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A bstract

We study the ergodic sums gn(x) 9 {^%x) f°r  Holder continuous functions

g. We look at sets of points x  for which the sums gn{x) have a specified behaviour 

as n  —> oo. For subshifts of finite type, Fan and Schmeling showed tha t many 

of these sets have the same Hausdorff dimension: for example, the set of points 

with bounded sums generally has the same dimension as the set of all points x  for 

which ^gn(x) —> 0 . We show how their method can be extended and applied to 

other dynamical systems (conformal expanding maps, and conformal hyperbolic 

diffeomorphisms and flows).

We also consider a problem concerning the homology classes of periodic orbits 

of Anosov flows. Our results give information about how the ‘directions’ of these 

homology classes are distributed.
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Chapter 1

Prelim inaries

In this thesis we consider two separate problems. The first problem, which we 

look at in chapter 2, is to extend the results of Fan and Schmeling in their paper 

[FS]. Then in chapter 3 we look at the ‘directions’ of homology classes of periodic 

orbits for Anosov flows.

But first of all in this preliminary chapter we describe the dynamical systems 

tha t we will be interested in, and explain some of the standard methods for 

dealing with them.

1.1 Shift spaces

This section describes some very useful examples of dynamical systems -  namely, 

subshifts of finite type. These tu rn  out to have properties which make it possible 

to prove a wide variety of results. A large amount of theory is known, most of 

which will not be needed for our results. For the parts th a t we do need we will 

mostly be following the book by Parry and Pollicott [PP]. (Note th a t throughout 

this thesis, the references have been selected on the basis of convenience and are 

not intended to be historical.)

We start by considering a set of k ‘symbols’, {1 ,2 , . . . ,  &}, and look at the set



of doubly infinite sequences of such symbols, i.e.

S  = { l ,2 , . . . , /c } z .

For any 6  E (0 ,1) we can define a metric on S  by

d(x,y) = e*

where n is the largest integer such th a t Xi = yi for all |z| < n. (Of course this 

only applies for x ^  y\ when x  = y we have cl(x) y) — 0.) W ith these definitions, 

S  is a compact metric space.

The shift map a : S  —» S  is defined by

(crx)i =  x i+i,

so we think of a as shifting a sequence of symbols one place to the left. Then 

(S, cr) is called the full shift on k symbols.

To get further examples of maps, we want to consider the restriction of a to 

certain closed subsets of S. Let A  be a k x k matrix, with all its entries being 

either 0 or 1. Then we define

^ = { * 6 5 :  Awrm =  1 Vi 6  !,}  .

Clearly a maps X a to itself, and a : X a —>■ X a is a homeomorphism; we call 

{Xa , cr) a subshift of finite type.

A finite sequence of symbols is called a word. Thus the definition of X a says 

simply tha t the word pq is allowed to appear inside elements of X a if and only 

if Apq — 1. (We say th a t such a word is ‘admissible5.) It follows (by an inductive 

argument) th a t [An]pg gives the number of admissible words of length n  + 1  which 

start with p and end with q. If for all p and q there exists some number n  such 

th a t [An]pq > 0, then we say th a t A  is irreducible. If A  satisfies the stronger 

condition th a t there exists some n  for which [An]pq > 0 for all p and g, then it is

9



aperiodic. For most applications we will want to assume aperiodicity.

Having defined these ‘two-sided’ subshifts of finite type, we now go on to 

define the very similar one-sided subshifts of finite type. This means, instead of 

working with doubly infinite sequences of symbols (a:i)i€ z, we look at sequences 

(.t7;) ?;>o • (Note th a t indices will start at 0 here, whereas in [FS] (for example) they 

start at 1.) So we replace S  by S + {1 , 2 , . . . ,  /c}N°. This new space can also 

be given a metric: for x  ^  y  G S + we have d(x,y) = 6 n, where n  is the largest 

integer such th a t Xi = yi for all 0 <  i < n. Given a m atrix A  we have the closed 

subspaces

X +  :=  p  e  X + : A ,m+1 =  1 Vi >  0 }  .

As before, we have a shift map a defined by (ax)i = Xi+1, which maps X A to 

itself; but in contrast to the situation for two-sided shifts, this a is not invertible.

A cylinder in X A is a set

[s0 si . . .  Sn-i] := { 2  £ X \  : Xi = si for all i <  n} .

We will say th a t this cylinder has ‘length’ n, and write Cyl(n) for the set of all 

cylinders of length n. (Note th a t our indices run from 0 to n — 1, whereas a more 

common notation (e.g. [PP], [Pes]) is for indices to run from 0 to n. The former 

is more natural for our purposes.)

A block is an admissible word bo b± . . .  6*_i; the block as a whole is denoted by 

a capital letter B. We tend to use the term  ‘block’ rather than ‘word’ when we 

are interested in the places where B  appears inside x , i.e. x m+i =  bi (0 < i < £) 

for various x, rn. Any block B  of length £ defines a cylinder in X \  (of length £) 

which we will write as

[B] = [boh . . .

W hen looking at functions g : X A —> R or g : X A —► M, we will often require 

them  to be Holder continuous, i.e. there exist constants C > 0, a  G (0,1) such
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tha t

Isfc) - g ( y ) \  < C d(x ,y )a.

(More generally, Holder continuity can be defined for functions between any two 

metric spaces.) Notice th a t whether a function is Holder continuous does not 

depend on the value of 6  chosen in defining d, and in fact a function is Holder 

continuous if and only if it is Lipschitz with respect to d for some 6 .

Given two continuous functions gi and g2 defined on X a  or X j ,  we say that 

they are cohomologous if for some other continuous function h defined on the 

same space,

9 i — 92  +  h o a — h.

Cohomology of functions is a very important equivalence relation on the set of 

continuous functions (or the set of Holder continuous functions). Clearly, for 

example, two functions which are cohomologous have the same integral with 

respect to any invariant measure on (X a , a) or (X j,<r). It is also particularly 

im portant when we look at sums of the form

71—1

9U(X) :==
z=0

(Here gn(x) is a standard notation used for this sum, which we will be adopting. 

These sums axe the focus of chapter 2 .) We see tha t if gx and g2 are cohomologous 

then

9 i  =  92 +  h  o ° n ~

and so gx — g% is (uniformly) bounded in n. Furthermore, if x  is a periodic point, 

say <jnx  — x, then we have gx(x) =  r/2 (x). And in fact for Holder continuous 

functions the converse of this is also true, as expressed in the following theorem.

T heorem  1.1 (Livsic [Liv]) Let g i,g 2 : X a —̂ H (or X ^  —> R) be Holder con­

tinuous. Then gx and g2 are cohomologous i f  and only i f  gx (x) — g2 (x) whenever 

anx = x  for x  e  X a, n > 0.

The other result we will need concerning cohomology of functions is this:
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T heorem  1.2 (Sinai [Sin]) Let g : X a —> K be Holder continuous. Then we 

can find a Holder continuous function g^  which is cohomologous to g, such that 

iĝ u\ x )  — g^u\ y )  whenever Xi = yt for all i >  0.

The function g ^  produced by this theorem can be thought of as a function de­

fined on X j .  So this theorem provides a way of deducing results about functions 

on X a from those about X ^\

1.2 M aps m odeled by subshifts

Subshifts of finite type are often studied not for their own sake, but because they 

are related to certain maps defined on manifolds. Results about these maps can 

be proved by considering the related subshift of finite type and making use of its 

relatively simple definition. Specifically, one-sided subshifts of finite type provide 

a model for expanding maps, whereas two-sided subshifts of finite type provide 

a model for hyperbolic diffeomorphisms. These are defined in this section. We 

follow the descriptions in [Pes] and [PP].

We look at a smooth Riemarmian manifold M  and a C 1 map /  : M  —> M. If

J  is a compact subset of M  for which / ( J )  =  J  then we say th a t the map /  is

expanding on J  if there exist constants C  >  0, A > 0 such th a t

||(d /n)xn|| >  CeAn||u|| for all x G M }v G TXM  and n  >  1.

If in addition there is an open set V  D J  such that J  =  {x  G V  : f nx  G 

V  for all n  >  0} then we say tha t J  is a repeller.

We restrict attention to repellers of expanding maps for which f  : J  J  is 

topologically mixing.

A Markov partition for /  : J  —> J  is a finite collection of closed subsets 

R i , . . . , R k which cover J , and which have the following properties:

(i) Each set Ri is the closure of its interior;



(ii) If i 7  ̂j  then intit^ Pi int_Rj =  0 ;

(iii) For each i the restriction of /  to Rd is injective, and we have f(R i)  =

Rh{i) U ■ • ■ U Rjn{{)(i) for some

For any 6  > 0 , f  has a Markov partition which consists of sets w ith diameter less 

than  6 . Once we have a Markov partition we can consider the subshift of finite

type a : X j  —> X j ,  where the m atrix A  is defined by

For each x  6  there is a unique point y (r)  E J  such th a t f n(x{x )) P R Xn for 

all n  >  0. Thus x  is a well-defined map from X ^ to J , which we call the coding 

map. The subshift a  : X —> X j  is then a symbolic model for f  : J  —> J  in the 

sense th a t the following diagram commutes:

The construction of the Markov partition is such tha t x  is Holder continuous;

Holder continuous.

Cohomology of functions is defined in the same way as for subshifts: tha t 

is, we say tha t pi, p2 are cohomologous if there exists a function h such tha t 

Pi — 92  + h o  f  — h. Livsic’s Theorem (1.1) holds, and we have tha t Holder 

continuous functions pi and p2 are cohomologous if and only if the corresponding 

(pullback) functions on the subshift are cohomologous.

The assumption th a t /  is topologically mixing implies th a t A  is aperiodic.

We now move on to consider invertible maps. We take M  to be a smooth 

compact Riemannian manifold and f  : M  —> M  to be a Cfl-diffeomorphism.

1 if int Ri H /  x(int Rj) ^  0  

0 if int R^ n  / -1(int Rj)  — 0 .

x x

if g is a Holder continuous function defined on J  then its pullback to X ^  is also
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Then a hyperbolic set A is an /-invariant subset of M  with the property th a t the 

tangent bundle on the set A continuously splits as

TaM  = E s ® E u,

where E s and E u are df-invariant, and

•  for v £ E!j, we have ||(d /71)a;n|| <  Ce“An||n|| for all n  >  0;

• for v £ E J  we have ||(d/"'n)a;n|| <  (7e-An||u|| for all n  >  0,

for constants C  > 0, A >  0 which do not depend on x. Here E* is the stable

subspace and E f  is the unstable subspace for the point x. If M  itself is a hyperbolic

set then we say th a t the map f  is Anosov,

We consider closed hyperbolic sets A which have the following properties:

(i) the periodic points of f \ A are dense in A;

(ii) there exists a point x £ A such th a t { f nx  : n £ Z} is dense in A;

(iii) we can find an open set U L) A with Unez / n(^0 =  A.

If A consists of a single periodic orbit then it may have these properties; but 

we want to exclude this possibility, for which everything becomes trivial. If we 

disallow the case of a single periodic orbit, the restriction of /  to such a set A is 

called a hyperbolic diffeomorphism. Like with expanding maps, we will make the 

simplifying assumption th a t /  : A —> A is topologically mixing.

The link between hyperbolic diffeomorphisms and (two-sided) subshifts of 

finite type was described by Bowen in [Bowl]:

T h e o re m  1.3 ([B ow l]) Let f  : A —» A be a hyperbolic diffeomorphism. Then 

we can find a subshift of finite type cr : X A —> X A, and a Holder continuous, 

bounded-to-one surjection x  '■ X A —* A such that x °  ^  ~  f  ° X-

As with expanding maps, the assumption tha t /  is topologically mixing ensures 

th a t A  is aperiodic.
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The coding is determined by a different type of Markov partition from the one 

used for expanding maps. As before we cover A by a finite number of closed sets 

Ri, . . . ,  Rk\ each set is the closure of its interior (in terms of the subset topology 

011 A C M ), and int R4 n  int Rj — 0  for i j .  The m atrix A  is again defined by 

Aij =  1 iff int Ri Pi / ~ 1(int Rj) 7  ̂ 0 . The construction of the partition is done in 

such a way th a t for each x  £ X a  there is a unique x(x) such th a t f n(x (x )) £ Rxn 

for all n  6  Z; this defines the coding map x-

In order for this construction to work, each of the sets R{ must have a par­

ticular structure, related to the way the tangent bundle splits into stable and 

unstable sub-bundles. Given a sufficiently small e > 0 and any point x  £ A, there 

exist (local) stable and unstable manifolds Wf{x), W f(x ) ,  which are tangent to 

E s and E u respectively at the point x, defined by

W;{x) =  {y £ M  : d ( fny, f nx ) < € Vn > 0} ;

= {y e M  : d ( f~ ny , f ~ nx) < e Vn >  0} .

These can alternatively be described (for sufficiently small e) as being the sets 

of points y £ B ( x , e) for which d ( f ny , f nx) (respectively d{f~ny , f ~ nx)) goes to 

zero; furthermore for all such points the rate of convergence will be exponential.

For any sufficiently small 5 (depending on e) we have th a t if .t,y  £ A with

d(x,y) < h then W f  (a;) H W f{y)  consists of a single point lying in A. This point

is denoted by [x,y\.

We work with subsets A £  A for which diam R. < 5 e; in particular we 

want [x, y] to be defined whenever x ,y  £ R. The set R  is a rectangle if [x, y) £ R  

for all x, y £ R. In the Markov partitions for /  : A —> A, each set R L will be a 

rectangle. For z  £ int Ri we can write

W sRi{z) = W ? { z ) n R i ,

Wl(z)  = W?(*) n Rt.

These sets have a simple interpretation in terms of the coding map: if z  — y(x)

15



then we have

W?ti{z) =  (x fe) • V G X A with yn =  xn Vn > 0} ; 

w r l(z ) =  (x(2/) - y ^ X A with yn = x n V n <  0}.

The rectangle Ri is then homeomorphic to the product W ^.(z)  x W^. (2), with 

the homeomorphism being given by the map (x , y ) *-*■ [x, y}. We say tha t these 

rectangles have a product structure.

(For completeness, we finish by stating the condition th a t these rectangles 

must satisfy in order to be a Markov partition for /  ; A —> A. If 2 E int Ri and 

f z  E int Rj then we insist tha t

/  (w 'i . to )  c  w ‘R.(fzy, 

f  ( W l ( z ) )  D W ^ ( f z ) .

This is the analogue of the third condition for Markov partitions for expanding 

maps. Given 5, a Markov partition can always be found whose sets are rectangles 

with diameter less than 6 . A  fuller description can be found in [PP].)

1.3 Suspended flows and hyperbolic flows

We start this section by giving the definition of a suspended flow on a (two-sided) 

subshift of finite type. We take a strictly positive, Holder continuous function 

r : X a —> M+, and define the set

X rA =  {(.t, s) : x e  X A, 0 <  s <  r(x)}  ,

but with the point (.r,r(.T)) identified with (<7.7;, 0) for each x. (So, formally X rA 

is defined as a quotient.) Like X a itself, the space X rA can be given a metric (see 

[BSl]).

The flow a7t is defined on for small t we define

crrt (x }s) = (x ,s  + t).
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Of course this only holds while s +  t <  r(:c); when t = r(x) — s we have

=  (x, r(x))  =  (era:, 0),

and thus we can continue to define the flow by restarting ‘vertically5 from (ax,  0). 

That is, if we find the integer N  such tha t rN(x) < s +  £ < r N+1 (x) then we have 

a7t (x , s) =  (aNx, s +  t  — r N(x)).

In the same way th a t subshifts of finite type served as models for hyperbolic 

diffeomorphisms, these suspended flows are models for hyperbolic flows. Again 

we take M  to be a smooth, compact Riemannian manifold; now let <f>t : M  —» M

be a C 1 flow. A hyperbolic set A for this flow is a (^-invariant subset of M  such

tha t the tangent bundle on the set A splits into d^-invariant subbundles as

TaM  = E  © E s © E u,

where

• E  is a one-dimensional subbundle, tangent to the flow;

• for v € jE7®. we have |{ ( d ^ ^ W  < Ce_At||ri|| for all t > 0;

• for v e  E™ we have \\(d(j)-t)xv\\ < C e-At||u|| for all t > 0,

for constants C, A > 0. As with diffeomorphisms, if M  itself is a hyperbolic set 

then we say tha t the flow (f> is Anosov, this condition is satisfied by the geodesic 

flow on the unit tangent bundle of a negatively-curved manifold.

We consider closed hyperbolic sets A C  M  such tha t

(i) the periodic orbits of 0 |a are dense in A;

(ii) there exists a point x € A with {<f>tx  : t  E l }  dense in A;

(iii) we can find an open set U C A with f"|tgR <j>t(U) — A.

(iv) A is not a single periodic orbit.

17



The restriction of <pt to such a set A is a hyperbolic flow.

Again we have symbolic dynamics:

T h e o re m  1.4 ([Bow2]) Let f t  : A —> A be a hyperbolic flow. Then we can 

find a suspended flow cr[ : X A —> X rA, with the matrix A  being aperiodic, and a 

continuous, bounded-to-one surjection p : X A —> A such that p o <j[ =  f t ° p.

The construction of (X^cr^) and p is somewhat more intricate than  in the 

discrete-time case. The following is only a brief description of those facts th a t 

are im portant for our results. (More detailed descriptions are found in [PP] and

The construction is based around finding disjoint closed sets Tj C A (1 < 

j  <  k), called Markov sections. Each Tj is a local cross-section for the flow: tha t 

is, it is contained in a small C 1 submanifold Dj c  M  of dimension dim M  — 1

the topology of A n  Df). Furthermore, if we let T  =  {JTi then we want to have 

M  — Ute(o,o] for some a >  0 . This then ensures th a t each orbit of the flow

intersects T  a t least once in any sufficiently large interval of time.

We can then define the Poincare return map P  : T  —> T , which takes a point

map P  is invertible. So every point x  G T  defines a sequence q(x) = {cjijiez such

Tj, where the Poincare map may fail to be continuous. We look at the restriction 

of q to the dense subset

[PS].)

which is transverse to the flow, and the set Tj is the closure of its interior (in

x  G T  to (j)tx  where t is the smallest positive real number such th a t <j>tx  € T .  This

that qi — j  if P l (x) € Tj. But there are problems at the boundaries of the sets

T '  := {x  E T  : $ i , j  s.t. P l(x) 6 dTj}  .

If A  is defined by

1 if P (in t Ti) fl int Tj ^  0 

0 if P (in t Tf) n  int Tj =  0,

18



then the map q : x  ^  {^j} takes T '  to a subset of X a injectively. Furthermore 

the construction is such tha t q(T') is dense in X a and the inverse is continuous 

where defined. This inverse can then be extended by continuity to a function 

p : X a —* T  which is a bounded-to-one surjection.

Next the function r  is defined, initially only on g(T '), by r(q(x)) — min{t > 

0 : <j)tx  G T}. Again this function can be extended by continuity, giving a Holder 

continuous function r : X a —> M+ . If x  is any point in X a , then for any n  G Z 

we have (j)rn ^  (p(x)) G TXn (where we define rn(x) =  — r(aj x) for n  <  0). 

This r  can be used to define a suspended flow {X rA,a rt) .  Finally, the function 

p : X A —¥ A th a t we want is

p(x,s) = <j>sp(x).

As with the rectangles for hyperbolic diffeomorphisms, the sets Tj have a 

product structure. Firstly we have th a t for any sufficiently small r , there is a 

diffeomorphism

U  M Di) -> Dj  x
t&{—r,r)

obtained by travelling along the flow. We define 7ty to be the projection map 

UiG(-r,r) ^t{X>j) Dj. The sets Tj can be chosen to be sufficiently close together 

tha t A is covered by the sets 4>t{Tj).

For any point r G  A w e have a stable manifold and an unstable mani­

fold W™{x), analogous to those for hyperbolic diffeomorphisms. Given two points 

x ,ijG  A which are sufficiently close together, there is a unique t  with |t| < r  such 

tha t W*((fax) n  W™(y) /  0 , and for this value of t the intersection is a single 

point which lies in A. Now if x, y G Tj C Dj this point might not lie inside Dj, 

however we can project it to Dj using the map Tiy, giving a point which we define 

to be [x, 2/] G Dj D A. (In order for this to work, the sets Tj are chosen to be not 

too close to the boundary of Dj, and small enough th a t [x,y\ is defined.) The 

set Tj is a rectangle if [x,y\ G Tj whenever x ,y  G Tj. In the construction of the 

symbolic dynamics, each of the Markov sections Tj is a rectangle.
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For z  € int 7} we look at the projections of W*(z) and W™(z) onto Tj, i.e.

W}.(z) -  {y  £  Tj : * p { { y } )  n  w ;(z )  ±  0 } ;

W?j(*) {» e  Tj : 7rp ({y}) n  w ?(*) ^  0 }  .

Again these sets can be described in terms of the coding map: if z = p(x , 0) then

W Tj(z) — {p(y j °) : y £ X A With yn =  rrn Vn >  0} ;

=  {p(Vi °) : y  e  with yn =  x7l V?i <  0 } .

The rectangle Tj then has a product structure, Tj —» W f  (z) x W^.(z).

In chapter 3 we will consider questions involving periodic orbits of hyperbolic 

flows. For this set-up we have the problem that periodic orbits in A do not have 

a one-to-one correspondence with periodic orbits in X rA. Results which rely on 

counting periodic orbits in subshifts need to include corrections which take this 

into account. The methods used are explained in [Bow2], and draw on work by 

Manning in [Man] for discrete time. We will not need to know the details here.

1.4 Equilibrium  states

Suppose we have a transformation T  : X  —> X ,  where X  may be any com­

pact metric space and T  a continuous transformation. Then for any probability 

measure p  on X  which is invariant for this transformation, we have the entropy 

hn(T). If we let M ( X ,T )  be the set of all invariant probability measures, then 

the supremum of hfl(T) over all of M ( X ,T )  gives the topological entropy h(T). 

This is the ‘variational principle’ (see, for example, [Wal]).

A measure p  for which the supremum is attained is called a measure of max­

imal entropy. In the case of a subshift of finite type, it is guaranteed tha t there 

exists a unique measure of maximal entropy, and this is often denoted by /i0.

This is a special case of the definition of pressure. Given a continuous function 

'ip : X  —> M, its pressure P{ip) is a generalisation of the topological entropy; it is
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possible to give a definition which makes 110 mention of invariant measures, but 

the simplest definition is by a variational principle:

A measure (.1 for which hp(T) +  f  ip dp, =  P(ip) is called an equilibrium state for 

ijj. Just like in the case of measures of maximal entropy (which this reduces to 

by taking ip — 0), we have the following:

T heorem  1.5 ([PP]) Let ip : X A —> R (or X A IR)  be Holder continuous.

Then ip has a unique equilibrium state.

This equilibrium state is guaranteed to be ergo die and fully supported. And 

when looking at Holder continuous functions, equilibrium states are linked to the 

equivalence classes for cohomology of functions, by the following result.

P roposition  1.6 ([PP]) Suppose • X A — M. for X —» R ) are Holder

continuous. Then if  ipi and ip2 are cohomologous, or more generally i f  ipi — 1P2 is 

cohomologous to a constant function, then ipi and ij)2 have the same equilibrium 

state. Conversely, ifipi and ip2 have the same equilibrium state then ipi — ip2 must 

be cohomologous to a constant function.

Suppose p  is the equilibrium state for a function ip on X A \ then the map 

cr71 : X A —► X A also has p  as an equilibrium state: it is the equilibrium state for 

the function 'ipn (where 'ipn(x) := <lP{(jlx) as usual). Indeed, we could define 

a new subshift of finite type whose symbols are words of length n in X A , i.e. a 

point x e  X A corresponds to the point

(a^ITl . . . Xn^i , XnXn+\ . . . X2n—1 j ^2n^2n+l • • • 1 i * • • )

in the new subshift. (Clearly the assumption tha t A  is aperiodic is important 

here.) Functions and measures carry across from one space to the other, and the 

map an on X A corresponds to the shift map on the new space, /i is then an
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equilibrium state for this subshift.

We also look at equilibrium states for expanding maps and hyperbolic diffeo­

morphisms. By transferring the results of Theorem 1.4 for the related subshifts 

of finite type, it can be shown that Holder continuous functions on these maps 

also have unique equilibrium states. Indeed, suppose ijjj is a Holder continuous 

function defined on a repeller J  for some expanding map. Then by using the cod­

ing map x  we can pull this function back to a Holder continuous function tpx on 

X A - Suppose fi is the unique equilibrium state for x- Then we get a measure v 

on J  which is the pushforward of p  by the coding map. As we might have hoped, 

the measure 1/  turns out to be the unique equilibrium state for tJjj. Equilibrium 

states for hyperbolic diffeomorphisms are related to those for two-sided subshifts 

in the same way.

The definitions of pressure and equilibrium states still make sense if, instead 

of a transformation T  : X  —► A , we have a flow (fit : X  —» X .  Again, in the 

cases we are interested in (hyperbolic flows, and suspended flows on subshifts of 

finite type), if ij) : X  —> X  is a Holder continuous function, then it has a unique 

equilibrium state. And the equilibrium states for hyperbolic flows are related to 

those for suspended flows via the map p : X 7A —> A.

We can also relate equilibrium states for suspended flows to those for the 

underlying subshifts of finite type. First we look at the difference between a one­

sided subshift (A j,  c) and the corresponding two-sided subshift (A^, a). We can 

consider a map between the two spaces,

7r+ : X A —* A j ,

which ‘forgets’ the negative co-ordinates in X A- (That is, (71+sc)* — Xi for i > 

0.) Then for any n-invariant measure p. on A a , we can define the pushforward 

measure p + on X A by

p +(S) =p(7T~1 {S)) .
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Now, suppose we have a Holder continuous function 0  : X a —■> R, with equi­

librium state f-i. We know from Theorem 1.2 tha t we can find a cohomologous 

function 0 ^  such th a t ^ u\ x )  = ij j^ (y )  whenever x { = yi for all z >  0. And from 

Proposition 1.6, 0 ^  also has equilibrium state g. But 0 ^  can also be regarded 

as a function on X A , and the corresponding equilibrium state on X A turns out 

to be /r+ , defined as above.

Now, suppose tha t we have a suspended flow ( X TA) <r[); we want to compare 

its equilibrium states to those for (X a , cr). Note tha t for any (Holder) continuous 

function g : X A —*> R, there is a natural way of producing a continuous function 

on X a , which we will call Xg, given by
pr{x)

Xg(x) = / g(x, s) ds.
Jo

If g (and also r) is Holder continuous, then so is Xg. Two Holder continuous func­

tions gi, g2 on X A are cohomologous if and only if Xg1 and Xg2 are cohomologous 

on X a  ([BS1]). (For a general flow 0* : X  —» X  we say th a t functions gi, g2 on 

X  are cohomologous if there exists some bounded function q on X  such that

/ \ / \ r  £(&z) “  Q( x )
9 i (x ) -  g2 (x) =  lim   --------

t- + o  t

for every x  £ X .)

Any invariant probability measure for (X ^ ,art ) must be of the form (v  x 

l ) / ( f  rdv),  where I is Lebesgue measure on R and v is an invariant probability 

measure for ( X a , cr). In particular, the equilibrium state for a function 0  : X A —> 

R can be written in this form, and v turns out to be an equilibrium state for 

( XA, cr):

P rop osition  1.7 ([Sha2]) I f  0  : X rA —» R is Holder continuous, then its equi­

librium state is
g  x I 
j r d g ’

where g is the measure on X a which is the equilibrium state for the function 

~ P ( 0 ) r  +  Xip.
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1.5 D im ension and conform ality

We work with the Hausdorff dimension for subsets of a metric space (X , d). That 

is, for a set S C X  we look at the ways of covering S by a finite or countable 

collection of sets; say we let Cover(5, e) be the set of all finite or countable covers 

of S by open sets each with diameter at most e. Then for any non-negative real 

number a  we define

Tunisia)  =  lim inf ( (d iam f/)a j .
*->0 WeCover(5,e) J

The Hausdorff dimension of S is then defined to be the unique number dim/-/ S  > 0 

such that

m //(S, a) — oo for all a  < dim# S, 

m //(S, a:) =  0 for all a- > dim// S.

(In all our examples the Hausdorff dimension will be finite, but there are some 

metric spaces for which it can be infinite.)

An equivalent definition is to take instead Cover(S, e) to be the set of all finite 

or countable covers of S  by closed sets (or even by general sets) of diameter at 

most e. This does not change m//(S', ce). Alternatively, we can take Cover (S’, e) 

to be the set of all finite or countable covers of S  by balls of diameter at most e; 

in this case the values of m//(-S', a) may change but we still get the same answer 

for diam/z S.

We will need to make use of the following properties of Hausdorff dimension 

(see, for example, [Fal], [Pes]):

(a) If Si C S2 then dim H Si < dim// S2.

(b) If {Sj. : i E 1 } is a finite or countable collection of sets, then dim// (Jie/ ^  =  

supie/ dim// Si.
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(c) Suppose we have metric spaces (X , dx)  and (Y, dy ) with S  C X  and T  C Y. 

If F  : S  —* T  is a Lipschitz continuous surjection, then dim # S  > dim# T.

(d) If F  : S  —> T  is such th a t for any ^ 1,^2 G 5  we have dx(F(%i)i F{x 2)) > 

c(dy(a:i, a:2))1+e, then d im ^ T  >  (1 +  e) _1 dim#

If we look instead at

m s i S ,  a) — limsup inf I > ea I 
^ 0  W € C o v e r (5 ,e ) )

then we can define the upper box dimension dims-S' =  inf {a >  0 : m s iS ,  ct) =  0}. 

(And similarly by replacing the limsup with a liminf we get the lower box dimen­

sion dimg 5.) We always have d im es ' <  dimB5  <  dimb S. While we will not 

look at box dimensions in their own right, they are useful for one further property 

of Hausdorff dimension:

(e) If dim# T  =  dim ^T then dimu ( S  x  T) =  dim # S  +  dim # T.

(In fact for any S  and T  we have dim# S  +  dimH T  <  dimH(S  x T) <  dim# S  +  

dim bT.)

There is also a concept of Hausdorff dimension for measures. If fj, is a Borel 

probability measure on X , we define

dimB fJt =  inf {dim# Z  : fi(Z) = 1} .

When looking at subshifts of finite type, the simple metric makes it rela­

tively easy to get some results about the dimensions of subsets. However these 

results cannot be readily transferred to general expanding maps, hyperbolic dif- 

feomorphisms or hyperbolic flows. (The coding map certainly does not preserve 

dimension.) In order to be able to make use of the symbolic dynamics, we will 

have to require th a t our dynamical systems are conformal. We also need better 

than C 1 differentiability:
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• Let J  be a repeller for a Cd+Q map /  : M  —» M. Then we say /  is conformal 

on J  if there is a continuous function a : J  —> M+ such tha t

where Ix : TXM  —» TfxM  is an isometry. The function a must then be 

Holder continuous and a(x) > 1 for all x.

The set J  is then a conformal repeller.

• Let /  : M  —»■ M  be a C 1+Q diffeomorphism and A C M  a subset for 

which / |a  is a hyperbolic diffeomorphism. Then we say th a t /  : A —» A is 

conformal if there exist continuous functions a^ . A —> M+ such tha t

both Holder continuous, and we have a ^ ( x )  > 1, 0 <  a^s^(x) <  1 for all 

x  E A.

•  Let f  : M  —> M  be a C 2 flow and A C M  a subset for which / | A is a 

hyperbolic flow. Then we say tha t /  : A —> A is conformal if there exist 

continuous functions : A x I  —> M+ such tha t

(df)x -  a(x) 4 ,

for isometries I f  : E f  —> Ef x, I f  : Ef  —> The functions a ^ ,  are

for isometries I f  t : E f E l,, .  Now if we let

V Ŝ) =  lo§ a(s) (M )

then and are Holder continuous, and v ^ ( x )  > 0, v ^ ( x )  < 0 for 

all x E A.

Examples:
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(i) If M  is 1-dimensional then any repeller for a C1+a map on M  is necessar­

ily conformal. Similarly, a hyperbolic diffeomorphism on a 2-dimensional 

manifold is conformal, and a hyperbolic flow on a 3-dimensional manifold 

is conformal.

(ii) As a particular case of (i), the geodesic flow on (the unit tangent bundle 

of) a 2-dimensional negatively-curved manifold is conformal.

(iii) For the geodesic flow on a manifold N  with dim A  >  3, the conformality 

condition is equivalent to N  having constant curvature ([Kan]).

One reason why the conformality condition is particularly im portant for hy­

perbolic diffeomorphisms and flows is the following:

P rop osition  1.8 ([Pes], [PS] after [Has]) (a) Suppose f  : A —> A is a con­

formal hyperbolic diffeomorphism. Then for any rectangle Ri in the Markov 

partition for f , and any z G int R i} the product structure Ri —> W f  (z) x 

Wfti (z ) is a bi-Lipschitz homeomorphism.

(b) Suppose 4>t : A —> A is a conformal hyperbolic flow. Then if  Tj is one of 

the Markov sections used to construct the symbolic dynamics for <f>t, and 

we take any z  E int Tj, the product structure Tj —> W f  (z) x Wf. (z) is a 

bi-Lipschitz homeomorphism.

This will allow us to relate the dimension of subsets of A to dimensions of sub­

sets of stable and unstable manifolds, using properties (c) and (e) of Hausdorff 

dimension.

Other techniques for dealing with conformal maps and flows are explained in 

section 2 .2 .

Note tha t subshifts of finite type can be thought of as satisfying a conformal- 

like condition, with the function a being constant.
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1.6 Periodic orbits and hom ology

In this section we describe some preliminaries needed for chapter 3, where we 

look at the periodic orbits of a transitive Anosov flow (pt : M  —► M .  A reference 

for everything in this section is the survey [Sha2].

A basic result is th a t an Anosov flow has an infinite but countable number 

of periodic orbits. (Indeed this follows from the existence of a symbolic model 

for the flow as described in section 1.3.) Furthermore, for any T  > 0 there are 

only finitely many periodic orbits with period at most T .  So it makes sense to 

‘count’ periodic orbits: for example, if we write l ( j )  to  mean the least period of 

the periodic orbit 7, we can define a function

tt(T) =  # { 7 : /(7 ) < T } .

We might then ask how this function grows with T .  A famous result ([PP]) for 

weak-mixing flows is that

e hT

n ( T )  ~  J7p as T  -> 00,

where h  is the topological entropy of the flow.

A variation 011 this theme is to count those periodic orbits which satisfy certain 

conditions. One condition th a t has been studied has to do with the homology 

of the manifold M .  A periodic orbit 7 for the flow can be regarded as simply 

being a closed curve in M , and as such we can look at its homology class, which 

we write as [7] E H \ {M , Z ) .  We then have ‘counting’ results for the number of 

periodic orbits in a fixed homology class. Given a  E H i ( M ,  Z )  we define

tt(T, a )  =  #  {7 : l (7) <  T, [7] =  a }  .

To be able to state a result about the behaviour of ir(T, a) we need to understand 

the structure of the homology group (We will follow the description

in [Sha2].) We have th a t is isomorphic to © Tor, where Tor is a

finite abelian group (the ‘torsion subgroup’) and b is the first Betti number of M .
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The behaviour of 7r(T, a ) is determined by the torsion-free part of a , which can

be represented as a point in Z6 by making use of the isomorphism. In fact for

our purposes we will generally ignore the torsion component of H i ( M ,  Z), and 

(with a slight abuse of notation) we will also use [7] to denote the point in Zb 

which represents the torsion-free part of the homology class of 7, after fixing a 

choice of the isomorphism. We will assume tha t b is strictly positive, otherwise 

this becomes trivial.

Since Zb is a lattice inside IRb, we may also think of [7] as being a point

in M.b. Indeed we can choose to look at the real homology group M) =

# i(M ,Z )  <g) M, which is isomorphic to By fixing an isomorphism we are 

effectively choosing a basis for H \(M , 1R).

We now have the following result of Sharp, which generalises the work of 

Katsuda and Sunada in [KS]:

T h e o re m  1.9 ([S h a l]) Suppose that each homology class in H ^ M ,  Z) contains 

at least one periodic orbit. Then there exist positive constants C and h*, and a 

vector £ E Mb, such that for all o: E frfr(M , Z ),

tt(T, a) ~  Ce~^'oc') as T  -► 00,

where a 1 is the torsion-free part of a.

(Here (,) is the usual inner product on ]Rb.) If every homology class contains a 

periodic orbit then we say th a t the flow is homologically fu ll  Not every transitive 

Anosov flow has this property (but it does hold in some im portant cases, as we 

will explain in chapter 3). Indeed, if the flow has a global cross-section ([Sch]) 

then the homology classes of periodic orbits are restricted to an open half-space 

in Rb which does not include the origin, and there are only a finite number of 

periodic orbits in any homology class.
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1.7 M ain results o f this thesis

W hat follows is a brief summary. The definitions and results here will all be 

explained again in the main sections of the thesis.

In chapter 2 our starting point is the paper [FS] by Fan and Schmeling. They 

look at the behaviour of the ergodic sums gn(x), where g is a Holder continuous 

function defined on a (one-sided) subshift of finite type a  : X j  —> X ^ .  The aim 

is to describe the sets of points x  € for which the sums gn(x) have a specified 

behaviour as n  —> oo. For example, we can start by looking at the sets of points 

which have a particular ergodic average:

Avev+(#) °d '■= e  x a  : hffn (x ) a  as n ^  00} .

The ergodic theorem tells us th a t this set has full ^-m easure, for any ergodic 

probability measure p  such tha t f  gdp  — a.

Fan and Schmeling ask whether it is possible to find points for which ~gn(x) 

converges to a  at a particular rate. For simplicity we set a  =  0 . The basic result 

in [FS] concerns the set of points with bounded sums:

Bddx +((/) := {a; E X J  : gn(x) is bounded} .

Clearly Bddx +(#) C Avex +(#, 0). But while Bddx +(<7) might appear to be a 

much smaller set (if g is not cohomologous to a constant then the set has zero 

measure with respect to any equilibrium state), Fan and Schmeling show tha t 

it has the same Hausdorff dimension as the whole of A vex +(g, 0), provided that 

there exists an equilibrium state p  such th a t J  g dp =  0:

T heorem  A 1 (Fan, Schm eling [FS]) Let g : X J —* R be Holder continuous, 

and suppose there exists an equilibrium state p such that f  gdp  =  0 . Then

dim# Bddx + (g) =  dim# Avex + (g, 0).
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Results from [BS2] tell us th a t the existence of g  is not too strong a condition: 

if g is not cohomologous to a constant, then the possible values of f  gdg  (taken 

over all equilibrium states g) are an open interval (a, a ) . Thus the two sets are 

shown to have the same dimension provided tha t this interval contains zero. On 

the other hand if zero lies outside the dosed interval [a, a] then both sets are 

empty. So it is only when zero is an endpoint of the interval th a t we cannot say 

the dimensions are equal.

Fan and Schmeling use Theorem A1 to find other subsets of dim # Avex +(g, 0) 

which have the same dimension:

T heorem  A 2 (Fan, Schm eling [FS]) Let g : X j  —> M be a Holder continuous 

function not cohomologous to a constant, and suppose there exists an equilibrium

state g such that f  g d g  = 0 . Then for any a G  IR and 0 < /? <  1,

f  9 n (x ) 1dim/? < x G X t  : lim — ~  a > =  dim/7 AveY+(g, 0).
I n—* 00 fi"  J  A

The aim of chapter 2 is to extend the results of Theorems A 1 and A2. Our 

first new result is a stronger version of Theorem A2:

T heorem  A 3 Let g : X J  —j* R be a Holder continuous function not cohomologous 

to a constant, and suppose there exists an equilibrium state g such that f  g dg = 0. 

Now let r : X ^  —» E + be a strictly positive Holder continuous function, and let 

F  : —> R be a continuous function with the property that supr6[01] \F(t +  r )  —

F(t) | —> 0 as t  00. Then we have

dim# {a: G X J  : g n (x )  =  F ( r ll(x ) )  4 - 0 (1) as n —> 00} =  dim// A v e x +(g, 0).

We can recover Theorem A2 from this by taking F(t) — aid  and r  =  1. But our 

version allows for more general functions F. For example we can take F  to be any 

differentiable function for which F'(t) —> 0 as t —*■ 00. We have also introduced 

a new function r  which is helpful in adapting this theorem to work for flows. 

But the main improvement over Theorem A2 is th a t we are requiring the error
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term  gn(x) — F (rn(x)} to be bounded, whereas in Theorem A2 the points satisfy 

the much weaker condition th a t gll{x) ~  F (rn(x)). (Though in light of Theorem 

A1 it should perhaps not be too surprising tha t we can ask for a bounded error 

term.)

After this we show how the methods used for subshifts of finite type can be 

adapted to give analogues of Theorems A1 and A3 for other dynamical systems. 

We state here the most general versions of our results, in which we look at the 

ergodic sums of an R evalued  Holder continuous function g. (Multidimensional 

results like these were proved for subshifts of finite type in [FS].) For a general 

map T  : X  —► X ,  with Holder continuous functions g : X  —» R d and r : X  —* R+ , 

and a continuous function F : R + —> R, we define

A.vex(g, ct) — {:r E X  : ^g ra(a;) —► a. as n  —> 00} ;

Bddx(g) =  { x  G X  : gn(a:) is bounded} ;

M g ,  F, r) =  { x € X :  gn(x) -  F (rnfy)) +  0 (1)} .

As in Theorem A3 we need some control over F: we require supTej0jl] ||F(£ +  t )  —  

F(OII —> 0 as t —> 00. (Here we use || • [| to mean the usual Euclidean norm on 

Rd.)

We then have results for conformal expanding maps, and conformal hyperbolic 

diffeomor phisms:

T h e o re m  A 4 Let J  be a conformal repeller for a C 1+a map f  : M  —> M , 

and let g : J  —> Rd be a Holder continuous function whose components are 

cohomologously independent. Suppose there exists an equilibrium state v on J  

such that f j g d i y  = 0 . Then

dim # B ddj(g) =  dim# L j( g, F , r) =  dimH A vej(g, 0),

whenever F, r are as above.

T h e o re m  A 5 Let f  : A —► A be a conformal hyperbolic diffeomorphism, and let
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g : A —► M.d be a Holder continuous function whose components are cohomolo- 

gously independent. Suppose there exists an equilibrium state v on A such that 

f A g d i / ~ 0 . Then

dim H BddA(g) =  dim// LA(g, F ,r) = dim// AveA(g, 0),

whenever F, r are as above.

Finally, we can get similar results for conformal hyperbolic flows <pt : A —» A, 

if instead of the ergodic sum g n(x) we look at the integral f*  g (<fTx) dr. We can 

define

AveA(g, a )  := E A : ^  J  g (</)Tx) dr  —► a: as t —> o o . | ;

BddA(g) e  A : J  g (c/)Tx) dr is boundedJ> ;

LA(g, F) := |a ;  G A : J  g (<f>Tx) dr  =  F (t) +  0 (1) | .

We will show the following:

T heorem  A 6 Let <j)t : A —» A be a conformal hyperbolic flow, and let g : A —> M.d

be a Holder continuous function whose components are cohomologously indepen­

dent. Suppose there exists an equilibrium state v on A such that j A g d v  =  0. 

Then

dim// BddA(g) =  dimH LA(g, F) =  dimH AveA(g, 0), 

whenever F satisfies the usual condition.

In the rather shorter chapter 3 we look at a problem which was originally 

suggested to Richard Sharp by Frangois Ledrappier, concerning the periodic orbits 

of a transitive Anosov flow <j>t : M  —»■ M .

Given a periodic orbit 7, we look at its homology class [7] €  H i ( M , Z ) .  As 

explained in section 1.6, if we ignore the torsion part of H flA d ,  Z) then we can 

think of [7] as being represented by a point in Z&. If this point is non-zero we
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can consider its projection onto the (Euclidean) unit sphere in (using the 

projection map ps  : M6 \  {0} —> S'6"1 defined by ps(v) =  v/||v||2) where || ■ ||2 is 

the usual Euclidean norm). This gives us a point 0 (7) =  P s d l } )  E S b~x which 

represents the ‘direction* of the homology class of 7.

Now given T  >  0 we can define a measure vT on S b~x by

IAr = d n  ^  S m ’V J K7)<T,[7]/0

where is the Dirac measure at (9(7).

Our main result in chapter 3 is th a t the measures vT have a (weak*) limit as 

T  —> 00} and we are are able to  describe this limit

We find tha t the nature of depends on the asymptotic cycle $0 associated 

to the measure of maximal entropy. (We define this object properly in chapter 3; 

for now it is sufficient to know tha t it can be represented by a point in M6.)

T h e o re m  B l  The measures vT have a weak* limit Voo as T  00:

(i) I f  <&q ^  0 then is the Dirac measure at p s ( fI)o )-

(ii) I f  — 0 then is fully supported on g 6" 1. Indeed there is a norm  || • || 

on M.b with the property that for any open set D  C S'6-1 we have

v  Voi(Ps1(r>) n |̂|.||)

where jB||.|| is the unit ball for the norm || • ||.

Part (ii) of this theorem follows from a more general result. Suppose we are 

given a set A  C Z b. Then we can look at

n ( T , A )  :=  #  {7  ; K l )  S  [7 ] 6  A }  .

We can also define a quantity



if this limit exists. This is the d en s i ty  of the set A  with respect to the norm || • ||. 

We find tha t these are linked in the following way:

T h e o re m  B 2 Suppose  i>0 =  0 . T h e n  i f  A  C Z6 is a s e t  f o r  w hich  the d en s i ty  

d||.||(A) exists, we have

lim ^ d H (A ) .
T—>00 7r(T) !MIV '
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Chapter 2 

The pointw ise behaviour of 

ergodic sum s

Suppose we have a transformation T  : X  —> X  and a Holder continuous function 

g : X  —> M. We then have the sums

n —1

gn (x)  := £ fl(TVr).
i=0

We are interested in the sets of points rr E X  for which gn(x) has a specified 

behaviour as n  —> oo.

The simplest result of this type comes from the ergodic theorem: suppose we 

define

Avex (g, ct) =  {x e  X  : ^ n(^) —> a  as n oo} .

Then for any ergodic measure ^  on X , the set A v e A '^ E ^ )  has full measure. 

(Here is the mean value of g with respect to the measure /z, i.e. equal to 

f  gdp  when jj, is a probability measure.)

But we will look at subsets of Avex{g, o) on which the sums gn(x) are more 

tightly controlled. In the case of (one-sided) subshifts of finite type, results about 

such subsets were obtained by Fan and Schmeling in [FS]. In particular, they
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prove the existence of points x  G X \  such tha t

gn (x) -  n E ^ g  ~  F (n),

for various functions F . Indeed, for suitable F  they show tha t the Hausdorff 

dimension of the set of points with this property is actually equal to the dimension 

of the set Ave^G?,

Our aim is show that similar results hold if, instead of a subshift of finite 

type, we have a conformal expanding map or hyperbolic diffeomorphism. We do 

this by developing the methods used in [FS]. In fact we will prove th a t we can 

actually ask for

provided th a t F  is sufficiently well-behaved, and this set of points still has the 

same dimension.

We also have analogous results for flows : X  —> X ,  if in place of gn (x )  we

Note tha t if g  is cohomologous to a constant function then we do not get any 

interesting behaviour of ergodic sums: if g =  h  o T  — h  +  c for a constant c then 

gn =  h  o T n — h  4- nc, and so for every  point x  we have th a t gn (x)  — n c  is bounded 

by 2 | | / i | | o o -  The ergodic theorem then implies tha t E jJbg =  c for every ergodic /r, 

and the only behaviour we will get is

So we will always assume th a t g  is not cohomologous to a constant. In this case 

Theorem 1.1 guarantees tha t there are some points with non-trivial behaviour: 

we can at least find a periodic point x  (with period m, say) such tha t

gn (x )  -  n E ^ g  =  F ( n )  +  0 (1)

look at f *  g (<f>Tx )  d r .  We will be able to find points such tha t

g n (x )  -  nE[tg =  0(1).

g m (x) -  m E ^ g  ^  0
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which implies tha t gn (x )  grows at a linear rate. We also have the following (see

T h eo rem  2.1 (C e n tra l L im it T h eo rem ) L e t  a  : X b e  a subsh ift  o f  

f in i te  type, w ith  g  : XjJ —> R a H o lder  con tinuous  fu n c t io n .  Suppose tha t  p  is an

where N  is a n o r m a l  d is tribu tion  w ith  m e a n  zero and  variance  depending on  g 

and  p .

This will be an im portant tool for producing points whose behaviour is controlled. 

(Note tha t while we have stated the result for one-sided subshifts, it can also be 

immediately transferred to the other maps we are interested in.)

There is also a Central Limit Theorem for flows ([Rat]), bu t we will not need 

to use this explicitly.

2.1 R esu lts for subshifts of finite typ e

We start by looking at a one-sided subshift of finite type o  : Xj" —> X j .  Let 

A d(X j) be the set of invariant probability measures on X j .  This is a compact 

convex set in the weak* topology (see [Wal]). Thus for any Holder continuous 

function g  on X a  which is not cohomologous to a constant, the set

set is just a single point. W hen g is not cohomologous to  a constant, Theorem 

1.1 guarantees th a t a  < a .)

Now, by the definition of Hausdorff dimension for a measure, we have that 

if J  g d p  — a  for some p  E X i ( X ^ )  then dim# Avex + (g, a )  >  dim h  p .  The

equilibrium  s ta te  f o r  so m e  H o ld er  con tinuous  fu n c t io n  'ijj on  X jf. T h e n  i f  g is n o t  

cohom ologous to  a constant,  we have

{ / g d p  : p e  . M ( X t )  j

is a closed interval [a, a]. (Of course, if g is cohomologous to  a constant then this
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following theorem shows tha t if a  lies in the open interval (a, a ) , there actually 

exists a measure p  for which we have equality:

T heorem  2.2 ([BS2])

1 . I f  a  [a, ce] then Xvex +(g, a) = 0 .

2 . I f  a e  (a, a ) then Avex +(g, a) ^  0 , and

dim// Avex +(p, ct) =  sup |d im ^  p : p e M .{ X \)  and J  gdp  =  a  J> .

Furthermore the supremum is attained for a measure p  which is an equilib­

rium state fo r  some Holder continuous function.

Conversely, suppose tha t p  is an equilibrium state for a Holder continuous

function, and write a  = J  gdp.  Then it follows from the Central Limit Theorem

th a t tha t there exists a periodic point u+ with period p'y such th a t gp+ (u+) > p+a. 

(We will show how to construct such a point in the proof of Theorem 2.18.) By 

considering the invariant probability measure tha t is supported on this periodic 

orbit, we have tha t ~f^p+(u,+) G [a, a], and so a < a. Similarly we can show tha t 

a >  ft.

Thus a  e  (a, a7) if and only if there exists an equilibrium state p  such tha t 

f  gdp = a.

2.1.1 P o in ts w ith  boun ded  sum s

We define

Bddx +(g) =  { x £  X J  : gn(x) is bounded} .

Since Bddx +(g) C Avex + (</, 0), we know from Theorem 2.2 th a t if 0 ^  [a, a] then 

Bddx + (g) is empty.

On the other hand, the basic result in Fan and Schmeling’s paper [FS] tells 

us tha t if 0 €  (ft, cf) then B ddY+ (g) is non-empty, and indeed we have a lower 

bound for the dimension:
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T heorem  2.3 (Fan, Schm eling [FS]) Let g : X j  —► R be Holder continuous, 

and let p  be an equilibrium state for some Holder continuous function. Suppose 

that f  g d p  = 0. Then

dim// Bddx +(g) > dim// p.

(Note th a t this still holds if g is cohomologous to a constant -  then the condition 

f  g dp =  0 implies tha t the constant is zero, which in tu rn  implies th a t Bddx + (g) 

is the whole of X j .)

In particular’ we can apply Theorem 2.3 to the measure p  for which the supre- 

mum is attained in Theorem 2.2 (for a  — 0). This gives dim// Bddx + (g) > 

dim// Avex +(g, 0). But Bddx +(g) C Avex +(c/,0) and so we have:

T heorem  2.4 ([FS]) Suppose that 0 6 (a, ct), then

dim// Bddx + (g) ~  dim// Avex + (g, 0).

(Fan and Schmeling prove this directly from their main result without quoting 

Theorem 2 .2.)

Thus we have a seemingly ‘small5 subset of AveAn- (r;, 0) which nevertheless 

has the same dimension as the whole of Ave-^+f^, 0). We will prove many more 

results of this type.

2.1 .2  T he m eth od  o f adding blocks

Fan and Schmeling use their result about points with bounded ergodic sums to 

prove the following:

Theorem  2.5 (Fan, Schm eling [FS]) Let g : —> M be a Holder continuous

function not cohomologous to a constant, and let p  be an equilibrium state for  

some Holder continuous function. Suppose that J  g d p  =  0 . Then for any a e  M 

and 0 <  (3 < 1,

f gn{T) 1
dim// a G  X t  : lim — = a > >  dim H p.

I Ti—>-00 W J
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Their method of proof is something tha t we will develop and generalise to 

give us our results.

The strategy is to start with a set S  C X j  on which we have good control over 

the ergodic sums. Then for any x  E S  we aim to construct a point £(?;) e  X j  

which has the desired property, i.e. in the theorem above we want gn (£{x))  ~  anP 

as n —> oo. This process produces a new set S '  (the image of S  under £) and we 

aim to relate the dimension of S '  to the dimension of the original set S .

In [FS] the proof takes S  =  S k  where

S K =  { x e X + :  |^ ( x ) | < I< Vn} .

Using Theorem 2.3, we know that for any e >  0 we can find such a set S k  with 

dim// S k  > dim// p  — e. The construction of the function £ is done in such a 

way th a t we have bounds on d ( £ ( x ) , £,(y)) in terms of d ( x , y )  (for general points 

x ,  y  € Sk) which are good enough to show tha t dimension of Sic  is equal to the 

dimension of S k *

The construction of £(x) from x is the main part of the proof. It is based on 

a procedure which Fan and Schmeling refer to as “inserting blocks” into x .  As 

the name suggests, this works as follows: given our point x , we use the definition 

of X j  as a subset of { 1 ,2 , . . . ,  k } No to think of x  as the sequence of symbols

z0 x i x 2 x 3 ----

Then, “inserting a block B  (of length £) behind x ” means replacing x  by 

x 0 aq . . .  Xi^ i Xibobi . . .  be- i  z i+i x i+2  

which for simplicity we will write in an abbreviated form as

X0 Xi . . . Xi-1 Xf B  x i+1 Xi+2 ----

In order to produce the point f(rc), this process is done repeatedly, insert­

ing blocks at various different positions in x .  (We never insert a block inside
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a previously-inserted block.) In the construction used to  prove Theorem 2.5 in 

[FS], the blocks tha t are inserted, and the positions they are inserted at, do not 

depend on the point x. (The blocks only depend on the symbols which come 

immediately before and after it: this is necessary to ensure th a t the blocks are 

admissible.) But we will want more freedom than this in our constructions.

We now define some notation for a general form of the block-adding construc­

tion. Each point x  E S  is w ritten as a sequence of symbols xq x± x 2 . . . . If a block 

is to be inserted behind Xi, then we will call this block B i  and say tha t it has 

length i i .  If no block is to be inserted behind Xi then we will define i i  — 0 and B \  

to be an empty sequence. So if i\ < i2 < is < • • • are the positions where blocks 

are to be inserted, the point £(x) has the form

cco • • * 3:^ B{ 1 . . .  Xi2 B i2 2^2+1 . . . .

The blocks Bi  and their lengths ii are allowed to depend on the point x. (We 

will write B{(x), ii(x)  when necessary to compare different points.) We will say 

th a t a function £ : S  —» S'  defined in this way is a ‘block-adding process’.

It sometimes helps to say th a t the symbol Xi is ‘shifted’ to the new position

where

i — i +  i j .
j<i

Again we can write if(x) if necessary to emphasise th a t this depends on the point 

x.

In order to ensure th a t we have some control over d(£(x), £(?/)), we will require 

our block-adding processes to satisfy certain conditions.

D efin itio n  2.6 We say that the block-adding process £ : S  —> S' is de fined  on  

c y lin d ers  if, whenever x  and y are points in S  with x * =  y f o r  all k <  i, we 

have

(i) i f x )  =  ii(y);
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(ii) I f  in addition =  yi+i, then the blocks Bi(x)  and B i (y ) are identical

In particular, the decision of whether to add a block behind Xi depends only on 

the symbols x 0, x i ,  . . . ,  Xi.

These conditions axe sufficient to guarantee certain simple properties of the 

function £:

P ro p o s itio n  2.7  I f  the block-adding process £ : S  —► S '  is defined on  cylinders  

then:

(i) £ is in jective, so tha t  there is a well-defined (b lock-rem oving f u n c t io n ’ £_1 : 

S '  -> S .

(ii) £ is  L ip sc h i tz  continuous.

(Hi) I f  C  G Cyl(i + 1 )  is a cy linder  w ith  C f) S  0 , th en  there is a un ique  i' 

a n d  C' G Cyl(z' +  1) such  tha t

(a) I f  x  G C  D S  th en  £ (x )  G C';

(b) I f  x  G C  H S  th e n  the symbol Xi is shifted  to p o s i t io n  i! in  £(ic).

(iv) I f  Q  G Cyl(j +  1) is  a cy linder  w ith  QC\ S '  ^  0 , th en  there is a un iq u e  i 

and  Q  G Cyl(z -h 1) such  tha t

(a) I f  £ (x )  G Q C\ S '  th en  x  G Q ;

(b) I f  £(%) £ Q H  S '  a n d  the  sym bols x i; Xi+1 are sh if ted  to p o s i t io n s  i!, 

(i +  I)7 respectively, th en  i! < j  < (z +  1)'.

Proof: We first observe tha t if x  and y  are two points in S  with x k =  y k for all 

k  < i then the symbols x k and y k are shifted to the same positions (in £ (x )  and 

£(?/) respectively) for any k  < i - \ - 1. This is an easy induction on k , with the case 

k  =  0 being trivial and the inductive step being immediate from part (i) of the 

definition. Each of the properties of f  follows from this:
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(i) : If x  7̂  y  then we can find i such th a t xjg =  yk for all k <  i but Xk+i ^  yk+i- 

But then the symbols x i+\ and z/j+i are shifted to the same positions so we must 

have £(z) ^  £ (y ).

(iii) : This follows immediately from the observation above plus part (b) of 

the definition.

(ii) : This now follows from (iii) -  in fact we see th a t d (^ ( x ) ,  £ (y ))  <  d ( x , y ) .

(iv) : Pick any point y  with £(y) E Q O S ' .  Then choose the largest i such 

tha t %'{y) <  j .  There is then a unique cylinder Q E Cyl(i +  1) with y  E Q. We 

want to show tha t if x  is any other point with £(:r) E Q  C\ S ' ,  we have x  E Q. 

Choose the smallest k such tha t Xk 7̂  ijk- Then from the observation above 

we know th a t the symbols x ^  are y k shifted to the same position k and since 

£(t)> £(?/) £ Q  £ Cyl(j +  1) we must have k' > j .  But then k' > i! and so k > i. 

So we have shown th a t xi  =  yi for all I <  z, i.e. x  E Q. One further use of the 

original observation shows th a t we also have property (b). □

Thus, both the block-adding function £ and the block-removing function £_1 

can be regarded as acting on cylinders.

Finally in this section we explain why the procedure of adding blocks produces 

points for which we have some information about the sums gTI{^ (x )) .

For a Holder continuous function g : X j  —> R, we can define

var +g =  SUp {|g (x )  -  g (y)\  : Xi =  y { Vz < n} .

Then, by the Holder continuity of g , the sequence {var+#}n>i is bounded by a 

geometric progression, so we can define
00

v ( g ) =
n ~  0

And this constant has the property th a t for any n  >  1, if we have two points 

x , y  E X \  for which Xi =  yi for all z < n, then

|g k (x )  -  g k (y)\ < V {g )  for all k <  n.
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Now, suppose we have a point x  6 X X  and insert a single block B  behind 

i, producing a new point y. Say tha t B  consists of the first I  symbols of a 

point b 6 X X . Then we know

•  9n {x) ~ V ( g )  <  g n (y) <  gn {x) +  V ( g )  for n  <  i;

•  g'l ( x ) J\-gn ~l (b) — 2V ( g )  <  g n (y) <  g l (x)-\~gn~l (b) +  2V ( g )  for i < n  <  i +

•  g n~i (x )  +  g£(b) — 2V ( g )  <  g n (y) < g n~£(x )  +  g £(b) +  2V (g ) for n  > i + 1. 

In particular, if x  6 S k  then

• - K  -  V ( g )  <  g n (y) <  I< +  V( g )  for n  < i;

• g£{b) - K -  21/ ( g )  < gn {y) <  g £(b) +  I< +  2 V ( g )  for n  > i +  L

So if b was chosen so th a t g £(b) > K  T  2V ( g ) ) we have produced a point such 

th a t all the partial sums after the inserted block are bounded away from zero.

Similar calculations show th a t if we have a block-adding procedure tha t inserts 

blocks in infinitely many places in x ,  we can get bounds on the rate of growth of 

gn (£(x})  as n  —» oo.

2.1 .3  P o in ts w ith  sum s w hich grow at a specified  rate

We now prove a stronger version of Theorem 2.5.

T heorem  2.8 L e t  g : X \  —> R be a H o lder  con tinuous  fu n c t io n  n o t  cohom olo­

gous to a constant,  a n d  let p  be an equilibrium sta te  f o r  so m e  H o ld er  con tinuous  

fu n c t io n  on  X A , w ith  f  g d p  =  0 . N o w  let r  : X X  —> M+ be a s tr ic t ly  pos i t ive  

H older  co n tinuous  fu n c t io n ,  an d  let F  : JR+ —> M be a co n tin u o u s  fu n c t io n  w ith  

the p roper ty  th a t  supr€[01] \ F ( t  +  r) — F ( t ) \  —* 0 as t  —> oo. T h e n  we have

dim # { x  e  X X  : g n ( x ) -  F ( r n(a;)) +  0(1) as n —> oo} >  dimh  /a.
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Note tha t the main improvement over Theorem 2.5 is tha t we are requiring the 

error term  to be bounded. We have also introduced a new variable r: this would 

arise naturally if we were dealing with flows. Theorem 2.5 can be deduced by 

taking r  to be a constant function.

The conditions on F  are clearly stronger than necessary (for example we could 

add any bounded function to F  without changing the set we are looking a t) , but 

still weak enough to allow F  to be any differentiable function whose derivative 

tends to zero; this covers most of the functions we might normally be interested 

in, including all of the functions studied in [FS]. We can even take F  to be a 

slowly oscillating function such as F(t)  — (log t) s in(\/t). On the other hand, it is 

certainly necessary to have better control on F  than merely taking F(t)  =  o(t), 

because if for example we take F(t)  =  y /ts in t , and r  is small, then there can be 

no point x  with gn(x) =  F(rn(x)) +  0 (1).

Proof of Theorem 2.8: First of all, because r is continuous and strictly positive, 

we can set r m?;n =  inf r and rmax — supr. For most of the proof, the bounds 

0 < rmin < r < rmax will be the only properties of r  tha t we need to use.

As in the proof of Theorem 2.5, we consider sets

SK = {x  G X+  : \gn(x)\ < I< Vn} .

We have Bddx +(#) =  U/reN &K' by Theorem 2.3, given any e >  0 we can find 

a K  such tha t

d i m #  S k  >  d i m #  jj, — e.

We aim to construct a block-adding process such th a t for each point x  G 

5 /c, the ergodic sums <7n (£(+)) have the desired behaviour. The set S'K  =  

{£(r) : x  G S k }  will be shown to have the same dimension as 6+. This implies 

tha t the dimension of the set of all points with the required property is at least 

dim# p, — e, and so the theorem follows because e was arbitrary.

We first specify which blocks are to be used in the construction. Using the 

aperiodicity of the subshift we can find N  such tha t > 0 , i.e. for any two
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symbols s, t E { 1 ,2 , . . . ,  A;} we can find at least one block W( s , t )  of length N  

such tha t s W(s,  t) t is an admissible sequence of symbols. We fix some choice of 

W (s, t) for each pair s, t. Now let K b  be a positive constant, chosen to be greater 

than 10(V(g) +  Mg +  K  +  1), where Ma = supx€X+ |^(x)|. Then, because g is not 

cohomologous to a constant, we can find points u+ , u~ e  X~\ and an integer l u 

such tha t

ge' ( u +) > K B + V(g) + 2NA4g; 

ge-‘(u~) < - K b -  V(g) -  2N M g.

(This follows from the Central Limit Theorem.) Now for s, t  E {1, 2, . . . ,  k }  we 

define the block B + ( s , t ) to have the form

Thus B + (s, t ) is a block of length t  — t u +  2Â  for which s  B + ( s , t ) t  is admissible, 

and if x is any point in the cylinder [2?+(s,t)], then

9 l {x )  >  K b .

Similarly we define the block B ~ ( s , t ) as

and for any jc E [S~(s, t)] we have

< - K b *

These 2k 2 blocks will be the only blocks used in the construction (though for 

convenience we will sometimes also speak about ‘adding’ blocks of zero length, 

when no block is needed). If we say th a t a non-trivial block is inserted after xi,  

th a t block must be either B + ( x i: Xi+i)  or B ~ ( x iy x i+i). Note th a t these blocks all 

have the same length £.
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Now we diverge from the proof of Theorem 2.5 in [FS]. Our choice of places 

to insert the blocks will have an inductive definition, and these places will depend 

on the point x  (but in such a way tha t the process is defined 011 cylinders as per 

definition 2.6).

Given our point x  G S k  we construct a sequence ( £ ^ ) j > - i ,  starting with 

,7k-1) =  x .  This sequence will take the following form:

£(_1) is Xq Xi x 2 £3 £4 . . .

£ ^  is X q  Bq £4 £2 £3 £4 . . .

£ ^  is £q Bq £1 Bi £ 2 £3 £4 . . .

£ (2) is £ 0 Bq £ 1  £ 2 B 2 £ 3  £ 4  • • ■

. . .  and so on,

where (B j ) j> u is a sequence of blocks depending on £; however, most of these 

blocks will have zero length. So an alternative description is th a t x ^  is defined 

by either

• £ ^  — £ ^ -1); or

•  x ^  is the same as £^7~1̂ except for a block (of length t )  inserted behind

£ ^ 1}, where f  is the position tha t the symbol Xj has been shifted to in

£ ^ _1h

For fixed i we see th a t the sequence (.x'[7'l)j> -i is eventually constant. So the 

limit liin^oo x ^  exists, and we will define

£( x)  =  lim xSj \
j-*oo

Clearly this definition makes £ a block-adding process as defined in section 2.1.2, 

whose blocks are these £?*.

Now, the sequences ( £ ^ ) j > _ i  will be defined inductively, and simultaneously 

for all points x: tha t is, when deciding what the block B j (x )  is to be, we will 

assume we have already defined for ap y  ^ 5 ^
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Furthermore we will insist th a t each stage of the construction is defined on 

cylinders, by which we mean tha t the function x  i—► x ^  is itself a block-adding 

process which is defined on cylinders. This ensures th a t f  itself is defined on 

cylinders.

From the definition of F  we can find Np  such th a t whenever t > N prmint

\F(t + r) -  F ( t )| < 1  VO < r  <  max{V'(r), (£ +  l ) rmax}-

In particular, suppose a;, y  G with xi =  yi for all i <  n. Then |rn(a;) — rn(y)\ <

V(r)  and so if n > Np  we have — F(rn(y))\ <  1.

We now pick some large constant K 0 (much larger than K B)- Because the

functions g , r and F  are continuous, we can choose Kq sufficiently large tha t for 

all n < Np  +  £ and all 2 G X \  we have

|gn(z) -  F( rn(z))\ < K 0.

It will be convenient to have another notation for cylinders: for n  > 0 we 

write

Cn{x\ SK) := {y  G S K : y i ~  Vi < n} = [a;0 x i . . .  n  S K.

Now take j  > 0; we want to define x ^  in terms of which means defining

the block

Say th a t the symbol Xj  is shifted to position f  in ajb-1). (The nature of the 

construction then means tha t the symbol ,t7 is shifted to this same position /  in
3.(1) for all i  >  j  — 1, and hence also in £,(x).) Since we assume tha t the function 

y j/b-1) is defined on cylinders, we have tha t if y  G Cj+i{x\ Sj<) then the 

symbol y j  is shifted to the same position j '  in 2/b'-1), s G it is natural to look at 

the values of <7J'l+1(2/b'-1)) and N '+1( y ^~1)).

Since g is Holder continuous and y t—> ?/b_1) is defined 011 cylinders, we have 

for any y, z G Cj+1 (x\ SK)-

W ' +1{yi3~1)) - S j/+1(2(3_1))| <  V(g)]
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and if j f > Np  we also have

<  1.

Thus for j '  > Np,

( y , f l ('!/<J 1;) -  f ()j ,+i (?/(j !i)) j

-  ( / +1(^ « -1)) -  F ( r3'+1(z<3‘- 1>))) | <  V ( g )  +  1, (2.1)

whenever y, z  £  Cj+i (x] S k ) .

Now we can define x ^  as follows:

•  If f  <  N F , or if — K q  <  g i ,+1( y ^ ~ 1')) — F  ( N '+1( y ^ ~ ^ ) )  < K 0 for all 

y £ Cj(x] S k )  then we take x&) — a^J'-1);

•  If j '  >  N p  and there is some y £ Cj(x ' ,SK) such tha t g^+1(y ^ ~ ^ )  —

F  (rJ,+1(y^-1^)) > K 0 then we take B j ( x ) — B ~ ( x j ,  Xj+i ) .  (And thus

x ^  is the same as x ^ ~ l ) but with this block B j ( x )  inserted behind .)

•  If f  >  N p  and there is some y  e  C j ( x \ S i c )  such th a t g ^ +1{ y ^ ~ l>j) —

p  (7'-?'+1(yb~1))) <  — K q then we take B j ( x )  — B + ( x j , X j +1).

We took Kq to be large, certainly large enough tha t 2Kq > V(g)  +  1, and so the 

second and third possibilities cannot happen simultaneously.

W ith this definition, the function x  f—> x ^  is clearly defined on cylinders as 

required. This completes the inductive definition of the sequence ->_1.

As stated above, we take £(x)  — lim ^oo x ^ \  and this block-adding function is 

defined on cylinders. We now want to show that the point £(a;) has sums gn (^(x))  

with the desired asymptotic property. Let us define

A n( x)  =  gn ( ^ ) ) - F ( r n ( ^ ) ) ) -

As above, for each j  G No, let f  be the position tha t the symbol Xj  is shifted to 

in £(a;). Then [f(a;)]j =  for all i  F  j 1\ and so if j 1 ^  N p  we have two useful
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inequalities:

Aj/(a;) — ^) — F  (i'3'(x ^  ^

Aj/+1(a:) — — F  (j-3'+1 (x ^ -1^

<  V(g)  +  1.

<  V(g)  +  1.

(2 .2)

(2.3)

In particular, from (2.3) we see tha t if Af+i (x)  > Kq +  V(p) +  1 then Bj(x)  ~  

B~(xj ,Xj+1); conversely (also using inequality (2.1)), if Bj(x)  =  B ~ ( x j )Xj+1) 

then we must have A y+i(;r) > K 0 — 2V(g)  — 2 . Similar inequalities hold for 

B +( x j , x j+1).

Claim, 1 : If j '  > Np  and Bj(x)  = B~(xj ,Xj+1) then

A {j+iy(x) < A f (x) -  D,

for a constant D > 3V(g)  +  4 +  2 K .

Proof of Claim 1: We have

flr(j+1), (a;) =  gj’^  +  g{aJ'x) +  g&(a3>+1x),

and crj,+1x € [B~(xj,  £j+i)] so gt (a3'+lx) < —K B, so

^O +iy^) <  gj'(x } +  Mg _  K b

Also r^'+1^(ai) — C  (x) <(£-{- l)T,moaj and so

F  (x)^ — F  ^rJ (o:)^ <  1.

Combining these inequalities gives

A(j+i)/(a:) <  Af ( x )  +  M g +  1 — K b -

Take D — K b — Mg — 1. Then since we chose K B > 10(V(g) +  M g +  K  4- 1) we

have D > 3V(g)  +  4 +  2K  as required.

Claim 2: A f ( x )  < Kq +  V(g)  +  1 for all x  6  S k  and all j  > 0.

Proof of Claim 2: We first show that if A y  (x) <  K q +  V  (g) + 1  for some f  > Np

then A(j+i)/(a;) <  K 0 +  V(g)  +  1. We split into three cases:
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• If Bj(x)  is empty (i.e. no block was inserted behind Xj) then we must have 

Ajt+i(x) < Ko+V(g)  + l. Furthermore in this case we have (y +  l) ' — / + 1 ,  

and so A(3-+iy (i)  <  Kq +  V(g)  +  1 as desired.

•  If Bj(x) = B ~ ( x j :Xj+1) then Claim 1 shows th a t A(j+1y(a;) < Ay(rr).

•  If Bj (x ) — B +(xj iXj+i) then Ay+i(rc) < — K q  +  2V(g)  +  2. Now we have

and so A^+iy (x) <  — K q  +  2 V ( g )  +  £Mg 4 - 3. Provided th a t K q  was chosen 

large enough we actually have A y+1y(a:) < 0 .

inequality then follows for all j  by induction.

By combining Claim 1 and Claim 2 we have tha t if Bj(x)  — B ~ ( x j , £ 7+1) then

In a similar* way we can prove the corresponding lower bounds for | Ay (x) | , 

and hence we get:

•  |Aj-/(x)| <  Kq +  V(g)  +  1 for all x  E S k  and all j  > 0;

• If a block was inserted after xj  then | A /(a )  | <  Kq +  V{g) -f 1 -  D.

Finally, suppose we have any x  E S k  and any n  >  0. If n < Np  +  £ then 

j An(x)| <  Kq by the choice of Kq. Otherwise, we let j  be the largest integer such 

tha t j 1 <  n. Then we must have j '  >  Np  and n — j ' < L  Hence

_  gi,+1 (x) +  gc(<jj '+1x) < g3'+1 {x) +  £Mg\

If j '  < Np  +  I  the desired inequality is immediate from the choice of K q .  The

^(r+ iy(x ) 5= +  V{g) +  1 — D.

(f ( x )  =  g3' (x) +  gn 3' (a3'x) < g3'(x) +  £Mg\

and

F ( r n( x ) ) ~ F  ( r f ( X))  <  1.*)
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So

|A n(x)\ < |A f {x)\ p £ M g p l < K 0 + V(g)  +  1 +  £Mg +  1. 

This completes the proof tha t gn(£(a;)) =  F  (rn(£(x))) +  0(1).

It remains to show th a t dim// S'K ~  dimH S k - First of all from Proposition 

2.7 we know th a t £ is Lipschitz continuous, and so dim// S'k  <  dim// S k  - However 

we are more interested in the opposite inequality.

Let r) > 0 be arbitrary. Then we can find Nv > Np  such tha t whenever 

t > Nvrmin we have

\F(t + r) -  F(t)\ <  r) VO < T < r max.

Claim 3: If B j (x ) is non-empty (i.e. a block of length £ was inserted after Xj) for 

some j  with f  > N.,n then B 1+k is empty for all 1 <  k <  r/-1 .

Proof of Claim 3: We use induction on k . Given 1 <  k < r p 1, assume that 

is empty for all i such th a t 1 <  i < k. That is, the point ^(x) contains 

the string of symbols

-£j+1 -Ej+2 -Ej+3 • • • -Ej+Ic

uninterrupted by blocks. We see tha t

T (j )  — 1) _  r b+2) — , , ,  — ™(i+fc-i)U/ " aJLj j

and also th a t (j  +  k ) 1 =  (j +  I ) 7 +  k — 1 .

Now, we showed previously tha t

| A(j+i)/(x')| <  K 0 +  V{g) +  1 — D.

Combining this with the inequality (2 .2 ) we get

50+1)'(x O '))- i ?(,.«+1)'(xW)  ̂ < K 0 + 2V(g) + 2 - D .  (2.4)

Next we look at

g( j+k) ’+ l ( x ( j+ k~ i ) }  =  flO+l)'(xW)) + g k (a W Y  X W )
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(using the fact th a t x ^ +k ^ =  x ^ ) .  But cAJ+L)/aA?) =  crJ’+1a; and so

gk {a^+1^ x ^ )  = |pfc(a-7+1a;)| <  2 K.

(This is where we use the fact th a t x  £ S k •) And so

g(j+k)'+nx (j+k-i)j _  f?0'+1)'(x0‘)) <  2K. (2.5)

And for the r term  we have

< kr7

(again using x ^ +k ^ =  x ^ )  and so

yO’+k)+1 ârQ’+fc _  r  (•?+!) (x^^) <  hi] (2 .6)

Combining (2.4), (2.5) and (2.6) gives 

pO+fcJ'+i^O+fc-i)) _  p  ^r 0+ 't)'+ i(a;(3+fc-i))j < K 0 +  2V(g)  +  2 +  2 K  +  kr) -  D.

And so from (2.1), for any y £ C(j+ky+i(x\ S k ) we have 

gU+ky+i^yU+k-i)^ _  F (j.ti+ky+i^yU+k-v-fj < p a +  3v ( g) +  3 +  2K  +  k r i - D .

But D > 3V(g)  +  4 -f 2K } so

g(j+ky+ny u+k-i)j _  p  ^U+ky+i^yU+k-i)^ <  _j_ kr} _  -p

Thus if /c <  7]—1 this is less than  K q for all y £ C(j+ky+i(^, S k ), and so no block 

is inserted behind Xj+}c.

This completes the inductive proof of Claim 3.

Suppose we let P = \y  1] . Then for any x  £ SK and any % with % ^  'we 

have

(i +  p y  -  if < P  + 1
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And so whenever j  > i for i' > N1V we have

f - i ' <  ~  ( P + i)

< (j — i +  P)  +  (j  — i +  P)£/P  

< j { i  + e / p )  + p  + t

If we take i to be the smallest integer such tha t i' >  then i! < Nv + 1 and so

for a constant Cr] which is independent of x. Note tha t we have proved this in­

equality under the assumption tha t j  > i, but by changing the constant Cn if 

necessary we can ensure th a t it also holds whenever j '  <  and hence for all j .

Suppose we have x , y  e  Sk  with d(x,y) = 0j (i.e. Xi = yi for i < j , but 

Xj 7̂  yj). Then, since £ is defined on cylinders, we know tha t Xj and tjj are shifted 

to the same position f  in £(:c) and £(y) respectively. So d(£(x)>£(y)) — 93\  and 

from the inequality (2.7) we have

And hence
, dim# Sk  

d i m H  S k  -

But rj was arbitrary, so this shows

dim# S fK > dim# S k - 

We proved the opposite inequality earlier, so we now finally have dim# S'k  =

j '  < j {i +  e / p )  + p  + n„ + 2 e,

i.e.

f  < +  j ( l  +  Tji) (2.7)

d(^{x)^{y) )  > 9C+3̂ 1+T)̂

> 9c .d{x,y)1+ve.

dim# S k - This completes the proof of Theorem 2.8. □
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Now we repeat the arguments which we used to deduce Theorem 2.4 from 

Theorem 2.3. We have

dim# {x G X \  : gn(x) =  F(rn(x)) +  0(1) as n  —> oo}

>  sup ^dim jj fi : (i an equilibrium state with j  g dp = 0

>  dim// Ave(p, 0),

by Theorem 2.2, provided tha t a t least one such /i exists. To prove the opposite 

inequality, suppose y G X \  is such th a t gn(y) =  F(rn(y)) +  0(1). Given e > 0 

we can choose t0 > 0 such th a t supre |01] \F(t  +  r )  — F( t )| < e for all t > t 0. And 

so for all n  > to /rmin we have

\F(rn(y))\ < \ F ( t 0)\ + \rn( y ) ~ t 0]e

< \F(t0)\ +  (nrmax -  i0 +  l)e,

and so
1

l im s u p - |^ ( y ) |  <  rmaxe.
n —>oo n

Since e was arbitrary this shows linv^oo <̂7n(?/) =  0, i.e. y G AvevY+(#,0).

Thus we have shown:

T h eo rem  2.9 Suppose g, F, r are as in Theorem 2.8. Then i f  0 G (a,ce),

dim h € X~f : ^n(x) — F(rn(x)) +  0(1) as n  —> oo} — dim.//Avex +(p,0).

2.1 .4  T w o-sided  subshifts and suspended  flows

We want to define the sets in Theorems 2.3 and 2.8 more generally. Suppose we 

have a transformation T  : X  —♦ X  for some compact metric space A , with Holder 

continuous functions g : X  ■—> M and r  : X  —> ]R+, and a continuous function 

F  : R+ —» M. Then we shall define

Bddx(^) = {x e  X  : gn(x) is bounded} ,

L x {g, F , r) =  { i G l :  #n(^) =  F  (rn(o:)) +  0(1)} .
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In the case of a one-sided subshift we have shown in the previous sections that, 

under certain assumptions, the dimensions of these sets are all equal, and equal 

to the dimension of Avex +(g, 0).

Now consider a two-sided subshift a  : X a —•* X a • We have a projection 7r+ : 

X a —* X ^  as defined in section 1.4 by (w +x)i = xi. For a symbol s 6 { 1 ,2 , . , . ,  k}, 

look at the set

R s := {.t G X a • £0 — s} •

As a metric space, we can think of R s as being a product of a cylinder in X 'f  

with a cylinder in X *T, where A T is the transpose of the m atrix A. We will write 

these cylinders as [s]A and [s ]^  to avoid confusion. T hat is, we have a map

P, : R„ -  [s]-4 x [s]'"r

given by

P s (x) =  (tt+ (x ) , ty- ( x )) =  ( ( xQ, x u x 2 i . . . ) » ( ^ 0 , x - u x - 2 i . . . ) ) .

Provided th a t the constant 0 used to define the metric is the same for each space, 

this map P s is a bi-Lipschitz homeomorphism.

If S  is any subset of A j ,  then

P M + ^ S )  n R s )  =  (Sn [ s ] ' 4 )  X  [ e ] * T .

But it is well-known (see [Pes], for example) tha t

A T  '—1—- a'p  „
dim// [s] =  dim.B [5] =  dim// A+T =  d im ^ A ^ ,

and so by statem ent (e) from section 1.5,

dim// ^(S  n  [s}A) x [s}AT)  — dim//(S' H [s]A) -f dim//[s]i4T

=  dimh (S  Pi [s]A) +  dim //A +t .

Hence

dim// (7r+1(5') f] R s) =  dimH(S  Pi [s]A) +  dim// X * T.
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And by maximizing over all possible s we get

dimh (tt+1(5')) =  dim# S  +  dim#  X+T.

This can be used to transfer our results about one-sided shifts to the two-sided 

case. In fact each of the sets we are interested in is of the form 7r^1(5) for some 

S  C X j , though for the following theorem we only need to use an easy special 

case of this statement.

T heorem  2.10 Suppose there exists some equilibrium state /a on X a such that 

JXAg d p ~  0. Then

dim# B dd j^  (g) = dimH XveXA (g, 0).

Furthermore i f  g is not cohomologous to a constant then

dinur L Xa (g, F, r) =  dim# AveXj4 (g, 0) 

whenever the function F  satisfies suprG[01j \F(t +  r)  — F ( t ) | — 0 as t —> oo.

Proof: If g is cohomologous to a constant then the first statem ent is trivial (as 

explained for one-sided subshifts). So now let us assume th a t g is not cohomolo­

gous to a constant. It is sufficient to prove the second statement, since the first 

is then the special case F  =  0.

By Theorem 1.2 we can find Holder continuous functions g^u\ r ^  : X a  —> K. 

which are cohomologous to g} r respectively, such tha t whenever x, y G X a with 

Xi =  ip for all i > 0 we have g^T (x) — g ^ ( y )  and r ^ ( x )  — r ^ ( y ) .  Furthermore 

we can require the function r ^  to be strictly positive. (Suppose r ^  is not strictly 

positive. |7’n(rr) — (r^^)"(a:)| is bounded, and rn(x) >  nrmin, so there exists n  such 

tha t (?Tu))n (x) >  0 for all x. We can therefore replace r ^  by the cohomologous 

function ^ ( r ^ ) n.) These functions can also be regarded as functions on X f , 

which we will write as g+ : X A —> M, 7,+ : X A —> M+.
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As in section 1.4, we look at the pushforward of p  to X A by the map 7r+ ; this 

is an equilibrium state on X A . And we have

f  g+ dfi+ = [  #(u) dfi = f  g d p - O .
J x f  J x A Jx a

So we can apply Theorem 2.8 to get

dimH L x + (g+, F, r +) =  dimH Avex + (g+, 0).

But by the definition of g+, r + , we have for any x  E X A and n  > 0,

(g+nir+x)  -  (gM )n(x), {r+)n[rr+x) -  (7̂ ) " ( x ) .

And so we have L XA(g(u\  F , r ^ )  =  7T+1 (^+ , F, r"1")^ and A v e ^ 0) =

7T+1 ^Avex +(p+ , 0 )j. Hence

dimH L Xa {giu), F, =  dimH XveXA (fif(u) > °) •

Finally, because g^u\  are cohomologous to g and r  respectively, |(</u'))n(£) — 

gn(x) | and | ( r ^ ) n(a;) — rn(:r)| are (uniformly) bounded; the latter implies that 

|F  ( ( r ^ ) n(a;)) — F fr^ a ;))!  < 1 for sufficiently large n. So L XA(g^u\  F , r ^ )  = 

L Xa (g, F, r) and A vqXa (g{u\ 0 )  =  AveXA (g, 0). Hence

dimH LXA(g, F, r) = dim# AveXA(g, 0).

□

For a flow <fit : X  —»■ X  we look at

Avex (g, ct) := j' x  € X  : -  J  g {4>Tx) dr —> a  as t —> o o . | ;

Bddx(^) := E X  : J  g (4>Tx) dr is b o u n d e d |;

M s .  F ) : = { x € X :  j \{<l>Tx) d r  =  F(t) +  0 ( 1 ) )  .

Notice tha t these sets are all ^-invariant. In the case of a suspended flow 

<rTt : X A —* X A, the metric on X rA is defined in such a way th a t, whenever S' is a 

(Borel) ^-invariant set, we have

dimH S  — dimH {x  E X a  : p(x, 0) E S}  +  1. (2.8)
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(Details are in [BS1].)

Now suppose p  is an equilibrium state on X rA] according to Proposition 1.7 

this is of the form (1/ x l ) / ( J  rdv) ,  where v is an equilibrium state on X a - And if 

j Xr g dp =  0 it follows tha t JXa Xg dv — 0. Furthermore if g is not cohomologous 

to a constant then Xg is not cohomologous to a constant. So we can apply 

Theorem 2.10 to show that

dim # BddAOl {Xg) = dim# L Xa (Xg, F, r) =  dim # AveXj4 (Xg, 0) (2.9)

(whenever F  satisfies the usual condition), where r is the roof function for the 

suspended flow. We note tha t

• x G Xv^xa  Pdh 0) if and only if p(x, 0) G Avex^(<?,0);

• x G 3 d d XA(Xg) if and only if p(x, 0) G B d d ^ (^ ) ;

•  x  G L XA(Xg, F, r) if and only if p(x, 0) G Lx -A(g, F)\

So by combining (2.9) with (2.8) we have:

T heorem  2.11 Let g : X rA —> R be Holder continuous, and suppose there exists 

some equilibrium state p  on X rA such that f xr gdp  = 0. Then

dim# Bddx . (g) =  dimH Avex -A (g, 0).

Furthermore i f  g is not cohomologous to a constant then

d\mH LXrA (,g, F) = dimH Ave*v (#, 0)

for any continuous function F  which satisfies suprG[0 ^ \ F (t  +  r )  — F(t)\ —> 0 as

t —» 0 0 .

2.2 M oran covers

We will make heavy use of the techniques for dealing with conformal systems 

which are explained in Pesin’s book [Pes] (for maps) and [PS] (for flows). This
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section explains what we will need.

We first look at the case of conformal repellers for expanding maps. If the 

coding map is x  : %a —> ^  then for any cylinder C  — [so si . . .  sn-i] in we

have the set

x{C)  = {*(*): x e C}  =  r so n f - 1 (Rt l ) n- . - n r '" -1’ .

Now suppose we define v : J  —> R by v(z)  =  log a(z) > 0. We have:

P ro p o s it io n  2.12 ([Pes]) Let C be a cylinder in X J  of length n. Then the set 

y(C) is contained in a ball in J  of radius f(C ) and contains a ball in J  of radius 

r(C), such that for any z  G x(C) we have

ci exp (—v n(z)) <  r(C) <  r(C) < c2 exp (—v n(z) ) ,

for positive constants c i, c2.

In light of this proposition, we can construct for any small 7 * > 0 a cover of X j  

by cylinders, such th a t (roughly speaking) the corresponding sets in J  all have 

diameter close to r. We call this a Moran cover. The construction is as follows: 

For each x  £ we let n(:c) be the largest non-negative integer such tha t

exp (—un^ (y (x ) ) )  > r.

Since v > v min > 0 this is well-defined, and bounded by —logr / v m,in. We 

can then define C(x)  to be the (unique) cylinder of length n(x) such tha t x  £ 

C{x). Clearly the cylinders {C (r) : x £ X \  j  cover X j .  Furthermore, because 

the lengths of the cylinders are bounded, the cover is actually made up of finitely 

many sets, say { C i,. . . ,  Cm}.

Now, these sets may not be disjoint. However, because they are cylinders in 

X I ,  we have th a t if C* fl C;j ^  0  then either Ci C Cj or Cj C Ci. We shall throw 

out all those cylinders Ci which are contained in some other cylinder Cj. If we
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do this, then the remaining cylinders, which we relabel as {Ci : 1 <  i < m r} ) are 

a disjoint cover of X \ .  This will be our Moran cover of X j .  The corresponding 

sets (x (Q )  : 1 <  2 <  m!} can also be called a Moran cover, in the sense tha t they 

cover J , and we denote this cover of J  by it,.. Note th a t the sets y(C'i) may 

overlap on their boundaries, but they have disjoint interiors.

Each cylinder Ci contains at least one point th such th a t n(xi) is the length 

of the cylinder C*. Applying Proposition 2.12 to this point gives

cxexp (—on(a:i)(x(x-i))) <  r{Ci) <  r(Ci) <  c2exp ( - u n(a;i)(x (^ )))  , 

and so from the definition of n(x),

ciT <  l i f i i )  <  r(Ci) < C2eVmaxr.

The number r is called the size of the Moran cover.

The main result concerning Moran covers is the following:

P roposition  2.13 ([Pes]) There exists a constant MMoran> independent of r, 

such that i f  we have a Moran cover Ur of J  and take any ball of radius r in J , the 

number of elements of the cover which intersect this ball is bounded by Muoran-

The constant A/Moran is called the Moran multiplicity factor. Essentially this 

proposition means tha t if a subset of J  is covered by balls (as in one definition 

of the Hausdorff dimension), we can replace this cover by a new cover whose 

elements are cylinders.

Similar methods can be applied to conformal hyperbolic diffeomorphisms and 

flows, once we find the proper analogue of the sets x(C).

Suppose we have a conformal hyperbolic diffeomorphism /  : A —> A. Take any 

rectangle R* of the Markov partition, and let z* — x (x *) be a point in the interior 

of R*. We look at the set as defined in section 1.2. This set is modeled

by the cylinder [x^\ C X j :  tha t is, we can define a function • M  W r*(z *)
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by

X {z * { y )  ^ x { - - - x ~ 2  x - l  ^ 0  2/1 V2  • • • ) ,  

and this function is surjective.

Similarly, suppose we have a conformal hyperbolic flow <f>t : A —> A, with 

z* £ intT* for some Markov section T*. Then the set Wif*(z*) is modeled by

[.tJ] C -Xj, using a function which we will also write as where '• [̂ o] ~ >

W t * (^*) is surjective and defined by

X{zHv)  =  P ((• • ■ z * 2 x!_i Xq Vi y2 ■.. ) , 0) .

Now if C  is a cylinder in X j  with C  C [rcj], we can look at the sets

P ro p o s itio n  2.14 ([Pes], [PS]) (a) Let R* be an element of the Markov par­

tition for a conformal hyperbolic diffeomorphism, and take z* = x i x *) £ 

int R*. Then for any cylinder C  C [.Tq] C X^f of length n, we have that the 

set x ^ ( C )  is contained in a ball in of radius (C), and contains

a ball in TT^*^*) of radius r ^ ( C ) .  For any z £ y^(C7) these radii satisfy

ci exp (—v n(z)) < r[*\C)  <  f ^ t \C )  < C2 exp (—v n( z ) ) .

Here c i,c2 are positive constants and v(z) := loga ^ ( z )  >  0 .

(b) Let T * be a Markov section for a conformal hyperbolic flow, and take z* = 

p(a*,0) £ intT*. Then for any cylinder C  C [ajJ] C X j  of length n, we 

have that the set y ^ ( C )  is contained in a ball in of radius

and contains a ball in W%*{z*) of radius r ^ ( C ) .  For any z  £ (C), we

can write z  =  p(x , 0 ) where Xj =  x* for all i <  0 , and then we have:

r'rn (X) \
Ci exp I — I v^u\ ( f Tz) dr ] <  r ^ t \C )  < r£?(C7)

H

( - /< c2 exp J  v^(<pTz) d r j  .

Here ci, c2 are positive constants and was defined earlier with v^u\ z )  > 

0 ; r is the roof function for the suspended flow.

63



We can construct Moran covers i l r of (z*) and For each point

x + £ [xq] C X a we define an integer n(nf’~), and we look at the cylinder C (x+) £ 

Cyl(?i(x+)) which contains the point x +. Let 2: =  Xz**(^+). Then n(rc+) is defined 

as follows:

• For a diffeomorphism, we take n  — n(x+) to be the largest integer such th a t

exp (—un(2:)) > 7'.

•  For a flow, if x  is the point in X A such th a t xi =  x* for i <  0 and Xi = x f  

for i 0 ) then we take n — n(x+) to be the largest integer such that 

exp

We assume r is small enough tha t n(x+) > 1, and so C(x+) C [a;J].

The rest of the construction is as for expanding maps. {C (x+) : x + £  [ . t J ] }  

is a finite collection of cylinders which cover [xg], and by throwing out those 

cylinders which are strictly contained in some other cylinder in the collection, we 

get a disjoint cover of [icjj]. The corresponding cylinders Xz*’> iQ )  8X6 a cover of 

Wft* (z*) (or W t +(z*) for a flow) which is our Moran cover ifi, and sets in this 

cover have disjoint interiors. We also have the im portant properties of Moran 

covers:

• For any Xz*(Ci) £ lb  we have

cir <  r ^ i Q )  < {Ci) <  cMomnr.

• Given a ball of radius r in (or in Wip*(z*) for a flow), the number

of elements of it,, which intersect this ball is bounded by a constant MMoran- 

This constant is independent of r.
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2.3 R esults for conformal expanding maps

Let J  be a conformal repeller for a C 1+cx map /  : M  —> M . Then, as explained 

in section 1 .2 , this is modeled by a subshift of finite type via the coding map 

X : X \  —* J. If g : J  —» M is Holder continuous then the pullback to X j  is a 

Holder continuous function which we will call g.

Now, as in section 2.1  we look at

gdfj,: /me M ( J )  > ,
'J )

and if g is not cohomologous to a constant then this set is a closed interval [a, a]. 

Theorem 2.2 carries across to this case:

T heorem  2.15 ([BS2])

1. I f  a  [a, ct] then Xve,j(g}a) — 0 .

2. I f  a  & (a, a) then Avej(g ,a ) ^  0 , and

dim# Avej(p, a ) =  sup |d im /f  /x : g, G M ( J )  and J  g dg, — o : | .

Furthermore the supremum is attained for a measure p, which is an equilib­

rium state for  some Holder continuous function.

As before, we have tha t a  6  (a, a) if and only if there exists an equilibrium 

state v such tha t f  gdv — a.

We aim to prove versions of Theorems 2.3 and 2.8 for conformal repellers.

2.3.1 B lock-adding processes for expanding m aps

Our method of proof will be essentially the same as th a t for subshifts. We take a 

set S j  C J  on which we have good control over ergodic sums, and produce from 

this a new set S'j which consists of points whose ergodic sums have the behaviour 

we are looking for. We then compare the dimension of S'j to the dimension of Sj.
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The set S j  will be produced by means of a block-adding process on X j .  That 

is, we take a set S x  £ X \  such th a t for each z E S j  there is at least one x  E Sx  

with x{x ) — z - Then we look for a block-adding process £ : S x  S'x . Finally 

the image of S'x  under x  will be S 'T.

S x  — ^  S ‘x

Note th a t if x  and y are points in S x  with x(^) =  x{y) then it is not necessarily the 

case th a t x{£{x )) — x(£(v))- Thus there is not necessarily a well-defined ‘block- 

adding function’ which maps S j  to S j.  Furthermore, even if such a function did 

exist (we could require tha t for each z € S j  there was only one x  E S x  such that 

x(x)  — z) it would not necessarily be injective.

However we can still get information about the dimension of S ’j  by looking at 

cylinders in X j ,  and their corresponding sets in J , rather than  individual points. 

We need some estimates for the diameters of these sets. As explained in section 

2 .2 , if C  is a cylinder in X J  then the set x iP )  contains a ball of radius r(C)  and 

is contained in a ball of radius r(C). We have:

L em m a 2.16 (i) There exist positive constants 71 , 7 2 , C\, C2 such that i f  C  is

a cylinder of length n in X ' f  then

ci exp ( - 7 1  n) <  r(C) < f(C )  < c2 exp (—72^ ) .

(ii) Let C = [icoj • • •, ®m-i] be a cylinder in X \  and let C' be a cylinder produced 

by inserting a single block of length I inside C , i. e.

C  ĵ CO} • • * 37—1 j 0̂ ) * ■ • ) bf>—1, Xi . . . .

Then we have

r(C f) > r(C') > exp ( - 73l )r{C ),  

for a constant 7 3 . ; . ,
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Proof: Recall th a t v  : J  —» R is defined by v(z) =  loga(2:). Since a is Holder 

continuous and a(z) > 1, we have tha t v  is Holder continuous and v(z) > 0. Let 

u> : X j  —> R + be the pullback of v  to X j .  Then u  is Holder continuous, and we 

can write

0 ojfYiin L; ^  tomax-

From Proposition 2 .12  there are constants ci, C2 such th a t for any cylinder C  in 

X 'f  and any point x  G C,

ci exp (—con(x)) <  r(C ) <  f (C )  <  c2 exp (—wn(rr)), (2-10)

where n  is the length of the cylinder C. Part (i) (which is well-known) follows 

immediately from this with 71 — <umax and 72 =  ojmin.

Now for part (ii): Given the cylinders C, C", choose any points x  E C  and 

y G C ' . Applying (2.10) to y  gives

r{C') >  ci exp ( - ta m+% ))

> ci exp ( - u f y )  -  u/(cr% )) -  (ai+€ (y)))

> ci exp ( - 71^) exp ( - u l(y) -  Lum' l(crl+£(y))) .

Now x  and y  belong to the same cylinder of length £, so

|cX(a;) - u l{y) | < k (w ) ,

and similarly <7 l (x) and cr%+£(y) belong to the same cylinder of length m  — i, and 

so

|wro-V (a O )  -  ^ m“V +% ) ) | <  V {uj).

Hence

L(Cf) >  ci exp (—7 i£ — 2 V ( uj)) exp (~u/(a;) — cjm_2(t7l(a;)))

> ci exp (“ 7 i£ — 2 V (w)) exp (—o;m(:c)).
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And so by using (2.10) for the point x  we get

> c1e x p ( - 7 l£ - 2 y ( c ) )
C2

To put this in the form th a t we want we can take 73 =  71 +  2 V  (uf) +  log(ci/c2).

□

Now suppose Q is a cylinder with Q C\ S rx  ^  0 . If £ is defined on cylinders 

then (by Proposition 2.7) there is a well-defined way to ‘remove blocks’ from Q 

to produce a cylinder Q which intersects S'x • We want to compare the diameters 

of the corresponding sets x ( Q)  and x(Q)-

L em m a 2.17 Let Q be a cylinder of length n which intersects S'x , and let n 

be the length of the cylinder Q obtained by removing the blocks from Q. Write 

p =  (n — n)/n . Then, provided that p < 1 , we have

r(Q) > r(Q) > c (r(Q)^j ^  ,

where c, 7  are constants.

Proof: n  — n  is the total length of all the blocks added to the cylinder Q to 

produce Q. So by repeatedly applying Lemma 2.16 we have

r(Q) > exp ( - 7 3 ( 7 1  -  n)) f(Q ).

But also from the inequality (2 .10) we have

f(Q )  <  c2 exp (-Lominn ) ,

i.e.

(^(Q )) 1 <  cJ3p/Wmin exp ( - 73(71 -  h ) ) .

Putting these inequalities together gives

z ( Q )  >  (f(0 ))73',/“mmF(Q)>

and so if p < 1 we can write

d Q ) > c ( n ^

where c =  c~'Y3̂ min and 7  — 7 3  /ajmfn, □
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2.3 .2  P o in ts w ith  bounded  sum s

For our Holder continuous function g : J  —> M we look at

Bdd j(g) :=  {x £ J  : gn(x) is bounded} .

We will use block-adding processes to prove the following:

T h e o re m  2.18 Let g : J  —> M. be Holder continuous, and let v be an equilibrium 

state for some Holder continuous function. Suppose that f J gdv> = 0. Then

dim # B ddj(g) >  dim# v.

Like for subshifts of finite type, by combining this with Theorem 2.15 we have 

that

diniflr Bdd j(g)  =  dim ^ A vej(g , 0),

whenever there exists an equilibrium state u such th a t j j  gdu — 0 (or equiva­

lently, whenever 0 G (a, a)).

Proof of Theorem 2.18: Assume tha t g is not cohomologous to a constant (oth­

erwise the result is trivial). We define g to be the pullback of g to X \  by the 

coding map; then g must also be Holder continuous and not cohomologous to a 

constant. Also, if ip is the (Holder continuous) potential for the equilibrium state 

i/, then we let p  be the measure on X j  which is the equilibrium state for the 

pullback of if). Then we know (see section 1.4) th a t v{S) =  p (x~ 1 {S)) for any set 

S  C J. In particular we have f x+ g dp = 0.

We will think of the symbolic representation of the point x  G X } as being 

split up into sections of length n, i.e.

Zo xi x n—i X-n ^7i+l ■ ■ ■ X2n—1 X%n —i

In the block-adding process to be defined later, blocks will be inserted only at 

the ends of sections, i.e. behind Xjn- \ .
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First of all we define

e(n) =  (i ({a; E X \  : |<T(:r)l > n* -  V(g) j )  +  n~1.

By the Central Limit Theorem we know that e(n) —> 0 as n —> oo.

Next, define the collection of cylinders C(n) C Cyl(n) by

C(n) — | C  €  Cyl(n) : \gn(y)\ > for some y E c |  .

Then if x  E U ^ (n ) we niust have |<7n(a;)| > — V{g), so

H <  e(n) — n -1  < e(n).

For each i > 0, define the set Ei{n) C by

£ i ( n ) =  1 J
C G C (n )

Thus the section x in x in+i . . .  .T(j+i)n- i  determines whether x  is an element of

Ei{w), and if x  E X J  \  Ei(n) we know \gn (crma;)| <  n i .

We look at the set of ‘good5 points which do not belong to ‘too many’ of the 

sets Ei(n), i.e.

rii \ f  v+  i■ #  (0 <  i < t : x  E Ei(n)} G\G(n) ;= t  E X j  : hm sup ■■■  < e(n) .
f t—►oo t  J

As explained in section 1.4, the measure (i is ergodic for the map an : X \  —> X  

By applying the ergodic theorem to the indicator function of ( J ^ (n ) we see fhat 

H (G(n)) — 1. So v (x(G(n))) — 1 and hence dim ^ x  ( ^ ( n )) >  dim# v.

For each n  we will construct a block-adding process on G(n). In the notation 

of section 2.3.1 we are taking S x  = G(n) and S j  — y(G (n)).

We start by defining the blocks to be used in the construction. These will not
►

depend on n. As before, for any symbols s, t  we have a block W (s, t ) of length N  

such th a t s W (s, t) t is an admissible sequence of symbols. Now if y is any point 

in X j  and k a positive integer we can look at the periodic point u  defined as

y0 2/1 . . .  2/Jfe-i W  (vk-iiVo) Vo Vi • • • 2/fc-i W  (yk- i , y 0) . . . .

70



Then

ah(y) -  V(g) -  NMg < gk+N(u) < gk(y) + V(g) + NM-g.

By the Central Limit Theorem we can find y and k such th a t gk{y) >  1 +  V  (g) +  

ArMg. So in this way we can construct a periodic point u+ , with period which 

divides some number p+, such th a t

gp+ (u+) > l.

Now for any symbols s, t and positive integer m  we can define a block B +(sy i, m) 

by the sequence of symbols

••• ut P+ - iW (u++_v t).

The block B +(sy t, m.) has length m,p+ +  2 N , and if y E [.B+ (s, t, m)] then

m.gp+(u+) - V { g ) - 2 N M s < g m»++2N(y) < m . r +(u+) +  V ( g ) +  2 N M S. (2.11)

Similarly we can define blocks jB~(s,£, m) by

W { s , v,q) uquI  . . .  u“p-_ i W (up__v t),

where u~ is a periodic point with a period which divides p~, and gp (u~) <  —1 ; 

the block B~(s, t, m) has length mp~ 4- 2 N t and if y E [jE?“(s, t : m)] then

m.gp~ { u - ) ~ V ( g ) - 2 N M ~ g < g mp~+2N(y) < m.gp~ (iC) + V(g) + 2NM~g. (2,12)

As in Theorem 2 .8  the block-adding process will be defined by an induc­

tive construction. For each point x E G(n) we will define a sequence of points 

starting with =  x. For j  >  0 , the point will be the same as 

except tha t there may be a block inserted at the end of the section

X j n  X j n + 1 . . . X j n + n —\  .

(More precisely, we insert the block behind where (j n )' is the position

tha t the symbol X j n  has been shifted to in rF-7-1).) Also as in Theorem 2 .8  we
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promise th a t each stage of the construction will be defined on cylinders, and this 

ensures th a t the resulting block-adding process £(x) =  lim ^oo is defined on 

cylinders.

So, let us take j  > 0 , and assume tha t we have already defined y ^~ ^  for all 

y  6  <j(n), in such a way th a t y i-> y ^ ^  is defined on cylinders. Given x € G(n) 

we look at the set

Cjn+nfa G(n)) {y e  G(n) : x{ — Vi \fi < j n  +  n} .

Suppose the symbol Xjn is shifted to position (jn)' in x^~^]  then for all y <E 

Gjn+n(x\ G{n)) we know th a t yjn is shifted to the same position (jn)' in y , and 

furthermore y\^~^ — for all i <  (jn)' +  n. So, if we define

ar=  inf g W + n (y ( j-V )} p = SUp gUn)'+n^y U~ 1))5 
y&Cjn+n(x\G(n)) y^Cjn+n(x;G(n))

then (3 — a  < V(g).

We proceed to define x ^  as follows:

(i) If a  >  0 then let m  be the smallest positive integer such th a t m\gp (u~) | >  

a. Then let x ^  be the result of taking and inserting the block 

B - ( x jn+n_1 , x nj+n,m )  behind x ^ } +n_v

(ii) If (3 <  0 then let m  be the smallest positive integer such th a t m.gp+(u+) > 

—(3. Then let x ^  be the result of taking x ^ ~ 1̂ and inserting the block 

B +(xjn+n_i , xnj+n,m )  behind ^ y +n_r

(iii) If a  <  0 but (3 >  0, then take x ^  — x ^ ~ l\

Clearly if we replace x  with a different point in Cjn+n(x\ G(n)) the values of a  and 

13 are unchanged. So the function x  h-» xS^ is defined on cylinders, as required.

This completes the inductive definition of the sequence As in

Theorem 2.8, we see th a t for any i the sequence x \^  is eventually constant, and 

we take

£(x) =  lim x ^ \
j-> oo
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We now prove th a t the ergodic sums g% (£(2;)) are bounded. First we show 

that there is a constant K x such tha t for all x  £ G(n) and all j  > 0,

( 0 ' + l ) n ) / (x ^ ) < K U

where ((j  +  l)n ) ' is the position th a t the symbol X(j+i)n is shifted to in x^b Note 

th a t
g t t i + l W  =  g ( }n) '+n  +  ~e ^a ( j n y +  n x ( j ) \  ^

where £ is the length of the block added behind x (jn,y+n--i_> and is a

point whose first t  symbols coincide with those of th a t block. The inequalities 

(2 .11) or (2 .12) can therefore give bounds for th a t second term.

We look back at the three possibilities for how was defined:

(i) In this case we have

(m — 1) gp (u~) < a  <  g ^Y + ^jxU -1)̂  < a + V(g) <  m  

and so

?>■ >-) + V ( g ) t

(m — 1) gp (u~) - V { g )  < g Uny+n{x{j)) < m  gv (u ')  + 2 V(g). 

Adding this to (2 .12 ) gives

-  gp~(u~) -  21/(g) -  2 N M § < g{{j+1)ny (xij)) <  3V(g) +  2NM-g.

(ii) Similarly in this case we get

- 3 K ®  -  2NM~g < g to + W ( x ®) < gp+(u+) +  2V(g) +  2NM-g.

(iii) In this case we have

- V ( g )  < a <  g W + * (x ti-V) < p <  V{g).

No block was inserted behind x <̂j ~Ly+ n _ 1 so we simply have (jn)' +  

((j +  l)n) ' and

- 2 V(g) < g to + W fr ® )  <  2 V(g).

n
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Thus we always have

<  3 y (g ) +  2 NMg  +  +  s p+(u+) =  /<i,

and the constant K \  is independent of n.

Next we show th a t the lengths of the inserted blocks are bounded. Again we 

look at the block which was inserted behind _x, i.e. the block B jn+n_i in

our block-adding process £. If this block was defined by (i) then it is B ~ (s , £, m ) 

where

(m — 1) gp~(u~) K a K g ^ ^ x ^ ) .

Whereas if the block was defined by (ii) then we have

(m — 1 )gp+(u+) < —ft <

Thus in either case we have

g W + n (x U-Q)

rri < ci -gljnY+n^ti-D-) +  C2)

where

c i= ( m in { |s r p (u  ) ,<?p+(u+) j )  < 1 , c2 =  c1 m a x | | ^  (u ) ,<f+(u+) j .

The length £3-n+n- i  of the block is either mp+ +  2 N  or mp~ +  2 A, so we can find 

constants c3 and c4 (independent of n) such that

V t-n - l <  C3 g W + n(xU-V) +  C4 . (2.13)

But we know tha t \g^ ' ^ ) |  <  K u  and so |p^nl/+n(a;^'“ 1̂ )| <  K \  T nM§. 

Hence we have £jn+n- 1 <  £max (n) for all where £max (n) = 0(n ) ,  We can write

(2.14)

Now the construction of f  ensures tha t for any x  e  G(n) and any j  > 0 we 

have [C(^)]j =  x \j ^ for all i <  ( jn )f. (In fact for all i < (j n )' -1- n.) Hence

9{jnY ( f ( i) )  < K i  +  V(g).



And ((j  +  l)n ) ' — (jn)' <  n +  4m bW , s o  for any k >  1 we have

11  (€(*)) I < /< !  +  v(g)  +  (n +  C . W )  M s.

So the set G'(n) :=  £(G(n)) consists of points with bounded partial sums; and so

X(G'(n)) C Bddjfe).

In order to compare the dimensions of x(G'{n)) and x(£?M ) we need to look 

at the restriction of £ to the subset Sx(n , to) C G(n) defined by

a t  j. \  f  v+  # { 0 < 2 < t : x G  Ei(n)}  . 1Sx  (n, t0) =  i x  G X \  : —  -----------------------------  < e(n) for all t > to > .

Let us write Sx (n , t0) =  £ {Sx (n, t0)), 5 j ( n , t0) =  X ^x O M o )) and S j ( n ^o)  =  

X (,S'̂ Y(n, to))- Note tha t the function £ : ^ ( n ,  t0) —► to) is still a valid

block-adding process th a t is defined on cylinders.

We have U*0>i S x & i to) — G{n) and so dim// S j(n ,  t0) —► dim //x  (G(n)) as 

to —» oo.

Write D = dim// Sj(n ,to)  and let 77 > 0 be arbitrary. Then, by the definition 

of Hausdorff dimension, for all sufficiently small p we can find a cover of S'j (n. to) 

by a finite or countable collection of balls ££ (i >  1) with radii n  < p such that

y > f +” < i .
i

For each i we can construct a Moran cover ilTi of J  with size r». Each set in this 

cover is of the form x{Q) where Q is a cylinder in X%. Let x(Q i)  (1 <  & < m M) 

be the sets of this cover for which Qf fl x - 1(-E£) fl Sx (n, t0) ^  0 .

By the basic properties of Moran covers we know th a t m{i) <  M Mor<xn and 

r(Qf)  <  cmor;m for constants Mum-nn, cyoran which are independent of i. Thus

Y t  (r (Q i))D+V < MM„riln.(cM„rm)D+” == K{V). (2.15)
i,k

Suppose y G Sx (n,to)- Then x(y)  £ Bi for some i. The sets {Q : x{Q) € 

are a disjoint cover of X j ,  so there is a (unique) Q w ith y G Q. And since
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y G x  1(-^0 C S x fo ,  t0) we must have Q — Q\ for some k. So the sets Q\ cover 

S'x (n, to).

Now for each cylinder Qf, we can ‘remove blocks’ from Qf  to produce the 

cylinder Qf  as in Proposition 2.7. If £(x) G Qf  then x  G Qf ,  so the sets Qf  cover 

Sx{n,to), and it follows tha t the sets x(Q f) are a cover of 5 j(n , io)- We now 

want to use Lemma 2.16 to compare the diameters of x ( Qf )  and x{Qf) -

Say tha t the lengths of the cylinders Qf and Qf are m f and m f respectively. 

Then the number of blocks removed from Qf  to produce Qf is a t most rhf/n, 

and each block has length at most £max(n). So

m f  -  m f  <I t -  n

and so

mf W  (2.16)
\  &max v 0  T  77. y

Now r(Q f) < CMoran̂ ij so supifc r(Q f) —> 0 as p —> 0 . By the first part of 

Lemma 2.16 this is equivalent to saying tha t in f^ m f  —> oo as p —> 0 . The 

inequality (2.16) therefore tells us tha t in f^ m f  —» oo as p —> 0. From this 

we can deduce two things. Firstly, by using Lemma 2.16 again we see tha t 

sup^fe d iam y(Q f) —» 0 as p —> 0. And secondly, by taking p sufficiently small we 

can ensure th a t m f > nto for all i, k. This last observation allows us to make use 

of the ‘good’ behaviour of sums for points in Sx{n, i0)-

Consider a point x  such tha t £(x) G Qf fl S'x (n, to). Then x  G Qf D S x i j i , t0). 

We are interested in the blocks BJ-„+n_1(a;) for 0 < j  < t, where t is the largest 

integer such th a t nt < inf. These are the blocks th a t are removed from the 

cylinder Qf to produce Qf (except th a t if mf is exactly equal to n t , it is possible 

tha t only a truncated version of B in+n_\ appears in Qf). For each j  we want 

to find a bound for the length £jn+n_i of the block. This bound will depend on 

whether x  is an element of the set Ej (n). If p has been taken to be sufficiently
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small th a t m f  >  n t0, then from the definition of Sx(n , t0) we have

#  {0 <  j  < t : x £  E j(n )}  < te(n).

Now,

If x £ Ej then we just have the bound from (2.14),

Q n + n —l E. ^ m a a ’ ( n )  "E C5TI.

However there are at most te(n) values of j  for which x £ E j , Thus the 

total length of all these blocks is at most c^nte(n).

If x £ E j  then we look at . We have the bound

The section Xjn Xjn+\ . . .  Xjn+n- i  is shifted to positions (j n )' to (jn)'-\-n—1

can

in x ^  and because x  ^  Ej we have \gn ( n j r i . T ) |  < 7 7 , 4 .  So

gn < n ?  + F (s ) .

Hence
gUnY+n (j-W-l)) <  n i  +  y ^  +  J(i

So from (2.13) we have <  C3  nrt -|- V(g)  +  K\  \ +  C4 , which we

rewrite as

t'jn+n—1 E  C377.4 “t~ Cg,

where C3 , c6 are constants independent of n. The total length of these blocks 

is therefore at most t +  c6j .

Adding these together we see tha t

m f  — m f  < C5'nte(n) -T t (̂ 0371* +  C6  ̂ <  mf  ^c5e(n) +  C3n~± T- cgn-1  ̂ .

So we can write



where q(n) Cse(n) +  +  c6n _1. We see tha t q(n) —» 0 as n  —> oo.

We can now apply Lemma 2.17. Provided tha t n  is sufficiently large tha t 

q(n) < 1 , we get

r m > c ( T m y ^ n)-

Combining this with (2.15) gives (for all sufficiently small p)

sr^ ( , \ \  (1+7<7(”))(̂ +T7) .
E ( F(0 , ) J  <  C ^D+'»K (V),
i,k

and so

(d ia m x (Q i))<1+1<,<’,)>(0+’,) <  2(1+75<'l))(D+r')c“<D+r')i f  (17).
i,fc

We showed earlier th a t the sets x { Q i )  cover S j ( n , t0), and supifc d iam x(Q f) —» 0 

as p 0 . So this shows

dimH S j ( n , t0) <  (1 +  7 ? W ) (dim# 5 j(n , t0) +  r ;) .

T) was arbitrary, and so

dim// 5 j(n , t0) <  (1 +  7 dim// 5 j(n , to).

But <Sj(n, to) C x(G '(n)) C Bddj(g) for all t0, and so taking to —> oo we have

dim// Bddj(^) > (1 +  7<?W) _1 dimr/ x(G(n))  (2.17)

> (1 +  7 Q'(n) ) _1 dimu is.

Finally, talcing n —> oo gives

dim //B dd j(g) dim.// is.

□

As explained earlier, by using a result such as Theorem 2.15 we can show tha t

this is the ‘best possible’ result, in the sense tha t there is some measure is for

which we have equality. However even without any information about measures,
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we can get an upper bound for dim# Bddj((/) in terms of the ‘good5 sets G(n). 

We go back to the inequality (2.17). Given any integer m  > 1, for any sufficiently 

large k > m  we have

dimH Bddj(g) > (1 +  T oW )-1 dim/7 x(G(fc))

> (I + j q { k ) y l dimH (  p |  x(G(rc))
\n > m

Taking k —* oo we get

dim# Bdd j(g) >  dim# I f ]  x(G (n))
\n > m

Now if we define

G =  ( J  f |  <?(")
m > 1 n>m

then dim# y(G) =  supm>! dimH (f |„> m x(G(n)))  and so

dim# Bddj(g) >  dimff x(C?).

But suppose x  6 x _1 {Bddj(g))\ say \gj (x)\ < K  for all j .  Then |gn(<jJ:c)| <  2K  

for all n , j ,  and so x  Ei(n) whenever n  is sufficiently large tha t 2 K + V(g) <  n?. 

So x G G. Thus dimH Bddj(g)  C dim# x(G), and so we must have

dimH Bddj(g) — dim h x (g )-

This equality was already clear from the application of Theorem 2.15, but 

we now have a direct proof; this idea will be useful later in situations where 

Theorem 2.15 is not available without some modification. Also, notice tha t the 

fact th a t /i(G(n)) =  1 immediately implies /i(G) =  1, and this can be used as an 

alternative way to complete the proof th a t dim# Bddj(#) >  dim # v.

2.3 .3  M u lti-d im ensional resu lts

In [FS], Fan and Schmeling prove multi-dimensional versions of their Theorems

2.3 and 2.5. For a vector-valued Holder continuous function g : X^A —> Rd, they
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show

dim# {a: E X ^  : gn(x) is bounded} >  dimh p,

for any equilibrium state  p  such th a t f  g dp = 0 . As in the one-dimensional case, 

if there is at least one such p, then there is guaranteed to be an equilibrium state 

for which equality holds.

This last statem ent follows from a generalisation of Theorem 2.2: say we 

define

This is a compact, convex subset of R d. We say th a t R-valued functions gi,... ,gn 
are cohomologously independent if there is no non-trivial linear combination which 

is cohomologous to  a a constant.

T h e o re m  2.19 ([BSS]) Suppose g \ J  is Holder continuous. Then:

1. I f  the components of g are cohomologously independent then the set T>(g) 

is the closure of its interior.

Furthermore the supremum is attained for a measure p  which is an equilib­

rium state for some Holder continuous function.

If the components of g are cohomologously independent then f  g dp, E intZ>(g) 

whenever p, is an equilibrium state. (If J' g dp was on the boundary of D (g), then 

because £>(g) is convex we could find a non-zero v  E R d such th a t (J* g d v , \ )  > 

( f  &d/j.,v) for any other v E A4(J). This contradicts the Central Limit Theorem 

for the function (g, v).)

2. I f  o l  £ V(g) then A vej(g, a )  = 0 .

3. I f  o l  E intZ>(g) then Avej(g, o:) ^  0 , and

dim# Avej(g, a )  =  sup < dimH p  '• p  6 M (  J) and / g dp =  a
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Note tha t if the components of g are not cohomologously independent then 

P (g ) is contained in some proper subspace of

We will need a multi-dimensional version of the Central Limit Theorem. For 

the moment we work with a subshift of finite type. The following is proved in 

[FS]:

T h e o re m  2.20 ([FS]) Let a : X j  —> X \  be a subshift of finite type, and 

g : X J  —» a Holder continuous function on X j  whose components are co­

homologously independent. Suppose that fi is an equilibrium state for some (TR- 

valued) Holder continuous function ip on X j ,  with J  gdfj. — 0 . Then gn/y /n  

tends in distribution to a normal distribution (which is fully-supported on TSLd).

In what follows we use the usual Euclidean norm on R d. We define Mg — 

suPa;6X+ llsMII and we have the constant F(g) such tha t ||g” (z) — gn(y)|| <  ^ (g )  

whenever x L — ip for all i < n.

L em m a 2.21 Suppose g : is Holder continuous, and the components

° f  g ore cohomologously independent. Also suppose that there exists an equilib­

rium state pL such that f  g dpi =  0. Then there are constants T  > 0 and c > 0 

such that} for any v  E Md, there exists a point x  E X J  and integer n  <  c||v|| such 

that

l|v +  g n (z ) || <  T.

Proof: Let D 0 =  10 (F (g) +  Mg +  1). We can cover the set {v E R d : ||v|| <  £>0} 

by finitely many balls of radius 1: say these balls have centres (1 < i <  P ). 

Now by the Central Limit Theorem, there is a number n 0 such tha t

IX ( x  6 X +  : € B ( wl*>, 1)) > 0 Vi.

And so for each i < P  we can find a point with gn°(zbl) e  B(^/nHw ^ , yfnf). 

And we can define a periodic point by the sequence of symbols



Let 711 — uq + N  and T0 =  2 {,Jnb 4- V (g) +  jVMg). Then the period of y ^  divides 

n i , and we have

gn i(y(0) E B (y /r^w (i), |T 0).

So for any v  G M.d with ||v|| <  we can find such tha t

||v + gnife(i))|| <To-

Claim: Given v  G Md, x  G X j  and integers m  > 0, k > 1 such th a t

l |v - f g m( ^ ) l l < 2 ^ T » o ,

then there exists x' G such th a t

||V +  gm+2fcn t ^ ( ^ ) | |  <  2A- 1v/^ A ) .

Proof of Claim: We can find as defined above with

< T 0._ ( v  +  gm( x ) ) + g ni(?/(0)

Using the periodicity of y®  this implies

v + gm(s) + g2‘"‘(2/(i)) | < 2 *:r„.

Now let x! be the point defined by the sequence of symbols

x 0xx . . .  x m-! W ( x m- i ,  y^l)) y ^  y ^  y f  . . . .

Then ||gm(T) — gm(^)|| < V'(g), ||gN(crmT)|| < N M e and g2̂ ni(crm+-/vT) 

g2fcni(2/(d)5 so

V +  gn+N+2*ni ^  <  2kT^ +  +  N M ^

< 2fc- 1 ( 4 ^  +  5V(g) +  h N M s)

< 2k 1^/uqDq.

This completes the proof of the Claim.
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Now suppose v  G with 2k~1y/n ^D o  <  ||v || <  2fcv/noD 0 for some A; >  1. By 

applying the above Claim repeatedly we find a point x  G X \  and integer n such 

tha t

IIv +  gn(x)|| <  v^noDo,

where

k
n = Y l  C2*"1 +  N ) -  2fc+1™i + N k <  2k- 1 (4m +  N)  <  (4m +  N)  ||v||.

i = 1

Thus the statem ent of the lemma holds by taking T  ~  and c = 4ni +  N .

(We have proved this in the case ||v || >  but for ||v || < y/n^D0 we may

simply take n  =  0 .) □

T h e o re m  2.22 Let g  : J  —» Md be Holder continuous and let v  be an equilibrium 

state with respect to some Holder continuous Î -valued function on J. Suppose 

that f j g d i s  = 0. Then

dim// Bddj(g) >  dim h V'

Proof: First suppose th a t the components of g are not cohomologously inde­

pendent. Say without loss of generality th a t gi is cohomologous to  the function 

Yli= 2 ^ i9i +  c- Since f  g d v  =  0 we see th a t c — 0 . So by the basic properties of 

the cohomology condition we have th a t gi{x) — Yfi= 2 bounded. So if

we define the function g' : J  —>■ by g' =  (g2, <73 . . . ,  gf), then

B ddj(g ') =  B ddj(g),

and so it is sufficient to prove the theorem for g '. We can repeat this if necessary, 

throwing out components of g until the remaining components are cohomolo­

gously independent.

Thus we may assume th a t the components of g are cohomologously indepen­

dent.
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We now follow the proof of Theorem 2.18. Let g  be the pullback of g to X ^ ,  

and let p  be the equilibrium state on X f  which corresponds to the equilibrium 

state v on J . Since we assume tha t the components of g are cohomologously 

independent, the same must be true of g. Also we have f x + g d p  — 0.

We define

e(n) =  p ( j x  G X \  : ||gn(^)|| >  n* -  V '(g)}) +  n _1;

C(n) — | C  G Cyl(n) : ||gn(p)|| > n* for some y  G c j  , 

and the corresponding sets Ei(n) ,G (n)  C X \  as in Theorem 2.18.

We need a different method of finding the blocks to be used in the construction. 

In fact we shall look at all blocks of the form

where anY admissible sequence of symbols. Note tha t there

are only countably many such blocks, so they can be indexed by i G N. We choose 

the labelling in such a way th a t if i < j  then i.e. the lengths of the

blocks are non-decreasing. If C® is the cylinder . . .  w^(i)_1] C W jf we

define
m  =  le w  S mM dfi 

M (C«) ■
So for any y G we have

|g m% ) - / (i)|| <  v (g ). (2.18)

It follows from Lemma 2.21 th a t for any v  G R d we can find i G N with < 

c||v|| such tha t

||v  +  /b )|| < r  +  y(g ).

Our block-adding construction £ : G(n) —> G'(n) will be the same as in 

Theorem 2.18 except for the definition of which block to insert behind Xjn+n-i.  

Recall th a t we consider the set

Cjn+n(xm, G(n)) := {y G G(n) : x{ =  y{ Vi < j n  +  n} ,
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and tha t H is defined in such a way tha t if y G Cjn+n(x; G(n)) then y f  ^ 

for all i < ( jn) f +  n. We can then find the smallest i G N such tha t

g(i»0'+n^0-i)) _j_ /W < T  +  V(g) for some y G Cjn+n(x] G(n)). 

Because the were chosen to be non-decreasing this ensures tha t

gWoJ'+n^O-i)) I <  c f  11 (ajOf-1)) +  y (g ) )  . (2.19)

The block tha t we insert behind Xjn+n_i will be B (x jn+n^i, X j l l + n )  i) for this value 

of i. As in the proof of Theorem 2.18, our definition ensures tha t x f—> is 

defined on cylinders.

Now we look at

g ( j n + n ) ' ( x ^ )  =  g ^ ny+n ( x ij)) +  g N (crUny+nx U))

+  gm(l) (^(j^ny+n+Nx (j)  ̂ ^  gN^jn+n+N+mWx (j)y

We have

gUn)'+n(yti-i)) + jM < T  + V{ g) 

for some y  G Cjn+n(x] G(n)), from the definition of i. Also

g(nO '+n^-)) _  gO’nJ'+n^O-l)) <  y-(g) 

because x ^  =  x ^ -1  ̂ =  for all k < {jn)' +  n\ and

gm(i) (a-0'”)/+ "+ 'V i)) _  /(0 < V(g)

givesfrom the inequality (2.18). Putting these all together

g f c r n + n ) ' ( x ( 3 ) )  <  T  +  +  2 ] V M _ = . R i

Next we look at £jn+n+i (the length of the block inserted behind X j n + n + 1) 

We have £jn+n+i = 2N  +  mS%\  where < c ( x)) || +  H(g)) frrt”
m n o  t n u T r n  r ^ n n c f  o r i f o  r*  . t n m n  f  n o !(2.19). Hence we have constants C3 , C4 such that

t jn + n + 1  < C3 |[gC#")'+«(a;tj-l))

orn

(2 .20)
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(Compare this with (2.13).) As in Theorem 2.18 this implies th a t the lengths of 

the blocks are bounded by some number £max { f t ) ,  and

4 m m :  M  <  c5n .  ( 2 . 2 1 )

And this in turn  implies tha t for any k > 1 ,

||g&(f  0*0)11 ^  I<i + V(g)  +  (n + £max)Mgi

proving tha t

X ( 0 ' ( n ) )  c  Bddj(g).

The rest of the proof goes through exactly as in Theorem 2.18, making use of 

the inequalities (2 .2 0 ) and (2 .2 1 ). □

2.3 .4  P o in ts w ith  sum s w hich grow at a specified  rate

Finally for conformal repellers we wish to prove an analogue of Theorem 2.8. 

Again this will be done by considering a block-adding process on the related sub­

shift of finite type. We could simply choose to use the block-adding process £ tha t 

was defined in the proof of Theorem 2.8; however, we will give a generalisation 

to the multi-dimensional case. The following lemma will provide the blocks to be 

used in the construction:

L em m a 2.23 Suppose g : X % —► Md is Holder continuous, and the components 

of g are cohomologously independent. Also suppose that there exists an equilib­

rium state fi such that j  g dp — 0 . Then, given H  > 0, we can find an m  > 1 

and finitely many points E (1 < i < P ) such that fo r any v  E with 

||v|| sufficiently large, we have

||v +  g”* ( u « ) | |< | |v | | - i ?

for some i.
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Proof: We start in a similar way to the proof of Lemma 2.21. We can cover the 

set {v  6  R d : ||v|| < H  -\- 2 } by finitely many balls of radius 1 : say these balls 

have centres (1 <  i < P). By the Central Limit Theorem, we can choose

rn > 1 such th a t

f i f x e x i - .  e B( w«, l) )  > 0 Vi.
V v m J

And so for each i < P  we can find a point with gm(u ^ )  G B (^ /m w <<l\  \fm ).

We will show tha t these points have the desired property.

Take v G R d with ||v|| > ^/m (H  -P 2), and let v' = +  2) Then we

can find i such th a t —v ' G B (y /m w ^ \ y/m), and so

||v' +  g m(w « )|| <  2y/m .

Hence

But IIv — v'll =

||v  +  g m(w^) || <  2yjm  +  ||v — v '||.

( j  __ v _  ||v || _  +  2), S O  we have

|v  +  gm(uw )|| <  ||v|| -  Hy/rn 

<  11 v  11 -  H.

□

Following the notation of section 2.1, if g : J  —> R d and r : J  —» R + are 

Holder continuous, and F  : R+ —> Rd is continuous, then we define

L A g, F , r) — {x e  J  : gn(x) =  F  (rn(x)) +  0(1)} .

T h e o re m  2.24 Let g, F , r be as above, and let v be an equilibrium state for  

some Holder continuous function on J , with f  g d v  =  0. I f  the components of g 

are cohomologously independent and supre[01] ||F(£ +  r)  — F (i)|| —» 0 as t  —>■ oo, 

then

dim # L A g, F ,r )  >  dimH v.
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Proof: Again we use the coding map x  : ^  V to produce the pullback

function g : X f  —> Wl (whose components are cohomologously independent) 

and the equilibrium state (i on X j  for which f x + g d fi =  0. We also define 

r : X j  —> R+ to be the pullback of r.

We look at the set

S k  '= {x  e  X + : \\sn(x)\\ < K  Vn} .

As in the proof of Theorem 2.8, we will construct a block-adding process £ : S k  —*• 

9'° k -
We apply Lemma 2.23 to the function g, taking H  — 2 0 ( V (g)-\-N M gpK -P  1). 

This gives us points G X ^  (1 <  i <  P) and an integer m  > 1 such th a t 

whenever ||v|| is sufficiently large there exists i such tha t ||v +  gm(u^)|| < ||v|| —

H. We can then define the blocks B (s, t ,i)  (1 <  i < P ) by

These blocks all have the same length £ — m  +  2N.

As in the proof of Theorem 2.8, we construct for each x  G X ^  a sequence 

of points (a;^) j, starting with x ^ 1̂ =  x , in such a way th a t each function 

x  i—> xfri is a block-adding process th a t is defined on cylinders.

We find TVp such tha t whenever t > NFf min,

||F (i +  r) -  F (i)|| <1 VO <  r  <  m ax-jV(f), (£ +  l)?~mQx} •

The constant K q is then chosen to be sufficiently large tha t for a,ll n < N F -p £ 

and all z  G X j  we have

\\gn( z ) ~ F ( r n(z ) ) \ \< K 0.

As before, given j  >  0 and x  E Sk  we define j '  to be the position th a t the 

symbol x:i is shifted to  in If f  > NF then for y ,z  G C.y+i(x\ SK) we have



the inequality

(V'+1(?/, ~1)) - F  f ’+1(yil~r') j  ) -
( g ,''+ I (*0_1)) -  F  ( j rf'+1(z w" 1)) i )  <  F (g )  +  1 (2.22)

(derived in the same way as inequality (2 .1) from Theorem 2 .8 ). The point x ^  

is defined in terms of {y ^~ ^  : y G CJ+i(x; SV)} as follows:

• If f  < IVp, or if ||gJ'/+1(2/^“ ^) ~  F |[ <  Kq for all y  G

Cj+i(x; S k ), then we take x ^  =  x^'-1).

•  If f  > N F and ||g j/+1(y^~1̂ ) — F (rb /+1)(^0-i))) || -> j^Q for some y g 

Cj+i(x\ S k ) , we find the smallest i such th a t there exists z G Cj+i(x] S k )  

with

H.

(Lemma 2.23 tells us tha t at least one such i exists, so long as K {] was chosen 

sufficiently large.) We then take Bj(x )  = B ( x j )Xj+i, i);  tha t is, x ^  is the 

same as x (-7-1) but with this block B (x j1Xj+i i i) inserted behind Xy

If x (-4 x ^ " 1̂ was defined on cylinders, then this definition ensures tha t x i—* 

also is. As usual, we take £(x) =  limJ_ ,00 x ^ \  and it follows th a t this block-adding 

process £ is also defined on cylinders.

Continuing to follow the proof of Theorem 2.8, we define for x G S k  and 

n  >  0 ,

A n(x) =  gn(C (x ) ) -F  (P (£ (x ))) .

And for f  > NF we have the inequalities

A j'(x ) -  ^ ' ( x ^ - 1)) -  F  (V ( x (j-1}) ) )  | <  V(g) +  1; (2.23)

iy +i(x) — ^g-7/+1(x^-1 )̂ — F  ^r?/+1(x(-7_1) ) ^  <  F (g ) +  1. (2.24)
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We now need a revised version of Claim 1 from the proof of Theorem 2.8:

Claim 1': If j '  > N F and B j ( x ) = B ( x j : Xj+ i , i )  (for any 1 <  i <  P ), then

|| A (j+iy (x) || <  || A y (x) || — D ,

where D  >  3 V (g) +  4 +  2 K .

Proof of Claim 1': From the definition of the block-adding process we know there 

is some z G Q +i(x; S k ) such th a t

|gi'+i(2«-«) -  F (V'+1(z«-i>)) + gm(u«)

<  g#'+i(zW-D) _  p  ( y + 1(z0 - 1))')

Combining this with (2.22) gives

H.

g

Now

gO+iy^O')) _  gN (cF,+13)b')) gm((yJ/+:l+Ara;(j)) _j_ g iV(crj/+i+jV+mx ^ ) ,

and a j/+1+7vx(fi G [u$ . . .  u ^ _ s] , so

gm^-'+i+iv^Ci)) _  gm(u(0 ) <  y ^ y

Hence

gO+iy^O)) _  ( g > '+ 1 ( x ^ )  +  gm(u(i))) < 2JVMg + F(g).

And because x[ =  x-J for all * <  j '  +  1, this implies

JgO+D'^O)) _  (gi'+^O'-1)) +  g"*(u(i))) I < 2 N M g  +  2F(g). (2.26)

Furthermore we have |f ^ +I^ (x ^ )  — f ?/+1(x ^ ) | < (£ +  1 )rmax and | r y/+1(x ^ )  — 

7~/+1(;r( i-1))| <  V (r), so by the assumption th a t f  >  A/p we have

F (£«>)') _ F  
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Now by applying (2.26) and (2.27) to the left hand side of (2.25) we get

< I g ^ x ^ )  -  F ( f ,,+1(a:^_1^)i +  4F(g) +  2N M t  +  4 -  H. (2.28) 

And so from inequalities (2.23) and (2.24) we have

II A u+1y(x)|| <  ||A ,,+1(x)|| +  6V(g) +  2N M e +  6 -  H.

But || A y +i(rc) — A y (a ;) || < Mg +  1 and so

IIA0+i)-(x)|| < ||A ^ s)|| +  6V(g) +  (2N  +  1)M| +  7  — H .

We can then take D = H  — 6 V(g) — (2N  +  I) Mg  — 7, and since we chose

H  = 20(V(g) +  N M g  +  K  +  1) we certainly have D > 3V(g) +  4 +  2 K . This

completes the proof of Claim 1/.

From this point onwai'ds the calculations in the multi-dimensional case are 

the same as for the block-adding process for one dimension used in Theorem 2.8. 

In particular, following the proof of Theorem 2.8 we have

• || A y (re) || < K 0 +  V(g) +  1 for all rr G S k  and all j  >  0;

• If a block was inserted after Xj then [| A

• For any n  > 0  we have || A n(:r)[[ < K 0 +  F (g ) +  1 +  £Mg +  1.

And so gn(£(x)) =  F  (fn(£(rr))) +  0(1). Transferring this back to J  we have th a t

Now, by using the arguments from Theorem 2.8, for any 77 >  0 we can find a 

constant Cn such th a t for each x € S K}

3  < Cv +  3 ( 1  +  rj£). (2.29)
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(As always, j '  is the position th a t the symbol Xj is shifted to  in £(x) .  Thus it 

depends on x, but it is constant on cylinders of length j  +  1 .) We want this in a 

slightly different form: it follows from (2.29) tha t there exists a constant such

tha t whenever j > N ' we have

j ’ + e + l  <  j { l  + 2pi). (2.30)

We wish to  prove th a t dim// x(S'k) "  dim// x{̂ k)) and this part of the

argument is similar to the use of Moran covers in Theorem 2.18. We write 

D — d im //6 ^  and let r} > 0 be arbitrary. Then for all sufficiently small p 

we can find a cover of S ’k  by a finite or countable collection of balls B i  with radii 

Ti < p such th a t

E - ^ i .
i

For each i we construct a Moran cover 1^. of J  with size 7\ . We let x(Q f) 

(1 <  k < m (i)) be the sets of this cover for which Qf n  n  S'K i^ 0 - This

implies th a t (J^fc Qf D S'K.

We have m (i) < M Moran and r(Q f) <  cMorau.rj, and so

E  D+>' S  (CMor»n)£H"’ == I<(v) • (2-31)
i,k

For each cylinder Qf, we can ‘remove blocks’ to produce the cylinder Qf. If 

£(r) 6  Qf then x  £  Qf, so the sets Qf cover Sk, and hence the sets x { Q i )  cover 

x(Sk).
Say tha t the lengths of the cylinders Qf and Qf are m f and m f respectively. 

We know th a t r(Q f) —> 0 as p —» 0 , and by the first part of Lemma 2.16 this 

implies in f^  m f —> oo as p —> 0. But m f < (£ 4 - l )m f , so this implies inf*^ mf —> 

oo as p > 0. In particular, if p is sufficiently small then m f — 1 > N 1 for all i, 

k. Also by applying Lemma 2.16 again we have tha t supi fc diam x(Q f) -> 0 as 

p->  0 .
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Since Q f fl S'K /  0  we can find a point x  6  S k  with ^(x) € Qf. We now 

apply (2.30) for j  — m f — 1 . From Proposition 2.7 we have

f  <  mj. -  1 < ( j  +  1)',

and so

m l  <  (j +  1)' <  f  +  1 + 1  

If p is sufficiently small tha t inf^*. m f — 1 >  N* then (2.30) applies and so

m lk < j (  1 +  2rj£) < m*.(l -f 2 rj£).

Hence

< 2 v t

So from Lemma 2.17,

!(Q?) >  L(Ql) > c (? (§ * ))
1+27t/£

( r ( Q i ) J  < c  {D+Tl)K{r}),
i,k

Y  (d ia m Q f)(1+27’'J)<D+’') <  2<1+2'ra«D+'<>c-(D+’>>.ft'(;)).

Combining this with (2.31) gives (for sufficiently small p)

(1+2777£)(D+jj)
. p w n j

i,k

and so
( l+ 277?£)(D -f? j )

, (d iam g ?J
i,k

We have shown th a t the sets x ( Q f )  cover x,(Sk) and tha t supi A. diam x ( Q f )  0

as p —> 0 . Hence

dim# x (Sk ) <  (1 +  2^r}£)(dimH x (S'k ) +  v)-

Taking 77 —» 0 gives

dimh x (Sk ) <  dim/f x (5^).

But x (S'k ) ^  A /( g ,F ,0  so

dim# L j( g, F , r) >  dim# x {Sr ).
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And |J KeNx{Si<) =  B ddj(g), so

dimjj A/(g> F , r) >  dim# B ddj(g)

> dimh v (from Theorem 2.22).

□
As usual, by observing th a t L j{ g, F , r) C Avej(g, 0) we can restate this result 

in the following way:

T h e o re m  2.25 Let g, F , r, v be as in Theorem 2,24- Then

dim# B ddj(g) =  dim# L j( g, F , r) =  dim# Avej(g, 0 ).

2.4 H yperbolic diffeom orphism s and flows

2.4.1 P rod u ct structure

When dealing with one-sided subshifts and conformal repellers, we compared the 

Hausdorff dimensions of sets to the Hausdorff dimensions of equilibrium states. 

However, for hyperbolic diffeomorphisms and flows this is no longer fruitful. For 

example, suppose we have a function g : A —» M and an equilibrium state v  such 

tha t JA g dv — a. Then we can still say tha t

dim # AveA(g, a) >  dim H v.

(This is immediate from the definition of Hausdorff dimension of a measure and 

the ergodic theorem.) But it is no longer necessarily the case th a t this is a ‘best 

possible’ bound: there may not be a measure v for which we have equality. For 

one-sided subshifts and conformal repellers such a measure v was guaranteed 

by Theorems 2 .2  and 2.15 respectively, but for the hyperbolic case we do not 

have a result th a t can be applied in tha t way. Thus while we could still show 

that dim^f BddA(p) > this is not really the appropriate bound to con­

sider, and in particular this bound is not good enough to be able to deduce th a t 

dim# BddA(g) =  dimH AveA((/, tv).
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Roughly speaking, the ‘problem’ is tha t looking at dim # v does not take ac­

count of the splitting into stable and unstable directions. Say we consider a 

hyperbolic diffeomorphism /  : A A, and an equilibrium state v on A. Then v 

has a product structure, as described in [Pes]: tha t is, if we consider a rectangle 

R* and a point 2 * E hit R*, then we can find measures on W ^{z* )  and v~ 

on W fp(z*) such th a t u is equivalent to the product z/+ x v~ on R*. (If \i is the 

equilibrium state on X a  which corresponds to v on A, then u+ is obtained from 

the measure pA defined in section 1.4; for the stable directions, the measures jjT 

and v~ are defined similarly.) Rather than comparing the dimension of a set to 

dim# z/, we should be comparing it to a sum of the dimensions of two measures, 

one of the form iX  and one of the form . And, crucially, these measures might 

be derived from two different equilibrium states, v\ and v2.

An illustration of this is that, in general, there do not exist measures of 

maximal dimension:

T heorem  2.26 (M anning, M cC luskey [MM]) There exist Axiom A diffeo­

morphisms f , with corresponding basic sets for which there is a strict in­

equality

dim# Q,(f) > sup {dim# f i : /r(H (/)) =  1, /i ergodic} .

Essentially the issue is tha t we do have a ‘variational principle’ for d im #Q (/), 

but only by maximizing for stable and unstable directions separately and taking 

a sum. Thus the inequality above is strict unless the two suprema are attained 

by the same v (and generically this is not the case).

However, the sets th a t we are interested in all ‘depend only on the future’: 

P rop osition  2.27 ([Pes])

(a) Let f  : A —> A be a hyperbolic diffeomorphism and let g : A —» R be Holder 

continuous. Then there is a constant K (g ) such that whenever z ,z '  E A
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with z' E W*(z) we have

19 n{z') ~  gn{z) | < K(g) Vn > 0.

(b) Let <pt : A —> A be a hyperbolic flow and let g : A —* R be Holder continuous. 

Then there is a constant K (g ) such that whenever z , z ‘ E A with z1 E W*(z) 

we have
pt pt

< K(g)  Vi >  0./  g((j>Tz ? ) d T -  /  g(4>Tz) dr  
'0 Jo

(The proof is essentially the same as the derivation of the constant V(g)  in section 

2.1.2.) This means th a t z  E BddA(y) if and only if z' E Bddyv(<?); and similarly 

for the sets Ave/y(g, a)  and L J\(g) F, r) (or L A(g, F)  for a flow), provided tha t F  

satisfies the usual condition.

So, when we consider the splitting into stable and unstable directions, it is 

only the unstable direction which distinguishes the sets. More precisely, suppose 

we look at one of the rectangles R* in the Markov partition for a hyperbolic diffeo­

morphism. We know th a t this has a product structure R* —> (z*) x {z*).

Then if S  is a set which depends only on the future, the intersection S  fl R* is 

represented in the product structure by (SD  Wjj*^*)) x Wj|*(2 *). Thus, in order 

to compare the dimensions of such sets, we are mainly interested in the intersec­

tions S  n  (z*).

In order to make use of the symbolic model, we consider a slightly weaker 

condition than ‘depending only on the future’.

Suppose we have a hyperbolic diffeomorphism /  : A —» A, which is coded by 

the subshift of finite type a  : X A X A- For a set S x  C  X a , we say th a t S x  

‘depends only on future co-ordinates’ if, whenever x , y  E X A with for all

i > 0, we have x  E S x  if and only if y  E Sx-  We will then say tha t the set S  C A 

‘depends only on the future in the coding’ if S  — x (S x )  f°r a- set S x  which has 

this property. Then for a rectangle R j  =  {x(:r) : x  E X A with xq — j} ,  we can
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define

S rj =  {x(z) : x e  Sx  with x 0 =  j }  .

Thus 5  =  (This definition depends on the choice of S x ; when we write

S Rj we are implicitly assuming we know which set S x  we are working with.) Note 

th a t if S  is a set which satisfies the stronger condition of depending only on the 

future in A (as for the sets Avca(<7, ck), BddA(.<7) and La (.(7, F, r)) then we can 

simply take S x  =  y~1(5'), which implies S Rj = S  fl Rj. However this does not 

hold if S  is produced from a more general set Sx  as there may be complications 

at the boundaries of rectangles. Note also tha t if Sx  is u-invariant then x (S x )  

is /-invariant.

This condition is still strong enough to ensure th a t S  looks like a product 

when restricted to a rectangle. That is, suppose we pick a rectangle R* and a 

point z* E int R* as above. Then if S  depends only on the future in the coding, 

the set S R* is represented in the product structure by (Sr* n ^ , ( / ) )  x

Similarly, suppose we have a hyperbolic flow <j>t : A —> A, coded by a suspended 

flow cr[ : X A —> X A over a subshift of finite type a  : X A —> X A. Here we will say 

th a t a ^-invariant set S  C A ‘depends only on the future in the coding’ if it is of 

the form

s = U ̂ (fafe °): x e s x})>
where Sx  ^  X A is a cr-invariant set which depends only on future co-ordinates. 

(We need the sets to be invariant here because we have to make use of the 

projection along lines of the flow.) We recall from the construction of the symbolic 

dynamics th a t we can find r  > 0 such th a t A is covered by the sets U te(—rr) 

diffeomorphic to the product Tj x (—r, r). If we define

Stj = ! J  <f>t{ {p{x, 0 ) : x e  Sx  with cc0 =  j }  ),
i € ( —t ,t )

then S  =  W hen looking at the rectangle T* with product structure

T* —> x W/*(.z*), the set St * HT* is represented in the product structure
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by (ST* fl W%*(z*)) x Wfffz*).

If our diffeomorphism (or flow) is conformal, then we have a formula for the 

dimension of the intersection of A with a stable manifold, in terms of the function 

a 0 )  ^ o r  v (s)  f o r  a  defined in section 1 .5 :

T h e o re m  2.28 ([Pes],[PS]) (a) Suppose f  : A —> A is a conformal hyperbolic

diffeomorphism. Then for any rectangle FL* and point z* E int R* we have

dimH =  ddmBW ^(z* ) = t {s\

where t ^  is the unique number such that P ( t ^  log a ^ )  =  0 . (Iiere P  is 

the pressure function on A .)

(b) Suppose (pi : A —» A is a conform,al hyperbolic flow. Then for any rectangle 

T* and point z* E in t T* we have

dim # W fffz* )  -  to £ BWl«(z*) =  t (s),

where t ^  is the unique number such that P (fls^ v ^ )  = 0 .

(The references [Pes] and [PS] also give similar results for the unstable manifolds, 

and these can be combined to find the dimension of the set A itself.)

Because the Hausdorff dimension and upper box dimension of W B*(z*) coin­

cide, we can apply property (e) from section 1.5 to any product V  x W r.{z*) for 

V  C Wft*(z*). (And similarly for flows.) Furthermore, Proposition 1.8 tells us 

that, with the conformality assumption, the product structure on each rectangle 

is Lipschitz, and so preserves dimension. Combining all these observations we 

have the following:

L em m a 2.29 (a) Suppose f  : A —> A is a conformal hyperbolic diffeomor­

phism, and suppose the set S  C A depends only on the future (in the coding). 

Then for any rectangle R * and any z* E int R* we have

dim# S r* — dim h (Sr* D WJ*(z*)) +
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(b) Suppose 4>t : A —> A is a conformal hyperbolic flow, and suppose the (f>- 

invanant set S  C A depends only on the future (in the coding). Then for  

any rectangle T * and any z* G int T* we have

dim# St * — dirnjj(jST* n  VKJk(.£*)) + 1 .

Applying this to the sets which depend only on the future in A (rather than 

just in the coding), we have:

L em m a 2.30 (a) Suppose f  : A —> A is a confoimal hyperbolic diffeomor-

phism. Then for any rectangle R* and any z * G int R* we have

dim#(AveA(g, ct) D R*) =  dimi / (AveA(g! a )  n  W r ,(z*)) +  t {s)\ 

dimH-(BddA(g) D R*) — dimH(BddA(g) D W%*(z*)) +  t (s); 

dim *(LA(g, F, r) n  R*) =  dimJ7 (LA(g, F , r) n  (z*)) +  t (s).

(b) Suppose <f>t : A —* A is a conformal hyperbolic flow. Then for any rectangle 

T * and any z* G intT*, if  we write T* = Ute(—rr) 4>t{T*) we have

dimif(AveA(g, a )  n  T*) =  dim#(AveA(g, a )  n (2 *)) +  t(s) +  1; 

dim#(BddA(g) n T*) =  dim//(BddA(g) n  W^.(z '))  +  t (s> +  1; 

dimH(LA(g, F) n Tt*) =  dim//(LA(g, F) n W£,(z*)) +  i (s) +  1.

(Here the functions g : A —» ]Rd and r : A —» K+ are assumed to be Holder 

continuous, and F  satisfies the condition of Theorem 2.24.)

This is all analogous to the method for working with two-sided subshiffcs of 

finite type in section 2.1.4. There we looked at the projection to the one-sided 

subshiffc: this is much the same as looking at the intersection with an unstable 

manifold. However, for subshifts of finite type the projection was to the ‘nice5 

space X A which we had already studied. In order for a similar method to work 

for hyperbolic diffeomorphisms (and flows), we need a way to get information 

about the intersections S r* 0  W r*(z*), and in particular we need an analogue of 

Theorem 2.2. The ideas tha t we need are described in the next section.
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2.4 .2  B S -d im en sion

We follow the descriptions in [Pes] and [BSS]. Let T  : X  —> X  be a continuous 

map of a compact metric space, and let U be a finite open cover of X .  We consider 

strings of sets, which we write as U  =  (Uo, U±,. . . ,  f7m(u)-i)j where £/* e  U for 

each i. Let S m(U) be the set of all such strings U  for which m (U ) =  rri.

Each U  G Um>o^m(^0 defines a set

X (U ) : = { x e X  : T x e U i  VO <  i < m (U )} .

And then for any continuous real-valued function 'ij) on X  we can define

V ;(U )= sup ^ m(u)(.r).
x 6 X ( U )

Now let u  : X  —> R+ be a strictly positive continuous function. For any set 

Z  C l  and a G l w e  define

M (Z , a , u, t i )  —

Um inf |  y ^ e x p ( -a u (U ) )  : T C S m{U) with j j  X (U ) 2  z \  ,
fu e r  m>n u e r J

and we use this to define

dimUjW Z =  inf {ct : M (Z, a , u,U ) — 0} *

We can then consider what happens as we take diam TA —» 0 (where diamZ// := 

d iam l/). It turns out th a t the limit

dimUZ  := lim &\muu Z
diamW—̂O

always exists. (In fact thinking of this as a limit is slightly misleading: we expect 

dimUiw to be independent of U , provided tha t diam£/ is sufficiently small.) This 

quantity was first defined by Barreira and Schmeling in [BSc] and so is referred 

to in [Pes] as BS-dimension.
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W hen u  =  1, dim„ Z  gives the topological entropy of T  on Z. (Or, to be more 

precise, it coincides with the usual definition of topological entropy for compact 

invariant sets, and extends it to more general sets.)

BS-dimension shares some of the simple properties of HausdorfF dimension. 

In particular, if Z x C Z 2 C X  then dimu Z x <  dim« Z2, and if Z  — (J?>1 Z{ for 

sets Zi  C X  then

dimu Z  =  sup dimw Z (2.32)
i >  1

We can also define BS-dimension for measures. For a Borel probability mea­

sure p  we let

dimUjW p = inf {dim,tiW Z  : p(Z ) =  1} , 

and then dimu p  is defined by

dim u p  = lim dimu^ n .
d ia m W —»0 1

Again this limit is guaranteed to exist. For us the im portant consequence of this 

definition is th a t if Z  is a set with p(Z )  =  1 then dimu Z  > dimu p.

P ro p o s itio n  2.31 ([BSc]) I f  p  is ergodic then

dim uM= - M Q - ,
J x u d fJ.

where h ^ T )  is the measure-theoretic entropy.

We can now state a generalisation of Theorems 2.2/2.15/2.19. Suppose tha t 

g : X  —» is continuous, and define as before

^ (g )  =  |  J S d p : p e M ( X )

Then we have:

T heorem  2.32 ([BSS]) Suppose that the function p  i—> h ^ T )  is upper semi- 

continuous, and the continuous function  g : X  —» is such that Xu +  ^i9i 

has a unique equilibrium state for any A, Ai , . . . ,  Â  € M. Then:
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1. I f  at $  V (g) then Avex(g, at) — 0 .

2. I f  at G in tD (g) then Avex(g, ot) ^  0 , and

f  h  t m  r
dimu Avex(g, ot) = sup < r M : p G M ( X )  and /  g d p  — i

l ] x u d p J x

Furthermore the supremum is attained by some ergodic measure p., which is

an equilibrium state for the function

(q(Q'), g) -  (dimu Avex(g, a ) )  u,

for some q (a )  6  M.d.

The conditions of this theorem are satisfied for the maps tha t we are interested 

in (expanding maps and hyperbolic diffeomorphisms), when g and u  are Holder 

continuous. Also in th a t case we have th a t if the components of g are cohomolo- 

gously independent then the set 'P(g) is the closure of its interior.

The link to Theorem 2.19 is given by the following:

P ro p o s itio n  2.33 ([BSc]) Suppose we take X  to be a repeller J  of a conformal 

C l+ot expanding map. Then i f  we set u(x) =  v(x)  =  loga(a;)J we have dim// Z  = 

dimn Z  for any Z  C J, and dim// p — dimu p for any Borel probability measure

p.

We can use this to deduce Theorem 2.19 as a special case of Theorem 2.32.

There is also a concept of BS-dimension for flows, introduced in [BS1]. We 

restrict attention to conformal hyperbolic flows <pt : A A since this is the only 

type of flow we will want to consider.

For x 6  A, t >  0 , e > 0 we define the set

B (x, t, e) =  {y G A : d(<fiTy  ̂<j>Tx) < e whenever 0 <  r  <  t}  ,

and then for a continuous function 'tp : A —» M we can define

iflx , £, e) =  sup | y  'ifi^ry) dr : y G B (x , t y e) | .
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Now suppose u : A —> R+ is a strictly positive continuous function. Then for any 

set Z  C A and « 6 l w e  define

M( Zj  a, w, e) =  lim inf exp(—cm(x, t, e)),
(a:,t)€r

where the infimum is taken over all countable subsets V of A x [T, oo) for which 

U(,r,i)er  ̂e) — We then take

dim^e Z = inf {a : M (Z } a, u, e) =  0}

and set

diniu Z  — lim dimu e Z.
e—>0 ’

For a  Borel probability measure /i on A we define

dimu>e fj, =  inf {dimn)£ Z  ; f,t(Z) — 1} ,

and then

dimM f.i =  lim dimu e //.
£—>•0 ’

Again these limits are guaranteed to  exist, and we have:

P ro p o s itio n  2.34 ([BD]) I f  //, is ergodic then

K(4>)dim U(I= y  • .
JAudfi

And we have a version of Theorem 2.32:

T h e o re m  2.35 ([BD ]) Let 4>t : A —* A be a hyperbolic flow. Suppose the func­

tions g  : A —» and u : A —> are Holder continuous. Then

1. I f  ot ̂  T>(g) then AveA(g, a )  =  0-

2. I f  ot E intX>(g) then AveA(g, a )  ̂  0 ,  and

dimu Ave^fg, ot) = sup { : u E A f ( A )  and [  g dfj, = a
J a

103



Furthermore the supremum is attained by some ergodic measure ji, which is 

an equilibrium state for the function

(q (« ), g) “  (dimu Ave*(g, a ) )  u,

for some q(ct) G Md.

The reason th a t BS-dimension is useful to us is tha t, if we choose the right 

function u , we get information about the Hausdorff dimension. In the case of a 

conformal repeller for an expanding map, Proposition 2.33 gives th a t the Haus­

dorff dimension is actually equal to the BS-dimension for a particular u. For 

hyperbolic diffeomorphisms and flows, we instead get information about the di­

mensions of subsets of unstable (or stable) manifolds.

L em m a 2.36 (a) Let f  : A —> A be a conformal hyperbolic diffeomorphism,

and define the function u by u(z) =  v ^ ( z )  — log <2^ ( 2:). Suppose S  is a 

f-invariant subset of A which depends only on the future (in the coding). 

Then for a rectangle R* and point z* G in t R* we have

dim// (SR* n  Htf*(z*)) =  dimu S R*.

(b) Let (fit : A —> A be a conformal hyperbolic flow, and take u to be the function  

. Suppose S  is a <pt-invariant subset of A which depends only on the 

future (in the coding). Then for a rectangle T* and point z* G int T* we 

have

dim/7 [St * H Wf*(z*)) =  dim uSt *-

Part (b) is implied in [BD] without the conditions on S. (Though clearly it cannot 

be true for every set S  because it requires dim /7 •Sr-nWJi* (z*) to be independent of 

z*.) Along with Proposition 2.33, this result follows from the ‘bounded distortion’ 

property of conformal systems: e.g. for a conformal hyperbolic flow we have

(diam B (x , £, e) fl lFru(:c))0:
C 1 S  - - - - - - - - - - - - - - 7- - - - - - - - - T T 7 - - - - - - - - - - - - - -   <  C 2 .exp(—av(u)(x, t,e))
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While I believe Lemma 2.36 is well known, I have been unable to find an explicit 

reference (except for the incomplete statement of (b) in [BD]), so present a sketch 

proof of part (a) below. (Part (b) can be proved by a similar method.) But for 

the moment we note that by combining Lemma 2.36 with Theorem 2.29 we have:

L em m a 2.37 (a) Let f  : A —> A be a conformal hyperbolic diffeomorphism,

and define the function u by u(z) = v ^ ( z )  =  log a ^ ( z ) .  Suppose S  is a 

f  -invariant subset of A which depends only on the future (in the coding). 

Then

dim# S  =  dimu S  +  t^s\

(b) Let : A —3- A be a conformal hyperbolic flow, and take u to be the function  

v(uA Suppose S  is a <j>t-invariant subset of A which depends only on the 

future (in the coding). Then

dim/f S  — dimu S  +  t ^  +  1.

Proof: For part (a), consider the rectangles Rj  of the Markov partition, and 

choose a point G int Rj for each j .  We have

dimH S  = sup dim# S Rj 
j

— sup (dim # (SRj n  VFJ^.O^)) + (f rom Theorem 2.29)

=  sup dimM Srtj 4 -1)'̂  (from Lemma 2.36)
3

=  dimu S  4 - ( f rom (2.32)).

Part (b) is similar. □

Sketch proof of Lemma 2.36(a): We consider covers U whose elements are small 

open rectangles in A. T hat is, each U G U is an open set in A such th a t whenever 

x ,y  £ U we have [x,y] £ U\ we also require tha t U is ‘connected’ in the sense tha t 

if x, y  G U with y  G Wf ( x )  (or y G VF/^t)) then U contains the entire segment 

of Wf ( x )  D A (respectively Wes(x) fl A) between x  and y.
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If each U is an open rectangle it follows tha t every set A(U) is also an open 

rectangle.

Now, for each U G U we want to produce a slightly larger open rectangle 

U' by ‘expanding U in the stable direction’. Suppose we are given 5 <C diamlY. 

The rectangle U is bounded by two local stable manifolds and two local unstable 

manifolds. By moving the unstable manifolds slightly, we can produce V  with 

diam U1 < diam U + 5 with the property tha t there exists 5' > 0 such tha t

t / ' D
x € U

Since U is finite we may choose 5' independent of U. We now have a new cover 

U' — {Uf : U G U }, and if U  =  (C/0, , f/m(u)-i) for £/* G U  we may define

U' =  (DS, which has the property tha t

A(U ' ) 2  ( J
a € A ( U )

Now suppose we have a cover of SR* H Wjj. (z*), as in the definition of Hausdorff 

dimension. Then by an argument similar to tha t for Moran covers, we can replace 

each set of this cover by a bounded number of sets of the form A(U), such that 

diam A (U) is no more than a constant multiple of the diameter of the original 

set. But if the sets A(Uj) cover SR* Pi then the sets A(U'-) cover

The ‘bounded distortion’ property for a conformal hyperbolic diffeomorphism 

tells us

ci (diam A(U) Pi Weu(£*))a <  exp(—cm(U)) <  c2 (diam A(U) Pi W'“(z*))a .

(2.33)

Comparing the definitions of Hausdorff dimension and BS-dimension then gives 

dimu,w' |  Sr* PI [ J  {y G W R*(z*) : d(x, y) < <f} j <  dim// S R* PI W R*(z*).

106



But the right hand side is independent of the choice of 2* 6  int H*, and the sets 

on the left hand side cover Sr* when taken over a suitable finite number of choices 

of 2 *. Then taking diamZ^ —> 0 (which implies diam U' —> 0) we get

dimlt S R* <  dim// S r*  n  W r*  {z*).

The opposite inequality is easier since any cover of Sr* is automatically a cover 

of S R* n  W R*(z*), and we can apply (2.33) again.

2.4 .3  R esu lts  for conform al hyperbolic diffeom orphism s

Our aim is to prove the following:

T h e o re m  2.38 Let f  : A —» A be a conformal hyperbolic diffeomorphism, and 

let g : A —> M.d be Holder continuous. Suppose there exists an equilibrium state v 

on A such that f A g dv =  0 . Then

dimjj BddA(g) =  dim# AveA(g, 0 ).

Furthermore i f  the components of g are cohomologously independent then

dim/:/ La ( g, F , r) =  dim// AveA(g, 0 ),

for any strictly positive Holder continuous function r : A —» and any continu­

ous function  F  : M+ —> R d with the property that supTe[01j ||F (t +  r)  — F (i)|| —> 0 

as t —> 0 0 .

Although the first part, of this theorem does not require the components of 

g to be cohomologously independent, we can always reduce to a case where the 

components are cohomologously independent by ‘throwing ou t’ components if 

necessary, as explained in the proof of Theorem 2 .2 2 . So in what follows we will 

always assume tha t the components of g are cohomologously independent.
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We look at the subshift of finite type a : X a —* X a which is the model for 

/ .  We have the projection n+ : X a —> X%t and if z* =  x (x *) £ inti?* for a 

rectangle R* of the Markov partition for / ,  the set W r*(z*) is coded by the map 

Xg* '• [zj] Wjp(z*) as defined in section 2.2. We look at the sets xi*^(C0 

where C  C [xq] is a a cylinder in X \ .  According to Proposition 2.14, each such 

set x ? ( C )  is contained in a ball (in W ^fz* ))  of radius f ^ ( C )  and contains a 

ball of radius rj£?(C). By copying the proofs of Lemmas 2.16 and 2.17, we have 

analogous results for this situation:

L em m a 2.39 (i) There exist positive constants 71 , 72 , c\, c2 such that i f  C  C

[xq\ is a cylinder of length n in X J  then

ci exp ( - 7 1  n) < r f) (C )  < r£?(C) < c2 exp (~ 7 2n ) .

(ii) Let C  =  [a;0, - . . ,  £m-i] be a cylinder in X ^  with xo = Xg, and let C' be a 

cylinder produced by inserting a single block of length i  inside C, i.e.

C  [3̂ 01 * • * Xi—1, 60, . . . ,  bg—ij X i. . .  .

Then we have

> r^>(C) > e x p ( - 7 3Q r (")(C),

for a constant 7 3 .

L em m a 2.40 Suppose we have a block-adding process £ : S  —»• S ’ (for some 

S  C X \ )  which is defined on cylinders. Let Q C [xj] be a cylinder of length n  

which intersects S ', and let n  be the length of the cylinder Q obtained by removing 

the blocks from  Q. Write p — (n — n )/n . Then, provided that p < 1, we have

where c, 7  are constants.
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Now suppose we are given the Holder continuous function g : A —* and

an equilibrium state v on A such tha t f A g dv — 0. We transfer these to 

producing a function g : X a —► and an equilibrium state fi on X a such th a t 

Jx  gdf i  = 0. By applying Proposition 1.2 (to each of the components of g) we 

can find a Holder continuous function g ^  which is cohomologous to g and which 

depends only on future co-ordinates. This gives rise to  a well-defined function 

g+ : X A —> by taking g + (7r+x) =  g ^ ( x ) ,  for which Jx+ g + d/j,+ =  0.

If the components of g are cohomologously independent, this implies th a t the 

components of g+ are cohomologously independent.

Suppose z* — x (x *) € int R* as above. Then if y  is a point in [xq] C X j ,  we 

have (by definition) Xz*(v) ~  X{x ) where x  G X a is the point defined by

£ = ( . . .  x*_2x*_l x l y l y2 . . . ) .

We then have

y  G Bdd Y+(g+) x  G Bdd^A(g(u)) 

x G  B d d ^ (g )

&  X{z*iv) ^  BddA(g) (2.34)

And similarly

y  G A v e x + (g+ , 0) x (̂ { y )  e AveA(g,0). (2.35)

Also, given r : A —> R+ we can produce in the same way the function r+ : X j  —►

R +. (We explained in section 2.1.4 why we may take 7"+ > 0 .) And then we have

V e  Lx+(g+>F X +) x ^ i v )  e  LA(g ,F ,r ) ,  (2.36)

assuming F  satisfies the usual condition.

We now look at the sets G(n) C X \  as defined in the proof of Theorem 

2 .2 2 . Recall tha t these are defined in terms of a Holder continuous function
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S : X t  —+ Wl and an equilibrium state on X j  which integrates g to zero. We 

will take g =  g+ , and the equilibrium state to be j i r. That is, we define

e(n) =  y + ({a; G X j  : ||gn(z)|| > n* -  V ( g ) j )  + n -1 ;

C{ n ) =  { C  G Cyl(n) : |jgn(2/)[| > n * for some y  G ;

and then

m  \ f  v+  v #  {0 <  2 <  £ : a; G -Fj(n)} ,G(n) =  < x  G X^J : lim su p ---------------------------------- < e(n) > ,
f £—>00 t J

where Efin) — Ucec(n) a ~m(C). We know that fj,+(G (n)) =  1.

Note th a t the set G(n) is £7n-invariant. We would prefer to work with a- 

invariant sets, so we we will actually consider instead

G (n):=  p |  ^ ( G W ) .
0 < i < n

Since y + (o-“l (G(n))) =  y + (G(n)) = 1 for all z, we have y+ (<5(n)) =  1.

We can now define the set T(n) C A by

r(n) = X (<?("))) .

Since jU.+ (G(?z)) =  1 we have fi ^7r+1(G(n))^ =  1 and so r/(r(n)) =  1. If we then 

put

r =  u  n i »
m >  1 n>rn

we also have i/(T) =  1.

In order to compare the dimensions of the sets AveA(g, 0), BddA(g) and 

I/A(g, F , r), we will relate all of these sets to the set I \  We start with a sim­

ple inclusion:

L em m a 2.41 I f  F  sa tis fie s  the co n d itio n  th a t supT€[01] ||F (t +  r)  — F (t)|| —» 0 

as t  —» oo, th en  L&{g, F , r) C P.
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Proof: Suppose z =  xG'1’) C LA(g ,F , r), and let y — n+x G X ^ .  Then we know 

y G LAr+(g+ ,F , ?~+); so we can find K  > 0 such tha t

|| (g+)m(») -  F  ((f+)”*(y)) || < K  Vm >  0.
3

Choose n0 sufficiently large th a t 77,q >  2K  -f- V (g+) +  1. Given n  >  n0, we can 

find to(n) such that whenever t > t${n) we have ||F (t +  r)  — F (i)|| < 1 for all 

r  G [0, n f f lax]. Then whenever m  is sufficiently large th a t m f X n > t0(n) we have

||(g+)n( ^ ) | |  =  ||(g+)m+nfe) ~  (g+)mfe)||

<  ||F  ((r+)m+n(y)) -  F  ((r+)m(y)) || +  2K  

< 2 / 0 1

< -  F (g +),

and so amy ^  E 0(n). So the points 7/, ay, an~xy  each belong to only

finitely many of the sets Efin), which implies th a t y  G On>n0 G{n )- Since 

r(n )  =  x  (fl+^G fa))) it follows tha t 2: G f|n>no r (n ) -  a

Our next result is the one tha t gives us the im portant lower bound for 

dimH BddA(g):

L em m a 2.42 dim # BddA(g) =  dim# T.

Proof: For each 77- >  1 we look at the block-adding process £ : G(n) —► G'(n) 

defined in the proof of Theorem 2.22 (taking g =  g + as above). Then G'(n) C 

Bddx +(g+). Also as in Theorem 2.22 we consider the sets

n / ± \ f # { 0  < i < t : x  E E A n )} . . „ „ 1Sx{n , to) S x  G X \  : ----------------- ---------- -----  <  e(n) for all i  >  to > .

Now suppose X  =  y(x*) G int R* where R* is a rectangle of the Markov partition 

for / .  We define

^ ( n . to .^ o )  “  Sx (n}to) n  G(n) n  [xq], 

and look at the restriction of £ to S x {n, to, ^o)- We write

S'x (n, t0, Xq) =  £ (S x (n, t0, x j))  .
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For any x  E G(n) we have [£(;c)]0 =  xq; so S'x (n ,to ,x l)  C [xq]. Thus the 

map x H? : [x o\ Wp+{z*) is defined on the set Sx (n, to,£'o), 95 we^ 88 on 

to, ^o)- We will compare the dimensions of the sets y^G (^Sx(n, to, and 

{s'x{n y tdi a^o)) i using the same arguments as in Theorem 2.18.

We write D  — dim//- Xz** ^ ' x ( n i to, ^o)) , and let ?/ > 0 be arbitrary. For 

all sufficiently small p we can find a cover of xf.1)  ^£x (n, t0, by a finite or 

countable collection of balls Bi in W r . ( z*) with radii Ti < p such tha t

E P ^ 1-
i

For each i we can construct a Moran cover i l ri of (z*) with size rp this consists 

of sets of the form xi*^(Q) where Q is a cylinder in X \  with Q C [ajJ]. We let 

{ Q i )  (1 <  & < m(z)) be the sets of this cover for which Qf n  ( y ^ ) “ 1(Bj) Pi

SX (jl, to, Xq) ^

We have m (i) < M Momu and f '“J (Q1;)  < cMoilm.i-i, so

E  (Fi*)(O i))D+’' < M Uotsa,.(cMomn)D+" =: K{rf). (2.37)
i,k

For each cylinder Qf, we remove the blocks from Q}- to produce the cylinder 

Qf. The sets then cover Sx (n, to,a;J), and so the images X z*\Q i) cover

x {$  ( S x ( M o ,4 ) ) -

If the lengths of the cylinders Q \ and Q1- ai'e m f  and respectively, then as 

in Theorem 2.18 or 2.22 we have

“G w G tH  (2-381

Combining this with Lemma 2.39(i) now gives tha t supi fc diam (Q f) —» 0 as 

p —> 0, and tha t if p is sufficiently small then >  n t0 for all i, k. We also 

showed in the proof of Theorem 2.18/2.22 tha t if > n t0 then



where q(n) :=  c5e(n) +  c3n  4 +  cqU 1 —» 0 as n  —> 0 0 .

So, by Lemma 2.40, if n  is sufficiently large tha t g(n) < 1 then

Combining this with (2.15) gives (for all sufficiently small p)

E ( 4 " , (q 5 ) <1+t?(",,(d+,' , < c- ( - ^ ( , ) ,
i,k

and so

E  ( d i a m x ? ^ ) ) ' 1" ^ " ” 1̂  <  2
i,k

But the sets y j^  (Qi)  cover y ^  ( s x (n, to, xg)̂ J , and supife d iam y j?  (Qf") —> 0 as 

p —» 0, so

d im // x̂ z* (^Sx (n ,t0, x ^  < (1 +  7 9 (71)) (dim # y£? ^Sx (n ,t0,xg)) + 77) .

As 77 was arbitrary,

dim// y ( s x {n, t0, xg)) <  (1 +  7<?(™)) dimH X ^  (j>'x(n > to, xg)) •

Because U (o>1 Sx (n, t0) =  G{n) we have Ut0>i S x(n , t0, xg) =  G(7r)n[xg], and 

so dim// y ^  (Sx (n, to, ^o)) “ > dim// y£? (G(ti) fl [xg]) as to —> 0 0 . Also we have 

3x (n, t0, xg) C G '(n ) D [xg] C Bddx +(g+) fl [xg]. So

d im //y ^ } (B ddx +(g+) n  [xg]) >  (1 +  7?(^))_1 dim/zy^? (G (n) fl [xg]) . (2.39)

Now, we have defined F(n) — y  ^ r+ 1(G(rc))); as such, F(n) depends only on 

the future in the coding, in the sense defined in section 2.4.1; by comparing this 

definition with the definition of y w e  see tha t

F(n)]fi. n wg.(**) = (g („) n [*;]) .

And so from Lemma 2.29 we have

dim// [r(n)]R* =  dim #*i*} (G(n) n  [xg]) +  t (s).
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Similarly, BddA(g) depends only on the future (in the coding), and here (as 

explained in section 2.4.1) we have more simply [BddA(g)]jR* =  BddA(g) H R*. 

Furthermore we showed tha t y e  Bdd x+(g+) H [a$ if and only if x ^ \ y )  G 

BddA(g), and so

[BddA(g)]R, n = XJ? (Bddx l(g+) n [x;]) .

Applying Lemma 2.29 to  this we get

dim// [BddA(g)]fl* =  dim// (Bddx +(g+) fl [xj]) +  t [s). 

Substituting into (2.39) then gives

(dim// [BddA(g)]js* -  i (s)) >  (1 +  iq (n ))~ 1 (dim// [ r (n )]^  -  t {s)) .

By maximizing over all the rectangles of the Markov partition we then get 

dim//BddA(g) — t ^  > (1 +  7 (7(n))-1 (dim// T(n) — t ^ )  .

And now by taking n —► oo as in the remarks at the end of section 2.3.2 we have 

dim// BddA(g) -  t (s) >  dim// |  ( J  p |  T(ra) J -  t [s\
\77Z >1 n > m  /

i.e.

dim// BddA(g) > dim// T.

The opposite inequality follows from the fact tha t BddA(g) Q F, which is a 

special case of Lemma 2.41. □

Now we have the analogue of Theorem 2.24:

L em m a 2.43 dim// LA(g, F , r) = d im/ / T .

Proof: In light of Lemmas 2.41 and 2.42 it remains to prove dim// L ^ g ,  F , r) >  

dim// BddA(g).

In the proof of Theorem 2.24 we defined a block-adding process £ : S k  —> S ’k  

in terms of functions g : X \  —> W l and f  : X f  —»■ M+ . We will make use of
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this block-adding process, taking g =  g + and r — r+. That is, the block-adding 

process is defined on the set

S K := { x  e  X \  : ||(g+)n(x)|| <  I< Vn} ,

and we showed in the proof of Theorem 2,24 tha t S'K C Lx +(g + , F, r+).

If 2:* =  X^*) ^ inti?* for some rectangle i?*, we look a t the restriction of x  

to the set

S k K )  •=  S k  n  [x*].

We define ^ ( ^ o )  to be the image of S k ( x q )  under £ .  Then S ^ f y o )  C  [ x j ] ,  s o  we 

may compare the dimensions of xi*^ CSW (#0)) and X ^ ^ a ^ o ) ) -

Now, in Theorem 2.24, where we had a coding x  : J  > we showed that

dim// x {S'k ) >  dim h x (S k )- By modifying this part of the proof appropriately 

we can show for our hyperbolic diffeomorphism that

dimH XzH s t<{xo)) >  dim// X(zH S k {xo))-

(We omit the details: the only changes are tha t we look at covers of S / ^ f y o )  rather 

than the whole of S'K) and th a t we have the coding xi*^ : %a W r*(z *) rather 

than  x • We went through these modifications explicitly in the proof of Lemma 

2.42, where we were copying the arguments of Theorem 2 .2 2 .)

Now C xi“) (Tx +(g+ , F , r +)fl[x5]) C LA(g ,F , r) n from

(2.36), so

dim// (LA(g ,F ,r )  fl W& (z*)) > dimff xi*}(^ (^ o )) -  

For the right hand side we have (J /f>1 SK(xJ) =  Bddx +(g+) fl [xq] 80

dim// Xz$ (Bdd Y+ (g+) f l  [ x j ] )  =  sup dim//x£*}(£jc(a:S));
A K >  1

and xi*^(Bddx +(g+) fl [ x j ] )  =  BddA(g) fl W ^(z* )  from (2.34). Hence 

dim// (LA(g ,F ,r )  fl W&{z*)) > dimH (BddA(g) n  W&(z*)).
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So from Lemma 2.30 we have

dim # (La (g, F , r) n  R*) > dim// (BddA(g) O R*)

and maximizing over all rectangles of the Markov partition gives

dim# LA(g, F , r) >  dimH BddA(g).

□

We are now ready to complete the proof of our main result for hyperbolic 

diffeomorphisms.

dimh LA(g, F, r) =  dim// T, and we also know that BddA(g) C AveA(g, 0). Thus 

it is sufficient to prove th a t dim//]? >  dim//AveA(g, 0 ). This is where we will

continuous.

Because f A g dv =  0  and v is an equilibrium state we know th a t 0 E int T>(g ) . 

So by Theorem 2.32,

and the supremum is attained for a measure which is an equilibrium state for 

a Holder continuous function on A. We will now assume th a t v is the measure 

for which the supremum is attained. (It is sufficient to prove this case, because 

although the set T is defined in terms of i/, one consequence of Lemma 2.42 is 

th a t dim// T is independent of the v th a t was given.) T hat is, we may assume 

tha t

Proof of Theorem 2.38: We have already shown tha t d im //B ddA(g) =

make use of the BS-dimension. We set u(z) =  i ^ ( z ) ,  which we know is Holder

dimn AveA(g, 0 ) =  sup fj, € A i  (A) and / g dfi =  0/.

dim.„AveA(g ,0 ) =
JAv,di

And by Proposition 2.31 this implies

dimn AveA(g, 0 ) =  dim?i u.
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If y  is the measure on X a which corresponds to v , we have fi ^7r+1(<5 (n))^ =  1 

for all n, and so p, ( f l n M ^ t G W ) )  =  1- Hence v (x  (fL > i ^ ( ^ W ) ) )  =  b  

and so from the definition of BS-dimension for a measure we have

dimu x I P |  7r+1(<5 (n)) I >  dimu AveA(g, 0).
\n >  1 /

So from Lemma 2.37,

dim// X D  ’r+1(G(n)) ] >  dim// AveA(g, 0 ).
\ n >  1  /

But x  ( n n > i < ( ^ ) ) )  ^  f\n>iX  ( ^ ( ^ ( n ) ) )  £  r ,  and so

dim# T >  dimh AveA(g, 0 ), 

which is what we wanted to  prove. □

2.4 ,4  R esu lts  for conform al hyperbolic flows

We can adapt the methods for diffeomorphisms to work for flows. For the flow 

<f>t : A —> A the sets we are interested in are

AveA(g, at) := i^x £ A : ^  J  g (<frTx) dr —> a. as t  —* o o . | ;

BddA(g) :=  |  a: G A : J  g (<t>Tx) dr is bounded j>;

^ a (g ,F )  :=  | a; E A : J  g (<f>Tx) dr — F(t) +  0 (1) j  .

Our main result for flows will be this;

T h e o re m  2.44 Let <f>t : A —> A be a conformal hyperbolic flow, and let g : A —> 

be Holder continuous. Suppose there exists an equilibrium state v on A such 

that JA g dv =  0 . Then

dim //B ddA(g) =  dim//AveA(g, 0 ).

117



Furthermore i f  the components of g are cohomologously independent then

dim# L A(g} F) =  dim# AveA(g, 0 ),

whenever the continuous function F  : R+ —» M.d has the property that 

suPre[0,l] llF(< + r ) -  FWII 0 as t —> oo.

As for diffeomorphisms, by throwing out components if necessary we may as­

sume throughout tha t the components of g are cohomologously independent.

The flow is modeled by a suspended flow erf : X rA —> X rA over a subshift of 

finite type o : X A —> X A. We look at a point z* =  p(x*, 0) E intT*, where T* is 

one of the Markov sections used to construct the symbolic dynamics. Then the 

set is thought of as being represented by the cylinder [rcj] in X A , via

the map ; [^ol ~ A s  for diffeomorphisms, if we have a cylinder 

C  C [^q] in X A we can look at rf£?(C) and r ^ ( C ) .  Lemmas 2.39 and 2.40 carry 

over word for word to the flow case.

We let g : X A —> Md be the pullback of g via the coding map p. We can 

also transfer the equilibrium state v to X A, giving an equilibrium state which we 

will call z>, which satisfies Jxr  gdz> =  0 . Now as explained in section 1.4 we can 

consider the function J g  : X A —» WLd defined by

Jpr(x)
' g(x, s )  ds. 
o

Furthermore from Proposition 1.7 the measure z) is of the form ( p x l ) / ( f x  r dp,), 

where p, is an equilibrium state on X A and I is Lebesgue measure, and it follows 

tha t

[  I g d p  = Q.
J x A

We now look at the function (Z g )^  which depends only on future co-ordinates 

and which is cohomologous to Zg. As before, this defines a function (Zg)+ : 

X A — by taking (Jg )+(?r+a;) =  (Zg)l^(x). We set g =  (Zg)+.
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Now suppose y G [xq]; then x ^ \ y )  — p{x -> 0) where x  is given b y

x =  ( . . .  x*_2x*_1x l y 1y2 . . .) •

We have

y G Bddx +(g) 44 a; G BddvYj4 ((Zg)(u)) 

44 re G B d d X4 (Jg)

44 (x, 0) G BddYr

and so

y  G Bddx + (g) 44 x {z* (v) e  B d d A (g) • (2-40)

We could prove a similar statement for AveA(g, 0) but this will not be necessary; 

however we do need to consider the sets LA(g, F), We look at : Xa  —> R +, 

which is cohomologous to r (where r  is the roof function for the suspended flow 

X A), and use this to define r 'h : X A —» R+ as we have done previously. Then we 

have

y G Ln ( g ,F , r +) LXa ( ( J g ) ^ 5F , r ^ )

44 x  G L Xa (Z g,F , r)

44 x  G Lx% (gj F)

(because / Qr ^  g(<7£(as,0 )) dr  — (Zg)n(a;) for all n). And so

G Lx + (g ,F ,r+) 44  x% \y )  e  LA(g ,F ). (2.41)V

We now consider the cr-invariant sets G(n) defined in section 2.4.3. We define 

sets r (n )  for the flow by

F(n) = U ̂  (ĵ ’0) : n+x e ̂(n)}) •
ten

Thus T(n) depends only on the future in the coding, in the sense defined in section 

2.4.1. And, as for diffeomorphisms, we define

m > l  n>m
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L em m a 2.45 I f  F  satisfies the condition that suprG[0)i] ||F (i +  r)  — F (t)|| —> 0 

as t —> o o ; then LA(g,F) C  P .

Proof: Because pA(g, F) and T are both ^-invariant it is sufficient to show that 

Ljv(g,F) n r c r  for each rectangle T*. Suppose z = p(x t 0) G L a ^ F )  H T*, 

and let y =  7r+ :c; then from (2.41) we have y  G Lx + (g ,F ,r+). So from the proof 

of Lemma 2.41 we have y  G rtn>n0 ^ ( n ) ôr some no• Hence

jz G p |  0 )  : ir+x G G ( ? r ) |  C  p |  r ( n )  C  P .n>riQ n>i io
□

L em m a 2.46 dim//BddA(g) — dim# T.

Proof: Let =  p(.T*, 0) G int T* for a rectangle T*. As in Lemma 2.42 we 

consider the block-adding process

£ : Sx (nfio,x*) -► S fx (n fi0,x^)

(defined in terms of the function g : X f  —> W l) , where

Sx {n,tq,Xq) = S x ( n yt0) n  G(n) n  [2$ .

We know th a t S'x (n:to, ^0) ?= G'(n) C  Bddx +(g).

We look at the images of the sets Sx(n,tQ,Xo) and S fx (nyt0jx J) under the 

map • [x$ WJb(2:*). By repeating the calculations of Lemma 2.42 we find

that

dimff x !?  ^Bddx +(g) Pi [x^ j  > (1 +  7 g(n) ) _1 dim# xi*} (G(n)  n  [a?;]) . (2.42) 

Now, by definition we have

[T(n)]T, =  ( J  0 t ( jp(o;, 0 ) : tt+x G G(n) and x 0 — z j} )  ,
t&{—r,r)

and so

[ r » ] T, n = x‘-l) (g(») n [*;]).
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So from Lemma 2.29,

dim jj [F(n)]T* =  d i m H X ^  (p (n )  fl [xq]^ +  +  1.

And similarly,

dimJf [BddA(g)]T, =  dimH ( Bddx+(£) n  ix o\) +  t(s) +  L 

Substituting into (2.42) gives

dim# [BddA(g)]r * -  t (s) -  1 > (1 +  'yq{n))~1 (dim# [F(n)]T* -  t (s> -  l )  , 

and by maximizing over all rectangles T* we get

dim # BddA(g) — — 1 >  (1 7 g(n) ) -1  (dim /7 T(n) — — l)  .

Taking n  —> 00 gives

dim /7 BddA(g) -  -  1 >  dim H ( (J p| T(n) j -  t {s) -  1 ,
\ m > l  i i>m /

i.e.

dim/./ BddA(g) > dim77 F.

The opposite inequality follows from Lemma 2.45. □

L em m a 2.47 dim /7 LA(g, F) =  dimf/T.

Proof: We follow the proof of Lemma 2.43. We aim to show th a t dim77 LA(g, F) > 

dim/y T.

Let 2:* — p(x*,0) £ intT* for a rectangle T*. As in Lemma 2.43 we consider 

the block-adding process

£ : S k (x q) —> S K ( x J),

where S k (xq) =  S k  H [xq], This block-adding process £ is defined in terms of 

functions g : and f  : Xj^ —» M+ ; we have already defined our function

g in terms of g, and we set r =  ?,+ as defined above. The construction of £ then 

gives tha t ^  £*+(£> F >r+ )-
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We look at the images of the sets S k (xq) and S'k (xq) under the map x ?  '■ 

[jcJ] —> As in Lemma 2.43 we can show

dimh {S'K{x*)) > dimH x {̂  (SK{xl)).

Now x i^ W rt^ o )) £  xi*HLx |( s > F >r+ ) n  frol) ^  A v(g,F) D W$.(z*) from 

(2.41), so

dim// (LA(g ,F ) fl W ^(z* ))  >  d im #*!u\ S K{xl))- 

But U /o i  SK(xi) = Bddx +(g) n  [x%] so

dimH (xi*0 (Bddx +(g) n [x*0])) =  sup dim //xi*}(A ^ (^ ));
\  A /  K> 1

and x i^ (B d d x +(g) D [rcj]) — BddA(g) n  W$*(z*) from (2.40). So

dim// (LA(g ,F ) fl W £(z*)) > dim// (BddA(g) n W ^ { z * )).

So from Lemma 2.30,

dim// (LA(g, F) n T f)  > dimH (BddA(g) n  T * ),

where T* =  (Jte(—r,r) M T * ).  If we allow T* to vary, the sets T* cover A. So by 

maximizing over all rectangles T* we get

dim// LA(g, F) >  dimH BddA(g).

□

As for diffeomorphisms, we can put all these results together to complete the 

proof of our main result.

Proof of Theorem 2.44: It remains to show tha t dim// T >  dim// AveA(g, 0 ). Like 

for diffeomorphisms, we do this by making use of the BS-dimension. We take 

u(z) — u ^ (^ ) .

Because JA gdis = 0, we know tha t 0 e  in tD (g). So by Theorem 2.35,



and the supremum is attained for an equilibrium state on A. As in the proof of 

Theorem 2.38 we may assume th a t u is the measure for which the supremum is 

attained, i.e.

dim„ AveA(g, 0) =
JAu d v

And so by Theorem 2.34,

dimtt AveA(g, 0 ) -  dimu v.

Now, recall tha t the measure z> on X VA is of the form (p, x  l ) / { fx  rdp),  And 

we have p, ^7r+1(Gr(n))^ =  1 for all n, which implies p, 7r+1((̂ (n ))) ~

Thus

v ( < (z ,t)  G X rA : n+x G p  G(n), 0  < t < ? * ( a : ) |  j  =  1 .
^  ^ n> i  J  '

But

p ( i { x , t )  G : 7T+ x  G p |  G(n), 0  <  t <  r(x)
'  ^ n > l  ^ '

- : n +x  g n
iS M  '  ^ n > l  '  '

so we have

~  =  1.v :?r+ ^ e  n^)}
v /ciR' >  ̂ y

And so from the definition of BS-dimension for v,

dim,u ( J  (f)t N  p(x, 0) : n+x G p  G(n) I j > dimu v =  dimu AveA(g, 0).
tG R  x v n > l

Now applying Lemma 2.37 gives

dim# (J (f>t N p(:r, 0 ) : ir+x G p  G(n) J- j > dim # AveA(g, 0).
n >  1

But

t£R  K v  n > l  J ? i > l
u^f : ™+x e  n I  - n ( :n + x  ^  ).
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and the right hand side here is just f')7rl>1 T(n), so

U  (j>t (  |  p ( x , 0) : 7T+x- E p |  G ( n )  \  C T,
t e K  ^  ^ n > l  '

and hence

dim// T >  dim// AveA(g, 0 ).

□
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C hapter 3 

D irections in hom ology for 

periodic orbits

In this chapter we consider the periodic orbits of a transitive Anosov flow (f)t : 

M  —► M.  As with any closed curve in M , if we are given a periodic orbit 7  we 

can look at its homology class [7 ] E Hi (M, Z ). Our aim is to describe how the 

periodic orbits of </; are distributed amongst the homology classes.

In particular we want to be able to talk about the ‘directions’ of homology 

classes. For this to make sense we have to regard a homology class as being an 

element of Z b, in the way described in section 1.6. That is, we use the fact that 

H }(M, Z) is isomorphic to IP © Tor, and ignore the torsion component. We allow 

ourselves to write [7 ] to mean the point in IP tha t represents (the torsion-free 

part of) the homology class of 7 , as well as the homology class itself. Of course, to 

make this definition we have to fix a particular choice of the map iA (M , Z) —» lP\ 

to put it another way, we are choosing a basis for the torsion-free part of (M, Z) 

which will correspond to the standard basis of IP.

We assume th a t the Betti number b is strictly positive, otherwise everything 

becomes trivial.

Once we have a point in Zb (or M6) we can define its direction as being the 

projection onto the (Euclidean) unit sphere. The projection map ps : \  {0} —>
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s h~ 1 is defined by ps(v) = , where || • ||2 is the usual Euclidean norm; if [7 ] ^  0

then we can define

where ^ ( 7) is the Dirac measure at 8(7 ). This fails to be a probability measure 

because there may be some periodic orbits with [7] — 0 ; bu t we do know tha t 

#  {7 : l{7 ) < T, [7] 7̂  0} ~  ?r(T) as T  —> 00, so the measure of the whole sphere 

tends to 1 as T  —> 00.

The problem is to determine whether zy has a (weak*) limit as T  —>0 0 , and, 

if so, to describe the limit z^ .

We will show th a t the limit always exists, and the nature of depends on 

the asymptotic cycle for the measure of maximal entropy.

Asymptotic cycles were introduced by Schwartzman in [Sch]. We look at the 

first cohomology group of M , H X(M , R), defined to be the set of smooth closed 1- 

forms on M, modulo the exact 1-forms. Af1(M, R) is the dual space to Hi(M , R), 

and so also has dimension b. Suppose p. is an invariant measure on M\ then 

for any closed 1-form u  we can look at the integral f  cu(X)dp} where X  is the 

tangent vector field for the flow. If u  is an exact 1-form, so th a t uj = df for 

some function / ,  then tu(X) is simply the derivative of /  with respect to the 

flow; since }.i is invariant this implies J  to(X) dp — 0 . So, more generally, we have 

jM i (X )  dp =  f  cl>2 (X ) dp whenever u7  and lo2 belong to the same cohomology 

class. Hence there is a well-defined map <I>M : H X{M, R) —> R given by

This is then called the p-asymptotic cycle (or winding cycle). It can be 

regarded as being an element of 7A(M, R).

(When [7 ] =  0 we will leave 0(7 ) undefined.)

Now for T  > 0 we can define a measure zy on the unit sphere by

k7)<TbJ^o
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It is shown in [Shal] tha t the flow is homologically full (i.e. every homology 

class contains a periodic orbit) if and only if there is some fully supported invariant 

measure /./, for which <&fl is identically zero. The constant h* in Theorem 1.9 is 

then given by sup{/iM(<£) : dy — 0}. In particular, if <ty0 — 0, where p0 is the 

measure of maximal entropy, then the asymptotic in Theorem 1.9 holds with

As mentioned above, this asymptotic cycle dy0 turns out to be particularly 

important for our problem. We write d>0 =  <fy0.

If (j>t is the geodesic flow on the unit tangent bundle of a Riemannian manifold, 

then we always have <h0 =  0 . But for a general Anosov flow it is possible to have

3.1 O btaining hom ology from integration

As described in the introduction, by ignoring torsion and choosing a basis for 

Hi(M . Z), we are thinking of [7 ] as being a point in Z6. We would like to write 

[7 ] as an integral of an R b-valued function around 7 . The following methods are 

described in [BaL] and [Sha2],

Suppose we consider closed 1-forms coi,co2, - •. ,w&, whose cohomology classes 

form a basis for H l (M, 1R). Then for a periodic orbit 7  we can look at the vector

have chosen for H i{M ) Z), the vectors v 7i must span Mb. It follows (by a suitable 

change-of-basis transformation of the Uj) tha t the 1-forms cai,ca2, • • •, <̂b can be 

chosen so th a t we actually have v 7 =  [7 ]. That is,

h* = h.

(Here we are writing ‘ijj to mean ds.) Taken over the basis we

where F* =  0 7 (A).
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Clearly this is closely related to the definition of asymptotic cycles. Indeed, 

for an invariant measure p  we have by definition

, < M M ))  =  ( /  a  d /i,. . . .  y  Fbd P j  ,

and so if we are regarding dy as an element of Hi (A7, R ), then its representation 

as a point in Rb is given by f  F  dp.

There is an alternative approach if we work with the suspended flow &[ : 

X rA —> X A which is the model for the Anosov flow.

We look back at the definition of the coding p : X rA —> M  in terms of Markov 

sections 7}. Because M  is compact, we can find cm > 0 such th a t if we have two 

closed curves 71 and 72 for which d(7 i ( i ) ,7 2(t)) < 6m for all £, then they must 

belong to the same homology class. We want to choose Markov sections which 

are small enough, and close enough, such tha t all the 7} have diameter much 

smaller than  eM , and the distance between 2* and 7} for which Aij — 1 is also 

much smaller than  eM.

For each Tj  (1 <  j  < k) we pick a point Zj E Tj.  Also pick some base point 

z E M. Then for any j  we pick a curve c7- which joins z  to Zj. Similarly, for any 

pair (z, j )  such tha t A ^  — 1 we choose a curve ey- which joins to Zj. Because 

the Markov sections are small, and % and Tj are close if A ^  = 1 , we can make 

sure th a t the curve ĉ - is short (i.e. much smaller than e^/)- We can then define 

a closed curve 7^  which consists of the curve q  from z  to zi} followed by the 

curve a j  from q  to Zj, followed by the reverse of q ,  which takes us back to 2 . 

We can now define the function g : X A —> i7i(M, Z) by taking g(x) to be the 

homology class of 7 ^ ^  (or its representation as a point in Zb), We see tha t if 7  is 

a periodic orbit in M  which corresponds to the periodic orbit {r, a x , . . . ,  an~1x]  

in X A, then gn(x) =  [7 ].

This function g is Holder continuous -  indeed it is locally constant, depending 

only on the first two co-ordinates. We can therefore construct a Holder continuous 

function f  on X rA such th a t T f =  g. Then if 7  is a periodic orbit in M, and x  is
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a point in X A such th a t p(x , 0) € 7 , we have

rKi)
/  f K ’K O  ))d t = [7 ].

Jo

The drawback of this approach is that, as noted in section 1.3, there is not a one- 

to-one correspondence between periodic orbits of (j) and those of the suspended 

flow.

3.2 The case <E>o 0

We make use of a result of Lalley which can be thought of as being a form of the 

weak law of large numbers. It applies to a general hyperbolic flow (fit : A —> A.

T h e o re m  3.1 (L alley  [Lai]) Let f>t : A —» A be a hyperbolic flow, and let F  : 

A —> M be continuous. Then for any e >  0, we have

liin  I ,
T - »  o o  7r(T) #  S 7 : Hi)  <  T,

f  Fj 7

*(7 )
-  F  dpo >  £ /  —  0 .

We can also obtain a version of this theorem for a vector-valued function F  : A 

Md, by applying the theorem to each component of F.

We apply this to the function F  : M  —» defined in the previous section, for 

which [7 ] =  F. The quantity j  F  dpo in Theorem 3.1 is then simply <I>0, the 

asymptotic cycle for the measure of maximal entropy. Thus we have

lim #  7  : 1(7) < T,
lh )

- $ o ><4=0. (3.1)
r->00 7r(T)

(We write | | . | |2 to mean the Euclidean norm on Mb.)

Now suppose $ 0  7  ̂ 0 . Given an open set D  C  5 6 _ 1 , we look the sector 

P g 1 ( D )  C  M6 \  { 0 } .  Since this is itself an open set, it follows from (3.1) th a t if 

§ 0  £ Ps1{D) (or equivalently if ^o/ll^olh £ D) then

1
lim . . 

t—kso 7r(T)
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But Ps([7]/J(7)) = ^ ( [ 7 ]) =  ^(7 ) and so

Tim i # { 7 : 1( 7 ) < T i % ) ^ }  =  L
T —►00 7 T (J  j

Thus we have shown th a t if D is any open neighbourhood of $ o /||$ o ||2 in S'6-1 

we have

lim vt{D) — 1.
T —* 00

So we have proved the following:

T h e o re m  3.2 If&o 7  ̂ 0 then the measures vT have a weak* limit Vqq a s T  —» 0 0 , 

and i/qo ss £/ie Dirac measure at $ o /||$ o ||2-

3.3 T he case $o =  0

3.3.1 A  norm  on hom ology

From now on we will assume th a t <p is C 1+e, which ensures th a t the functions 

uj(X)  are Holder continuous. This is merely a simplifying assumption -  if 0 is 

only C l then we can work instead with the suspended flow : X rA —> X A) where 

by the construction in section 3.1 we know tha t homology is given by integrating 

the Holder continuous function f  around a periodic orbit. But by assuming tha t 

the flow is C 1+e we can analyse the flow itself and not have to start by working 

with the model.

We define — fylfy : jj, E This is a compact convex set in R6, and

we always have $ 0  E intB^ (cf. Theorem 2.19 and the set D(g)). We define a 

function 1) : int 3$ —+ R by

f)(p) =  sup {ĥ (<j>) : =  p} .

Immediately from the definition we can see tha t I)($o) =  h, and if p ^  $ 0 then 

F)(p) < h. Furthermore by making use of the thermodynamic formalism it can
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be shown ([Shal], [BaL]) tha t p is a strictly concave, analytic function (with 

Vt}(<fro) =  0): and th a t H  —V2f)(<I>o) is positive definite.

Now suppose §o = 0 ; we define a norm || • || on (or M6) by

Ibll2 =  (P,Wp>.

We then have

m  = h -± \ \p \ \2 + 0 ( \ \ p f ) .  (3.2)

We will see th a t this norm is, in a sense, the ‘correct’ norm to use on homology 

in our problem.

We can also define a function p : E) —» R by p([w]) =  P(w(A')), where

P  is the pressure as defined in section 1.4. Then Vp maps 1R6 to int B<j> (regarding 

H l (M ,R) and as copies of Wb according to  the bases we have chosen),

and indeed Vp : K6 —» in tB<p is a diffeomorphism ([BaL]). Given p E int B<p, we 

write f(p) =  (Vp)“ l (p).

In fact the functions —ft and p are a Legendre conjugate pair: the map — VI) :

int 13$ —> M6 is the inverse of Vp, and we have

&(p) =  t» (f(p ))-(£ (p ),p ).

3.3 .2  A n  ‘eq u id istr ib u tion ’ result

Given a set A  C Zb, we define

^ r(T ,> 4 )= # { 7 :Z ( 7 ) < T ,[ 7 ] € ^ } .

We also define

rf r-t'l -  lim g A  '■ IMI -  r
IM|( ' ||a || < r } ’

if this limit exists. This quantity <%||(>4) is called the density of A  with respect 

to the norm || • ||. We could define the density for any norm on R b, but the norm 

|| • || from section 3.3.1 is of particular interest. We will prove the following result:
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T h e o re m  3 .3  Suppose <&0 — 0. Then if A  C i f  is a set for which the density

c£||.||(j4) exists, we have
tt(T, A)

In the case of the geodesic flow on surfaces of constant curvature, a result of 

this type was originally suggested by Petridis and Risager ([PR]).

Suppose we take A  to be a set of the form pg1(D) fl Z b, where D  C S'6-1 is an 

open set. Then we have

l { l )  - T ' 0{7) e D }  =  V t ( d ) ■

Furthermore, if U is any bounded open subset of R6, then by a standard integra­

tion result its volume Vol(f/) is given by

Vol(U) =  lim 4- #  {a  e  1 b : a h  6  17} .r—*oo T J
By applying this to the sets p~s 1(D) fl J5||.|| and B||.||, where B \\.jj is the unit ball 

for the norm || • ||, we have

V oK p'/iD ) n S IHI) 
d» {A) =  Vol(BIH1) ■

And so as a consequence of Theorem 3.3 we have the following:

T h e o re m  3.4 I f  § o =  0, then the measures v? have a weak* limit v ^  which is 

fully-supported on S 6-1; indeed for any open set D  C S b~l we have

,-ii

The main ingredient of the proof of Theorem 3.3 is an asymptotic estimate 

for 7r(T, o:(T)), in the case where a(T)  depends linearly on T. In order to state 

this result precisely we need to consider the way tha t H i ( M , l )  is embedded as 

a lattice inside Hi(M ,  R). We choose a fundamental domain T  for H \{M ,lf) .  

Then given p G H f M , R) we can define [pj e  H X(M ,1 )  as the unique element 

of Hi (M, If) for which p — [p] G IF.
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T h e o re m  3 .5  ([B aL ]) Suppose 0 G int 00. Then for p G in t 00,

7r(T, [Tp\) ~  C{p) e^(phTp-lTp\)
ef{p)T
jf+b/2 as T  —> oo,

uniformly for p in any compact subset of int Here C(p) is given by

V̂ [ det V 2f)(p)|
W  (2,r)‘/*p({(p)) '

We also note tha t if <b0 — 0 then the condition of Theorem 1.9 is satisfied and 

the flow is weak-mixing ([Shal]); in particular we know tha t 7r(T) ~  ehT/h T .

We will also need the following consequence of a ‘central limit theorem5 from 

[Lai]:

L em m a 3.6 Suppose <ko =  0 . Then given any e > 0 , we can find A > 0 such 

that

lim sup #  1 7 : lh )  < T, > A > < e.
T-+ 00 7T ( T ) "  \  1 ' “Wy y / f

(This is obtained from the results in [Lai] by considering the functions i%: from 

section 3.1.)

Proof of Theorem 3.3: From Theorem 3.5 we can find 5 > 0 such that

pl+b/2 tt(Tj
lim sup 

T_500 Ml<5 C{p)e^p)Te^p)3'p-YTp\)

By considering p =  a./T  where a  G Lfr(M,Z) we have

T i+V27r(T)

0 .

lim sup 
T^°° IM|<<5T

-  1 =  0 .
G ( a / T ) c ^ / T)T

Now let A be a large positive constant. We have A y/T  < 5T  for all sufficiently

T 1+6/2tt(T, a)
large T, and so

lim sup
T —>00 \a \ \< A V r C ( a / T ) e ^ / TH

-  1 -  0 .

Because C(p) is a continuous function of p it follows th a t

T 1+6/2tt(T, a)
lim sup 

T^°°  IMI<A\/t C( 0 )efK«/T)T
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and we know (7(0) =  o 6(2t t ) bf2h 1, where a b =  |d e tV 2f)(0 )| 1̂ 2, Also from 

(3.2) we have (for small p) f)(p) =  h — ~||p ||2 +  r(p) , where |r(p)| < c||p||3. 

So for Hall <  A y /T  we can write \}(a /T)T  = hT  -  \\a\\2/2 T  +  r { a /T ) T , with 

|'r(o;/T)T| <  cA3T -1/2. Substituting this into (3.3) and maldng use of the fact 

th a t r ( a /T ) T  is bounded we get

flT1+b/2ir(T, a) e-IMI2/2Ter(a/T)T
lim sup

j|Q||< A v /T JiT (2'K)b/2(Jb =  0 .

Now we would like to sum over {cn e  A  : ||ck|| <  A \/T } . We have # { a  : 

|q'|| <  A V T }  =  0 (T6/2), and so

1 f  h,T1+V 2ir (T ,o )  e-M 2/2V<“/T>T\  _
rS t  T b/2 I (2ttWM J ~~

ae^:||a||<A\/T V /

i.e.
( hTirIT,  a)  e - M ? f t T er(a / T ) T \

T U!L A  I e hT (2w\b/2a bJ'b/2 J ~  ° ‘ (3'4)
a £ v 4 :||a ||< A \/T  \  '  /

In order to deal with the second term  we need the following lemma, which we 

will prove later:

L em m a 3.7 (i) Given any e. > 0, there exists A such that

  ------- - e-WaW'i/2T <  e \ /T  > 1
{2-K)b/2abT b/2 ^  7 -

| |a | |> A V r

I f  the set A  has density d||.||(A) with respect to the norm  || • ||, then

1

rbT b/2
a£ A

lim _____  ̂ p-l|a[|2/2T 7 /^ \
tL oo (2Tr)b/2abT b/2 rfIHllA)-

Now since |r(a:/T )T | <  cA3T  1/'2 we have 

e-||a|l2/2r er(a/T)r
lim inf

T —s.™ t — it^ oo A u  (2iv )b/2abT b/2
QeJ4:||o:||<Av/T

> (lim inf e~ ^ L/2)  ( lim inf W\ T-*oo J \ T —*oo (2-rr̂6/2fJ6m 6/2 II (2 7r)6/2fjtT 6/ 2 / '
\  ct€y l:||a j|< A \/T  /
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So, given e > 0, we know from Lemma 3.7 tha t for all sufficiently large A we have

e - |M |2/2 T e r(a/T )T
l i m  i n f  \  -  v ■. ,0 >  d iu iM .)  -  e.

T —>00 ' ( 27T )b/2crbT b/2 ~  1111
a e -4: |M |< A - /r

A n d  s o  f r o m  ( 3 .4 ) ,

E hT% '  a) ^
a e ,4:||a ||<A V 'T  

F u r t h e r m o r e  w e  k n o w  7r ( T )  ~  ehT / h T ,  a n d  s o

l i m  i n f  >  l i m  i n f  — 7t ( T ,  c t) >  d iu |( A )  -  e.T->oo 7r ( T )  T—>00 7r ( T )  V hiiv ;
aGj4:||a||<Av'T

S in c e  e w a s  a r b i t r a r y  t h i s  s h o w s

l i m  i n f  >  dri.11 ( A ) .
t ^ oo tt( T )  ~  iU|V '

S im i la i 'l y ,  w e  h a v e

e - |M |2/2 T r(a/T)T
l i m  s u p  Y  — — - ■ -— t-j—

T—*oo ^  ^  2?r)V2 a bT b/2
a€X :||ar||<A v'T :

<  (lim  sup )  (lim  sup £  ,
\  ae^ :||o :||< A V T  /

a n d  s o  f r o m  L e m m a  3.7  ( n o t  n e e d i n g  p a r t  ( i )  h e r e ) ,

e - | | a ||2/2 Ter(a/T)T

E £ d H i A ) '
ae^iHall^Av'T

f r o m  w h i c h  w e  g e t

lim sup J  £  7r ( T ,a ) < d |H|(,4).
T—*oo 'I U  J _

ae /l: ||a ||< A > /T

Now,

ir(T) 7r(T) E   ̂ ^+  ,r(T) E  7r(r -a )-
a e /l : | |a | |< A \/T  «G yl:||ff||> A \/7 ;
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Given e > 0, from Lemma 3.6 we can find A sufficiently large th a t 

lim sup — V  7T (T ,a )< e .
T —>00 7 T (J  j  _aea:j|a||>A\/T

We then have
7r(T, 71) , /

lim sup — < rf||.||(j4) +  e.
T—+00 7T(i J

Since e was arbitrary this implies

ir(T,A) 
iim sup ■ < d|M|(A).

00 TTf-i J

□

It remains to prove Lemma 3.7. We will deduce this as a special case of the 

following result:

L em m a 3.8 Let || • || be an arbitrary norm on R fc and let f  : R fc —> R be a 

continuous integrable function such that f ( t )  depends only on ||t||. Suppose also 

that | / |  <  F, where F  : R fc —* R+ is an integrable function depending only on 

||t||, such that _F(||t||) is decreasing in ||£||. Then

(i) Given any e >  0, there exists R  > 0 such that

x~k \ f (a /x ) \  < e V x > l .

(ii) I f  A C  has density d||.||(^4) with respect to the norm  || • ||, then

lim x ~kf (a / x) =  dH  (^ ) [  /W  d t‘

Remark: The condition tha t /  is bounded by an integrable function decreasing in 

\\t|| is stronger than  necessary. However, some control is needed 011 the behaviour 

of /  as ||t|| —> 00, as there exist continuous integrable functions /  for which the 

limit in (ii) does not exist.
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Proof: For any a  E Z fc \  {0}, define

/  I 11 ®  112 _  4
a  —  a  ,

] « | | 2

where || • jj2  is the usual Euclidean norm on Mfc. Because any two norms on 

are equivalent, we can find constants c\ and c2 such th a t

Cl\\t\\2 < ||t|| <  C211̂112 

for any t  E By applying this to I — a 1 — a  we see th a t for any a  ^  0,

ll^ll <  IM| — ci/4.

Now let r = c i / 4c 2, and consider r), the open ball centre of and radius

r  in the Euclidean norm. This ball has a volume v which is independent of a , 

and for different values of a  these balls are disjoint. Note also th a t if t E B 2(a', r) 

then ||t — a f\\ <  Ci/4 and so ||t|| <  ||a ||.

Similarly, if x  E [l,oo) then for any t E B 2{af/x ,  r jx )  we have \\t\\ < ||ct/rr||, 

and so F(t) > F (a /x ) .  Hence

/  F(t) dt > vx~kF (a /x )  > vx~k\ f (a /x ) \ .J B2 (ct' /x,r/x)
Summing over ||ce|| >  x R  and using the fact th a t the balls B 2(c//x , r /x )  are 

disjoint, we get

^ 2  x k\ f ( a /x)\ < ~  [  F ( t )d t .
aeS5*:||Q[|>xjR

But F  is integrable, so this last integral can be made as small as desired by 

choosing R  sufficiently large. This completes the proof of part (i).

Now for part (ii): because of (i), it is sufficient to prove

lim Y 2  f ( a / x )  = d \ \ - \ \ ( A )  f  /M
^ a e A l la l l ^ R  J M<R

for large R.
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We may at this point assume th a t /  is strictly positive. (If not, we can write 

/  in terms of its positive and negative parts, /  =  /+  — /_ , and consider /+  +  1 

and /_  +  1 .)

The case A = Z,k is straightforward from the Riemann definition of integration. 

We wish to extend this result to a general set A  for which <%||(A) exists. For a 

large integer n, define the sets

Si := { t e R k : ||t|| <  R n-1 };

{t  € : R(m  — l)n -1  <  ||t|| <  Rrrrn~1} , 2 <  m  < n.

So { t : ||i|| < /?,} is the disjoint union of these sets. We claim th a t for any m,

P  (x Ad — j f  jo ’ E A  . x a £ Sm} , _
m[ ' >- # { a e » : x ~ ' - a e S m} " ll( j

For m  = 1 this is immediate from the definition of the density. For m  > 1, we 

see tha t Pm(x ,A )  is equal to

# { a  £ A :  £ - 1 ||a || <  R m n -1} -  x - 1 ||a || <  R(m  — l)n -1}
#  {ck G Zfc : 11|ct|| <  jRmn-1} — # { a  £ Z k : m—11|cvj| <  R(m  — l)n -1}

By the definition of d||.| we have

#  {a £ A  : rc- 1 ||a || <  R m n-1} _  . .
x - ^ o o  x ,_1||q :|| <  R m n"1} ^

Also

lim x~kj£ {a  £ Z& : m”-1 |[cv|| <  R m n-1 } — Vol {t : ||t|| <  R m n-1 } ,x—*00

which follows from the case A  =  Zfc by letting /  approximate the indicator 

function of {£ : ||t|| <  R m n-1}. Hence, as x  —>• oo, Rm(x, A) converges to

Vol{t : ||t|| <  R m n-1}
<%ll (A) Vol { t : ||i|| <  R m n-1} — Vol { t : ||t|| <  R(m — l)n  1} 

, ( M {  V ol{ t: ||f|| < R ( m - l ) n -1}
d\m A ) Vol{£ : ||£|| <  R m n-1} — Vol{£ : ||t|| <  R(m  — l ) ^ 1} /  ’ 

which is equal to d y (A ) as claimed.
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We now use the fact tha t f ( t )  depends only on \\t\\. Together with the as­

sumption th a t /  is positive and (uniformly) continuous on ||f || <  R, this implies

that for any e > 0 } we can choose n  sufficiently large tha t

sup /( f )  < (1 +  e) inf /(f ) ,
t e S m  teSm

simultaneously for all 1 <  m  < n. And for each such n, we know tha t if x  is

sufficiently large then for all 1 <  m < n,

-  e <  P m { x , A )  <  d||.||(A) +  e.

We then have

y  x~kf ( a / x )  >  x~k inf f i t )
1 t t t o m

q € a : 3 ;  Lot£Sm a€A:x  l ot€Sm

 ̂(rfiin (A) - e) E x~k w
aEZk:x~1a€:S-m

a£Z k:x 1a £ S m

so, by summing over m,

E *“*/(“/») s 'h \(/!} g E *■*/(“/*)■
aej4:||a||<:ci? aeZfc:||a||<o;ii

Taking x  —* oo and using the result for the case A — lL  gives

“  E ~£ J  /(«)*•
A similar argument shows

lim sup y  x~kf ( a / x )  <  (d||.||(A) +  e) (1 4 - e) [  f( t)d t.  
a~°° aeAllall^fl J M$ R

And now taking e —> 0 completes the proof. □

Proof of Lemma 3.7: We apply Lemma 3.8 with f i t )  = ê Ĥ I2/ 2 and x  = y/T, and 

note tha t

f  e - ^ I U t = V A = = , { 2 v y i ' 1ah.
Jm.b \ /  det Lt

□
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