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A bstract

We have undertaken a complete theoretical analysis of the symmetries in the 

local one- and two-body densities of Face-Centred Cubic (FCC) crystals. Using 

both Fourier Path Integral Monte Carlo (FPIMC) and Classical Monte Carlo 

simulations we have performed a through numerical investigation of the symme­

tries in the one- and two-body densities. Simulations have been undertaken for a 

range of rare gas solids. The results of these simulations are found to be in exact 

agreement with the formal theoretical calculations.

Calculations of the quantum kinetic energy of rare gas elements have been 

performed using FPIMC techniques. By taking the semiclassical limit of the 

quantum kinetic energy we have derived a quantum correction to the classical 

Boltzmann kinetic energy to be used in classical Monte Carlo simulations. Com­

parisons of the kinetic energy calculated using the two approaches have been 

performed for a range of rare gases at differing thermodynamic states.
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C hapter 1

Introduction

Since the discovery of the rare gas solids in the late nineteenth and early twentieth 

centuries [23] they have been the focus of continued experimental and theoretical 

analysis. This interest in the rare gas solids is fuelled in part because the differing 

rare gas elements are all chemically identical [32]. Despite the volume of work 

produced [11, 19, 30, 35] rare gas solids remain an area of active interest especially 

where more extreme physical conditions exist [13, 14, 21, 25].

As with many areas of physics there is a close interplay between experimental 

observations and computational simulations. Experimental studies of rare gas 

solids have traditionally been concerned with the phase diagram and the Equation 

of State. The energetic closeness of differing crystalline phases of high-pressure 

4He has driven the need for accurate experimental and theoretical tools with 

which to analyse these systems. The experimental work of Mao et. al. [27] uses
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single-crystal X-ray diffraction techniques to determine the crystal structure of a 

sample. There are a number of experimental challenges to performing accurate 

diffraction experiments. A highly pure sample is required to avoid the possible 

stabilisation of meta-stable states by impurities [27]. Additionally, because of the 

physical constraints of the setup it is not possible to probe all orientations of the 

crystal.

The paper of Mao et at [27] shows that 4He exists as a Hexagonal Close- 

Packed (HCP) crystal at high-pressures in contrast to the predicted Body-Centred 

Cubic or Face-Centred Cubic crystals. Theoretical calculations are now in full 

agreement with these experimental findings [20, 18]. The work of Herrero [20] 

is particularly important as it shows the importance of the choice of potential 

chosen for performing Monte Carlo simulations. The simulations performed in 

these papers are carried out by means of path integral Monte Carlo methods. 

The approach is based on the path integrals of Feynman and Hibbs [15], A 

detailed review of the applications of path integrals to the studies of Helium 

by Monte Carlo methods is presented by Ceperley [8 ]. The review by Ceperley 

highlights the mapping of a quantum system of particles to that of a system of 

classical ring polymers. In this mapping each quantum particle is mapped to 

a ring polymer. The polymers are made up of particles at different imaginary 

times. Interactions between these ring polymers only occur for particles that are 

at the same imaginary time. Additionally, particles may interact with particles

18



that form part of the same ring. As Ceperley states the benefits of this mapping 

are two-fold. Firstly we have a pictorial description of the underlying process, 

but more importantly we have an approach that leads directly to a computational 

method for calculating properties of a system of interacting quantum particles.

Much of the work concerning quantum rare gas solids is concerned with He­

lium. This is due to it being considered the archetypical quantum solid [20]. 

However, experimental studies of other rare gas solids have been performed [13, 

14, 33, 36], Of particular interest is the work of Timms et al [33] in which the 

kinetic energies of solid Neon are directly measured. The work of Timms et al. 

used neutrons of higher energy then had previously been used to probe the Neon 

sample. This led to less uncertainty in the final results. The experimental results 

were found to be in close agreement with results from path integral Monte Carlo 

simulations [33] when the HFD-C2 potential was used. Simulations were also 

performed using the Lennard-Jones potential [33] but were found not to be in 

as good agreement with the HFD-C2 simulations and experimental data. It was 

noted that this discrepancy could be due to slow convergence of the Monte Carlo 

algorithm.

In Section 1.1 we present the motivation for our work. Whilst in Section 1.2 

we aim to give a brief historical introduction to the Monte Carlo method that 

forms the basis of the simulations performed in this work. The rest of this work 

is split into three chapters. Chapter 2  covers all of the theoretical details of the
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work. Results of our simulations are presented in Chapter 3 whilst in Chapter 4 

we discuss other areas where our work may be applied.

1.1 M otivation

Much of the motivation for this work stems from wishing to extend the work of 

Gernoth [16, 17, 18]. The papers of Gernoth set out a formalism by which the 

space and point group symmetries of a known crystal structure can be utilised 

to efficiently calculate the one- and two-body densities. Gernoth has performed 

a rigorous theoretical analysis of the space and point groups of Hexagonal Close- 

Packed (HCP) structures. The findings of these calculations have been verified 

by performing Fourier Path Integral Monte Carlo simulations (FPIMC) [16].

Within this work we aim to extend the formal calculations of Gernoth to Face- 

Centred Cubic structures. Gernoth states that the advantages of employing the 

space and point group symmetries of a known crystal are two-fold. Firstly one is 

able to form a set of rules which the respective densities should conform to. Devi­

ations from the expected symmetries of the densities would indicate a transition 

to another crystal structure type or alternatively another kind of phase transi­

tion, for example when a solid melts to form a liquid. Furthermore a symmetrized 

approach to calculation of the densities using FPIMC and classical Monte Carlo 

simulations results in largely reduced demands upon the CPU, RAM and hard 

disk. This allows one to either reduce the run time of a simulation for a fixed
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simulation size or increase the simulation size without adversely affecting the run 

time as compared to simulations using the unsymmetrized density calculations. 

The one- and two-body densities may be obtained experimentally using x-ray and 

neutron scattering techniques.

Fourier Path Integral Monte Carlo simulations allow the calculation of a range 

of microscopic and macroscopic quantities. Of particular interest to us is the 

kinetic energy per particle for a quantum particle which can be calculated exactly 

using FPIMC methods. This work is aided by deep inelastic neutron scattering 

experiments [22] which give experimental values for the kinetic energy per particle 

with which to compare our results. The work on the kinetic energy is expanded to 

include a quantum kinetic energy correction for classical Monte Carlo simulations. 

This correction allows one to calculate the quantum kinetic energy, for a system 

with limited quantum effects, without the need to perform a full quantum path 

integral simulation. This has the advantage of greatly reducing the computational 

demands required to perform a simulation.

1.2 M onte Carlo Sim ulations

1.2.1 H istory

The origins of modern Monte Carlo (MC) methods can be traced to the pioneering 

work of Metropolis, Ulam and von Neumann [1]. The term Monte Carlo arises
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from the use of random numbers to perform a calculation and is a reference to 

the casinos of Monte Carlo. The use of sampling experiments involving random 

numbers was a technique that had been around for a long time prior to this early- 

work. Allen and Tildesley [1] point out that it was the insight of von Neumann in 

turning deterministic problems into problems of probability that could be solved 

by a sampling approach that enabled this powerful technique to be applied to a 

much greater range of problems.

One of the simplest examples of a Monte Carlo approach is the work of 

Lazzerini in calculating 7T according to a theorem set out by Buff011 [1], The 

theorem states that the probability of a needle crossing a line when it is ran­

domly thrown onto a set of parallel lines is

p = S '  m

where I is the length of the needle and d is the spacing of the lines with d > 

I [1], Lazzerini conducted an experiment [1] where he threw a needle 3407 times. 

Counting the number of times it crossed the lines gave a value for the probability 

in Eq. 1.1 and thus an estimate of the value of 7r.

Allen and Tildesley [1] describe an analogous experiment to calculate 7r, in 

which they consider a circle of unit radius enclosed in a square of sides 2 units 

(cf. Fig. 1.1).

It is possible to calculate 7r by considering the ratio of the area of the circle to
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Figure 1.1: Circle enclosed by square.

that of the square

area of circle 7rr2 tv .
( 1 .2)

area of square (2r ) 2 4 '

Thus if two random numbers x ) y representing x  and y coordinates are drawn from

a uniform distribution between 0 and 1 a test can be performed to see whether the

point lies within the circle. The random numbers need only be drawn from 0:1

and not —1:1 as considering the positive quadrant only does not affect the ratio,

and it is common for computer-generated random numbers to be in the range

0:1. Repeating this procedure for many independent sets of random numbers, an

estimate for tv can be calculated via the following relation

4 x number of sets within circle
tv p s------------------------------------------ . (1-3)

total number of sets

The above approach is simple to program as it can be broken into three repeated 

blocks. Firstly two random numbers are generated. Secondly a test is applied to
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those random numbers. Thirdly counters for the number of sets within the circle 

and the total number of sets are updated. After repeating these steps a number 

of times a final step is needed to calculate an estimate of 7r according to Eq. 1.3.

The application of the above approach to enable calculations of the properties 

of a system of interacting molecules was outlined by Metropolis et al [28] and is 

known as the Metropolis algorithm. A brief outline of the Metropolis algorithm 

is given below. Complete explanations of the implementations used in this work 

are given in Sections 2.3-2.6.

1.2.2 M etropolis A lgorithm

The Metropolis algorithm considers a finite system of N  particles, placed in a 

square1. The system is deemed to be periodic, so that the square of N  particles 

is surrounded on all sides by identical squares of N  particles. When calculating 

distances between two particles i and j } particle i is in the original square and 

particle j  is chosen from any of the squares such that the distance is a minimum. 

Using this nearest-neighbour approach is valid so long as the potential at large r  

is small so that any contributions for large r can be neglected.

The potential energy of the system outlined above can be calculated using

N

^ 'pot ~  v (u?) > (i-4)
i < j

where ry is the distance as outlined above, and v(r) is a pair potential that

1Eaiiy work was performed in two dimensions, expansion to three dimensions is trivial
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accurately describes the system of interest.

The goal of any Monte Carlo simulation is not to calculate the instantaneous 

value of a property F  of the system but its equilibrium value F. The equilibrium 

value in the classical canonical ensemble is given by [28]

p  =  I  F e x p ( - E vot/kT)dR.
/  exp(—i?pot/fcr)dR  ’ 1 ' 1

with k the Boltzmann constant. The integrals are carried out over all of the 

3TV-dimensional configurational space. Since the potential is independent of the 

velocity, there is no need to include additional integration over momentum space.

To calculate the average F  in Eq. 1.5 by employing the same approach as 

used for calculating 7r a configuration would have to be generated at random 

using 3TV random numbers. The property of interest F  would be calculated for 

this configuration and weighted with exp(—Epot/kT).  A subsequent configuration 

would then be generated from a new set of 3TV random numbers. Metropolis et al 

note that this would be an ineffective method to adopt as with any closed-packed 

structure it is likely that the configuration chosen would have very low weight 

associated with it. This is simpler to visualise in the case of hard spheres where 

if two spheres overlap the potential will be infinite and the weight zero.

The solution to this low-weight problem was to choose new configurations 

with probability exp(—Epot/kT)  and weight them evenly [28]. To achieve this 

Metropolis et al proposed that the particles should be placed initially at fixed 

lattice points and the potential calculated using Eq. 1.4. A particle i would then
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be subjected to a random move of the form

X , - Xi -f 5ei

Yi - -»■ Yi -f- 8e2

Zi - -* Zi +  5e3,.

where 8 is a fixed distance and e1? e2 and e3 are random numbers between — 1 

and 1. The change in the potential energy AEpot of the system as a result of 

this move is then calculated. If AT?pot < 0 then the move is accepted. Otherwise 

the move is accepted only if q < exp(“ A£Jpot/A;T) where q is a random number 

between 0 and 1. The averages are then computed using

1 M
f  =  (l 7 )

k=1

where k runs over all accepted moves and is the value of F  after a move has 

been accepted. After an attempt to move a particle the process is repeated for 

all other particles in turn.

26



C hapter 2

Theory

In this chapter we aim to present all the relevant theory behind performing both 

a Fourier Path Integral Monte Carlo (FPIMC) simulation and a classical Monte 

Carlo simulation. We shall also detail the formal calculations required to compute 

the local one- and two-body densities. Our calculations take advantage of the 

symmetries of the space group of the crystal and are herein applied to the face- 

centred cubic (FCC) crystal structure.

2.1 H am iltonian and Estim ators for FPIM C

In quantum-mechanical calculations it is prudent to begin with the Hamiltonian 

of the system. For the case of N  identical spin-less particles the Hamiltonian can 

be written as

ft2 N
H  = T  + V  = - — ^ 2i + V ( R ) > (2.1)

i=l
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where T  and V  are the kinetic and potential energy operators, h is Plank’s con­

stant and m  is the mass of a particle. The variable R  in the potential energy 

represents the 3N  co-ordinates of the N  particles. The potential energy operator 

may be written as a sum of all pair, triplet and higher-order interactions up to

N -body interactions,

N  N

V  = V(R)  = ^  v2(ri)r j )+  ^  v3 (n ,r j ,  r k)-\ vN(ri, r 2> • * • , r N), (2.2)
i<j= 1 i<j<k~ 1

The form of Eq. 2.2 is very cumbersome for calculating potentials. It is customary

and completely sufficient for our purposes to truncate it at the two-body term.

This truncation is standard for rare-gas solids as higher-order terms are known

to be negligible for many purposes. In this work we use a potential of the form

N

V(R)  -  v(nj),  (2-3)
i<j~ 1

where — |r^ — Vj\ is the separation of particles i and j . In our work we employ 

a range of pair potentials that are accurate for the differing systems we study. 

Further details can be found in Section 2.8 and Appendix F.

Whilst the Hamiltonian is sufficient to fully describe the system it is from the

canonical density operator that we are able to calculate the quantities of interest

[16]. The canonical density operator is given by

W(P) (2.4)

where the normalisation

Z(0)  =  Tr{e- ^ }  (2.5)
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ensures that the canonical density operator is unit-normalised, i.e. Tr{W(/3)} 

= 1 . In Eqs. 2.4 and 2.5 we have (3 = 1 /fogT, where is the Boltzmann 

constant. At a given temperature T, we can calculate a thermodynamic property 

P  described by the operator P  by taking the trace of the product of the operator 

with the canonical density operator,

P  =  Tc{PW(P)}.  (2.6)

In order to make use of Eq. 2.6 it is useful to redefine the canonical density 

operator in co-ordinate space representation

W (R ,B ! ;0 )  = (2-7)
A

where ^ \ ( R )  and its complex conjugate ^*x(Rr) are N-body wave functions that 

form a complete orthonormalized set of eigenfunctions of the Hamiltonian H  with 

energy eigenvalues E \ . Using Eqs. 2 . 6  and 2.7 along with the definitions of the 

potential and kinetic energy operators from Eqs. 2 . 1  and 2.3 we can write the 

potential and kinetic energies as

£ pot =  Tt{VW(/?)} =  Tr{V(fl)W-(/3)} =  J  V ( R ) W ( R , R - p ) d R

N

= E
i < j = 1

* 2  N
Ekir, =  Tc{TW(^)} =  - — ^T3r{V?W 0S)}

i= l

=  - £  E / *•> = R)dR .  (2.9)

In Eq. 2.9 we first apply V f to W (R ,  R r\ j3) before setting R '  = R.

29
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Two other quantities of interest are the local one- and two-body densities, 

£>(#) and /92 (a?i, sc2). The one-body density is the probability density of a particle 

being at position x , whilst the two-body density is the joint probability density 

of a particle being at aq when another is at x 2. The respective operators are

N

e(x) = ^2s(x ~ ri) (2-10)
i= l

N

p2( x i , x 2) =  ^ 2  ^ ( ^ i ~ r i)5(x2 ~ r j ). (2 .1 1 )
i^j= 1

Thus we are able to write the one- and two-body densities as

N

q { x ) =  ' i q e ( * ) W ( / J ) }  =  £ T r { 5 ( ! B - r 4) W ' ( / 3 ) }

=  N f w {x , r 2, . . . l M . . . , r N- , W r 2. . . dr N (2 , 2 )

and

N

p2( x x, x 2) = T i { p 2( x u x 2) W( P) }  =  “  r i )S(x2 ~  rj )W((3)}
1

—N ( N  -  1)

x J  W i x u x ^ r a , " 1 ^ N}x i , x 2, r 3r ■ • , r N)P)dr3 - • -drN (2.13)

Eqs. 2 . 1 2  and 2.13 make use of the symmetry property of the density matrix 

under exchange of particles.
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2.2 Sym m etrized R epresentations o f the One- 

and T w o-B ody D ensities

In this section we will provide a rigorous description of the symmetries in the 

one- and two-body densities for an FCC solid. In particular we will discuss the 

Fourier transforms of the respective densities.

2.2.1 Sym m etry  O perators

A rotation of a position vector r  = (x,y,z)  by a general (proper or improper) 

rotation R  leads to a position vector r' =  (x'^y'^z1). Expressed mathematically 

we have

an  ai2 ai3 

a 21 a22 a 23

&31 a 3 2  0 3 3

- -
x'

y' =

ii
“ -

X

y

z

(2.14)

or more simply

(2.15)r'  =  Rr,

where R  is the rotation matrix and r  and r'  are position vectors. The term 

rotation is used to imply both proper and improper rotations. A proper rotation 

is a rotation by some angle about an axis, whereas an improper rotation involves 

a proper rotation followed by either an inversion or reflection [7],

The most important of all symmetry operations is the identity. The identity 

is given the symbol E  in Schoenfiies notation and is the operation of mapping
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the object onto itself. The rotation matrix for the identity operation is the three- 

dimensional identity matrix

R e —

1 0  0  

0  1 0  

0 0 1

(2.16)

Closely related to the identity operation is the inversion through the origin, by 

which a position (x, y, z) becomes (—a;, —y, — z). The inversion operation is given 

the symbol I  and its rotation matrix is given by

R i =

- 1 0  0 

0 - 1 0  

0 0 - 1

(2.17)

The notation for proper rotations needs to specify both the angle of rotation 

and the axis about which the rotation occurs. In this work the angle of a rotation 

is given by 2 ir/n, where n  is the order of rotation. We shall show in later discus­

sions that for crystallographic systems n — 1 ,2 ,3 ,4 , 6  only. Proper rotations are 

given the symbol C. One thus represents a rotation of 180° about the z-axis as

cw.

A reflection across a mirror plane is denoted by the symbol a in the Schoen- 

flies notation. The orientation of the plane is denoted by a subscript which is 

perpendicular to the mirror plane. Thus the operation <j z is a reflection across 

the xy-plane.
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The final type of symmetry operator is that of a combination of a proper 

rotation with the inversion. It can be considered as a compound operation of 

a proper rotation, Cn) followed by an inversion, / .  These operators are given 

the symbol S  in the Schoenflies notation with a subscript of the same form as a 

proper rotation.

2.2.2 L attice, P oin t and Space G roup T heory

A Bravais lattice can be defined as an infinite array of points that appear iden­

tically distributed regardless of the point of reference [7]. Furthermore by using 

the principle of translational invariance [7] it is possible to define a Bravais lattice 

in terms of primitive translation vectors

t  = Tiia +  712b -f r^c, (2.18)

where a  and b are not collinear and c is not coplanar with plane ab. No other 

conditions are imposed on the vectors. The FCC structure is formed by placing 

an atom either at each Bravais lattice point or some identical position from each 

Bravais lattice point. By taking the three vectors a, b and c from a common 

origin we can define a primitive unit cell of the FCC structure that, by definition, 

contains only one atom.

Burns and Glazer [7] show that by considering increasing orders of the sym­

metry operators, outlined in Section 2 .2 .1 , that seven basic crystal structures are 

formed. The seven crystal types are Triclinic (only E  and /) , Monoclinic (one
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B't'B

A t A!

Figure 2 .1 : General lattice configuration.

C2 ), Orthorhombic (two C2 ), Tetragonal (one C4 ), Cubic (four C3), Trigonal (one 

(73) and Hexagonal (one Cq): of which we are concerned only with cubic structures 

in this work. The methods outlined here in our work are valid for all symmorphic 

space groups the meaning of which will become clear later. Burns and Glazer 

[7] also present a rigorous proof that the only allowed orders for the symmetry 

operations are 1,2,3,4 and 6 . The proof is outlined here for completeness.

In Figure 2 . 1  (taken from Ref.[7]) we consider two lattice points A  and A' 

that are separated by a lattice spacing t. A rotation of the vector A A 1 about A  

by a symmetry operation R  leads to a new point B , similarly a rotation of the 

vector A'A  about A! by the inverse operation i ? - 1  leads to a new point B'. We
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find from basic geometric relations that the spacing between B  and B'  is

t' =  —2tcos(o') +  t .  (2.19)

It is a requirement of a lattice that the spacing t 1 is an integer multiple of the 

lattice spacing t .  We therefore have the condition

t r =  m t ,  (2 .2 0 )

where m  is an integer. These two equations lead to

cos(o:) =  ( 1  — m )/2 . (2 .2 1 )

A further requirement is that 0 < a < n [7]. This leads to

| ( 1  -  m )/2 | =  | cos(a)| < 1 , (2 .2 2 )

and

|1 - m |  =  \M\ < 2 , (2.23)

where M  must also be an integer. We therefore have

M  =  -2 ,-1 ,0 ,1 ,2 ,  (2.24)

leading to

a  =  tt, 271-/3, tt/2, tt/3, 0 (2.25)

or put in terms of 2 iv

a = 27r/2, 27r/3, 27t/4, 27t6, 27t/1. (2.26)
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The 32 point groups arise from considering combinations of symmetry opera­

tions. All symmetry operations in a point group must have one point in common. 

A point group is a group in the mathematical sense. The members of a set must 

obey the the following rules for the set to form a group [7].

1. The product of two operations is also a member of the set.

2. The set includes the identity.

3. Each operation has an inverse.

4. Multiplication is associative.

For cubic lattice structures there are 5 point groups of which the highest-order 

group has 48 symmetry operations and is given the symbol Oh in Schoenflies 

notation. These symmetry operations are listed in Appendix D. The point group 

Oh is centrosymmetric.

Finally we come to the concept of a space group, where the various point 

groups are tied to specific lattice types. Space group operators are described by 

the Seitz operator

{R, t } r  = Rr  +  £, (2.27)

where R  is a point group rotation and t  a translation vector. A group is deemed

symmorphic if the only allowed translation vectors, i, are primitive translation

vectors. For simple cubic, FCC and BCC crystals this is the case. In a non-

symmorphic space group certain rotations occur only in conjunction with certain
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non-primitive translations. Multiplication of two space group operators

and {R2 , t 2}, where Ri  and R 2 are from the same point group, is defined as [16]

= + (2-28)

The inverse element {jR,i} - 1  can be derived from Eq. 2.28, yielding

{ R } t } - 1 = { R ~ \  - R~H}, (2.29)

where R _1 is the inverse of the rotation matrix R  and in a Cartesian reference 

frame R - 1  = R T [16].

Transforming a point r  by all rotations M  of the point group will result in L 

unique points being generated, where L < M.  The case of L < M  is easiest to 

imagine for all rotations applied to the origin, (0 , 0 , 0 ), since for any rotation we 

will always reproduce the origin.

2.2.3 T he O ne-B ody D en sity

Our aim in this section is to exploit the symmetries of the crystalline structure 

in calculating the one-body density. To achieve this it is necessary to expand the 

concept of a vector transformation, as used in space groups, to the transformation 

of a scalar function [16]. We outline here the arguments presented by Cornwell 

[10]. The value of a scalar field at a point r  is given by the function f ( r )  in a 

given coordinate system r  = (x^y^z). By choosing a different coordinate system 

(x', y \  z') the value for the same point is now given by the function leading
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to

f'(r') =  f(r).  (2.30)

If the primed coordinate system is a rotation of the unprimed coordinate system, 

r' =  {i?, t}r ,  then Eq. 2.30 becomes

f (r ' )  =  f { { R , t } - 1r').  (2.31)

For a given rotation {P, £} there is a one-to-one correspondence between f ( r )  

and /(t*), allowing us to consider f f as being the result of an operator P ({R>t}) 

acting on / ,

[P({fJ,t})/](r) =  / ( { iS , i } -V ) .  (2.32)

An important property of the scalar transformation operator P  is the result of

multiplication with another scalar transformation operator. We consider two

operators P1} P2 acting successively on a function / ( r ) .

P({Ru  ti} )P ({ P 2 , t 2}) f( r )  =  P({Ru ti})g(r) = g{{Rlt t i} _1r), (2.33)

where

g(r) =  P({R2, t 2})f(r) =  /({fl2,t2}-V) (2.34)

leading to

2 ({i?i,£i}~V) =  f { { R 2 , t 2}~1{ R i i t 1}~lr), (2-35)

Using Eqs 2.28 and 2.29 it can be shown that

{-^2 ^ 2 } 1{ P i,ii}  1 =  [{Ri) t i } { R 2> £2 }] 1 } (2.36)
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leading to

P t t i M i l J P t t i i s . t s M r )  =  P ({ i i1, t 1}{ii2 ,*2} ) /( r ) .  (2.37)

Equation 2.37 is useful as it shows that the scalar transformation operators 

P ({R , t} )  obey the same multiplication rules as the vector transformation op­

erators { R } t}' Where a set of scalar transformation operators involves only

transformations of a group Q, the set is said to be isomorphic to the crystallo-

graphic space group Q [16],

Applying a scalar transformation to the one-body density we see that

=  Q(x ) *} € Q, (2-38)

which states that p(x) is invariant for the space group where Q is the space 

group of the crystal [16]. The invariance property of Eq. 2.38 implies that the 

one-body density also has the symmetries of the underlying Bravais lattice and 

allows us to express g(x) as a lattice Fourier series [16]

e(x) =  Y , p ( K ) e iK‘°, (2.39)
K

where the summation is over all reciprocal lattice vectors. The lattice Fourier 

coefficients are given by [16]

p{K)  =  i J e W e - ^ d x ,  (2.40)

where the integral is over the volume H of a primitive unit cell. The so-called 

time-reversal symmetry, p(—K )  =  p*(K), is a direct result of the reality of g(x),
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where p*(K)  is the complex conjugate. The point group of the reciprocal lattice 

is the same as that of the Bravais lattice [10],

The unitarity property [10] states that for two functions / i  and f 2 their scalar 

product is invariant under a scalar transformation operator, expressed mathe­

matically as

where we have have made use of the invariance property as given in Eq. 2.38.

vectors only out of an asymmetric unit. The one-body density may therefore be 

computed via

where K ( j )  — R j K  with j  enumerating the rotation operations of the point 

group, g0 (K)  is the number of rotations that send K  into itself and go is the total

K

where /  represents the lattice Fourier transform. Replacing f \  with etKa!, f 2 with

q ( x )  and {R , a?0} with {R, we find,

=  ^  f  P{{R, t})g(x)etK(R R lf^dx

=  p(RK), (2.42)

Equation 2.42 permits us to restrict the calculation of Fourier coefficients to K -

(2.43)
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number of rotations in the point group Qq. The derivation of the representation

of the asymmetric unit is given in Section 2.7.2. A useful result is the Fourier

component for K  — 0. Looking at Eq. 2.40 we obtain

p ( K  =  0) -  ^  J  p(x)dx = p0, (2.44)

which is the number of particles in the primitive unit cell divided by the volume 

of the primitive unit cell, i.e. simply the bulk particle density po-

2.2 .4  T he T w o-B od y  D en sity

The symmetries of the two-body density can be considered in a analogous man­

ner to the one-body density. As in Eq. 2.32 we define a scalar transformation 

operator [16]

[^({-R.t})/^] (* 1 , 332) =  h2{{Ri t}~1x i i { R 1t}~lx 2). (2.45)

We employ a change of variables,

S  — ~ (a*i +  x 2) and r  = x \  — x 2 (2.46)

thus allowing the scalar function to be expressed as

h(S ,r )  = h2 (5  +  l r , S -  | r )  , (2.47)

S  being the centre of mass of the particles and r  the relative position vector 

between the two particles. The function space operator from Eq. 2.45 is now
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represented as the multiplication of two operators [16]

[P2 ( {R , t} )k 2](xu x 2) -  [Ps ({R,t} )Pr(R)h\(S,r)  ,

=  (2.48)

where Ps  acts on the centre of mass S  and Pr acts on the relative coordinate r. 

The application to the two-body density />2 (*i, * 2) 15 achieved by setting h2 = p2 

and h — q2. As with the one-body density for a transformation {R , £} of a space 

group Q we see that the invariance property of the two-body density may be 

expressed as

Pa({R,t})Pr (R)e2(S ,r )  =  =  f?2 ( S » .  (2.49)

A result of Eq. 2.49 is that Q2 ( S i r ) may be expressed as a lattice Fourier transform

p2 (S ,r )  =  y 1 u ( r \  K ) e tICS. (2.50)
K

The Fourier coefficients u(r; K )  are given by

«(r; K ) = ^ J  M S ,  r)e~iKSd,S, (2.51)

where as before the integral extends over a primitive unit cell of volume fl.

The two fundamental symmetries of the two-body density are the reality of 

0 2 (*i, * 2 ) and the symmetry under exchange of particles aq and x 2. Furthermore 

since we are dealing with an FCC crystal structure the two-body density is centro- 

symmetric as this is a property of the FCC space group. These three symmetries

42



can be expressed in terms of the Fourier coefficients n(r*; K )  as

u(r; K )  =  u*(r; - K )  reality, (2.52a)

u(r\ K )  = u(—r ; K )  exchange, (2.52b)

u(r; K )  — u(—r ; —K )  centrosymmetry. (2.52c)

The effect of Pr (R) on the Fourier coefficients, with R  a general rotation, is 

Pr {R)u{r; K ) =  u (^ “V; K )

=  ei{RK)s° P j a Ps({R,S0})Pr(R)g2(S,r)e-i^ s d s \  .

(2.53)

Setting S q ~  t } with t  being a primitive translation vector, and taking R  from 

the point group we find

Pr (R)u(r ; K )  =  u(r; R K ) .  (2.54)

We find in an analogous way to Eq. 2.42 for the one-body density, that we can 

now express the two-body density in the symmetrized form

M( K )

f l i , ( s , r ) = £  (2-55)
JFsTeAS j - 1

where we need only consider those K - vectors that are within the asymmetric unit. 

The form of the second sum in Eq. 2.55 ensures that all vectors, R j K , generated

are unique. For every K  £ AS the M ( K )  vectors R j K  with 1 < j  < M ( K ) =

are the M ( K )  distinct mutually symmetry-equivalent X-vectors generated 

from that K  G AS by applying all R  e Go to K .  Here g o { K )  is the order of
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the subgroup Qq(K) C Q0 of rotations that send K  into itself. The rotations 

Rj  producing the set { R j K  |1 < 3 < M (K )}  of distinct symmetry-equivalent 

JT-vectors are in general not unique, however the M ( K ) distinct symmetry- 

equivalent K - vectors R j K  are.

The two-body density as given in Eq. 2.55 can be considered as a sum of 

IT-component functions

& , ( £ » =  t2 (S ,r -,K),  (2.56)
KG AS

where
M ( K )

h ( S ,  r - , K ) = ^ 2  [PARjHr-,  K)]e«R* V s . (2.57)
J= 1

In addition to taking iT-vectors only from the asymmetric unit, further symme­

tries can be found in the expansion of the Fourier components u(r ;K) .  To aid 

with the identification of symmetries it is necessary to rotate the coordinate frame 

such that the iT-vector points along the new £-axis [17]. The rotation is achieved 

by multiplication with a matrix R q{K)  where the rotation matrix R q{K)  is the 

product of two rotations. Firstly a counter-clockwise rotation about the rc-axis 

through an angle 7  is performed, where the angle 7  is the angle that K  encloses 

with the z-axis. A second rotation is then applied about the z-axis, through an 

angle /? which is the angle between the —y-axis and the projection of K  onto the
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icy-plane. The rotation matrix obtained from the above rotations is

^ cos(/?) — sin(j0 ) cos(7 ) sin(/?) sin(7 ) ^

Ro(K) = sin(/?) cos(/3) cos(7 ) — cos(/?) sin(7 )

0  sin(7 ) 0 0 3 (7 )

(2.58)

where

cos (7 ) =

and

cos(/?)

Kz_
\K\

(2.59)

(2.60)
V K 'i + K'i

The function u ( r \K )  in the fixed frame is related to urot('r/;iT) in the rotated 

frame via [17]

WrotO*'; K )  =  u(r\ K)y (2.61)

where r ’ — R q( K ) v . The rotated function uIot(r ']K)  can be expressed as a 

series [17]
00

urot( r ' ; K ) =  Y ,  h<r*\r,Q-,K)dT*, (2.62)
7 = — oo

where 0  and <f> are the polar and azimuthal angles in the rotated frame and

r  — \r\ — | r /| is the relative distance. The functions h j 0i\ r ,  0; K )  are given by

[17]

”277■1 /'*7T
(r, 0 ; K )  =  —  J  urot(r'; K)eT**d4,

2ivV

(2.63a)

u{r \K)e~ ir̂ d4,  (2.63b)

r rzir
/  /  e2{ S ,R 0 ( K ) r j e - iKSe- irt‘dSd4,. (2.63c)

J V J 0

2 vr J0
r  p2ir
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When the symmetries of the space group are applied to the functions hy0t>> (r, 0; K )

we find that only a subset of the infinite series, Eq. 2.62, contributes to iq0t(V; K ).  

These subsets vary depending on the K - vector.

Before we consider the subset of rotations for a given K - vector we shall first 

look at the effect of the fundamental symmetries of the two-body density. The 

exchange of two particles has the same effect on u(r\ K ) as that of an inversion, L  

We have shown that the Fourier component functions, 'arot(?,/; K ), are unaffected 

by such exchanges (Eq. 2.52b). The polar, ©, and azimuthal, 4>» angles of r 1 do 

change under inversion such that

0  —► 7T — 0 (2.64a)

4> —* 4) +  7T- (2.64b)

Thus we find that

oo

«rot(-r';*T)= ^ ot>(r ,7 r -0 ;X )e i7W+,r)
'y——oo 

oo

=  l ) 7 ei7#

=  uwt( r ' \K )
OO

(2.65)

from which we find that

h ^ ( r ,  tt 0 j K )  = ( -1  y h ^ * \ r ,  0 ; K ) . (2 .66)
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The other fundamental symmetry of the two-body density is its reality (Eq. 2.52a), 

<*(»•'; i f  ) = u rat(r'-,K)
OO

=  ' Y  h f ^ { r ^ K ) e - ^
7 =—oo 

oo

=  Y  h - T )(r<e '<K )ei'"1,
7 ——oo 

oo

=  Y  h!y0t){r,Q-,K)ei'>'t', (2.67)
7 = —oo

which yields the following two relations

hJ-lf (r, 0; i f )  =  h\fvot) (r, 0; i f ), (2.68a)

4 rot)(r, 0; i f )  = h f ot){r, 0; i f )  =  h^at\ r ,  w -  0; i f ) .  (2.68b)

Equation 2.68b states that for 7  =  0 the function hg is real. This holds for

all structures including liquids, as it is derived from the exchange symmetry of 

the two-body density and not from the crystal symmetries. Equally important is 

Eq. 2.68a, as this allows us to consider only positive and zero values of 7 , again 

this is due to the symmetries of the two-body density not those of the crystal. 

Using these fundamental symmetries of the two-body density we can write,
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for a general FT-vector, the Fourier component function as

oo
K )  = h ^ \ r ,  9; K )  + ^ ( ^ ( r ,  0 ; K)<f*  +  (r, 0; K ) e * * )

n = 1

(2.69a)
OO

= ^ IO‘>(r 10 ; K )  + Y ,  F i IOt)(r- 6 ; K )  +  h*n̂ ( r ,  0 ; K ) }  cos(n<*)
n = l

oo

+  « X h /t«°t)(r ’0 ; K )  - / t ; (rot) ( r ,0 ; i f ) } s in (ra^) (2.69b)
n—1

oo

=Re { 4 rot)[r, O; -KT)} +  2 ] T  Re { ^ ( r ,  0 ; K ) }  cos(ji0)
77=1

OO

— 2 Im 0 ; .K")} sin(n^). (2.69c)
ra=l

There are six high-symmetry K -vectors associated with the asymmetric unit. 

These are described along with the asymmetric unit in Section 2.7.2. The high- 

symmetry vectors have a degeneracy, go(K), greater than 1 . The degeneracies are 

given in Appendix D along with lists of symmetry-equivalent rotation matrices for 

each high-symmetry vector. For a given FT-vector symmetry-equivalent rotations 

yield the same vector, when applied to K .  It is a result of these symmetry- 

equivalent rotations that further restrictions can be placed on the series expansion 

of the Fourier coefficients.

Considering vectors of the type JFsTi we see from Table D.2 that uVQt(rf] K i )  

must be invariant under the rotations {1,16,21,28} — {F?, t72, cr^} and 

{2,15,22,27} =  {/, C2z> 0 ^2 ) Q^}. The first set of rotations are the symmetry- 

equivalent rotations for the identity, and the second are those that are equivalent 

to the inversion, which must be included because of the fundamental exchange
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(x,y,z)  frame (x^y'jz ')  frame

E E

<7y>

c w

&dl &x'

I I

cw C2y>

°d2 <TZ>

CL

Table 2.1: Laue class for K \  vectors in both primed and nnprimed frames.

symmetry of the two-body density. The two sets together define the Laue class for 

the vectors of type K \ .  The rotations listed are for the unrotated frame, so they 

must be rotated to the rotated frame before applying them to the component 

functions h^ot\  The direction of the group rotations in the rotated (primed) 

frame is given by

n'  =  (2.70)

where R 0(Ki)  is the matrix given in Eq. 2.58. The result of applying this rotation 

to the Laue class is given in Table 2 .1 . Applying these rotations to the component
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functions h1*1011 of urot (r ' \K{)  we find

P e ( E ) P ^ E )  [ ^ rot) 

JU°y).P*(<ty) K rot)

Pe(Cizl)P ^ C 2z,) [h <rot> 

Pt»(a : r / ) P ^ ( ^ )  [ ^ r0t) 

P S(I)P,I,(I)  [h?*>  

P e ( C 2y, ) P ^ C 2y,) [ h ^  

Pe(^z’) P ^ z ’) [ ^ ol) 

P e i C ^ P ^ , )  [/i<r°‘>

(r.e jK O e*^] 

(r.ej-Kije*7*] 

(r .e jK ^ e * 7*] 

(r, 9; K j e * * ]  

(r.e-.JC O e^] 

(r.e jjR T ^e^] 

(r, 0; -ftT1)eî ]

( r . e ; ^ ) ^ ]

^ ( r . e i J C O e ^  (2.71a

/4rot)(r,9 ;-K 1)e~i'#  (2.71b

( - l f / i ^ ^ e j J r O e ^  (2.71c

( - l ) 7 g rot)(r-, 9 ; jKi)e_i7* (2.71d

^ rot)(’". ©; ^ 1)6^  (2.71e

h^ot\ r ,  0 ; (2.71f

(_ l)7 ?l(.°t)(r i 0 ;iiri)ei7  ̂ (2.71g

( - l ) 7 /j<,rot)(r,,0 ;J ^ i)e “i7,>. (2.71h

Adding up all the rotations as represented by the projection operator V (rot) we 

find

p(rot) r/j(rot)(ri 0. K l )eirt 1 1 l 2h(rot>(r, 9 ; lT1)ei7<'' [1 +  ( -1 )7]
8

+  2  h ^ \ r ,  0 ; K i j e ^ *  [1  +  ( - 1 )7]}

1  +  1  1 '1 h['ot)(r, 0 ; K i )  cos(~/4>), (2.72)

and the Fourier component function can be expressed as

^ ( r 'iH T j)  = ^ rot)(r,9;liC1)

+ E
7=1

1 +  ( - 1)7
h(rot)( r ,0 ; i f i )  +  h ^ t)( r ,0 ;J<:1)l cos(7 $

CO

= / £ * %  0 ; if r )  +  2  ] T  St { / ^ ( r ,  0 ; 2 ^ )}  cos(2n</>). (2.73)
n = l
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K -vector Type Allowed components of /i7

Real {0,2n}

k 2 Real {0 , 6 n}, Imag{6 n — 3}

K , Real {0,4n}

K a Real {0,2n}, Imag {2n — 1}

K , Real {0, n}

q Real {0,2 n}, Imag {2 n — 1}

n £  N

Table 2 .2 : Selection rules for h7.

Equation 2.73 shows that the only contributions to the Fourier functions come 

from the real parts of h(-rot  ̂ with 7  being any zero or positive even value.

The workings for vectors of type K 2 - K 5 follow the same approach and are 

presented in Appendix E, the results of which are presented in Table 2.2. The 

symmetries of the two-body density are expressed by /i70t̂  having zero real or 

imaginary parts for different 7 . This only occurs because the relevant symmetry 

operators point along rotated axes, x^y '  or z \  Vectors of type Kq are different in 

that the symmetry operators do not point along rotated axes, the result of which 

is that all values of 7  have both real and imaginary parts, with the exception of 

7  =  0  where the symmetry of the two-body density prohibits any imaginary part. 

It is possible to perform a second rotation such that the symmetry operators do
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now point along (doubly) rotated axes. To achieve this we must first establish 

the orientation of the symmetry rotations in the primed frame given by Eq 2.70. 

The symmetries of interest are {1,2,29,30} or {E , / ,  C'2d} 0 ^4 }, with C'2d and 0 7 5

having direction (0,1,1). Employing Eq. 2.70 we find

/  \

n

cos (/?) sin(/3) 0

sin(/3) cos(7 ) cos(/?) cos(7 ) sin(7 )

 ̂ sin(/3) sin(7 ) — cos(/3) sin(7 ) 0 0 3 (7 ) y

( . . \
\ 1 /

sin/3

cos(/3) cos(7 ) +  sin(7 )

—cos{(3) sin(7 ) +  cos(7 ) 

where for a vector of type K G =  (j} k , — fe), —j < k <  0 , we have

V /

cos(/3) — 

cos (7 ) =

■ f t

leading to

y / j 2 +  ft2 

- k  
\ / j 2 +  2 ft2

/

sin(/3) =  

sin (7 ) —

\ / j 2 +  A;2

y0 ’2 +  ft2 

a / j 2 +  2 ft2

n

\
&2

/c2 + •\/j2+fe2

\ /

(2.74)

(2.75)

(2.76)

(2.77)

(2.78)
•y/7 2 + 2 fc2

0

It is clear from Eq. 2.78 that the direction of the symmetry rotations is within 

the :rV-plane and as such a rotation about the z'-axis will align n! with an axis. 

We define a new rotation matrix R 1 such that we rotate n 1 to point along the
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doubly rotated axis x" where

R' =

/  ̂ ^  ^cos (a) — sin (a) 0

sin(a) cos(o;) 0

0  0  1

with

cos (a)
-nn

The final direction of the rotations is therefore 

n"  =  (R!R0 (K$))T n  =  R'Ro(Ke)Tn  =  R 'n 1 =

sin(cu) =
n

A/n? + TV,a

0

0

(2.79)

(2.80)

(2.81)

\  “ /
and the symmetry operators in the new double primed frame are (13, / ,

0 V/}. The orientation of the symmetry operators is the same as those for vectors 

of type K 4 and thus vectors of type Kq will, in their respective double primed 

frames of reference, follow the same rules as type K 4.

2.3 P ath  Integral Form ulation

The foundation of path integral Monte Carlo (PIMC) methods is the convolution 

property of the unnormalised density matrix W(.R, R'\ j3) — Z({3)W(R, R!\ 0)

W (H ,# ; /? )  =  J  W ( R , R 1\ ( l - q )P )W (R i ,R ! - ,q 0 )d R 1 (2.82)
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with 0  < q < 1 . By applying the property M w times it is possible to obtain 

the unnormalised density matrix for a temperature T  at a higher temperature

{Mw +  1 )T at the expense of a 3NMw~dimensional integral,

Mw / p
vv y —

v=0
W(R, R';0) = J l l W  ( ^  Mw + l )  d R l ' "  dRMw' (2-83)

The key to continuous imaginary time PIMC methods is to increase the effective 

temperature {Mw +  1 )T to one where the exact analytical form of the matrix 

elements in the high-temperature limit can be used. The unnormalised density 

matrix in the high-temperature limit is given by [16]

P
W  I R y ,  R y + lJ

Mw + 1  

m{Mw  +  1) \
2 irph2 )

0

2  ph2

[V{Rv) + V { R v+i ) ] l .
2  {Mw +  1 )

Inserting Eq. 2.84 into Eq. 2.83 leads to

1

(2.84)

W ( R ,  R!\(3 ) =
m

Z(P)

—p A w

Mw

n ^ e x P | - ^

Mw

M w

A w
f  Rv+l Rv

1 t _ 1
-V(R)+  Y / V(Rv) + J ( K ’) (2.85)

11 = 1

where Aw — 1 /{Mw  +  1) and T{(3) is the normalisation integral. Taking Mw  —* 

oo the sums in Eq. 2.85 can be rewritten as integrals along the path from R  to

R!

Mw / tj \ 2
I x £y+ 1  JrCv

iW
R2P{;o)di], (2 .86)

iW
1 ^ W- 1 1 r̂ -
-V(R) + Y / V(Rv) + -V(R!) -  / V(RP(r,))dV. (2.87)

V = 1
2
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In Eqs 2.86 and 2.87 the continuous imaginary time rj assumes all values between 

zero and one. The end points for the integrals are R p ( 0) =  R  and R p( l )  = R 1. 

The notation Rp(j]) in Eq. 2.86 defines the derivative of the 3iV-diinensional 

path, Rp(r}) — dRp{rj)/dr}.

Expressing the paths Rp(rj) as a Fourier series

oo

Rp(rj\ A)  =  R  +  (R' — R)r} +  cq sin(i7T77) (2.88)
i=i

enables us to perform the integration in Eq. 2.86. In Eq. 2.88 A  represents all 

of the 377-dimensional vectors cq. Combining Eqs. 2.85, 2.86, 2.87 and 2.88 we 

obtain

W(R,R<-,(3) =  (2-89)

/

( ° °  /  \  2 oo

where

and

[  V ( R P(r]\ A))dr] (2.90)
Jo

1 /2/?7i2\ 1/2 . ,
• (2-91)
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2.4 N um erical C om putation of Q uantum  Ther­

m odynam ic Estim ators

In Sections 2.1 and 2.3 we outlined the theory behind the calculation, by means of 

a Fourier Path Integral formalism, of various thermodynamic properties for a sys­

tem of 77 identical particles. In this section we aim to discuss the implementation 

of this approach with regard to our computational simulations.

The most straightforward of our estimators is that of the potential energy. 

Recalling Eq. 2.8 and inserting the result from Eq. 2.89 we obtain

Spot =  J  V {R )W (R ,  R ,  P)dR = - t _  J  V(R)E(R ,  A L) da,dR  (2.92)

where

E(R] A l ) = exp j  -  ̂ 2  R 'i A l ) |  > (2-93)

and where we have truncated the infinite series at an upper limit L. The totality 

of the 377-dimensional vectors ai in the truncated expression are denoted by the 

symbol A l where 1 < I < L. The truncation to L  is required to avoid infinite 

series. A partial averaging approach to take into account the higher Fourier 

coefficients I > L is discussed in Ref. [16], however such corrections are found to 

be small for the systems of interest here and can thus be neglected. In addition we 

add a tail correction to take account of contributions to the total potential energy 

for r > vnmit• In this work is an upper cutoff to the relative distance such 

that the system remains isotropic under periodic boundary conditions. Further
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details can be found in Appendix B. The tail correction takes the form [16]

Stail
~ N ~

roo
— 27rpo /  r2v(r)dr.

J Oimit
(2.94)

The estimator for the kinetic energy is more complicated. Full details are 

given in Appendix A and the result is given below;

-®kin — N ^ k BT

2 m I j p y  (^Jo <*?(!- V? _  Sv )vs9 (rp]iM’ a l)) ^

N

xv' A

f 1 j„t 1 r y ^ M A - L )I dri(l r}) ^ ( 1  %) [c
Jo j=1

(2.95)

where the use of Dirac brackets {.. .)s is employed to denote the average w.r.t. 

H. The normalisation integral is given by

T{(3) = J  exp{-{3V(R,R]  AL)} II exp j —  ̂ |  daidR,  (2.96)

where

V(R, it; A l ) =  f  V(R$(m A L))dr,
J  0

(2.97)

is the same as in Eq. 2.90 except that we now take the closed path

L

i ip  (77; A l ) — +  sin ( ^ 77). (2.98)

In this present work we split the kinetic energy into three terms,

S k in  — S f ree +  S 2 +  S 3 , (2.99)
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where

S free  — i V - A ^ T

E . h2p  l
2 2m X(/3) \  

t f p 2 1

[  d r ) ( l  -  r t f  (1 -  8 i j ) v gg ( r ^  (jj; A L)i 
0 <j=i

(2 .100)

(2 .101)

Tp _Cj'i — —
2 m 2 ’(/?)

/  *  *<E
\ j=i

*?(i -»?) E l1 -  50')-pT7^44t/ (r$«0; Ai))

(2.102)

Sfree is the classical Boltzmann free energy for a system of N  particles with three 

degrees of freedom. E 2 and E$ are the two- and formally three-body contributions 

to the kinetic energy. The three-body contributions can be further broken down,

S 3 — E^a + (2.103)

where

Eza — —
K2(32 1  

2m X{0)
/ N

X E C 1 - ^ )
\M=1

f  dq(l -  ( r$ y (»j; A t ))
0 r^y (j7;A £) '  J

(2.104)

contains the three-body terms which are reducible to two-body terms. Conversely

f t p 2 1 '  N
£ 3 5  =  - E  (x - <y u -  iWH1 -  ̂

2m m

Jo r lpitj(rr,AL) '
cl

' U M 1 ~  ( * * * » ) } ) .  * * * >
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contains the irreducible three-body terms.

The averages {.. ,)s  represent Tr ^ Q W (/?) j  where Q is a property described 

by the quantum-mechanical operator Q. Such averages may be calculated via the 

Metropolis algorithm by means of

Q =  2̂ [P Q r'ew +  (1 -  P)<3old] i (2 .106)
all configurations

where P = m in(l,7:>), V  being the associated probability of moving from an old 

configuration to a new configuration and Qnew and Qold are the values of property 

Q in the new and old configurations respectively. A configuration is determined 

by both the positions of the particles and the relevant paths. The value Q must be 

normalised by Afconflg, the number of configurations visited during a simulation, 

i.e. Q =  Q/iVconfig where Q is the normalised property and Ncon&g =  Np * AAeps * 

A/biocks > with N p , ArstepS and Nh\oc\  ̂ being the total number of particles, steps and 

blocks respectively. The meaning of the terms step and block is discussed in 

Section 2.6.1.

In a conventional Monte Carlo simulation a proposed move of a particle, k, 

and its associated path defined by the Fourier coefficients a^fc, would be assigned 

the probability

CT-w exp [  -  Z L t  ( ^ ) 2 -  « new; ^ r v)}
p  = i= r = — 7— - - - - - - - - - - - - - r> (2-107)

e x p | - E f =1 ( 7 ^ )  — PV(R°ld, l t old; A fd) |

where is the Ith 3-dimensional Fourier coefficient of particle k. However by
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sampling the new paths for a particle k from Gaussians of the form 

exp |  — [a<“ew) /  (V 2 aL)]21 , and by moving particle k such that r£ew =  r f d +  

(A-,., Ay, Az)$mc» where 5mc is the move size, and A XiA y)A z are random num­

bers drawn from a uniform distribution, —0.5 < A < 0.5, the probability of a 

move becomes

„  =  eK p{-/?V (ig” , iF " ; A g ” )} .
exp { —/3V(.Rold, i t old; A^d)} ' '

2.5 C lassical M onte Carlo C alculations

The derivation of classical estimators for the thermodynamic properties of in­

terest can be achieved either by taking a purely classical approach or by taking 

the semiclassical limit of the quantum estimators previously derived in Section 

2.4. For clarity and rigour we shall take the former approach and subsequently 

compare our findings with the semiclassical limit of the FPIMC estimators.

The equilibrium value, P, of a quantity, P, in the classical canonical ensemble 

is given by [28], [1],

-  J P e x p ( - V ( R ) / k T ) d R  
f e x p ( - V ( R ) / k T ) d R  ’

where V( R )  is the potential energy of the system as given in Eq. 2.3. Replacing 

P  in Eq. 2.109 by the potential energy V( R)  we obtain

J V ( R ) e x p ( - V ( R ) / k T ) d R  
pot J e x p { - V ( R ) / k T ) d R  ' 1 j
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Comparing Eq. 2.110 with its quantum counterpart 2.92, reproduced below,

# P°t =  J  V  (R )E(R > A l) f j  datd R , (2.92)

H(H;AL)= e x p  j - ^ ( - | - )  -  PV(R, R-, AL) |  , (2.93)

we see that ignoring the normalisation integrals the quantum result reduces to 

the classical one for L = 0. This result should not surprise us since setting L =  0 

removes all paths and we return to point particles. As in the quantum case a tail 

correction of the form
’ OO

=  27rpo / r v{r)dr (2.94)N Oimit

is added to the potential energy.

Classically the kinetic energy for N  particles simply reads

Skin =  J NkBT , (2.111)

which is the Boltzmann energy for 3N  degrees of freedom. Obviously this is very 

different from the kinetic energy estimator from the quantum case Eq. 2.95

Skin = N ^ k BT

ft2/? f  1 '  "
+  '

W )  ( J o  ^  ~ ̂  t - 1 ̂  ~ Si^ V,s (r̂ ; )2m i,3=
N

ft  ̂ f 1 ft (1 \ W l  X \ r p!zj(mA.L)

( r n y f e ^ . ) ) ]  ) _ }  (2 - 1 1 2 1
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Taking the semiclassical limit of the quantum estimator by setting L = 0 to 

remove all paths yields

N

E
 ̂ v ' \ “ u i,j= 1

Ekin = N \ k BT  v f  £  (1 -  Sv)v„(rv )

~P
1

m

' N

E Jo i=1 n,
(2.113)

where we have again used Dirac brackets (.. .)3c to express the average w.r.t. Ec 

with

:(R) =  exp ( - /3 V (ii)}  . (2.114)

The integrals over q can be performed explicitly as there are now no paths

dq( I - 77) =  -  

d q { l - q  f  = l

1

2 ’

1

3'

(2.115)

(2.116)

The resulting semiclassical limit of the quantum kinetic energy estimator reads

h2p  1 / N

Ekin = N ^ k BT  +  6 m X ^

Nf t p 1 1  / y ,
Sm X(/3)

N

E ( x "  6n)-r-v'(rv)
i=i Hi

(2.117)

We recall our earlier definitions of E 2 and Ez being the two- and three- body
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contributions to the kinetic energy which now become

\ j= i L»=i 13

{[vr(R)]2)= .

(2.118)

(2.119)

The quantities in Dirac brackets in Eqs. 2.118 and 2.119 are related to each 

other. Writing the Dirac brackets out in their integral form we see that

j  [ W ( R ) ]  exp (-/?V (R )) dR  =  -  J  [W (R )j V [exp (-/3V (R ))] dR

Thus in the semiclassical limit we find that E 2 and E 3 are related to each other

Gathering all terms together we can see that the simplest form for the kinetic 

energy in the semiclassical limit is

î" = 4 fcBT+£ j 6 3 ) ( f i (  l - 5«)^(r«)) - (2-122)

where the second term can be viewed as a quantum correction to the kinetic 

energy of classical simulations. In our analysis of the quantum kinetic energy

+/? /  [W (R )]2 exp (—pV(R)) dR.

(2 .120)

via.

(2 .121)
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we split the three-body contribution into two parts E$ = E^a +  # 3i» where E3a 

contained those three-body terms that could be expressed as two-body terms and 

Esi contained those terms that were not reducible to two-body terms. Applying 

the semiclassical limit to E3a and ESb we find,

Eia = (2123) 
E36 = - S  (XA ~ w  - wd -\ i j = i  E j  r kj  j  ^

'C

It is interesting to note that in the semiclassical limit E 3  ̂ can be reduced to 

two-body terms only

Em = E$ — £?3a =  — - E 2 — Eqq . (2.125)

This is a direct result of the averages being w.r.t. the classical Boltzmann distri­

bution e ~ ^ R\

As with the FPIMC simulations a new configuration is chosen by moving 

particle k by means of

* T  =  <  + (A., Ayi A2 )5mc. (2.126)

where ^mc is the move size, and A x, A y, A z are random numbers drawn from 

a uniform distribution on —0.5 < A < 0.5. The use of random numbers in a 

computer simulation requires careful consideration, to ensure that such numbers 

are statistically random. A detailed discussion of the implementation of random 

number generators is given in Appendix C.
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2.6 Sim ulation Procedures

Here we shall outline the general schematics for performing a simulation, be it 

classical Monte Carlo or FPIMC. We will make clear any differences between the 

two simulation procedures as they arise.

2.6.1 S im ulation  O verview

A new configuration is sampled from the perfect crystal using the procedures 

outlined in Sections 2.4 and 2.5. We define an attempt to successively move all 

particles once as a step and a block as 1 0 0  steps. To remove all traces of the 

initial perfect crystal we simulate for 1 0 0  blocks and discard all statistics gener­

ated during this time. For simulations of solids this should be sufficient but for 

simulations of liquids it is prudent to check for contributions to the transform of 

the one-body density for K  ^  0, and simulate longer if required before gathering 

any statistics. The final step in any Monte Carlo simulation is to normalise all 

the calculated quantities by the relevant normalisation factor and multiply in any 

prefactors that have been omitted for simplicity.

It is usual to start a Monte Carlo simulation from a perfect crystal structure, 

although the initial configuration for a liquid simulation is irrelevant so long as 

all traces of the initial lattice have disappeared before any statistics are counted. 

A lattice is deemed to have melted if there is no contribution to the Fourier 

transform of the one-body density p ( K ) except from K  = 0 , since we recall that
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from Eq. 2.44 p ( K  — 0) gives the bulk particle density. Simulations of solids are 

performed on a face-centred cubic lattice (FCC), the details of which follow. For 

the FPIMC we must also initialise the paths. This is done by setting all ai to 

zero.

2.6 .2  D iscretised  P oten tia ls

To reduce computational load a discretised form of the potential and its deriva­

tives is used. The potential is initially calculated for a grid of 2881 points between 

0 and rumit. Calculations of energy terms are performed only up to a cutoff dis­

tance rumit which is the radius of the largest sphere that fits inside the simulation 

cell. This is required so that the potential between two particles is a function 

only of distance. A full derivation of rumu is given in Appendix B. The potential 

for a general distance r lying between discrete points n  and n +  1 is given by

v(r) = v(ri) +  +  Ar (2.127)

where dr = rumitl2880, n =  int(r/dr)  +  1 and Ar =  1—  ((n — 1 )dr). The same 

approach is used for both the first and second derivatives of the potential.

2.6 .3  M axim um  M ove Size

The value of Amove strongly affects the rate at which the configuration space is 

sampled. Smaller values lead to moves being accepted more readily but the space 

is explored slowly. Conversely large values lead to low acceptance but successful
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moves are of a greater distance. A naive compromise is to adjust Amove prior 

to gathering statistics such that the acceptance ratio tends to 50%. However 

it has been suggested [26] that a lower acceptance ratio be chosen in FPIMC 

simulations. We have found this to be the case especially for the melting of low 

temperature helium where after 1 0 0 0 0 0  steps we still had traces of the initial 

lattice for Amove — 0.03 , whereas the lattice was completely melted after 20000 

steps with Amove =  0.4.

2.7 The Face-Centred Cubic Lattice

2.7.1 D efin ing th e  L attice and R eciprocal L attice

The basis vectors of the primitive cell of the FCC lattice are

01 =  ^ (1 ,—1,0), (2.128a)

02 =  1(1 ,0 ,1), (2.128b)

a 3 =  |( 0 , - 1 ,1 ) ,  (2.128c)

and are shown in Fig. 2 .2 , where a3 is the volume of the conventional cell and 

a3 =  4/p, where p is the number density of the system being simulated. The 

Bravais lattice vectors t  are therefore given by

t  =  kiai  +  &20&2 +  (2.129)

— 2 (^i ^2’ ~ — ^3> "t ^3 )) fci)&2)&3£^o- (2.130)
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>

Figure 2 .2 : Basis vectors of FCC structure.

68



It is a requirement of the two-body density calculations that an inversion

centre is present at the origin. To achieve this a particle is placed at the centre

of the primitive cell which is repeated symmetrically about the origin. Thus the 

initial configuration R  is written as

R  — a i +  a 2 +  ^ 3  +  2 ^ 0,3’ (2.131)

where ni, 112,113 are integers and —L < n l577,2 , n3 < L, The total number of 

particles, N , is given by N  = (2L)3,

The basis vectors of the reciprocal lattice are given by

Q 'T T  Q - j r  ^ T T

6l =  - Z a 2 x a 3 =  ^  j ( l ,  -1 , -1 )  =  ^ ( 1 ,  - 1 , -1 ) . (2.132a)

Ott Qtt n ̂  r)>7r
b2 =  - ^ « 3 x 0 l =  ^  j ( l ,  1,1) =  ~ ( 1 , 1,1), (2.132b)

b3 =  x a 2 =  — j ( - l ,  -1 ,1 )  =  ^ ( - 1 ,  -1 ,1 ). (2.132c)

A general reciprocal lattice vector may therefore be expressed as

K  ~  kibi +  &2&2 T &3&3, (2.133)

2 tt
=  (&1 +  &2 &3, — fci +  /u2 ~  &3 > — ^ 1  +  &2 T ^3 )) (2.134)

Cb
2<7T

=  —  (i, fc, 0, fci, fc2, fc3 e  Zo, (2.135)

where j, A:, I, are integers given by

j  — ki +  k2 -  h ,  (2.136a)

k = —k\ k2 — k%, (2.136b)

I = —ki -j- k2 T  Â3 j (2.136c)
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from which we can derive the following relations

j  — k = 2 k\ (2.137a)

j  +  I — 2 &2 j (2.137b)

I — k = 2 k%. (2.137c)

2.7 .2  D erivation  of th e  A sym m etric U n it

The choice of asymmetric unit is not unique and the derivations of the one- and 

two-body densities in their symmeterized forms are not affected by the choice 

of asymmetric unit. We define the asymmetric unit within the bounds of the 

conventional unit cell as the volume in K-space enclosed by three high-symmetry 

vectors, K i ,  iT2, and iT3, with

When cut off at x  — a/2, the volume enclosed by the unit, Vas, is given by

where Vcs is the volume of the conventional unit cell. The result of Eq. 2.139 

confirms that the unit chosen has the correct volume, since there are 48 rotations 

in the FCC point group. In general a reciprocal vector, K (AS), in the asymmetric

27T . s
J fi =  — (1 , - 1 , 0 ) 

o

k 2 = —  (1 ,-1 ,1 )
CL

K 3 = —  (1,0,0). 
a

(2.138b)

(2.138a)

(2.138c)

(2.139)
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unit is given by

O nr
K { AS) =  — (j ,k,I), j e  N0 (2.140)

subject to the following conditions

j  — k , j  + l>l — k all even and —j  <  k <  0 , 0  < I < —k.

We can also define three high-symmetry planes as being the planes spanned by 

combinations of the vectors K \ ^ 3 ,

27r
K i  =  aKi  + P K 2 =  —  ( j , - j ,  l), (2.141a)

CL

2 tt
JsT6 =  o ^ i  +  PKi  =  —  (j, k, 0), (2.141b)

Cb

2 tt
K 6 =  +  /?X3 =  — (j, A;, -fc). (2.141c)a

The asymmetric unit is shown in Figure 2.3, in which the high-symmetry lines 

correspond to

K \  —> VM, (2.142a)

K 2 -► TR,  (2.142b)

i<:3 - > r x ,  (2.i42c)

and the high-symmetry planes

K i - t T R M ,  (2.143a)

Ks  -> T X M , (2.143b)

K q TRX.  (2.143c)
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a/ 2

a/ 2

a/ 2

Figure 2.3: Asymmetric unit of primitive unit cell.
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2.7 .3  P eriod ic B oundary C onditions

Periodic boundary conditions are applied to all relative position vectors A l). 

The simulation cell generated using the method outlined in Section 2.7.1 forms a 

parallelepiped and not a cube in our Cartesian reference frame. The implemen­

tation of periodic boundary conditions is therefore complicated by the need to 

rewrite our Cartesian representation of vectors in a cubic reference frame. This 

is required so that any changes in the vectors r\f(r]]AL) due to imposing the 

periodic boundary conditions occur parallel to the Bravais lattice basis vectors 

a i, ci2 or <2 3 .

A general vector in our Cartesian frame X  = (x) y ) z) can be written as

leading to



where the subscript c denotes the cubic reference frame. Periodic boundary con­

ditions are imposed using the following replacement prescriptions

xc — >■ xc — U\ai\ nint [ r ^° , ) (2.147a)\I / \ai\)

Vc — > ye _  L’\a2\ nint ^ j  (2.147b)

— ► zc ~ V \a z \  nint , (2.147c)

where V  = 2L, and nint is the nearest integer function in the FORTRAN pro­

gramming language. After imposing periodic boundary conditions we reconvert 

to the Cartesian coordinates to perform the calculations until further imposition 

of periodic boundary conditions is required.

2.8 Pair P otentia ls

The choice of pair potential, whilst affecting all calculated properties, is not 

critical for a number of physical properties, so long as the potential chosen is 

reasonably accurate. Our work presented here concentrates on Helium for which 

the most common [6 ] [12] [25] [2 0 ] choice of potential is one of the Aziz [2 ] [5] [3 ] 

HFD-B potentials. Other works have used the Lennard-Jones [31] potential or 

have devised their own ab initio potentials [9 ].

We have performed our Helium simulations using the HFD-B2  [4] potential 

given below in reduced form, Eqs. 2.148-2.150,

y (r)  =  eR*(:r), (2.148)
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1.9221529 x 10s

at* 10.73520708

c 6 1.34920045

0.41365922

c w 0.17078164

0* -1.89296514

D 1.4135

m  Pi 10.94

r m  H 0.2970

Table 2.3: Parameters for the HFD-B2 potential.

where

V*(x) = A*exp(—a*x +  fi*x2) — F(x) C2j+6/ x 2:>+Q,
j =o

with

F(x) =

(2.149)

(2.150)exP _ (? -  1)2 > x  ^ D <

1 , x > -D,

where x  — r / r m. Table 2.3 gives the values for the parameters. In addition to

the pair potential we also need the first and second derivatives for the calculation

of the kinetic energy components (cf. Eq. A.20). The first derivative is given by

v'(r) — —— 
rm dx (2.151)
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where

^  =A*(—a* +  2 {5*x) exp {—a*x +  (5*x2} 
ax k

J C 6 C8 C10
~  (&) i “w H— r  H— 77Ta:6 rc8 a: 10

, ^  , , 6 C6 , 8 C8 , 1 0 Clo
v r  +  v r  +  ’T ii-kO IAV Uv

and
2 D /£> , .
^ U “ l l e x p

0 ,

D
x

x < D, 

x > D.

Similarly the second derivative is given by

v"(r ) =  A 4 z v*(x)r'i d'J?

where

d2v*(x) , * - * 2 -,— —̂  =2(5 A  exp { —a x +  /? ar [ 
axz k J

+  A* (—a* +  2(5* x ) 2 exp {—or*a: +  /?*a;2}

-*•<*>  {£+*+M
+  2 F ' ( , ) { ^  +  5  +  ^ }

x °  X J

and

F"(x) = {

6 D2 4 D \
H — exp

x 4 a;3 /
D
a:

\2D ( D iM
2

\ ( D i V l+ — i ) exp -  - - 1_ ar \ x J. \ x J

0 ,

x < D )

x  > D.
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Other potentials used in this work are the Lennard-Jones [16] (Argon) and the 

Tang-Toennies [32] (Krypton) potentials, the details for which are given in Ap­

pendix F. The Lennard-Jones potential is used because of its simplicity to pro­

gram as well as the availability of other results [16] [17] to compare our data with. 

The Tang-Toennies potential allows one to compute the inter-atomic potential for 

all homogeneous and heterogeneous pairs of rare gas atoms. The advantage of 

such a potential is that one can compute properties for a range of rare gas systems 

by simply changing the parameters used by the potential. In addition it provides 

a possible route by which to calculate properties of mixed systems.
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C hapter 3

R esu lts

Whilst our derivations of the symmetry-adapted one- and two-body densities 

apply only to face-centred cubic structures, our work regarding the kinetic energy 

is independent of the structure being studied. As a consequence of this and to 

aid clarity our results will be presented in two sections. The first section will deal 

with our calculations of the one- and two-body densities using the methods set 

out in Section 2 .2 . Conversely the second section will deal with those results that 

are pertinent to our calculations of the kinetic energy in classical and quantum 

regimes. Finally in Section 3.3 we will discuss the numerical accuracy of the 

results presented in the preceding sections.
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3.1 One- and T w o-B ody D ensities

The results presented here are those of FCC Helium at a temperature of 300 K 

and at bulk particle density po = 0.1527 A-3. This thermodynamic point corre­

sponds to one investigated experimentally by Mao et al. [27] and theoretically by 

Gernoth [18]. The work of Mao et  al. [27] shows that Helium forms a hexagonal 

close-packed (HCP) crystal, and it is for this HOP structure that Gernoth’s [18] 

studies are performed. However, it is well known that the FCC and HCP struc­

tures are energetically close [34] and it is with this in mind that we have performed 

our FCC simulations.

We have performed both classical and quantum simulations with 216 parti­

cles. In both cases 200 equilibration blocks were performed before simulating 

for a further 1000 blocks during which we gathered the relevant statistics. The 

quantum simulation was performed with 25 Fourier coefficients and 51 imaginary 

time steps, being the same values as used by Gernoth. We report in Table 3.1 

results for the total energy, the potential energy and the total kinetic energy (all 

per particle) for our classical and quantum simulation as well as results given in 

Ref [18] for the same thermodynamic point but simulated for the HCP structure. 

We see that there is little difference in energy between our quantum FCC sim­

ulations and the quantum HCP simulations of Gernoth. This demonstrates the 

energetic closeness of the two structures. Our results, when compared with those 

of Gernoth [18], also confirm the findings of Mao et al [27] that the HCP struc-
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Etot [K] tftot [K] Spot [K]

Classical (FCC) 2833.87 ±0.50 601.69 ±0.31 2232.18 ±  0.40

Quantum (FCC) 2949.15 ±0.92 589.61 ±0.51 2359.54 ±0.77

Ref [18] (HCP) 2944.87 ±  0.41 592.28 ±0.37 2352.59 ±0.61

Table 3.1: Energies per particle for Helium at 300 K and p0 = 0.1527 A 3.

ture is slightly more stable than the FCC structure. Comparison of our classical 

FCC simulation with both quantum simulations reveals that the classical FCC 

structure is the most stable. However such conclusions have no physical meaning 

except to underline the necessity of including quantum effects.

3.1.1 O ne-B ody D en sity

One of the consequences of our symmetrized representation of the one-body den­

sity is that the Fourier components for all symmetry-equivalent vectors must 

be identical. In Table 3.2 we show the real parts of the Fourier components 

for the three lowest-lying non-zero K -vectors in the asymmetric unit and their 

symmetry-equivalent vectors, calculated in the quantum simulation. Errors are 

of the order 10“4-10-5. We see that there is slight variation in the values recorded 

and this can be attributed to the crystal structure being imperfect. The lack of 

any significant deviation confirms that the crystal possess the symmetries of the 

FCC space group. The results for the next seven lowest-lying K -vectors in the
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Vector type i f 2 Vector type K 3 Vector type K \

p(l, —1,1) =  -0.1263 p( 2,0,0) =0.1185 p(2 ,-2 ,0 )  =  0.0923

p ( - l , l , - l )  =  -0.1263 p(—2,0,0) =0.1185 p(—2,2 ,0) =  0.0923

p(—1, —1, —1) =  -0.1261 p(0,0, —2) =0.1186 p(—2, —2,0) =  0.0924

p(l, 1, 1) =  -0.1261 /i)(0,0,2) =0.1186 p(2,2,0) =  0.0924

p ( l , - l , - l )  =  -0.1262 p (0 ,2 ,0) =0.1190 p(0, - 2 ,  - 2 )  =  0.0921

/»(—1, 1,1) =  -0.1262 p(0, —2,0) =0.1190 p(0,2,2) =  0.0921

jo(—1, —1,1) =  -0.1265 p(0, -2 ,2 )  =  0.0927

p ( l , l ,  —1) =  -0.1265 p(0,2, —2) =  0.0927

p(2,0,2) =  0.0918

p(—2,0, —2) =  0.0918

p(2,0, - 2 )  =  0.0924

p(—2,0 ,2) =  0.0924

Table 3 .2 : Real part of the Fourier components of the one-body density for 

the three lowest-lying non-zero FsT-vectors in the asymmetric unit and their 

symmetry-equivalent vectors. The K - vectors are denoted using the integers j , k , l  

such that K  =  (27r/a) (j, k ) I).
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quantum case and all 10 lowest-lying non-zero K - vectors in the classical case are 

in complete agreement with the expected findings.

We present in Figure 3.1 a plot of the quantal one-body density for the xy- 

plane, centred on the centre of the primitive unit cell. We also explicitly show 

the one-body density along the z-axis and along the ai-axis. The x- and y-axes 

have been labelled such that the particle lies at the origin of the plot as opposed 

to the centre of the primitive unit cell, 1 / 2  (ai +  a 2 +  a3 ). The plot shows that the 

particle oscillates about a fixed point as one would expect for a quantum solid. 

Plots of the one-body density along the x-,y~, and 2 -axes are indistinguishable 

from each other, when plotted in one figure, confirming the symmetries about 

the a;-, y-} and z-axes. Shown in Figure 3.2 is a contour plot for the classical one- 

body density showing the xy-plane again centred on the centre of the primitive 

cell, but showing surrounding lattice sites as well. The axes in Fig 3.2 have been 

shifted so that the origin lies at the centre of the primitive cell. Clearly visible in 

Fig 3.2 are four adjacent cube faces, arranged in a two-by-two grid, with particles 

at each of the corners and one at the centre of each face, thus confirming the 

FCC structure of our simulation. Figure 3,3 is the same plot as Fig. 3.2 but using 

data from the FPIMC simulation. Comparing Figs 3.2 and 3.3 we see that there 

is no difference in the positioning of the particles. However the classical particles 

are more localised as indicated by the higher density at the centre of the particle 

positions.
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Figure 3 .1 : One-body density for solid FCC helium at 300 K and 0.1527 A 3 from 

FPIMC simulation. For the coordinate system shown: —0.5 < d <  0.5.

-a -a / 2  0  a / 2  a
X-Axis

Figure 3 .2 : One-body density contour plot for solid FCC helium at 300 K and 

0.1527 A-3 from classical simulation.
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<  0

-a / 2
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Figure 3.3: One-body density contour plot for solid FCC helium at 300 K and

0.1527 A 3 from quantum simulation.
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Figure 3.4: Contour plot of the difference of the classical and the FPIMC one-

body density for solid FCC helium at 300 K and 0.1527 A 3.
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In Fig 3.4 we show a contour plot of the difference of the one-body density from 

the classical simulation and the one-body density from the FPIMC simulation, in 

the xy-ploiie. The figure shows that classical one-body density is more localised, 

in agreement with the results for the energies. It illustrates the quantal nature 

of this thermodynamic point.

3.1 .2  T w o-B od y  D en sity

The goal of our calculations of the two-body density has been to check the applica­

tion of our symmetrized approach to calculating the two-body density as opposed 

to calculating the two-body density in its entirety. To this end we have calculated 

for each one of the lowest-lying non-zero K - vectors, in the six high-symmetry 

FC-vector classes, the component functions, h^at\  of the Fourier transform of the 

two-body density for 7  ranging from 0 to 15.

The symmetry calculations predict that for high-symmetry FT-vectors there 

will be no contribution to the Fourier transform functions, urot(r ;K ) ,  given by 

Eq. 2.62 (reproduced below)

00

ulot{r '- ,K)= Y ,  (2.62)
7 =—oo

for particular values of 7 . We remind the reader that the angles 6 and 4> are the 

polar and azimuthal angles in the rotated frame and thus the angles at which near­

est neighbours are present are not necessarily the same for differing K - vectors.
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Considering Eq 2.66, shown below,

/^ rot)(r,7r — = ( - l ) 7/i£ot)(r, 6>; K ) ^ ,  (2.66)

we see that h§ot\r> 9; K )  is anti-symmetric for 7  odd and symmetric for 7  even. 

Figures 3.5 and 3.6 show the functions (r, 9\ K 2) and ^ ^ ( r ,  0\ K i)  respec­

tively. We see that in Fig 3.5 the plots for 9 — 35° and 9 =  180° — 35° =  145° are 

antisymmetric and in Fig 3.6 the plots for 9 =  60° and 9 =  180° — 60° =  120° are 

indistinguishable, as should be the case. These angles correspond to those angles 

at which nearest neighbours appear for the two FT-vector classes. It is interesting 

to note that for 9 =  90° there is no contribution for 7  odd. This is explained by 

Eq. 2.66, since it states that such ^ ot(r, 9 \K )  are antisymmetric which is only 

possible if it is zero for all r, when 9 =  90°.

Presented in Figures 3.7- 3.14 are the real and, where appropriate, imaginary 

parts of the functions h j 0t\r>9]K)  for each of the six high-symmetry vector 

classes with 7  chosen such that the predicted patterns (Table 2 .2 ) can be seen 

without overly crowding the plots. Analysing all the component functions we 

find no contributions for those 7  which are prohibited on symmetry grounds. 

In addition where contributions are found they are symmetric or antisymmetric 

according to Eq. 2 .6 6 . Comparison of the classical and quantum simulations 

shows that there is a lowering and broadening of the peak heights and widths in 

the quantum case which as with the one-body density is caused by the quantal 

delocalisation of the particles.

86



0.2
9 = 35 
9 =  90 

9 =  145'
0.15

0.1

-0.05

-0.15

- 0.2
0 1 2 3 4 5 6

r  [A]

Figure 3.5: Imaginary part of component function h^ot\ r ,  9; K 2) for solid FCC 

helium from FPIMC simulations at 300 K and 0.1527 A-3.

0.08
9 =  60 
9 = 90' 

9 = 120'0.06

^  0.04

0.02

- 0.02

-0.04
0 1 2 3 4 5 6

r  [A]

Figure 3.6: Real part of component function /4rot)(r, K \)  for solid FCC helium

from FPIMC simulations at 300 K and 0.1527 A-3.
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0.15
7 =  0 
7  =  2 
7 =  4
7 =  6

oCM

^  -0.05

- 0.1

-0.15

- 0.2
0 4 61 2 3 5

r  [A]

Figure 3.7: Real part of component function hy0t\ r ,  120°; K i)  for solid FCC 

helium from classical simulations at 300 K and 0.1527 A-3.

0.3
0.25 7 =  0 

7 =  6  
7 =  120.2

l O
CO

0.05

-0.05
- 0.1

-0.15
0 1 2 43 5 6

r  [A]

Figure 3.8: Real part of component function h^ot\ r ,  35°; K 2) for solid FCC he­

lium from classical simulations at 300 K and 0.1527 A-3.



0.05

£  -0.05

- 0.1

-0.15 7 =  3 
7 =  9 

7 =  15- 0.2

-0.25
64 531 20

[A]

Figure 3.9: Imaginary part of component function /î rot)(r, 35°; K 2) for solid FCC 

helium from classical simulations at 300 K and 0.1527 A-3.

0.05

- 0.2

-0.25

-0.3
4 62 50 1 3

r  [A]

Figure 3.10: Real part of component function /î rot)(r, 135°; K 3) for solid FCC 

helium from classical simulations at 300 K and 0.1527 A-3.
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7 =  2 -------
7 =  4 “
7 =  6 “

0.04

^  - 0.02

'-0.04

-0.06

-0.08
64 5320 1
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Figure 3.11: Real part of component function hy0t\ r ,  50°; K 4) for solid FCC 

helium from classical simulations at 300 K and 0.1527 A-3.
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Figure 3.12: Imaginary part of component function h^ot\ r ,  50°; K 4) for solid FCC 

helium from classical simulations at 300 K and 0.1527 A-3.
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Figure 3.13: Real pari of component function h^oi\ r : 51°; K$) for solid FCC 

helium from classical simulations at 300 K and 0.1527 A-3.
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Figure 3.14: Real part of component function 130°; K 6) for solid FCC

helium from classical simulations at 300 K and 0.1527 A-3.
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Figure 3.15: Imaginary part of component function h^ot\ r ,  130°; K 6) for solid 

FCC helium from classical simulations at 300 K and 0.1527 A-3.
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Lattice distance Value for p =  0.1527 A "3

x /1 / 2 a 2.10 A

a 2.97 A

y/Z/2 a 3.64 A

\ / 2 a 4.20 A

\ / 5 /2 a 4.70 A

Table 3.3: Nearest-neighbour distances for an FCC crystal.

Calculations have also been made of the angle-averaged radial distribution 

function g(r). This gives the probability density of finding two particles a distance 

r apart. For large r the function g(r) tends to one. The nearest-neighbour 

distances for an FCC crystal are given in Table 3.3. Analysis of Fig 3.16 shows 

all nearest-neighbour peaks to be present with the exception of a peak at \ / 2  a. 

Checking the data file shows a local maximum for r = 4.20, suggesting that the 

peak is obscured by the neighbouring peaks.

3.2 K inetic Energy as a Q uantum  Indicator

We have performed both classical MC and FPIMC simulations for liquid Helium 

for a range of temperatures with a fixed bulk particle number density pQ. The 

initial structure of the simulations is FCC. However, this structure is allowed 

to melt before any statistics are gathered. The initial thermodynamic point
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3.5
Classical
FPIMC

2.5

1.5

0.5

0 1 2 3 4 5 6
r[A ]

Figure 3.16: Radial distribution function g(r) from classical and FPIMC simula­

tions of solid FCC helium at 300 K and 0.1527 A-3.

studied was for a density p0 =  0.02185 A- 3  and at a temperature T  = 1 2  K. The 

temperature is decreased in intervals of 2 K for successive simulations down to 

4K.

Simulations were performed for 216 particles and, for the FPIMC simulations, 

with 900 Fourier coefficients and 181 imaginary time steps. The results for the 

various energy components for the classical and FPIMC simulations are presented 

in Tables 3.4 and 3.5, respectively.

As discussed in Section 2.6.3 the melting of the FCC lattice for very low 

temperatures proceeded extremely slowly. All the results were simulated using 

the smaller move size of 0.03 Awith the exception of the FPIMC simulations at
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6 K and 4K which used the larger move size of 0.4 A. Using the larger move size 

required 200 and 400 melting blocks for, respectively, 6  K and 4 K as opposed to 

600 and 800 with the smaller move size.

As expected we see that the classical results do not give an accurate picture 

of the energies involved. Where the FPIMC potential energy appears to be al­

most constant as the temperature is decreased we see that the classical potential 

energy becomes more negative as the temperature is decreased. More surpris­

ing is that, whilst the total quantum kinetic energy decreases with temperature, 

the semiclassical kinetic energy increases with decreasing temperature, when the 

quantum correction is included. This implies that for highly quantum systems 

the quantum correction to the classical Boltzmann kinetic energy breaks down.

Since for classical simulations the ratio K^jK^ — —0.75 is constant we can 

use this ratio as a measure of how quantum a system is. The ratio K^jK^  

for the FPIMC simulations is shown in Fig 3.17, in which we clearly see the 

increasing deviation from the semiclassical value of —0.75 as the temperature 

decreases. Further investigation of this ratio is required for temperatures outside 

the range presented here to establish the behaviour both as T  approaches zero 

and as T  approaches the quantum-to-classical boundary. The term boundary is 

used to denote the region where quantum effects become negligible as opposed 

to a quantum-to-classical phase transition. It is expected that the curve would 

asymptotically approach the semiclassical limit of —0.75 as T  increases. This
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Figure 3.17: Ratio of K 3/ K 2 from FPIMC simulations for liquid helium at 

0.02185 A"3.

would imply that the curve in Fig 3.17 is not a straight line despite appearing 

to be so. Harder to predict is the behaviour as T  tends to zero, since the only 

contribution to the kinetic energy at zero temperature is from quantum terms. It 

is expected that exchange effects will be present and become important at lower 

temperatures [8 ]. These will be especially important because of the low mass of 

Helium. Additionally the ratio appears to be approaching minus one for T  = 0, 

which would mean that the two- and three-body terms would cancel each other.

Simulations have been also been performed for liquid Krypton at 118 K and a 

particle density of 0.01734 A-3, this thermodynamic point being one investigated 

by Wang et al. [36]. The simulations were performed using the Tang-Tonnies [32]
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Simulation FPIMC Classical

EM [K] -864.77±0.14 —865.81±0.13

Epot [K] —1043.90±0.14 —1044.95±0.13

K tot [K] 179.13±8.71 x 1CT3 179.14±8.24 x 10-'!

k 2 [k] 8.55±5.57 x l ( r 3 8.53±5.14 x 10" 3

k 3 [K] -6.42±6.69 x l t r 3 —6.39±6.45 x 10“ 3

Ksa [K] -7.16±1.01 x lO" 2 —7.14±9.69 x 10" 3

K 3i [K] 0.74±1.22 x 1(T2 0.75±1.16 x 10" 3

Table 3.6: Energies for Krypton from FPIMC and classical MC simulations at 

118K and 0.01734A“3.

potential as described in Appendix F .l. We present in Table 3,6 results from 

our FPIMC and classical MC simulations. Our results for the kinetic energy 

indicate that quantum effects at this thermodynamic point are minimal. The 

quantum correction to the classical Boltzmann kinetic energy is approximately 

2 K and is a valid correction in this very mildly quantum state. The ratio of the 

quantum kinetic energy components K ^/K 2 — —0.749 indicates that we are in 

the semiclassical limit. Therefore simulations for the same density p0 at T  > 

118 K need only be undertaken using the classical simulation techniques with 

the quantum correction term to the kinetic energy added. This will enable a 

larger number of detailed simulations to be undertaken, since the computation
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time for a quantum simulation is proportional to the square of the number of 

particles multiplied by the number of imaginary time steps, whereas the classical 

simulation run time is proportional to the square of the number of particles only. 

Comparison of the radial distribution function g(r) from both the classical and 

FPIMC simulations, shown in Figure 3.18, shows that they are indistinguishable 

on the scale of such a plot. Additionally, we find there is agreement with the 

results reported by Wang et al. [36] as to the location of the maxima and minima 

of g(r). Our results appear to show a slightly higher first peak 3.1 as opposed 

to 2.8. The difference may be due to the differing simulation techniques used to 

calculate the radial distribution function. The data in Ref. [36] is from a Reverse 

Monte Carlo simulation which uses data gathered from extended x-ray absorption 

fine structure (EXAFS) experiments to calculate g(r).

The final set of results to be presented are those from our simulations of solid 

FCC Argon at the triple point, T  =  83.806K and po = 0.02445 A-3. The point 

is chosen so that comparison with results of Gernoth [16] [17] is possible. The 

simulations were undertaken for 216 Argon atoms starting in a perfect FCC crys­

tal structure. As with other simulations 2 0 0  equilibration blocks were performed 

before gathering statistics for a further 1000 blocks. The FPIMC simulation used 

10 imaginary time steps and 25 Fourier coefficients. Table 3.7 gives details of the 

various energy components as calculated in our classical and FPIMC simulations 

as well as results of Gernoth [16]. The results of Gernoth are from an FPIMC
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Figure 3.18: Radial distribution function for Krypton at 118 K and 0.01734 A 3.

simulation at the same thermodynamic point but performed with a hexagonal 

simulation cell. The data in Table 3.7 shows that the kinetic energies at the 

triple point of argon can be simulated using our classical simulation with the 

quantum correction. Comparing the potential energy we see that there is a dif­

ference of 4K between the classical and FPIMC simulations suggesting that the 

quantum simulation should still be used. The difference between the two poten­

tial energies arises from the probability of accepting a particle move and not the 

potential energy estimator. We see that there is a good agreement between our 

FPIMC results and the results of Gernoth as should be the case. This agreement 

for identical thermodynamic points of simulations performed with differing codes 

(albeit using the same simulation techniques) allows us to have confidence that
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Simulation FPIMC Classical FPIMC Ref. [16]

Etot [K] —734.37i0.15 —738.47i8.64 x 10~ 2 -735.474i0.122

Epot [K] -866.15i0.15 —870.18i8.46 x 10“ 2 -867.170i0.23

Ktot [K] 131.78±3.07 x 10~ 2 131.71il.74 x 10~ 2 131.695i0.014

k 2 [ k] 24.31il.39 x 10“ 2 23.86i8.30 x 10~ 3

t f 3 [K] —18.24i2.74 x 10~ 2 -1 7 .8 7 il.5 3  x 10“ 2

K 3a [K] —16.56i3.37 x 10“ 2 -1 6 .2 5 il.9 7  x 10- 2

K Sb [K] —1.68i4.34 x 10~ 2 —1.62i2.50 x 10" 2

Table 3.7: Energies for Argon from FPIMC and classical MC simulations at 

83.806 K and 0.02445 A"3.

there are no systematic errors in the programming of our code.

3.3 N um erical Accuracy and System atic Errors

When performing numerical simulations it is important to understand the lim­

itations of the techniques employed. All observables calculated in this work by 

means of either classical Monte Carlo or FPIMC simulations are written to a 

file after every 100 blocks. This enables one to check that convergence has been 

reached at the end of the simulation. We remind the reader that a block consists 

of 100 steps and a step is attempting to move successively all particles once. All 

results presented in this work show convergence to the values reported, within
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the statistical errors reported.

Statistical errors Ae for a quantity e are calculated by

-^ b lo ck s

-̂ blocks \
(3.1)

where e(n) is the average value of the quantity e during the n th block and (e) is

the average value of e from all blocks.

Whilst the statistical errors can be reduced by simulating for a larger number 

of blocks there will always remain some systematic errors. One of the most 

important issues stems from so-called finite-size effects. Finite-size effects are 

a result of the simulation cell being too small causing the cut-off distance r'nmit 

to truncate the pair potential before it becomes sufficiently small. Additionally, 

care must be taken to ensure that the number of imaginary time steps and the 

number of Fourier coefficients are large enough. In order to assess the effect of 

finite-size phenomena we have repeated a simulation for liquid Helium at 4 K and 

0.02185 A-3. In this new simulation we have increased the number of particles 

from 216 to 512, the number of imaginary time steps from 181 to 201 and the 

number of Fourier coefficients from 900 to 1 0 0 0 . The simulation was performed 

using 200 equilibrium blocks followed by 200 simulation blocks. The number of 

simulation blocks was reduced from the normal 1 0 0 0  as the simulation time is 

proportional to the number of imaginary time steps and to the square of the 

number of particles resulting in a largely increased run time. Table 3.8 shows 

various energy components as simulated for 216 and 512 particles. It is clear that
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■^Particles Total Energy Potential Energy Kinetic Energy

216 -3.22KiO.62K -21.89K i3 .90  x 10“2K 18.67Ki0.62K

512 -3 .17K i0.96K —21.42Ki6.42 x 10"2K 18.14Ki0.96K

Table 3.8: Energies for liquid Helium at 4 K and 0.02185 A 3 for differing numbers 

of particles from FPIMC simulations.

there is no significant change in values as a result of increasing the size of the 

simulation. Thus we have confidence that all results presented in this work are 

not affected to any significant degree by finite-size effects. Figure 3.19 shows the 

radial distribution function for Helium calculated with 216 and 512 particles. It 

is clear that the location and height of the peaks are identical, but that the data 

from the 512 particles are noisier. This is due to the reduction in the number 

of blocks for which the simulation was performed. It is also obvious that the 

increase in the number of particles has allowed the calculation of g(r) to larger 

values of r.
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Figure 3.19: Radial distribution function for Helium at 4K and 0.02185 A 3 with 

differing numbers of particles from FPIMC simulations.
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C hapter 4

D iscussion  and O utlook

In this work we have presented a rigorous theoretical description of the symmetries 

of the one- and two- body densities for FCC structures. Additionally we have 

shown how the quantum kinetic energy can be written as the sum of the classical 

Boltzmann kinetic energy plus explicit two- and three-body terms. We have also 

shown that the semiclassical limit of this quantum kinetic energy can be used as 

a correction to the Boltzmann kinetic energy. The rest of this chapter is devoted 

to discussing areas of possible future work building on the work undertaken in 

this thesis.

4,1 A pplications to Other Cubic Lattices

The theoretical concepts invoked in our calculations of the symmetries of the one- 

and two-body densities are an application of the work of Gernoth [16, 17, 18]. In
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the same way that we have applied Gernoth’s general formalism to FCC crystals 

it is possible to extend the methods herein outlined to other crystal structures. 

From a computational point of view our work would most readily be employed in 

calculations for simple cubic (SC) and body centred cubic (BCC) crystals. This 

is rather straightforward, because the only changes to the code are to the lattice 

basis vectors and associated reciprocal lattice vectors.

We present here the derivations of the JC-vectors for both the SC and BCC 

structures. Taking the SC crystal first and following the approach taken in 

Sec. 2.7.1 the basis vectors of the primitive cell of the SC lattice are

ai — a (0 , —1 , 0 ) (4.1a)

a 2 =  a (1 , 0 , 0 ) (4.1b)

a 3 -  a (0 , 0 , 1 ) (4.1c)

where again we have a3 as the volume of the conventional cell and a3 — 1 /p.

Similarly the basis vectors of the reciprocal lattice are



A reciprocal lattice vector is therefore

K  — k\b\ +  k2b2 +  A>3 b%, (4.3a)

27t
- — /ci,/c2 )/c3 e  Z0, (4.3b)

Cl

27F
=  —  (j.fc.O. 3 , k , l e Z o .  (4.3c)

Cl

No further restrictions are placed on j, fc, 2 for a simple cubic crystal.

The BCC crystal basis vectors are

a 1 =  | ( l , - l , - l ) ,  (4.4a)

a 2 =  |  (1,1,1), (4.4b)

“ 3 =  |  (-1 , -1 ,1 ) ,  (4.4c)

with a3 =  2/ p since there are 2 particles per primitive unit cell. Likewise the

reciprocal lattice vectors are

27T 27T
bi =  — a 2 x a 3 =  —  (1 ,-1 ,0 ) , (4.5a)

Ott 27T
&2 =  ^ a 3 x a i  =  — (1,0,1), (4.5b)

2 tt 27T
£>3 =  -^-ai x a 2 =  —  (0, - 1 ,1 ) ,  (4.5c)

from which a general reciprocal lattice vector can be expressed as

K  — k±bi 4 - k2b2 +  k^b^, (4.6a)

27t
— —  {ki +  k2, —ki — &3, k2 +  &3) , (4.6b)

d

= — (j , k, l ) ,  fc1 ,fc2 l fc3 e z o . (4.6c)
CL
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Using Eqs. 4.6b and 4.6c we derive the following

j  +  k Z =  2k2) (4.7a)

j  +  k -  I = -2&3, (4.7b)

j  - k - l  = 2kx. (4.7c)

Thus the reciprocal lattice vectors K  — ~( j ,  k } I) are subject to
\

j  T  k T  I

j  +  k — I r even. (4-8)

j - k - l

It should be noted that the reciprocal lattice of the BCC crystal is an FCC crystal 

lattice, and the reciprocal lattice of an FCC crystal is a BCC crystal lattice.

The three crystals FCC, BCC and SC all exhibit the same symmetries. As a 

result the asymmetric unit has the same essential shape for all the crystals. How­

ever the different crystals have differing reciprocal lattices and therefore differing 

K - vectors. For the SC crystal this yields as asymmetric unit

JK-(AS) =  — O',*,!). (4-9)GL

subject to j  > 0 , —j  < k < 0 , 0  < I < —k. For the BCC crystal we have the same 

result subject to the extra condition that

j  +  k +  I, j  +  k — I, j  — k — I all even. (4.10)

Additionally the six high-symmetry vector classes have the same form for all 

three crystal types, although the 1C-vectors themselves differ between the lattice
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types. This means that the symmetry patterns seen in the component functions 

hy0t\ r 7 9\ K )  will be the same for the three crystal types for the same IT-vector 

class.

Likewise the symmetrized form of the one-body density is only affected in 

that the specific IT-vectors used in the simulations differ. The values of go(K)  

for IT-vectors in one of the six high-symmetry vector classes are identical for the 

three crystals.

4.2 Q uantum  K inetic Energy

The work presented here sets the foundations for a detailed analysis of the compo­

nents of the kinetic energy to be performed. Of particular interest is the behaviour 

of the ratio of K 3/ K 2 for quantum simulations for a temperature range starting 

in the classical regime and running down to OK.  However since the number of 

imaginary time steps required for convergence increases as the temperature is 

lowered accurate, simulations as T  —► 0 take ever longer to run.

Further extensions could include examining the effect of changing the density 

at which the simulations are performed. Care would need to be taken to check 

whether a physical phase transition from liquid to solid or vice versa occurs. 

Additionally, using the Tang-Toennies [32] potential, simulations for the same 

thermodynamic point could be performed for the differing rare gas elements. By 

using the Tang-Toennies potential differences in energies due to differing pair
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potentials should be minimised.



A ppendix A

D erivation of the K inetic Energy

E stim ator

The kinetic energy estimator Eq. 2.9 and the normalised density matrix Eq. 2.89 

are reproduced here for clarity,

E*  “ =  “ £  E  /  R ’> W ( R ' =  R )d R < (A-1)

W (R,R '-,P)  =  - L eXp { - ^ ( J e ' - i t ) 2} (A.2 )

/ (  OO s v 2 1 oo

expr5fcfe)
Consider

W \ R , R ' - , { 3 )  =  ^ e x p  (A .3 )

xexp | - E ( ^ r )
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We can then apply the operator V f to this expression and obtain

VJW ^R.R';/?) =  - ^ L ( R '  -  R )W \R ,R '- ,P )

- t 3[V'V(R1R ';A )]W t(R ,R ';0 ) (A.4)

V fW ^ R .R ';/? ) =  ~ 3 N W '( R ,R ! \P )

+ (j K j \ r ! - K ) W ( r , r '-,p )

+ K ( r ' -  ft)[V'V(R, R'; A)]W t(R, R'; 0) 

-i?[V'2V(R, R'; A)]W t(R, R'; 0)

+/?2[V'V(R, R'; A ^ W ^ R , R'; 0). (A.5)

After setting R 1 =  R  we are left with

V ?W 1(R ,R ';/J)[R ' =  R] =

l _̂ 3Ar “ = -R)

+/32 {[V'V(R, R ; A )](R  =  R )}2}  x - L  exp{-/?V (R , R; A )}, (A.6 )

where

[V'V(R, R'; A)](R' =  R) =  f  ^ ^ (t,.Al)V  ( r % - ,  A l )) dV (A.7)
i/ o

and

[V'2V(R, R'; A )](R  =  R) =  ^  V (R g fa ; A j )  dr, (A.8 )

with
oo

i ip  (77; A l) =  H  a; sin{77rr?). (A.9)
1=1
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Recalling Eq. 2.93 we introduce the notation

r L
(. . .)s = . . . Ud a t d R ,  (A. 10)

J  1 = 1

where we take the average w.r.t. to S. Using this notation as well as the re- 

parametrisation rj —> 1 — 7] we obtain

Skin =  N ~ k BT + ^ n!> 1
\ [  ( 1  -  ( R “ ( ' 11 ■4 l ) )  * y ,

- T i r m  ( { I (1 - HWd)
(A. 11)

Rewriting Eq. 2.3 for the potential as

n  1 N

V(R)  =  ] T  v(n j ) =  2 E ( !  -  5v M r V), (A. 12)
i < j =1 i , j = 1

where i\j has the usual meaning ry =  |r; — r^|, allows us to cast the potential for 

the closed paths in the form

1 N
V (R 1$(V, A l ) )  =  2 E ( !  -  (!*•“ (*/: Al )  -  r%{m  Al )|) . (A .13)

1

The 37V-dimensional differentiations in Eq. A. 1 1  are defined as



Taking each in turn we find that

= 5 E Et1 - E K$,(mAL)v ( i^ ;Ai) - dyfa Â)l)
i= i  j = i  fc=i

= \  E Ê 1 - *«)v'w - ’’pjfe Â)l)
i= 1 j = l

+f E X> - (J f̂eÂ) - Â)i) •
i= 1 j = l  F,J

(A.16)

The derivatives with respect to particle labels i and j  yield the same result

Vfufln-rsl) = V! (1*1 -  *M|))

Returning to Eq. (A. 15) we find 

1 N
=  J  E (! -  A ^ l )

hj= 1

= 5 E ^  “ (I’A fo  Ai) -  **̂ (*7; Ai)l)
J=1

+ 5 E t 1 -  ^rW.feA,.)*' Ai)l)
i= 1

V V i  jr  \  ^ L )  ~  H ^ V S ' A l )  /  1̂ [c l /  A  \  \ c \  f  A  m \
=  z ^ ( 1 “  Sik)7~Wi----EE----- [c] , , V

i=i \r p jW A L) - r \ , l k(7i't A L) v '

(A.18)
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Inserting the results from Eqs. A. 17 and A. 18 into Eq. A. 11 we obtain

Bun = N Z-k BT  +  g! JL  ̂ £ ( 1  _  Sij) J \  1 -  v)»v„ ( r A t ))
\h3=

p 2h2 l 
2 m X(/?)

N  (  N  „i M

,i=l V. i=l

where in the second term we have introduced

(A.19)

/ ,, x V (rp,i3<JI] A l )\
VS9 ( rp,ij(v; Aj,)) =  2— — — J- +  v" frp  j (?7; A L)) . (A.20)

v 7 r p , i ] ( w A L) v 7

We have also used the following notation for simplicity

=  (A -21)

rp]ij(v; A dl> (A.2 2 )
L

r p]i(v’̂ i )  = n  +  X l a M sin(Z7T77). (A.23)
2=1
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A ppendix  B

C alculation of

The value of rumit is given by the shortest vector from the origin to a boundary 

plane. It is obvious that this vector will be normal to the boundary plane of the 

simulation cell. Choosing the boundary plane as that spanned by ai and <2.2 the 

normal 7112 is given by,

n i  2
ai x a 2 1

|«i x a 2|

( \ 
- 1

and the boundary plane rp by ,

(B.1)

Tp — aLa  1 +  (3 La,2 T T(ui + 0-2 +  0 3 )
/  \

2  +  a  +  /3
La
~2~ — 2 — a  

2 + (3

(B.2)
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where 2L is the number of primitive cells along each of the directions 

a 3. The vector can be written as 7 7 1 1 2 . Setting this equal to Eq.

can solve for 7  yielding

7
V3 - 1  

V V

La
~2

\

- 2 - a

2 +  (3

This leads to three simultaneous equations

J L
V3
7

V3
7

V3

La
( 2  +  a: +  /?),

La
(2 +  /?).

Solving gives

from which we find

7 —
La
v f

7 1 ̂ 121
La La

VS'

a 2 and 

B.2 we

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)
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A ppendix C

R andom  N um ber G enerators

C .l Background

Knuth [24] states that any discussion about random numbers invariably has to 

address what is meant by a random number. It is proposed that the definition of a 

random number is irrelevant since what we require is not a single random number 

but a sequence of independent numbers conforming to a given distribution that 

could have been generated by a chance process [24]. Any number in the sequence 

should be independent of all others, thus if we consider a uniform distribution of 

random digits the probability of a digit being a 1 is regardless of the values 

of the other digits in the sequence.

Early sequences of random numbers were often generated by picking balls 

out of a well stirred urn, or from dice rolls [24]. Various tables of random num­

bers were produced and a range of machines were built to generate sequences
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using electrical noise [1]. These methods were not ideal for use with computers. 

Early computers had limited memory - so storing large tables of random num­

bers was prohibitive. The advantage of using tables was that a simulation could 

be repeated exactly with the same sequence of random numbers enabling accu­

rate testing of simulations. The ability to repeat a sequence of random numbers 

in subsequent simulations was not possible for mechanically generated random 

numbers. Mechanical generators were often slow and could suffer from faults that 

were not easy to detect [24].

The problems of the above methods led to research into generating numbers 

from within a computer program [24]. The idea of using a deterministic algorithm 

to generate a sequence of random numbers may seem perverse. If a sequence 

is governed by a set of equations, however complex, it cannot be said to be 

random. The solution is to realise that what we want is not necessarily a random 

sequence but a sequence that when subjected to a range of tests appears to be 

random. Thus computer-based random number generators can be said to be 

pseudo-random number generators or prn generators.

C.2 Testing Generators

There is a variety of statistical tests that can be applied to a sequence of random 

numbers. The tests are not a definitive guide as to whether a prn generator 

is random or not, but a guide as to how a given sequence compares to a truly
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random sequence. This rather vague definition will become clearer later.

The basis of several tests is the Chi-square test. Assume our prn generator 

gives numbers with a uniform distribution between zero and one. The probability, 

ps, of a given number falling in a range characterised by x is given by ps — 5, 

where i5 < x < (£ +  1)5, where i is an integer such that 0  <  i < S  and 5 = 1 /S . 

Thus if we take N  numbers from our sequence and sort them into S  bins the 

expected number in each bin would be N ps. We would be very surprised if when 

performing this test the number found in each bin, Ys, were equal to the expected 

number, N ps. To see how far our actual distribution is from a perfect normal 

distribution one could calculate the square of the differences between expected 

and actual numbers in each bin

To gain an understanding of what constitutes a good value of V the value can be 

compared with values for a Chi-square distribution with S  — 1  degrees of freedom.

bins the number in the last bin is also known. Comparing our value of V with 

the Chi-square distribution will give us an approximate probability for obtaining 

a value less than or equal to V. We may deem the results suspect if the value 

of V lies in either the lowest or highest 5% of the distribution. It is wise to 

perform the test several times on different parts of the sequence so as to gain an 

idea of whether the generator consistently gives overly large or small values of V.

s
(C.l)

We use S' — 1 since if we know the number of trials and the number in all but one
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This is very important as any local or short-range fluctuations in the distribution 

will potentially be smoothed out for large numbers of trials. The Chi-square 

distribution is not exact but holds in the limit of large N. Knuth states that as 

a rule of thumb one should aim for the expected number in a bin to be > 5.

The above method can be extended to look for correlations between neigh­

bouring pairs, triplets and higher order groups. Considering the case for pairs we 

can imagine that the two numbers (/, r, represent a coordinate in an £, y plane. 

As before the numbers lie in the range 0  < q}r < 1 . Dividing each axis into S  

bins we find that we now have S 2 possible outcomes and a Chi-square test can 

be run for a system of S 2 — 1 degrees of freedom. It is simple to see how this 

example can be extended to triplets and high-order terms.

Another test that can be applied to generators is the run-up/down test. In 

this we look for sequences of continually ascending or descending numbers.

C.3 R esu lts for G enerator used in Sim ulations

In this work we have used the intrinsic Fortran function Random-Number to 

generate our sequence of random numbers, which has a stated period in excess 

of 2 123 [29]. We have applied a range of tests to the random number generator. 

The first test we applied was the Chi-square test for a uniform distribution. The 

test was performed using 100 bins and a range of N. Each test was performed 

10 times. In Table C.l we present the values of the Chi-square distribution for

122



Percentage Points S  — 1  =  99 S -  1 = 9999 S  -  1 =  999999

1 % 69.167 9672.457 996706.837

5% 77.050 9768.207 997680.817

25% 89.152 9903.323 999045.457

50% 98.333 9998.333 999998.333

75% 108.120 10093,949 1000951.816

95% 123.203 10232.046 1002319.435

99% 134.739 10331.448 1003297.069

Table C.l: Values of the Chi-square distribution.

various degrees of freedom and for a range of percentage points. Table C .2  gives 

the results of the tests.

We see that none of our results lie in the top or bottom 1% and that only two 

results are in the top 5% and one in the bottom 5%. Tables C.3 and C.4 show 

results for pairs and triplets of numbers with 9999 and 999999 degrees of freedom, 

respectively. We again find that there is no reason for concern from these results.
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N  = 103 N  =  104 N =  105 N  = 106

ot-HII

117.698 119.190 90.645 97.524 79.027

108.518 123.012 106.611 110.621 88.467

77.109 99.812 91.657 87.206 88.768

110.677 124.770 95.007 104.225 88.293

86.911 121.132 92.383 101.865 117.830

119.887 77.192 126.559 99.897 108.786

115.320 104.488 72.081 97.424 87.531

87.315 101.410 112.977 86.902 104.747

85.287 105.890 113.609 81.571 116.048

78.085 97.951 102.067 83.313 81.996

Table C.2: Results for equidistribution test, S = 100.
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IV =  105

C
Dor—̂II 77 =  1 0 7 77 =  1 0 8

10086.200 9780.468 10060.129 10263.660

10221.520 10159.768 9913.288 9971.971

9992.560 10028.084 9823.239 9774.752

10166.760 9738.988 10004.241 10039.389

9858.880 10067.624 9792.770 9883.390

10032.560 10151.454 10078.918 9854.100

9893.700 10014.748 9911.363 10002.004

9917.680 10277.980 10006.192 9865.168

10046.860 10130.630 9968.404 10017.355

10099.540 10160.420 9794.902 10081.850

Table C.3: Results for pair test, S  =  1 0 0 .
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r-oT-
1II N  =  108 N  = 109

O?“ioT -
1II

998677.400 1000751.360 1000382.466 999830.357

1000065.200 1002248.260 1001454.060 1002062.636

998884.400 998845.720 1000186.832 999451.892

999306.000 999974.440 999011.770 1000821.573

999055.200 999975.220 1000462.778 1001114.548

1000741.800 1000314.960 998836.722 999144.409

999852.800 999853.980 1001937.772 1001235.220

1001161.000 1000066.520 999226.056 999762.387

1002605.200 10001470900 998165.354 1001258.969

1000345.800 998874.920 1000182.846 1000418.725

Table C.4: Results for triplet test, S  — 100.

126



A ppendix D

O y  Point Group Sym m etry  

O perators

In this section we shall list all the relevant point group rotation matrices for the 

FCC point group as well as give details of the Laue classes for the six classes of 

high-symmetry vectors discussed in Section 2.7.2.

An important consideration is the orientation of our reference frame. It is 

the standard in crystallography to define a right-handed coordinate frame with x 

out of the page towards the viewer, y pointing to the right and z in the vertical 

direction, as shown in Fig. D.l(a). We employ a physics frame which again is 

right-handed but now x points to the right, y out of the page away from I the 

viewer and z again in the vertical direction, Fig. D.l(b). The two sets of axis are
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z

X

x

(a) Crystallographic (b) Physics

Figure D.l: Coordinate reference frames.

related thus,

(x :y ,z)  = (yc, - x c,z c) (D.l)

where c denotes the crystallographic frame. For a general vector we have the 

relation

r  —

( \ 
0  1 0

- 1 0  0

y 0  0  ly

f'c =  j ^ r c. (D.2)

The importance of the above relation is that it enables us to express a crystallo-

128



graphic rotation R C) in our reference frame

(D.3)

R 0r ' = R ,R 0r (D.4)

r ' =  RcRar = Rr. (D.5)

Equation D.5 gives us a prescription by which we can generate the rotation ma­

trices for the FCC point group in our reference frame from the same rotation 

matrices but given in the crystallographic reference frame and more importantly 

given in the standard tables [7].

Table D .l lists all the rotations of the FCC point group in our reference frame. 

It is useful to note that the matrix for all even rotations R n is minus the matrix 

of the previous rotation — R n- i  (for the order listed here).

In Tables D.2 to D.7 we give the multiplicity, M (K ), and the degeneracy, 

<7o(-K"), of each of the high-symmetry JT-vectors and the subsets of symmetry- 

equivalent representatives containing those rotations that produce identical vec­

tors. The effect of applying a single rotation from each subset to the high- 

symmetry FC-vector is to reproduce all symmetry-equivalent iT-vectors of that 

type.
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K u M (K ) = 12, g0(k) = 4

{1,16,21,28} {2,15,22,27}

{3,10,18,19} {4,9,17,20}

{5,26,42,45} {6,25,41,46}

{7,32,35,38} {8,31,36,37}

{11,30,33,44} {12,29,34,43}

{13,24,40,47} {14,23,39,48}

Table D.2: Symmetry-equivalent representatives for jFCi -vectors.

K 2, M (K )  =  8 ,So(Jf) =  6

{1,28,30,32,33,35} {2,27,29,31,34,36}

{3,12,18,26,43,45} {4,11,17,25,44,46}

{5,13,16,21,40,42} {6,14,15,22,39,41}

{7,10,19,23,38,48} {8,9,20,24,37,47}

Table D.3: Symmetry-equivalent representatives for K 2-vectors.

K 3 , M (K )  =  6 ,go(K) — 8

{1,4,9,11,13,16,24,30} {2,3,10,12,14,15,23,29}

{5,8,26,31,34,40,43,47} {6,7,25,32,33,39,44,48}

{17,20,22,27,36,37,41,46} {18,19,21,28,35,38,42,45}

Table D.4: Symmetry-equivalent representatives for iT3-vectors.
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7̂ T;, M {K )  =  24,ga(K') =  2

{1,28} {2,27}

{3,18} {4,17}

{5,42} {6,41}

{7,38} {8,37}

{9,20} {10,19}

{11,44} {12,43}

{13,40} {14,39}

{15,22} {16,21}

{23,48} {24,47}

{25,46} {26,45}

{29,34} {30,33}

{31,36} {32,35}

Table D.5: Symmetry-equivalent representatives for ^ -v ec to rs .

147



K s, M (K ) = 24,g0(K ) = 2

{1,16} {2,15}

(3,10} {4,9}

{5,26} {6,25}

{7,32} {8,31}

{11,30} {12,29}

{13,24} {14,23}

{17,20} {18,19}

{21,28} {22,27}

{33,44} {34,43}

{35,38} {36,37}

{39,48} {40,47}

{41,46} {42,45}

Table D.6: Symmetry-equivalent representatives for ^ -vec to rs .

148



JC6, M {K )  =  24,g0(K )  =  2

{1,30} {2,29}

{3,12} {4,11}

{5,40} {6,39}

{7,48} {8,47}

{9,24} {10,23}

{13,16} {14,15}

{17,46} {18,45}

{19,38} {20,37}

{21,42} {22,41}

{25,44} {26,43}

{27,36} {28,35}

{31,34} {32,33}

Table D.7: Symmetry-equivalent representatives for K q~vectors.
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A ppendix E

C om ponent Function h j  Selection  

R ules

We present here the calculation of the contributing components to the series for 

the Fourier components of the two-body density as given by Eq. 2.62, reproduced 

here for clarity
oo

urot( r ' ; K ) =  (2.62)
'y=—oo

A summary table can be found in the main body of this work (Section 2.2.4, 

Table 2.2). The pertinent symmetry rotations for each type of AT-vector are 

those of the Laue class of the JFC-vector. The Laue classes for the unprimed 

frames are formed by combining the rotations that leave K  invariant with the 

rotations produced by multiplying this latter set with the inversion I. The Laue 

classes can be constructed from Tables D.2 to D.7.
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Rotation n n f

E, I ( 0 , 0 , 0 ) ( 0 , 0 , 0 )

adi> Cf2a ( 1 , 1 , 0 ) ( 1 , 0 , 0 )

°d4> Cl2d ( 0 , - 1, - 1) ( - 7 3 ’ “ I ' 0)

^d5: Cf2e ( 1 , 0 , — 1 ) ( ^ . - 1 . 0 )

/'-fit
°3 4 >  ° 6 4 ( - 1 , 1 , - 1 ) ( 0 , 0 , - 1 )

Table E.l: Laue class for ^ -v ec to rs  with directions in unprimed and primed 

frames.

E .l  K 2-Vector Class

The rotations that must be considered for vectors of type K 2 are listed in Ta­

ble E .l with their directions in both the unprimed and primed reference frames. 

The labelling of the rotations in the equations that follow is that of the unprimed 

frame, however they are applied in the primed frame as indicated by n ' in Ta­

ble E.l. The effects upon the angles </> and 9 from applying the rotations to 

the component functions h7 are listed in Table E.2. Summing all the rotated 

component functions we find

■p(rot) ^ (m t) ^  q . K ^ e i70] =  ( ei7t  +  ( _ 1 )7 e -<7#) f 1 +  2  COS

x h ^ \ r , e - , K 2). (E.l)
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Rot n ' 4 9 h7

E (0,0,0) 4 e

I (0,0,0) tfi + n TV — 9

&dl (1,0,0) 7T — (f) 0 ( - l ) 7fc,(r,0; KDe-™

CL (1,0,0) 7T — 6 (—l)7/i7(r, 0; •K2)e- ’7'*'

O'dA (“ 73’ - 1 >0) - w + f ) 9 ei7 f  (_ i)7 /^ (r) 0. K i )e~il<‘

O'db (* > -1 .0 ) \ - 4 9 e ^ i2? (-!)*> h7(r, K*)e-*i*

CL ( - * . - 1 . 0 ) * - 4 7T — 9 e ^ ( - l  V h . i r A K L e - ^ 4’

CL ( * . - 1 .0 ) * f - 4 n — 9 e-i~rf ( - ly r ^ r , *T2)e

c l (0,0, —1) 4 + > f 9

r-<+
U 34 (0 ,0 ,-1 ) 4 - f 9 e-i7TEftT(r,0;K'2)ei7*

^ 6 4 (0 ,0 ,-1 ) (j> +  f ir — 9 e-i7TEft7(r,0;ir2)ei'1"'’

s i i (0 ,0 ,-1 ) IT — 9 e ^ h ^ r A K L e 1'1*

Table E.2: Effect of iT2-rotations on component functions.
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We find that there are three sets of values for 7 ;

-a II CO i  e  Z0j (E.2a)

7 =37' + 1 l '  £ Zo, (E.2b)

7 =37' + 2 y  e Z„. (E.2c)

Taking each in turn we find:

• 7 =  3j '  cos (7^-) =  1, leading to the following contributions to the 

Fourier transform, urot(r\K2)i (neglecting normalisation factors).

(r> 0; ^2) cos(6n</>) (E.3a)

ihtot%(r> ^ K 2) sin([6n +  3]<£) (E.3b)

• 7 = 87' + 1 —*• cos (7—) = — |  and hence 1 + 2 cos (7^ ) = 0, resulting in

no contribution to the Fourier transform uvot(r; K 2).

• 7 = 3y  + 2 —* cos (7^) = — 2 similarly to the previous case, leads

to no contribution to the Fourier transform urot(r\ K 2)-
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Gathering all contributions together the series representation of the Fourier trans­

form of the two body density can be expressed as

oo
umt(r-,K2) = £  h ^ ( r , e - ,K 2) e ^  (E.4)

7=—oo

= 4 rot)M ;isr2)
oo

+  E  8 \ K 2) + t i£ * \r ,  9-, K 2) \  cos(6n<j>)
n= 1 

oo
+  i ^ 2  e \K 2) sin([6n +  3]</>)

n =0 
00

+  i J 2  h-tn+slG 0) K 2) sin([—6n +  3]0 ). (E.5)

Rewriting the last term as i Y^=o ^2) sin(—[671 +  3] )̂ yields

«rot (r;K 2) = 4 lot)(r,e;K-2)
OO

+ ^  ^2) + ^6n0t)(G ^ 2)} cos(6n0 )
n = l

00

+ i Y2  { t t ( b  ^ ^2) -  ^ei+3 (r> #5 ^ 2)}  sin([6n + 3]0 ) (E.6)
n=0

=3f}{4lot)M ,.K 2)}
OO

+  2 K { 4 f :’(r, 0; K 2))  cos(6ntf)
n = l
00

“  2 ]C  ^ {^6n+3(G -^2)} sin([6n +  3]<£). (E.7)
n=0

Equation E.7 states that for 7 y  3n, n 6 Z0, there should be no contribution to 

the component functions hy and that for 7 = 6n, n G Zo, and 7 = 6n + 3, n 6 Zo, 

there should be no imaginary or real contributions, respectively. In obtaining the 

final result we have made use of the reality of urot(r\ K 2) to extract the relevant
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real and imaginary parts of the component functions.

E.2 K s-V ector Class

We present in Table E.3 the effect of each rotation on the angles (j> and 0 , In the 

same manner as for vectors of type K 2 we sum the effects of all rotations on the 

component functions ĥ ,

pd-ot) = ™ j2 [l +  ( - l)T ]^ °t> M ; lt3) [e*7* +  e"*7*]

2 [jT +  ( - i ) 7] h%ot) (r, 0; Ka) [e<7* +  e" ^ ] }  (E.8)

= J I1 +  *7] I1 +  ( - 1)7] h%ot) (r>•K's) cos(70) (E.9)

The expression E.9 has four possible results:

•  7 — 47^ T  1 —  ̂ [l T  [l T  (—f)^] =  Oj

•  7  =  4 7 ; +  2 - *  [1 + i * ]  [1 +  ( - l ) 'v ]  =  0,

• 7 =  4V + 3 -» [1 + %r] [1 +  (-l)'r] =  0,

•  ^ =  4 y  _> [1 +  if] [1 +  (—1)^] =  4,
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Rot n ' 4> 9 Ily

E ( 0 , 0 , 0 ) 4> e hy{r,6->K 3)e ,o*

I ( 0 , 0 , 0 ) (f) T ix 7T —  6 h y {r ,9 - ,K 3) ^

< J y ( 1 , 0 , 0 ) 7T —  (f) e ( - 1  )o h y (r ,9 - ,K 3)e-+<+

C2y ( 1 , 0 , 0 ) ix —  0

( 0 , 0 , 1 ) 7T +  (f) e ( - i y h y ( r , e - , K 3)<?T*

Ox ( 0 , 0 , 1 ) <i> 7x — 9 { - l ) V h {r ,9 - ,K 3) ^

C L ( 0 , 0 , 1 ) |  +  4> e ■Ph,,(r, 6; K 3)e '^

( 0 , 0 , 1 ) I +</> ix- 9

( 0 , 1 , 0 ) e hyfr, 9; K 3)e~ij'l‘

c 2z ( 0 , 1 , 0 ) 7T —  <j) ix — 6 h7(r, 9; K 3)e~,', >̂

&dQ ( - 1 , 1 , 0 ) ! - * e i<hy{r, 9; K 3)e~i’vl'

C'2 f ( - 1 , 1 , 0 ) - I - * 7x — 6 P h yfr ,  6 ; K J e - W

&d4 ( 1 , 1 , 0 ) - % - < p e { - i )- ih y (r ,  9;

o l2d ( 1 , 1 , 0 ) % - 4 > 7X — 9

S~i+U 4x ( 0 , 0 , 1 ) 9 { - i ^ h y ^ e - K ^

( 0 , 0 , 1 ) * - ! 7x — 6 P h y lr ,  9; K ts je W

Table E.3: Effect of -K -̂rotations on component functions.
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Rot n ' 0 e h y

E (0,0,0) 9 h ^ f a B i K j e W

I (0,0,0) (j) -{- 7T n  ~  9 h7( r ^ ; K 4) e ^

(1,0,0) n  — (j) 9 ( - l ^ h ^ B - K ^ e - ^

C5. (1,0,0) -(f) ix — 9 ( -1  ) ^ 7(r ,0 ;K 4) e - ^

Table E.4 : Effect of ^-rotations on component functions.

where for all cases we have 7' € N0. The expression for the Fourier transform can 

now be written as

Urot ( r \ K z) =h^ol\r ,e - ,K 3)
OO

+ X  h4 n \ r> cos(4n</>)
n= 1 
00

+ X hi^ ot) (r> ̂  K $) cos(4 n 4>)
n—1

oo
= K { 4 rot>M ;  JT3)}  + 2 ^ 5 R { / lt t)(>'^;-^3)coS( 4 ^ ) }  . (E.10)

n = l

E.3 K ^-Vector Class

Table E.4 lists the effects 011 the angles </> and 6 . Following the process previously 

employed we find,

p (ro t) g. =  h M ) ( r , 0; K A) +  (-1)"1 e ^ )  . ( E . l l )
Zi
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The Fourier transform is then written as

U r o t ( r ; * r 4 )  = / 4 r o l ) M ; ^ 4 )

oo
+  E  0; K 4) +  h £ ot)(r, 0; Jf4)}  cos(2n<£)

n=l
oo

+  i X  ^ ° + i( r ’ ^  ^ 4 ) sin([2n +  1]^)
n=0 
00

+  i ^ 2  h - 2n-i(r > ^ 4 ) sm (-[2n +  1]<£) (E.12)
n=0

= 4 rot)(r,e;i<-4)
OO

+  X  { (r> ^  ^ 4) +  ^ 2n0t) (^. - ^ 4 ) } COs(2n<£)
n—1

00

+  * X  h**+i(r =05 ^  sin([2ri +
n=0
00

+* E ̂  (r> K*) sin(i2n+^  (R13)
n=0

= » { / 4 ro *) ( r , 0 ; l f 4 ) }

OO
+  2  E  ’ ( r ,  0 ;  J f 4 ) }  c o s ( 2 n < A )

n = l
00

“  2 X ^  ^ 4)} sin([2n +  l]<p) (E.14)
n=0

E.4 K 5-V ector Class

The relevant rotations and their effects 011 the angles cj) and 6  are presented in 

Table E.5. Summing the rotations we find

V (rot) [ ^ lot)(r, 0; K B)e**] =  h<rot>(r, 0; K s) cos(7^), (E.15)
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Rot n ' 9 h 7

E (0,0,0) 4> 9 h y i r A K ^

I (0,0,0) (j> +  7T 7T  —  9 ft7(r,0;K'5)eî

(0,1,0) 9 /iT(r, 6; iCs)e ,7,/'

c 2 z (0,1,0) 7T — ( f ) 7t  —  9 h y ( r , e - , K s ) e - * i *

Table E.5: Effect of .KVrotations on component functions.

and the Fourier transform becomes

oo
Urot(r;JC5) =  ^ M ' ot)M ; * y }  + 2 Y , ^ { h t t)(r,e-,K5)}cos(n4>) (E.16)

n = l
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A ppendix F

O ther P otentials

We present here the relevant details to calculate the Tang-Toennies and the 

Lennard-Jones potentials, their first and second derivatives and the tail correc­

tions as defined in Eq. 2.94.

F .l  Tang-Toennies P otential

The Tang-Toennies potential [32] is formed from the sum of two potentials, the 

first being a repulsive short-range potential and the second a long-range attractive 

potential,

N C
V(r) =  Vtep(r) +  K ttW  =  A exp(-br) -  ^  f 2n ( b r ) ^  (F.l)

n = 3

with
2 n  fe

f 2n(x) = 1 -  exp(-x) (F.2)
k=0
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Parameter Value (reduced units)

A 26285083

b 3.524339

Cq 898647.3

C8 8129980

Cw 84551104

Table F .l: Krypton parameters for Tang-Toennies Potential.

The sum in Eq. F .l should include enough terms such that convergence is reached. 

Tang and Toennies [32] state that IV — 5 is sufficient even though convergence is 

not reached as corrections from higher-order terms are compensated by the choice 

of parameters A  and b. The parameters for Krypton are given in Table F .l. The 

first and second derivatives as required for computation of the kinetic energy are 

given below,

=  -A b exp {-b r)  +  Y ,  ( ( v  +  6)  /2n(6r) "  . (F-3)

g
d2V(r)  2 (  (2n)(2n +  l) „ ,

exp(—6r) + --------------------------------LM b r )
72=3 ^

-  ^ r { f 2n{br) -  f 2n-l(br))

+  b2 (f 2n(br) -  2 f2n-i(br) +  / 2n_2(&r))^ . (F.4)
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Parameter Value

e 119.8K

a 3.405 A

Table F.2: Argon parameters for Lennard-Jones Potential.

The tail correction is calculated using Eq. 2.94 and turns out to be

TP  . f ° °
tai1 —27rp0 /  r 2v(r)dr

JruN

=27rp0 .Aexp(-ftr) ( 62r'imit + 623&rilmlt +  2

, , s n  n ^  ( 2C^  , 3 ! - C s &5 , 3! • Ciofo7
+  (/3(frr limit) — 1) I — -----1------ ^ ^ --1-

V 61 8! -5 10! * 7

limit

-S r ~  (fio(brumit))
limit

(2.94)

(F.5)

F.2 Lennard-Jones P otential

The Lennard Jones 12-6 potential is one of the most common potentials used due 

to its simple form,

V(r)  =  4e
<j\ 12 / rr\ 6

T ) WO ' (F.6)

We present in Table F.2 the values of e and a used for simulating Argon. The 

first derivative is given by



and the second derivative by

d2V(r)  
dr2

f  156<j12 
\  r 14

with the tail correction being given by
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