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ABSTRACT

New techniques in the related areas of system identification 

and self-tuning control are discussed. In the first part of the thesis 

an approach to the maximum likelihood estimation of the parameters of 

an ARMA model for single input single output systems based upon 

hypothesis testing is described. This is then extended to cater for 

multivariable systems where the minimization of the trace of the 

residual covariance matrix is also considered. The advantage of the 

technique over conventional hill-climbing or recursive approximate 

methods is the large amount of graphic information, including sections 

through the cost function, that is available. This allows the analyst 

to see the likelihood function evolve and make subjective decisions 

based upon the available information. The algorithm has excellent 

convergence properties making it ideal for short data runs. 

Simulation examples demonstrate its properties and compare the 

technique with alternative algorithms yielding consistent parameter 

estimates.

The second part of the thesis introduces two new multivariable 

self-tuning regulators, namely the detuned minimum variance and pole­

shifting regulators and shows that they possess the ’self-tuning 

property’. The regulators are intended to overcome some of the 

limitations of existing designs. Both regulators offer a real 

alternative to the conventional self-tuning optimal control objective 

by allowing the specification of closed loop system poles. The pole­

shifting regulator is exceptionally robust and can be applied to non­

minimum phase systems. It is often suitable for systems with unknown 

or time-varying time delays and systems in which the input-output 

relations have differing pure time delays. Simulation examples and 

an example of the control of a hydraulic system illustrate the features 

of the algorithm.
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CHAPTER 1

INTRODUCTION

System Identification is becoming an increasingly valuable 

technique in the field of control engineering and indeed in all 

sciences where the inference of process model parameters from observed 

data offers an attractive alternative to purely theoretical or physical 

models. The identification of stochastic linear dynamical systems in 

particular has attracted a great deal of interest. In the field of 

control, linear models are useful because linear design techniques 

are well established. If the process is actually a non-linear one, 

then it is common practice to generate a set of models corresponding 

to different operating points. Many estimation algorithms are designed 

to operate on-line and clearly it is a fairly small step to propose 

simultaneous on-line identification and controller design. Combined 

Identification and Control algorithms open the way to the inviting 

prospect of adaptive controls, modifying themselves to changes in 

system characteristics so as to achieve some pre-programmed control 

objective.

If one views the broader field of Identification and Control, 

there are therefore perhaps two primary topics of importance. The first 

of these is Identification per se, including the techniques for 

structural estimation and parameter estimation (both on-line and off­

line) . The aim here is to determine a process model in a form suitable 

for further off-line system analysis or controller design using 

standard techniques. The second topic is concerned with combined, 

on-line, Identification and Control.
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Aspects of both these topics are discussed in this thesis, and 

the work therefore divides naturally into two related, but distinct 

parts. In the first part (Chapters 3 - 5) a new approach to parameter 

estimation based on a recursive hypothesis testing procedure is 

discussed. The method (named 'RHYP’) is developed first for Single­

Input Single-Output (SISO) systems under the assumption of an Auto­

Regressive Moving-Average (ARMAX) model including both deterministic 

and noise inputs, and is designed to generate maximum likelihood 

estimates. It is extended for multivariable systems (when the 

algorithm is called •MVHYP’) with the objective of minimizing either 

a cost function based on the trace of the model residual covariance 

matrix or the maximum likelihood cost function. The work was motivated 

by the observation that present techniques for obtaining consistent 

parameter estimates (which are generally based on non-linear maximum 

likelihood estimation) are not always satisfactory. Approximate linear 

recursive methods can be unreliable, especially when only short data 

records are available, and the more exact hill-climbing approach 

involves a great deal of computation but gives little information 

about the nature of the likelihood function or insight into the 

estimation problem. The objective therefore was to develop an estimation 

tool which in addition to the conventional numerical diagnostics 

(for example parameter covariances) increased the analysts interaction 

with the estimation algorithm by giving graphic information about the 

nature of the cost function and produced reliable estimates even with 

short data records.

The second part of the thesis (Chapters 6-8) is devoted to 

combined Identification and Control, in particular, the family of 
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methods known collectively as ’Self Tuning Controllers’. The 

contribution here is the development of two new multivariable self 

tuning regulators, the first being an extension of the minimum variance 

regulator, namely the detuned minimum variance regulator, and the 

second, a pole-shifting regulator. Both regulators allow (with certain 

restrictions) the specification of the closed loop system poles. 

Although the detuned minimum variance regulator is related to optimal 

control methods and is intended to add flexibility to the standard 

minimum variance regulator which may be used to avoid difficulties due 

to excessive control excursions in this type of regulator, the pole 

shifting regulator deviates from the existing multivariable self 

tuning approach and its roots lie more in classical control concepts. 

The general robustness of the latter algorithm makes it particularly 

attractive and gives it certain unique features amongst self tuning 

regulators which are discussed in the thesis. In particular, it is 

capable of regulating non-minimum phase systems and frequently may be 

used to regulate systems in which there are differing pure time delays 

in the various input-output relationships.

The thesis is organised as follows. Chapter 2 surveys the 

literature relevant to the topics of Estimation and on-line 

Identification and Control discussed in the thesis. However, not all 

the review material is contained in this chapter and particularly 

pertinent material is covered in greater depth elsewhere.

Chapter 3 marks the start of the first part of the thesis which 

is concerned with parameter estimation. The properties of maximum 

likelihood estimation are discussed and existing techniques for 

obtaining maximum likelihood estimates reviewed.
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Chapter 4 describes the new estimation algorithm, RHYP, for 

obtaining maximum likelihood estimates of the parameters of a SISO 

system ARMAX model by recursive hypothesis testing. Two non-recursive 

variants of the method, intended to reduce computation, are also 

described, and examples are given illustrating the advantages of the 

method over techniques such as 'Recusive Maximum Likelihood' 

(Soderstrom, 1973 ) and 'Instrumental Variables' (Wong and Polak, 

1967, etc. )

The multivariable extension of the algorithm (MVHYP) is given 

in Chapter 5. The minimization of both the maximum likelihood cost 

function and the trace of the model residual covariance matrix are 

discussed.

Two papers (Prager and Wellstead 1979 ; Prager and Wellstead, 

1981 (to appear) ) have been written based on the material in Chapters 

4 and 5.

The second part of the thesis, concerned with Self Tuning Control, 

begins with Chapter 6. This chapter explores control strategies 

(assuming off-line controller design using known or estimated system 

models) which are suitable for implementation in a self tuning 

configuration. Certain review material is included, in particular a 

description of the multivariable minimum variance regulator (Borisson, 

1975 ) and the generalized minimum variance controller (Clarke and 

Gawthrop, 1975; Gawthrop, 1977). Two new designs, namely the 

multivariable detuned minimum variance regulator and multivariable 

pole-shifting regulator are introduced. The features of these strategies 

are discussed and compared with existing methods.
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Chapter 7 discusses the self-tuning versions of the laws presented 

in Chapter 6. Review material corresponding to that given in the 

previous chapter is included. However, the main purpose of the chapter 

is to present the self-tuning multivariable detuned minimum variance 

and pole shifting regulators. The proofs of the self tuning properties 

of these laws are derived from a common * Self Tuning Lemma1. 

Simulation examples highlighting the features of the new algorithms, 

in particular, those of the self tuning pole shifting regulator are 

given.

The practical aspects of self tuning are extremely important, and 

a brief introduction to the implementation of self tuning laws is 

given in Chapter 8. The comments are drawn from the authors 

observations in numerous simulation runs, both digital and analogue. 

The performance of the multivariable pole shifting regulator in a 

1 real1 application is documented. The process under control is a 

coupled tank system which exhibits typical non-linear characteristics 

such as saturation, and dynamics varying significantly with operating 

point. Encouraging results were obtained and point to the usefulness 

of the self tuning technique.

A number of publications have been based on the material in 

Chapters 6, 7 and 8. (Wellstead, Edmunds, Prager and Zanker, 1979, 

1980 ; Wellstead, Prager and Zanker, 1979 ; Prager and Wellstead, 

1979a). .

Finally, Chapter 9 concludes by summarizing the results and 

discusses possible future areas of research.
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CHAPTER 2 

A SURVEY OF THE LITERATURE

The subjects of estimation and self-tuning controller theory 

both support a growing volume of literature. Activity in the field 

of self-tuning controllers in particular has received great impetus 

from advances in micro-electronics technology which has encouraged 

the practical development of the theory. This chapter gives an 

overview of the most significant developments so as to place the 

material in the ensuing pages in its proper context. Throughout the 

thesis particularly relevant work is reviewed in greater detail 

so that, for example, Chapter 3 contains a more thorough presentation 

of maximum likelihood estimation, and Chapters 6 and 7 discuss the 

broader class of digital controllers which lend themselves to 

self-tuning.

Clearly, as an estimator is at the heart of the self-tuning 

algorithm, the subjects of estimation and self-tuning are closely 

related, the latter exploiting recursive methods of estimation. In 

this chapter however, in keeping with the rest of the thesis, the 

subjects are discussed separately.

2.1 Estimation of the Parameters of a Model

In the field of control engineering, the techniques of parameter 

estimation are relatively new being popularized to a large extent by 

the well known work of Kalman (1960). So it is particularly sobering 

to observe that the fundamental principles of least squares estimation 
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were known and used as long ago as the early 19th century by 

Legendre (1806) and Gauss (1809). The more recent interest in 

engineering estimation is to a large extent due to the need for 

better control of processes and improved techniques in forecasting 

which in turn require an improvement in system modelling. Parallel 

work in econometrics, where complex economic models are attracting 

considerable attention (e.g. Bray, 1975), biological modelling 

(e.g. Beck, 1977) and statistics has clearly led to an interchange 

of ideas and techniques,

The subject of parameter estimation as treated in this thesis 

is centred about the Auto-Regressive Moving-Average (ARMAX) model 

whereby the output (y^) of a system is related to its deterministic 

input (u^) and a non-measurable stochastic noise input (e^) by a 

discrete-time difference equation of the form

-1 -2 “na
Cl + a^z + a^z + ... + an z )y 2.1

-k -1 "% a -1 ~nc
= z (bnz + ... + b z )u + (1 + cn z + ... + c z )e_

1 "b 6 1 nc C

“1 . . . where z denotes the backward shift operator. The disturbance input 

{e^} is a white noise sequence and the equation is written here for 

Single-Input Single-Output (SISO) systems. The above equation may be 

written more concisely as

— 1 ««V ** 1 “ 1
{1+A(z )} yt = z B(z ) ut + {1+0(z )} et 2.2

where the backward shift polynomial notation is self explanatory.

The use of this model has been actively promoted by Astrom and others 

and can model any linear system if the polynomial orders are 

appropriately selected. Its relationship with the form of the s-domain 
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transfer-function representation is clear if eqn. 2.2 is re-written 

as

1+A(z~l)

1+C(z"l) 
— 1

1+A(z ) 
2.3

and thus provides a natural transition for the classical control 

engineer to the world of discrete time modelling and control.

Of course the ARMAX model is not the only model one might want 

to use to describe the behaviour of a system. A far more intuitive 

approach is to postulate a model 

for a given system and estimate the relevant parameters of A(z

-1 2and B(z ) such that the sum of the squares of the errors ( E e. ) 
i=l 1

between the model and the actual system output is minimized over 

the given set of N observations of input-output data. Indeed, such a 

Tdirect*  model is particularly useful in obtaining the ’best*  (in the 

least squares sense) match to a given set of data when the model order 

chosen is less than the true system order. Like the ARMAX model, the 

parameter estimation involved is a non-linear operation. However, it 

has the distinct disadvantage that, even when the deterministic 

model has the same order as the true system, the parameter estimates 

will generally be biased, depending on the colouration of the residual 

sequence e^. The results obtained are therefore extremely data 

dependant and lack the statistical advantages of the ARMAX model.

A crucial difference is that the ARMAX model is a prediction 

model. It is quite easy to show that the optimum one-step-ahead least 
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squares prediction can be computed directly from the ARMAX model 

as follows: (see for example Astrom and Bohlin, 1965)

”1 —k "1 —
= ~A(z )yt + z B(z )ut + C (z )et 2.5

and et -

The general ARMAX model in eqn. 2.2 is often termed the 

^maximum likelihood’ model because asymptotically unbiased estimates 

of its parameters may be derived using the maximum likelihood 

technique, a method that is discussed in detail later. The maximum 

likelihood estimator is in general non-linear. There is however, an 

. . —1 .extremely useful exception, namely if polynomial C(z ) is zero. Not 

. . . . -1 -1 only is the estimator linear in the parameters of A(z ) and B(z ) 

but the estimates can be computed recursively. The recursive least 

squares parameter estimator that is used is directly equivalent to 

the well known Kalman Filter (Kalman, 1960), a ’state estimator’.

The relationship is extremely straight forward to illustrate, for 

the ’least squares’ ARMAX model

yt = -A(z 1)yt + z kB(z 1)ut + et 2.6

can clearly be re-written as follows:

T 
yt = xt0t + et 2.8

-1 -1where 8is a vector of parameters drawn from A(z ) and B(z ) 

and x^_ is a vector of past inputs and outputs, u^ and y^. Thus 

the parameters of the ARMAX model become the states of the constant 

state system of eqn. 2.7 and can be estimated by direct application 
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of the Kalman Filter.

Broadly speaking, work in the field of recursive parameter 

estimation may be divided into two main parts:

a) Development of faster numerical techniques for realizing 

existing estimators, in particular linear least squares.

B) The development of linear algorithms which approximate non­

linear estimators.

These topics, as well as some aspects of model order testing, 

are discussed in the following sections, where, given a set of N 

data records, the vector equation

\ = + en 2-9

is often used. is the vector formed by collecting all N output

Tobservations, Y^ = (y^, y^, ... ,7^ 2.10

T
^N-l’ * * * ’ Xl^ 2.11

and the residual vector is E^. Then the least squares estimate 

0 is found from

* T —1 T
6 ■ W Vn 2-12

{see for example Eykhoff, 1974).

t In addition to these there remains the vitally important field 
of model order testing and structural identification which is 
not explicitly discussed in this thesis.
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2.1.1 Numerical Aspects of Parameter Estimation

One of the earliest examples of work in this category is 

Levinson’s (1947) recursion for solving the normal least squares 

equations (eqn. 2.12). The method makes use of the symmetric Toeplitz 

. T structure of the correlation matrix X X for an all pole auto­

regressive (AK) model where the entire signal y , t=O,l, ...

is used. In practice only finite data is available, and the elements 

of the matrix are computed from the autocorrelation coefficients

of the available data. Durbin (1959) has modified Levinson’s original 

algorithm and the method can also be extended to deal with the more 

general auto-regressive moving-average (ARMA) model. The importance 

of Levinson’s algorithm is that it reduces the amount of computation 

necessary to solve the normal equations for an n-parameter problem

. . 3 . 2from a quantity proportional to n to an amount proportional to n .

However, perhaps the most well known contribution to numerical 

techniques in estimation is the Kalman Filter implementation of 

recursive least squares already mentioned above. This still remains a 

good technique for real time identification. The computational requirement

is proportional to the square of the number of parameters estimated.

The parameter set at time t+1, 6 is derived from that at time

t, e , by adding a value proportional to the prediction error

6- (y 2.13

where K is known as the Kalman Gain, and is computed from

i. e %

K P ,x 2.14

and -1 2.15P
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(known as the covariance matrix) is itself computed 

recursively from

T T
pt+l ■ pt - <PtXt+lxt+lPt)/(1+xt+lPt’W 2'16

Numerical errors in this latter recursion can lead to the 

covariance matrix becoming non-positive definite, resulting in 

disastrous instability in the parameter update equation as a 

consequence. In order to avoid such difficulties, "Square Root" 

algorithms have been derived which update the square root of . 

(see for example Peterka, 1975). Unfortunately the extra degree of 

numerical stability afforded by square root algorithms must be weighed 

against their greater computational complexity.

Referring to the recursive least squares update equations 

2.13-2.16 above it is evident that the evaluation of the gain 

is the main computational task at each iteration. Kailath and his 

co-workers (Morf, 1974; Morf and Ljung, 1976; Morf, Ljung and 

Kailath, 1976; Ljung, Morf and Falconer, 1978) have exploited the 

. . . . -1 'shift invariance' property of the matrix P to develop fast methods 

for generating the Kalman Gain in a manner which parallels the 

Levinson method. By 'shift invariance' is meant the property that 
* . . -1 . 

element (i,j) of each block of the block Toeplitz matrix P is merely 

shifted to position (i+l,j+l) at time t+1. Robins and Wellstead (1979) 

discuss extensions of the basic algorithm for multivariable ARMA models 

instrumental variable type estimators, and highlight the structural 

decomposition that is inherent in the estimation algorithm. The 

numerical properties of the algorithm are as yet undocumented, and the 

fact that the programming of the algorithm is complex and error prone 
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might be disadvantageous. It is vital to appreciate that the 

efficiency of the algorithm is entirely dependent on the degree of 

'shift invariance*  so that it may be expected to perform well for 

a high order AK model, but would perform very poorly for a 

multivariable AR model with low order autoregression which has little 

or no shift property.

2.1.2 Estimation Techniques

The numerical developments described above are all associated 

in the main with linear least squares estimation. Unfortunately least 

squares is not always reliable. In particular, when the system C(z 

. . . —% polynomial is non-zero, the estimates of the polynomials A(z ) and 
—i

B(z ) will always be biased. (Eykhoff, 1974) A theoretically 

satisfying alternative is to use maximum likelihood estimation (ML) 

which, for SISO systems, reduces to a slightly more complicated

. ... . N 2version of least squares, namely the minimization of Z s , where 
t=l t

A “ 1 A “1 —VA — 1
{1+C(z = {1+A(z )}yt - z B(z )ut 2.17

. . . . . A -1 The non-linearity introduced by the incorporation of the C(z ) 

polynomial alters, numerically, the whole nature of the estimation 

problem and has motivated an important effort in the field, namely 

research into good, preferably linear, numerically attractive estimation 

algorithms. Initial work, however, was based on hill climbing algorithms 

of which perhaps the best known is Astrom and Bohlin’s (1965) 

discussed in the following chapter.

Clearly, as there is a definite link between the least squares 

and ML cost functions, the temptation is to modify the existing
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Recursive Least Squares

colouration polynomial.

(RLS) method to accommodate the noise

One popular approach is that of generalized

least squares, (Clarke 1967; Hastings-James and Sage, 1969), RGLS.

Basically, the method assumes a system equation

where

white

being

1+A(z h

the symbols have their

1
1+F(z~l

usual meaning and

et

et 1S

2.18

a zero mean

noise. The estimation is a two stage procedure 

. . —1 * the estimation of the parameters A(z ) and B(z

the

-1

first part

in the model

- —i
{1+A(z )}yfc

"lrA — 1z KB(z i)ut 2.19

by least squares, (w^ is the residual sequence). Then w^ is itself

t

t

employed in estimating
. . —1 

the noise colouration polynomial F(z ) by

using least squares to estimate F(z ) in

w = -F(z l)wt + et 2.20

(e is now the residual sequence, hopefully tending to the white 

noise efc.) In the next iteration, the data {u^} and {y^} is 

* -1filtered by F(z ) such that

ÿt - {1+F(z~1)}yt 2.21

ù = {l+FCz-1)}^ 2.22

. * -1 * -1 ... and the new estimates of A(z ) and B(z ) are sought to minimize 

the sum of the squares of the residual sequence {w^} in the model

{1+A(z 1) }ÿt = z KB(z 1)ùt + wt 2.23

The method is computationally attractive. However, convergence 
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cannot be proved in general (Soderstrom, 1974a ). Later variants

of the algorithm have been proposed by Gertler and Banfasz (1974) 

and Sen and Sinha (1975).

An obvious extension of least squares is to include the past 

values of the residuals in the regression equation and this approach 

is commonly known as ’Extended Least Squares’ (ELS). Variants of it 

are described by Panuska (1968 , 1969 ), Young (1968) , Kashyap (1974) 

and Soderstrom, Gustavsson and Ljung (1974). Basically, the model is 

’extended’ to

(1+A(z 1) }yt = z kB(z l)u^ + C(z 2.24

where is the residual and past values of the residual are entered

as an extra input to the system. The parameters are estimated in a

RLS-type algorithm (or a stochastic approximation algorithm). The 

method can give good results and the estimates are consistent when 

the algorithm converges. However, Soderstrom, Gustavsson and Ljung 

(1974) have shown that the algorithm may not be stable about the 

true parameter vector and have demonstrated this phenomenon in an 

example.

Soderstrom (1973) has developed an algorithm very similar in 

form to ELS but with superior convergence properties. His RML 

(Recursive Maximum Likelihood) algorithm is often used as a benchmark 

against which to measure new algorithms and for this reason is 

considered more fully in the following chapter. At this stage it is 

sufficient to note that the algorithm replaces the regression 

variables of the ELS algorithm by values filtered by the latest
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estimate of the 1+C(z ) polynomial,

%
't
A — 1

1+C(z )

that is for example

2.25

The estimation is carried out using the well known RLS algorithm 

so that the update equations become

et+l ■ %
T T A

2.26

pt+l - pt
T

■ Ytptxt+lxflpt+l 2.27

Yt = 2.28

T where x = (-y ,..,-yf ,uf ,..,uf ,e ,..,e )
t—1 t—n t—k—1 t—k—n, t—1 t—na be

2.29 

and et satisfies

£t = {1+ACz ) }yt - z B(z L)ut - C(z 1)tt 2.30

as in the ELS method.

It is not always necessary to estimate the noise colouration 

polynomial CCz.^) coefficients. The ’Instrumental Variable’ technique

(Wong and Polak, 1967; Young, 1970, 1976; Young, Shellswell and

Neethling, 1971) provides a means for obtaining asymptotically 

unbiased estimates of the A(z S and B(z polynomial coefficients 

without considering the noise colouration. The principle of the method 
. . . . . Tis extremely simple and relies on pre-multiplying eqn. 2.9 by W so 

that 

T Ta T
W Y = W X6 + W E 2.31

where W is called the ’Instrumental Matrix’ and satisfies
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TE(W E) = 0
T .E(W Y) non-singular

These properties require the elements of W to be uncorrelated 

with the residuals but not with the input-output data. (See for 

example Kendal and Stuart, 1961). Clearly, the asymptotically unbiased 

estimates 6 are obtained from

5 - £ ( a i "% ) 2.32

The recursive evaluation of 6 is very similar to recursive least

squares (Eykhoff, 1974). In systems where the input u^ is not a

function of the output y no feedback) u^ may be used as an

* instrumental variable’ and estimates of y are often obtained by

using a cruder model (’instrumental model’) derived from least squares 

estimation. Then is a matrix of the same form as except that 

it is built from u and estimates of y rather than the noisy 

measured output itself. The method does not converge generally for 

all kinds of systems, inputs and choices of instrumental model 

(Soderstrom, 1974b). Young (1974) has also described a method by 

which the Recursive Instrumental Variable (RIV) method may be

combined with the RELS method to establish the noise dynamics. The

—1 —1 . . . . .A(z ) and B(z ) polynomial coefficients are first estimated by RIV 

and the residual then fed to a RELS algorithm for estimating the noise 

dynamics. A refinement of this technique is described in Young (1976).

A unified analysis of the RLS, RGLS, RELS, RIV and RML algorithms 

described above is given in Soderstrom, Ljung and Gustavsson (1978) 

where it is concluded that Soderstrom’s RML technique gives the best 
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results, certainly over a long run of 2000 data samples.

An earlier analysis by Isermann, Baur, Bamberger, Kneppo and 

Siebert (1974) considers the RGLS, RLS, and RIV algorithms plus a two 

stage stochastic approximation algorithm (STA) due to Saridis and 

Stein (1968). The algorithm computes the impulse response from which 
—1 —i .

the A(z ) and B(z ) parameters are estimated using RLS. A Fourier 

Analysis technique which approximates the process by a model of the 

form 

k -V 
-----------T e 
(1+Ts)

where n is assumed known and k, T and T$ must be estimated (see 

Isermann 1973) is also considered. The best overall results however 

were obtained with a correlation analysis cum least squares algorithm 

(COR) in which the ordinary least squares model is pre-multiplied by 

u(k-T) and thus on taking mathematical expectations on both sides of 

the premultiplied model equation, an equation in terms of the auto- 

and cross-correlation functions ^uy(?), and the model parameters

emerges. The parameters are found by using least squares on the set 

of equations that can be generated in terms of 4>and 4>Uy> quite 

analogous to the basic equations in terms of u^ and y^. The authors 

claim that the algorithm always converges, and that the cross 

correlation function as an intermediate result is useful for detecting 

time delays and allows the structure and order of the parametric 

model to be preselected easily. However, one should not lose sight of 

the fact that the least squares step in the algorithm requires the 

inversion of a matrix and that RLS cannot be used. RIV is found to 

give good results when it converges, although convergence difficulties 
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have been encountered. This has also been the author's experience, 

difficulties occurring especially when the model order has not 

matched the true system order.

Most of the algorithms mentioned above, in particular, RLS, RIV, 

RGLS, RELS and RML will generally run in real time. However, a great 

deal of identification analysis is carried out off-line from logged 

system input-output data and it is therefore not necessarily a 

disadvantage to use an algorithm which is not suitable for real time 

processing. Mayne and Firoozan (1977) have developed an interesting 

off-line technique which is computationally more efficient than the 

standard hill-climbing approach.

Consider the ARMA model

—1 —1
{1+A(z ; }y^ = {1+C(z 2.33

where, for simplicity, the deterministic input u^ is omitted on 

this occasion. The expression is equivalent to

— -1
{1+A(z )}yt = et 2.34

w — I al al al
where 1+A(z ) = {1+C(z )} {1+A(z )},.a polynomial of infinite

order. Thus a reasonable estimate of e^ could be obtained by 

modelling equation 2.33 by an autoregressive model of high order 

(say order q)

{l+A(z T)}yt = 2.35

Here, the estimate A(z is chosen so as to minimize the sum of
. . -1 -1 

squares of the residual sequence {0^} . Estimates of A(z ) and C(z )
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are now obtained by a least squares procedure in which the non- 

measurable noise input e^ is approximated by e. This approach is 

described by Durbin (1961) who points out that, although 

computationally simple, the estimates are not efficient. Mayne and 

Firoozan have extended the above method and derived an algorithm for

SISO systems which yields consistent and asymptotically efficient 

estimates. The above 2-step least squares procedure is used to obtain

. . . * —I * “1initial estimates (z ), C^(z ) and the estimate of the white

noise sequence {e^}. The data (y^, e^, } is then filtered to

produce sequences <ÿt} and {e^} where

{l+C^z 1)}yt = yt

A — 1 —
and {1+C^(z )Je^ = e

* -1 * -i
Final estimates A^(z ) and (z 

2.36

2.37

are then obtained which

minimize

N ~ —1 — * —1—2J = (C1+A2(z ))yt - (1+C2(z 1))Et)Z 2.38

This is a simple linear least squares stage. The data {y^E^} may 

be filtered using the latest estimate of 1+C(z ), and eqn. 2.38

repeated as often as desired.

The method has the disadvantage that it cannot be used on-line 

but it requires only a number of simple passes through the data 

using linear estimation and must therefore be regarded as an attractive 

approach. The convergence properties however depend on the appropriate 

choice of q.

An entirely different approach to the problem of parameter 

estimation is that of Sequential Hypothesis Testing. Hypothesis testing 
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is well established in the field of statistics (see for example the 

classic work of Wald, 1945) and has also been applied to the 

detection problem in communication engineering (Van Trees, 1968). 

Two recent applications in parameter estimation are due to Nebeker 

(1976) and Tomanek (1976). Both base their technique on computing 

the maximum a posteriori estimate by setting up a set of 

hypotheses and recursively determining the a posteriori probabilities 

for each member of the set using Bayes Rule. This involves running 

a bank of Kalman Filters in parallel. Interestingly, the maximum 

a posteriori estimate is equivalent to the maximum likelihood estimate 

in the case where the a priori probabilities of the hypotheses are 

equal. This is often assumed if no a priori information is available. 

Hypotheses on the entire parameter vector are set up and consequently 

the algorithms demand enormous computational resources. In spite of 

the criteria for eliminating unpromising hypotheses and the 

introduction of 'stopping criteria' the algorithm is untenable in a 

real time environment except in the slowest of processes. Nevertheless 

the fact that sequential hypothesis testing simultaneously considers 

many possible parameter vectors gives it a substantial headstart over 

traditional techniques which iterate about a potential parameter 

vector. The resulting improvement in convergence over Soderstrom's 

RML method is demonstrated by Nebeker for a first order model.

The concept of sequential hypothesis testing is related to the 

RHYP method developed in this thesis.
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2.1.3 Model Order Testing

This review has up till now been concerned with the subject 

of parameter estimation only, the field that is the topic of the 

first part of this thesis. It would however, give an unduly limited 

view of the field if the vitally important question of the 

estimation of system structure were to be neglected as this forms 

such a fundamental problem in system identification.

In terms of SISO systems the question of structure reduces 

to that of system order. For multivariable systems, the structural 

identification problem is one of considerably greater complexity which 

relates crucially to the whole question of system representation and 

canonical forms. (Denham 1974; Dickenson, Kailath and Morf, 1974; 

Glover and Willems, 1974; Risannen, 1974; Hannan, 1975, 1976; 

Dunsmuir and Hannan, 1976).

Numerous techniques have been proposed which seek to determine 

the 'correct*  model order. Perhaps the most intuitively obvious 

approach is the minimization of the least squares or maximum likelihood 

cost function for various model orders. (Unbehauen and Gohring, 1974; 

Van den Boom and Van den Enden, 1974). The latter have shown that 

the behaviour of the cost function changes significantly in the . 

neighbourhood of correct noise and process system orders for large 

data samples. However, the cost function is always a monotonically 

decreasing function of order, and thus, when the observations are 

highly contaminated by noise, the breakpoint is difficult to ascertain.

Another fairly obvious approach is to monitor the singularity of
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. Tthe matrix X X (see eqns. 2.11 and 2.12). In the absence of 

disturbances this matrix becomes singular if the true system order is 

exceeded. This is due to the linear constraint imposed on the 

observations. The singularity property can be exploited in 

determining correct model order (Chow 1972). A similar approach is to 

test the covariance matrix of the parameter estimates which also 

becomes singular for the case of an over-parametrized model with 
T —1 noiseless observations. The covariance matrix is related to (XX) .

The above methods are classified as 'subjective' as the model 

cut off point is not clearly defined and is essentially left to the 

user to determine. Akaike's (1969) Final Prediction Error test 

removes the subjective element by defining the 'correct' model order 

as being that which minimizes the cost

JFPE = = .39

where N = total number of observations 

n = number of parameters in the model 

J = estimate value of the disturbance variance 

(obtained from the least squares cost) 

and ^FPE ~ Final Prediction Error.

The method was unfortunately developed for independent observations 

only (i.e. C(z ^)=0) and becomes insensitive to changes in n as

N-*»  . A modified final prediction error criterion is given by Chan, 

Harris and Wellstead (1974) which allows for coloured noise and is

explicitly a function of n and n and not just their sum n.

Akaike later proposed an Information Theoretic criterion, AIC,
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(Akaike, 1972, 1974a, 1974b ) which selects the correct model order 

as the minimizer of

AIC = -2 In L + 2n 2.40

where L is the likelihood function. A more sophisticated criterion 

which, unlike Akaike’s, can select between system theoretically 

equivalent structures with the same number of parameters has been 

suggested by Risannen and Ljung (1976). The interesting link between 

maximum likelihood estimation and these information theoretic criteria 

is explored more fully in part of the following chapter.

Soderstrom (1977) discusses the relationship between AIC, FPE 

and the popular F-test and likelihood ratio methods. The F—test 

involves forming the quantity

t . V1 ■ =.41

J2 "2" "1

1 N 2
where J, = - Z c. for model k k N i=1 x

n^ = number of parameters in model k

and ng > n^

Then t is asymptotically F(N-ng ^g-n^) distributed (Wilks, 1962; 

Astrom, 1967) and the hypotheses

H : order n. o 1

order ng

may be selected according to the rule:

Accept H if t < t o a
Accept H- if t > t l a
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where t is the 100a percent point of the distribution

Fgiven by Prob(t > t^) = a when is true.

The likelihood ratio test (Woodside, 1971) is based on the 

likelihood ratio (A) which may be expressed as

A
J1

2.42

is accepted if A is close to unity.

A may also be expressed as

' (n2- njt "I N/2
1 + ----------- -— 2.43

where t is the F-distributed variable defined in eqn. 2.41. Thus a 

test on A may be interpreted as an equivalent F-test on t.

If - J2 << J2 ’ then

J1 - J2
-2 In X = N —- = t*  2.44

2
2

where t1 is asymptotically x (i^ ~ n^) distributed. Thus the

hypotheses and may also be tested using the Chi Square distribution.

Soderstrom demonstrates the equivalence of the following 

inequalities:

a) AICCnp < AIC(n2)

b) FPECnp < FPE(n2)

c) t < 2

d) t1 < 2%n2 - n^)

e) -2 In A < 2(n2 - n^)

Interestingly, the Akaike criteria set a rational choice of t < 2



26

for the acceptance of the zero hypothesis for the F-test.

Many other techniques for model-order testing exist, for 

example, techniques based on pole-zero cancellation and whiteness 

of residuals and the reader is referred to Soderstrom’s paper 

(1977) for a comprehensive list of references.

2.1.4 Other Aspects of Estimation Theory

There are clearly many other aspects of parameter estimation 

and identification that are important. They include subjects such as 

detection of feedback (see for example Caines and Chan, 1975), 

identification of systems under closed loop control (Wellstead and 

Edmunds, 1975; Soderstrom, Gustavsson and Ljung, 1975), the selection 

of optimum inputs (Mehra, 1974; Goodwin, Zarrop and Payne, 1974) and 

the vast field of state estimation which is so closely related to 

parameter estimation (see for example Kailath’s survey paper, 1974). 

This review has therefore necessarily covered only those topics most 

relevant to the ensuing work.

2.2 Self Tuning Control

One of the prime purposes of system identification in the field 

of control is to construct system models which can be used in the 

design of controllers. The advance of real-time identification 

techniques has led researchers to consider’ the possibility of on-line 

estimation and control. Indeed, such a scheme could potentially 

realize the control engineer's dream of a ’black box’ controller which 

adapts itself so as to successfully control any system, or which could 



27

accommodate varying gain and dynamic characteristics of a plant. 

These variations might be due to time dependent changes in a plant 

Ce.g. wear) or non-linearities resulting in operating point dependent 

characteristics.

Historically, this concept has its roots in a proposal by 

Kalman (1958) for the design of a 1 self optimizing’ control system. 

Kalman based his work on a deterministic pulse transfer function 

model, the parameters of which he estimated using least squares. 

Unlike present day configurations, Kalman limited the model order to 

second order, and solved the normal estimation equations not, 

ironically, by the recursive least squares technique he later 

pioneered, but by computing the required covariances and substituting, 

these into 4 equations, one for each parameter. The parameters were 

updated every three time samples, and a dead-beat controller was 

synthesized. The computer Kalman used was externally digital, but 

internally analogue, using potentiometers to perform multiplication 

and storing numbers on potentiometers positioned by a servo 

arrangement.

Kalman * s work was, typically, ahead of its time and it was only 

in the 1970’s that research effort began to be directed to what have 

become known as ’self tuning controllers’. By that stage, faster and 

smaller digital machines were available which could be used to 

implement the new fast recursive estimators (the most popular 

formulation being derived directly from the Kalman Filter). The concept 

of stochastic control and the ARMA model formulation were also becoming 

more familiar to engineers and it was in this new setting that the 

present day self-tuning controller began to emerge.
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The architecture of the self tuning controller is based on 

a discrete time ARMA model of the plant. Parameters of this model 

are estimated and the result used in deriving a control strategy. 

However, other stochastic adaptive controllers which rely on the 

familiar state space description of the plant, viz. of the type

=k+l = + Buk + Dwk 2.45

where

yk = + vk

3 is an n-vector of the system states

2.46

and

u^ is an m-vector of deterministic inputs

w^ is an m-vector of noise inputs

v^ is an 1-vector of noise inputs

y^ is an 1-vector of system outputs

A, B, C and D are (time-varying) coefficient matrices, have also

been developed and employ concepts which are similar enough to the

self tuning controllers to warrant a brief review.

More specific fields of adaptive control, for example Model 

Reference Adaptive Control are not discussed. The reader is directed 

to the surveys of Landau (1974) and Hang and Parks (1973).

2.2.1 Approaches to Adaptive Control

Feldbaum (1960, 1961) has identified two basic classes of 

adaptive control, dual and non-dual. The dtial controller is one in 

which the control signal performs the dual role of ’probing*  and 

* control* . There is thus an interaction between identification and

control which takes into account that future uncertainties in the 
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parameters are functions of the control signal applied to the plant. 

A non-dual control strategy only takes into account the previous 

measurements and does not assume that future information will be 

available. The task of the dual control is therefore to find a happy 

compromise between the requirements of identification and control, 

providing a sufficiently stimulating control signal to promote good 

parameter estimation whilst not unduly impairing the quality of 

control. The minimization of a one-step-ahead cost function leads to 

non-dual control, whilst the minimization of a cost function several 

steps ahead leads to dual control.

In his survey paper, Wittenmark (1975) defines two categories of 

non-dual controllers, namely 'certainty equivalence' and 'cautious' 

controllers. In the first of these classes the certainty equivalence 

principle is invoked; in the second the controller is designed by 

appealling to the separation principle. 'Certainty equivalence' 

implies that it is possible to estimate the parameters of a model 

and then to treat these parameters as if they were exactly known in 

the design of a controller. It is not often strictly applicable, 

although it does hold for linear quadratic Gaussian control problems. 

The 'Separation Principle' is weaker in that the parameters of the 

controller may also be functions of, for instance, the uncertainties 

of the estimated model parameters. Bar Shalom and Tse (1974) discuss 

the concepts of Dual Control, Certainty Equivalence and Separation 

fully in their paper.

The basic idea of a certainty equivalence controller is to obtain 

estimates of the process model parameters by a real-time identification 

method, and then determine a control law from this model on the basis 
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that the parameter estimates are exact. This is similar to Kalman’s 

(1958) controller although he did not consider noise. One of the 

recursive estimation algorithms discussed previously would typically 

be used to estimate the parameters of a least squares or maximum 

likelihood model. A popular approach to designing the control law 

is to minimize some loss function, for example the plant output 

variance, i.e. a minimum variance controller (Astrom, 1965, 1970; 

Peterka 1972; Schwartz and Steiglitz, 1971 ). When the system is 

modelled in state space form and the states are not directly 

measurable, the estimation problem becomes more complicated (non­

linear) and is usually solved using an Extended Kalman Filter 

(e.g. Luxat and Lees, 1973). Typically, the cost function is of the 

form

N-1 T T T
J - EC + Z xtQ1Xt + utQ2ut ) 2.47

where the symbol x^ is the state vector, u^ is the input vector, 

are weighting matrices, and E( . ) denotes the mathematical 

expectation operator. It is generally necessary to solve a new 

optimization problem each time the parameters change.

Another solution is to discretize the parameter space into a 

finite set, and then construct a Kalman Filter and obtain a minimizing 

control for each hypothesized parameter set. The final control signal 

is computed as the weighted sum of the individual controls, the problem 

then being reduced to a determination of weights (Saridis and Dao, 1972; 

Deshpande et, al., 1973).

The most relevant concept to this thesis in the class of

Certainty Equivalence controllers is however the combination of 
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identification and control initially proposed by Peterka (1970). By 

using a prediction model and least squares estimator, he directly 

obtained the parameters of a controller which asymptotically converges 

to the same minimum variance control law that could have been 

computed from the parameters of the maximum likelihood model. The 

’self tuning property’ and a review of self-tuning controllers is 

discussed in a separate section of this chapter.

Cautious controllers, based on the Separation Principle differ 

from Certainty Equivalence controllers in that not only the model 

parameter estimates, but also the parameter covariances, are used 

to determine the control law. The effect of including the parameter 

covariance is to make a more ’cautious’ controller (low gain) when 

the estimates are poor (high variances). This can have the unfortunate 

effect of inducing extremely small excitation signals resulting in 

even poorer estimates eventually leading to the inputs turning off 

altogether until such time as system noise disturbances excite the 

system so as to improve parameter estimates. Wieslander and 

Wittenmark (1971) working with a least squares type model give an 

example of this phenomenon. The turn-off phenomenon results from 

minimizing a one-step-ahead cost function. The controller is not 

rewarded if it produces system inputs which give better estimates which 

in turn may be used to improve control in future steps as is the case 

in the dual controller. Modifications to the scheme may be introduced 

which act to overcome this problem, and thus approximate the 

behaviour of a dual controller. These are discussed later.

In the case of state-space models, the loss function in eqn. 2.47 

is generally to be minimized given that the parameters are unknown and 
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possibly stochastic. Thus there are two significant difficulties, 

firstly the non-linear estimation problem, and secondly the multi­

step minimization. If the parameters are known, or if the stochastic 

process describing the parameters is independent between sampling 

times (Twhite1 parameters) it turns out that the certainty equivalence 

principle holds. However, only approximate solutions to the more 

general case may usually be obtained.

Farisen, Graham and Shelton (1967) simplify the estimation 

problem by assuming that the state vector may be measured exactly. 

The estimation of the parameters is then a linear problem. The 

control is determined so as to minimize a cost function on the basis

of the present model of the system, say at time k. After applying 

control u^ the problem is repeated for k+1, and so on.

Tse and Athans (1972) considering a system in which only the 

zeros are unknown, and Ku and Athans (1973) who allow both unknown 

poles and zeros use the Open Loop Feedback Optimal (OLFO) approach. 

This controller does not take into account that future measurements

will become available. The 1 cost to go1 depends on the time evolution

of the expected value of future states (&.. ) and state error moment 
J /k

matrix ( E^Q/k) ) conditioned on past data, and on the future values 

of the controls which are treated as deterministic. This deterministic

cost—to-go, together with a set of deterministic equations describing

the dynamics of and E (j/k) for j=k,k+l J / k x • ,N-l defines a

deterministic optimal control problem whose solution yields the

optimum future open-loop controls. Unfortunately OLFO controllers can 

be over cautious because of the assumption that no future measurements 

will be available to correct for erroneous control actions.
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The more complex ’Dual’ controllers may be classified as 

’optimal’ and ’sub-optimal’. It is conceptually possible to solve 

the optimal dual control problem by solving the stochastic dynamic 

programming equation associated with the problem (Bellman 1961). But 

in practice, a numerical solution is prohibited by the ’curse of 

dimensionality’. Florentine (1962), Jacobs and Langdon (1970) and 

Astrom and Wittenmark (1971) have produced solutions for extremely 

simple systems.

Since solutions to the optimal dual control problem are so 

difficult to compute, researchers have attempted to find sub-optimal 

solutions that nevertheless have dual properties. There are two 

approaches to this. The first is to try to find approximations to the 

functional equation; the second is to elaborate on the class of 

cautious controllers. Murphy (1968), Tse and Bar Shalom (1973) and 

Tse, Bar Shalom and Meier (1973) have made contributions in the first 

area using a state space description of the system. The second approach, 

namely the development of cautious controllers, results from a 

realization that although cautious control fulfils the ’control’ 

function of a dual controller, it lacks the ’probing’ component. It is 

this deficiency that leads to the problem of turn-off. In order to 

incorporate an element of information sensing a perturbation (or probing) 

signal may be introduced if some function of the parameter 

covariances exceeds a set limit. This is suggested by Wieslander and 

Wittenmark (1971) who use an ARMA type modèl. Alster and Belanger 

(1974), also using an ARMA model, propose that turn off can be avoided 

by modifying the cost function so that minimization is constrained by, 

for example, the trace of the inverse parameter covariance matrix not
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falling below a set limit. Hughes and Jacobs (1974) place a lower 

limit on the magnitude of the control input. These techniques help 

to improve performance. It is interesting that some of these ideas 

are now being re—considered for use in conjunction with self-tuning 

controllers.

Attention is now focussed on the development of self-tuning 

controllers themselves.

2.2.2 The Self Tuning Approach

In order to present and motivate the new material in this thesis 

it has been found useful to discuss existing self tuning control laws 

in some mathematical detail within the main body of the volume. The 

main aim here therefore is to provide a brief resume of self tuning 

control and its applications, avoiding for the present any detailed 

descriptions which appear later.

The self tuning approach belongs, as has already been stated, 

to the family of certainty equivalence controllers. Probably the 

first stochastic self tuning controller was that proposed by Peterka 

(1970). He used the ARMAX formulation

{1+A(z 1)}yt = z kB(z 1)ut + {1+C(z 1) }et

(see eqn. 2.1) to define the system and chose as his control objective 

the minimization of output variance, i.e. E(y^). The off line 

solution to this regulation problem, given that the parameters of 

A(z 1), B(z 1) and C(z ^) are available is well known (Astrom, 1970). 

If the parameters are not known a priori they must be estimated, and 
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the conventional approach is to either identify the system off-line 

using a non-linear estimator (e.g. maximum likelihood estimation, 

Astrom and Bohlin, 1965) or on-line using an approximate maximum 

likelihood estimator (e.g. RML). Peterka’s approach differed in that 

he used a simple linear least squares prediction model of the form

—1 —A —1
^t/t-k-1 " ”z A(z )yt + z >ut

t

A -1 A -1 . , where A(z ) and B(z ) were estimated by recursive least squares 

so as to minimize the sum of the squares of the residual sequence

The parameters of the control law are obtained directly and are chosen 

so that the-k+1 - step-ahead prediction of output yt (yt/t-k-l) is

zero, i.e

Ut
AO-1) y

The interesting property of the algorithm is that

controller converges to the true minimum variance

asymptotically the 

control lawî This

neat result may be termed the ’self tuning property*  of the control

algorithm, and clearly provides a simpler method for obtaining minimum

variance control than the conventional approach.

The first stochastic self tuner was therefore conceived as a 

regulator, minimizing the effect on the output of stochastic 

disturbances and regulating the output to zero. It is important to 

note also that the under-lying assumption is one of a time-invariant 

system. This is true of later self tuners too, and it is only by 

making approximations and introducing ad hoc variants of the basic 

algorithm that time varying systems can be controlled by self tuners, 

t N.B. Convergence here and elsewhere throughout the thesis implies 

convergence with probability one
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Servo self tuners may be configured by introducing feed-forward 

from the reference input.

Peterka's work was followed up by a detailed study of minimum 

variance self tuning by researchers at Lund University in Sweden, the 

first important paper being by Astrom and Wittenmark (1973). Since then 

the minimum variance regulator has been successfully used in the 

control of several processes. Applications include moisture content 

control on a paper machine (Cegrell and Hedquist, 1975; Borisson and 

Wittenmark, 1974), control of an ore crusher (Borisson and Syding, 

1976), an enthalpy exchanger (Jensen and Hansel, 1974) and a 

supertanker (Kallstrom, Astrom, Thorell, Eriksson and Sten, 1978).

The minimum variance regulator has two important disadvantages:

a) In some applications the control action is excessive 

b) It cannot control non-minimum phase systems.

This has motivated researchers to find alternative self tuning laws.

The simplest variant is the 'detuned' minimum variance regulator 

(Edmunds, 1976) which can to some extent overcome the first of these 

difficulties without significantly complicating the control algorithm. 

The effect is to alter the optimum closed loop system output from

—1 
yt = ( 1+M(z Het 

—1 . . . (where M(z ) is a kth order polynomial) for the minimum variance 

configuration to

-1

. . . —1 where the introduction of 'tailoring' or 'detuning*  polynomial T(z ) 
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can significantly reduce the controller gain. The concept is 

analogous to the introduction of a staleness weighting factor in the 

design of minimal response controllers (Bertram, 1956). The method 

has been successfully employed in the control of a diesel engine 

(Wellstead and Zanker, 1978) and its extension to multivariable systems 

is discussed in this thesis.

The second limitation is a serious one. Many systems which are 

minimum phase in the s-domain are non-minimum phase in the z-domain, 

i.e. the zeros of B(z lie outside the z-plane unit circle. The 

minimum variance method effectively uses controller poles to cancel 

system zeros and thus when the system is non-minimum phase the closed 

. . . —1 loop system will in practice be unstable. Furthermore, B(z ) can 

become non-minimum phase by the introduction of the computational 

delay in calculating the next control input. Astrom and Wittenmark 

(1974) have proposed a sub-optimal self tuning minimum variance law. 

This requires on-line polynomial factorization and solution of a set 

of linear simultaneous equations.

Clarke, Gawthrop and their co-workers at Oxford University have 

generalized the minimum variance controller, first to the * Lambda 

Controller*  which minimized a cost function of both output and control 

variances (Clarke and Gawthrop, 1975; Clarke, Cope and Gawthrop, 1975) 

and then a more generalized cost function which can lead to a 

configuration in which both closed loop poles and zeros are specified 

(Gawthrop, 1977). The controller is more powerful than standard model 

reference adaptive controls in that the structure of the stochastic 

system disturbances appears explicitly in the formulation. If the cost 

function parameters are carefully chosen, non-minimum phase systems can 
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be controlled. The incorporation of set-point following (i.e. the 

servo rather than just the regulation problem) is implicit in the 

architecture.

Amongst the approaches that avoid the limitations imposed by 

non-^inimum phase systems is that of a pole-placement self tuner first 

suggested by Edmunds (1976) and developed here for both the SISO and 

multivariable cases. The approach is distinct from the other self­

tuners which are based on optimality criteria and has its roots in 

classical control theory where the direct relationship between pole 

position and system transient response is often used.

The controllers discussed thus far apply only to SISO systems. 

Borisson (1975) has developed a multivariable version of the minimum 

variance self tuner which retains the simplicity of its SISO counter­

part. However, it restricts the number of outputs to be the same as 

the number of inputs. A variant of the multivariable minimum variance 

self tuner which not only minimizes the error variance of the output 

signal but keeps a weighted average for a finite interval as close to 

the reference value as possible has been used by Keviczky, Hetthessy, 

Hilger and Kolostori (1978) for a cement material blending process.

There have also been suggestions for incorporating compensators 

such as those designed using Rosenbrock's (1969) Inverse Nyquist Array 

Method to obtain minimum interaction minimum variance controllers. 

Sinha (1977) suggests such an approach in which the diagonal dominance 

of the system is used to justify employing a set of single input 

single output minimum variance controllers, one for each loop. The idea 

requires some further development, particularly with regard to the 
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real time incorporation of the decoupling compensator design.

No multivariable version of the generalized minimum variance 

controller appears in the literature as yet. A multivariable pole­

placement self tuning scheme is discussed in this thesis.

Studies on the stability and convergence of minimum variance 

regulators have been carried out. It can be shown that if the time 

delay k of the process is known and if the order of the system 

(assumed to be minimum phase) is not under-estimated, the minimum 

variance self tuning regulator will stabilize any linear time-invariant 

system (Ljung and Wittenmark, 1976). Furthermore, if the regulator 

converges, it must converge to the true minimum variance regulator 

(Astrom, Borisson, Ljung and Wittenmark 1977; Ljung and Wittenmark, 

1974 ). The convergence analysis associates the algorithm with a 

differential equation that contains all the necessary information about 

the asymptotic behaviour, and is based on a general method of Ljung’s 

(1977) for a variety of stochastic recursive algorithms (also 

estimators).

More recently, Gawthrop (1978) adapted a technique used to analyse 

a model reference identifier to give convergence results for the 

generalized minimum variance self tuning controller. First the self 

tuner is written as a feedback system driven by a moving average 

process. It is then shown to be stable for systems with unit sample 

time delay or white noise models. Finally, Gawthrop shows that if the 

conditions for input-output stability hold, then the mean square of his 

chosen system scalar output (the difference between the desired and 

self tuning prediction errors) converges to zero.
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In conclusion it must be pointed out that the self tuning 

concept may be used to construct a Self-Tuning Predictor (Wittenmark, 

1974). The relationship between prediction and control is clearly 

a very close one, so that this result is not unexpected.
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CHAPTER 3

MAXIMUM LIKELIHOOD ESTIMATION

3.1 Introduction

The first part of this thesis is concerned with the estimation of 

the parameters of the ARMAX model. Possibly the most attractive theo­

retical solution to this estimation problem is to be found in the 

Maximum Likelihood Method (ML). In this chapter, the concept of 

Likelihood, the form of the likelihood function for the case of the 

ARMAX System with Gaussian disturbances, and the standard solution to 

the ML estimation problem are discussed. The interesting relationship 

between Maximum Likelihood and Information Theory is noted, and it is 

shown how the likelihood function forms part of more general criteria 

used for model structure as well as parameter estimation. Although 

the material is not new, its fundamental importance to later analysis 

justifies its inclusion.

3.2 A definition of likelihood

The general identification problem may be thought of as a 

combination of two exercises, firstly that of estimating the system 

structure, and secondly, the estimation of the parameters of the 

selected structure. It is assumed here, that the correct structure 

has already been determined, and that it remains to estimate the 

constant, but unknown vector of model parameters, 6. A set of system 

input-output records, denoted R is available.

On a purely intuitive basis, it is sensible to choose that para­

meter set which, according to the model, makes the data R the most 

"likely” outcome. This is the principle of maximum likelihood.
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First however, a measure of likelihood must be found. Let P(R/6) be 

the probability of obtaining data R given the hypothesized parameter 

set 9. Then the likelihood L(9/R) of the hypothesis 9, given R and 

a specific model, may sensibly be defined to be proportional to 

P(R/6), i.e.:

L(9/R) « P(R/9) 3.1

(Edwards 1972) The probability P(R/6) is defined for every member of 

the set of possible results R, given any one hypothesis 9. Although 

it is a function of both R and 9, it will generally be considered to 

be a function of R alone, given some specified parameter set 9. The 

statistical properties of R are then well known.

The likelihood, L(9/R), however, is a function of 9, considered 

to be the variable, and R which is considered to be constant. The 

Maximum Likelihood estimate is that value of 9 for which the likelihood 

function L(9/R) is a maximum. (Van Trees 1968; Edwards 1972). 

Expressed another way, it is the value of 9 that lends most credence 

to the proposition that the observed data could be generated by the 

selected model.

If two independent sets of results, R^ and R^ are available, then 

by definition

L(9/R1,R2) « P(RpR2/9)

= P(R1/9)P(R2/9)

so that

L(9/R],R2) = L(9/R1)L(9/R2) 3.2

and clearly, for n independent sets of results, the likelihood of 9 

given the combined data is simply defined by the product of the
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individual likelihoods L(6/IU ), i 

likelihood holds equally well for 

observed data.

= 1,2,...n. The definition of 

continuous or discrete (quantised)

In comparing the likelihoods of two hypotheses, one must of course 

ensure that the comparison is made on the basis of the same data. It 

is as well to re-inforce the idea that likelihood is a function of the 

hypothesized parameters 6 and note that the likelihood may be plotted 

out against each value of the parameter set (which may be continuous). 

This graphed function is known as the Likelihood Function. In the 

following section, the function is derived for the case when the 

system under study is described by the ARMAX equation

(I + A(z i))yt = z B(z )ut + (I + C(z ))e& 3.3

where u^ is a r-vector of inputs, yt is a p-vector of outputs, and e^ 

is a p—dimensional zero mean Gaussian white noise process with

T
E(efiet+j> - Q >0 3.4

and A(z ^), B(z ^), C(z ^) are matrix polynomials in the backward 

, -1 
shift operator, z , of the form

X(z^) = X1z”1 + X2z"2 + ... + Xn z X 3.5
x

where X. , i = 1,.. . ,nx 

are matrix coefficients.

3.3 The Likelihood Function in the presence of Gaussian Disturbances

It is assumed that the system described above in eqns 3.3 - 3.5

is modelled as

z-k BCz-1)^(i + a(z 1))yt (I + C(z x))et 3.6
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where the matrix polynomials have the same order as their counterparts 

in eqn. 3.3. Let denote the vector string of outputs to date, i.e.

T T T t
YN = ^N* yN ............... > yx) 3.7

and correspondingly, for the inputs

T T T T
UN = ^N-k-1, "N-k-2, ........... ’ ul) 3,8

* — 1 * —1 * —1 *
Collect the parameters of A(z ), B(z ), and C(z ) into vector 6.

Further, let p(Y^/U^ô) be the probability density function (pdf) of the 

outputs Y^, given the past history of inputs and parameter estimates. 

Now, it is well-known that the pdf of a Gaussian random p-vector X 

with mean M and covariance E is given by

Tp(X) = ((2n)P/2|z|^) ^exp(-^(x-M) E (x-M)) 3.9 

(Kendal + Stuart 1961) Thus, under the hypothesis that ê is indeed 

the correct parameter set, {} is clearly a sequence of independent

Gaussian random numbers, and

N p/2 1 i T -1
P^^.e) = ((2n) 1QI ! ) 1 exp Q e.)

p/2 , _ N
= ((2H) |Q| ) exp {-| ( E e. Q e. )}

i=l 1 1

= ((2H) |Qp ) N exp {-J ( E tr e. ej Q hl 3.10 
i=l 1

which by the definition of likelihood must be proportional to

L(ê/YN,UN).

In order to change the multiplicative properties to additive ones, the 

logarithm of the likelihood function is frequently used. Setting the 

constant of proportionality between L(Ô/Yn,Un) and p^^/U^Ô) to 

unity, it is evident from eqn. 3.10 that
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In L(6/Yn,Un) = ~|(p In 2w + In |Q| + tr JQ-1) 3.11

where J is the sample convariance matrix

1 N t
J ■ 5 & eiEi 3'12

and the residuals {e^}, are a function of the parameter set 6.

It is often useful to express the log-likelihood as a function 

of the parameters 6, maximized with respect to covariance Q. Given 

that:

at. iQl 

al S"'

= fl)

- -S" If. fl
1

(Akaike 1973)

where Q is a non-singular matrix and is a function of a set of

parameters ei’ it is easy to show that this maximum occurs for

Q = J 3.13

and thus

In L(6/YN,Un) - "|(p In 2n + In |j| + p) 3

It is also evident that in order to maximize the likelihood (or log 

likelihood) function, it is necessary to minimize

J, and thus V has a particularly simple form in the case of SISO 

systems, and the likelihood is maximized by minimizing the sum of 

squares of the residual sequence e., i=l,2, ... , N.
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3.4 Information Theory and Maximum Likelihood

It is re-assuring to note that the maximum likelihood principle 

does not stand alone as an isolated theory, but in fact relates very 

strongly to criteria originating from Information Theory. To 

illustrate this, consider again the problem of obtaining the 

estimate 6 of a vector of parameters 6 of a probability density 

function p(R/6), where R is an observed random variable. The 

maximum likelihood estimate is that value of 6 for which the log 

likelihood function in p(R/6) is a maximum. Akaike (1972; 1974a; 

1974b) has suggested the maximization of the expected log likelihood 

function which is by definition

Ea r P(R/Q) in p(R/6) dR 3.16
0

This would appear to be a formal extension of the classical Maximum 

Likelihood Principle, but the maximization of the above expression is 

clearly also equivalent to minimizing the information theoretic 

quantity

E In ( ) = Ea £ p(R/9) in ) dR
p(R/0) 9 p(R/9)

3.17

where the integral in the right hand side of eqn. 3.17 is the 

Kullback-Leibler mean information for discrimination between p(R/6) 

and p(R/6) defined as

I(9;9) = /” p(R/9) In ( ) dR 3*18
p(R/e)

(Ku11back 1959). This gives a measure of separation or distance 

between the two distributions and has a positive value unless 

p(R/6) = p(R/6) holds almost everywhere, in which case 1(6;©) is equal 

to zero. There is therefore a clear link between the maximum 
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likelihood principle and information theoretic concepts. Furthermore, 

notice that if N independent realizations R^, i=l,2,...,N of R are 

available, (-1) times the sample mean of the log likelihood ratio

i N p(R./6)
3'9

will be a consistent estimate of I(0;6). Now eqn. 3.19 is maximized 

by the maximum likelihood estimate. Thus the maximum likelihood 

estimator is designed to minimize the mean information for 

discrimination between the true and estimated distributions, I(0;0).

It is useful at this point to also introduce the 'Fisher 

Information Matrix'. It can be shown (Kullback 1959) that when 0 and 

0 are sufficiently close, I(0;0) may be approximated by

7 
I(e;e+A6) - i |A6| F(R/e) 3.20

where A6 = 6 - 6

|A8| p = A6?FAe

and F is the Fisher Information Matrix (Van Trees 1967) given by

F(R/6) A {f_ (6)}

= /” ( log p(R/6)}{ |t log p(R/6)}T p(R/8) dR

= E ( { ~ log p(R/0)}{ log p(R/6)}T )

2
■ -E ( - ---- 1O$ ) 3.21

ae2

The importance of the Fisher Information Matrix is that, via the 

Cramer Rao Bound (Van Trees 1967) its inverse provides a lower bound 

to the covariance matrix of any unbiased estimate 9 of 0, viz
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A A T —1
E {(6-8) (8-8) } > F (R/8) 3.22

On its own, the maximum likelihood principle cannot be used for 

model order identification, or the selection of the correct system 

structure. The likelihood function will always achieve its maximum 

for the model with the largest number of parameters. However, 

information theoretic criteria (reviewed in Prager 1976) do exist 

which can be used to select system structure. It is particularly 

interesting to see that the likelihood function still plays an 

important role in these criteria. Akaikes Information Criterion for 

example, which is derived from the cost function in eqn. 3.16, is 

given by:

N -
AIC = -2 I log p(R./ 8) + 2k 3.23

i=l 1 K

where ^0 is a kth order parameter vector. The 'best*  approximating 

model is that which minimizes AIC. For a given k (i.e. k parameters), 

the criterion is minimized by the Maximum Likelihood estimate.

Rissanen and Ljung (1976), have developed an information 

theoretic criterion that measures the fit between a model and observed 

data as well as determining the system structure. The criterion is an 

advance on AIC which clearly cannot distinguish between system 

theoretically equivalent structures with the same number of parameters. 

Rissanen and Ljung's criterion, termed the "Fundamental Estimation 

Criterion" requires the minimization with respect to both structure 

(s) and parameter vector 0 of

Vy(s,8) = In ]R^(§) | + In |Pg(8) | + ^(1 + In 2tt) 3.24
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where

e is defined by eqn. 3.3

and Pg(6) is an estimate of the covariance matrix of 6 defined by

P (6) - |R<.(G)|X In |R (e)|}T ) 1
S NZ 36 S 36 S

3.25

Note that the right hand side of eqn. 3.25 is the inverse of the 

Information Matrix of eqn. 3.21. For a given structure, s, this 

criterion too is minimized by the maximum likelihood estimate.

3.5 Properties of Maximum Likelihood Estimates

The three most fundamental properties of any estimate which can 

be used to assess its quality are bias, consistency and efficiency.

An estimate is said to be unbiased if the relationship

E(ê) = e 3.26

holds. Thus, the average value of an unbiased estimate of a parameter 

is the parameter itself. If 6 converges in probability to 0 the 

estimate is said to be consistent. Clearly, consistent estimates are 

also^unbiased. The third property concerns the covariance of the 

estimation error. An estimate is efficient if the covariance matrix 

equals the Cramer Rao lower bound, a lower bound on the covariance of 

any unbiased estimate.

Astrom + Bohlin (1965) have shown that for the SISO ARMAX model 

(eqn. 2.2) the Maximum Likelihood estimator is asymptotically both 

consistent and efficient. The condition^on the system input sequence 

is that the following limits exist for all finite t:

+ See the original Astrom and Bohlin 

paper for the full conditions.
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a)

b)

lim 1 N
E uN-H» N t=l t

lim 1 N TZ u u
N-Hd N t-1 t t+T

3.27

3.28

Astrom + Bohlin establish (for SISO systems) that if the zeros of 
—1 —i .1+A(z ) and 1+C(z ) lie within the z-plane unit circle,

^lnL(6/Y^,UN) converges to its ensemble average, which is a 

differentiable function in the parameters 6. They also show that the

estimates 6 converge into the set Sq of parameters, which are 

equivalent to (the true parameters) in the sense that any model 

with 6eSQ will generate outputs y having the same likelihood 

function. If Sq contains only one point, the estimates are strongly 

consistent and converge to 6q.

The question of uniqueness has been studied by Astrom

+ Soderstrom (1974). Their work shows that if the model is adequately 

parametrized, and if the orders of either the autoregressive (AK) or 

moving average (MA) parts of the model equation are correct, the 

likelihood has a unique local and global maximum. If the orders of 

the AK and MA parts are both too high, there will be many maxima, with 

the property that the AR and MA polynomials will have common factors. 

There may be several local maxima if the model is under parametrized.

Maximum likelihood estimates have particularly good statistical 

properties. Following from Astrom and Bohlin (1965) it is known that:

1) The . variable Laa(e) A - E
N-*»  N

3 log L(6) 
ae2

exists

and

lim
N-h»

2
1 3 log L(6) =
$ 362

lim 1 E
N-h* N

2
3 log L(6) 

de2

2) (êN-ê) (where 6 is the true parameter vector) is

asymptotically distributed N< °- Se (6) ).
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3) If Lgg(6) is non-singular, then 6^ is asymptotically 
• 1 —Ie

distributed N( 6 , ~ ~ £gQ(e) ) •

Thus the estimate 0^ is asymptotically normally distributed with mean 
• .1 —1 • , . . .
6 and covariance —£^(6). This latter quantity will be recognized 

N ee
as the Cramer Rao lower bound (see eqn. 3.21) on the variance of any 

estimator, and by definition then, the Maximum Likelihood estimate 

is efficient.

The consistency property is more complex in the case of 

multivariable systems. Caines and Rissanen (1974) discuss the 

problem and consider the representation

ft ■ *0%  + ' 3.29

where is invertible, and y is now a full rank, p-component 

stationary process. In addition, y is finitely generated in the 

sense that the relation

{I+A(z”1)}yt = {Co+C(z”1)}et 3.30

. . —1 —1holds, where the matrix polynomials A(z ) and C(z ) are of order n

and follow their previous definition. Cq is a matrix of constants. 

Now, there are in general several pairs {I+A(z ^), C@+C(z ^)} of 

matrix polynomials that generate y from the orthonormal process e^. 

They are all those such that

{I+A(z 1)} l{Co+C(z 1)} = $(z ^) = If... 3.31

It is clear that the ML estimates of the parameters in 
—1 —% , , 

{A(z ), C@+C(z ) } cannot be expected to be consistent without a 

prior knowledge of the Kronecker indices, itself a complex problem.
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However, Caines and Rissanen show that if (Â(z ^), Cq+C(z } 

maximize the likelihood function, then (I+Â(z ^)) (Cq+C(z .

Caines and Ljung (1976) have shown that Astrom and Bohlin’s (1965) 

SI SO results of asymptotic normality and efficiency of ML estimates 

(for Gaussian processes) are valid in the multivariable case. Their 

results are part of a broader study considering asymptotic normality 

and accuracy of prediction error estimates, and will be considered in 

more detail later.

3.6 Computation of Maximum Likelihood Estimates

In Chapter 2, it was pointed out that maximum likelihood 

estimation is a non—linear procedure, and for this reason is 

numerically far more complex than standard least squares. Two 

solutions to the problem are discussed here. The first is a 

conventional hill climbing technique; the second is an approximate, 

recursive approach. Both techniques are applicable to SI SO systems.

3.6.1 ML estimation by hill climbing

The conventional approach to maximising the likelihood function 

(for SISO systems) is due to Astrom and Bohlin (1965) and involves the 

use of the well-known Newton Raphson hill climbing algorithm

H(îJ _1 av<6 )
Sk+1- - (-^) — 3.32

where k denotes the iteration number,

N 2 
and V(6 ) = Le. 3.33

& i=l 1
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which for convenience, differs by a factor (|N) from the cost 

function given in eqn. 3.15. The computation of the partial

derivatives of the cost function is fairly straightforward, and is

detailed below. Differentiating V(6 ) with respect to the i^^

component of 6 yields :

av
ae.

N 
Z 

t=l
« t de. 3.34

de.de. 
i j

N 
Z 

t=l

fft 2ft 
de. de.

i j

N 
Z 

t=l

3^t

de.de. 
i j

3.35

It is convenient at this stage to introduce the filtered variables

y_ , u£ , e£ , and the "doubly filtered" variables yff , u__ and
£t £t £t t t

e££ , where these filtered variables are derived according to:

3.36

xf /{1+Ck(z 1) } 3.37

and C^z implies

SISO model equation

the estimate of C(z ) at iteration k. Then

(from eqn. 3.3) can be re-written as

the

£t
(1+A(z 1)}y£ 

t
z-^iz-bu.

t
3.38

"»t

e t

from which the partial derivatives may be deduced as follows:

fft 
da. z yft

3gt 
ab. -z u£

3ci
32%

da.de. y“t

db.dC.

dc.dc.
1 J

fft

3.39

—z

—z

z

2z j

de.de
de.de
da.de
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Thus, if the parameter vector 6 is

6 (a, , ♦ e e e , 3 ,6-,eeee, 6 gC-eeeegC )
1 na 1 nb 1 nc

/ \TCyf , yf .................  yf )
rt-i t-i-1 rl-i

3.40

3.41

and similar definitions hold for (the vector of inputs) and 

(the vector of residuals)

9V
96 3.42

Gustavsson (1969) indicates that the second term in the
. _ 92V . . .......

expansion of 39 has little influence on the minimization of the 
i j

cost function, and if it is ignored, the cost function may be 

approximated as follows:

92V

902
3.43

The evaluation of the partial derivatives is therefore neatly 

given by equations 3.42 and 3.43. The algorithm then consists of 

choosing some initial estimate of 6, evaluating eqn. 3.42 and 3.43 to 

obtain the partial derivatives, and iterating on eqn. 3.32. Clearly, 

any other hill-climbing method, for example, that of Rosenbrock (1960) 

may equally well be used.
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Thé greatest disadvantage of this technique is its substantial 

computational requirement. Furthermore, as the method relies solely 

on "number crunching” there is negligible user interaction and the 

user gains only a minimal ”feel" for the problem in hand.

Accuracy is the prime advantage of the method. The excellent 

properties of the cost function, especially the uniqueness of the 

global and local maximum, ensure that if the correct model structure 

is chosen, and if there are sufficient observations the hill-climber 

will eventually converge to the true ML parameter estimates.

In the multivariable case, where a determinantal cost function is 

to be minimized, the computation of the partial derivatives becomes 

more complicated.Kashyap (1970) has suggested a method by which 

Lagrange multipliers are used to incorporate the system equations into 

the loss function and Akaike (1973) discusses the numerical 

maximization of the likelihood function for multivariable systems.

3.6.2. Recursive Maximum Likelihood

The computational complexity of the hill-climbing approach has 

motivated some considerable interest in approximate, recursive, real­

time algorithms for ML estimation. Many of these have already been 

discussed in Chapter 2. As was mentioned there, the most prominent 

technique is Soderstrom's (1973) RML algorithm, which is now 

discussed in some detail. The cost function given in eqn. 3.33 is 

again used, and the vector of parameter estimates after N 

observations (t=l,2,...,N) is denoted 0^.

If 6^ minimizes the cost obtained after N observations, then
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can be computed from a Taylor expansion of (6) about 6^. A 

second order expansion is deemed sufficient, viz:

3.44

where V' and V” denote the first and second partial derivatives of V 

with respect to 6, respectively. ^+1^^ minimized when

= ®N * 'WV 3145
If it is assumed that 6^ is the maximum likelihood estimate at stage

N then V^) - 0 

and

VN+1 = ^N+l,êN)e'(N+l,êN) 3.46

(see eqn. 3.34). In the evaluation of (^) the following 

assumptions are made:

N+l « -
1) The term E e(t,6 ) e”(t,9__) in the expression for 

a i=i
VN+1(®n) eqn. 3.35) has neglible effect on

the minimization. (This is found in the case of 

off-line minimization by Gustavsson (1969)) .

2) %) = %.,)

Then:

3.47

Now define 3.48

Tand x — (—y^ , • • • >**y^ » , ...,Ur > • • • > \
rt-l rt-na 1t-k-1 t-k-nt t-1 t-nc7

T
= -c'CN^N-l) (from eqn. 3.39) 3.49 
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where the filter variable notation (x^ ) is defined in eqn. 3.36.

Then, substituting eqns. 3.48 and 3.49 into eQn. 3.46 

then substituting eqns. 3.46 and 3.47 into eqn. 3.45

and 3.47, and

and expressing

Et in terms of y^, x^ and 6^, eqn. 3.45 becomes

9n+i 9N + PN+lXN+l(yN+l~ XN- 3.50

From the matrix inversion lemma (and the familiar RLS formulation) it

is easy to show that can be computed recursively as follows :

where

T
PN+1 = PN ~ ^1^+1^+1PN

T —I
yN =

3.51

Exact computation of the prediction error e(t,6^) requires the

solution of eqn. 3.38 from t=0 for every new parameter vector 0N,

i.e. every new measurement. Thus, to speed up computation, it is

generally approximated, for example by

N-l' '“yN-na’^-k-l '^N-k-n^’eN-l’’*’eN-nc^°N 3,52

Soderstrom, Ljung + Gustavsson (1978) show that using RML, the

estimate 6 converges with probability one to a local minimum of V. It

is evident that the recursive algorithm 3.50 - 3.51 may be interpreted

as giving the recursive least squares solution to the set of equations

Thus, the normal equation

el

£N A-1
3.53

1 “
ï tii

N T*
Xt(£t + Xt9t-1 3.54

£n ”

T
Ï

T

0

1 
N

4%
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must hold. Now if the algorithm converges, and 6^ and et-l "e

asymtotically replaced by 6*,  then eqn. 3.54 implies

lim l
N

_ lim 1
XtEt N-m» N

N 
til 3.55

or, invoking ergodic theory, E e^e 3.560

0

which is precisely the condition necessary to minimize the cost

Vm = E(e2) 3.57

Thus, intuitively, the true parameter set is seen as a possible 

convergence point, if the usual conditions required for the 

uniqueness of the ML estimate are fulfilled.

This algorithm has superior convergence properties to RELS. 

Simulation studies, results of which are presented later, have however 

indicated that the method often requires a very large number of 

observations in order to obtain good reliable estimates. Furthermore, 

it has been found essential to check the stability of the inverse 
. . * —% —% . .

noise filter (1+C(z )) at every iteration and to modify the

estimates to ensure stability. Modification is usually necessary only 

at the start of a run.

Soderstrom suggests other devices to improve performance. In 

particular, it was observed that the algorithm rapidly lost gain, even 

before the C(z ) polynomial estimates had approached their correct 

values. In order to assist convergence, one might monitor 

"convergence rate” and ’’restart” the algorithm mid-run (with a higher 

value of P ) thus boosting the gain. Clearly, many criteria for 

assessing convergence can be found, and endless research time, of 

dubious value, can be expended in the search for further
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"modifications’*.

One particularly useful device, however, is that of the 

forgetting factor as used also in BLS. It has been found that a 

forgetting factor which forgets itself can enhance results, and is a 

point made by Soderstrom, Ljung + Gustavsson (1978). The forgetting 

factor X is updated according to

Àt+1 " + CW) - 1 - G(l-\)

where g is typically chosen to be 0.99.

Ultimately, it must be conceded that the algorithm does not 

perform nearly as well as the off-line hill-climbing ML method which 

can achieve good estimates with relatively few observations. 

Admittedly, it does so at some considerable computational cost.

3.7 Conclusion

This chapter has introduced the concept of likelihood and 

considered fundamental properties of maximum likelihood estimation 

with particular reference to the ABMAX model. Attention has been 

focussed on the interesting link between Information Theoretic 

criteria and Maximum likelihood. Finally, the review of the two most 

dominant approaches to the evaluation of maximum likelihood estimates 

has prepared the ground for the presentation of a new approach to ML 

estimation in the following chapter.
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CHAPTER 4 

MAXIMUM LIKELIHOOD ESTIMATION BY HYPOTHESIS TESTING

4.1 Introduction

This chapter is concerned with the Maximum Likelihood estimation 

of the parameters of the ARMAX model for SISO systems described in 

eqns. 2.1 - 2.2. Caines and Ljung (1976) have shown that the 

maximization of the likelihood function leads to asymptotically 

consistent and efficient estimates, and that the parameter estimates 

are asymptotically normally distributed. Details were given in 

Chapter 3. The attractiveness of the maximum likelihood method is 

lessened only by the property that the parameters enter into the 

maximization in a non-linear manner. As has been discussed 

previously, this greatly complicates their evaluation.

In Chapter 3 examples were given of the two established 

approaches to the computation of maximum likelihood estimates, viz.

1) Optimization techniques which employ numerical hill climbing 

methods (e.g. Astrom + Bohlin 1965)

2) Quasi-linear approximation methods which use variations of linear 

least squares (Panuska 1968, 1969; Soderstrom 1973; Gertler and 

Banfasz 1974; Young 1968, 1970; Young, Shellswell and Neethling 

1971).

Direct hill-climbing methods have two major disadvantages. 

Firstly, they require considerable computational effort, and 

secondly, because the final result is simply a set of estimates and 
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covariances, little information about the nature of the likelihood 

function or deeper insight into the estimation problem is gained by 

the analyst.

On the other hand, the computationally more attractive, 

recursive, approximate maximum likelihood methods often experience 

convergence difficulties which are difficult to diagnose. (Soderstrom 

Ljung + Gustavsson, 1975, 1978). Although the methods can work 

extremely well, especially when large data samples are available, 

they are not generally reliable for the off-line analysis of short 

data records. In spite of the apparent computational saving 

associated with a linear estimator, repeated iterations in the case 

of short data records are often involved with a concommitant increase 

in computational effort.

These shortcomings led to a fundamental re-appraisal of how best 

to approach the evaluation of maximum likelihood estimates. In 

particular, due consideration was taken of the advantages to be 

gained from increasing the analyst’s interaction with the estimation 

algorithm via graphic information as opposed to purely numerical 

diagnostics supplied by existing methods. The natural realization of 

this concept is the visual presentation and interpretation of the 

likelihood function or related cost function, and marks a return to 

the original proposals of R.A. Fisher (Edwards 1972). Computationally 

this involves the discretization of the parameter space, and the 

setting up and testing of multiple hypotheses in a manner familiar in 

communications theory (Van Trees 1968) and related to proposals by 

Nebeker (1976) and Tomanek (1976) discussed in Chapter 2. The 

implementation of the method, which is the subject of this chapter, 
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is achieved recursively, and this has led to the acronym RHYP 

(estimation by Recursive Hypothesis testing).

An initial objection to the method would be the problems of 

dimensionality in computing the likelihood function. However, 

referring to eqn. 2.2, it should be noted that only the parameters of 

C (z l ) occur in the estimation in a non-linear manner, and hence only 

those cross-sections of the likelihood function which correspond to 

the co-efficients of C (z ) need to be examined, the A(z )and B (z % ) 

polynomial parameters being constrained in the RHYP procedure.

The difficulties of dimensionality are more than compensated for 

by the insight afforded the analyst by a physical inspection of the 

likelihood surface and its evolution with time. It is important to 

appreciate that, although the likelihood function is endowed with 

excellent asymptotic properties (Astrom + Soderstrom 1974; Caines + 

Ljung 1976) the sample properties for short data records can be very 

different, as it is likelihood conditioned on available data which is 

obtained. To illustrate this point, data was generated according to 

the moving average rule

yt = (1 -0.8z 1 + 0.6z ^)et 4.1

where et is a Gaussian white noise. Fig. 4.1 shows the time 

evolution of a section of the cost function V (given in eqn.3.15 and 

which is related to the likelihood function) as the amount of data is 

increased. The diagrams (produced using RHYP) clearly illustrate the 

conditioning of the likelihood surface in a manner which would not be 

possible by other methods.



After 10 observations

After JO observations

After 20 observations

Fig. 4.1 Time evolution of section of cost function
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This chapter describes the new algorithm, and suggests methods 

for reducing computation. Examples illustrating the use of the 

procedure, and highlighting its merits are given.

4.2 The Basic RHYP Algorithm

Consider the linear time invariant SISO system defined by the

ARMAX equation 

1 + A(z 1) yt "It ■ 1 I
= z B(z )ut + [1 + C(z 1)j efc 4.2

where and y are the system input and output respectively and e%

is a Gaussian white noise sequence with statistics

E(et) = 0

E(e^) = R , R > o.

4.3

4.4

A(z~1X BCz"1) and C(z~^) are polynomials in the backward shift

operator z"^ of order n& and nc respectively, and follow previous

definitions. Assume that N observations of the input/output data

(yl’uP’ (y2• u2)1 " ' ^yN*̂N^  are available. Then the maximum

likelihood estimates of A(z”^), B(z ) and C(z"^) are those values of 

* „ — 1 * — i * _ 1
A(z ), B(z ) and C(z ) in the model

* —1
1 + A(z )J yt = z ^B(z ^)ut 1 + C(z-1) e 4.5

which minimize the cost function

1 N c? 4.6
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* —1 ~ —1 * — 1

* —1
Unfortunately, C^^(z ) 

property may be exploited as follows.

A w 1
A set of hypothesized 1+C(z~ ) polynomials is employed to filter 

the data, and linear least squares estimation used on each filtered 

data record to obtain estimates of A(z ) and B(z ). The cost 

function is also evaluated for each hypothesis. The approximate 

maximum likelihood solution is that which minimizes the cost. A more 

detailed exposition is now given.

A(z ), B(z ) and C(z are assumed to be of order n , n, and n a d c
respectively.

Assume now, that the maximum likelihood estimate C^(z ) of C(z”^

were known a priori. The filtered variables y^ and u^ def ined by

4.7

ft (1 4.8

t

t

t

(1 + C^(z'l))

+

could be computed, and model eqn 4.5 reformulated as;

A _11 + A(z 1 J \ z 4.9

The evaluation of the maximum likelihood estimates Am^(z ) and 

Bm^(z ) is then a very simple task indeed, and may be accomplished 

by applying linear least squares estimation to the minimization of

is not known a priori, but the above
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Construct a set of "allowable polynomials"

Co - { (1 + C± (z"1)), i = 1,2.......... ,M } 4.10 

where the elements of Cq serve as hypothesized estimates of the 

1+C(z ) polynomial, and it is assumed that 1+C^(z ) is a member of

Cq. An "allowable" polynomial is defined so that its zeros lie 

inside the z-plane unit disc (i. e. the polynomial is ’inverse 

stable’). The elements of C , o'

l+C^Cz ) = l+c1z + oooo.o + c^ z c , i=l,2,...,M 
c

A -1 
are generated by discretizing the parameter space of the 1+C(z )

polynomial according to Procedure A.

Procedure A

1) Select quantisation intervals q^, j = l,2,...,ne for each Cj, j = 

l,2,e., n^

2) Determine the values c^, j - l,2,...,n& where Cj is the absolute 

value of the corresponding coefficient of 

(1+Z-1) c. If

and c" = - c. 
J J

then ct and c"? determine the maximum boundary limits of c. which 
J J J

A w I
could possibly allow the zeros of 1+C.(z ) to lie within the

z-plane unit disc. There are then a maximum of

J
K. I 4.12
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possible values of c^, where

INT(x)- integer part of x 4.13

3) Generate the set of quantized coefficients S , j = 1,2,...,n 
cj °

where

S = {c /c.^c.<c.+ and c =c7 +Zq., Ze (1,2,... } 4.14
'-j J J J J J J J J

4) Having thus quantised the coefficients Cj, construct all 

allowable polynomials 1+C^(z~^), i=l,2,..,M, in Cq such that

Cj * J ““

A _ 1
This procedure quantises the parameters of the 1+C(z ) 

polynomial and sets up the set of hypothesized polynomials, Cq. 

As qj—o,j=l,2,.. nc> so set Cq expands and the assumption that 

(1+C^(z ^)) c Cq gains validity.

As a simple example of the quantization procedure, consider the 

first order polynomial 1+C(z"^) = l+c^z~^. Select q^*0.2.

Now c^*l , and hence c^=l, c^--l, and k^=9. The quantised coefficient 

set S = {-0.8,-0.6,....,0.6,0.8} and the M=9 elements of the
C1 

allowable polynomial set are

Co= {(1-0.8z-1), (1-0.ôz”1)................ (1+0.ôz”1), (1+0.Sz”1) }

The algorithm for approximate maximum likelihood estimation then 

follows, and is given in Procedure B.
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Procedure B

1) Generate M sets of filtered data {(y^ ,u^ )..(yi ,u^ )}i=l,2..,M 
± i fN

where a filtered variable of is defined by

xf “ 4.15

and xt - (y^p.-.y^ .ut_k_r..,ut )
a b a .

2) For each i, i=l,2...........,M hypothesize that (l+C^z )) is in fact 

the maximum likelihood estimate (l+C^^z”! ) ), and find (by linear 

least squares) the maximum likelihood estimates of the parameters 

of the model

[1+A±(z 1)] y^ = z~^B^(z Suf + 4.16

i.e. those parameters minimizing

. N . 9
4.17 

j=l J

3) Evaluate V^, i=l,2,...,M 

i  i*
4) Determine = min V^, and record the number i  of the minimizing 

.  -1 hypothesis. Then, under the assumption that 1+C^(z ) € Cq, the

*
*

Maximum Likelihood Estimates are given by

* — 1 * — I A *1
^£*( z ), B^^Cz ), C^*(z  )

The effect of this procedure is to resolve the non-linear 

estimation problem into a set of parallel linear least-squares 

exercises. Both parameter estimates and cost function may be 

computed recursively, using the standard Recursive Least Squares 

Algorithm (Eykhoff 1974). For convenience, the equations are listed 

here.
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Let Q*  = ,B\ o . o )T
t 1 na 1 nb t

4.18

and following the previously defined filtered-variable notation

Xf = (-yi ,**,-yf  , )T 4.19
t t-1 t-n t—k—1 t—k—n,a D

Then for the i^ hypothesis, the model equation (4.16) may be 

rewritten as

"I et

The recursion for is then

where

and

The recursion

where et

°C

- Ft

(1

for the cost is

■ vt

"X

/t

-1

4.20

4.21

4.22

4.23

4.24

4.25

0

P

V

t

P

At each time iteration, eqns 4.21 - 4.25 are updated for i=l,2,.. ,M. 

.*  
Also, is evaluated, and the parameter values corresponding to 

hypothesis i*  accepted as the optimal estimates at that iteration 

time.
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The accuracy of the approximation to true maximum likelihood is 

determined by the quantization intervals , j=l,2,...,n^. Whilst 

small intervals are desirable to improve accuracy, larger values of 

q^ result in fewer hypotheses and minimize computation.

The basic algorithm described thus far is the nucleus of a 

multi-pass interactive computer procedure which allows the analyst to 

interpret the results and analyse the cost function. This scheme is 

the subject of the next section.

4.3 An Interactive Computer Scheme

The data derived from the above algorithm contains a considerable 

amount of information, including an important section through the 

likelihood function, or cost function V. Although it is not possible 

to plot out the entire likelihood function as a function of all the 

parameters, it may be mapped as a function of the C(z”^) polynomial 

coefficients (or equivalently the hypotheses of set C^) for 

constrained values of A(z ) and B(z ). This section of the 

likelihood function possesses the useful property that, assuming 

* —1 
Cmi(z )€ Co, it includes the unique maximum of the overall 

likelihood. This constitutes the first visual aid and is important 

in that it illustrates the sensitivity of the likelihood to changes 

in hypothesis. Even a coarsely quantised (discretized) display can 

be used to define more precisely the region in which the minimum of 

the cost is likely to occur. Thus, new smaller quantization 

intervals, q^,j=l,2,......... n^ can be selected and a new set of

hypotheses (set Cq) chosen to span the more narrowly defined region.
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Clearly, this interactive process may be repeated until a sufficiently 

small quantization has been achieved.

The approach is not without its graphical difficulties. Whilst 

representation in the case of first and second order 1+C(z**^  ) 

polynomials is simple, it is more difficult (though by no means 

impossible) to interpret results for higher order polynomials. The 

display techniques are shown later. Fortunately, however, second 

order descriptions of 1+C(z ) are adequate in many practical

identification problems.

The second graphical aid is concerned with the sensitivity of
* —1 * — 1 

the A(z ) and B(z ) polynomial parameters to the choice of the
A _ | 

hypothesized 1+C(z ) polynomial. These parameters may be plotted as

a function of the hypothesis. Where only estimates of A(z”^) and 

B(z l) are required, examination of this plot will reveal whether or 

not the quantization level is small enough to determine the 

parameters within the required accuracy. Often, very coarse 
A _ I A _ 1

quantization of the C(z ) polynomial coefficients, and C(z ) 

polynomials of reduced order will still result in dramatic improvements 

over least squares estimation.

Finally, the use of a recursive least squares algorithm makes it 

possible for the analyst to display the time evolution of the 

parameter estimates. This plot is in itself a valuable guide in 

assessing the quality of parameter estimates, and in particular, to 

decide whether the estimates have converged.

In summary, three graphical aids are available to the analyst.
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1) A representation of a section through the likelihood function (or 

cost function) enabling new, smaller regions enclosing the 

extremum to be defined at each pass

2) A display illustrating the sensitivity of the A(z”l) and B(z""^) 

polynomial parameter estimates to changes in the hypothesized 

l+C(z l) polynomial and effectively indicating the scale of error 

induced through the quantization approximation

3) A display of the time evolution of the parameter estimates 

themselves.

The interactive estimation procedure is illustrated by means of 

an example.

4. 4 Illustrative Example

Consider the system described by the discrete-time equation

(l-1.5z”1+0.7z”2)yt = (z~l+0.3z~2)Ut+(l-0.8z"l+0.6z-2)et
4.26

where e^ and u^ are both white noise inputs with zero mean and unit

variance. 200 observations of the input-output data and yt)

generated by this system were available. The system was modelled by

(l+a^z ^+a^z 2)yt = (b^z 1+b^z 2)u^+(l+c^z ^+c^z 2)s^ 4.27

Initially the quantisation intervals q^ q^ were both chosen to be 

0.2. The candidate coefficients were then

Sc^ = {-1.8,-1.6,...........  0,............1.6,1.8) 4.28
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Sc2 — {—0.8,—0.6,...0,....0.6,0.8} 4.29

resulting in a set Cq of 87 allowable hypothesized polynomials, 
A

1+C^(z ), i=l,2,..,87. For example, for c^-~O.8, the allowable

polynomials are

{(1+O.Oz 1-0.8z"2),(l+0.2z”1-0.8z"2)} 4.30

•2The cost function 1 9 
N£=l

) is depicted in Fig. 4.2 where sections

through it are plotted side by side against the corresponding c and

c2 parameters and hypothesis number. The minimizing hypothesis is

number 58, viz,

1+C58(z-1) = 1-0.8z-1 + O.6z~2 4.31

The process of narrowing down the region of interest now begins. 

Examination of the cost function suggests that it is reasonable to 

confine the search to:

-1 < c^ < -.4

0.4 < c2 < 0.8

4.32

4.33

This enables the quantisation interval to be reduced to 0.1 for both 

and q2, whilst simultaneously reducing the number of hypotheses to

M=35 for the second pass. A similar analysis of the cost function 

obtained after this pass leads to the even smaller region

-0.9 < Ci < -0.7

0.5 < c2 < 0.7



HYP. 
NO.

0.243

O. 691 
0. 600

F1&. 4.2
Cost function and noise 
polynomial parameters vs. 
hypothesis number 
(Pass 1)

Fig. 4.5
Time evolution of the 
parameter estimates 
(pass 5)

COST

0.5

0.0
COST

1.D2Û 0.5

1.010

1.000 co.

Fig. 4.4
Cost function and noise 
polynomial parameters vs. 
hypothesis number 
(pass 5)



73

being specified for the third pass. Quantization intervals ql and q2

may be reduced to 0.025, giving 72 hypotheses.

Fig. 4.3 shows the time evolution of the parameter estimates 

after this run, whilst Fig. 4.4 depicts the cost function in a manner 

similar to Fig. 4.2. From this plot, it is evident that the minimum 

does indeed lie in the specified region. Since only a second order 

1+C(z 1) polynomial is involved, it is possible to present this 

section of the cost function in a 3-dimensional perspective drawing 

as shown in Fig. 4.5. It is clear that the function is in fact 

extremely smooth and possesses a well-defined minimum.

Fig. 4.6 illustrates the sensitivity of the b^ and b^ parameter 

estimates to changes in hypothesis. Similar graphs can obviously 

also be drawn for A(z""^) polynomial parameters. When using the 

actual interactive computer suite it is often useful to assess these 

variations in conjunction with the cost function (Fig. 4.4). Actual 

values of parameters or cost function are read by selecting points 

with a cursor facility (or light pen) on the graphics display 

terminal. In particular, to assess the errors induced by quantization 

it may be useful to examine changes in parameter values for 

hypotheses neighbouring the optimal choice. Fig. 4.7 shows the grid 

about the chosen hypothesis together with the value of parameter a^. 

The maximum deviation from the chosen value is 0.0113.

The entire method is geared towards affording the analyst 

maximum interaction with the estimation procedure. A great deal of 

information is available, and its presentation could be further 

enhanced by greater programming effort.
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For the above example, the computation time used on a PDP-10 

system was:

Pass 1: (87 hypotheses) 94s

Pass 2: (35 hypotheses) 42 s

Pass 3: (72 hypotheses) 82s

This averages to approximately 5.3 ms/hypothesis/itérâtion.

4.5 Implementation of the Recursive Algorithm

The implementation of the algorithm is extremely simple and is

briefly outlined here. The first task is to define the maximum

permissible range of the coefficients n , in order for c'cjij—1 » 2,

the hypothesized polynomials to be inverse stable. Maximum 

magnitudes of the coefficients can be found from Pascal's Triangle,

and depend on the polynomial order. For example, for 

i) C(z 1) first order: 

ii) C (z l) second order: 

iii)C(z 1) third order:

1^1 < 1

lcLl < 2, ic^l < 1

Ic^l < 3, lc^l < 3, Icgl < 1

and so on, following the rows of Pascals Triangle

1

12 1

13 3 1

etc.

Once the range of c,j=l,2,..., n^ has been established, the 

polynomial set is constructed by forming C(z ) polynomials from 

all permutations of the given coefficient sets and accepting only 
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those which are inverse stable. The Jury Criterion (Jury, 1964) is 

suggested as a suitable test for establishing whether the zeros of 

C(z l) lie outside the unit disc.

Finally, the estimation problem is resolved into M parallel 

linear recursive least squares routines, for example, the *KaIman 

Filter*  implementation given in eqns. 4.21 - 4.25. In order to 

maintain accuracy, especially when only limited data is available, it 

is suggested that the initial conditions for the recursive algorithm 

are found by ordinary least squares using sufficient initial data to 

ensure that the information matrix has full rank.

4.6 Mod if ied Implementat ions

The recursive method outlined in the previous sections is 

valuable when dealing with relatively short data records. Even with 

limited data it is usually possible to extract good parameter 

estimates. There are however instances where larger data sets are 

available and where the computational cost of running M parallel 

recursive least squares estimators may be unacceptable. Two 

alternative methods are described which rely on an approximation to 
1 

the filter function They are non recursive and thus the

information in the time evolution of the parameter estimates is lost. 

However, they significantly reduce computational requirements.

From eqn 4.20, define the model equation for N observations of 

the input and output data as follows:
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where

fN l+C.(z“1)^N’ '7^ 1+C.(z~l)^ 4.35

4.36

4.37

and 9^ is the vector of least squares parameter estimates under the 

ith hypothesis, viz

a • • T • 1 • T
% ■ [XfX f ]’ Xf Yf 

N N .
4.38

4.6.1 Correlation Method

As the number of observations N -> <» , so the information matrix

& approaches more closely the block Toeplitz correlation matrix

structured as follows;

CM» N oo 4.39

where R , 
yy

R and R are block matrices of orders n xn , yu uu a a n^xn^, and

and

respectively, given by

"Ryy<°? Ryy^>--------------------------------------- "

Ày^a-» " ' -Ryy(°) .

Ryu("R) - - - - Ryu(-k-nb+l)"
' I

4.40

4.41
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uu

Ruu(0L " ’ " " - -

: 4.42

The correlation between two variables w and z is defined by

Rwz(k) = 4.43

where E denotes the expectation operator.

Similarly as N->°°, so the vector

S 4 YN * LRyy<«””Ryy<na>>Ruy<k+1)’--’Ruy<k+nb>JT

= 5 4.44

# A
so that in the limit as N -x» , the vector of parameter estimates 9^ 

for the unfiltered data is given by

- -1_ 
= R W 4.45N

Now in order to avoid having to filter the data M times 

corresponding to the M hypotheses on the noise filter 1+C(z ^), a 

method is devised which allows the information matrix of the filtered 
•T . . .T . .

data, xt , (denoted R^) and the vector ix^ (denoted to
N N 1 N fN fN

be derived directly from correlation information on the unfiltered 

data.

Approximate the inverse filter (z”^) the pth order 

polynomial EL (z 1) such that

4.46 

4.47where h = 1 , o ’ Z c h._ m /~m m=l
h = 
I
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and p is the chosen truncation point of the series approximation. 
-1

Thus H^(z ) is simply the truncated version of the infinite order 

inverse of 1+C^(z-1).

It is then easy to relate the cross-correlations of two filtered

variables z" to
£t

the cross correlations of w^ and z^, asf and

follows:

i p p i iRZ (k) = R . .(k) = Z Z h,h R (k+m-Z)
fwz 2=0 m=0 *

where

4.48

i — 1
wf = (z )wt - - -1 wt1+C.(z 1) E

4.49

i -1
Zf = Hi^Z )Zt "

1
- —% z t

1+C.(z )
4.50

Clearly then, the elements of the information matrix of filtered data

given by 

•h m
 

&
 i____ bh

 H*

1

n • i -T .lim 1 _ri yy yu -i
■* 5 % \ ■

i1 
H•h m

I_______
i

Rf 
uu_

- Rf 4.51

may be obtained approximately by operating on the correlations of the 

unfiltered data in the manner of eqn. 4.48, and similarly for the 

vector

5f = N- N XL Yf N
N N

= {R^ (l),..,Rf (na),Rf (k+l),..,Rf (k+nb)}T 
yy yy uy uy

4.52
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The parameter estimates for the ith hypothesis may then be 

computed from

0N - Wf 4.53

and the cost function from

K = Rf (0) - 4.54
yy f

The correlations of the unfiltered data required are:

Ruu(£)’ I = ""P' -P+1,.......... >%+P“l 4.55

Ryy(2), X = -P, -P+1,......................na+p-l 4.56

Ryu^)» ...........,-k+l+n^+p 4.57

and may be estimated from an expression of the form

, N-Z.
RWZ«> - SÏ 7.^ 4.58m— 1

Of course advantage should be taken of the symmetry of correlation 

functions, viz

RvzC) = Rzw<-“ 4.59

The advantage of this method is that the parameter estimates 

under any filter hypothesis may be obtained without reprocessing the 

entire natural data, but by operating only on a set of stored 

correlations. The transformations involved are relatively fast and

simple. All the information available in the recursive procedure 
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described for RHYP is accessible here, except for the time evolution 

of the parameter estimates. Estimates for each new hypothesis are 

obtained very quickly. However, the limitations of the approximations 

made should be borne in mind. In particular:

i) The ’block Toeplitz’ approximation is only valid for large N.

Good sample estimates of the correlation functions also require N 

to be large.

ii) The quality of the inverse filter approximation H^(z ) is 

dependent both on the magnitude of p and the location of the 
A -1

zeros of 1+C^(z ). The approximation, for a given p, deteriorates
A -1

as the zeros of 1+C^(z ) approach the boundary of the unit disc.

As a rule of thumb, it is suggested that p be chosen as lOxn^.

More elaborate schemes could clearly be devised which allow p to
A -1

change as a function of the zeros of 1+C^(z ), but this is not

generally necessary.

iii)When there is little noise, the cost iv1 becomes very small.
T N N

i « I A i
Since both terms R, (0) and w1 o1 involve approximations (due 

yy f N
to approximate filtering and the correlation approximation) large 

errors may be generated. Computational error is minimized when p 

and N are large. An alternative method of computing the cost 

function is to substitute the parameter estimates into the model 

equation, and evaluate the residuals and their sum of squares by 

running the model. This method of course significantly affects 

computation time which then becomes directly proportional to N 

for each of the M hypotheses.
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4.6.2 Covariance Method

This method also employs the inverse filter approximation 
-1

H.(z ) but avoids the approximation of a block Toeplitz structure

Note that may be approximated by

Yf ~ ^YN,YN-1’ 
N

where t3 = (l^^h^, .. >hp^T

Defining ..

Xe = ^N-k-l' •' 'UN-k-n^-p}

and 

and following eqn. 4.60 it is easy to see that

Xf - <Y^ , .. ,Y^ ) « XX
N N-l N-n e

a

xt - J = x“
N N-k-1 N-k-n^

Then X^ = ; X^]

N N ' N

nb

t1
P

4.60

4.61

4.62

4.63

4.64

4.65

4.66

4.67

If the transformation matrix is defined by 

4.68
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eqns. 4.65 and 4.66 may be written more simply as

X^T e P,na

. u
XT 

e P'%

4.69

4.70

The information matrix of the filtered data is approximated by

N N

1
(X^)^ 

N N

(x; ) %
N N

(Xf )\U

N N

4.71

Now each block entry in 4.71 may be computed by operating on

unfiltered data. For example

-T
T1 

P>na

T 
xy 

e T P,na 4.72
N N

X^ e

Similar results follow for the other block entries in eqn. 4.71.
TThus if the "extended information matrix" of unfiltered data X X 
eN eN

is known, the information matrix of the filtered data (eqn. 4.71) may 

be obtained by transformations of the type shown in eqn. 4.72.

Furthermore, the ’shift invariance’ property and symmetry of the 

information matrix may be used to reduce computation. The ’shift 

invariance’ property for the (X^)^X^ matrix, for example, is that

T Telement Y„ .Y„ . computed when N=t, is the same as element Y ...Y .N-1 N-j N-1+1 N—j

computed when N=t-1. This means that elements appearing in rows 

other than the first row can be computed in the process of computing 

the first row covariances.
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The same principle can be 
.T .

the vector Y_ which is 
fN fN

as follows:

carried through to the computation of
T computed by transforming X^ {YN,..,YN_p}

T 
XU

<yn

iu 
(Xf )

N
.T

T1 
p,n

The parameter estimates under each hypothesis are computed from

. T . , .T .r1
N N N N

4.75

and the cost function from

.T .

"I 4.76

Analogous to the correlation method, the parameter estimates for

each new hypothesis are available from stored covariance information

(independent of colouration polynomial) without recourse to the

input-output data. The advantage of the covariance method is that

but for the inverse filter approximation, it involves no other

approximation. As the 'block Toeplitz' approximation has been

avoided, this method does not depend as crucially on a large data

record, and generally is the more reliable algorithm. In particular

there is a marked improvement in the estimation of the cost function.

It does however still rely on choosing a large value of p, preferably

of order lOxn^ (or larger if 1+C(z ) appears to have zeros near the

boundary of the unit disc) to obtain good results.

’ %,
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The covariance method involves more computation than the 

correlation method.

4.6.3 Modified Hill Climber

It is possible that more exact estimates of the parameters of 

the 1+C(z 1) polynomial are required than can reasonably be obtained 

by quantization. In such cases the covariance method may be used in 

conjunction with a hill climber. The standard hypothesis testing 

procedure could be used to obtain excellent initial conditions for 

the hill climber. This still enables the analyst to examine the 

likelihood function and gather parameter sensitivity information.

The hill-climber then selects subsequent 1hypotheses’ and the 

covariance method could be used to compute the A(z**^)  and B(z”^)

polynomial parameters and cost. By using the ’filtering’ approach 
A M 

and obtaining the estimates 9^ using simple linear least squares, the

dimensionality of the optimization procedure is reduced from the 

general approach in which the hill climber operates on all parameters 

(Astrom and Bohlin, 1965) thus reducing computation. Rosenbrock’s 

method (Rosenbrock, 1960) is a particularly robust optimization 

technique and has been successfully used in this application.

Convergence tends to be fairly fast, typically 5 ’’rotations” when a 

stopping criterion is a change of less than 0.1% in the parameter 

estimates after a change in search direction.
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4.6.4 Computational Implications

In order to assess the computational implications of the various 

approaches, the Illustrative Example was used as a basis for 

comparing the methods. The computation time used on a PDP10 system 

was recorded, giving the following results:

a) Recursive Method - 5.3 ms/hypothesis/itérâtion

b) Correlation Method - For p = 20

200 observations

Overhead to complete correlations : 1.9 seconds

To compute parameters and cost: 94ms/hypothesis

c) Covariance Method - For p = 20

200 observations

Overhead to compute covariances: 5.6 seconds

To compute parameters and cost: 133ms/hypothesis

Thus, if 194 hypotheses are tested (as in the Illustrative 

Example) and 200 observations are available, run times are:

Method Run T ime (s)

Recursive 205.6

Correlation 20.1

Covariance 31.4

Considerable run time savings can therefore be made by using an 

approximate technique, although the magnitude of p will determine the 

extent of the saving.
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4.7 Simulation and Comparative Results

4.7.1 Comparison of RHYP with other algorithms for Illustrative 

Example

It is valuable to compare the performance of other algorithms 

with that of RHYP, and the parameter estimates obtained using RML 

(Recursive Maximum likelihood) and RIV (Recursive Instrumental 

Variables) for the data generated by the Illustrative Example are 

presented here.

RML yields fairly good results for this example. Fig. 4.8 shows 

the evolution of the parameter estimates with the following initial 

conditions:

a) The parameters were initialized to the least squares estimates, 

b) The * covariance*  matrix was set to 1001.

c) The * forgetting factor*  was 0.98.

Note in particular that, although the A(z ) and B(z ) polynomial 

parameter estimates are good, those for the noise colouration filter 

(polynomial C(z~^)) are not. This phenomenon has been noticed often 

especially when using short data records. By comparison (Fig. 4.3) 

RHYP gives good estimates of the C(z~^) polynomial parameters after 

only a few steps, as is typical of this method. It is particularly 

interesting to note the effect of changing the initial conditions on 

the parameter estimates for the RML run. Fig. 4.9 shows the results 

when the initial estimates were set to zero. The final estimates 

bear no relation to the true system parameters.
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In implementing the RML algorithm, it has been found necessary 

to test the inverse stability of the 1+C(z ) polynomial at every

iteration. The Jury Criterion may be used to do this. Polynomials 

which are found to have zeros outside the z-plane unit circle are 

modified so as to move the zeros inside the unit circle. It should 

be recognised that results such as those shown in Fig. 4.9 would not 

be apparent from the comparative study of recursive identification 

methods carried out by Soderstrom, Ljung and Gustavsson (1974). This 

is because their results are averaged over 10 runs.

Fig. 4.10 illustrates the time evolution of the A(z ) and 

B(z"l) polynomial parameter estimates using RIV. The instrumental 

model was formed using the least squares estimates for the data. The 

initial conditions were:

a) 'Covariance  matrix set to 1001.*

b) 'Forgetting  factor 0.98.*

In this run the results are good, although it has been demonstrated 

that convergence difficulties can occur using RIV (Soderstrom, 1974b). 

A disadvantage of the basic RIV algorithm is that the C(z ) 

polynomial parameters are not estimated.

4.7.2 RHYP Using an under-parametrized noise polynomial model 

Consider the system

(1-1.8z ^+1.5z 2-0.3z 3)yt = (z ^+0.7z 3+o.4z 3)u^

■ 1 — 9 — Q
+ (1-1.2z +0.4z -O.lz J)et

4.77
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where e is a non-measurable zero mean white noise input of variance

0.1 and is a measurable input of unit variance. In order to

illustrate that the hypothesis testing technique can lead to good 

estimates of the A(z ) and B(z ) polynomial parameters (using the 

usual notation) even when the noise colouration polynomial 1+C(z )

is inadequately modelled, the following model was chosen.

— i — 2 — Q — 2 *2
(l+a^z +a^z +a^z )yt = (b^z +b^z +b^z )ut

-1
+ (l+c1z )Et

4.78

The data record consisted of 100 observations.

Fig. 4.11 shows the time evolution of the parameter estimates 

which are generally close to the true system values. A portion of 

the cost function is plotted against hypothesis number in Fig. 4.12 

together with the hypothesized value of c^. The minimizing cost 

(for hypothesis 5) was 0.08696 which is somewhat less than the 

minimum of 0.1 (corresponding to the noise variance) expected. The 

discrepancy is due to the small data sample used. Parameter 

sensitivity to changes in hypothesis is illustrated in Fig. 4.13. 

The parameter values do not vary substantially about the chosen 

hypothesis (the maximum change in any parameter by changing the 

chosen hypothesis by I being approximately 0.02) and this leads to a 

fair degree of confidence in their accuracy.

The results of the RHYP procedure may be compared with Recursive 

Instrumental Variables (Young et al 1968, 1970, 1971) in Fig. 4.14 

and Recursive Maximum likelihood (Soderstrom 1973) in Fig. 4.15. The 

latter allowed for three C(z ) polynomial parameters. For the RML 

run the initial conditions were
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a) Covariance matrix set to 1001

b) Forgetting factor 0.98

c) A(z l) and B(z ) polynomial parameters set to RHYP estimates, 

C(z~l) = 0

The Instrumental Model used for the RIV run was obtained from the 

least squares parameter estimates.

Table 4.1 compares the results obtained using several techniques:

Parameter System RLS RIV RML RHYP

al -1.8 -1.551 -1.746 -1.573 -1.807

a2 1.5 1.122 1.417 1.155 1.51

a3 -0.3 -0.0327 -0.242 -0.056 -0.307

bl 1.0 1.022 1.022 1.066 0.997

b2 0.7 1.011 0.827 0.991 0.773

b3 0.4 0.593 0.385 0.609 0.319

C1 -1.2 - — -0.05 -0.875

C2 0.4 — — -0.05 —

C3 -0.1 - — 0.031 —

Table 4.1
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In spite of adequately modelling the noise colouration 

polynomial, the RML estimates are poor. By contrast with RHYP, the 

C (z I) polynomial parameters tend to converge rather slowly.

The success of RHYP in this example is probably aided by the low 

noise variance and the fact that there is one dominant 1+C(z~^) 

polynomial zero, thus minimizing the effect of the under parametrized 

C(z l) polynomial. However, simulation runs have often demonstrated 

the superiority of the hypothesis testing technique and its success 

in achieving good estimates with short data records.

4.7.3 Identification of a Power Station Superheater

The performance of RHYP using real data is illustrated in this 

example. The system under analysis is the superheater of a 

power-station. A much simplified diagram of the system is given in 

Fig. 4.16. Steam passes from the boiler to the superheater. The 

spray valve allows a jet of cold water to be mixed with the steam and 

the spray valve position is a control input enabling the superheater 

output temperature to be controlled.

The estimation goal was to find a third order model to serve as 

a simulation model for testing various controllers. A PRBS sequence 

was used to excite the input and this data together with the output 

temperature was logged for 279 sampling periods.

Whilst least squares gave a satisfactory prediction model (in 

which the next prediction was computed from measured past inputs and 

outputs) it failed dismally when the output of the model was computed 
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from measured inputs and records of past outputs predicted by the 

model itself, (see Fig. 4.17). This is to be expected, as it is the 

one-step-ahead prediction error that is minimized, not the true 

output error. Bias in the parameter estimates leads to considerable 

errors in predicting further ahead.

The results of runs using RLS, RIV, RML and RHYP are best 

summarized by comparing the model impulse responses with the measured 

system impulse response. (Fig. 4.17). The instrumental model used 

the least squares parameter estimates which were also used as an 

initial condition for the RML estimator. The estimation model using 

RHYP included only a 2nd order 1+C(z ) polynomial, yet resulting

A(z l) and B (z ) polynomial estimates produce a remarkably good 

estimate of the impulse response.

It is interesting that when the model obtained by RHYP is used 

• as an instrumental model, the RIV estimate of the impulse response 

improves dramatically. (Fig. 4.17)

Overall, however, the example testifies to the reliability and 

usefulness of the hypothesis testing procedure.

4.8 C onelus ion

This chapter has presented a new method of obtaining Maximum 

Likelihood estimates by employing a Hypothesis Testing technique. 

The essential advantages of the method are its reliability and the 

interactive procedures which form an integral part of the overall 

algorithm and through which the analyst can assess the nature of the
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cost function and establish that minimizing parameters have been 

found. The estimation problem is viewed more broadly leading to a 

visual examination of the cost function rather than just seeking the 

minimum. Significantly, it may be found that in the region of the 

minimum the cost function is extremely 'flat*  and that a wide range 

of models would give quite satisfactory solutions, or, that it is 

extremely sensitive to parameter variations. The method is 

particularly useful when short data records are available and the 

approximate recursive methods are likely to fail. Convergence of the 

noise colouration polynomial parameters is usually swift.

The key disadvantage is that the number of hypotheses grows 

exponentially with increasing order of the noise colouration 

polynomial. However, most single output systems are amenable to 

analysis. Furthermore, it has been observed that good estimates of 

the A(z l) and B(z ) polynomial parameters can often be obtained 

even when the C(z"*̂)  polynomial is under-parametrized in the 

estimation model.

Although the basic technique is recursive, alternative 

implementations have been described which are non-recursive and 

substantially reduce the computational requirement.
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CHAPTER 5

PARAMETER ESTIMATION FOR MULTIVARIABLE SYSTEMS BY HYPOTHESIS TESTING 

5.1 Introduction

This chapter is concerned with the extension of the principles 

established in Chapter 4 to the estimation of the parameters of a 

multivariable ARMAX model using a hypothesis testing approach. It 

was shown in Chapter 3 (eqn. 3.15) that the maximum likelihood 

estimates are to be found by minimizing a determinantal cost 

function. In the case of single output systems this cost function 

simplifies substantially and reduces to the sum of squares of the 

residual errors. The minimization of even this function presents no 

mean computational task. Thus Chapter 4 was dedicated to the 

development of a new algorithm that was aimed both at reducing 

computation and providing the analyst with a greater degree of 

insight into the nature of the likelihood function and sensitivity of 

the problem than is possible using direct hill-climbing techniques.

A little thought will show that the extension of RHYP to 

multivariable maximum likelihood estimation is not straightforward. 

Firstly, the fact that matrices do not generally commute makes it 

impossible to directly filter the system input and output records 

with the inverse noise colouration matrix polynomial as in the scalar 

case. To overcome this obstacle it is necessary to propose an 

alternative system parametrization.
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Furthermore, the scalar method derives computational advantage 

by resolving the maximum likelihood estimation problem into a set of 

parallel linear least squares estimation exercises. A similar 

approach is possible in the multivariable case but is slightly more 

complicated because of the determinantal cost function. It is also 

possible to minimize another one-step-ahead prediction error cost 

function, namely the trace (rather than the determinant) of the 

residual covariance matrix. The implications of this choice on the 

statistical properties of the parameter estimates will be investigated 

and compared to the statistical properties of maximum likelihood 

estimates.

The prime objective of the multivariable hypothesis testing 

procedure is to identify a model which asymptotically produces the

correct impulse response models for both the measurable (u ) and 

non-measurable (e^) inputs. Minimality of the representation is not 

required. It is with this in mind, together with the need for 

simplifying computation, that a suitable parametrization for the 

model is discussed.

The new algorithm is given the acronym MVHYP (Multi­

Variable Hypothesis testing method). The layout of the chapter is 

such that the fundamental concepts of parametrization and cost 

function are discussed first, followed by the algorithmic details and 

simulation examples. It is also shown how a model with an orthogonal 

input noise (i.e. with uncorrelated elements of the noise vector) may 

be derived. A technique for obtaining a more concise model 

representation than that required for MVHYP is proposed.
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5.2 The System Parametrization

A multivariable system with p outputs and r inputs is assumed to 

be governed by the ARMAX model

{I+A(z 1)}yt = z*"kB(z”1)ut + {l+C(z-1)}et 5.1

« — 2^ * 2
where A(z ), B(z ) and C(z ) are matrix polynomials of the form 

X(z-1) = X1z~1 + X2z~2 +....+ Xn ”x 5.2

X

and e^ is a p-vector white driving noise with statistics

E(et) = 0 5.3

TE(etet ) = Q Q > 0 5.4

The model embodies the basic assumption of a generic structure 

(Denham, 1974; Dickenson et al, 1974). No attempt is made to 

estimate the structural indices, a problem currently enjoying a large 

degree of research interest. It is not assumed that the noise 

covariance matrix Q is diagonal. The elements of noise vector 

(I) (P) Tet=(etx ,....etv ') may be correlated with one another. However, 

may be derived from a noise vector v^ with uncorrelated components

and covariance matrix diag(O^,.... C^) as follows:

et = K vt 5.5 

where K is a lower triangular unit matrix selected such that
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5.6

If C(z b is now defined such that

_ -1 -1 -
C(z ) = C(z )K 5.7

it is clear that by substituting eqn. 5.5 into eqn. 5.1 and noting

eqn. 5.7, an equivalent model

(I+A(z 1) }yt z~kB(z-1)ut + {K+C(z-1)}vt 5.8

holds. It is sometimes useful to represent the system in this form, 

and in fact little extra work is required in the estimation routine 

to compute K, as is shown later. However the optimal one-step-ahead 

prediction error remains

ytA/t-i ■ % 5.9

Further manipulation, this time pre-multiplying eqn. 5.8 by the unit 

lower triangular matrix K=K \ yields

Ûo+A(z 1)}yt = z“kB(z‘1)ut + {I+CCz-1)^ 5.10

— — _ i
where Aq = K = K (unit lower triangular)

ÂCz”1) = K A(z—1 )

B (z-1 ) = K B(z-1)

C(z ) = K C(z i) K

and E(vtVtT) is a diagonal covariance matrix. 5.11
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None of the above representations (5.1, 5.8 or 5.10) are in 

themselves suitable for extending the RHYP algorithm to the 

multivariable case. This is because the lack of a commutativity 

property for matrices does not permit the simple filtering of the 

input-output data y and u% by the inverse noise colouration 

polynomial. However, by pre-multiplying eqn. 5.10 by adj {I+C(z-^)} 

the following model results:

{Aq+A Cz 1)}yt = z ^(z + {l+c(z 1) }vt 5.12

where

A = A is unit lower triangular o o

Aq+ A(z - adj {I+C (z 1) HAq+A(z } 

— 1 s — 1 — — 1
BQ z ) = adj {I+C (z )}B(z )

and l+c(z = det{I+C(z } 5.13

The structure of 5.12 is now more suited to an extended RHYP method, 

as the input-output data can be filtered directly by l+c(z”^), a 

scalar polynomial, to give:

{Aq+AQz 1) }yf = z kS(z l)Uf + vt 5.14

where, analogous to the SISO case,

yf = yt/{l+c(z 1)} 5.15

u^ = u^/{l+c(z } 5.16
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The penalty of course is the increase in the order of the 'A*  and 'B' 

polynomials, and thereby the number of parameters that must be 

estimated. The order of the A^+A(z"~^ ) polynomial is now na+nc(p-l), 

and that of the B(z ) polynomial n^+nc(p-l). The order of the 

scalar polynomial l+c(z ) becomes pn^. The number of free 

parameters has increased from

(na+nc)p + ip(p-l) + n^pr

in eqn. 5.10 to

2 
(na+ncCp~l) )p + ipCp-1) + (nb+nc(p-l))pr + pn^

in eqn. 5.14. However, it turns out that by suitable choice of the 

cost function (discussed later) all but pn^ of these parameters may 

be estimated by linear least squares under a given hypothesis on the 

l+c(z 1) polynomial. This is an important computational advantage.

At this point it is as well to note that the foregoing holds 

equally well for the representation

{1+%(z "b }y = z k B(z 1)uf + e 5.17
t t

obtained by premultiplying eqn. 5.14 by K, except that there are now 

^p(p-1) fewer free parameters. The elements of the driving noise 

vector may now not be assumed to be uncorrelated.

The model structures suggested in eqns. 5.14 and 5.17 are in no 

way minimal, a factor which in the context of this work is not viewed 

as a particular disadvantage. The important feature is that the 

realization is capable of producing the correct system impulse
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response, and can be used for optimal prediction. Any disadvantage 

of the representation is, in the author’s view overshadowed by the 

simplicity (certainly where n^ and p are small) of the hypothesis-testing 

estimation procedure facilitated.

However, where it is essential to reduce the representation 5.14

or 5.17 to that of 5.1, the following procedure is suggested.

a) Use the estimates of A(z”^), B(z ) in eqn. 5.17 or and

B( z"1) in eqn. 5.14 to extract the estimate of the driving noise:

— — 1 —k — —1 _ . „
£ = {1+^4(z ) }yf - z B(z )uf 5.18

C t t

where the caret indicates the estimate of the quantity.

b) Use e as a known input in the model eqn

{I+A(z ) }yt = [z B(z ) I+C(z )] u^

and employ standard recursive least squares to minimize

N J 
til

The technique is demonstrated in the simulation example in

section 5.7.2.

5.19

5.20

5.3 The Cost Function

The extension of RHYP to the multivariable case requires two 

fundamental properties :
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a) It must be possible to filter input-output data with the 

inverse noise colouration polynomial

b) It is then essential that the cost can be minimized by using 

linear least squares.

The first criterion is satisfied by employing the model 

representations described above. This section is dedicated to the 

implications of the choice of cost function.

Consider first the system representation given in eqn. 5.17.

Here the driving noise vector e^ is assumed to have correlated 

components (i.e. its covariance matrix is not diagonal). Following

the arguments for the RHYP method, the maximum likelihood estimates 
— -1 c -% - -i - -1

) and B^(z ) of A(z ) and B(z ) respectively under the 

hypothesis that l+ê^(z is the maximum likelihood estimate of 

—1 .... l+c(z ) are found by minimizing

. tm . . T
’J- I £ I 5.21
“ t=l

where = {I+^Cz S - z B^z ^)u^ 5.22

and yfi = y^ /{1+c^(z 1)} 5.23
t t

u^ = u- /{1+ê.(z } 5.24
t t 1

The following analysis shows how the cost in eqn. 5.21 may be

minimized by linear least squares. In order to simplify the notation 

the superscript * i' denoting the ith hypothesis number and subscript

'f' will be omitted. Instead, the superscript will identify the

element of the input, output or noise vector, for example

yt 5.25
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Similarly the subscript 1i *
— —i r _i

in (z ) and (z ) will be

omitted and the polynomials will be expanded as follows :

and similarly for #(z ) where the matrix elements will be denoted

l(z'l) = alll alpl — 1z + . . . +
allna alpna -n

z a

%pl . . %^a 5.26

bj-g » i l»2,..,p , j 1,2,..,r , Z 1,2,..,n^

Now for the cost to be minimized

V = 0 i=l,2,.. ,p , j=l,2,..,p , Z =1,2,.. ,n 5.27
daij *

and V = 0 i=l,2,.. ,p , j=l,2,.. ,p , Z =1,2,.. ,n, 5.28
du..» IN o

From the rules for differentiating determinants;

9 E 
t ........ .......... 3aijZt

E ..................... E rCp)F(p) to
t t t t t t s 

s
s
Q>
0) 'O
PU

E 
t .......... ............. E 

t

to
ta

l of

3
3aijZ

E 
t .......... Q

J m
 I

H*
 cv

 

rt
 M (p) (p)

£t et

5.29
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and similarly for ' -... V__ .N

Now, for m=l,2,....,p and n=l,2,....,p

a_
3aijZ

(m) (n) 
t t

3__
3bijZ

(m) (n) 
t £t

(m)„(j) r 
t—k-f in

5.im for i=m

otherwise

5.30

5.31

5.32

Z 
t

E 
t

E 
t

E 
t

1

0

t

- £ t

From eqns. 5.29, 5.30 and 5.31, it is evident that if the residuals

i=l,2,....,p are orthogonal to the data in the regression 

equation, then in fact one row in each of the p determinants 

of eqn. 5.29 will be zero, and thus

—— V
^ij/ N

= 0 5.33

and similarly

= 03b 5.34

for all i,j,Z.

But,these orthogonality conditions are precisely those for 

least squares estimation taking the regression equation for each 

output in turn and minimizing the cost

E (e^)2 , i-1,2.............

Therefore linear least squares can indeed be used to minimize the 

cost in equation 5.21 under a given hypothesis.
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However, in order to find the overall minimum of the cost 

function over all hypotheses, it is still necessary to evaluate the 

determinantal cost function for each hypothesis, and therefore the 

off-diagonal terms of the residual covariance matrix must be 

evaluated. This is a simple task, as is shown later.

In those instances where a model driven by a vector noise 

sequence with orthogonal elements is required, the parameter 

estimates (I+Z^(z ^ ) ) and ^(z ) are transformed by premult ip lying

eqn. 5.22 by a lower triangular unit matrix designed to orthogonalize 

the residual covariance matrix. This matrix is in effect the 

estimate of (=K) in the system representation of equation 5.12 - 

5.14. Since K is unit lower triangular, the determinant of the 

residual covariance matrix is unchanged. However, the matrix is 

diagonal and therefore the determinant is evaluated very easily by 

multiplying together the diagonal elements. The algorithmic details 

are given in section 5.5.

The effort of evaluating the determinant (although relatively 

minimal) may be spared if another prediction error cost function, 

namely the trace (rather than determinant) of the residual covariance 

matrix is chosen.

Caines and Ljung (1976) have considered the properties of a 

large class of prediction error estimators. They consider the 

general system y % =f (y^^u1",©) + e^ 5.35

where, in their notation

yt = (y^ ; i < t-1} , u^ = {u^ ; i < t } 5.36
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6 is a vector of the system parameters

atid is a zero mean process of independent random variables and 

constitutes the innovations process of y . Their study produces the 

following results.

If E is a positive definite matrix, e

* r—l r *
e(t,6) = yt - f(y ,u ,e)

is given by

5.37

and G parametrizes the true system eqn. 5.35 and is unique, then

tr E [ Z£(t,9)£T(t,ê)] > tr e[ Ze^e^ ] 5.38

Introducing assumptions ofand the equality holds only if G = G. 

ergodicity ensures that the matrix

T K-l
converges to E(e e ) as N -h» 5.39

b) Under certain mild conditions, generally fulfilled (see Caines 

and Ljung 1976) the parameter estimates G^ are asymptotically 

normally distributed in the sense that:

Æ (8^-6) ~ N(O,P)

where covariance matrix P is given by

P = (E(ZTZ Z)}~1{E(ZT%AZZ)}{E(ZTZZ)}

5.40

5.41
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and where z= 5ê 5.42

A = covariance matrix of the innovations process

c) The information matrix based on N observations is

T —1
FN = N E(Z^A XZ) 5.43

From (b) and (c) it is evident that if E = A \ P becomes

T -1P = E (Z A ^Z) 5.44

— 2 N m
and minimization of the special cost function tr (A % e»e«) leads 

i=l 1 1
to efficient estimates. A is however not generally known, and the 

estimates obtained using the trace cost function will not generally 

be efficient. The advantage of the maximum likelihood cost function 

is that it will guarantee efficient estimates.

The important point is that the cost function

N TA 5.45

does lead to consistent estimates (from (a) above) if Q is unique. 

Thus the trace cost function may be considered to be a useful 

alternative to the maximum likelihood cost function.

It is important to note that when the model is over parametrized 

the concept of consistency must be modified. The cost functions only 

ensure that asymtotically

U^Cz b) 3(z -> Uo+X(z ^(z 5.46

and

+ Uo+^(z-1)}~1{l+c(z~1)} 5.47
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in the notation of the representation of eqn 5.12 (where the driving 

noise has uncorrelated elements). Thus, it is only ’impulse 

responses’ to input signals u^ and v that are asymptotically 

correctly estimated. This is consistent with the initial expectations 

for this algorithm.

Having discussed both system parametrization and choice of cost 

function, the extension of the basic RHYP algorithm is straightforward 

and is presented below.

5.4 The MVHYP Algorithm

In order to define the notation, let the difference equation

{I+A(z = Z K B(z )u + {l+0(z 1 2)}et 5.48

(1) Select quantization intervals q.,j=l,....,n* and find all
-1 .

allowable polynomials l+c^(z ), i=1,...,M according to Procedure 

A of Chapter 4.

(2) Generate M sets of filtered data, for t=l,2,...,N

model the system representation of eqn. 5.17, and

, * * —I _ —v A —1 * _i
{K+Z(z ) }yt = z B(z )ut + {l+c(z ) Iv^ 5.49

model the system representation of eqn. 5.14. The orders of the 

estimated polynomials are the same as the system polynomials.

The algorithm, which depends on the choice of cost function, is 

based on the arguments of the previous section and is :
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yj = y /{l+c.(z 1)}

5.50 
Uf = U /{1+ê.(z )} 
rt c i

(3) For each i, i=l,2,...,M hypothesize that l+c^(z ) is in fact the 

’optimal’ estimate (for the chosen cost function) l+c@(z %).(For 

the determinantal cost function 1+cq(z ) is assumed to be the 

maximum likelihood estimate of l+c(z ^)). Then obtain estimates 

- -1 - -1 
A(z ) and B(z ) by minimizing

ÿ3'»- E 
N t=l %

where
i(j)

Et

j-1,2,..,p 5.51

is the jth element of the residual vector under

the ith hypothesis at time t. The estimates are then optimal

under the hypothesis.

4(a) If the overall cost function is to be the Trace of the residual 

covariance matrix, compute

• p • (j j
V* = EV?;’ for i=l,2,..,M 5.52

Ntr i=l N

and record the minimizing hypothesis number i*.  Then the
— __ 2 — _

minimizing estimates are vL*  (z ) and (z ).

4(b) If the overall cost function is to be the Determinant of the 

residual covariance matrix (yielding maximum likelihood 

estimates) compute

. (j
V„ j=l»2,.. ,p » X“l»2,..,j

i(j ,4)
where VN is the (j,Z) th element of the residual

covariance matrix

N il
L 5.53
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Evaluate 1^1 5.54

and record the minimizing

minimizing estimates A

hypothesis number i*.  Then the

-1 - -1
z ) and B .*(z  ) are the required

maximum likelihood estimates

4(c) An alternative to 4(b) arises if the representation with a

diagonal residual covariance matrix is required. Compute K.

such that:

and
N
Z 

t=l

1Ü)

i 
t K.e 5.55

i(« 
t 0 for , i=l,2,..,M

and hence compute

6 
j=l

-iU)
N for i=l,2,..,M 5.56

where
vit))

N
N 
Z 

t=l
j=l,2,..,p

Select the optimum hypothesis number i* as in 4(b).

The computational details are given in section 5.5.

5.5 Recursive Computation

Re-writing the model equations 5.48 and 5.49 for the ith

hypothesis gives

— —1 i
{LM-Cz )}yf z-k

. 1 It t 5.57
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and [ K.+l (z b] - z k B.(z l)Uf + V
5.58

respectively. In the remainder of this section, the subscript f and 

superscript i indicating filtered data and hypothesis number are 

omitted to simplify notation. It is also helpful to re-write eqn. 

5.57 in the form

% i 1,2,...,p 5.59

where superscript (i) indicates the element number of the vector

xt t-1'"' yt-n
<P) 
t-1 »

(p)

is the

(1) -%.....
vector of parameters for the ith output equation and

5.60

and are the orders of polynomials (z ) and #(z ) respectively.

a

n

The estimation of G. , i=l,...,p by minimizing the sum of 
1t

squares of the residuals for each output equation (see eqn. 5.51 of 

the algorithm above) is therefore extremely simply achieved using 

recursive least squares. Note also that the •covariance matrix*

Pt - (X*  xt)-1

Twhere = (x ,. • .Xj ) 5.61

T —1and factor y = (1 + Pt xt)
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remain the same for 0. , 1=1,...,p. Thus only ONE covariance matrix 
^t

need be updated. Also the elements of the residual covariance matrix 

(required in steps 3 and 4(b) of the algorithm) may be updated 

recursively in a manner similar to that used in the RHYP algorithm 

(eqn. 4.24) as follows:

et 5.62

where = y~ - xt 6^

The off diagonal terms (j^Z) need only be evaluated when using the 

determinantal cost function. Thus the minimization of both cost 

functions is based on simple recursions at each sampling time, for 

each hypothesis.

The parametrization requiring orthogonalization of the residual 

vector demands further processing. The method described below shows 
~ -1 A -1

how the parameter estimates A(z ) and B(z ) may be evaluated with 

computed. The diagonal 

thus evaluation of the

matrix K such that

5.63

vt - ‘t

where is the {i,£}th element of the unit triangular matrix K.

relatively little effort from data already 

covariance matrix may also be computed and 

determinant is very easy indeed.

The method requires the estimation of

2 v^M^ = 0 for i#j. 
t=l

Note also that vt = K e

(i) _ (!) . i:1 - _(/)
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First re-write eqn. 5.58 in a manner similar to eqn. 5.59 i.e.

= xr ^i " Z ^iiyt^ + ^[1) i=l,2,...,p 5.64
u L 1 j=i L

where is the vector of parameters for the ith output equation and

A i-1 A A A
6- = 6. + I 6. K., ; = 6 5.65i i » . & 1/ ’ TI 1

L = x

if ...........,y,i)}T 5.66

V<» - {V<«............ v»)}1 5.67

and E<i) - {e^i).............................................................................................................. 5.68 

then from eqn.5.64

Y^1) = X - E K y(j> + 1=1,2,...p 5.69
C t 1 j=1 t u

and from eqn. 5.63

v(i) = E(i) + z k. . i=l,2,..,p 5.70
c c j = 1 LJ c

Now if and R^j, i=l,...,p , j=l,...,i-1 are the least squares estimates 

then clearly the required orthogonality condition on the residual 

vector v is met. However direct computation of these least squares 

estimates would require updating a different covariance matrix for 

each output equation (eqn. 5.69), and is computationally 

undesirable. The method derived here enables existing information 

to be utilized. Premultiplying eqn. 5.69 by , m < i, and 

rearranging yields

v(m) v(i) = v(m) y(x) + £ v(m)Ty(m) + j .V^ 5.71
t t t t im t t j = 1 ij t t
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since from the properties of least squares 

/•J
Et J \ ° for i=l,2,...,p 5.72

and observing eqn. 5.70

Xt = 0 for m= 1,2, .. ., p 5.73

Now K is to be selected so that = 0 i^m.

Substituting into eqn. 5.71 and observing that for K to satisfy the 

orthogonality conditions for least squares estimation 

T .
^(m) y(j) _ q for j < m 5.74

and that

(m)T (m) = (m)Tv(m) 
t t t t

it is possible to solve for K^m thus 

_v(m) y(i) _ £ K.
i _ 13 t

im T
v<m) V^m)

5.75

5.76

The terms and must be available.

Now from eqn. 5.70 and noting that the properties of least squares 

ensure that

(i)T (j) _ E(i)TE(j) 
t Yt Et t 5.77
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it is evident that, by post-multiplying the transpose of eqn. 5.70 by

Y(j) 
t '

v(m) y(j) = + E K 5.78
t t t t Z = 1 t

T . 
and since the terms may be computed recursively (see eqn.

5.62) the above equation is easily computed.

, .T z .
Also, can be computed from the known residual error

t t
covariance matrix 2 e.e. by operating on it as follows : 

1=1 1 1

v(m)Tv(m)
{Kml ’ " " 1 Km]

; K ,
m,m-1

0 5.79

0

The order in which the various terms is computed is important,

as K. is itself a function of K.., j=m+l,...,1-1, (m<i), and im ij

,m-l. The suggested computational sequence is therefore:

(1) Compute parameter covariance matrix P and

T . -1t - a ♦

as in the normal recursive least squares algorithm (see eqns.

4.22 and 4.23 for analagous operations) and hence compute
* . . t T
0.,i=l,...p, and residual covariance matrix 2 e. e . .

1 i=l 11
For i=2:
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(2)
<m)T

Compute Vt from eqn. 5.78 m=l

where this computation is a function of

Z=1,..,m-l, already computed

(3)
(m)T (m)

Now, from eqn. 5.79 evaluate vt vt , m=l

where is a function of

(4)

(5)

K ,, m=l,...,i-1 mZ
covariance matrix

Compute

If i<p

Hav ing

Z=1 m—1 already computed and the residual

already available.

K. , m=i-L im’ 1 from eqn. 5.76 (i. e. starting with

where K. is a function of evaluated covariances and im

K.. , j = m+l 
ij

increment i and repeat from (2).

computed the K matrix, p can be evaluated

from eqn. 5.65 and the orthogonalized residual sequence is

5.80

The determinant of the residual covariance matrix might also be

K

t -K %

evaluated more easily from

t P H
T

5.6 Applications of

eieil = vt vt 5.81

the Algorithm

The algorithm is intended to be used interactively in a manner 

precisely analogous to that described for RHYP (section 4.3).

Similarly, it is quite feasible to implement the algorithm non-recursively 
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using for example the correlation, and covariance methods described 

for the SISO algorithm. No such implementation is presented here as 

the extension is quite obvious.

The major difficulty in applying MVHYP is one of dimensionality.

Whilst hypotheses on second order or even third order l+c(z ) 

polynomials are amenable to interactive analysis, higher order 

problems require extremely tedious analysis of the cost function, and 

it is in such instances that a more automated (hill-climbing) 

approach may be advisable. (This was also outlined for RHYP).

However, the concept of reducing the non-linear search to one over 

only the parameters of the scalar l+c(z ) polynomial is still

-1 -1 extremely valuable, as it allows estimates of the A(z ) and B (z ) 

polynomials to be obtained by linear least squares.

By modelling the system on the basis of a truncated (under-parametrized) 
-1 

I+C(z ) polynomial, the order of the hypothesized polynomials may be 

reduced. Although the method cannot lead to optimal estimates of the 

impulse response transfer functions, it certainly will lead to a 

substantial improvement in results over ordinary least squares. An 

example of such an approximation is given in the following section.

5.7 S imulat ion Examples

5.7.1 A Simple Illustrative Example

The 2-input, 2-output system described by the difference 

equation

(I+AjZ 1)yt = BjUt_j + (I+CjZ he^ 5.82
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in which

the driving noise vector e^ has statistics

A1 "

C1 =

-0.9 0.5 "

-0.5 -0.2 _

—0.2 —0.4

. 0.2 -0.8

B, - I

E(et) = 0

and

T 
E(etet) =

1

0.3

0.3 '

1.09 .
E(e e? . ) = 0 , Z^O 

t CT X/

the measurable (zero mean) input sequence u^ has covariance

T 
E(utut) = I

was used to generate 300 pairs of input-output data (yt>ut).

Following eqn. 5.17 eqn. 5.82 may be reformulated by pre-multiplying

-1
by adj (I+C^z ) = I

— *■  1 —' — 2
+^2z )yt

-0.8 0.4
, giving

L -0.2 -0.2 J

= (BjZ-1 — -2 x+b2* )“t ■*l  et 5.83

where

and

-1.7
" I -0.7

0.9

-0.4

0.52 -0.48

L 0.28 -0.06 J

51 52
-0.8

-0.2

0.4

-0.2

|l+CjZ | = 1—z +0.24z -1 -21+CjZ +c^z

^2 =

I

Using MVHYP in precisely the same interactive manner as described for

RHYP, the quantisation intervals q^ and q^ were both finally set to 

0.05 in the region
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-1.15 < Cj < -0.85

0.3
5.84

enclosing the minimum of the cost function based on the trace of the

residual covariance matrix

estimates obtained are shown

300 
à The parameter

in Fig. 5.1 and demonstrate the

typically swift convergence of
-1

the l+c(z ) polynomial estimates

The final estimates are

0 2

These are reasonable estimates of the true values considering the

-1.678 0.967 ' 0.455 -0.495 ’
4 -

_-0.747 -0.324 .
a2 -

- 0.272 -0.115 .
5.85— * 1.036 0.0534 " A -0.829 0.469

B1 -
_ 0.0177 1.1057 .

B2 -
.-0.3111 -0.2017.

* -1 * -2
1+CjZ +c^z = l-0.95z-I+0. 2z-2

limited data. The covariances of the two residual sequences are:

| I (eæ)2 = 0.9718 5.86
t=l c

1 300 /g) 2
N S (=t 9 ■ 0.9529 5.87

t=l E

Eqn. 5.83 is the system description given two correlated noise 

vector elements e^^and e Now, vector e^ may be generated from

noise v with uncorrelated elements as follows:

e t

l

_0.3

0
5.88
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-0747

•IM

matrix

1.5
B122

1.0
Bill

00
0'053
0'010

B j matrix

1.106
1.0%

Â211

0455
0 272

■■0.116

A222
■0435

A212
*2 matrix

Fig. 5.1(a) Time evolution of the I and 5 parameter estimates

20

0469

00

0623

■0-202 
0'311

@2 matrix

Key: Zlij = (ij)th element of dl
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Fig. 5.1b Time evolution of the *c’ parameter estimates 
(hypotheses)
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where

E(vt) = 0

T
E(vtvt) = I

E(vtVfc+p = 0

or et = ^t 5.69

in the notation of eqn. 5.5

Thus, the system of eqn. 5.82 is represented equivalently by

(A +A.z *+A qz 2)y = (B.z 1+S9z 2)u 
v 1 L 4 4*  L

-0.273

— 1 —2vlz +=2= >vt 5.90

as suggested by eqn. 5.12 where

= K -1 K =
1 0

A. = K -1 A.

L-0.3 1

i =1,2

= K -1 B. i =1,2

Using the method described in section 5.4, the estimate K of K-K

was found to be

K =
1 0

5.91
1

and thus the estimates of the parameters of eqn. 5.88 may be found

directly from those given in eqn. 5.85

When the maximum likelihood estimates were computed the

cost function used was the determinant of the residual covariance 

matrix, the optimal hypothesis turned out to be
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A — 1 A —2 — 1 -2
1+CjZ = 1-z +0.2z 5.92

This is a neighbouring hypothesis to that selected by using the trace 

cost function, the difference being one quantum in the C parameter

estimate. The final parameter estimates were:

A =
‘ -1.729

. -0.7344

0.9571 ‘

-0.3774 .
A =

’ 0.5095

_ 0.2953

-0.5213 ‘

-0.1064 .
5.93

’ 1.037 0.0529 ‘ ’ -0.8813 0.4519 "
B = B =

. -0.1871 1.1098 . _-0.2906 -0.2726 _

and the covariances of the two residual sequences are:

E (epb2 = 0.9771 5.94
t-1 E

1 300 (2) 2
~ E Urb = 0.9487 5.95
W t-1 E

The effect of the determinants! cost function is to permit a 

slight increase in the first residual covariance in exchange for a 

decrease in that for residual two. The difference is minute.

The residual covariances turn out to be less than the theoretical 

driving noise covariances only due to the small sample inaccuracy of 

the noise generator used.
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5.7.2 Transforming to a Standard Representation

This example shows how the results obtained for the non-standard 

parametrization used in MV HYP may be used to produce a model in a 

more conventional representation. The method follows the procedure 

outlined in section 5.2 (eqns. 5.18 - 5.20). The above example is 

continued, with a view to obtaining a model in the form of eqn. 5.82.

Using the parameter estimates in eqn. 5.85, the residual vector

sequence

- -1 - -2 et = (1+4jz +42z )yf
- -1 - -i

(Sj z +#2z )uf 5.96

was computed where yf and u- are 
t rt

the input and output sequences y

and u^ filtered by the optimum hypothesis 1+c^z—1 * —2 . - -; +c2 z in the usual

fashion. Now, £ is assumed to be an estimate of the driving noise

e^, and the 

minimizing

matrices
300

Vtr \

and in eqn.

T w w in the model:

5.82 are estimated by

(I+Aj z J)yfc = BjZ Jut + (I+C| z + w^ 5.97

The resulting estimates are shown in Fig. 5.2 and the final values 

are;

*1=
■ -0.8823

. -0.4872

0.4867 '

-0.2051 .
=

1.0235

.0.02391

0.05427"

1.0986 .

h =
-0.1540

. 0.2599

-0.4808 "

-0.8308 .
5.98

These are remarkably good estimates considering the short data 

record. The "efficiency" of the transformation may be monitored by

observing the cost V . Ideally this should be zero if in fact there
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is a factor adj {I+C(z )} of the (I+^z ^)) and 3 (z ) polynomials, 

-1 * -1 
and the estimate l+c(z ) is the determinant of I+C(z ). In this

example, the value of the cost function is 0.0527 and this extremely 

low value indicates that the transformation to the new representation

is almost deterministic and exact. This is further corroborated by 

the swift convergence of the parameter estimates in Fig. 5.2.

5.7.3 MVHYP using an Underparametrized Model

The following discrete time system is

— 1 —7 — 1 —2.
(I+Aj z +A2z )yt = (BjZ +B2z )ut

now considered

-1 -2(I+CjZ +C2z ) et 5.99

where

A1 -

B1 -

C1 -

‘ -1.5 0.2 ‘

. -0.3 -1.1 .

' 1 0.3

- -0.5 1 .

" -0.7 0 "

. 0.3 -1.3 .

Il 
U 

II

c
m 

eq 
c

m
<3 

A 
O

’ 0.6 -0.1 "

. 0.1 0.3 .

’ 0.5 0.2

.-0.4 0.4 -

0.1 0

. 0.2 0.5 .

a measurable zero mean white input with covarianceu. is

T 
E(utut) = I 5.100

and is a white disturbance with statistics

The

T
E(efc) = 0 E(etet) 0.25 I 5.101

object of this example is to show that a prediction model notably

better than a least squares model can be found by assuming only a
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first order I+C(z ) polynomial (i.e. that Cg - 0) and using MVHYP to 

estimate the parameters of the special MVHYP method parametrization

(1+^1Z +^^z +4qZ )y = (B.z +59Z +#_z )u +(l+c,z 1+coz 2)Ie

5.102

300 samples of input-output data were available, and the trace cost 

function was used.

The prediction error variances are compared with those achieved 

when ordinary least squares is used to estimate the parameters of the 

model:

* —1 * —7 * — I ~ —3
II+Aj z +AgZ )yt = (B j z +B^z )ut + 5.103

Again the trace of the residual covariance matrix is minimized.

Using MVHYP, the minimum of the cost function was found to be 

satisfactorily bounded by:

-1.45 < Cj < -1.05

0.35 < Cg < 0.6 5.104

where a quantization of 0.05 was chosen for both c^ and c. The 

sample variances of the residuals were found to be

Var (e^^) = 0.244

Var - 0.352 5.105

as against the variances

Var (e^0) = 0.33

Var - 0.69 5.106
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obtained for the least squares model of eqn. 5.103. The MVHYP 

estimator clearly produces a better predictor. The comparison may be 

somewhat unfair in that 3rd order 1+4 (z ) and B (z ) polynomials 

have been used for MVHYP, whereas only 2nd order polynomials have 

been used for the least squares comparison. Using 3rd order 

polynomials the least squares residual variances are reduced to

Var (eæ) = 0.267

Var (^(2)) = 0.414 5. 107

which are still significantly higher than the MVHYP method results.

The theoretical lower bounds on the prediction error variances 

are 0.25 for both Var(e^^) and Var (e^)). The characteristics of 

the noise generator are of course not ideal, but the variance of

vgiven in eqn. 5.105 is clearly 

out in Fig. 5.3 in which e^is 

noise e^. Fig. 5.3 also shows

very nearly optimum as is borne

superimposed on the true driving 

(2 )that is a fair estimate of

e (2) 
t

5.8 Conclusion

This chapter has demonstrated how the concepts of parameter 

estimation by hypothesis testing and the principles of computer 

interaction embodied in the RHYP algorithm may be extended to the 

multivariable case. Two prediction error cost functions may be 

minimized, namely the trace and the determinant of the residual 

covariance matrix, using the computationally simple least squares 

method. However, the method is complicated by the necessity to use a
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300
(1) (2)

Fig. 5»5 System noise (e and e ) superimposed on
(1) ■ (2)

the residual sequences ( 6 and E ) 
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special, non-minimal representation, and soon becomes unwieldy both 

with increasing number of outputs and with order of the noise 

colouration matrix polynomial I+C(z . It may therefore be 

necessary to embed the algorithm in a hill-climbing technique in 

which the hill-climber iterates upon the noise colouration polynomial 

hypothesis. The resulting algorithm is nevertheless a considerable 

simplification of the direct approach in which the parameters of the 

, -1 -1 I+A(z ) and B(z ) polynomials are also included in the search.

The examples illustrate the characteristically swift convergence 

properties of the hypothesis testing approach, and also show that it 

is possible to easily transform the parametrization to a more 

conventional and concise one. Finally, it is shown that an 

approximation involving an under-parametrized estimate of I+C(z ) 

still offers significant improvement in performance over ordinary 

least squares estimation.

It is therefore hoped that the algorithm may prove useful in 

certain practical applications where the requirement for a minimal, 

optimal solution, may give way to this more pragmatic approach which 

nevertheless provides sensible and reliable system models.
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CHAPTER 6

CONTROL STRATEGIES FOR SELF TUNING CONTROLLERS

6.1 Introduction

The advent of fast? powerful, and relatively inexpensive 

microcomputers has made it possible to offer digital controllers 

as a cost-effective alternative to conventional analogue types. 

The flexibility of a computer implementation makes it easier to 

introduce more complex control strategies, and largely remove 

constraints on controller order so that high order controllers 

may be implemented with little difficulty. In many systems, 

digital control is not only attractive for its own sake but 

because the controller can be embedded in a software structure 

which facilitates system monitoring and permits ’intelligent’ 

decisions to be made in the areas of fault detection,'fault 

correction and safety.

Classical control design techniques (for analogue controllers) 

are today well-established. They are largely based on a system 

description which may be measured reasonably easily, namely 

frequency response. In particular, the Bode Plot, Nyquist diagram 

and Nichols chart forms have proved (and still prove) extremely 

valuable. (see for example classic texts such as D’Azzo and 

Houpis,1966, Shinners, 1972 etc.)

Whilst digital controllers can be designed from models 

parametrized in the continuous s-domain, or as continuous time 

state space models, it makes sense to consider a direct approach 
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in which design proceeds from a discrete time system model. The 

ARMAX model in particular is an extremely attractive such representation 

and its parameters may be estimated by a variety of methods, for 

example, the RHYP and MVHYP techniques presented earlier in this 

thesis. Such analysis has the advantage over frequency response 

methods that it can be effected from normal operating records. Clearly 

a good model of the system is fundamental to the controller design 

procedure. The reader is referred to the standard works of Tou (1959) 

Kuo (1970), Ragazzini and Franklin (1958) and Saucedo and Schiring 

(1968) for an exposition of general design techniques. The linear 

quadratic problem, and linear stochastic control theory for discrete 

time systems is considered in works by, for example Astrom (1970) and 

Bryson and Ho (1969).

Whilst acknowledging the usefulness of this ’standard’ approach 

to digital controller design, the following chapters deviate from 

this path, and instead explore the possibilities of Self Tuning 

Control. This class of controllers exploits the available computing 

power to the full by blending the concept of on-line estimation 

with that of on-line controller design. The attractions and background 

to this ’learning algorithm*  approach have already been covered in 

Chapter 2. The purpose of this chapter is to bridge the gap between 

the conventional and self tuning approaches to digital control by 

reviewing in more detail those controllers which lend themselves to 

self tuning, and indeed, to extend this class by introducing the 

multivariable detuned minimum variance and pole-shifting regulators. 

The self tuning controllers are not discussed at this stage. These 

will be covered in Chapter 7. Thus, the basic assumption now is 

that an ARMAX model of the system to be controlled is available, the
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parameters of which might perhaps have been estimated using a maximum 

likelihood or other estimator, and the controller design is carried 

out off-line.

Two distinct approaches both based on output feedback are 

considered. The first consists of methods based on optimality criteria 

and includes the minimum variance regulator (Astrom and Wittenmark, 

1973; Borisson, 1975) presented for the multivariable system case, 

and the generalized minimum variance controller (Clarke and Gawthrop, 

1975; Gawthrop,1977). The latter strategy is treated only for the 

single input single output case, and 'generalises*  the minimum 

variance control by seeking to minimize not only the output variance, 

but a weighted sum of output and input variances. This method is not 

developed further here, but is a valuable technique which is included 

only for completeness. The multivariable minimum variance regulator 

is however extended by introducing the multivariable detuned minimum 

variance regulator in which the placement of closed loop poles (with 

fairly severe restrictions) is possible. The SISO version of this 

regulator is due to Edmunds (1976).

The second approach presented for multivariable systems, is 

novel for the self tuning application, and permits the specification 

of closed loop system poles. The method is developed from the SISO 

system work of Edmunds (1976).

In all cases, the plant, assumed to be controllable and 

observable, is represented in the ARMAX form

— 1 —If W 1 * 1
{I+A(z )}yt = Z B(z 7^ + (I+C(z Het 6.1

where y and ufc are p-vector output and input respectively and
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is a zero mean white noise p-vector with covariance Q. The 

polynomial matrices A(z , B(z and C(z follow previously 

defined conventions (see for example eqn.5.2). Furthermore, 
—1 —i _

I+A(z ) and B(z ) are relatively left prime and the zeros of 

II+C(z )I lie within the z-plane unit disc.

6.2 Minimum Variance Regulators

The minimum variance regulator seeks to minimize the cost 
T

function V - E(yt+k+1 yt+k+1) 6.2

The cost function is a special case of the linear quadratic strategy, 

the criterion being a quadratic function of the output only, and does 

, not require the solution of a Riccati equation. The solution to this 

problem for SISO systems (formulated using the ARMAX model) is well 

known and has been discussed by, for example, Astrom (1970). The 

cost function 6.2 is minimized with respect to the control input u^, 

which may be a function only of known data, present and past outputs 

yt,yt_^,..., and past inputs ut-i>ut-2’''’’ °f which are known 

at time t.

The solution for the multivariable case has been documented by 

Borisson (1975). The fundamental difference between the multivariable 

and single variable analysis stems from the fact that matrices do not 

commute. The derivation will not be given here, but emerges as a 

special case of the solution to the ’Detuned Minimum Variance’ 

regulator discussed in section 6.3. Therefore, it suffices at this 

stage to state the control law:

{I+M(z l)}{zB(z 1)}ut = G(z 1)yt 6.3
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where, as an exception to the usual polynomial definition (since G ^0)

— 1 1 oG(z ) = G + G-z” +.... + G z g 6.4
o 1 n

g
and {I+C(z"1) } = {I+A(z"1)Kl+M(z’1)l - z^^Cz”1) 6.5

~ —i ~ —i —i —i
where {I+M(z )}{G(z )} = {G(z )}{I+M(z )} 6.6

det{I+M(z )} = det{I+M(z )} 6.7

and M(z follows the standard polynomial convention employed and is 

of order k. G(z ) is similar in form to G(z ) and is of order

. . ~ -1 — 1It can be shown that polynomial matrices M(z ) and G(z )

always exist, but are not unique (Borisson, 1975; Wolovich,1974). 
. • . ~ —1 —iIt is often possible to specify that the orders of M(z ) and G(z ) 

should be equal to those of M(z and G(z respectively. Under 

this constraint, eqn. 6.6 implies the solution of the following set 

of linear simultaneous equations:

G o

n block 
g

columns

k block

tiO

m:

g J
o

-Gn

-G o

-G:

“i

columns

-S’ ' '

clearly

Go 6.8

This requires that the (k+n )px(k+ng)p matrix on the left hand

side of eqn. 6.8 be non-singular. As in general the initial model



J 30

parameters are obtained by estimation it is unlikely that a rank 

deficiency will exist in practice. Of course, for SISO systems eqns. 

6.6 and 6.7 are not required as then

M(z-1) = M(z-1) ; G(z-1) = G(z-1)

Under minimum variance control (eqn. 6.3) the system output is 

given by

yt = {I+M(z 1)}et 6.9

There are a number of other factors to bear in mind when using 

minimum variance control namely:

i) In order to solve for the input u^ in eqn. 6.3, (the first 

coefficient matrix of polynomial B(z ^)) must in general be 

non-singular. There are exceptions to this rule, and an example 

is given in section 6.6.4.

ii) The determinant of B(z should be inverse stable. Unstable 

zeros of det(B(z ^)), corresponding to o.d. zeros, lead to unstable 

modes of the closed loop system which can only be cancelled out 

when B(z in the control law is identified exactly. Therefore, in 

any practical situation, if det(B(z ^)} is not inverse stable, the 

closed loop system will be unstable.

iii) The roots of det{I+C(z } must lie within the stability region.

The minimum variance regulator has been found on occasions to 

result in rather large control excursions. These are sometimes 

undesirable as they lead to saturation effects either during digital 

to analogue conversion, or in the plant itself, and contribute to 

system wear. A simple modification is to reformulate the minimum 

variance problem making provision for the specification of closed 
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loop poles. Edmunds (1976) has suggested the technique for SISO 

systems and the extension for multivariable systems is discussed 

below.

6.3 Detuned Minimum Variance

The aim of this regulator is to preserve the zeros of the closed 

loop transfer function obtained under minimum variance regulation 

but to introduce closed loop poles determined by the zeros of the 

determinant of a specified matrix polynomial I+z ^T(z ^). The 

desired closed loop system is thus

{I+z”kT(z”1))yt = {I+M(z-1)}et 6.10

-1 -1 ”nt
where T(z ) = T^z + ... + T^ z

and (I+M(z ^)} is that given in eqn. 6.9.

The system description (eqn. 6.1) must first be manipulated 

into a suitable form. Following eqn. 6.5, let

{I+C(z-1) } = {I+A(z-l)}{I+M(z~l)} - z~k‘"1G(z”^) 6.11

~1 .where M(z ) is of order k 
. ~ -1 —1 . and define M(z ) and G(z ) according to:

{I+M(z-1)}G(z”l) = G(z-1){I+M(z”1)} 6.12

—i ~ —i
where det{I+M(z )} = det{I+M(z )} 

and det{G(z ^)} = det{G(z ^)} (c.f. eqn. 6.6)

Now, define

I+C(z-1) = {I+M(z~l)}{I+A(z~l)} ~z~k~^G(z~^) 6.13



J32

By postmultiplying eqn. 6.13 by {I+M(z 1)}, premultiplying eqn. 6.11

by {I+M(z } and using eqn. 6.12 it is evident that

{I+M(z 1)}{l+C(z~1)} = {I+C(z 1)}{I+M(z”1)} 6.14

and since det{ I+M(z ^") } = det{l+M(z 1)}

it follows that det{l+C(z } = det{l+C(z 1)} 6.15

Postmultiplying eqn. 6.13 by I+z T(z 1) gives

(I+C (z-1) H I+z""kT(z”1) ) = {I+M(z"1)Kl+A(z"1)} -z^^Cz"1)
6.16 

where L(z = G(z - z{l+C(z ^)}{T(z }

-1 ”nI
= L +L,z + ... + L z

° 1 n Z

. ~ -1
Now, by premultiplying the system eqn. 6.1 by I+M(z ), 

substituting eqn. 6.16, and using relationship 6.14, it follows that

{I+C(z-1)}[{l+z~kT(z™1)}yt - {I+M(z”1)}et]

= z k 1[{l+M(z l)}{zB(z }ut - L(z l)yt] 6.17

If it is assumed that det[l+C(z ^)] (and hence det[I+C(z ^)] ) 

is inverse stable, it is clear from eqn. 6.17 that by choosing the 

control law

{I+M(z ^HzBCz 1)}ut = L(z 1)yt 6.18

the closed loop system response will be

{I+z”kT(z”1)}yt = {I+M(z“1)}et 6.19

as desired. The same conditions, given in (i), (ii), (iii) of 

section 6.2 of course apply.

By setting T(z = 0, it follows that L(z = G(z 1), and



133

the control law reduces to ordinary minimum variance. From eqn. 6.17 

it is also possible to demonstrate why this law minimizes the system 

output variance. Re-writing eqn. 6.17,

^t+k+l = + f^t^t-l*  ^t^t-l*

= ya + yb 6.20

(where f(.) indicates some function of the past data)

Now, since the signal ya = {I+M(z-^)}e£+^+^ is uncorrelated 

with data at, and prior to time t,

Etyt+k+iyt+k+i) = EUy^Ty*}  + El(y^)^^ 6.21

Since the choice of u^ cannot affect the term E{(ya)^ya}, the cost 

function is minimized simply by setting y^ = 0.

The effect of introducing the auto-regressive terms defined by 

{I+z (z l)} is best illustrated by a simple SISO example.

Example 1:

Let the system be described by

Cl+a^z 1)yt = b1ut_1 + et 6.22

. . . . . 2where e^ is a zero mean white driving noise with variance a . 

Then the minimum variance regulator is given by

al
"t = bl ' bl + 0 6-23

. . . -1 -1 .The detuned minimum variance regulator for 1+T(z ) = 1+t^z is

al“tf
ut = —b— yt ’ bl 0 6.24
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If the regulator gain is denoted g, so that = gy^, then by 

substituting into eqn. 6.22, the closed loop response is

(1 + (a^-b^g)z 1)yt = et 6.25

The minimum variance regulator eliminates the closed loop pole at 

z = -(a^—b^g). The detuned minimum variance regulator moves the 

pole to z = -t., and if t, is suitably chosen, will have reduced
. . . 2 a2

gain. The output variance however, increases from o to ------— .

Note that inappropriate choice of T(z can increase the 

regulator gain.

The following example illustrates the calculation of minimum 

variance and detuned minimum variance control laws for a multivariable 

system.

Example 2

Consider the multivariable system described by

{I+A-z 1+A_z~2}y. = z k{B1z“1+B z“2}u. + {I+C-z^be.
1. Z E 1 Z L 1 L

6.26

where k = 1

0.8 -2.9 0.2

0.2

-1.75

-0.95

—0.4

0.4

0.6

0.6

-0.25 0

0 -0.45
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Then, from eqn. 6.11,

Mi = crAi
-1.05

—0.6

2.9

0.95.
6.27

G o

- [

a2+a1M1

A2 M1

" 1.1

. 0.41

’ 0.84

. 0.36

-2.185

-0.54 .

-1.082!

-0.322!

6.28

Now, from eqn. 6.8, G o %
I

-

Go4 —
0

6.29

-1.6113 3.6485 ‘
Hence =

-0.871 1.!>113 .

‘ 0.4074 -0.6462 "
and G. =1 _ 0.1289 0.08847

Then the minimum variance control law becomes :

z{I+M(z )}B(z x)ut - G(z 1

z"1 +

>^t

or {I +
' -2.0113 4.2484 "

_-0.471 2.111 _

" 2.1038

_ 0.9529

1.222 "

0.3842.
z-2 }ut

= {
'1.1 -2.185 ’

0.41 —0.54

0.4074

0.1289

-0.6462

0.08847

-1 z }yt 6.30

The detuned minimum variance law is found by a simple
. . . . . -1 . 

modification of the above procedure. Polynomial matrix G(z ) is

replaced by LCz”1) = G(z-1) - {I+C(z~l)}{zT(z-l)} 6.31
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~ —i ~ —1 —1 —v—1 —1
where I+C(z ) = {I+M(z ^)}{I+A(z 1)} - z K ^(z 1)

= I +
-0.8113

-0.271

0.7485

0.1113
6.32

• ""1 “1
Thus if I+z T(z ) is chosen to be

I + 6.33

L(z 1) becomes:

L(z 1) =
‘ 1.8 -2.185" ’ -0.05951 -0.12225 ' -1 z 6.34
_ 0.41 0.16 . _ -0.0608 0.16638.

and the above polynomial replaces that on the right hand side of 

eqn. 6.30 to give a detuned minimum variance regulator.

6.4 The Optimal Predictor

It is appropriate at this point to mention the close relationship 

that necessarily exists between the optimal minimum variance control 

strategy and optimal prediction. Borisson (1975) has shown that the 

optimal k+l-step ahead predictor of yt+^+^ given data 

{yt,yt_1,yt_2,.«.,ut,ut_1,...} denoted by ^t+k+1/t is given by

?t+k+l/t = yt+k+l - <I+M(z-1)}et+k+1 6.35

and for T(z = 0 satisfies the identity (from eqn. 6.17)

<l+c(z 1)^t+k+1/t = {I+M(z j }{zB(z )}ut - L(z )yt 6.36 

where the definitions previously assigned to all the above variables 

. . —Iare preserved. Clearly the prediction error {I+M(z ) ^et+k+l is 
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precisely equal to the minimum variance regulation error. The action 

of the minimum variance regulator is to set the k+l-step ahead 

predictor of yt+^+^ to zero.

6.5 Generalized Minimum Variance

The minimum variance strategy is sometimes found to be 

unsuitable in two ways:

i) Control inputs required to attain optimal control may become 

too vigorous

ii) Non-minimum phase systems, that is systems for which the zeros 

of det{B(z 1)} lie outside the z-domain unit disc, cannot be 

controlled.

The detuned minimum variance approach is to some extent useful 

in overcoming the first disadvantage. The second difficulty is more 

prevalent than might initially be expected. This is because systems 

which may be minimum phase in the continuous s-domain may transform 

to non-minimum phase systems in the z-domain. Furthermore, pure time 

delays which are a non-integer multiple of the sampling period (for 

example computational time delays) can readily lead to non-minimum 

phase systems. It is possible to use a sub-optimal variant of the 

minimum variance regulator to control such systems. Such a controller 

was described by Astrom and Wittenmark (1974) for SISO systems and 

. . . —I . .requires the factorization of the B(z ) polynomial and the solution 

of a polynomial identity to derive the controller parameters. Its 

complexity is a disadvantage.
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Recognizing the disadvantages of ordinary minimum variance 

regulation, Clarke and his co—workers (Clarke and Gawthrop, 1975; 

Gawthrop,1977) have developed another, simple, approach which allows 

control effort to be adjusted, and which in some instances can cater 

for non-minimum phase systems. In addition, it provides a means of 

specifying the closed loop transfer function and permits the 

introduction of set points. The fundamental facts are summarized 

here. Since a SISO system is being considered, the polynomials 

(e.g. A(z 1), B(z 1) and C(z 1)) and signals (e.g. y , u£ and e^) 

are scalar in this section.

An auxiliary system with output $ is defined by

♦t+k+l " Pyt+k+l + Qut ■ Rwt 6-

where P, Q, and R are rational transfer functions in the backward 

shift operator z . w^ is the desired value or setpoint of y^.

From eqn. 6.37 and the ARMAX system eqn. 6.1, written below in 

scalar form as

{1+A(z 1)}yt = z kB(z l)Ut + {1+C(z ^Jle^ 6.38

the auxiliary output can be expressed as

—■
P{l+C(z 1)}

1+A(z l) ^t+k+l - Rwt 6.39

which, apart from the term (-Rw^) is of the same form as eqn. 6.38

The control strategy is to minimize the auxiliary system output 

variance, ^^t+k+l^‘ to expected, the controller minimizing

the cost function can be found in much the same way as the regular 

minimum variance problem discussed previously. In fact, the optimal 

k+l-step ahead predictor of 0%+^+! ^iven by
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*t+k+l/t = *t+k+l  - (l*M( Z-1))et+k+1

satisfying

-biî G(z l)y + {1+M(z 1)}{zB(z 1)}u 
rD

JtQu^—Rw^} 6.40

where (1+M(z~1)}(l+A(z 1)}PD z'^GCz"1) 6.41

G(z”1 -1 *ng
+ G.z +...+G z & o 1 n

g
ng -1

PN

PD
P

—1 , 
and M(z ) is a kth order

The associated prediction

polynomial.

error is {1+M(z ^)}et.

As for the minimum variance regulator, the optimal controller 

is that which sets the k+l-step ahead predictor to zero at each 

instant. If 1+C(z has all its roots within the stability region, 

the required control law is

[{1+M(z VHzBCz "H } + <1+C(z 1)}Q]ut

= (1+C(z iRw^ - y G(z 1)y 
rD

6.42

resulting in the auxiliary system response

= îl+MCz”1) )et 6.43

There are numerous interpretations of this control strategy.

When Q=O, the system response is

yt+k+l ” ^1+M(z 1)^et+k+1 + ^wt 6.44
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. RTherefore, the output can be made to follow a given model — w^ 

plus a closed loop disturbance term y{l+M(z subject to the

available control effort. When P=1 and R=0, the controller reduces to 

the minimum variance regulator. This strategy works satisfactorily 

when the open loop system is minimum phase. However, as the controller 

poles are used to cancel system zeros, this model following scheme 

fails for non-minimum phase systems.

Non-minimum phase systems may be controlled by introducing a 

suitably chosen input weighting transfer function Q in the auxiliary 

system. The closed loop system then becomes:

z~kB(z~l)PDQDR

{zB(z-1)}PnQd + PpU+ACz-1)}^

[{1+M(z hHzBCz blQp + U+C(z 
-------------- —---------------------------------—-------------------- e 6.45

{zB(z + Pd{1+A(z I)}Qn

Cancellation of B(z is now avoided, but Q = rr— must be chosen so 
%

that the closed loop system is in fact stable.

In its simplest form, when P=1, R=1, and Q=X, where X is a 

positive constant, the controller may be interpreted as minimizing 

the cost function

Ek?t+k+l ' wt)2 + A"2] 6.46

X may thus be viewed as a weighting factor in the cost function, 

weighting the control effort at the expense of output variance.
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6.6 The Pole Shifting Regulator

The methods discussed so far have centred on variants of optimal 

control (or regulation) schemes. The pole-shifting technique 

represents an entirely different approach to the special class of 

design rules considered in this chapter, and has its roots in classical 

control rather than optimal design. It has three distinct advantages 

over the minimum variance approach in that:

i) It can regulate non-minimum phase systems without exception 

ii) The control signal is generally less vigorous

iii) Pure time delays may, under certain conditions, vary between 

loops (i.e. need not be non-singular). This is significant 

as the minimum variance controller requirement that all loops 

must in general have the same time delay is not always 

fulfilled by real systems.

Against this must be weighed the greater complexity in computing 

the controller parameters and the disadvantage of ’non-optimality

The advantage of pole placement over the generalized minimum 

variance rule (for which only a SISO version has as yet been 

published) is the ease with which non-minimum phase systems may be 

controlled. There is, for example, no need to carefully select 

parameters such as the 'P*  and ’Q*  polynomials in eqn. 6.37 to 

guarantee stability for non-minimum phase systems.

The essential feature of the pole—shifting law then is that 

the poles of the closed loop system under regulation may be specified 

by the designer. The closed loop zeros are decided by the poles of 

the feedback law and are not subject to selection. This restriction
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however, allows the complexity of the design rule computations

to be kept to a minimum.

6.6.1 The Design Rule

The regulator design procedure for multivariable systems

defined by eqn. 6.1 is now presented. The orders of polynomials 

“1 “1 .A(z ) and B(z ) are as usual n& and n^, but it is noted that 

normally = n.

Introduce a control law of the form

ut = G(z 1) [l+F (z 1)] lyt 6.47

-1 i ~n
G(z ) = G + Gn z" + ... + G z g 

o 1 n
8 6.48

z -1 -1 ~*f
F(z = F z + ... + F z 

nf

G(z deviates slightly from the general polynomial

in that a coefficient matrix Gq is added). The coefficient 

matrices G^, i=0,1, .. ,n^ and F^, i=l,2, .. ,n^ are of dimension pxp. 

The orders n^ and n^ are given by

n = n — 1 
g a

n^ = n^ + k 1

Substituting eqn. 6.47 into eqn. 6.1 gives:

yt = {l+F(z"1)}{I+R(z’1)}'1{I+C(z'1)}et

where I+R(z = {I+A(z }{I+F(z } - z ^B(z ^)G(z

Now if F(z and G(z are chosen so that

where

(Note that

definition

6.49

6.50

6.51
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I+R(z 1) = {I+C(z“1)}{I+T(z~1)} 6.52

where the order of T(z is governed by the inequality 

n < n + n, + k — 1 — n 6.53tab c

the closed loop system response is given by

yt = {l+F(z“1)}{l+T(z”1)P1 efc 6.54

The poles of this system may therefore be specified by selecting the 

polynomial matrix I+T(z with the required determinant. It is 

argued that I+T(z ) and I+F(z ) will almost always be relatively 

prime, and that the case when this is not true would be the exception 

rather than the rule. Therefore ’pole-zero cancellation’ is not 

expected to occur.

The evaluation of the controller parameters reduces quite 

simply to the solution of a set of linear equations. From eqns. 6.51 

and 6.52,

)G(z~b = {I+C(z~l)}{I+T(z~l{I+A(z“1)}{I+F(z 1)} - z ^(z"1

= {I+R(z 1)}

where n Eqn. 6.55 may be rewritten in the form:

6.55

71

n

r

k<

-B

-B -B

-B

71

n

o

r;

n

n a

n a

6.56
U8.

nc

n
______
-l)p
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The existence of a solution to the design equation 6.55 is 

guaranteed when the (n^+n^+k-l)p square transformation matrix in 

eqn. 6.57 is non-singular. It follows that the non-singularity 

of this matrix is a fundamental condition for the pole-shifting 

—1 —1 law. Since I+A(z ) and B(z ) are assumed to be relatively left 

prime and the system is assumed to be both controllable and 

observable it is claimed that in practical applications the 

transformation matrix will generally be non-singular.

6.6.2 Implementation of the Regulator Equation

At this stage the control law is specified in the form

ut = G(z"l){I+F(z~l)}-lyt 6.57

Two ways of implementing this law are considered. The first is to 

note that

{I+F(z-1)}-1 = ------X- adj{l+F(z~X)} 6.58
|i+f(z bi

and on substitution of eqn. 6.58 into the controller equation, 

eqn. 6.57 becomes

|l+F(z X)|ut = G(z X)adj{I+F(z X)}yt 6.59

from which the control input u& can be easily computed.

For the second method it is necessary to introduce an assumption 

on the form of the regulator. Let

X Hr q
F (z) = z {I+F(z )} 6.60

G*(z) = z g G(z"X) 6.61
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Assumption: The regulator has F (z) and G (z) relatively right 

prime with all observability and controllability 

indices equal to n^ and n& = n^ = n.

Then it follows that (Wolovich, 1974) the regulator equation 6.57 

may be written in the form

= {I+F(z 1)} 1 G(z 1)yt 6.62

where n~ = n^ 6.63

and n~ = n
g g

That is, G(z~l){l+F(z~l)}~l = {I+F(z^)}'^ G(z^)

or {l+F(z”1)}G(z*'1) = G(z~1 ) {I+F (z"”1 ) } 6.64

Rewriting the eqn. 6.64 gives the set of simultaneous equations
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6.65

The solution of this set of (n^+n^)p simultaneous equations yields

the coefficients F^., i-l, 2, ,n^ and G^, i-l,2, .. ,Ug . The

control law then becomes

{I+F(z 1)}ut = G(z 1)yt 6.66
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From this equation it is easy to compute the controller output u^.

The author prefers this method to the first as it produces a regulator 

equation consistent in form with the minimum variance regulator.

It is not generally necessary for the condition n^ = n^ = n 

in the Assumption to hold, so long as the transformation matrix 

in eqn. 6.65 remains non—singular.

6.6.3 SISO System Simplifications

The pole-shifting law for SISO systems permits some simplification.

In particular, the closed loop system output (see eqn. 6.54) 

reduces to

—1 

where the polynomial coefficients, e^ and y are now scalars.

Assuming no pole—zero cancellation occurs, the denominator of the 

closed loop transfer function may be specified exactly. Furthermore 

. —1 “Ithe control law may be evaluated directly from the F (z ) and G(z )

polynomials as scalar polynomials commute and therefore

1+Kz'l) = 1+F (z"1)

G(z'l) = G(z^) 

_i —1
and {1+F (z ; }u^. = G(z )yt 6.68

6.6.4 Illustrative Examples

The advantage of the pole-shifting algorithm over the minimum 

variance approach for non—minimum phase systems is fairly obvious. 

However, pole-shifting has another important practical advantage 

over the multivariable minimum variance regulator (Borisson, 1975)
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in that the system pure time delays in each loop need not necessarily

be the same, that is, B^, the coefficient of z in polynomial B(z 

need not necessarily be non—singular.

Borisson gives an example of a special case in which the 

minimum variance regulator is used to control such a system. Consider 

the system

The

al

Lo yt-l
a3

a5

minimum variance strategy

a4

is

yt-2

Ut-1
bl b2

ut-2 6.69

r i

reason an admissible control law in this case isresults

u
" b, b ‘

0 1

a a.

a

a

a
yt-lut-l 6.70

The that the

coefficient matrix of y has zero entries in positions (2,1) and

2
t

0 1

0

1

0

a6 J

0

0 0 1 t

(2,2) and there is a zero entry in position (2,1) of the coefficient 

♦ (2) (1) (2) T .matrix of u^. Hence element u^ of vector u^ = (u^ ',u^ ) is

found as an admissible function of y^ and causality is preserved.

This however is a very simple and special example, and in general the 

minimum variance solution when B^ is singular leads to techniques 

involving the solution of a Riccati equation.

Solutions to control problems of this type are treated more 

simply using the more general pole—shifting rule. This is an 

important feature, as real systems in which loop pure time delays 

differ are not uncommon. The only condition that must be satisfied 

is the non-singularity of the transformation matrix of eqn. 6.55.
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An example is presented where loop time delays differ and in 

addition the system is non-minimum phase (i.e. the zeros of [ B(z | 

lie outside the unit disc in the z-plane).

Example: Consider the multivariable system

{I+A^z 1+A2z : ^z 2}ut ► {i+cx z Ije^ 6.71

_
where -1.4 -0.2 " " 0.48 0.1

A1 = a2 =
_ -o-i -0.9 _ _ 0 0.2 _

_ -3
” 1 0 " 1.5 1

B., = B„ =1 2_ 0 0 _ _ 0 1 _

" -0.5 0 '
C, =1

_ 0.1 -0.3 _

and where the closed loop poles are to be placed at z = 0.5 and

z = 0.4. A suitable choice of I+T(z is therefore

I+T(z 1) = I + 6.72
-0.4 _

Solving the pole-shifting equation 6.55 yields

' 0.3 0.1517 ‘

_ 0.2 0.2 _

' -0.1008 -0.04829

-0.1599 -0.1152

" 0.08239 0.035214

0.04 0.04
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and invoking the transformation of eqn. 6.64

"0.21315 0.20335*
Fn =1 0.15477 0.286 _

6.74

‘ 0.06821 0.02646 '
G = G G, —o o 1 0.04953 0.04688

giving the control law:

Ut = + Goyt + Glyt-1 6.75

The reader is referred to the example in section 7.3.4.3 where this 

same problem is solved by direct self-tuning.

The closed loop system output is :

yt = {I+F1z""1}{I+T1z h’1 et 6.76

—1 —11 (1+0.3z i)(l-0.4z x)
-1 —i(1-0.5Z )(1—0.4z b [ o.2z-l(l-O.4z-l)

-1 -1O.1517z x(l-0.5z x)

-1 -i t(1-0.2z X) (1-0.5z x)| L

Now it is clear that although the stability of the closed loop 

system has been ensured by the choice of poles, the system has not 

(and will not in general) be decoupled. This may be viewed as a 

disadvantage of the method. The only instance in which decoupling can 

be guaranteed is for the very simple case when n^ = 1, k = 0. Then

-1 -1 .I+F(z ) = I, and I+T(z ) can be chosen to be diagonal.

Another possible disadvantage of the pole-shifting method is that 

the output variance is not minimized. However, the generally robust 

nature of the method in that it handles non-minimum phase systems and
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time delay differences between loops plus the benefit of normally

modest control excursions must weigh in its favour.

6.7 Regulating to a Reference Value

The regulators discussed can be extended quite simply to enable 

them to regulate to a constant reference value. The method is discussed 

by Wittenmark (1973) for his minimum variance regulator but is equally 

well applicable to the pole-shifting regulator.

Let y^ be the desired reference level (set point). Define a 

reference input u such that

(I+A(z 1))yr = z kR(z l)Uf 6.77

Subtracting eqn. 6.77 from eqn. 6.1 gives 

{I+A(z l)}(y -y ) = z kB(z 1)(u -u ) + {I+C(z l)le 6.78
t c t

Let Ayt - yfc -yr

Au_ = u -u 6.79
t rt

Then the pole-shifting equation for the system of eqn. 6.78 is

—1 —1 —1
Aufc = G(z ){I+F(z )} Ayt 6.80

or u& = U?. + G(z l){I+F(z ^)] Ay^ 6.81

giving a closed loop response

y = y^ + {I+T(z-l)}{I+F(z~l)}~let 6.82

Unfortunately eqn. 6.79 presupposes knowledge of u which is a

function of the future reference value yr^+^+j^» Furthermore it
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requires the cancellation of the possibly non-minimcm phase B(z 

polynomial. However, if yr is a constant, then yrt+k+i = Yrt 

for steady state control uTt may be chosen to be

ur = B-1(l){I+A(l)}yr 6.83

An even simpler solution results when the open loop system 

contains at least one integrator. In that case, the steady state 

value of u^ is zero.

A technique frequently used (especially when the self-tuning 

controller is used, as discussed in Chapter 7) is to introduce a 

digital integrator in cascade with the system. The new system so 

formed is then subjected to the appropriate regulator law. The system 

block diagram is shown in Fig. 6.1.

Although the introduction of an integrator allows to be 

set to zero for correct steady state performance, it usually does not 

promote good transient performance when the input reference is changed 

sharply. This point is taken further in the next section.

6.8 A Feedforward Structure for Servo Following

Unless the reference input is constant or varying very * slowly' 

the cascade integrator method described above is not entirely 

satisfactory. The reason for this will become apparent shortly.

The feedforward structure shown in Fig. 6.2 provides a more 

general vehicle for the inclusion of set points. The method is not 

unusual in industrial control systems and has been described by 

Wellstead and Zanker (1978a) for SISO systems.



------------------------------------------- -n 
EXTENDED SYSTEM '

A Ut PLANTREGULATOR

Fig» 6.1 Introduction of a digital integrator 
for regulating to a reference value



Si PLANTREGULATOR.

Fig. 6.2 A feedforward and cascade 
structure for servo following
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In the following, it is assumed that the pole-shifting regulator 

is employed. Referring to Fig. 6.2, and Sp are feedforward and 

servo-compensators, and r is the reference input. It is easy to 

verify that the closed loop system is described by the equation:

yt - z”k{M(z”1)}{I+T(z-1)}-1{I+C(z-1)}~1B(z-1) *

6.84
{Sf-G(z-1){I+F(z-1)}-1Sp}rt + {I+F(z~1)}{I+T(z”1)}”1et

Various choices of Sp and lead to different closed loop responses. 

A few options are considered.

a) S - 1 , Sf - 0

Assume that the open loop system contains an integrator, and 

for simplicity consider a SISO system. Then the structure is precisely 

that discussed in the previous section for u = 0, and the closed 

loop response is:

+ 6.85
(1+T(z ))(1+C (z ) E 1+T(z 1) C

The closed loop poles in the transfer function between r^ and y 

are not only the specified poles at zeros of 1+T(z , but also

exist at the zeros of 1+C(z ^). The latter are of course only ’absent1 

in the transfer function betwwen e and yfc due to pole-zero

cancellation (see eqn. 6.50), but are stable poles (see eqn. 6.1).

More significantly, zeros are contributed to the transfer function 

between r and yt> and it is these that often lead to excessive 

overshoot. An example of this difficulty is given in Fig. 6.3 where 

the system considered is
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—1 —1 —i _? —i(1-z )(l-0.8z )yt = (z +0.5z z)ut + (1-0.4z ±)et 6.86

* * 
and 1+T(z ) = 1, giving the pole-shifting control

—i -I
(1+O.3846z x)ut = (-1.0154+0.6154z x)y 6.87

The input is a square wave, and the response y is shown in the 

figure.

b) S ■= z kB(z 1) , Sf = 1+A(z 1)

Again, a SISO system under pole-shifting control is considered. 

The closed loop response is :

y = z"kB(z~l)r + 1+F e 6.88
C 1+T(z 1) ü

This is an extremely useful formulation, as it does not cancel out 

B(z 1) which may have zeros outside the stability region. However 

the extension to multivariable systems is not straightforward due to 

difficulties introduced by matrices not obeying the Commutative Law.

-1 -i -ic) S = 1 , Sf = B(z 1) \l+A(z 1))

This method is only applicable when |B(z | and |I+A(z |

have all their zeros within the stability region. The closed loop 

response is :

««V 1 MB 1 M 1
yt * z rt + {I+F(z )}{I+T(z )} et

Clearly this is the ideal response, but direct inversion of the 

system can never be exact in practice.



0.0
100

Fig. 6.3 Example of overshoot when 
relying on a system (or 
inserted) integrator to 
extend a regulator for 
servo following
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6.9 Conclusion

This chapter has provided the background necessary for the 

following chapter by discussing various control strategies that are 

amenable to self-tuning. The basic multivariable minimum variance 

regulator and the generalized minimum variance controller (for 

SISO systems) have been reviewed. In addition, the multivariable 

extensions to the detuned minimum variance and pole-shifting laws 

have been presented and are new strategies offered for self-tuning. 

The advantages of the pole-shifting law in particular, with its 

ability to deal generally with non-minimum phase systems and many 

multivariable systems in which pure time delays differ between loops, 

have been discussed and illustrated.

Finally, techniques and difficulties encountered in extending 

regulator laws to deal with constant and time varying reference inputs 

have been considered.
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CHAPTER 7

SELF TUNING REGULATORS

7*1  Introduction

It has been suggested in Chapter 6 that the design of a digital 

controller usually involves a two-stage processo The first stage is 

the modelling of the plant to be controlled about some operating 

point under the assumption that it is a finite order, linear, time 

invariant system. The ARMAX representation serves as a convenient form 

for this model, and the values of its parameters may be assigned either 

by physical modelling, or increasingly commonly now, as the result of 

parameter estimation. Stage one is therefore the system identification 

phase. Stage two involves the derivation of a control law to meet a 

chosen design objective for the closed loop system performance»

Clearly, a more elegant solution emerges if the operations of 

Identification and Control can be combined into a single on-line 

process» The concept is certainly not new» Chapter 2 has highlighted 

some of the varied approaches to this problem, one of which is ’Self 

Tuning’. Self tuning controllers are charaterized by being based on 

output rather than state feedback, and a stochastic ARMAX plant 

description rather than a deterministic state space model»

The basic structure of a self tuning regulator is shown in Fig» 7»1» 

A recursive least squares estimator is typically used to estimate the 

parameters of a suitable plant model which is generally in ARMAX form» 

The parameter estimates are updated at each sampling instant and are 

passed to a controller design algorithm which synthesizes controller



ESTIMATOR.

COMTWLLES.

SYSTEM

5&VIMKTES1

*9*

PAW^MeTeX 
esnMKT&s

CONTROL.
Smq-HESLS

Fig. 7.1 Structure of a Self-Tuning 
Controller
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parameters according to some pre-specified design rule» Updated 

controller parameters are now inserted into the regulator equations 

and used to compute the next input to the system.

Self tuning regulators have advantages over the conventional 

two stage off-line identification and fixed law controller design 

method which go beyond that of elegance. They possess a property 

referred to here as the 'Self Tuning Property' which enables a simple 

least squares estimator to be used in estimating the plant model 

parameters instead of a complicated non-linear technique (or for 

example that presented in Chapters 4 and 5) which normally would be 

required to estimate the parameters of the noise colouration 

. -1 .polynomial C(z ) of the ARMAX model (see eqn. 6.1). This fundamental 

property is shown to hold for two new self tuners in this chapter» 

Furthermore, the process of simultaneous on-line estimation and control 

makes it possible for the self tuning regulator to adapt to slow 

changes in the plant dynamics and in the case of the pole-shifting 

self tuner, even changes in system pure time delays. The implication 

of this feature in an industrial environment is that once set up, 

self tuning regulators are self maintaining and do not require 

periodic adjustments to allow for minor changes in the plant 

characteristics.

The control strategies on which self tuning regulators and 

controllers are based have been described in Chapter 6. Most self 

tuners are designed to meet some optimality criterion. For example, 

Astrom and Wittenmark (1973) seek to minimize the output variance 

('Minimum Variance' Self Tuner). Their SISO system work was extended 

to multivariable systems by Borisson (1975). Clarke and Gawthrop
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(Clarke and Gawthrop 1975; Gawthrop 1977) in their SISO system 

controller minimize the variance of a generalized output» Edmunds 

(1976) deviated from this approach in his early work on the 

detuned minimum variance regulator and particularly the pole 

shifting regulator which is not based on an optimality criterion 

but rather is endebted more to the philosophies of classical control 

theory.

This chapter is divided into two main sections. The first is, 

for completeness, dedicated to a brief review of the minimum variance 

and generalized minimum variance self tuning controllers. The second 

section is devoted to new self tuning regulators, namely the 

multivariable detuned minimum variance and multivariable pole shifting 

regulators based on the SISO concepts of Edmunds (1976). Examples of 

computer simulations using these techniques are given.

_7.2 A Review of Self Tuners based on Optimality Criteria

This section reviews the Minimum Variance Self Tuning Regulator 

(Borisson 1975) and the Generalized Minimum Variance Self Tuning 

Controller (Clarke and Gawthrop 1975; Gawthrop 1977). The strategies 

are based directly upon those discussed in sections 6.2 and 6.5. The 

ARMAX system description given in eqn. 6 » I is assumed to hold. No 

proofs are given, but the salient features of each technique are 

presented. The reader is referred to the references named above for 

detailed development of theory and proofs. Further references to 

related work are given in Chapter 2.
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7o2.1 The Self Tuning Minimum Variance Regulator

This regulator requires that the plant be modelled as :

{l+z-kA(z 1)} yt = z kB(z 1)ut + et 7.1

a “ x *
where A(z ) and B(z ) are polynomial matrices of the form

* —1 * —i A —
X(z ) = X- z +.................  + X z1 n *x

u^ is a p-vector of inputs, y is a p-vector of outputs, and e
• * A —x * ■ x , e
is the p-vector residual when A(z ) and B(z ) are estimated using

a recursive least squares estimator. The orders of the polynomials
• • , — x

are defined in terms of n and n~, the orders of polynomials G(z )
Al “1

and M(z ) in eqn. 6.3 and are:

nA 5 n + 1 7.2
a g

n* > n_ + n b m

where n = n = n,a b

The regulator law chosen is then simply:

— 1 A * 1
B(z )ufc+1 = A(z )yt+1 7.3

where B^ is assumed to be non-singular. It is important to note that 

under the present assumptions eqn. 7.3 may not be the minimum 

variance strategy. In fact, even when further assumptions are made, 

in particular that the parameter estimates have converged and that 

the closed loop system is such that the output is ergodic (in the 

second moments), Borisson (1975) shows that the minimum variance 

strategy is only a possible outcome. Only when the process disturbances 

are white is the minimum variance strategy the only possible resulting 

strategy.
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Notice also that in general the orders n and n~ required to g m

specify n^ and ng are not known and require knowledge of polynomials 
W 1 “1 — 1

A(z ), B(z ) and C(z ) of the ARMAX system model (eqn. 6.1)□ For 

SISO systems however it is always true that

n = n - 1 7o 4
g a

n~ = k m

Furthermore, for SISO systems Wittenmark (1973) has shown that the 

minimum variance strategy is the only possible outcome for a suitably 

configured minimum variance self tuning regulatoro

in fact certain assumptions can be introduced which have 

enabled Borisson to prove a similarly useful result for the 

multivariable regulator.

Ax 1 * —1
Let A (z) = z (zA(z )) 7*5

a* 1 _ -i
B (z) = z D (zB(z L)) 7.6

. ax * a
i.e. A (z) = A- z + « o o o + A

1 nâ
. . Axand similarly for B (z).

Then the important additional assumptions required are:

1. The controlled process has a minimum variance regulator 

with all observability and controllability indices equal 

to n+k-lo 
ax A ,

2. The limiting regulator has A (z) and Bx(z) given by eqnso

7.5 and 7.6 respectively left prime with all observability 

and controllability indices equal to n+k-1.

3. The closed loop system has the maximum observability index 

not higher than 2n+k-lo
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Also, let nA = n = n a a 7O 7

and ng = n + k 7 = 8

implying that n„ = n = ko m m

Under these assumptions the minimum variance strategy is the 

only possible resulting strategyo

The implication of this is that the residual sequence e 

converges to a kth order moving average of the system noise e^ and 

the system output is

yt = [l + M(z 1)]et = et 7o9

—l e .
where M(z ) is the same as in eqn. 6.9, that is, the response is 

the same as would be expected had the regulator been designed 

according to the rule given in Chapter 6. Thus, in spite of a non-

• e “Izero noise colouration polynomial C(z ) (see the general ARMAX 

system equation 6ol) it has been possible to design the regulator 

from a model whose parameters were estimated using simple linear 

least squares. This 1 self tuning property*  whereby the parameters 

converge to the desired regulator law without the need to explicitly 

model the noise colouration is extremely useful and is a common 

feature of the self tuning regulator and controller methods.

The required assumptions are not stringent and are almost 

always true in practice. Just as its SISO system counterpart, the 

multivariable minimum variance self tuner has the advantage of 

computational simplicity. The regulator parameters are identified 

directly in the model eqn. 7.1. In general however, it is necessary 

to invert to compute the control input. As in the single variable 

case, it is possible to fix the value of B^, the most convenient 
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value being the identity matrix. However, in fixing the following 

condition must be satisfied: (Borisson 1975)

1/ . | < 1 i - 1,2»...,p 7.10
(I * Vl )

i . 1where p A - are the eigenvalues of the matrix (I-B B )o
(I - 1 L

The SISO system condition is :

|1 - < 1 7.11

* ... -1 Note that B^ and B^ are the coefficient matrices of z in 
-1 * . 

polynomials B(z ) (in system eqn. 6.1) and B(z ) (in model eqno 7»1) 

respectivelyo

The properties and limitations of the self tuning minimum 

variance regulator are of course similar to those given for minimum 

variance regulation in Chapter 6. In particular, systems in which the 

zeros of |B(z | lie outside the stability region (’non minimum 

phase’ systems) are not amenable to this type of regulation. Even when 

the basic system is minimum phase, the effect of computational time 

delays which are a fraction of the sampling period (’non integer’ time 

delays) introduced in computing the control input can make the system 

appear non-minimum phase. Such computational time delays may be treated 

in one of two ways : 

a) Increasing the value of k (the system pure time delay expressed in 

multiples of the sampling period) by 1 in the system model, eqn. 7.1» 

. * -1 .b) Extending the B(z ) polynomial by one term.

The second method is preferable so long as the system does not become 

non-minimum phase as an extra delay of one sampling period is then not 

introduced into the loop.
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Notice also that the time delay k should never be modelled 

smaller than in the actual system. If it is, may become singular 

and the algorithm will then go unstable.

The minimum variance regulator requires that all the system 

loops have the same pure time delay.

7.2.2 The Generalized Minimum Variance Controller

This controller is presently defined only for SISO systems.

As such, the underlying system is assumed to behave according to the 

ARMAX description of eqn. 6.1 with the number of inputs and outputs 

p, set to 1, ioe. as in eqn. 6O38. Define also an auxiliary system 

with output as given in eqn. 6o37 such that 

ffk+i = Pyt+k+i + - Rwt 7.12

where P, Q and R are rational transfer functions in the backward 

shift operator acting on the system output, input and set point 

respectively. Also define

D 
%

%

%

7.13

7.14

7.15

where and P$ are the numerator and denominator respectively of P, 

and similar relationships hold for Q and R.

The controller requires that the auxiliary system be modelled 

as :

4>t = z kG(z X)yf + z kF(z 1)uf - z Sï(z ^)wff + 7.16
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where y^ = 7.17

X = 7.18

- = Rwt 7.19

— 1 — 1 -1
and F(z ), G(z ) and H(z ) are polynomials of the form

— 1 —1X(z X) = X^z i + • <
—n

+ X 7> • • o • ' A Zn 7.20
X

with n
g

= n + Up - k 
D

7.21

nf = max(k+n+n ,n +n) 
qD qN

7.22

— n + 1 7.23

and where n=n&=n^ and k are defined in the ARMAX plant model (eqno 
• , “ J "1 ""1 •6.38)» is the residual when F(z ), G(z ) and H(z ) are estimated

using a recursive least squares estimatoro

The required self tuning control law is then:

•* 1 "“I ■ 1G(z x)yf + F(z 1)uf - H(z L)wff = 0 7.24
t t t

When the algorithm has converged it can be shown that the residual

Et tends to the optimal prediction error in the k+1 step ahead 

predictor of i.e.

et = [l+M(z )J et 7.25

** 1 •where M(z ) is defined in eqn. 6.41. Thus the auxiliary system output 

becomes

<|>t = [1+M(z IjJe^ 7o26

which is precisely the result achieved by the off line design of the 

generalized minimum variance controller given in section 6.5. The 

choice of the parameters P, Q and R to give various closed loop 
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system characteristics may be made in the same way as described 

in section 6O5O

The self tuning version of the generalized minimum variance 

controller has the same advantages and disadvantages of this strategy 

when used in off line controller design» One significant point 

however is that the method may not in general be used to control 

non minimum phase systems except by suitable choice of the P and Q 

transfer functionso This choice requires knowledge of the system 

parameters which although clearly known when designing controllers in 

the conventional off-line manner may not be available when self 

tuning. It is after all one of the objects of a self tuning control 

system that precise knowledge of system parameters is not required 

and that the controller should tolerate and adapt to variations in 

the system characteristics.

However, the method is relatively straightforward to implement 

and requires little more work than the minimum variance controller 

to partially specify the closed loop transfer function» As such it is 

an important and valuable technique»

7.3 New Multivariable Self Tuning Regulators

This section discusses two new multivariable self tuning 

regulators, the detuned minimum variance regulator and the multivariable 

pole shifting regulator. The features of these regulators when designed 

off line have already been discussed in sections 6»3 and 6»6O Both 

regulators require a similar proof and therefore a generalized 'Self 

Tuning Lemma' is first given. Thereafter each regulator is discussed 

separately and simulation examples are given»
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7.3.1 Generalized Self Tuning Lemma

Let the ARMAX system behaving according to eqn. 6.1 be modelled 

by the difference equation

-k a -k * -
[l + z mA(z )] yt = z mB(z i)ut + 7o27

where k^ is an integer constant selected according to the self 

. . * “1 * “1 .tuning configuration used and A(z ) and B(z ) are pXp matrix

polynomials of the form

-1 -1 "nx
X(z ) = X^z + .o..0.000 + X z 7o28

x

yt and ufc are the system output and input p-vectors respectively, 
. . * —i * —% ,

and e is the residual p-vector when A(z ) and B(z ) are estimated

using a recursive least squares estimator, i.e. so as to minimize 
t 2 where et = ... ,£^ ]T»

Let n*  = n 7.29a a

= % + k 7.30

and select the control input u so that

ut = G(z 1)[l + F(z 1)] 1yt 7o31

-1 n
+ G_z +OOOO+G z 6 7o321 ng

-1 ”nf
+ F-z + co.» + F z 7o33

1 nf

- 1 7.34

- 1 7.35

where G(z = Gq

I + F (z"1) = I

ng = nâ 

and n = n*
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—1 —%
F(z ) and G(z ) are chosen to satisfy the identity

I+KCz”1) = [l+z ™A(z~l)][l+F(z~l)] - z *B(z~l)G(z-l)  7,36

"1 * • « where K(z ) of order n^ is defined to be of the form given in 

eqn, 7,28, and is specified according to the regulator law desired.

Define also:

I+L(z~l) = [l+ACz"1)][l+FCz”1)] - z“kB(z“1)G(z“1) 7,37

—1 . , 
where L(z ) follows the form given in eqn, 7,28 and is of order

n < n + n, + k - 1 7,38
lab

Furthermore, assume the following conditions are met:

C1: A regulator designed off line corresponding to the desired

self tuning regulator exists and has all observability and 

. . . . -1 —1controllability indices equal to n^ and G(z ) and I+F(z ) 

are relatively right prime,

T “1 -I r ■ —1
C2: [I+L(z )j [I+K(z )] may be represented as

[l+K(z )] [l+L(z )J where n^^n^, n*  <n^,

C3: n. < n.+n^+k -n -1 where n is defined as the order ofle a B m c c
—2

C(z ) (see eqn, 6,1),

C4: The model parameters converge and the output of the closed

loop system is ergodic. 

Then the closed loop system output converges to

yt = [l+F(z~l)][l+K(z-l)]-l[l+*(z~l)]  et 7,39

where $(z is a matrix polynomial of the form shown in eqn, 7,28 of
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order nA = k and the residual
<pm t

average of the system driving noise

is a k th order moving m

e^, viz.

et = [l + @(z 1)] et 7.40

7.3.lol Comments on the Conditions 

1. Condition Cl is a condition that will be met for a wide range 

of systems. It is used in the proof for the self tuning minimum 

variance regulator (Borisson 1975) and ensures that the regulator 

equation 7.31 can be re-written as :

ut = [l+F(z b] 1 G(z L) yt 7.41

~ —1 ~ -% . .
where I+F(z ) and G(z ) are relatively left prime and have

- —%
orders n^ and n respectively (Wolovich 1974). F(z ) follows the 

. . ~ —%
form given in eqn. 7.28 and G(z ) is analogous to the form of 

G(z-1).

— 1 — 1
2o Let I+L(z ) and I+K(z ) be factored so that

[l+L(z L)][l+K(z-1)] = [l+L*(z -1)][l+K*(z -1)] 1 7.42

* —1 * —1 .
where I+L (z ) and I+K (z ) are now relatively right prime and 

of order n^ <: n^ , n^ < n^ . Then condition C2 requires that the 

matrix

y

“k*

•*T 
K
”k*

I ,

I

K1

n£* block columns

1*
1 * 
L n

•I
*T

L1'*T 
•L 
nl*

n block columns 
k*

7.43
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is non-singular» This matrix is obtained by writing the required 

relationship

[l+K(z-1)] [l+L*(z -1)] = [l+L(z-l)][l+K*(z~l)]

equating coefficients, and forming the equations necessary to solve 
~ —1 ~ . 

for L(z ) and K(z ). Now I+L(z ) is a function of estimated

"1 “"1 “1 • regulator parameters I+F(z ) and G(z )o I+K(z ) varies 

according to the type of self tuner and may be deterministic or a 

function of an estimated quantity. The presence of stochastic 

elements in L will, it is claimed, in general ensure that the matrix 

remains non-singularo In the case of SISO systems condition C2 is 

trivially fulfilled»

Conditions C2 and C3 are used together in the proof to limit 

the order of the autoregressive and moving average elements in the 

ARMA system relating the residual e to the system driving noise 

e^» Bearing in mind that y^e^ for the minimum variance self tuner 

the conditions have a similar purpose to *that  imposed by Borisson 

for the minimum variance self tuner proof. There, the closed loop 

system may have maximum observability index not higher than 2n+k—1»

7»3»1»2 Proof

From the properties of least squares estimation the following

results hold at time t;

1 
t

1 
t

t
Z 

3=1

T 
yj-iej+km 1 1,2,.».,n^

t 
z 

3=1
i~1,2,» »•n^

7,44

7.45

= 0

T = 0
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where the system is assumed to start at rest and y^u^O for

t < 0. Now, A the parameters converge Àhe 

assumptions of ergodicity Ccn) replace the time averages as t-* 00 

of eqns. 7.44 and 7.45 with ensemble averages and hence

T
E (yt-i^t+kj = = °’ ...........nâ

T
E <"t-i=t+k ) “ = °’ 7.47

m

where E(.) represents the expectation operator.

Define an auxiliary p-vector w^ such that

r ••1 n — 1wt = [l+F(z )] yfc 7.48

Then from eqns. 7.48 and 7.31

y = [l+F(z~l)] w 7.49

ufc = G(z wt 7.50

and the

nâP

(nB“l)p

a 6

o

1

n

n

n

t-1

Matrix Q

t-n* a

Wfm

Yt-2

Wt-1

° * n

written

7.51

where

Matrix Q has full rank»
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It follows that, postmultiplying both sides of eqn. 7.51 by

T . . .» taking expectations and noting eqns. 7.46 and 7.47 
m

Q[ ................f - £ 7*52

where 0^ is the null vector, and that the solution to eqn. 7.52

is given by

R (k +t) =0,T=l,2,....,m 7.53
we m

By substituting the control law (eqn. 7.31) into the model equation

7.27 and observing eqns. 7.49 and 7.36 it is easy to establish that

[l+K(z 1)] wfc = et 7.54

Also, it can be shown quite easily by substituting the control law

into system eqn. 6» 1 and observing eqns. 7.37 and 7.49 that

[l+L(z )] wt = [l+C(z )] et 7.55

Together with condition C2, equation 7.54 and 7.55 allow the residual 

and system driving noise to be related as follows:

[l+L(z )] et = [l+K(z )][l+C(z )] et 7.56

where n„ < n +n,+k—1 = m 7.57
i a b

Now define

-1 _ ~ —1 -r -InI+S(z 1) = [l+K(z )] [l+C(z J-)] 7.58

-1 ”ns
= I + S,z + ....... + S z 1 n s

where n = n_ + ns R c
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Transposing eqn. 7.56, premultiplying by and
m 

taking expectations gives : 

* t "m
R (m+k +1) + R (m+k )L_ + ... + R (m+k +1—n~)L we m we m 1 we m L n.

L 
T T

= R (m+k +1) + R (m+k )S_ + ... + R (m+k +l-n )S 7.59we m we ml we m s ns

From eqn. 7.53 the left hand side of eqn. 7.59 reduces to

R (m+k +1) and the right hand side vanishes if we m °

n < m+k 7.60s m

since, from eqnso 7.49 and 7.50, w^ is a function only of present 

and past values of y^ and u^ which are by definition uncorrelated 

with future values of the driving noise e^» Eqn. 7.60 is satisfied 

by condition C3. Thus

R (m+k +1) = 0 7.61we m

Similarly, postmultiplying the transpose of eqn. 7.56 by wt_m-k -2 
m 

wt_m_k , etc., and taking expectations it follows that 
m

R (k +t) = 0 t > 0 7.62we m

From eqns. 7.54 and 7.62 it is easy to deduce that

R (k +t) = 0 t > 0 7.63ee m

i.e. e^ is a k^th order moving average of a white noise. However,

from eqn. 7.56 for example, £t may be represented as a linear

combination of all past noise inputs et’

e = e_ + E d). e . 7.64t t i=1 1 t-1

where , i=l,2,.o.,» are pXp coefficient matrices. From this 
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relationship and the correlation property of eqn. 7.63 it follows 

that e

7.65

where
" 1

«(z )
— 1

x +

Substituting eqns. 7.65 and 7.48 into 7.54 the closed loop system 

output is given by

[l+F(z-1)] [l+K(z~l)]~l[l+*(z~l)]  et 7.66

-1where $(z ) is defined as above, and hence the required result is

obtained.

7.3.2 Multivariable Self Tuning Detuned Minimum Variance Regulator

The SISO system detuned minimum variance self tuning regulator 

has often proved to be more useful in practical situations than 

ordinary minimum variance (e.g. Wellstead and Zanker 1978) largely 

because the additional freedom to adjust, albeit with restrictions, 

closed loop system poles can be used to obtain a smoother control. 

This observation has encouraged the development of the multivariable 

version of the self tuning rule. The design of the detuned minimum 

variance regulator has been discussed in section 6.3, and it is 

shown here that the self tuning rule entails a very simple 

modification to the basic self tuning minimum variance law already 

discussed in section 7.2.1. The proof follows from the Generalized 

Self Tuning Lemma as is shown below.

Let the plant, defined by the ARMAX system in eqn. 6.1, be
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modelled as in eqn. 7.27 with k set to k, that is m

[l + z A(z )] yt = z B(z ) ufc + 7.67

where the previous definitions of variables hold. The objective 

is to produce a closed loop response

[l + z kT(z 1)] yt = [l + M(z 1)] et 7.68

where the variables follow the definitions given in section 6.3. 

The regulator is to take the form

[l + F(z-1)] ut = G(z-1) yt 7.69

as defined in eqn. 7.41.

. . -1The result of the lemma indicates that I+K(z ) should be 

chosen as follows ;

I+K(z~l) = [l+z’Scz"1)] [l+FCz”1)] 7.70

where n < n -n to satisfy condition C3 of the Lemma. Substituting t a c

eqn. 7.70 into eqn. 7.36 gives:

[l+z^ACz"1) ] [l+FCz"1) ] - z"kB(z”^)G(z”1)

= [l+z~kT(z~l)] [l+F(z~l)] 7.71

Postmultiplying by [l+F(z and invoking the equivalence from

eqn. 7.41, viz.

[l+F(z"1)]-1G(z“1) = G(z~l) [l+F(z-1)]~^ 7.72

leads to:

I+z"kA(z~l) - z~kB(z-1)[l+F(z-1)]-1G(z-1) = I+z"kT(z"^) 7.73
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The equation is satisfied by the solution

~ -i A—iA -i
I+F(z ) = zB^^B(z ) 7.74

* -1 A-1 rA -1 -1
G(z 1) = zB11[A(z )-T(z 1)]

leading to the self tuning control law

A —i rA -i -i .
B(z )ufc+1 = [A(z b - T(z b] yfc+1 7.75

A . -1
B^ and B^ (the first coefficient matrices of polynomials B(z )

A -% . _ 
and B(z )) must be non-singular, as in the ordinary minimum 

variance self tuner. Then, if the Lemma conditions are satisfied 

the closed loop system output will become

[l+z kT(z 1)]yt = [l+$(z 1)] et 7.76

which is similar to the required output in eqn. 7.68»

It remains to show that the kth order matrix polynomial 
—1 . —1 . .

I+$(z ) is in fact I+M(z ). Substitute control law eqn. 7.69 into

the system eqn. 6.1 yielding:

{I+A(z"5 - z~^B(z”^) [l+F(z~^)]~^G(z-^) }yt - {I+C(z-1)}et 7.77

. . . —1Now define a polynomial matrix I+P(z ) of order k such that 

[l+P(z-1)] [l+A(z-1)] = I+z"kA' (z^) 7.78

namely, P(z ) satisfies the equation
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“1 . .and A1(z ) has order n^o Substituting the closed loop system 

response given in eqno 7.76 for y in eqn 7.77 and premultiplying 
—i

by I+P(z ) gives :

{I+z [A’(z )-[i+P(z )]B(z ^)(I+F(z )) G(z O]} *

• —1 • —1 —2 —k(i.e. N(z ) does not affect the coefficients of z , z ,.., z on

the RHS of eqn. 7.84) and substituting into eqn. 7.81 it is shown that

— 1 “ 1
I+$(z ) = I+M(z ) 7.85

as required. Then the self tuned closed loop system is described by

{I+z kT(z 1)}y^ = {I+M(z } efc 7.86

{l+z^Kz""1) }~1{l+$(z"1) }et = {I+P(z"1)}{l+C(z"1)}et 7.80

Using the fact that e^ is a full rank process, pre-multiplying eqn. 

7.80 further by I+z T(z ) and equating the first k+1 polynomial 

coefficients on both sides of the equation shows that

I+*(z~l) = k{ [l+z’Scz"1)] [l+PCz”1)] [l+C(z~l)]} 7.81

where . } indicates the first k+1 terms of polynomial (0).

" 1 * •From eqn. 6.5, I+M(z ) is defined by

I+C(z~l) = [l+A(z~l)][l+M(z~l)] - z'^^Cz”1) 7.82

where G (z = G + G z^+o.o+G z 7.83
C % C1 Cn

&c

Therefore

{I+z”kT(z"1)}{I+P(z"1)}{I+C(z"1)} = I+^(z~^)+z~k~^(z~-') 7.84

-1 -1 -%
where N(z ) = N + N-z + .... + N z o 1 n_n
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which is precisely the result obtained in the off line design case
• ■“ % ■

where polynomials A(z ), B(z ) and C(z ) are all assumed to be
. . * —i A -i

knowno In the self tuning version only A(z ) and B(z ) need to be 

estimated and the property of obtaining the correct closed loop 

response in this manner (and without the knowledge of the noise 

colouration) is referred to as the ’Self Tuning Property’o It follows 

from the Lemma that the residual sequence is defined by

e = {I+M(z 1)} e^ 7,87

The proof of the detuned minimum variance self tuning regulator 

is therefore a straight-forward development from the Lemma,

The algorithm is summarized as follows :

1. Select the estimation model according to eqn. 7.67 and estimate 

the parameters using a recursive least squares algorithm.

2. Generate the regulator output using the law of eqno 7,75 and

n n -n .t a c

3. Then if the conditions of the Lemma are satisfied the closed

loop system output is given by eqn. 7.86,

The algorithm clearly reduces to ordinary minimum variance

for T (z )=0, Restrictions on the I+z T(z ) polynomial are rather 

• # * 1severe, both in the order constraint on T(z ) and the k zero 

coefficients of z , z , ... , z . However the algorithm is 

extremely simple to implement and is computationally fast. The comments 

made on minimum variance self tuning in section 7 = 2,1 concerning 

non-minimum phase systems, non-integer time delays and the requirement 

for equal loop time delays are of course also applicable here.
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A simulation example is now presented to demonstrate the 

algorithm in operation»

Example: This is an extension of Example 2 discussed for off-line 

detuned minimum variance regulator design in section 6O3O It was 

shown there that the required regulator law is :

—j •• 9 — 1
(I+F1z +F2z ut = (Go+G1Z "J yt 7.88

where

F1
' -2.0113

_-0.471

4.2484’

2.111 .
F2 =

" 2.1038

_ 0.9529

1.222 “

0.3842 _

G o

" 1.8

_ 0.41

-2.185 '

0 = 16 _
G1 =

" -0.05951

, -0.0608

-0.12225 ~

0.16638 .

5000 steps were simulated. The initial estimator covariance matrix 

was chosen to be 10001 and the forgetting factor, A, was initially 

set to 0.96 being subsequently adjusted at each step according to

A _ = O.99A. + 0.01 k+1 k

so that the forgetting factor eventually tends to unity and ’forgets’ 

itself. This method is used to aid in ’tuning in’ at the start of a run.

The regulator parameter estimates are plotted at intervals of 

50 steps in Fig. 7.2. The values at the final (5000th) step are:

* -1.871 3.998 1.941 1.146
F = F

1 _-0.477 2.129 _ 2 _ 0.957 0.386 _

7.89

’ 1.795 -2.306 " " -0.0528 -0.309 "
G G,o _ 0.438 0.107 _ 1 _-0.0475 0.182 _



3.536

matrix

\ooo _
—>0.4/7

1.155

(2,1)

-3.0,
2000 4000

‘0.438 
0.101

.2.306

G matrix o

-0.951

0.6

L matrix

%

0.3%

0.182
(U

W
•0.309

■0.6.

2000 4000

•0.049 
'-0.053

Gj matrix

Fig, 7.2 Time evolution of regulator parameters



178

Examination of the parameter estimate plots shows that G has not

converged fully yet, but the self tuned regulator is fairly close 

to the correct law considering the number of parameters that must 

be tunedo

7.3.3 Multivariable Self Tuning Pole Shifting Regulator

The self tuning regulator to be described in this section 

is based on the pole-shifting method detailed in section 6.6 where 

the features of this control strategy are also discussed. The proof 

of the algorithm follows naturally from the Self Tuning Lemma.

Let the plant, defined by the ARMAX system in eqn. 6.1, be 

modelled as in eqn. 7.27 with set to 0, so that the estimation 

model becomes

[l+A(z )] yt = B(z ) ut + et 7.90

where the definition of the variables remains as given in the Lemma. 

The objective is to produce a closed loop system response

yt = {I+F(z )}{I+T(z bl et 7.91

as defined in section 6.6, using a regulator law of the form

— 1 — 1 — 1
ut = G(z ){I+F(z )} yt 7.92

as in eqn. 7.31 of the Lemma. From the results of the Lemma it is

clear that the closed loop response in eqn. 7.91 will be obtained 
. . -1 . .
if polynomial I+K(z ) is specified as

— 1 “1
I+K(z ) = I+T(z ) 7.93

(where T(z is open to the designers choice) and if the conditions
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of the Lemma are met. In order to satisfy C3 nt the order of
-%

I+T(z ) must be chosen so that

n < n +n, +k-n -1 t a b c 7.94

Eqns. 7.93 and 7.36 imply that the regulator parameters must be

chosen so as to satisfy

—1 —i —i —i —i
I+T(z ) = (I+A(z )}{I+F(z )} - B(z )G(z ) 7.95

Unlike the detuned minimum variance self tuning regulator, the

solution of this design equation is not trivial and is computed from

the following set of linear equations derived by equating coefficients

etc. in eqn. 7.95:

A1

A n~ a

7 96

-B

n

o

n

nâ

-B n.

n^ block 

columns

n +1 block 
g 
columns

f -1 -2of z , z

I

" I

—B

A 
nâ '

ng J

Matrix Y

Since the elements of the transformation matrix Y on the left

hand side of eqn. 7.96 are estimated values (and are therefore 

subject to noise) it is claimed that the matrix will generally be 

non-singular and a solution to eqn. 7.95 will exist.
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Notice that the matrix polynomial I+$(z ) in the Lemma reduces

to the identity matrix, leading to the interesting result

st ■ et 7.97

The poles of the closed loop system depend on jI+T(z ) | 

which may be specified by the designer. It is argued that the 
— J* —

* —1 —i ~ —1 —i —I
{I+A(z )}{I+F(z ) } - B(z )G(z ) = I+T(z ) 7.98

will yield the same control law and closed loop system response

yt = {I+F(z 1)}{I+T(z )} et 7.99

situation where I+F(z ) and I+T(z ) are not relatively right 

prime (thus causing pole-zero cancellation) will not in general 

. -1 . . .occur, especially as I+F(z ) is determined from estimated parameters 
A — A — 2 , e e •• 2
A(z ), B(z ). In the case of SISO systems, specification of 1+T(z )

clearly defines the system closed loop transfer function denominator.

The designer does not, however, have the freedom to adjust the system 

transfer function *numerator polynomial’ or system zeros.

The * Self Tuning Property*  for the pole shifting self tuning 

regulator may now be stated.

Self Tuning Property:

Let the plant be described by the linear difference equation 

given in eqn. 6.1 and be modelled by the difference equation of 

eqn. 7.90 and let the regulator law of eqn. 7.92 apply. Furthermore 

assume that the conditions attached to the Generalized Self Tuning 
— 2 

Lemma hold. Then the on-line solution for the parameters F(z ) and 
—2 ,

G(z ) of the equation
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as the control law designed off-line by the solution of the pole­

shifting design equation

{I+A(z~1)}{I+F(z”1)} - z~kB(z~l)G(z~l)

-1 -1 
= (I+C(z j}{I+T(z )} 7.100

7.3.3.1 A Justification of the Model Equation

The model equation 7.90 is interesting in that the system 

time delay k enters the equation only in the definition of the 

. -1 . . . . order of polynomial B(z ). Unlike the minimum variance regulators,

the delay term z (see eqn. 7.67) is absent. In order to demonstrate 

how such a model may in fact represent the plant eqn. 6.1 it is 

assumed that the self tuner has converged properly so that the system 

output and input are given by

y = {I+F(z~1)}{I+T(z~1)}"‘1et 7.101

”1 ■ 1 *1
and ufc = G(z ){I+T(z )} e 7.102

Now, postmultiply the control design equation, eqn. 7.95, by 

{I+T(z "b } ^"e yielding

* -1 —i —i —i
{I+A(z )}{I+F(z )}{I+T(z )} et

A — 1 —-1 —"I —1
- B(z )G(z ){I+T(z )} efc = e 7.103

Substituting 7.101 and 7.102 into 7.103, the chosen model form emerges :

(I+A(z 1)}y = B(z ^)ut + et 7.104

During the tuning-in phase, e is of course replaced by the residual



182

If the control law satisfies the conditions on it (Cl of Lemma) 

. * “1 * _1 . . then polynomials A(z ) and B(z ) always exist. To see this, solve 
* -1 ~ -1 . . . . eqn. 7.95 for A(z ) and B(z ). One coefficient matrix may in 

general be specified arbitrarily. (The solution requires a matrix of 

the form of Q in eqn. 7.51 to be non-singular.)

Note that the pole shifting rule does not in general require 

B^ or B^ to be non-singular (as is the case for minimum variance self 

tuners). This is important, as in the initial tuning-in phase B^ in 

the estimation model could easily become singular if the system 

pure time delay k is in fact non-zero. It is however necessary that 

the matrix Y in eqn. 7.96 be non-singular, as already discussed, 

and if initial parameter estimates for the estimation model are 

chosen with this in mind difficulties do not generally occur in 

practice.

7.3.3.2 Time Varying Time Delays

The structure of the estimation model equation is particularly 

suited to dealing with the problem of slowly varying system time 

delays, a complication not uncommon in real processes. As pointed 

out in the previous section, the system time delay enters the estimation 
. * -1 . model equation through the order of the B(z ) polynomial. If 

n*  = n, + k where k is the largest expected system pure time B b max max

delay (in multiples of the sampling period) it is possible for the 

self tuning regulator to converge correctly. Some formal difficulties 

in the proof arise in that the model becomes ’over-parametrized’ 

when the pure time delay is actually less than k^^• In particular, 
-1 . . . . I+F(z ) will be over-parametrized so that the matrix Q in eqn. 7.51 
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may lose rank. In this case the self tuning property may be lost 

but this does not imply loss of control or that the system will go 

unstable. It merely means that the control law parameters will 

fail to converge exactly to the values required by theory. In fact 

the practical application of the self tuner is not generally affected 

as the notion of an underlying ’finite order’ linear time-invariant 

system which leads to the formal complications is more often than 

not a mathematical fiction and a substantial simplification of the 

true system structure. Thus, formal difficulties associated with 

model order may be liberally interpreted.

It is a requirement that matrix Y in eqn. 7.96 should be non­

singular so that it is possible to solve for the regulator parameters. 

This is generally fulfilled as estimation error will almost always 

ensure the non-singularity of Y.

Another feature of the pole shifting regulator mentioned in 
• « * the previous section is that the coefficient matrix in B(z ) 

need not be non-singular. This is important as it effectively means 

that the pole shifter can cope with multivariable systems in which 

the loops have differing pure time delays. The minimum variance 

regulator cannot regulate such systems. Nor is it easy for minimum 

variance self tuning regulators to cope with time-varying time delays.

• « * 1Such variations will almost inevitably enter a region in which B(z ) 

is non-minimum phase and this is likely to trigger instability. An 

example of this behaviour (for a SISO system) is given in section 

7.3.4.2.

A further useful feature of the self-tuning pole shifting
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regulator is that, should the time delay exceed k , the control max

scheme need not necessarily become unstable. A minimum variance

regulator would almost certainly be forced to go unstable.

The general robustness of the pole shifting self tuning

regulator is clearly a decided advantage.

7.3.3.3 Implementation

The pole shifting regulator is computationally complex and

in this respect is at a disadvantage compared with the minimum

variance regulator. The
—2 — 2

regulator parameters F(z ) and G(z ) are

computed by solving the set of (n^+Ug+l)p simultaneous linear

equations given in eqn. 7.96. However, the form of the regulator

law

— 1 — 1 — 1
u. = G(z ){I+F(Z 9) yt 7.105

is not in general suitable for direct implementation in the 

multivariable case. For the single variable case there is no 

difficulty as the polynomials commute and the regulator input u^ 

can be computed directly from

ut = -F(z bu. + G(z byt 7.106

In the case of multivariable systems it is necessary to solve

a further (nf+ng)p- simultaneous equations to derive the polynomials

F(z b and G(z b as discussed in section 6.6.2 for the off-line

design case. The equations that must be solved are those given

in eqn. 6.65. Then the control law may be rewritten as :

ut = -F(z but + G(z byt 7.107
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~ ~ —% . _
F(z ) and G(z ) are defined in eqn. 7.41.

A simplification occurs when n^=0 as then

~ —1
I+F(z ) = I 7.108

~ -] -i
G(z ) = G(z )

and the transformation of eqn. 6.65 is unnecessary.

In summary, the complete algorithm involves the following 

steps :

1. At each sampling instant identify the parameters of the estimation 

model given in eqn. 7.90 using a recursive least squares 

estimator.

“1 -I .2. Compute F(z ) and G(z ) using eqn. 7.96.

‘ - —% ~ —2 .
3. Where necessary, compute F(z ) and G(z ) according to eqn.6.65.

4. Apply the regulator law of eqn. 7.107.

5. Return to 1.

Then the closed loop system output tends to

— i _ i —i
y = {I+F(z bHI+T(z 1)} 1 et 7.109

where the closed loop system poles have been specified by a suitable

• “1choice of I+T(z ) , n^ < n^+n^+k-n^-1.

Typical computation times on DEC-10 and PDP 11/10 machines for

a system with n =2, n =2, k=0, p=2 (i.e. 16 estimation parameters)a b
are:

DEC-10 58ms/iteration

PDP 11/10 1 s/iteration
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If n& is reduced to 1 so that n^=0, the transformation 

of point 3 in the algorithm is unnecessary and the computation 

time for the PDP 11/10 (which was without floating point hardware) 

reduces substantially to 400ms.

Convergence of the regulator parameters is usually slower 

for the multivariable version than the SISO system version. This 

is understandable as there are generally more parameters to tune.

7.3.4 Simulation Examples for the Pole-Shifting Self Tuning Regulator

In order to demonstrate the features and operation of the 

self tuning pole shifting regulator several simulation examples 

are now presented. All but one were obtained using discrete-time­

system digital simulation. The following chapter is devoted to 

the practical application of self tuning and this algorithm in 

particular on hardware.

Unless stated to the contrary, the recursive least squares 

estimator in all the following digital simulation examples was 

initialized so that the covariance matrix was 1001 and the forgetting 

factor A was 0.96. Furthermore, the forgetting factor evolved so 

that

A. _ = 0.99A, + 0.01 7.110k+1 k

This technique aids initial tuning, and allows the forgetting factor 

to gradually increase to unity.
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7.3.4.1 Non-Minimum Phase system with time varying time delay

The following SISO system was simulated:

■ 1 — 9 — ■ 1 —9(1-1.3z +0.4z )yt = z (z +1.5z Z)u^

-1 -9
+ (1-0.65z +0.12z )efc 7.111

where e^ is a zero mean white noise process with variance 0.1.

The input u^ was generated using the pole-shifting self-tuner law, 

designed so that

1 + T(z ) = 1 7.112

5000 steps were simulated. During the first 2499 steps, k (the system 

pure time delay) was set to 0, but for the rest of the run it was 

switched to unity. Note that the system is non-minimum phase and that 

it is therefore not amenable to minimum variance regulation. The 

example illustrates the behaviour of a pole-shifting regulator under 

conditions of a time-varying pure time delay and a non-minimum 

phase system. The estimation model was :

“1 —2 ■ 1 — 0 — 9
(1+â z +a9z )y = (Bqz +B?z +B„z )u + e 7.113•L 4 L X J U L

* —1 . .where the B(z ) polynomial has 3 terms to allow for both pure time 

delays (k=0,k=l). The control law then has the following structure:

—i —0 —i
(l+f1z +f^z )ut = (gQ+g1z )yfc 7.114

where fshould tend to zero when k=0.

Figures 7.3a and 7.3b show the time evolution of the control 

law parameters together with the correct values to which they should 

ideally converge. The f parameters in particular show a marked
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change after the 2500 th step, following the change in time delay. 

The unusually high variability of the parameters during the first 

2500 steps is a result of overparametrization which impedes 

convergence. In a real system where the system order is not exact 

this is less likely to occur.

Figure 7.3c shows the system driving noise e^ and the difference 

between e^ and the residual sequence e^. When the self tuner has 

converged correctly, e = e^. Before the change in time delay the 

difference is small. At the point where the time delay changes, the 

sequences initially differ, but soon begin to converge again (as 

shown by the difference sequence) indicating that the control law is 

retuning to take account of the change in time delay.

The input and output sequences shown in Figures 7.3d and 7.3e 

verify that there is no sign of instability as the time delay changes. 

The asymptotic value of the output variance is 0.1173 and 0.1545 for 

k=0 and k=l respectively, compared with 'minimum variance' figures 

of 0.1 and 0.14225. However, due to the non-minimum phase charac­

teristics of the system, the minimum variance regulator would in 

practice lead to an unstable system. Furthermore, even if the system 

had been minimum-phase, it is highly improbable that the minimum 

variance regulator would have tolerated a change in time delay 

without, at the very least, some sign of instability. The superior 

performance of the pole shifting self tuner over the minimum variance 

self tuner in this respect is demonstrated briefly in the following 

example using analogue simulation.
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7.3.4.2 Pole-shifting and Minimum Variance Self Tuning for a

Variable Time Delay system

An analogue system defined by 

was used to demonstrate the self tuning pole shifting control of an 

open-loop unstable system with variable time delay. The sampling 

interval was 2 seconds and the time delay t was varied from 0.5 to 

3.5 times the sampling interval in steps of 0.5. The response of the 

system to a sinusoidal reference input is shown in Figure 7.4a 

together with the control signal and time delay k (as a multiple 

of the sampling period.) Note that the controller rapidly adjusts 

itself to the new delay.

It was not possible to compare minimum variance control 

directly as the self tuning minimum variance controller failed to 

converge. The analogue system was therefore changed to

-2 5e"s?
H2(S) = —g   7.116

and, when the time delay was over-estimated by the minimum variance 

self tuning controller, stable control could be achieved for time 

delays of integer multiples of the sampling period (0.4s). The 

result is shown in Figure 7.4b for values of time delay k (as a 

multiple of the sampling period) varying from 1 to 3. Note however 

that on transitions of the time delay control is partially lost in 

the intervening non-minimum phase region. Figure 7.4c demonstrates 

the sensitivity of the minimum variance self tuning controller to 

non-minimum phase system behaviour. A change of 5% in the time delay 

brought a discrete—time zero onto the unit disc and caused the self 

tuner to go unstable.
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7.3.4.3 Multivariable Pole-shifting Self Tuning for differing loop-

Time-Delay Systems

This is an extension of the example for off-line multivariable

pole shifting regulator design in section 6.6.4. It is recalled 

that in this example was singular, output 2 having in effect a 

pure time delay of 1 sampling period as against 0 for output 1.

Also, a zero of |B(z )|lies outside the stability region. The example 

therefore would not be amenable to minimum variance regulation.

The estimation model used for the self-tuning version was :

A — I A — 2 A — I A —9
(I+A1z x+A2z z)yt = (B1Z +B2z ^)ut + et 7.117

leading to a control law structure: 

~ —i _i
(I+F1z )ut = (Go+G1Z )yt 7.118

The pole shifting self tuning regulator was run for 3000 steps. The 

time evolution of the control parameters is plotted in Figure 7.5 and 

the final values are shown below together with the theoretical values 

to which they should converge which were computed in section 6.6.4:

F1 =
■ 0.275

_ 0.139

0.213 '

0.292 .
Fl

0.213

. 0.155

0.203 '

0.286 .

G o =
"-0.107

.-0.153

-0.0582 '

-0.106 .
Go =

‘ -0.101

. -0.16

-0.0483 "

-0.115 .

=1 =
’ 0.0707

0.0459

0.0382 '

0.0332 _
G1 =

' 0.0682

0.0495

0.0265 ’

0.0469

7.119
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The estimated parameters have not converged exactly, but are 

close to the desired values. The pole-shifting regulator clearly 

operates well in a situation where minimum variance regulation would 

fail.

7.3.4.4 Multivariable Pole-Shifting Regulation Example

Finally a second example of a multivariable system under self 

tuning pole-shifting regulation is given. The system is described by:

—1 —9 —1 —9 —1(I+A^ +A2z ^)y = (B^z ^+B2z *)u  + (I+C^z ^)e^ 7.120

where: 0.3

0.4

-2.9

-1.4

0.2 -1.75

0.2 -0.95

-0.4 0.6

0.4 0.6

0 1-0.25

0 -0.45 J

and the statistics of the white noise process e^ are

E(et) = 0
T

E(etep = 0.11

was simulated for 4000 steps under a self tuning pole-shifting

regulator. The regulator was designed to set

. — 1 ' -0.1 0 " -1
I + T(z ) = I +

_ 0 -0.3 .
z 7.121

The estimation model

A — 1 a — 9 a — 1 a — o
(I+A^z +A2z )yt = (B^z +B2z )ut + et 7.122



192

was used, leading to a regulator having the structure

* —i * * — i
(I+F1z )ut = (Gq+G1z )yt 7.123

The time evolution of the regulator parameter estimates are 

shown in Figure 7.6a. The final estimated regulator coefficient

matrices (F^,Gq,G^) at step 4000 are compared with the values computed

using the off-line design equation (F^,Gq,G^) below:

;1 =
-1.601

0.137

-3.068

-0.228 .
F1 =

" -1.687

. 0.09881

-3.398

-0.3307 .

G o =
-0.519

0.038

-1.555 '

-0.874 .
=

" -0.6427

0.00972

-1.6438 "

-0.875 _

G1 =
-1.025

-0.078

5.348 ‘

0.665 _
G1 =

‘ -1.1328

. -0.11023

5.959 "

0.8428 _

7.124

When the self tuner has converged correctly, the residual sequence e 

equals the system driving noise e^. Figure 7.6b shows the elements of

these two sequences superimposed, i.e. eæ and eæ are superimposed

(2) (2) (1) (2) Tand e^ and are superimposed, where e^ = (e& , .

The convergence of the algorithm is demonstrated by the convergence 

of the e and e^ traces as time proceeds.

7*4  Servo Following

With the exception of the generalized minimum variance controller 

the algorithms presented in this chapter are all intended as regulators. 

When it is necessary to control to a reference value it is often



30.

3.0

0.0.S

2000G1 matrix

Gq matrix

^-1.025 
4000

Fig. 7.6(a) Time evolution of regulator parameters



Noise e (1) and residual e

OS —!— 
2000

Noise e^Z) and. residual Ê

Fig» 7.6(b) Estimation residuals superimposed on 
system noise



193

perfectly satisfactory to introduce a digital integrator in the loop 

in precisely the same way as was suggested in section 6.7.

Some of the feedforward structures for servo following 

discussed in section 6.8 may also prove to be useful in a self tuning 

context. Their applicability is however the subject of on-going 

research. In particular, the parameters of the series and feedforward 

compensators and must be estimated, and this will add to the 

computational burden.

It has been found that when set-point changes are relatively 

1 smooth*  (i.e. for example a ramp rather than a step) the addition 

of an integrator (if not already present in the system) in the loop 

will normally give satisfactory performance. The self tuning structure 

required is depicted in Figure 7.7. In particular, the incremental 

input Au and error signal Ay = y - y^ (where y^ is the set point) 

are fed to the estimator and controller. The input to the plant is 

formed by integrating the incremental input so that

ut = ut-l + Aut

The configuration is extremely simple. However, when large 

and rapid changes in set point are applied to the system the method 

is not entirely satisfactory and effects such as those depicted in 

Figure 6.3 may occur.

7.5 Conclusion

This chapter has discussed a number of self tuning strategies 

based on the control schemes presented in Chapter 6. Its contribution 

has been to introduce two new multivariable self tuning regulators,
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demonstrating in particular that an alternative approach to optimal 

self tuning regulation exists in the classical control concept of 

pole placement. The advantages of detuned minimum variance and 

pole assignment have been discussed in Chapter 6, but it is 

appropriate to emphasize the benefits particularly of the pole 

shifting regulator in a self tuning context. The robust nature of 

the algorithm in that it can handle non-minimum phase systems, 

multivariable systems in which loops have different pure time delays, 

systems with variable time delays and the fact that it is less 

sensitive to incorrect estimates of system time delay is especially 

valuable in a self tuning situation where it is expected that the 

precise details of system characteristics are not always available. 

While the generalized minimum variance self tuning controller (for 

SISO systems) does allow non-minimum phase systems to be controlled 

it requires a greater degree of knowledge about system characteristics 

than the pole-shifting algorithm in order to select the cost function 

weighting polynomials appropriately.Furthermore, these weighting 

polynomials may have to be changed if the system characteristics 

change and the algorithm is therefore not always robust enough to 

self-tune time varying systems. It is relevant too that optimal 

self-tuners (and also the detuned minimum variance self tuner) 

attempt to cancel system dynamics which is a much less robust 

approach than modifying them as in the pole-shifting regulator.

Robustness is the essential advantage of the pole assignment 

regulator, and it is this feature that has been highlighted by 

choosing in the examples situations where the pole-shifting regulator 

successfully copes with difficult problems, all of which are not 

uncommon in practical cases.



195

CHAPTER 8

IMPLEMENTATION OF SELF-TUNING CONTROLLERS

8.1 Introduction

The theoretical aspects of several self-tuning strategies have 

been discussed in Chapter 7. Although the application of the algorithm 

is fairly straightforward, no discussion of self-tuning control would 

be complete without also examining the practicalities of its 

engineering application. This chapter therefore addresses itself to 

two aspects of self-tuning implementation. The first part is devoted 

to a brief, general discussion of self-tuning in practice, and the 

second part reports on the self-tuning control of a real process 

using the pole-shifting method.

8.2 General Aspects of the Implementation of Self-Tuning Controllers.

This section covers a number of important practical problems in 

implementing self-tuning controllers. These include the initialization 

phase, the role of the ’forgetting factor’, dealing with saturation 

effects and time-varying systems, incorporating set point following 

when a regulator law is used, and coping with measurement noise. 

The following notes are by no means exhaustive, but are designed to 

provide basic practical guidelines drawn from the author’s experimental 

experience.
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8.2.1 Getting the Algorithm Started.

Before self-tuning can be attempted, the engineer must have a 

reasonably good feel for certain system parameters. These include 

system order, system pure time delays, and approximate values of 

system time constants. It is generally advisable to select the 

lowest system order that will still account for the dominant system 

dynamics as this reduces the number of parameters to be estimated, 

minimizes computation time and aids convergence rate. The system 

should however never be grossly underparametrized.

It is often useful to estimate the parameters of the system 

from a short record of input-output data (or in real time) using a 

recursive least squares algorithm. Although the parameters will 

almost certainly be biased from their correct values, the estimates 

still provide a useful initial condition for setting up the self­

tuning controller estimation model. Where this is not feasible, another 

useful starting point is to assume that the system outputs are all 

decoupled, and each system output transfer function is modelled as n& 

cascade digital integrators.

For the minimum variance regulator, the initial estimation model would 

thus be

{I+P(z l) }diag{ (1-z S a} yt = z ^{l+P(z ^Jlu^ + et 8.1

— 
where I+P(z ) is chosen so that the coefficients of z , .. , z 

. . . . . —1 .are zero in the polynomial multiplier of y (ie P(z ) is selected 

as in eqn 7.79 ).
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For the pole-shifting model the initial estimation model 

would be

-1 na * _o - "IV
diag{(1-z ) }yt = {Iz ^+b^z Z+ ... +B^ z °) 8.2

where i=2,3, ... ,n^ are chosen with small element values 

to ensure that the transformation to the controller parameters 

is defined. The effect of an assumed system of cascaded integrators 

is to produce fairly vigorous initial control action which generates 

good estimation data.

The recursive least squares estimator itself requires 

initialization, in particular, the covariance matrix and the 

’forgetting factor’. If the model parameters have been obtained as 

the result of estimation and are thus likely to be reasonably good 

the covariance matrix may be initialized to the identity matrix, 

whereas with poorer starting conditions a value of 1001 would be 

more appropriate. To assist in initial tuning, the ’forgetting 

factor’ (A) may initially be set as low as 0.96 and then allowed to 

rise towards unity. A suggested rule is :

A, _ = 0.99A + 0.01 k+1 k

A = 0.96 o

The forgetting factor plays an important role in self tuning and 

this is discussed later.

Sampling rates are related to the fastest significant system 

modes. Typically a sampling interval of half the time constant of 

this mode is a good starting point. Sampling rates should not be
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chosen too fast as this can lead to excessively active control.

8.2.2 Saturation Effects

Most processes will suffer from saturation limitations of one 

form or another. Unless these are taken into account it is almost 

certain that the estimator will yield degraded or invalid results 

with a concommitant degradation in control. The self-tuner may even 

lose control altogether. Precautions designed to protect the 

estimator should therefore be taken, as follows. The saturation 

limits should, where ever possible, be referred to the input of the 

system and upper and lower control limits set in the self-tuning 

controller software. The control signal is then subjected to these 

limits, and where the demanded input is modified so as to satisfy 

the limits, the modification must be applied to estimator and control 

law data vectors as well. This ensures that the estimator always 

operates on input data actually applied to the process. Where an 

integrator has been inserted for set point following both the 

integrator output (u^) and the incremental control input (Au^) must 

be modified.

8.2.3 Time Varying Systems and the Choice of Forgetting Factor

Although for simplicity, the theory of self-tuning controllers 

is developed under the assumption of linear, time-invariant systems, 

the true value of self-tuning control is of course in its 

application to non-linear, time-varying plants. Self-tuning control 

works well in such systems provided that the plant dynamics vary
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'slowly' relative to the self-tuning controller’s rate of 

adaptation.

The adaptability of a self-tuning controller is determined 

largely by the value of the estimator ’forgetting factor’. For a 

linear time-invariant system the forgetting factor must be unity for 

the algorithm to converge. However, if the controller is to adapt 

quickly, its value must be reduced. The reduction of the forgetting 

factor effectively weights the most recent data by scaling down 

the information matrix of past data before adding the contribution 

of the latest ’information’. Although the principle of this approach 

is sound, extreme caution must be exercised when manipulating the 

forgetting factor. Unless new information is captured at each 

iteration (i.e. non-zero incremental input data and output errors) 

a non-unity forgetting factor will successively reduce the value of 

the information matrix thus increasing the magnitude of entries in 

the covariance matrix P (proportional to the inverse information 

matrix) used in the least squares estimator, or even, due to dominant 

numerical errors, allow it to become negative definite. Ultimately, 

all ’information’ will be lost so that when a system parameter change 

does occur (leading to a large error in the estimation update equation) 

the estimator gain which depends on P will be unrealistically high, 

and the whole algorithm can become unstable.

Intuitively, the forgetting factor is set correctly when (given 

that the covariance matrix is in a satisfactory state) an ’information 

balance’ exists between information being lost through forgetting 

and information being gained from new incoming data.
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Let the estimator parameter vector 6. for output i be 

ordered as follows;

A J.
9i = ^iH* e e ,ailna, *e ,aipl*  * "ajpna'bill' - '^il^^ * ^ipl» * ' ^ipu^^

p groups p groups 8.3

so that, for example, the estimation model is:

yt
CD y(P) 
t-n '*" yt-l 

a
(P) u(l)
t—n * t—1 a

(1)
t-nb

(P) 
t-1

U<p) )6.

Et 8.4

where u^ and y represent the system input and output p-vectors.

Then the diagonal of the covariance matrix is asymptotically 

. . . ~ ATproportional to the diagonal of the matrix E(6^6^) and may be 

divided into 2p sections, as is 6^.

One way of monitoring the rather qualitative concept of 

information balance is to periodically check the 2p sub-traces of the 

partitioned covariance matrix. During the tuning-in phase the 

forgetting factor may be chosen as suggested in section 8.2.1. Once 

the self-tuner has tuned in and is operating satisfactorily, the 

forgetting factor is chosen so that the sub-traces remain more or 

less constant. The forgetting factor should be increased if the 

traces increase (indicating a loss of information) and may be 

decreased otherwise. A typical value to which the forgetting factor 

might be set is 0.995. This method of choosing the forgetting factor 

is intended merely as a guide. It may also prove useful to automate 

the procedure.
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8.2.4 Set Point Handling.

It has been suggested that the introduction of a digital integrator 

in the control loop will facilitate set-point handling by regulators. 

However, as demonstrated in section 6.8 (Fig. 6.3) transient response 

to rapid set point changes can be poor.

Most systems have inherent slew rate limitations and it is as 

well to bear this in mind when introducing set point changes. An 

extremely useful technique is to apply software rate limits to set­

point signals, consistent with the response of the system. This will 

improve transient performance and minimize overshoot.

The introduction of closed loop poles, as is possible in the 

detuned minimum variance and pole-shifting regulators can also aid 

transient response, although care should be taken not to slow down 

the system response unnecessarily.

8.2.5 Measurement Noise.

Although the self-tuning regulators are designed to cope with 

system noise, the overall performance will naturally improve if measure­

ment noise is minimized and accurate measurements of the system outputs 

are available. Measurement noise may be introduced due to a noisy 

transducer, or even quantization noise in the analogue to digital 

conversion. In order to minimize noise of this type it is wise to 

take a number of samples in rapid succession at each sampling instant, 

and to average the result.
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When computation time is already short this may not be possible. 

The author has found that averaging over 10 samples can dramatically 

improve performance.

8.3 An Application of the Self-Tuning Multivariable Pole-Shifting 

Regulator.

The rest of this chapter is devoted to the application of the 

self-tuning multivariable pole-shifting regulator to a real system. 

The process is a hydraulic one comprising two water tanks arranged 

side by side and coupled hydraulically by an orifice in the partitioning 

wall of the tanks. Each tank has an outlet tap, a pump supplying 

water, and a water height sensor represented schematically in Fig. 8.1 

and Fig. 8.2.

The control objective was to independently control the water 

level in tanks 1 and 2. The linearized dynamics about any one operating 

point are fairly straightforward to calculate, and the analysis is given 

in Appendix I. However the dynamics vary according to operating point 

and the control problem is further complicated by the non-linear 

characteristic of the pump voltage-flow characteristic. The pumps 

also exhibited saturation and deadband effects.

Thus the system is effectively non-linear, has dynamics which 

vary with operating point, and as such is a suitable candidate for 

self-tuning control.
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8.3.1 Coupled Tank Dynamics.

It can be shown (Appendix 1) that the variation of the system 

time constants and T^ can be approximated very crudely by:

T1 « /AH 8.5

T2 « / H - 1.2 8.6

where AH is the difference in level between the tanks, and H is the 

approximate level of the tanks. The approximation

H = H^ . = H2

is valid because the limited pump and drain capacity of the system 

dictates that the steady state level differences between the tanks 

cannot exceed approximately 2cm which is generally very much less 

than H^ or H^. Thus, fairly small changes in the difference between 

the tank levels can lead to quite substantial fluctuations in T^, 

whereas T^ will be more dependent on changes in actual tank levels. 

A table of sample values of T and T^ is quoted from Appendix 1:

H^cm) H2(cm) T^s) T2(s)

1. 8 7 9.65 119

2. 13 12 9.93 159

3. 22 21 10 215

4. 13 11 13.56 156

5. 13 12.5 3.55 162
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Entries 1, 2, and 3 show how increases as the tank levels increase

whilst a constant head difference of 1 cm is maintained between the 

two tanks. Modifying this head difference results in substantial 

changes in (entries 4 and 5). In fact, over the operating range

used in the control experiments factor of 2 changes

4 changes in were not uncommon.

in Ig and factor of

8.3.2 The Pump Characteristic.

A typical voltage-flow characteristic for the type of pump 

used is given in Fig. 8.3. Note the deadband (region A) and saturation 

(region B) effects as well as the non-linear characteristic. To 

accommodate the saturation and deadband, software saturation limits on 

the pump voltages (ie system control input) were set at and 

volts for the lower and upper limits respectively. These limits 

varied, depending on the pump and power amplifier used to drive the 

pump, and the limits were not necessarily the same for each input. 

It is important to set th^ limits fairly accurately so that the real 

system inputs are used in the estimator.

8.3.3 The Tank Level Measurement.

The depth transducers had a non-linear characteristic, a typical 

example of which is given in Fig. 8.4. Although it would have been 

feasible to determine H, the tank level, from the voltage reading, 

the fact that the characteristic was not constant but tended to vary 

due to the sensor amplifier drift made it simpler to use the voltage 

output directly as the control output. This introduced a further non-
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linearity into the system, to which however the self-tuner readily 

adjusted. The demand tank levels were therefore also specified in 

'volts*  rather than directly in height. To minimize transducer noise, 

10 measurement samples were taken in rapid succession at each 

sampling instant and averaged.

8.3.4 The Self Tuner Configuration

The s-domain model (see Appendix 1) indicates that a z-transform

model with n =n =1, k=0, in eqn. 6.I would be appropriate. However,a b

as the system output was required to follow a set-point, an 

integrator was inserted in series with each input. Set-point rate 

limiting was also introduced. Let

H.

Hd.
1

measured depth of tank i in volts

demanded (rate limited) depth of tank i in volts

AH. = H.
1 V-

Q. = flow rate control signal for pump i in volts

AQ. = incremental flow rate control signal in volts

A schematic of the system configuration is given in Fig. 8.5.

The estimation model used had the structure:

'AH^* -1 * -?(I + A^z 1 + A2z *

where the symbols retain their usual meaning. Note

et 8.7

that polynomial

' -1(B^z L
^2 J

L+A(z 1) has order n^=2 instead of 1 to allow for the digital 

integration.
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A sampling period of 5 seconds was chosen and although this 

might seem rather long for the smallest values of time constant Tp 

it was shown experimentally to be satisfactory. The total computation 

time for one iteration on the PDP 11/10 computer used was 400ms and 

the computational delay thereby introduced was a small enough fraction 
. . A —1 .

of the sampling period not to have to extend the B^(z ) polynomial.

The self-tuner was initialized by the choice of model described 

in eqn. 8.2 and the controller was allowed to run for a while. The 

resulting parameter estimates were stored and used in subsequent 

runs as initial conditions.

The choice of I+T(z polynomial,

— 1 — 1
I + T1z = I - 0.6Iz 8.8

corresponding to two time constants of 9.8s was found to achieve 

good results.

8.3.5 Example Results

Example 1: This example demonstrates tuning-in behaviour. The level 

of tank 1 was required to follow a positive and negative going 

square wave of amplitude 1cm and period 500s centred about a depth 

of 13cm whilst tank 2 was to be maintained at a constant depth of 

13cm. A constant forgetting factor of 0.99 was used with an initial 

covariance matrix of 101 (since, as discussed above, reasonable 

initial parameter estimates were available). No set point rate 

limiting was used. Software saturation limits were however imposed 

on the pump flowrate inputs. In particular, the lower limit for pump 1 

was 0.4V.
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Fig. 8.6 shows the system output responses and the control 

signal to pump 1. Notice how during the first period of the square 

wave the response is poor. However, it soon improves and it is 

particularly interesting to see how the interaction effects on 

output 2 due to set point changes on tank I die down as the controller 

tunes in. Note also that the control input to pump 1 becomes smoother 

as tuning proceeds. As tank 1 drains from the 14cm to the 12 cm level 

the input to pump 1 falls to the lower saturation limit of 0.4V, 

switching the pump off.

This example is also used to illustrate another possible use 

of self—tuning control. The self-tuning algorithm may be used to 

design a controller that gives satisfactory response and the 

controller parameters may then be fixed to produce a constant parameter 

discrete time controller. However, the same computational time delay 

that occurred during self-tuning must be retained. Fig. 8.7 

illustrates the system output responses and control input 1 for 1 

cycle of the square wave set point when the controller parameters 

are set to the final values obtained at the end of the self-tuning 

run. The response is an improvement on the self-tuning response, 

indicating that the set-point changes caused detuning of the self­

tuner. This is to be expected considering the simplified approach to 

incorporating the set-point.

Example 2: This example demonstrates the system response to a 

sequence of desired tank levels. The set-point inputs were rate 

limited to 0.5 V/iteration (i.e. 0.1 V/sec) and the pump control 

voltage software saturation limits were set to:
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Pump No. Lower Limit (V) 

(pump off)

Upper Limit (V) 

(pump full on)

1 1.2V 4V

2 4.6V 7V

The system was started with empty tanks. The estimator 

covariance was initialized to 101 and the forgetting factor 

adjusted as follows:

\+l= 0.99A +k

.0.99

0.01 A. < 0.99 k 

otherwise

A = o 0.97

Fig. 8.8 shows the set point and the resulting system output.

The pump control inputs are shown in Fig. 8.9. The controller 

tunes in rapidly. Although output I appears to rise very slowly 

after the set point change at step 100 it must be noted that in fact 

the pump is full on. Similarly at step 200 when tank 1 is required to 

drain, pump 1 is switched off and the slow response is due to the 

limited draining capacity.

Fig. 8.10 shows the time evolution of the parameters of the

control law:

g120 AH1

g22O_ AH2.

^1" _ g110

_ g210
t

gm

g211

8121 AH1 

g221 . _AH2
t-1

It is particularly impressive to observe that the control adapts

at each set point change to the changing system dynamics.
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8.4 Conclusion

This chapter has presented some of the more practical aspects 

of self-tuning, in particular demonstrating the successful control 

of a real process using the multivariable pole-shifting self-tuning 

regulator. The results given here are only examples from a series of 

successful runs and are encouraging evidence that self-tuning is a 

viable tool in the control of non-trivial processes.
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CHAPTER 9

CONCLUSION

Each chapter contains its own concluding section, and the 

purpose of this chapter is to highlight some of the more important 

features of the results and propose areas for future work.

The research has provided new results and techniques in the 

related fields of system identification and self-tuning control. 

In the case of system identification, the contribution has been a 

fresh approach to parameter estimation, and maximum likelihood 

estimation in particular, in the form of algorithms based on 

hypothesis testing and strong analyst-computer interaction. Whilst 

the aim here has been the parametrization of ARMAX models from 

plant operating records for possible use in the off-line design of 

direct-digital-controllers, the work on self-tuning controllers 

goes further in that simultaneous identification and control are 

achieved. Two new multivariable self-tuning regulators, the detuned 

minimum variance and pole-shifting regulators have been described.

The first part of the thesis was concerned with system 

identification. Chapter 4 introduced the hypothesis testing 

approach for obtaining maximum likelihood parameter estimates in the 

case of SISO systems. The algorithm reduces the non-linear 

maximum likelihood estimation problem to a set of parallel linear 

least squares processes. Several variants of the algorithm were 

presented, the primary version being 'RHYP'. The alternative
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’Correlation Method’ and ’Covariance Method’ approximations are 

designed to reduce computation. A number of simulation examples, 

including comparisons with well known approaches such as the 

’Recursive Maximum Likelihood’ (Sodersfrom 1973) and ’Instrumental 

Variable’ (Wong and Polak 1967) methods, testify to the advantages 

of the hypothesis testing scheme. These are its reliability 

(especially in the presence of short data records) and the 

interactive form of the algorithm which enables the analyst to 

visually assess the nature of the cost function. Thus the object 

of the estimation process becomes more than just seeking the minimum 

of the cost function, and diagnostics such as the time-evolution of 

the cost function and parameter sensitivity to changes in hypothesis 

are readily available. The algorithm is markedly more robust than 

approximate recursive methods when only short datq records are 

available, and swift convergence of the noise colouration polynomial 

parameters is regularly observed. Its disadvantage is that the 

number of hypotheses grows exponentially with increasing order of this 

polynomial. Nevertheless as has been illustrated by simulation, even 

when for computational reasons the noise colouration polynomial is 

chosen to be under-parametrized, good estimates of the remaining 

polynomials can be obtained.

The extension of the hypothesis testing approach to cater for 

multivariable systems was discussed in Chapter 5. It was shown that 

both a determinantal (maximum likelihood) cost function and one based 

on the trace of the residual covariance matrix could be minimized. 

Both techniques led to consistent estimates of the system impulse 
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response models, though a minimal representation could not be obtained 

directly. The advantages and disadvantages of the multivariable 

algorithm, *MVHYP T, are of course similar to those of the single 

output version. However the algorithm becomes unwieldy both with 

increasing number of outputs and order of the noise colouration 

polynomial matrix. It has therefore been suggested that the algorithm 

might be embedded in a hill climber, where the selection of 

hypotheses is automated and the estimation problem is linear under 

a given hypothesis. Whilst some of the benefits of the approach 

(particularly with regard to information about the nature of the cost 

function) are lost, the method affords a substantial simplification 

of the direct approach in which all the model parameters would form 

part of the non-linear estimation search.

The hypothesis testing method is intended primarily as an 

off-line analysis tool. However, it is feasible that an automated 

hypothesis-selection algorithm (hill-climber) could be developed 

for on-line estimation in very slow systems. The algorithm's 

exceptionally good convergence properties could then be used to 

maximum effect with an on-line control synthesis algorithm. This 

approach to on-line identification and control is pursued later.

The second part of the thesis contributed two new multivariable 

self-tuning regulators, the detuned minimum variance and pole-shifting 

regulators. The off-line design principles were covered in Chapter 6, 

whilst the self-tuning properties of the algorithms were discussed in 

Chapter 7. Both regulators permit the specification of closed loop 

system poles, although the restrictions imposed differ in each case. 

In the case of the detuned minimum variance regulator this feature 
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may be used to obtain smaller and slower control excursions than for 

the conventional minimum variance regulator. However, whilst this 

regulator still derives from the optimality criteria, the pole-shifting 

regulator is more closely related to classical control objectives. 

The main advantage of the pole-shifting algorithm is that of 

robustness. It can regulate non-minimum phase systems without the 

need to specially select self-tuner parameters (as required by the 

generalized minimum variance method), multivariable systems in which 

the input-output relationships have differing pure time delays, and 

is less sensitive to incorrect modelling of the system pure time 

delay than other approaches. These features have been demonstrated 

in simulation examples presented in Chapter 7. The main disadvantage 

is that of computational complexity.

The proof of both the detuned minimum variance and pole-shifting 

regulator self-tuner properties was developed from a self-tuning lemma 

in Chapter 7. The minimum variance regulator naturally emerges as a 

special case of the detuned minimum variance regulator. A fundamental 

assumption of the proof is however that the estimated parameters 

converge. Now although simulation studies have indicated that this 

requirement is generally met, no convergence analysis for the new 

regulators has been given. This clearly is an area for future 

research. A further area which deserves urgent attention is the 

conversion of these regulation laws to full set-point handling 

controllers. Until such time the method of inserting a digital 

integrator in the loop to eliminate steady state error is a viable 

practical alternative.

Chapter 8 discussed some of the practical problems associated 
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with self-tuning, and discussed the implementation of a multivariable 

self-tuning pole-shifting controller on a hydraulic system. The good 

results achieved are evidence that the pole-shifting controller 

holds practical promise, especially since the system controlled 

featured non-linearities and widely varying dynamic characteristics.

In considering the future of self-tuning, it is however 

appropriate to reflect on the comparative merits of this approach, 

and that of a separate maximum likelihood algorithm operating 

on-line together with a control synthesis algorithm. Self-tuning 

is an elegant,computationally efficient method, based as it is on a 

simple linear least squares estimation algorithm. However it is in 

some ways a restrictive approach as, to date, the family of methods 

is fairly small, and in the absence of a generalized theory, the 

extension of this family is by no means trivial. In particular, it 

is necessary to prove a 'Self-tuning Property' for each new controller 

design method. Certainly in the case of SISO systems where an on-line 

version of the robust 'RHYP' algorithm could conceivably be used, 

a broader self-tuning approach of maximum likelihood estimation 

coupled with on-line controller synthesis could be valuable. The 

controller order, although selected so as to allow system 

identifiability, would than not need to be fixed as restrictively 

as in true self-tuning, and problems of controller convergence and 

set-point following greatly simplified. The system would be less 

computationally efficient, but using modern microprocessors, certainly 

viable for plants requiring sampling rates of the order of seconds. 

The use of an extremely reliable estimator like 'RHYP' would then
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result in the possibility of a large, easily expandable family of 

high integrity controllers. In the case of multivariable systems, 

maximum likelihood estimation is further complicated, and it is 

difficult to justify this alternative to self-tuning.

It is the author’s opinion that the future applications of 

estimation-based techniques in adaptive control systems will 

escalate enormously. It is therefore extremely important that the 

engineering aspects of self-tuning controller implementation are 

fully researched so that this valuable approach can make its full 

contribution to progress in this challenging field.
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APPENDIX 1

ANALYSIS OF COUPLED TANK SYSTEM

Fig. Al shows the coupled tank system using the following 

notation:

Q. - input flow from pump 1 to tank 1
11

Q. - input flow from pump 2 to tank 2
l2

- outlet flow from tank 2

- outlet flow from tank 1

- flow from tank 1 to tank 2

- head of water in tank 1

- head of water in tank 2

Kg - centre-line height of outflow orifices

a^ - area of inter-tank orifice

a^ - area of outlet orifice of tank 2

a^ - area of outlet orifice of tank 1

A - surface area of each tank

. . 2g - gravitational constant, 980cm/s

C — orifice coefficient corresponding to orifice of area a.
j J

- volume of tank 1 = AH^

- volume of tank 2 = AH^

Units: Dimensions in cm

a • 2Areas in cm

T7 _ .3Volumes in cm
. 3

Flow in cm /s



Fig. A. 1 Coupled Tank System
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The basic equations governing the system are:

Q. - Q, ~ Qn Al
1

Q + Q - Q A2
x2

Now, the flows and can be expressed in terms of the

respective water heads and orifice characteristics as follows :

dV dH
------ = ------ 
dt----------------- dt

dV dH
- —" ' — A ■ 
dt dt

- Cd a1Æg - H2 = 2^^ - H2) A3

Q2 = Cd a2/2j /H2 - H3 = 2k2(H2 - H3) A4

Q, = C. aÆ /H - H = 2k (H - H ) A5
J 01 g J 1 J J 1

where

kl = a3/2g) - H2)-1 A6

k2 = RCd a2/2i)(/H2 - H3)-1 A7

and k3 = RCd a3Æg)(/H1 - H3)-1 A8

In the steady state,

Q.x = Q1 + Q3 A9

and ~ A10

Taking small variations q. in Q. , q. in Q. , qn in , 
11 X1 12 12 1 L

q9 in Q , q in Q , h in H , and h in H it is easy to show thatX Z J .j 1 1 Z z
dhl 

q. - q, ~ - A ------ All
X1 dt

^2
q- + - q? = A------ A12

2 dt
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â^k2
where

q2

and

%.

a^h:

k2h2

k3hl

On taking

k1(h1 - h2)

Laplace Transforms, eqns. All and A12 may be

A13

A14

A15

assembled

’1

93

1

2

1

as follows :

-k^/A

s+G^+kp /A -k /A

2 J

1/A

1/A

q-

s+(k +k )/A %]
A16

Eqn. A16 describes the behaviour of the system about any operating

point. The poles of the system

determinant of the coefficient

are defined by the zeros of the

T .matrix of (h^ , h2) in eqn. A16

i.e. by the zeros of :

- (2k_ +k_+k^) s
A L £ J

,(k1k2+k3ki+k3k2)
A

A17

k^, k2 and k3 are functions of the operating point and hence the

2 s

poles of the multivariable system will change with the operating point

Experiments on the rig showed that for
2 

a2=a3=0.125cm

£(Cda3/2g ) 2.2 A18

(where C, = C, = C, as 
d d2 d3

similar taps were
2 

used) and for 3^=0.3cm

1
Kcd a^Æg ) 5 A19

2
Also, A = 105cm and H3 = 1.2cm. Thus from eqns. A6 - A8:

kl

k2

k3

5(/H1 - H2 )‘1

2.2(/H2 - H3 )-1

2.2(/Hx - H3 ) 1

A20

A21

A22
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Due to the limited pump and drain capacity of the system 

the actual possible steady state level differences between the two 

tanks could not exceed approximately 2 cm. Since, generally,

Hx » 2cm A23

H2 » 2cm A24

and AH = |HX - H | < 2cm A25

it is fair to set

H « H « H2

k = k2 = k2 = 2.2</H - 1.2 )-1 A26

Then the system time constants are approximately given by

T = A/(2k +k) A27

T2 = A/k A28

Now, 2k^>> k A29

so is proportional mainly to 1/k^, or

Tx « Æfl A30

T2 « /H - 1.2 A31

From eqn. A30 it is clear that fairly small changes in the difference 

between the tank levels can lead to quite substantial fluctuations 

in the time constant T^, whereas T2 will be more dependent on changes 

in the actual tank levels approximated by H. The following table 

gives sample values of these parameters, computed from equation 

A17.
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H1 (cm) Hg (cm) (s) T2 (s)

1. 8.0 7.0 9.65 119

2. 13.0 12.0 9.93 159

3. 22.0 21.0 10.0 215

4. 13.0 11.0 13.56 156

5. 13.0 12.5 3.55 162

Entries 1,2 and 3 illustrate how Tg increases as the tank levels 

increase whilst a constant head difference of 1cm is maintained

between the two tanks. Modifying the head difference results in 

substantial changes in Tp as shown in entries 4 and 5.
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