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SUMMARY

This thesis deals with the determination of temperature distri-
butions in the workpiece, tool and chip during orthogonal machlning
using the Galerkin approach of the finite element method for a wide range
of cutting conditions., The finite element analysis (including the conp=
uting time) for one test condition has been carried out using linear as
well as higher-order elements with different mesh patterns for optimising
the choice of an element. Based on a compromise between accuracy and
computing time, the remainder of the ﬁork was undertaken using quadratic
quadrilateral elements.

The sclution of the problem takes into account the actual geometries
of chip and tool, experimentally obtained velocity and heat source dist-
ributions within the primary and secondary zones and the variation of
density, thermal coﬁauctivity and specific heat with temperature. It
also takes into consideration the variation of the flow stress with strain,
strain-rate and temperature and the heat generation due to boundary Lfri-
ction on the rake face and along the flank face of the tool, The frictionﬁl
stresses have been estimated on the rake face according to Zorev's sug-
gested analysis of friction at the tool-chip interface and have been cale-
culated along the flank face Lrom experimentally obtained forces.

The action of coolants on the temperature has been included in the
analysis. In addition to this, the effect of other process variables
such as speed, Ieed, rake angle, tool flank wear and tool material proper—
ties on the temperatures has also been‘investigated. 'The computed results
are compared with previous published work and, wherever possible, with

experimental values obtained by the author.
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CHAPTER 1

INTRODUCT ION

The importesnce ¢of the chip~tool interface femperature distriﬁutions .
has been recognized by many investigators (1 - 8) for several purposes.
These inélude the determination of the causes of the tool wear, esti=
mation of ftool-life and the analysis of metal flow on the rake=face of
the tool, Temperature distributions in the workpiece are also'neces—
sary for studies of material properties where machining is used és a
materials test (6, 7). It is not surprising, therefore, that consider-
able efforts have been made to assess temperature distributions by
both experimentaliand theoretical means,

The classical tool-work thermocouple method was used by Gottwein(9),
Shore (10) and Herbert(1ll) to measure the average témperature of the
chipjtool interface. The temperature distributions were obtained
experimentally by the techni&ue of embedded thermocouples by Shaw et al
(12), Hollander ef al(13) and Reichenbach (14) in the workpiece and
chip. Kusters (15) and Qureshi (16) embedded thermocouples in the
tool and obtained three dimensional temperature distributions by extra~
polation. But, the embedded thermocouples interfere with the normal
heat flow; extrapolation_involves inherent inaccuracies and, sometimes,
the procesgs is extremely time~consuming.

Radiation techniques have been used by many research workers
including Lenz (17, 18), Prins (19) and Boothroyd {20) for determining
the temperature distributions at the surfaces of the tool and workpiece,
The problems associated here are the precise calibration of the pyro-
meters and the need of preheating the workpiece for infrared photography.
Allthoughh these problems obviously affect the reliability of the results,
‘useful iﬁformation has been.obtained,

In view of the limited accuracy and practicabllity of the experi-




2.
mental methods, many attempts were made to solve the problem analyti-
cally, Trigger and Chao (21-23), Hahn (24), Leone (25), Loewen and
Shaw (26), Weiner (27) and Rall and Giedt (28) made significant contri-
butions to the analxﬁical studies on the temperature distributions at
the shear plane and tool-chip interface. All analytical attempts necésr
sitated the use of an idealized model of the cutting process. Plane
heat sources of uniform strength were assumed to represent the heat
generafion due to primary shear deformation as well as chip~tool

P
interface friction. The secondary deformation zone has~uspally been
neglected. Scrutton (29, 30) assumed the heat to be generated in two
finite regions, the shear zone and the secondary deformation region
near the chip-tool interface and derived the equations for the temp-
erature distributions valid for the upper boundary of the shear zone
only.

In the numerical analysis of the problem, Vieregge (31) used a
?iﬂite difference method to compute the temperature distribution.‘
Rapier (32) and Dutt and Brewer (33) used relaxation methods to compute
the temperature distribution in the chip, tool and workpiece. All the
analyses reported above have assumed plane and‘uniform heat sources
which obviously influenced the accuracy of the results obtained.

Altan, QOstafiev and Kobayashi (34) obtained the temperature distri-
butions in the workpiece, chip and tool during orthogonal cutting by
finite difference formulations based on an experimentally obtained flow
field. They neglected the initial temperature increase of the &ork-
piece due to the removal of layers before the chip was cut which seems
to have resulted in predicting lower temperatures. Mansour et al (35)
used a quasi~finite element approach to compute the temperature distri-~
bution based on some known nodal temperatures. However,vthe informa~-
tion about the heat sources is lacking and the precise experimental

determination of the initial temperatures at some strategic nodes is




3
the necessary requirement., Tay, Steyenson and Daéis (36) computed the
temperature distributions in orthogonal machining using the variational
approach of the finite element method based on experimentally determined
flow stress and strain~rate distributions in the shear zones. Even though
the method of Tay et al (36) takes substantial computer time for compu-
tation and the effect of coolants on temperatures has not been included
in the analysis, it is a significant contribution to the numerical analysis
of the problem. Recently, Shafto, Howes and Andrew (37) predicted work-
piece temperature distributions in creep feed grinding using a finite element
model,

It is evident from the process review above that the nature of the
velocity and the heat source distribut;bns and the complexity of the problem
boundary preclude any accurate solution using analytical or finite dif-
ference methods, However, the finite element method (f.e.m.) has all the
provisions for arbitrary geometry, orthotropic materials and arbitrary
boundgry conditions and has, therefore, been used here. Complex bodies
composed of many different isotropic materials such as tool and workpiece
with significant variatioms in specific heat and thermal conductivity with
increasing temperature are easily handled by f.e.m. Temperature or heat
flux boundary conditions may be specified at any point within the finite
element system, Moreo§er, mathematically, the method can be shown to con-
verge towards the exact solution as the number of elements is increased (38),
provided the criteria for convergence is satisfied by the element,

Of the various approaches to finite element formulation, the minimi-
zation of a functional is the most widely accepted means of arriving at a
finite element representation, but it is not the only and most efficient
approach. The methods of weighted residuals permit consistent finite element
rep{esentation to be obtained without recourse to variational theorems., These
methods, based on the error distribution principle, aim at the minimization

and distribution of the error with the help of a weighting function W(x,y,z),




in such a manner that the net result will be zero, i.e.,

SS‘S R(x, v, z) . W(x, y, z) dx dy dz = ©

where R(x, y, z) is an unknown function to be solved. There are
various approaches to this technique depending upon the nature of the
weighting function (54). The Galerkin process (38, 50, 53), a potential
method of weighted residuals for the f.e.m, with a distribution function
the same as the weighting function, leads in general to the best approxi-
mation (39) and has, therefore, been used for the.present analysis.

In the present investigations the temperature distrihutioﬁ problem
in orthogonal machining is formulated and solved in terms of the finite
element process using the Galerkin approach, The finite element solution
takes into account the actual geomefries of the chip and tool, experiment-
ally obtained velocity aﬁd heat source distributions within thé primary
and secondary zones and the variation of density, thermal conductivity
and specific heat with temperature. It also takes into consideration the_
temperature increase due to boundary friction on the rake face and along.
the flank face of the tool. Tﬁe frictional stresses have been estimated
on the rake face according to Zorevls (40) suggested analysis of friction
at the tool~chip interface and have been calculated along the flank face
from experimentally obtained forces. The action of coolants on the temp-
eratures has also been included in the analysis; The computed results
are obtained for différent cutting speeds, feeds and rake angles with
high speed steel as well as carbide tools using higher=order quadrilateral
plate elements and have been verified experimentally, wherever possible,
However, for one test, simple and higher-order elements have been used to
compare and asgess in each case the accuracy that is obtained and the
computational time that is required when the number of elements used in
the idealization of the problem fegion is progressively increased,

The finite element formulations and the basic theory ,are described

in the next chapter. To perform the analyses, some starting data are to be




determined experimentally and some are to bé calculated based on certain
assumptions as described in Qhapter III. Computer programs are required
which will determine the element matrices and the heat load vectors,
generate the system matrices, determine the temperature distributioﬂs and
represent them graphically. The programs which have been dgveloped to
perform these functions and the underlying computational methods are des-
cribed in Chaptér IV. The computational and experimental results a¥é
compiled and discussed in Chapter V. The concluding remarks are included

in the final chapter,




CHAPTER II

THE _FINITE ELEMENT METHOD

2.1 Introduction.

The matrix methods of analysis based upon the finite element
idealisation have been applied to the analysis of a wide range of problems
in mathematical physics in a.number of ways. The phenomena studied have
included heat transfer (36-38, 46-50, 59-68), torsion of a shaft (46)
and various fluid flow problems (65~67) and the methods applied include
variational principles (36, 46, 49, 59-63, 68), Gurtin's approach (37, 47,
48, 64) and Galerkin's method (38, 50, 53, 65-68), Finlayson (54) has
shown that Gurtin's approach is equivalent to Galerkin's méthod.

The process of finite element heat conduction is of particular
interest because of its applicability to metal cutting. The treatment
of a given type of problem by the finite element method consists of
three major component.aspects:

(i) basic formulation of the problem including the boundary
conditions and assumptions,
(ii) the e;ement'formulation, and

(iii) the assembly and solution of the complete system,

2.2.1 Basic Formulation of the Problem,

The heat transfer phenomenonoccurring during orthogonal machining

is governed by the partial differential equation

32y >3y 2T T : :
K 6-:2-4-]{;?“?0;, (LIS';{"'I-V‘S'S;) + Q@ = O (2'1)

subject to boundary conditions

T = T_ on part of boundary 8, (2.2a)
- X o = q onkpart of boundary S (2.2b)
an q '




874

T
and =K == = h(T = T.) on part of boundary Sy (2.2¢)

o

where n is the outward normal to the boundary.
This is based on the following assumptions:
(1) The problem is tw6=dimensiona1:
If the depth of cut is much smaller than the width of
chip, it may be assumed that the problem is two-dimensional. Such is
the case in orthogonal machining.

(ii) The machining is a steady state process:

—
3

Force measurements confirm that for a continuous chip,
machining can be assumed to.be a steady state process, !
(1ii) The workpiece, tool and chip are homogeneous and isotropic and
can be treated as one continuous medium,

In machining, the size of the deformation zone is much larger
relative to the grain size of the work material and hence, this assump=
tion is valid. |

The spacewise discretization of the equatién (2.1) can be accom~
plished via the steady-state variational form as shown in (36, 39),
Here, a second alternative is presented which per&its consistent finite
element representation to be obtained without recourse to variational
theorems, The necessary‘formulation follows the Galerkin principle
(52, 54).

Let the unknown function T, throughout the solution domain; be

approximated as

T ==

=M

N (x,y) T, =[n] {z]° (2.3)

where [N] = (M Njyororeancon, N ] and N, N, etc, are the

J

''shape functions'' (functions of the x-y co-ordinates) and T,» T,y etc.

:j’
are the values of the temperatures <T}e_at the element nodes 1,j, etc.
The shape functions are defined plecewlse, element by element, and in the

summation the appropriate function for the particular point in space must




be used. In the Galerkin process, the weighting functlon is made equal

to the shape function N,. The simultaneous equations, allowing the solu-

i

tion for n valuesaof.T are obtained typically for point i by equating

i)
to zero the weighted and integrated residual, resulting from substitution
of Eq. (2.3) into Eq. (2.1). Thus, the iy, equation is given by

N K T 3 [—— NT. . a a
EIARC I R “{f"cp (s VS}‘)}%NJ'TJ

+ Q] dx.dy = O (2.4)

n such equations will allow in principle the complete ’soluti(;n of the
problem if the integral can bé evaluated, In the above form the integral
would require continuity of slopes at all interface regions to avoid
infinities in the second differentials and it is worthwhile to modify

Eq. (2.4) by making use of Green's theorem, For instance,

D2 n n BNJ
NiK(;-;Q- {_ NJTJ) dX.d‘.y":JTNiK(% —-*}-ETJ) 1x,.ds
v Sélﬁ_ n BI%
=.jv...._.;€. . K( % == Tj)dx-.dy (2.?)

in which 1x is the direction cosine of the outward normal and the x
direction, and integral § is taken over the whole boundary.

Modification of the first two terms of Eq. (2.4) in this way results

in
H >N, n bNJ. dN, ZnaNJ_ ' n e;Nj
-1 I 3 + K—=.> = 4 poc un, —
v dX 1 ox DYy 1ay P i 1 DX
n ‘c‘)NJ. .
pC,- ij§ 55 T, dxdy + VNi Q . dx dy+
n bNJ n ij
N, —= 1 — ] = 2.6
] K.N, ( % 5% x o+ % 55 W ) Tjds 0 (2.8)

In matrix form, Eq., (2.6) can be written as

" [bN, 3[x] ON 20x) 2[x]
i N i N, N
.ﬂ Kax .......}.:.-. + K 5.3_,... . ...u.)}.... + Pcp u»lNi .._a....;_._. +
v




dLn] e : " .
pcvai —57] .{T} dx..dy,-fLNiQ .odax dy +

. K %Lg—l - lx o+ ZD;—J ly) {T}e ds = O (2.7)

S

As a result, only the first-order derivatives have to be integrated
and only the continuity of the shape functions Ni has to be imposed (39).
On boundary points where the value of T is prescribed, the equation is

not formed. The last integral in Eq. (2.7) does not contribute anything

/

to the equations at internal boundary points (54) and arises only oun the
boundaries of type S, (Bq. 2.2p) and 8, (Ba. 2.2¢).
Introducing the boundary conditions of Eqs. (2.2b) and (2.2c), the

surface integral of Eq. (2.7) becomes

leK(ﬂl 1x +m ly){Tfe ds
S

. ay
| , oT oT
‘r =[‘;NiK(.-—-;.lx+-}-ly)ds
s o)
T
| = Ni K 5‘_' . dS
| 5
| '
=_j N, ads =-f N n(N] @ ds +| N;h . Tcds (2.8)
Substitution of Eq. (2.8) into Eq. (2.7) gives
K a-'-—'Ni 2 [N] K a-—'-—-Ni bW[N] + CulN a—**-*CN] +
‘ ax ay P p i ox
v
- PC v i a__[_N.l-]{ L dx dy Ni Q. dx.dy +
\2
o :
Ni qds + NihCN:]-.{Tj .ds - NihToc .ds = O (2.9)
Sq Sn Sh
The n equations (2.9) can be written down in matrix form as
[_H] {T} + {F} = 0 (2.10)
in which
ON, N dN dN 2N
i J 1 J J
= i TR —— . —— C o
M Z o K 55 5% * Ky 3y T PH YN ex
d
J cd '
* PC, vN, -5"5{‘")\ dxdy +2_ Nyh N.ds (2.11a)

She
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where summation covers contribution from each element and e 1s

the element region and

o= - Z N Q ax. dy—!-Zf N; ads - Z N hT. ds (2.11p)

She

where Sqe and She refer only to elements with an external surface
on which conditions (2.2b) and (2.2c) are specified respectively,

For nodes situated on boundary 8y (Eq. 2.2a)

1 4if i =73 .
H, .
+J 0 if 1 £ j (2.11c)

and F, = -T (2.11q)
1 S

and {‘TS is the column matrix containing the nodal temperatures to be

o

found.
Further simplification of Eq. (2.9) for a typical 3~node triangle

is given in Appendix I.

2.2,2 Boundary Conditions,

The experiments havg been conducted with and without coolants, In
the present study, water has been used as a coolant for which the physi-
cal properties are known and hence, the heat transfer coefflcient h could
be calculated, For the experimental conditions, the heat transfer cpefm
ficient of the air is found to be negligibly émall and hence, heat losses
to the environment (when coolant is not used) are neglected, Thus, the
surfaces of the chip, workpiece and tool that are surrounded by air are
assumed to be insulated, When coolant is used, the héat transfer coef=-

ficient is calculated at the affected surface,

The geometrical boundaries (nét to the scale) of the problem region

are shown in Flg, 2.1, The chip curl is neglected; but beyond the tool=
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chip interface SD, the chip and tool surfaces are lsolated from each

other, At the exit end EF of the chip, far away from the tool edge, the
temperature gradients would be expected to diminish. Hence, at this
boundary the condition aﬂ?’al‘ = 0 is applied, Along the workpiece bounda=
ries AB and BC, the workplece material is virtually at room temperature,
being unaffected by the heat conducted and convected Lrom the primary
deformation zZone, The chip exit boundary EF and the workpilece boundaries

AB and BC are extended outwards from the tool edge until the isotherna

obtained are essentially the same, When this state is reached, these

[

Fig., 2,1 Boundaries of the problem region,




three boundaries are correctly placed.

The actual size and shape of the tool are considered in the finite
element model, The tool is clamped to the tool post with an overhang of
12 .5 mm sandwiched with thin mica=sheets at the interfaces for heat
insulation, Thus, at the upper and lower tool surfaces JK and HL, the
conditionBTén = O is imposed. The far end KL of the tool is assumed to
be at room temperature.

It is assumed that along the tool«chip interface SD, the tempera-
tures at the chip and the tool are equal, This is a reasopable assump=
tion as contact pressures are very high at the interface. The amount of
frictional heat generated ié calculated for each node at the interiface
and the heat fluxes into the chip and the tool adjust tﬁemsélves auto=
matically according to the temperatures on both sides of the interface,
The same treatment applies to the tool-work interface ST for the case of

initial flank wear,

2.3 Element Formulation

2.3.1 Element Thermal Matrix.

From Eq. (2.10), the element equation, in general, can be written as

[H]e {Tie_ +{Fle = 0 (2.12)
Where the matrix [H]e for the elements having no external boundary

of type (Eq. 2.2¢c) 1s of the form

[H]e - [E;]e . dv  (2.13)
v .

In Eq. (2.r3),[9]e can, for convenlence, be called the element
thermal matrix, a typical term of which is given by

’ 2
e bNi aNJ aNi N N AN

- J . —d.
Gyy = K(bx © 5 Ty . ay) + ,ocp.Ni(u Farallis vay,)

(2.14)
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or
T
[G] 3;:}1::[ MN] + iﬁ;] ,a[NJ + PC, ufd]® . i—[-—lﬂ + POV [~ T%—%—]—
(2.18)

2.,3.2 Convergence Requirements.

-

As mentioned earlier, Eq. (2.9) is defined by the first=order
derivatives of T, continuity of T is only necessary when choosing suit=
able shape functions, They have also to be such that constant values of
any of the first derivatives exist throughout the element when suiltable
nodal values{T}e are assigned, Although the continuity of the first

derivative is not essential for couvergence, it is desirable for better

accuracy (63),

2.3.3 Temperature and Shape Functions,

N
ST
o N

LT

e

The temperature function T expresses the temperature of any point
within or aiong the boundaries of the element as a function of the pre=
cise position of that point., It is the basic requirement to choose the .
shape of the element and the form of the appfoximating function T, A
multiplicity of shapes shown in Figs. 2.2 and 2.3 are available and
will be highlighted in the followiné discussion,

The choice of the approximating function T is far more difficult
because of the abundance of closed-form mathematical functions avail=
able. In general, the function should be simple, should yield a well=
conditioned matrix, and should be compatible. The compatability requires
that if the temperature and desired derivative in one element are speci=
fied, they must be so specified that an adjoining element with a common
set of nodal points will yield the same values on the common side,
Probably, the most popular distributions are polynomials in x and y.
Such polynomials may give rise to co~ordinate matrices which are diffi-

cult to invert accurately because of their ill-conditioning (69), However,
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A 3
s=-i 5=1
A «
(a) Linear (b)
1
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Parent element Derived element

Fig. 2.2 TWO-DIMENSIONAL QUADRILATERAL ELEMENTS

AFTER REFERENCE (108)



(a) Linear 1b)
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Parent element Derived element

FIG. 2.3 TWO-DIMENSIONAL TRIANGULAR ELEMENTS

AFTER REFERENCE (63)
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the order of such polynomials 1s rarely greater than the third, the
inversion is usually straight forward and furthermore, the integration
of [G]e ig gimple to carryy out, For instance, for the 4=node quadri=

lateral element shown in Fig. 2.2(a), the possible function is

T = a, + azx + a.y + a,xy ) (2,17)

The coefficients al cvsas a4 are determined by substituting

successively the nodal temperatures and nodal co-ordinates into Eq.(2.17),

such that
e . -
1 ]
Ty 1 X Yy %171 2y
T R 1 X y X.¥ a
2 2 2 2721 4 2 o [A]{a} (2.18)
T3 000 0dAAHDIDOGOEDOO0ESOO0O0O0C - a3 N .
T4 | oooxy, Yy | | %
L et o

and the inversion of [A] multiplied by {T}e gives the Qalues Of @ 0000 8.
Similarly, by taking the vertices of the triangle (Fig. 2.3(a)) to be
the nodal points and the temperature variation within the element to be
linear, the temperature function is | '

a

1
T = [f] {a} = [1 X j] aé (2.19)

85

where [ﬁ] is a row vector representing the x= and y- co-ordinates of
a point and {a} is the column vector of unknown coefficients,

An alternative approach is to use shape functions [ﬁ]'which are

;

T = [Nl, N, ] .z_f = [NJ {T]e  (2.20)

defined as

: e
Where {T} is the vector of nodal temperatures and [N] are, in general,
functions of positions, They relate the temperature at any point inside

the element to the nodal temperatures, It is apparent that they manifest
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the following properties when the co-ordinates of the appropriate nodes

are inserted.
[Ni (=, yi)]

That is, each shape function has a value of unity at its associ-

I

(1]

[0} 1 £ 3 (2.21)

ated nodal points and vanishes at all other points, Usually, for the
sake of convenience, they are expressed in terms of the normalized

co-ordinates § ," (Fig. 2.2(b)). For instance, the shape functions (39)

for the 4-node quadrilateral element are of the form

li

N, (1 +5,8) (1 +7),M)/4 (2.22)

The normalized co-ordinates are, however, not convenient to be
used for the triangular elements. Instead, a set of area co—ordinates,

L, L, and L, (rig. 2.3(b)) are used which can be defined by the

1!

following linear relations between these and the Cartesian system:

X o= L1X1 + L2X2 BN L3X3
y = Lly1 o+ L2y2 + L3y3
= -+ .
1 L+ LybIg  (2.28)

For the 3-node triangular element, Fig. 2.3(b), the shape fun=-

ctions are,in fact,the area co-ordinates., Thus

N, = L (2.24)

It is evident that, for the linear elements, the temperature
distribution given by Eq. (2.20) is compatible and represents the basis
fof nearly all thermal»inviscid&fluid and stress—finite=element prngams.
The basic drawback to this distribution is that the heat flux varies
discontinuously from element to element and is not compatible, Further=
more, a large number of elements may be necessary in order to obtain

sufficiently accurate results.

The quadratic elements are generated by establishing nodal points
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at the mid-points of the sides, As a result, there will be six nodes
per triangle (Fig. 2.3(c)) and eight nodes per quadrilateral (Fig. 2.2(c))

permitting the formulations

[f]triangle = [1 by y xz Xy yz:] (2.25)
[f]quadrilateral = [} x ¥ xZ xy yz xzy xy2] (2.26)
The shape functions (39) for the quadratic triangular element

(rig. 2.3(d)) can be expressed as follows:
For corner nodes 1, 2 and 3
N, = 2(L, - 1) L, (2.27)
For mid-side nodes
N, = 4L L, ete. (2.28)
The shape functions for the quadratic quadrilateral element
(Fig. 2.2(d)) are of the following form:
For coruner nodes 1, 3, 5 and 7
N, o= 1/4 (1 +5) (1 +7) (5475 1) (2.20)
For mid-side nodes 2 and 6
2 .
N, o= 3 (1-87) (1+7) : (2.30)

For mid=side nodes 4 and 8

N, = 3 (148 (1= | (2.31)
where §°= glg ‘and ’7’10= 'r]iv‘l

Agaln since the temperature variation is quadratic and it can be
uniquely determined on each side from the three nodal temperatures on
the side, adgoining elements are compatible. Furthermore, the heat f£low
will not be constant within each element-and thus a value of the gradient
may be associated with each nodal point. However, the heat flux is
disconfinuous and its value differs for each element and it is necessary
to average all of the neighbouring element values to determine a value

at the node, In addition, even if the degree of mesh refinement is the

same for the linear and quadratic elements the size of the thermal matrix
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is larger for the quadratic element because of the increased bandwidth.
Thus, the core storage requirement and the computation times will be
larger. Since these items are the principal drawbacks to the use af the
finite element method, it is essential that the accuracy inherent in the
higher—order method be sufficiently greater in order to reduce the overall
number of nodal points required and thus.to reduce the core storage
requirements and execution time,

The cubic elements are obtained by increasing the number of mid=side
nodes further. For a cubic variation, the polynomials for é 10~node
triangle (Fig. 2.3 (e)) and for a 12=node quadrilateral (Fig. 2.2 (e))
are given by
[f]triangle =_{} Xy x2 Xy y2 < x2y xy2 yé] (2.32)

3
[f]quadrilateral = [} X y 2 Xy y2 X xzy xy2 y3 x3y y3x (2.33)

The necessary shape functions (39) can be written down as follows:
(1) The cubic triangular element (Fig. 2.3 (£))

For corner nodes

Ny =_%(3Li - 1) (3Li - 2) L (2.34)
For mid—side nodes

N, = 9/2 L, L, (3l71), ete, (2.35)
For the internal node 10

Nyg = 2744L, L, « (2.36)

(ii) The cubic quadrilateral element (Fig. 2.2 (f))
For corner nodes 1, 4,‘7 and 10

N, = 1/32(2 + 8o (1 +7) [-10 + 9 (52 +"12)] (2.37)
For mid-side nodes 5, 6, 11 and 12

N, =9/32 (1 +§&,) (1 —'12) (1 + é’?,,) (2.38)
For mid-side nodes 2, 3, 8 and 9

N, =9/32 (1+7,) (1 ~§2)' (L +9E) (2.39)
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As for the quadratic element, the temperature but not the heat
flux is compatible. The formulation by Eq. (2.32) may be regarded as
either the adjoining of three 6-node triangles or combining nine S—QOde
triangles. In either case, the number of non-zero elements in the
thermal matrix increases proportionately. Thus, the core storage requ-~

irements and the computation times will be proportionately larger.

2.3.4 FEvaluation of Element Matrices.

e
To perform a finite element analysis, the matrices EH]e and {f}

defining the element éharécteristics have to be determined. It is
evident from Eqs. (2.13) and (2.11) that these matrices depend on N or
its derivatives with respect to global co-ordinates. The exact inte-
gration of these could be cumbersome and in higher-order isoparametric
elements even impossible; therefore, numerical integration has to be
resorted to.

The concept of 'isoﬁarametric' formulation in a two-dimensional
space is fully discussed elsewhere (70 - 71). In order to summarize
the essentials, a general two-dimensional isoparametric element is
shown in Fig. 2.4 with pésitions defined within it by normalized co-

ordinates (which take up, conveniently, values of + 1 on opposite faces). -
T OMe m=t

g=-1] E=1

{(a) ® -
. . t(b)

Fig. 2.4 A two-dimensional isoparametric element in (a) X, y space

On)g,ﬁlspace (parent element parabolic)

Let the normalized co-ordinates be related to the Cartesian x, y by
the expressions

X = ['_N] {x}e
y = [n] {+}°

(2.40)
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Where {x]e, (y}é are column vectors containing the x- and y- nodal co-
ordinates and [NJ is a given shape function in terms of £," . Simult-
aneocusly, the unknown function T is prescribed in terms of the normalized -
co=ordinates by Eq. (2»20).

If the shape functions are so chosen that T satisfies continuity
and ‘constant derivative' criteria of convergence in the &, space
(mapped in x-~y co-ordinates), then (i) element faces will be continuous
and (ii) all the convergence criteria are satisfied (70—71), Now to
derive matrices [H]e and {F}e in the Cartesian co—-ordinate system, a few

simple transformations are needed. Thus all derivative components

transform as

oX -1 2g
§ = [JJ ) (2.41)
oy ] -5-"'1.
in which ]Jl is ;he Jacobian matrix which becomes
[2x 2y, 200
[s] .25 3| _|7% {{x}e {y}e:‘
o e 2y 200 - (za2)
o 1] e |

Elements of volume for unit thickness become

dxdy = det [J] dg.an ‘ (2.43)
With these transformations and following numerical integration the

e
matrices [HJ © and {F}_ can be evaluated easily.

2.4 Assembly and Solution of Equations,

The equations to be solved for the complete system are represented

by Eq. (2.10) i.e.,
[H] {t} + {f} = o (2.44)

The matrices [H] and {F} contain contributions from all the elements
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MAXBD
IBD
See
Note 1
LROW See
Note 2
LROW See
current row \
being eliminated Note 3
See
Note 4
Fig. 2.5 Solution of banded [V] and [F]
Ref. - Kark (107)
IBD » Semi-bandwidth.
MAXBD » 2* IBD + 1 - Overall Bandwidth.
LROW = Number of rows in each part.
N * Total no. of equations.
+ Coefficients in core.
* Coefficients on disc.
. Coefficients transferred on magnetic tape.
83 Coefficients affected.
NOTE 1 Forward elimination completed and coefficientstransferred
to magnetic tape.
NOTE 2 Forward elimination completed, coefficientswaiting in core

store Al to be transferred to magnetic tape.
NOTE 3 Coefficients being eliminated in core store A2.

NOTE 4 Coefficients on disc.
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of the system. The matrix [H] is banded éentrally about the diagonal (56)
as shown in Fig. 2.5 provided the'nsdes are numbered~judiciously. Gener=-
ally, the width of the band will vary from rbw to row, However, the
overall bandwidth is eéqual to twice the maximum difference between the
1aréest and smallest nodal numbers for any row because [HJ is unsymmetric
for the problem under consideration,

The efficiency of the finite element method hinges importantly upon
the existence of reliable and efficient solution procedure. Tay and
Davi; (59) solve the asymmetric system (Eq. 2.44) directly, using a
general, banded Gaussian elimination procedure. The solution routine
developed herein is also based on Gaussian elimination technique and
the zeroes.of@ﬂ outside the band are not operated upon and are actually
not stored (56). One impértant feature of the solution routine is that
it can handle both large and small problems.

For small problems, the matrix [H] is stored in the computer working
core as a whole and the forward elimination #s performed in one operation.
For large problems (which can not be solved without the aid of external
devices like tapes, discs, etc.), the matrix [H] is read into the core
from a dise file in parts. The forward elimination is performed in
stages, Each stage contains a part of the matrix [HJ. As the forward
elimination is accomplished in each stage, the resulting coefficients
are stored on an auxiliaryltape. When a new stage is loaded in core, all
the previous stages whose diagonal coefficients are required to eliminate
the coefficients on it, are successively read from tape, and the elimi-
nation performed. The 1asf coefficients to be eliminated are those that
require diagonal elements from inside the presently considered stage
(Fig. 2.5). Back substitution is affected in a similar manner to the
forward élimination except that the stages (or parts) are loaded in

reverse order. TFurther details are given in Chapter 1IV.




CHAPTER 111

DETERMINATION OF TEST DATA AND HEAT GENERATION.

3.1 Deformation and Heat Generation in Orthogonal Machining.

The operation of orthogonal machining where the straight cutting
edge of a wedge-shaped tool is perpendicular to the direction of relative
motion of the tool and workpiece is shown in Fig. 3.1. Basically, this
operation is one of shearing the work material to form the chip and
subsequent sliding of the chip along the rake face of the cutting tool.

It has now been well established from studies of deformed flow line

. Chip
generation Rake faoe
Primary sone of
deformation Tool
Seconda!
zone
Workpiece
Flank faoe
Fig. 3.1. Deformation and heat generation in orthogonal machining.

patterns(72 -75) that plastic deformation takes place over two main
regions: the region SZ around the so-called shear plane, known as the
'primary zone', and the region SC adjacent to the rake face of the tool,
known as the 'secondary zone'. Thus, the heat due to deformation is
generated in the two zones SZ and SC. Some heat is also generated due
to sliding friction along the rake face. When a tool wears, an addi-
tional source of heat due to interfacial friction is present at the worn

flank SD.

The pattern of heat generation as depicted in Fig. 3.1 leads to

25
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temperature gradients along the rake face, and also into the chip, tool

and workpiece., It is evident, therefore, that for complete assessment
of temperature distributions, the information about the distriﬁutions of
heat generation rate within the deformation zones and along the tool~
chip and work-tocl interfaces is necessary.

In order to calculate the distribution of heat generation rate within
the deformation zones, the velocity, flow stress and strain-rate digtri-
butions are required. The calculation of the flow stress distributions
in the primary deformation zone necessitates the knowledge of strain
distributions. The strain, strain-rate and veloeity distributions for
all tests were obtained directly from experimental studies. Empirical
expressions for the flow stress in terms of the strain, strain-rate and
temperatﬁre were obtained from published literature. The heat input due
to interfacial friction was calculated by estimating the frictional
strésses on the rake face and along the flank face of the tool. These
estimations were made from experimentally obtained force ﬁeasurements
combine@ with Zorev's (40) suggested analysis of friction at the {ool~

chip interface, The detailed description is given below,

3.2 Velocity, Strain and Strain-rate Distributions in the Primary Zone,

It i1s necessary to establish the flow line pattern under steady-
state cutting for calculating the velocity, strain and strain-rate

distributions. Stevenson and Oxley (74) used a printed grid and an explo-

‘sive quick-stopping technique for obtaining the flow fields under machin-

ing conditions, Childs (72-73) inscribed the grid on the workpiece using
a micro-hardness testing equipment and the deformed grid was recorded by
photographing through a microscope, Goriani and Kobayashi (75) and
Nakayama (5) used a simple mechanical techniqﬁe to scribe the grid lines
on the workpiece. TFor the present investigations, owing to the simplicity

and convenience of the process, the grid lines on the workplece were
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scribed mechanically using a sharp carbide tool.

3.2.1 Experimental Setup and Procedure,

Circular discs of the workpiece material were partedoff from a
100 mm diameter bar,-turned down to 98,0 mm in diameter, and fine ground
to a width of 6,35 mm. The side face of sach disc was first polished
with fine emery papers, and then a spiral line up to a depth of 10 mm

was scribed with a feed tl of 0.0711 mm/rev, as shown in Plate I.

After scribing the lines, the sideiface of the specimen was cross-

lapped in order to remove burrs and then polished with # 300 and = 600
enery papers until all scratches were removeaa‘ The specimen was mounted
to a fixture which was held by the chuck of a Dean, Smith & Grace lathe,
Orthogonal machining with a selected tool and selected cutting conditions
was carried out and after the steady state was reached the cutting waé
quickfstopped using an explosive quick-stop device. The experimental
set-up is shown in Plate II. The explosive quick-stop device used in
the tests was developed by Ellis, Barrow and Kirk at UMIST and is
described elsewhere (76). After quick-stopping, each test specimen was
photographed on a polaride film using a photomicroscope. Some of these
photographs are shown in Plate III. Enlarged prints of these photographs
were made and the lines were traced and thus a total enlargement of about
250 times was obtained. These magnified streamlines were used for the
determination of velocity, strain and strain~rate distributions in the
priméry zone, The x~y co-ordinates of a number of points‘on the stream-
lines for all tests were measured on d~mac digitiser with solartron

interface unit to an accuracy of 0.02 mm. The co-ordinates were simult-

aneously punched on paper-tape and then transferred to a magnetic disc

to be stored in the computer Ffor further analysis,
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3.2.2 Method of Analysis.

There are various methods for calculating the velocity, strain
and strain-rate from known streamlines. Palmer and Oxley (77) and
Goriani and Kobayashi (75) constructed orthogonal curves to the stream-
lines and then calculated the velocities along the streamlines. This
method is based on a trial and error approach and takes a long time for
calculations and hence, it is not suitable for the present analysis
where a large number of flow fields have to be anélysed. Stevenson and
Ooxley (74) and Kececioglu (78) calculated the strain-rate distribution
based on the parallel sided shear zone model of chip formation and
assumed a definite direction of maximum shear strain-rate. This pro-
cess 1is relatively quick and seems to be sufficiently accurate. TFor
the present analysis, a method similar to that of Stevenson and Oxley
(74) was used.

A typical enlarged tracing of thé deformed grid is shown in
Fig. 3.2(a). It is assumed that the sm;oth curves representing the
grid lines initially parallel to the work velocity are stream lines of
flow although these do not represent paths of particular particles but
show the instantaneous positions of many particles following approxi-

mately the same path, As the experiments were designed to approximate

to steady-state conditions the errors involved in this assumption should

.not be large. From I'ig. 3.2(a) it can be seen that the plastic defor-
mati;n starts well in advance of the tool and the shear zone is of
substantial width, Within the shear zone the streamlines are very
similar to each other although there is some increase in curvature of
those streamlines nearest to the cutting edge. These obgervations are
similar to those made by Stevenson and Oxley (74).

The velocity diagram for the streamlines is shown in Fig. 3.2(b).

The velocity triangle ASZ is defined by the rake angle o , the chip
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velocity Vc and the .shear angle C}D . The chip velocity was found by the
change in width between streamlines and the angle <}> was found from the
construction (Fig. 3.2(a)). The velocity magnitude Vs on a streamline
at a point where the streamline has turned an angle /3 from the chip

velocity vC may then be determined from the velocity triangle and thus:

v, Cos{¢ - «)
VB ~ Cos (p+8 -&) ' _(3.1)

To deteﬁmine the angle ﬁ at any point along a streamline in terms
of its x and y co—ordinates, it is necessary to find an analytical
expression for each streamline, The x-y co-ordinate axes chosen for the
finite element analysis are parallel to and perpepdiéular at the tool
face, whereas the co-ordinates of the points on streamlines were measured
with respect to.the x';, y'' axes as shown in Fig. 3.2(d). The measured
co—ofdinates were transformed into x~y co-ordinates. For any point P on
the streamlines in the primary zone having co~ordinates xp", y ' with
respect to origin S (Fig. 3.2 d), the corresponding x-y co-ordinates

xp, yp are given by the following equations

x. = (x ' +x') gindK + F ¥t 4 y') cos
o (=, L) (v, ve)
. ' -
- ‘e 1Y gin o - ' ) cos (3.2)
Yo (yp + ys) sin (xp + X
where x' = x sindd -~y cos
s s . s
' = in « 3.3
vy x_coso + 7y, sin ( )

and xs and ys are the x, y co~ordinates of the tool cutting edge § ahd

{ is the rake angle,
It was found that the streamlineswithin the primary zone are very

well approximated by a 3rd order polynomial i.e., by the general equation

y 2
y = ¢, + ¢,x + e¢,x + c,X (3.4)




Each streamline as those
rately, Nine evenly spaced po
the coefficients were found by
nomial. The polynomial so obt

shown in Table 3.1,
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shown in Fig, 3.2(a) was treated sepa-
ints on a streamline @ere selected and
fitting statistically a 3rd order poly-

ained fitted the streamlines very well as

By differentiating Eq(3.4), the total angle turned through by a

streamline at any point on it may be found. Thus

_ 4y . .2
tan B = G = Cp *2e,x + Beyx (3.5)
Also, '
9—-2—1 = 2¢, + 6c x (3.8)
2 3 4 ’
dx

In ordér to determine th
it was assumed that SZ was a d

Hence AVS

Y =
ASB

e maximum shear strain-rate i at a point,

irection of maximum shear strain rate,

- (3.7)

where A}VS is the change in the ghear velocity VS (i.e. in the direction

87) and as is measured normal
expressed in terms of the chip

angle £ and the angles B and

to S8Z. From Fig. 3.2(b), 5V can be
velocity V., the shear angle # , rake

AB which on substitution in Eq. (3.7)

gives ; - 48, Ve cos (¢~ o)
ds cos? (p+8 -d) (3.8)

From Fig. 3.2(c),

ds cos {# +B - o)

dx cos B (3.9)
Substitution of Eq. (3.9) in Eq. (3.8) gives

. ds Vc cos B . cos( b ~o)

X = = - (3.10)

Using the relation that tan 8

form 2

cmﬁ(¢+ﬁ ~ o)

= dy/dx, Eq. (3.10) can be written in the

Vc _cos (¢ - &)

[cos (p-%) - sin (¢~ i) . g'}{’ (8.11)




Table 3.1

"8tream line co-ordinates.

Measured y co=ordinate
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Yy =
Vo = Calculated y co-~ordinate
Flow | y- Point Point Point Point Point Point Point Point Point
‘Line | co~ordinate 1 2 3 4 5 6 7 8 9
No.

1 o 20.0 32,0 51.0 70,0 93,0 138.0 194.0 263.0 330.0
v, 17,68 34,85 50.89 66,42 91,45 138.3 198,1 263.4 327.8

2 v, 138.0 146.,0 152.0 162.0 182,0 223.0 278.0 338.C 401.0
v, 135.2 147.5 150.9 159.5 179.0 221.7 279.5 339.0 396.5

3 v, 253.0 260.0 269.0 282,0 293,0 329.0 372,0 426.0 483.0
v, 249.5 264,3 271.2 278.3 290.8 329.5 374.7 428.4 479,1

4 v 365.0 368.0 379.0 388.0 404,0 438.0 472.0 527,0 574.0
Y, 363,0 372.6 378.9 387.0 399.4 438.4 474,5 531.7 569,2

5 v 499.0 509.0 525.0 538,0 551,0 582.,0 611,0 653,0 693,0
v, 497.4 512.2 525.2 537.2 549.6 579,0 614.3 655,9 690,1

8 v, 601.0 609.0 620,0 632.0 651,0 685,0 718.0 761.0 805.0
y, 599.8 610.8 622.3 631.7 646.4 682.7 723.1 764.2 801.0

7 v, 739,0 743.0 757.0 764 .0 781.0 808.0 840.0 874.0 914.0
v, 737.5 745.3 757,1 765.5 777.2 805.5 845.7 874.7 911.4

8 V. 850,0 852.0 856.0 862,0 871,0 901.0 930.0 962.0 995,0
y 849,0 853.9 856,1 860.4 871,0 898.4 935.3 961.6 993.1
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where g% and %;g are given by Eqs. (3.5) and (3.6) respectively.

In order to obtain an expression for the total shear strain at a point,

Bg. (3.8) is rearranged, giving

ar . dt Ve cos (f - «)
ap ds cosz(¢ + 8- L) (3.12)

From the velocity diagram in Fig. 3.2(b), dt/ds is constant Zox
all points on a streamline and equal to 1/Vc.cos(?5-tK) which on substi-

tution in Eq. (3.12) gives

ar | 1
B c032(4>+,8 ~ol)
B . ]
and ¥ = . dp
' 2
(g - w)y oS (FHB-X) b (g 4y
= cot¢ + tan (p+8 -«)

.

where Y is the cumulative shear strain up to the point on the

streamline where B is the angle turned.

For the initial portions of the streamlines, it was assumed that
the velocities decreased linearly from the work velocity U at the start
of the primary zone to the velocity U' (as shown in Fig. 3.2(b))at the
points where the polynomials began. However, the difference between

U and U' for most of the cases was negligibly small,

3.3 Velocity and Strain-rate Distributions in the Secondary Zone,

s

In order to determine the velocity and the strain~rate ﬁistribu—
tions in the secondary zoné, a series of radial lines with an ahgular
spacing bétWeen the lines of 0.0015514 radians (5 minutes 20 seconds )
was scribed on the side face of the polished circular discs of 98 mm
diameter and 6.35 mm thickness. For this purpose, the discs were held

in a fixture mounted on an OMT rotary table fitted with a radial grating

and photoelectric reader having a digital display system reading direct
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to one second of arc. The digital rotary table was mounted on the table
of an Elliott vertical milling machine and a sharp carbide tool was Peld
in the collect chuck of the machine spindle, The experimental setup is
shown in Plate 1IV. After scribing the lines, the sideface of the speci-
men was cross—lapped in order to remove burrs and then polished with

# 300 and # 600 emery papers until all the scratches were removed,

The rest of the experimental procedure is similar to that described in
Section 3.2.1, Some of the photographs of the streamlines showing the
chip formation due to the secondary flow are shown in Plate V. A typi-
cal enlarged tiacing of the deformed streamlines due to sécondary chip
formation is shown in Fig.vé.S.

As seen in ¥Fig. 3.3, the chip material is dragged back over the
sticking part of the tool-chip contact length. It was found that the
extent of chip~dragging and the width of the secondary zone are somewhat
less at speeds below 46 m/min. It was, therefore, concluded that fowx
speeds below 46 m/min”'the secondary zone could be considered as a plane
frictional heat source with little error. For higher speeds, the drag—
ging back of the material was much more evident and it was possible to
measure the width of the secondary zone with a reasonable degree of
accuracy. The grid lines were severely distorted near the tool face
ana accurate-measurements of the velociﬁy and strain—-rate distributions
are very difficult necessitating certain agsumptions to be made.

For'cutting speeds less than 46 m/min” the velocity of the material
along the rake face was assumed to beAconstant and equal to the bulk
chip velocity Vc' For higher speeds, it was assumed that the velocity
of the material at the rake face started at VC/S at the tool edge and
accelerated uniformly to Vc within the sticking part of the tool—chip
contact lenght (36). 'In a direction perpendicular to the rake face,
it was assumed that the velocity increased linearly from the value at

the rake face to the bulk chip velocity at the streamline nearest to
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the rake face, This assumption was necessary because of the mesh used
for the finite element analysis.

For cutting‘speeds lesg than 46 m/min., the strain-rate was assumed
to be zmero throughout the sécondary zone, For higher speeds, the strain-
rate distribution was approximated as done by Tay et al (36). It was
assumed that the shear strain-rate at the tool-chip interface (sticking
part only) was constant and equal to Vc/ws where Vc is the chip velocity
and ws is the maximum width of the secondary zone. The strain~yate
within the secondary zone in a direction perpendicular to the rake face'
was assumed to decrease linearly from the value at the interface to
zero at tﬁe boundary between the secondary zone and the rest of the chip.
It is to be accepted that the above assumptions are quite approximate
but seem to be reasonable in the view of the small size of the secondary
zone and high intensity of turbulent deformation., TFurthermore, the
grid lines reaching the secondary zone are already severely distorted
in the primary zone and any accurate analysis of the deformed lines is

very difficult,

3.4 Flow Stress in the Primary Yone,

The flow stress of a metal is influenced by the temperature of
deformation, degree of deformation or strain and the rate of deformation
or strain-rate., The degree of dependency of the flow stress upon these
variables varies congiderably for difi‘erentlm&terials° Available data
in the literature on the stress versus the strain, strain-rate and
temperature under conditions as present in the shear zone (83) are
limited,

Previous workers have attempted to derive a single equatiop expres-
sing the stress in terms of strain, strain-rate and temperature, Lﬁbahn
(80) obtained such an equation containing six constants from three

empirical relationéhips. He assumed the true stress-strain curve to be




a simple power law for large strains, However,this assumption was found
to be in poor agreement with the results of Dorn et al (81). Alder and
Phi}lips‘(SZ) observed that, for lower strain rates, the effect‘of strain
rate on the stress could be expressed by a semi-logarithmic formula. This
finding is supported by the results of Campbell and Ferguson (84) for the
strain rate values lower than 5 x 10° sec - (zone I1I) shown in Fig. 3.4.
Stevenson and Oxley (6, 79) assumed the stress—strain relationship
of the form &= Gién and obtained experimental data for the variation
of 61 and n over a range of strain-rates and temperatures for a low
carbon, free machining steel, However, these results give poorer approx-
imation as the range of strain is increased (36). There.is ne accurate
available‘data at the present time and the published literature contains
many conflicting conclusiéns (87). An exéellent review of the literature
on the available.flow stress data has been given by Altan and Bbulger(86).
The experimental data for mild steel reported by Campbell and
Ferguson (84) and Manjoine (85) Werelanalysed further in order to derive
an equation for the flow stress in terms of strain, strain~rate and
temperaturé. Zone II of Campbell and Ferguson (Fig, 3.4) covers most of
the temperature and strain-rate conditions present in the primary defore
mation zone. From Fig. 3.4, for a given strain, thé followiung empirical

I . o 3 _1
equation could be derived. For the shear strain rate ¥ < 5 x 10 sec

T= A 4+ mlog ¥ : (3.14)

where, [ is the shear flow stress in MPa

2

A 158.5777 - 0.666956T + 1.88557 x 10 - T°,

i

m

It

28,10716 - 5.93245 x 10 © T + 6.72203 x 10 7°, (3.15)

and T is in°c.
It was found that Manjoine's results (Fig° 3.5) also show similar trend
as exhibited by Eq. (3.14).
For conversion from uniaxial stress and strain to the shear stress

and strain, Von Mises Criterion was used, giving
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X =\/§-€ S

75 & (3.16)

o
i

In order to flnd out the effect of shear strain on shear flow stress,
Manjoine's results were plotted as shown in Fig. 3.6 showing a linear
variation of flow stress with strain on a semi~log scale, Hence, for a

given strain-rate, shear flow stress is related to the shear strain by
T= B + nlogz . (3.17)

where B and n are the functions of temperature provided the strain=
rate remains constant, The.experimental data reported by Campbell and
Ferguson are for one strain {r. = 0.01) only. Manjoine's tests cover the
strains up to the value of 0.20 only, Beyond this value, it was assumed
that the same trend continues. This assumption is necessary because of
the unavailability of suitable data for higher strains.

It can be shown that the equations (3.14) and (3,17) can be combined
to give

= C + Glogt + Dlogr + Hlogr log ¢ (3,18)

where C, G, D and H are the functions of temperature. Based on Eq°(3.15)

it was assumed that these constahts were the 2nd order functions of

" temperature, i.e.,

2
C = K + KT + KT
G = K, + KT + K6T2
9 ' (3.19)
D = K, + KT + KT
. 2
and H = K + K,T + KT
A

where Kl o0 K12 are the constants to be detérmined experimentally

and are independent of strain, strain-rate and temperature,

~ Substituting Eq. (3.19) into Eq. (3.18) and introducing a material

constant KO in order to account for the variations in material properties,




for the.constants K
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the following general equation was obtained

2 2 ,
T= K {Kl + KT 4 KT+ (K, o+ KT+ KTO) log i

2 2 .
+ (K7 + KST + KQT ) log x + (Klo + KllT + KlZT ) log + log 1}
(3.20)

The constants Kl, K2 sacoan Klz in Eg. {3.20) were obtained using

Manjoine's (85) experimental data, Twelve independent test conditions
were fed to the computer in order to solve 12 simultaneous equations
1, 1(2 600800 Klzu

the material constant Ko is equal to 1., The empirical expfession thus

Obviously, for these test conditions,

obtained is

T= K {411.52 ~ 0,66895T + 6.9129 x 10+ T
- (9.5009 - 0.11417 T + 1.1771 x 10+ 7°) log %
+ (228,59 ~ 0,61197 T + 7.4836 x 10 * 7°) log 1
- (54,980 - 0.18285 T + 1.7638 x 1072 Tz) log i log 1}

(3.21)

where < is shear flow stress in MPa,

In order to test the validity of equation (3.20), the equation was
tested for several other test conditions (85)° The test conditions,
experimental and emﬁiridal stress values and the % variation are given
in Table 3.2, It can be seen that the maximum variation between the
experimental and empirical values of flow stress is less than 3%.

For the present investigations, the value of KO had to be determined,

As a first approximation, the temperature distribution was obtained

using a constant value of flow stress sz given by -

Te, ™ R-COS ® . sin ¢ /wt1 (3.22)

where R is the resultant cutting force
¢ is the shear angle

w is the width of cut




Table

Experimental flow stress based

3.2
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on Manjoine's results {85) and empirical

flow stress values based on Eq. (3.21) with Ky = 1.0
1aG oF
S. No. Temp { Strainerate  Strain Expt. Stress Empirical % Error
°C sec =1 ) MPa Stress MPa
1 20,000 3,000 20784 3 ,3400E+02 3 .34 00E+02 5,4461E=13
2 200,000 3.000 20784 2 ,9050E+02 2 .9050E+02 6 ,2616E~13
3 400,000 3,000 .20784 2 ,5650E4+02 2 .5650E402 7,0916E-13
4 400,000 2,000 .20784 2 .3230E+02 2,3230E+02 3,9152E=13
5 -1 200,000 1,000 20784 2 ,3850E+02 2,3850E402  3,8134E-13
6 20.900 1,000 .20784  2,7840E+02 2,.7840E+02 6,5337E-13
7 20,000 3,000 .13856 3 .2300E+02 3 ,2300E+02 5,6315E=13
8 200,000 1,000 . 06928 1.8570E+4+02 1.85706+02 4 ,8977E-13
9 400,000 3,000 . 06928 2 .2150E+02 2 .2150E+02 4,1061E-13
1o 400.000 2,000 .06928  1.9250E+02 1.9250E+02 4,7246E=13
11 200,000 3,000 .06928  2,6200E+02 2,6200E+02 6,9427E=13
12 20,000 1.000 .13856 2 .49305+02 2,4930E+02  3.6482%=-13
13 400,000 3.400 20784 2 ,66305+02 2 ,6618F+02 4 .,5052E-02
14 200,000 400 20784 2,22808+02 2,2290E+02 =4 .,4883E-02
15 20,000 2,000 20784 3 .0625E+02 3.0620E+02 1.6327E-02
16 200.000 2,200 20784 2 ,7000E+02 2.,6970E+02 1,1111E=01
17 200,000 2,000 .06928 2 . 23708+4+02 2,2385E4+02 «=6.7054E=02
18 200,000 2,400 °06928 2 .3900E-+02 2,3911E+02 =4 ,6025E~=02
19 400,000 3.200 . 06928 2 .2730BE+02 2 ,2730E+02 4 ,0013E=13
20 200,000 .800 .06928 1.7050E+02 1,7044E402 3,5191E=02
21 20,000 400 »13856 2 .2700E+02 2.2719E+02 =8 ,3700E=02
22 200,000 1,000 .13856 2°2450E+02 2,1901E+02 2,4441E400
23 200.000 2,000 .13856 205620E¥02 2 ,4950E+02 2 ,6162E+00
24 400.000 2,600 .13856 2 ,3150E+02 2 ,3319E4+02 <=7,3172E=01
25 200.000 1.400 .13856 2 ,3720E+02 2,.3121E+02 = 2 .5267E-+00




Table 3.3

Flow Stress Values
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Test Speed Feed Rake Shear Tool —rsz from -rsz from %
No. m/min mm/rev angle angle Material measured Eq({3.21) Variation
*(°) b (°) forces
1 1 24,76 0.3556 41.0 48.5 Hss 463 .41 484,75 4.60
2 3 24.78 0.2845 20.0 41.5 L 450.08 475 .25 5.59
3 5 17.34 0.3556 41.0 47.4 1 446 .10 480,17 7 .64
4 6 24.Gé 0.3556 20.0. 39.0 e 489.90 476 .50 -2.,73
5 g* 24,77 0.3556 20.0 37.0 te 465,02 480,25 3.27
6 11 45,96 0,3556 20.0 30.0 st .480.76 482 .33 0.33
7 12+ 45,77 0.,3556 20.0 32.0 v 490,12 481.83 -1.,69
8 | 13 24,77 0.3556 30.0 35.0 i 471,99 483,25 2.38
9 | 285%™ 17.32a 0.3556 41.0 47.4 i ' 446,10 481,81 8.00
10 14 35,33 .0.3556 20,0 36.0 .Carbide 473,70 484,17 2.21
11 15 71,11 0.3556 20,0 33.0 §i 485 .48 488,17 0.55
12 17 35 .24 022845 20.0 34.0 e 457 .90 486,37 6.22
13 18 35,28 0.56%0 20,0 38.5 e 454 .50 477 .44 5,04
14 19 35,156 0.3556 10.0 35.0 ve 505.95 475 .33 ~6.05
15 | 21 35.26 0.3556 20,0 35.0 b 470.60 480.25 2.05
16 | 23 130.73 0.3556 20.0 30,7 v 472,17 490,25 3.83
17 | 24" 131.38 0.3556 20.0 34.4 ve 494,44 489,12 -1,07

+ Tests performed with coolant.

++ Tool with initial flank wear (0.376 mm)
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tl is the unde formed chip thickness
and ® is the angle between R andhthe plane 87 (Fig. 3.2 a).

Now, these temperatures were used to calculate the flow stress
distribution in the primary zone taking Ko equal to one in Eq. (3.21),
The average value of flow stress frév was determined from the flow
stress distribution, 'fsz and T;v were obtained for three different
tests and Ko was taken as the average value of the quotient T;z/ T;V.
It was found that for the workpiece material used for the present
investigations, the material constant
K, = 1,410 (3.23)

In ovder to check the accuracy of Egs. {3.21) and (3.23), the
average effective stress T;z along the shear plane calculated from
Eqs. (3.21) and (3.23) using the strains, strain-rates and temperatufés
‘obtained was compared with that calculated from the experimentally =
measured forces and length of shear plane (Eq, (3.22)) as shown in

Table 3.3 for all the tests, The maximum variation of ng by the two

methods is less that 8%,

3.5 Flow Stress in the Secondary Zone,

The shear and normal stress distributionsialong the tool=chip
interface ave assumed to be the same as those obtained by Zorev (88),
Along the distance C, (Fig. 3.7) where sticking occurs the shear stress
is constant and equal to'ré, the maximum shear flow stress of the maters
ial in the secondayy zone, Over the sliding length, the shear stress

is given by
&

Em n
T = &y 6, "Mba’{f . X (3.24)

under the assumption that the distribution of the normal stress 5h
can be approximated by an exponential function of x, where LLb is the

coefficient of friction, 6h the maximum normal stress, and n the exponent,
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Fig. 3.7 Forces and stresses acting in orthogonal machining.

From Fig. 3.7, the coefficient of friction over the sliding range

is given by
Ts

Up 6m ' C - Ci (3.25)

Substitution of Eq. (3.25) into Eq. (3.24) gives

n
T- T (3.26)
(c-c,)n
The maximum normal stress g- is related to the average normal stress
q as
N
m (n + 1) Iy (3.27)

By considering the moment equilibrium of the stress system shown in

Fig. 3.7, the exponent n in Eq. (3.26) is found to be

f C 1
1 [AL + tan -0o()Q J

(3.28)

where JU-m F/N is the overall coefficient of friction, ~ 1is the rake angle,
is the shear angle, F is the frictional force along tool-chip interface

and N is the normal force.
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The maximum shear stress Tg can be determined by considering the
equilibrium of the force system over the rake face in the x direction,
i.e.

C-G
F o= T,.G.v + T.dx.w (3.29)
(o]
where w is the width of cut-and T is given by Eq. {3.26) which on
substitution in Eq. {3.29) gives

T = fox1)F (3.30)
s (c + nC, ) w

It can be seen that for n = 1 and C, = ¢/2, Ea. (3.30) results in

4F . :
TS = 35w (3.31)

similar to the equation used by Tay et.al (36). In general, the
shear flow stress over the sticking and sliding lengths of the secondary

zone is given by Eq. (3.30) and (3.26) respectively.

3.6 Material Properties of the Workpiece and Cutting Tool,

3.6.1 Workpiece Material,‘

Free machining steel was used as a workpiece material for all the
tests. Its chemical composition and other properties (41) are gilven
below.

Chemical Composition.

c S Mn Si

0.18% 0.24% 1.23% 0.22%
Density, £ = 7.86 x 10° kg/m3
Thermal Conductivity, K = 62.802 -~ 0.041868T (W/m K)
where T is in °C,
Specific Heat, Cz; ~ 418,68 + 0,5756847T for T < 360°C
(3/xe X) = 625,93 for T > 360°C

where T is in °C.




3.6.2 Toocl Materials,
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The tests were. performed with high speed'steel as well as cemented

carbide tools.

Properties (43) of High Speed Steel used.

Chemical Composition.

c Mn si Cy W v Co
0.84% 0.31% 0.20% 4.,54% 21.81% 1.,47% 5.30%
Density, P = 8.17 x 10° Kg/m?

Thermal Conductivity, XK = 40.612 - 0,0100483T wWm K
where T 1is in °C,
Specific heat, C = = 460.548 J/Xg K
Properties of Cemented Carbide Used,
Chemical Composition.
Tungsten Carbide, WC : 79.0%
Titanium Carbide, Tic 4.0%
Tantalum Carbide, Tac ° 8.0%
Cobalt, Co ‘ 9.0%
Density (45), P= 12.6 x 10® Kg/m?
Tgermal Conductivity (45), X
Temp °C 50 100 150 200 300 400 500 600
W/m K | 58.615 | 58.615 | 58.615 | 58.615 | 50.242 | 50.242 | 50.242 | 50.242
Specific Heat (44), c, = 251 J/Kg X
The cemented carbide tip was clamped to a tool holder made of
EN 27 steel, x
Properties of EN 27 steel (42) used for tool holder.
Chemical Composition % ]

c Si Mrj 8 P Ni Cr Mo

0.34 | 0.27 0.565 0.003 0.024 3.53 0.78 0.39

Density, P = 7.859 x 103 Kg/m3 ’

Specific Heat, Cp = 460.548 + 0,3977458T

(ke K) where T is in og,
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Thermal Conductivity, K.

Temp °C| .0 100 200 300 400 500 600 700 800

W/m K 33.076 | 33.913 | 35.169 | 35,588 |35.588 | 33.494 | 30.564 | 28.345] 26,796

3.7 Measured Input bata and Cutting Conditions,

The tests were desinged for various cutting conditions to find out
the effect of cutting speed, Ieed, rake angle, coolant and initial flank
weayr on temperature distributions in orthogonal metal cutting. Besides,
two different tool materials - high speed steel and cemented carbide =
were used, The cutting conditions, which were constant for all the tests,
were width of cut = 6.35 mm, clearance angle = 10° and room
temperature Tec = 20°C,

To obtain the necessary input data, several experiments were condu-
cted employing the éonditions identical to those used for obtaining the
streamlines in the shear zone., In order to calculate the amount of heat
generation, it is necessary to determine the cutting forces. Experiments
were performed using a 'Kistler® three-component (piezo—electric) tool
dyﬁamometer for measuring the cutting force, Fv'and feed force, FH° The
experimental setup is shown in Plate VI. A freshly ground tool was used
for every test and afﬁer the test the tool was examined under a.micro-
scope. The tool-chip contact length and the sticking contact lenght were
obtained from the wear scar on the tool, For the tests where 1t was not
possible to measure the sticking contact length accurately, it was assumed
that the sticking contact length was only about half the total contact
length (40, 36).

In another experiment, designed to evalﬁate the force components
acting on the flank face of the tool with known flank wear, the specimen
was rotated in the reverse direction and the tool was pressed against it.

The force components acting on the flank face for the given length of

sliding contact length were measured. The measurements gave the . force
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component along the flank FF:* 20 N and the force component perpendicular
to the flank, NF = 42N for a given flank wear of 0.376 mm
The cutting conditions and all other measured data are summarized

in Table 3.4.
3.8 Experimental Measurement of Some Nodal Temperatures.

It was attempted to measure some nodal temperatures on the central
axis of the tool along the tool rake face and tool flank face during
orthogonal machining under the same test conditions. The tool was clamped
to the tool-post with an overhang of 12.5 mm and thin mica-sheets were
placed at the interfaces between the tool and toolpost for heat insul-
ation. The high speed steel tool was reduced to 6.35 mm in width equal
to that of the workpiece disc in order to simulate an ideal two-dimen-
sional heat flow-condition. However, it was not possible with carbide
tools because of the presence of tool-clamping screws. Insulated alumel-

chromel thermocouple wires of 0.1219 mm diameter were adhered at different

FIG* 3*8 A Typical Experimental Temperature Record
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locations along the tool rake face gnd flank face using a high temper-
ature resistant scotch electrical tape and were connected to a 6~channel
U~V recorder., The experimental setup is shown in Plate VII. Due to the
chip flow obstruction on the tool face and the clearance required for the
thermocouple wires along the flank, the nearest distances from the tool
edge at which the temperatures could be measured were 3.92 mm away along
the tool face and 5.0 mm down along the flank,

At higher speeds, the temperatures could not be measured due to
the lack of adhering of the sticking tape at higher temperatures. A typi-

cal temperature record is shown in PFig. 3.8.

3.9 Determination of the Heat Transfer Coefficient of Coolant,

In order to determine the heaﬁ transfer coefficient of a liguid,
it is necesgsary to have information about the variation of specific
heat, viscosity, density and thermal conductivity of the liquid with
temperature., Since sﬁqh information about commercial coqlants is lacking,
it was décided to use water only as a coolant,

For normal cutting conditions, the coolant action in metal cutting
gives rise to a low-quality and subcooled forced convection before the
incipient boiling line wherethe general equations of forced convection
are applicable provided the supply of coolant is sufficient and conti-
nuous. In order to apply the general equations of forced convection to
calculate the heat transfer coefficient of a coolant in orthogonal’
machining, it is assumed that

(i) the flow is one~dimensional, i.e, the velocity is constant
in any plane parallel or perpendicular to the sufface
under consideration,

(ii) the fluid is incompressible,
(1i1) the pressure is constant throughout the flow field,

(iv) the flow is steady with respect to time
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and (v) fluid flow is not affected by heat flow.
The tool, work and chip coolant areas are considered as seven

1 (Top Workpiece Surface)

2 (Top Chip Surface)

/ 3 (Bottom Chip Surface)
(Tool Rake Pace)

/5 (Top Tool Shank)

Chip Tool

Workpiece
~“6 (Tool Plank Pace)

-7 (Bottom Workpiece Surface)

Fig. 3.9. Categorization of Coolant Surfaces for the Calculation of h.

different surfaces as shown in Fig. 3.9. The heat transfer coefficient
h, for each surface is calculated separately and is, again, a function
of local temperatures. Furthermore, each surface is assumed to be a flat
one and so the following equations of forced convection (89, 90) could

be used.

For laminar flow i.e., Renolds number Re < 5 x 105

N * 0.664 R °*5 P 0,33 if P > 0.1 (3.32),
u e r r
and N * 1.13 (r P ) 0,5 if P < 0.1 (3.33),
u e T r
5
For turbulent flow 1i.e., R > 5 x 10

€
0 33
A = 0.036 * Pr . (Re®°*8 “ 23,200) (3.34)
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for Pr > 0.5

(for coolants, the value of Pr is always greater than 005)

where -
N, (Nusselt number) = hL/K
P (Prandtl number) = C, M /X (3.35)
R, (Reynolds number) = fﬁum-L/AL
L = the significant length dimension of the system to
specify the geometry of the object from which heat
flows,
U = Fluid vélocity,
M = viscosity of the fluid,
K = thermal conductivity of the f£luid,
h = heat transfer coefficient,
Cp = specific heat of the fluid,
and £ = density of the fluid.

All physical properties are taken at the mean film temp;

= 2
T, (r, + 1T, )/
where, TS is the surface temperature,

and T

w 18 the liquid bulk temperature.

Thus, for known fluid properties (91) and given temperatures of
the surface and the fluid, h can be calculated using Egs. (3.32) -
{3.35). However, even 50% discrepancy in the value of h calculated
by two different methods is not unusual in convective heat transfer(SQ).
The average values of the heat transfer coefficient calculated for a
typical case using water as a coolant in the present investigations are

given below.

Type of surface
(Fig. 3.9)

Average h 284 377 880 880 160 440 300
w/m? K




3.10 Heat Generation due to»Plagtic Deformation in the Primary Zone,

It is well known that a very large fraction A of the.plastic
deformation energy is transformed into thermal energy. When the plastic~
strain energy is as large as that involﬁed in cutting, all but 1 per cent
or so of the stréin energy appears as thermal energy, the small residual
energy being associated with permanent lattice deformation (26). Thus

to a good approximation it was assumed that the:.deformation energy is

converted entirely into thermal energy, giving

d=Tx : : (3.36)
where é is the rate of heat generation per unit volume,
T is the shear flow stress, and

£ is the shear strain-rate,

The shear flow stress and shear strain-rate within the primary defor-

mation zone were determined experimentally as described earlier.

3.11 Heat Generation in the Secondary Zone,

In the secondary zone, the heat is generated within the chip due
to plastic deformation as well as over the contact length due to bouhdary
friction., Similar to the primary deformation zone, the rate of heat

generated per unit volume é at a point due to deformation is given by

Q = Tt (3.37)

where 175 is the maximum shear stress given by Eq. {3.30).
The heat generation rate per unit area qX due to boundary friction
at a point on the sticking length at a distance x from the tool edge

was calculated as

q_ = ’ﬁg v, » (3.38)

X

where Vx is the velocity at the point as described in Section 3.3,
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Over the sgliding contact length, the rate of heat generation per

unit area due to the boundary friction at a point at a distance x from

the tool edge is given by

= 3.39
Ay 7fx Vc ( )
where Vc is the chip velocity and ’tx is the shear stress at the point

given by

T - Ts .{C - x)n

(3.40)
X (C - G!)n

where C is the tool chip contact length,
G, is the sticking length

and n is given by (Eq. 3.28).

3.12 Heat Generation over the Flank Face,

The heat is generated over the flank face of the tool due to
boundary friction oniy if the tool has some flank wear, It was assumed
that the distribution of éhe.shear stress on the flank face of the tool
is unifofm, i.e.,

—_ - (3.41)
\

where Fp is the force component due to boundary friction : fraratlel
to the flank measured experimentally,
“ig the width of cut and

1f is the length of flank wear land measured along the flank face.

The rate of heat generation per unit area over the length -of

flank wear land due to boundary friction was estimated as

a =T, v, ; (3.42)

where Vf is the velocity along the flank face,
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Chapter 1V

COMPUTATIONAL METHODS AND COMPUTER PROGRAMS.

The program for implementihg the algorithms described in Chapter two

is carried out in five stages:

(i) Evaluation of the primary zone properties.

(ii) Mesh Generation,

(iii) Input data preparation.

(iv) Evaluation of element matrices and assembly and solution of

system matrices.

(v) Graphical representation of the results.

The complete analysis requires the use of a numbexr of computer programs

SRATE, ELDAT, ELDATGEN (92), DATA, FETC, TPLOT and PRPLOT which have been

developed for the analysis performed herein,. Their functions are as

follows:

SRATE :

ELDATGEN(92 ) :

LIDAT:

DATA:

FETC:

5

This program evaluates the properties of the primary zone,
i.,e., the strain, strain-rate and velocity distributions,

It generates the finite element mesh for the problem region.
It prepares the ‘key diagram? (iqe., skeleton input data)
for ELDATGEN.

It centralizes and checks for errors the input data required
by the major program FETC.

It generates the individual element matrices, assembles themn,
injects the boundary conditions and solves the system
matrices for the nodal temperatures employing an iterative
procedure in order to account for the variation of material
properties and flow stress with temperature,.

It represents, graphically, the finite element mesh as a
whole or in parts with or without node numbers and plots thé

temperature distributions and isothermals in the zones of
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interest.
PRPLOT: It plots the strain, strain-rate, Ilow stress and temperature

distributions in the primary zone,

The above programs are linked together by disc files. The output of
one program is dumped on disc files and is used as input files for another

program, The program flow path is shown in Fig, 4.1,

4.1 SRATE,

SRATE is developed to calculate velocity, strain and strain-rate
distributions in the primary zone, The necessary input data‘can be divided
in two parts:

(i) Cutting conditions, and

(ii) Stream-line co-ordinates,

(i) Cutting conditions: The values of feed t rake angle «, work

1!
velocity U, chip thickness ratio CTR, number of flow lines and the co-
ordinate magnification factor are read for each test. The chip thickness

ratio CTR is obtained from the relationship

C
CTR = == (a.1)
) .

where the chip velocity VC was found by the change in width between stream-
lines,

(ii) Streamline co-ordinates: The measured local co-ordinates of a
number of points on each streamline, as described earlier, were stored on
a disc, These are read from the disc for each streamline separately and
stored in appropriate arrays,

A set calculation procedure is followed for each streamline, After

transforming the co~ordinates into a global system, a third-order poly-

nomial is Fitted using the standard statistical subprogram °*MLR3° and

the coefificients of the polynomial are obtained. At every point on the

d 2
streamline, its angle with chip velocity B8 , E% and g;% are calculated
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SKELETONJ?ESH DATA

N

HEAR ZONE STREAMLINES? ELDAT
G- ORDINATES & CUTTING CONDITIONS -

| KEY DIAGRAM
o SHEAR ZONE ELDATGEN
ELEMENTS
TRAIN &
IRATN-RATE
- MATERIAL TPLOT
PRPLOT PROPERT IES
- _ TND
N A
| =m0 ) DATA
| STRAIN, STRAIN - RATE ' TEMPERATURES OF SHEAR
& VELOCITY INFORMATION FEIC " ZONE AND FLOW STRESS
INFORMATION
¥
TEMPERATURES
I  rpror PRPLOT
..31. “ '"
END END
Fig, 4.1

Schematlc Arrangement of Finite ERlement Programs,
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in sequence and from these the values of velocity, strain-rate and strain
are obtained, The operation is repeated for all the streamlines and the
equations required for calculation are derived in Section 3.2. The
sequencial‘procedure of the program is illustrated in the flow chart in
Fig. 4.2,

The program output is diverted into three channels., The nodal co-
ordinates of the shear zone elements and the cutting conditions are fed
into ELDATGEN to be included as nodes in the mesh., The strain and strain-'
rate distributions are passed on to PRPLOT' for plotting and analysis and
this information coupled with the velocity distributions isvpassed on to

FETC for temperature analysié.

4,2 EIDATGEN (92)

To perform an analysis using the Finite Element method,,the problem
region must be divided into a number of finite elements; these elements
are considered to be interconnected at certain points (nodes) which are
situated on the boundaries of the element. For each element in the mesh,
the material propertieé, geometrical and nodal data have to be provided.

Fach one of the nodes interconnecting the finite elements is assigned
a number. The amount of core memory required for the storage of the system
matrices is determined by the total number of nodes and the nodal band;
width which may be dafined as the maximum difference between any two node
numbers of an element. The nodal bandwidth also influences the computing
time required for the solution of the problem, Therefore, it is advanta-
geous to number the nodes so that the nodal bandwidth is a minimum,

The prepavation of this data is both time consuming and prone to error,
To overcome these difficulties, a program called ELDATGEN has been devel~
oped by Abhary (92). For the sake of completeness, the existing program

and the necessary modifications carried out are described, in brief, below.
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The main function of ELDATGEN is to generate a mesh automatically .

from a skeleton input data to the required degree of fineness and also
to number the nodes in an optimum way. The nodal data generated by it
are passed on to FETC for evéluating the thermal matrix for each element;
it is also used for graphical representation of the mesh.-

The program is based on the chequerboard principle (92). The
problem region is first divided into regions or 'zones' and a finite
element mesh is generated within each zone, In the case of a two-dimen-
sional problem, the region is divided into quadrilateral zones (if
necessary, any one 6f the quadrilaterals can be degenerated into two
triangles). Each zone in the x-~y plane is represented in a chequerboard
-or key dlagram by a 'normalized? sq&are, of two units side, defiaed in
a new space & -M, (Assuming that a uniform grid is required, mesh
points are created in equal increments in the § and 7 directions of the
square). The § - "L co-ordinates of the points generated in the square
can bhe eaéily calculated because the square is normalized; they are next
transformed to the x~y space through a shape function using the relation-
ships,

X

I

[v] {s}° |
] {+}° | (4.2)

where %%Ei {y}e ceontain the x, y co-ordimdtes of boundary nodes and [N]

1l

y

is a given shape function of £ ,M.
The type of shape function depends upon the complexity of the
boundaries of the zone. Iif, for example, all the four boundaries of a

zone were straight (Fig. 4.3), then the following shape function is used,

Ni==1M(L+gQ)U+an ) (4.3)
-Normally, the x, y co~ordinates of the four corner nodes are suf-~
ficient to transform the normalized co-ordinates of a point (g,'q space)

to the co—-ordinates in the x~y space. However, there are two circum-
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stances that require the x~y co-ordinates of at least one more node.
They arve:

(i) Curved Boundary: If one of the boundaries of the zone is cuvved,

the x~y co-ordinates of the node situated mid-way along the curved
boundary are required for the transformation from the % - " to the x-y
space (node h, Fig, 4.4). The shape functions used are given by Egs.

(2.29) - (2.31).

(ii) Non-Uniform Mesh: If a non-uniform mesh is required in a particular

zone, an additional node is introduced on one of the boundaries. This
node is positioned to the right or left of the mid-position of the bound-
ary. Its distance from the mid-position indicates the amount of grading
or non-uniformity required in the zone. The boundary on which this
additional node is piaced must be a gtraight line. The x-y co-ordinates
of this additional node must not be furnished; instead a weighting Ffactor
which exﬁresses the distance between the additional mid-side node and the
first corner node as a fraction of the boundary length is specified. For
example, if a non-uniform mesh as shown in Fig; 4.5 is required, then a
weighting factoi equal to the ratio of the lengths' A:B is assigned to
node 2,

To specify the mesh fineness required, the noymalized squares that
correspond to the different zones are assembled to form a ‘Key diagram®
(which may be defined as a diagram consisting of one or more rows, with
each row.having the same number of squares). The position of a square
in the key diagram should be coﬂsistent with the position of the corresp-
onding zone in the structure, More often than not, when trying to arrange
the normalized squares in the form of a key diagram, gaps occur which are
filled by non-existent or void! =zones, |

An I, J system of axes is associated with the key diagram (rig. 4.7),

this system of axes should be consistent with the x-y system (Fig. 4.6 (a)).

The point (1, 1) in the I, J system is made to coincide with one of the
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four corners of the key diagram,

The mesh required for the problem region is indicated by taking each
row and column in the key diagram and indicating fhé nunber of sub-
divisions required in it, With the previous version of ELDATGEN, the
type of two-dimensional elements which can be generated in a zone include
triangular and quadrilateral linear elements only,

In order to generate the higher order elements required for the present
investigations, some modifications have been incorporated. Again, Eq.
(4.2) is used to map the points from the curvilinear co-ordinate ( § , m )
system to the x~y co-ordinate system. The zmones are first divided into
linear elements which are, then, converted into higher order elements by
increasing and renumbering the nodes accordingly. It is assqmed that the
element boundaries are straight and the co-ordinates of mid-side nodeé
are calculated by interpolation. As a result, it has been possible to
generate the quadratic and cubic quadrilateral eleﬁents automatically,

The input data to the program is supplied by ELDATY

4.3 ELDAT.

EILDAT generates the input data and the key diagram for ELDATGEN.:
The factors which led to the development of LLDAT are that

1. the number of zoﬁes in the key diagram representing the tool-
work-chip composite system is considerably large (more than 80) necessi~
tating the manual calculation of the x~y co-ordinates.of a number of key
diagram nodes and

2, 'a separate but geometrically similar key diagram is required

for each and every test due to a change in cutting conditions.

Fig.4.6(@ shows the problem region when a high speed steel cutting

tool is used for machining. The corresponding key diagram consisting of

I
84 zones is shown in Fig., 4.7. Similar diagrams when a carbide tool is
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used for machining are shown in Figs, 4.8 and 4.9 respectively. The key
diagram for the carbide tool isAdivided into 92 zones. Obwviously, the
manual calculation of the input data for such a large number of zones for
different tests is a cumbersome process and\is liable to human error,

The program ELDAT takes care of the variations in cutting .conditions
and can generate the different key diagrams requiring very little data
(say, 10 ~ 15 cards), The input data to be read for each test include the
number of subdivisions required for each zone in the I and J directions,
the tool material, feed, rake angle, tool-chip contact length, sticking
contaét length and distance of the step on tool face from tool edge
neasured aloﬁg the tool axis. Using the simple geometrical relations as
evident from Figs. 4.6 and 4.8, the program calculates the x-y co~ordinates
of the nodes in the key diagram, The output is streamlined to meet the

input data requirements of the parent program ELDATGEN.

4.4 DATA.

DATA serves as a front-end data checking device to the major program
FETC. 1Its main advantage is that all the input data is centraiized and,
therefore, any errors in the input are checked or detected, thereby,
reducing the chances of unsuccessful runs of FETC and wasted computer time.
Furthermore, it calculates the bandwidth and the maximum and minimum node
numbers of the generated mesh.

Input data to the program consist of the following items.-

(1) Control Parameters: These parameters enable the computer to -
identify the problem in hand. They specify the type of proﬁlem ~two
dimensional or three dimensional - and the number of different materials
present in the problem region. -

(2) Material Properties: The values of thermal conductivity in x
and y directions, specific heat and density in a number of sets, each

corresponding to one type of material, are read and stored in the arrays -
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CKX, CKY, ACP and AROE respectively, The iocation index for-each set
of values in the arrays serves to be the material type number for the set.

(3) Boundary Conditions: An integer is read in to specify if any
coolant is used during machining, If a coolant is used, further data
regarding the element numbers affected by the coolant and the surface
number (Fig. 3.9) to which the element belongs, relative length of the
surface, surface fluid velocity and the location number of the first
boundary node on each surface are read in and stored in the arrayé ;

NBC, NSE, REL, VFLD and IC()N. respectively., In addition, a list of fixed
temperature nodes and the number of elements shared by each of them is
also read in,

(4) Elements with heat sources: They include: the elements of the
primary and secondary deformation mones ag well as the elements on the
flank face which are subjected to boundary friction inithe case of a
worn ‘tool,

(5) Cutting forces: These include the forée components‘Fv,and FH.

(6) Element data: These data include inteéer numbers indicating
the type of element used and material type, thickness of the element,
number of nodes in the element and their identifying numbers followed by

nodal co-ordinates. : "

The flow chart for the program is shown in Fig. 4.10.

4,5 FETC,

FETC performs the core operations in the finite element analysis.
It sets up the iterative procedure to allow for the variations of material
properties with temperature and evaluates the element matrices, assembles
them and solves the assembled matrices for each iteration until the solu-
tion is converged., The general procedure of the program is illustrated
in the flow chart in Fig, 4.11.

The program has been used for the present investigations, to solve
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the two dimensional temperature field problem, but it has the provision

to solve the three dimensional problems, as well, The element data gener—
ated by ELDATGEN are routed through the program DATA to FETC. These data
are not stored in FETC all at a time, but they are read from the tape one
by one as they are required in order to optimise the use of storage. TFor
the same reason, the element matrices after computation are stored sequen-
tially on a disc file ready for the subsequent assembling operation, The
assembled matrices are again dumped on disc files to be the data input
files for solution which is performed by the subroutine EQSOL,

Auxiliary backing store is used extensively so that the whole working
core of the computer can be devoted to storing the program and compu~
tational manoeuvre. This enables very large problems to be accommodated
The program occupies the full working core (about 25 K in level 1 store
and 100 K in level 2 store) available to users on the combined CDC 7600 -
ICL 1906 A computer. Data transfer between auxiliary store and working
core will be reduced and this will eventually lead to a saving in system
time if more working core is allowed for compuéational manceuvre, especi=
ally in the process of assembly.

The program has been written in such a way that new elements can be
easily incorporated withoﬁt much reorganisation and readjustment of the
program, Most of the important arrays arve dynamicélly dimensioned in all
the subroutines. Any change of array size to adapt new situations can be
affected simply by replacing the dimension statements or altering the
values which determine the size or arrays in the subroutines. Furthermore,
some space is made available at strateéic points for the additions of new
element routines. The four major aspects of the program are

(1) 1Iterative procedure.

(2) Evaluation of element matrices and heat loads and injection of

boundary conditions,

(3) Assembly of system matrices and
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(4) Solution of the assembled matrices,

4.5,1 Iterative Procedure.

The thermal conductivity, specific heat and density of the materials,
the shear flow stress of the workpiece material and the heat traﬁsfer co=
efficient are not congtant and, certainly, depend upon the temperature,

It is necessary to take into account the temperature dependency of these
variables. TFor this purpose, an iterative procedure is employed in which
values for‘the properties in each iteration are based on the temperature
obtained in the previous .iteration. Of course, for the first iferation,
the temperatures are arbiﬁrarily set equal to zero, The old temperatures
are stered in arrays B4 and A4 in the main pfogram and the subroutine
EQSOL respectively.

For each iteration, new [H] and {F} matrices of Eq. (2010) are set
up and a new -set of temperature vector{:T} is solved. The new set of nodal
temperatures is compared with the old set and the iteration procedure is
continued until the difference between the two yectors is less than 1 per=
cent, The temperature converged to within a relative error of less than
1 percent throughout the problem region in no more than five iterations for
most of the tests. The new temperature vector is stored in arrays B3 and
A3 in the main program and the subroutine EQSOL respectively, The iter-

ative procedure is illustrated in the flow chart of Fig. 4.11,

4,5,2 Evaluation of Element Matrices and Heat Loads and Injection of

Boundary Conditions.

Evaluation of element characteristics is the basic step in the finite
element analysis, For convenience, the element equation (2,12) and the

other related equations (2.13) and (2.16) are reproduced here, i.e.,

[H]ea{'r}e + {r}® = o  (4.4)




ki

[e]° v | (1)

where [H] ©

e
and [G] is the element thermal matrix.given by

v

a(NIY  arw]

T
[G]e - X o [N} o[x] £ K + PCpu[N]TQSL%l +

ax ° ax 3y ° oy
T afN]
POV, (~] Y (4.6)

For evaluating the element matrix [H]® in Eq. (4.5), a general
procedure is adopted for all the elements., The integration required in
the above equation is carried out numerically. The derivatives of the
shape functions with respect to the normalized co-ordinateg and the
Jacobian matrix are first calculated, Using Eq. (2.41), the local deri=
vatives are transformed into the global derivatives as requilred in Lq.
(4.6) for every integrating point. The operation necessitates the use

of a number of subroutines which are described below,

4,5.2,1 Subroutine JACOBI.

This is a standard subroutine which takes the arrays of the co=
ordinates and the local derivatives of the shape functions[:nsﬁ] from the
element subroﬁtines and evaluates the Jacobian matrix'[J] and its deter-
minant, The Jacobian is inverted and multiplied by the matrix [Dsﬁj to
generate the matrix [ DSFTj] containing the values of the transformed
derivatives of the shape functions,

4.5.2.2 Subroutines BDBl and BDB.

Evaluation of the expression given by Lq, (4g6) for every integrating
point and the cumulative summation up to the point are carried out in
subroutine BDBl for a two dimensional analysis, Similar operation for
a three dimensilonal case is performed in the subroutine BDB. Both the
routiﬁes are general in nature and can be used for all elements, irresp—

ective of the number of nodes.
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It is worth mentioning that the program can be adapted to solve any
other two or three dimensional field problem by just replacing the sub-
routines BDB and BDBl. ©No other change seems t0 be necessary provided the

boundary conditions are similar in nature.

4.5,2.3 Ilement Subroubines,

The element subroutines follow a general moedular pattern as shown in
Fig., 4,12, Tor the reasons given below, it was considered necessary to
inject the boundary conditions and calculate the heat loads due to the
deformation energy while evaluating the element matrix,

(a) The coolant boundary condition ag expressed by Eq. (202(0)) cont~
ributes to the element thermal matrix as well as to the element heat load
vector. It is evident from Eq, (2.8) as its second term j; N,h [ﬁ] {T}e ds
is to be added to [H]e and the third termj; Ni h T ds ‘ ?s to be inclu-
déd in the element heat load vector {F}e lgefore these quantities can be
calculated,

(b} The fixed temperature nodes (Eq, 2.2(a)) can be treated at
the element level easily by setting

e 1/ELE(1) if i o=

H = (a.7)
ij 0 if 4 & J

where ELE(I) indicates the total number of elements to which tﬁe node is
_common,

(c) Calculation of the heat loads due to the deformation energy

(first term of Eq. 2.11(b)) requiring numerical integration can be easily
accommodated in element subroutines avoiding the repetition of the inte=

gration procedure and thus saving computational time,

In the main program FETC, element type number (NTYPE) with the problem
type number (NPRO) directs the calculation of the element matrix to be done
in the appropriate element subroutine. Presently, there are seven such

element subroutines as glven below,
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NTYPE .
1 - TRI3 {3 node triangular element). 3
2 - QUAD4 (4 node quadrilateral element:) " _ 4
3 - TRIA6 {6 node triangular element) 5
4 =~ TRIA9 (9 node triangular element) 6
5 = QUAD8 (8 node quadrilateral element) 7
6 = QUAIZ (12 node quadrilateral element) 8
7 - HEXE8 (8 node hexahedron element ) 9

The general procedure of obtaining element matrices is the same in
all the subroutines. Brief description of each of the subroutines is
given below.

(1) subroutine TRI3 .

This subroutine is for a 3=node linear triangular element
shown in Fig. 2.3{a). The shape functions are expressed in terms of the

area co-ordinates L, L, and L, (Fig. 2.3(b)) and are given by Eq. (2.24).

1’ 72
The subroutine follows the general molular pattern and the intee

gration has been carried out at one point, the centroid of the triangle,

(2) subroutine QUADA .

This subroutine is for a linear 4-node quadrilateral element
shown in Fig, C2.,2(a))n The shape functions define the element geometry
as well as the temperature pattern i.e.,

X =3 [N] VA {x}e
v~ ] {° (a.5)
and T = [N] {7]°
where the shape functions [N] are given by Eq. (4.3).
Gaussian quadrature formula (93) is well adapted to integrate the
element matrix numerically in the domain of the § -~ 7\ system., Tor inte=

gration, 4 x 4 Gaussian iptegrating points have been used,

(3) subroutine TRIAG .

The quadratic 6-node triangular element was first derived hy
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Veubeke (84) and used for a fwo dimensional stress problem by Argyris (95),
For this element (rig. 2.3(c)), again, the area co~ordinates are used and
the shape functions are expressed by Eqs. (2.27) and (2.28),
The subroutine follows the same general quular pattern as for other
elements except that the integration has been carried out at the points

given by Hammer et al {96),

(4) subroutine TRIAY .

For this subroutine, a complete cubic polynomial consisting of
10 terms has been used. This requires an additional mid-face node (rig.
2.3{e)) to be included {39). The mid=face node i1s later eliminated, The
equivalent shape functions are given earlier by Egs. (2;34) = (2.36),
The integration is performed using a (5 X 5) points Gaussian method

over the triangular area {39),

(5) Subroutine QUADS..
This subroutine serves the gquadratic 8~node quadrilateral element
(rig., 2.2(c)) and is similar to QUAD4 except that the shape functions are
different given by Eqs. (2.29 = 2,.31),

The iﬁtegration is performed over 4 x 4 Gaussian integrating points,

{(6) subroutine QUAI2. .,

This element subroutine is for the cubic 1l2-node quadfilateral
element shown in Fig, Z.Z(e). The shape functions used are given by
Eqs. (2.37) ~ (2.39).
Again, a 4 x 4 points Gaussian integrating procedure is used in this

subroutine.

(7) Subroutine HEXES .

This subroutine is for a linear 8wnode hexahedron (three dimen=

sional) element shown in Fig. 4.13,
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Fig., 4.13.

normalized co-ordinates {g ,wl,s;) are used and the shape

for a node can be expressed as follows;

N

i

i /8 (1 +58) (1 +m) (0 +55) (4.9)

l4-points integration rule developed by Irons (97) has been
numerical integration because it takes about half the compu-

time of that required with the 3 x 3 x 3 Gaussian integration

Boundary Subroutines,

While evaluating the element matrix, a number of subroutines are

called to inject the boundary conditions, It may be mentioned here

that the

occur in

boundary condition such as given by Eq. (2.2(b)) did not

the problems considered herein, Thus, the element contri-

bution of the first term of Eq. (2.8) i.e., Jﬂ\ N..q.ds vanishes,
S

i
ge

The contributions of the other two terms~[ Ni.h.Nj.ds and
She

N.. h.
J;he i

T, - ds arise on coolant boundary governed by Eq. (2.2(c))
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and are evaluated by the subroutines HQ12 and.HQS which, in turn, call
the subroutines DCOSIN, CALHTC and HTCT. The boundary condition of
Eq. (2.2(a)) is injected by the subroutine CONTEM. A brief description

of each of these subroutines is given below,

(1) sSubroutines HQ12 and HQS.

Similar to the element subroutines, these subroutines have been
written in modulayr form for the 12—node quadrilateral and 8~node
quadrilateral elements respectively. The boundary integrals for the
coolant boundary are evaluated using the Gausé quadrature integration
(1inear) technique. The linear integration is carried over 4 points
and the flow chart‘is shown in Fig. 4.14.

For the coolant boundary elements, the additional contributions
+

and to the element heat loads {F}+

to the element matrix H
She

She
can be written down as

+ .
[H}She = J' n.§ N, N ds (4.10)
She

and {F}+ = - |n .51 N, T, ds (4.11)
She She *
L for the nodes on boundary
where é; = ' \ (4.12)
0 for all other nodes of the element,

Consgidering the relationships between the curvilinear co-ordinates

(g ,7[) and the cartesian co-ordinates (x, y), ¢x can be expressed as

ox X .
dx = — . d + == d 4,13
p 3 57 n (4.13)
where, for the linear boundaries;
dx = 1ly ds _ . (4.14)

and ly is the direction cosine of the outward normal and the y~-
direction,
Substitution of Eqs. (4.13) and (4.14) into Eqs. (4.10) and (4.11)

and further simplification gives
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£, _

N1
£2

+ h T d[N e

and F = = =~ &, N, === Ix d
{ }She £, ly i i og { ] -3

. N2

h Tgc a[N e

- . »i;-—- d‘l Ni —é—w,;tl {x} dn {4.18)

1

For the boundaries where ly tends to zero, similar expressions

)

incorporating 1lx are used.for evaluating [H]+ and {F}+ « The compu-
he Jhe

tational procedure used in the subroutines HQ1l2 and HQ8 is based on

Eqs. (4.15) and (4.16).

{(2) Subroutine DCOSIN.

This gubroutine.calculates the direction cosines lx and ly of the
outward normal with x and y axes respectively as required for Eqs,

(4.15) ana (4.16).

(3) subroutine CAIHTC.

This subroutine calculates the heat transfer coefficient h for the
boundary elements subjected to water cooling. The properties of water
i.e., density, specific heat, absolute viscosity, thermal conductivity
and the Prandtl number (90, 91) at various temperatures are stored in
DATA block WP, Using Eq. (3,35), the Reynolds number is calculated for
which the physical properties are taken at the mean film temperature Tf
given by

T, = (T, + Tg )/2 (4.17)
" The surface temperature TS is taken to be equal to the temperature
obtained in the previous iteration.

If the value of Reynolds number is less than 5 x 10% Egs. (3,32)

and (3.33) are used to calculate the value of h, otherwise Eq. (3.34)
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is used.

(4) sSubroutine HICT,

Similar to the subroutine BDBl, this subroutine is general in naturé
and can be used for all elements, irrespective of the number of nodes
associated with the element., In this subroutine, the contributions from
the boundary integral (Egs. (4.15) and (4.16)) to the element matrix and

element heat vector are calculated at each integrating point.

(5) Subroutine CONTEM,

This subroutine injects the boundary condition of the type given

by
T = T, on part of boundary §, (4.18)

For such boundary nodes, the element matrix is modified as follows:

1/ELE({1) iF 1 = j

H, = N (4.19)
0 if 1 £ 3

where ELE(I) indicates the total number of elements sharing the hode\

under consideration. Similar operations for the ncdal heat loads are

done by setting F, = ~T_ in the main program FETC {(Fig. 4.11).

4.5.2.5 Subroutines for the Primary Zone Heat Loads.

The evaluation of the heat load vector for the elements lying in
the primary zone is doné by subroutines FLUXCL and DEFE as described
below, Both the subroutines are versatile and can be used for all the
elements.,

(1) Subroutine FLUXCL.

This subroutine first calculates the shear flow stress using
Tq. (3.21) based on the temperature obtained in the previous iteration,
The rate of heat generation per unit volume Q due to plastic deformation

is then calculated using Eq. (3.36).




(2) Subroutine DEFE.

This subroutine evaluates the term - g[ Ni Q dx..dy i.e.,
e e
Fi ‘due to the primary deformation., The evaluation ig done by numerical

integration.

4.,5,2.6 Subroutines for the Secondary Zone Heat Loads.

The heat loads due to the plastic deformation in the secondary zone
are calculated using the subroutines FLUXCL and DEFE as described
above, The heat loads due. to the boundary friction over the tool-

chip contact length are given by
e L]
r, o= - N, Q dxidy (4.20)
e .

In matrix form,
[F].e - - “ [T 4 awiay (4.21)
The heat generation rate per unit area gx due to the boundary
friction at a point on the contact length at a distance x from the

tool edge is given by

ax = Qdy = T,V (4.22)
Substitution of Eq. (4.22) into Eq. (4.21) gives
€ t T
{F} = - [N] T v, ax (4.23)
0 X X :

where 1 is the length of the edge of the element subjected to the
boundary friction,

In order to calculate the equivalent nodal heat loads {F}e ’
consider a cubic 12-node quadrilateral element one edge of Which is
subjected to the heat flux qx (Fig, 4.15).

| The temperature (99) over the length 1 can be set as

2 3
T = o<1 + D(2X+O(3X +o(4x

(since y is constant)
or T = [p] {«} (4.24)
where [P] = [ 1 x X x ] (4.25)
and {o( }T= [ o o oly, l (4.26 )
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{a) Distributed loading FIG. A5

Substituting the nodal co-ordinates in Eq. (4.24),

M M 4 .27)

where,
- T 1 1
T2 r o2

- r= <
r
3 N3
T4 0(4
and,

(4.28)

In terms of the shape functions, the temperature over the length 1 can

be expressed as

T “ [ N] (T] (4.29)
where,
[ NJ *[ NX N N3 M j (4°30)
Combining Eqs. (4.24), (4.27) and (4.29) and eliminating TJ and
[»] = Mo ]
"H T-[*]'T [»]T <o

Substituting for*N” from Eq. (4.31) into Eq. (4.23),
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{F}e = - [A]_T [:P]T Tk vx . ax (4.32)

1

or {F}e = —[A-]MT {c,} S | (4.33)

where, {C,} = 5X4 [P]T . Tx V- ax (4.34)

For the sticking length,

il

C v A(4,35)

ax = I; Vx
and for the sliding length,
n
ax =T, v, .§E::§.).n (4.36)
(C-gy)

as described in section 3.11,

The four subroutines MATRIXA , INVERS, MATRIXC ~arnd MULTI2Z are
required Tor calculating the equivalent nodal heat loads using Igqs.

(4.32) - (4.34).

(1) Subroutine MATRIXA .

This subroutine generates the matrix [A] given by Eq. (4028)
for all the elements, The value of an integer M indicates the element

being considered.

(2) subroutine INVERS.

This is a standard subroutine which can be used for inverting
a matrix, In the calculation of heat loads, it is used for the inver-

sion of the matrix Dﬂ,

(3) Subroutine MATRIXC .

This subroutine first calculates the stress exﬁonentlw using
Eq. (3.28) and the maximum shear stress T, (Eq. (3.30)). The end =
co-ordinates of the edge of the element are compared with those of the

sticking length to find out whether the edge lies inside or outside the

sticking length. TFor the elements subjected to sticking boundary friction,
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the matrix {C{} is evaluated using Eqs. (4.34) and (4.35). For the
elements under sliding boundary friction, Eqs. (4.34) and (4.36) are

used to evaluate the matrix {C& .

(4) subroutine MULTI2 .

In order to calculate the heat loads finally (Eq. (4.33)),
the inverted matrix[;A:]_l is transposed and multiplied by the column
matrix {:c& . The subroutine is general in nature and can be used for

matrix multiplication.

4.,5.,2,7 Subroutine for the Flank Friction Heat Loads.

Some tests were conducted using tools with known initial flank
wear. The wear on the flank face produces heat due to the friction
between the tool and workpiece. The equivalent nodal heat loads over

the flank wear land are given by

. e l )
{F} = -jo [5]" 7, v, at (a.37)

where Vf is the velééity along the flank face,
T is the conétént shear stress givep by Eq. (3.41)

and 1 ig the length of the edge of the element subjected to flank

friction. Simplifying Eq. (4.37), it can be shown (99) that the equivalent

nodal heat loads due to the distributed flux of constant magnitude

'T& v, are given by

qQ/2
{F‘}e = 4 for linear elements (Fig. 4.16(a))
| 9/2 (4.38)
-
a/6
€ 4
{TF} = {29/3 for quadratic elements (Fig. 4.16(b))
| o/6] : (4.39)

i

: T
[Q 8 3Q/8 SQ/B Q/81 for cubic elements
‘ (Fig. 4.16(c))
(4.40)

e
and { F}
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{a) Linear element (b) Quadratic element {c) Cubic element

Fig. 4.16

The mathematical operations involved are performed by the sub-

routine FFE as described, in brief, below,

(1) Subroutine FFE,

Thigs subroutine first calculates the total heat Q generated
over the edge of the element using ®q. (4.41). It, then, evaluates
the equivalent nodal heat loads using Eqs. (4.38) - (4.40) depending

upon the type of the element.

4.,5.3 Assembly of System Matrices,

The element matrices and the nodal heat loads are assembled to
form the system matrices [H] and {F} by the subroutine ASSEMB, Rlement
node numbers and the element matrices for each element are recorded on
a disc file, The subroutine reads them Ffrom the disc file and carries
out the assembling operation. It also places tha nodal heat loads in
appr&priate rows, The nodal heat loads are stored in array BEP with
the associated node numbers in the array IBEP. Before the start of
the assembling operation, the matrices[:H] and {F}'are nulled, The
basic operations of the subroutine are illustrated in Fig,_4.17,

For most problems, the system matrix [H] has to be assembled in
stages or parts (Fig° 4,18)° The total number of storage locations
available’for the assembling operation, represented by the size of an

array called B2, is specified by an integer parameter MAXSIZ. The




times

fiT

1

Repeat

( START j

Determine LROW

94

ILROW - max, no. of rows

and IPART in a part
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Fig. 4.17 FLOW CHART FOR SUBROUTINE ASSEMB
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number of columns (MAXBD) and the number of rows (LROW) that can be

assembled in each part are calculated as follows:

MAXBD = 2 % BANDWIDTH + 1

. TTOTAL = total number'of degrees of freedom,

LROW = MAXSIZ/MAXBD
and | IPART =  ITOTAL/LROW
For each part, row indices of the first row (k1) and the last row (K2)
are calculated, They specify the range or limit of the part.

When the node numbers of an element are read from the disc file, the
row indices in the elementiwith respect to their locations in the assem=
bled matrices are checked against The range specified by Ki and K2.

Those falling inside the range are assembled and those outside the range
are skipped. This is done for all the elements and the disc storing
them is scanned once for each part assembly. The whole procedure is
repeated for all the parts. It may be mentioned here that a bigger
working core for the assembly operation reduces the amount of data tyrans—
fer from the disc file storing element data and element matrices, becausq
IPART will be smaller, Hence} MAXSIZ should be as large as possible,

The fully assembled parts of the matrix [H] are, then, recorded
row by row.onto a disc file ready for the subroutine EQSOIL.

It is evident from the above description that there is practically
no limit as to the sizme of the problem that can be analysed with this
program as far as the assembly operation is concerned, provided the array

B2 has sufficient storage locations to take atleast two rows,

4.5.,4 Solution of Assembled Matrices.

The key factor in any finite element analysis is the subroutine for
the solution of simultaneous equations., An efficient solution procedure
can reduce the computational time as well as the core store requirement.

The assembled matrices, in the present program, are solved using
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the Gaussian elimination procedure in subroutine EQSOL. The subroutine
takes advantage of the fact that the matrix [H] is banded, Auxiliary
storage is used to cater for large problemé. The main aspects of this
subroutine are forward elimination,bback substitution and the rearranging
procedure,

Forward Elimination: Using Eq. {2.10), a set of N equations may be

represented in partitioned form as

H11 H12 0 ' Tl Fl
Hy, Hy, Hyg T, _+ ¥, - o
0 Hao Heg Ty P

(4.42)
where T is a vector of unknown temperatures,F lga vector of known heat
loads and the matrix sizes are as follows:

Hll(l x.l), le(l x m), HZl(m x 1), sz(m x m), st(m x (N = 1< m)),
HSZ((N - 1= m)x m), H33((N = 1=-m)x (N=1-=m)).

where m is the semi~bandwidth.
It may be mentioned here that [H] is unsymmetric. The banded'nature of
the matrix [H] is demonstrated by the zero submatrix which replaces the
zero values beyond H,,_,. In the forward elimination (Sé), the [H] matrix

12

is reduced to an N - 1 matrix equation of the form

* *

H™T + F = (4.43)
. ) ~1
where H™ = Hy, = Hy H." H, (4.44)
* -1
and F %= F,_ - H_H F (4 .45)

Here, when H is eliminated only H is modified as the zero submatrix

11 22

causes no change in H g1 H and H This procedure is repeated by

P 32 33°

P 3 . . . N
partitioning H ¥ in the same way until the matrix H * is reduced to
a l x 1 matrix., As a result, all the co=-efficients in the. lower triangle

of the matrix [H] are reduced to zero, TFor the large problems, this
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operation is performed in stages as described earlier in Chapter II.

The procedure is illustrated in the flow chart in Fig. 4,19,

Back Substitution: In the back substitution, the equations of the type

-1 -1 .
T, = ~H, F H, W H, T, (4 .46)

are used to sélve for the temperatures except for the last unknown
temperature Tn for which the direct valﬁe is given by H$ (being reduced
to a 1x1 matrix). That is, the non-diagonal co-efficients of the upper
triangle of [H] are reduced to zero and the diagonal co—effi;ients are
made equal to i. The procedure is identical to the one described for

the forward elimination, buf now the stages (or parts) for the large
problems are loaded in reverse order. Once both fqrwgrd elimination and
hack substitution are perfofmed in a certain stage, éﬁly the témperature
valueé correSponding to that stage are stored. These values are recalled

in a similar fashion as it was done in forward elimination.

Rearranging Procedure: Even though the co-efficients corresponding to
the heat load vectors inside each stage are stored in the right position,
the stages are finished in reverse order. The rearranging procedure

places the values of the temperatures in their correct order.

4.6 TPLOT,

One of the diszdvantages of the finite element analysiszis the volu-
minous output produced by the analysis and the time needed to interpret
the printed output, The use of the graph plotter as a means of displaying
the results solves this difficulty to a large extent. The labelled nodal
temperatures and the temperature contours are the most convenient types

of display. They may be drawn over the whole area of the system or over

some particular area of interest.

A second use of the plotting program is to draw the finite element

mesh of the whole region or a part of it and to label the node numbers.
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Read the values of the first part of ChJ] and
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This helips to a large exitent in the preparation‘and verificatlon of the
input data for the main program.

The program TPLOT takes each element 'in the mesh, decomposes it
into the lines which go to form‘that element, plots the line vectors
and labels. them either with node numbers or with nodal temperatures.

If required, the isothermals can also be plotted over a particular area
of interest. The view depends upon the angles of projection specified
in the input data. The other data required by the program conéist of
the geometrical data (global co~ordinates), nodal temperaturés and the
information about the number of zones and the type of element in a =zone.
Most of the data is generated by the programs ELDATGEN and FETC.

Fig. 4.20 shows a flow chart for the program, The three subroutines
required by the program are NODENO, PLOTCO and DRAW és described, in

brief, below.

a

4.6.1 Subroutine NODENO (109)

In this subroutine each element in the zone is decomposed into
and replaced by the lines which go to form it. For instance, a rect-
angular element is replaced by four lines and a triangle by three lines.

The two node numbers associated with each line are stored in arrays
Nl and N2. The smaller of the two numbers is stored in vector Nl and
the larger in Nz. To avoid duplication, these two node numbers are
compared with node numbers already in the two vectors and they are stored
only if this line has not occurred before.

To label the line vectors with node numbers or with temperatures,
the convention adopted here is to consider only the node numbers or the
temperatures associated with vector N,. In order to avoid certain nodal

2

points to be overlooked, the vectors N, and N2 are rearranged such that

1

all the nodal points appear in vector Nz.
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4.6.2 Subroutine PLOTCO,

This subroutine decides about the plotting space, the dimensions
of the mathematical space which is to be mapped over the plotting area,
scale factors and the positioning and annotation of the axes. The
variables A and C determine the maximum values of the plotting co-ordi-
nates in the x and y directions respectively, whereas B and D find the
minimum values. The dimensions of the mathematical space and the scale

factors are fixed by A, B, C and D,

4.6,3 Subroutine DRAW.

This subroutine draws the finite element mesh, labels the node
numbers or the temperatures and generates the isothermals. The integers
NN and ID control the operations to be performed. If NN is equal to
zero, the ndde numbers are not displayed. If ID is equal to 1 or 3,
the temperatures are displayed. The isothermals are ﬁlotted if ID is
greater than 1, To simplify programming, extensive use is made of =

number of subroutines from the GHOST graphical output system (110).

4,7 PRPLOT.

The program PRPLOT-plots the strain, strain-rate, flow stress and
temperature distributions in the primary deformation zone. The valﬁes
of. all these variables and their locations are read from tapes. No
other input data is necessary. The dimensions of the mathematical space
to be mapped over the plottef space are fixed by calculating the maximum
and minimum values of x and y co—ordinates..

The distributions of each variable are plot;ed on separate frames
one by one by célling a subroutine BOUND four times, The subroutine
BOUND draws and annotates the axes, defines the shear zone boundary, marks
thevlocations and labels the variable values at all the points in the

primary deformation mone. This subroutine is quite general in nature and
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Subroutine
. BOUND
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can be used for similar plotting Jobs,.
The different stages in plotting the distributions of the shear

zone variables are.illustrated in Fig. 4.21.




CHAPTER V

RESULTS AND DISCUSSION

5,1 Strain and Strain—-rate Distribution in the Primary Zone.

The distribution of strain and strain-rate in.the primary zone
was obtained based on experimentally determined streamlines. The
experimental technique and the method of analysis used were described
in Chapter III. The distribution of the strain and strain-rate is shown
in Figs. 5.1(a) ~ 5.17(a) and Figs, 5.1(b) - 5.17(b) respéctively.

It can be seen that the thickness of the deformation zone for most ..
of the test cases is more or less uniform. The cutting conditions,
the thickness of the deformation zone, the average shear strain along
the shear plane determined experimentally as well as calculated based
on shear plane theory are tabulated in Table 5,1,

The thickness of the shear zone d., was measured in the direction
parallel to the chip at the centre of the shear zmone, The values of
d., are very small and var& from O0.141 mm to 0,291 hm for the given
range of variables experimented with. The experiméntal value of d.,
(0.2286 mm) determined by Goriani and Kobayashi (75) for a typical
cutting condition (U = 7.6_m/min,, o = 35°, t, = 0.381 mm) and
the results of Kececioglu (78) lie well within the values determined in
the present work, It is seen from Table 5.1 that the shear-zone thick-
ness decreases as the rake angle «{ and the cutting speed U increase.
This can be explained by the fact that the increase in ¢l resulits in
a sharp tool edge providing a greater concentration of stress in a
narrower area (78) and the higher culting speeds do not provide as much
time for dislocations to migrate and activafe more shear planes, On
the other hand, d., decreases with a decrease in the feed t, and with

1

the use of a coolant. It is obvious that with the use of a coolant, the
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Shear Zone Strain Analysis.

TABLE 5.1

106

sl e, f{ﬂ
Serial Test Speed, TFeed, Rake Tool Average Average Shear )
No. Identi- Angle Material Shear=zone Shear Plane st rain
fication Thickness Gtrain from
L No, Eq.5.1a
U : tl rc< dcn Ysz Yc
m/ min mm/ rev mm
1 1 24.76 0.3556 41.0  HSS 0.141 0.570 1.016
2 3 v24,78 0.2845 20.0 0,276 0.770 1,524
3 5 17,34 0.3556° 41.0 L 0.248 0.573 1,032
4 6 24.68 0.3556 20,0 7 0,282 0,870 1.579
5 gt 24.77 0.3556 20,0 ' 0.218 1.048 1.633
6 11 45,96 0,3556 20.0 ¢ 0.240 1.028 1,908
7 12" 45.77 0.3556 20,0 '° 0,229 1,060 1.804
8 13 24,77 0,3556 30,0  9° 0,236 0,852 1.516
9 25T 17.34 0.3556 41,0 ¢ 0.248 0,573 1,032
10 14 35.33 0.3556 20,0 Carbide 0.271 1,057 1,663
11 15 71,11 0.3556 20,0 ¢ - 0,248 1,159 1,771
12 17 35.24 0.,2845 20,0 °f 0.201 1,159 1,732
13 18 35.28 0,5690 20,0  %¢ 0,291 0,795 1,592
14 19 35.15 0.3556 10,0  °° 0,283 1,206 1,894
15 217 35,26 0,3556 20,0 Y 0,266 1,028 1,696
16 23 130.73 0.3556 20,0  *° 0,238 1.236 1,873
17 o4t 131.38 0.3556 20,0 °° 0,203 0,887 1,717

* TESTS PERFORMED WITH COOLANT .

++ poOL, WITH INITIAL FIANK WEAR (0,376 mm)
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decreased shear foirce tends to confine to a narrower area and with a dec-

rease in t,, fewer shear planes are activated and the volume of workpiece

17
material available between the lower and upper boundaries of the shear
zone is smaller, These observations are in good agreement with those
made by Kececioglu (78).

The average shear strain y in the chip for a typical cutting condition
(U = 24.8 m/min., of = 41°, tl = 0.3556 mm/revo, Test No. 1) varies from
0,57 to 1.0 with the maximum value along the tool face as shown in Fig.
5.1(a). Similar trends were observed with the other tests. For the sake
of comparison, the shear-strain values have also been calculated by the

conveniional method of analysis based on the shear plane type deformation

according to the expression
= cotg + tan(f-K) (5.1(a))

These values are also tabulated in Table 5.1, The calculated shear strain
values {c based on Eq., {5.1(a)) are much higher than the experimental
values of the average shear plane strain Yszo Tor example (for Test no. 1)
the calculated shear strain is 1.016 as compared to the experimental value
of 0,570 at the shear plane, but Yé agrees with the average experimental
shear strain value of 1,000 at the chip-end of the shear zone (Fig. 5.l(a)).
Thus, the calculation of the shear strain based on shear plane theory does
not represent the strain at the ceﬁtre of the shear =zone, but it seems to
estimate approximately the average strain at the chip-end of the shear
zone,

It is seen from Table 5.1 that the average shear strain rsz along
the shear plane decreases with an increase in rake angle o . This can
be attributed to 'Sﬂui&@r_dﬁ+orhuxtﬂrﬂu:'Which usually occurs with ine-
reased o , Similar observations were made by Ostafiev and Kobayashi(loo).
The increase in cutting speed results in a small increase in shear .strain

, 'Whereas does not appear tO vary consistently with the variation
sz Ysz




108
of the feed t1,

The average shear strain—rates féz along the shear plane for various
cutting conditions are tabulated in Table 5.2. The average values were
obtained at the central shear plane SZ passing through the cutting edge
from the experimentally determined strain—-rate distributioné shown in
Figs. 5.1(b) - 5.17(b).

It is observed that, as expected (5, 78, 100), Ysz increases with
an increase in the cutting speed. Similar to the results of Kececioglu
(78) and Nakayama (5), the average shear strain-vate rsz also increases with

the rake angle., However, Ysz does not seem to exhibit a consistent trend
with the variation of the feed t,. It may be of interest to compare the

1

Ygz values with the average shear strain-rates Yﬁ calculated from the

thickness of the deformation zone obtained, using the equation

. Y.U sing ~
R R i 5.1(b))
Ym dan ( w
where, Y is the shear strain,

U is the cutting velocity,
$ is the shear angle,

and d.p, is the thickness of the sheaxr zone.

The values of fﬁ are given in Table 5.2 and it can be seen that the
calculation of the mean shear strain-rate ?m by Eq. (5.1{b)) under-
estimates the strain-rate considerably except at very low speeds, It
appears that the determination of the shear zone thickness is critical
and the interpretation of the average strain rate based on d, needs care-

[l

ful consideration,

5.2 Flow Stress Distribution in the Primary Zone,

The flow stress distribution in the primary zone obtained Irom

Eq. (3.21) 1s shown in Figs. 5.1 {c) - 5,17 (c), It is seen from




TABLE 5,2

Shear Zone Strain-rate Analysis

Serial Test Speed, Feed, Rake Tool Average Shear
No, Identi= Angle Material Strain-rate strain-rate
fication along shear from Eq.,
No., plane, (Solb)
v tl « Ysz ?m
m/min mm/rev secml secbl
1 1 24,76 00,3556 41.0 HSS 2733,0 2227 .6
2 3 24 .78 0.2845 20,0 vy 1909 ,7 1511,.3
3 5 17,34 0.3556  41.0 ve 808,7 887.,0
4 6 24,68 0.,3556 20.0 #e 2323,2 1449 .5
5 ot 24,77 0.3556  20.0 i 2232.2 1860,9
6 1t 45,96 00,3556 20,0 v 6674 .7 3044 .8
7 12+ 45 .77 00,3556 20.0 vy 6492 .7 3203.0
8 13 24.77 0.3556  30.0 s 2461.0 1520.9
9 257t 17,34 0.3556 41,0 ' 808.7 887.0
10 14 35.33 0.3556 20.0 Carbide 3272 .0 2124 .5
11 15 71,11  0.3556 20,0 ve 10846 .2 4608.8
12 17 35 .24 0.2845 20.0 re 4913.0 2830.1
13 18 35.28 00,5690 20,0 e 3442 .8 2002 .5
14 19 35,156 0.,3556 10.0 ve 3180.6 2248.6
15 21t 35,26 AO,3556 20,0 ve 2905,1 2149 .4
16 23 130.73 0.3556 20.0 g 13560.3 8754 .0
17 24" 131.38 0.3556 20,0 e 18869.3 10463,1
+

+

TESTS PERFORMED WITH COOLANT.

TOOL WITH INITIAL FLANK WEAR (0,376 mm)
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Fig. 5.1(c) that for Test no., 1, the flow stress varies from 368 MPa

at the workpiece-end of the shear zone to 500 MPa at its chip=end,
However, the distribution is non—-uniform because of the combined effgct
of the strain, strain-rate and temperature variations and the difference
_between the lowest and the highest values of the flow stress for most of
the cases is not larger than 15%,

It has been shown by Ostafiev and Kobayashi (100) that the flow
stress remained almost constant over a wide range of strains encountered
in metal cutting with a decreasing trend for strains smaller than 0.5,
Increasing temperature and strain-rate have been shown (102) to have
opposite effects on the flow stress under dynamic conditions, Kzcecioglu®s
results-(lol)_indicated that this was, in general, true in metal cutting
also. However, it must not be ﬁonstrued that the opposing effects of
temperature and strainfrate on flow stress necessarily cancel each other
under metal-cutting conditions, no doubt, the variations in the flow
stress under different conditions of cutting are not large. This fact
is demonstrated by the values of average shear flow stress “fsz along
the shear plane tabulated in Table 5.3 where -réz varies from 475 MPa
to 490 MPa for the large range of variables experimented with,

It can aiso be seen from Table 5,3 that, in general, -(;z increases
with increasing rake angle o and velocity U, This can be explained
by the fact that the increase in cutting velocity is associated with a
comparatively.larger increase in strain-rate as compared to the corresp-
ondingly smaller increase in temperature., The increase in T;z witp an
increase in ¢l is the result of a corresponding decrease in temperature
as well as an increase in strain-rate. It may be mentionéd here that

these results agree well with the observations made by Kececioglu (78).

5.3 Accuracy and Time Analysis of Finite Elements for Temperature

Distribution.,

8ince the resulting accuracy of the computed temperature distribution




TABLE 5.3

Shear Zone Flow Stress Analysis,
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Serial Test Speed, Feed Rake Tool Average
No., Identi- Angle Material Flow Stress
fication U t . along shear
No. 1 X plane, T
S84
m/ min mm/ rev MPa
1 1 24,76 0,3556 41,0 HSS 484,75
2 3 24,78 0,2845 20,0 e 475,25
3 5 17,34 0.3556 41.0 ve 480,17
4 6 24 .68 0.3556 20.0 3 476,50
5 ot 24,77 0.3556 20,0 vy 480,25
6 11 45,96 0,3556 20,0 vy 482.33
7 12* 45,77  0.3556  20.0 v 481,83
8 13 24,77 0,.3556 30.0 v 483,25
9 a5t 17,34  0,3556 41,0 v 481,91
10 14 35,33 0,3556 20,0 Carbide 484,17
11 15 71,11 0.3556 20.0 ve 488,17
12 17 35,24 0.2845 20,0 e 486,37
13 18 35,28 0,5690 20.0 s 477 .44
14 19 35,15 0.3556 10.0 ve 475 .33
15 21t 35.26  0.3556 20,0 v 480,25
16 23 130,73 0.3556 20,0 ve 490,25
17 24 131,38  0.3556 20,0 . Ve 489,12
+

++

TESTS PERFORMED WITH COOLANT.

TOOL WITH INITIAL FLANK WEAR (0,376 mm)
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depends largely upon the choice of temperature functions and the refine-
‘ment of the mesh, the finite element analysis for one typical test
conditions was carried out using linear, gquadratic and cubic quadri-
lateral elements as well as a linear triangular element. These four
elements used will hereafterwards be referred to by thé abbreviatiﬁns

shown below.

TRI3 - 3-node trianguslar element,
QUAD4 - 4-node quadrilateral element.
QUAD8 - 8-node quadrilateral element,
QUAD12 - 12-node quadrilateral element.

A low carbon steel of chemical composition (C -~ 0,12%, Mn = 0.675%,
Nt = 0.05%, 8i = 0.09%) was used as the workpiece material for the
test., Machining was carried out with a high speed steel tool of rake
angle K = 41° and clearance angle = 10° at a cutting speed U = 17.5 m/min,,
feed tl = 0,381 mm/rev. and the width of éut = 6,35 mm, The other
meagsured data were:
Cutting force, FV = 2000 N, Feed force, FH = 251.0 N,
Flank frictional force FF = 20,0 N, Flank Normal force, FN =42 N
Chip thickness ratio = 0,674, Initial flank wear = 0,376 mm,
Tool-chip cqntact length = 0,92 mm, sliding length = 0,60 mm,
Experimental temperature at a distance of 3.92 mm from tool edge along

rake face, Tp = 198.7°C.

The problem region composed of the work-tool-chip composite system is
shown in Fig. 5.18 and the corresponding key diagram is shown in Fig,
5,19, The mesh was refined successively by increasing the number of
divisions Nh along the tool-chip contact length from 2 to 3 and then to
4, The divisions of other zones were also increased proportionately,
The finest meshes thus generated using quadrilateral and triangular

elements are shown in PFigs. 5.20 and 5.21 respectively. The computed
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temperature distributions in some of the important =zones and the iso-

thermals in the workpiece, tool and chip using QUAD12, QUADS, QUAD4‘and
TRI3 elements with the finest mesh are shown in Figs. 5§.22 ~ 5.27. The
computed temperature Tp at a point P, 3.92 mm away from the tool-edge
along the rake face and the maximum temperature T, OR the rake face .for
the various types of elements using three different types of meghes are
tabulated in Table 5,4. The percentage error with respect to the
experimental value in each case is also shown in the table., In addition
to this, convergent curves have been plotted for the temperatures Tp
and Tmax in Figs. 5.28 and 5.29 respectively,

Examining the results obtained with fthe TRI3 elemeﬁt, it is seen
that the temperature Tp varies initially with the number of divisions
along the tool=-chip contact lePgth, but quickly converges to a constant
value, With four divisions, this value is 94 .4 percent of the experi-
mental temperature. With the QUAD4 element, however, the curve starts
from a much lower vaiue, the temperature increases monotonically as
the number of divisions Nh are increased and reaches up to 95% of the
experimental value, With four divisions, the computed values of Tmax
and Tp‘are more accurate with the QUAD4 clement as compared to the TRI3
element. With two or three divsions, however, the convergent curves
for QUAD4 and TRI3 exhibit contrasting trends for the temperatures Tmax
and Tp. This may be attributed to the inherent peculiarities of the
FEM. Considering the situation where the heat load Q is constant over
an element of area A, the FIM williassign QA/S to each node of the
triangle, Consequently, if a node is common to n triangles, the heat
contribution to it will be nQA/S, while a node which is included in only
one triangle will receilve only QA/Bo' Thus, if the geometric pattern of
triangular elements is not symmetrical,‘the temperature distribution
will not be symmetrical and small errors will exist which will increase

with a coarser mesh., Similarly, a linear quadrilateral element assigns




TABLE 5.4
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TEMPERATURE CONVERGENCE WITH DIFFERENT ELEMENTS .

Element No, of Mazximum Temperature at a point 3,92 mm
Type Divisions temp, on rake |distant Irom tool edge along rake
along the face (computed) face °C,
tool=chip °c
contact length, Computed % error(experimental
value temp, = 198.7°C)
4=-node 213.0 160.0 19.47
quadrilateral 275,71 183,47 7.66
283 .46 188,72 5,02
8=node 2 265,98 190,61 4,07
quadrilateral 283.86 193.88 2 .42
4 291.64 195,79 1.46
12-node 273,61 190,91 3,92 .
quadrilateral 288,32 195,31 L.71
4 293 .57 197 .58 0.56
3=node 201,0 173.0 12,90
triangle 249,74 186,92 5,92
274,14 187,59 5,569
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QA/4 to each node and the resulting nodal heat distributions are likely

to be different in nature than those with triangular elements even with
a geometrically similar mesh and some discrepancy with a coarse pattern
is not ruled out.

With QUAD8 and QUADL2 elements, the results are fairly accurate
even with a coarse mesgh, With the finest mesh used, the computed temp=
erature T converges to 99.4% of the experimental value with QUAD12
element and to 98,.,5% with QUADS element, (It may be mentioned here that,
as described in Sections 3.8 and 5.6, the experimental measgurement of
temperatures is associated with inherent sources of error(l) and no
estimate of accuracy can be made), Thus, the QUAD12 element, as anti-
cipated, represents the most accurate element considered. Even the
accuracy obtained with QUAD8 element appears to be quite acceptable for
engineering apﬁlications°

Apart from the accuracy obtained with an element, one must consider
the computing time requireé for element formulation, assembly and
solution of the equations, ®fvaluation of the matrices for the highéru
order elements takes considerably much larger time because of the
increased number‘of integrating points. The time Ffor assembly is small
and can be neglected, The time for solution of the equations depends
upon the numbery of nodes in the mesh and the bandwidth of the assembled
matrices and is indicated by EQSOL. The total time vequired for compu=
tation is indicated by FETC., The times (CDC 7600 CPU seconds) required
for FETC aﬁd EQSOL are shown in Table 5.5, The values of the bandwidth,
the total number of elements and the total number of nodes are also
given in the table, The computing times versus Nh (number of divisions
along the tool-chip contact 1ength)$curves are plotted in Figs. 5.30
_ and 5.31, Figs. 5.32 and 5.33 show the computing times requifed by

EQSOL and FETC for varying degrees of freedom, It can be observed that

in the earller part of the curves, for a given number of degrees of
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COMPUTING TIME ANALYSIS
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Element No., of Total No.| Total No | Bandwidth [Total Time |Time taken
Type Divisions of of taken for for solving
along tool- elements nodes PFETC? equations
chip contact CPU secs, CPU secs,
length.
4-node 67 92 10 1.26 0,150
Quadri- 143 i79 16 2,832 0,466
lateral 266 313 22 5,762 1,340
8=~node 67 250 . 28 4,309 1.5856
Quadri~ 143 500 ! 43 12,927 G6.433
lateral 4 266 891 64 41,206 27.000
12=node 67 408 45 11,913 6,348
Quadris 143 321 67 43,223 28,961
lateral 4 266 1469 106 140,786 100.689
3~node 2 134 92 8 0,984 00149
Tri= 286 179 11 1,737 0,309
angle 4 532 313 15 3,540 0,820
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freedom, there is not much difference in the computing time required
by different elements for the solution of the simultaneotts equations
as well as for the execution of the whole program FETC. But as the
nunber of degrees of freedom increases, the curves begin ﬁo move apart.
QUAD12 requires the maximum amount of time and TRI3 the least. In the
case of'QUADlz and QUADS elements, the increase in computing time can
be attributed to the increased bandwidth,

It can be seen from Figs. 5,30 and 5.31 that, for the same number
of divisions along the.tool~¢hip contact length, large computational
times are required for the higher—-order elements than with the simple
linear models, This is because when utilizing the quadratic and cubic
elements, the bandwidth as well as the total number of degrees of freedom
are considerably increased. For instapce, for the,K same mesh patte}n
with Nh = 4, the QUAD12 element model requires three and a half times
more computing time than that for QUAD8 and 25 ~ 40 times more than
that of the linear models. Since the computational time required by
QUAD12 element model is intrinsically large and the linear element models
necegsitate a large number of nodal points in order to reach a reason=
able accuraby, the QUAD8B element appears to be an efficient choice.
Hence, for all subsequent analysis, the QUAD8 element model has been
used.

In order to account for the variatlion of the thermal properties-
of the materials with temperéture, an iterative procedure was employed
in which values for the properties in each iteration were based on the
temperature obtained in the previous iteration, TFor each iteration,
new system matrices were calculated and a new set of nodal temperatures
obtained, The temperature converged to within a relative error of less
than 1 percent throughout the problem region in no more than four iter—

ations. It may be of interest to look at the rate of convergence of
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the temperatures with each iteration. Typical values of Tp and Tmax
at each iteration for the above models are given in Table 5.6. Figs.
5.34 and 5.35 show the convergence curves of Tp and Tmax respectively
against the number of iterations. An identical trend is exhibited by
all element models. It is observed that the computed temperatures after
thé first iteration are considerably larger than those computed subse-
quently because of the lower starting nodal temperatures which were
initially set equal to 0°C, With the second iteration, the increase
in the specific heat of the materials with increased temperature brings
the nodal temperatures close to but slightly lower thén the final
temperatures. After the third iteration, there is hardly any change in
temperature (less than 1%) and for all practical purposes the tempera=-

ture can be assumed to have converged.

5.4 The Temperature Distribution,

The temperature distribution and the isothermals obtained for the
seventeen test conditions considered are shown in Figs. 5.36 - 5.62,
The shear zone temperatures are shown separately on an enlarged area

in Figs, 5.1(d) ~ 5.17(d).

5.4.,1 Shear Zone Temperatures,

It can be seen from Figs. 5.1(d) = 5.17(d) that, in general, the
temperatures increase progressively from the workpiece=end boundary
towards the chip-end boundary of the shear zone. Although the tempera-
ture around the middle of the shear zone is approximately constant, the
temperatures at the tool edge and along the tool-chip contact length
are quite high. This indicates that the assumption of a constant shear
plane temperature by Rapier (32) is very approximate,

From the temperature distribution shown in Figs. 5.1{d) -~ 5.17(a),

the average shear plane temperatures Ts were obtained and are shown in




TABLE 5,6

t

TEMPERATURE CONVERGENCE WITH THE NUMBER OF ITERATIONS.
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Tp c Tmax c

Tiér2§ions 1 2 3 4 1 2 3 4
Elements
QUADS 202.61| 195.30 | 195.83 | 195,79 298,95 | 291.04 | 291.69 | 291 .64
891 Nodes .
QUADS 200,87, 193.46 | 193.91 | 193,88 290,66 | 283.35 | 283.91 | 283.86
500 Nodes
QUADS 197.44} 190.31 | 190.64 | 190.61 275,08 | 265,34 | 266,02 | 265,98
250 Nodes
QUAD12 204 .47| 197,08 | 197.62 | 197.58 301.18 [292.95 | 293.62 | 293.57
1469 Nodes
QUAD12 202 .,60| 194.86 | 195,35 | 185.31 296 .49 | 287,71 | 288,37 | 288,32
821 Nodes
QUAD12 198,94 190.47 | 190.94 | 190.91 283,76 | 272,90} 273.,66 |273.61
408 Nodes '
QUAM 194 ,44| 188.24 | 188.75 | 188,72 287.22 282,91 |283.50 {283.46
313 Nodes
QUAD4 189,11 183.06 | 183.50 | 183.47 281.58 | 275,10 [275.76 |275.71
179 Nodes
TRI3 193.59| 187.03 | 187.63 | 187.59 278.64 |273.54 | 274.19 [240.,74
313 Nodes ‘
TRI3 193.28| 186.39 | 186,97 |186.92 255 .45 | 249,16 249,79 |249.74
179 Nodes
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Table 5,7, It 1s seen from Table 5.7 that the average shear plane
temperature increases with an increase in cutting velocity U, and it
decreases with the lncrease in rake angle o . Tor instance, Ts is
increased from 153,3°C to 169.5°C as U is increased from 24.7 m/min° to
46.0 m/min,, whereasg '1‘S is decreased to 97.7°C as « is increased from
20° to 41°, However, 'I‘S does not appear to vary consistently with the
feed t,., Similar observations were made by Kececicglu (101) with mild

1

steel using the calculation procedure of Loewen and Shaw (26) based
on energy considerations.

In order to check the accuracy of the sheawr zqné temperatures,
the deformation energy ES along the shear plane calculated from the
product of the shear force Fs and the shear velocity VS wvas compared
with that obtained from the strain—rate and temperature-based f£low
stress considerations. The values as shown in Table 5.8 differ by

less than 2%. For the calculations, the equations used ave

b
r =2 R cosg® ,
s
- U cosy ! .
s | cos(P-=-&) (5.2)
and o = F_ o,V
s s s

whére R is the resultant cutting force, and 9 is the angle between R

and the shear plane, It is worthwhile to mention here that a_value of
the heat generation rate at the tool edge was inferred such that a
perfect heat balance between the total energy of the heat sources ZQ

and the total energy input 2 E was obtained. The value-of 2Q is equal
to the summation of the total heat generated in the two deformation zones
and the frictional heat dissipated at the interfaces, whereas ZE is

given by the product of the cutting force Fv and the cutting velocity U,




TABLE 5.7

SHEAR ZONE TEMPERATURE ANALYSIS
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Serial Test Speed, Feed, Rake Tool Average
No. Identi- Angle, Material  Temperature
fication U t1 ol along shear
No. plane 'I's
m/ min mm/ rev °C
1 1 24.76 0.3556 41.0 HSS 97.7
2 2 24,78 0.2845 20.0 e 139.9
3 5 17.34 0.3556 41.0 e 89,2
4 6 24 .68 0.3556 20,0 e 152,383
5 ot 24,77  0.3556  20.0 vy 160.5
6 1l 45,96 0,3556 20,0 L 169.5
7 12" 45,77 0.3556  20.0 vy 169 .5
8 13 24.77 0.3556  30.0 vy 134.1
9 257 17.3¢  0.3556 41.0 e 85 .2
10 14 35.33 0.3556 20,0 Carbide 154 .8
11 15 71.11 0.3556 20,0 ve 160.5
12 17 35.24 0.2845 20.0 v 157.9
13 18 35.28 0.5690 20.0 ve 147 .6
14 19 35,15 0.3556 10,0 vy 201,9
15 a1t 35.26  0.3556 20,0 ) 162 .9
16 23 130.73 0.3556 20,0 e 167.6
17 247 131.38 0.3556 20.0 'y 149.0
+

4

TESTS PERFORMED WITH COOLANT.

TOOL WITH INITIAL FLANK WEAR (0,376 mm)




SHEAR ENERGY ANALYSIS

TABLE 5.8
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(U]
-
[ w
, Lo ¥ - - 8 g
. 2 oQ - we 0 by 0
o a = © o eH 5O P -
] (] —~i D g O O« 2
=z o oo e i ) ~ <Y oo & o
-t O » é & M2 Q J o w e
i o~ wd [y | [S¥ e 4
[0 = o] ~ & 181 Ll &~ Ul (4]
Oal P o @ he) (0] ~ © M g P « H 0 =3
5 | 8s 3 5 g 85 S84 225w
A aa & - & S BaA BEd
m/min ‘mm/rev Watts Watts
1 1 24 .76 0.3556 41.0 HSS 435.6 . 437.8 ~0.507
2 3 24,78 0.2845 20.0 ve 511.7 509.8 0,363
3 5  17.34  0.3556 41.0 o 201.6  289.7  0.663
4 6 24 .68 0.3556 20.0 " 719.2 723,9 ~0,648
5 9" 24,77  0.38556 20.0 vy 704 ,2 712.6 ~-1,18
6 11 45,95 0.3556 20.0 L 1636 .5 1645.3 ~0.537
7 12t as.77 0.3556 20.0 ¥V 1510.1 1524.1 -0.920
8 13 24,77 0.3556 30,0 ¥ 658.5 666,83 ~1,24
9 25+t 17,34 0.3556 41.0 A -+ 285,8 289,7 ~1.35
10 14 35.33 0.3556 20.0 Carbide 1061.4 1O47.5 1.33
11 15 71,11 0.3556 20.0 (A 2296.,7. 2297.3 =0,026
12 17 35,24 0.2845 20,0 Vi 843 .4 841,3 0.258
13 18 35,28 0.5690 20.0 ve 1528.9 1537.0 0,528
14 19 35,15 0.3556 10,0 vy 1279.1  1267.8 0.888
15 21t 35.26 0.3556 20,0 v 1060.4  1059.3 0,1057
16 23  130.73 0.3556 20,0 v 461€ .4  4598,7 0.385
17 24 131.38 0.3556 20,0 v 4172.9 4176,.2 0.078
*  PEYTS PERFORMED WITH COOLANT.
++

TOOL WITH INITIAL FLANK WEAR {0.376 mm)
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5.4,2 Tool~face Temperatures,

It is observed from Figs, 5.36 = 5,52 that a non-uniform temper-
ature distribution exists on the rake face of the cutting tool and the
maximum temperature always occurs at some distance from the cutting
edge. The temperatures on the rake face are much higher than those on
the flank face,

The experimental study of the development of the rake face wear of
a cutting tool over a wide range of cutting conditions and different
work~tool combinations indicates that cratering starts at some distance
from the cutting edge and yields a particular depth profile (23, 103)°
The local temperature at the point of actual engagement being a princi=
pal factor for wear (104), the temperature distribution can be employed
with advantage to explain the non-uniform fwxxter wecr
observed over the tool rake face. From the isothermals in Figs. 5.36 =
5.52, it can be seen that the temperature on the rake face rises sharply
up to the point of maximum temperature from the cutting edge and then
the temperature drops moderately up to the point of chip separation, AA
further drop in temperature beyond the point of chip separation is slow

and gradual,

5.4.2.1 Location of the Point of Maximum Tool-chip Interface Temperature.

The toolzchip interface temperature distributions are largely
controlled by the pattern of heat generated due to the interface friction,
It has long been recognized that the. interface contact pressure in the
region close to the tip of the tool acquires a value which produces
adhesion between the chip and tool resulting in plastic flow in the chip.
It hés been shown (40, 105) that the plastic flow in the chip tends to
make the pressure distribution uniform, while beyond this region the

pressure decreases and vanishes towards the end of tool-chip contact.

The region of constant pressure distribution is called *the sticking zone'




N 124

and the remaining part %the sliding zone? (40)° For the present
investigations, the .s$§hear - &tress in the sliding wone was

assumed to be given by

T 2 e noe
T g™ (5.3)
¢ =1
and 0 = 2 0 [ + tan (#- )] (5.4)
where, 'T; is the maximum shear stress of the workpiece,

C 1is the tool=-chip contact length,
G is fhe length of sticking zone,
X 1is measured from the point of chip separation towards
the tool tip and < (c - @)
and & 1is the overall co-efficient of friction given by the
ratio of the frictional and normél forces acting on

the rake face,

The values of-c, Gﬁhn,'u_, the maximum interface temperature Tmax
and the localion of the maximum interface temperature expressed as a
fraction of the contact length given by the ratio C“/C are tabulated
in Table 5.9, where % is the distance of the point of maximum tempers
ature from the cutting edge.
From Table 5.9, the following obsergvations can be made.
(1) The ratio Cé/C increases with an increase in the feed t, .
(ii) The ratio C'/c decreases with a decrease in cutting speed
U and;
(iii) The increase in rake angle results in an increase of C'/c.
The first two observations can be explained in terms of the stress
exponent n used in Eq. (5.3). It is evident that the point of loca-

tion of the maximum temperature along the interface should lie somewhere

in the sliding zone depending upon the variation of the heat generation
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(or to say the pressure variation) along the sliding length. It can
pe seen from Eq. (5.3) that an increase in n is associated with a
steeper pressure variation in the sliding region and consequently a
sharper heat gradient along the sliding length tending to shift Tmax
towards the tool tip. Thus, an increase in n results in an obvious
decrease in the ratio C‘/b. Furthermore, as seen from Eq. (5.4), n
is increased by decreasing m . It was found that the overall co-
efficient of friction W over the tool-chip interface was increased
with an increase in U and tl. This may be attributed to the increased
frictional resistance on the sliding region due to. the enhanced mole-
cular bonding at higher temperatures developed with higher values of
U and tl. To sum up, & is increased with an increase in U and t1 result-
ing in a decrease of n and hence, in an increase of C‘A:.

With the high speed steel tools, the ratio C‘/C has been found to
increase considerably with an increase in the rake angle o , whereas
wlth carbide tools, the increase in c'/c is marginal. 1In general, for
high values of o under otherwise similar cutting conditions, the shear
angle is found to be large with a_corresponding low value of shear
strain, Thus the work-hardening of the chip material may be reduced.
This contributes to the low plastic stress for the chip material, and,
therefore, a possible elongation of the sticking zone as a result of
easier plastic. flow. Experimental values of the sticking length and
the tool-chip contact length with HSS tools were in line with this
reasoning. Thus, the point of location of maximum temperature being
dependent upon the sticking length as well, tends to shift towards the
point of chip separation as o is increased., The values of C'A: given

in Table 5.9 agree well with the experimental values reported by Qureshi

and Koenigsberger (16) and Vieregge (31).
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5.4.2.2 Effect of the Process Variables on Tool Temperatures.

In order to analyse the effect of cutting process parameters such
as cutting speed, feed, rake angle, tool flank’wear, use of coolant and
tool materials on temperature distributions, the temperatures along the
tool face and tool flank are plotted separately in Figs. 5.53 -~ 5.64.

' From these curves, it can be seen that ﬁhe point of chip-separation is
also accompanied by a sudden and drastic change in temperature gradient,
Similarly, the end point of the wear land, if any, along the tool flank
is reflected by a sudden rise of temperature just after the point

(rig. 5.64(b))., The highest temperature along the tool flank, similar
to the tool face, occurs at some distance away from the cutting edge.
The temperature distribution curve along the tool flank is smoother than
that along the tool face,

1t is seen from Figs. 5.53 - 5,55 that, as expected, the maximum
temperatures as well as the temperatures all over the rake face and flank
face increase with an increase in cutting speed. For instance, Tmax
is increased from 512°C to 1072°C (Fig. 5.55(a)) as the cutting speed
is increased from 35.3 m/min to 130.7 m/min. Similarly, an increase in
feed tl raises the temperatures all over the tool surfaces (Figs.;.SG -
5.57).

An interesting fact emerged while analysing the effect of rake angle
on temperature distributions. With an increase in rake angle, the tool
temperatures are first decreasged; but after a certain point, with a Lfurther
increase in « the temperatures are also increased (Figse 5.58 ~ 5,59).

For example, Tmax is decreased from 585°C to 458°C and is,‘then, inéreased
back to 532°C as  is first increased from 20° to 30° and is, then ,
further increased to 41°, This can be attributed to a smaller included

angle (betwéen the tool flank and tool face) associated with increased

o which contributes to two opposing factors:

(1) The total energy input to the system and hence the amount.of
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heat generated within the system is decreased calling Ffor an overall

decrease in temperatures and

(i1) Thevtool~tip area available for heat conduction is decreased
promoting the local temperatures to rise.

With an increase in « up to a certain point, the first factor
possibly predominates over the second and as a result the temperatures
are decreased, but beyond the balancing point the second factor appears
to gain larger importance and the temperatures along tool face and tool
flank start rising again.

Water was uéed as a coolant because of its known thermal properties
at elevated temperatures for four tests at different speeds ~ 24.8 m/min.
and 46.0 m/min with a HSS tool and 35.3 m/min and 130.7 m/min with
carbide tools - for which cutting data were also obtained under dry
conditions. The computed temperatures along the tool face and tool flank
for these speeds with and without using the coolant are plotted in Figs.
5.60 - 5,63, It can be seen that the temperatures with a coolant, as
anticipated, are lower than those without coolant and the difference
between the £wo increages as the curves move away from the tool edge
along the tool face or along the tool flank. The maximum temperatures
Tﬁax’ with:the use of a coolant, are decreased from 585°C to 540°C and
from 708°C to 640°C at cutting speeds of 24.8 m/min, and 46.0 m/min,
respectively., The deérease in temperature with the use of a coolant can

be attributed to the following factors;

(i) Reduction in the interfacial shear-stress along the chip-tool
contact length (73) as reflected by an approximate 4 - 6%

decrease in the cutting forces (Table 3.4), and

(ii) Heat losses from the surfaces flooded with coolant,

In order to determine the effect of existing tool flank wear on

temperature distribution, two tests with different tools under otherwise
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similar cutting conditions were performed. In one test, a freshly
ground tool with no flank wear was used, whereas, in the other one,
wear land of 0,376 mm in size on the tool flank was introduced before
the test was pérformedq The computed teﬁperatures along the tool face
and tool flank for the above tests are shown in Figs. 5.64(a) and
5.64(b). It may be observed that the temperatures on the tool Fflank
and the tool face with the worn tool are lower than those with the
freshly ground tool and the maximum temperature on the tool face in
the earlier case 1s 370°C ag compared to 431°C with a new tool, This
observation is in agreement with the experimental results of Olberts
(113) who observed a lower tool-chip interface temperature {decreased
by up to 60°C) when the flank wear land was increased from zero to
0,254 mm,

Thus, it appears that the introduction of a limited amount of
flank land on a tool helps in bringing the tool temperatures down,
although the temperatures in the adjoining workpiece region are incr-
eased (Figs° 5,38 & 5.44),'This decrease 1n tool temperatures is due
to a large conduction of heat away from the tool flank by the rubbing
workpiece shoulder, even though an extra amount of small frictional

heat Qf (in this case, Q. = 5,85 watts which is only 0.88% of the total

£
heat input)-is generated at the tobl—work interface,

. It is worthwhile to mention here that, for the present investi-
gations, the actual flank wear was simulated with an artificial or
ground flank land. The degree éf similarity between the ground land
and actual wear is approximate, It is obvious that the better surface=
finish characteristics of the ground land and the possibility of some
misélignment between the workpiece shoulder and the ground flank are

likely to reduce the frictional heat Qf resulting in lower tool temp-

eratures than what should have been. However, the errors thus intro=
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duced are not considered to be significant,
The itests were conducted with HS8S as well as carbide tools,

Typical test results are shown in Table 5,10,

Table 5,10
Tool Speed * Cutting force Feed foxrce Maximum Tenmp.,
Materials m/min ¥, N F_, N T °c.
‘ v H max
HES 24,70 3525 1560 585
Carbide 35,33 2540 - 400 512

All other cutting conditions were the same,

It is seen that even at.slightly higher cutting speed, but under
otherwise similar cutting conditions, the temperatures with a carbide
tool are lower than those with a HSS toolf This is mainly due to the
decreased cutting and feed forces (up to 28% lower cutting force) with
a carbide tool. The decrease in forces with a carbide tool can bhe
attributed to the lower interfacial friction between the carbilides and
this workpiece material as evidenced by the complete absence of a
built-up edge and the presence of finer finish on the underside of the

chip.

5,5 Comparison of Present Results with Previous Work,

In previous work, the proportion ﬁ of the primary zone heat

" conducted into the workpiece has been related with RT tan#) (20, 27,

36, 106) where the thermal number Ry is given by
Pchtl
RT = ——m-E-—-—- (505)
where, t. = unformed chip thickness (feed)
£, Cp and K are the density, specific heat and thermal conductivity

of the workpiece material,
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= cutting speed

1}
b = sheay angle

In order to find out 5 , the primary zone heat Qs was calculated
from flow stress and strain-rate distributions (Table 5,.8) and the

heat carried away by the workpiece Qw was obtained from the equation

Q = Wdy U (Pcp)

» me ™ " (JD‘cp)TDc Toe (5.6)

where, w is the width of the cut,

Tw is taken equal to the mean temperature across a section_
perpendicular to the direction of motion from the freshly-cut work
surface to the lower workpiece boundary of depth dy,

and T, is the room temperature,

The ratio P is, then,given by P = == - {5.7)

In order to compare the present computed results with the previous
work, the calculated values of P (Table 5.11) are plotted in Fig. 5.65
together with experimental values obtained by Nakayama (106) and
Boothroyd §20) and theoretical values by Weiner (27) and Tay et al{36).
Here, it is seen that the present resultis agree well with the experi-
mental values, Similar to Boothroyd®s experimental results, for a
given value of RT tan f? R ﬁ is found to be increased with an increase
in  , Weiner's plane heat source theory is seen to underestimate P .,

To compare +the computed maximum tool~chipAinterface temperature
Tn X with the theoretical results of Rapier (32) and the experimental
values of Bootﬂroyd (20), the dimensionless ratio Tm/’l‘f was calculated

as follows,
Tm, the maximum rise of temperature in the chip, was found by
subtracting the average shear plane temperature TS (Table 5,7) from

the maximum Lemperature Tmax (Table 5.9), Tf, the average rise of

temperature given to the chip by the frictional heat source was
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calculafed £from

T = T - T . {5.8)

where Tc = average temperature of chip across a section perpendicular
to the direction of chip velocity Vc at the point of chip separation.
Rapier, based on plane frictional heat source theory, expressed

the ratio Tm/'I‘f as a function of RT/‘XT given by

Tm/ T, = 1.3 /RT/O(T (5.9)

pC v t2
where, the thermal number RT = P = ,
K
d-tz = length of heat source (tool-chip contact length)
T
and t, = chip thickness.

2

The computed values of Tm/Tf (Table 5,12) are compared with
Rapier's Eq. (509) and the experimental values of Boothroyd in Fig,
5,66, The theoretical values of Rapier are shown here to have overw
estimated the actual temperatures, Boothroyd's experimental resultls
show a large scatter., It is found that Boothroyd®s.tests were pers
formed at high values of chip thickness which essentially give low
values of O(T (say, 0.5 to 1.0) resulting in correspondingly high
values of RT/O(To For the present investigations, O(T ranges from 1.0
to 4°0 (Table 5.12) and for most of the tests performed with lower
feeds,d]r is greater than 2.0, In addition, Boothroyd used hot machin-
ing conditions, It is seen that the present computed results are in

L]
agreement with some of Boothroyd's experimental values,

5.6 Comparison between the Measured and Computed Temperatures,

It is fell that the experimental techniques of temperature =

measurement have not, in general, reached a stage of development to
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provide a check on the temperature distributions described above (1, 36).
However, some nodal temperatures were measured experimentally using the
technique of single point temperature measuremeﬂt by attaching standard
thermocouple wires, It may be mentioned here that even this method
which is most commonly used, is associated with many prdblemso These
include the interference to heat flow caused-by the attached thermo=
couples, inaccuracies in proper and point location of the thermocouples,
snapping off the thermocouples by the rubbing chip and the workpilece
shoulder and response time of thermocouples. Besideé, in-order to
ensure the steady state conditions at the locations far away from the
sources of heat generation, it 1ls necessary to continue the machining
operation.for a longer duration,

Keeping in view the above limitations, the experimental measure-
ment of some nodal temperatures was confined to two tests only conducted
at the lowest speeds using high speed steel tools of 6,35 mm width.

The experimental method has been described earlier in Chapter IIX. The
experimental and computed temperatures for three nodes ip each case are’
listed 1n Table 5,13, Good agreement is obtained between the computed
and experimental temperatures, of course, the experimental results arve

very limited.

5.7 Influence of Input Data on the Accuracy of Computed Temperatures,

For a prediction of thevcomplete temperature distribution in the
workpiece, tool and chip during orthogonal machining, the input data
necessary, apart from the usual cutting conditions and material prop=
erties, are: the tool-chip contact length C, the sticking length Cl'
tool force readings, the width of the secondary mone, chip-thickness
and the distribution of velocity, strain and strain-rate in the primary

zone, Evidently, these input data affect, to a large extent, the

accuracy of computed temperatures,




For the present investigations, it was possible to obtain the
values of tool=chip contact length C-and the sticking length Cl accus=
rately from a scar on the high speed steel tools. With carbide tools,
it was not possible to measure the value of C1 accurately because of
low interfacial friction and hence, the sticking length was assumed to
be equal to half of the contact length (36, 40), None of the tests
exhibited any significant presence of built=up edge formation which is
1° Jt may be mentioned here that

even a slight error in the values of C and C1 may introducersome error

likely to alter the values of C and C

in tool face temperatufeso For example, for the same heat input, an
increase in the value of contact length C will decrease the tool face
temperatures.

The tool forces control the total energy inﬁut to the system in
the computer analysis and, therefore, an accurate measurement of the
cutting force and feed force 1s necessary. Good agreement was obtained
between the total energy input calculated from the force considerations
and the total heat input obtained by éumming up the deformation heat in
the two zmones and the frictional heat; This provided the necessary check.
on the accuracy of _heat Lnput |,

The width of the secondary =zone, as described earlier, has been
measured from flow lines. However, this measurement is approximate and
is likely to introduce some, though not significant, errors in the
computed femperatures, On the other hand, the chip thickness and the
distribution of velocity, strain and strain-~rate in the primary =zone

have been measured accurately,
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COMPARISON BETWEEN COMPUTED AND MEASURED TEMPERATURES,

Cutting Conditions Temperatures on Temperatures on Tool
: Tool Flank Face Rake Tace
ia. E =
b ~ o o o o
ot 4R o M| & by e d
° 42 e U] T o OH |HT o o H
o |8 O o) ! ~ o € o o o i B4
=0z i by —~ | o [ = N3] =2 o) ] g0 . w
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v O “ Fy ~ RpE|lAo ® O 1S3 Ao M O H =B
m/min mm/rev mm °c °C mm - °C °c
115 17.34 0,3556 41° HSS |{5.0 2b53.7 266,0 4.85}5.,5 253,88 254.,0 0.08
7.2 233.,0 242,0 5,15
2 |257 17.34 0,3556 41° HS8 5.0 213.0 217.0 1.87]5,5 205.0 209,0 1.45
7.2 185.0 197.0 6.48

* TOOL WITH INITIAL FLANK WEAR {0,376 mm)




CHAPTER VI

CONCIUSIONS AND SUGGESTIONS TOR FURTHER WORK.

6,1 Conclﬁsions.

From the results obtained it is established that the finite element
method using the Galerkin approach can be applied successfilly to predict
the complete temperature distribution in the workpiece, tool and chip
during orthogonal machining under a given set of cutting conditions.

The type and the size of the slements used and the necessary velocity,
strain-rate and flow stress distributions in the deformation zones
affect, to a large extent, the overall accuracy of the predicted temper-
atures.

The results obtained from different elements show that an appre-
ciable improvement in the accuracy can be obtained with the same number
of degrees of freedom when higher-order elements are used., Hence, much
fewer higher-order elements may be adequate to achieve‘a certain accu-
racy. However, with higher-order elements, the computer time necessary
to perform the numerical integration can be excessive. Although QUAD12

has yielded the most accurate results, QUAD8 was chosen for the investi-
gations reported herein because it takes relatively less computing time
and is nearly as accurate as}QUADlz.

The computer programs developed contain the facility to use any 6;3
or a combination of linear, quadratic and cubic triangular as well as
quadrilateral elements and theoretically, it should be possible to solve
numerically any physical problem in#olving heat or mass transfer or fluid
motion by minor modifications into the programs., There are no limits
on the size of the finite element system that can be analysed becausé
of the provisions of using backing store as required. In order to reduce

the computational time, facilities have been incorporated towards the
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full utilisation of the cofe storage and advantageous consideration of
the banded nature of the system matrices. (The computer procesgsing time
on CDC 7600 for one set of machining conditions using a mesh consisting
of 317 QUADS elements with a total of 1062 nodes requiring five itera-
tions is approximately 75 secsa)° These aspects demonstrate that the
programs are versatile, efficient and general, The wmain program FETC
is also flexible because any new two or three dimensional element can be

added quite easily,

The strain and strain~rate distributions in the primary zone obtained

experimentally indicate that the maximum values of strain and strain=
rate occur along the tool face, It is of interest to note that the
shear strain calculated based on shear plane theory does nol represent
the strain at the central plane but gives an approximate average value
of the strain at the chip-end of the shear zone., The average shear
strain rates Ym calculated from the thickness of the deformation zone .
den underestimatgs the strain-rate and the interpretatlion of- Ym based
on d.n needs careful consideration., -The average shear strain along the.
shear plane is shown to decrease with an increase in tﬁe rake angle

and a decrease in cutting speed, The average shear strain-rate along
the shear plane is found to increase with an increase in the cutting
speed and an increase in the rake angle as well,

IPlow stress in the primary zone considered as ; function of stréiﬁ,
strain-rate and temperature doés not vary largely because the rise in
temperature at the points of large Qeformations is partly compensated
for by a rise in strain-vate there. The average shear flow stress
along the shear plane increases marginally when the rake angle o and
the cutting speed U increase,. ;

The'asqgmptions made regarding the velocitles and strain-rates in

the secondary zone are the main sources of error, As more ianformation
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becomes available from accurate studies of deformation in this zone,

the assumptions may be modified and the accuracy improved. It is
believed, however, that the errors arising out of these approximations
are not serious and the present results are already sufficiently accu-
rate to be useful for related investigations.

The primary zone temperatures are found to increase progressively
from the workpiece-end boundary towards the chip-end boundary with the
maximum values along the tool-chip contact length. The average shear
plane temperature increases with an increase in cutting speed and a
decrease in rake angle, A non-uniform tempefature,distribution is
obtained on the rake face of the cutting tool and the maximum temperature
always occurs at some distance from the cutting edge., With an increase
inccutting speed, feed and rake angle, the point of maximum temperature
tends to move towards the region where the chip separates from the tool.

The overall temperatures increase with increase in speed and feed.
With an increase in rake angle o , the tool témperatures are, first,
decreased; but after a certain point, with further increase in « the
temperatures are-also increased, With the use of a coolant, a 5 - 10%
decrease in maximum temperature has been obtained, It appears that
introduction of a small amount of flank wear land on the tool helps in
bringing the tool temperatures down, although the temperatures in the
adjoining workpiece region are increased. Under similar cutting condi-
tions, lower temperatures are obtained with a carbide tool than those
with a HSS tool.

Good agreement is obtained between the present computed results
and the previous work. In addition, satisfactory co~relation with the
limited experimental values further substantiates the belief that the
finite element procedure described here based on experimentally measured

velocity and strain-rate distributions and material flow stress properties
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provides a reasonably accurate estimate of temperature distributions,

6.2 Suggestions for Further Work,

In the present study, certain assumptions have been made regarding
the velocities and strain-rates in the secondary mone which need to be
revised for better accuracy. Hence, more precise information should be
obtained\from studies of deformation in this yegion and this should be
included in the f.e.m. model for future work.

The computer programs can be used for investigating the relative
effectiveness of the éutting fluids with respect to the tool témpera~
tures provided the data on their thermal properties or the heat transfer
coefficients can be obtained. The results on the influence of tool
flank wear on tool~chip.interface temperature are encouréging and
should be investigated in greater detail, Actual flank wear, in a
number of successively increasing steps, should be used for machining
tests.as well as for the measurement of frictional force along the
work-tool interface. )

The programs could also be used to predict temperatures in welding,
extrusion and milling processes. To an advantage, the heat transfer
phenomenon in welding (111) is governed by a quasi-steady state equation
similar to the one used here. The equation governing thé extrusion
process (112) is also, more or less, similar but the boundary conditions
are different and may require minor modification to the software devel-
oped., In the case of milling, where an accurate experimental measure-
ment of tool temperatures is nearly a physical impossibility, extensive
modification to the software may be neceésary in order to cater for
the time cycle and the variable chip thickness,

Further investigations may be also carried out to study the effect

of tool thermal properties and even tool design on temperatures using
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the analysis procedure given here. It is hoped that the temperature
distributions presented herein will be extended to a study of surface
integrity problems; and will be related to tool wear, deformation and

a workpiece material's flow stress properties.
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3.6 3.7 3.8
PIG. 5*9 (a)
THE DISTRIBUTION OF TQJAL STRAIN
TEST NO.= 2S
y (mm) U = 17*34 m/min. , t*= 0%3556 mm , °(- 41
1274 TOOL - HSS( Plank Wear = 0*376 mm)
1280 1158
0
- 09s 873 658 522
909
301 583 579
"3 486 o2
538 .
265 £33
1039
669
460
1452 300
960 841
636
485 u23
322 279
708
656 482
1052 543 ovJ
- x(mm)
3.6 3.7 3.8

FIG. 5*9 (1v)
STRAIN-RATE DISTRIBUTION IN DEFORMATION ZONE, (1/SEC)
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16

16

16 .3

16 .2

16.6

16.5

16.4

16.3

16.2

16. 1

TEST NO.-- 25
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y (mm) U = 17*34 m/min, , ti= 0.3556 mm , o= 41°
TOOL - HSS( Plank Wear = 0.376 mm)
5 ns90 QI
— r?1 A95 A99
83
489
476
FLOW STRESS DISTRIBUTION (MEGA PASCALS)
TEST NO--- 25
y (mm) U = 17*34 m/min. , 0.3556 mm , «<= 41°
TOOL - 1ISS( Plank Wear = 0<>376 mm)
34
09 103
39 10~
58 68 o
89 08
42 104 1Q8
61
82
43 103
53 117
65
78 01
45 R L 128 135
140 71
191 217 235
:(mm)
3.6 3.7 3.3
PIG. 5*9 (a)
TEMPERATURE DISTRIBUTION IN DEFORMATION ZONE. (0 O
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y (mm) 0.000

0.000
th= 0*355" mm

* o« 20°
TOOL - CARBIDE

0.000
0.600
0.000
1.526
0.000 0.249
0.000 0518
1.070
| 241 1.360
p.000 0152
p.000
p. 251 735
1.500
THE DISTRIBUTION OF TOTAL STRAIN
TEST NO.- 14
4376
t]= 0*3556 mm ="374939
%6 = 20° ) 81742 mon  76?
TOOL - CARBIDE 1983
3066
974
310
2481
3087
24051¢i
394
2204
1835
2766
1945 1433
895 619
1631
2764
618

FIG. 5*10 (b)

STRAIN-RATE DISTRIBUTION IN DEFORMATION ZONE. (1/SEC)
TEST NO.= 14
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y (mm) 0
U = 35.3% m/min. 0 S‘OGS,O
'[;1:_ 0.3556 min n ’ ni 507 505 L
g 2 AQD 4 3
16,? - A = ZOO ATA M_fv2
TOOL - CARBIDE = Lo
16.6 Y s : - -
T s 4G4 \&7
2 n_ A
16.5 | ‘ S T L8l 481
0 f.\?O
16. 4 161 .81 .
. 8 476
a 479 177 !
’ \ 474
® 5?1 470 L&D
477
a 449 L&D
b2 454 431, 448 ; s % (mm )
3.7 _ 3.8 3.9
Fig. 5.10 (¢)
FLOW STRESS DISTRIBUTION (MEGA PASCALS)
TEST NO.= 14 '
y{mm) 20
) .
U = 35.336m/min. 41 .50 e .
t1= 0.3556 mm TS0 127 154 1
16.7 L o 200 5% ww
TOOL - CARBIDE ! 124
51 a 141
a a " 177
16.6 | 73 a
2 15 '
: a 135
- 53 “3 ?()2 179
16.5 | " e 190 194
52 24
16.4 | 7 151
’ 107 397 215
M9 i
) BSO 202 2?[}
? a 234 240
pl ®
194
a 251 21
: 4 4
g3 @5 5 e ()
3.7 3.8 - 3.9

PIG. 5.10 (d)
TEMPERATURE DISTRIBUTION IN DEFORMATION ZONE, (0 C)
TEST NO.= 14




JD. 321

U= 71.11 m/min. 0.000
ti= 0O0.3550 mm 553 1.650 1.739
<= 20 0.541
) 1.205
TOOL CARBIDE | 581 | 762
0.000
0.424
¢ ?—AS4P111
0.000 1.3531,505 1,642 1.714
0.525
1.239
1.612 1.783
0.000
« 0.000
0,208
»  0.589
1.089
0.000 1381 1.547 1.697 1.750
0.354
0.000
v0.000 0741
.000
1.448 1.6SS
0.000
1512 i.627 1.733 1.838 1..899
x(mm)
3.8
FIG. 5.11 (a)
THE DISTRIBUTION OF TOTAL STRAIN
TEST NO.= 15
y (mm) 0
. M"\5S08
U= 71-11 m/min. 0
t1= 0.3556 mm 12656 2975 2256
=20 25534
TOOL - CARBIDE 12575
4573 2073
5144
n :409-L i P
1116
091 4570 2820 2064
16701
10100
3585 1637
14284
. 20227
et .
3773 2084 1614
10684
4064 1736
6658 4250. 2607 1412 093. (mm)
3.7 3.3
FIG. 5-11 (b)

STRAIN-RATE DISTRIBUTION
TEST NO.- 15

IN DEFORMATION ZONE, (1/SEC)
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y (ram)
16 3
tA= 0.3556 mm 84

4= 200
TOOL - CARBIDE &R7

16 7
16 6
A3 MY

16 3
16 4
16.3
16,2

16
3.7 3.3 (mm)
FIG. 5.11 (c¢)
FLOW STRESS DISTRIBUTION (MBGA PASCALS)
TEST NO.- 15

y (mm) 30

16 3 U= 71.11 m/min

ti= 0.3556 mm 210 220
<= 20°

16 7 )
TOOL - CARBIDE 226 241

16 6

182 91k 242 554 559

16 5

237 257

16 U
107

16 3 227 237 243

16.2

191 295

16. 1 271

3.7 3.3

FIG. 5.11 (d)

TEMPERATURE DISTRIBUTION IN DEFORMATION ZONE, (0 O
TEST NO.- 15

x(mm)



,0.000

U = 35*¥2" m/min $.000
t-i= 0.287"5 mm
<= 20-°
TOOL - CARBIDE
0.000
0.571
0.000
0.606
0.6"0
0.S65
0.000
0.394
0.000
$.000 1.679
9.000
D. 356
x(mm)
3.7 3.3
FIG. 5.12 (a)
THE DISTRIBUTION OF TOTAL STRAIN
TEST NO.= 17
y (mm) 0
U= 35-2" m/min
t"= 0.28%5 mm
s — 200 0S61
TOOL - CARBIDE
7534
2155 1033
3392
9650
911
559 x(mm)
3.3

FIG. 5.12 (b)

STRAIN-RATE DISTRIBUTION IN DEFORMATION ZONE, (1/SEC)
TEST NO.- 17
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y (mm)
U = J>5.?4 m/min,
16 ti= 0.285 mm ALAOO A%
&= 20°
TOOL - CARBIDE
16
16
16
AT5
478
16 472
16
- x(mm)
3.7 3.3
FIG. 5.12 (c)
FLOW STRESS DISTRIBUTION (MBEGA PASCALS)
TEST NO.= 17
y (mm) 27
U = m/min
t"i—0.28"5 mm
16 e< = 20°
TOOL - CARBIDE
16
16
HI
166
16Q 209 217 .
s3
128
165
16 226 247
16
262 - x(rr.m)
FIG. 5.12 (d)

TEMPERATURE DISTRIBUTION

IN DEFORMATION ZONE, (0 O
TEST NO.- 17
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y{(mm)
.
7.0 L U = 35.28 m/min.
tzI: 0.2690 mm
6.0 | «= 20
- TOOL - CARBIDE
QL . W52
6.3 000 Do
° ' 2 1285 9,391 1,450
é ? | O Sll 3 a a
o c 0 .69
0.000 0.690 1
6.6 | 0,218 1.0¢0 1275
© 0,272 ]
0.000 <" T0. g
4.5 . ) Wcts
T 0.187 N RS
0.000 g1 SN R
6.4 | 0,144 0. 640 ’
© 0.158 1.220
6.3 G080 = 0. 461 . 1.443
{ Sos0
) < 1317 1,633 1 _5p7
0,902 ? ° "
1524 1,512
1,628 1.520 | 1.615 1,585, , o 3 ()
3.8 3.9 4.0

FIG. 5.13 (a)
THE DISTRIBUTION OF TOTAL STRAIN

TEST NO,= 18
y (mm ) V 0
i NE207
20 U = 35,28 m/min. ‘0 201
" ™ tq= 0.5 90 mm a : 201()15',
K = 20° 3459 Al
4.9 | TOOL -~ CARBIDE " 4068
0 1816 1061
R = 317
6.9 0 ’ é%?%464 2305\ er
055 " 3-:-02 :.152 ?0?
? ?125
’ 1415
203 *
3579
. 2252
R T
3964 "’ iy
1576 792
3092 3258 854 &38
1119 578
?58 . S‘M ?87 7 . pe % (mm )
3.8 3.9 4,0
FIG. 5.13 (b)
STRAIN-RATE DISTRIBUTION IN DEFORMATION ZONE, (1/SEC)
TEST NO,= 18




y (mm)

17.0 U = 35*28 m/min
. 1;(12 265690 mm £gj"S5 LSU Agd
16.9 TOOL - CARBIDE A29
16.3
6.7 12 M0  Ago Ago
16.6
a7s
16.5
A74
16.3
16.2
ass - x (mm)
3.6 3.7 3.3 3.9 4.0
FIG. 5%*13 (c)
FLOW STRESS DISTRIBUTION (MEGA PASCALS)
TEST NO.- 18
y (mm)
17.0 U.= 35*28 m/ min
ti= 0.5690 mm S 176 133
<= 20°
16.9 TOOL - CARBIDE 190
16.3
d6zf 161 190 193
16.7
16.6
111
16.5
164 161
213
16.3
211 222
16.2 !
236 297
X (mm)
3.6 3.7 3.3 3.9 4.0
FIG. 5*13 (d)

TEMPERATURE DISTRIBUTION

TEST NO.-

IN DEFORMATION ZONE. (0 ©)
13



16.8

16.7

16.6

16.8

16.4

16.3

16.2

16. 1

16.8

16.7

16.6

16.S

16.4

16.3

16.2

16. 1

y (mm) (1000

U = 35-15 m/min.

0.000 \).000
ti= 0.355* mm

.000
o< = 10° 0.836
TOOL - CARBIDE
0.000 0>08 406
° 0.602 1.182
1.530
0.682
0.000 » 0.872
. a 1.0591 255
901,386
0.606 1.516 1.58Q
0.000 1.070
0.325 h.438 1.620
0./254
0.000 *0.794
- 1.115
1.353
1 * 511 1.623 1.66S
0.321
050 1.347
628 a 1.670 1.780
Y.675 .1.733 1.767 1.5QS  1.843 A
3.7 3.8 3.9 4.0
FIG. 5.14 (a)
THE DISTRIBUTION OF TOTAL STRAIN
TEST NO--—- 19
y (mm)
U = 35¢'15 m/min.
t>= 0.3556 mm
< = 10°
TOOL - CARBIDE $2259
10212 ~-*%%98 1174
2036 3596
1305
3021
9 3406
a  28SS
2066 | <. 0o
3670 796
3298
6154 1467 755
6639
- 5863
. 3644
2108
\ 816 660
18281
3133
13279 907 473
861 660 513, 388
3.7 3.8 3.9 4.0

FIG. 5.14 (b)

1s3

1.688 1.705
r* 3
1.666
X (mm)
786 T16
72.2
(mm)

STRAIN-RATE DISTRIBUTION IN DEFORMATION ZONE, (1/SEC)

TEST NO.-- 19



y (mm)

.84
U = 35.15 m/min

3 t-|= 0.4556 mm
ot = 10
TOOL - CARBIDE A9?
7
6
A75
A *76
X (mm)
3.7 3.3 9
fig. 5.14 (c)
FLOW STRESS DISTRIBUTION (MEGA PASCALS)
TEST NO.- 19
y (mm) 26
U = 35.15 m/min
t-|= 0.3556 mm
<*= 10°
TOOL - CARBIDE
HI
204 209
201 215
207 222
201
100 239 253
229
246
264 )73 .
238
293
032 x (mm)
FIG. 5.14 (d)
TEMPERATURE DISTRIBUTION

IN DEFORMATION ZONE, (0 O
TEST NO.- 19



y (mm) 0.000
U = 35.26 m/min. 9.000
s.3 t*— 0.3556 mm 0.127
<= 20° JO. 640
TOOL - CARBIDE 1.003 |,
s.7 COOLANT - WATER 1702 i>533  1>596
0.000
D. 6
0.626
s. % 0.000 0.978
1.287
0297 1.505
S.* 0.456
0,000 0‘6770.9
1.178
s. 3 (1000 1345 1492 1.556
,0.000 0.396
s.2 1.070
$0.000 1.503 1.677
D
A
s. 1 vi297 146l 1.602 1.692 1.768
(zam)
3.6 3.7 3.3 3.9
FIG. 5.15 (a)
THE DISTRIBUTION OF TOTAL STRAIN
TEST NO.- 21
y (mm)
U = 35.26 m/min,
ti= 0.3556 mm
s. 3 = 200
TOOL - CARBIDE
COOLANT - WATER
s.7
S. 6
2452
)s 2191
1267
951 677
S.* 3423
3667
2985
1935 304
832 657
3233
4022 479
E169Q 1397 °06 580 365 % (mm)
3.6 3.7 3.3 3.9
FIG. 5.15 (b)

STRAIN-RATE DISTRIBUTION

is5

IN DEFORMATION ZONE, (1/SEC)
TEST NO.- 21
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y (mm)
U = 35*26 m/min
t-|= 0,3556 mm
£*= 200
TOOL - CARBIDE
COOLANT - WATER

%72

X (mm)
FIG. 5*"5 (c¢)
FLOW STRESS DISTRIBUTION (MBGA PASCALS)
TEST NO,- 21
y (mm)
U = 35*26 m/min.
t*= 0.3556 mm
o= 20°
TOOL - CARBIDE
COOLANT - WATER
200
212
172
195
217 225 230
209 239
2S5
X (mm)
fig. 5.15 (d)

TEMPERATURE DISTRIBUTION IN DEFORMATION ZONE (0 ©
TEST NO.-: 21
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y (rom) 0,000
l U = 130.73 m/min. ,P\séhi?ojwr
tq= 0.3556 mm 0,000 7P a9 ,
16.8 F _ 0 S SE 1.630 1,744 1,814
| § = 20 o odes N — L.7ih ]
TOOL - CARBIDE A LY ) \ -
16.7 | 0,000 e / 1. fGh 1.718
20030k T » s
ST 4 . I 25,
16.6 0.060 " e LA e p
. },/ L . : » - v 1.560 1,721 A . 758
Ve /’ Py oo ) 7 a
o T 0,684 ! .
[y e . X ) P
16.% L f// /’/ =, 1,162, r /
! ' A 1,581 ﬁ' 1768
1268 g
14502 1 430 PP 1,848
1.686 1,886
1787 1,912 1,074 e (mm )
3.8

FIG. 5.16 (a)

THE DISTRIBUTION OF TOTAL STRAIN.
TEST NO.= 23

y (mm)

1 ‘
! U = 130.73% m/min. 0
146.8 L tq= 0.3556 mm -
o = 209
. TOOL: - CARBIDE -
16.7 -
16.6 |-
16.5 L
9 2443
16,4 L ;
16,72
1642
1004
6.1 1902, 1224 e ¢ ()

3.8
FIG. 5.16 (b)

STRAIN-RATE DISTRIBUTION IN DEFORMATION ZONE, (1/SEC)
TEST NO,= 23
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y (mm)
508
U = 130.73 m/rain
t©|= 0.3556 mm *9]
a= 20 801
TOOL - CARBIDE
*94
*99
*83 "
503 7
a
500
*75
X (mm)
FIG. 5.16 (c)
FLOW STRESS DISTRIBUTION (MEGA PASCALS)
TEST NO-- 23
y (mm)

U = 130.73 m/min
tl= 0.3556 mm 199
X= 20°
TOOL - CARBIDE
207

228
132
238 2*5
167
*
39 22 253
195
237 2SS 299
236 252
593 673
X (ram)

FIG. 5.16 (d)

'EMPERATURE DISTRIBUTION IN DEFORMATION ZONE, (0 O
TEST NO.—- 23



U = 131¢38 m/min 0.523*A*
1l= 0.355& nim
o< = 20°

TOOL - CARBIDE
COOLANT - WATER

0.000
0.252
0.850
0.000
0.000
0.000
1.33? 1512
0.000
X). 000
FIG. 5.17 (a)
THE DISTRIBUTION OF TQTAL STRAIN
TEST NO.- 24
y (mm)
U= 131 + 38 m/min 142
t-1= 0,3556 mm
= 20°

TOOL - CARBIDE

COOLANT - WATER
26655

24060
8715

6506

FIG. 5.V (b)

STRAIN-RATE DISTRIBUTION IN DEFORMATION ZONE,

TEST NO,- 24

426
1.628
x (mm)
3384
X (mm)
(I/ISEC)
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y(mm)
U= 1J1. 38 m/min *395
t-|= 0. 3556 mm 7 .0T
0r= 20°

TOOL - CARBIDE
COOLANT - WATER

500

A90

N4

16.2 'N° "85

FIG. 5.17 (c)
FLOW STRESS DISTRIBUTION (MEGA PASCALS)

TEST NO.-- 24
y (mm)
U = 131. 38 m/min
ti= 0.3556 mm
; x = 200
: TOOL - CARBIDE 86
COOLANT - WATER
36
5
213 295
160
243 266 -
3
, 192 100

FIG. 5.17 (d)

TEMDERATURE DISTRIBUTION IN DEFORMATION ZONE, (0 C)
TEST NO.- 24

X (mm)

201

X (mm)
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1 I
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FIG. 5.28
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Proportion of primary zone heat conducted
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Variation of B with Ry tan¢, where RT = RCplUty /K

FIG. 5.65
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FIG. 5.66

Tm - Maximum rise of temperature in chip
Tf = Mean rise of temperature in chip
<<T *2 = Length of frictional heat source

Rj = Thermal number sACp.Vc.t2 /K
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SIMPLIFICATION OF EQ.

FIG- A1 4

region

Division

APPENDIX 1

269

(2.9) FOR TRIANGULAR ELEMENTS.

y
3
1
of the problem FIG- A1.2
into elements
Let the problem region be divided into small
For a triangle defined by the nodes i,

(Fig. Al.1).

an anti-clockwise order,

the element by

where,

With the other coefficients

subscripts

bi

in the order

the function T can

B,
K + +

. bjX +
(aj +

(a + bx 4+
m m

%

Xj ym m
m

i, j, mand

Cjy)/24

Cl¥1)/'2A

of two

be uniquely

A Typical assembly

elements

triangular elements

j, m numbered in

specified within

(A1.1)

(Al.2a)

(A1,2b)

(A1.2¢)

(A1.3)

obtained by a cyclic permutation of
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1 3 i
20 = det 1 % Y, = 2 (area of triangle ijm)
1 *m Vi (A1.4)

Differentiating Eq. (Al,z), the derivatives of the shape functions are

aNi aNi

Pl bj /ZA B-S-r—-' = (31/2A

oN AN

«.—-*.Lj. =2 b sl w2 C

ox i/ea oy i/2o (a1.5)
T Loy om

ax B m/2a oy = ®m/2a

It can be shown that
o+ N
[](ai Fbx 4 c,y) dx ay/2
= ” N, dx dy = 1y A (A1.6)
and Jdedy wm A

Substituting Eqs. (A1.5) and (Al.6) into Eq. (2.9) and not considering

the boundary terms at present, the nodal equation is

( Kb, Ke, PCu

" ot b N L] vRmwcmtay b

1a [bi bJ_ m:l B Th [Ci CJ_ Cm] -+ 5 [bi bj H;I “+
PC Vv

) e Qa
5 S [Ci CJ Cn;' ) {T} o g = 0O (Alo’?)

Writing down for the whole element, in matrix form, the element equation

is

i

e e
(w]® {r}® + {5}° 0 _ (a1.8)
e
where [H} is a square matrix, the typleal element of which is

e K ‘ re
H, ., =  eomo- (bi bj + e, Cj) + “ER (u bj + v cj) (A1.9)




i

r i
b
bi bibj bi m
K
b et
PPy PiPm| TR
b
L sym. m m
By bj b
Pva

bi bJ bm + 5
Lbi bj bm“

e
which shows that [H] is an asymmetric matrix.

Example,

can be written as

271

{A1.10)
c.Cc, c.C. c.c i
i i iJ im
c.Q c.c
JJ jom
sym. c c
m m
e T
J m
C . [¢]
J Ll
C . C
J m
(a1.11)

The example below illustrates the solution procedure for a problem

region divided into two elements (Fig. Al.2),

For element I defined by nodes 1 2 3 (always maintaining the anti-

clockwise numbering order), the

Using Eq., (Al.11) and

the values

2
a3 d
b3 = =d
03 =d

of the

the element matrix is given by

N

I

123

Hiy Hq
Hoy Hon
Hoy Hag

H13

Has

}133

coefficients of Fq(Al.3) are given by

0 0

d 0

0 d
(Ar.12)

coefficients from Lq. (A1012)
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6K - s{ u + v) «3K + s.u =3K + 8.V
= 1/6 ~3K = s{ u + v) 3K + s.u 8.V (A1,13)
3K = s{ u + v) s.u 3K + 8.V
where, s = PC ,4q (A1,14)
p
S8imilarly, for element II
-~ o IT -
P
Hy, Hy, Hyg 3K-8.V 3K+s (utv) 8.l
1T
H{ | = |H H H | = 1/6|=83k=s,v 6K+s{us+v) =3K=s.u
42 44 43
243
=Y = < 3K~ Pyt
Hy, Hy, Hsg‘ | -sev -8K+s (u+v ) K8 U]
{A1,15)

Agsuming that the heat is generated along the surface CD only at the
rate of q watts per unit area per unit time, the system heat load vector

is given by

(at.16)
Summing the contrvibutions of both the elements, the nodal equa=

tions are

T1/6 [GK = s(u+v)} + T2/6 {-SK -+ sbu} + T3/6{:m3K + sov} = 0
T, T, | T, . (A1.17)
e {—3K - s(u+v)] + §~A{6K 4 s(umv)} + o [s(v»u)}-+??~{~3K + s(u+v)}= 0
(A1,18)
T T T T
1 2 - -2 - T v ) 28
E_-{vsK = s(u+v)}+ 5 {s(u v)} + o { 6K + s{v u)} < { 3K~:~:~3(u!'\r)}~~ >
- (A1.19)
T T T
2 3 4 q.d
ET‘{ﬂ 3K - s.v} 4—§*-{m3K - s.u} +~§ﬂ{ 6K -+ S(u+v2}m e
(a1.20)
Boundary Conditions,
(i) The temperature of node 2 is set equal to TS i.eq,
T, = T (A1.21)

2 s




This Dboundary condition is introduced by setting

I o on
Hooo =25, (Two elements share the node 2)
II 3
Hpa =%
I I II Ix
= £ = = P o= -
Ho =0, H, =0, H ) H 5y =0, F, = -T

Eq. (AL1.18) is changed to

T..0 + T + T,.0 + T,.0 =

1 2 3 4
(ii) The boundary integral IB
oT
IB = - %Nil{&*}.ds
S
Case 1. When the condition
oT
on 0

is imposed,
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and as a result

(a1.22)

is specified where IB is given by

(aL.23)

(al.24)

As a result of Eq. (Al.24), the boundary integral IB vanishes

and no change takes place in the element matrices,

Case II.
It is given that

-K él- = ¢ _ on surface AC.
on s

For this condition, the boundary integral is

. N. q ds
oT i’s
IB = féNi K S?In ds =

Sac

(A1.25)

(a1.26)

It can be shown that Eq. (Al.26) contributes to the heat loads at

the nodes 1 and 3 only and these additional contributions are given by

r = C]S ° d/z

and T = dq. . d/2

(A1.27)
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Case I1l.
This is an extension of Eq. (Al.25) when, for a coolant boundary,

qs is expressed in terms of the heat transfer co-efficient h, that is,

QT

=K S o= h(T - T.) on surface AC {A1,28)
and N, B (T - T ) ds (A1,29)
I, =
S

AC

Eq. (A1.29) contributes to the element matrix [H]I as well as to the
heat load vector {F}I for the boundary nodes only (Egqs. (4.10) and
(4.11)). On integration and simplification, these additional contri-

butiong can be shown to bhe

: d/3
N / ) a/6
H = hl| O 0 0 (A1.30)
123
a/e 0 a/3
+
F 1 da/2
I+
and F = {F =  ~hT, - 0 (a1.31) -
123 2
ity a/2

Normally, the boundary conditions of Eq. (Al.25) and of Eq. {Al.28) do
not occur together at'the same surface., For the abave example, hence,
the boundary condition of Eq., (A1.25) is not considered.

Combining Eqs. (Al1.17), {A1.19), (A1.20), (A1.22), (A1.30) and

(A1.31), the nodal equations in the Final form are

T P T T
= {61(~s(u+v)+2hd} P { ~3K+s ,.u} TR {»31c+s,v+hd} - 3%"«%3 (a1.32)

T, =T (A1.33)
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Tl T2 T3 T4
. %»-{-SKms(u+v)+hd} +-€~[ s(u~v)} + o 6K+s€v~u)+2hd} +~E#-{m3K+s(u+v)} =

a/2 {q4nTy ) (A1.34)

=1

2 T3 T4
T {r—:ﬁ{-—s.v} + o= [—SKws.,u} + E-«{ 6K+s (u+v)} = q.d/2 {A1.35)

For illustration, the following numerical values of various quantities

aye assumed.,

K = 60WnEK
c, = 300 J/Ke K
P = 8 x 10° Kg/m3
u = 0.20 m/sec : s = PCd = 240
P
v = 0.30 m/sec
-l
d =2 1 x 10 m
h = 6 x 10* wm? K
T, = Tec = 20°C
q = 4 x 10° W/m?

Substituting the above values into Egs. {A1.32) - (A1.35), the

following set of equations is ob%ained,

252T1 - 132Tz - 102T3 == 360

T2 = 20

-294'1‘l - 24T2 + 396T3 - 60T4 = 1560
~252T2 - 228T3 + 480"1‘4 .o 1200

Solving the above equations, the resulting nodal temperatures

are

T, = 22.199°C, T, = 20°%, T

1 = 25.,433°C and T4 = 25,080°C.

3

It can be shown that i1f no coolant boundary is used (i.e., h = 0)
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the temperatures of the nodes 1, 3 and 4 are increased and are given by

Tl = 22.,755°C, T3 = 26.122°C and T4 = 25.,408°C,




APPENDIX II

PROGRAM DATA

Input data to the program DATA consists of the fol;owing itenms:
(i) Problem identification and control parameters,
(ii)} Material Properties.
(iii) Boundary conditions.
(iv) Elements with heat sources. *
(v) cutting forces.

(vi) Element data,

Input formats are listed helow.
(i) NPRO, NMATL, IELDAT (1615)

(i1) 1, ckx(1), ckvy(1), AcP(I), AROE(I), AVK{I), AvY(1) (18, 6r12.6)

I = 1, NMATL
I, ckxe(1), ckve(r), acec(r), AROEC(I) (18, 4114,8)
I = 1, NMATL
(iii) NBN (1615)
(¥BC(1), I = 1,NBN) (1615)
NCON : : | (1615)
(NsE(1), I = 1, NCON) (1615)
(REL{1), I =1, 7) (ors8.3)
(vFLD(1), I =1, 7) . (9r8.3)
(zcoN(1), I =1, 7) . . (1615)
ICOUNT (1615)
(1coNi(f), I = 1 ICOUNT) ' (1615)
(Bre(x), I = 1, ICCUNT) (16F5.1)
(iv) NEPD, NESD, NEFF ‘ (1615)
(NPD(1), I = 1, NEPD) o (1615)
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(Nsp{1), I

.(NFF(I), I

(v) N1R, FV, TH
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[l

1, NESD) (1615)

1, NEFF) (1615)

i

(15, 6F15.4)

{vi) 1st NTYPE, MATERL, THK, Nov, (JN(I), I=1, Nov) - (215,F5.2,1315)
element (x(1), ¥(1), 2(1), I =1, NOV) (9r8.3)
2nd
‘ element e B eo0so0s00080000e000060800000000860
0 : (15) - termination for (vi)

Input Data Glossary,

(1) NPRO

NMATL

IELDAT

(ii) CkX
CKY
ACP
AROE
AVX
AVY

CKXC

CKYC

ACPC

AROEC

indicates the type of problem,

= 1 for a two dimensional problem,

= 2 for a three dimensional problem.,

specifies the number of different types of material

in the problem region,

indicates the input source of element data,

= 1 Tor the element data input by cards.

= 2 for the element data input by the disc file no.4.
An array of thermal conductivity values in x-direction,
An array of thermal conductivity values in y-direction,
An array of specific heat values,

An array of density values,

An array of velocity values in x-direction.

An array of velocity values in y-direction.

An array of temperafure constants for thermal
conductivities in x-direction,

An array of temperature constants for thermal
conductivities in y-~direction.

An array of temperature constants for specific heats,

An array of temperature constants for densities,




(ii1)

(iv)

NBN
NBC
NCON
NSE
REL

VILD

ICON

ICOUNT

ICONL

ELE

NEPD

NESD

NEFF
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Number of eleménts with coolant boundary.

An array of coolant boundary elements.

Equal to NBN,

An array indicating the type of coolant surface for

each coolant boundary element,

“An array of relative lengths of coolant surfaces

to be used in Renolds equation,

An array of relative coolant velocities for each
coolant surface.

An array indicating the position of first boundary
node (in the array of node numbers) for each coolant
surface.

Number of constrained boundary nodes with room
temperature,

An array of constrained boundary nodes with room
temperature,

An array indicating the number of elements common
to each boundary node with room temperature,

Number of elements in the deformation zones.,

Number of elements along tool-chip interface (in
the chip) subjected to boundary friction.

Number of elements along work=tool interface(in the
tool} subjected to boundary friction,

An array of elements lying in the deformation zones,
An array of elements along tool-chip interface
subjected to boundary friction,

An array of elements along work-tool interface
subjected to boundary friction.

Test 1ldentiflcation number,




rV
FH

(vi) NTYPE

MATERL

THK
NOV

IN

X,5.2

Example,

Table 3.4,

L.

A2.2 Qutput Data,
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Cutting force.
Feed force.

specifies element type

i

3 for 3~node triangular elements,
= 4 for 4-node quadrilateral elements.
= § for 6-node triangular elements.,
= 6 for 9-node triangular elements,
= 7 for 8-node quadrilateral elements,

= 3 for l2-node quadrilateral elements,

i
©

for 8-node hexahedron elements,

= ~- for new additions,

Material type of the element,

Element thickness - immaterial for 3-dimensional
elements,

Number of nbdes in the element,

An array of element node numbers, The node
numbers must be specified in clockwise or
anti—-clockwise direction.,

Three separate array of x - y =~ z co-ordinates
in a global system for the whole assemblage of
elements., The sets of co—~ordinates must be input

in the order of their node numbers in JN,

The gample on the coding sheet 1s the data input for the Test no.

11 for which the cutting conditions and measured data are given in

The following is the Jjob output (from the program DATA) for




Test No.

11,

A TWO DIMENSIONAL PROBLEM

METAL

CONDUCT- CONDUCT--

NO IVITY X IVITY Y

1 « L3 0E=01 » L5 0L~ 01

2 o 15 OE~OlL » 15 OE-01

3 «970E~02 «970E-02

METAL NO CKXC

1 = o, 100E-04
2 ~ » LOOE-04
3 « ,2405E-05

SPECITFIC
HEAT

o LOOE+00

- LOOE-+Q0

» L1OE400

CKYC

=, 100E~04

~ .1 O0E~ 04

- .24 OB~ 05

METAL
DENSITY

. T86E-02

786802

.817E-02

VELOCITY
X

19251403

. 197E4+03

0.

ACPC

+ 138E~03

- L38E~Q3

0,

CONSTRAINED NODES FOR STATIONARY TEMPERATURE

1086 1088
1059 1068
1124 1243
1179 1178

9 15
233 236

NO., OF ELEMENTS CONNECTED TO FIXED

° o

o 3

NO. OF DLGREES

1080 1079 1074 1072
1070 1076 1077 1082
1146 1160 1161 1192
1176 1175 1173 1172

25 29 44

289 288

1.0 2.0
1.0 2.0
1.0 2.0
1.0 2.0
2,0 1.0
1,0

OF TFTREEDOM PER
TOTAL NO, OF ELEMENTS = 359
THE BIGGEST NODE NO, = 1192

1064 1063 1056 1054
1083 1090 1092 1094
1190 1191 1188 1187
1170 1169 1167 1165

70 73 102 106

TEMP .
] 1 <
Q 1 <
Q :,' 9
1. °
NODE = 1

NODES
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VELOCITY

Y

o c2 2 OE'i"OB

AROEC

1051 1049 1050 1058
1095 1104 1108 1123
1185 1184 1182 1181

1164 1 3 5
138 143 181 186
2,0 1,0 .
2,0 1,0 .

2,0 1.0 2.0

1.0 1,0
1.0 2.0




THE SMALLEST NODE NO, = ]l
BANDWIDTH = 78
TOTAL NO. OF DEGREES OF FREEDOM == 1192
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PLATE 1

PLATE D



2as

W-«.

U=35-2 m/min.,, tj =0.2845mm,°(r20 , TOOL - CARBIDE

(2)

U =71 m/min., t§ =0-3556 mm, </ =20 .TOOL-C ARBIDE

(b

PLATE 1II Deformed flow lines (contd.)
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U =17.3m/min., t, =0.3556 mm, c/=41°, TOOL- HSS

Ic)

U =24-8 m/min., t§ =0-3556 mm, c/=41, TOOL- HSS
(d)

PLATE II Deformed flow lines
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PLATE IV



28ft

U =130.7 m/min., tj =0.3556mm, c¢<=20° TOOL-CARBIDE

(@)

U =131 m/min., t, =0-3556 mm, 0C=70° TOOL - CARBIDE, COOLANT-WATER

(b)

PLATE V Secondary chip deformation
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PLATE M

PLATE VI



