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Abstract

We study the ergodic sums ¢"(z) := S 77 g(T*z) for Hblder continuous functions
g. We look at sets of points z for which the sums ¢"(z) have a specified behaviour
as n — oo. For subshifts of finite type, Fan and Schmeling showed that many
of these sets have the same Hausdorfl dimension: for example, the set of points
with bounded sums generally has the same dimension as the set of all points z for
which 2¢"(z) — 0. We show how their method can be extended and applied to
other dynamical systems (conformal expanding maps, and conformal hyperbolic
diffeomorphisms and flows).

We also consider a problem concerning the homology classes of periodic orbits
of Anosov flows. Our results give information about how the ‘directions’ of these

homology classes are distributed.
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Chapter 1

Preliminaries

In this thesis we consider two separate problems. The first problem, which we
look at in chapter 2, is to extend the results of Fan and Schmeling in their paper
[F'S]. Then in chapter 3 we look at the ‘directions’ of homology classes of periodic
orbits for Anosov flows.

But first of all in this preliminary chapter we describe the dynamical systems
that we will be interested in, and explain some of the standard methods for

dealing with them.

1.1 Shift spaces

This section describes some very useful examples of dynamical systems — namely,
subshifts of finite type. These turn out to have properties which make it possible
to prove a wide variety of results. A large amount of theory is known, most of
which will not be needed for our results. For the parts that we do need we will
mostly be following the book by Parry and Pollicott [PP]. (Note that throughout
this thesis, the references have been selected on the basis of convenience and are

not intended to be historical.)

We start by considering a set of k ‘symbols’, {1,2,...,k}, and look at the set




of doubly infinite sequences of such symbols, i.e.
S={1,2,...,k}".
For any 6 € (0,1) we can define a metric on S by
d(z,y) = 6"

where n is the largest integer such that x; = v; for all |¢i| < n. (Of course this
only applies for z # y; when z = y we have d(z,y) = 0.) With these definitions,
S is a compact metric space.

The shift map o : S — § is defined by
(02); = iy,

so we think of o as shifting a sequence of symbols one place to the left. Then

(S,0) is called the full shift on k symbols.

To get further examples of maps, we want to consider the restriction of o to
certain closed subsets of S. Let A be a k x k matrix, with all its entries being

either 0 or 1. Then we define
XA={mES:Amimi+l=1‘v'z'EZ}.

Clearly ¢ maps X4 to itself, and o : X4 — X4 is a homeomorphism; we call
(Xa,0) a subshift of finite type.

A finite sequence of symbols is called a word. Thus the definition of X 4 says
simply that the word pg is allowed to appear inside elements of X 4 if and only
it A,; = 1. (We say that such a word is ‘admissible’.) It follows (by an inductive
argument) that [A"], gives the number of admissible words of length n+1 which
start with p and end with ¢. If for all p and g there exists some number n such
that [A"],, > 0, then we say that A is irreducible. If A satisfies the stronger

condition that there exists some n for which [A™],, > 0 for all p and g, then it is




aperiodic. For most applications we will want to assume aperiodicity.

Having defined these ‘two-sided’ subshifts of finite type, we now go on to
define the very similar one-sided subshifts of finite type. This means, instead of
working with doubly infinite sequences of symbols (z;);cz, we look at sequences
(z:)i>0- (Note that indices will start at 0 here, whereas in [FS] (for example) they
start at 1.) So we replace S by S* := {1,2,..., kY. This new space can also
be given a metric: for z # y € ST we have d(z,y) = ", where n is the largest
integer such that z; = y; for all 0 <4 < n. Given a matrix A we have the closed
subspaces

Xi={zeXt:A =1Vi>0}.

Tilit1
As before, we have a shift map o defined by (0z); = %41, which maps X4 to

itself; but in contrast to the situation for two-sided shifts, this ¢ is not invertible.

A cylinder in X7 is a set
[sos1 ... Sn1) = {:c EX)izi=s foralli< n}

We will say that this cylinder has ‘length’ n, and write Cyl(n) for the set of all
cylinders of length n. {Note that our indices run from 0 to n — 1, whereas a more
common notation (e.g. [PP], [Pes]) is for indices to run from 0 to n. The former
is more natural for our purposes.)

A block is an admissible word by by ... bs—1; the block as a whole is denoted by
a capital letter B. We tend to use the term ‘block’ rather than ‘word’ when we
are interested in the places where B appears inside z, i.e. Ty = b; (0 <4 < £)
for various x, m. Any block B of length £ defines a cylinder in X} (of length £)
which we will write as

[B] = [bo b]_ e bé—l] .

When looking at functions g : X4 — R or g : X} — R, we will often require

them to be Holder continuous, i.e. there exist constants C' > 0, a € (0,1) such

10




that
lg(z) — g(y)| < Cd(z,y)".

(More generally, Holder continuity can be defined for functions between any two
metric spaces.) Notice that whether a function is Hélder continuous does not
depend on the value of € chosen in defining d, and in fact a function is Holder
continuous if and only if it is Lipschitz with respect to d for some 6.

Given two continuous functions ¢, and g, defined on X4 or X}, we say that
they are cohomologous if for some other continuous function A defined on the

same space,

g1=ga+hoo—h.

Cohomology of functions is a very important equivalence relation on the set of
continuous functions (or the set of Holder continuous functions). Clearly, for
example, two functions which are cohomologous have the same integral with
respect to any invariant measure on (X4, o) or (X7, o). It is also particularly
important when we look at sums of the form

n—1

g*(z) == g(o'z).

i=0
(Here ¢g"(z) is a standard notation used for this sum, which we will be adopting.
These sums are the focus of chapter 2.) We see that if g; and g, are cohomologous
then

9t =gy +hoo™—h,

and so g} — g7 is (uniformly) bounded in n. Furthermore, if z is a periodic point,
say oz = z, then we have ¢7'(z) = gi(z). And in fact for Hélder continuous

functions the converse of this is also true, as expressed in the following theorem.

Theorem 1.1 (Livsic [Liv]) Let 1,92 : X4 — R (or X1 — R) be Holder con-
tinuous. Then ¢ and gs are cohomologous if and only if gt (z) = g5 (x) whenever

oz =z forz € X4, n>0.

The other result we will need concerning cohomology of functions is this:

11




Theorem 1.2 (Sinai [Sin]) Let g : X4 — R be Holder continuous. Then we
can find a Hélder continuous function g™ which is cohomologous to g, such that

g (z) = g (y) whenever z; = y; for all i > 0.

The function ¢ produced by this theorem can be thought of as a function de-
fined on X 7. So this theorem provides a way of deducing results about functions

on X, from those about X3.

1.2 Maps modeled by subshifts

Subshifts of finite type are often studied not for their own sake, but because they
are related to certain maps defined on manifolds. Results about these maps can
be proved by considering the related subshift of finite type and making use of its
relatively simple definition. Specifically, one-sided subshifts of finite type provide
a model for ezpanding maps, whereas two-sided subshifts of finite type provide
a model for hyperbolic diffeomorphisms. These are defined in this section. We

follow the descriptions in [Pes] and [PP].

We look at a smooth Riemannian manifold M and a C* map f: M — M. If
J is a compact subset of M for which f(J) = J then we say that the map f is

expanding on J if there exist constants C > 0, A > 0 such that
(df™)pv|| > Ce||v|] for all z € M,v € T,M and n > 1.

If in addition there is an open set V' O J such that J = {z € V : f'z €
V' for all n > 0} then we say that J is a repeller.

We restrict attention to repellers of expanding maps for which f: J — J is
topologically mixing,.

A Markov partition for f : J — J is a finite collection of closed subsets

Ry, ..., Ry which cover J, and which have the following properties:
(i) Each set R; is the closure of its interior;

12




(ii) If ¢+ 7 then intR; NintR; = ©&;

(iii) For each 4 the vestriction of f to R; is injective, and we have f(R;) =

Rjy U---U Ry, ) for some 31(8), - - -, Jn(y (2).

For any ¢ > 0, f has a Markov partition which consists of sets with diameter less
than §. Once we have a Markov partition we can consider the subshift of finite

type o : X — X}, where the matrix A is defined by

1 if int BN f~H(int R;) # @

Aij = . "
0 if int R; N f~(int R;) = &.

For each z € X there is a unique point x(z) € J such that f*(x(z)) € R,, for
all n > 0. Thus x is a well-defined map from X to J, which we call the coding
map. The subshift o : X} -—= X7 is then a symbolic model for f : J — J in the

sense that the following diagram commutes:

Jg L
xT Tx
Xi; = X3

The construction of the Markov partition is such that y is Holder continuous;
if g is a Holder continuous function defined on J then its pullback to X} is also
Hoélder continuous.

Cohomology of functions is defined in the same way as for subshifts: that
is, we say that g1, go are cohomologous if there exists a function h such that
g1 = g2+ ho f— h. Livdic’s Theorem (1.1) holds, and we have that Holder
continuous functions ¢; and g, are cohomologous if and only if the corresponding
(pullback) functions on the subshift are cohomologous.

The assumption that f is topologically mixing implies that A is aperiodic.

We now move on to consider invertible maps. We take M to be a smooth

compact Riemannian manifold and f : M — M to be a C'-diffeomorphism.
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Then a hyperbolic set A is an f-invariant subset of M with the property that the

tangent bundle on the set A continuously splits as
TAM = E°@ E",
where E* and E" are df-invariant, and
o for v € ES we have ||(df™),v|| < Ce™*||v|| for all n > 0;
e for v € E* we have ||(df ™),v| < Ce™||y|| for all n > 0,

for constants C' > 0, A > 0 which do not depend on z. Here E} is the stable
subspace and EY is the unstable subspace for the point z. If M itself is a hyperbolic
set then we say that the map f is Anosov.

We consider closed hyperbolic sets A which have the following properties:
(i) the periodic points of f|x are dense in A;
(ii) there exists a point @ € A such that {f"z : n € Z} is dense in A;
(iii) we can find an open set U 2 A with {J,., f*(U) = A.

If A consists of a single periodic orbit then it may have these properties; but
we want to exclude this possibility, for which everything becomes trivial. If we
disallow the case of a single periodic orbit, the restriction of f to such a set A is
called a hyperbolic diffeomorphism. Like with expanding maps, we will make the
simplifying assumption that f : A — A is topologically mixing.

The link between hyperbolic diffeomorphisms and (two-sided) subshifts of
finite type was described by Bowen in [Bowl]:

Theorem 1.3 ([Bowl]) Let f : A — A be a hyperbolic diffeomorphism. Then
we can find a subshift of finite type 0 : X4 — X4, and o Hélder continuous,

bounded-to-one surjection x : X4 — A such that xyoo = fox.

As with expanding maps, the assumption that f is topologically mixing ensures

that A is aperiodic.
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The coding is determined by a different type of Markov partition from the one
used for expanding maps. As before we cover A by a finite number of closed sets
Ry, ..., Ry; each set is the closure of its interior (in terms of the subset topology
ou A C M), and int R; Nint R; = & for ¢ # j. The matrix A is again defined by
Ay =1iff int Ry N f~'(int R;) # @. The construction of the partition is done in
such a way that for each € X4 there is a unique x(z) such that f™(x(z)) € R,
for all n € Z; this defines the coding map .

In order for this construction to work, each of the sets R; must have a par-
ticular structure, related to the way the tangent bundle splits into stable and
unstable sub-bundles. Given a sufficiently small € > 0 and any point & € A, there
exist (local) stable and unstable manifolds W (z), W*(z), which are tangent to

E? and E* respectively at the point z, defined by

Welz) ={ye M :d(f™y, f*z) <e Vn > 0};
Wiz) ={ye M:d(f™y, [ "z) <e Vn>0}.

These can alternatively be described (for sufficiently small €) as being the sets
of points y € B(z, ¢) for which d(f™y, f™z) (respectively d(f "y, f"z)) goes to
zero; furthermore for all such points the rate of convergence will be exponential.

For any sufficiently small § (depending on €) we have that if z,y € A with
d(z,y) < 0 then W(z) N W(y) consists of a single point lying in A. This point
is denoted by [z, y].

We work with subsets R C A for which diam R < § < ¢; in particular we
want [z, y] to be defined whenever z,y € R. The set R is a rectangle if [z,y] € R
for all z,y € R. In the Markov partitions for f : A — A, each set R; will be a

rectangle. For z € int R; we can write

Wi (2) = Wi(z) N R,
Wg.(2) = W!(2) N R;.

These sets have a simple interpretation in terms of the coding map: if z = x(z)

15




then we have

Wf{‘_(z) = {x(y) : y € Xa with y, =z, Vn > 0};

Wk, (2) = {x(y) 1y € Xa with y, =z, Vn <0},

The rectangle R; is then homeomorphic to the product W (2) x W (z), with
the homeomorphism being given by the map (z,y) — [z,y]. We say that these
rectangles have a product structure.

(For completeness, we finish by stating the condition that these rectangles
must satisfy in order to be a Markov partition for f : A — A. If z € int R; and
fz € int R; then we insist that

7 (Wh(2)) € W, (F2);
J (Wi(2)) > W (£2).

This is the analogue of the third condition for Markov partitions for expanding
maps. Given §, a Markov partition can always be found whose sets are rectangles

with diameter less than §. A fuller description can be found in [PP}.)

1.3 Suspended flows and hyperbolic flows

We start this section by giving the definition of a suspended flow on a (two-sided)
subshift of finite type. We take a strictly positive, Holder continuous function

71 X4 — R*, and define the set
Xy ={(z,s):x € X2,0<s <r(x)},

but with the point (z,r(z)) identified with (oz,0) for each z. (So, formally X%
is defined as a quotient.) Like X 4 itself, the space X, can be given a metric (see
[BS1)).

The flow o7 is defined on X7 : for small ¢ we define
oy (z,s) = (z,s + 1).

16




Of course this only holds while s+t < r(z); when t = r(z) — s we have
o (z,5) = (z,7(x)) = (0z,0),

and thus we can continue to define the flow by restarting ‘vertically’ from (oz, 0).
That is, if we find the integer N such that r¥(z) < s+t < r+!(z) then we have

ot (z,8) = (oNz, s+t — rV{()).

In the same way that subshifts of finite type served as models for hyperbolic
diffeomorphisms, these suspended flows are models for hyperbolic flows. Again
we take M to be a smooth, compact Riemannian manifold; now let ¢, : M — M
be a C! flow. A hyperbolic set A for this flow is a ¢-invariant subset of M such

that the tangent bundle on the set A splits into d¢-invariant subbundles as
TaM=FE @ E°® B,
where
e [/ is a one-dimensional subbundle, tangent to the flow;
e for v € E3 we have ||(d¢:).vi| < Ce™||v|| for all t > 0;
e for v € E¥ we have ||(d¢_,).v| < Ce™||v]| for all ¢ > 0,

for constants C', A > 0. As with diffeomorphisms, if M itself is a hyperbolic set
then we say that the flow ¢ is Anosov; this condition is satisfied by the geodesic
flow on the unit tangent bundle of a negatively-curved manifold.

We consider closed hyperbolic sets A C M such that
(i) the periodic orbits of ¢|s are dense in A;
(ii) there exists a point z € A with {¢,z : t € R} dense in A;
(iii) we can find an open set U 2 A with {),.p ¢:(U) = A.
(iv) A is not a single periodic orbit.

17




The restriction of ¢; to such a set A is a hyperbolic flow.

Again we have symbolic dynamics:

Theorem 1.4 ([Bow2]) Let ¢ : A — A be a hyperbolic flow. Then we can
find a suspended flow of : X3 — X7, with the matriz A being aperiodic, and a

continuous, bounded-to-one surjection p : X}, — A such that po o} = ¢, 0 p.

The construction of (X7, 07) and p is somewhat more intricate than in the
discrete-time case. The following is only a brief description of those facts that
are important for our results. (More detailed descriptions are found in [PP] and
[PS].)

The construction is based around finding disjoint closed sets 7; C A (1 <
j < k), called Markov sections. Each Tj is a local cross-section for the flow: that
is, it is contained in a small C* submanifold D; C M of dimension dim M — 1
which is transverse to the flow, and the set Tj is the closure of its interior (in
the topology of AN D;). Furthermore, if we let 7 = {7 then we want to have
M = Uyepp,q) #:(T) for some a > 0. This then ensures that each orbit of the flow
intersects 7" at least once in any sufficiently large interval of time.

We can then define the Poincaré return map P : 7 — 7, which takes a point
x € T to ¢,z where t is the smallest positive real number such that ¢,z € 7. This
map P is invertible. So every point x € 7 defines a sequence ¢(z) = {¢; }iez such
that ¢; = j if Pi(z) € T;. But there are problems at the boundaries of the sets
T;, where the Poincaré map may fail to be continuous. We look at the restriction

of ¢ to the dense subset
T :={zeT: Ai,j st Piz) e Ty} .
If A is defined by

1 if P(int7;) Nint T # 0

Aij =
0 if P(int T;) Nint 7 = 9,

18




then the map q : x — {g¢;} takes 7' to a subset of X4 injectively. Furthermore
the construction is such that ¢(7”) is dense in X4 and the inverse is continuous
where defined. This inverse can then be extended by continuity to a function
p: X4 — T which is a bounded-to-one surjection.

Next the function r is defined, initially only on ¢(7"), by r(¢(z)) = min{t >
0: ¢yx € T} Again this function can be extended by continuity, giving a Hélder
continuous function r : X4 — R*, If 2 is any point in X4, then for any n € Z
we have ¢un(y) (0(2)) € Ty, (Where we define r*(z) = — Z];ln r(oiz) for n < 0).
This r can be used to define a suspended flow (X7, o0}). Finally, the function

p: X% — A that we want is

p(x, s) = ¢sp($)'

As with the rectangles for hyperbolic diffeomorphisms, the sets 7; have a
product structure. Firstly we have that for any sufficiently small 7, there is a

diffeomorphism

U ¢(D;) = Dj x (—7,7),

te(—7,7)
obtained by travelling along the flow. We define 7; to be the projection map
Ute(%m) ¢:(D;) — D;. The sets T; can be chosen to be sufficiently close together
that A is covered by the sets (J,e(_,. ) #:(T5).

For any point z € A we have a stable manifold W*(z) and an unstable mani-
fold W¥(x), analogous to those for hyperbolic diffeomorphisms. Given two points
z,y € A which are sufficiently close together, there is a unique ¢ with |¢| < 7 such
that W2 (dx) N W2(y) # 2, and for this value of ¢ the intersection is a single
point which lies in A. Now if z,y € T; C D; this point might not lie inside D;,
however we can project it to D; using the map =;, giving a point which we define
to be [z,y] € D; N A. (In order for this to work, the sets T; are chosen to be not
too close to the boundary of D;, and small enough that [z,y] is defined.) The
set T; is a rectangle if [x,y] € T; whenever z,y € T;. In the construction of the

symbolic dynamics, each of the Markov sections 7 is a rectangle.
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For z € int T; we look at the projections of W2(z) and W}*(z) onto T}, i.e.

Wz (2) = {yeT;: 7rj"1({y}) NWi(z) # @},
Wi (2) == {y € Ty : 7 ({y}) N W2i(2) # @} .

Again these sets can be described in terms of the coding map: if z = p(z,0) then

Wi, (2) = {p(y,0) : y € X4 with y, =z, Vn > 0};

Wi (2) = {p(y,0) : y € X4 with g, = ,, ¥n < 0}.

The rectangle 7} then has a product structure, 7; — W (2) x W (2).

In chapter 3 we will consider questions involving periodic orbits of hyperbolic
flows. For this set-up we have the problem that periodic orbits in A do not have
a one-to-one correspondence with periodic orbits in X7. Results which rely on
counting periodic orbits in subshifts need to include corrections which take this
into account. The methods used are explained in [Bow2], and draw on work by

Manning in [Man)] for discrete time. We will not need to know the details here.

1.4 Equilibrium states

Suppose we have a transformation T : X — X, where X may be any com-
pact metric space and 7" a continuous transformation. Then for any probability
measwre £ on X which is invariant for this transformation, we have the entropy
L, (T). If we let M(X,T) be the set of all invariant probability measures, then
the supremum of h,(T) over all of M(X,T) gives the topological entropy h(T).
This is the ‘variational principle’ (see, for example, [Wal]).

A measure u for which the supremum is attained is called & measure of max-
imal entropy. In the case of a subshift of finite type, it is guaranteed that there
exists a unique measure of maximal entropy, and this is often denoted by .

This is a special case of the definition of pressure. Given a continuous function
¥ : X — R, its pressure P(2)) is a generalisation of the topological entropy; it is

7
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possible to give a definition which makes no mention of invariant measures, but
the simplest definition is by a variational principle:

P() = sup {h“(T)—k / 'L/)d,u}.

HEM(X,T)
A measure p for which k,(T) + [t du = P(3) is called an equilibrium state for
. Just like in the case of measures of maximal entropy (which this reduces to

by taking 1 = 0), we have the following:

Theorem 1.5 ([PP]) Let ¢ : X4 — R (or Xf — R) be Hélder continuous.

Then ¥ has a unique equilibrium state.

This equilibrium state is guaranteed to be ergodic and fully supported. And
when looking at Holder continuous functions, equilibrium states are linked to the

equivalence classes for cohomology of functions, by the following result.

Proposition 1.6 ([PP]) Suppose ¥1,92 : Xa — R (or X1 — R) are Hélder
continuous. Then if Yy and 1 are cohomologous, or more generally if 1, — o is
cohomologous to a constant function, then ¥, and 1y have the same equilibrium
state. Conversely, if 1 and 1o have the same equilibrium state then 1, — s must

be cohomologous to a constant function.

Suppose 4 is the equilibrium state for a function 9 on X}; then the map
o™ : X, — X also has p as an equilibrium state: it is the equilibrium state for
the function 4™ (where ¢”(z) := Yy ¥(o'z) as usual). Indeed, we could define
a new subshift of finite type whose symbols are words of length n in X7, ie. a

point T € X corresponds to the point

(3301131 e Tp—1 s InTngl .- Tan—1 5, TapTon41 -+ T3n-1 » )

in the new subshift. (Clearly the assumption that A is aperiodic is important
here.) Functions and measures carry across from one space to the other, and the

map o™ on X} corresponds to the shift map on the new space. p is then an
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equilibrium state for this subshift.

We also look at equilibrium states for expanding maps and hyperbolic diffeo-
morphisms. By transferring the results of Theorem 1.4 for the related subshifts
of finite type, it can be shown that Holder continuous functions on these maps
also have unique equilibrium states. Indeed, suppose v, is a Holder continuous
function defined on a repeller J for some expanding map. Then by using the cod-
ing map x we can pull this function back to a Hélder continuous function ¥ x on
X1, Suppose p is the unique equilibrium state for )x. Then we get a measure v
on J which is the pushforward of i by the coding map. As we might have hoped,
the measure v turns out to be the unique equilibrium state for ;. Equilibrium
states for hyperbolic diffeomorphisms are related to those for two-sided subshifts

in the same way.

The definitions of pressure and equilibrium states still make sense if, instead
of a transformation T': X — X, we have a flow ¢, : X — X. Again, in the
cases we are interested in (hyperbolic flows, and suspended flows on subshifts of
finite type), if ¢ : X — X is a Holder continuous function, then it has a unique
equilibrium state. And the equilibrium states for hyperbolic flows are related to
those for suspended flows via the map p: X} — A.

We can also relate equilibrium states for suspended flows to those for the
underlying subshifts of finite type. First we look at the difference between a one-
sided subshift (X7}, o) and the corresponding two-sided subshift (X4, o). We can

+-A4 Xq,
7 —

which ‘forgets’ the negative co-ordinates in X,. (That is, (nyx); = z; for i >
0.) Then for any o-invariant measure g on X4, we can define the pushforward

measure u+ on X} by
pH(S) = p (n7H(S)) -
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Now, suppose we have a Hélder continuous function ¥ : X4 — R, with equi-
librium state p. We know from Theorem 1.2 that we can find a cohomologous
function 1™ such that ¢ (z) = ¢ (y) whenever z; = y; for all i > 0. And from
Proposition 1.6, % also has equilibrium state x. But 1 can also be regarded
as a function on X}, and the corresponding equilibrium state on X7} turns out
to be pt, defined as above.

Now, suppose that we have a suspended flow (X7, 0}); we want to compare
its equilibrium states to those for (X 4, o). Note that for any (Holder) continuous
function g : X} — R, there is a natural way of producing a continuous function

on X 4, which we will call Zg, given by

r(x)
Zg(z) = /0 g(z, s)ds.

If g (and also r) is Holder continuous, then so is Zg. Two Hélder continuous func-
tions g1, g2 on X, are cohomologous if and only if Z7g, and Z g are cohomologous
on X4 ([BS1]). (For a general flow ¢, : X — X we say that functions g;, g, on

X are cohomologous if there exists some bounded function ¢ on X such that

ai(z) — go(z) = 11_13%@#2

for every z € X.)

Any invariant probability measure for (X7, o]) must be of the form (v x
1)/([rdv), where | is Lebesgue measure on R and v is an invariant probability
measure for (X, 0). In particular, the equilibrium state for a function ¥ : X% —

R can be written in this form, and v turns out to be an equilibrium state for

(Xa,0):

Proposition 1.7 ([Sha2]) If ¢ : X} — R is Holder continuous, then its equi-

librium state is
x

[rady
where p is the measure on X, which is the equilibrium state for the function

~P(p)r + I3,
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1.5 Dimension and conformality

We work with the Hausdorff dimension for subsets of a metric space (X, d). That
is, for a set S C X we look at the ways of covering S by a finite or countable
collection of sets; say we let Cover(S, ¢) be the set of all finite or countable covers
of S by open sets each with diameter at most e. Then for any non-negative real
number o we define

my(S,a) =lim  inf (Z (diam U)o‘) :

e—0 U eCover(S,e) Ueul

The Hausdorff dimension of S is then defined to be the unique number dimg S > 0

such that

my(S,a) =00 forall @ < dimgy S,

mu(S,a) =0 for all @ > dimg S.

(In all our examples the Hausdorff dimension will be finite, but there are some
metric spaces for which it can be infinite.)

An equivalent definition is to take instead Cover (.S, €) to be the set of all finite
or countable covers of S by closed sets (or even by general sets) of diameter at
most €. This does not change my(S, @). Alternatively, we can take Cover(S, €)
to be the set of all finite or countable covers of .S by balls of diameter at most «;
in this case the values of my (S5, o) may change but we still get the same answer

for diamg S.
We will need to make use of the following properties of Hausdorff dimension
(see, for example, [Fal], [Pes]):
(a) If Sy C S, then dimy S < dimy S,.
(b) If {S; : i € I} is a finite or countable collection of sets, then dimpg J;c; 5 =

sup;c; dimg S;.
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(c) Suppose we have metric spaces (X, dx) and (Y,dy) with S € X and T C Y.

If F': S — T is a Lipschitz continuous surjection, then dimpgy S > dimpy 7.

(d) If F: S — T is such that for any z,z; € S we have dx(F(z1), F(z2)) >
c(dy(z1, 2))' T, then dimgyg T > (1 +¢)~* dimpy S.

If we look instead at

(S o) — i f
mp(S, ) H?fél P uec(lﬁel«(s,e)(

>o)

vel

then we can define the upper box dimension dimg$ = inf {a > 0 : (S, @) = 0}.
(And similarly by replacing the limsup with a liminf we get the lower box dimen-
sion dimgzS.) We always have dimy S < dimgS < dimpS. While we will not
look at box dimensions in their own right, they are useful for one further property

of Hausdorff dimension:
(e) If dimy T = dimpT then dimy(S x T) = dimy S + dimy T

(In fact for any S and T we have dimy S + dimy T < dimg (S x T) < dimy S +
TmsT)

There is also a concept of Hausdorff dimension for measures. If 1z is a Borel

probability measure on X, we define

dimg p = inf {dimgy Z : (Z) = 1}.

When looking at subshifts of finite type, the simple metric makes it rela-
tively easy to get some results about the dimensions of subsets. However these
results cannot be readily transferred to general expanding maps, hyperbolic dif-
feomorphisms or hyperbolic flows. (The coding map certainly does not preserve
dimension.) In order to be able to make use of the symbolic dynamics, we will
have to require that our dynamical systems are conformal. We also need better

than C* differentiability:
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e Let J be a repeller for a C*** map f : M — M. Then we say f is conformal

on J if there is a continuous function a : J — R* such that

(df)o = a(z) L,
where I, : ToM — Ty M is an isometry. The function a must then be
Holder continuous and a(z) > 1 for all .
The set J is then a conformal repeller.
o Let f: M — M be a C diffeomorphism and A € M a subset for

which f|a is a hyperbolic diffeomorphism. Then we say that f: A — Ais

conformal if there exist continuous functions a(®, a®®) : A — R* such that
(df)zlpe = ™ (@) 12, (df)eliy = o (2) I,

for isometries Iy : By — E},, I} : Ej — Ej,. The functions at, o) are
both Hélder continuous, and we have a((z) > 1, 0 < a(z) < 1 for all

€A

e Let f: M — M be aC? flowand A C M a subset for which f|, is a
hyperbolic flow. Then we say that f : A — A is conformal if there exist

continuous functions a™, ¢ : A x R — Rt such that

(dde)alpy = 0 (x,0) Ity (dr)s

m = al)(z,1) Lo
for isometries Iy, : By — Eg , I}, : By — E3 . Now if we let
3} 0
o® = 9 losa®(p. 1 © = 9 loea® (st
v 57 108 @ (z,1) N U 5; 08 @ (z,t) =

then v and v are Holder continuous, and v (z) > 0, v (z) < 0 for

all z € A.

Examples:
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(i) If M is 1-dimensional then any repeller for a C**® map on M is necessar-
ily conformal. Similarly, a hyperbolic diffeomorphism on a 2-dimensional

manuifold is conformal, and a hyperbolic flow on a 3-dimensional manifold

is conformal.

(if) As a particular case of (i), the geodesic flow on (the unit tangent bundle

of} a 2-dimensional negatively—curved manifold is conformal.

(iii) For the geodesic flow on a manifold N with dim N > 3, the conformality

condition is equivalent to N having constant curvature ([Kan)).

One reason why the conformality condition is particularly important for hy-

perbolic diffeomorphisms and flows is the following;:

Proposition 1.8 ([Pes], [PS] after [Has]) (a) Suppose f : A — A is a con-
Sformal hyperbolic diffeomorphism. Then for any rectangle R; in the Markov
partition for f, and any z € int R;, the product structure R; — W () x

W3, (2) is a bi-Lipschitz homeomorphism.

(b) Suppose ¢ : A — A is a conformal hyperbolic flow. Then if T; is one of
the Markov sections used to construct the symbolic dynamics for ¢, and
we take any z € intT;, the product structure Tj; — Wi (2) x Wi (2) is a

bi-Lipschitz homeomorphism.

This will allow us to relate the dimension of subsets of A to dimensions of sub-
sets of stable and unstable manifolds, using properties (¢) and (e) of Hausdorff

dimension.

Other techniques for dealing with conformal maps and flows are explained in

section 2.2.

Note that subshifts of finite type can be thought of as satisfying a conformal-

like condition, with the function a being constant.
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1.6 Periodic orbits and homology

In this section we describe some preliminaries needed for chapter 3, where we
look at the periodic orbits of a transitive Anosov flow ¢, : M — M. A reference
for everything in this section is the survey [Sha2).

A basic result is that an Anosov flow has an infinite but countable number
of periodic orbits. (Indeed this follows from the existence of a symbolic model
for the flow as described in section 1.3.) Furthermore, for any 7' > 0 there are
only finitely many periodic orbits with period at most 7". So it makes sense to
‘count’ periodic orbits: for example, if we write {(-y) to mean the least period of

the periodic orbit v, we can define a function

m(T)=#{v: l(v) £T}.

We might then ask how this function grows with 7". A famous result ([PP]) for
weak-mixing flows is that
ehT

W(T)Nh—jq asT—>oo,

where h is the topological entropy of the flow.

A variation on this theme is to count those periodic orbits which satisfy certain
conditions. One condition that has been studied has to do with the homology
of the manifold M. A periodic orbit «y for the flow can be regarded as simply
being a closed curve in M, and as such we can look at its homology class, which
we write as [y] € Hi(M,Z). We then have ‘counting’ results for the number of
periodic orbits in a fixed homology class. Given a € Hy(M,Z) we define

m(T,a) =#{y: {v) £T, ] =}.

To be able to state a result about the behaviour of 7(T', o) we need to understand
the structure of the homology group H;(M,Z). (We will follow the description
in [Sha2].) We have that H,(M,Z) is isomorphic to Z* @ Tor, where Tor is a
finite abelian group (the ‘torsion subgroup’) and b is the first Betti number of M.
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The behaviour of 7(T, «) is determined by the torsion-free part of ¢, which can
be represented as a point in Z° by making use of the isomorphism. In fact for
our purposes we will generally ignore the torsion component of H;(M,Z), and
(with a slight abuse of notation) we will also use [y] to denote the point in Z°
which represents the torsion-free part of the homology class of v, after fixing a
choice of the isomorphism. We will assume that & is strictly positive, otherwise
this becomes trivial.

Since Z’ is a lattice inside R®, we may also think of [y] as being a point
in R%. Indeed we can choose to look at the real homology group Hy(M,R) =
Hi(M,Z) ® R, which is isomorphic to R®. By fixing an isomorphism we are
effectively choosing a basis for H; (M, R).

We now have the following result of Sharp, which generalises the work of

Katsuda and Sunada in [KS]:

Theorem 1.9 ([Shal)) Suppose that each homology class in Hi(M,Z) contains
at least one periodic orbit. Then there exist positive constants C and h*, and a

vector £ € R®, such that for all a € H,(M,Z),

*

h
(T, ) ~ Ce”(E’“’)—j%ﬁ-ﬁ as T — o0,

where o/ is the torsion-free part of a.

(Here {,) is the usual inner product on R®.) If every homology class contains a
periodic orbit then we say that the flow is homologically full. Not every transitive
Anosov flow has this property (but it does hold in some iinportant cases, as we
will explain in chapter 3). Indeed, if the flow has a global cross-section ([Sch])
then the homology classes of periodic orbits are restricted to an open half-space

in R® which does not include the origin, and there are only a finite number of

periodic orbits in any homology class.




1.7 Main results of this thesis

What follows is a brief summary. The definitions and results here will all be

explained again in the main sections of the thesis.

In chapter 2 our starting point is the paper [FS] by Fan and Schmeling. They
look at the behaviour of the ergodic sums ¢g*(z), where g is a Holder continuous
function defined on a (one-sided) subshift of finite type o : X1 — X¥. The aim
is to describe the sets of points z € X} for which the sums g*(z) have a specified
behaviour as n — oo. For example, we can start by looking at the sets of points

which have a particular ergodic average:

Aveyt(g,a) == {z € X} : 1g"(z) = a asn— oo}.

The ergodic theorem tells us that this set has full y—measure, for any ergodic
probability measure p such that [ gdu = a.

Fan and Schmeling ask whether it is possible to find points for which *g"(z)
converges to o at a particular rate. For simplicity we set o = 0. The basic result

in [F'S] concerns the set of points with bounded sums:
dexj(g) = {z € X} : ¢"(z) is bounded}.

Clearly Bddy+(g) C Avex+(g,0). But while Bddy+(g) might appear to be a
much smaller set (if ¢ is not cohomologous to a constant then the set has zero
measure with respect to any equilibrium state), Fan and Schmeling show that
it has the same Hausdorff dimension as the whole of Avey (g,0), provided that

there exists an equilibrium state g such that f gdu = 0:

Theorem Al (Fan, Schmeling [FS)]) Let g : X} — R be Holder continuous,
and suppose there exists an equiltbrium state p such that [ gdu =0. Then

dimy Bddx+(g) = dimy Avey+(g,0).
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Results from [BS2| tell us that the existence of u is not too strong a condition:
if g is not cohomologous to a constant, then the possible values of [ gdu (taken
over all equilibrium states u) are an open interval (@, @). Thus the two sets are
shown to have the same dimension provided that this interval contains zero. On
the other hand if zero lies outside the closed interval [, @] then both sets are
empty. So it is only when zero is an endpoint of the interval that we cannot say
the dimensions are equal.

Fan and Schmeling use Theorem Al to find other subsets of dimp Avex+ (9,0)

which have the same dimension:

Theorem A2 (Fan, Schmeling [FS]) Let g : X} — R be a Holder continuous
function not cohomologous to a constant, and suppose there exists an equilibrium

state p such that [ gdu=0. Then for anya € R and 0 < B < 1,

dim g {7: e Xt nanolo gn(g)) = a} = dimy Avexj(g,O).
The aim of chapter 2 is to extend the results of Theorems Al and A2. Our

first new result is a stronger version of Theorem A2:

Theorem A3 Let g : X1 — R be a Hélder continuous function not cohomologous
to a constant, and suppose there exists an equilibrium state p such that [ gdp = 0.
Now let r : X} — R be a strictly positive Hélder continuous function, and let
F:R* — R be a continuous function with the property that sup,¢jo ) |[F(t+7) —
F(t)] — 0 as t — oco. Then we have

dimy {z € X} : g"(z) = F(r"(z)) + O(1) as n — oo} = dimpy Avey+(g,0).

We can recover Theorem A2 from this by taking F(t) = at” and r = 1. But our
version allows for more general functions . For example we can take F' to be any
differentiable function for which F'(t) — 0 as t — co. We have also introduced
a new function r which is helpful in adapting this theorem to work for flows.

But the main improvement over Theorem A2 is that we are requiring the error
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term g™(z) — F(r™(z)) to be bounded, whereas in Theorem A2 the points satisfy
the much weaker condition that g"(z) ~ F(r*(z)). (Though in light of Theorem
A1l it should perhaps not be too surprising that we can ask for a bounded error
term.)

After this we show how the methods used for subshifts of finite type can be
adapted to give analogues of Theorems Al and A3 for other dynamical systems.
We state here the most general versions of our results, in which we look at the
ergodic sums of an R%-valued Hélder continuous function g. (Multi-dimensional
results like these were proved for subshifts of finite type in [I'S].) For a general
map 7" : X — X, with Holder continuous functions g : X — R¥and 7 : X — R¥,

and a continuous function F : R* — R, we define

Avex(g,a) = {;L e X: %g"(m) — o asn — oo};
Bddx(g) = {z € X : g"(z) is bounded};
Lx(g,F,r)={z e X :g%z)=F("(z))+ O(1)}.

As in Theorem A3 we need some control over F: we require sup,.¢p 1 IFE+7)—
F(t)|| — 0 as t — co. (Here we use | - || to mean the usual Euclidean norm on
R%)

We then have results for conformal expanding maps, and conformal hyperbolic

diffeomorphisms:

Theorem A4 Let J be a conformal repeller for a C*** map f : M — M,
and let g : J — R? be a Hélder continuous function whose components are

cohomologously independent. Suppose there exists an equilibrium state v on J

such that [,gdv =0. Then
dimy Bdd,(g) = dimy L;(g, F,r) = dimy Ave,(g,0),

whenever F, r are as above.

Theorem A5 Let f: A — A be a conformal hyperbolic diffeornorphism, and let
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g : A — R? be a Holder continuous function whose components are cohomolo-
gously independent. Suppose there exists an equilibrium state v on A such that

[igdv=0. Then
dimy Bdda(g) = dimg La(g, F,7) = dimgy Avey(g, 0),

whenever F, r are as above.

Finally, we can get similar results for conformal hyperbolic flows ¢, : A — A,
if instead of the ergodic sum g"(z) we look at the integral fot g (¢-x) dr. We can
define

1

¢
Aver(g, ) := {mEA:;/ g (¢rz) dr — « ast—+oo.};
0

£
Bdda(g) == {3: €A / g (¢rx) dr is bounded} ;
0
i
La(g, F) := {3: EA: / g (¢rz) dr =F(t) + O(l)} .
0
We will show the following:

Theorem A6 Let ¢, : A — A be a conformal hyperbolic flow, and let g : A — R¢
be a Holder continuous function whose components are cohomologously indepen-
dent. Suppose there exists an equilibrium state v on A such that A8dv = 0.

Then
diIIlH deA(g) = dlmH LA(g, F) = dlIIlH AveA(g, 0),

whenever F satisfies the usual condition.

In the rather shorter chapter 3 we look at a problem which was originally
suggested to Richard Sharp by Frangois Ledrappier, concerning the periodic orbits
of a transitive Anosov flow ¢, : M — M.

Given a periodic orbit v, we look at its homology class [y] € H{(M,Z). As
explained in section 1.6, if we ignore the torsion part of H,(M,Z) then we can

think of [y] as being represented by a point in Z°. If this point is non-zero we
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can consider its projection onto the (Euclidean) unit sphere in R® (using the
projection map pg : R®\ {0} — S%! defined by pg(v) = v/||v|l2, where || - |2 is
the usual Euclidean norm). This gives us a point #(v) = ps([y]) € S°~! which
represents the ‘direction’ of the homology class of .

Now given T > 0 we can define a measure v on S°~! by

1
YT =) >, o

IM<T[7]#0
where dy,) is the Dirac measure at 6(-y).
Our main result in chapter 3 is that the measures v have a (weak™) limit as
T — oo, and we are are able to describe this imit vg,.
We find that the nature of v, depends on the asymptotic cycle @y associated
to the measure of maximal entropy. (We define this object properly in chapter 3;

for now it is sufficient to know that it can be represented by a point in R%.)

Theorem B1 The measures vy have a weak™ limit vy, as T — oo:
(1) If g # 0 then v, is the Dirac measure at ps(®g).

(i) If ®o = O then voo is fully supported on S*. Indeed there is a norm || - ||
on R® with the property that for any open set D C SP~' we have

Vol(ps' (D) N Byy)
Vol(By )

Voo D) =

where By is the unit ball for the norm || - ||.

Part (ii) of this theorem follows from a more general result. Suppose we are

given a set A C Z®. Then we can look at

w(T, A) == # {7y l(v) S T,[v] € A}.

We can also define a quantity

. H#Hlae Ao <}
W)= Flacm ol <)’
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if this limit exists. This is the density of the set A with respect to the norm || - ||.

We find that these are linked in the following way:

Theorem B2 Suppose &, = 0. Then if A C Z° is a set for which the density

dy-i(A) exists, we have
lim m(T, 4)
P n(T)

= dy (A).
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Chapter 2

The pointwise behaviour of

ergodic sums

Suppose we have a transformation 7' : X — X and a Holder continuous function
g : X — R. We then have the sums

n—1

g"(z) =Y g(T'z).

i=0
We are interested in the sets of points € X for which ¢"(z) has a specified

behaviour as n — oo.

The simplest result of this type comes from the ergodic theorem: suppose we
define

Avex(g,a) ={z € X : 2g*(z) > asn — co}.

Then for any ergodic measure p on X, the set Avex(g,E,g) has full measure.
(Here E, ¢ is the mean value of g with respect to the measure p, i.e. equal to
[ gdu when p is a probability measure.)

But we will look at subsets of Avex(g, ) on which the sums ¢"(z) are more
tightly controlled. In the case of (one-sided) subshifts of finite type, results about

such subsets were obtained by Fan and Schmeling in [FS]. In particular, they
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prove the existence of points z € X} such that
gn(w) - ’n,lEug ~ F('n),

for various functions F. Indeed, for suitable ' they show that the Hausdorff
dimension of the set of points with this property is actually equal to the dimension
of the set Avex(g,E,g).

Our aim is show that similar results hold if, instead of a subshift of finite
type, we have a conformal expanding map or hyperbolic diffeomorphism. We do
this by developing the methods used in [F'S]. In fact we will prove that we can
actually ask for

g (z) —nE,g = F(n) + O(1),

provided that F' is sufficiently well-behaved, and this set of points still has the

same dimension.

We also have analogous results for flows ¢, : X — X, if in place of g"(z) we

look at fot g (¢-2) dr. We will be able to find points such that

/Otg (o) dr — tB,g = F(£) + O(L).

Note that if g is cohomologous to a constant function then we do not get any
interesting behaviour of ergodic sums: if g =h o7 — h + ¢ for a constant ¢ then
g" = hoT™—h+nc, and so for every point = we have that ¢"(z) — nc is bounded
by 2||h|jco- The ergodic theorem then implies that E,g = ¢ for every ergodic g,

and the only behaviour we will get is
g*(z) —nE,.g = O(1).

So we will always assume that g is not cohomologous to a constant. In this case
Theorem 1.1 guarantees that there are some points with non-trivial behaviour:

we can at least find a periodic point z (with period m, say) such that

gm(:c) - mE}lg # O:
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which implies that ¢"(z) grows at a linear rate. We also have the following (see

[PP):

Theorem 2.1 (Central Limit Theorem) Let o : X} — X be a subshift of
finite type, with g : X} — R a Holder continuous function. Suppose that u is an
equilibrium state for some Hélder continuous function 1 on X% . Then if g is not

cohomologous to a constant, we have

;L({J::M\;—HLM<t}>—>N(t) as 1= o0,

where N is a normal distribution with mean zero and variance depending on g

and .

This will be an important tool for producing points whose behaviour is controlled.
(Note that while we have stated the result for one-sided subshifts, it can also be
immediately transferred to the other maps we are interested in.)

There is also a Central Limit Theorem for flows ([Rat]), but we will not need

to use this explicitly.

2.1 Results for subshifts of finite type

We start by looking at a one-sided subshift of finite type ¢ : X§ — X7}. Let
M(XF) be the set of invariant probability measures on X%. This is a compact
convex set in the weak™® topology (see [Wal]). Thus for any Holder continuous

function g on X4 which is not cohomologous to a constant, the set

{/gdu pE M(XZ)}

is a closed interval [, @. { [ gdu:pc M(X}) tologous to a constant then this
set is just a single point. When ¢ is not cohomologous to a constant, Theorem
1.1 guarantees that o < @.)

Now, by the definition of Hausdorff dimension for a measure, we have that

if {gdu = a for some p € M(X}) then dimg Avext(g,a) = dimyp. The
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following theorem shows that if a lies in the open interval («, @), there actually

exists a measure p for which we have equality:
Theorem 2.2 ([BS2])
1. If a & [, 0] then Avey+(g,a) = @.

2. Ifa € (a,@) then Avexj(g,a) #+ &, and

dimpy Aver (g, ) = sup {dimH wip € M(XY) and fgd,u = a:} .

Furthermore the supremum is attained for o measure p which is an equilib-

rium state for some Holder continuous function.

Conversely, suppose that u is an equilibrium state for a Holder continuous
function, and write o = [ g du. Then it follows from the Central Limit Theorem
that that there exists a periodic point «* with period p* such that ¢?* (u*) > pta.
(We will show how to construct such a point in the proof of Theorem 2.18.} By
considering the invariant probability measure that is supported on this periodic
orbit, we have that ]—)lIg”Jr (ut) € (@, @], and so @ < @. Similarly we can show that
a> .

Thus « € (a, @) if and only if there exists an equilibrium state p such that

S gdp = o

2.1.1 Points with bounded sums

We define
Bddy(g) = {z € X} : g"(z) is bounded} .
Since Bddx+(g) € Ave x1(9, 0), we know from Theorem 2.2 that if 0 & [, @] then
Bdd x5 (g) is empty.
On the other hand, the basic result in Fan and Schmeling’s paper [FS] tells

us that if 0 € (@, @) then Bddy+(g) is non-empty, and indeed we have a lower

bound for the dimension:

39




Theorem 2.3 (Fan, Schmeling [FS]) Let g : X1 — R be Holder continuous,
and let u be an equilibrium state for some Hélder continuous function. Suppose
that [ gdp =0. Then

dim dexj (g) > dimpy p.

(Note that this still holds if g is cohomologous to a constant — then the condition
J g dp = 0 implies that the constant is zero, which in turn implies that Bdd x1(9)
is the whole of X7 .)

In particular we can apply Theorem 2.3 to the measure p for which the supre-
mum is attained in Theorem 2.2 (for o = 0). This gives dimy Bddy(g) >

dimpg Avey+(g,0). But Bddy+(g) € Avexz(g,O) and so we have:
Theorem 2.4 ([F'S]) Suppose that 0 € (o, @), then
dimy Bddx(g) = dimg Avey+ (9,0).

(Fan and Schmeling prove this directly from their main result without quoting
Theorem 2.2.)

Thus we have a seemingly ‘small’ subset of Avexj (g9,0) which nevertheless
has the same dimension as the whole of Avey+(g,0). We will prove many more

results of this type.

2.1.2 The method of adding blocks

Fan and Schmeling use their result about points with bounded ergodic sums to

prove the following:

Theorem 2.5 (Fan, Schmeling [F'S]) Let g : X} — R be a Holder continuous
Junction not cohomologous to a constant, and let p be an equilibrium state for
some Hélder continuous function. Suppose that [ gdi = 0. Then for any a € R
and 0 < 3 <1,

dimg {'E € XI : Hm 9°(z)

n—oo 71

= a} > dimg p.
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Their method of proof is something that we will develop and generalise to
give us our results.

The strategy is to start with a set S € X ¥ on which we have good control over
the ergodic sums. Then for any © € S we aim to construct a point &(z) € X ¥
which has the desired property, i.e. in the theorem above we want g"(£(z)) ~ an®
as n. — oo. This process produces a new set S’ (the image of S under &) and we
aim to relate the dimension of S’ to the dimension of the original set S.

In [FS] the proof takes S = Sk where
Sk ={z e X} :|g"(z)] < K Vn}.

Using Theorem 2.3, we know that for any ¢ > 0 we can find such a set Sy with
dimpy Sk > dimg p — €. The construction of the function £ is done in such a
way that we have bounds on d(§(z),&(y)) in terms of d(z,y) (for general points
z,y € Sk) which are good enough to show that dimension of S}, is equal to the

dimension of Sy.

The construction of £(z) from z is the main part of the proof. It is based on
a procedure which Fan and Schmeling refer to as “inserting blocks” into z. As
the name suggests, this works as follows: given our point z, we use the definition

of X} as a subset of {1,2,..., &k} to think of 2 as the sequence of symbols
ToT1 T2 T3 . ...
Then, “inserting a block B (of length #) behind z;” means replacing z by
TOTL .- Tic1 Tibo b1 oo bpy Tig1 Tiga -,
which for simplicity we will write in an abbreviated form as
THTL . . Tijm1 Ty BXypy Tiga ...

In order to produce the point £(z), this process is done repeatedly, insert-

ing blocks at various different positions in z. (We never insert a block inside
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a previously-inserted block.) In the construction used to prove Theorem 2.5 in
[F'S], the blocks that are inserted, and the positions they are inserted at, do not
depend on the point z. (The blocks only depend on the symbols which come
immediately before and after it: this is necessary to ensure that the blocks are

admissible.) But we will want more freedom than this in our constructions.

We now define some notation for a general form of the block-adding construc-
tion. Fach point = € S is written as a sequence of symbols g 21 x2 . . .. If a block
is to be inserted behind z;, then we will call this block B; and say that it has
length #;. If no block is to be inserted behind z; then we will define £; = 0 and B;
to be an empty sequence. So if 4; < ig < i3 < --- are the positions where blocks

are to be inserted, the point £(2) has the form
oy ... Ty Bi1 Li41 --- Tip Bi2 Ligt1l =« » -

The blocks B; and their lengths £; are allowed to depend on the point z. (We
will write B;(z), #;(z) when necessary to compare different points.) We will say
that a function £ : S — S’ defined in this way is a ‘block-adding process’.

It sometimes helps to say that the symbol z; is ‘shifted’ to the new position

i, where

I:'I.iLZE]

ji<i

Again we can write #'(z) if necessary to emphasise that this depends on the point
T.

In order to ensure that we have some control over d(£(x), £(y)), we will require

our block-adding processes to satisfy certain conditions.

Definition 2.6 We say that the block-adding process € : S — S' is defined on
cylinders if, whenever x and y are points in S with z, = vy, for all k < i, we

have

(i) Li(x) = Li(y);
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(i) If in addition z;y1 = yir1, then the blocks B;(z) and B;(y) are identical.

In particular, the decision of whether to add a block behind z; depends only on
the symbols zy, 1, ..., ;.
These conditions are sufficient to guarantee certain simple properties of the

function &:

Proposition 2.7 If the block-adding process £ : S — S’ is defined on cylinders
then:

(1) € is injective, so that there is a well-defined ‘block-removing function’ €74 :

S'— 8.
(i1) & is Lipschitz continuous.

(i5) If C € Cyl(i + 1) 4s a cylinder with C NS # &, then there is a unique ¢
and C' € Cyl(¢' + 1) such that
(a) If t € CN S then &(z) € C';
(b) If x € CN S then the symbol x; is shifted to position i’ in £(z).
() If Q € Cyl(§ + 1) is a cylinder with QN S’ # &, then there is a unique i
and Q € Cyl(i + 1) such that
(a) If€(z) e QNS thenz € Q;

(b) If £(x) € QNS and the symbols x;, x;y; are shifted to positions 7,
(1 4+ 1) respectively, then ¢ < j < (i+1)".

Proof: We first observe that if  and y are two points in S with x; = y;, for all
k < 7 then the symbols z; and y; are shifted to the same positions (in £(z) and
&(y) respectively) for any k < 54 1. This is an easy induction on k, with the case
E = 0 being trivial and the inductive step being immediate from part (i) of the

definition. Each of the properties of £ follows from this:
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(i) : If z # y then we can find i such that z;, = yi for all & < 2 but g1 # Yt1-
But then the symbols z;,; and ;41 are shifted to the same positions so we must
have £(z) # £(y).

(iii) : This follows immediately from the observation above plus part (b) of
the definition.

(i) : This now follows from (iii) — in fact we see that d(&(z), &(y)) < d(z,y).

(iv) : Pick any point y with £(y) € @ NS". Then choose the largest ¢ such
that #/(y) < j. There is then a unique cylinder Q € Cyl(i + 1) with y € Q. We
want to show that if x is any other point with £(z) € @ N.S’, we have z € Q.
Choose the smallest & such that zp # yr. Then from the observation above
we know that the symbols z; are y, shifted to the same position &', and since
&(z),&(y) € Q € Cyl(j + 1) we must have &' > 5. But then k¥’ > ¢ and so k > 1.
So we have shown that z; = y, for all [ < 4, ie z € @ One further use of the

original observation shows that we also have property (b). a

Thus, both the block-adding function £ and the block-removing function &1

can be regarded as acting on cylinders.

Finally in this section we explain why the procedure of adding blocks produces
points for which we have some information about the sums ¢g"(£(z)).

For a Hélder continuous function g : X1 — R, we can define

vart g = sup {|g(z) — g()| : & = v; Vi < n}.

Then, by the Holder continuity of g, the sequence {vartg},>; is bounded by a

geometric progression, so we can define

V(g) = Z var) g.

n=0
And this constant has the property that for any n > 1, if we have two points

z,y € X for which z; = y; for all i < n, then
|9A(37) - gk(y)| <V(g) forall k <n.
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Now, suppose we have a point z € X} and insert a single block B behind
Z;-1, producing a new point y. Say that B consists of the first £ symbols of a

point b € X+. Then we know
e g"(x) = V(g) < g™(y) < g"(z) + V(g) forn <3
o g'(z)+g" " (b) —2V(g) < ¢"(y) < g'(2) + 9" (b) +2V(g) fori<n<i+d
o g4z} +g'(b) — 2V (g) < g™(y) < g H(z) + g'(b) + 2V (g) forn >i+L
In particular, if x € Sx then
o —K—-V(g)<g"(y) K K+V(g) forn<ig
o '(0) — K —2V(g) < g™(y) < ¢*(b) + K +2V(g) forn>i+E.

So if b was chosen so that gt(h) > K + 2V(g), we have produced a point such

that all the partial sums after the inserted block are bounded away from zero.
Similar calculations show that if we have a block-adding procedure that inserts

blocks in infinitely many places in z, we can get bounds on the rate of growth of

g™(&(z)) as n — oo.

2.1.3 Points with sums which grow at a specified rate

‘We now prove a stronger version of Theorem 2.5.

Theorem 2.8 Let g: X1 — R be a Holder continuous function not cohomolo-
gous to a constant, and let p be an equilibrium state for some Hélder continuous
function on X, with [gdu = 0. Now let r : X — R* be a strictly positive
Holder continuous function, and let F' : RY — R be a continuous function with

the property that sup,cpq) |F(t +7) — F(t)| — 0 as t — co. Then we have

dimy {z € XJ : ¢*(z) = F(r"(z)) + O(1) as n — oo} > dimy p.
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Note that the main improvement over Theorem 2.5 is that we are requiring the
error term to be bounded. We have also introduced a new variable 7: this would
arise naturally if we were dealing with flows. Theorem 2.5 can be deduced by
taking 7 to be a constant function.

The conditions on F' are clearly stronger than necessary (for example we could
add any bounded function to F without changing the set we are looking at}, but
still weak enough to allow F' to be any differentiable function whose derivative
tends to zero; this covers most of the functions we might normally be interested
in, including all of the functions studied in [F'S]. We can even take F' to be a
slowly oscillating function such as F(¢) = (logt)sin(v/t). On the other hand, it is
certainly necessary to have better control on F' than merely taking F(t) = oft),
because if for example we take F'(t) = /tsint, and r is small, then there can be

no point = with g"(z) = F(r*(z)) + O(1).

Proof of Theorem 2.8: First of all, because r is continuous and strictly positive,
we can set Tpin = infr and 7., = supr. For most of the proof, the bounds
0 < Tmin <1 < Tyae Will be the only properties of r that we need to use.

As in the proof of Theorem 2.5, we consider sets
Sk ={ze X} :|g"(x)] < K Vn}.

We have Bdd x+ (9) = Uken Sk So by Theorem 2.3, given any € > 0 we can find
a K such that

dimH SK Z dime, — €.

We aim to construct a block-adding process such that for each point z €
Sk, the ergodic sums g"(&(x)) have the desired behaviour. The set Sy =
{&(z) : © € Sk} will be shown to have the same dimension as Sx. This implies
that the dimension of the set of all points with the required property is at least
dimpy it — ¢, and so the theorem follows because ¢ was arbitrary.

We first specify which blocks are to be used in the construction. Using the

aperiodicity of the subshift we can find N such that AN*! > 0, i.e. for any two
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symbols s,t € {1,2,...,k} we can find at least one block W(s,t) of length N
such that s W (s, t)¢ is an admissible sequence of symbols. We fix some choice of
W (s, t) for each pair s, t. Now let K be a positive constant, chosen to be greater
than 10(V(g) + M, + K + 1), where M, = Sup,e x4+ [9(z)|- Then, because g is not
cohomologous to a constant, we can find points u*,u~ € X} and an integer £,

such that

g™ (u") = Kp+ V(g) +2NM,;
g (u") < —Kp ~ V(g) — 2NM,.

(This follows from the Central Limit Theorem.) Now for s,t € {1,2,...,k} we
define the block B*(s,t) to have the form

Ws,ud)ud uf ... uz,';_l W(UZ.—D t).

Thus B*(s,t) is a block of length £ = ¢, + 2N for which s B* (s, t) ¢ is admissible,
and if = is any point in the cylinder [B* (s, )], then

g‘(z) > Kp.
Similarly we define the block B~ (s, t} as
Ws,ug)ug uy .. ug_y Wlug _y,t),
and for any z € [B~(s,t)] we have
g‘(z) < —Ks.

These 2k* blocks will be the only blocks used in the construction (though for
convenience we will sometimes also speak about ‘adding’ blocks of zero length,
when no block is needed). If we say that a non-trivial block is inserted after z;,
that block must be either B*(z;, z;41) or B™(x;, 7;1). Note that these blocks all
have the same length £,
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Now we diverge from the proof of Theorem 2.5 in [F'S]. Owr choice of places
to insert the blocks will have an inductive definition, and these places will depend
on the point z (but in such a way that the process is defined on cylinders as per
definition 2.6).

Given our point z € Sk we construct a sequence (z());»_1, starting with

(™Y = z. This sequence will take the following form:

zY s ToT1T22X3Ty ...

0)

@ js o Bori oz Ty L\

SC(l) is Ty B() Iy Bl ToX3 Ty ...
’E(2) is Ty B() Ty Bl Ty Bg L3y ...

and so on,

where (B;);>0 is a sequence of blocks depending on x; however, most of these
blocks will have zero length. So an alternative description is that z¥) is defined

by either

e 29 is the same as zU7~Y) except for a block (of length £) inserted behind

wfﬂ ﬁl)’ where j' is the position that the symbol z; has been shifted to in

x(j"‘l)_

For fixed i we see that the sequence (z);5_; is eventually constant. So the

limit lim;_,q, 79 exists, and we will define

¢(z) = lim 29,

j—00
Clearly this definition makes ¢ a block-adding process as defined in section 2.1.2,
whose blocks are these B;.

Now, the sequences (z\9);5_; will be defined inductively, and simultaneously
for all points z: that is, when deciding what the block B;(z) is to be, we will

assume we have already defined =1 for all y € Sk.
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Furthermore we will insist that each stage of the construction is defined on
cylinders, by which we mean that the function z — z) is itself a block-adding
process which is defined on cylinders. This ensures that £ itself is defined on

cylinders.

From the definition of F' we can find Nr such that whenever t > Npropin,
|Fit+7)=F#)] <1 V0 <7 <max{V(r), ¢+ Drmac}

In particular, suppose z,y € X with z; = y; for all i < n. Then |r"(2) —r"(y)| <
V(r) and so if n > N we have |F(r"(z)) — F(r™(y))] < 1.

We now pick some large constant Kj (much larger than Kpg). Because the
functions g, r and F are continuous, we can choose K sufficiently large that for

all n < Np+ £ and all z € X we have

lg™(2) — F(r*(2))| < Ko.

It will be convenient to have another notation for cylinders: for n > 0 we

write
Colz;Sk) ={y €Sk yi=z Yi<n}=|zom ... 2,1 N Sk.

Now take § > 0; we want to define ) in terms of zU~Y, which means defining
the block B;(x).

Say that the symbol z; is shifted to position j in zU~Y. (The nature of the
construction then means that the symbol =; is shifted to this same position j' in
z® for all 4 > j — 1, and hence also in &(z).) Since we assume that the function
y — yU~D is defined on cylinders, we have that if y € Cj;,(z; Sk) then the
symbol y; is shifted to the same position 57 in y¥~. So it is natural to look at
the values of ¢/ +!(yU=1) and 771 (y(-D).

Since g is Holder continuous and y — y~Y is defined on cylinders, we have

for any y, z € Cj11(2; S):
lg7 (™) — ¢ ) < V(o)
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and if ' > Np we also have

l F (Tj'+1(y(j—1))) _F (,.j'+1(z(j—1)))\ <1.

Thus for j' > Np,

[
_ (g-""“(z(-?'_l)) _ F(rj'“(z(-’"l))))’ <V(g)+1, (2.1)

whenever y, z € Cj1(z; Sk).

Now we can define £9) as follows:

o If j/ < Np, or if —K, < ¢g@'"ti(yl-1)y - F (7‘j’+1(y(5f‘l))) < K, for all
y € Cy(x; Sk) then we take z() = 201,

e If / > Np and there is some y € Cj(z;Sk) such that g7+ (ytU—1) —
F (ri"*1(yU=1}) > K, then we take Bj(z) = B~ (z;,7;41). (And thus

7\ is the same as zU~Y) but with this block B;(x) inserted behind mf,-“f—l).)

e If 7 > Np and there is some y € C;(z; Sk) such that g (yl) —
F (ri" 1 (yU=D)) < —K, then we take B;(z) = B*(z;, Tj41).

We took Kj to be large, certainly large enough that 2Ky > V(g) + 1, and so the
second and third possibilities cannot happen simultaneously.
With this definition, the function z +— 2 is clearly defined on cylinders as
required. This completes the inductive definition of the sequence (x(j ))jz—l‘
As stated above, we take £(x) = lim;_,., 9, and this block-adding function is
defined on cylinders. We now want to show that the point £(z) has sums ¢"(£(z))

with the desired asymptotic property. Let us define

An(z) = g"((2)) — F (r"(§())) -

As above, for each j € Ny, let j' be the position that the symbol z; is shifted to

in £(z). Then [£(z)]); = a;gj_l) for all 7 < 4, and so if j/ > Ny we have two useful
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inequalities:

Ap(@) = (o7 @) = F (17 (U0) )| < Vig +1. (2:2)
[Bgn(@) = (7 @)~ P (@) <V +1 (23)

In particular, from (2.3) we see that if Aji(z) > Ko + V(g) + 1 then B;(z) =
B~(zj,z;41); conversely (also using inequality (2.1)), if B;(z) = B~ (z;, zj41)
then we must have Ayi(z) > Ky — 2V(g) — 2. Similar inequalities hold for

Bz, Tj41)-

Claim 1: If j' > Ng and B;(z) = B~ (z;,2;41) then
A(j+1)l($) S AJ:(I) - .D,

for a constant D > 3V (g) +4 + 2K.
Proof of Claim 1: We have

g7 (@) = o' (2) + 907 2) + g'(07 a),
and 07 € [B~ (2, 2541)] 50 g¢(07 'z} < —Kp, so
g (@) < ¢ (z) + M, — K.
Also U () — 79" (z) < (£ + 1)7'mqe and so
lF (’I‘(j+1)’($)) - F (rjl(m))[ <L
Combining these inequalities gives
Ay () < Aj(z)+ My + 1 — Kp.

Take D = Kp — My — 1. Then since we chose K > 10(V(g) + M, + K + 1) we
have D > 3V (g) + 4 + 2K as required.

Claim 2: Ay(2) < Ko+ V(g)+1for all z € Sk and all j > 0.
Proof of Claim 2: We first show that if Ay (z) < Ko+ V(g)+1 for some j° > Np
then Agjy1y(z) < Ko+ V(g) + 1. We split into three cases:
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e If B;(x) is empty (i.e. no block was inserted behind z;) then we must have
Ajia(z) < Ko+V(g)+1. Furthermore in this case we have (j+1)" = j'+1,
and so Agyy(z) < Ko+ V(g) + 1 as desired.

o If Bj(z) = B~(z;, Zj41) then Claim 1 shows that A1y (z) < Ay (z).
o If B;(x) = Bt (z;,zj41) then Ajy1(z) < =Ky + 2V (g) + 2. Now we have
g (@) = ¢ (@) + (07 a) < g (&) + EMy;
iF (r(jﬂ)'(:c)) - F (rjlﬂ(x))‘ <1;

and so Agrry(z) < —Ko+2V(g) + €M, + 3. Provided that Ky was chosen

large enough we actually have A1y (z) < 0.
If 3/ < Np + £ the desired inequality is immediate from the choice of K. The

inequality then follows for all § by induction.

By combining Claim 1 and Claim 2 we have that if B;(z) = B~ (z;,x;41) then
Aty (2) < Ko+ V(g9) +1-D.
In a similar way we can prove the corresponding lower bounds for |A;(z)|,

and hence we get:
o |Aji(z)] < Ko+ V(g) +1forall z € Sk and all j > 0;
o If a block was inserted after z; then |Ay(z)| < Ky +V(g) +1 — D.

Finally, suppose we have any x € Sy and any n > 0. If n < Ng + £ then
|An(z)| < Kj by the choice of K. Otherwise, we let j be the largest integer such

that j' < n. Then we must have 7/ > Np and n — j' < £. Hence

g"(@) = ¢ (@) + ¢" 7 (07'z) < ¢7 () + £M;

F(™z)—F (13'(:5))| <1
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So
|An(z)] < |Aj(2)| + M, +1 < Ko+ V(g) + 1+ &M, + L.

This completes the proof that ¢"(£(z)) = F (r*(£(z))) + O(1).

It remains to show that dimy Sy = dimy Sk. First of all from Proposition
2.7 we know that £ is Lipschitz continuous, and so dimy S} < dimpy Sk. However
we are more interested in the opposite inequality.

Let 7 > 0 be arbitrary. Then we can find N, > Np such that whenever

t > NypTmin we have

|Ft+7)=F@)<n V0<71< s

Claim 38: If Bj(x) is non-empty (i.e. a block of length £ was inserted after z;) for
some j with 7 > N,, then Bj is empty for all 1 < k < ™.
Proof of Claim 3: We use induction on k. Given 1 < k < 77!, assume that
Bj.i(z) is empty for all 7 such that 1 <4 < k. That is, the point &(z) contains
the string of symbols

Tj+1 Lj+2 Lj+3 - - - Tjtk

uninterrupted by blocks. We see that

W) = U+ = L0+ — ., = m(j+k—l)’

and also that (j+ k&) = (j + 1) +k— 1.

Now, we showed previously that
|AGsy ()] < Ko+ V(g)+1— D.

Combining this with the inequality (2.2) we get

gt (20) — F (7’(3""1)'(1:(7')))1 < Ko+2V(g)+2—-D. (2.4)
Next we look at
g(j+k)’+l($(j+k—1J) = gUt (g0) 4 gk (oHD 1)
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(using the fact that ztG+*=1 = (), But ¢{*D'z0) = ¢7+1z and so
1gk(o.(j+1)'$(j))‘ _ |gk(aj+1$)1 < 9K.
(This is where we use the fact that z € Sk.) And so
\ GUHRY L (g UtR=1)y g(j+1)'(m(j))‘ < 9K, (2.5)

And for the r term we have

p R L (GHE=1) T(j-{-l)'(m(j))\ < ko
(again using zU+~1) = (1) and so
‘T(j+k)'+1($(j+lc—l)) — Uy (:E(j))i < kn. (2.6)

Combining (2.4), (2.5) and (2.6) gives

GGGy (r(j“")'“(m(j*k_l)))‘ < Ko+2V(9)+2+2K +kn— D.
And so from (2.1}, for any y € Cjpry+1(z; Sk) we have
‘ GUHRY L GHR=1)y g (Tu‘+k)'+1(y<j+k—1>)) \ < Ko+ 3V(g) + 342K + kn— D.

But D > 3V(g) + 4+ 2K, s0

GUHR L +R-1y _ (T(j+k)’+1(y(j+k-l)))$ < Ko+ kn— 1.

Thus if & < 57" this is less than Kj for all y € Cijqny+1(®; Sk), and so no block
is inserted behind x;;4.

This completes the inductive proof of Claim 3.
Suppose we let P = [5~!]. Then for any x € Sk and any ¢ with ' > N, we

have

(i+P)Y —¢ <P+
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And so whenever j > i for ¢ > N,), we have

- < P;q (P +20)

j—i
< ( 2 1) (P+£)
<(G—-i+P)+(j—-i+ P)/P
<j(l+¢/P)+ P+4.
If we take i to be the smallest integer such that ' > N, then i’ < N, + £ and so

i’ < j(1+£/P)+ P+ N, +2¢,
ie.
7 < Cp+3(1+nf), (2.7)
for a constant C,, which is independent of z. Note that we have proved this in-

equality under the assumption that j > ¢, but by changing the constant C, if

necessary we can ensure that it also holds whenever j' < N, ¢, and hence for all 5.

Suppose we have z,y € Sk with d(z,y) = & (ie. x; = y; for i < 7, but
zj # y;). Then, since £ is defined on cylinders, we know that z; and y; are shifted
to the same position 5/ in &€(z) and £(y) respectively. So d(&(x),£(y)) = 67, and
from the inequality (2.7) we have

d(g(l),g(y)) > 90+j(1+n€)
> Qc.d(a:, y)1+ne.

And hence
dim H S K

But n was arbitrary, so this shows
dimH S;( > dimH SK.

We proved the opposite inequality earlier, so we now finally have dimp S =

dimg Sk. This completes the proof of Theorem 2.8. 0
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Now we repeat the arguments which we used to deduce Theorem 2.4 from

Theorem 2.3. We have
dimy {z € X} : ¢"(z) = F(r™(z)) + O(1) as n— oo}
> sup {dimH u: pan equilibrium state with / . gadu = 0}
> dimpy Ave(g, 0),

by Theorem 2.2, provided that at least one such u exists. To prove the opposite
inequality, suppose y € X7 is such that ¢"(y) = F(r"(y)) + O(1). Given ¢ > 0
we can choose tp > 0 such that sup,¢gq) [F/(t +7) — F({)] < e for all £ > to. And

so for all n > ty/rmi, we have
| (™)) < [F(to)] + [r"(y) ~ tole
< |F(to)| + (nTmaz — to + 1),

and so

1
lim sup — Ig”(y)l < Tmaz€-

n—oo
Since ¢ was arbitrary this shows lim, .. ~g™(y) =0, ie. y € Avey (9,0).

Thus we have shown:
Theorem 2.9 Suppose g, F, v are as in Theorem 2.8. Then if 0 € (a, @),

dimg {z € X} : g"(z) = F(r"(2)) + O(1) as n — oo} = dimg Avey+(g,0).

2.1.4 Two-sided subshifts and suspended flows

We want to define the sets in Theorems 2.3 and 2.8 more generally. Suppose we
have a transformation 7" : X — X for some compact metric space X, with Holder
continuous functions g : X — R and » : X — R*, and a continuous function

F: Rt - R. Then we shall define

Bddx(9) = {z € X : g"(z) is bounded},
Lx(g,F,r)y={z € X :¢"(z) = F(r(z)) + 0(1)}.
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In the case of a one-sided subshift we have shown in the previous sections that,
under certain assumptions, the dimensions of these sets are all equal, and equal
to the dimension of Avey+(g,0).

Now consider a two-sided subshift o : X4 — X 4. We have a projection 7. :
X4 — X as defined in section 1.4 by (7, z); = z;. For asymbol s € {1,2,...,k},
look at the set

R, ={r € Xa:z0=5}.

As a metric space, we can think of R, as being a product of a cylinder in X7}
with a cylinder in X'}, where AT is the transpose of the matrix A. We will write

these cylinders as [s]* and [s]*" to avoid confusion. That is, we have a map
P,: Ry — [s]4 x [s]47
given by
Py(z) = (my(2), m-(2)) = (w0, 21,22, ... ), (T0, T1, Tn, - )

Provided that the constant 6 used to define the metric is the same for each space,
this map P; is a bi-Lipschitz homeomorphism.

If S is any subset of X7, then
Py(n71(8) N Ry) = (SN [s]4) x [s]4".
But it is well-known (see [Pes], for example) that

dimy [s]1" = dimp [s]* = dimy X}y = dimpX

and so by statement (e) from section 1.5,
dimgy ((S N sy x [S]AT) = dimg (S N [s]) + dimH[s]AT

= chmH(S N [S]A) + dimH X/TT

dimpg (77'(S) N R,) = dimy (S N [s]*) 4+ dimy X .
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And by maximizing over all possible s we get
dimy (77'(5)) = dimg S + dimy X 7.

This can be used to transfer our results about one-sided shifts to the two-sided
case. In fact each of the sets we are interested in is of the form #;*(S) for some
S C Xt though for the following theorem we only need to use an easy special

case of this statement.

Theorem 2.10 Suppose there exists some equilibrium state p on X4 such that

Jx, 9du=0. Then
dimy Bddx,(9) = dimg Avex,(g,0).
Furthermore if g s not cohomologous to a constant then
dimy Lx,(g, F,r) = dimg Avex,(g,0)

whenever the function F satisfies sup ¢p,q | F/(t +7) — F(t)] — 0 as t — oo.

Proof: If g is cohomologous to a constant then the first statement is trivial (as
explained for one-sided subshifts). So now let us assume that ¢ is not cohomolo-
gous to a constant. It is sufficient to prove the second statement, since the first
is then the special case F = 0.

By Theorem 1.2 we can find Hélder continuous functions g™, r® : X, — R
which are cohomologous to g, r respectively, such that whenever z,y € X4 with
z; = y; for all 4 > 0 we have ¢ (z) = ¢ (y) and r¥(z) = r(¥(y). Furthermore
we can require the function 7 to be strictly positive. (Suppose 7™ is not strictly
positive. |r*(z)— (r()"(z)| is bounded, and 7(z) > NTpmin, S0 there exists n such
that (r™)”(z) > 0 for all 2. We can therefore replace 7 by the cohomologous
function L(rW)n) These functions can also be regarded as functions on X},

which we will write as g : XT - R, »": X, — R*,
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As in section 1.4, we look at the pushforward of x to X7 by the map 7; this

is an equilibrium state on XI. And we have

/ g"'du+=/ 9("")du=/ gdu = 0.
x+ Xa Xa

A

So we can apply Theorem 2.8 to get
dimyr Ly (g%, F,r") = dimy Avey+ (g*,0).
But by the definition of g*, r*, we have for any z € X, and n > 0,
(g7 (rez) = (¢)"(2),  (*)"(mra) = (W) ().

And so we have Ly, (g™, F,r®) = 77! (ij (g%, F, 7‘+)) and Avex,(¢g™,0) =
it (Avexj (97, 0)) Hence

dimg Lx, (g™, F,r®) = dimy Avex, (g™, 0).

Finally, because gt (¥ are cohomologous to g and r respectively, {(g(™)™(x) —
g"(z)] and |(r®)(z) — r™(z)| are (uniformly) bounded; the latter implies that
|F ((r™)"(z)) — F (r™(z))| < 1 for sufficiently large n. So Lx,(¢®, F,r®) =
Lx,(g, F,r) and Avey,(¢™,0) = Avex,(g,0). Hence

dimyr Lx,(g, F,r) = dimy Avex, (g, 0).

For a flow ¢; : X — X we look at

¢
Avex (g, a) := {xEX : %/ g (¢.x) dT — « ast—->oo,};
0
[4
Bddx(g) := {CB €X: / g(d.x) dT is bounded};
0

Ly(g, F) == {a, €X: .[Otg(m) dr = F(t) + 0(1)} .

Notice that these sets are all ¢-invariant. In the case of a suspended flow
of : X — X7, the metric on X7, is defined in such a way that, whenever S is a

(Borel) ¢-invariant set, we have
dimy S = dimy {z € Xa: p(z,0) € S} + 1. (2.8)
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(Details are in [BS1]}.)

Now suppose 1 is an equilibrium state on X7; according to Proposition 1.7
this is of the form (v x 1)/ [ r dv), where v is an equilibrium state on X 4. And if
J x 9 dp = 0 it follows that [, x, Lgdv = 0. Furthermore if g is not cohomologous
to a constant then Zg is not cohomologous to a constant. So we can apply

Theorem 2.10 to show that
dimy Bddy,(Zg) = dimy Lx,(Zg, F,7) = dimy Avey,(Zg,0) (2.9)

(whenever F satisfies the usual condition), where r is the roof function for the

suspended flow. We note that
e z € Avey,(Zg,0) if and only if p(z,0) € Avex,(g,0);
¢ z € Bddy,(Zg) if and only if p(z,0) € Bddxs(g);
e v € Lx,(Zg, F,r) if and only if p(z,0) € Lx (g, FY);
So by combining (2.9) with (2.8) we have:

Theorem 2.11 Let g : X! — R be Hélder continuous, and suppose there emists

some equilibrium state p on X7 such that | X gdp = 0. Then
dimy Bddxy (9) = dimg Aveys, (g, 0).

Furthermore if g i3 not cohomologous to a constant then
dimy Lxz (g, F') = dimy Avexr (g,0)

for any continuous function I' which satisfies sup, iy | F(t+ 1) — F(t)] — 0 as

t — 00.

2.2 Moran covers

We will make heavy use of the techniques for dealing with conformal systems

which are explained in Pesin’s book [Pes] (for maps) and [PS] (for flows). This
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section explains what we will need.

We first look at the case of conformal repellers for expanding maps. If the
coding map is x : X} — J, then for any cylinder C' = [sp sy ... 8,1] in X we

have the set
X(C) = {X(m) rxeCl = Rg, N f—l (Rs,) N---N f_(n-—l) (Rsn—l) :
Now suppose we define v : J — R by v(z) = loga(z) > 0. We have:

Proposition 2.12 ([Pes]) Let C be a cylinder in X of length n. Then the set
x(C) is contained in a ball in J of radius 7(C) and contains a ball in J of radius

r(CY, such that for any z € x(C) we have
crexp (—v™(2)) < r(C) < F(C) < cpexp (—v"(2)),
Jor positive constants ¢y, co.

In light of this proposition, we can construct for any small r > 0 a cover of X}
by cylinders, such that (roughly speaking) the corresponding sets in J all have
diameter close to r. We call this a Moran cover. The construction is as follows:

For each z € X, we let n(z) be the largest non-negative integer such that

exp (—v™ (x(z))) > r.

Since v > Upi, > 0 this is well-defined, and bounded by —logr/vmin. We
can then define C(z) to be the (unique) cylinder of length n(z) such that = €
C(z). Clearly the cylinders {C(x):z € X}} cover X. Furthermore, because
the lengths of the cylinders are bounded, the cover is actually made up of finitely
many sets, say {Ci,...,Cn}-

Now, these sets may not be disjoint. However, because they are cylinders in
X+, we have that if C; N C; # @ then either C; C C; or C; C C;. We shall throw

out all those cylinders C; which are contained in some other cylinder C;. If we
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do this, then the remaining cylinders, which we relabel as {C; : 1 <i < m'}, are
a disjoint cover of X¥. This will be our Moran cover of X7}. The corresponding
sets {x(C;) : 1 <1 < m'} can also be called a Moran cover, in the sense that they
cover J, and we denote this cover of J by il.. Note that the sets x(C;) may
overlap on their boundaries, but they have disjoint interiors.

Each cylinder C; contains at least one point =; such that n(z;) is the length

of the cylinder C;. Applying Proposition 2.12 to this point gives
arexp {(—v"™ (x(2:))) < 2(Ci) <TEC) < cpexp (- (x(w1)))
and so from the definition of n(x),
ar < r(CG) <T(C;) < cgemerr.

The number r is called the size of the Moran cover.

The main result concerning Moran covers is the following:

Proposition 2.13 ([Pes]) There exists a constant Myjoran, independent of 1,
such that if we have a Moran cover . of J and take any ball of radius r in J, the

number of elements of the cover which intersect this ball is bounded by Miyoran.

The constant Myioran is called the Moran multiplicity factor. Essentially this
proposition means that if a subset of J is covered by balls (as in one definition
of the Hausdorff dimension}, we can replace this cover by a new cover whose

elements are cylinders.

Similar methods can be applied to conformal hyperbolic diffeoinorphisins and
flows, once we find the proper analogue of the sets x(C).

Suppose we have a conformal hyperbolic diffeomorphism f : A — A. Take any
rectangle R* of the Markov partition, and let 2* = x(z*) be a point in the interior
of R*. We look at the set W§.(2*), as defined in section 1.2. This set is modeled

z*

by the cylinder [z3] C X: that is, we can define a function ¥ : [z3] — Wk (2*)
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by
X)) =x (- syt wm ),
and this function is surjective.
Similarly, suppose we have a conformal hyperbolic flow ¢; : A — A, with
z* € int T* for some Markov section T*. Then the set I/Vq‘f,( *) is modeled by
[z] € X7, using a function which we will also write as x%, where ¥ : [z}] —

WE. (2*) is surjective and defined by
X)) =p (... g%y 2y yage -..),0).
Now if C'is a cylinder in X} with C C [z], we can look at the sets x{(C):

Proposition 2.14 ([Pes], [PS]) (a) Let R* be an element of the Markov par-
tition for a conformal hyperbolic diffeomorphism, and teke z* = x(2*) €
int R*. Then for any cylinder C C [v] C X} of length n, we have that the
set x(C) is contained in a ball in W ¥ (2*) of radius T2 (C), and contains

a ball in Wi.(2*) of radius r'(C). For any z € x (C) these radii satisfy
e exp (—v™(2)) < 8(C) < T (C) < crexp (—v"(2)).
Here c1, ¢y are positive constants and v(z) := log a™(z) > 0.

(b) Let T* be a Markov section for a conformal hyperbolic flow, and take z* =
p(z*,0) € int T*. Then for any cylinder C C [z§] C Xi of length n, we
have that the set x%(C) is contained in a ball in W. v (2*) of radiusT 7 “(C),
and contains a ball in Wi (2*) of radius 1 (C). For any z € x(C), we

can write z = p(x,0) where x; = z} for all i <0, and then we have:

T (x)
¢y exp (—/ v (¢, z) d’r) < i )(C) < “(u)(C')
0

()
< ¢y exp —/ v (¢ 2)dr | .
0

Here ¢, ¢y are positive constants and v was defined earlier with v (z) >

0; r is the roof function for the suspended flow.
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We can construct Moran covers i, of W (2*) and Wi (2*). For each point
zt € [z] ¢ X1 we define an integer n{z "), and we look at the cylinder C(z*) €
Cyl(n(z*)) which contains the point z*. Let z = x{*(2+). Then n(z*) is defined

as follows:
e For a diffeomorphism, we take n = n(z*) to be the largest integer such that

exp (—v"(z)) > r.

e For a flow, if z is the point in X4 such that z; = 2} for ¢ < 0 and z; = zf

for ¢ > 0, then we take n = n(z™) to be the largest integer such that

()
exp (— / o (¢,2) d’r) > 7.
0

We assume 7 is small enough that n(zt) > 1, and so C(z*) C [z})].

The rest of the construction is as for expanding maps. {C(z*1): 2™ € [z}]}
is a finite collection of cylinders which cover [z§], and by throwing out those
cylinders which are strictly contained in some other cylinder in the collection, we
get a disjoint cover of [zf]. The corresponding cylinders x(C;) are a cover of
WE.(2*) (or Wi (z*) for a flow) which is our Moran cover i, and sets in this
cover have disjoint interiors. We also have the important properties of Moran

covers:
e For any x{(C;) € L, we have
ar S KS:) (Cz) 5 FS:) (Oz) S CMoran?-

e Given a ball of radius r in Wg.(2*) (or in Wk (2*) for a flow), the number
of elements of 4, which intersect this ball is bounded by a constant Myioran-

This constant is independent of 7.
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2.3 Results for conformal expanding maps

Let J be a conformal repeller for a C*** map f : M — M. Then, as explained
in section 1.2, this is modeled by a subshift of finite type X} via the coding map
x: Xt — J. If g: J— R is Holder continuous then the pullback to X} is a
Hélder continuous function which we will call g.

Now, as in section 2.1 we look at

{fJgdu:MEM(J)},

and if g is not cohomologous to a constant then this set is a closed interval [a, @).

Theorem 2.2 carries across to this case;

Theorem 2.15 ([BS2))
1. If o & [a, @] then Ave,;(g,a) = @.

2. If a € (a,@) then Avey(g,0) # @, and

dimpy Ave;(g, o) = sup {dimH,u, i€ M(J) and /gdu = a} :

Furthermore the supremum is attained for a measure p which is an equilib-

rium state for some Holder continuous function.

As before, we have that @ € (g, @) if and only if there exists an equilibrium
state v such that [ gdv = a.

We aim to prove versions of Theorems 2.3 and 2.8 for conformal repellers.

2.3.1 Block-adding processes for expanding maps

Our method of proof will be essentially the same as that for subshifts. We take a
set Sy C J on which we have good control over ergodic sums, and produce from
this a new set S’ which consists of points whose ergodic sums have the behaviour

we are looking for. We then compare the dimension of 5% to the dimension of S;.

65




The set S’ will be produced by means of a block-adding process on X . That
is, we take a set Sy € X} such that for each z € S; there is at least one z € Sy
with x(z) = z. Then we look for a block-adding process &€ : Sx — S%. Finally
the image of S under x will be 5.

Sy S

xT K

Sy —— Sy
Note that if z and y are points in Sx with x(z) = x(y) then it is not necessarily the
case that x(£(z)) = x(&(y)). Thus there is not necessarily a well-defined ‘block-
adding function’ which maps S; to $. Furthermore, even if such a function did
exist (we could require that for each z € S; there was only one z € Sx such that
x(z) = z) it would not necessarily be injective.

However we can still get information about the dimension of S’ by looking at
cylinders in X}, and their corresponding sets in J, rather than individual points.
We need some estimates for the diameters of these sets. As explained in section
2.2, if C'is a cylinder in X} then the set x(C) contains a ball of radius 7(C) and

is contained in a ball of radius 7(C). We have:

Lemma 2.16 (i) There exist positive constants i, 7z, ¢1, ¢z such that if C is

a cylinder of length n in X7 then

crexp (—mn) < r(C) < 7(C) < cpexp (—yen).

(i) Let C = [2o,...,ZTm—1] be a cylinder in X and let C' be a cylinder produced
by inserting a single block of length £ inside C, i.e.

L
C'= [33(),. .,IL',;_;{,bQ, Cae ,bg_]_,.’Ei .. -33771-—1] .

Then we have

T(C') 2 £(C) = exp (—10) T(C),
for a constant ~s. .
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Proof: Recall that v : J — R is defined by v(z) = loga(z). Since a is Holder
continuous and a(z) > 1, we have that v is Holder continuous and v(z) > 0. Let
w : X§ — R* be the pullback of v to X}, Then w is Hélder continuous, and we
can write

0 < Wmin < W(m) < Wmaz-

From Proposition 2.12 there are constants ¢y, ¢; such that for any cylinder C in

X7+ and any point z € C,
crexp (—w"(z)) < r(C) <7(C) € cpexp (—w™(x)), (2.10)
where 7 is the length of the cylinder C. Part (i) (which is well-known) follows
immediately from this with v = wyex and Yo = wWin.
Now for part (ii): Given the cylinders C, ', choose any points z € C and
y € C'. Applying (2.10) to y gives

£(C") = crexp (—w™(y))
> crexp (—w'(y) — (0} (y)) — w0 (y)))

> c1exp (—mf) exp (—Wi(y) - Wm'i(diﬂ(y))) .
Now z and y belong to the same cylinder of length 4, so
W' (@) = wi(y)]| < V(w),

and similarly ¢(z) and o™+¢(y) belong to the same cylinder of length m — 4, and
S0
o™ (o (2)) = ™o (y))| < V(w).
Hence
2(C") 2 e exp (—n — 2V (w)) exp (~w'(x) — ™ (0(2))

> cpexp (—ml — 2V (w)) exp (—w™(z)} .
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And so by using (2.10) for the point z we get

7_(0!) > C1 €Xp (_fhe - 2V(w))F(C)

C2
To put this in the form that we want we can take y5 = v + 2V (w) + log(c1/ca)-
O

Now suppose () is a cylinder with Q@ N S% # @. If € is defined on cylinders
then (by Proposition 2.7) there is a well-defined way to ‘remove blocks’ from @
to produce a cylinder Q which intersects Sx. We want to compare the diameters

of the corresponding sets x(Q) and x(Q).
Lemma 2.17 Let Q@ be a cylinder of length n which intersects S, and let 7t
be the length of the cylinder @ obtained by removing the blocks from Q. Write
p = (n—n)/n. Then, provided that p < 1, we have
~\ e

Q) 2@ 2 (F@)
where ¢, v are constants.
Proof: n — 7 is the total length of all the blocks added to the cylinder @ to
produce Q. So by repeatedly applying Lemma 2.16 we have

7(Q) > exp (—s(n — A) F(Q).

But also from the inequality (2.10) we have

7(Q) < c2exp (~wmimA)
ie.
o~ 73p/wmin . .
(F(Q)) < PP/ exp (—y3(n — 1)) .

Putting these inequalities together gives

_ . ~\ V4 p/wm.in ~
r(@) = ™ (F@Q) T ),
and so if p < 1 we can write

@2 (@)

and Y= 73/ Winin - (N

Whel'e c = C2_7S/Wntin
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2.3.2 Points with bounded sums

For our Hélder continuous function g : .JJ — R we look at
Bdd;(g) := {z € J: g"(z) is bounded}.
We will use block-adding processes to prove the following:

Theorem 2.18 Let g: J — R be Holder continuous, and let v be an equilibrium

state for some Holder continuous function. Suppose that f ,9dv =0. Then
diIIlH de](g) 2 dlIIlH v,

Like for subshifts of finite type, by combining this with Theorem 2.15 we have
that

dimgy Bdd;(g) = dimg Avey(g,0),

whenever there exists an equilibrium state v such that [, gdv = 0 (or equiva-

lently, whenever 0 € (o, @)).

Proof of Theorem 2.18: Assume that g is not cohomologous to a constant (oth-
erwise the result is trivial). We define § to be the pullback of g to X} by the
coding map; then § must also be Holder continuous and not cohomologous to a
constant. Also, if 9 is the (Hélder continuous) potential for the equilibrium state
v, then we let p be the measure on X} which is the equilibrium state for the
pullback of . Then we know (see section 1.4) that v(S) = u(x *(S)) for any set
S C J. In particular we have ij gdu=0.

We will think of the symbolic representation of the point z € X} as being

split up into sections of length n, i.e.

':ngl:l LL‘n_1||£EnSEn+1 IZn—ll---,xinmin-l-l :E(i+1)n_1l... .

In the block-adding process to be defined later, blocks will be inserted only at

the ends of sections, i.e. behind ;3.
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First of all we define

e(n) = u ({:c € X1 :3"=x)| > ni — V(f})}) +nt

By the Central Limit Theorem we know that e(n) — 0 as n — oo.

Next, define the collection of cylinders C(n) C Cyl(n) by
Cln) = {c € Cyl(n) : |5™(y)| > nd for some y € c} .
Then if = € |JC(n) we must have |§"(z)| > ni — V(§), so
7 (U C(n)) <e(n) —nt <e(n).
For each i > 0, define the set E;(n) € X} by

Em)y= |J o).

cel{n)

Thus the section tr:m Tingl - - - m(iﬂ)n_ll determines whether = is an element of

Ei(n), and if z € X} \ Ei(n) we know |§" (o"z)| < ni.

We look at the set of ‘good’ points which do not belong to ‘too many’ of the
sets F;(n), ie.

G(n) = {’E € X : limsup #l0si<t:ze B(n); < e(n)}

t—oco t

As explained in section 1.4, the measure p is ergodic for the map o™ : X1 — X3
By applying the ergodic theorem to the indicator function of | JC(n) we see that
p(G(n)) = 1. So v (x(G(n))) = 1 and hence dimg x (G(n)) > dimy v.

For each n we will construct a block-adding process on G(n). In the notation

of section 2.3.1 we are taking Sy = G(n) and S; = x(G{(n)).

We start by defining the blocks to be used in the construction. These will not
depend on n. As before, for any symbols s, t we have a block W (s, t) of length N
such that s W (s,t)t is an admissible sequence of symbols. Now if y is any point

in Xj and k a positive integer we can look at the periodic point u defined as

Yoyr - - Yr-1 W('yk—h'yo) Yoy --- ykulw(yk—hyﬂ) e
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Then
Fy) = V(@) — NM; < 55V (u) < §(y) + V(§) + NM;.

By the Central Limit Theorem we can find y and k such that §%(y) > 1+ V(g) +
NMj. So in this way we can construct a periodic point u*, with period which

divides some number p*, such that
§”+ (u+) > 1.

Now for any symbols s, ¢ and positive integer m we can define a block Bt (s,t,m)

by the sequence of symbols

W(s,ud)ud uf ... u:z.p‘\“—l W (uhi_y,t).

The block B* (s, t,m) has length mp™ + 2N, and if y € [B*(s,t,m)] then
m.g" () — V(§) — 2NM; < 52N () < m.g”" (ut) + V(§) + 2N M. (2.11)
Similarly we can define blocks B~ (s, ¢,m) by

W(s,ugyug ug .. up—

W(u;"-—li t))

where u™ is a periodic point with a period which divides p~, and g7~ (u™) < —1;

the block B~ (s, ¢, m) has length mp~ + 2N, and if y € [B~ (s, t,m)] then
m.§7 (u”) = V(§) —2NMz < 5 2N (y) < m.57 (u™) + V(§) + 2NM;. (2.12)

As in Theorem 2.8 the block-adding process will be defined by an induc-
tive construction. For each point € G(n) we will define a sequence of points
(a:(j))j>_1, starting with (- = . For j > 0, the point ) will be the same as

2U~Y except that there may be a block inserted at the end of the section

|Zjn Tint1 -+ Tjnin—1]-

(More precisely, we insert the block behind 338;)1,)%_”_1, where (jn) is the position

that the symbol z;, has been shifted to in 2~1.) Also as in Theorem 2.8 we
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promise that each stage of the construction will be defined on cylinders, and this
ensures that the resulting block-adding process £(z) = lim;_ .o, {7 is defined on
cylinders.

So, let us take j > 0, and assuine that we have already defined 4= for all
y € G(n), in such a way that y — yU~Y is defined on cylinders. Given z € G(n)

we look at the set
Cimin(; G(n)) = {y € G(n) : ;= s Vi < jn+n}.

Suppose the symbol x;, is shifted to position (jn) in zU~Y; then for all y €

Cintn(z; G(n)) we know that y;,, is shifted to the same position (jn) in y, and

furthermore 3™ = &% for all i < (jn) + n. So, if we define
v = inf g(jn)’+n y(J_l) , ﬁ — sup g{jn)’-ﬁl y(jwl) ;
YECin+n(z;G(n)) ( ) YEC nin(:G(n)) ( )

then f —a < V(g).

We proceed to define 29 as follows:

(i) If & > 0 then let m be the smallest positive integer such that m|gP” (w)| >

«. Then let ) be the result of taking zU~Y and inserting the block

(i-1)

B~ (Zjn4n—-1, Tnjn, m) behind T my 1

(ii) If B < 0 then let m be the smallest positive integer such that m.g#*" (u*) >
—f. Then let 1) be the result of taking U2 and inserting the block

: (i-1
B+ (xjﬂ-i—’ﬂn—li Tng+n, m) behind a’(jn)’)+n—l .

(iii) If @ < 0 but 8 > 0, then take z() = zU-1),

Clearly if we replace x with a different point in Cjpn(z; G(n)) the values of a and
B are unchanged. So the function z > 2\ is defined on cylinders, as required.

This completes the inductive definition of the sequence (a:(j))j>_1. As in

Theorem 2.8, we see that for any i the sequence z?) is eventually constant, and

we take

£(x) = lim 2\,

j—o0
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We now prove that the ergodic sums §' (£(z)) are bounded. First we show

that there is a constant K3 such that for all z € G(n) and all 7 > 0,

, Forom' (0| < K,

where ((j+ 1)n)' is the position that the symbol z(;11y, is shifted to in ). Note
that

GOt () = Gam'tn (;0) 4 gt (U(jn)'+-n$(j)) ,

where £ is the length of the block added behind xg;)l,)j%_l, and oln)+ngl) is g
point whose first ¢ symbols coincide with those of that block. The inequalities
(2.11) or (2.12) can therefore give bounds for that second term.

We look back at the three possibilities for how z(¥) was defined:

(1) In this case we have

(m=1) |7 @)| £ @< g0 @ID) < at V(E) < m|F@)|+VE),
and so
(m—=1) |77 ()| = V(@) < g9 (D) <@ (w)] +2V(3).

Adding this to (2.12) gives
- |5 (0] - 2v(@) - 2805 < GO (@) < 3V (G) + 2
(ii) Similarly in this case we get
—3V(§) — 2N My < gltim’ (ay < 57" (u*) + 2V(§) + 2N M.
(iii) In this case we have
~V(9) < a < g EU) < g < V().

No block was inserted behind 958:;)1,171_1 so we simply have (jn) +n =
(7 +1)n)’ and
—2v/(g) < gV (=) < 2v(g).
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Thus we always have

gm0 < 3V (§) + 2N M; +

7 )|+ 57 ) = K,

and the constant K; is independent of n.

Next we show that the lengths of the inserted blocks are bounded. Again we
look at the block which was inserted behind :cg;)l,lnq, i.e. the block Bjpyp—1 in
our block-adding process £. If this block was defined by (i) then it is B~ (s, t,m)
where

(m—1)

7 (u—)' < a < Glumn (-,
Whereas if the block was defined by (ii) then we have
(m = 1) (u*) < —0 < |+ (z09)|.
Thus in either case we have
m < ¢ ’g(j")l+”(a:(j”l))‘ + ¢,
where
e = (min {7 @)].7" @"}) " <1, @=amx{|F @)@ @)},

The length £;,4n_1 of the block is either mp* + 2N or mp~ + 2N, so we can find

constants ¢z and ¢, (independent of n) such that

gjn+n—1 <c3

g(m)'m(x@d))‘ +cs. (2.13)

But we know that |gi™ (zU=)| < Ki, and so |g¥ (2| < K, + nM;.

Hence we have £jnin—1 < lpar(n) for all j, where £,,,.(n) = O(n). We can write

Cmas(n) < csn. (2.14)

Now the construction of § ensures that for any x € G(n) and any j > 0 we
have [{(z)], = a:ﬁj_l) for all ¢ < (jn). (In fact for all 7 < (jn)’ + n.) Hence
9 (¢(@)| < Ko + V().
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And ((7 + 1)n) — (jn) < n+ £pe(n), so for any & > 1 we have
|5° (£(2))| < Ky + V(§) + (n+ Lrnax(n)) M.
So the set G'(n) := &(G(n)) consists of points with bounded partial sums; and so
X(G'(n)) C Bdd,(g).
In order to compare the dimensions of x(G'(n)) and x(G(n)) we need to look

at the restriction of £ to the subset Sx(n,ty) C G(n) defined by

+ #{0<i<t:z € Ey(n)}
o
2

Sx(n,ty) = {'z: e X < €{n) for all ¢t > tu} )

Let us write S%(n,tp) = £ (Sx(n,t)), Ss(n,to) = x (Sx(n,to)) and 5(n,ty) =
x (S%(n,tp)). Note that the function £ : Sx(n,ty} — Sy (n,ty) is still a valid
block-adding process that is defined on cylinders.

We have |, 5, Sx(n,to) = G(n) and so dimy Ss{n,ts) — dimg x (G(n)) as

ty — oo.

Write D = dimy S(n,tp) and let 1 > 0 be arbitrary. Then, by the definition
of Hausdorff dimension, for all sufficiently small p we can find a cover of S’ (n, ty)

by a finite or countable collection of balls B; (¢ > 1) with radii r; < p such that

Z?‘;D""T’ < 1.
;

For each ¢ we can construct a Moran cover il,, of J with size r;. Each set in this
cover is of the form x(Q) where @ is a cylinder in XT. Let x(Q%) (1 < k < m(3))
be the sets of this cover for which Q¥ N x=1(B;) N Sk (n, to) # @.
By the basic properties of Moran covers we know that m(z) < Mpioran and
T(Qf) < CMoran-Ti, for constants Mpioran, CMoran Which are independent of <. Thus
ey D
Z (T(Qf)) ! S MI\'Iorun-(cl\loran)D-H? = I(('r]) (215)
ik
Suppose y € Sx(n,t). Then x(y) € B; for some i. The sets {Q : x(Q) € ..}

are a disjoint cover of X}, so there is a (unique) @ with y € Q. And since
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y € x1(B;) N S%(n,ty) we must have Q = Q¥ for some k. So the sets Q¥ cover
S (n, to).

Now for each cylinder QF, we can ‘remove blocks’ from Q¥ to produce the
cylinder QF as in Proposition 2.7. If £(z) € Q¥ then z € QF, so the sets QF cover
Sx(n,to), and it follows that the sets x(QF) are a cover of Sy(n,to). We now
want to use Lemma 2.16 to compare the diameters of x(Q¥) and x(QF).

Say that the lengths of the cylinders Q% and Q¥ are ¥ and m¥ respectively.
Then the number of blocks removed from Q¥ to produce QF is at most ¥ /n,

and each block has length at most £,,,,(n). So

~ g
mih _ ﬁ‘bi‘ < My Crnaa (n)’
n
and so
7l [ L—" (2.16)
P T \Laz(n) + 1 '

Now 7(QF) < CuMoranTi, 80 sup;, 7(QF) — 0 as p — 0. By the first part of
Lemma 2.16 this is equivalent to saying that inf;z mf — co as p — 0. The
inequality (2.16) therefore tells us that inf;; Mf — oo as p — 0. From this
we can deduce two things. Firstly, by using Lemma 2.16 again we see that
sup;  diam X(@f‘) — 0 as p — 0. And secondly, by taking p sufficiently small we
can ensure that My > nty for all 4, k. This last observation allows us to make use

of the ‘good’ behaviour of sums for points in Sx(n,ty).

Consider a point 2 such that £(z) € Q¥ N S%(n,t). Then z € @f N Sx(n,to)-
We are interested in the blocks Bjyin_1(z) for 0 < j < t, where t is the largest

integer such that nt < m?. These are the blocks that are removed from the

k
3
cylinder Q¥ to produce QF (except that if R is exactly equal to nt, it is possible
that only a truncated version of By,i,_1 appears in @F). For each j we want
to find a bound for the length £;,4,_1 of the block. This bound will depend on

whether x is an element of the set F;(n). If p has been taken to be sufficiently
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small that mF > nty, then from the definition of Sx(n,%y) we have

Now,

#{0<j<t:ze Ej(n)} < te(n).

If z € E; then we just have the bound from (2.14),
ejn—i—n—l < emaa:(n) < cyn.

However there are at most te(n) values of j for which « € F;. Thus the

total length of all these blocks is at most csnte(n).
If © ¢ I; then we look at xU~1. We have the bound

\ o’ (:C(j—l))‘ < K.

The section [Tjn Tjnt1 - - Tjnrn—1|is shifted to positions (jn)’ to (jn)'+n—1

in U1 and because = ¢ F; we have |§™ (6""z)| < ni. So

G (J(jn)‘a,(j»l))‘ <ni +V(g).

Hence

o (U] < nt 4V (g) + K.

So from (2.13) we have £jp1n_1 < c3 (n% +V(g) + Kl) + ¢4, which we can
rewrite as

lingn—1 < C371% + ¢p,

where c3, ¢g are constants independent of n. The total length of these blocks

is therefore at most ¢ (cgn% + c(;).

Adding these together we see that

o~ fa 3 -y —i -
my — M < csnte(n) + 1 (33’71" + CG) < g (CSE(H) tesm f 1) )

So we can write

k_ ok
m; — m;
—
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where g(n) := cse(n) + csn™7 + cgn~'. We see that g(n) — 0 as n — co.
We can now apply Lemma 2.17. Provided that n is sufficiently large that

g(n) < 1, we get
)1+‘YQ(”)

r(@f) > e (F(@)

Combining this with (2.15) gives (for all sufficiently small p)

1\ (F7a(R)) (D) _
S (7(@h) < P (),

ik

and so

Z (diam X(@f))(lﬂqm))wﬂ) < g(+ra(m))(D+7) (D) K(n).
ik

We showed earlier that the sets X(@i‘) cover Sy(n, tp), and sup; ; diam X(Q\f) —0

as p — 0. So this shows
dimg Sy(n, to) < (1 + vg(n)) (dimg S5(n, to) + 7).
7 was arbitrary, and so
dimg S;(n,to) < (1 + vg(n)) dimy S5(n, to).
But S%(n,ty) € x(G'(n)) C Bdd,(g) for all %, and so taking &, — oo we have

dimy Bdd;(g) > (1 + vg(n)) ™ dimy x(G(n)) (2.17)
>

(1 + vg(n)) ™ dimp v.
Finally, taking n — oo gives
dimg Bdd;(g) > dimy v.

O

As explained earlier, by using a result such as Theorem 2.15 we can show that
this is the ‘best possible’ result, in the sense that there is some measure v for

which we have equality. However even without any information about measures,
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we can get an upper bound for dimy Bdd,(g) in terms of the ‘good’ sets G(n).
We go back to the inequality (2.17). Given any integer m > 1, for any sufficiently

large k > m we have
dimy Bdd,(g) > (1 +vg(k)) ™" dimy x(G(k))
> (1+q(k)) ™" dimg ( N X(G(n))) :

n>m

Taking & — oo we get

dimy Bdd;(g) > dimy ( N X(G(n))) :

n>m

Now if we define

G’=U ﬂG’(n)

m>1n>m

then dimy x(G) = sup,,>; dimg ((V,5n Xx(G(n))) and so
dim,q dej(g) 2 dimH X(G)

But suppose z € x* (Bdd(g)); say |§7(z)| < K for all j. Then |§*(¢o7z)| < 2K
for all , j, and so z ¢ E;(n) whenever n is sufficiently large that 2K +V (§) < ni.
So z € G. Thus dimy Bdd;(g) € dimg x(G), and so we must have

dimy Bdd;(g) = dimy x(G).

This equality was already clear from the application of Theorem 2.15, but
we now have a direct proof; this idea will be useful later in situations where
Theorem 2.15 is not available without some modification. Also, notice that the
fact that u(G(n)) = 1 immediately implies x#(G) = 1, and this can be used as an
alternative way to complete the proof that dimy Bdd, (g) > dimg v.

2.3.3 Multi-dimensional results

In [F'S], Fan and Schmeling prove multi-dimensional versions of their Theorems

2.3 and 2.5. For a vector-valued Holder continuous function g : X1 — R? they
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show

dimy {z € X\ : g"(z) is bounded} > dimy p,

for any equilibrium state p such that [ gdu = 0. As in the one-dimensional case,
if there is at least one such p, then there is guaranteed to be an equilibrium state
for which equality holds.

This last statement follows from a generalisation of Theorem 2.2: say we

define
D)= { [ gdusne M},

This is a compact, convex subset of R?, We say that R-valued functions gi, ..., gn
are cohomologously independent if there is no non-trivial linear combination which

is cohomologous to a a constant.

Theorem 2.19 ([BSS]) Suppose g: J — R? is Holder continuous. Then:

1. If the components of g are cohomologously independent then the set D(g)

1s the closure of its interior.
2. If a & D(g) then Ave;(g, o) = @.

3. If @ € int D(g) then Ave;(g, o) # &, and
dimg Ave;(g, @) = sup {dimgu :u € M(J) and /gd,u = a} .

Furthermore the supremum is attained for a measure p which is an equilib-

rium state for some Holder continuous function.

If the components of g are cohomologously independent then [gdu € int D(g)
whenever 4 is an equilibrium state. (If [ gdu was on the boundary of D(g), then
because D(g) is convex we could find a non-zero v € R? such that { [ gdv,v) >
([ gdu,v) for any other v € M(J). This contradicts the Central Limit Theorem
for the function (g, v).)
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Note that if the components of g are not cohomologously independent then

D(g) is contained in some proper subspace of R%.

We will need a multi-dimensional version of the Central Limit Theorem. For

the moment we work with a subshift of finite type. The following is proved in

[FS]:

Theorem 2.20 ([FS]) Let ¢ : XI — X} be a subshift of finite type, and
g: Xt — R? o Holder continuous function on Xt whose components are co-
homologously independent. Suppose that p is an equilibrium state for some (R-
valued) Hoélder continuous function ¢ on X7, with [gdp = 0. Then g*/\/n

tends in distribution to a normal distribution (which is fully-supported on R?).

In what follows we use the usual Euclidean norm on R4 We define M, =
SUPge x + llg(z)|| and we have the constant V(g) such that ||g"(z) —g™(v)|| < V(g)

whenever z; = y; for all i < n.

Lemma 2.21 Suppose g : X1 — R? is Holder continuous, and the components
of g are cohomologously independent. Also suppose that there exists an equilib-
rium state p such that [gdu = 0. Then there are constants T > 0 and ¢ > 0
such that, for any v € R?, there exists a point = € X and integer n < c||v|| such
that

Iv+gh@)l <T.

Proof: Let Dy = 10(V(g) + Mg + 1). We can cover the set {v € R*: ||v|| < Do}
by finitely many balls of radius 1: say these balls have centres w(® (1 <14 < P).

Now by the Central Limit Theorem, there is a number ng such that

ng )
i <:1: e X g\/}%:) € B(W(‘),l)) > () Vi.

And so for each i < P we can find a point 2® with g0 (219) € B(\/now®, \/ng).
And we can define a periodic point 3 by the sequence of symbols

L0

z((;) zp e Zpl g W(szg_l, z(()z)) z(()i) zy) e z,(;’o)_l I/V(z(ig_l, 20

W
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Let ny = nyp+ N and Ty = 2(/no + V(g) + N M). Then the period of 3 divides

ny, and we have
gm(y(i)) € B(\/h—(}w(i),%To).

So for any v € R? with ||v|| < v/moDy, we can find ¥ such that
|v+e™ ()| < To.
Claim: Given v € RY, x € X} and integers m > 0, k > 1 such that
v+ g™ (@)l < 2°y/ngDo,
then there exists ¢’ € X} such that
v+ g™ 27N ()| < 24 g Do,
Proof of Claim: We can find y® as defined above with

1 .
ﬁ (V + gm(CE)) + g™ (y(l))

<Tp.

Using the periodicity of y® this implies
v +&" @+ )| < 2.
Now let 2’ be the point defined by the sequence of symbols
M 0,0

Toxy v« Tm—-1 I’T/(mm.—la y(()Z)) Yo yl y2

Then lg"(@') = g™@)l < V(g), [|g¥(0™s)]| < NMg and g (o™Va') =
g2 (y9), so0

HV + gm+N+2"n1 (y’)

< 28Ty + V(g) + N M,
< 281 (4/mo + BV (g) + BN M)

< 2’“"1\/7‘L0D0,

This completes the proof of the Claim.
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Now suppose v € R?® with 2¥=1, /mgDy < ||v|| < 2%,/mg Dy for some k > 1. By
applying the above Claim repeatedly we find a point z € X} and integer n such
that

v+ ")l < oDy,

where

M?-

2ny + N) < 28Mny 4 Nk < 26 (dng + N) < (dng + N) |||

=1
Thus the statement of the lemma holds by taking T' = \/ngDy and ¢ = 4n; + N.
(We have proved this in the case ||v|| > /figDy, but for ||v|| < /ngDy we may
simply take n = 0.) O

Theorem 2.22 Letg: J — R? be Holder continuous and let v be an equilibrium
state with respect to some Holder continuous R-valued function on J. Suppose

that f,gdv =0. Then
dimpy Bdd;(g) > dimg v.

Proof: First suppose that the components of g are not cohomologously inde-
pendent. Say without loss of generality that g, is cohomologous to the function
Zfz.z Aig; + c. Since [gdv = 0 we see that ¢ = 0. So by the basic properties of
the cohomology condition we have that gi(x) — S°¢, A\;g?(z) is bounded. So if
we define the function g’ : J — R** by g’ = (g2,03- .., g4), then

dej(g’) = de,](g),

and so it is sufficient to prove the theorem for g’. We can repeat this if necessary,
throwing out components of g until the remaining components are cohomolo-
gously independent.

Thus we may assume that the components of g are cohomologously indepen-

dent.
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We now follow the proof of Theorem 2.18. Let § be the pullback of g to X3,
and let u be the equilibrium state on X7} which corresponds to the equilibrium
state v on J. Since we assume that the components of g are cohomologously

independent, the same must be true of §. Also we have | xt gdp = 0.

We define

o) = ({r e X5 g @l > ot - V@}) 40
C(n) = {O € Cyl(n) : I8" (W) > ni for some y € C} ,

and the corresponding sets £;(n), G(n) C X7 as in Theorem 2.18.

We need a different method of finding the blocks to be used in the construction.

In fact we shall look at all blocks of the form

W (s, ul) ul? u ... “Sz)(i)—1 W@, . t) = B(s,t,i),

mli) -1
where ug) u&i) . ufi)(i) _, 1s any admissible sequence of symbols. Note that there
are only countably many such blocks, so they can be indexed by 7 € N. We choose
the labelling in such a way that if 7 < j then m{) < m{ i.e. the lengths of the
blocks are non-decreasing. If C® is the cylinder [u((]i) ugi) ufl?(i)_l] C X}, we
define "
16 = Jow 8" dpt
p(CW)
So for any y € C™® we have
mli) @) =
™) - 19| < V(@) (2.18)

It follows from Lemma 2.21 that for any v € R¢ we can find ¢ € N with m® <

cllv]| such that
v+ <T+V(g).
Our block-adding construction & : G(n) — G'(n) will be the same as in

Theorem 2.18 except for the definition of which block to iusert behind z54n-1.

Recall that we consider the set
Cinin(z;G(n)) =={y € G(n) : ; = y; Vi < jn -+ n},
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and that yU~Y is defined in such a way that if y € Cjpirn(z; G(n)) then y(J R
:L'EJ D for all 4 < (yn)" + n. We can then find the smallest 2 € N such that

£ () + 19]| < T+ V(g) for some y € Cynsnla; Gln).
Because the m were chosen to be non-decreasing this ensures that

m® < ¢ | gm0 (4 G-1)

‘ <e (||g<fn>’+n(z<f'"l))” +V(@E)). (2.19)

The block that we insert behind 2 jp4n—1 Will be B(Zjn1n—1, Tjnin, 2) for this value
of i. As in the proof of Theorem 2.18, our definition ensures that z — z() is

defined on cylinders.

Now we look at
g(jn+n)’(w(j)) = g(jn)’+71(m(j)) + g”(a(j”)'+”a;(j))
n gm(‘)( (jn)’+n+N$(j)) + gN(O.jn+n+N+m(i) m(j))‘

We have
[+ (=) + 19| < T+ V(@)
for some y € Cjinin(z; G(n)), from the definition of . Also
Hg(f‘")’+“(;c(ﬂ) _ g(j-ra)'+vz(y(j»1>)“ < V(@)

because a:i:) :rgf V= yk D for all k < (jn) +mn; and
|l~m(')( (Gn)+n+N (3 t)“ < V(g)
from the inequality (2.18). Putting these all together gives

I g0 (29) | < T+ 3V (g) + 2N My =: K.

Next we look at £j,qns1 (the length of the block inserted behind Zjpyni1).
We have £jyni1 = 2N + m®, where m® < ¢ (||gt)+(20-)|| + V(&)) from

(2.19). Ience we have constants cg, ¢4 such that
Ejrz+n+l <c3 "g(j”)l+”(a:(j_1)) H + ¢4. (220)

85




(Compare this with (2.13).) As in Theorem 2.18 this implies that the lengths of

the blocks are bounded by some nwmber £p,4,(n), and
Lnax(n) < csn. (2.21)
And this in turn implies that for any &k > 1,
IE* €@ < Ki+ V(@) + (n+ Lmaa) Mg,
proving that
x(G'(n)) C Bdd,(g).

The rest of the proof goes through exactly as in Theorem 2.18, making use of

the inequalities (2.20) and (2.21). O]

2.3.4 Points with sums which grow at a specified rate

Finally for conformal repellers we wish to prove an analogue of Theorem 2.8.
Again this will be done by considering a block-adding process on the related sub-
shift of finite type. We could simply choose to use the block-adding process £ that
was defined in the proof of Theorem 2.8; however, we will give a generalisation
to the multi-dimensional case. The following lemma will provide the blocks to be

used in the construction:

Lemma 2.23 Suppose g : X} — R? is Hélder continuous, and the components
of g are cohomologously independent. Also suppose that there exists an equilib-
rium state p such that [gdu = 0. Then, given H > 0, we can find an m > 1
and finitely many points u® € XT (1 < i < P) such that for any v € R¢ with

IVl sufficiently large, we have
v+ g™ < vl — H

for some 1.
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Proof: We start in a similar way to the proof of Lemma 2.21. We can cover the
set {v eRe: |Iv|| < H+ 2} by finitely many balls of radius 1: say these balls
have centres w® (1 < ¢ < P). By the Central Limit Theorem, we can choose
m > 1 such that

(3: € Xt g\/(_) e B(w, 1)) > 0 Vi.

And so for each ¢ < P we can find a point u® with g™(u®) € B(/mw®, /m).
We will show that these points have the desired property.

Take v € R? with ||v|| > /m(H +2), and let v/ = /m(H + 2) % - LThen we
can find 4 such that —v' € B(y/mw®,/m), and so

v + gm(u(i))” < 2y/m.

Hence
[[v+g™ )| < 2vm+ v —v|.
But |[v—vVv'| = H (1 "(f[’rg)) ” = ||v|l = vm(H + 2), so we have

[v+ g™ @) < vl = Hy/m

<|vii—-H

O

Following the notation of section 2.1, if g : J — R? and 7 : J — R* are

Holder continuous, and F : Rt — R? is continuous, then we define
L;(g,F,r)={xeJ:g"(z) =F("(z)) +0(1)}.

Theorem 2.24 Let g, F, v be as above, and let v be an equilibrium state for
some Holder continuous function on J, with [ gdv = 0. If the components of g
are cohomologously independent and sup, ¢y |[F(t+7) = F{#)|| — 0 as t — oo,
then

dimg L;(g, F,r) > dimgy v.
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Proof: Again we use the coding map x : X} — J to produce the pullback
function g : X+ — R? (whose components are cohomologously independent)
and the equilibrium state g on X7 for which ij gdp = 0. We also define
7: X1 — R* to be the pullback of .

We look at the set

Sk = {z € X} :||§"(2)]| < K ¥n}.

As in the proof of Theorem 2.8, we will construct a block-adding process £ : S —
Sk-

We apply Lemma 2.23 to the function g, taking H = 20(V(g) + N Mz +K+1).
This gives us points u® & X:{ (1 €4 < P) and an integer m > 1 such that
whenever ||v]| is sufficiently large there exists 7 such that ||v + g™(u®)|| < [|v] -

H. We can then define the blocks B(s,t,i) (1 <i < P) by

B(s,t,1) = W(s,ug:))u(()i) ugi) oul® 1W(u£,?_l,t).

n—

These blocks all have the same length £ = m + 2N.

As in the proof of Theorem 2.8, we construct for each z € X} a sequence

of points ((I;(j))j>_l, starting with z(~9 = 2, in such a way that each function

z +— 29 is a block-adding process that is defined on cylinders.

We find N such that whenever ¢ > NpTppin,
IF(t+7)—F@)| <1 VO<7 <max{V(7), ¢l + 1)Fmas} -

The constant Kj is then chosen to be sufficiently large that for all n < Ng + £

and all z € X we have

18" (2) — F (I ()]l < Ko.

As before, given 7 > 0 and © € Sk we define §' to be the position that the

symbol z; is shifted to in :cgj -1 j' = Ng then for y, z € Cjy4.1(z; Sk) we have
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the inequality

ll (gj’ﬂ(y(jwl)) _F (,;j'+1(y(jm~1)))) _
(81297~ F (1 00)) | s V@) +1 (222)

(derived in the same way as inequality (2.1) from Theorem 2.8). The point )
is defined in terms of {yU~Y :y € Cj1(x; Sk)} as follows:

o If j/ < Ng, or if |7+ (yU) ~F (F0D(U-D))|| < Ko for all y €

Cj+1(z; Sk), then we take 20 = z0U~1,

o If 7/ > Ny and ||§*(yU=) — F (FU+D(y0-1))|| > Ko for some y €
Cja1(z; Sk), we find the smallest 4 such that there exists 2 € Cji1(; Sk)

with

FEARTPCR . (;(j'ﬂ)( z(jﬂl))) + gm(ut)

< ‘ g.j’+1(z(j—l)) —F (,;(J"+1) (Z(J'—l))) H — H.

(Lemma 2.23 tells us that at least one such 4 exists, so long as K, was chosen
sufficiently large.) We then take B;(x) = B(z;, z41,1); that is, ) is the

=

same as £~V but with this block B(x;,z;1,1) inserted behind T

If 2 — U~ was defined on cylinders, then this definition ensures that z +— £
also is. As usual, we take £(z) = lim;_.o, ¥, and it follows that this block-adding

process & is also defined on cylinders.

Continuing to follow the proof of Theorem 2.8, we define for z € Sy and

n >0,
An(z) = g8"(§(z)) — F (7 (&(2))) -
And for 5/ > Np we have the inequalities
“Aj,(:c) - (gﬂ"(z(ﬂ'-”) _F (:Fj'(m(j“l)))> H <V(E)+1; (2.23)

”Ajfﬂ(:n) _ (gj”rl(w(j—l)) —F (,:7"+1($(.7'—1)))) “ < V(g)+ 1. (2.24)
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We now need a revised version of Claim 1 from the proot of Theorem 2.8:

Claim 1': If 7/ > Ny and Bj(z) = B(z;,z;41,%) (for any 1 < < P), then
1AG 1y @] < 187 @)I = D,

where D > 3V (g) +4 + 2K.

Proof of Claim 1': From the definition of the block-adding process we know there

is some z € Cj1(w; Sk} such that
ngurl(z(j—l)) _F (,,~.y"+1(z(j—1))) + g™ () ’

< “gj’»u(z(j—l)) _F (,,:j'+1(z(j~1))) H _

Combining this with (2.22) gives

|lgj’+l($(j——l)) ¥ (7~,j’+1(x(j—1))) + B (u®) l

< Hgﬂ"“(m(f—ﬂ) _F (Fj'“(a:(j*l))) H LOVE)+2— H (2.25)

Now
gl (£ = g7+ (2D) 4 gV (o7 gDy 4 g™ (o7 TN 5 0)) 4 gN(a.i’+1+N+mm(j))’

and ¢f +HHN g0} ¢ [u((}i) ul? . ugi)_l], 50

|5 @) — (874 D) + &) || < 28 Mz + V (&),

And because ;c?’ = .'LEJ ) for all § < 4" -+ 1, this implies

g" (o072 — g )| < V(@).

Hence

”g<f+1Y (z1)) — (gﬂ"“(m(fﬁ”) + gm(u(i))) “ < 2N Mg + 2V (§). (2.26)

Furthermore we have |70+ (z(0) — 77"+ (2| < (€ 4 1)Fpaq and |7+ (2()) —

F'+ (z0-1)| < V(#), so by the assumption that j' > Ng we have
”F (f(j+1)'(3:(j))) _F (Fjl+l(a:(j"1))) H <9 (2.27)
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Now by applying (2.26) and (2.27) to the left hand side of (2.25) we get

gUY () — F (;mn’ (mm)) ”
< &7 (@ 0) ~ F (#*1(267)) | + 4V (8) + 2N Mg + 4 — H. (2.28)
And so from inequalities (2.23) and (2.24) we have
[ Ay @) < 181 (2)]| + 6V (8) + 2N Mg + 6 — H.
But ||Ajpi(z) — Ap(z)|| < Mg+ 1 and so
[ Ay (@)|| < Ay ()] +6V(E) + (2N + )Mz + 7 — H.

We can then take D = H — 6V(g) — (2N + 1)Mz — 7, and since we chose
H = 20(V(g) + NMz + K + 1) we certainly have D > 3V(g) +4 + 2K. This

completes the proof of Claim 1'.

From this point onwards the calculations in the multi-dimensional case are
the same as for the block-adding process for one dimension used in Theorem 2.8.

In particular, following the proof of Theorem 2.8 we have
o [[Ay(@)| <Ko+ V(g)+1forall z € Sy and all j > 0;
o If a block was inserted after z; then ||A;(z)|| < Ko+ V(g)+1— D.
e For any n > 0 we have ||A,(z)[| < Ko+ V() + 1+ £M;z + 1.
And so g"(¢(x)) = F (7(£(z))) + O(1). Transferring this back to J we have that

X( f’() g L.](g)FaT)‘

Now, by using the arguments from Theorem 2.8, for any 1 > 0 we can find a

constant Cy, such that for each z € Sk,

7" < Cy+ 3(1+nk). (2.29)
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(As always, j' is the position that the symbol z; is shifted to in £(z). Thus it
depends on z, but it is constant on cylinders of length 7 + 1.) We want this in a
slightly different form: it follows from (2.29) that there exists a constant NV, such

that whenever j > N, we have
7 H+L+1 <51+ 2nf). (2.30)

We wish to prove that dimpg x(S%) = dimg x(Sk), and this part of the
argument is sirnilar to the use of Moran covers in Theorem 2.18. We write
D = dimy S} and let n > 0 be arbitrary. Then for all sufficiently small p
we can find a cover of Sy by a finite or countable collection of balls B; with radii

r; < p such that
Z?*iD <L
i

For each ¢ we construct a Moran cover i, of J with size r;, We let x(QF)
(1 < k < mf(2)) be the sets of this cover for which Q¥ N x~*(B;) NSy # @. This
implies that {J; , QF O 5.

We have m(i) < Moran and 7(Q¥) < caoran.Ti, and so

ST @R < Mitoran (noran) ™™ =2 K (n). (2.31)
ik

For each cylinder Q¥, we can ‘remove blocks’ to produce the cylinder QF. If
£(z) € QF then z € QF, so the sets QF cover Sk, and hence the sets x(OF) cover
x(Sk).-

Say that the lengths of the cylinders Q% and Q¥ are ¥ and m¥ respectively.
We know that 7(QF) — 0 as p — 0, and by the first part of Lemma 2.16 this
implies inf; , mf — 0o as p — 0. But m¥* < (¢4 1)m%, so this implies inf; , MY —
oo as p — 0. In particular, if p is sufficiently small then mF — 1 > N, for all 4,

k. Also by applying Lemma 2.16 again we have that sup, , diam x(QF) — 0 as

p— 0.
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Since Q¥ N S} # @ we can find a point z € Sk with &(z) € QF. We now
apply (2.30) for j = m¥ — 1. From Proposition 2.7 we have

F<mi—1<(+1),

and so

mL<(F+1) <5 +1+L

If p is sufficiently small that inf;;, #f — 1 > N; then (2.30) applies and so
my, < 7{1 + 2n€) < ML (1 + 2nk).

Hence
k _ i
T oo,
me,
So from Lemma 2.17,

1+2+yne

7(@QF) 2 (@) 2 ¢ (7(Qh)
Combining this with (2.31) gives (for sufficiently smali p)

~ (1-+2yn)( D+1)
RGCH) < P (),
i,k

and so

) (diam @k) PR ouszme)Dam - (D4n) K(n).

i
ik
We have shown that the sets x(QF) cover x(Sx) and that sup; ; diam x(@¥) — 0

as p — 0. Hence

dimyg x(Sk) < (1 + 2yn€)(dimg x(Si) + n).

Taking n — 0 gives
dimpg x(Sk) < dimgy x(Sk).

But x(S%) C Ls(g,F,7) so
dimg L;(g,F,r) > dimy x(Sk).
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And UKGN X(SK) = de-](g)a 50

dil’[lj—] Lj(g, F, '.'“) > dimyy deJ’(g)

> dimy v (from Theorem 2.22).

O
As usual, by observing that L;(g, F,r) C Ave;(g, 0) we can restate this result

in the following way:
Theorem 2.25 Let g, F, r, v be as in Theorem 2.24. Then

dimH deJ(g) = dlmH LJ(g, F, T‘) = dimH Avej(g, O)

2.4 Hyperbolic diffeomorphisms and flows

2.4.1 Product structure

When dealing with one-sided subshifts and conformal repellers, we compared the
Hausdorff dimensions of sets to the Hausdorff dimensions of equilibrium states.
However, for hyperbolic diffeomorphisms and flows this is no longer fruitful. For
example, suppose we have a function ¢ : A — R and an equilibrium state v such

that [, gdv = a. Then we can still say that
dimy Avea(g, @) > dimg v

(This is immediate from the definition of Hausdorff dimension of a measure and
the ergodic theorem.) But it is no longer necessarily the case that this is a ‘best
possible’ bound: there may not be a measure v for which we have equality. For
one-sided subshifts and conformal repellers such a measure v was guaranteed
by Theorems 2.2 and 2.15 respectively, but for the hyperbolic case we do not
have a result that can be applied in that way. Thus while we could still show
that dimy Bdda(g) > dimy v, this is not really the appropriate bound to con-
sider, and in particular this bound is not good enough to be able to deduce that

dimg Bdd(g) = dimy Aves(g, a).

94




Roughly speaking, the ‘problem’ is that looking at dimg v does not take ac-
count of the splitting into stable and unstable directions. Say we consider a
hyperbolic diffeomorphism f : A — A, and an equilibrium state v on A. Then v
has a product structure, as described in [Pes|: that is, if we consider a rectangle
R* and a point 2* € int R*, then we can find measures v+ on Wg,(2*) and v~
on W3.(2*) such that v is equivalent to the product ¥ x v~ on R*. (If ;1 is the
equilibrium state on X 4 which corresponds to v on A, then vt is obtained from
the measure pt defined in section 1.4; for the stable directions, the measures p~
and v~ are defined similarly.) Rather than comparing the dimension of a set to
dimpy v, we should be comparing it to a sum of the dimensions of two measures,
one of the form v+ and one of the form v~. And, crucially, these measures might
be derived from two different equilibrium states, 1q and vs.

An illustration of this is that, in general, there do not exist measures of

maximal dimension:

Theorem 2.26 (Manning, McCluskey [MM]) There exist Aziom A diffeo-
morphisms f, with corresponding basic sets Q(f), for which there is a strict in-
equality

dimg Q(f) > sup {dimp . : p(Qf)) =1, u ergodic}.

Essentially the issue is that we do have a ‘variational principle’ for dimg Q(f),
but only by maximizing for stable and unstable directions separately and taking
a sum. Thus the inequality above is strict unless the two suprema are attained

by the same v (and generically this is not the case).

However, the sets that we are interested in all ‘depend only on the future’:
Proposition 2.27 ([Pes])

(a) Let f: A — A be a hyperbolic diffeomorphism and let g : A — R be Holder

continuous. Then there is o constant K(g) such that whenever 2,2 € A
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with 2" € W(z) we have
lg"(z") — g"(2)| < K(g) Vn > 0.

(b) Let ¢ : A — A be a hyperbolic flow and let g : A — R be Hélder continuous.
Then there is a constant K(g) such that whenever z,z' € A with 2 € W(z)
we have

t t
/0 9(pr2") dr — /0 g(prz)dr| < K(g) Vt > 0.

(The proof is essentially the same as the derivation of the constant V' (g) in section
2.1.2.) This means that z € Bdda(g) if and only if 2’ € Bdd,(g); and similarly
for the sets Avea(g, «) and La(g, F,7) (or La(g, F') for a flow), provided that F
satisfies the usual condition.

So, when we consider the splitting into stable and unstable directions, it is
only the unstable direction which distinguishes the sets. More precisely, suppose
we look at one of the rectangles R* in the Markov partition for a hyperbolic diffeo-
morphism. We know that this has a product structure R¥ — W, (2*) x W3.(z*).
Then if S is a set which depends only on the future, the intersection SN R* is
represented in the product structure by (S NWH. (2*)) x W§.(2*). Thus, in order
to compare the dimensions of such sets, we are mainly interested in the intersec-

tions S N W (2*).

In order to make use of the symbolic model, we consider a slightly weaker
condition than ‘depending only on the future’.

Suppose we have a hyperbolic diffeomorphism f : A — A, which is coded by
the subshift of finite type o : X4 — X4. For a set Sy C X4, we say that Sx
‘depends only on future co-ordinates’ if, whenever z,y € X4 with x; = y; for all
¢ > 0, we have x € Sy if and only if y € Sx. We will then say that the set S C A
‘depends only on the future in the coding’ if S = x(Sx) for a set Sy which has
this property. Then for a rectangle R; = {x(z) : z € X4 with o = j}, we can
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define
Sr; = {x(x) : x € Sx with z¢ = j}.

Thus S = Uj Sg;- (This definition depends on the choice of Sx; when we write
Sg; we are implicitly assuming we know which set Sx we are working with.) Note
that if S is a set which satisfies the stronger condition of depending only on the
future in A (as for the sets Avea(g, @), Bdda(g) and La(g, F,r)) then we can
simply take Sx = x~'(S5), which implies Sg;, = SN R;. However this does not
hold if S is produced from a more general set Sx as there may be complications
at the boundaries of rectangles. Note also that if Sx is o-invariant then x(Sx)
is f-invariant.

This condition is still strong enough to ensure that S looks like a product
when restricted to a rectangle. That is, suppose we pick a rectangle R* and a
point z* € int R* as above. Then if S depends only on the future in the coding,
the set Sg« is represented in the product structure by (Sg- "W (2*)) x Wi.(2*).

Similarly, suppose we have a hyperbolic flow ¢, : A — A, coded by a suspended
flow o] : X7, — X, over a subshift of finite type o : X4 — X 4. Here we will say
that a ¢-invariant set S C A ‘depends only on the future in the coding’ if it is of

the form

= {o(,0): v € Sx),

teR

where Sy C X4 is a o-invariant set which depends only on future co-ordinates.
(We need the sets to be invariant here because we have to make use of the
projection along lines of the flow.) We recall from the construction of the symbolic
dynamics that we can find 7 > 0 such that A is covered by the sets Ute(_”) ou(T3),

diffeomorphic to the product T; x (—7, 7). If we define

St, = U b1 ({p(,0) : z € Sx with zo = 5}),

Le(—1,7)

then S = Uj St;. When looking at the rectangle 7* with product structure
T* — WH.(2*) x Wi.(2*), the set Sy NT* is represented in the product structure
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by (Sre N Wik (2*)) x Wi (2%).

If our diffeomorphism (or flow) is conformal, then we have a formula for the
dimension of the intersection of A with a stable manifold, in terms of the function

a® (or v for a flow) defired in section 1.5:

Theorem 2.28 ([Pes|,[PS]) (a) Suppose f: A — A is a conformal hyperbolic

diffeomorphism. Then for any rectangle R* and point 2z* € int R* we have
dimpy Wi (2%) = dimgW3.(2*) = ¢,

where ) is the unique number such that P(t® logal®)) = 0. (Here P is

the pressure function on A.)

(b) Suppose ¢ : A — A is a conformal hyperbolic flow. Then for any rectangle

T* and point 2* € int T* we have
dimy Wi (2*) = dimpWa. (2*) = 11,
where t9) is the unique number such that P(t(v®) = 0.

(The references [Pes] and [PS] also give similar results for the unstable manifolds,
and these can be combined to find the dimension of the set A itself.)

Because the Hausdorff dimension and upper box dimension of W§.(2*) coin-
cide, we can apply property (e) from section 1.5 to any product V' x Wi, (z*) for
V C Wi.(2*). (And similarly for flows.) Furthermore, Proposition 1.8 tells us
that, with the conformality assumption, the product structure on each rectangle
is Lipschitz, and so preserves dimension. Combining all these observations we

have the following:

Lemma 2.29 (a) Suppose f : A — A is a conformal hyperbolic diffeomor-
phism, and suppose the set S C A depends only on the future (in the coding).

Then for any rectangle R* and any z* € int R* we have
dimyg Sp- = dimH(SR* N W}:ﬁ* (Z*)) -+ £(8),
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(b) Suppose ¢, : A — A is a conformal hyperbolic flow, and suppose the ¢-
invariant set S C A depends only on the future (in the coding). Then for

any rectangle T* and any z* € int T we have
dimg Spv = dimg(Spe N WE(2*) + 1) + 1.

Applying this to the sets which depend only on the future in A (rather than

just in the coding), we have:

Lemma 2.30 (a) Suppose f : A — A is a conformal hyperbolic diffeomor-

phism. Then for any rectangle R* and any z* € int R* we have

dim g (Aves (g, @) N R*) = dimy (Ave, (g, o) N Wi (2%)) +
dim(Bdda(g) N R*) = dimg (Bdda(g) N W (2*)) + ¢,
dimH(LA(g, F, ’I‘) M R*) = dimH(LA(g, F, 'F) n WE* (z*)) + £,

(b) Suppose ¢, : A — A is a conformal hyperbolic flow. Then for any rectangle
T* and any z* € int T, if we write T} = Ute(—mJ & (T*) we have

dimy(Aven(g, &) N T7) = dim s (Avea(g, &) N Wi (7)) + 1) + 1
dimH(deA(g) M T:) = dnnH(deA(g) M W,.;f* (Z*)) 4 t(s) + 1;
dimpy (La(g, F) NT}) = dimg (La(g, F) N Wik (%)) + 19 + 1.

(Here the functions g : A — R? and r : A — R are assumed to be Hélder

continuous, and ¥ satisfies the condition of Theorem 2.24.)

This is all analogous to the method for working with two-sided subshifts of
finite type in section 2.1.4. There we looked at the projection to the one-sided
subshift: this is much the same as looking at the intersection with an unstable
manifold. However, for subshifts of finite type the projection was to the ‘nice’
space X T which we had already studied. In order for a similar method to work
for hyperbolic diffeomorphisms (and flows), we need a way to get information
about the intersections Sp- N Wg. (2*), and in particular we need an analogue of

Theorem 2.2. The ideas that we need are described in the next section.
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2.4.2 BS-dimension

We follow the descriptions in [Pes| and [BSS]. Let T': X — X be a continuous
map of a compact metric space, and let I/ be a finite open cover of X. We consider
strings of sets, which we write as U = (U, Uy, ..., Un)-1), where U; € U for
each i. Let Sp,(U) be the set of all such strings U for which m(U) = m.

Each U € |J,,50 Sm(U) defines a set

X(U)={zeX:TzeU; V0<i<m(U)}.
And then for any continuous real-valued function v/ on X we can define

Pp(U) = sup o™V (x).

2EX(U)

Now let u : X — R* be a strictly positive continuous function. For any set

Z C X and o € R we define
M(Z,a,u,U) =

T}Lrgo inf {Z exp(—au(U)): T C U S (U4) with U X(U) 2 Z} ,

Uel m>n Uel’

and we use this to define
dimyy Z = inf {a : M(Z, o, u,U) = 0}.

We can then consider what happens as we take diamif — 0 (where diamlf =

maxpey diam U). It turns out that the limit

dim, Z = lim dim,yZ
u diam {0 wi

always exists. (In fact thinking of this as a limit is slightly misleading: we expect
dim, s to be independent of U, provided that diam{ is sufficiently small.) This
quantity was first defined by Barreira and Schmeling in [BSc] and so is referred

to in [Pes| as BS-dimension.
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When v = 1, dim,, Z gives the topological entropy of T"on Z. (Or, to be more
precise, it coincides with the usual definition of topological entropy for compact
invariant sets, and extends it to more general sets.)

BS-dimension shares some of the simple properties of Hausdorff dimension.
In particular, if Z; C Z; C X then dim, Z; < dim, Z,, and if Z = Ui21 Z; for
sets Z; € X then

dim, Z = sup dim,, Z;. (2.32)

izl

We can also define BS-dimension for measures. For a Borel probability mea-
sure p we let

dimy, g, pp = inf {dim, yy Z : pu(Z) =1},

and then dim, u is defined by

dim, = lm dim }
wH T a0 wld P

Again this limit is guaranteed to exist. For us the important consequence of this

definition is that if Z is a set with u(Z) =1 then dim, Z > dim,, u.

Proposition 2.31 ([BSc|) If i is ergodic then

dim, o= )
U fX’u,dlj,’

where h,(T') is the measure-theoretic entropy.

We can now state a generalisation of Theorems 2.2/2.15/2.19. Suppose that

g : X — R¢ is continuous, and define as before

D(g) = {fxgdy:ueM(X)}.

Then we have:

Theorem 2.32 ([BSS]) Suppose that the function p +— h,(T) is upper semi-
continuous, and the continuous function g : X — R? is such that My + Ele Aigi

has a unique equilibrium state for any X\, A1,..., \qa € R. Then:
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1. If a € D(g) then Avex(g, a) = @.

2. If o € int D(g) then Avex(g, o) # @, and
. hu(T)
dim, Aveyx(g, ) =sup{ ————:u e M(X) and | gdp=op.
fX udp X
Furthermore the supremum is attained by some ergodic measure i, which is

an equilibrium state for the function

<Q(a)7 g) - (dilnu AVGX (g, Oﬂ)) u,
for some q(a) € R%.

The conditions of this theorem are satisfied for the maps that we are interested
in (expanding maps and hyperbolic diffeomorphisms), when g and u are Holder
continuous. Also in that case we have that if the components of g are cohomolo-
gously independent then the set D(g) is the closure of its interior.

The link to Theorem 2.19 is given by the following:

Proposition 2.33 ([BSc]) Suppose we take X to be a repeller J of a conformal
C'te ezpanding map. Then if we set u(z) = v(z) = log a(x), we have dimy Z =
dim, Z for any Z € J, and dimny o = dim, ¢ for any Borel probability measure

L.

We can use this to deduce Theorem 2.19 as a special case of Theorem 2.32.

There is also a concept of BS-dimension for flows, introduced in [BS1]. We
restrict attention to conformal hyperbolic flows ¢, : A — A since this is the only
type of flow we will want to consider.

For z € A, t > 0, € > 0 we define the set
B(z,t,e) = {y € A: d(¢,y, ¢.z) < € whenever 0 < 7 < t},
and then for a continuous function ¢ : A — R we can define
¥(z,t,€) = sup {/Ot'g/)(d)ry) dr 1y € B(z,t, e)} )
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Now suppose u : A — R* is a strictly positive continuous function. Then for any

set Z C A and o € R we define
M(Z, o, u,¢) = 712201%f Z exp(—au(z, t,€)),
(z,t)ET

where the infimum is taken over all countable subsets I' of A x [T, 00) for which
U(:n,t)e]" B(x,t,¢) O Z. We then take

dimy, Z = inf{a : M(Z, o, u,€) =0}

and set

dim, Z = lim dim, Z.

e—0

For a Borel probability measure y on A we define
dimy, ¢ ¢ = inf{dim,  Z : ((Z) = 1},
and then
dim,, ¢t = lin& dim,, ¢ fs.
E—>

Again these limits are guaranteed to exist, and we have:

Proposition 2.34 ([BD]) If yu is ergodic then

h'.u (¢)

And we have a version of Theorem 2.32;

Theorem 2.35 ([BD]) Let ¢, : A — A be a hyperbolic flow. Suppose the func-

tions g: A — R% and u: A — R* are Holder continuous. Then
1. If o & D(g) then Avey(g, o) = 2.

2. If o € int D(g) then Aven(g, o) # &, and

hyu(¢)

Touda t € M(A) and ‘/Agdu:a}.

dim, Avex (g, @) = sup {
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Furthermore the supremum 1s attained by some ergodic measure i, which is

an equilibrium state for the function

(q(a), g) - (dlmu AV@X (ga a)) U,

for some q(a) € R%.

The reason that BS-dimension is useful to us is that, if we choose the right
function u, we get information about the Hausdorfl dimension. In the case of a
conformal repeller for an expanding map, Proposition 2.33 gives that the Haus~
dorff dimension is actually equal to the BS-dimension for a particular u. For
hyperbolic diffeomorphisms and flows, we instead get information about the di-

mensions of subsets of unstable (or stable) manifolds.

Lemma 2.36 (a) Let f : A — A be a conformal hyperbolic diffeomorphism,
and define the function u by u(z) = v™(2) = loga™(z). Suppose S is a
f-invariant subset of A which depends only on the future (in the coding).

Then for a rectangle R* and point z* € int R* we have

dimy (S N Wi (2*)) = dim, Sg-.

(b) Let ¢ : A — A be a conformal hyperbolic flow, and take u to be the function
v Suppose S is a P.-invariant subset of A which depends only on the
future (in the coding). Then for a rectangle T* and point z* € intT* we
have

dimg (Sp- N W (2%)) = dimy, Sp-.

Part (b) is implied in [BD] without the conditions on S. (Though clearly it cannot
be true for every set S because it requires dimy Sp-NWZE (2*) to be independent of
z*.) Along with Proposition 2.33, this result follows from the ‘bounded distortion’

property of conformal systems: e.g. for a conformal hyperbolic flow we have

 (diam B(z, 1, €) N We(z))

=T ap(—av(z, te) =
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While I believe Lemma 2.36 is well known, I have been unable to find an explicit
reference (except for the incomplete statement of (b) in [BD]), so present a sketch
proof of part (a) below. (Part (b) can be proved by a similar method.) But for

the moment we note that by combining Lemma 2.36 with Theorem 2.29 we have:

Lemma 2.37 (a) Let f : A — A be a conformal hyperbolic diffeomorphism,
and define the function w by u(z) = v(¥(z) = loga™(z). Suppose S is a
S-invariant subset of A which depends only on the future (in the coding).
Then

dimg S = dim,, S + ¢,

(b) Let ¢ : A — A be a conformal hyperbolic flow, and take u to be the function
v . Suppose S is a ¢,-invariant subset of A which depends only on the

future (in the coding). Then
dimg S = dim, S + ¢ + 1.

Proof: For part (a), consider the rectangles R; of the Markov partition, and
choose a point 2\ € int R; for each j. We have

dimH S = sup dlmH SRJ-
J

= sup (dimH (Sr; N W (29)) + t(s)) (from Theorem 2.29)
M

= sup dim,, Sg, + %) (from Lemma 2.36)
i

= dim,, S + t® (from (2.32)).

Part (b) is similar. O

Sketch proof of Lemma 2.36(a): We consider covers U whose elements are small
open rectangles in A. That is, each U € U is an open set in A such that whenever
z,y € U we have [z, y] € U; we also require that U is ‘connected’ in the sense that
if z,y € U with y € W*(z) (or y € W3(z)) then U contains the entire segment
of W*(xz) N A (respectively W#(z) N A) between z and y.
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If each U is an open rectangle it follows that every set A(U) is also an open
rectangle.

Now, for each U € U we want to produce a slightly larger open rectangle
U’ by ‘expanding U in the stable direction’. Suppose we are given § < diamf.
The rectangle U is bounded by two local stable manifolds and two local unstable
manifolds. By moving the unstable manifolds slightly, we can produce U’ with
diam U’ < diam U + ¢ with the property that there exists &' > 0 such that

U2 U {y e Wi(z) : d(z,y) < d'}.
xel
Since U is finite we may choose ¢’ independent of U. We now have a new cover
U ={U:U el}, and if U = (Up, Uy,...,Unwy-1) for U; € U we may define
U = (U, UL,..., U, )-1), which has the property that
AUY 2 | v ew(e): diy) < ).
2EA(U)

Now suppose we have a cover of Sp-NWE.(2*), as in the definition of Hausdorft
dimension. Then by an argument similar to that for Moran covers, we can replace
each set of this cover by a bounded number of sets of the form A(U), such that
diam A(U) is no more than a constant multiple of the diameter of the original

set. But if the sets A(U;) cover Sp- N WH.(2*), then the sets A(U}) cover
Sp N U {y € Wi (2") 1 d(z,y) < &'}
zEW R, (2*)
The ‘bounded distortion’ property for a conformal hyperbolic diffeornorphism

tells us

¢y (diam A(U) N WE(2%))® < exp(—au(U)) < ¢z (diam A(U) N WE(2*))“.
(2.33)

Comparing the definitions of Hausdorff dimension and BS-dimension then gives

dimye [ See 0V | {y € Wi(2") 1 d(z,y) < §'} | < dimy Sp- 0 Wi (2%).
ceWR. (%)
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But the right hand side is independent of the choice of z* € int R*, and the sets
on the left hand side cover Sgr- when taken over a suitable finite number of choices

of z*. Then taking diamf — 0 (which implies diaml’ — 0) we get
dim, Sp < dimg Sgp- N WE.(2Y).
The opposite inequality is easier since any cover of S+ is automatically a cover

of Sp+ N WE.(2*), and we can apply (2.33) again.

2.4.3 Results for conformal hyperbolic diffeomorphisms

Our aim is to prove the following:

Theorem 2.38 Let f : A — A be o conformal hyperbolic diffeomorphism, and
let g: A — RY be Holder continuous. Suppose there exists an equilibrium state v

on A such that [, gdv =0. Then
dimy Bdd,(g) = dimy Aves(g, 0).
Furthermore if the components of g are cohomologously independent then
dimy La(g, F,7) = dimy Avea(g, 0),

for any strictly positive Hélder continuous function r : A — R and any continu-
ous function F : R* — R* with the property that sup, oy [|F(t +7) — F()|| — 0

as t — oo,

Although the first part of this theorem does not require the components of
g to be cohomologously independent, we can always reduce to a case where the
components are cohomologously independent by ‘throwing out’ components if
necessary, as explained in the proof of Theorem 2.22. So in what follows we will

always assume that the components of g are cohomologously independent.

107




We look at the subshift of finite type ¢ : X4 — X4 which is the model for
f. We have the projection m, : Xa — XJ¥, and if 2* = x(z*) € int R* for a
rectangle R* of the Markov partition for f, the set Wk, (2*) is coded by the map
X gt] — W (2) as defined in section 2.2. We look at the sets x™(C)
where C C [z}] is a a cylinder in X}. According to Proposition 2.14, each such
set x{Y(C) is contained in a ball (in Wi.(z*)) of radius 7/ (C) and contains a
ball of radius r( )(C’). By copying the proofs of Lemmas 2.16 and 2.17, we have

analogous results for this situation:

Lemma 2.39 (i) There erist positive constants v, Y2, ¢1, €2 such that if C C

[z3] is a cylinder of length n in X then
crexp (—mn) < r¥(0) < _(u)(C) < caexp (—yen) .

(i) Let C = [xy,...,Zm-1] be a cylinder in X} with zop = xf, and let C' be a
cylinder produced by inserting a single block of length £ inside C, i.e.

C' =z, Tic1,b0y vy b1, Ti oo Ty 1] -
Then we have

(0 2 P (C) 2 exp (—u) T (C),
for a constant 5.

Lemma 2.40 Suppose we have a block-adding process € : S — S (for some
S C X7 ) which is defined on cylinders. Let Q C [x3] be a cylinder of length n
which intersects S, and let m be the length of the cylinder @ obtained by removing
the blocks from Q). Write p = (n —n)/7. Then, provided that p < 1, we have

M@ 210Q 2 (@)

where ¢, y are constants.
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Now suppose we are given the Holder continuous function g : A — R¢, and
an equilibrium state » on A such that f A gdv = 0. We transfer these to X4,
producing a function g : X4 — R? and an equilibrium state @ on X4 such that
/ Xa g dy = 0. By applying Proposition 1.2 (to each of the components of §) we
can find a Hélder continuous function g which is cohomologous to & and which
depends only on future co-ordinates. This gives rise to a well-defined function
g : X1 — RY by taking g% (nyz) = g (2), for which fXj gtdut =0.

If the components of g are cohomologously independent, this implies that the
components of §+ are cohomologously independent.

Suppose 2* = x(z*) € int R* as above. Then if y is a point in [z}] C X7, we

have (by definition) x\* (y) = x(z) where z € X, is the point defined by

z=(..2 2, 250y ... )
We then have

y € Bddy+(§") & = € Bddx, (™)

& 1 € Bddx, (8)

& xW(y) € Bdda(g) (2.34)
And similarly
Y € Avey+ &*,0) & X (y) € Ave(g, 0). (2.35)

Also, given r : A — R* we can produce in the same way the function #* : Xt —

R*. (We explained in section 2.1.4 why we may take #+ > 0.) And then we have
y € Lyt (85 F,7) & xW(y) € La(g, F,7), (2.36)

assuming F satisfies the usual condition.

We now look at the sets G(n) C X} as defined in the proof of Theorem

2.22. Recall that these are defined in terms of a Holder continuous function
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g : X1 — R? and an equilibrium state on X} which integrates g to zero. We

will take g = g%, and the equilibrium state to be u*. That is, we define
I =7 g = -1,
¢(n) = put ({x € Xt g™ @) > ni — V(g)}) +n7h
C(n) = {C’ € Cyl(n) : |"(v)|| > n1 for some y € C’} ;
and then

G(n) = {:c e Xt :1imsup#{0 si<tize Bn)} < e(n)},

t—oo t

where E;(n) = Ugeem 0~"(C). We know that pt(G(n)) = 1.
Note that the set G(n) is ¢™invariant. We would prefer to work with o-

invariant sets, so we we will actually consider instead

G(n) := ﬂ o HG(n)).

0<i<n

Since it (07HG(n))) = p* (G(n)) =1 for all i, we have u* (G(n)) = 1.
We can now define the set I'(n) C A by

F(n)=x (7@1 (é’(n))) .

Since ut(G(n)) = 1 we have (ﬂ';l (@(n))) =1 and so v(I'(n)) = 1. If we then
put
I'= I'(n)

.

v
e

n>m

we also have v(T") = 1.

In order to compare the dimensions of the sets Ave,(g,0), Bdda(g) and
L(g,F,r), we will relate all of these sets to the set I. We start with a sim-

ple inclusion:

Lemma 2.41 If F satisfies the condition that sup,coy [|F(t+7) —F(@#)|| — 0
as t — oo, then La(g,F,r) C .
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Proof: Suppose z = x(z) € La(g,F,7), and let y = n.x € X}. Then we know
Yy € LX;){ (*,F,#1); so we can find K > 0 such that

&)™ (y) - F (F)™W)| <K Ym=>0.

3
Choose ny sufficiently large that nd > 2K + V(gt) -+ 1. Given n > ng, we can
find tp(n) such that whenever t > to(n) we have |F(t +7) — F(¢)|| < 1 for all

T € [0,n ). Then whenever m is sufficiently large that m#..

maoz

> to(n) we have

& (™) = [|[&H)™" (W) - &)™)
<[ ((FH™n@) ~F () | + 2K
<2K +1
<ni-V(g"),
and so o™y & Fy(n). So the points y, oy, ..., e"*y each belong to only
finitely many of the sets Ej(n), which implies that y € (5, G(n). Since
I'(n) = x (77 (G(n))) it follows that 2 € MNasme L(0) €T d

Ouwr next result is the one that gives us the important lower bound for

dimpy Bdda(g):

Lemma 2.42 dimy Bdda(g) = dimg T

Proof: For each n > 1 we look at the block-adding process £ : G{n) — G'(n)
defined in the proof of Theorem 2.22 (taking g§ = g* as above). Then G'(n) C

Bddy+(8"). Also as in Theorem 2.22 we consider the sets

<1 ' ;
Sxn o) = {a e xp #OSILiw € Bl)

< e(n) for all t > tg} .

Now suppose 2* = x(z*) € int R* where R* is a rectangle of the Markov partition
for f. We define

Sx(n, to, z5) = Sx(n,to) N G(n) N[z],
and look at the restriction of € to Sy (n, ig, z3). We write

She(n,to,w5) = € (Sx(m, o, 25))
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For any z € G(n) we have [¢(z)], = wo; 50 Si(n,to,x3) C [z3]. Thus the
map X\ : [a3] — WL(z*) is defined on the set S%(n, t0,$3), as well as on
Sx(n,to, x3). We will compare the dimensions of the sets x (S 'x(n, to, xo)) and

XSL) ( (n, to, a:D)), using the same arguments as in Theorem 2.18.

We write D = dimpg x( ) (Sx(n, tg,ccg)), and let > 0 be arbitrary. For
all sufficiently small p we can find a cover of xi‘f) (S‘;((n, to, :1,3)) by a finite or
countable collection of balls B; in W.(2*) with radii r; < p such that

ZriDJ”’ <1
i

For each i we can construct a Moran cover i, of WH. (2*) with size 7;; this consists
of sets of the form x™(Q) where Q is a cylinder in X7 T with @ C {z]. We let
xf;i)( QF) (1 < k < m(3)) be the sets of this cover for which Q¥ N (x*)~(B;) N
Sy (n,to,z5) # 2.

We have m(i) < Mporan and T T (Qf) < CMoran-Ti, SO

u D7
Z (T(z*)(Qf)) < A’lfl\/ht)rml-(Cl\‘loran)D-{-TI = K(U)- (237)

ik
For each cylinder Q¥, we remove the blocks from QF to produce the cylinder
Q\@ The sets Q’“ then cover S X(n to, xy), and so the images X (Q’”) cover
K (Sx(n to,’ﬂo))
If the lengths of the cylinders QF and QF are ¥ and m} respectively, then as
in Theorem 2.18 or 2.22 we have

R L (N k 2.
m; > ( A ey n) m;. (2.38)

Combining this with Lemma 2.39(i) now gives that sup; ; diam X(“) (Qz) — 0 as
p — 0, and that if p is sufficiently small then m¥ > nty for all 4, k. We also
showed in the proof of Theorem 2.18/2.22 that if M¥ > nty then

mk — mk

i )
R S

"1
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1

where g(n) := cse(n) + canTE + cgn~ — 0 as n — oco.

So, by Lemma 2.40, if n is sufficiently large that ¢(n) < 1 then

_(u) (QL) > c( 7w (Qi))lﬂ‘l(n),

Combining this with (2.15) gives (for all sufficiently small p)

~ 1\ (TH7a(r))(D+n) _
> (@) < P (),

ik

and so

Z ( diam X( w) ( Q ))(1+w(n))(D+n) 2(+ra(m) (D) (D) pe ()

But the sets x (QF) cover x (S x(n, to, $0)) and sup; , diam x (Q%) — 0 as

p— 0, s0
dimyr X (Sx(n to, :Lo)) < (1 +1q(n)) (dlme (Sx(n tm%)) + 77) :
As 1 was arbitrary,
dimg x& (Sx(n to,xo)) < (1 +7q(n)) dimy x( ) (Sx(n to,xo))

Because ;5 Sx(n,to) = G(n) we have |, 5, Sx(n,te, z5) = G(n)N[z}], and
so dimp X\ (Sx (n, to, z5)) — dimg x™ (G(n) N [x3]) as to — co. Also we have
S (n,to,z5) € G'(n) N [zf] C Bddy+ (&%) N [zg]- So

dimps X3 (Bdd ey (8%) N[ag]) 2 (1 + va(n)) ™ dimy x& (G(m) 0 [55)) . (239)

Now, we have defined T'(n) = x (w;l(é(n))); as such, I'(n) depends only on
the future in the coding, in the sense defined in section 2.4.1; by comparing this

definition with the definition of x'¥ we see that
)] e W (%) = X (Gl 0 [23])
And so from Lemma 2.29 we have
dimy [D(n)] 5. = dimy x (G‘(n) N [xa]) + 1),
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Similarly, Bdda(g) depends only on the future (in the coding), and here (as
explained in section 2.4.1) we have more simply [Bdda(g)]z- = Bdda(g) N R*.
Furthermore we showed that y € Bddy+(&") N [ag] if and only if X (y) €
Bdda(g), and so

[Bdda(g)lp N Wi (27) = x& (Bddy; (87 N [3])
Applying Lemma 2.29 to this we get
dimyr [Bdda(g)] - = dimpr X (Badyy (&%) 0 [23]) + €.
Substituting into (2.39) then gives
(dimy; [Bdda(g)] e — ) > (1 4+ yg(n)) ™" (dimg [D(n)] g — ).
By maximizing over all the rectangles of the Markov partition we then get
dimg Bdda(g) — t® > (1 4 yq(n))™ (dimg T'(n) — ¢19) .

And now by taking n — oo as in the remarks at the end of section 2.3.2 we have

dimp Bdda(g) — ¢t > dimy ( U N I‘(n)) — 1),

m>1ln>m
ie.

diIIlH deA(g) > dlmH T.

The opposite inequality follows from the fact that Bdda(g) C I', which is a

special case of Lemma 2.41. (I

Now we have the analogue of Theorem 2.24:
Lemma 2.43 dimy Lx(g, F,7) = dimy I

Proof: In light of Lemmas 2.41 and 2.42 it remains to prove dimg La(g, F,7) >
In the proof of Theorem 2.24 we defined a block-adding process £ : Sy — S%

in terms of functions g§ : X§ — R? and 7 : X} — R*. We will make use of
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this block-adding process, taking g = g+ and 7 = #+. That is, the block-adding

process is defined on the set
Sk ={ze X} :||(E") ()| < K ¥n},

and we showed in the proof of Theorem 2.24 that S € Ly+(8",F, ).
If 2* = x(z*) € int R* for some rectangle R*, we look at the restriction of x

to the set
Sk (z3) = Sk N [a5].
We define S (z5) to be the image of Sk (z3) under £&. Then St (z3) C [z], so we
may compare the dimensions of x'¥(Sk(z3)) and xSk (z3)).
Now, in Theorem 2.24, where we had a coding x : X; — J, we showed that
dimg x(S%) > dimg x(Sk). By modifying this part of the proof appropriately

we can show for our hyperbolic diffeomorphism that
dimpy X2 (S5e(w5)) 2 dimp x{ (S ().

(We omit the details: the only changes are that we look at covers of St (zf) rather
than the whole of S, and that we have the coding y'\ : X — W2 (2*) rather
than x. We went through these modifications explicitly in the proof of Lemma

2.42, where we were copying the arguments of Theorem 2.22.)

Now X\ (Si(25)) € X (I (&%, F,7#)N[z]) C La(g, F,r) W (2*) from
(2.36), so
dimy (La(g,F,r) N Wh.(2)) > dimg P )(Sk ().

For the right hand side we have |, Sk(zf) = Bdd x5 (&T) N [zd] so

dimy; X (Bdd .+ (&%) N [25]) = sup diny X (S (22));

and x (Bdd v+ (&%) N[z3]) = Bdda(g) N Wi (2*) from (2.34). Hence
dimy (La(g, F,r) N Wi (2")) > dimy (Bdd,(g) N W (2%)).
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So from Lemma, 2.30 we have
dimy (La(g, F,r) N R*) > dimy (Bdda(g) N RY),
and maximizing over all rectangles of the Markov partition gives
dimy La(g, F,r) > dimy Bdda(g).

O

We are now ready to complete the proof of our main result for hyperbolic

diffeomorphisms.

Proof of Theorem 2.58: We have already shown that dimg Bdda(g) =
dimy La(g, F,7) = dimy ', and we also know that Bdd,(g) € Avep(g,0). Thus
it is sufficient to prove that dimy ' > dimpy Avea(g,0). This is where we will
make use of the BS-dimension. We set u(z) = v (z), which we know is Holder
continuous.

Because [, gdv = 0 and v is an equilibrium state we know that 0 € int D(g).
So by Theorem 2.32,

dim,, Avep(g,0) = sup {% C € M(A) and / gdy = 0} )
Aa A

and the supremum is attained for a measure which is an equilibrium state for
a Holder continuous function on A. We will now assume that v is the measure
for which the supremum is attained. (It is sufficient to prove this case, because
although the set I' is defined in terms of v, one consequence of Lemma 2.42 is
that dimpy [' is independent of the v that was given.) That is, we may assume

that
hu(f)
fyudv

dim, Ave,(g,0) =

And by Proposition 2.31 this implies
dim,, Ave,(g, 0) = dim,, v.
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If v is the measure on X4 which corresponds to v, we have u ('ﬁ;l(é (n))) =1

for all n, and so u (ﬂnzl w;l(é(n))) = 1. Hence v (X (nn21 w;l(@(n)))) =1,

and so from the definition of BS-dimension for a measure we have

dim,, x (m ot (é(n))) > dim,, Ave, (g, 0).

n>1

So from Lemma 2.37,

dimy x (m w;%é(n))) > dimpy Avey (g, 0).

n>1
But ( (G(n)) C ~1(G(n))} C T, and
ut X nn217r+( (n)) —ﬂnZlX ﬂ'+( ('I’L)) =1, and so
dimpy I' > dimy Ave,(g, 0),

which is what we wanted to prove. 0

2.4.4 Results for conformal hyperbolic flows

We can adapt the methods for diffeomorphisms to work for flows. For the flow

¢ : A — A the sets we are interested in are
1 t
Aves(g, @) := {:v €A: z/ g(¢x) dr —> @ ast — oo.};
0
T
Bdda(g) := {m eA: / g (¢rx) dr is bounded} ;
0
t
Li(g, F) = {w S / g (¢-x) dr =F(t) + O(l)} )
0
Our main result for flows will be this:

Theorem 2.44 Let ¢ : A — A be a conformal hyperbolic flow, and let g : A —
R? be Hélder continuous. Suppose there exists an equilibrium state v on A such

that [, gdv =0. Then

dimy Bdda(g) = dimpy Avea(g, 0).
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Furthermore if the components of g are cohomologously independent then
dimpg La(g, F) = dimy Avex(g, 0),

whenever the continuous function F : R — R? has the property that

sup,¢p, IF (¢ +71) = F()|| — 0 as t — oo.

As for diffeomorphisms, by throwing out components if necessary we may as-

sume throughout that the components of g are cohomologously independent.

The flow is modeled by a suspended flow o} : X7 — X7, over a subshift of
finite type o : X4 — Xa. We look at a point z* = p(z*,0) € int T*, where T* is
one of the Markov sections used to construct the symbolic dynamics. Then the
set Wi (2*) is thought of as being represented by the cylinder [zj] in X, via
the map xf;f) ¢ [zg] — W (). As for diffeomorphisms, if we have a cylinder
C C [z3] in X} we can look at 7%(C) and 7(C). Lemmas 2.39 and 2.40 carry
over word for word to the flow case.

We let & : X7 — R? be the pullback of g via the coding map p. We can
also transfer the equilibrium state v to X7, giving an equilibrium state which we
will call &, which satisfies |, X7 gdi = 0. Now as explained in section 1.4 we can

consider the function Zg : X4 — R¢ defined by

r(z)
Tg(z) = / g(z, 5) ds.
QO

Furthermore from Proposition 1.7 the measure i is of the form (1 x 1)/(fy, 7 du),
where 4 is an equilibrium state on X4 and [ is Lebesgue measure, and it follows

that

/ Igdu=0.
Xa

We now look at the function (Zg)™ which depends only on future co-ordinates
and which is cohomologous to Z§. As before, this defines a function (Zg)" :

X1 - R¢ by taking (Zg)" (mz) = (Zg)™W(z). We set § = (Zg)*.
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Now suppose y € [z3]; then x™(y) = p(z,0) where z is given by

z=(...z % 2fnys ...).

We have
y € Bddy+(§) ¢ = € Bddx, ((Z§)™)
& € Bddy, (Z8)
= (I,O) S dex};1 (Q) N
and so

y € Bddy+(g) & x\¥(y) € Bdd, (g). (2.40)

We could prove a similar statement for Ave, (g, 0) but this will not be necessary;
however we do need to consider the sets L, (g, F). We look at 7™ : X, — R,
which is cohomologous to 7 (where r is the roof function for the suspended flow

X7%), and use this to define r* : X1 — R* as we have done previously. Then we

have
y € Lyt (& F,r) &z € Ly, (Z8)™,F,r)
&z e Ly, (Zg,F,1)
& T € Ly, (§,F)
(because forn(m) g(o7(z,0)) dr = (Zg)*(z) for all n). And so
Y € Lyt (8, F,r) & XV (v) € La(g, F). (2.41)

We now consider the o-invariant sets G(n) defined in section 2.4.3. We define

sets I'(n) for the flow by

I(n) = U O ({p(:c,O) imyr € é‘(n)}) .

teR

Thus I'(n) depends only on the future in the coding, in the sense defined in section

2.4.1. And, as for diffeomorphisms, we define

r=J ) Tw).

m2ln>m
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Lemma 2.45 If F satisfies the condition that sup,¢pq [[F(t+7) —F(t)|| — 0
as t — oo, then Ly(g,F) CT.

Proof: Because Lx(g,F) and I are both ¢-invariant it is sufficient to show that
Li(g,FyNnT* CT for each rectangle T*. Suppose z = p(z,0) € La(g, F) N T*,
and let y = w,z; then from (2.41) we have y € Lx+ (g, F,r"). So from the proof

of Lemma 2.41 we have y & () G(n) for some ngy. Hence

n=10

z € ﬂ {p(m,O) Py T € G‘(7z)} - ﬂ ['(n) CT.

n>no n>ng

Lemma 2.46 dimg Bdda(g) = dimg T

Proof: Let z* = p(z*,0) € int T* for a rectangle T*. As in Lemma 2.42 we

consider the block-adding process
€+ Sx(n, to,w5) — Sk (n, to, o)
(defined in terms of the function g : Xt — R%), where
Sx(n, to, z5) = Sx(n,to) N G(n) N [z2].

We know that S (n,tg, z3) € G'(n) C Bdd y+(8)-

We look at the images of the sets S x(n,ty, z5) and 5’3( (n, to, zf) under the
map x\¥ : [z§] — Wi (2*). By repeating the calculations of Lemma 2.42 we find
that

dimp X (deA+(g)ﬂ['nO])2(1 +g(n)) ! dimy X (é() =) (242)

Now, by definition we have

[D(n)],. = U b, ({p(zL 0) : mpa € G(n) and zo = x(’;}) )

te(—7,7)

and so

D). AW () =5 (Gln) N1a7))
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So from Lemma 2.29,
dimy [[(n)}. = dimy 3 (c”:(n) A {m:;]) RONEE
And similarly,
dimayr [Bld (g} = dimys x5 (Bdd 4 (8) 0 [a:z;]) IRCENY
Substituting into (2.42) gives
dimp [Bdda(g)]pe — £ — 1> (14 vg(n)) ™" (dimp [[(n)] . — ¢ — 1),
and by maximizing over all rectangles T we get
dimg Bdda(g) — ) — 1> (1 + yg(n)) ™" (dimg T'(n) — ) —1).

Taking n — oo gives

dimy; Bdda(g) — £ — 1 > dimyy (U N F(n>) -9 -1,

m>1ln>m
ie.

dimH deA(g) ?_ dimH r.

The opposite inequality follows from Lemma 2.45. O
Lemma 2.47 dimy La(g,F) = dimg T

Proof: We follow the proof of Lemma 2.43. We aim to show that dimy Lx(g, F) >
dimy I
Let 2* = p(z*,0) € int T* for a rectangle T*. As in Lemma 2.43 we consider
the block-adding process
€ Sre(zg) — Sk (wp),

where Sk (z§) = Sk N [z}]. This block-adding process ¢ is defined in terms of
functions g : X} — R? and 7 : X} — R*; we have already defined our function
g in terms of g, and we set ¥ = rt as defined above. The construction of £ then

gives that Sk (z8) C Lyt (g,F,r*).
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We look at the images of the sets Sk (z§) and Sk (z}) under the map X

[25] — WE.(2*). As in Lemma 2.43 we can show
dimy x5 (S5 (z5)) > dimp x& (Sx (23)).

Now XV (Sic(3) © X3 (Lt (& F,7+) N [53]) S La(g,F) N Wi (2*) from
(2.41), so
dimy (La(g, F) N W& (2*)) > dimg ' (Sk (z)).

But (Jys, Sk(2t) = Bdd 1 (8) N (23] s0
dimyy (X% (Bddc4 (8) N [7]) ) = sup dimy x{ (Src(z));
and x'¥ (Bdd -+ (&) N [2§]) = Bdda(g) N Wi (2*) from (2.40). So
dimg (La(g, F) N Wi (2%)) > dimgy (Bdda(g) N Wi (2%)).
So from Lemma 2.30,
dimy (La(g, F) NT7) > dimy (Bdda(g) N 1T7),

where T = Ue(_pry ¢(T%). If we allow T* to vary, the sets T,* cover A. So by

maximizing over all rectangles T* we get
O

As for diffeomorphisms, we can put all these results together to complete the

proof of our main result.

Proof of Theorem 2.44: It remains to show that dimy I' > dimy Avea(g, 0). Like

for diffeomorphisms, we do this by making use of the BS-dimension. We take
u(z) = v (2).
Because jA g dv = 0, we know that 0 € int D(g). So by Theorem 2.35,

dim, Avep(g,0) = sup {fh u(¢) : i€ M(A) and /gdu 0}
A
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and the supremum is attained for an equilibrium state on A. As in the proof of
Theorem 2.38 we may assume that v is the measure for which the supremum is

attained, i.e.

I, ()
Jyudy’

dim, Ave,(g,0) =

And so by Theorem 2.34,
dim,, Avex(g, 0) = dim,, v.

Now, recall that the measure # on X} is of the form (p x 1)/( [y, 7 dp). And
we have u (W;l(é(n))) = 1 for all n, which implies u (ﬂn21 Wil(é(n))) = 1.
Thus

9({($,t) e Xy imaze ()G, 0<t< ?’(z)}) _ 1

n>1

But

p({(m,t) €eXimuzeE Ql@(n), 0<t< 7‘($)}>
c U ({ote.0:mz e N 6m}),

teR n>1

(gm({ z,0) m@en@le })):1.

And so from the definition of BS-dimension for v,

so we have

dim,, U qﬁt({ z,0) 7wz € ﬂ G }) > dim,, v = dim, Avex(g, 0).

teR n>1

Now applying Lemma 2.37 gives

dimp |_] ¢, ({p(:z:, 0):mze() é(n)D > dimy Ave,(g, 0).

teR nz1
But
UqS,;({p(w,O) LT € ﬂ é(n)} - ﬂ (U bt ({P(fC 0): 7z € é(")})) ,
teR n>1 n>1 \teR
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and the right hand side here is just (1,5, I'(n), so

g?bt({p(m,[)) T € n@lé(n)} CT,

and hence

dimg I' > dimy Avep(g, 0).
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Chapter 3

Directions in homology for

periodic orbits

In this chapter we consider the periodic orbits of a transitive Anosov flow ¢; :
M — M. As with any closed curve in M, if we are given a periodic orbit v we
can look at its homology class [y] € Hi(M,Z). Our aim is to describe how the
periodic orbits of ¢ are distributed amongst the homology classes.

In particular we want to be able to talk about the ‘directions’ of homology
classes. For this to make sense we have to regard a homology class as being an
element of ZP, in the way described in section 1.6. That is, we use the fact that
H,(M,7Z) is isomorphic to Z° @ Tor, and ignore the torsion component. We allow
ourselves to write [y] to mean the point in Z' that represents (the torsion-free
part of) the homology class of v, as well as the homology class itself. Of course, to
make this definition we have to fix a particular choice of the map H; (M, Z) — Z?;
to put it another way, we are choosing a basis for the torsion-free part of H, (M, Z)
which will correspond to the standard basis of Z°.

We assumne that the Betti number b is strictly positive, otherwise everything
becomes trivial.

Once we have a point in Z° (or R®) we can define its direction as being the

projection onto the (Euclidean) unit sphere. The projection map pg : R*\ {0} —
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S°=1 is defined by ps(v) = o7, where ||-||z is the usual Euclidean norm; if [] # 0

Ivilz?

then we can define

0(v) = ps([7])-
(When [v] = 0 we will leave §(~) undefined.)
Now for T' > 0 we can define a measure v on the unit sphere by

1
) D o,

UM T[40

where dp(,) is the Dirac measure at ¢(v). This fails to be a probability measure
because there may be some periodic orbits with [y] = 0; but we do know that
#H{v:U(y) <T,[v] # 0} ~n(T) as T — o0, so the measure of the whole sphere
tends to 1 as T' — oo.

The problem is to determine whether v¢ has a (weak™) limit as T' — o0, and,
if so, to describe the limit v,.

We will show that the limit always exists, and the nature of v depends on

the asymptotic cycle for the measure of maximal entropy.

Asymptotic cycles were introduced by Schwartzman in [Sch]. We look at the
first cohomology group of M, H'(M,R), defined to be the set of smooth closed 1-
forms on M, modulo the exact 1-forms. H*(M, R) is the dual space to Hy(M,R),
and so also has dimension b. Suppose p is an invariant measure on M; then
for any closed 1-form w we can look at the integral [w(X)du, where X is the
tangent vector field for the flow. If w is an ezxact 1-form, so that w = df for
some function f, then w(X) is simply the derivative of f with respect to the
flow; since  is invariant this implies [ w(X) du = 0. So, more generally, we have
Jwi(X)dp = [wa(X)dp whenever wy and w; belong to the same cohomology
class. Hence there is a well-defined map ®, : H*(M,R) — R given by

Bl = [ () du

This ®,, is then called the p-asymptotic cycle (or winding cycle). It can be
regarded as being an element of H;(M,R).

126




It is shown in [Shal] that the flow is homologically full (i.e. every homology
class contains a periodic orbit) if and only if there is some fully supported invariant
measure u for which @, is identically zero. The constant h* in Theorem 1.9 is
then given by sup {h,(¢) : ®, = 0}. In particular, if ®,, = 0, where po is the
measure of maximal entropy, then the asymptotic in Theorem 1.9 holds with
h* = h.

As mentioned above, this asymptotic cycle @®,, turns out to be particularly

important for our problem. We write ®, = ®,,.

If ¢4 is the geodesic flow on the unit tangent bundle of a Riemannian manifold,

then we always have &y = 0. But for a general Anosov flow it is possible to have

By £ 0.

3.1 Obtaining homology from integration

As described in the introduction, by ignoring torsion and choosing a basis for
Hy(M,Z), we are thinking of [y] as being a point in Z°. We would like to write
[7] as an integral of an R’-valued function around «. The following methods are
described in [Bal| and [Sha2].

Suppose we consider closed 1-forms wy,ws, ..., wy, whose cohomology classes

form a basis for H*(M,R). Then for a periodic orbit v we can look at the vector

v, = (AWI(X),LMZ(X),...,wa(X)>.

:S)) P(y(s))ds.) Taken over the basis we

(Here we are writing f,y@[) to mean
have chosen for Hy (M, Z), the vectors v.,, must span R®. It follows (by a suitable
change-of-basis transformation of the w;) that the 1-forms wy,ws,...,ws, can be

chosen so that we actually have v, = [y]. That is,

M:LR
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Clearly this is closely related to the definition of asymptotic cycles. Indeed,

for an invariant measure p we have by definition

(Bullor) - @ullir))) = (/ 2 dﬂ,...,/mﬂ) ,

and so if we are regarding ®, as an element of H;(M,R), then its representation

as a point in R’ is given by [ F dyu.

There is an alternative approach if we work with the suspended flow o} :
X — X7, which is the model for the Anosov flow.

We look back at the definition of the coding p : X’ — M in terms of Markov
sections 7. Because M is compact, we can find ¢3; > 0 such that if we have two
closed curves v, and -y, for which d(vi(t),v2(t)) < ea for all ¢, then they must
belong to the same homology class. We want to choose Markov sections which
are small enough, and close enough, such that all the 7} have diameter much
smaller than €y, and the distance between T; and 7; for which A;; = 1 is also
much smaller than e,,.

For each T; (1 < j < k) we pick a point z; € T}. Also pick some base point
z € M. Then for any j we pick a curve ¢; which joins z to z;. Similarly, for any
pair (¢,7) such that A;; = 1 we choose a curve ¢;; which joins z; to z;. Because
the Markov sections are small, and T; and T; are close if A;; = 1, we can make
sure that the curve ¢;; is short (i.e. much smaller than €j;). We can then define
a closed curve 7;; which consists of the curve ¢; from z to z;, followed by the
curve ¢;; from 2; to z;, followed by the reverse of ¢;, which takes us back to z.
We can now define the function g : X4 — H,(M,Z) by taking g(z) to be the
homology class of Yqys, (or its representation as a point in Z*). We see that if 7y is
a. periodic orbit in M which corresponds to the periodic orbit {z,0z,...,0"  z}
in X4, then g™(z) = [v].

This function g is Holder continuous — indeed it is locally constant, depending
only on the first two co-ordinates. We can therefore construct a Holder continuous

function f on X7, such that Zf = g. Then if v is a periodic orbit in M, and z is
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a point in X4 such that p(z,0) € v, we have

()
/0 £(o7 (x, 0)) dt = [4].

The drawback of this approach is that, as noted in section 1.3, there is not a one-
to-one correspondence between periodic orbits of ¢ and those of the suspended

flow.

3.2 The case ¢y # 0

We make use of a result of Lalley which can be thought of as being a form of the

weak law of large numbers. It applies to a general hyperbolic flow ¢, : A — A.

Theorem 3.1 (Lalley [Lal]) Let ¢; : A — A be a hyperbolic flow, and let F :
A — R be continuous. Then for any ¢ > 0, we have
7

l_(f—y—)__/FdMO >e}=0.

We can also obtain a version of this theorem for a vector-valued function F: A —

A ;(—IT—)#{'Y ) T,

R¢, by applying the theorem to each component of F.

We apply this to the function F : M — R® defined in the previous section, for
which [y] = fw F. The quantity [F duo in Theorem 3.1 is then simply @y, the
asymptotic cycle for the measure of maximal entropy. Thus we have

: 1 7]
1 — ) LT |5 — @
Tl_l;lg‘o ’IT(T) # {’7 ('Y) —_ )‘ l(’y) 0

(We write ||.||2 to mean the Euclidean norm on R))

. > e} =0. (3.1)

Now suppose @, # 0. Given an open set D C S%!, we look the sector
ps (D) C Rb\ {0}. Since this is itself an open set, it follows from (3.1) that if
Dy € p5'(D) (or equivalently if ®o/||®olls € D) then

. 1 . [ -1 _
711_{1010 m#{’)’-l(’)’) ST,W € Ps (D)} =1
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But ps([7]/1(7)) = ps([7]) = 6(7) and so

1
Iim ——

2 T(T) #{7:1(7) <T,0(r) € D} = 1.

Thus we have shown that if D is any open neighbourhood of ®g/{|®oll2 in St
we have
71'1—1»%0 vp(D) = 1.

So we have proved the following:

Theorem 3.2 If &y # 0 then the measures vy have a weak™ limit vy, as T — oo,

and Ve, 5 the Dirac measure at O /|| Po|2.

3.3 The case &; =0

3.3.1 A norm on homology

From now on we will assume that ¢ is C**¢, which ensures that the functions
w(&) are Holder continuous. This is merely a simplifying assumption — if ¢ is
only C* then we can work instead with the suspended flow o7 : X} — X7, where
by the construction in section 3.1 we know that homology is given by integrating
the Holder continuous function f around a periodic orbit. But by assuming that
the flow is C**¢ we can analyse the flow itself and not have to start by working

with the model.

We define By = {®,, : p € M(M)}. This is a compact convex set in R®, and
we always have ®y € int B, (cf. Theorem 2.19 and the set D(g)). We define a
function § : int B, — R by

hp) = sup {h,(¢) : @, = p}.

Immediately from the definition we can see that §h(®P¢) = h, and if p # &y then

B(p) < h. Furthermore by making use of the thermodynamic formalism it can
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be shown ([Shal], [Bal]) that § is a strictly concave, analytic function (with
VH(®y) = 0), and that H := —V2h{®y) is positive definite.
Now suppose ®y = 0; we define a norm || - || on H;(M,R) (or R®) by

o> = (p, Ho).

‘We then have
bh(p) = h—3llol* + Olell®). (3.2)

‘We will see that this norm is, in a sense, the ‘correct’ norm to use on homolo
bl )

in our problem.

We can also define a function p : H*(M,R) — R by p([w]) = P(w(X)), where
P is the pressure as defined in section 1.4. Then Vp maps R to int 3, (regarding
HY(M,R) and H;(M,R) as copies of R? according to the bases we have chosen),
and indeed Vp : R® — int By is a diffeomorphism ([BaL]). Given p € int By, we
wite £() = (V5)"1(s).

In fact the functions —h and p are a Legendre conjugate pair: the map —VV§ :

int By — R? is the inverse of Vp, and we have

Hhip) = p(&(p)) — (&(p), p)-

3.3.2 An ‘equidistribution’ result

Given a set A C Zb, we define

(T, A) =#{y: () <T,[y] € A}.

We also define
. #{ae Ao <7}
djy(A) = lim #lac: o <)

if this limit exists. This quantity dj.(A4) is called the density of A with respect

to the norm || - ||. We could define the density for any norm on R?, but the norm

|| ]| from section 3.3.1 is of particular interest. We will prove the following result:
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Theorem 3.3 Suppose ®y = 0. Then if A C Z° is a set for which the density

dj.(A) exists, we have
. 7w(T, A)
lim ————= = dj1(4).
A =y = dnA)
In the case of the geodesic flow on surfaces of constant curvature, a result of
this type was originally suggested by Petridis and Risager ([PR)).
Suppose we take A to be a set of the form pg'(D)NZPb, where D C S° ! is an

open set. Then we have

"CA_ 1, i
oT)  w(T) #{v:l(v) <T,0(y) € D} = vp(D).

Furthermore, if U is any bounded open subset of R’, then by a standard integra-

tion result its volume Vol(U) is given by
] 1
Vol(U) = TILIEO —ﬁ#{cx €eZ:a/reU}.

By applying this to the sets pg'(D) N By and By, where Bj is the unit ball
for the norm || - ||, we have

VOl(pEl(D) N B”.”) -

W) = =B

And so as a consequence of Theorem 3.3 we have the following;:

Theorem 3.4 If &, = 0, then the measures vy have a weak* limit vo, which is
fully-supported on S*~'; indeed for any open set D C S we have

Vol(pz' (D) N Byy)
eolD) = 5“01(311-11) =

The main ingredient of the proof of Theorem 3.3 is an asymptotic estimate
for w(T, (T)), in the case where (7"} depends linearly on T. In order to state
this result precisely we need to consider the way that H;(M,Z) is embedded as
a lattice inside H;(M,R). We choose a fundamental domain F for Hy(M,Z).
Then given p € H;(M,R) we can define {p| € H(M,Z) as the unique element
of H;(M,Z) for which p— |p| € F.
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Theorem 3.5 ([BaL]) Suppose 0 € int By. Then for p € int By,

)T

w(T, |Tpl) ~ C(p) €D To- 100D 2

as T — o0,

uniformly for p in any compact subset of int By. Here C(p) is given by

cip) — YT
Gy E(p)

We also note that if &y = 0 then the condition of Theorem 1.9 is satisfied and

the flow is weak-mixing ([Shal]); in particular we know that 7(T") ~ e /hT.

We will also need the following consequence of a ‘central limit theorem’ from
[Lal):

Lemma 3.6 Suppose @y = 0. Then given any € > 0, we can find A > 0 such
that

hg?_fip 7r(1T)# {fy y) < T, % > A} < e

(This is obtained from the results in [Lal] by considering the functions F; from

section 3.1.)

Proof of Theorem 3.3: From Theorem 3.5 we can find § > 0 such that

T2 (T, | Tp))

Mo, SUD e oT o {E) o= Tl

T=00 |Ipi<s

i|=o

By considering p = o/T where a € H (M, 7Z) we have

Tl+b/27T(T, )
C(a/T)ede/TIT

lim sup
=00 || <o

1| o

Now let A be a large positive constant. We have AvT < T for all sufficiently

large 7', and so
Tl+b/2ﬂ'(T, O:)
C(a/T)eb/NT

lim  sup
T2 lalzavT

1| o

Because C{p) is a continuous function of p it follows that

T1+b/27T(T, Q{)

lim  sup IOV TT [0)eernT

o0 g <avT

- 1) =0, (3.3)
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and we know C(0) = o~%(2n)"%2h~1, where ¢® = |det V25(0)|~Y/2. Also from
(3:2) we have (for small p) b(s) = h — ol + (o) , where [r(s)] < clol"
So for |||l < AVT we can write h(o/T)T = hT — ||a||?/2T + r(a/T)T, with
|r(e/T)T| < cAST~Y/2. Substituting this into (3.3) and making use of the fact
that r(a/T)T is bounded we get

hT1+b/27r(T, @) e~ llall?/2T gr(a/T)T

ohT T (2n)bigd =0

lim sup
=00 all<avT

Now we would like to sum over {& € A : [|a|| < AVT}. We have #{a :
lall < AVT} = O(T%?), and so

1 Ti+b/2 —Jlall? /2T yr(e/T)T
71520 Tb/2 Z (h e};(Ty ) - - (QW)bfng = (J,
aeAflal|<AVT
ie. 2
: RTn(T,a) e llelP/2Ter(e/TT B
'Ilglolo Z ( ehT - (27!')()/20‘17'1-'17/2 =0. (34)
a€Ail|e|| <AVT

In order to deal with the second term we need the following lemma, which we

will prove later:

Lemma 3.7 (i) Given any € > 0, there exists A such that

1

S — ~llaf?/2T
(2n VT Z e <e VT >1.

lell2AVT

(i) If the set A has density dy. (A) with respect to the norm | - ||, then

. 1 Ml /2T
,}Eﬂo (21 )72 GHTH/2 Z e 1P/ = dyy (A).
acA

Now since |r(a/T)T| < cA3T~Y/? we have

pit 2

g lledi*/2T gr(eyT)T

20 10/2 bb/2
acA|lal|<AVT (2m)2a
—llei?/2T
. . —cA3T=1/2 L —e—-——.___
> (1121&101.}’1" e ) hj{&l{gf Z (27 )b/2G /2

o€ Arl|al| <AVT
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So, given € > 0, we know from Lemma 3.7 that for all sufficiently large A we have

it >

atA:||al|<AVT

e~ lledl*/2T yr(e/T)T

(2m)/2gbT /2

> dyy(A) — e

And so from (3.4),

.. hT7(T, o)
ll%}ig.}f Z T 2 d".” (A) — €.
acAi|al|lAVT

Furthermore we know 7(T") ~ "' /hT, and so

e T(A) ]
el Sy 2t oy 3

ac Al <AVT

m(T,a) 2 dyy(4) - e

Since ¢ was arbitrary this shows

e (T A)
hTIrii.lgf W(T) Zd“."(A).

Similarly, we have

lim sup Z

T
® acAfall<AVT

< (limsup eCAST_m) lim sup Z

T T
- e acAx)a|| <AVT

e_”allz/zTe"'(Q/T}T
(2m)/2g0T0/2

e—llad? /2T
(2rm)o/2gbT02 | °

and so from Lemma 3.7 (not needing part (i) here),

liirfl fup Z

a€ Al <AVT

e—llall2/2T gr(e/T)T
(Zw)b/za"T”ﬁ

< dy(4),
from which we get

1
limsup —— (T, o) < dy(A).
S > (T, ) < dy(A)
a€A:||a|| K AVT
Now,

w(T, A 1 1
Er(T) ) = (T Z (T, o) + =) Z (T, &).

a€A:|a||<AVT a€A:|a||>AVT
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Given € > 0, from Lemma 3.6 we can find A sufficiently large that

lim sup ) E (T, a) < e.
00 o
T e Aflal>AVT
We then have
, (T, A)
lim su, : < dy(A) + e
msup — s < di 1(A)

Since € was arbitrary this implies

. (T, A
lim sup

T W(T)) < dj (4).

O

It remains to prove Lemma 3.7. We will deduce this as a special case of the

following result:

Lemma 3.8 Let || - || be an arbitrary norm on R* and let f : R* — R be a
continuous integrable function such that f(t) depends only on ||t||. Suppose also
that |f| < F, where F': RF — R* s an integrable function depending only on
itll, such that F(||t||) is decreasing in ||t||. Then

(i) Given any € > 0, there exists R > 0 such that

S o f(a/z)l<e Yzl

o€ZF:|| o>z R

(i) If A CZF has density dy.(A) with respect to the norm || - ||, then

lim > "™ f(a/z) = dyy(4) A () dt.

acA

Remark: The condition that f is bounded by an integrable function decreasing in
||t|| is stronger than necessary. However, some control is needed on the behaviour

of f as ||t]] — oo, as there exist continuous integrable functions f for which the

limit in (ii) does not exist.
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Proof: For any o € Z* \ {0}, define

ot ma(lold),
ol

where || - |l is the usual Euclidean norm on R*. Because any two norms on R*

are equivalent, we can find constants ¢; and ¢p such that
cilltllz < 2]l < et

for any ¢ € R¥. By applying this to ¢ = o/ — o we see that for any a # 0,
eIl < fled — /4.

Now let r = ¢;/4¢s, and consider By(a/, ), the open ball centre o and radius
r in the Euclidean norm. This ball has a volume v which is independent of «,
and for different values of « these balls are disjoint. Note also that if t € By(o/, r)
then ||t — /|| < ¢1/4 and so ||t]| < ||«

Similarly, if = € [1, 00) then for any t € By(o//z,r/z) we have ||t]| < ||a/z|,
and so F(t) > F(a/z). Hence

/ F(t)dt > va *F(a/z) > vz~F|f(a/z)|.
Ba(o! [, /)

Summing over ||a|| > zR and using the fact that the balls Ba(a'/x,7/z) are

disjoint, we get
—k 1
> oM/l < - P() dt.
aeZki||off>2R fiel>R-1

But F is integrable, so this last integral can be made as small as desired by

choosing R sufficiently large. This completes the proof of part (i).

Now for part (ii): because of (i), it is sufficient to prove

im S flafz) = dg(A) /MSR ) dt,

00

acA:|ol<zR

for large R.
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We may at this point assume that f is strictly positive. (If not, we can write
f in terms of its positive and negative parts, f = f, — f-, and consider fi +1
and f_+1.)

The case A = Z* is straightforward froin the Riemann definition of integration.
We wish to extend this result to a general set A for which dj(A) exists. For a

large integer n, define the sets

Sii={teR":||t|| < Rn~'};

Smi={teR*: Rm —n"t < |lt]| < Rmn~'}, 2<m<n.

So {t: ||t|]| < R} is the disjoint union of these sets. We claim that for any m,

#{oe Az 'ae S}

™ ,A =
P, A) #{a€Zrk .z lae Sy}

- d”_"(A) as T — CO.

For m = 1 this is immediate from the definition of the density. For m > 1, we
see that Pp(z, A) is equal to

#{acA:z7 ol <Rmn'} —#{a € A:x7Y || £ R(m - 1)n"1}
#{aeZr: z7Ya| € Rmn-1} —#{a e ZF : 7 all < R(m —1)n~'}

By the definition of dj.; we have

i #{a € A:z7a|| € Rmn~'} _
a—oo #{a € ZF : 7Y ||| < Rmn~1}

i (A).
Also
lim z7*# {a € Z" : 27'|a|| < Rmn™'} = Vol {¢ : |[t]| < Rmn~'},

which follows from the case A = Z* by letting f approximate the indicator

function of {¢: ||¢|| < Rmn™'}. Hence, as x — oo, P, (z, A) converges to

Vol {¢ : ||t|| < Rmn~'}
di. (4) (Vol {t: l|t]] < Bmn~—t} —Vol{t: ||t]| < R(m — 1)n1})
Vol {t : ||t|| < R(m — 1)n"}
= diy(4) (Vol {t:||t|| < Bmn=1} —Vol{t: |t]| < R(m — 1)”—1}) ’

which is equal to d) (A) as claimed.
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We now use the fact that f(¢) depends only on |[¢||. Together with the as-
sumption that f is positive and (uniformly) continuous on ||| < R, this implies

that for any € > 0, we can choose n sufficiently large that

sup f@) < (1+e) Anf 7 (@),

simultaneously for all 1 < m < n. And for each such n, we know that if = is

sufficiently large then for all 1 < m < n,
dy(A) — € < Pu(z, A) < dj(A) + e

‘We then have

Z a7k fla/z) > Z 7% inf f(t)

tESm
acA: z—laES, acArz—LacS,

t€Sm,
ocZk:x—lacsSm
djy(A) — e & .
e >z Ff(e/o);
a€ZF: 2~ 1aE Sy,
s0, by summing over m,
_ dy(A) —e _
S atflafe) > BAZE S ko)

14¢€
acdi||laf<zR acZt:||af<zR

Taking z — oo and using the result for the case A = Z* gives

s —k dy (A) — €
hix_%r.}f Z z " fla/z) > 1—H—/”tngﬂf(t)dt.

acAa||<zR
A similar argument shows
imsup . z7Ff(a/z) < (dig(A) +€) L+e) f(t)dt.
FT0 acdi|ali<zR lu<r

And now taking e — 0 completes the proof. O

Proof of Lemma 8.7: We apply Lemma 3.8 with f(t) = e I#I*/2 and z = /T, and
note that

/2
Y SR €0 LN

e dt = 27 ()2,
/nab vdet H (2m)
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