for which \(f)w\ =  0.6, 

lies in the region 360° < 0W < 720°. A selection of the TS and KH modes from
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figures 3.3 and 3.15 have been superimposed on figure 3.28. The KH modes have 

been plotted in the region occupied by the first branch of the transitional modes 

and the TS modes have been plotted in the region occupied by the second branch. 

These illustrate how increasing \<f>w\ leads to the formation of the transitional 

modes via the coalescence of modes from the TS and KH classes.

The modes, here, again bear some similarities to those of the corresponding 

class for boundary-layer flow, though the similarities are less marked than for 

the other mode classes. The most notable feature of the transitional modes, is 

the existence of values of 9W for which the growth rate is much greater than 

that of modes of any other class. As for the modes in boundary-layer flow over a 

compliant surface, the transition from TS to R class modes occurs via a singularity 

in the phase speed at some critical value of \(f>w\, |0u,|o saY- As \(j)w\ —> |0u,|~,

x  1 0 ~ J0.6

-4
-360 -180 0 180 360 720540 -90 -75-1056, e,

(a) m  =  2.0 (b) The “unstable pocket”

Figure 3.29: Physical realisability for rn =  2.0.
— , cj; -o-, 10_1 x d; -x-, Cq.

cr —» —oo and as \(f>w\ —> cr —> +oo. In figure 3.28(a), the emergence of

a large negative value of cr can be seen at 9W = —360° as l ^ l  is increased to

0.4 and then to 0.6. Either side of this, the growth rate takes large positive and 

negative values as 8W is slightly decreased and increased, respectively. This, too
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is in agreement with the results of Sen and Arora [67] for boundary-layer flow 

over a compliant surface. Although the singularities take a different form for flow 

in a compliant pipe, that these modes lead to powerful instabilities is illustrated 

in section 4.5.3.
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Figure 3.30: Eigenfunctions for the symmetric Transitional modes. 
- 6 ^  = -1 8 0 ° ; -o-, 6^ =  0°; -x-, 0W = 180°; -+ -,6 ^  =  540°.

As an example of the physical realisability of the transitional modes, back



CHAPTER 3. COMPLIANT CHANNEL PROBLEM 102

calculated values of the wall parameters, d and Cg, are given in figure 3.29(a). The 

parameters used are those of the triple-valued mode, where 1^1 =  0.6. There are 

two physically realisable unstable regions, one in the third branch and the other 

a relatively small region in the first branch. This small region has been magnified 

in figure 3.29(b) to show more clearly that both the growth rate and the free-wave 

speed, c0 are greater than zero for —96° < 0W < —87°. These modes must then 

be taken into consideration when attempting to stabilise the flow.

Sample eigenfunctions are given in figure 3.30 for a = 1.0 and \(f)w\ =  0.6. 

This shows that although the greatest velocity disturbances and their gradients 

are found in the region nearest the wall, this region covers much more of the 

channel than for the TS and KH modes.

Sym m etric Channel, A ntisym m etric M odes

Antisymmetric Transitional modes also occur in the symmetric channel. Exam­

ples of these are given in figure 3.31, where the phase speed and growth rate 

are plotted for a  =  1.0 and Re = 8000.0. Here again, double- and triple-valued

(a) Phase Speed (b) Growth Rate

Figure 3.31: antisymmetric Transitional modes for the symmetric channel.
|<M = 0.6; -x-, \(f)w\ =  0.7.
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solutions are given. Transition to R class inodes occurs again via a singularity, 

which this time forms at 9W =  180°, if a suitable transformation is applied to 9W 

so that the relevant branch of the solution occurs in the range, 0° < 9W < 360°. 

Figure 3.31 shows that the growth rate exhibits a markedly more positive value 

for some values of 9W when compared to the TS and KH class modes. In this 

case, though there is only one region where instabilities occur because the TS 

modes are all stable for these values of a  and Re.

Figure 3.32 gives plots of d and Cg for in = 2, a = 1.0 and \<f>w\ =  0.7. There is 

a small region in which these unstable modes are physically realisable and so the 

antisymmetric transitional modes must be taken into consideration, too, when 

attempting to stabilise the flow.

-180 360180

Figure 3.32: Physical realisability for m = 2.0.
—, 10 x cj; -o-, d; -x-, Cq.

Plots of the eigenfunctions, for the given parameters, can be found in fig­

ure 3.33. Only the values at the collocation points have been plotted (and joined 

together with straight lines) and hence the profiles do not appear to be smooth. 

Given that the solutions are actually polynomials, it is possible to interpolate 

using the relevant series of Tchebychev polynomials. This would give a much 

smoother appearance to the eigenfunctions, though the values at the collocation 

points would be no more or less valid.
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Figure 3.33: Eigenfunctions for the antisymmetric Transitional modes.
—5 @w — —180°; -o-,0w =  O°; -x-, 9W =  180°; 0* =  540°.

The most notable feature of these graphs is the extra complexity of the eigen­

functions when compared to any of the others previously encountered. The largest 

velocities and velocity gradients generally occur away from the wall, which sug­

gests that may be the high shear region of the basic flow is not so important for 

these modes.

A sym m etric  C hannel M odes

As for the previously encountered mode classes, the asymmetric modes seem to 

exhibit the property that the phase velocity is the same as for a symmetric mode 

with the same kinematic parameters, except for the wall stream function. The 

value of the wall stream function for the asymmetric modes is twice that for the 

corresponding symmetric mode with the same phase velocity. Given the rapid 

changes in c for the Transitional modes, in both numerical values and in the 

number of solution branches, as 10^ | is varied, this is the strongest observational 

evidence that a link does indeed exist between the symmetric and asymmetric 

channel modes.
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Figure 3.34: Asymmetric Transitional channel modes.
\(f>w\ = 0.8; -x-, \<f)w\ =  1.2.

For the Transitional modes, the suggested link between the symmetric and 

asymmetric modes requires that the asymmetric phase velocities should agree 

with those in figure 3.28, if we take a =  1.0, Re = 8000.0 and \(f)w\ = 0.8,1.2. 

That the phase velocities agree can be seen in figure 3.34, where the kinematic 

parameters are as above.
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Figure 3.35: Physical realisability for m = 2.0. 

—, 10 x -o-, 10 x d\ -x-, 10 x Cq.

Plots of the back-calculated wall parameters, d and Cq, are given in figure 3.35,
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for Re = 8000.0, a  = 1.0 and 10̂ 1 =  1.2. It can be seen that sections of both 

unstable regions are physically realisable for this value of the wall density, m. For 

the unstable region at approximately 9W = —90° there is an unstable pocket, as for 

the corresponding symmetric transitional modes. For the unstable region where 

540° < 9W < 720°, approximately, the lower values of 9W are physically realisable 

and the higher values are not. This is similar to the physical realisability of the 

corresponding symmetric modes as shown in figure 3.29. However, the physically 

realisable region is larger here for the asymmetric modes.

Sample eigenfunction plots are given in figure 3.36 for various values of 9W. 

For all solution branches the greatest velocity disturbances and their gradients 

are located nearest the walls. For the first branch solutions, where 9W = —180°, 0° 

and which arise as a result of the KH part of the modal coalescence, only near 

the wall do any significant velocity gradients exist. However, for the remaining 

branches significant velocity gradients also exist in regions away from the wall 

including at the channel centreline.
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Figure 3.36: Eigenfunctions for the asymmetric Transitional modes. 

—> @w — —180°; -o-, 0W = O°- -x-, 9W =  180°; -+-, 9W = 540°.
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3.5.4 R esonant (R) m odes

The Resonant class of modes exists for large values of | ^ | .  In the limit \(f>w\ oo, 

Carpenter and Garrad [11] have shown, using an inviscid theory, that this type 

of mode is neutrally stable and that c —> 1 +  Oz for boundary-layer flow. The 

relevant condition from (3.8a), (3.14a) or (3.20) then implies that the surface wave 

amplitude, a, is then also large. These modes then, like the Kelvin-Helmholtz 

modes, are associated with instabilities in the compliant surface induced by the 

flow.

For finite but sufficiently large values of | ^ | ,  c =  1 +  <5c, where 5 c is small,

i.e. \5c\ <  1. This holds until 1^1 is decreased to a value close to that at which 

the transitional modes occur. Alternatively, the above may breakdown if the 

kinematic parameters are varied so that the inviscid theory breaks down.

As for the KH modes, there are modes of the Resonant class which obey a 

purely viscous theory. These are given in section 3.6. For these viscous modes, 

the phase velocity becomes a function of a  as \(f>w\ —̂ oo and hence do not nec­

essarily tend towards 1. This suggests there is the possibility that the Resonant 

class of modes is a superset of the “panel flutter” modes of inviscid studies, in the 

same way that the KH modes may be a superset of the static divergence modes. 

Alternatively, as for the KH and static divergence classes of mode, the Resonant 

and “panel flutter” modes may have a common intersection or again there is pos­

sibility that the classification of the kinematic and conventional modes comprise 

entirely separate endeavours.

Sym m etric Channel, Sym m etric M odes

All the unstable Resonant modes are not physically realisable for the kinematic 

parameters used in section 3.5.1, for fixed Re. However, for lower wave numbers 

physically realisable modes do exist and so we shall consider Resonant modes for
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which Re = 8000.0 and a = 0.01. Plots of the phase speed and the growth rate for 

some of the Resonant modes are given in figure 3.37. Since the Reynolds number
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(b) Growth Rate

Figure 3.37: Symmetric R modes for the symmetric channel.
—, \<t>w\ =  3.0; -o-, I 0 J  =  15.0; -x-, \(J)W\ = 30.0.

is large enough that the inviscid approximation is valid, the phase velocity can 

be seen to oscillate about 1 as 9W is varied. As \4>w\ is increased, the amplitude 

of the oscillations about 1 decrease in magnitude, which is consistent with the
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inviscid theory, too. Again, the profiles of the Resonant modes here and those of 

boundary-layer flow over a compliant surface are broadly the same qualitatively, 

in keeping with the other mode classes.

Back-calculated values of the wall parameters, d and Cq, are given in fig­

ure 3.38(a), for Re =  8000.0, a = 0.01, 10̂ 1 =  3.0 and m = 2.0. This shows that
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(b) The unstable pocket

Figure 3.38: Physical realisability for m = 2.0.
—, 102 x u ; -o-, 102 x d; -x-, 10-1 x Cq.



CHAPTER 3. COMPLIANT CHANNEL PROBLEM 110

there is a single “unstable pocket” , where the Resonant modes are unstable and 

physically realisable. This is clarified by figure 3.38(b), which is a close up of the 

region surrounding the “unstable pocket” , which is located at 9W =  180°, approx­

imately. This is similar to the findings of Sen and Arora for boundary-layer flow 

over a compliant surface [67].

It also can be seen in figure 3.38(a) that the value of Cq required to obtain the 

modes oscillates about 1, as 6W is varied, with a maximum value of about 2.5. 

Looking at figure 3.37, we can see that the value of c2r must also oscillate about 

1 in phase with Cq and with a maximum value of about 2.25. This close direct 

correlation between c0 and cr is an expected property of Resonant modes.

Plots of the wall-parameter bounds are given in figure 3.39 for the stream 

functions where \4>w\ =  3.0. For these particular kinematic parameter values,

20

80 360

Figure 3.39: Physical realisability bounds on m, d and Cq.
—, rn upper bound; -o-, Cq lower bound;

the bounds correspond to case 1 of section 2.3.2 and the upper bound for m is 

greater than 2 only for a small region near 9W = 180°. This is consistent with 

the small “unstable pocket” in figure 3.38(a). Since the bounds correspond to 

case 1 only, we can eliminate all unstable Resonant modes where \(f>w\ = 3.0 by 

choosing the free-wave speed, c0, so that c§ is less than the minimum of the
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lower bound for Cq. It is also possible to eliminate the same modes by choosing 

a suitably large value of rn in conjunction with a suitable value of the damping, 

d. As stated above, m = 2.0 reduces the physically realisable unstable region to 

a pocket. By choosing a large enough value of the damping (anything above the
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Figure 3.40: Eigenfunctions for the symmetric R modes.
~o~, 9W — 0°; -0-, 0^ =  90°; -x-, 9W = 180°; -+ -,6 ^  =  270°.

value at 9W =  180°, where uj = 0), will mean that a Resonant mode corresponding



CHAPTER 3. COMPLIANT CHANNEL PROBLEM 112

to \<j>w\ =  3.0 will be stable.

Plots of the eigenfunctions are given in figure 3.40 for various values of 9W. 

These show that although the largest velocity disturbances are to be found nearest 

the wall, as for most of the mode classes previously encountered, there is no 

obvious wall region where the gradients are significantly larger than elsewhere. All 

the previous mode classes (except the antisymmetric transitional modes) exhibit 

such a wall region, where the velocity gradients are significantly larger than in 

the remainder of the channel.

Sym m etric C hannel, A ntisym m etric M odes

Profiles of the phase speeds and growth rates of sample antisymmetric Resonant 

modes are given in figure 3.41 for Re = 8000.0 and a = 1.0. These show that,

i.o
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Figure 3.41: Antisymmetric R modes for the symmetric channel.
—, \<t>w\ = 3.0; -o-, |(j>w\ = 10.0; -x-, \(/>w\ = 30.0.

as for the symmetric modes, the phase velocities oscillate about 1 as 0W is var­

ied. However, given that the singularity in the transitional mode class occurs 

at 9W = 180°, for the antisymmetric modes, it is in the region around 9W =  180° 

where the largest variations in the phase velocity are to be found. As for the
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symmetric R modes, when \(j)w\ is increased the amplitude of the oscillations of c 

about 1, as 9W is varied, decreases in size.

Plots of the wall-parameter bounds are given in figure 3.42 for \<j)w\ = 10.0. 

As for the symmetric modes, the bounds all correspond to those of case 1 in

120 150

Figure 3.42: Physical realisability bounds on m, d and Cq.
-0-, rn upper bound; -x-, c§ lower bound.

section 2.3.2. However, here the upper bound for m tends towards infinity at 

both extremes of the physically realisable region and the lower bound for Cq always 

takes finite values with a single maximum. This is similar to the bounds plots 

for the symmetric R modes when \(f)w\ is taken suitably large (> 30.0). Hence 

the same approach to stabilising these modes can be taken as for the symmetric 

Resonant modes.

Plots of the back-calculated wall parameters, d and Cq, can be found in fig­

ure 3.43 for |(j)w\ =  10.0 and m = 2. These show that there are two small physi­

cally realisable "‘unstable pockets”, corresponding to the two extreme value of 0W 

in figure 3.42. Again it can be ssen that the corresponding value of Cq is close to c2r 

as would be expected for Resonant modes. A suitably large value of the damping, 

d should eliminate the unstable antisymmetric R modes with \cf)w\ = 10.0, in line 

with the symmetric R modes, too.

Plots of the eigenfunctions exhibit similarities to the symmetric modes in that
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180 270 360

Figure 3.43: Physical readability for m — 2.0.
—, 10 x u; -o-, 10 x d\ -x-, Cq.

there is no discernable wall layer where the velocity gradients are significantly 

greater than elsewhere in the channel. This is illustrated by figure 3.44.
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Figure 3.44: Eigenfunctions for the antisymmetric R modes.
~ 0 W = 0°; -o-, 6>w = 90o; -x-, 0W = 180°; -+ -,6 ^  =  270°.

A sym m etric  C hannel M odes

To round off the decriptions of the various mode classes obtained via the nu­

merics, we shall conclude by considering modes of the Resonant class for the 

asymmetric channel. Examples of the phase speeds and growth rates are given
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in figure 3.45, for Re — 8000.0, a — 0.01 and \<j)w\ — 6.0,30.0,60.0. As for the 

previously considered mode classes, the phase velocities are the same as for the 

symmetric modes of the same class and same parameters, but with a wall stream 

function which is twice the corresponding value for the symmetric modes.
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Figure 3.45: Asymmetric R channel modes.
—, \<f>w\ =  6.0; -o-, \(f)w\ = 30.0; -x-, \<j)w\ — 60.0.

However, there are major differences between the symmetric and asymmetric 

modes with regard to physical realisability. Plots of the wall-parameter bounds 

(see figure 3.46) show that whereas the symmetric modes have bounds which 

correspond to case 1 in section ‘2.3.2, the asymmetric modes with the same phase 

velocity have bounds which correspond to case 2. An increase in the free-wave 

speed of the wall, c0, should then eliminate any modes of this class.

Back-calculated values of the wall parameters, d and Cg, are given in figure 3.47 

for \(f)w\ = 60.0 and m = 100.0. This shows there to be a small unstable phys­

ically realisable region below 9W = 360°. Given that the lower bound for m is 

strictly greater than zero for all physically realisable unstable modes, all unstable 

asymmetric R modes, where \(f>w\ = 60.0, can be eliminated by a reduction in m. 

Another way to eliminate these modes would be to choose a value of cq such that
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Figure 3.46: Physical realisability bounds on ra, d and Cq.
—, 10 x d lower bound; -o-, 10“3 x m  lower bound; -<0>-, 10-4 x m  upper bound;

-+-, Cq upper bound.

Cq is greater than the maximum of the upper bound for Cq (which is finite).

The most notable feature of figures 3.47 and 3.45(a) though, is the marked 

difference between c0, which oscillates about zero and cr , which oscillates about 

one. As explained for the symmetric modes in the symmetric channel, it is ex­

pected that c0 and cr should be roughly equal for the Resonant modes. However,
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Figure 3.47: Physical realisability for m = 100.0.
—, 10 x uj\ -o-, d; - x -, Cq.

the oscillations are still roughly in phase and one explanation could be that the 

wave number is low enough such that the asymmetric R mode is in the long-wave
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scheme described in section 3.6. Here, the modes are determined by a predomi­

nantly viscous theory and the bounds are found to correspond to case 2 of sec­

tion 2.3.2 to leading order in a. Similarly, the long-wave symmetric R modes, in 

section 3.6, also have wall-parameter bounds which correspond case 2, to leading 

order in a. However, the symmetric R modes given in this section have bounds 

corresponding to case 1 in section 3.6 and hence are probably governed by the 

established inviscid theory.

40

20

-20 -20

-40 -40

-60 -60
0.5 0.5-0.5 1 -0.5y y

(a) Real Part (b) Imaginary Part

Figure 3.48: Eigenfunctions for the asymmetric R modes.
—, Ow =  —180°; -o-, 6^ =  0°; -x-, 6W = 180°; -+ -,6 ^  =  540°.

Finally, example eigenfunctions are given in figure 3.48, for 1^1 =  60.0. These 

show that the greatest disturbances occur near the compliant wall with very little 

activity near the rigid wall, unlike for the modes previously encountered. There 

is a small amount of activity in the region surrounding the channel centreline, 

though this is dominated by that which occurs close to the compliant wall.
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3.6 A nalytical R esults

We have been able to find analytical solutions to the governing stability equations 

for specific kinematic parameter ranges. These may be divided into two main 

sections, which are given below.

3.6.1 T he V iscous Lim it

The first set of analytical solutions are for the viscous modes. These occur in 

the limit Re —» 0 where, it can be seen in figures 3.49 and 3.50, that the phase 

velocities of the KH and R modes tend towards a generally non-zero value for 

any <f>w and any geometry of mode. Kumaran [45] formulated a theory for viscous 

(Re —»■ 0) modes in a pipe bounded by a visco-elastic continuum of a specified 

thickness. It was then shown that instabilities could exist provided that the 

non-dimensional velocity, T, exceeded the transitional value, T*, both of which 

depend on the material parameters of the fluid and solid and on the pipe and 

wall dimensions.

We aim to follow a similar approach to establishing a viscous theory for the 

kinematic modes in a channel bounded by one or more compliant walls. Also, 

the classes of instability will be identified.
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3

(a) cr for symmetric modes (b) u  for symmetric modes

3

(c) cr for antisymmetric modes (d) u: for antisymmetric modes

O 3

(e) cr for asymmetric modes (f) io for asymmetric modes

Figure 3.49: Phase-Velocities of the KH channel inodes as Re —> 0. 

-o-, Re = 10-6; Re = 1; -x-, Re = 10;

Re =  102; Re = 103; Re =  104.
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3

(a) cr for symmetric modes (b) cj for symmetric modes

2 70  360

(c) cr for antisymmetric modes (d) uj for antisymmetric modes

3
-0 0 2

(e) cr for asymmetric inodes (f) u  for asymmetric modes

Figure 3.50: Phase-Velocities of the R channel inodes as Re —> 0. 

-o-, Re = 10-6; Re = 1; -x-, Re = 10;

, Re = 102; Re = 103; Re = 10'1.
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In the limit Re -* 0 the pressure gradient is balanced by the viscous terms. 

However, our inertial pressure scaling, p* — p U2p, implies that the pressure gra­

dient of the basic flow would then become infinite. Hence, we need to rescale 

the Navier-Stokes equations using the viscous pressure scaling, p* =  (pU/L)p , to 

obtain:

dux dux dux dux
p., b b tLy oat ox dy dz

1 /  , d2ux d2ux d2ux\
Re dx dx2 dy2 dz2 )

duv duv duv duv
- d t + u ^ + u ^ + u ^  =

1 f  dp d2uy d2uy d2uy
Re \~ d y  +  +  W  +  9 ^  1 ’ (3'33b)

duz duz duy du
r \ ,  ~ b  o  ~ b  t i y  n  ~ \~ U Zat ox dy oz

1 (  dp , d2uz i d2uz | d2uz\  fo o o \
Re \  dz dx2 dy2 dz2 )

where, as before, Re — pU L/p  is the Reynolds number of the flow. With this 

scaling, the pressure of the basic flow now takes the modified form, pB = —2x, 

but since it does not appear in the stability equations this change will have no 

bearing on them.

Following the normal mode analysis of section 3.3, we obtain the revised 

linearised stability equations for i?e <  1:

iaRe(uB — c)u +  Re(DuB)v = —iap  +  (D2 — ci'2) u , (3.34a)

iaRe{uB — c)v =  — Dp +  (D2 — a 2) v , (3.34b)

ia u +  Dv =  0 . (3.34c)

Here again, a  is the positive, real streamwise wavenumber and we have envoked 

Squire’s theorem to reduce the problem to that of studying two-dimensional dis­

turbances. Thus, the normal modes are as for equation (3.6), with Ptw =  0.
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Taking the limit Re —y 0, of equations (3.34), yields

(D2 — a 2) u — iap  =  0 , (3.35a)

( p 2 -  a2) v -  Dp =  0 , (3.35b)

ia u +  Dv — 0 . (3.35c)

From these equations we should recover the solutions for small Reynolds numbers, 

as given by our numerical scheme.

The general solution to the set of equations (3.35) can be obtained by applying 

(D2 — a2) to equation (3.35c) and then substituting for the velocity components, 

u and v in terms of the pressure, p. Doing this, we obtain the single second-order 

linear differential equation for the pressure,

(D2 — a2)p =  0.

This has the general solution

p(y) =  Pc cosh (ay) +  P$ sinh(ay), (3.36)

where Pc and Ps are constants. The x and y momentum equations then yield the 

following general expressions for the velocities:

-Pcy j  sinh(ay), (3.37a)

Psiĵ j s inh(ay), (3.37b)

with the restrictions

iaUc +  aVs +  ~PC =  0 , (3.38a)

icdJs T AMc -f- x-Ps =  0 j (3.38b)

which must also be imposed in order to satisfy the continuity equation (3.35c). 

Here, UCi Us, Vc and R, are constants.

u(y) =  y J c +  -  Psy j  cosh (ay) +  \^US +  ̂

v(y) = +  \ P <n  \ cosh (ay) +  (V* +  ^
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These two continuity conditions, along with the three boundary conditions 

and the normalisation condition, give us the six equations necessary to evaluate 

the six unknowns Uc, Us, Vc, Vs, Pc and Ps. We shall proceed by considering the 

three cases of symmetric modes in the symmetric channel, antisymmetric modes 

in the symmetric channel and modes in the asymmetric channel, as follows.

T he S ym m etric  C hannel: sym m etric  m odes

To summarise, the conditions which must be met in this case are:

u(0) =  0,

D2u( 0) =  0,

'c(O) = — ia , 

r> (-l) =  -iacj)w, 

ioiUc +  aVs +  —Pc = 0, 

iaUs +  avc + = 0.

It is easy to verify that the values of the unknowns must be, therefore:

Uc =  0 ,

(j)w -  cosh a
Us = a + -------- — ------------ ,smh a

Vc — 10L ,

W =  o,

Pc = 0,

P* =  2 ia cosh a — (f)w
sinh a

This allows us to find an expression for the phase velocity eigenvalue using 

the condition for the streamwise velocity at the compliant wall, u( — 1) =  —2<f>w/c 

and our expression for u( — 1), namely

u ( - l )  = u(a) (1 + u(a)(f)w) ,
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where

u(a) =
a + sink a  cosh a

u(a) = -

sinh a 
a cosh a A sinh a
a -f- sinh a cosh a 

Hence, our expression for the phase velocity becomes

c = —
u(a) (1 +u(a)4>w) 1 ,

(3.39a)

(3.39b)

(3.40)

0.06

0.03

-0.03

-0.06,
270180 360

(a) KH modes. (b) R inodes.

Figure 3.51: Analytical-Numerical comparison for the 

viscous symmetric channel modes.

-o-, analytical cr ; -0-, analytical c*; -x-, numerical cr ; —I—, numerical c*.

For the case a = 0.733 the phase velocity was plotted for the KH modes 

where |<̂u,| =  0.05 and compared with the numerical solutions for Re =  10-6. 

Similarly, the phase velocity for the Resonant modes where cr =  0.733, \(j)w\ =  30.0 

were plotted and compared with the numerical solutions for Re =  10-6. These 

comparisons can be seen in figures 3.51(a) and 3.51(b), respectively, with excellent 

agreement between the numerics and analysis.

Contour plots of the phase speed in the 0w-a plane are given in figure 3.52 

for various values of 10̂ 1. Corresponding plots of the growth rate are given in
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(b) |0U,| =  0.6

90 180 270
6W

(a) |0 „ | = 0.2

es

27090 180 360

a

270 360180

(c) 10W| =  1.0 (d) \<j>w \ =  10.0

Figure 3.52: Phase-Speeds of the viscous modes.

figure 3.53. These show clearly for smaller values of \<f>w\ (see figures 3.52(a) 

and 3.52(b)) that the modes belong in the KH class for all values of a. Here, 

the phase velocities take values oscillating about zero as 9W is varied. However, 

as |(f)w| is increased a singularity appears, initially at a = 0 for \(f)w\ = 1.0. This 

singularity occurs at increasing a as \<J)W\ is further increased. For values of a 

above that at which the singularity occurs the modes remain as members of the 

I\H class. However, for those modes occurring at lower wave numbers than the 

singularity, the modes belong to the Resonant class and hence the phase velocity
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270 35018090

e

270180 360

(a) \<fiw\ =0.2 (b) \<J>W\ = 0.6

a

27090 180 360

a

180 270 360

(C) |<t)w\ = 1.0 (d) |0U,| = 10.0

Figure 3.53: Growtli-Rates of the viscous modes.

oscillates about a real non-zero value as 9W is varied.

Therefore, we see that the range of \<f)w\, in which the transitional modes 

occur, has shrunk to zero in the limit Re —> 0. Only the singularity remains of 

the process by which the transition from TS to R modes and more importantly 

in this case, from KH to R modes occurs.

All the above can be deduced from expressions (3.39b) and (3.40). If we define 

ac as the critical wave number at which the singularity occurs when (j)w = ((f)w)c, 

then (0u,)c =  — l /u (ac). Figure 3.54 plots u against a  for a > 0. This illustrates
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three important properties of u which can be deduced analytically from equa­

tion (3.39b). The first is that u is — 1 when a is zero. The second is that u is a 

strictly increasing function for a > 0. The third is that u —> 0 as a —>• oo. These 

imply that — l /u  also is a strictly increasing function for a > 0, is equal to 1 when 

a = 0 and tends to infinity as a —> oo. Therefore, ac, can take any value from 

zero upwards. Hence also, ac can only exist for \(j)w\ > 1 and ac increases as \(f)w\ 

is increased.

- 0.2

- 0 .'

- 0.6

- 0.8

Q

Figure 3.54: u for the viscous symmetric channel modes.

Having identified the kinematic modes which exist in the viscous limit, it is 

necessary to consider the physical realisability of such modes. Plots of the wall- 

parameter bounds are given in figure 3.55 for the KH modes with 1^1 = 0.2 and 

a = 1.0. This shows that the bounds correspond to those of case 2 in section 2.3.2 

and it appears that this is the case for any unstable viscous I\H mode. Figure 3.56 

plots the back-calculated d and c§ for the same kinematic parameters and shows 

that there is only a small “unstable pocket” . Figure 3.55 shows that a small 

increase in m will increase the size of the unstable region. There is a maximum 

value for the upper bound of Cg and hence, choosing a value of the tension which 

corresponds to a value of Cq greater than this, the unstable viscous I\H modes for 

\4>w\ = 0.2 and a = 1.0 will be eliminated.

Physical realisability plots for the Resonant modes are shown in figures 3.57
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and 3.58. These plot the parameter bounds for \(f)w\ =  10.0, a = 1.0 and the back- 

calculated values of d and for m = 0.2, \(j)w\ =  10.0 and a = 1.0, respectively.

08

0.4

21080 195 225

Figure 3.55: Physical realisability bounds on m, d and Cq for the KH modes. 

—, d lower bound; -o-, 10~3 x m lower bound; -<0>-, 10~3 x m  upper bound;

--1~, 10 x Cq upper bound.

0.2

- 0.1

- 0 2
180 360270

Figure 3.56: Physical realisability of the KH modes for m = 2.0.

—, cj; -o-, 10-2 x d; -x-, 10~2 x c§.

The plots for the upper bounds on m and d have been omitted from figure 3.57 

for clarity. This illustrates one important difference between the viscous Reso­

nant and KH modes, namely that between the sizes of the respective physically 

realisable regions. For the KH modes the physically realisable region covers only
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a relatively small subset of the unstable modes, whereas for the Resonant modes 

any unstable mode can be realised for some set of wall parameters. One notable 

common property shared by the viscous I\H and Resonant modes is that all the 

physically realisable modes appear to correspond to case 2 in section 2.3.2.

0.8

0.6

0.4

0.2

80 270 360

Figure 3.57: Physical realisability bounds on m, d and Cq for the R modes, 

-o-, m lower bound; -+-, Cq upper bound.

0.5

-0 5
180 270 360

Figure 3.58: Physical realisability of the R modes for m = 0.2.

— , uj; -o-, 10-1 x d; -x-, 10_1 x Cq.

The upper bounds for m and d tend to infinity at the extremes of the physically 

realisable region with a minimum near the centre of this region. The lower bound 

for m, however, tends to zero at the extremes of the same region with a maximum
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near the centre. If m  is chosen such that it lies between the maximum of its lower 

bound and the minimum of its upper bound, then all the unstable modes for 

1^1 — 10.0 will be physically realisable. At the other extreme, the upper bound 

for Cq remains finite and so by ensuring that the tension is large enough such that 

Cq is greater than the maximum of its upper bound, the viscous Resonant modes 

corresponding to |<^| — 10.0 can be eliminated.

Now for a fixed wall density, only a specific value of d will give rise to the in­

stability associated with the singularity (cq — oo as the singularity is approached 

and hence in practice this mode is unobtainable, anyway). Hence, by choosing 

other values of the damping and free wave speed, it should be possible to avoid 

the occurence of this instability and any others in a small region surrounding it 

in the <j)w-a plane. Therefore, it would appear that any unstable symmetric vis­

cous modes can be eliminated by an increase in the free-wave speed, cq. Davies 

and Carpenter [15] showed that such an increase was generally stabilising for 

flow-induced surface instabilities at finite Reynolds numbers.

The Sym m etric Channel: antisym m etric m odes

To summarise, the conditions which must be met in this case are:

«(0) =  0 ,

D 2 v (  0) =  0,

t i ( 0 )  =  1 ,

v ( —1) =  - ia<f>w ,

ioTJc -t- ctVs 1  Pc == 0, 

iaUs +  avc +  Ps = 0 .
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It is easy to verify that the values of the unknowns must be, therefore:

Ue = 1, 

us = 0 , 

vc = 0,
T r • 4>w +  COSh  cvV c = zcv

Pr =  —2ia

sinh a  — a: cosh a: ' 
Oi(j)w + sinh a

sinh a — a  cosh a ’

Ps = 0.

This allows us to find an expression for the phase velocity eigenvalue using 

the condition for the streamwise velocity at the compliant wall, u(—1) =  —2(J)w/c 

and our expression for tt( — 1), which again takes the form

i t ( - l )  =  u (a )  (1 +  u{a)(f)w) .

Here,

sinh a cosh a — a ^  ,u = —  —  , 3.41a
sinh a — a cosh a

a2 sinha
U~  sinh o  cosh o -  o ’ (3 41b) 

Hence, our expression for the phase velocity again becomes

c _  _ 2^w (i + _ (3.42)
u[a)

For the case a  =  0.733, the phase velocity was plotted for the KH modes where 

|(f)w\ = 0.05 and compared with the numerical solutions for Re = 10-6. Similarly, 

the phase velocity for the Resonant modes, where a  =  0.733 and \<j)w\ = 30.0, 

were plotted and compared with the numerical solutions for Re =  10-6. These 

comparisons can be seen in figures 3.59(a) and 3.59(b), respectively, with excellent 

agreement between the numerics and analysis.
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(a) KH modes. (b) R modes.

Figure 3.59: Analytical-Numerical comparison for the 

viscous antisymmetric channel modes.

-o-, analytical cr ; -0-, analytical c*; -x-, numerical cr ; -+-, numerical cz.

Contour plots in the 9w-a plane for the phase speed and growth rates are given 

in figures 3.60 and 3.61 respectively, for various values of \4>w\. These show that, 

as for the symmetric viscous case, the modes belong in the KH class for smaller 

values of \(f)w\. Similarly, as 10̂ 1 is increased, modes of the Resonant class come 

into existence for smaller values of a. For fixed \<f>w\, modes of the different classes 

are separated by a singularity associated with the zero of the term, (1 + u<t>w)i in 

expression (3.42) for the phase velocity.

Now, u is a strictly decreasing function of a for a > 0. Also, u =  3/2 at a =  0 

and u —> 0 as a —>• oo. This is illustrated in figure 3.62. Hence, —1/ft is a strictly 

decreasing function for a > 0, which takes all values less than —2/3.

Now, if we define ac as the critical wave number at which the singularity 

occurs when 4>w = {(/>w)c, then (<t>w)c = — 1 /u(ac). Therefore, ((f)w)c takes values 

less than —2/3 and the Resonant modes can only occur for \(f>w\ > 2/3.

The physical realisability bounds for the unstable viscous KH modes appear 

to correspond to case 2 for all (f)w and a. Hence, as for the viscous symmetric KH
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(a) \cf>w\ = 0.2 (b) |0W| = 0.6
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(c) \(f>w\ = 1.0 (d) \4>w\ = 10.0

Figure 3.60: Phase-Speeds of the viscous modes.

inodes, we may reduce the physically realisable unstable antisymmetric modes to 

a small “unstable pocket” by making m sufficiently large or small. Furthermore, 

we may eliminate altogether the unstable viscous KH modes by increasing the 

free-wave speed, Co, sufficiently.

The back-calculated values of d and Cg are plotted against 9W in figure 3.64, 

for m =  2, a  =  1.0 and \(j)w\ = 0.2. Here, the value of m is small enough so that 

the physically realisable unstable modes do indeed lie in an “unstable pocket” .
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(a) |0W| =0.2 (b) 10̂ 1 = 0.6
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(c) |0U,| = 1.0 (d) |0 J  = 10.0

Figure 3.61: Growth-Rates of the viscous modes.
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Figure 3.62: u for the viscous antisymmetric channel modes.
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Figure 3.63: Physical realisability bounds on ra, d and Cq for the KH modes.

—, 10-1 x d lower bound;

-o-, 10-3 x 7 t l  lower bound; -<0>-, 10-3 x m  upper bound;

-+-, 10 x Cq upper bound.

0.4

0.2

- 0.2

-0.4
180 270 360

Figure 3.64: Physical realisability of the KH modes for m  =  2.0.

—, -o-, 10-2 x d; -x-, 10-2 x Cq.

None of the antisymmetric viscous R modes seem to obey condition (2.24) 

for an unstable mode being physically realisable for some set of wall parameters. 

For the mode where a — 1.0 and \cf)w\ = 10.0, the back-calculated value of the 

damping coefficient, d, never exceeds zero. This is illustrated in figure 3.65.
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Figure 3.65: Physical realisability of the R inodes for m  =  2.0.

—, u)\ -o-, 10_1 x d; -x-, 10_1 x Cq.

Therefore, like the symmetric viscous inodes, the antisymmetric viscous inodes 

can be eliminated by an increase in the free-wave speed of the wall, Cq.

The A sym m etric  C hannel:

In the case of the asymmetric channel, it is more convenient to write the eigen­

functions in the form:
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The continuity conditions remain unaltered by this translation of the independent 

variable and so the conditions which must be met may be summarised by:

u ( l )  = 0 ,

w ( l ) = 0 ,

u ( 0 )  =  — i a ,

u( 1) ia<j)w ,
1

iaUc 4- aV), T- — Pc = 0 ,

1iaus +  ctvc 4  -P s — 0 .

Two of the unknowns are found to be zero using the form of solution given above, 

which makes the solution easier to establish as:

Oc =  0,
(2a cosh 2a — sinh 2a) 4  (sinh a  — a  cosh a)<f)w

U* =
sinh a  (sinh 2a — 2a) ’

K  =  o,
T . 4  cosh a  — <bw
Vs =  ia—— —  ---------,

sinh 2a — 2a
„  . 2 Qw ~ 4 cosh a
l r —  l a  —— ---------------------- ,

sinh 2a — 2a
_ . (sinh 2a — 2a cosh 2a) 4- (a cosh a  — sinh a)d)w
Ps =  ice---------------------------------- ------- —  -----------------------    .

sinh a  (sinh 2a — 2a)

This allows us to find an expression for the phase velocity eigenvalue using

the condition for the streamwise velocity at the compliant wall, u(—1) =  —2(j)w/c

and our expression for ?./,(—1), which again takes the form

u(—1) =  u(a) (1 +  u(a)(j>w) .

Here

2a +  sinh 2a
u =  ---- —— ~  , (3.43a)

sinh a
a  cosh a  4  sinh a  , .

u = -----  . , „------. (3.43b)2a +  sinh 2a
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Hence again, our expression for the phase velocity becomes

c = (1 + u(a)(j)wy l . (3.44)u{a)

By substituting 2<f>w for (f)w in the above expression for c, we obtain the phase 

velocity for the symmetric viscous modes. This lends further support to the 

hypothesis that the asymmetric and symmetric modes are linked in the way 

suggested in section 3.5.1.

0.5

(a) KH modes. (b) R inodes.

Figure 3.66: Analytical-Numerical comparison for the 

viscous asymmetric channel modes.

-o-, analytical cr ; -<0>-, analytical q ; -x -, numerical cr ; numerical c*.

For the case a = 0.733 the phase velocity was plotted for the I\H modes where 

\(j)w\ =  0.1 and compared with the numerical solutions for Re =  10~6. Similarly, 

the phase velocity for the Resonant modes where a = 0.733, 10̂ 1 =  60.0 were 

plotted and compared with the numerical solutions for Re = 10~6. These com­

parisons can be seen in figures 3.66(a) and 3.66(b), respectively, with excellent 

agreement between the numerics and analysis.

Contour plots of the phase speed and the growth rate in the 9w-a plane are 

given in figures 3.67 and 3.68. These are identical to those for the symmetric
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viscous modes with half the value of the stream function at the wall.

90 180 270 360 270 360180

(a) \<f>w\ =0.2 (b) \<t>w\ =0.6

a

90 180 270 360

0

270180 360

(c) \<f>w\ = 1.0 (d) |cf>w\ = 10.0

Figure 3.67: Phase-Speeds of the viscous modes.

Plotting u against a for a > 0 in figure 3.69, illustrates the property that it 

takes half the value of that of u for the symmetric modes at the same value of a. 

This is consistent with the fact that the critical value of (f)w (that at which the 

singularity occurs) for the asymmetric viscous modes, is twice that corresponding 

to the symmetric viscous modes.

Plots of the wall-parameter bounds for the viscous asymmetric KH modes are 

given in figure 3.70 for a  =  1.0 and \4>w\ = 0.2. The bounds correspond to case 2
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Figure 3.68: Growth-Rates of the viscous modes.

in section 2.3.2, as for the symmetric and antisymmetric cases. All the viscous 

asymmetric KH modes appear to have wall-parameter bounds corresponding to 

case 2 in section 2.3.2 and hence we can eliminate instabilities of this type in the 

same way as for the viscous symmetric KH modes. Therefore, by a sufficiently 

large increase or decrease in m, we can reduce the physically realisable unstable 

region to a small “pocket” . Alternatively, we can totally eliminate the unstable 

modes by a suitably large increase in the free-wave speed, c0. A suitably small 

value of m to obtain a small “unstable pocket” is 2 for the modes where a = 1.0
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Figure 3.69: u for the viscous asymmetric channel modes.

and |(j)w| — 0.‘2. This is illustrated in figure 3.71, which plots the back-calculated 

wall parameters, d and Cq against 9W for the same values of a  arid \<f>w\.

0.6

0.4

0.2

195 210 225

Figure 3.70: Physical realisability bounds on m, d and Cq for the KH inodes.
-  10 x d lower bound; -o-, 10 3 x m lower bound; -0-, 10 3 x m upper bound;

-+-, 102 x Cq upper bound.

Similarly for the viscous asymmetric Resonant modes, the bounds on the wall 

parameters always appear to correspond to those of case 2 in section 2.3.2. This is 

illustrated in figure 3.72 for the case where the parameters take the values a = 1.0 

and \(j)w\ =  10.0. The upper bounds for m  and d have been omitted for clarity. 

Therefore, yet again we can eliminate these unstable modes by a sufficiently large 

increase in the free-wave speed, c0.

The back-calculated values of d and Cq are plotted against 0W in figure 3.73.
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The remaining parameters used were m =  0.1, a =  1.0 and \4>w\ =  10.0. Here, a 

smaller value of the wall density has been used in order to reduce the size of the 

unstable region. If m =  2 had been used then all of the unstable modes, where 

a  =  1.0 and \(f)w\ = 0.4, would be physically realisable.

0.2

0.1

- 0.1

- 0.2,
180 270 360

Figure 3.71: Physical realisability of the KH modes for m =  2.0. 

—, lj; -o-, 10-2 x d; -x-, 10-1 x Cq.

0.5

270 360

Figure 3.72: Physical realisability bounds on m, d and c% for the R modes.

-o-, 10 x m lower bound; c§ upper bound.

In this section we have shown that we can describe the I\H and R modes 

for a compliant channel in terms of a purely viscous theory in the limit Re —> 0. 

Furthermore, the kinematic theory suggests that these are the only classes of
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Figure 3.73: Physical realisability of the R modes for m =  0.1.
—, lj; -o-, 10_1 x d; -x-, 10-1 x Cq.

instability that may persist in this limit. The KH modes exist for all values of 

the wall stream function, but the R modes only exist when \<j>w\ exceeds a 

critical value determined by the geometry of the modes under consideration.

However, there are questions that arise with regard to the validity and utility 

of the viscous theory. Our numerical results indicate that the viscous theory is 

a good leading-order solution, for KH and R modes, for values of aRe of up to 

0(1) (see figures 3.49 and 3.50). For wave numbers where, a = 0(1), this implies 

that the viscous theory is a good approximation for Re = 0(1). However, the 

kinematic viscosity of water is O(10_6)m2/s. Hence, the viscous theory would 

be a good approximation only where the product of the reference velocity and 

length, UL, were O(10-6). For such flow regimes it is possible that any underlying 

disturbances (e.g. eddies in the fluid as it settled prior to operational flow, or 

acoustic effects) would be large enough so that the linear stability approximation 

is not valid. However, the kinematic viscosity is much higher for other fluids, 

including gels. Hence, in this case it is more likely that the viscous theory will 

remain valid.
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3.6.2 T he Long-W ave Lim it

The other case in which we may find analytical results is that of long-wave dis­

turbances, where a —> 0. Here, we expect from our viscous results that c =  0(1), 

to leading order in a.

As for the viscous limit, Re 0, we need to use the viscous pressure scaling, 

p* =  (fiU/L)p. Therefore, with this scaling, equations (3.34) govern long-wave 

disturbances. Again we have envoked Squire’s theorem to reduce the problem to 

looking at two-dimensional disturbances.

The streamwise velocity wall conditions, (3.10a), (3.16a) or (3.22a), along 

with the normal velocity wall conditions, (3.9a), (3.15a) or (3.21a) and the

continuity equation (3.7d), then allow us the write the solutions in the form:

as or —> 0. Here o depends on the geometry of the mode under consideration 

and is found by balancing the terms in the momentum-derived stability equa­

tions (3.34a) and (3.34a). In order to proceed, again we shall consider the three 

cases of symmetric modes in the symmetric channel, antisymmetric modes in the 

symmetric channel and modes in the asymmetric channel, as follows.

Sym m etric channel, sym m etric m odes.

In this case, a = 1 and hence to leading order we have:

u(y) = iL0(y) +  aui{y) +  0 (a 2) , 

v(y) =  av0(y) +  a2vx(y) +  0 (a 3) , 

p(y) = acrpQ(y) +  aA+1rii(y) +  0(aA+2

(3.45a)

(3.45b)

(3.45c)

(3.45d)c =  c0 +  ci'Ci +  0 (a 2) ,

iuq +  Dvo =  0 , 

D 2uq =  0 ,  

D 2v0 -  Dp0 = 0,

(3.46a)

(3.46b)

(3.46c)
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with boundary conditions which may be written as:

'iio(O) =  0, 

Po(0) =  0,  

v 0 ( - l )  -  — i ( j > w  , 

ô(O) =  ~ i ,

_

C°  « 0 ( - l )  '

It is easy to verify that the pressure, po, must be a linear function of y, as must 

the streamwise velocity, u q . The normal velocity, v 0 , must be a quadratic function 

of y. The coefficients of each function can be found and so we obtain

u q { y )  =  2(0*, -  1 ) y ,  

v o ( y )  =  - i  +  i ( l  -  < p w ) y 2 ,

pQ(y) =  2 i ( l  -  (f)w)y , 

tpw
C °  =  A  _  1 • yw 1

For the |̂ >w| =  0.2, the leading-order solution was plotted alongside the nu­

merical solution where in both cases Re =  100.0 and a — 10-4. Similarly, the 

leading-order solution was plotted for \(/>w\ = 10.0 alongside the numerical so­

lution for \(f)w\ = 10.0, Re = 100.0 and a — 10~4. These plots can be seen in 

figures 3.74(a) and 3.74(b), respectively, with good agreement between the ana­

lytical solution and the numerics. In these and subsequent plots for the long-wave 

solutions, Re and Im are functions which take the real and imaginary parts of 

their arguments, respectiveljc

For lower values of 1^1 we see that the modes belong in the KH class as 

shown in figures 3.75(a) and 3.75(b), which plot the phase speed and growth 

rate for modes where \4>w\ = 0.2, assuming that the leading-order solution is valid
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(a) KH modes. (b) R modes.

Figure 3.74: Analytical-Numerical comparison for the 
long-wave symmetric channel modes.

-o-, analytical cr , Re(c0); -<0>-, analytical C i , I r n ( c 0);
-x-, numerical cr ; numerical C{.

for a = 10~4. Plots of the wall-parameter bounds show that these correspond to 

case 2 in section 2.3.2 (see figure 3.76). This is the same as for the viscous modes, 

as we might expect, since both the viscous and long-wave theories must coincide 

when both Re and a tend towards zero. Thus, these modes, like the viscous 

modes, can be eliminated by an increase in the free-wave speed, Co- It also can 

be seen that, except near 0W =  180°, instabilities occur only for very large values 

of m. This is confirmed in figure 3.77 which plots the back-calculated values 

of d and Cq for \(f)w\ = 0.2 and m =  2.0, again assuming the low wave number, 

a = 10-4. Only a very small “unstable pocket” exists and so only a very limited 

range of values of d and Cq will give rise to these very slowly growing instabilities.

As \(f)w\ is increased a singularity occurs at (J)w =  1, consistent with the oc­

curence of the singularity in the viscous symmetric modes as ac —>■ 0. Thus, in 

the long-wave limit, as for the viscous limit, there are no Transitional modes for 

values of \(f)w\ close to that at which the singularity occurs.

For values of 10̂ 1 greater than 1 the modes belong to the Resonant class.
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This is illustrated in figures 3.78(a) and 3.78(b) which plot the phase speed and 

the growth rate for =  10.0, again assuming the low wave number, a — 10-4. 

Like the long-wave KH modes, the wall parameter bounds correspond to case 2 

in section 2.3.2. These are plotted in figure 3.79. Therefore, these modes can be 

eliminated by an increase in the free-wave speed, c0, too. The physically-realisable 

unstable long-wave R modes also only exist for large values of m, except near 

6W — 180°, 360°. This is illustrated by figure 3.80 which plots the back calculated 

values of d and c§ for \(/)w\ = 10.0 and m = 2.0. Like the long-wave KH modes, 

there are only very small physically realisable “unstable pockets” and so only a 

very limited range of values of d and Cq will give rise to these instabilities.
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(a) Phase Speed, Re(co)
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(b) Growth Rate, a. Im(co)

Figure 3.75: Long-wave symmetric KH modes for the symmetric channel, 

|(j)w\ — 0.2 - leading-order solution.
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Figure 3.76: Physical realisability bounds on m, d and Cq for the KH modes.
—, 104 x d lower bound;

-o-, 10-11 x in lower bound; -<(>-, 10-11 x m  upper bound;
10 x Cq upper bound.
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Figure 3.77: Physical realisability of the KH modes for m = ‘2.0.
—, 104 x lu] -o-, 10~6 x d\ -x-, 10~9 x Cq.
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(a) Phase Speed, Re(co)
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(b) Growth Rate, a . Im(co)

Figure 3.78: Long-wave symmetric R modes for the symmetric channel, 

\4>w\ = 10.0 - leading-order solution.



CHAPTER 3. COMPLIANT CHANNEL PROBLEM 151

0 6

04

0.2

360270180

Figure 3.79: Physical realisability bounds on m, d and c§ for the R modes.

—, 102 x d lower bound;

-o-, 10~9 x m lower bound; -0-, 10~10 x m upper bound; Cq upper bound.

0.5

-0.5

-1.5
180 270 360

Figure 3.80: Physical realisability of the R modes for m = 2.0.

—, 105 x uj; -o-, 10-4 x d\ -x-, 10-7 x Cq.

To next order, the stability equations yield:

iu\ -f Dvi =  0 , (3.47a)

D2u\ =  Re(i(uB -  c0)u0 +  (DuB)v0), (3.47b)

D2vi — Dpi = iRe(uB -  c0)u0 , (3.47c)
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with boundary conditions which may be written as:

U l (Q)  =  0 ,

Pi (0) =  0,

u i ( - l )  =  0,

ui(0) =  0,

‘ZcftyjUl ( l )
Cl =

u g ( - l )

It is easy to verify that, here, the second-order solution is the trivial solution: 

ui{y) = 0,

M v) = °> 

p i ( y )
Re

0W I

ci =  0 .

y  + - 1)y3 + -  i ) V

Therefore, there is no second-order correction to the phase velocity for long­

wave solutions. However, there is a second-order correction to the pressure dis­

turbance. This is required to balance the inertial terms, due to the leading-order 

solution, which arise at this order.

Sym m etric channel, antisym m etric m odes.

In this case, a =  — 1 and hence to leading order we have:

iu0 +  Dvq =  0,

D2uq -  ipQ =  0 ,

Dp0 = 0,

(3.48a)

(3.48b)

(3.48c)
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with boundary conditions which may be written as:

uo(0) =  0, 

vo(0) =  0,

^ ( 0 )  =  0,

Vq( l) Ztfiw j

Co / yr ■Uo(-l)

It is easy to verify that the pressure, p0i must be a constant, the streamwise 

velocity, u0, must be a quadratic funtion of y and the normal velocity, v0, must 

be a cubic function of y. The coefficients of each function can be found easily so 

that

u0(y) =  1 -  3(1 + &w)y2, 

v0(y) =  *y((l +  <j>w)y2 -  1), 

p0(y) =  6z(l + <j>w) ,

  vj

>̂4>w +  2

For the case \<fiw\ =  0.05, the leading-order solution was plotted alongside 

the numerical solution, where the remaining parameters were Re = 100.0 and 

a  =  10-4. Similarly, the leading-order solution was plotted for \4>w\ = 10.0, along­

side the numerical solution for 10̂ 1 =  10.0, Re =  100.0 and a =  10~4. These plots 

can be seen in figures 3.81(a) and 3.81(b), respectively, with good agreement be­

tween the analytical solution and the numerics.

As in the previous section, for lower values of \<fiw\ we see that the modes 

belong in the KH class as can be seen in figures 3.82(a) and 3.82(b), which 

plot the phase speed and growth rate for modes where \<f>w\ =  0.2, assuming that 

the leading-order solution is valid for a = 10“4. As for the numerical and viscous



CHAPTER 3. COMPLIANT CHANNEL PROBLEM 154

(a) KH modes. (b) R modes.

Figure 3.81: Analytical-Numerical comparison for the 
long-wave antisymmetric channel modes.

-o-, analytical cr , Re(c0); analytical c*, /m(co);
-x-, numerical cr ; -+-, numerical q .

results, these modes are qualitatively similar to the symmetric KH modes, if 6W is 

shifted by 180°. Plots of the wall-parameter bounds show that these correspond to 

case 2 in section 2.3.2 as for the symmetric long-wave KH modes (see figure 3.83). 

Hence, these modes, like the viscous modes, can be eliminated by an increase in 

the free-wave speed, Co- It also can be seen that, except near 0W — 0°, instabilities 

occur only for very large values of m. This is similar to the symmetric long-wave 

modes and is confirmed in figure 3.84 which plots the back calculated values 

of d and c§ for \(f)w\ =  0.2 and m = 2.0, again assuming the low wave number, 

a — 10-4. Only a very small “unstable pocket” exists and so only a very limited 

range of values of d and Cq will give rise to these instabilities. For both physical 

realisability plots, the profiles are similar to the symmetric case if 0W is shifted 

by 180°.

As \(f)w\ is increased a singularity occurs at (f)w = —2/3, consistent with the oc­

curence of the singularity in the viscous antisymmetric modes as ac —> 0. Hence, 

in the long-wave limit the antisymmetric Transitional modes are reduced to the
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singularity, as is the case for the viscous modes and the symmetric long-wave 

modes.

For values of \cf>w\ greater than 2/3 the modes belong to the Resonant class.

0.2

- 0.2

-0.4
360180ew 270

(a) Phase Speed, Re(co)

x 10~5

3

-2

-4
270 36090

(b) Growth Rate, a . Im ( c o )

Figure 3.82: Long-wave antisymmetric KH modes for the symmetric channel, 
\(pw\ — 0.2 - leading-order solution.

This is illustrated in figures 3.85(a) and 3.85(b) which plot the phase speed and 

the growth rate for \(f)w\ =  10.0, again assuming the low wave number, ct = 10-4.
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Figure 3.83: Physical realisability bounds on m, d arid c§ for the KH modes.
—, 104 x d lower bound;

-o-, 10-11 x in lower bound; -0-, 10-11 x m upper bound;
-+-, 10 x Cq upper bound.

0.5
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Figure 3.84: Physical realisability of the KH modes for m = 2.0.
—, 104 x u;; -o-, 10-6 x d\ -x-, 10~10 x Cq.

Like the long-wave KH modes, the wall parameter bounds correspond to case 2 

in section 2.3.2. These are plotted in figure 3.86. Therefore, these modes can be 

eliminated by an increase in the free-wave speed, c0, too. The physically-realisable 

unstable long-wave R modes also only exist for large values of in, except near 

0W = 0°,180°. This is illustrated by figure 3.87 which plots the back-calculated 

values of d and Cq for \(f)w\ = 10.0 and m =  2.0. There are only two very small 

physically realisable “unstable pockets” and so only a very limited range of values 

of d and Cq will then give rise to these instabilities.
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Figure 3.85: Long-wave antisymmetric R modes for the symmetric channel, 

\cf)w\ — 10.0 - leading-order solution.
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Figure 3.86: Physical realisability bounds on m , d and c§ for the R modes.

—, 102 x d lower bound;

-o-, 10-10 x m  lower bound; -0-, 10-11 x m upper bound; Cq upper bound.
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Figure 3.87: Physical realisability of the R modes for rn = 2.0.

—, 105 x cj; -o-, 10"5 x d; -x-, 10-8 x Cq.

To next order the stability equations yield:

iu\ + Dv\ =  0, (3.49a)

D2ui -  ipi = Re(i(uB -  c0)u0 +  (D u b ) v q ) , (3.49b)

Z )p i= 0 , (3.49c)
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with boundary conditions which may be written as:

ux(0) = 0,

«i(0) =  0,

£>V(0) = 0 ,

v i( - l )  =  0,

2(f>wu i( - l )  
u g (-l)Cl

It is easy to verify that the second-order solution is:

ui(y) =  iRe 1 -

4  2)(1 4  (j}w) 
3(f)w +  2

1 4 1

1 2 V 2 0 '

ui(y) =  Re

Cl

3 (f)w 4  2 10
iRe (f)

4  2 

2 2 ^  +  20) .

)  + 3 ^ (1 +  W

105 (34>w 4  2)3

Plots of the second-order solutions are given in figures 3.88 and 3.89 for the 

KH and R modes, respectively. Parameter values are as for the leading-order 

solutions. It can be seen that in both cases, the largest corrections occur where 

the leading-order solution is close to its mean value over 0W.
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Figure 3.88: Long-wave antisymmetric KH modes for the symmetric channel,

| ^ |  =  0.2 - second-order solution.
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Figure 3.89: Long-wave antisymmetric R modes for the symmetric channel, 

\(f)w\ ~  10.0 - second-order solution.
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A sym m etric channel m odes.

In this case a = — 1, as for the antisymmetric modes and hence equations (3.48) 

govern the leading-order solutions. The boundary conditions may be written as:

u0( 1) =  0,

V i )  =  o,
v0(0) =  - i ,

v0( - l )  = -i&im 
_  2(f)w

°° u0( - l )

It is easy to verify that the pressure, p0, must be a constant, the streamwise 

velocity, u0, must be a quadratic funtion of y and the normal velocity, u0, must 

be a cubic function of y. The coefficients of each function can then be found so 

that

3 1
uo{y) =  t ( 4 -  K ) y 2 + (4>w -  2)y --(<£« ,+  4),4 4

M y )  = j(0u» -  4)l/3 -  -  2)y2 +  +  4)y -  i ,

Po(y) = y ( V  - 4 ) ,

c ° _  T  o  '(pw ^

For the \<f>w\ = 0.4, the leading-order solution was plotted alongside the nu­

merical solution, where in both cases Re = 100.0 and a = 10-4. Similarly, the 

leading-order solution was plotted for \(f)w\ = 10.0, alongside the numerical so­

lution for 10̂ 1 =  10.0, Re = 100.0 and a = 10-4. These plots can be seen in 

figures 3.90(a) and 3.90(b), respectively, with good agreement between the ana­

lytical solution and the numerics.

If 4>w is replaced by 24>w in the above expression for the leading-order phase ve­

locity, the leading-order solution for the symmetric long wave modes is obtained.
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(a) KH inodes. (b) R modes.

Figure 3.90: Analytical-Numerical comparison for the 
long-wave asymmetric channel modes.

-o-, analytical cr , i?e(c0); analytical Ci,Im(c0);
-x-, numerical cr ; —(--, numerical C{.

This lends yet further evidence to the hypothesis first mentioned in section 3.5.1 

regarding the link between the symmetric modes in the symmetric channel and 

the asymmetric channel modes. Therefore, the long-wave asymmetric modes 

belong to the KH class for \<f>w\ < 2.0. This can be seen in figure 3.91 which 

plots the phase speed and growth rate of the long-wave solutions for \4>w\ = 0.2, 

again assuming that the leading-order solution is valid for cv =  10-4. The wall- 

parameter bounds for these modes correspond to case 2 in section 2.3.2 and are 

qualitatively similar the other compliant channel long-wave KH modes. These 

bounds are illustrated in figure 3.92. Therefore, these unstable modes also may 

be eliminated by an increase in the free-wave speed, c0 or may be reduced to a 

very small “unstable pocket” by a suitably small choice of the wall density. As 

for the other compliant channel modes, choosing m = 0(1) will bring about this 

small “unstable pocket". Figure 3.93 illustrates this for m =  2.0, \<j>w\ =  0.2 and 

assuming the leading order solution is valid for a = 10-4.



CHAPTER 3. COMPLIANT CHANNEL PROBLEM 164

c-

-0.1

- 0.2
360270

(a) Phase Speed, Re(co)

x 10'5

0.5

3

-0.5

-1.5
270180

'w
360

(b) Growth Rate, a . Im(co)

Figure 3.91: Long-wave KH asymmetric channel modes,

\(j)w\ = 0.2 - leading-order solution.

The singularity which signifies the transition from KH to R class modes occurs 

at \(f)w\ — 2.0 for the asymmetric modes. For \(f>w\ > 2.0 the asymmetric long­

wave modes belong to the R class. This can be seen in figure 3.94, which plots the 

phase speed and growth rate of the R modes for \<f)w\ = 10.0, assuming that the
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Figure 3.92: Physical realisability bounds on ra, d and Cq for the KH modes.
—, 101 x d lower bound;

-o-, 10-11 x m  lower bound; 10-11 x m  upper bound;
10 x c§ upper bound.
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Figure 3.93: Physical realisability of the KH modes for m  =  2.0.
—, 105 x cj; -o-, 10-6 x d\ -x-, 10-9 x Cq.

leading-order long-wave solution is valid for a = 10-4. Wall-parameter bounds 

are given in figure 3.95. This shows that the bounds all correspond to case 2 

in section 2.3.2 and are qualitatively similar to the bounds for the long-wave R 

modes for other channel geometries. This lends support to the claim made in 

section 3.5.4 that the asymmetric R modes for Re = 8000.0 and a = 0.01 belong 

to the long-wave scheme and hence are governed by a viscous theory to leading 

order. Thus, the unstable asymmetric long-wave R modes can be eliminated 

by an increase in the free-wave speed, c0 or can be reduced to small “unstable
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pockets” by choosing a suitably low value of m. Taking m =  2 is adequate for 

this purpose, as can be seen in figure 3.96.

0.9
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Figure 3.94: Long-wave R asymmetric channel modes, 
\<j>w\ = 10.0 - leading-order solution.
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Figure 3.95: Physical realisability bounds on m, d and for the R modes.

—, 103 x d lower bound;

-o-, 10~9 x m  lower bound; 10~9 x m upper bound; c\ upper bound.

0.5

-0.5,
180 270 360

Figure 3.96: Physical realisability of the R modes for m = 2.0.

—, 104 x ca; -o-, 10-4 x d\ -x-, 10“8 x Cq.
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The second-order functions are governed by equations (3.49) with boundary 

conditions which may be written as:

Therefore, as for the symmetric case, there is no second-order correction to the 

phase velocity for long-wave solutions. However, there is a second-order correction 

to the pressure and velocity disturbances. These are required to balance the 

inertial terms, due to the leading-order solution, which arise at this order.

This concludes our study of the flow in channels bounded by compliant walls. 

A summary of the results found herein for such flows is given in chapter 5.

ui(0) =  0,

MO) =  0, 

Mo) = o, 

M - i )  = o,

Cl u g (-l)

It then can be verified that the second-order solution is:

M y ) -  iRe(l -  y2) 1  Q (0„, +  4) +  )  1)+

Vi(y) =  Re(l -  y2)y[ 1  Q f o .  + 4) + (y2 -  1)+

1 01V +  4
2 (f)w -  2

C\ = 0 .



C hapter 4

Com pliant P ipe Problem

In this chapter we consider the problem of flow in a circular compliant pipe. 

This geometry is by far the more prevalent in practical applications and hence 

its study is a necessary extension to the simpler geometry of compliant channel 

flow. Since the flow in a rigid pipe has been shown to be linearly stable by Corcos 

and Sellars [13], Gill [25], Sal wen and Grosch [65], and Garg and Rouleau [23], 

for example, it is the introduction of compliance itself which is the cause of any 

instabilities that occur in the pipe problem.

We shall start by formulating the compliant pipe problem with reference to the 

methods employed in chapter 2. Next, we shall proceed to apply the numerical 

methods, also given in the same chapter, to solving the kinematic compliant 

pipe problem. Then we shall be in a position to find solutions to the kinematic 

compliant pipe problem. Next, we shall investigate the different classes of modes 

into which the numerical solutions may be divided. Finally, we shall conclude 

this chapter by investigating various analytical solutions, where one or other of 

the problem parameters asymptotically approaches given limits.

169
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4.1 Flow G eom etry

We shall start by choosing a cylindrical polar co-ordinate system in which x* is 

the dimensional co-ordinate with axis parallel to the axis of the pipe, y* is the 

dimensional radial co-ordinate perpendicular to the pipe wall in its rest state and 

the 2* co-ordinate is the polar angle, measured relative to a fixed line in the radial 

direction. The pipe is then formed by a single curved wall whose extent in the x* 

direction is infinite and which in its rest state has equation y* = R, i.e. the pipe 

has a constant radius, R.

With our chosen co-ordinate system, the incompressible flow in a rigid pipe 

is described by the pressure p*t and the three velocity components AJU, u** and 

u** in the x*, y* and z* directions respectively. All four of these quantities may 

depend on x*t y*, z* and t*, the dimensional time.

We shall now choose to formulate the kinematic compliant channel problem 

with the non-dimensional quantities x } r , 9, t, ur, ur, uq and p which are related 

to the above dimensional variables via the linear relations x* = Rx, y* = Rr , 

z* = 0, t* = R t/U , u** =  Uux, =  Uur and u** =  TJu q . Here, U is the maxi­

mum velocity of the basic flow, i.e. that on the axis of the pipe. For the remaining 

relation, that of the pressure, we shall use the inertial scaling p* = pU2p , where 

p is the constant density of the fluid.

In the non-dimensional co-ordinate system, the wall of the pipe is at r = 1 

and hence the geometry may be given by figure 4.1.
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r A

mean

—

flow

—

r = 0

Figure 4.1: The compliant pipe.

Following chapter 2, we shall consider the incompressible flow of a Newtonian 

fluid in such a geometry and so the governing equations are the Navier-Stokes 

equations, thus:

0ux dux dux Ua dux dp
“TT7— k ^ *  — --------- k Ur~Ts----- 1---------- ~~~ =  — TT~Ot ox or r 06 Ox

1 ( 02ux 1 O f  dux \  1 dux \  . .
+ Te\~d^ + rd  ̂ V ~dr)+ ’ (  }

0ur 0ur dur Uq dur Uq2 dp
0 t + x Ox + r Or + r d§ r Or

1 / 02ur 1 0 /  0ur \  1 0ur 2 Ouq ur \
Re \  Ox2 r Or \  Or )  r 2 092 r 2 09 r2)

O U g  O U g  O U g  Ug O U g  U r Ug  1 O p
~7vT —  +  Ur—T I —x k  =  ~~rOt Ox Or r QO r r 09

1 (  02Ug 1 O f  OUg\ 1 OUg 2 0Ur Ug\
+ ~pz~ ( n 9—I— tt - I r —— I H— - —x— I— - — -̂----- — ) . (4.1c)Re \  Ox2 r Or \  Or )  r2 092 r2 09 r2 )

Here, Re = pU R /p  is the Reynolds number of the flow and p is the constant

dynamic viscosity of the fluid.

In addition to the Navier-Stokes equations (4.1), the fluid must also obey the

continuity equation
0ux 1 0 (rur) 1 Oud
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which ensures that mass is conserved in the flow.

4.2 Basic Flow

For a rigid pipe, the boundary conditions for the Navier-Stokes equations (4.1) 

are

u  =  (u x, u r , uq) = 0  at r — 1. (4.3)

The x  and 6 components correspond to no-slip at the wall and the r component 

corresponds to the impermeability of the wall.

These conditions, along with the Navier-Stokes equations (4.1) and the con­

tinuity equation (4.2), permit a uni-directional solution, Hagen-Poiseuille flow, 

thus:

Here, x  is a unit vector in the x  direction and po is an abitrary constant that 

corresponds to a background pressure. We can, without loss of generality, take 

Po to be zero.

4.3 Linear Stability A nalysis

We shall now consider solutions which are small perturbations from Hagen- 

Poiseuille flow (4.4). Such solutions may be written in the form u  =  u B +  u' 

and p =  pB + p ', where \u’x\, |uj,|, |«g|, |p'| -C 1.

If we substitute this form of solution into the Navier-Stokes equations (4.1) 

and the continuity equation (4.2) and we ignore all terms of second order in u'xi 

u'ri Uq or pr, since they are much smaller than the remaining terms, then we obtain

u B =  (1 -  r 2) x  ,

f \ 2p B (x) = P q -  — x .

(4.4a)

(4.4b)
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1 ( d2u'v 1 d (  du'x\  1 du'n
+  w  -rr^r +  -TT- r—± +Re \  dx2 r dr \  dr J r2 d62 

-  - %
1 /  d2uL 1 d { d u ' \  1 duL 2 du'n uL

Re \  9a:2 r dr \  dr J r2 dO2 r2 dO

1 f  d2u'e 1 d (  du'f)\ 1 <9uJj 2 0w'
j ------- 2.-^--------   ( r _ _ 2L j 1  +

i?e y 0£2 r dr \  dr J r2 d92 r2 dO
U q_

rr 2
| 4  +  i a ^ 4 )  +  i ^  =
ox r or r do

once we have subtracted the equations obeyed by the basic flow quantities (4.4).

By Fourier transforming equations (4.5), using the fact that the boundary 

conditions for the rigid pipe flow are independent of x and £, it is possible to 

show that the solutions must be in the form of normal modes and may be written 

thus

{ u ^ u ^ u ^ p 1) — A(u(r), v(r)> u ;(r),p (r))e^x_c^+n0^. (4.6)

Here u, v, w and p are 0(1) complex amplitude functions and A <  1 is a real 

number indicating the small size of the disturbances. Also, a  and n are positive 

real wavenumbers, where n must be integer valued in order that the solutions 

remain unchanged as 9 is increased by multiples of 27r. The quantity c = cr +  iq  

is the complex phase velocity which determines the stability of the solution: if 

co = aCi > 0 then the basic flow is unstable, i.e. the perturbations grow with time; 

if to < 0 then the basic flow is stable, i.e. the perturbations decay with time; if 

co = 0 then the basic flow is neutrally stable, i.e. the perturbations have a constant 

magnitude as the time increases.
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Substituting this form of solution into the stability equations (4.5), or equiv­

alently performing the necessary Fourier transformation, we obtain a set of equa­

tions for the unknowns u, v, w and p:

Here, D =  d/dr and u# =  1 — r2 is the scalar velocity component, uWi of the basic 

flow (4.4).

In a cylindrical polar co-ordinate system, we can find the velocity components 

of a two-dimensional disturbance, where w =  n = 0, in terms of a stream function, 

ip, which is defined by:

whence u'x and u'r automatically obey the continuity equation (4.7d). Since u'r 

has a normal mode decomposition, the stream function must also have a normal 

mode decomposition, which we may write as

ip =  A<P(r)eia{x' ct).

4.3.1 B oundary C onditions

If we now recap and compare with chapter 2, we see that the formulation of the 

pipe problem, so far, is a specific case of the kinematic approach given therein: 

we have found a set of axes in which x =  x* is the co-ordinate in the direction

iaRe(uB — c)u +  R s(Dub)v = —iaRep  +  i^D2 H— D

(  1 f n 2 + 1
iaRe(uB — c)v — —Re Dp +  f D2 4— D — ( —   b

■ r W  \ ^  (  i-i2 I n  ( TP P  1iaRe(iLB — c)w = ---- Rep  + I D H— D —   ----- 1

w

u, (4.7a)

(4.7d)

(4.7b)

(4.7c)

, 1 dip
Ux = r ^ 7,

. 1 dip
Ur ~~ ~Z~RZr dx



CHAPTER 4. COMPLIANT PIPE PROBLEM 175

of the basic flow, with axis parallel to the pipe; the second, r = y*, axis is per­

pendicular to the channel walls in their rest state, so that the equation of the 

wall is given by r = 1, i.e. yo = 1 here; also, we have chosen the final, Q = z* axis 

to form a right-handed set of axes with the x and r axes; the fluid is assumed 

to be Newtonian and hence the governing equations are the Navier-Stokes equa­

tions which, combined with the zero-wall-velocity boundary conditions, give rise 

to a basic flow of the type given by equations (2.1), where us(r) =  1 — r 2; by 

considering small perturbations from the basic flow, it has been shown that such 

disturbances may be found in the form of normal modes given by equation (2.2) 

and also that the equations governing these normal modes are in the form given 

by equations (2.3), where:

with D = d/dr\ finally, we have formulated two-dimensional disturbances in terms 

of a stream function of the form given by equations (2.4), with /* (r) = I/r.

Therefore, we have formulated the pipe problem in a way which is fully con­

sistent with the kinematic approach described in chapter 2 and hence we may 

proceed to use the results therein without further justification. Now, we must 

use these results to formulate the boundary conditions for and hence close, the 

pipe problem.

Now for the compliant pipe there is only a single wall and hence the equation

2 in w -I —v ,

2 in—rrW

r
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describing the wall’s position may be written

r =  1 +  Aaei(a{x- ct)+ne).

Therefore, following section 2.1, the boundary conditions at the compliant wall 

are:

„(!) =  ^  _ (4.8a)

v(l) - —ia(j)w , (4.8b)

w{l) = 0 (4.8c)

and where also

4>w = ac. (4.9)

We may also deal with the normalisation condition at a single stroke by con­

sidering a disturbance as r  —» 0. We can show that a suitable normalisation 

condition is

Dnu{0) -  1, (4.10)

by considering a region where r = ef, with e < l  and f  =  0(1). Dominant bal­

ance then yields u(r) = Crn from the ai-momentum stability equation (4.7a). 

The pressure, p, is of the same order as u. The remaining velocity components, 

v and w, are an order e smaller than u. Therefore, Dnu tends to a (generally) 

non-zero constant, namely n\C} as r —> 0. So we may choose the normalisation 

condition (4.10) that fixes C =  1/n!.

The conditions for the disturbances on the axis of the pipe are the same as 

for a rigid pipe and so are probably best dealt with in the following three cases:

1. Axisymmetric modes, n =  0 for which:

Du( 0) =  0j (4.11a)

u(0) =  0, (4.11b)

iy(0) =  0. (4.11c)
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2. Non-Axisymmetric modes, n — 1 for which:

ii(0) =  0 ,

D2u( 0) =  0, 

w(0) ~  0.

(4.12a)

(4.12b)

(4.12c)

3. Non-Axisymmetric modes, n > 1 for which:

u(0) =  0, 

w(0) =  0, 

u>(0) =  0.

(4.13a)

(4.13b)

(4.13c)

Now that we have found the boundary conditions for all the possible modes 

for the kinematic compliant pipe problem, we can find solutions to the system of 

linearised stability equations (4.7), with the above conditions applied, by fixing 

a, n and Re and solving the resulting problem for the eigenvalue, c and the eigen­

functions, u , v t w and p. However, there is no equivalent of Squire’s theorem [72] 

for pipe flow and so we must consider disturbances in which n is non-zero as well 

as axisymmetric modes, where n — 0.

4.4 A pplication Of Num erical M ethods

Now we shall use the ideas of section 2.2 to formulate the problem of finding nu­

merical solutions to the linearised stability equations (4.7) with the normalisation 

condition and the relevant boundary conditions from section 4.3.1.

4.4.1 T he T chebychev C ollocation  M eth od

The compliant pipe problem is defined on the interval, [0,1] and hence we must 

introduce the transformation r' — 2r — 1 to map this to the interval, [—1,1],
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so that we can use the Tchebychev collocation method. Therefore, derivatives 

with respect to r and r' are related by D' = d/dr1 = (1/2)d/dr =  (1/2).D. The 

numerical solutions then take the form:
N N

ui = > vi =  >
k=0 k=0
N N

wi = E  ™kTk{r'j) , Pj+1/2 =  ,
A:=0 &=0

where the rj are the Tchebychev-Gauss-Lobatto points (2.14), T\Jt is the k-th 

Tchebychev polynomial of the first kind, Uj — u(rj), Vj = ^(r'-), wj = w(r’-) for 

j  = 0 , . . . , TV and pj+1/2 =  7>(r'-+1/2), for j  = 0 , . . . ,  N  -  1. Here, TV +  1 is the 

number of points used.

As for the channel problem, the spacing of the Tchebychev-Gauss-Lobatto 

points is advantageous for the problem of compliant pipe flow, since the largest 

variations in the eigenfunctions occur in the regions near the pipe axis and the 

pipe wall, as shown by Kumaran [48], for example.

We can now formulate the numerical problem by expressing the linearised 

stability equations (4.7) as

[iaRe^B^'j) -  c) 4- a2\{r'2)jUj +  n2Uj -  (r')j(D,2N)jkuk (4.14a)

“  (r')j(DN)jkUk +  R e D u B ^ i r ' ^ jV j  +  To:(r/2)i i?e(C,“1):,-A;(C2)fc/pi =  0 , 

[iaRe(uB(r'j ) -  c) +  a2](rl2)jVj +  n2Vj -  (r/2)^TT^)jfcufc (4.14b)

~ (r ')j(D,N)jkVk +  Zinwj +  (r,2)j Re(DlN)jk(C~1)kl(C^)impm = 0, 

[iaRe(uB(iJj) -  c) +  a ^ r ^ j W j  +  n2Wj -  (r,2)j(Dl2N)jkwk (4.14c)

-  {r')j(D'N)jkWk ~ 2invj 4- i n r ' j R e ^ ^ j ^ C ^ k i p i  =  0 .

Here, there is no summation over j,  the matrix D'N = D ^/2  and the matrices, 

C ~ \  C1!2 and D n , are as defined in section 2.2.1. It is necessary to calculate the 

pressure at each collocation point, r'-, from the values at the half-points, Tj+lj2 

and hence the matrix, C 1//2, converting from the values of p at the half points
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to Tchebychev space and the matrix, C _1, calculating the values of p at the 

collocation points from the Tchebychev coefficients, occur in equations (4.14).

The above equations (4.14) are each calculated for j  — 1 ,.. .  ,1V — 1, giving 

31V — 3 of the 41V+ 3 equations required to find the eigenfunctions, Uj} Vj, Wj and 

Pj+1/2-

The continuit}r equation is applied at each of the half-points, yj+1/2, for 

j  = 0 , . . . ,  N  — 1, as mentioned in section 2.2.1 and hence may be written in 

the form

iar'jiC^^CkiUi +  [ r ^ C ^ ^ C ^ D 1 N)lm +  Sjm]vm +  in (C*)^Ckm  =  0 , (4.15)

where 5jm is the Kronecker tensor.

The remaining six required equations are obtained from the boundary and nor­

malisation conditions. The wall condition for the streamwise velocity, u0 =  2(pw/c, 

is relaxed here and later used to find the eigenvalue, c, as in chapter 2. The nor­

malisation condition and the remaining conditions at the compliant wall may be 

written:

The three cases for the conditions on the axis may now be represented as

1. Axisymmetric modes, n — 0 for which:

(DrnN)Nkuk — 1 (4.16a)

(4.16b)

(4.16c)

uq — icx(f)w ,

w0 ~  0.

{D’N)Nkuk — 0, 

vn — 0, 

wn — 0 .

(4.17a)

(4.17b)

(4.17c)
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2. Non-Axisymmetric modes, n =  1 for which:

— 0 ,

wN = 0 .

u>n — 0, (4.18a)

(4.18b)

(4.18c)

3. Non-Axisymmetric modes, n > 1 for which:

wm =  0 ■

un — 0 ,

vN =  0

(4.19a)

(4.19b)

(4.19c)

Hence, for all symmetries of pipe mode, we have now found the 4iV +  3 con­

ditions required to calculate the numerical solutions, Uj, Vj, Wj for j  =  0 , . . . ,  N  

and pj+1/2 for j  =  0 , . . . ,  N  — 1. These may be re-written in the form:

X l u  +  Y l v  4- W l p  =  r l ,

Y2v  +  Z2w +  W2p = r2 ,

Y3v  +  Z3w +  W3p = r3 ,

X4w +  Y4v  +  Z4w = r4 .

Here, the solutions have now been written as vectors, u , v , w  and p  with the 

j th element corresponding to the value of the functions, u} v, w at r'- and p at 

7"J+1/2> respectively. Rows 1 to iV — 1 of matrices X I , HI and TH1 are obtained 

from equation (4.14a), rows 1 to N  — 1 of matrices Y 2, H2 and W2 are obtained 

from equation (4.14b) rows 1 to N  — 1 of matrices H3, Z3 and W3 are obtained 

from equation (4.14c) and all rows (0 to N  — 1) of matrices X4, Y 4 and Z4 are 

obtained from equation (4.15). The elements of the rows 0 and N  of matrices, 

W l t W 2 and W3, are all zero and the elements of the same rows of matrices, XI ,  

HI, H2, Z2, Y 3 and Z 3, are determined by equations (4.16), plus the relevant
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set of conditions (4.17), (4.18) or (4.19). Thus, all the elements of the right- 

hand-side vectors, r l ,  r 2. r 3 and r 4, are zero except those which correspond to 

normalisation condition or the compliant condition, Vo = —iacf)w.

Therefore, we may re-write the stability equations for calculating numerical 

solutions in the form given by equation (2.16), i.e.

L(f) = r ,

where here

L =

AT IT 0 W 1

0 Y2 Z2 W2

0 Y3 Z3 W3

AT Y4 Z4 0

( A

v

w

\ p j

, r =

r l

r 2 

r3

\rV
4.4.2 T he N ew ton-R ap h son  Iterative M eth od

As mentioned in chapter 2, unless c is an eigenvalue of the problem, the relaxed 

boundary condition for the streamwise velocity at the compliant wall will not 

be obeyed. Now since there is only one wall in the compliant pipe problem, the 

streamwise wall condition can be written as

X(c) =  c u{ 1) -  — v(l) /  0. 
la

Following section 2.2.2, if c is sufficiently close to the eigenvalue, then we can 

use a Newton-Raphson method to find successively closer approximations to the 

eigenvalue. We want to find Ac such that \ { c + ^ c) =  0 and therefore to leading 

order in Ac
XAc =  —
dc

where
&X / 1 \ 2 dv
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The values of du/dc\r=i and dv/dc\r=i are found using equation (2.18), where the 

elements of dL/dc  are calculated from equations (4.14). The relevant elements 

of dcft/dc are then {du/dc)o and (dv/dc)0.

By iteratively using this whole procedure, we should find successively more 

accurate approximations to the phase velocity eigenvalue, c and the associated 

eigenfunction, (ft. When the size of the adjustment to the phase velocity, |Ac| is 

smaller than a tolerance of 10-6 |c|, the solution should be sufficiently accurate.

4.5 N um erical R esults

As for the channel problem, we have been able to identify three distinct classes 

of mode and further transitional modes whereby two or more of the modes of the 

distinct classes coalesce. The three identified mode classes appear to be equiva­

lent to the classes, identified by Sen and Arora [67], as the Tollmien-Schlichting 

(TS) class (here these are referred to as the Rigid-Type (RT) modes, as ex­

plained below), the Kelvin-Helmholtz (KH) class and the Resonant (R) class, 

for boundary-layer flow. We shall start by giving descriptions of the four mode 

classes which may lead to instabilities in the flow.

In theory the circumferential wave number, n, can take any positive integer 

value. However, it is not possible to consider all such values when seeking numer­

ical solutions. Therefore, concentration has centred on the axisymmetric modes, 

since these are the simplest in form and also on the non-axisymmetric modes 

where n =  1, since these are generally the least stable modes in the rigid pipe. 

See for example Salwen and Grosch [65].
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4.5.1 R ig id -T yp e (RT) m odes

These modes are of the same type that occur in rigid pipe flow and are the 

equivalent of the Tollmien-Schlichting modes that occur in both channel and 

boundary-layer flow. However, since rigid pipe flow is stable, i.e. all modes have 

a phase velocity with negative imaginary part, the critical layer associated with 

neutral Tollmien-Schlichting modes does not occur. Hence, the rigid pipe modes 

are not strictly speaking Tollmien-Schlichting modes and so we shall call these 

Rigid-Type modes. As for channel and boundary-layer flow these modes are in­

duced by the viscosity of the fluid and exist in the limit as the complex amplitude, 

a —> 0. The condition (4.9) then implies that (f>w —» 0. In this limit c —> c*, the 

eigenvalue for the rigid-walled pipe.

For non-zero but small values of a and (f>wy i.e. for |a|, \4>w\ <C 1, the phase 

velocity eigenvalue then takes the form c =  c* +  5c, where Sc/c* <C 1.

A xisym m etric  M odes

For (f>w — 0 our problem reduces to that of the rigid pipe and so we can compare 

our results with those of previous rigid pipe studies. For example, we can choose 

ot = 11.0, Re — 6000, n = 0 and then we obtain c — 0.98899 — 0.0128432 as did 

Sen, Venkateswarlu and Maji [68]. Introducing a compliant wall seems to have 

very little effect on the axisymmetric RT modes for Re =  O (103). Only for much 

lower Reynolds numbers is there any noticable deviation from the rigid value of 

the phase velocity. As \$w\ is increased, the Transitional modes occur before the 

perturbation from the rigid phase velocity is large enough to cause an unstable 

mode of the RT class and hence no unstable axisymmetric RT modes have been 

found.

Figure 4.2 demonstrates the resilience of the axisymmetric (n =  0) RT modes 

to compliant effects. The values of Re and a  are as above.
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(a) Phase Speed (b) Growth Rate

Figure 4.2: Axisymmetric RT pipe modes.

—> \<l>w\ =  0.00; -o-, \(f)w\ =  0.05; -x-, \(f)w\ = 0.10.

0.5 0.5

-0.5 -0.5

0.2 0.4 0.6 0.21 0.60.4
r r

(a) Rigid case (b) \<j)w \ =  0.05

Figure 4.3: Eigenfunctions for the axisymmetric RT pipe modes.

-o-, -x-, Im(u); -+-, Re(y)\ Im(v).

Components of the eigenfunctions, u(r) and 'i'(r), are given in figures 4.3(a) 

for the rigid case and 4.3(b) for \cf)w\ = 0.05, respectively. Here, 9W = 0°. These 

figures show that the rigid solution is a “centre mode”, i.e. the largest disturbances



CHAPTER 4. COMPLIANT PIPE PROBLEM 185

occur near the axis of the pipe. Introducing compliance has very little effect 011 the 

eigenfunction near r = 0 but another region near the wall arises, where significant 

disturbances occur.

Since there are no unstable axisymmetric RT modes it is not necessary to 

consider the physical realisability of such modes. Any set of wall parameters will 

lead to axisymmetric modes in the RT class which are stable, if they occur.

N on-axisym m etric M odes

For the non-axisymmetric modes with circumferential wave number, n = 1, we 

can choose a = 4.25 and Re = 4000. Then we obtain c = 0.96370 — 0.015995z, 

which agrees with those obtained by Sen, Venkateswarlu and Maji [68]. Figure 4.4

0.97 -0.04

0.965 - 0.1

o

0.96 -0.08

0.955 - 0 . 1,180 270 360 180 270 360

(a) Phase Speed (b) Growth Rate

Figure 4.4: Non-axisymmetric RT pipe modes.
—, \<l>w\ = 0.00; -o-, \(j>w\ =  0.01; -x-, \<t>w\ =  0.03; \4>w\ =  0.05;

-0-, \<t>w\ = 0.07.

illustrates the small perturbation effects of non-zero values of (f)w on the given 

eigenvalue, c. Clearly, the effects of compliance are more marked for the non- 

axisymmetric (n = 1) RT modes than for their axisymmetric counterparts. There 

is a significant deviation from the rigid eigenvalue for all ranges of the Reynolds 

number. However, again 110 unstable RT modes were found, since modes of the
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Transitional class arose before 10̂ 1 was increased sufficiently to cause the growth 

rate of the RT modes to become positive.

0.3 0.3

0.20.2

- 0.1 - 0.1

- 0.2 - 0.2

- 0 .3, -0.3
0.2 0.6 0.80.4 0.6 0.8 1 0.2 0.4

rr

(a) Rigid case (b) 10̂ ,1 =  0.05

Figure 4.5: Eigenfunctions for the non-axisymmetric RT pipe modes.

Re(u); -o-, Jm(tt); -x-, Re(v)\ -+-, /m(u); -<C>-? Re(w)\ Im(w).

Components of the eigenfunctions, u(r), v(r) and w(r), are given in fig­

ures 4.5(a) for the rigid case and 4.5(b) for \(f)w\ = 0.05, respectively. Here, 

0W — 0°. These figures show that like the axisymmetric case, the rigid solution 

is a “centre mode”, i.e. the largest disturbances occur near the axis of the pipe. 

Introducing compliance has more effect on the eigenfunction near r = 0 than for 

the axisymmetric RT modes - take the relative sizes of the eigenfunction extrema 

near the pipe axis, for example. Like the axisymmetric RT modes another region 

near the wall arises, where significant disturbances occur and this interacts with 

the region near the pipe axis.

As for the axisymmetric case, since there are no unstable non-axisymmetric 

in = 1) RT modes it is not necessary to consider their physical realisability.
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4.5.2 K elv in -H elm holtz (K H) m odes

The Kelvin-Helmholtz class of modes also exists for 4>w —> 0. However, as in 

compliant channel flow, for this class of modes c —y 0 and a is non-zero. These 

modes are associated with instabilities in the compliant surface induced by the 

flow. In the limit c —» 0, a —>■ a* ^  0 and so we obtain a stationary wave in the 

compliant surface with amplitude a*, streamwise wave number a and which is 

neutrally stable.

For non-zero but small values of <j>Wi i.e. for \(f)w\ <C 1, the values of the phase 

velocity eigenvalues are also small, i.e. c «  1 and so we obtain a surface wave 

which is either stationary or slow moving. Therefore, the arguments put forward 

in section 3.5.2 regarding the similarity of these modes and static divergence 

modes again hold, since modes exist in the pipe which obey a purely viscous 

theory (see section 4.6).

A xisym m etric  M odes

The phase velocities of axisymmetric modes hr the KH class exhibit a more notice­

able deviation from the rigid case, i.e. c =  0, than the corresponding Rigid-Type 

modes. This is particularly true for Re = O (103), where we have seen in sec­

tion 4.5.1 that any non-zero (j)w seems to have very little effect on the value of the 

axisymmetric RT eigenvalue. However, the eigenvalue never attains a value close 

in magnitude to the non-axisymmetric (n = 1) or channel KH modes for these 

values of Re.

Modes of this class seem to persist for large values of\4>w\, when Re = O (103). 

Linked with this is a difficulty in finding Transitional and Resonant modes for 

Re = O (103), as can be seen in sections 4.5.3 and 4.5.4.

Examples of the phase speed and growth rate of the KH modes are given in 

figures 4.6(a) and 4.6(b), respectively. Here, Re — 6000.0 and a =  11.0, as for
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the RT modes.
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Figure 4.6: Axisymmetric KH pipe modes.

—> \4>w\ — 0-01; -o-, \(f>w \ = 0.02; -x-, \<j>w \ = 0.05; |0W| =  0.10.

0.5

24 30

Figure 4.7: Physical realisability bounds on m, d and Cq.

—, 10° x d lower bound;

-o-, 10-8 x m lower bound; -<0>-, 10~8 x m upper bound;

1011 x Cq upper bound.

The wall parameter bounds for the modes where Re = 6000.0, a = 11.0 and 

\(j)w\ =  0.05, are given in figure 4.7. Here, the bounds all correspond to case 2 in
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section ‘2.3.2 and hence these modes may be eliminated by an increase in the free 

wave speed, Co. Alternatively, given that the lower bound for m is strictly greater 

than zero for all 0W, keeping the wall density sufficiently small will eliminate these 

modes, too. A value of 2 for m is well within this range.

0.5

-0.5

360180 270

Figure 4.8: Physical realisability for m = 5.0 x 10'. 

104 x w; -o-, 104 x d; -x-, 1010 x c20.

x 10̂

-4
02 04 0.6

r

Figure 4.9: Eigenfunctions for the axisymmetric KH pipe modes, \(f)w\ = 0.05. 

-o-, Re(u); -x-, Im(u)\ -+-, Re(v)\ -<0>-, Im(v).

Plots of the back-calculated values of d and Cq are given in figure 4.8 for 

m = 5.0 x 107. Obviously, this is an infeasibly large value for m in practice. 

However, it does demonstrate that the linear stability theory predicts unstable
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KH modes for some values of the wall density. A small unstable region can be 

seen for values of 6W close to 30°.

A plot of the eigenfunctions for Re = 6000.0, a = 11.0 and 10̂ 1 =  0.05 is given 

in figure 4.9. Here, 9W = 0°. This shows a very pronounced narrow wall region 

where the disturbances are much larger than in the remainder of the pipe.

N on-axisym m etric M odes

The magnitude of the eigenvalues for the non-axisymmetric (n =  1) KH modes 

is generally much larger than that of the axisymmetric KH modes with the same 

values of Re, cn. and (f)w. Examples of the phase speeds and growth rates for the 

non-axisymmetric (n =  1) KH modes are given in figures 4.10(a) and 4.10(b), 

respectively. Here, Re =  4000.0 and a = 4.25, as for the RT modes.

x 10‘3
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Figure 4.10: Non-axisymmetric KH pipe modes.

- ,  \(j>w\ =  0.01; -o-, \<j>w\ = 0.02; -x-, \(f>w\ = 0.05; -+-, \(j)w\ = 0.10.

Wall parameter bounds can be found in figure 4.11 for Re =  4000.0, a = 4.25 

and |(f)w\ =  0.05. This figure shows that like the axisymmetric modes, the bounds 

all correspond to case 2 in section 2.3.2 and the lower bound for m  is much greater
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than zero for all 9W. Therefore, these unstable modes may be eliminated either 

by choosing a suitably large free wave speed, Co or by choosing a suitably low 

value of the wall density. Like the axisymmetric modes, a value of 2 for m is 

well within the range of wall parameters which will eliminate the above unstable 

modes.

0.5

Figure 4.11: Physical realisability bounds on m, d and Cq.

—, 102 x d  lower bound;

-o-, 10-3 x in lower bound; -<C>-, 10-3 x in upper bound;

-+-, 105 x Cq upper bound.

Plots of the back-calculated values of d and Cq are given in figure 4.12 for 

Re =  4000.0, a = 4.25, \4>w\ = 0.05 and in =  500.0. As for the axisymmetric KH 

modes, this value of m is too large to be representative of any walls in practice 

but it does indicate that the linear theory predicts KH instabilities for sufficiently 

dense walls. Figure 4.12 shows there to be a small unstable region close to 

6W = 30°.
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Figure 4.12: Physical realisability for m =  5.0 x 102.

—, 102 x cc; -o-, 102 x d; -x-, 104 x Cq.
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Figure 4.13: Eigenfunctions for the 

non-axisymmetric I\H pipe modes, 10̂ 1 =  0.05.

Re(u); -o-, /m(u); -x-, i?e(v); Im(v)', -<C>-, Re(w); Im(w).

A plot of the eigenfunctions for Re =  4000.0, a = 4.25 and 10̂ 1 =  0.05 is given 

in figure 4.13. Here, 9W = 0°. Like the axisymmetric KH modes, this shows there 

to be a very pronounced narrow wall region where the disturbances are much 

larger than in the remainder of the pipe.
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4.5 .3  T ransitional m odes

Where the Resonant modes can be found, the transition from RT to R modes 

occurs via a series of modes which can be termed the Transitional modes as 

they are for boundary-layer flow and channel flow bounded by compliant walls. 

However, there are certain points which must be addressed with regard to these 

modes.

The first point is that these modes (and the Resonant modes) are difficult 

to find numerically for Re =  O (103). In fact we have been unable to find any 

Transitional modes for Reynolds numbers much above 100. However, these modes 

must exist at lower wave numbers for Re = O(103), since there are Resonant 

modes in the long wave limit, ct —>■ 0 for all Re (see section 4.6.2). This numerical 

problem is an outstanding issue which needs to be addressed.

The second point is that where the Transitional modes can be found numeri­

cally, the transition from the TS to R classes of modes appears to be very different 

from that in both boundary-layer and channel flows bounded by compliant walls. 

It appears that the Transitional modes can themselves be subdivided into three 

distinct subclasses.

The first subclass is formed as |<̂w| is increased for modes in the RT class. The 

RT modes do not coalesce directly with modes in the KH class. Instead the RT 

modes undergo a series of bifurcations, as \(j)w\ is increased, to form many-valued 

(possibly infinitely-valued) solutions. The least stable branch of the many-valued 

solutions corresponds to the least stable RT mode which we can, without loss 

of generality, call the zeroth branch. We can also fix 0W so that this branch lies 

between 0° and 360°, The growth rate appears to decrease monotonically as 6W is 

decreased from 0° and u  also appears to decrease montonically as 6W is increased 

beyond 360°. In a similar way, the phase speed generally appears to increase as 0W 

is decreased and it generally appears to decrease as 0W is increased. This happens
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in such a way that for branches below the zeroth, the modes are all downstream 

travelling waves and for branches above the zeroth, the modes are all upstream 

travelling waves.

The second subclass of Transitional modes occur as is increased further 

when the first subclass of transitional modes coalesces with the KH modes. This 

happens in such a way that the branch corresponding to the KH modes can be 

found at values of $w between 360° and 720°. These modes, like those in the first 

subclass, are many valued but are the first to exhibit unstable regions, as \cj)w\ 

is increased from zero. These instabilities appear to be found only in the zeroth 

and first branches, i.e. for 9W between 0° and 720°.

The third subclass of modes are formed when \<fiw\ is increased yet further and 

the Resonant modes become distinct from the second subclass of Transitional 

modes. Effectively, if \cf)w\ is decreased from a very large value, the Resonant 

modes coalesce with the third subclass of Transitional modes to form the second 

subclass of Transitional modes. Like the first and second subclasses of modes, 

these are many-valued and possibly infinitely valued solutions, though only a 

small region, near 360°, appears to exhibit any instabilities.

As for the Transitional modes in the compliant channel, there is scope for 

further work to gain a fuller understanding of the nature of transition process 

from RT to R class modes. Therefore, we shall only give examples of the third 

subclass of Transitional modes. This particular subclass exhibits some strongly 

unstable modes which are physically realisable and hence they are important in 

considering the overall stability of compliant pipe flows.
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A xisym m etric  M odes

Examples of the third subclass of Transitional modes are given in figure 4.14. 

These illustrate the strong instability that exists at 9W =  360°. As \4>w\ is in­

creased, it can be seen that modes in this subclass become massively damped 

except in a narrowing region near 9W = 360°, where the modes become more and 

more unstable. The kinematic parameters for these modes are Re = 1.0 and 

a  =  4.25.

200 1500

100 1000

3  500

-100

-200, -500,180 360 540 720720 360 540180

(a) Phase Speed (b) Growth Rate

Figure 4.14: Axisymmetric Transitional pipe modes, 

j |0w| ~  1-5, |0to| 2.0, - x -, |0ui| -— 2.5.

Wall parameter bounds for the given modes with \(pw\ =  2.0 are given in fig­

ure 4.15. This shows the most unstable mode not to be physically realisable. 

Where the modes are physically realisable, the bounds all correspond to case 2 

in section 2.3.2. Therefore, these unstable modes can be eliminated by a suit­

ably large increase in the free wave speed, c0. As for the KH modes, the lower 

bound for m  is strictly greater than zero for all 9W and hence the unstable modes 

may eliminated by choosing a suitably small value of m. Here, a value of less 

than about 0.1 would be necessary to ensure elimination of the above mentioned
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modes. However, choosing m = 0(1) will reduce the unstable region to two “un­

stable pockets” , since such a wall density will be above the upper bound for m for 

most values of 0W. This is illustrated in figure 4.16, where back-calculated values 

of d and Cq are plotted against 0W for \<f>w\ =  2.0 and m  =  1.0. This confirms the 

existence of the “unstable pockets” and hence only a very limited range of values 

of d and Cq will give rise to instabilities with \(j)w\ = 2.0 and m = 1.0.

0.8

0.6

0.4

0.2

330 345 360 375 390

Figure 4.15: Physical realisability bounds on m, d and Cq.

—, 10-2 x d lower bound; -o-, m lower bound; -<0-, m  upper bound; 

-+-, 10-3 x Cq upper bound.
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Figure 4.16: Physical realisability for m = 1.0. 

—, 10~3 x cj; -o-, 10-3 x d; -x-, 10“4 x Cq.
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Plots of the eigenfunctions are given in figure 4.17. These show that there is 

no pronounced wall region for these modes, though there is a tendency for the 

disturbances to be larger closer to the flexible surface. The kinematic parameters 

used were Re = 1.0, a  =  4.25, \(j)w\ — 2.0 and 6W =  345°.

- 10,
0.2 0.4 0.6r

Figure 4.17: Eigenfunctions for the 

axisymmetric Transitional pipe modes, \(f)w\ =  2.0.

-o-, Re(u); -<0>-, Im(u); -x-, Re(v)\ Im(v).

N on-axisym m etric M odes

Example modes of the third transitional subclass are given in figure 4.18 for the 

non-axisymmetric (n — 1) case. Here, the remaining kinematic parameters are 

Re =  1.0 and a =  4.25. Both the phase speeds and growth rates are qualitatively 

similar to the axisymmetric modes of the same subclass.

Plots of the wall parameter bounds (see figure 4.19) show these to be qual­

itatively similar to the axisymmetric case, too. Here, Re =  1.0, a = 4.25 and

\(f)w\ = 0.8. Given the noted similarities between the axisymmetric and the non- 

axisymmetric (n =  1) cases, the same approach to eliminating the unstable modes 

can be taken here, too, i.e. increasing the free wave speed or decreasing the den­

sity sufficiently will eliminate these modes and increasing the density sufficiently 

will reduce the unstable regions to two “small pockets” . Using m =  1.0, as used
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Figure 4.18: Non-axisymmetric Transitional pipe modes.
—> |0w| =  0.6; -O-, \<t>w\ =  0.8; -x-, \(f)w\ =  0.9.

for the axisymmetric case, back-calculated values of d and Cq are plotted in fig­

ure 4.20 for Re = 1.0, a = 4.25 and 10̂ 1 =  0.8. This shows the expected “unstable 

pockets” at values of 6W close to 330° and 390°.
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Figure 4.19: Physical realisability bounds on m, d and Cq.
—, 10-2 x d, lower bound; -o-, m lower bound; -0-, m upper bound;

10-3 x Cq upper bound.

The eigenfunctions for Re = 1.0, a = 4.25, \(pw\ = 0 .8  and 9W = 345° are given 

in figure 4.21. This shows the axial and radial velocity components of the dis­

turbance to be similar to the axisymmetric case. Similarly, the circumferential 

velocity component has no pronounced wall region but its largest values are close
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to the flexible surface.
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Figure 4.20: Physical realisability for m =  1.0. 

—, 10-3 x cj; -o-, 10~3 x d; -x-, 10-4 x Cq.
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Figure 4.21: Eigenfunctions for the 
non-axisymmetric Transitional pipe inodes, \(j)w\ =  0.8.

—, Re(u); -o-, /m(u); -x-, Re(v); Re(w); Im(w).

4.5 .4  R esonant (R) m odes

As for compliant channel flow, the Resonant class of modes exists for large values 

of \(f)w\, i.e. generally for more compliant walls. However, as stated above, there 

has been some difficulty in obtaining numerical solutions in this class. Modes 

of this class have only been obtained for Re at most O (102), where the inviscid
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theory is insufficient to describe the solutions and hence the phase velocity is 

a function of a as \4>w\ —y oo. Hence, for these modes c —̂ c^a^R e)  +  0i as 

\cj)w\ —» oo. The condition (4.9) then implies that the surface wave amplitude, a, 

is then also large. These modes then, like the KH modes, are associated with 

instabilities in the compliant surface, induced by the flow.

For finite but sufficiently large values of j ^ l ,  c ~  + 5c, where 5c is small,

i.e. |<5c| <C Coq. This holds until |<^J is decreased to a value close to that at which 

the Transitional modes occur.

In section 4.5.3 it was mentioned that although no numerical R modes had 

been found for higher Reynolds numbers (except to confirm the long-wave solu­

tions), they must exist since the long-wave solutions exist. There is, therefore, 

much scope for further investigation into modes in the R class and into the Tran­

sitional modes, too.

A xisym m etric  M odes

Phase speeds and growth rates of example axisymmetric Resonant modes can be 

found in figures 4.22(a) and 4.22(b), respectively. These show that although the 

oscillations are not about 1, as 0W is varied, they are qualitatively similar to those 

of the symmetric Resonant modes in the symmetric channel in section 3.5.4. As 

expected, when l ^ l  is increased the amplitude of the oscillations decreases. The 

kinematic parameters used for figure 4.22 were Re = 1.0 and a =  4.25. The wall 

parameter bounds for the above modes where \(j)w\ =  1.8 are given in figure 4.23. 

This shows that the bounds correspond to case 1 in section 2.3.2. Hence, the 

Reynolds number must be large enough that the leading-order viscous solution 

(see section 4.6.1) is insufficient to fully describe these modes because the bounds 

for the viscous R modes are those of case 2.

Back-calculated values of d and cl are plotted in figure 4.24 for m = 2. This
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Figure 4.22: Axisymmetric R pipe modes.
—, |(j>w\ =  1.8; -o-, |(f)w\ ---- 10.0.

along with figure 4.23 shows that there is a small unstable region which can be 

reduced to an “unstable pocket” by a small increase in the wall density. A value 

of m  between 5 and 10 should bring about such a stabilising effect. Only a small 

range of values of d and Cq would then lead to instabilities of this class with this 

value of \(f>w\.

0.5

330 345 360

Figure 4.23: Physical realisability bounds on m, d and Cq. 

-0-, 10-1 x m upper bound; -x-, c§ lower bound.
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360180 270

Figure 4.24: Physical realisability for m = 2.0.

—, cj; -o-, xci; -x-, Cq.

The eigenfunctions for the Resonant modes in the compliant pipe are very 

similar to those in the compliant channel as can be seen in figure 4.25 for 9W = 0°. 

Although this shows only one value of 6W, it can be seen that the eigenfunctions 

have no significant wall region. The greatest disturbances do occur closest to 

the wall though and the normal velocity component, v, is qualitatively similar to 

—?</>, where here (j) is the stream function for the symmetric R channel mode for 

9W =  0° in figure 3.40.
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Figure 4.25: Eigenfunctions for the axisymmetric R pipe modes, \4>w\ = 1.8. 

-o-, Re{u)\ -x-, Im(u)\ Re(v); Im(v).
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N on-axisym m etric M odes

The non-axisymmetric (n =  1) R modes are remarkably similar to the axisym­

metric R modes. This is in contrast to the symmetric and anti-symmetric R 

modes in the symmetric channel. This can be seen in all of the figures in this 

section. First, the phase speeds and growth rates are qualitatively similar, as 

illustrated in figure 4.26. Here, although the magnitudes of the stream functions 

differ from the axisymmetric case, the profiles are similar to those for the lower 

value of |(f)w| in figure 4.22. The remaining parameters used in figure 4.26 were 

Re = 1.0 and a = 4.25.
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Figure 4.26: Non-axisymmetric R pipe modes.

? |0u;| 1.0, 5 |0iL/| -- 1.8.

The physical realisability considerations are also very similar to those of the 

axisyrnmeric R modes. The wall parameter bounds, like the axisymmetric modes 

above, correspond to case 1 in section 2.3.2, as can be seen in figure 4.27, where 

Re = 1.0, a — 4.25 and \(f)w\ =  1.0. Therefore the unstable modes here can be 

reduced to a small pocket by an increase in the wall density. As for the axisym­

metric case, a value of m of about 5 to 10 is large enough to achieve this pocket.
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So again, only a very limited range of values of d and would then give rise to 

instabilities with \4>w\ = 1.0.
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Figure 4.27: Physical realisability bounds on m, d and Cq.

-<0>-, 10_1 x m upper bound; -x-, Cg lower bound.

Taking a lower value of 2 for m, we can see in figure 4.28 that the back- 

calculated values of d and Cq show there to be a small physically realisable un­

stable region near 6W = 360°. This is consistent with the wall parameter bounds 

as expected. The profiles of d and Cq are again very similar to those of the 

axisymmetric R modes above.

180 270 360

Figure 4.28: Physical realisability for m = 2.0. 

—, u] -o-, d\ -x-, c2q.
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Figure 4.29: Eigenfunctions for the 

non-axisymmetric R pipe modes, \<f>w\ =  0.05.

Re(u); -o-, Im(u ); -x-,  Re(v)\ 7ra(u); -0-, Re(w); Im(w).

Eigenfunctions for the non-axisymmetric (n =  1) R modes are given in fig­

ure 4.29 for a =  4.25 and 9W = 0°. These show that the x and r components of 

the eigenfunctions are very similar qualitatively to the same components of the 

axisymmetric R modes.

4.6 Analytical Results

We have been able to find analytical solutions to the governing stability equa­

tions for specific kinematic parameter ranges. As for the channel problem (see 

section 3.6), these may be divided into two main sections, which are given below.

4.6.1 The V iscous Limit

The first set of analytical solutions are for the viscous modes. These occur in the 

limit Re —> 0, where it can be seen (in figure 4.30) that the phase velocities of 

the KH modes tend towards a generally non-zero value for any <j)w. This is true 

for both axisymmetric and non-axisymmetric (n =  1) modes. Phase velocities of
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modes in the Resonant class also tend to generally non-zero values in this limit 

but are not plotted given the difficulty in obtaining such modes for larger values 

of the Reynolds number.

As mentioned in section 3.6, the axisymmetric modes for viscous flow past 

a visco-elastic wall were found by Kumaran [45], The present study aims to 

establish a viscous theory for the kinematic modes in compliant pipe flow. Also, 

it is intended that the classes of instability will be identified and a comparison 

made with Kumaran’s solutions.

In the limit Re 0, the pressure gradient is balanced by the viscous terms. 

However, our inertial pressure scaling, p* — p U2p implies that the pressure gra­

dient of the basic flow would then become infinite. Hence we need to rescale 

the Navier-Stokes equations, using the viscous pressure scaling, p* — (pU/R)p, 

to obtain:

dux dux dux ug dux
+  7 —  =

1 f  dp d2ux 1 d /  dux\  1 dux\
Re \  dx dx2 r dr \  dr )  r2 d62)  ’

dur dur dur Ug dur Ug2~^-Tux— 1- ur~ — !------ —---------- =
ot ox dr r du r

1 f  dp d2ur I d /  dur\  1 dur 2 dug ur\
Re \  dr dx2 r dr \  dr )  r2 dd2 r2 dd r2)  1

dug dug dug Ug dug UrUg

dt a dx Ul dr r d9 r
1 /  1 d p  d 2ug I d /  d'Ug\  1 dug  2 d u r Wgh

Re r d6 dx2 r dr \  dr )  r2 d62 r2 dO r2 )  5

where, as before, Re = p  UR/ jj , is the Reynolds number of the flow. With this 

scaling, the pressure of the basic flow takes the form, pB — —4a;, but since it does 

not appear in the stability equations this change will have no bearing on them.

Following the normal mode analysis of section 4.3, we obtain the revised

(4.20a)

(4.20b)

(4.20c)
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linearised stability equations for Re <C l :

Re [ia(uB — c)u 4- (DuB)v] = —iap  4  ^ D2 4  - D  — 4- a 2̂  ^ u , (4.21a)

Re [ia(uB — c)z;] =  —Dp 4  ^D2 4  - D  -  Y ~  +  a 2^ ^ v -  w , (4.21b)

t-. r . / in 9 ( n2 + 1 9 \  \  2in ,,  ̂ .Re [za(us -  c)w\ =  +  ( D~ 4  -D  -  ( ——--h a J  J w 4  v , (4.21c)

/  j \  in
i a u + i D - \ — \v-\  w =  0, (4.21d)

where again, a is the positive, real, axial wave number and n is the positive

integer-valued circumferential wave number. The normal modes are as for equa­

tion 4.6.

Taking the limit Re —> 0 yields

D2 — D — (  —- 4  a2̂ \ ^ u — iap  =  0 , (4.22a)

D 2 +  i c - +  v - ^ w  (4.22b)>2 ' - D -  —4  + a2r  \  rz j  j  r*
l2 , 1 n  ( n2 +  1 2^ ^ 2m zn

7T£> 4  - D  -  I —— h a  1 1 w 4  —  v -  —p =  0 , (4.22c)

(  1 \  in
iau  + ( ^ 4 —  J v -\ w = 0 . (4.22d)

From these equations we should recover the solutions for small Reynolds numbers 

given by our numerical scheme.

For simplicity, we shall consider solutions in two separate cases, namely ax- 

isymmetric modes and non-axisymmetric modes, as follows.
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Figure 4.30: Phase-Velocities of the KH pipe modes as Re -> 0. 
Re =  10-6; -o-, Re = 1; -<0-, Re =  10;

-x-, Re = 102; Re = 103; Re = 104.

A xisym m etric M odes

For the case n = 0, equations (4.22) simplify significantly to

L(0)U — iap = 0 , (4.23a)

L{l)v -  Dp -  0, (4.23b)

w = 0, (4.23c)

iau +  [ d ~\—  J u  = 0, (4.23d)

where L(j) =  D'2 +  \D  -  ( £  +  <*2) .
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By applying P(0) to the continuity equation and using the functional identity

L(0) {D +  1/r) =  (D +  1/r) Lq), we can obtain a single second-order o.d.e. for

the pressure, thus

jL(0)P =  0. (4.24)

Hence the pressure must take the form

p(r) ~  PQIQ(ar) , (4.25)

since it must be finite at r =  0. Here, R  is the zeroth modified Bessel function of 

the first kind and P0 is a constant.

Substituting for the pressure in the stability equations (4.23), we can deduce 

the following forms for the velocity components:

£
u(r) = U0Io{ar) +  ~P0r / i ( a r ) , 

v(r) = V0h(ar) + \ p 0r h ( a r ) .

Here, Po, Vo are constants and I\ is the first modified Bessel function of the first 

kind. We can obtain

zctPo L  odd) ~b To — 0 ?

VqI i (g) +  - P o I o ( g i )  =  —ia(j)w ,

Po =  l ,

from the continuity equation (4.23d), the boundary condition, v = ~ia(pw at 

r — 1 and the normalisation condition, u — 1 at r = 0, respectively. The above 

expressions for u, v and p, along with the conditions for finding P0> Pq and Vb, 

form a kinematic equivalent of Kumaran’s [45] result.
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The equations for Pq and Vq can be solved simultaneously, yielding

V q —- ia 

Pq — 2 ia

0 "“ 2 /i(a )  - a l 0{a) ’
-̂1 (^)

2/j. ( a )  — a / 0 (tt) '

This allows us to find an expression for the phase velocity eigenvalue using 

equation (4.8a) for u( 1), namely

u( 1) =  u(a) (1 +  u(a)4>w) ,

where

_  aI$(ot) -  2Ia{a)h{a) -  a l^ ja )
aIo(a) — 2Ii(a)

~ — a2Ii(a) , .
Q'/o(a) — 2Io(a)Ii(a) — a l i2(a)

Hence, our expression for the phase velocity becomes

c =  (1 +  u(a)(j)wy l . (4.27)

For the case a =  4.25, the phase velocity was plotted for the KH modes where 

\(j)w\ — 0.05 and compared with the numerical solutions for Re =  10"6. This com­

parison can be seen in figure 4.31, with excellent agreement between the numerics 

and analysis.

Contour plots of the phase speed in the 9w-a plane are given in figure 4.32 

for various values of \<j>w\. Corresponding plots of the growth rate are given in 

figure 4.33. These show clearly that, for smaller values of | ^ |  (see figures 4.32(a) 

and 4.32(b)), the modes belong in the KH class for all values of ci\ Here, the 

phase velocities take values oscillating about zero as 9W is varied. However, as 

| ^ |  is increased a singularity appears, initially at a = 0 for 10̂ 1 =  0.25. This 

singularity occurs at increasing a  as | ^ |  is further increased. For values of a
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Figure 4.31: Analytical-Numerical comparison for the 
viscous axisymmetric KH pipe modes.

“O-, analytical cr\ -0-, analytical c*; -x-, numerical cr\ -+-, numerical c$.

above that at which the singularity occurs the, modes remain as members of the 

KH class. However, for those modes occurring at lower wavenumbers than the 

singularity, the modes belong to the Resonant class and hence the phase velocity 

oscillates about a real non-zero value as 0W is varied.

This is reminscent of the viscous modes for the channel in section 3.6.1 and 

hence similarly, we see that the range of | ^ | ,  in which the transitional modes 

occur, has shrunk to zero in the limit Re —y 0. Only the singularity remains of 

the process by which the transition from KH to R modes occurs.

As for the channel, the occurence of the singularity and the associated R 

modes can be deduced from the expressions for c and u, which here are (4.27) 

and (4.26b), respectively. If we define ac as the critical wave number at which the 

singularity occurs when </>w =  ((f>w)Ci then (</>w)c =  —l/u(oic). Figure 4.34 plots u 

against a  for a > 0. This illustrates three important properties of u. The first is 

that u is —4 when a is zero. The second is that u is a strictly increasing function 

for a > 0. The third is that u —> 0 as a  —y oo. These imply that —1/u is also a 

strictly increasing function for a > 0, is equal to 0.25 when a = 0 and tends to 

infinity as a  —> oo. Therefore, ac, can take any value from zero upwards. Hence 

also, ac can only exist for \(f)w\ > 0.25 and ac increases as <pw is increased.
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Figure 4.32: Phase-Speeds of the viscous modes.

At the begining of this section it was stated that it was hoped that the modes 

identified by Kumaran [45] might be classifiable within the kinematic scheme. 

However, the viscous modes for the visco-elastic wall have a growth rate which 

tends towards —1 as the wave number becomes large, whereas our kinematic 

modes have a growth rate which tends towards zero in the same limit. Therefore, 

Kumaran’s modes lie outside the span of the current kinematic formulation. The 

most likely explanation is that the visco-elastic wall is capable of moving in the 

direction of the mean flow, whereas the current kinematic formulation is only
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valid for walls which move in a direction which is normal to their rest state and 

the mean flow. An extended kinematic formulation, incorporating streamwise 

disturbances in the wall position, should be able to catch the differing behaviour.

)

{ ( & v  )1 V —  - 0 2 / '  y

0 90 180 270 360ew

( a )  | 0 U,| = 0 . 1

§)

180 270 360

(b) l ^ l  = 0 .2

180 270 360

(c) |0U,| =  0.4 (d) |< ^ |= 5 .0

Figure 4.33: Growth-Rates of the viscous modes.

The fact remains though, that streamwise motion of the wall is certainly 

not a necessity for instabilities in viscous flows in a compliant pipe. This is 

demonstrated by considering the physical realisability of the kinematic modes. 

Wall parameter bound plots are given in figure 4.35 for the viscous KH modes
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Figure 4.34: u for the viscous axisymmetric pipe modes.

with a = 4.25 and \4>w\ =  0.1. These show that, here, all the bounds correspond 

to case 2 in section 2.3.2. Therefore, these modes may be stabilised by a suitably 

large increase in the free wave speed, Cq, too.

0.5

330 345 360

Figure 4.35: Physical realisability bounds on m, d and Cq for the KH modes.
—, d lower bound; -o-, 10~3 x m lower bound; -0-, 10-3 x m  upper bound;

102 X  Cq upper bound.

The back-calculated values of the wall parameters, d and Cq, are plotted in 

figure 4.36 for a = 4.25, 10^ | =  0.1 and m =  100.0. This shows that there is 

a small physically realisable unstable region, near 6W = 360°. Figure 4.35 then 

implies that this region will be shrunk to a very small “unstable pocket” if m is 

reduced to 2. Similarly, a huge increase in in will have the same effect.

The wall parameter bounds for the R modes with a =  1.0 and \cf)w\ = 0.4, can



CHAPTER 4. COMPLIANT PIPE PROBLEM 215

0.6

0.3

-0.3

- 0 .6,
270 360180

Figure 4.36: Physical realisability of the KH modes for m = 100.0.
—, u;; -o-, 10_1 x d; -x-, 10 x Cg.

be seen in figure 4.37. These, too, all correspond to case 2 in section 2.3.2 and 

thus may be stabilised by a suitably large increase in the free wave speed, c0.

0 8

0 6

0.4

0.2

180 210 240 270

Figure 4.37: Physical realisability bounds on m, d and Cq for the R modes.
—, 10-1 x d lower bound;

-o-, 10-3 x m lower bound; -<0>-, 10-3 x m upper bound;
-+-, 10 x eg upper bound.

However, as can be seen in section 4.6.2 the longer wave axisymmetric viscous R 

modes have bounds corresponding to case 1 and so not all viscous axisymmetric 

modes may be stabilised in the above way. Back-calculated values of d and Cg 

can be found in figure 4.38 for a = 1.0, \(f)w\ = 0.4 and m = 100.0. These show, 

along with figure 4.37, that like the viscous axisymmetric KH modes, there is an 

unstable physically realisable region, which may be reduced to a small “unstable
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Figure 4.38: Physical realisability of the R modes for m = 100.0. 
—, oj; -o-, 1CU1 x d; -x-, 10_1 x Cq.

pocket” , by a large enough decrease or increase in m.

Therefore, we can eliminate viscous axisymmetric modes of the KH class by a 

suitably large increase in the free wave speed, c0, of the wall. Using, the arguments 

of section 3.6.1, we can choose wall parameters such that the singular modes are 

avoided and also those in a small region surrounding them. However, eliminating 

the R. modes is not so straightforward as the KH modes, since the wall parameter 

bounds correspond to both cases in section 2.3.2.

N on-axisym m etric M odes

For the cases where n > 1, it is convenient to introduce the quantities

ip± = v ±  iw ,

which may be inverted by

w —

v =
2
~
2 i

Using the above transformations in the limit Re —> 0, the stability equations
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may be re-written in the form

Here,

\  r

1 /  „  n  +  l \  1 /  n - 1tau +  -  I D H U + +  -  D ----------

L± = Dz + - D  -  I ( n ± 1 ) 2  +  
r \ rl

,2
L0 = D2 + - D  -  + ar \ r

iap = 0, (4.28a)

: ) p  =  °> (4.28b)

; ) p - o . (4.28c)

ip— = o . (4.28d)

:2) ’/ 
2 1

The approach to solving these equations is, as for the two-dimensional case, to 

apply L0 to the continuity equation (4.28d) to obtain a single equation for the 

pressure. This expression can then be substituted into each of the remaining 

stability equations (4.28) to obtain equations and then explicit expressions for 

the quantities w, ip+ and ip-.

Applying L0 to the continuity equation (4.28d) yields

iaL0u +  ( D +  ^ - ± i )  V>+ +  \ u  \ D  -  ^ - L )  =  0.

Now using the functional identities

L o ( o  + ^ )  =  ( o  + ^ ) l + , (4.29a)

Lo ( D ■ = " ~7"“ )  - <4-29b)

along with each of the remaining stability equations we obtain the single second- 

order o.d.e. for the pressure,

L0p = 0 . (4.30)
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Hence, the pressure must take the form

p(r) =  P„I„(ar) (4.31)

since it must be finite at r =  0. Here, In is the n-th modified Bessel function of 

the first kind.

Substituting this expression for the pressure into each of the remaining stabil­

ity equations (4.28) allows us to deduce the following general form of the solution 

for n > 1:

£
w(r) =  UnIn(ar) +  -P nrln-i{ar) ,

1
if}+(r) = T +nIn+1(ar) -f - Pnrln(ar),

4>-{r) =  ^ _ n/ n_i(orr) +  ^Pnr ln(ar) .

Here, Uni T +n and 4r_n are constants determined by the boundary conditions, 

the normalisation condition and the continuity condition

a iUn + i  ( * +B + *_„) + i p „ - o . (4.32)

For the specific case n =  1, the normalisation condition Du =  1 at r = 0 gives

olU\ iP\ — 2.

The conditions at the compliant wall, ip+ =  =  —ia.<pw at r =  1, yield

^ + i /2(ck) +  ^Pih{a)  =  -ia(f>w ,

\Dr_1Io(a') +  ~PiIi(a) =  ~ia(f)w .

These three equations along with the continuity condition (4.32) can be writ­

ten in the matrix form Aq =  s, if q = (T+1, Ui, Pi)T and 

(  ct a  i  \  (  n \

A =

77 ia6 Z 6
0 0 a i

12(a) 0 0 lh(a)

^ 0 / 0(a) 0 \ h ( a )  J

0 

2

ia<p.

^ %QL(f)yj J
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This can be inverted easily to find

P i =
a

K  V 2 \ I o { a )  I2(ol)

aK l  +  — ( ol<!>w -  / ’i ( o f ) )  ( T , x +  7 7 7 5  2 \h{oc) I2[pt)

h(a) ~4+1 h(a)K

where
3 _  ah(a)  /  1 _ J _
2 4  \ / q ( c v )  h i ® )

(4.33)

We can now find an expression for u( 1), similar in form to the case n = 0, 

namely

u( 1) =  u(a) (1 +  u(a)<f>w) ,

where in this case

_ _  2/i(g) /  _  J L \  +  / q( q ) 

a \ K ) I\
1

U= K
(72 ( Ii(g) To (a)
2

1
+

1
a 2 )  \ I Q(a) / 2(a) 

and u = u/u. Thus, our expression for the phase velocity is

2 (j)w

(4.34a)

(4.34b)

c = u(a) (1 +  u(a)(f>w)-l (4.35)

For the case a = 4.25 the phase velocity was plotted for the KH modes where 

\</>w\ = 0.05 and compared with the numerical solutions for Re = 10-6. This com­

parison can be seen in figure 4.39, with excellent agreement between the numerics 

and analvsis.

Contour plots of the phase speed in the 6w-a plane are given in figure 4.40 

for various values of \<f>w\. Corresponding plots of the growth rate are given in 

figure 4.41. These show clearly that, like the axisymmetric modes, for smaller
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Figure 4.39: Analytical-Numerical comparison for the 
viscous non-axisymmetric (n =  1) KH pipe modes.

-o-, analytical cr ; -<0-, analytical c*; -x-, numerical cr ; -+-, numerical Cj.

values of 10̂ 1 (see figures 4.40(a) and 4.40(b)), the modes belong in the KH class 

for all values of a. Like the axisymmetric modes, singularities appear as \4>w\ 

is increased. However, unlike the viscous axisymmetric modes and the viscous 

channel modes, the singularity first appears at a non-zero value of the wavenumber 

a ^  3.5. The corresponding value of 10̂ 1 is approximately 0.3. For larger values 

of | (f>w | there are two singularities in contrast to the other viscous modes so far 

considered. One singularity occurs at a wave number less than 3.5, the other 

at a value greater than 3.5. Modes with wave numbers between those of the 

singularities belong to the Resonant class. The remaining modes belong to the 

I\H class.

As for all of the previously found viscous modes, the range of 10^ | in which 

the transitional modes occur, has shrunk to zero in the limit Re —> 0. Only the 

singularities remain of the process by which the transition from KH to R modes 

occurs.

The occurence of the singularities and the associated R modes can be de­

duced from the expressions for c and u. If we define c*i and a u as the lower and 

upper critical values of the wave number at which the singularities occur when 

4>w — (0™)c) then (0u>)c =  — 1 /u(ai) = — 1 /u(au). Figure 4.42 plots u against a
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Figure 4.40: Phase-Speeds of the viscous inodes.

for a  > 0. This illustrates three important properties of u. The first is that u is 

zero when a  is zero. The second is that u —> 0 as a —> oo. The third is that u has 

a single minimum, is a strictly decreasing function for wave numbers less than 

that at which the minumum occurs and is a strictly increasing function for wave 

numbers above that at which the minimum occurs. These imply that — 1/u also 

has a single minimum, is also a strictly decreasing function for wave numbers less 

than that at which the minimum occurs and is also a strictly increasing function 

for wave numbers above that at which the minimum occurs. Finally, —1/u —> oo
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as a  —> 0.

222

90 180 2700\JU

(a) |0W| =  0.1 (b) \4>w \ = 0 .2
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180 270 360

(c) \<pw\ =  0.4 (d) \4>w\ =  1.0

Figure 4.41: Growtli-Rates of the viscous modes.

Now, if the minimum of u occurs at a c, then singularities occur only for wall 

stream functions, ((f)w)c, where \((fiw)c\ > —l/u(ac). Additionally, for such wall 

stream functions, there are two values of a which obey |(0tu)c| =  — l/u (a ). These 

we may label at and au, as above. The existence of the two singularities for 

\<J>w\ > |(0u;)c|, can be seen in figures 4.40(c) and 4.40(d).

In figures 4.40 and 4.41 it can be seen that the 6-a plane is divided into two 

regions by a c = 0 contour at an approximate wave number of 2, regardless of the
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classes of mode present. There is a change of sign of the growth rate, u;, as a 

is increased from just below the value at which the c =  0 contour occurs, to just 

above it, with 0W fixed.

>3-2

-4
Q

Figure 4.42: u for the viscous non-axisymmetric (n = 1) pipe modes.

By considering our expression 4.35 for the phase velocity eigenvalue, we can 

find the value of a  at which this contour occurs. For c to be zero, one of the terms 

whose product forms c must be zero. The only such term which is dependent on a 

but not on (f)w is l / u r. Setting this term equal to zero requires, from equation 4.34, 

that
n/K

= 0 .2/i(q:)(A — 1) -t- otlô ct)
Hence K  =  0, since

a
—̂ 2 as o: —y 0.

2 I i (a ) (K  — 1) T  qlI q(ok)

So, our required value of a is the solution of the equation

K  = % — 1-7—r 1 = 0 .
2 4 \/o (a )

A numerical evaluation of the root, ai can be performed, which yields (to 4 d.p.)

Qi = 1.9918, 

which agrees well with figures 4.40 and 4.41.



CHAPTER 4. COMPLIANT PIPE PROBLEM 224

Therefore, there exists at least one neutral mode for any value of <pw. Further­

more, by showing that, except at 6 =  0 and 180°, dci/da ^  0 at ft =  au, there 

must be an interval, in which c*i is either the upper or lower bound, where c* > 0.

Now,

dci 2\<fiw\sm9w (  d f  1 \  2(u + cos9w) du
da 1 4- v? +  2u cos 0W \ d a \ u rJ ur (1 4- u2 +  2u cos 0W) da

Since u must be a continuous function, du/da is finite for all a. Hence the 

right-hand term in the brackets will be zero at a =  oq. Therefore, to show that 

dci/da 0 at a — cq, for all (f)nn we must show that

d (  1 A / n—— ~  0 at a =  oq .da \ u r /

Substituting from equation 4.34, this is equivalent to requiring

dK
0 at a = ai,.da

Using equation 4.33,

dK  ctZi(ft) /  7i(g;) 7̂  (g;) 4- 73(0;)
da 4 \ / 02(ft) +  2722(q;)

a (Jq (a) 4- 72(a)) ̂  f  1 1
2 J \ I 0(a) I2(a)

=  — 0.3995(to 4 d.p.) at a = cq .

Thus for any 11011-zero 4>w, non-axisymmetric (n =  1) viscous modes always 

appear to have a range of wave numbers, near a  =  aq , which are unstable. How­

ever, in practice the Reynolds number will not be exactly equal to zero and hence 

the above theory will only be a leading-order approximation to the phase velocity. 

Therefore, the second-order terms in aRe must be found to determine the overall 

stability of the non-axisymmetric (n =  1) low Reynolds number modes with wave 

numbers close to or — oq. This is a necessary area for further work.
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Another possible explanation for the apparent existence of the above insta­

bilities for all wall types concerns the basic flow. This was assumed to be uni­

directional and parallel to the x axis. However, in reality, the driving pressure 

gradient results in lower pressures downstream and hence the walls will tend to 

converge, leading to a non-parallel basic flow. For the example of the stretched 

membrane used herein, the rate of convergence of the walls is proportional to 

the pressure gradient, i.e. drs/dx  cx dp/dx. For high Reynolds number flows, 

dp/dx = —4/Re  and hence the convergence of the walls may safely be neglected. 

However, for low Reynolds number flows, dp/dx = —4 and so it is not clear that 

the parallel-basic-flow assumption can be made.

0.4

0.2

330 3603450,

Figure 4.43: Physical realisability bounds on 771, d and Cq for the 

KH modes - high wave number.

—, 10“ 1 x d lower bound;

-o-, 10-3 x m  lower bound; -<(>-, 10~3 x m  upper bound;

-+-, 10 x Cq upper bound.
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Figure 4.44: Physical realisability of the 

KH modes for rn = 100.0 - high wave number.

— , cj] -o-, 10-1 x d; -x - ,  102 x Cq.

Example plots of the wall parameter bounds away from a — oti can be found 

in figure 4.43 for the KH modes where a = 4.25 > a i and \(f)w\ = 0.1 . These show 

that the bounds correspond to case 2 in section 2.3.2 and hence these modes 

may be stabilised by an increase in the free wave speed, Co- Similarly, for wave 

numbers less than aq, the bounds also correspond to case 2 in section 2.3.2 and 

so also may be stabilised by an increase in c0. This is illustrated by figure 4.45, 

where a =  1.0 and \(pw\ = 0.1.

Plots of the back-calculated values of d and Cq are given in figures 4.44 and 4.46 

for cr =  4.25 and a =  1.0, respectively. Here also, \(f)w\ = 0.1 and m = 100.0. 

These two plots are qualitatively similar if 0W is shifted by 180° for the lower wave 

number plots. For higher values of the wave number there is a small physically 

realisable unstable region for values of 9W just below 360°. Likewise, for lower 

values of the wave number there is a small physically realisable region for values 

of 9W just below 180°. In both cases a decrease in m  leads to the small unstable 

region being reduced to a very small “unstable pocket” , as does a sufficiently 

large increase in in.
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Figure 4.45: Physical realisability bounds on m, d and Cq for the 

KH modes - low wave number.

—, d lower bound; -o-, 10-3 x m lower bound; -<0>-, 10~3 x rn upper bound;

102 x Cq upper bound.
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180 270 360

Figure 4.46: Physical realisability of the 

KH modes for m = 100.0 - low wave number.

—, cj; -o-, 10-1 x d; -x-, xcq.

Figure 4.48 gives the wall parameter bounds for the viscous non-axisymmetric 

(n = 1) modes with a — 4.25 and \(f)w\ = 1.0. Unlike all of the viscous modes so far 

considered, these modes have bounds which correspond to case 1 in section 2.3.2 

and so an increase in the free wave speed, cq will not eliminate these modes.
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In fact a decrease in Co is needed to eliminate these modes. Alternatively, an 

increase in m should reduce the region of physically realisble instabilites to a 

small “pocket” . A value of 2 for m yields a relatively small region for physically 

realisable instabilities with a =  4.25 and 10̂ 1 =  1.0, as illustrated in figure 4.47. 

Figure 4.48 shows that an increase in m of no more than an order of magnitude 

should reduce this unstable region to a small pocket of less than 3° in extent in 

the 0W co-ordinate.

In this section we have found that the viscous non-axisymmetric (n = 1) 

modes differ in several ways from the other viscous modes so far encountered 

in both the compliant pipe and channel. One difference is that the viscous non- 

axisymmetric (n =  1) R modes cannot be stabilised by an increase in the free 

wave speed. Another is the number and location of the singularities by which 

transition from the KH to the R modes occur in the viscous limit. The most im­

portant remaining difference is that the leading-order solution in the limit Re 0 

suggests that non-axisymmetric viscous modes in a compliant pipe are unstable 

for any value of i.e. for any wall parameters. The second-order solution in 

aRe is thus required to determine the overall stability of these low Reynolds 

number modes.

0.6

0.3

-0.3

-0  6
180 270 360

Figure 4.47: Physical realisability of the R modes for m = 2.0. 
—, cj; -o-, 10-1 x d; -x-, Cq.
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Figure 4.48: Physical realisability bounds on m, d and Cq for the R modes. 
-0-, 10_1 x m upper bound; -x-, lower bound.

4.6.2 The Long-W ave Limit

The other case in which we may find analytical results is that of long-wave distur­

bances where a —» 0. Here, we expect from the viscous solutions that c = 0(1), 

to leading order in cr.

As for the viscous limit, Re —» 0, we need to use the viscous pressure scaling, 

p* = (pU/L)p, for the pressure. Therefore, with this scaling equations (4.21) 

govern long-wave disturbances. Again, for simplicity’s sake, we shall consider 

solutions for the two separate cases of axisymmetric and non-axisymmetric modes.

The wall conditions (4.8), along with the normalisation condition (4.10) and 

the governing equations (4.21), then allow us the write the solutions in the form:

u(r) = u0(r) + au\{r) -I- 0 (a 2) , (4.36a)

v(r) = av0(r) +  a2v\(r) -I- 0(<a3) , (4.36b)

w(r) = aw0(r) -f a2W\[r) + 0 ( a 3) , (4.36c)

p(r) = aap0(r) + aa+lUi(r) + 0 ( a a+2) , (4.36d)

c — Cq T QtC\ T 0 ( a 2) , (4.36e)

as o; —> 0. Here a depends on the geometry of the mode under consideration and
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is found by balancing terms in the momentum derived stability equations (4.21a), 

(4.21a) and (4.21a). As stated above, in order to proceed we shall consider the 

two separate cases, as follows.

A xisym m etric  M odes.

In this case, o = — 1 and hence to leading order we have:

iuQ 4  H— ^ Vq = 0, (4.37a)

^D2 4- uQ -  ipa = 0 , (4.37b)

Dp0 =  0 , (4.37c)

with boundary conditions which may be written as:

i i O( 0 )  =  1 ,

Duo(0) =  0, 

u0(0) =  0,  

u0( - l )  =  -i(f)w ,

c° ~  — 7 r \  'u0(l)

It is easy to verify that the pressure, p0, must be a constant, the streamwise 

velocity, u0, must be a quadratic funtion of r and the normal velocity, vq, must 

be a cubic function of r. The coefficients of each function can be found easily so 

that

uQ(r) =  1 4  2(2$w -  l ) r 2 ,

(r) = - %- t +  |( 1  -  2(j)w)r3 ,

p0(r) = 8i(l ~  2<f>w) ,
2 (f)w

Co — 7~r— ~ r  ■
4̂>w l
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For the \cf)w\ = 0.1, the leading-order solution was plotted alongside the nu­

merical solution where in both cases Re = 100.0 and a = 10~4. Similarly, the 

leading-order solution was plotted for \4>w\ = 0.4 alongside the numerical solu­

tion for \cj)w\ =  0.4, Re =  100.0 and a =  10-4. These plots can be seen in fig­

ures 4.49(a) and 4.49(b), respectively, with good agreement between the analyti­

cal solution and the numerics.

0.4

0.2

- 0.2

- 0 .4,
270 360180

(a) KH modes.

Figure 4.49: Analytical-Numerical comparison for the 
long-wave axisymmetric pipe modes.

-o-, analytical cr , Re(c0); -<0-, analytical a, /m (c0);
-x-, numerical cr ; numerical c*.

For lower values of \(f)w\ the modes belong in the KH class as can be seen 

in figures 4.50(a) and 4.50(b), which plot the phase speed and growth rate for

modes where \4>w\ — 0.1, assuming that the leading-order solution is valid for

a  =  10~4. Plots of the wall parameter bounds show these to correspond to case 2 

in section 2.3.2 (see figure 4.51). This is the same as for the viscous modes and 

the long-wave KH modes in a compliant channel. Thus, these modes can be 

eliminated by an increase in the free wave speed, c0. It can also be seen that 

except near 9W = 360°, instabilities occur only for very large values of m.

(b) R modes.
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- 0.2

-0.4
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(a) Phase Speed, Re(co)

x 10~5

3

-2

-4
90 360270

(b) Growth Rate, a. Im(co)

Figure 4.50: Long-wave KH axisymmetric pipe modes,

|<f)w\ =  0.2 - leading-order solution.

This is confirmed in figure 4.52 in which the back-calculated values of d and 

Cq for \(f>w\ = 0.1 and m = 2.0 are plotted. Again we have assumed the low wave 

number, a = 10-4. Only a very small “unstable pocket” exists (near 9W = 360°) 

and so only a very limited range of values of d and Cq will give rise to these very
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slowly growing instabilities.

A singularity occurs at (f)w = 0.25 as \(J>W\ is increased. This is consistent with 

the occurence of the singularity in the viscous axisymmetric inodes as ac —> 0. 

Hence, the Transitional modes are reduced to the singularity in the long-wave 

limit, as is the case for the viscous modes and the long-wave modes in a compliant 

channel

0.8

0.6

04

0.2

330 345 360

Figure 4.51: Physical realisability bounds on m, d and Cg for the KH modes.

—, 103 x d lower bound;

-o-, 10-11 x in lower bound; -0-, 10-11 x m  upper bound;

-+-, 10 x Cq upper bound.

0.6

0.3

-0.3

-0 6
180 270 360

Figure 4.52: Physical realisability of the KH modes for m =  2.0.

—, 104 x a;; -o-, 10-7 x d; -x-, 10-12 x Cq.
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The modes belong to the Resonant class for values of \(j)w\ greater than 0.25. 

This is illustrated in figures 4.53(a) and 4.53(b) which plot the phase speed and 

the growth rate for \<j)w\ =  0.4, again assuming the low wave number, a — 10-4.

0.5

360270

(a) Phase Speed, Re(co)

x 10'5

3

-3

-6, 270 360

(b) Growth Rate, a .Im(co)

Figure 4.53: Long-wave R axisymmetric pipe modes, 

\(j)w\ = 0.4 - leading-order solution.

Unlike the I\H long-wave modes and the example axisymmetric viscous R
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modes in section 4.6.1, the wall parameter bounds correspond to case 1 in sec­

tion 2.3.2. These are plotted in figure 4.51. Therefore, these modes cannot be 

eliminated by a suitable choice of only one of the wall parameters, m, d or Cq.

0.5

345 360

Figure 4.54: Physical realisability bounds on ?7i, d and Cq for the R modes. 
-<C>-, 10-9 x m upper bound; -x-, 102 x Cq lower bound.

0.5

-0.5

180 270 360

Figure 4.55: Physical realisability of the R modes for m = 2.0.
—, 104 x cj; -o-, 10~6 x d; -x-, lO"9 x c20.

A suitable combination of all the wall parameters is necessary to eliminate these 

modes but the unstable region can be reduced to an “unstable pocket” by choos­

ing a small value of the free wave speed, c0. Such a choice of c0 is counter to what 

is required to eliminate the above axisymmetric long-wave KH modes. Therefore, 

ensuring all long-wave modes are stable is a much more complex problem than 

for the channel problem. The physically-realisable unstable long-wave R modes
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only exist near 6W =  360°. This is illustrated by figure 4.55 which plots the back 

calculated values of d and c\ for \<f>w\ =  0.4 and m — 2.0.

To next order the stability equations yield:

%U\ T d~ —̂  =  0 , (4.38a)

D2 +  u\ — ipi =  Re(i(uB — cq)uq +  (Dub)vq) , (4.38b)

Dpi =  0 , (4.38c)

with boundary conditions which may be written as:

«i(0) =  0,

Du\(0) = 0,

wi(0) = 0 ,

v iW  =  0 ,
2cj)wul (l)

Cl =  ~  2 7 T V - •
w )

It is easy to verify that the second-order solution is:

Ui{r) =  “  5)7’2 “  9(2^  ~  i )7,4 +  2(4^  _  1)r6] »

= ^  (l^4</) ~  5̂?'3 ~ 6 ^ w ~  1̂ 5 + ^ w ~  ’
( \ _  ^ e (2 ĥ° — l)(80u> T 13)

Pl(r> ~  18 1 - 4 </>w ’
_  .Re<j)w{2(f)w -  1)(1 -  (f)w)

°l  ̂i s  (i -  4 (j)wy

Plots of the second-order solutions are given in figures 4.56 and 4.57 for the 

KH and R modes, respectively. Parameter values are as for the leading-order so­

lutions. As for the long-wave compliant channel modes the second-order solution 

balances the inertial terms due to the leading-order solution.
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(a) Phase Speed, Re(ci)
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(b) Growth Rate, a . I m ( c i )

Figure 4.56: Long-wave KH axisymmetric pipe modes, 

\(f)w\ =  0.1 - second-order solution.
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Figure 4.57: Long-wave R axisymmetric pipe modes, 

\(/)w\ =  10.0 - second-order solution.
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N on-axisym m etric M odes.

Here, it is convenient to use the functions, ip±, introduced in section 

then we find that a =  1. If, additionally, we now write

■0+(r) =  a'ip+0(r) +  a2ip+1 (r) +  0{a3) ,

V’-(r) =  ai>-0{r) +  a ^ ^ r )  +  0 ( a 3) ,

where — Vj ±  iwj, then to leading order we obtain:

1 /  n  +  l \  1  /  n — l h

m ° +  2 (  ~ r ~ )  0 +  2 \  r  )  0 =

(Ẑ o +  q.'2)tio — 0 ) 

(L+ +  a2)i/)+0 — j  p0 =  0,

(.L- +  a 2)'0„o —  ̂p0 =  0,

with boundary conditions which may be written as:

'Uo(O) = 0 ,

B u0(0) =  1, 

ip+0(0) =  0 ,

^ + 0  ( ^ )  'itP'W 5

0 (-Q ifiw ;

2 (f)w
Co =

^o(l) ’

4.6.1 and

(4.39a)

(4.39b)

(4.39c)

(4.39d)
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for n = 1 and

Uo(0) =  0,

Dnu0(0) =  1, 

-0+0(0) =  0,

(0)is finite, 

^+o(!) =  -i&w , 

^ —o(^) =  — )

C°  U 0 ( l )  ’

for n > 1. Here L± and L0 are defined as in section 4.6.1.

Using identities (4.29), it is easy to verify that the pressure, p0, must be 

proportional to rn, as must the streamwise velocity, uq. It is then possible to 

construct the solutions for the functions, >̂+0 and ^ _ 0. Thus, we find that

Therefore, the long-wave solutions for n > 1 are regular for all values of (f>w and 

the modes belong to the KH class. A comparison of the analytical and numerical 

solutions for n =  1, 1^1 =  1.0, Re = 100.0 and a — 10-4 is given in figure 4.58. 

This shows good agreement between the two solutions.

Figures 4.59(a) and 4.59(b) plot the phase speed and growth rate in isolation 

for modes where 10̂ 1 =  1.0, assuming that the leading-order solution is valid

=  - i ^ wrn+l,

Cq — ,̂(f)wn\ .
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- 0.1

- 0.2
270180 360

Figure 4.58: Analytical-Numerical comparison for the 
long-wave non-axisymmetric (n =  1) pipe modes.

- o - ,  analytical cr, Re(c0); -<>-, analytical C f , / m ( c 0 );

-x-, numerical cr ; -4--, numerical c*.

for a = 10-4. These confirm the modes to be in the KH class. Plots of the 

wall parameter bounds show that these correspond to both cases in section 2.3.2 

(see figure 4.60). Thus, elimination of these modes cannot be achieved by a 

simple increase or decrease in one of the wall parameters. These particular modes 

may be eliminated by choosing m = 0(1) and a lower value of c0. This reduces

the two physically-realisable unstable regions to “unstable pockets” , with two

corresponding small ranges of d which give rise to these modes (see figure 4.61. 

Choosing any other value of d will thus eliminate the possibility of these particular 

modes arising.
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(b) Growth Rate, a .Im(co)

Figure 4,59: Long-wave KH non-axisymmetric (n =  1) pipe modes, 

\(j>w\ = 1.0 - leading-order solution.
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Figure 4.60: Physical realisability bounds on m, d and for the KH modes.

—, 102 x d lower bound;

-o-, 10-9 x m lower bound; -<(>-, 10-9 x m upper bound;

10-2 x Cq lower bound; -+-, 10-1 x Cq upper bound.

180 270 360

Figure 4.61: Physical realisability of the KH modes for m =  2.0.

—, 103 x cj; -o-, 10-5 x d; -x-, 10-9 x Cq.
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To next order the stability equations yield:

iv,i +  i  + ~7~~) ^ +1 +  \  ( D ~ ~ r ~ )  ^ - i  ’ =  0 (4.40a)

^D 2 + ui = Re (i(uB -  c0)u0 +  (DuB)^ {ip+l +  V'-i)) » (4.40b)

( ° 2 + \ D ~ ^+i ~ {D ~ Li = LRe(uB -  co)^+0 » (4.40c)

^D 2 + j D -  — ~  ^ \jj_i -  ( d  +  ^  pY =  i.Re(uB -  c0)^_0 , (4.40d)

with boundary conditions which may be written as:

tii(0) =  0,

DnUl(0) =  0,

V>+i(0)  =  0 ,

^-^O ) is finite,

^+o(!) =  0,

V'-oW = o>
2(/>u,tq  ( l )

C' «o(l)

Thus, the second-order phase velocity is given by:

( \ R e  (  a, 1 W  1 r 2uRr) = i—  n(f)w  - r n+2
4 \  n ! /  \ n  +  l 2(n +  2)

Cl =  LRe( n + % ^ + l ) ^ {1 ~ n-n 'M  ■

Plots of the second-order solutions are given in figures 4.62. Parameter values 

are as for the leading order solution. As for the long-wave compliant channel 

modes the second-order solution balances the inertial terms due to the leading- 

order solution.
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Figure 4.62: Long-wave KH non-axisymmetric (n =  1) pipe modes, 

\(pw\ = 1.0 - second-order solution.

This concludes our study of the flow in pipes bounded by compliant walls. A 

summary of the results found herein for such flows is given in the next chapter.



Chapter 5

Conclusions

To conclude this thesis a summary of the work performed and the results obtained 

will be given in this chapter. Areas for further research are also raised herein.

5.1 Conclusions

The kinematic method pioneered by Sen and Arora [67] has been applied to the 

problems of flow in a channel and a circular pipe bounded by compliant walls. 

The resulting set of equations has been solved using a Tchebychev collocation 

method to calculate the eigenfunctions and a Newton-Raphson method to find 

the phase-velocity from an initial value.

The unstable solutions obtained in this way can be placed into one of four 

classes, which are similar to the Tollmien-Schlichting, Kelvin-Helmholtz, Transi­

tional and Resonant classes found by Sen and Arora [67] for boundary-layer flow 

over a compliant surface. Of the various different geometries studied, the sym­

metric modes in the symmetric channel exhibit the closest behaviour to the modes 

obtained in boundary-layer flow over a compliant surface. These similarities ex­

tend from the profiles of the phase velocities as Qw is varied to the eigenfunctions

246
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in the region near the compliant wall(s) and the profiles of the back calculated 

wall parameters, d and Cq, for fixed m.

Another geometrical consideration has been made regarding the symmetric 

mode in the symmetric channel and the asymmetric channel modes. It has been 

observed that there appears to be a direct link between these modes. For any 

symmetric mode with phase velocity, csym and kinematic parameters, Re =  Resym, 

a = Q'Sym and <f>w = (<f>w)aym, there exists an asymmetric channel mode with the 

same phase velocity, csym and kinematic parameters, Re =  i?esym, a  =  o;sym but 

which occurs for the wall stream-function, (f)w = (<j>w) aSym =  2(<̂ l0)Sym- This ob­

servation is consistent with the analytical results obtained for certain parameter 

limits.

Instabilites have been found to exist for all Reynolds numbers and all wave 

numbers in both compliant channel and pipe flows. Physically realisable insta­

bilities in the Kelvin-Helmholtz, Transitional and Resonant classes always can be 

found for finite Re and <x Modes in the Tollmien-Schlichting class (or in the case 

of pipe flow, the Rigid-Type class) are heavily damped for low Re and a.

Physically realisable unstable modes in the Kelvin-Helmholtz and Resonant 

classes persist in the limits Re —> 0 and a —> 0 for both channel and pipe flows. 

Analytical solutions have been found in these limits. Transition between the two 

mode classes occurs via a singularity which can be predicted from the analysis.

In addition to the study of the various mode classes in the channel and pipe 

problems, progress has been made in extending the kinematic method itself. First, 

for the case of the simple stretched membrane considered herein, a single necessary 

and sufficient condition (2.24) has been found for the possible existence of any 

physically realisable unstable mode in any such walled flow. This links the wall
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admittance, Y =  Yr +  iYi and the phase velocity, c = cr +  ici, thus

Yr Yi
—  >  —  •Cj Cj'

If the the above condition is obeyed by an unstable mode of any class, then 

at least one set of physically realisable wall parameters, m, d and cj, can be 

found for which the given mode will arise. Conversely, if a physically-realisable 

unstable mode can be found, then its admittance and phase velocity must obey 

the above condition. This is true regardless of the method used to obtain the mode 

in question, either the kinematic approach used herein or a more conventional 

approach solving the fully coupled fluid-wall system.

Second, as a consequence of the above condition, the kinematic approach has 

been extended to include bounds on the wall parameters, m, d and c§, which may 

give rise to any given unstable kinematic mode. These bounds can be split into 

the two cases, referred to as case 1 and case 2, depending on whether Yi/cr is 

negative or positive, respectively.

In general, the particular cases of bounds, case 1 and case 2, are not linked 

specifically to particular mode classes, though all of the Resonant channel modes 

which obey the inviscid theory appear to have case 1 bounds. Additionally, all of 

the Kelvin-Helmholtz and Resonant channel modes appear to have case 2 bounds, 

if Re or a is small enough that the solutions obey a viscous theory.

Using the wall parameter bounds it has been possible to deduce which ranges 

of m, d and Cq will give rise to the “unstable pockets” observed by Sen and 

Arora [67], This is useful since for a fixed value of one wall parameter only very 

limited ranges of the other wall parameters will then give rise to instabilites. 

Beyond reducing unstable regions to small pockets it has been shown that for all 

modes encountered it possible to eliminate instabilites of any class for fixed Re, 

a and
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It has been found that a sufficiently large increase in m  will reduce unstable 

regions to small pockets and hence is beneficial with regard to flow stabilisation. 

However, small increases in m  can sometimes lead to an increase in the range of 

values of 9W for which physically-realisable unstable modes can be found for fixed 

Re, a and \(f)w\. This increase in the size of the unstable region can cause modes 

with larger growth rates to become physically realisable.

For the viscous (Re 1) and long-wave (a <C 1) modes in the compliant 

channel, a sufficient increase in the free wave speed, Co, will lead to no physically- 

realisable instabilities for any given a  and \</>w\. Hence such an increase in c0 

should lead to a stable flow.

In the compliant pipe the modes in the same parameter limits are much more 

complex, however. The unstable axisymmetric modes can be eliminated for fixed 

a and \(f>w\. However, the requirements of the wall parameters to eliminate in­

stabilities is not always the same for different a and \(j)w\. Therefore, it is not a 

trivial task to find wall parameters which will guarantee stable modes in these 

limits. The leading order non-axisymmetric (n = 1) solutions in the viscous limit, 

actually suggest that the flow will be unstable for any set of wall pa­

rameters. Therefore, it is necessary to find the second order solution in order to 

check this and is thus an area for further work, which is considered in the next 

section.

5.2 Further Work

Some possible areas for further work have been mentioned in chapters 3 and 4 

as they have been encountered. There are many other possible areas for further 

research, too and so a summary of some of the most relevant and important ones 

are given below.
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It has been shown how to find sets of simple stretched membrane parame­

ters, ??7., d and Cg, which stabilise the Tollmien-Schlichting modes in a compliant 

channel, for a fixed value of \(f)w\. In order to ensure that the overall flow is 

stabilised all modes of all classes must be stable for the set of wall parameters 

employed. Therefore, either a further extension to the kinematic approach or a 

combination of the kinematic method (for finding wall parameters which stabilise 

the Tollmien-Schlichting modes) and conventional fully-coupled methods (to see 

if such wall parameters lead to other classes of instability) might enable sets of 

wall parameters to be found which lead to flow stabilisation. In either case it is 

likely that multiple values of |</>w| will need to be considered at the same time.

The observation of a link between the symmetric modes in the symmetric 

channel and the modes in the asymmetric channel needs to be proven analyti­

cally. Such a link has been found in the limits Re , a  —> 0 but as yet a general 

analytical link has not been found. One possible approach to finding such a 

link might be to use variation of parameters. If a symmetric solution in the 

symmetric channel (u,v ,p ) = (us,vs,ps) with c =  cs can be found for the kine­

matic parameters, Re, a  and (j)w ~  {<j>w)at then variation of parameters would 

allow the solution for the asymmetric channel modes to be written in the form 

(u,v,p) = (ua,va,pa) =  {U(y)us,V(y)vs,P{y)ps), with (j)w =  ((j>w)a = 2(</>w)s and 

the remaining quantities are unchanged. Substitution into the governing stability 

equations and boundary conditions should allow U(y), V (y) and P(y) to be found. 

If the hypothesis regarding a link between modes of the different geometries is 

true then the normalisation conditions should also be obeyed.

The second order solutions for the viscous modes, for which Re <C 1, need to 

be found. This is particularly so for the non-axisymmetric (n =  1) pipe modes
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where the leading order solution suggests that viscous compliant pipe flow is 

unstable for all wall parameters.

A further investigation is required for the Transitional modes in both the 

channel and pipe problems. For the pipe problem this is necessary in order 

to determine the existence or otherwise of modes in both the Transitional and 

Resonant classes for larger Reynolds numbers. The long-wave solutions suggest 

that such modes should exist for higher values of the Reynolds number.

Three final areas where investigations need to be made but have not been 

undertaken in this thesis are as follows. An investigation into the group velocities 

of modes in each class needs to be made in order to determine the existence or 

otherwise of absolute instabilities. This may help in trying to link the mode 

classes given herein and in the mode classes of fully coupled systems. More work 

needs to be done in relating the dimensional values of the wall parameters to 

walls used in experiments. Finally, if an extension of the kinematic problem 

formulation could be made to incorporate streamwise displacements of the wall, 

then a direct comparison of the viscous modes could be made with those found 

by Kumaran [45],



Bibliography

[1] V.V. Babenko and L.F. Kozlov. Experimental investigation of hydrodynamic 

stability on rigid and elastic damping surfaces. Izv. Akad. Nauk SSSR, Mekh. 

Zhidk. i Gaza, 1:122-127, 1973.

[2] T.B. Benjamin. Shearing flow over a wavy boundary. J. Fluid Mech., 6:161— 

205, 1959.

[3] T.B. Benjamin. The effect of a flexible boundary on hydrodynamic stability. 

J. Fluid Mech., 9:513-532, 1960.

[4] T.B. Benjamin. The threefold classification of unstable disturbances in flex­

ible surfaces bounding inviscid flows. J. Fluid Mech., 16:436-450, 1963.

[5] C.D. Bertram. Unstable equilibrium behaviour in collapsible tubes. J. 

Biomech., 19:61, 1986.

[6] C.D. Bertram. The effects of wall thickness, axial strain and end proximity 

on the pressure area relation in collapsible tubes. J. Biomech., 20:863, 1987.

[7] C.D. Bertram, C.J. Raymond, and T.J. Pedley. Mapping of instabilities 

during flow through collapsible tubes. J. Fluids Struct., 4:125-154, 1989.

[8] C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang. Spectral methods 

in fluid mechanics. Springer-Verlag, 1988.

252



BIBLIOGRAPHY 253

[9] P.W. Carpenter. Optimization of multiple-panel compliant walls for delay 

of laminar-turbulent transition. AIAA J., 31:1187-1188, 1993.

[10] P.W. Carpenter and J.S.B. Gajjar. A general theory for the two- and three- 

dimensional wall mode instabilities in boundary layers over isotropic and 

anisotropic compliant walls. Theor. Comput. Fluid. Dyn., 1:349-378, 1990.

[11] P.W. Carpenter and A.D. Garrad. The hydrodynamic stability of flow over 

Kramer-type compliant surfaces. Part 1. Tollmien-Schlichting instabilities. 

J. Fluid Mech., 155:465-510, 1985.

[12] P.W. Carpenter and A.D. Garrad. The hydrodynamic stability of flow over 

Kramer-type compliant surfaces. Part 2. Flow-induced surface instabilities. 

J. Fluid Mech., 170:199-232, 1986.

[13] G.M. Corcos and J.R. Sellars. On the stability of fully developed pipe flow. 

J. Fluid Mech., 5:97-112, 1959.

[14] A. Davey, H.P.F. Nguyen, and A.E.) (Gill. Finite-amplitude stability of pipe 

flow. J. Fluid Mech., 45:701-720, 1971.

[15] C. Davies and P.W. Carpenter. Instabilities in a plane channel flow between 

compliant walls. J. Fluid Mech., 352:205-243, 1997.

[16] C. Davies and P.W. Carpenter. Numerical simulation of the evolution of 

Tollmien-Schlichting waves over finite compliant panels. J. Fluid Mech., 

335:361-392, 1997.

[17] A.E. Dixon, A.D. Lucey, and P.W. Carpenter. Optimization of visco-elastic 

compliant walls for transition delays. AIAA J., 32(2):256-267, 1994.

[18] U. Ehrenstein and M. Rossi. Nonlinear Tollmien-Schlichting waves for plane



BIBLIOGRAPHY 254

Poiseuille flow with compliant walls. Eur. J. Mech. B-Fluids) 12:789-810, 

1993.

[19] C.H. Ellen. The stability of an isolated rectangular surface embedded in 

uniform subsonic flow. J. Appl. Mech., 44:1-52, 1950.

[20] M.C. Fischer, L.M. Weinstein, D.M. Bushnell, and R.L. Ash. Compliant 

wall turbulent skin friction reduction research. AIAA 8th Fluid and Plasma 

Dynamics Conference, P ap e r 75-833, 1975.

[21] R. Fjprtoft. Application of integral theorems in deriving criteria of stability 

for laminar flows and for the baroclinic circular vortex. Geofys. Publ, 17:1- 

52, 1950.

[22] J.S.B. Gajjar and P. Sibanda. The hydrodynamic stability of channel flow 

with compliant boundaries. Theor. Comput. Fluid Dyn., 8:105-129, 1996.

[23] V.K. Garg and W.T. Rouleau. Linear spatial stability of pipe Poiseuille flow. 

J. Fluid Mech., 54:113-127, 1972.

[24] M. Gaster. Is the dolphin a red herring? Proceedings IUTAM Symposium on 

Turbulence Management and Relaminarisation, Bangalore, India, page 285,

1987.

[25] A.E. Gill. On the behaviour of small disturbances to Poiseuille flow in a 

circular pipe. J. Fluid Mech., 21:145-172, 1965.

[26] C.H. Green and C.H. Ellen. The stability of plane Poiseuille flow between 

flexible walls. J. Fluid Mech., 51:403-416, 1972.

[27] J.B. Grotberg and S.H. Davis. Fluid-dynamic flapping of a collapsible chan­

nel: sound generation and flow limitation. J. BioMech., 13:219-230, 1980.



BIBLIOGRAPHY 255

[28] J.B. Grotberg and E.L. Reiss. A subsonic flutter anomaly. J. Sound Vib., 

80:444-446, 1982.

[29] J.B. Grotberg and E.L. Reiss. Subsonic flapping flutter. J. Sound Vib., 

92:349-361, 1984.

[30] J.B. Grotberg and T.R. Shee. Compressible-flow channel flutter. J. Fluid 

Mech., 159:175-193, 1985.

[31] D. Gyorgyfalvy. Possibilities of drag reduction by the use of flexible skin. 

J. Aircraft, 4:186-192, 1967.

[32] F.D. Hains and J.F. Price. Effect of a flexible wall on the stability of 

Poiseuille flow. Phys. Fluids, 5(3):365, 1962.

[33] E. Hpiland. On two-dimensional perturbation of linear flow. Geofys. Publ., 

18:1-12, 1953.

[34] L.N. Howard. Note on a paper of John W. Miles. J. Fluid Mech., 10:509-512, 

1961.

[35] N. Itoh. Non-linear stability of parallel flows with subcritical Reynolds num­

bers. Part 2. stability of pipe Poiseuille flow to finite axisymmetric distur­

bances. J. Fluid Mech., 82(3):469-479, 1977.

[36] O.E. Jensen and T.J. Pedley. The existence of steady flow in a collapsed 

tube. J. Fluid Mech., 206:339, 1989.

[37] A.I. Korotkin. The stability of plane Poiseuille flow in the presence of elastic 

boundaries. Prikl. Mat. Mekh., 29:1122-1127, 1965.

[38] M.O. Kramer. Boundary-layer stabilisation by distributed damping. J. Aero. 

Sci, 24:459-460, 1957.



BIBLIOGRAPHY 256

[39] M.O. Kramer. Boundary-layer stabilisation by distributed damping. J. Aero. 

Sci., 27:69, 1959.

[40] M.O. Kramer. Boundary-layer stabilisation by distributed damping. ASNE 

J ., 72:25-33, 1960.

[41] M.O. Kramer. The dolphin’s secret. New Scientist, 7:1118-1120, 1960.

[42] M.O. Kramer. Boundary-layer stabilisation by distributed damping. ASNE 

J., 74:341-348, 1962.

[43] P. Krindel and A. Silberberg. Flow through gel-walled tubes. J. Colloid, 

Interface Sci., 71:34-50, 1979.

[44] V. Kumaran. Stability of the flow of a fluid through a flexible tube at high 

Reynolds number. J. Fluid Mech., 302:117-139, 1995.

[45] V. Kumaran. Stability of the viscous flow of a fluid through a flexible tube. 

J. Fluid Mech., 294:259-281, 1995.

[46] V. Kumaran. Stability of inviscid flow in a flexible tube. J. Fluid Mech., 

320:1-17, 1996.

[47] V. Kumaran. Stability of fluid flow through a flexible tube at intermediate 

Reynolds number. J. Fluid Mech., 357:123-140, 1998.

[48] V. Kumaran. Stability of wall modes in a flexible tube. J. Fluid Mech., 

362:1-15, 1998.

[49] M.T. Landahl. On the stability of a laminar incompressible boundary-layer 

over a flexible surface. J. Fluid Mech., 13:609-632, 1962.

[50] M.T. Landahl and R.E. Kaplan. Effect of compliant walls on boundary-layer 

stability and transition. AGARDograph, 97:1-353, 1965.



BIBLIOGRAPHY 257

[51] L.D. Landau and E.M. Lifshitz. Fluid Mechanics. Butterworth-Heinemann, 

1997.

[52] P.G. Larose and J.B. Grotberg. Flutter and long-wave instabilities in com­

pliant channels conveying developing flows. J. Fluid Mech., 331:37-58, 1997.

[53] C.C. Lin. The theory of hydrodynamic stability. Cambridge University Press, 

1955.

[54] R.W. Metcalfe, C.J. Rutland, J.H. Duncan, and J.J. Riley. Numerical sim­

ulations of active stabilization of laminar boundary layers. AIAA J ., 24, 

1986.

[55] M. Nagata and T.R. Cole. On the stability of plane Poiseuille flow between 

compliant boundaries. Comput. Meth. Exp. Meas., IX , 1999.

[56] C.R. Nisewanger. Flow noise and drag measurements of vehicle with compli­

ant coating. U.S. Naval Ordnance Test Station, N A V W E PS R ep. 8518, 

1964.

[57] W.McF. Orr. The instability or instability of the steady motions of a perfect 

liquid and of a viscous liquid. Part I: A perfect liquid. Proc. R. Irish Acad., 

27A:9-27, 69-138, 1907.

[58] S.A. Orszag. Accurate solution of the orr-sommerfeld stability equation. J. 

Fluid Mech., 50:689-703, 1971.

[59] F.W. Puryear. Boundary layer control drag reduction by compliant surfaces. 

U.S. Dept, of Navy, David Taylor Model Basin, R e p o rt 1668, 1962.

[60] J.W. Reyn. Multiple solutions and flow limitation for steady flow through a 

collapsible tube held by both ends. J. Fluid Mech., 174:467, 1987.



BIBLIOGRAPHY 258

[61] H. Ritter and L.T. Messum. Water tunnel measurements of turbulent skin 

friction 011 six different compliant surfaces of one foot length. Admiralty 

Research Laboratory, R ep o rt A R L /G /N 9 , 1964.

[62] H. Ritter and J.S. Porteous. Water tunnel measurements of turbulent skin 

friction 011 a compliant coating. Admiralty Research Laboratory, R ep o rt 

A R L /N 3 /G /H Y /9 /7 ,  1965.

[63] J.M. Rotenberry. Finite amplitude shear waves in a channel with compliant 

boundaries. Phys. Fluids A, 4:270-276, 1992.

[64] J.M. Rotenberry and P.G. Saffman. Effect of compliant boundaries on weakly 

non-linear shear waves in channel flow. SIAM J. Appl. Maths, 50:259-281, 

1990.

[65] H. Salwen and C.E. Grosch. The stability of Poiseuille flow in a pipe of 

circular cross section. J. Fluid Mech., 54:93-112, 1972.

[66] H. Schlichting. Boundary layer theory. McGraw-Hill, 4th edition, 1960.

[67] P.K. Sen and D.S. Arora. O11 the stability of laminar boundary-layer flow 

over a flat plate with a compliant surface. J. Fluid Mech., 197:201-240,

1988.

[68] P.K. Sen, D. Venkateswarlu, and S. Maji, On the stability of pipe-Poiseuille 

flow to finite amplitude axisymmetric and non-axisymmetric disturbances. 

J. Fluid Mech., 158:289-316, 1985.

[69] V. Shankar and V. Kumaran. Stability of fluid flow in a flexible tube to 

non-axisymmetric disturbances. J. Fluid Mech., 407:291-314, 2000.

[70] R.L. Smith and E.F. Blick. Skin friction of compliant surfaces with foamed 

material substrate. J. Hydronautics, 3:100, 1969.



BIBLIOGRAPHY 259

[71] A. Sommerfeld. Ein Reitrag zur hydrodynamischen Erklorung der turbu- 

lenten Flussigkeitsbewegung. Proc. 4th Inter. Congr. Maths, Rome, pages 

116-24, 1908.

[72] H.B. Squire. On the stability of the three-dimensional disturbances of viscous 

flow between parallel walls. Proc. Roy. Soc., 142:621-628, 1933.

[73] H.L. Swinney and J.P. Gollub. Topics in physics. In Hydrodynamic insta­

bilities and the transition to turbulence, volume 45, pages xii, 292. Springer- 

Verlag, 1981.

[74] W. Tollmien. Uber die Enstehung der Turbulenz. Nachr. Ges. Wiss. 

Gottingen, Math.-Phys., K lasse 21-44, 1929.

[75] W. Tollmien. Asymptotische Integration der Storungsdifferentialgleichung 

ebener laminarer Stromungen bei hohen Reynoldschen Zahlen. Z. angew. 

Math. Mech., 25/27:33, 70, 1947.

[76] O. Wiplier and U. Ehrenstein. Numerical simulation of linear and nonlinear 

disturbance evolution in a boundary layer with compliant walls. J. Fluids 

Struct., 14:157-182, 2000.

[77] O. Wiplier and U. Ehrenstein. On the absolute instability in a boundary 

layer flow with compliant coatings. Eur. J. Mech. B-Fluids, 20:127-144, 

2001 .

[78] K.S. Yeo. The stability of boundary-layer flow over single- and multi-layer 

visco-elastic walls. J. Fluid Mech., 196:359-408, 1988.

[79] K.S. Yeo. The hydrodynamic stability of boundary-layer flow over a class of 

anisotropic compliant walls. J. Fluid Mech., 220:125-160, 1990.



BIBLIOGRAPHY 260

[80] K.S. Yeo. Note on the inviscid stability of flow over a compliant wall. J. Fluid 

Mech., 279:165-168, 1993.

[81] K.S. Yeo and A.P. Dowling. The stability of inviscid flows over passive 

compliant walls. J. Fluid Mech., 183:265-292, 1987.

[82] K.S. Yeo, B.C. Khoo, and W.K. Chong. The linear stability of boundaiy- 

layer flow over. J. Fluid Mech., 280:199-225, 1994.

[83] K.S. Yeo, B.C. Khoo, and A.P. Zhao. The absolute instability of boundary- 

layer flow over visco-elastic walls. Theor. Comput. Fluid Dyn., 8:237-252, 

1996.


