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Abstract

Cytokines are primary mediators of host defence responses to disease and 

infection such as fever and cachexia. Leptin, the product of the ob gene also 

has marked effects on energy balance, to reduce food intake and increase 

energy expenditure. Leptin and its receptor possess several ’cytokine-like’ 

properties. Therefore leptin may also be involved in responses to infection. The 

work described in this thesis investigated the hypothesis that leptin acts as a 

mediator of food intake, body weight and core body temperature in rodents, and 

studied the relationships with proinflammatory cytokines and neuropeptides in 

the brain.

Injection of leptin into the lateral cerebral ventricles (icv) of rats reduced food 

intake, inhibited body weight gain, and increased core body temperature in a 

dose and time-dependent manner, similar to the responses to proinflammatory 

agents such as bacterial lipopolysaccharide (LPS) or the cytokine, interleukin 

(IL)-1 p. The naturally occurring receptor antagonist to IL-1 (IL-1 ra) significantly 

attenuated these effects. Responses to peripheral leptin administration were 

similar to those induced by central injection of leptin and were also inhibited by 

IL-1 ra. Leptin significantly increased levels of immunoreactive (ir) IL-1 (3 and IL-6 

in rat hypothalami. Central injection of leptin failed to influence food intake and 

body weight in mice lacking the IL-1 type I receptor gene. Conversely, IL-6- 

deficient mice displayed increased sensitivity to the effects of leptin on food 

intake and body weight. Immunohistochemistry revealed that icv injection of
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leptin stimulated increased expression of irIL-1 (3 in choroid plexus cells, 

hypothalamic microglia and meningeal macrophages in the brain.

Several actions of IL-1 in the brain are mediated by the release of 

prostaglandins (PGs, which are products of cyclo-oxygenase activity) and 

corticotrophin releasing factor (CRF). Peripheral injection of the cyclo- 

oxygenase inhibitor, flurbiprofen, abolished leptin-induced fever, but failed to 

influence its effects on food intake or body weight. The CRF receptor 

antagonist, D-Phe-CRFi2-4 i, significantly and dose-dependently attenuated 

leptin effects on food intake and body weight, but not body temperature.

The lack of effect of the CRF receptor antagonist on febrile body temperature 

contrasted with published data. Further investigations revealed that the actions 

of CRF on body temperature might be more complex than thought previously. 

Separate studies indicated that injection of CRF induced dose-dependent 

hypothermia, which was inhibited by a CRF receptor antagonist. The response 

to CRF varied by altering housing conditions, method of measuring core body 

temperature and ambient temperature, underlining the importance of 

experimental conditions when investigating the role of CRF in thermoregulation.

The data presented suggest that IL-1 mediates actions of leptin on body 

temperature and food intake. The responses to IL-1 appear to be mediated by 

the activation of two distinct pathways, involving PGs and CRF respectively. 

Thus leptin may act as a neuroimmune mediator which may be involved in 

responses to disease and infection.
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°c degrees Celsius
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Ab antibody
ACTH adrenocorticotrophic hormone
AGRP agouti-related protein
ANOVA analysis of variance
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BDNF brain-derived neurotrophic factor
BM] body mass index
BSA bovine serum albumin
BSU biological services unit
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CNS central nervous system
CNTF ciliary neurotrophic factor
CRF corticotrophin releasing hormone
CRF-BP CRF-binding protein
CRF-R1 or 2 CRF receptor type 1 or 2
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DNA deoxyribose nucleic acid
ECGF endothelial cell growth factor
EGF epidermal growth factor
ELISA enzyme-linked immunosorbent assay
FGF fibroblast growth factor
g gram(s)
G,M,GM-CSF granulocyte, macrophage and granulocyte/macrophage colony 

stimulating factor(s)
GDNF glial-derived neurotrophic factor
GDP guanosine diphosphate
h hours
H20 2 hydrogen peroxide
HCI hydrochloric acid
HMSO Her Majesty’s Stationary Office
HPA axis hypothaiamo-pituitary adrenal axis
ICE interleukin-1 converting enzyme (caspase 1)
icv intracerebroventricular
IFN interferon
IL interleukin
IL-1ra IL-1 receptor antagonist
1L-1 R-AcP IL-1 receptor accessory protein
IL-1RI (-/-) IL-1 type I receptor knockout mice
IL-1 Rl or II IL-1 receptor type 1 or 2
IL-1 Rrp IL-1 receptor-related protein
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IL-6 (-/-) IL-6 knockout mice
ip intraperitoneal
ir immunoreactive
IU international units
IV intravenous
JAK janus kinase
kDa kilodalton(s)
kg kilogram (s)
I litre(s)
LAL test limulus amoebocyte lysate test
LIF leukaemia inhibitory factor
LPS lipopolysaccharide
MANOVA multiple analysis of variance
MC melanocortin
MCP monocyte chemotactic protein
mg milligram(s)
MGSA melanoma growth stimulatory activity
min minute(s)
MIP macrophage inflammatory protein
ml millilitre(s)
mm millimetre(s)
mM millimolar
mRNA messenger RNA
MSH melanocyte stimulating hormone
n number
NaOH sodium hydroxide
NAP neutrophil activating protein
NDS normal donkey serum
ng nanogram(s)
NGF nerve growth factor
nm nanometre(s)
NPY neuropeptide Y
NT neurotrophin
o 2 oxygen
OD optical density
OM oncostatin M
OPD O-phenylenediamine dihydrochloride
P probability
PBS phosphate-buffered saline
PDGF platelet-derived growth factor
PFA paraformaldehyde
pg picogram(s)
PG prostaglandin
pmol picomole(s)
POMC pro-opiomelanocortin
PVN paraventricular nucleus
RANTES regulated upon activation normal expressed and secreted
RNA ribose nucleic acid



s second(s)
sc subcutaneous
SD Sprague-Dawley
SEM standard error of the mean
STAT signal transducer and activator of transcription
TBS tris-buffered saline
TGF transforming growth factor
TNF tumour necrosis factor
UCP uncoupling protein
UK United Kingdom
US United States
VMH ventromedial hypothalamus
vs versus
WHO World Health Organisation



Chapter 1 General IntroductionChapter 1 General Introduction 

Chapter 1 

General 
Introduction 

27 



Chapter 1 General Introduction 28

1.1 O b esity

The concept of an ideal body weight has altered considerably throughout history 

(Beller, 1977). It is likely that our human ancestors conferred greater chances of 

survival on individuals who possessed a large, fatty phenotype, than those that 

exhibited a leaner figure. The underlying basis of this concept is that fat people 

carried around their own natural energy stores to utilise in periods of famine. 

This may explain why primitive societies and cultures may consider obesity an 

indication of good health, fertility (as obese women were able to provide 

adequate nourishment for their offspring) and status. In contrast, the modern 

consensus on obesity is undoubtedly, that the condition that may have been a 

fundamentally successful survival tactic, is now a serious health problem in 

modern civilisation.

Figure 1.1.1.1. Mr Daniel Lambert (1770-1809) aged 38, and weighing 52 

stones.
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1.1.1 Epidemiology of Obesity

The incidence of obesity in the United Kingdom (UK) alone has practically 

doubled between 1986 and 1995, as reported by Her Majesty’s Stationary 

Office (HMSO) of Population Censuses and Surveys (HMSO, 1993; HMSO,

1997). These reports indicate that obesity in men aged 16-64 has risen from 7% 

to 15%, and in women from 12% to 16.5%. Although these surveys report more 

women than men to be obese, the more recent report (HMSO, 1997) states that 

44% of men compared to 33% of women are overweight or obese, based on 

body mass index (BMI >25 kg/m2 signifies overweight, >30 kg/m2 signifies 

obese). These statistics suggest that over 14 million adults in the UK are 

overweight, and a further 6 million are obese.

These figures are not exclusive to the UK. In Europe, more than half of all 

adults aged 35-65 are overweight or obese (Seidell & Flegal, 1997). In the 

United States (US), reports suggest similar statistics (Millar & Stephens, 1987; 

Kuczmarski et al., 1994), that upward of 34 million adults in the US are obese 

(Colditz, 1992). It must be noted that comparisons between countries are 

difficult because of the differing monitoring protocols and statistical techniques. 

Nevertheless, the World Health Organisation (WHO) has concluded that the 

prevalence of obesity is higher in the US than in Europe (WHO, 1997).

1.1.2 Consequences of Obesity

Obesity is a major factor in increasing mortality by associated illness, and has 

significant negative effects on the quality of an individual’s life (Pi-Sunyer, 

1993). In fact the health implications of obesity are so extensive that the number
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of obesity related deaths in the US in 1990 (300 000) were second only to 

mortality linked with smoking (400 000) (McGinnis & Foege, 1993).

The cost of obesity to an economy for direct medical treatment was $39.3 billion 

in 1986 in the US (Colditz, 1992). In approximately 10 years that figure 

increased by 25%, such that in 1995, the same research team (Wolf & Colditz,

1998) reported US expenditure on obesity related health care to be $51.6 

billion. Furthermore, the inclusion of indirect costs to the economy such as lost 

productivity, produced a total figure of $99.2 billion.

1.1.3 Energy Balance and Obesity

Body energy content is determined by the balance between energy intake 

(food) and energy expenditure (basal metabolic rate, physical activity, and 

thermogenesis). There is considerable evidence to suggest that body energy 

content is regulated (e.g. Rothwell & Stock, 1981), and like other homeostatic 

factors such as body temperature, is under the control of the hypothalamus. 

However, unlike body temperature, the limits for the regulation of body weight 

and energy content as a physiological parameter are wide, as determined by 

the limits for survival. Nevertheless, body weight often remains remarkably 

constant over many years, although with increasing time and age, fat may be 

deposited at a constant rate, resulting in the development of obesity.

Acute deviations in body energy content may be corrected by eliciting changes 

in the systems controlling energy intake (satiety) or expenditure (metabolism). 

Therefore, there is still debate as to whether obesity is a result of a dysfunction
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in energy balance, or the increased energy intake and decreased expenditure, 

associated with a sedentary lifestyle.

1.1.4 Genetics of Obesity

Undoubtedly, environmental factors exert a significant effect on the prevalence 

of obesity, and resulting obesity related disorders (Hill & Peters, 1998). 

Nevertheless, other studies have consistently suggested that between 40% and 

70% of obese characteristics such as BMI, skin fold thickness, fat mass, and 

hormone levels are heritable (Comuzzie et al., 1994; Allison et al., 1996; 

Comuzzie et al., 1996). This argument is supported further by studies showing 

that monozygotic and dizygotic twins exhibit a significantly similar BMI, fat 

mass, and fat-free mass (Bouchard et al., 1988; Bouchard et al., 1990; Selby et 

al., 1991). Moreover, studies of adoptees show a clear correlation between the 

BMI of the adult adoptee and those of their biological, rather than their adoptive 

parents (Stunkard et al., 1986a; Stunkard et al., 1986b; Sorensen et al., 1992a; 

Sorensen et al., 1992b). These studies suggest that obesity, or at least a 

predisposition to obesity may be genetically linked.

There are now a considerable number of genes that have been implicated in 

energy balance regulation and the development of obesity (Bouchard & 

Perusse, 1996; Bouchard, 1997; Leibel, 1997a; Leibel et al., 1997b; Chagnon et 

al., 1998). The most likely candidates are listed in the following table (Table

1.1.4.1), and are selected on the basis of animal models, physiology, and 

human studies.
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Gene Product Indication Reference

adrb3 Ad reno receptor |33 Adipocyte
differentiation

{Mitchell et al., 1998)

asip Agouti signalling protein Obesity (Michaud et al., 1997)

cckar Cholecystokinin A 
receptor

Satiety (Huppi et al., 1995)

erf Corticotrophin releasing 
factor

Energy balance (Vale et al., 1981)

mcr3 & 4 Melanocortin receptors 
3 & 4

Feeding behaviour (Magenis et al., 1994; Huszar et 
al., 1997)

npyr5 Neuropeptide Y receptor 
5

Appetite regulation (Nakamura et al., 1997)

ob Leptin Obesity (Zhang et al., 1994)

obr Leptin receptor Obesity (Tartaglia et al., 1995)

pome Pro-opiomelanocortin Obesity (Boston et al., 1997; Mountjoy & 
Wong, 1997)

tnfa Tumour necrosis factor 
a receptor

Obesity (Norman et al., 1995)

tub Tub protein Obesity (Noben-Trauth et al., 1996)

ucp1-3 Uncoupling proteins 1-3 Thermogenesis (Cassard et al., 1990; Fleury et 
al., 1997; Solanes etal., 1997)

Table 1.1.4.1. Candidate genes implicated in obesity

The potential targets for the pharmaceutical and genetic therapy of obesity that 

have created the most interest over the last four years have been the leptin (ob) 

and leptin receptor (obt) genes. Indeed, trials studying their efficacy are already 

ongoing (Campfield et al., 1998). These are based on the assumption that 

genetic and experimental models of obesity in rodents are directly relevant to 

human obesity. This relationship and the background to leptin and its receptor 

are described in the next section.
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1,2 Leptin

Leptin - derived from the Greek word leptos, meaning thin.

1.2.1 History of leptin

The hypothalamus is a primary centre in the brain for homeostatic mechanisms 

including the regulation of energy balance, and is implicated in the 

pathophysiology of obesity (Wilding et al., 1997; Flier & Maratos-Flier, 1998; 

Plata-Salaman, 1998b). This involvement of the hypothalamus in energy 

balance was first proposed following a study where bilateral hypothalamic 

lesioning induced an obese phenotype even though food intake (after an initial 

increase) had returned to basal levels (Hetherington & Ranson, 1942). Further 

studies involving parabiosed rats suggested an interaction of the hypothalamus 

with a blood-borne hormone (Hervey, 1958). This study reported that 

destruction of the ventromedial hypothalamus (VMH) in one rat caused death by 

starvation of its unlesioned parabiosed partner. This effect was hypothesised to 

be a result of high levels of a circulating satiety hormone produced by the 

lesioned rat.

Further parabiosis studies involving obese ob/ob and db/db mice (Figure

1.2.1.1) elucidated that the ob/ob mouse was sensitive to the actions of this 

hormone, but produced a defective form of the circulating factor; whereas the 

db/db mouse produced an active form of the hormone, but was insensitive to its 

action (Coleman, 1973; Coleman, 1978). These gene products have now been 

identified as leptin {ob) and its receptor (obt) (Section 1.2.2).



Chapter 1 General Introduction 34

Normal ob/ob db/db

ob protein 
stimulates 
db protein

Stops
eating

weight

Continues 
to eat

Remains
fat

Figure 1.2.1.1. Schematic representation of ob/ob and db/db mice 

parabiosis experiments (Coleman, 1973) adapted from Campfield et al., 

1996

1.2.2 Leptin Molecule

The ob gene was localised to chromosome 6 in the mouse, as early as 1978 

from studies by Coleman in the ob/ob mouse (Coleman, 1978), which 

expresses an inactive leptin molecule. However, the mouse and human forms 

of the leptin molecule were not identified until 1994 (Zhang et al., 1994). Rat 

leptin was identified a year later (Murakami & Shima, 1995). Zhang and 

colleagues described the leptin molecule as a 167 amino acid protein that is 

synthesised by adipose tissue (Zhang et al., 1994). The N-terminal of the 

protein consists of a 21 amino acid secretary signal sequence that is cleaved 

from the molecule before secretion and release into circulation as a 146 amino
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acid active form with a molecular weight of 16 kDa. Leptin comprises four a- 

helix domains and two p-sheet regions joined by a C-terminai disulphide bond. 

Molecular modelling suggests that the tertiary structure of the leptin molecule is 

globular, and similar to cytokines such as the interleukin family and granulocyte- 

macrophage colony stimulating factor (Madej et al., 1995; Rock et al., 1996; 

Zhang et al., 1997; Kline et al., 1997). Leptin has a high degree of homology 

between species (Table 1.2.2.1), which suggests that the gene is 

phylogenetically old and has been highly conserved. Therefore the function of 

leptin is likely to be of considerable physiological importance.

Species Genetic Homology Reference

Mouse vs Rat 96% (Murakami & Shima, 1995)

Mouse vs Human 84% (Zhang et al., 1994)

Human vs Rat 83% (Ogawa et al., 1995)

Table 1.2.2.1. Leptin cDNA homology between species

1.2.3 Leptin Receptor

The leptin receptor was first identified and cloned by Tartaglia and colleagues in 

1995 (Tartaglia et a!., 1995) and as proposed by Coleman (Coleman, 1973; 

Coleman, 1978), is encoded by the db (obi) locus and is defective in the db/db 

mouse (Chen et al., 1996; Chua et al., 1996). The leptin receptor is also 

defective in the fa/fa Zucker rat, which as a result exhibits an obese phenotype 

(Takaya et al., 1996; lida et al., 1996; Phillips et al., 1996; Chua et al., 1996;
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Yamashita et al., 1997). The amino acid sequence of the human leptin receptor 

extracellular domain has 78% homology, and the intracellular domain has 71% 

homology to the mouse leptin receptor (Tartaglia et al., 1995; Chen et al.,

1996). Furthermore, the rat leptin receptor has 91% and 76% homology to the 

mouse and human leptin receptors, respectively. The obr gene has been 

reported to encode for at least six alternatively spliced forms - five short forms 

(OB-Ra,c,d,e, and f) and one long form (OB-Rb) (Tartaglia et al., 1995; Lee et 

al., 1996; Wang et al., 1996; Tartaglia, 1997). OB-Rb is a single 

transmembrane-spanning protein with a cytosolic C-terminal tail (Tartaglia et al.,

1995). The short a,c,d and f forms of the receptor possess small C-terminal tails 

which are likely to anchor these receptors to the cell membrane. However, the 

OB-Re terminates prior to the transmembrane domains, and so is suggested to 

function as a soluble leptin receptor (Takaya et al., 1996; Liu et al., 1997; 

Tartaglia, 1997). It is therefore hypothesised that the different leptin receptors 

have separate roles in leptin physiology (Table 1.2.3.1).

Leptin Receptor Isoform Membrane Bound Proposed Function

OB-Ra,c,d,f Transmembrane transport
Inactivate free leptin

OB-Rb Full signal transduction

OB-Re #  Soluble inactivator of
circulating leptin

Table 1.2.3.1. Proposed physiology of leptin receptor isoforms
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The structure of the leptin molecule has been compared to cytokines (Made] et 

al., 1995; Rock et al., 1996; Zhang et al., 1997; Kline et al., 1997). Interestingly, 

the leptin receptor has a similar relationship, in that the OB-R molecule has 

been categorised as a class I cytokine receptor (Tartaglia et al., 1995; White & 

Tartaglia, 1996; Tartaglia, 1997) and shares a high degree of homology with 

gp130, the signal transducing component of the IL-6 receptor (Nakashima et al., 

1997b). The leptin receptor (OB-Rb) activates signal transducers and activators 

of transcription, STATs 3,5 and 6 (Baumann et al., 1996; Ghilardi et al., 1996; 

Vaisse et al., 1996), also known as ’fat-stats’ (Darnell, 1996), by janus kinase 

(JAK)-mediated tyrosine phosphorylation (Ghilardi & Skoda, 1997) and shares 

overlapping (but distinct) signal transduction mechanisms with gp130 

(Nakashima et al., 1997a; Nakashima et al., 1997b).

Leptin receptors are distributed widely throughout the central nervous system 

(CNS), indicating diverse actions of leptin. Studies have reported OB-Rb 

mRNA, im mu no reactive OB-R protein, and high affinity leptin binding sites in 

the thalamus, choroid plexus, meninges and hypothalamus and surrounding 

blood vessels (Couce et al., 1997; Golden et al., 1997; Yarnell et al., 1998; Corp 

et al., 1998; Elmquist et al., 1998; Bjorbaek et al., 1998). The fact that leptin 

receptors are highly expressed in the hypothalamus (Tartaglia et al., 1995; 

Schwartz et al., 1996b; Mercer et al., 1996b; Hakansson et al., 1998; Yarnell et 

al., 1998; Elmquist et al., 1998) and that expression is increased in response to 

fasting (Baskin et al., 1998), further links actions of leptin to energy balance 

regulation.
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1.2.4 Biology of Leptin

Leptin exists in the circulation freely, or bound to serum proteins (Houseknecht 

et al., 1996; Birkenmeier et al., 1998) or soluble leptin receptors (Liu et al., 

1997). These binding properties are likely to increase the half-life of leptin in 

circulation, and regulate the bioavailability of the molecule. Leptin has an 

estimated half-life in circulation of 24.9+4.4 min, which is independent of 

adiposity (Klein et al., 1996). Serum levels of leptin in normal, healthy, lean 

humans have been reported to be 7.5±9.3 ng/ml, whereas obese subjects 

exhibited levels of 31.3+24.1 ng/ml (Considine et al., 1996). In this study, levels 

of leptin were highly correlated to percentage body fat. Other studies have also 

described similar serum levels of leptin (lean, 5.6+1.3 ng/ml; obese, 43.0+9.4 

ng/ml) (Hosoda et al., 1996) and shown a correlation with fat mass and BMI 

(Maffei et al., 1995; Rosenbaum et al., 1996). Similar relationships have also 

been established in lean and obese rodents (Maffei et al., 1995). Furthermore, 

subjects suffering from anorexia nervosa exhibit significantly lower leptin 

concentrations than normal individuals (Eckert et al., 1998), although these 

levels are correlated to the BMI rather than the specific disorder (Ferron et al.,

1997). Serum leptin levels are thought to be related to gender, independently of 

fat mass or BMI, such that females exhibit higher concentrations of leptin per 

mass of fat than males in both rodents (Frederich et al., 1995) and humans 

(Hickey et al., 1996; Rosenbaum et al., 1996).

Differences in leptin levels may also be seen when measured at different times 

during the circadian cycle. Rats exhibit diurnal variation in ob gene expression, 

increasing during the dark phase, after rats start eating (Saladin et al., 1995).
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Diurnal rhythms are also seen in humans, such that leptin levels peak during 

night-time sleep, and then decrease to reach a nadir in the late afternoon 

(Simon et al., 1998). These variations are associated with changes in body 

temperature, plasma glucose and insulin (Simon et al., 1998), and are inversely 

related to levels of adrenocorticotrophic hormone (ACTH) and cortisol (Licinio et 

al., 1997). Furthermore, leptin levels are pulsatile, with 32.0+1.5 pulses per day, 

and each pulse having a duration of 32.8+1.6 min (Licinio et al., 1997). Serum 

concentrations of leptin in humans are also directly controlled by energy intake 

as shown by studies in which leptin levels were progressively increased in 

response to feeding, and decreased by fasting (Dallongeville et al., 1998). 

Furthermore, leptin concentrations are altered during lactation such that the 

hyperphagia exhibited does not elicit increases in leptin levels (Pickavance et 

al., 1998), and so hyperphagia persists.

Serum leptin can enter the brain by crossing the blood brain barrier via a 

saturable transport system (Banks et al., 1996; Caro et al., 1996; Girard, 1997; 

Golden et al., 1997; Bjorbaek et al., 1998). Autoradiography has detected 

radiolabelled leptin uptake in the choroid plexus, arcuate nucleus of the 

hypothalamus, and median eminence (Banks et al., 1996). The transport of 

leptin into the brain is believed to be mediated via short forms of the leptin 

receptor that are expressed in brain microvessels of the choroid plexus, 

meninges, hypothalamus and cerebellum (Bjorbaek et al., 1998). This transport 

mechanism acts by endocytosis of the leptin molecule, and is a saturable, 

specific, and temperature-dependent system (Golden et al., 1997). In obese 

individuals, who exhibit high leptin levels in proportion to body fat (Considine et
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al., 1996; Hosoda et al., 1996; Rosenbaum et al., 1996), the capacity for leptin 

transport into the brain appears to be lower than in lean individuals (Caro et al.,

1996). This down regulation of leptin transport into the brain may provide a 

mechanism for leptin resistance in obesity. Alternatively, the reduced transport 

efficiency may result from a deficiency in the leptin receptor as exhibited by fa/fa 

rats and db/db mice, and may also be linked to the pathology of obesity.

1.2.5 Actions of Leptin

There is extensive evidence to suggest that leptin is a hormonal link between 

peripheral fat mass and the CNS (Campfield et al., 1996; Campfield et al., 1996; 

Misra & Garg, 1996; Campfield, 1997; Considine & Caro, 1997; Auwerx & 

Staels, 1998; Friedman, 1998). These studies propose that leptin enters the 

brain from circulation and acts primarily in the hypothalamus to regulate energy 

balance. The evidence supporting this hypothesis is convincing. Leptin is 

synthesised and released into circulation by adipose tissue in proportion to body 

fat mass (Frederich et al., 1995; Considine et al., 1996; Hosoda et al., 1996; 

Rosenbaum et al., 1996). Leptin does appear to act peripherally, since leptin 

receptors are expressed in peripheral tissues (Tartaglia et al., 1995; Chen et al., 

1996; Lee et al., 1996), and leptin has been shown to induce significant 

biological responses in tissue cultures of adipocytes (Bai et al., 1996; Muller et 

al., 1997), haemopoetic cells (Gainsford et al., 1996; Ghilardi & Skoda, 1997), 

pancreatic cells (Shimabukuro et al., 1997), and hepatocytes (Cohen et al.,

1996). However, leptin is also suggested to enter the brain (Banks et al., 1996), 

which is probably its primary site of action on food intake and energy 

expenditure (Jacob et a/., 1997; Campfield et al., 1995; Seeley et al., 1996;
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Halaas et al., 1997) . Lesions of the hypothalamus induce obesity (Hetherington 

& Ranson, 1942; Hervey, 1958; Bray et al., 1982) and increase adipocyte ob 

gene expression (Funahashi et al., 1995). Furthermore the leptin receptor is 

expressed primarily in the hypothalamus (Tartaglia et al., 1995; Schwartz et al., 

1996b; Couce et al., 1997; Elmquist et al., 1998) -  an area that is activated in 

ob/ob mice in response to peripheral injection of leptin (Woods & Stock, 1996).

Most of the physiological effects of leptin have been identified from observed 

responses to injection of leptin in rodents. Studies published by different 

research groups shortly after the identification of leptin described how food 

intake and body weight are reduced in normal rodents or ob/ob mice, in 

response to administration of leptin intravenously (iv), intraperitoneally (ip), or 

into the cerebral ventricles (icv) (Campfield et al., 1995; Halaas et al., 1995; 

Pelleymounter et al., 1995; Campfield et al., 1996). Similar responses are also 

reported in response to injection of a recombinant adeno-associated virus 

vector encoding mouse leptin in ob/ob mice (Murphy et al., 1997). Furthermore, 

effects of endogenous leptin are inhibited by injection of antibodies raised 

against leptin (Brunner et al., 1997) or inactive leptin mutant forms (antagonists) 

(Verploegen et al., 1997). The specificity of these leptin-induced effects on food 

intake and body weight is verified by their absence in db/db mice and fa/fa rats 

(Campfield et al., 1995; Halaas et al., 1995; Seeley et al., 1996) that possess 

defective leptin receptors and so are insensitive to leptin. The weight loss 

induced by leptin is specific to the depletion of adipose tissue (Halaas et al., 

1995), which appears to be mediated by apoptotic mechanisms (Qian et al.,

1998). This is qualitatively distinct from the responses induced by food
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restriction, which include loss of both fat and lean body mass (Halaas et al., 

1995).

Leptin also increases resting energy expenditure. Injection of leptin normalises 

core body temperature (Pelleymounter et al., 1995; Harris et al., 1997; Harris et 

al., 1998) and increases oxygen consumption (Hwa et al., 1996; Hwa et al., 

1997) in ob/ob mice, which exhibit reduced basal temperatures. However, there 

is no convincing evidence that leptin increases core body temperature above 

normal values in normal animals.

Brown adipose tissue (BAT) is involved in the regulation of non-shivering 

thermogenesis and core body temperature in small mammals (Himms-Hagen, 

1984). BAT is also important in the regulation of energy balance as a mediator 

of diet-induced thermogenesis in rodents (Rothwell & Stock, 1979; Rothwell & 

Stock, 1997). Ablation of BAT in mice results in weight-specific reduction in 

metabolic rate such that core body temperature in these mice is approximately 

0.9°C below control temperatures (Klaus et al., 1998). The very high rates of 

heat production in BAT have been ascribed to uncoupling of oxidative 

phosphorylation via a proton conductance pathway (Rial & Nicholls, 1987). 

Exposure of rodents to cold, over feeding or administration of leptin all stimulate 

activity of this pathway, and induce synthesis of uncoupling proteins (UCPs) in 

BAT via the sympathetic nervous system (Cusin et al., 1998; Kotz et al., 1998).

Obesity is linked with infertility and delayed sexual development (Norman & 

Clark, 1998). Leptin is also involved in reproductive mechanisms, as 

demonstrated by studies that have reported how the sterility exhibited by ob/ob



Chapter 1 General Introduction 43

mice is reversed by leptin administration (Mounzih et al., 1997), and that leptin 

accelerates the onset of puberty in normal mice (Ahima et al., 1997).

1.2.6 Mediators of Leptin Actions

The mechanisms by which leptin induces physiological responses are largely 

unknown, although several candidate mediators involved in the regulation of 

energy balance have been suggested (Flier & Maratos-Flier, 1998; Sahu, 1998).

Among other effects, neuropeptide Y (NPY) is potent in stimulating appetite, 

reducing energy expenditure, and has been implicated in the pathology of 

obesity (Wettstein et al., 1995; Tomaszuk et al., 1996). There is also evidence, 

linking NPY with actions of leptin. NPY mRNA expression is reduced by 42% in 

the arcuate nucleus of the hypothalamus of ob/ob mice (that exhibit high 

baseline levels), and by 24% in normal rats in response to injection of leptin 

(Schwartz et al., 1996a; Schwartz et al., 1996b). Furthermore hypothalamic 

NPY secretion is reduced by leptin (Lee & Morris, 1998). Within the arcuate 

nucleus, NPY-containing neurones co-express leptin receptors in normal 

(Hakansson et al., 1996; Mercer et al., 1996a; Hakansson et al., 1998) and 

ob/ob mice (Mercer et al., 1997). Moreover, the obese phenotype exhibited by 

ob/ob mice is reduced by deletion of the NPY gene (Erickson et al., 1996b). 

However, NPY is not the sole mediator of energy balance or of leptin actions, 

since NPY-knockout mice display normal food intake and body weight, and 

respond normally by reducing food intake in response to leptin administration 

(Erickson et al., 1996a). NPY is closely and inversely linked with the 

neuropeptide corticotrophin releasing factor (CRF) (Heinrichs et al., 1992;
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Heinrichs et al., 1993; Mercer et al., 1996c; Wilding et al., 1997), which has also 

been implicated in mediating actions of leptin.

CRF is most noted for its involvement in stress responses and activation of the 

pituitary-adrenal axis (Dunn & Berridge, 1990; Lehnert et al., 1998). However, 

CRF is also involved in regulating food intake and energy expenditure (Krahn et 

al., 1986; Arase et al., 1988; Rothwell, 1990b), and is linked to actions of leptin. 

Leptin has been reported to increase CRF mRNA expression in the 

paraventricular nucleus (PVN) of the rat hypothalamus (Schwartz et al., 1996b). 

Interaction in the brain between leptin and CRF is further supported by findings 

that leptin receptors are localised to CRF-containing neurones in the 

parvocellular region of the PVN (Hakansson et al., 1998). Furthermore, leptin 

elicits stimulation and release of CRF from superfused brain slice preparations 

containing hypothalamus or amygdala (Raber et ai., 1997; Costa et al., 1997).

However, the link between leptin and CRF appears to be more complicated in 

obese conditions, since in ob/ob mice, the hypothatamo-pituitary-adrenal (HPA) 

axis is activated and levels of adrenal steroids are elevated (Heiman et al.,

1997). Paradoxically, this study reports that in ob/ob mice, leptin infusion 

reduces CRF release. Furthermore, leptin prevents the induction of CRF 

synthesis in the PVN of food-deprived ob/ob mice, and hinders the elevation of 

arcuate nucleus NPY synthesis (Huang et al., 1998). Together these results 

suggest an inverted role for leptin in the excessive response of the CRF system 

of the ob/ob mouse.

Additional proteins that have been suggested to mediate leptin effects are pro­

opiomelanocortin (POMC) and its cleavage product a-melanocyte stimulating
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hormone (a-MSH). Leptin receptors are expressed on POMC-containing 

neurones in the hypothalamus (Cheung et al., 1997). The reduced levels of 

POMC mRNA exhibited in the hypothalamus of leptin-deficient ob/ob mice are 

normalised by leptin administration (Schwartz et al., 1997; Thornton et al.,

1997). However, this effect is not induced in leptin receptor deficient db/db mice 

(Schwartz et al., 1997). These findings suggest that leptin stimulates 

hypothalamic POMC gene expression via a pathway involving leptin receptors. 

The lethal yellow, agouti (AY/a) mouse has a defect in POMC-a-MSH signalling 

in the brain that leads to leptin insensitivity and obesity (Michaud et al., 1997). 

These mice express agouti-related protein (AGRP) in the brain, a peptide which 

antagonises the effects of a-MSH at the melanocortin (MC) 1,3 and 4 receptors 

(Ollmann et al., 1997; Ollmann et al., 1998), the latter of which appears to be 

particularly important in the pathology of obesity (Huszar et al., 1997; Fan et al.,

1997). However, AY/a-ob/ob mice that express AGRP and are leptin-deficient 

exhibit independent and additive obese phenotype (Boston et al., 1997), 

suggesting that in POMC and leptin pathways may be separate. This proposal 

is strengthened by the observation that starvation results in increased levels of 

POMC in both ob/ob and db/db mice (Boston et al., 1997; Mizuno et al., 1998).

Leptin may of course stimulate food intake and energy expenditure directly, or 

may act via as yet undetermined mediators such as the product of the TUB 

gene (Kleyn et al., 1996). Alternatively, other molecules known to be involved in 

regulating energy balance such as cytokines, may mediate actions of leptin. 

Potential pathways mediating leptin actions are depicted below (Figure 1.2.6.1).



Chapter 1 General Introduction 46

CNS

C
O

NPYi

^ CRF'
£>
i >
i >

POMC I=£> a-MSH = £ >  

= >

SD> Soluble
Receptor

Serum
Protein

Free

Periphery

T U B t =  

Cytokines i
9 '? 9 9 9 9 ? 9

=£>

Adipose
Tissue

Hypothalamic
Output

• Food intake
• Metabolism
• Sympathetic NS
• Energy 

Expenditure
• Reproduction

Negative
Feedback

Figure 1.2.6.1. Expression and actions of leptin

1.2.7 Is Leptin a Cytokine?

Leptin and its receptor have similar structural properties to cytokines (Tartaglia 

et al., 1995; Madej et al., 1995; Rock et al., 1996; Zhang et al., 1997; Kline et 

al., 1997) as described earlier (Section 1.2.2-1.2.3), to the extent that they are 

now being categorised in this family of molecules (White & Tartaglia, 1996; 

Tartaglia, 1997). Furthermore, effects of leptin on energy balance by reducing 

food intake and body weight, and increasing energy expenditure, are similar 

actions to the neuroimmune responses reported to be mediated by cytokines 

(Rothwell & Hopkins, 1995; Rothwell et al., 1996). Therefore leptin and
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cytokines may be intimately related in mediating cachectic responses to disease 

and infection.

1.3 C y to k in e s

Cytokines are a heterogeneous family of endogenous, hydrophilic 8-40 kDa 

proteins that are produced in response to a variety of physiological and 

pathophysiological stimuli (Hopkins & Rothwell, 1995; Liles & Van Voorhis, 

1995). They have many diverse effects, and generally are considered to 

influence target cell growth, differentiation, survival and also death (Sachs & 

Lotem, 1994). Cytokines could be classed as hormones if it were not for the 

distinction that hormones are by convention released from specific endocrine 

glands, whereas cytokines are produced by practically every cell type within the 

body and are particularly associated with the motile cells of the immune system 

(Hopkins & Rothwell, 1995). The pluripotency of the cytokines has resulted in 

their classification into a number of different subgroups, although further 

categorisation has been suggested on the basis of structure, expression, 

receptors, and nomenclatures applied during the disjointed discovery of the 

different molecules (Rothwell & Hopkins, 1995; Hopkins & Rothwell, 1995). The 

major cytokine families are listed in the following table (Table 1.2.7.1).
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Family Members Activities References

Chemokines IL-8/NAP-1 and 2, 
MlP-1a and p, MCP- 
1, MGSA, RANTES

Leukocyte chemotaxis & 
cellular activation

(Miller & Krangel, 
1992)

Colony Stimulating 
Factors

IL-3, G,M and GM- 
CSF, other ILs

Colony cell formation in the 
bone marrow and 
leukocyte activation

(Cannistra & Griffin, 
1988)

Growth Factors EGF, FGF, PDGF, 
TGF-oc and p, ECGF

Cell growth and 
differentiation

(Bennett & Schultz, 
1993; Letterio & 
Roberts, 1998)

Interferons IFN-a,p and y Inhibition of intracellular 
viral replication and 
regulation of cell growth

(Baron & Dianzani, 
1994)

Interleukins IL-1 a,p and ra, 
IL-2-18

Multiple immunoregulatory 
activities

(Mizel, 1989; Kelso, 
1998)

Neuropoietins LIF, CNTF, OM, IL-6 Act in CNS via receptor- 
related complex

(Murphy et al., 
1997)

Neurotrophins BDNF, NGF, NT-3-6, 
GDNF

Neuronal growth and 
differentiation

(Ebadi et al., 1997)

Tumour Necrosis 
Factors

TNF-a and p Similar to IL-1 plus tumour 
cytotoxicity

(Gruss & Dower, 
1995)

Abbreviations: brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), 
endothelial cell growth factor (ECGF), epidermal growth factor (EGF), fibroblast growth factor 
(FGF), glial-derived neurotrophic factor (GDNF), granulocyte, macrophage and 
granulocyte/macrophage colony stimulating factor(s) (G,M and GM-CSF), interferon (IFN), 
interleukin (IL), leukaemia inhibitory factor (LIF), monocyte chemotactic protein (MCP), 
melanoma growth stimulatory activity (MGSA), macrophage inflammatory protein (MIP), 
neutrophil activating protein (NAP), nerve growth factor (NGF), neurotrophin (NT), oncostatin M 
(OM), platelet-derived growth factor (PDGF), regulated upon activation normal expressed and 
secreted (RANTES), transforming growth factor (TGF), tumour necrosis factor (TNF).

Table 1.2.7.1. Cytokine families (adapted from Hopkins & Rothwell, 1995)

Many cytokines share biological actions and are also capable of affecting the 

release and receptor expression of other cytokines, a scenario known as the 

cytokine network (Kelso, 1998). This cytokine network is essential when normal 

homeostasis is threatened by tissue damage or infection (Rothwell & Hopkins, 

1995; Hopkins & Rothwell, 1995; Dinarello, 1996; Kelso, 1998). Cytokines were
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initially considered to be associated specifically with the peripheral immune 

system. Further studies have now demonstrated diverse sources and actions of 

cytokines as mediators of host defence responses in a variety of organs 

including the brain (Rothwell, 1991a; Rothwell, 1991b; Luheshi & Rothwell, 

1996b). It is in the brain that cytokines have a primary effect as neuroimmune 

mediators of host defence responses, and elicit fever, sickness behaviour, 

reduced food intake, increased energy expenditure and cachexia (Rothwell, 

1990a; Rothwell, 1990c; Rothwell & Hopkins, 1995; Hopkins & Rothwell, 1995; 

Rothwell, 1997).

1.3.1 Cytokines in Cachexia

Cachexia, or wasting (literally - ’bad condition5) is the most visible response to 

chronic diseases such as cancer, and parasitic or viral infections. It is 

characterised by loss of appetite (anorexia), weight loss, muscle wasting, 

haematological abnormalities (e.g. anaemia) and dysfunction in protein, lipid 

and carbohydrate metabolism (Balducci & Hardy, 1987; Langstein & Norton, 

1991; Tisdale, 1997b). Cachexia arises because energy expenditure exceeds 

energy intake, and where body protein (lean tissue) as well as fat stores are 

utilised. However, such is the complexity of the condition that cachexia cannot 

be treated by increasing energy intake alone (Moldawer & Copeland, 1997; 

Tisdale, 1997a). Treatment therefore has focused on several candidate 

mediators of cachexia including cytokines such as 1L-1, IL-6, TNF and IFN-y 

(Moldawer et al., 1992; Matthys & Billiau, 1997; Tisdale, 1997a; Tisdale, 

1997b). These cytokines have been reported extensively to induce cachectic 

responses in experimental animals (Hellerstein et al., 1989; Darling et al., 1990;
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Plata-Salaman et al., 1996; Plata-Salaman, 1998a). Cytokine expression 

(particularly circulating IL-6) is upregulated in disease and infection (Gelin et al., 

1988; Murray et al., 1997; Arsenijevic et al., 1997). Furthermore, studies have 

reported inhibition of tumour-induced cachexia by blocking actions of a number 

of cytokines (Rambaldi et al., 1991; Strassmann et al., 1993).

In addition to its role in cachexia, and as suggested earlier (Table 1.1.4.1), 

TNFa has been implicated in the pathology of obesity (Argiles et al., 1997). 

However, probably the most extensively investigated cytokine (with nearly 23 

500 Medline hits) that is highly involved in anorexia (Plata-Salaman et al., 1996; 

Plata-Salaman, 1998a) and cachexia (Laviano et al., 1995) is IL-1 (Dinarello, 

1997a).

1.4 IL-1

IL-1 was originally described as a heat-labile protein found in acute granulocytic 

exudate that induces fever when injected in animals or humans (Atkins, 1960). 

It was initially called endogenous pyrogen, until it was redefined as interleukin-1 

in 1979 (Aarden et al., 1979). IL-1 was first cloned in 1984 from human blood 

monocytes (Auron et al., 1984) and a P388D mouse macrophage cell line 

(Lomedico et al., 1984). The proteins identified in each of these studies were 

structurally different and were termed lL-1a and 1L-1JL A third isoform that 

possessed antagonist properties was later identified from the urine of patients 

with monocytic leukaemia, and was termed IL-1 receptor antagonist (IL-1 ra) 

(Seckinger et al., 1987; Mazzei et al., 1990). These three different isoforms are
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expressed from separate genes, apparently as a result of evolutionary gene 

duplication and modification (Dinarello, 1994; Alheim & Bartfai, 1998). All 

isoforms recognise the same receptors on target cells where IL-1 a and IL-1 (3 

act as agonists, but IL-1 ra fails to elicit signal transduction (Dripps et al., 1991; 

O’Neill, 1997) and functions as the only known naturally occurring pure 

antagonist (Dinarello, 1991).

Although IL-1 a and p only share a 25-27% homology, they possess similar 

biological activities (Dinarello, 1997a). However, these actions may not 

represent the true nature and functions of the endogenous molecules, since IL- 

1(3 is generally regarded as the primary secreted form, whereas IL-1 a is 

proposed to regulate intracellular mechanisms (Dinarello, 1996). Both forms of 

IL-1 are synthesised as 31 kDa precursor molecules (pro-IL-1) before cleavage 

into the 17 kDa mature forms. Pro-lL-1a is fully active (Mosley et al., 1987), 

although pro-IL-1 (3 requires enzymatic cleavage by interleukin-1 p-converting 

enzyme (ICE) to achieve its active form (Black et al., 1988).

There are two known immunoglobulin-like interleukin-1 receptors, the 

interleukin-1 type 1 receptor (IL-1 Rl) and the interleukin-1 type 2 receptor (IL- 

1RII) (Sims et al., 1988). An IL-1 receptor accessory protein (IL-1R-AcP) 

(Greenfeder et al., 1995), and two IL-1 receptor-related proteins (Lovenberg et 

al., 1996; Parnet et al., 1996) have been identified, which facilitate ligand 

binding and signal transduction. IL-1 Rl is an 80 kDa membrane-bound 

glycoprotein that is widely distributed in the brain and periphery (Shirakawa et 

al., 1987; Deyerle et al., 1992; Yabuuchi et al., 1994). It is this form of the IL-1 

receptor that is considered to be the primary receptor involved in signal
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transduction (Sims et al., 1993; Cremona et al., 1998a). However, the 

mechanisms by which IL-1 receptors amplify and transduce a signal to activate 

cytosolic effectors remains unclear, although several pathways have been 

proposed (O'Neill, 1997; O'Neill & Greene, 1998). The IL-1RII form appears to 

act as a 'decoy' molecule, since although it binds IL-1 with high affinity, it does 

not transduce a signal (Colotta et al., 1993; Sims et al., 1993). IL-RII blockade 

potentiates IL-1-induced anorexia (Cremona et al., 1998b), indicating that free 

IL-1 levels are regulated by this receptor.

Extracellular Intracellular

\
Activation of
Intracellular
Mechanisms

Plasma
Membrane

Figure 1.3.1.1. Schematic diagram of the IL-1 pathway
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1.4.1 IL-1 and Food Intake

IL-1 mediates various host defence responses to disease and infection 

(Dinarello, 1996) and has a marked inhibitory influence on food intake and body 

weight. IL-1, IL-1 ra and IL-1 Rl mRNAs are upregulated in the brain in response 

to systemic administration of the proinflammatory agent bacterial 

lipopolysaccharide (LPS) (Ilyin et al., 1998). This upregulation is most apparent 

in the hypothalamus - a region of the brain highly involved in regulating food 

intake and energy balance (Rothwell, 1992; Plata-Salaman, 1998b). IL-1 

induces anorexia and weight loss when injected peripherally or centrally in 

experimental animals (McCarthy et al., 1986; Hellerstein et al., 1989; Kent et al., 

1994; McCarthy et al., 1995; Sonti et al., 1996b) at pathophysiological doses 

(Plata-Salaman et al., 1996; Sonti et al., 1996a; Finck & Johnson, 1997), by 

reducing meal size, frequency and duration (Plata-Salaman, 1994). These 

studies demonstrate that central doses of IL-1 required to elicit such responses 

are considerably less than peripheral doses, indicating that IL-1 is likely to act 

primarily in the CNS in affecting appetite. Furthermore, inhibition of these 

responses by IL-1 ra indicates that the effects are specific to IL-1 receptor 

activation (Plata-Salaman & Ffrench-Mullen, 1992; Plata-Salaman, 1994; Sonti 

et al., 1996a). The involvement of IL-1 in anorexic responses to disease 

appears to be acute, since animals become tolerant to chronic IL-1 infusion 

(Mrosovsky et al., 1989), probably as a result of receptor down-regulation.

Effects of IL-1 on food intake are proposed to be mediated largely by inhibition 

of NPY, which is a potent appetite stimulator (Wettstein et al., 1995; Tomaszuk 

et al., 1996). Central administration of IL-1 in rats upregulates brain expression
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of the IL-1 system components and reduces hypothalamic NPY expression 

(Gayle et al., 1997). IL-1 antagonises NPY-induced feeding in rats, and 

conversely, NPY inhibits IL-1p-induced anorexia (Sonti et al., 1996b). NPY is 

closely and inversely related to brain CRF (Wilding et al., 1997), which is also 

proposed to mediate IL-1 actions (De Souza, 1993).

CRF induces anorexia in experimental animals (Gosnell et al., 1983; Levine et 

al., 1983; Negri et al., 1985; Krahn et al., 1986; Arase et al., 1988) and is 

positively related to IL-1. Injection of IL-1 induces activation (by increased c-fos 

expression) of CRF-containing neurones and CRF release in the hypothalamus 

(Barbanel et al., 1990; Veening et al., 1993). Hypothalamic CRF mRNA 

expression is increased in response to LPS administration is blocked by IL-1 ra 

(Kakucska et al., 1993). IL-1-induced hypophagia is blocked by CRF 

immunoneutralisation (Uehara et al., 1989b). These studies suggest a link 

between IL-1 and CRF in hypophagia.

IL-1 hypophagia also appears to be mediated by prostaglandins (PGs), which 

are activated by cyclo-oxygenase enzymes (Kaufmann et al., 1997). PGs 

suppress food intake in experimental animals (Doggett & Jawaharlal, 1977), 

and inhibition of cyclo-oxygenase activity blocks hypophagia induced by IL-1 

(Hellerstein et al., 1989; Uehara et al., 1989a; McCarthy et al., 1995). This 

supports the proposal that PGs are involved in IL-1 suppression of appetite. 

However, in addition to effects on food intake, these molecules (IL-1, CRF and 

PGs) are associated with thermogenic and febrile responses to disease and 

infection (Rothwell & Cooper, 1992; Kluger et al., 1995; Luheshi & Rothwell, 

1996b; Dinarello & Bunn, 1997b; Blatteis & Sehic, 1998; Milton, 1998).



Chapter 1 General Introduction 55

1.4.2 IL-1 as an Endogenous Pyrogen

IL-1 was initially thought to be the major circulating endogenous pyrogen and 

was named such (Section 1.4), although subsequent studies have shown that it 

is a much more potent pyrogen when injected centrally (Dascombe et al., 1989; 

Rothwell, 1990c). Furthermore, injection of IL-1 ra or neutralising antibodies to 

IL-1 (3 into the brain of rodents attenuate endotoxin-induced fever (Rothwell, 

1990c; Hill et al., 1997; Fleshner et al., 1998), indicating a primarily central role 

in fever (Dinarello & Bunn, 1997b). This suggestion is supported by the finding 

that IL-1 is difficult to detect in the plasma (Bristow et al., 1991), but is detected 

in the hypothalamus (Hagan et al., 1993) after peripheral endotoxin 

administration in rodents.

The main circulating endogenous pyrogen is now considered to be lL-6, whose 

plasma bioactivity correlates strongly with fever induced by LPS in rats (LeMay 

et al., 1990b), and may induce fever by stimulating IL-1 in the brain (LeMay et 

al., 1990a; Blatteis & Sehic, 1998). Endogenous pyrogens are proposed to 

signal the brain, either by directly entering the CNS where the blood-brain 

barrier is compromised (circumventricular organs) (Saper & Breder, 1992), by 

active transport into the brain, via release of secondary mediators (e.g. PGs), or 

by direct neuronal afferent signals from the periphery (Fleshner et al., 1998). In 

a generalised host defence response the brain is probably signalled by several 

mechanisms (Watkins et al., 1995).

There is extensive evidence that IL-1 acts as an endogenous pyrogen within the 

brain. Central injection elicits fever at nanogram doses (Busbridge et al., 1989; 

Dascombe et al., 1989), IL-1 (3 knockout mice exhibit attenuated fever in
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response to LPS (Kozak et al., 1995) and central administration of IL-1 (3 

antiserum or IL-1 ra attenuates fever induced by peripheral administration of 

LPS or turpentine (Long et al., 1990; Smith & Kluger, 1992; Luheshi et al., 

1996a). However, LPS fever is not attenuated by IL-1 a antiserum, even at a 

dose known to inhibit IL-1 a fever (Long et al., 1988), suggesting that IL-1 (3 is the 

primary mediator of fever in response to a generalised systemic response to 

infection.

It is generally accepted that IL-1 fever is mediated in the brain by PG-dependent 

mechanisms, since cyclo-oxygenase inhibitors such as indomethacin attenuate 

the febrile response induced by IL-1 (Coceani et al., 1988; Murakami et al., 

1990; Milton, 1998). However, IL-1  a and IL-1 [3 appear to exert their pyrogenic 

effects in the brain via different mechanisms, since febrile effects of IL-1 (3, but 

not IL-1 a, are inhibited by pre-treatment with either the CRF receptor antagonist 

a-helical CRF9-41, or with a CRF-neutralising antibody (Busbridge et al., 1989; 

Rothwell, 1989). Furthermore, CRF and POMC mRNA is increased in response 

to injection of IL-1  (3, but not IL-1 a (Harbuz et al., 1992). This suggests that IL-1 a 

and IL-1p activate different IL-1 receptors, which in turn produce a thermogenic 

response via separate pathways -  one dependent on CRF and the other 

independent of CRF. Pre-treatment with a cyclo-oxygenase inhibitor (ibuprofen) 

or CRF antagonist (a-helical CRF9-41) (Rothwell, 1990c), indicate that these 

distinct thermogenic pathways are not exclusive to IL-1 (Table 1.4.2.1).
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Endogenous Pyrogen Febrile Mechanisms

IL-1 a, IL-1 p, TNF-a PG-dependent

IL-1P, IL-6, IL-8 CRF-dependent

Table 1.4.2.1. Mechanisms of febrile effects of cytokines in the brain

It has already been suggested that IL-1 stimulates the synthesis and release of 

CRF in the brain (Berkenbosch et al., 1987; Barbanel et al., 1990; Kakucska et 

al., 1993; Veening et al., 1993), and that CRF mediates IL-1-induced anorexia 

(Section 1.4.1). Evidence suggesting that CRF also mediates the febrile 

response to IL-1 (3 is derived by studies demonstrating that CRF receptor 

antagonists or neutralising antibodies block the febrile response to IL-1 p 

(Busbridge et al., 1989; Rothwell, 1989; Nakamori et al., 1993). Flowever, there 

appears to be a cascade involving PGs and CRF in IL-1-induced fever. 

Although PGE2 can mediate fever (Dascombe, 1985; Rothwell, 1989; Morimoto 

et al., 1989), its effects are independent of CRF (Morimoto et al., 1988; 

Rothwell, 1989). PGF2ot also induces fever (Morimoto et ai., 1988) and 

stimulates CRF release (Bernardini et al., 1989). Moreover, PGE2a fever is 

blocked by a CRF receptor antagonist, and effects of CRF and PGE2a (but not 

PGE2) on body temperature are additive (Rothwell, 1990a). Therefore, the 

thermogenic effects of IL-1p are considered to act via PGF2a and then CRF, 

rather than PGE2.
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1.5 CRF

CRF is a 41 amino acid peptide that has been implicated in a variety of CNS 

disorders (Behan et al., 1996). It mediates several endocrine, metabolic, 

behavioural and autonomic responses to stress and infection (Dunn & Berridge, 

1990; Owens & Nemeroff, 1991), and mediates many actions of cytokines in the 

brain (Dunn & Berridge, 1990). CRF was first identified in 1981, in the sheep 

hypothalamus (Vale et al., 1981), and has now been identified in the cow, goat, 

horse, human, pig, rat, suckerfish, and xenopus toad (Turnbull & Rivier, 1997; 

Vale et al., 1997). The human and rat forms are identical, and differ by seven 

amino acids from the ovine sequence (Vale et al., 1983). CRF also shares 

significant homology with related peptides from lower species such as 

sauvagine and urotensin (Vale et al., 1983). Moreover, a related mammalian 

peptide called urocortin has been identified recently (Spina et al., 1996; 

Donaldson et al., 1996), thereby further extending the CRF peptide family.

CRF is synthesised in precursor form as prepro-CRF (Jingami et al., 1985b) 

and is suggested to be cleaved to its mature form by intracellular pro-hormone 

converting enzymes (Brar et al., 1997). CRF is localised particularly to the 

dorsomedial parvocellular neurosecretory cells of the PVN (Merchenthaler et 

al., 1984b), but also has a diverse distribution throughout the brain including the 

cortex, and regions of the limbic system such as the locus coruleus, amygdala 

and hippocampus (Swanson et al., 1983; Merchenthaler, 1984a). CRF is also 

present in various peripheral tissues (Petrusz et al., 1985).

CRF receptors exist in several isoforms - a proposal that was suggested when a 

discrepancy was found between brain and peripheral CRF receptor molecular
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weights (Grigoriadis & De Souza, 1988). Further research resulted in the 

cloning and characterisation of two distinct CRF receptors - CRF receptor type 

1 (CRF-R1) (Perrin et al., 1993; Chen et al., 1993; Chang et al., 1993) and CRF 

receptor type 2 (CRF-R2) (Ross et al., 1994; Lovenberg et al., 1995). CRF-R2 

has since been found to exist as three splice variants: CRF-R2a, CRF-R2J3 

(Lovenberg et al., 1995) and recently CRF-R2y (Kostich et al., 1998), thereby 

creating a family of four distinct CRF receptor subtypes (Chalmers et al., 1996).

Each receptor has distinct localisation in the brain and therefore, like the IL-1 

receptors, may also mediate different actions of the ligand. The CRF-R1 is 

localised mainly in the neocortical, cerebellar, and sensory relay structures 

(Chalmers et al., 1995). CRF-R2a is expressed in the subcortical structures 

including the PVN, VMH, choroid plexus and amygdala, whereas CRF-R2P is 

found in cerebral arterioles throughout the brain amygdala and hypothalamic 

nuclei, and in a variety of peripheral tissues (Lovenberg et al., 1995). CRF-R2y 

is predominantly expressed in the septum and hippocampus (Kostich et al., 

1998). As a result of receptor distributions, the CRF-R1 is generally regarded as 

the primary neuroendocrine pituitary CRF receptor and important in cortical, 

cerebellar and sensory roles of CRF. The anatomical distribution of the CRF-R2 

indicates a role for this novel receptor in hypothalamic neuroendocrine, 

autonomic and general behavioural actions of central CRF (Chalmers et al., 

1995). Further functional categorisation of the receptors may be derived by 

comparing the localisation and affinity for CRF and urocortin. The coincidence 

of urotensin-like immunoreactivity with CRF-R2 in brain, and the observation 

that urocortin is more potent than CRF at binding and activating CRF-R2, as
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well as at inducing c-fos in regions enriched in CRF-R2 receptors, indicate that 

this new peptide could be an endogenous ligand for CRF-R2 (Vaughan et al., 

1995).

In addition to these receptors, a CRF-binding protein (CRF-BP) was initially 

isolated, cloned and expressed from human plasma (Potter et al., 1991), and 

subsequently found in the brain in neuronal and astrocytic cells (Behan et al., 

1995) co-localised with CRF-expressing cells (Potter et al., 1992). Some of this 

protein may therefore be partially membrane-associated, although no obvious 

transmembrane domains are present in its amino acid sequence. Hence, the 

function of this protein could be as a decoy receptor for CRF, in a regulatory 

role similar to that of IL-1 Rll and IL-1 (Behan et al., 1995). Alternatively, Lowry 

discusses the possibility that CRF-BP acts as a receptor to an as yet 

undiscovered CRF-like ligand (Lowry, 1995).

CRF is perhaps most noted for its role in the HPA axis as the major stimulus in 

the release of POMC products such as ACTH and p-endorphin from the anterior 

pituitary which, in the case of the former induces glucocorticoid release from the 

adrenal glands (Vale et al., 1981; Rivier & Plotsky, 1986). Glucocorticoids 

impose a rapid inhibitory effect on the release of CRF and ACTH (Plotsky & 

Vale, 1984; Jingami et al., 1985a), thereby creating a negative feedback loop, 

important in regulating stress responses (Turnbull & Rivier, 1997). There has 

been much interest in the potential for cytokines to activate the HPA axis in 

neuroimmune-endocrine responses to disease and infection (Rivier & Rivest, 

1993; Tilders et al., 1994; Rivier, 1995; Turnbull et al., 1998). This has led to the
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understanding that many cytokine-HPA axis interactions are mediated via CRF. 

One of these interactions is stimulation of thermogenesis.

Cytokines -
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Figure 1.4.2.1. Schematic diagram of the interactions between the HPA

axis and cytokines and prostaglandins in infection
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1.5.1 CRF and Body Temperature

CRF in the brain, has been implicated in the regulation of energy balance since 

it reduces food intake and increases energy expenditure by increased 

thermogenesis and activity, resulting in elevated body temperatures (Rothwell, 

1990b). The involvement of CRF in thermogenesis was identified initially 

because of its known activation of the sympathetic nervous system and 

increased energy expenditure (Brown et al., 1982; Brown et al., 1985). 

Increased sympathetic nervous system activity in response to central injection 

of CRF results in activation of BAT (Holt & York, 1989), eliciting increased GDP 

binding (a marker of thermogenic activity) and temperature in this tissue 

(LeFeuvre et al., 1987; Arase et al., 1988). Interestingly, chronic infusion of CRF 

elicits greater effects on BAT activity in obese Zucker rats than in lean animals 

(Arase et al., 1989a; Arase et al., 1989b). CRF also increases core body 

temperature as measured by the rectal probe method (LeFeuvre et al., 1987; 

Rothwell, 1990a; Rothwell et al., 1991; Strijbos et al., 1992), and similar 

thermogenic responses are induced by injection of the CRF-related peptides 

sauvagine and urotensin (LeFeuvre et al., 1989).

Thermogenic effects of CRF are considered to be independent of ACTH, since 

injection of ACTH or vasopressin do not mimic CRF actions on temperature 

(LeFeuvre et al., 1987). However, other POMC-derived products may be 

involved in CRF-induced thermogenesis. Rothwell et al, described how CRF 

thermogenesis is inhibited in the rat by monoclonal antibodies to y-MSH, and by 

the antagonist to (3-endorphin actions, naloxone (Rothwell et al., 1991).
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Moreover, y-MSH and p-endorphin themselves induce CRF-like thermogenesis, 

whereas ACTH and a-MSH do not (Rothwell et al., 1991).

1.6 S u m m a r y

It is clear from the literature that the mechanisms regulating energy balance are 

complex, and that in addition to the influence of concious influences imposed by 

the environment, these factors are under the control of a plethora of 

neurochemical mediators. Leptin is highly involved in regulating energy balance 

in normal physiology, and there is growing evidence to suggest that leptin also 

influences metabolic responses to disease and infection by its action in the 

brain. Leptin may exert such effects via molecules such as cytokines (that share 

certain characteristics with leptin) and neuropeptides (e.g. CRF), which are 

already known to be important in mediating host defence responses.

1.7 A ims

The overall aim of this study was to investigate the mechanisms of action of 

leptin in the CNS, and in particular, study its interactions with cytokines 

(focusing on IL-1) and other proinflammatory agents using food intake, body 

weight and body temperature responses as end points.
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2.1 Es ta b lis h m e n t

Surgical procedures and experiments were performed in the laboratories of the 

School of Biological Sciences and the Biological Services Unit (BSU), Stopford 

Building, University of Manchester, UK, (Home Office Licence 50/01036 and 

40/01819) in accordance with the 1986 Animals Act.

2.2 A n im a ls

A variety of male rodents were used, depending upon the specific investigation:

i. Sprague-Dawley rats (Charles River, UK) weighed 250-300 g and were

approximately 50 days old.

ii. Lean (Fa/?; 300-350 g) and genetically obese (fa/fa; 500-550 g) Zucker

rats (Harlan-Olac, UK) were approximately 120 days old.

iii. IL-1 Rl (-/-) mice (Jackson Laboratories, USA) derived from a C57/129J

hybrid. C57BL/6 mice (Charles River, UK) were used as controls. Mice 

were approximately 70 days old and 30 g in weight.

iv. IL-6 (-/-) mice (BSU) derived from a C57/129J hybrid. C57BL/6 mice 

(Charles River, UK) were used as controls. Mice were approximately 70 

days old and 30 g in weight.

All animals were exposed to a 12 h light-dark (08.00 h - 20.00 h) cycle, at an 

ambient temperature of 22±1°C and 45±10% humidity, and had free access to 

food (rat chow, Beekay International, UK) and water.
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2.3  D rugs

All drugs were dissolved using sterile techniques, and when necessary, frozen 

and stored at -70°C. Where possible, drugs were tested for endotoxin 

contamination by observing drug effects following heat treatment (30 min at 

95°C), or by limulus amoebocyte lysate (LAL) test (Section 2.6). Drugs were 

administered into the right lateral cerebral ventricle (icv), intraperitoneally (ip), 

subcutaneously (sc), or intravenously (iv) in rodents (Section 2.2).

2.3.1 CRF

Recombinant human/rat C R F 1 - 4 1  was obtained from three different sources:

i. Prof. Jean Rivier at the Salk Institute for Biological Studies (USA) kindly 

donated CRF (95% purity) that was dissolved in sterile water / 0.1% low 

endotoxin BSA (Sigma, UK).

ii. CRF (95% purity) purchased from Sigma (UK) was dissolved in sterile

water / 0.1% low endotoxin BSA.

iii. CRF (76.5% purity) kindly donated by Peninsula Laboratories Inc.

(USA) was dissolved in 0.9% saline / 0.05% ascorbic acid (Sigma, USA) 

as recommended.

CRF was administered to rats in the following doses (Table 2.3.1.1).
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Injection Route Dose of CRF per Rat

Icv 0.3, 3, 30 jig

Ip 3 jig

Sc 3 fig

Iv 3 jig

Table 2.3.1.1. Doses of CRF

2.3.2 CRF Receptor Antagonists

a-helical-CRF(9-41) was purchased from Novabiochem (UK), dissolved in 

sterile water / 0.1% low endotoxin BSA, and injected icv in rats (30 jig/rat).

D-Phe-CRF ([D-Phe12,Nle2l'38,a-Me-Leu37]-CRF(12-41) human/rat) was 

purchased from Bachem (UK), and dissolved in sterile water for icv injection in 

rats (1, 2.5 and 5 (ig/rat).

2.3.3 Flurbiprofen

The sodium salt of flurbiprofen was a gift from Knoll Pharmaceuticals Ltd (UK), 

and dissolved (1 mg/ml) in sterile saline plus 1% sodium bicarbonate for 

injection in rats (1 mg/kg, ip).

2.3.4 IL-1 and lL-1ra

Recombinant rat IL-1 a, IL-1 p and IL-1 ra kindly donated by Dr Steve Poole 

(NIBSC, UK) were dissolved in phosphate-buffered saline (PBS), and 

administered in doses (derived from previous studies (Busbridge et al., 1989;
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Dascombe et al., 1989; Luheshi et al., 

(Table 2.3.1.1).

1996)) described in the following table

Interleukin Dose per rat (icv)

IL-113 5 ng

IL-1 a 50 ng

IL-1 ra 2 x 100, 200 pg

Table 2.3.4.1. Doses of IL-1 and IL-1ra 

2.3.5 Leptin

Leptin (rat or murine) was administered icv to both rats and mice at doses of

0.4, 1 or 4 pg. Rats received ip injections of 1 mg/rat (3.5-4 mg/kg).

Recombinant murine leptin was obtained from two sources. Leptin from Insight 

Biotechnology Ltd. (UK) was dissolved in sterile water. Leptin kindly donated by 

Dr Brian Holloway (Zeneca Pharmaceuticals, UK) was already dissolved (0.5 

mg/ml) in PBS.

Recombinant rat leptin was purchased from R&D Systems (UK). The protein (1 

mg) was dissolved in 1.5 ml sterile HCI (15 mM) / 0.3 ml sterile NaOH (7.5 mM) 

to bring the pH to approx. 6.
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2.3.6 LPS

The gram negative, bacterial glycoprotein, lipopolysaccharide (LPS) was 

purchased from Sigma (UK; serotype 0128:B12; lot 90H4012), dissolved in 

sterile saline, and injected icv (0.3 pg/rat) or ip (100 pg/kg rat).

2.3.7 Prostaglandin

PGE2 was purchased from Sigma (UK), dissolved in sterile saline (0.9%) and 

administered to rats (500 ng, icv).

2.3.8 Water and Saline

Sterile water for injections and sterile saline (0.9%) were purchased from B. 

Braun Medical Ltd. (UK).

2.4  S u r g ic a l  Pr o c ed u r e s

Animals were anaesthetised (verified by absence of tail-pinch and corneal 

reflex) prior to surgery using a gaseous mixture of 3% halothane (Fiuothane, 

Zeneca, UK) in oxygen at 2 l/min using a flow-chamber. Animals were then 

transferred to a stereotaxic frame (Stoelting, USA) equipped with a specially 

constructed mouthpiece delivering the same anaesthetic mixture, to enable 

surgery (Figure 2.3.8.1).
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Figure 2.3.8.1. Schematic diagram depicting stereotaxic surgery (adapted 

from Carlson, 1991)

Oxygen +
3% Halothane 
(2 l/min)

2.4.1 Implantation of Lateral Ventricle Guide Cannulae in Rats

Anaesthetised animals (Section 2.4) were secured in a stereotaxic frame by 

ear bars (positioned in the external auditory meatae) and a jaw bar holding the 

superior incisors at a level of 3.3 mm below the intra-aural line.
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Once animals were secured in the frame, the dorsal aspect of the head (from 

eyes to occipital notch) was shaved and swabbed with iodine solution. A 2-3 cm 

incision was then made along the median sagitai plane of this area and the skin 

clamped back to reveal the underlying tissue. This loose connective tissue and 

periosteum was displaced by the use of a cotton bud to expose the surface of 

the skull.

Holes were drilled in the left caudal and right rostral quadrants of the skull with a 

dental drill (Radio Spares Ltd., Corby, UK; burr size 1.5 mm). Screws (4 mm 

long x 2 mm diameter) were inserted into these holes taking care not to pierce 

the meninges on the under-surface of the cranium. The guide cannula 

(constructed from sterile 0.8x40 mm hypodermic needles (Microlance 3, BD 

Ltd., UK) cut to 3 mm length) was secured to the vertical arm of the stereotaxic 

manipulator, and positioned so that the tip rested on bregma which was taken 

as zero for stereotaxic reference. From there the cannula was moved 0.8 mm 

caudal, 1.5 mm lateral (right) and 3 mm ventral (length of guide cannula).

Another hole was drilled at these co-ordinates to allow the guide cannula to be 

lowered to penetrate the brain. This resulted in the tip of the guide cannula 

being situated 2 mm superior to the right lateral ventricle (Figure 2.4.1.1). The 

guide cannula was secured in position by moulding acrylic dental cement 

(Simplex Rapid, Associated Dental Products Ltd, UK) around the screws and 

cannula, taking care that no sharp or abrasive edges were sculpted.
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Figure 2.4.1.1. Schematic diagram representing (A) a sagital section of a 

guide cannula for (B) icv injection (shown coronally).
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Whilst the cement was setting, it was possible to perform (if required) 

implantation of an intraperitoneal radiotransmitter (Section 2.4,3). When the 

cement had hardened sufficiently, the vertical arm of the frame was raised 

leaving the cannula in place, and the scalp was sutured.

2.4.2 Implantation of Lateral Ventricle Guide Cannulae in Mice

Mice were anaesthetised as above (Section 2.4), and positioned in a 

stereotaxic frame specially adapted for mice. The implantation procedure was 

performed as above (Section 2.4.1) using 0.9x1.7 mm screws and guide 

cannulae constructed (cut to 1.5 mm length) from sterile 0.6x30 mm hypodermic 

needles (Microlance 3, BD Ltd., UK). Co-ordinates from bregma for implanting 

guide cannulae were 0.3 mm caudal, 1.5 mm lateral (right) and 1.5 mm ventral 

(length of guide cannula).

2.4.3 Implantation of Temperature-Sensitive Radiotransmitters in Rats

An area (approx. 4x4 cm) was shaved in the abdomen on one side of the mid- 

line and swabbed with iodine solution. A small incision was made in the midline 

of the skin and underlying musculature to expose the peritoneal cavity. A 

temperature-sensitive radiotransmitter (Data Sciences International, USA), 

previously sterilised by soaking overnight in a 2% gluteraldehyde solution 

(Sigma, UK) before being washed in distilled water was then inserted into the 

cavity and the incised layers of tissue were sutured. Transmitters were 

calibrated previously by the manufacturer.
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2.5 E xp erim en ta l P ro c e d u re s

2.5.1 Housing

All animals were allowed one week to recover from surgery before being 

housed individually 24 h before the start of the experiment. Rats were housed in 

cages with sawdust bedding, whereas mice were housed in wire bottomed 

cages (to allow for measurement of food spillage).

2.5.2 Injections

Injections were performed at 10.00 h for daytime measurements, and at 18.00 h 

during evening experiments.

Drugs were administered directly into the brain of free-moving rats (Figure 2B), 

or lightly restrained mice by injection into the right lateral cerebral ventricle (icv) 

via a previously implanted guide cannula (Sections 2.4.1 and 2.4.2), using a 10 

jil Hamilton syringe attached to a flexible injection cannula.

Injection cannulae for icv injection were made by inserting a length of 31 gauge 

stainless steel tubing into a 1 cm length of 23 gauge stainless steel tubing, and 

cementing the two together. The inner tubing was then neatly broken to achieve 

a length of 11.5 mm (rats) or 8 mm (mice). A 25 cm length of PE10 plastic 

tubing was glued to the proximal end of the cannulae to allow flexibility between 

the syringe and the cannula tip during injection into free-moving animals.

Volumes of 2-4 jil were injected over a period of 10-20 s, after which the 

injection cannula was left in place for a further 10 s to allow the expelled 

solution to diffuse into the ventricle.
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Intraperitoneal (ip) injections (1 ml/kg) into hand-held animals were performed 

using sterile 0.5x16 mm hypodermic needles (Microlance 3, BD Ltd., UK).

Subcutaneous (sc) injections of 0.2 ml were administered via sterile 0.5x16 mm 

hypodermic needles to the dorsal skin fold of hand-held rats.

Intravenous (iv) injections were performed into rats restrained in a Perspex 

restraining tube. The tail (protruding from the tube) was immersed in warm 

water to vasodilate the tail vein, into which injections (1 ml/kg) were 

administered using sterile 0.5x16 mm hypodermic needles.

2.5.3 Measurement of Core Body Temperature in Rats

Core body temperature of animals was monitored for at least 1 h before 

injection to obtain constant baseline values.

2.5.3.1 Remote Radiotelemetry

Transmitters, previously implanted (Section 2.4.3) were activated magnetically, 

24 h before injection. Each transmitter emitted a frequency that was 

proportional to the core body temperature of the animal. This output frequency 

was monitored by an antenna mounted in a receiver board situated beneath the 

cage of each animal. The information was then relayed to a peripheral 

processor (DataQuest IV, Data Sciences International, USA) connected to an 

IBM-PC (Figure 2.5.3.1) which sampled and recorded the temperature of each 

animal at 10 min intervals by converting the frequency information into degrees 

Celsius (°C). This system allowed continuous, undisturbed monitoring of the
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freely moving conscious animals. Animals exhibiting a pre-injection temperature 

outside the range 36.9-37.3°C were excluded from the experiment.

-o-Saline 
IL-1B

[ Receiver

5  38.0 -

Tim* (hours)

DataQuest IV

Figure 2.5.3.1. Schematic diagram showing measurement of core body 

temperature in rats, by remote radiotelemetry.

2.5.3.2 Colonic Probe

In selected experiments (Chapter 5), core body temperature was measured 

manually by colonic probe, in order to compare the accuracy of each method of 

temperature measurement, and to mimic published data.

Lightly-restrained rats were exposed daily to this method of temperature 

measurement during the one week recovery period after stereotaxic surgery, to
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familiarise them to the procedure and reduce stress during experiment. A 

plastic-coated thermocouple (Comark Electronics Ltd., UK) was greased with 

Vaseline and inserted approximately 5 cm beyond the anus of the lightly 

restrained rats. The probe was maintained in position for 20 s, or until the 

temperature reading remained constant, and then the temperature was 

recorded. This operation was repeated every 30 min, starting one hour before 

injection.

2.5.4 Measurement of Food Intake

Food for each animal (50 g/rat, 25 g/mouse) was weighed out (Mettler PJ360, 

DeltaRange; accurate to 0.1 g) at the time of injection (10.00 or 18.00 h). Food 

was weighed again at the beginning of the subsequent light phase (08.00 h), 22 

or 14 h later respectively. Food spillage from mice was also collected at this 

time. Food intake was calculated by subtracting 22 or 14 h food weight, from 

food weight at injection (minus spillage for mice).

2.5.5 Measurement of Body weight

Rats were weighed using a balance accurate to 1 g (Lume-O-Gram balance, 

OHAUS). Mice were weighed with a balance accurate to 0.1 g (Mettler PJ360, 

DeltaRange). Measurements were performed in the same manner as for food 

intake (Section 2.5.4): firstly on injection, and again at the start of the 

subsequent light phase.
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2.5.6 Immunohistochemistry

2.5.6.1 Tissue Preparation for Immunohistochemistry

Rats were injected with 0.5 ml sodium pentobarbitone (30 mg/ml, ip; Sagatal, 

Rhone Merieux Ltd., UK) for IL-1 immunohistochemistry. When animals were 

rendered unconscious, the ventral aspect of the rib cage was exposed and 

removed. A butterfly needle (0.6x19 mm, Abbott Laboratories Ltd., UK) was 

inserted into the left ventricle of the heart and the right atrium cut.

Saline (0.9%) cooled to 4°C was perfused into the heart at a rate of 40 ml/min 

for 8 min to remove all blood from the animal. The saline was then replaced by 

PBS / 4% paraformaldehyde (PFA) at 4°C for a further 12 min. The brain was 

removed and soaked overnight in fixative at 4°C before rinsing and storing in 

PBS. Sections were cut (50 |um thick) using a vibratome (Series 1000, The 

General Scientific Company Ltd., UK) and stored at 4°C in TBS.

2.5.6.2 Staining for Immunoreactive IL-1 ft

Sections at injection site and hypothalamic levels were transferred to Costars (1 

section per well) and stained for immunoreactive (ir) IL-113 using:

i. 0.1% hydrogen peroxide (H2O2) / tris-buffered saline (TBS).

ii. Normal donkey serum (NDS) in 0.1 % BSA / TBS (1:4).

iii. Primary antibody (sheep anti-rat IL-1 Ab) kindly donated by Dr Steve

Poole (NIBSC, UK), diluted 1:750 in 0.1% BSA /TBS.
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iv. Secondary antibody (biotinylated donkey anti-sheep Ab, Sigma, UK) 

diluted 1:1500 in 0.1% BSA / TBS.

v. 3% avidin peroxidase / TBS.

vi. 3% DAB / 0.2% H20 2 / TBS (10 min).

2.5.7 immunoassays for Immunoreactive IL-1 (3 and IL-6

Immunoassays were performed using enzyme-linked immunosorbent assays 

(ELISA) specific for rat IL-6 and rat IL-1 p (kindly provided by Dr S. Poole, 

NIBSC, UK). Three hours after injection animals were anaesthetised (Section 

2.4) and blood plasma was sampled by cardiac puncture, and stored at 4°C in 

heparin (50 (il Monoparin, CP Pharmaceuticals Ltd. / 5 ml blood). The animals 

were killed by cervical dislocation, and the hypothalami removed. The 

hypothalami were placed in PBS, homogenised and centrifuged (6000 rpm for 

30 min at 4°C). Supernatant and blood plasma were assayed for 

immunoreactive IL-1 p and IL-6 by ELISA, using immunoaffinity-purified 

polyclonal antibodies (2 |ig/ml):

i. Sheep anti-rat IL-1 p (S1002BH) or sheep anti-rat IL-6 (S206B1).

ii. Recombinant rat IL-1 p (1.9-2000 pg/ml) or recombinant rat IL-6 (1.9-

4000 pg/ml) reference standards.

iii. Biotinylated immunoaffinity-purified polyclonal antibodies from sheep 

anti-rat IL-1 p or sheep anti-rat IL-6 serum (1:1000).
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iv. Avidin-horseradish peroxidase (Sigma, 1:5000), and colour reagent 

(OPD, Sigma). The optical densities of the wells were read at 490 nm 

using an MRX Microplate reader (Dynatech, UK).

Cytokine concentrations were calculated from the optical density (OD) using 

Rodbard’s four-part equation (Figure 2.5.7.1).

d = maximum response 1

Figure 2.5.7.1. Derivation of protein concentration from OD, using 

Rodbard’s four-part equation

2.6 L im u lu s  A m o e b o c y te  Ly s a te  (LA L) T est

Leptin and CRF antagonists were assayed semi-quantitatively for Gram- 

negative associated endotoxin contamination by Pyrogent® gel-clot LAL kit 

(BioWhttaker, UK).

Cone, (x)

a = minimum response
b = shape factor
c = midway response (= d-a )
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2 .7  Da ta  M a n ip u la tio n  a n d  S ta tis t ic s

All data are expressed as the mean ± SEM. Number (n) of animals in each 

experimental group ranged from 4-8 in all except immunohistologica! 

experiments, where n=2. Statistical analyses were performed following 

consultation with Dr Val Hillier (Department of Medical Biophysics, University of 

Manchester). Analyses that revealed a probability of less than 5% (p<0.05) 

were considered significant.

2.7.1 Analysis of Multiple Time Point Data

Body temperatures of animals were statistically analysed for significant 

differences at half-hour intervals over the time course of the experiment by 

multiple analysis of variance (MANOVA) using SPSS software. The following 

syntax (Figure 2.7.1.1) was written to perform this analysis.

MANOVA 
tl to t7 BY 
treat (1,4)
/WSFACTORS time(7)
/CONTRAST (treat)=simple(1)
/ERROR WITHIN+RESIDUAL
/PRINT HOMOGENEITY(BARTLETT COCHRAN BOXM)
/design = treat(l), treat(2), treat(3)
/PRINT SIGNIF( MULT AVERF HF GG ).

Figure 2.7.1.1. SPSS syntax to perform MANOVA
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This syntax instructs the programme to perform MANOVA on treatment groups 

1-4 (altered depending on number of groups) over the 6 h time course after 

injection (time points tl to t7), and then to compare the profile of treatment 

group 1 with that of the other three treatment groups. Repetition of the analysis 

after changing ’simple (1) ’ (line 4) to ’simple (2) ’ and ’simple (3) ’ allows all 

groups to be compared against each other.

Where MANOVA revealed significant difference (pcO.05), individual time points 

of interest were further analysed (see below).

2.7.2 Analysis of single time point data

For experiments where data were obtained from a single time point, or where a 

point of interest warranted further investigation (as revealed by MANOVA, data 

from two treatment groups were analysed by unpaired student’s t-test. Single 

time point data from more than two treatment groups were analysed by one-way 

analysis of variance (ANOVA) followed by Neuman-Keuls multiple comparisons 

test.
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3.1 In tr o d u c tio n

It has been reported extensively that leptin reduces food intake and body weight 

in animals that possess normal leptin receptors. Most studies investigating the 

responses to injection of leptin have been performed on mice, since this was 

the species in which leptin was first identified (Zhang et al., 1994), and because 

of the availability of genetically obese mice such as ob/ob and db/db (Coleman, 

1973; Coleman, 1978).

The first studies reporting the effects of leptin on food intake and body weight 

were all published in the same edition of Science in 1995. Pelleymounter et al. 

described how ip injection of a high dose (10 mg/kg/day for 28 days) of leptin, 

lowered body weight, body fat, food intake, and serum glucose and insulin in 

ob/ob, but not normal mice (Pelleymounter et al., 1995). In addition, metabolic 

rate, body temperature, and activity levels of ob/ob mice were increased by this 

treatment (although ob/ob mice normally exhibit lower body temperature and 

metabolic rate than lean animals) (Pelleymounter et al., 1995). None of these 

parameters was altered beyond the level observed in lean controls, suggesting 

that leptin normalised the metabolic status of the ob/ob mice. Halaas et al. 

demonstrated similar effects in response to ip administration of leptin (5 

mg/kg/day for 33 days) in ob/ob but not db/db mice (Halaas et al., 1995). 

Furthermore, Campfield et al. injected a much lower dose (6 pg/mouse/day, 

equivalent to approx. 0.12 mg/kg/day) of leptin for 10 days, which still reduced 

food intake and body weights of ob/ob mice (Campfield et al., 1995). This study 

also reported that icv injection of leptin (1 jig/mouse) significantly reduced food
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intake and body weight in both ob/ob and lean, but not db/db mice after 

overnight fasting. Other studies have reported similar effects in response to 

acute icv injection of leptin (Van Heek et al., 1997). Chronic infusion (icv) of 

leptin (3 ng/h for 30 days) elicited complete depletion of visible adipose tissue 

(Halaas et al., 1997). Some studies have reported normalised core body 

temperatures of ob/ob mice in response to ip injection of leptin (10, 42 pg/day) 

(Pelleymounter et al., 1995; Harris et al., 1998). In addition, icv (1 pg) injection 

of leptin increased energy expenditure in ob/ob mice (Hwa etal., 1996).

Although fewer studies have been performed in rats, similar responses to icv 

injection of leptin have been observed. Schwartz et al. described how icv 

injection of 3.5 jig leptin at the onset of nocturnal activity significantly reduced 

food intake of normal Long-Evans rats by 50% over 1 h, and by 42% over 4 h 

after injection (Schwartz et al., 1996). Intraperitoneal injection of the same dose 

of leptin did not affect food intake. In a separate study, twice-daily injections of 

leptin (0.05 pg) for 3 days into the ventromedial hypothalamus (VMH) of normal 

Sprague-Dawley rats caused reduced food intake (56%) and 5% body weight 

loss (Jacob et al., 1997). In this study, animals fully recovered from leptin- 

induced effects within 3 days (Jacob etal., 1997).

The obese (fa/fa) Zucker rat is similar to the db/db mouse since they both 

possess defective leptin receptors. It has been demonstrated that food intake is 

reduced in both fed and food deprived lean (Fa/?), but not obese {fa/fa) Zucker 

rats in response to icv injection of leptin at doses of 3.5 jug/rat (Seeley et al., 

1996). Furthermore, Cusin et al. described how lean, but not obese Zucker rats
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exhibited reduced food intake and body weight gains that persisted for 2 and 6 

days respectively, in response to injection of 3 (ig/rat leptin (Cusin etal., 1996).

N-terminal (but not C-terminal) peptide fragments of the leptin molecule have 

also been shown to induce anorexic effects on food intake in response to icv 

injection (1 jxg/rat) in normal Sprague Dawley rats (Samson et al., 1996), 

indicating that satiety effects of leptin reside in the N-terminal region. However, 

a study by Fruhbeck et al. reported that ip injection (1 mg of each fragment per 

kg) of a pool of five 20-amino acid peptide fragments derived from the C- 

terminal region of the leptin protein produced a statistically significant reduction 

in body weight gain in Wistar rats, while rectal temperature showed a 

statistically significant increase (Fruhbeck etal., 1998).

The studies described in this chapter were performed to describe in detail, the 

responses to icv injection leptin on food intake and body weight, in normal 

Sprague-Dawley rats, fed ad lib. Considering that leptin (Zhang etal., 1997) and 

its receptor (Tartaglia et al., 1995; White & Tartaglia, 1996; Nakashima et al., 

1997; Tartaglia, 1997) have been reported to possess similar structural 

properties to cytokines, further studies were performed to compare actions of 

leptin and proinflammatory agents.
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3.2 E ffec ts  of L eptin  from  D iffer en t  S o u r c es  on  Fo o d  In tak e  and  Body  

W eig h t  in  R ats

Many studies involving rats have used murine leptin (e.g. (Seeley et af., 1996; 

Wang et al., 1997; al-Barazanji et al., 1997; Widdowson et al., 1997)), since 

there is 96% homology of the molecule between species (Murakami & Shima,

1995), and with the assumption that injection of leptin induces the same effects 

in both rodent species. The objective of the first experiment described was to 

investigate whether murine and rat leptin indeed elicit the same effects on food 

intake and body weight in rats.

3.2.1 Experimental Design

Food intake and body weights were measured over 22 h after injection (at 10:00 

h) of vehicle, or leptin from three different sources: rat (R&D Systems); murine 

(Insight Biotechnology); murine (Zeneca).

A dose (4 pg) similar to that used in published work (Schwartz et al., 1996) was 

injected into the lateral cerebral ventricle (icv) of normal Sprague-Dawley rats, 

and the food intake and body weights monitored as described previously 

(Section 2.5.4-S).

3.2.2 Results

Vehicle-treated animals consumed 27.7±0.6 g rat chow over the experimental 

time course (Figure 3.2.1). Injection of leptin from all sources significantly 

(ANOVA: p<0.001 vs Vehicle) reduced food intake by 48% (rat, R&D), 45%
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(murine, Insight), and 43% (murine, Zeneca). There was no significant 

difference in responses to leptin from different sources (ANOVA).
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Figure 3.2.1. Food intake over 22 h in response to injection of leptin (4 jig, 

icv) from three different sources: rat leptin (R&D Systems), and murine 

leptin from Insight Biotechnology or Zeneca

(ANOVA: *** p<0.001 vs Vehicle)

Body weights of these animals were also measured (Figure 3.2.2). Vehicle- 

treated rats gained 7±1 g body weight over the 22 h after injection. 

Administration of leptin from each source induced significant loss of body weight 

over the experimental time course (ANOVA: p<0.001 vs Vehicle). Rat leptin 

(R&D Systems) reduced body weight by 12±4 g, whereas murine leptin 

obtained from Insight Biotechnology or Zeneca elicited weight loss of 13±4 and
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16±3 g respectively. There was no significant difference in responses to leptin 

from different sources (ANOVA).
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Figure 3.2 .2 . Body weight over 22 h in response to injection of leptin (4 ug, 

icv) from three different sources: rat leptin (R&D Systems), and murine 

ieptin from Insight Biotechnology or Zeneca

(ANOVA: *** p<0.001 vs Vehicle)

3.3 Leptin  D o s e -R espo n se  S tu d y  on  Food  In ta k e  a n d  B o d y  W eig h t  (a .m . 

In je c tio n )

In most of the subsequent studies presented in this thesis, murine leptin 

purchased from Insight Biotechnology was used, as this was the most readily 

available source. From the results described in the previous section, this leptin 

did not appear to differ in its effects on food intake and body weight compared
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with leptin from other sources. Therefore the actions of murine leptin (Insight 

Biotechnology) were characterised further by performing a dose-response study 

on food intake and body weight gain in rats.

3.3.1 Experimental Design

Doses of leptin (0.4, 1, and 4 pg), or vehicle were injected (icv) at 10:00 h in 

normal rats. Food intake and body weight gains were measured over 22 h after 

injection.

3.3.2 Results

Vehicle-treated animals consumed 27.0+1.0 g food over the 22 h after injection 

at 10:00 h (Figure 3.3.1). All rats injected with leptin exhibited significantly 

attenuated food intake compared to the control group (ANOVA). Administration 

of 0.4 pg leptin inhibited food intake by 15% (p<0.05), whereas 1 pg and 4 pg 

attenuated consumption by 26% (p<0.01) and 40% (p<0.001) respectively, 

compared to vehicle-treated rats.
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Figure 3.3.1. Dose-response study on the action of leptin (0.4,1, and 4 jag, 

icv) on food intake over 22 h after injection at 10:00 h

(ANOVA: * p<0.05, ** p<0.01, *** p<0.001 vs Vehicle)

Animals injected with vehicle gained 12±1 g body weight over the 22 h after 

injection at 10:00 h (Figure 3.3.2). The lowest dose of leptin (0.4 jag) limited 

body weight gain to only 1±1 g (ANOVA: p<0.05 vs Vehicle). Injection of 1 jag 

leptin caused weight loss of 5±4 g (p<0.01 vs Vehicle), whereas the highest 

dose of leptin (4 jug) elicited a reduction in body weight of 9+3 g (p<0.001 vs 

Vehicle). The weight loss caused by injection of 4 jag leptin was also 

significantly different compared to the effect of the lowest dose (0.4 jag) of leptin 

on body weight (ANOVA: p<0.05).
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Figure 3.3.2. Dose-response study on the action of leptin (0.4,1, and 4 pg, 

icv) on body weight gain over 22 h after injection at 10:00 h

(ANOVA: * p<0.05, ** p<0.01, *** p<0.001 vs Vehicle; #p<0.05 vs 0.4 (o.g)

3 .4  Leptin  D o s e -R espo n se  St u d y  on  Food  In tak e  a n d  Bo d y  W eig ht  (p .m . 

In je c tio n )

Rats are nocturnal animals, and so eat mainly during the dark phase. Thus it 

was proposed that central injection of leptin just before the dark phase, might 

elicit greater effects on food intake and body weight than exhibited by animals 

receiving leptin at the beginning of the light phase as described in the previous 

section.
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3.4.1 Experimental Design

Doses of leptin (0.4, 1, 4 pg), or vehicle were injected (icv) at 18:00 h, and food 

intake and body weight gain measured for 14 h over the subsequent dark phase 

(20:00-08:00 h).

3.4.2 Results

Vehicle-treated animals consumed 24.3±0.8 g food over 14 h after injection at 

18:00 h (Figure 3.4.1). All rats injected with leptin (0.4, 1 or 4 pg) exhibited 

significantly attenuated food intake (ANOVA). Administration of 0.4 pg leptin 

inhibited food intake by 19% (p<0.05). Injection of 1 and 4 pg leptin attenuated 

consumption by 45% (p<0.001) and 47% (p<0.001) respectively. Both higher 

doses (1 and 4 pg) elicited significantly greater inhibition of food intake than that 

induced by 0.4 pg leptin (ANOVA: p<0.01).

Animals injected with vehicle gained 13±1 g body weight over 14 h after 

injection at 18:00 h (Figure 3.4.2). The lowest dose of leptin (0.4 pg) limited 

body weight gain to 7±1 g (ANOVA: p<0.05 vs Vehicle). Injection of 1 pg leptin 

inhibited body weight gain to 2+2 g (p<0.01 vs Vehicle), whereas the highest 

dose of leptin (4 pg) elicited a weight loss of 5±3 g (p<0.001 vs Vehicle). This 

weight loss was also significantly different compared with changes in body 

weight elicited by the lower doses (0.4 and 1 pg) of leptin (ANOVA: p<0.001, 

p<0.01 respectively).
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Figure 3.4.1. Dose-response study on the action of leptin (0.4, 1, and 4 pg, 

icv) on food intake over 14 h after injection at 18:00 h

(ANOVA: * p<0,05, ** p<0.01, *** p<0.001 vs Vehicle; ##p<0.01 vs 0.4 pg)
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Figure 3.4.2. Dose-response study on the action of leptin (0.4, 1, and 4 pg, 

icv) on body weight gain over 14 h after injection at 18:00 h

(ANOVA: * p<0.05, ** p<0.01, *** p<0.001 vs Vehicle; #p<0.001 vs 0.4 pg; ** p<0.01 vs 1 pg)
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3.5 T im e  C o u r s e  of  A c tio n s  o f  Leptin  on Fo o d  In ta k e  a n d  Bo d y  W eight  

G ain (p .m . In je c tio n )

The studies described in the last two sections were performed over different 

time periods, after injection at different times (Section 3.3, 10:00 h injection, 22 

h duration; 3.4, 18:00 h injection, 14 h duration), but both measured nocturnal 

food intake over one dark phase. In the experiment described here food intake 

and body weight were measured acutely and chronically, to elucidate the 

influence of leptin effects in response to injection just before the dark phase.

3.5.1 Experimental Design

Rats received injections of vehicle, or 4 pg leptin at 19:00 h, just before the 

beginning of the dark phase (20:00 h). Food intake was then measured 1, 2, 3, 

12, 24, 36, 48, 60 and 72 h after injection. Body weight was measured 12, 24, 

36, 48, 60 and 72 h after injection.

3.5.2 Results

Cumulative food intake was not significantly attenuated over the first three time 

points measured (0-3 h) after injection of leptin (Figure 3.5.1 A). However, leptin 

administration significantly attenuated cumulative food intake compared to 

vehicle-treated animals at each subsequent time point. Total food intake at the 

12 and 24 h time points (28.7+0.7 and 31.4±1.2) was inhibited by 37 and 39% 

(p<0,001) respectively. Animals did not compensate for this reduction in food 

intake, such that at the 36, 48, 60 and 72 h time points, cumulative food intake
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was still attenuated (36 h, 58.3±2.7 g, 32%; 48 h, 60.8±3.4 g, 29%; 60 h, 

87.9+3.7 g, 21%; and 72 h, 90,3±4.1 g, 23%; p<0.01).
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Figure 3.5.1. Time course of food intake in rats injected (icv) with leptin (4 

fig) at 19:00 h. Data are displayed as (A) cumulative consumption and (B) 

food intake between each time point

(t-test: *p<0.05, ** p<0.01, *** p<0.001 vs Vehicle at each respective time point. Light and dark 

phases are indicated by the bar underneath graph B)
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Analysis of food intake between each time point (Figure 3.5.1 B) revealed that 

injection of leptin significantly inhibited consumption (1.3±0.2 g; t-test: p<0.05) 

by 47% in the first hour of the dark phase (1 -2 h) compared to vehicle-treated 

animals (2.5±0.5 g). Leptin also attenuated food intake (13.6±1.3 g) by 35%, 

between 3-12 h after injection (t-test: p<0.01) compared to vehicle-treated 

animals (21,1+1.0 g). Hypophagic response to leptin persisted (t-test: p<0.05) 

during the subsequent dark phase (24-36 h), when leptin-treated animals 

exhibited food intake (20.7+1.3 g) 23% less than consumption by vehicle- 

treated animals (26.9±1.5 g). Food intakes of leptin and vehicle-treated animals 

were not significantly different between subsequent time points (t-test).

Cumulative body weight gain (Figure 3.5.2A) measured over the first dark 

phase (12 h) after injection was significantly attenuated (to 4+1 g) by injection of 

leptin compared to vehicle-treated animals (17+2 g; p<0.01). Over 24 h, animals 

treated with leptin exhibited significant body weight loss (8±1 g) compared to 

rats injected with vehicle which gained 6±1 g (t-test: p<0.001). Leptin did not 

induce a significant change in total body weight gain over 36 h after injection (t- 

test). However, measurements at all subsequent time points (48, 60 and 72 h) 

revealed that body weight gain of leptin-treated animals (3+2, 24±2 and 13±2 g) 

was significantly attenuated (t-test) compared to that exhibited by animals 

injected with vehicle (15±2, p<0.01; 34±2 and 23+3 g, p<0.05).

Over the first 2 h after injection, body weights did not change significantly in 

either treatment group (Figure 3.5.2B). However between the 2 and 12 h time 

points (dark phase), animals injected with leptin exhibited significantly
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attenuated (t-test: p<0.01) body weight gain (4±1 g) compared to vehicle-treated 

animals (17±2 g). Animals injected with either vehicle or leptin lost and gained 

body weight alternatively between consecutive light and dark phase 

measurements, but were not significantly different to each other (t-test).
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Figure 3.5.2. Time course of body weight gain in rats injected (icv) with 

leptin (4 jj,g) at 19:00 h. Data are displayed as (A) cumulative weight gain 

and (B) weight gain between each time point

(t-test: * pcO.05, ** p<0.01, *** p<0.001 vs Vehicle at each respective time point. Light and dark 

phases are indicated by the bar underneath graph B)
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3.6 C o m p a r is o n  o f A c tio n s  o f  LPS, IL-1 (3 and  L eptin  o n  Fo o d  In ta k e  and  

Bo d y  W eig h t

The host defence responses to infection are mimicked by peripheral 

administration (ip) of LPS (Martich et al., 1993; Red! et al., 1993). These 

responses are mediated in the brain by the actions of cytokines such as IL-1 

(Dinarello, 1996; Ilyin et aL, 1998). LPS, IL-1, and other proinflammatory agents 

have been shown to induce synthesis and release of leptin from adipose tissue 

both in vitro and in vivo (Grunfeld et al., 1996; Janik et aL, 1997; Faggioni et al., 

1998; Finck et al., 1998). Indeed, the effects of leptin on food intake and body 

weight gain described in previous sections are similar to reported responses to 

injection of infectious stimuli such as LPS (McCarthy et al., 1986) or 

proinflammatory cytokines such as IL-1 (Uehara et aL, 1989; Mrosovsky et al., 

1989). The subsequent investigation was designed to verify this observation by 

comparing actions of leptin, LPS and IL-1 (3 on food intake and body weight gain.

3.6.1 Experimental Design

Food intake and body weight were measured over 22 h after injection (at 10:00 

h) of vehicle (ip and icv), LPS (100 pig/kg, ip), IL-1 (3 (5 ng, icv) or leptin (4 \ig, 

icv). Doses injected have been shown previously to induce hypophagic 

responses in rats (McCarthy et at., 1986; Schwartz et al., 1996; Luheshi et al.,

1996). LPS was administered systemically (ip) to mimic a peripheral infection. 

IL-1 (3 was injected centrally (icv) because the defence responses to infectious 

stimuli such as LPS, are mediated by IL-1 (3 in the brain (Dinarello, 1996).
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3.6.2 Results

Vehicle-treated animals consumed 26.3±1,8 g rat chow over the 22 h after 

injection (Figure 3.6.1). Peripheral administration of LPS attenuated this food 

intake by 22% (ANOVA: p<0.05). Injection of IL-1 (3 (icv) reduced control food 

intake by 33% (ANOVA: p<0.01). Leptin administration induced hypophagia 

(52% reduction in food intake, ANOVA: p<0.001 vs Vehicle) that was 

significantly greater than that caused by LPS or IL-1 (3 (ANOVA: pcO.01, p<0.05 

respectively).
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Figure 3.6.1. Food intake over 22 h after injection of LPS (100 pg/kg, ip), IL-

1(3 (5 ng, icv) or leptin (4 jig, icv)

(ANOVA: * pcO.05, ** p<0.01, *** p<0.001 vs Vehicle; ##p<0 .0 1  Vs LPS; + p<0.05 vs IL-113)

Animals injected with vehicle gained 7±1 g body weight over 22 h after injection 

(Figure 3.6.2). LPS administration (ip) prevented any gain in body weight

##
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(ANOVA: p<0.05 vs Vehicle), and central injection of IL-1 (3 elicited a significant 

decrease in body weight (2+1 g, ANOVA: p<0.05) compared to vehicle-treated 

animals. Leptin administration (icv) decreased body weight (by 9+1 g) - a 

response that was significantly different from the weight change observed in the 

control group (ANOVA: p<0.001).

1 0 i

3  5-
JC 
O):a> c
"O
O

CO
<]

-5-

* * *

- 10-

_15-1 Vehicle LPS IL-1 (3 Leptin
Figure 3.6.2. Body weight gain over 22 h after injection of LPS (100 jig/kg, 

ip), IL-1 (3 (5 ng, icv) or leptin (4 pg, icv)

(ANOVA: *** p<0.001, ** p<0.01 vs Vehicle)

3.7 C o m p a r is o n  of  A c tio n s  of  LPS, IL-1 p and  Leptin  on  C o re  Bo d y  

T em pe r a tu r e

In addition to reduced food intake and loss of body weight, perhaps the most 

widely recognised response to infection is fever. Both LPS and IL-113 have been
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reported extensively to induce fever in rats (Busbridge et al., 1989; Dascombe 

et al., 1989; Luheshi et al., 1996) and mice (Kozak et al., 1994; Kluger et al., 

1998). Given the similarities described in the previous section between actions 

of LPS, IL-1 (3 and leptin on food intake and body weight gain, and the fact that 

leptin has been reported to increase energy expenditure in mice (Hwa et al., 

1996; Hwa et al., 1997; Harris et al., 1998), leptin may therefore also affect core 

body temperature in rats. This study investigated whether, like the 

proinflammatory agents LPS and IL-1 (3, leptin affects core body temperature in 

rats.

3.7.1 Experimental Design

Core body temperature was measured for 10 h, under the same conditions as 

demonstrated earlier (Section 3.6). Injections of vehicle (ip and icv), LPS (100 

jig/kg, ip), IL-1 (3 (5 ng, icv) or leptin (4 pg, icv) were all performed at 10:00 h (0 

h).

3.7.2 Results

Core body temperatures of vehicle-treated rats remained between 36.9-37.4°C 

for 9 h after injection, before rising sharply to 37.9°C at the 10 h time point 

(beginning of the dark phase).

Administration of LPS (Figure 3.7.1 A) elicited a significant and biphasic 

increase in body temperature (MANOVA: p<0.001 vs Vehicle) that began to rise

1.5 h after injection and peaked at the 2.5 and 5 h time points (1.8°C and 1.0°C 

above control; ANOVA: p<0.001 and p<0.01 respectively vs Vehicle).
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Temperatures of animals treated with LPS returned to control levels 

approximately 8.5 h after injection.

Animals injected with IL-ip exhibited an acute and monophasic increase in core 

body temperature (MANOVA: p<0.001 vs Vehicle) within the first 0.5 h after 

injection (Figure 3.7.1 B). This response reached a peak at the 2.5 h time point 

(2.3°C above control; ANOVA: p<0.001) before declining and returning to 

control temperatures 6.5 h after injection.

Injection of leptin (Figure 3.7.1 C) aiso elicited a monophasic increase in core 

body temperature. Temperatures began to rise within 0.5 h after injection, and 

like the responses to LPS and IL-1 p, peaked at the 2.5 h time point (1.7°C 

above control; ANOVA: p<0.001). Body temperature of leptin-treated animals 

remained elevated until 9.5 h after injection, when control temperatures rose to 

similar levels at the beginning of the dark phase. The temperature response 

induced by leptin was significantly greater than the response to injection of LPS 

(MANOVA: p<0.01) and varied significantly with time compared with all groups 

(MANOVA: p<0.01 vs LPS and IL-1 (3, p<0.05 vs Vehicle).
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Figure 3.7.1. Core body temperature in response to injection of (A) LPS

(100 pg/kg, ip) (B) IL-1 (3 (5 ng, icv) or (C) leptin (4 pg, icv)
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3.8 E ffec ts  o f  L eptin  from  D iffer en t  S o u r c es  on  C ore  Bo d y  

T em pe r a tu r e

Although the murine leptin used in these investigations had similar effects on 

food intake and body weight to the responses to injection of leptin obtained from 

alternative sources (Section 3.2), the temperature response described in the 

previous section may be an effect specific to murine leptin from Insight 

Biotechnology. Therefore, core body temperature was monitored in rats injected 

with leptin from three different sources, to investigate whether comparable 

temperature responses were induced.

3.8.1 Experimental Design

Injections (icv) of vehicle, or 4 jig of either rat leptin purchased from R&D 

Systems, murine leptin purchased from Insight Biotechnology, or murine leptin 

obtained from Zeneca, were performed at 10:00 h (0 h). Core body temperature 

was monitored for 10 h, until the end of the light phase.

3.8.2 Results

Core body temperatures of vehicle-treated rats remained between 36.9-37.5°C 

for 9 h after injection, before rising sharply to 37.9°C at the 9.5 h time point 

(beginning of the dark phase).

Injection of leptin from all sources, induced significant increases in core body 

temperature compared with vehicle-treated animals (MANOVA: p<0.001).

Administration of rat leptin (Figure 3.8.1 A) elicited increased body temperatures 

by the 1.5 h time point, and that peaked 5.5 h after injection (1.4°C above
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control, ANOVA: p<0.001). Temperatures of leptin-treated animals returned to 

control levels at the 9.5 h time point.

Rats injected with murine leptin obtained from Insight Biotechnology (Figure

3.8.1 B) exhibited elevated body temperatures after the 0.5 h time point, and 

that rose to a peak (1.4°C above control, ANOVA: p<0.001) 3.5 h after injection. 

Temperatures subsequently declined, reaching control levels at approximately 

the 7 h time point. Core body temperatures rose again between 8 and 10 h after 

injection, along with those of the control group.

Murine leptin obtained from Zeneca (Figure 3.8.1 C) induced increased 

temperatures 2 h after injection. This response was maximal (1.3°C above 

control, ANOVA: p<0.001) at the 5 h time point. Temperatures persisted until

9.5 h after injection when control temperatures rose at the end of the light 

phase.

In summary, injection of leptin from each source elicited significant (MANOVA: 

p<0.001 vs Vehicle) and similar increases in core body temperature which were 

not significantly different from each other over the 10 h after injection 

(MANOVA).
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Figure 3.8.1. Core body temperature in response to icv injection of 4 

(A) rat leptin (R&D Systems), or murine leptin obtained from (B) Insight 

Biotechnology or (C) Zeneca
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3.9 Leptin  D o s e -R e spo n se  S tu d y  on  C ore  B o d y  T e m pe r a tu r e  (a .m . 

In je c tio n )

The observation in the previous section that central injection of leptin from each 

of the three sources elicited increases in body temperature led to the proposal 

that, like the effects of leptin on food intake and body weight (Section 3.3), 

effects on body temperature were also dose-dependent. This study investigated 

the effects of increasing doses of leptin on core body temperature.

3.9.1 Experimental Design

Three doses of leptin (0.4, 1, and 4 jug), or vehicle were injected (icv) at 10:00 h 

(0 h) in rats. Core body temperatures were monitored for 10 h after injection.

3.9.2 Results

Core body temperatures of vehicle-treated rats remained between 36.9-37.3°C 

for 9 h after injection, before rising to 37.7°C at the 9.5 h time point (beginning 

of the dark phase).

Animals injected with the lowest dose of leptin (0.4 pg) exhibited body 

temperatures which although were slightly elevated after the 5 h time point, did 

not deviate significantly from those receiving vehicle (MANOVA) (Figure 3.9.1).

Injection of 1 jig leptin induced a significant increase in core body temperature 

(MANOVA: p<0.01 vs Vehicle) that began to rise 1 h after injection, and 

remained constant between the 2.5 and 5.5 h time points, 1.0°C above 

temperatures of vehicle-treated animals (ANOVA: p<0.01).
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The highest dose of leptin (4 pg) also elicited a significant increase in core body 

temperature (MANOVA: p<0.001 vs Vehicle) that began to rise 1 h after 

injection, and peaked at the 5 h time point (1.7°C above control; ANOVA: 

p<0.001). Temperatures of animals injected with either 1 or 4 pg leptin declined 

steadily from 5.5 or 5 h after injection respectively, until the 9.5 h time point 

when the body temperatures of vehicle-treated rats rose to similar levels at the 

beginning of the dark phase.
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Figure 3.9.1. Effects of injection of leptin (0.4, 1, and 4 pg, icv) at 10:00 h 

on core body temperature
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3.10 Leptin  Do s e -R es po n s e  St u d y  on  C o re  B o d y  T em p e r a tu r e  (p .m . 

In je c tio n )

Basal core body temperatures of rats are elevated during the dark phase, 

corresponding with the period when animals are most active and are feeding. It 

was postulated that these physiological and behavioural changes might alter the 

body temperature response induced by injection of leptin. Furthermore, levels of 

endogenous leptin show a circadian pattern (Simon et al., 1998) and are 

increased during the dark phase in nocturnal animals such as the rat, in 

response to feeding (Saladin et al., 1995; Pickavance et al., 1998). This 

fluctuation might also affect the actions of leptin on body temperature. The 

influence of nocturnal conditions on the temperature response to leptin were 

investigated in this study by injecting three doses of leptin (as in Section 3.9) 

just before the beginning of the dark phase.

3.10.1 Experimental Design

Three doses of leptin (0.4, 1, and 4 jug), or vehicle were injected (icv) at 18:00 h 

in rats. Core body temperatures were monitored for 10 h after injection.

3.10.2 Results

Vehicle-treated animals exhibited core body temperatures that rose by 0.8°C 

over the first 3.5 h after injection, peaking at 21:30 h - 1.5 h into the dark phase 

(Figure 3.10.1). Core body temperatures remained elevated (37.9-38.3°C) for 

the remainder of the experiment.
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Animals injected with either 0.4 or 1 pg leptin exhibited body temperatures that 

did not deviate significantly from those receiving vehicle (MANOVA) over the 10 

h after injection.

The highest dose of leptin (4 pg) elicited a significant rise in core body 

temperature (MANOVA: p<0.01 vs Vehicle; p<0.05 vs 0.4 pg) that peaked 3 and 

5 h after injection (0.8 and 0.6°C above control; ANOVA: p<0.01). 

Temperatures subsequently declined to control levels at the 7.5 h time point.

Although injection of 1 pg leptin did not induce a significant response over the 

whole time course, further analysis revealed that after the 4 h time point, 

temperatures of leptin treated animals were significantly greater than 

temperatures in rats injected with vehicle (MANOVA: p<0.05).

39.0-
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£ 38.0-
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Figure 3.10.1. Effects of injection of leptin (0.4, 1, and 4 pg, icv) at 18:00 h 

on core body temperature

(Light and dark phases are indicated by the bar underneath the graph)
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3.11 E ffe c ts  o f  H e a t D e n a tu ra tio n  on B io lo g ic a l A c tiv ity  o f  Leptin

The results described in the previous four sections (3.7-3.10) show for the first 

time that central injection of leptin elicits increases in core body temperature in 

normal rats. Further studies were therefore required to verify that these 

responses were induced by leptin, and not by endotoxin contamination. Such 

contamination is possible since leptin from each source used in these studies 

was expressed in E.Coli bacteria, although data supplied by the manufacturers 

quoted levels of endotoxin to be as low as <0.1 ng/pg leptin (Insight 

Biotechnology and R&D Systems). Nevertheless, the following study was 

performed to investigate the effects of injection of leptin that had been 

inactivated by heat denaturation. If the responses to leptin administration 

described in previous sections persisted after heat denaturation, then they were 

probably induced by a contaminant such as LPS.

Injections in all subsequent studies that measured core body temperature were 

performed during the light phase (from 10:00 h), when vehicle-treated animals 

display constant temperatures that allow effective comparison with animals in 

other treatment groups.

3.11.1 Experimental Design

A sample of leptin (2 ptg/pil) was heated to 95°C for 30 min to denature the 

protein. Vehicle, leptin (4 pig/rat), or the equivalent quantity of heat-treated leptin 

were injected at 10:00 h. Core body temperature was monitored for 7 h after 

injection. Food intake and body weights were measured over 22 h (until the 

beginning of the subsequent light phase).
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3.11.2 Results

Vehicle-treated animals consumed 26.5±1.0 g food over 22 h after injection 

(Figure 3.11.1 A). This food intake was significantly reduced (by 39%) in 

animals injected with leptin (ANOVA: p<0.001 vs Vehicle). Heat-treatment of 

leptin abolished this response (ANOVA: p<0.001 vs leptin) such that animals 

injected with denatured leptin consumed similar quantities of food (25.6+0.3 g) 

to vehicle-treated rats (ANOVA).

Animals injected with vehicle gained 11 ±2 g body weight over the same 22 h 

time period (Figure 3.11.1 B). Leptin administration induced a significant 

(ANOVA: p<0.001 vs Vehicle) body weight loss (4±1 g). This leptin-induced 

response was also abolished by heat-treatment of the protein (p<0.001).

Animals injected with vehicle showed core body temperatures that remained 

between 37.0-37.3°C over 7 h after injection (Figure 3.11.1C). Injection of leptin 

induced a significant increase in core body temperature (MANOVA: p<0.001) 

compared to vehicle-treated animals. This increase was first apparent 2.5 h 

after injection, and rose to a peak (1.6°C above control, ANOVA: p<0.001) at 

the 6.5 h time point. Heat-treated leptin failed to evoke a temperature response 

(MANOVA: p<0.001 vs Leptin) such that animals exhibited temperatures that 

were not significantly different from temperatures of vehicle-treated rats 

(MANOVA).
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Figure 3.11.1. Effects of heat treatment (95°C for 30 min) on actions of 

leptin (4 pg, icv) on (A) food intake, (B) body weight, and (C) core body 

temperature

(ANOVA: *** p<0.001 vs Vehicle)
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3.12  E ffects  o f  L eptin  in L ean  a n d  O bese  Z ucker  Ra ts

The data described in the previous section indicate that the changes in food 

intake, body weight and body temperature are specific actions of leptin, and are 

not a result of contamination by endotoxin or other heat resistant substances. 

The leptin receptor has been reported to belong to the class I family of cytokine 

receptors (Tartaglia et al., 1995; Tartaglia, 1997), and possesses similar signal 

transduction properties to those of lL-6 receptors (Baumann et al., 1996; 

Nakashima et al., 1997). It may be possible therefore, that the responses 

observed here were induced by the interaction of leptin with other cytokine 

receptors involved in hypophagia and pyrogenic responses. This study was 

designed to investigate whether these responses were specific to the action of 

leptin on the leptin receptor.

Currently there are no commercially available leptin receptor antagonists that 

block leptin receptor stimulation. Therefore in this experiment, genetically obese 

Zucker rats were used, which possess a defective leptin receptor (lida et al., 

1996; Phillips et al., 1996), and therefore should have an attenuated response 

to injection of leptin (Cusin et al., 1996). These animals should however still 

exhibit anorexic and febrile responses to proinflammatory agents such as PGs 

that mediate responses to LPS and IL-1 p (Blatteis & Sehic, 1998; Milton, 1998).

3.12.1 Experimental Design

Lean (Fa/7) and obese (fa/fa) Zucker rats were injected (icv) with vehicle, PGE2 

(500 ng) or leptin (4 |ig) at 10:00 h. Core body temperatures were monitored for 

6 h; food intake and body weight were monitored over 22 h after injection.
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3.12.2 Results

Obese Zucker rats consumed slightly, but not significantly more food (27±2 g) 

than lean animals (24±1 g) over 22 h, after injection of vehicle (Figure 3.12.1). 

Injection of PGE2 attenuated food intake by 17% (p<0.05) in lean animals, and 

by 22% (p<0.05) in obese rats (ANOVA). Comparison of food consumed by 

lean and obese Zucker rats treated with PGE2 revealed no significant difference 

(ANOVA). Administration of leptin inhibited food intake by 50% in lean Zucker 

rats (ANOVA: p<0.001 vs Lean-Vehicle), but did not significantly affect food 

intake (28±2 g) in obese animals (ANOVA vs Obese-Vehicle).

LL 15
* * *

Vehicle PGE2 Leptin Vehicle PGE2 Leptin

Lean Obese

Figure 3.12.1. Food intake over 22 h in lean and obese Zucker rats in 

response to injection (icv) of PGE2 (500 ng) or leptin (4 |ng)

(ANOVA: * p<0.05, *** p<0.001 vs Lean-Vehicle; # p<0.05 vs Obese-Vehicle)
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In the same animals, body weight gain was measured over the 22 h period after 

injection. At the beginning of the experiment, obese Zucker rats had significantly 

greater (t-test: p<0.001) body weights (530+15 g) than lean animals (320±5 g). 

Body weight gains (Figure 3.12.2) in lean (11+1 g) and obese animals (12±1 g) 

treated with vehicle were not significantly different (ANOVA). Injection of PGE2 

significantly inhibited body weight gain in lean and obese rats to 3+2 and 2±1 g 

respectively (ANOVA: p<0.001 vs Lean and Obese-Vehicle). Similarly, body 

weight gain was significantly attenuated (to 2±1 g) in lean animals treated with 

leptin (ANOVA: p<0.001 vs Lean-Vehicle), but was not significantly affected 

(ANOVA vs Obese-Vehicle) in leptin-treated obese rats (9+2 g).

1 5 -i

* * *

Vehicle PGE2 Leptin Vehicle PGE2 Leptin
-\ H -\

Lean Obese

Figure 3.12.2. Body weight gain over 22 h in lean and obese Zucker rats in 

response to injection of PGE2 (500 ng, icv) or leptin (4 (ig, icv)

(ANOVA: *** p<0.001 vs Lean-Vehicle; ### p<0.001 vs Obese-Vehicle)
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Core body temperature was also measured in these animals. Lean rats injected 

with vehicle exhibited core body temperatures that remained between 36.9- 

37.3°C over the first 6.5 h after injection. Temperatures subsequently began to 

rise, peaking (38,0±0.2°C) at the 10 h time point (at the beginning of the dark 

phase). Over the first 6 h after injection, vehicle-treated obese Zucker rats 

exhibited temperatures between 36.9-37.2°C, after which temperatures also 

rose to peak (37.9±0.2°C) at the 10 h time point.

Administration of PGE2 induced a rapid and significant increase in core body 

temperature in both lean and obese animals compared to vehicle-treated rats 

(MANOVA: p<0.001) (Figure 3.12.3A). Temperatures peaked at the 0.5 h time 

point (3°C above controls, ANOVA: p<0.001) before declining sharply, returning 

to control values 2 h after injection.

Lean Zucker rats exhibited increased core body temperatures (Figure 3.12.3B)

2.5 h in response to injection of leptin, which peaked at the 3 h time point (1°C 

above control, ANOVA: p<0.001). Elevated temperatures persisted for 

approximately 9 h (MANOVA: p<0.01) before temperatures of vehicle-treated 

rats rose to similar levels at the beginning of the dark phase. In contrast, core 

body temperatures of obese animals treated with leptin increased slightly, but 

not significantly compared to those injected with vehicle (MANOVA).
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Figure 3.12.3. Core body temperatures of lean and obese Zucker rats in 

response to injection of (A) PGE2 (500 ng, icv) or (B) leptin (4 pg, icv)
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3.13 E ffe c ts  o f  a cyc lo -o xyg en ase  inh ib ito r on responses to  lep tin

The results described in the previous section indicate that PG (but not leptin) 

mediated pathways are still active in the obese Zucker rat. PGs mediate many 

actions of proinflammatory agents such as LPS and IL-1, including fever and 

anorexia (Hellerstein et al., 1989; Rothwell, 1990; Milton, 1998). Given the 

similar food intake and body temperature responses to injection of LPS, IL-1 

and leptin (Section 3.6-3.7), effects of leptin in animals possessing normal 

functioning leptin receptors, may also be mediated by PG-dependent pathways. 

PGs are produced from arachadonic acid, by cyclo-oxygenase enzymes 

(Kaufmann et al., 1997). Therefore this study was designed to investigate 

whether inhibiting PG generation (by administration of a cyclo-oxygenase 

inhibitor) blocks responses to leptin on food intake and core body temperature, 

by inhibiting PG synthesis.

3.13.1 Experimental Design

Animals were injected (icv) at 10:00 h with vehicle or leptin (4 pg), and with the 

cyclo-oxygenase inhibitor flurbiprofen (1 mg/kg, ip), or its vehicle. Core body 

temperature was monitored for 10 h after injection - until the end of the light 

phase. Food intake and body weight gain were measured 22 h after injection, at 

the end of the subsequent dark phase.

3.13.2 Results

Vehicle-treated animals consumed 25.8±0.8 g food over 22 h after injection 

(Figure 3.13.1 A). Injection of flurbiprofen elicited food intake (26.2+0.9 g) that 

was not significantly different from that after treatment with vehicle (ANOVA).
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Leptin administration induced a significant reduction (by 58%) in food intake 

(ANOVA: p<0.001 vs Vehicle). Animals co-administered with leptin and 

flurbiprofen exhibited food intake (14.1+0.9 g) that was not significantly different 

from those treated with leptin alone (10.9+1.7 g, ANOVA), but was still 

significantly attenuated (by 45%) compared to food intake of vehicle-treated rats 

(ANOVA: p<0.001).

Animals injected with vehicle gained 12±1 g body weight over the same 22 h 

time period (Figure 3.13.1 B). Injection of flurbiprofen elicited body weight gain 

(13+2 g) that was not significantly different from that exhibited by vehicle-treated 

animals (ANOVA). Leptin administration induced a significant (ANOVA: p<0.001 

vs Vehicle) body weight loss (5±1 g). This leptin-induced body weight loss (3±1 

g) was not significantly affected (ANOVA) in animals treated with both leptin and 

flurbiprofen, and was still significantly different compared to the weight gain 

observed in vehicle-treated animals (ANOVA: p<0.001).

Animals injected with vehicle exhibited core body temperatures that remained 

between 36.8-37.4°C over the first 9 h after injection (Figure 3.13.1 C). 

Temperatures subsequently rose, peaking (at 37.9±0.1°C) at the 10 h time 

point. Administration of flurbiprofen did not significantly affect this temperature 

response (MANOVA). Injection of leptin induced a significant increase in core 

body temperature (MANOVA: p<0.001 vs Vehicle) that began to rise 1.5 h after 

injection, and peaked (1.7°C above control, ANOVA: p<0.001) at the 6.5 h time 

point. Elevated temperatures declined slightly and then persisted (38.6-38.7°C) 

from the 8 h time point to the end of the 10 h time course. Co-administration of
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flurbiprofen completely abolished the increase in core body temperature elicited 

by injection of leptin (MANOVA: p<0.001) such that temperatures were not 

significantly different from those exhibited by vehicle-treated animals 

(MANOVA).
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Figure 3.13.1. Effects of cyclo-oxygenase inhibitor flurbiprofen (1 mg/kg, 

ip) on (A) food intake, (B) body weight gain, and (C) core body 

temperature responses to icv injection of leptin (4 \ig)
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3.14 S u m m a r y

The results described here indicate that injection of leptin (rat or murine) into the 

rat brain not only causes dose and time-dependent inhibition of food intake and 

body weight (Section 3.2-3.S), but also increases core body temperature 

(Section 3.8-3.10) - effects that are similar to those induced by the 

proinflammatory agents LPS and IL-1p (Section 3.6 and 3.7). This is the first 

time such effects on core body temperature have been reported in response to 

injection of leptin in normal rodents. The leptin injected appears to be free of 

endotoxin contamination (Section 3.11) and mediates its effects by the direct 

action of leptin on its receptor (Section 3.12). Furthermore, the data indicate 

that leptin-induced responses on core body temperature, but not food intake 

and body weight, are mediated by PGs (Section 3.13).

3.15 D is c u s sio n

The results of experiments described in Section 3.2, performed over 22 h after 

injection of leptin at 10:00 h, confirm previous findings (Seeley et al., 1996; 

Schwartz et al., 1996; Wang et al., 1997; al-Barazanji et al., 1997; Widdowson 

et al., 1997) that murine leptin inhibits both food intake (Figure 3.2.1) and body 

weight gain (Figure 3.2.2) in rats. These responses are similar for murine and 

rat leptin - a finding that may be expected since murine and rat leptin molecules 

have 96% sequence homology (Murakami & Shima, 1995). Because of the 

similarity between responses to murine and rat leptin, and the availability of 

murine leptin, most subsequent studies were performed using the latter.
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The results presented in Sections 3.3 and 3.4 demonstrate that the inhibitory 

effects of murine leptin on both food intake and body weight gain are dose- 

dependent when injected in the morning and measured over 22 h (Figure 3.3.1- 

2), or evening and measured over 14 h (Figure 3.4.1-2). More potent effects on 

these parameters were elicited by evening injection of leptin compared to 

morning injection, probably because the nocturnal feeding behaviour of rats is 

more likely to be affected by injection of leptin directly prior to this period.

The data described in Section 3.5 show that cumulative food intake was not 

significantly affected until 3 h after injection of leptin (Figure 3.5.1 A), although 

consumption between 1 and 2 h was significantly reduced in response to leptin 

(Figure 3.5.1 B). Conversely, Schwartz et al. reported significant effects of leptin 

over these early time points in free-fed rats, but did not observe effects 24 h 

after injection (Schwartz et al., 1996). In the study described here however, the 

greatest inhibition of food intake in response to injection of leptin was observed 

over the 3-12 and 24-36 h periods of nocturnal feeding behaviour, after which, 

normal feeding was resumed. These results are comparable to published data 

stating that normal food intake of animals is recovered by the third day after 

leptin administration (Cusin et al., 1996; Jacob et al., 1997). However, the 

leptin-induced suppression of food intake shown here was not compensated for 

by increased consumption in subsequent days.

In normal rats, body weight showed the expected diurnal variation, as the 

animals underwent phases of feeding (Figure 3.5.2B). The inhibitory effects of 

leptin injection on food intake were reflected in the resulting attenuation of body 

weight gain, such that weight gain was reduced over the first 12 h after injection
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(Figure 3.5.2B). However, although food intake was reduced between 24 and 

36 h after injection (Figure 3.5.1 B), body weight gain was unaffected (Figure 

3.5.2B). Furthermore, like the food intake of these leptin-treated animals, the 

reduced body weight gain was not compensated for over the remainder of the 

experiment (Figure 3.5.2A).

The effects of leptin on food intake and body weight reported here were similar 

to those seen in response to injection of proinflammatory cytokines (Mrosovsky 

etal., 1989) or LPS (McCarthy et al., 1986). Moreover, the structural similarities 

between leptin and cytokines (Zhang et al., 1997) and their receptors (Tartaglia 

et al., 1995; White & Tartaglia, 1996; Baumann et al., 1996; Tartaglia, 1997) 

prompted a direct comparison of the effects of icv injection of leptin, IL-1p and 

LPS on food intake and body weight (Section 3.6). Indeed, injection of LPS and 

IL-1 p elicited similar reductions in food intake (Figure 3.6.1) and body weight 

gain (Figure 3.6.2). Although these results do not confer any relationship 

between leptin and these proinflammatory agents, the doses of LPS and IL-1 p 

injected are commonly used to induce fever in experimental animals (Busbridge 

etal., 1990; Strijbos etal., 1992; Luheshi etal., 1996; Larson etal., 1996). This 

observation suggested that leptin may also have effects on core body 

temperature in normal rats. Indeed, data presented in Section 3.7-3.10 are the 

first to report convincingly that injection (icv) of leptin (murine or rat) induces 

significant dose-dependent increases in core body temperature in freely-fed 

rats.
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A separate study has reported modest increases body temperatures in 

response to injection of leptin in rats (Fruhbeck et al., 1998). Injection (ip) just 

prior to the dark phase, of a pool of 20 amino acid peptide fragments of the 

leptin molecule (1-5 mg/kg each peptide) increased core body temperatures 75 

min after injection. However, the high basal temperatures (>38°C) reported in 

this study (Fruhbeck et al., 1998), and the timing of injections (just prior to the 

increase in nocturnal activity) may have limited any significant changes in core 

body temperature.

It may be argued that the actions of leptin observed in this study were not 

specific to leptin receptors, and that the leptin injected may be stimulating 

similar receptors, such as the IL-6 receptor (Baumann et al., 1996; Nakashima 

et al., 1997). The absence of a commercially available leptin receptor antagonist 

discounted the possibility of proving pharmacologically that responses on food 

intake, body weight gain, and core body temperature observed in this study 

were induced by direct action of leptin on the leptin receptor. However, it has 

been reported that effects on body weight gain of endogenous leptin are 

reversed by injection of a mutant form of leptin, R128Q (Verploegen et al.,

1997), or specific leptin peptide fragments (Grasso et al., 1997). Furthermore, 

icv injection of rabbit anti-mouse leptin antibodies that recognise a major 

epitope in the C-terminai region of the leptin molecule increased food intake 

during the first hour after injection (which was not compensated during the 

following 19 h period) in lean, but not obese Zucker rats (Brunner et al., 1997). 

These molecules may be of great future importance in both laboratory and
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clinical investigations, for the therapeutic treatment of wasting disorders such as 

anorexia and cachexia.

The profile of the temperature response to injection of leptin shared some 

characteristics with LPS and IL-1 (3 fever, but was not identical (Figure 3.7.1 A- 

C). Whereas leptin-induced hyperthermia was monophasic, like the response to 

injection of IL-1 (3, it was of similar duration to the LPS-induced response. 

Therefore it appears that leptin induces a unique temperature profile, which may 

be associated with a steady, prolonged increase in thermogenesis. Although the 

temperature responses to injection of leptin obtained from different sources 

(Section 3.8) were all of similar pattern (Figure 3.8.1), the duration of 

responses in this experiment differed slightly (murine, Zeneca > rat > murine, 

Insight), but not significantly.

The data presented in Section 3.9 show that the increase in core body 

temperature of rats injected icv with leptin is dose-dependent (Figure 3.9.1). 

Injection of leptin was also found to increase body temperature when injected 

just prior to the nocturnal phase (Section 3.10), although only the highest dose 

of leptin elicited a significant response (Figure 3.10.1), probably because of the 

higher basal temperature. Endogenous leptin levels are naturally circadian 

(Simon et al., 1998) and are increased during the dark phase in rats, in 

response to nocturnal feeding behaviour (Saladin etal., 1995; Pickavance et al.,

1998). These variations in plasma leptin are also reported to be inversely 

related to levels of adrenocorticotrophic hormone (ACTH) and cortisol (Licinio et 

al., 1997), and mirrored by plasma glucose, insulin and importantly, temperature 

(Simon et al., 1998). However, the effects of increased nocturnal levels of
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endogenous leptin and injection of exogenous leptin are not additive. Visual 

comparison of the temperature profiles of morning (Figure 3.9.1) and evening 

(Figure 3.10.1) injections of leptin reveal few differences. Nevertheless, the 

presence of a temperature response elicited by the highest dose of leptin 

suggests that the circadian clock does not gate effects of endogenous leptin on 

temperature i.e. nocturnal physiology does not inhibit the responses to injection 

of leptin.

Most subsequent experiments involving actions of leptin on core body 

temperature were performed using leptin injected at 10:00 h, since significant 

increases in body temperature were observed above constant basal 

temperatures of animals in the control group. In addition, significant effects on 

food intake and body weight were still observed.

The experiment described in Section 3.11 showed that heat denatured leptin 

failed to induce effects on food intake, body weight gain or core body 

temperature (Figure 3.11.1). These data support the suggestion that the effects 

described here on food intake, body weight and body temperature were due to 

the action of leptin. Furthermore, the temperature response to injection of leptin 

was different from the biphasic fever elicited by injection of LPS (Figure 3.7.1).

Genetic models of obesity have been used extensively as tools for investigating 

actions of leptin, most notably ob/ob and db/db mice. This study however 

investigated actions of leptin in rats. Therefore the obese Zucker rat {fa/fa) 

which possesses a defective leptin receptor, was used to test the specificity of 

the actions observed in normal rats in response to injection of leptin (Section 

3.12). Lean Zucker rats (Fa/?) exhibited similar food intake, body weight gain
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and body temperature responses to leptin as those seen previously in Sprague- 

Dawley rats (Sections 3.2-3.11). However, leptin failed to induce significant 

changes in any of these factors in obese Zucker rats (Figure 3.12.1-3). These 

data indicate that responses to leptin administration reported here were induced 

by direct action of leptin on leptin receptors.

Previous studies have also reported that obese Zucker rats fail to respond to 

injection of leptin (Seeley et al., 1996). However, injection of large doses of 

leptin have been shown to attenuate body weight gain (Cusin et al., 1996; al- 

Barazanji et al., 1997), supporting the proposal that obese Zucker rats still 

possess limited leptin receptor signalling (Yamashita et al., 1997). In spite of 

this, obese fa/fa Zucker rats responded normally to central injection of PGE2 

(Section 3.12). Nevertheless, the high plasma levels of glucocorticoids that 

have been reported to affect febrile responses to cytokines in obese animals 

(Busbridge et al., 1990) may also attenuate leptin-induced temperature 

changes. Therefore to fully verify that the effects of leptin on food intake, body 

weight and temperature are specific to action on leptin receptors, further 

experiments should be performed using adrenalectomised Zucker rats.

It may also be argued that due to the greater body weight of obese Zucker rats, 

injection of leptin may have a proportionally reduced effect, compared to 

responses in lean animals. Thereby, a 4 jug injection (icv) of leptin relates to a

12.5 pg/kg ratio in lean (320 g) animals, but only a 7.5 j-ig/kg ratio in obese (530 

g) rats, which may result in reduced leptin effects in the obese animals. 

However, although this relationship may be relevant to peripheral injection of 

leptin where the distribution volume is obviously greater in the obese rat, icv
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injection, where leptin is confined largely to the brain, probably corrects for this 

discrepancy.

Earlier studies reported that leptin normalises the attenuated body temperatures 

of obese ob/ob mice (Pelleymounter et al., 1995; Harris et al., 1998) which are 

deficient in endogenous leptin. However, neither study reported acute effects of 

leptin since temperature was measured after 3 weeks (Pelleymounter et al.,

1995) or four days (Harris et al,, 1998) of leptin treatment. Temperature 

responses to other pyrogens (e.g. IL-1) are rapidly lost (within 3 days) due to 

tolerance (Plata-Salaman et al., 1996), and this may also be the case for leptin. 

The experiments described in these publications were performed at relatively 

low ambient temperatures for mice (approximately 26°C). Injection of other 

pyrogens such as IL-1 fail to elicit fever in mice, below ambient temperatures of 

approximately 28°C (Kozak et al., 1994). Therefore any increases in heat 

production may have been masked.

Prostaglandins, which are activated by the actions of cyclo-oxygenase 

enzymes, are important in mediating fever (Kaufmann et al., 1997). It has 

already been shown in this chapter that food intake, body weight and body 

temperature responses to injection of leptin are similar to those induced by the 

pyrogenic proinflammatory agents LPS and IL-113 (Section 3.6-3„7). These 

molecules induce fever via PG-dependent mechanisms (Coceani et al., 1988; 

Rothwell, 1989; Saper & Breder, 1992; Cao et al., 1997). It was suggested 

therefore that PGs also mediate leptin-induced increase in body temperature. 

Indeed, administration of the cyclo-oxygenase inhibitor flurbiprofen, which 

blocks the effects of both type 1 and type 2 cyclo-oxygenases (Riendeau et al.,
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1997), and inhibits febrile responses to injection of cytokines (Rothwell et a/., 

1991), abolished the effects of icv injection of leptin on body temperature, but 

did not affect changes in food intake or body weight (Section 3.13). These data 

suggest that the hypophagic and hyperthermic responses to icv injection of 

leptin are mediated by separate PG-independent and PG-dependent pathways, 

respectively.

The fact that the increased core body temperatures observed in response to 

injection of leptin in normal rats are mediated by PGs suggests that leptin may 

be inducing fever (Kluger, 1991; Kluger et al., 1995). However, although these 

temperature changes are PG-dependent, to elucidate whether leptin indeed 

induces ’true’ fever, a course of behavioural studies should be performed to 

investigate whether the preferred ambient temperature of the animals is altered. 

If leptin is acting on the hypothalamic set-point to increase core body 

temperature, animals that are housed in a temperature gradient and injected 

with leptin may be expected to migrate to an area of higher ambient 

temperature than vehicle-treated animals so as to facilitate a febrile response.

The similarities described in this chapter between the effects of icv injection of 

leptin on food intake, body weight and core body temperature in rats, and those 

induced by injection of the cytokine IL-1, and the fact that like IL-1, leptin ’fever’ 

is mediated by PGs, suggests that there may be a causal relationship between 

the actions of leptin and cytokines.
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Chapter 4

_________________ ——
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4.1 In tr o d u c tio n

Leptin has been implicated in the control of energy balance by suppressing food 

intake and increasing energy expenditure as described in Chapter 3, and in 

previous studies (Zhang etal., 1994; Hwa etal., 1996), thereby mimicking some 

aspects of a host response to disease or infection. This hypothesis is supported 

further by evidence linking proinflammatory agents with the synthesis and 

release of leptin.

Administration of bacterial lipopolysaccharide (LPS) in rodents, to generate a 

host defence response, upregulates gene expression and serum protein levels 

of leptin (Grunfeld etal., 1996; Sarraf etal., 1997; Berkowitz et al., 1998). LPS 

is also a potent inducer of cytokines both In vivo and in vitro (Rothwell & 

Hopkins, 1995), and induction of leptin in response to LPS appears to be 

mediated via release of the cytokines IL-1 and TNF (Sarraf et al., 1997; 

Faggioni et al., 1998; Finck et al., 1998). Indeed, both IL-1 and TNF have been 

shown to directly increase leptin mRNA expression and serum leptin 

concentration in rodents (Grunfeld et al., 1996; Sarraf et al., 1997; Berkowitz et 

al., 1998). Conversely, exogenous leptin has been demonstrated to upregulate 

LPS-induced phagocytosis and proinflammatory cytokines (TNF, IL-6, IL-12) in 

ex vivo macrophages from mice (Loffreda etal., 1998). In addition, obese leptin- 

deficient (ob/ob) mice, and obese Zucker {fa/fa) rats possessing a defective 

leptin receptor show attenuated levels of serum TNF and IL-6 in response to 

LPS administration (Loffreda et al., 1998). Obese Zucker rats also exhibit 

reduced immune responsiveness (Plotkin etal., 1996). This study reported that 

the bacteria colonies were established at a greater rate and to a greater extent
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in obese compared to lean Zucker rats. Furthermore, peritoneal 

polymorphonuclear leucocytes, resident macrophages and thioglycollate-elicited 

macrophages from lean Zucker rats displayed a significantly higher ability to kill 

ingested yeast cells than analogous cell populations from obese Zucker rats 

(Plotkin et al., 1996). These findings suggest that leptin is linked to the actions 

of proinflammatory cytokines, and may be involved in host defence responses 

to infection in the periphery. This suggestion is supported by studies performed 

in humans. Injection (iv) of IL-1 a in cancer patients has been reported to dose- 

dependently increase serum leptin concentrations (Janik et al., 1997). However, 

despite continued administration of IL-1 a, serum leptin concentrations of 

patients in this study returned to pre-treatment levels after 5 days of therapy. 

Patients with acute sepsis exhibit increased plasma leptin (by three-fold), IL-6 

and cortisol, and reduced ACTH levels (Bornstein et al., 1998). The control 

patients in this study exhibited a diurnal fluctuation in plasma leptin levels 

(23:00 h peak) whereas septic patients maintained high leptin levels throughout. 

This suggests that leptin is involved in host defence responses to infection in 

both animals and humans.

The anti-inflammatory cytokine TGF-p has also been reported to increase leptin 

mRNA expression in vitro (Granowitz, 1997). Conversely, treatment of 3T3-L1 

adipocytes with IL-1 (3, IL-6, IL-11, or TNF-a in this study resulted in a decrease 

in leptin message. Since other studies report that IL-1 and TNF-a induce leptin 

expression, these results suggest that pro-inflammatory cytokines induce leptin 

synthesis in vivo via secondary mediators such as TGF-p.
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The aforementioned studies demonstrate strongly a relationship where 

proinflammatory mediators such as cytokines stimulate the synthesis and 

release of leptin. However, such mediators (cytokines) are known to be highly 

involved in positive and negative feedback loops with other cytokine molecules 

(Hopkins & Rothwell, 1995). The structure of leptin and its receptor have been 

likened to cytokines, and the experiments presented in the previous chapter 

demonstrate cytokine-like effects of leptin on food intake, body weight and core 

body temperature. Therefore, it was suggested that leptin may have a similar 

relationship with cytokines, such that the hypophagic and febrile effects of leptin 

in the brain described in Chapter 3, are mediated via the release of cytokines 

such as IL-1 and IL-6.
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4.2 In flu e n c e  o f  IL-1 ra  on  A c tio n s  of  C en tr a lly  A d m in is te r e d  L eptin

Studies described in Chapter 3 showed that leptin induces both hypophagia 

and increased body temperature - responses that mimic effects of 

proinflammatory agents such as LPS and the cytokine IL-1 (Section 3.6-3.7). 

The data also indicated that leptin actions on temperature, but not food intake or 

body weight, are mediated by PGs - molecules that mediate many responses to 

cytokines such as IL-1 (Hellerstein et al., 1989; Rothwell, 1990; Milton, 1998). 

This objective of this experiment was to address the hypothesis that IL-1 is 

directly involved in mediating effects of central injection of leptin on food intake, 

body weight gain, and core body temperature. This was achieved by the use of 

the naturally occurring receptor antagonist to IL-1 receptors, IL-1 ra.

4.2.1 Experimental Design

Animals were injected (icv) at 10:00 h (0 h) with vehicle or leptin (4 jig), and with 

previously determined dose (200 ptg) of IL-1 ra (Luheshi et al., 1996a; Miller et 

al., 1997) or vehicle (icv). Animals were treated again with IL-1 ra (200 ptg, icv) at 

the 1 h time point. Core body temperature was monitored for 10 h after injection 

- until the end of the light phase. Food intake and body weight gains were 

measured over 22 h - until the end of the subsequent dark phase.

4.2.2 Results

Food intake (Figure 5.2.1) was significantly reduced by 55% (ANOVA: p<0.001) 

over 22 h in normal rats in response to icv injection of leptin, compared to 

vehicle-treated animals (26.8+0.1 g). Central injection of lL-1ra at the 0 and 1 h
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time points, alone did not significantly affect food intake (ANOVA). Co­

administration of leptin and IL-1 ra however, attenuated the suppressed food 

intake observed in leptin-treated rats (ANOVA: p<0.001), returning consumption 

to within 60% of normal (ANOVA: p<0.001).

30-i

Vehicle IL-1ra Leptin Leptin/
IL-1 ra

Figure 4.2.1. Food intake over 22 h in response to injection (icv) of leptin 

(4 [ig) and IL-1ra (200 jxg, 0 and 1 h)

(ANOVA: *** p<0.001 vs Vehicle; ##p<(3.01 Vs Leptin)

In the same animals, body weight (Figure 5.2.2) was measured over 22 h after 

icv injection of leptin and IL-1ra. Leptin significantly reduced (ANOVA: p<0.001) 

body weight (by 7±2 g) in comparison to the weight gain observed in vehicle- 

treated rats (12+1 g). This weight loss induced by central injection of leptin was
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markedly inhibited (ANOVA: p<0.001) by co-administration of IL-1ra. Injection of 

IL-1 ra alone did not significantly affect body weight (ANOVA).
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Figure 4.2.2. Changes in body weight in response to injection (icv) of 

leptin (4 pg) and IL-1ra (200 pg, 0 and 1 h)

(ANOVA: *** p<0.001 vs Vehicle; ###p<0.001 vs Leptin)

Central administration of IL-1 ra did not significantly affect core body 

temperature (Figure 4.2.3) compared to vehicle-treated rats (ANOVA). Injection 

(icv) of leptin induced a significant increase in core body temperature 

(MANOVA: p<0.001 vs Vehicle). Body temperatures of leptin-treated animals 

rose after the 1.5 h time point, and peaked (1.7°C above control) 6.5 h after 

injection (ANOVA: p<0.001 vs Vehicle). Temperatures remained elevated for
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the remainder of the 10 h study. This leptin-induced response was completely 

abolished (MANOVA: p<0.001) by co-administration of IL-1ra.
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Figure 4.2.3. Core body temperature in response to injection (icv) of leptin 

(4 jag) and IL-1ra (200 jag, 0 and 1 h)

4.3 In flu e n c e  o f  IL-1 ra  on  A c tio n s  o f  P er ip h e r a lly  A d m in is t e r e d  L eptin

All studies described in this thesis have involved injection of leptin into the brain 

of rats, where leptin elicits many of its actions on food intake and energy 

balance (Campfield et al., 1996; Considine & Caro, 1997; Auwerx & Staels,

1998). However, leptin is synthesised and released from white adipose tissue in 

the periphery, and must cross the BBB via a saturable mechanism (Banks et al.,

1996), to exert actions in the brain. Therefore leptin levels in the brain after icv 

injection may exceed those that occur naturally after entry from the periphery.
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Therefore this study was performed to investigate whether peripheral 

administration of leptin elicited similar responses to those observed in response 

to icv injection; and whether any effects seen were inhibited by IL-1 ra.

4.3.1 Experimental Design

Animals were injected (ip) with leptin (3.4 mg/kg, approx. 1 mg/rat) or vehicle at 

10:00 h (0 h), and with a dose (200 jig, icv) of IL-1 ra or its vehicle. Animals were 

treated again with IL-1 ra (200 pg, icv) at the 1 h time point. Core body 

temperature was monitored for 6 h after injection. Food intake and body weight 

gains were measured over 22 h - until the end of the subsequent dark phase.

4.3.2 Results

Peripheral injection of leptin significantly reduced food intake (Figure 4.3.1) in 

rats (by 26%) over 22 h compared with vehicle-treated animals (31.5+0.5 g, 

ANOVA: p<0.001). Central injection of IL-1 ra alone did not affect food intake, as 

shown in the previous section (4.2). However co-administration of IL-1 ra 

significantly (ANOVA: p<0.01) attenuated (by 60%) the hypophagia induced by 

leptin, such that food intake was not significantly different from control levels 

(ANOVA).
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Vehicle IL-1ra Leptin Leptin/
IL-1 ra

Figure 4.3.1. Food intake over 22 h after injection of leptin (1 mg/rat, ip) 

and IL-1ra (200 jiig, 0 and 1 h, icv)

(ANOVA: *** p<0.001, ** p<0.01 vs Vehicle; ###p<0.01 vs Leptin)

In the same animals, body weight was measured (Figure 4.3.2). Vehicle-treated 

animals gained 14+1 g body weight over the 22 h after injection. This gain in 

body weight was unaffected by central administration of IL-1ra. Peripheral 

injection of leptin significantly attenuated body weight gain to 3±1 g (ANOVA: 

p<0.001 vs Vehicle) - an effect that was inhibited (ANOVA: p<0.01) to within 

70% of control levels by co-administration of IL-1 ra.
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Figure 4.3.2. Body weight gain of rats over 22 h in response to injection of 

leptin (1 mg/rat, ip) and IL-1ra (200 pig, 0 and 1 h, icv)

(ANOVA: *** p<0.001 vs Vehicle; #ff#p<0.001 vs Leptin)

Core body temperatures were also monitored in these animals, for 6 h after 

injection (Figure 4.3.3). Central injection of IL-1 ra did not significantly affect 

core body temperature compared with vehicle-treated animals (MANOVA). 

Peripheral injection of leptin induced a significant, although modest and 

transient increase in core body levels (MANOVA: p<0.01 vs Vehicle) after the 

2.5 h time point. Temperatures peaked 3.5 h after injection (0.9°C above 

control, ANOVA: p<0.01) before returning to control temperatures at the 5.5 h 

time point. Co-administration of IL-1 ra abolished this increase in core body 

temperature (MANOVA: p<0.05) to control levels.



Chapter 4 Involvement of Cytokines in Actions of Leptin 144

-o - Vehicle -A-Leptin
Leptin/IL-1 raIL-1 ra38.5-1

38.0-

S 37.5-

37.0

1 1 40 2 3 5 6
Time (hours)

Figure 4.3.3. Core body temperature in response to injection of leptin (1 

mg/rat, ip) and IL-1ra (200 pg, 0 and 1 h, icv)

4.4 IL-1 Rl (-/-) M ice a r e  In se n s it ive  to  Leptin

The results presented above suggest that the effects of leptin on food intake, 

body weight and core body temperature are dependent on IL-1, since they are 

blocked by IL-1ra. in order to verify this proposal, the effects of leptin were 

investigated in transgenic IL-1 Rl (-/-) mice that have been produced with a 

genetically disrupted type I IL-1 receptor gene (Glaccum et al., 1997). Because 

these mice are insensitive to IL-1, and previous experiments have shown 

effects of leptin to be dependent on IL-1, it may be expected that these IL-1 Rl 

(-/-) mice are also insensitive to leptin. It must be noted that most of the 

following experiments involving mice were preliminary, and were performed
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using normal C57BL/6 mice rather than the more genetically relevant C57129 

strain.

4.4.1 Experimental Design

IL-1 Rl (-/-) mice, or C57BL/6 mice used as controls were housed in wire- 

bottomed cages (to allow measurement of food spillage), and injected (icv) with 

leptin (4ptg) or vehicle at 18:00 h. Food intake and body weights were 

measured 14 h after injection, at the beginning of the subsequent light phase. 

Unfortunately facilities were not adequately adapted for the accurate 

measurement of core body temperature in mice, and so this parameter was not 

monitored.

4.4.2 Results

Food intake of vehicle-treated C57BL/6 mice (3.9±0.2 g) over 14 h after 

injection (at 18:00 h) was significantly inhibited (ANOVA: p<0.001) by 75% in 

response to icv injection of leptin (Figure 4.4.1). IL-1 Rl (-/-) mice consumed 

3.6±0.2 g food over 14 h after vehicle injection. Knockout mice treated with 

leptin exhibited food intake that was not significantly different compared to 

vehicle-treated mice (ANOVA).
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C57BL/6 IL-1 Rl (-/-)

Figure 4.4.1. Food intake of IL-1R1 (-/-) mice and their wild type controls 

(C57BL/6) in response to icv injection of leptin (4 jag)

(ANOVA: *** p<0.001 vs All)

Vehicle-treated C57BL/6 mice lost 0.3±0.1 g body weight over 14 h after 

injection (Figure 4.4.2). This weight loss was exacerbated (2.2±0.3 g) in 

response to leptin (ANOVA: p<0.001). Injection of vehicle or leptin in IL-1 Rl (-/-) 

mice induced body weight loss (0.9+0.1 and 0.9+0.2 g respectively) which did 

not differ significantly (ANOVA).
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Figure 4.4.2. Changes in body weight of IL-1 Rl (-/-) mice and their wild type 

controls (C57BL/6) in response to icv injection of leptin (4 pg)

(ANOVA: *** p<0.001 vs All)

Pre-injection body weights of IL-1 Rl (-/-) mice (32.9±1.2 g) were significantly 

greater (by 11%) than the body weights (29.7±0.5 g) of C57BL/6 mice (ANOVA: 

p<0.05) (Figure 4.4.3).
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C57BL/6 IL-1 Rl (-/-)
Figure 4.4.3. Pre-injection body weights of IL-1 Rl (-/-) mice and their wild 

type controls (C57BL76)

(t-test: * p<0.05)

4.5 E ffec ts  o f  Leptin  on  Hyp o th a la m ic  IL-1 p and  IL-6 Im m u n o r e a c tiv ity

The results described previously (Sections 4.2-4.4) indicate that the effects on 

food intake, body weight gain and core body temperature induced by central or 

peripheral injection of leptin, are mediated by IL-1 in the brain. These effects on 

energy balance are most likely to be mediated in the hypothalamus - a region of 

the brain that controls most effects on energy balance (Campfield et al., 1996; 

Wilding et al., 1997). This hypothesis is supported by reports that the 

hypothalamus contains a high concentration of leptin receptors (Couce et al., 

1997; Elmquist et al., 1998). The hypothalamus is also an area of the brain
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where cytokines such as IL-1 and IL-6 play an important role in neuroimmune 

responses (Kluger et al., 1995; Plata-Salaman, 1998; Blatteis & Sehic, 1998). 

Therefore, it was hypothesised that the effects of leptin on food intake, body 

weight and core body temperature have been shown to be mediated by 

cytokines (IL-1), may be associated with associated with increased expression 

of hypothalamic immunoreactive IL-1 and IL-6.

4.5.1 Experimental Design

Normal SD rats were injected (icv) with 4 jig leptin or vehicle at 10:00 h. Four 

hours after injection, animals were anaesthetised by halothane and blood 

samples taken by cardiac puncture. The animals were then sacrificed, the 

brains were removed and the hypothalami dissected out. Hypothalamic and 

plasma samples were latter assayed for the presence of immunoreactive IL-1 (3 

and IL-6 by ELISA.

4.5.2 Results

Administration of leptin (4 pig, icv) elicited a significant, five-fold increase (t-test: 

p<0.001) in the levels of immunoreactive IL-1 p in the brains of normal rats 

(1800+30 pg/mg protein) compared to vehicle-treated animals (Vehicle, 

300+100 pg/mg protein; detection limit, 90 pg/mg protein), 4 h after injection 

(Figure 4.5.1).
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Figure 4.5.1. Levels of hypothalamic irlL-1(3 (measured by ELISA) 4 h after

injection of leptin (4 jj,g, icv) in SD rats

(t-test: *** p<0.001)
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Figure 4.5.2. Levels of hypothalamic irlL-6 (measured by ELISA) 4 h after 

injection of leptin (4 pg, icv) in SD rats

(t-test: *** p<0.001)
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Levels of hypothalamic IL-6 were also increased (although to a lesser extent) to 

55±5 pg/mg protein (t-test: p<0.001). IL-6 levels in the hypothalami of vehicle- 

treated rats were below the detection limit of the assay (10 pg/mg protein).

Levels of IL-1 (5 and IL-6 in the samples of blood plasma were below the 

detection limits of the assays (data not shown).

4.6 E ffec ts  o f  L eptin  on Hyp o th a la m ic  IL-1 p and  IL-6 Im m u n o r e a c tiv ity  in 

Z u cker  R ats

In normal animals, effects of icv injection of leptin on food intake, body weight 

gain, and core body temperature appear to be mediated by IL-1 (Section 4.2-

4.3) (and possibly IL-6) released in the hypothalamus (Section 4.5). Results 

described in the Chapter 3 indicate that obese Zucker rats, which possess a 

defective leptin receptor, are insensitive to effects of leptin on food intake, body 

weight and body temperature. Therefore if the increased levels of hypothalamic 

IL-1 (3 and IL-6 observed in normal SD rats are induced by the direct action of 

leptin on its receptor, obese Zucker rats should fail to exhibit these increases.

4.6.1 Experimental Design

Both lean and obese Zucker rats were injected (icv) as in the previous section 

(4.5) with 4 pg leptin or vehicle at 10:00 h. Four hours after injection, animals 

were anaesthetised by halothane and blood samples taken by cardiac puncture. 

The animals were then sacrificed, the brains were removed and the
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hypothalami dissected out. Hypothalamic and plasma samples were later 

assayed for the presence of immunoreactive IL-1 p and IL-6 by ELISA.

4.6.2 Results

In lean Zucker rats (Figure 4.6.1), icv injection of leptin induced increase in 

levels of IL-1 p (1800±50 pg/mg protein) which were similar to those induced in 

normal SD rats in the previous section (4.5). These levels were significantly 

greater (ANOVA: p<0.001) than in vehicle-treated lean animals (50±10 pg/mg 

protein) that were below the detection limit of the assay (150 pg/mg protein). 

Injection of leptin in obese Zucker rats also induced significant increases 

(ANOVA: p<0.001 vs Vehicle) in hypothalamic IL-1 (3 (1100+50 pg/mg protein; 

Vehicle, 130±50 pg/mg protein) that were significantly attenuated compared to 

the sub-detection levels observed in leptin-treated lean rats (ANOVA: p<0.001).

Levels of IL-1 p in the samples of plasma taken from both lean and obese 

Zucker rats were below the detection limits of the assays.

Levels of IL-6 were below the detection limit of the assay in hypothalamic and 

plasma samples taken from both lean and obese Zucker rats.
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Figure 4.6.1. Hypothalamic irlL-1 (3 (measured by ELISA) 4 h after injection 

of leptin (4 jig , icv) in lean (Fa/7) and obese (fa/fa) Zucker rats

(ANOVA: *** p<0.001 vs Vehicle; ###p<0.001 vs Lean-Leptin)

4.7 Le p t in -In d u c ed  Ex p r e s s io n  o f  IL-1 p in t h e  Ra t  B rain

Previous experiments (Sections 4 .2-4 .6) have shown that leptin increases 

expression of hypothalamic IL-1, and that the responses to icv injection of leptin 

are mediated by IL-1 p. This preliminary study was designed to localise 

expression of iriL-1 p in response to icv injection of leptin.

4.7.1 Experimental Design

Rats were injected icv with vehicle or leptin (4 jug) at 10:00 h. Four hours after 

injection, at the time point when the temperature response to injection of leptin

* * *
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was maximal (derived from experiments described in previous sections), 

animals received a lethal dose of anaesthetic (Section 2.5.6). Rats were 

perfused with PFA, the brains were removed, sectioned and stained 

immunohistochemically for irlL-1 p, as described in Chapter 2 (Section 2.5.6).

4.7.2 Results

Both vehicle and leptin-treated animals exhibited IL-1 p expression at the site of 

injection (Figure 4.7.1). Brain sections from rats treated with leptin also 

exhibited IL-1 p highly defined immunoreactive choroid plexus cells (especially in 

the cytoplasm) in the brain ventricles (Figure 4.7.2), in microglial cells in 

hypothalamic regions surrounding the third ventricle (Figure 4.7.3), and in 

meningeal macrophages (Figure 4.7.4). There was no expression of IL-1 p 

observed in cells of the cerebral cortex.
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Figure 4.7.1. Expression of irlL-1(3 in macrophages (X) surrounding the 

injection site, 4 h after icv injection of vehicle (A) or 4pg leptin (B)



Chapter 4 Involvement of Cytokines in Actions of Leptin

B

f

156

Figure 4.7.2. Expression of irlL-1 (3 in choroid plexus cells (X), 4 h after icv 

injection of vehicle (A) or 4pg leptin (B)
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A

Figure 4.7.3. Expression of irlL-1 p in hypothalamic macrophages (X) and 

third ventricle choroid plexus cells (Y) in the hypothalamus, 4 h after icv 

injection of vehicle (A) or 4pg leptin (B)
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Figure 4.7.4. Expression of irlL-1 (3 meningeal macrophages (X) 

surrounding the cerebral cortex, 4 h after icv injection of vehicle (A) or 

4pg leptin (B)
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4.8 R e s p o n s e s  t o  L eptin  in IL-6 (-/-) M ice

The evidence presented in this chapter strongly suggests that IL-1 mediates 

actions of leptin in both rats and mice. IL-1 actions are mimicked and 

sometimes mediated by IL-6. Therefore, IL-6 may also play a role in mediating 

leptin actions, as suggested by the increased hypothalamic levels of IL-6 in 

normal SD rats in response to icv injection of leptin (Section 4.5). There is no 

currently available IL-6 receptor antagonist that may be used to inhibit IL-6- 

mediated effects. Therefore the involvement of IL-6 in the actions of leptin was 

investigated in this preliminary experiment using IL-6 deficient mice - IL-6 (-/-). If 

IL-6 mediates actions of leptin, these mice, like the IL-1RI (-/-) mice, should also 

be insensitive to leptin.

4.8.1 Experimental Design

IL-6 (-/-) mice or the C57BL6 mice used as controls, were housed in wire- 

bottomed cages (to allow measurement of food spillage), and injected (icv) with 

leptin (4pg) or vehicle at 18:00 h. Food intake and body weights were measured 

14 h after injection, at the beginning of the subsequent light phase. Core body 

temperatures were not monitored.

4.8.2 Results

Food intake of vehicle-treated C57BL6 mice (4.6±0.2 g) over 14 h after injection 

(at 18:00 h) was significantly inhibited (ANOVA: p<0.001) by 40% in response to 

icv injection of leptin (Figure 4.8.1), IL-6 (-/-) mice consumed 4.5±0.2 g food 

over 14 h after vehicle injection. Like C57BL6 mice, IL-6 (-/-) mice treated with 

leptin also exhibited reduced food intake (by 56%, ANOVA: p<0.001). In fact, IL-
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6 (-/-) mice exhibited significantly greater sensitivity (40%) to the effects of 

injection of leptin on food intake compared to that of C57BL6 mice (ANOVA:

p<0.01).
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Vehicle Leptin Vehicle Leptin 
I C57BL/6---- 1 |---- IL-6 (-/-) ------1

Figure 4.8.1. Food intake of IL-6 (-/-)and C57BL6 mice in response to icv 

injection of leptin (4 pg)

(ANOVA: *** p<0.001 vs Vehicle; ##p<0 .0 1  Vs C57-Leptin)

Vehicle-treated C57 mice gained 0.5±0.1 g body weight over 14 h after icv 

injection (Figure 4.8.2). Injection of leptin elicited significant (ANOVA: p<0.001 

vs Vehicle) weight loss in these animals (0.7±0.1 g). IL-6 (-/-) mice gained 

0.2+0.1 g body weight of 14 h after injection of vehicle. Administration of leptin



Chapter 4 Involvement of Cytokines in Actions of Leptin 161

to IL-6 (-/-) mice induced significant (ANOVA: p<0.001 vs Vehicle) loss of body 

weight (1.3+0.2 g). This body weight loss induced by injection of leptin in IL-6 (- 

/-) mice was significantly greater (by 20%) than that exhibited by C57 mice 

(ANOVA: p<0.01).
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Vehicle Leptin Vehicle Leptin 
|----- C57BL/6---- 1 |---- IL-6 (-/-) ------1

Figure 4.8.2. Changes in body weight of IL-6 (-/-) and C57BL6 mice in 

response to icv injection of leptin (4 jag)

(ANOVA: *** p<0,001 vs Vehicle; ##p<0.01 vs C57-Leptin)

Pre-injection body weights of IL-6 (-/-) mice (27.0±0.4 g) were slightly, but 

significantly less (by 5%) than the body weights (28.2±0.3 g) of C57BL/6 mice 

(ANOVA: p<0.05) (Figure 4.8.3).
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m 26-

C57BL/6 IL-6 (-/-)
Figure 4.8.3. Pre-injection body weights of IL-6 (-/-)and C57BL6 mice

(t-test: * p<0.05)
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4.9 S u m m a r y

The data presented in this chapter demonstrate that peripheral injection of leptin 

elicits similar effects on food intake, body weight and body core temperature as 

central administration, and that these responses are inhibited by injection of IL- 

1ra to the brain (Section 4.2-4.3). Levels of IL-1 p and IL-6 were both 

upregulated in the hypothalami (but not the circulation) of normal Sprague- 

Dawley rats in response to icv injection of leptin (Section 4.5), Administration of 

leptin (icv) also induced increased hypothalamic levels of irlL-1 p in obese 

Zucker rats that were attenuated compared to levels in lean animals, although 

neither lean nor obese Zucker rats exhibited detectable IL-6 levels (Section 

4.6). Immunohistochemistry revealed upregulation of irlL-1 p protein expression 

in ventricular choroid plexus cells, hypothalamic microglia and meningeal 

macrophages in response to central administration of leptin (Section 4.7), 

Section 4.4 described that icv injection of leptin failed to induce reduced food 

intake and body weights in IL-1 Rl (-/-) mice that lack type I IL-1 receptors. 

Conversely, IL-6 deficient mice were hypersensitive to the effects of leptin on 

these parameters (Section 4.8).

4.10 D is c u s s io n

The experiments described in this chapter are the first to suggest that the 

effects of leptin on food intake, body weight and core body temperature are 

mediated by the cytokine IL-1. Previous investigations have reported only the 

reverse, i.e. that LPS and proinflammatory cytokines such as IL-1, IL-6 and TNF
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stimulate the synthesis and release of leptin from adipose tissue both in vivo 

and in vitro (Grunfeld et al., 1996; Sarraf et al., 1997; Faggioni et al., 1998; 

Finck et al., 1998; Berkowitz et al., 1998). Loffreda et al. described how LPS- 

induced phagocytosis and synthesis of TNF, IL-6, IL-12 is upregulated by leptin 

in ex vivo murine macrophages (Loffreda et al., 1998), although alone, leptin 

failed to induce a response, thereby implicating leptin in the modulation of an 

activated immune response. Most studies investigating mediators of leptin 

actions in the brain have been limited to molecules such as NPY, CRF and 

POMC products (Section 1.2.6). Therefore, induction of cytokines by 

exogenous leptin is a novel observation.

The observation described in Section 4.2 that central injection of IL-1 ra 

attenuated (but did not completely abolish) effects of leptin on food intake 

(Figure 4.2.1), indicates that IL-1 is only partially responsible for mediating this 

response, which may also involve molecules such as CRF, NPY and POMC 

(Sahu, 1998). Conversely, the increase in core body temperature induced by 

central injection of leptin was totally blocked by IL-1 ra (Figure 4.2.3), thus 

suggesting that IL-1 may be solely responsible for mediating this response. The 

fact that the leptin-induced suppression of body weight gain was also returned 

to control values by IL-1 ra administration (Figure 4.2.2) implies that energy 

utilised in generating leptin-induced hyperthermia also contributes to the weight 

loss.

Leptin is synthesised and released into circulation from peripheral adipose 

tissue (Frederich et al., 1995; Auwerx & Staels, 1998). Therefore the changes in 

food intake and body temperature observed in Section 4.3 in response to
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peripheral (ip) injection of leptin strongly reinforce the suggestion that the 

responses to central injection of leptin described here are relevant to 

pathophysiological conditions. Thus endogenous leptin released from adipose 

tissue may cross the BBB (Banks et al., 1996; Golden et al., 1997; Bjorbaek et 

al., 1998), or release some secondary factor, or stimulate afferent nerves 

(Wang et al., 1997) to increase core body temperature and reduce food intake 

and body weight. However, the responses to peripheral injection of leptin were 

not as great as responses to central injection, and were delayed, indicating that 

BBB transport is saturable (Banks et al., 1996; Caro et al., 1996), and requires 

time to accumulate enough leptin in brain to stimulate pathways involved in 

increasing core body temperature. Furthermore, the half-life of leptin in 

circulation may be shorter than in the brain, accounting for the reduced effects 

observed in response to peripheral injection of leptin. These results 

demonstrate that responses to leptin are induced via a time-dependent cascade 

of responses that involve actions of IL-1.

Like the responses to icv injection of leptin (Section 4.2), IL-1 ra inhibited the 

reduced food intake (Figure 4.3.1), and completely blocked the increased core 

body temperatures (Figure 4.3.3) induced by ip injection of leptin. However, 

body weight gains in these animals were not fully restored to control levels 

(Figure 4.3.2). Therefore peripherally administered leptin may have direct 

catabolic actions on peripheral tissues (Bornstein et al., 1997; Siegrist-Kaiser et 

al., 1997), which were unaffected by the central injections of IL-1 ra, thereby 

causing attenuated body weight gains to persist. Nevertheless, these results 

indicate further that central release of IL-1 mediates actions of leptin on food
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intake and body temperature. However, these experiments using IL-1 ra do not 

distinguish whether effects of leptin are being mediated by IL-1 p and IL-1 a.

The finding that hypothalamic levels of IL-6 (Figure 4.5.2) and especially IL-1 p 

(Figure 4.5.1) were both upregulated in response to icv injection of leptin 

(Section 4.5), also supports this hypothesis, and localises actions of leptin to 

the hypothalamus. Since levels of IL-1 and IL-6 in circulation were below the 

detection limit of the assay in both leptin and vehicle-treated rats, the presence 

of IL-1 p in the brain could not have been due to its release from peripheral 

tissues. However, the ELISA technique used does not distinguish between the 

pro- and mature forms of IL-1 p. Therefore, the increased levels of IL-1 p 

detected may have been intracellular pro-IL-1 p, demonstrating increased 

expression of IL-1 p in response to leptin, but not whether the mature IL-1 p was 

released to act extracellularly. Nevertheless, studies described in Sections 4.2- 

4.3 suggest that IL-1 mediates actions of leptin, and so probably is released in 

its mature form.

The suggestion that leptin acts on the hypothalamus to induce actions on food 

intake and energy balance is complemented by studies such as those 

demonstrating high concentrations of hypothalamic leptin receptors (Tartaglia et 

al., 1995; Couce et al., 1997; Hakansson et al., 1998; Elmquist et al., 1998); 

injection of leptin activates hypothalamic neurones (Elmquist et al., 1997; 

Elmquist etal., 1998; Huang et al., 1998; Powis et al., 1998); and lesions of the 

hypothalamus induce obesity (Hetherington & Ranson, 1942; Hervey, 1958; 

Bray et al., 1982) and increase adipocyte ob gene expression (Funahashi etal., 

1995). Furthermore, the fact that cytokines such as IL-1 and IL-6 have been
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reported extensively to act on the hypothalamus to regulate effects on energy 

balance such as anorexia (Plata-Salaman, 1998) and fever (Kluger et al., 1995) 

supports the suggestion that leptin and cytokines are related in mediating 

effects in these paradigms.

It is interesting that although injection of leptin failed to elicit responses on food 

intake, body weight gain or core body temperature in obese Zucker rats 

(Section 3.12), leptin still induced significant release of IL-1  p (Figure 4.6.1), 

albeit significantly reduced in these animals compared to lean Zucker rats 

(Section 4.6). One might expect that the levels of IL-1 (3 observed in the obese 

rats in response to leptin were sufficient to induce fever. However, results 

indicate otherwise. These data support the hypothesis that the leptin receptor in 

the obese Zucker rat is still capable of limited signal transduction (Yamashita et 

al., 1997; Yamashita et al., 1998). Indeed Cusin et al. reported that injection of 

leptin at high doses still induces reductions in the food intake and body weights 

of obese Zucker rats (Cusin et al., 1996). Alternatively, Busbridge et al. showed 

that responses to injection of cytokines in the obese Zucker rat are blunted 

because of the inhibitory effects high serum levels of corticosteroids, and that 

adrenalectomy restores effects of cytokine administration (Busbridge et al., 

1990). Therefore adrenalectomy in animals injected with leptin may remove the 

suppression of the febrile response mediated by hypothalamic IL-1 (3.

Other studies have described mainly neuronal activation (Elmquist et al., 1997; 

Elmquist et al., 1998; Powis et al., 1998), co-localisation or release of 

neurochemicals such as galanin, MCH, NT, CRF, POMC and NPY (Hakansson 

et al., 1996; Hakansson et al., 1998; Sahu, 1998; Huang et al., 1998) in the
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brain in response to leptin treatment. Hakansson et al. also reported leptin 

receptor immunoreactivity of cells in the choroid plexus, but mainly neurones in 

layers ll-VI of the cerebral cortex, hippocampus, thalamus, hypothalamic nuclei 

and brainstem (Hakansson et al., 1998). Conversely, the preliminary 

immunohistochemical study described in Section 4.7 failed to show leptin- 

induced expression of irlL-1 (3 in any neuronal cells. However, staining was 

observed in choroid plexus cells (Figure 4.7.2), hypothalamic microglia (Figure

4.7.3) (indicating the source of hypothalamic IL-1 (3 detected in Section 4.4-5), 

and meningeal macrophages (Figure 4.7.4). The presence of these iriL-1 p- 

expressing cells is similar to the distribution seen during host defence 

responses to infection (Van Dam et al., 1995). The IL-1 (3 produced by these 

cells may serve as a signal for adjacent or more distant targets such as 

neurones, endothelial or microglial cells, to play a role in the induction of 

responses such as anorexia and fever. The staining observed at the injection 

site in both vehicle and leptin-treated animals represents a non-specific 

response to injection (Figure 4.7.1).

IL-1 ra blocks all known actions of IL-1, and has no other reported biological 

action. Nevertheless, further support for the hypothesis that effects of leptin are 

dependent on endogenous IL-1 is provided by the results of the preliminary 

investigation described in Section 4.4, using IL-1 Rl (-/-) mice. Central injection 

of leptin inhibited food intake (Figure 4.4.1) and body weight (Figure 4.4.2) in 

normal C57BL/6 mice, but had no effect in mice with the IL-1  type I receptor 

gene deleted. In contrast, results described in Section 4.8 suggested 

hypersensitivity to the effects of leptin on food intake (Figure 4.8.1) and body
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weight (Figure 4,8.2) in IL-6 -deficient mice. These results are discussed below. 

Unfortunately facilities at this establishment were not available for the accurate 

measurement of core body temperature in mice (Kozak et al., 1994), and so the 

effect of leptin on this response was omitted. However, in contrast to IL- 6  (-/-) 

mice (Figure 4.8.3), it was observed that the pre-injection body weights of the 

IL-1 Rl (-/-) mice (Figure 4.4.3) were significantly greater than their age-matched 

controls. This observation is also apparent in aged mice as depicted below.

10 cm

Figure 4.10.1. Photograph of aged (18 month old) IL-1 Rl (-/-) and C57BL/6 

mice

Since IL- 6  is a widely accepted mediator of host defence responses such as 

fever and hypophagia (Akira et al., 1993; Rothwell et al., 1996; Moldawer & 

Copeland, 1997; Matthys & Billiau, 1997), the data indicating that mice lacking 

IL- 6  exhibit exacerbated hypophagia in response to icv injection of leptin
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(Section 4.8) is confusing. One possible explanation may be that IL- 6  is an 

endogenous inhibitor of leptin actions in the brain. Therefore central injection of 

leptin would have a greater effect on body weight and food intake in animals 

lacking the limiting effects of IL-6 . This hypothesis is supported by in vitro and in 

vivo studies suggesting that IL- 6  possesses anti-inflammatory properties (Tilg et 

al., 1994; Tilg et al., 1997). IL- 6  suppresses LPS-induced neutrophil exudate 

(Ulich et ai., 1991) and TNF production (Mizuhara et al., 1994). IL- 6  anti-serum 

completely blocks IL-1 ra synthesis in response to bacterial infection (Jordan et 

al., 1995). Furthermore, IL- 6  (-/-) mice produce threefold more TNF-a compared 

to control animals in response to LPS (Fattori et al., 1994), indicating that IL- 6  

may exert a protective effect during inflammation. Alternatively, IL- 6  (-/-) mice 

may have upregulation of the IL- 6  receptor, including the increased expression 

of the gp130 protein associated with both IL- 6  and leptin receptors, which may 

result in increased sensitivity to leptin.

The results presented here indicate that leptin causes release of IL-1 and IL- 6  in 

the brain, which may be involved in effects of leptin on food intake and body 

temperature by stimulatory and inhibitory mechanisms respectively (Figure 

4.10.2). However, data presented in Chapter 3 indicate that the actions of leptin 

on appetite and body temperature appear to depend on separate mechanisms, 

since only the latter involves release of cyclo-oxygenase products.

Thus, leptin may act as an important mediator of neuroimmune actions, and 

could serve as a major circulating afferent signal for activation of responses to 

disease such as fever and loss of appetite. Indeed, there is recent evidence that 

leptin regulates immune responses (phagocytosis) as well as cytokine
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expression (Loffreda et al., 1998). Furthermore, a recent study (Esler et al., 

1998) suggests that the brain could also be a major source of circulating leptin, 

prompting the hypothesis that leptin or leptin-like analogues may also act as 

neurochemical agents regulating energy balance in the brain.

Leptin

Hypothalamus

inniD iiorv

Body Temperature Food Intake

Figure 4.10.2. Schematic diagram showing potential mechanisms of leptin 

actions on food intake and body temperature via release of IL-1 p and IL-6 

in the hypothalamus
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5.1 In tr o d u c tio n

Several mechanisms of action of leptin in the brain have been identified or 

postulated (Sahu, 1998). One of these includes a possible relationship between 

leptin and CRF. Neuronal activation (measured by induction of c-fos 

expression) has been reported in the PVN (the major site of CRF synthesis) in 

response to an intracerebroventricular (icv) injection of leptin (Elmquist et al., 

1998). Leptin also induces expression of CRF mRNA in the same area of the 

hypothalamus (PVN) (Schwartz et al., 1996), and leptin receptors are present 

on CRF containing neurones (Hakansson et al., 1998). However, there are few 

studies describing the relationship between leptin and CRF in physiological and 

behavioural responses.

CRF, administered icv in the rat, causes marked increases in metabolic rate 

and core body temperature - responses which are ascribed to the activation of 

the sympathetic nervous system and subsequent increases in heat production 

in brown adipose tissue (BAT) (Rothwell, 1990b; Rothwell, 1994). Previous 

studies have administered CRF over a wide range of doses to elicit various 

responses in rats. Infusion (icv) of 0.1-5 pg CRF increases sympathetic nerve 

activity (Katafuchi et al., 1997). CRF (0.03, 0.1, 0.3, and 1 pg, icv) has been 

reported to induce dose-dependent increases in heart rate, core temperature 

and activity after only 5 min (Diamant & De Wied, 1991). Anorexia and 

increased BAT mitochondrial guanosine diphosphate (GDP)-binding (an index 

of thermogenic activity) was observed after 30 min in response to icv injection of 

5 pg CRF (Arase et al., 1988). Morimoto et al reported that blood pressure,
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heart rate and locomotor activity was increased in response to injection (icv) of 

1 or 10 jig CRF (Morimoto et al., 1993). Oxygen consumption and metabolic 

rate has been reported to be significantly increased by icv injection of 2  nmol 

(-10 jig) CRF (Rothwell et al., 1991), and by 4-4.7 |u,g CRF (Rothwell, 1989; 

Rothwell, 1990a; Strijbos et al., 1992). Furthermore, increases in interscapular 

BAT temperature and GPD-binding were seen in response to icv injection of 2-5 

nmol (-10-25 fig) CRF (LeFeuvre et al., 1987).

Endogenous CRF has also been proposed to mediate pyrogenic responses to 

cytokines such as IL-ip, IL- 6  and IL-8 , prostaglandins, and peripheral injury or 

infection (Rothwell, 1990c; Rothwell & Hopkins, 1995). The effects of these 

cytokines on oxygen consumption, core temperature and BAT activity in rats are 

attenuated or blocked by icv administration of CRF receptor antagonists or a 

neutralising antibody to CRF (Busbridge et al., 1989; Rothwell, 1989; Rothwell, 

1990a).

These data suggest an important role for CRF in thermoregulatory responses to 

disease, though they do not indicate whether CRF acts as a pyrogen, to raise 

thermoregulatory set point, or modifies effector mechanisms in response to 

changes in set point. In contrast, some studies suggest that CRF can inhibit 

pyrogenic responses to cytokines (Bernardini et al., 1984; Opp et al., 1989). 

These apparently conflicting data may be ascribed to species differences 

between studies, although there are reports of antipyretic or hypothermic 

actions of CRF (Sausen et al., 1996) or CRF-like neuropeptides in the rat 

(Broccardo, 1990; Broccardo & Improta, 1994).
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Ambient temperature has a major influence on thermoregulation and energy 

balance (Gwosdow & Besch, 1985). Thermoneutrality is defined as the range of 

ambient temperatures where resting metabolic rate is minimum and constant. 

For rats housed individually, this range is between 28 and 32°C (Swift & Forbes, 

1939; Herrington, 1940). However, at these ambient temperatures, body 

temperature is elevated, and rats exhibit behavioural changes associated with 

heat loss (Hainsworth, 1968; Helistrom, 1975). The rat has a range of preferred 

ambient temperatures between 19 and 31 °C (Ettenberg & Carlisle, 1985; 

Gordon, 1987; Gordon, 1990; Gordon et al., 1991). In addition, Poole and 

Stephenson (Poole & Stephenson, 1977) define a range of 18-28°C, when 

animals can display ‘normal’ activity, i.e. perform behavioural thermoregulation. 

Previously, studies involving actions of CRF have been performed over a range 

of ambient temperatures (22-26°C), and this may be the cause of some of the 

discrepancies observed in the literature.

Earlier research into the effects of CRF on core body temperature were 

conducted using a colonic probe thermocouple on animals housed in groups, or 

in metabolic chambers for the measurement of oxygen consumption (Lefeuvre 

et al., 1989; Rothwell, 1990a). Although animals are handled daily before such 

an experiment in order to minimise the stress associated with insertion of a 

colonic probe, the level of intervention is such that animals may display stress 

responses that mask the effects of any injected substances. This problem could 

be addressed by the use of remote radiotelemetry. This method, introduced in 

1985 (Gallaher et al., 1985), allows undisturbed monitoring of free moving 

animals, and has since become the preferred method over colonic probe
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(Clement et al., 1989). Remote radiotelemetry requires that animals be housed 

individually, since each receiver can detect only the output from a single 

transmitter. Because rats are social animals, and normally housed in groups, 

this restriction may affect results.

The objectives of the studies described in this chapter were to investigate the 

relationship between leptin and CRF by the use of the CRF receptor antagonist 

D-Phe CRF-12-4 (Menzaghi et al., 1994). In addition, the discrepancies in the 

literature concerning responses to CRF were investigated.
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5.2 E ffec ts  o f  CRF R e c e p to r  A n t a g o n is t  on  A c tio n s  o f  L eptin

Although previous studies have shown activation of CRF neurones, and CRF 

release in response to injection of leptin (Schwartz et al., 1996; Raber et al., 

1997; Hakansson et al., 1998), physiological actions of leptin are yet to be 

linked causally to CRF. The CRF receptor antagonist D-Phe CRF12-41 has been 

shown to inhibit physiological responses that are dependent on CRF in rats. D- 

Phe CRF12-41 (0.2-5 pg, icv) inhibits defensive behaviour responses to stressful 

conditions (Rodriguez et al., 1996), reduces CRF-induced locomotor activity 

(Menzaghi et al., 1994), hypotension, tachycardia, and noradrenaline release 

(Rivier et al., 1993), and delays CRF-induced seizures (Baram et al., 1996).

Therefore effects of injection of doses of D-Phe C R F 12-41 similar to those 

described above in rats were tested in responses to leptin on food intake, body 

weight and core body temperature.

5.2.1 Experimental Design

Animals were injected (icv) at 18:00 h with vehicle or leptin (4 jig), and with a 

dose (1, 2.5, or 5 jig, icv) of D-Phe CRF12.41 or vehicle. Food intake, body 

weight and core body temperature were measured over the following 14 h - until 

the beginning of the subsequent light phase.

5.2.2 Results

Food intake (Figure 5.2.1) was significantly reduced by 50% (ANOVA: p<0.001) 

over 14h in response to icv injection of leptin, compared to vehicle-treated 

animals (28.2+0,8 g). Central injection of all doses of D-Phe CRF-|2.4i alone did



Chapter 5 Leptin and CRF 178

not significantly affect food intake (ANOVA). Co-administration of leptin and D- 

Phe C R F 12-41 however, attenuated the suppressed food intake observed in 

leptin-treated rats in a dose-dependant fashion. The lowest dose (1 pg) of 

antagonist did not significantly affect leptin hypophagia, but the higher doses 

(2.5 and 5 pg) of D-Phe C R F 12 -4 i  significantly attenuated effects of leptin on 

food intake by 58% (ANOVA: p<0.001), such that food intake of these animals 

was restored to within 80% of the intake of vehicle-treated animals.
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Figure 5.2.1. Food intake over 14 h in response to co-injection (icv) of 

leptin (4 pg) and D-Phe CRF12-41 (1, 2.5 or 5 pg) at 18:00 h

(ANOVA: ***p<0.001 vs Vehicle; ###p<0.001 vs Leptin)
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In the same animals, body weight (Figure 5.2.2) was measured over the 14 h 

after icv injection of leptin and D-Phe CRF12-41. Leptin significantly reduced body 

weight (by 12+3 g) in comparison to the weight gain (18+1 g) observed in 

vehicle-treated rats (ANOVA: p<0.001). This weight loss induced by central 

injection of leptin was significantly inhibited (ANOVA: p<0.001) by co-injection of 

ail doses of antagonist. Animals co-injected with the lower doses (1 and 2.5 pg) 

of D-Phe CRF12-4 i lost 1±3 g and 0+3 g respectively. The higher dose (5 pg) of 

antagonist partially reversed leptin-induced weight loss such that animals 

gained 6±3 g.

<o:r
o
CD

* * *  ### ###

###

X

1™ _1 f— ro r- CJi f -CD 1= CD 01 ® T= CD■O (Q TJr-f> T= "S. (Q -U
5' O 5' <Q S' 9  =’TJ + 9 + u  +3- TJ zr

CD IT CD
O CD O
Da O DJ
T | D3

T |
m

Figure 5.2.2. Changes in body weight in response to injection (icv) of 

leptin (4 pg) and D-Phe CRF12-41 (1, 2.5 or 5 pg) at 18:00 h

(ANOVA: ***p<0.001 vs Vehicle; ###p<0.001 vs Leptin)
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Increase in core body temperature induced by central injection of leptin was 

unaffected by the CRF receptor antagonist, which itself did not affect the body 

temperature of animals (data not shown).

5.3 D o se  R e s po n s e  S t u d y  o n  th e  E ffec ts  o f  CRF on  C o r e  B o d y  

T e m p e r a tu r e

Results described in the above section suggest that in contrast to the role of 

PGs (Section 3.13), CRF is involved in mediating actions of leptin on food 

intake and body weight, but not core body temperature. Previous reports 

suggest that CRF is involved in the activation of thermogenic pathways and the 

development of fever (Rothwell, 1989; Rothwell, 1990b; Rothwell & Cooper, 

1992). However, some papers report that CRF inhibits febrile responses 

(Bernardini et al., 1984; Rothwell, 1989; Opp et al., 1989; Rothwell & Cooper, 

1992). Therefore, to clarify the influence of CRF in thermoregulation, the study 

described here investigated the effects of different doses of icv injection of CRF 

alone on core body temperature.

5.3.1 Experimental Design

CRF (0.3, 3 or 30 jig) obtained from the Salk Institute for Biological Studies 

(USA) or vehicle were injected (icv) at 10:00 h (0 h), in animals housed at an 

ambient temperature of 22°C. Core body temperature was monitored for 6 h 

after injection.
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A 3 jig dose of CRF was also injected ip, sc, or iv, and core body temperature 

monitored by remote radiotelemetry.

5.3.2 Results

Core body temperatures of rats were not significantly affected by icv injection of 

0 . 3  pg CRF (Figure 5.3.1). Injection of 3  pg CRF caused a rapid (within 0 . 5  h) 

and reproducible decline in temperature (MANOVA: p < 0 . 0 5  vs Vehicle), to a 

nadir ( 1 . 0 ° C  below control) 1 . 5  h after injection (ANOVA: p < 0 . 0 1  vs Vehicle and

0 . 3  jig CRF), which returned to control values after 3  h. Similar results were 

obtained in response to injection of 1 pg CRF (data not shown). A higher dose 

of CRF ( 3 0  pg) elicited hypothermia of a greater magnitude (2°C below control, 

2 h after injection; ANOVA: p < 0 . 0 0 1  vs Vehicle and 0 . 3  pg CRF, p < 0 . 0 5  vs 3  pg 

CRF), which was sustained for 6 h (MANOVA: p < 0 . 0 0 1  vs Vehicle).

Similar results were obtained using CRF from alternative sources (Sigma, UK; 

Peninsula Laboratories Inc., USA; data not shown). In all further experiments, 3 

pg CRF was used to elicit hypothermia. Furthermore, peripheral injection (ip, sc, 

or iv) of 3 pg CRF failed to elicit any change in core body temperature.
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Figure 5.3.1. Dose-response study of CRF (0.3, 3 and 30 pg, icv) on core 

body temperature

5.4  In flu e n c e  o f  H o u sin g  a n d  M eth o d  of  T e m p e r a tu r e  M e a s u r e m e n t  on  

CRF E ffec ts  on  C o r e  B o d y  T e m p e r a tu r e

The results obtained in the previous investigation, describing hypothermic 

actions of CRF, markedly contradict with the generally accepted role of CRF as 

a mediator of thermogenesis and fever (Rothwell, 1990b). It was hypothesised 

therefore that the differing responses observed here may be a result of 

methodology and housing. Most previous studies were performed using a 

colonic probe rather than radiotelemetry to measure core body temperature 

(LeFeuvre et al., 1987; Rothwell, 1989) - a procedure that may elicit a stress 

response sufficient to affect actions of CRF. Furthermore, both methods of 

temperature measurement normally require individual housing of the rats, which
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are social animals and are usually housed in groups. This may also elicit 

stressful responses sufficient to affect actions of endogenous CRF. 

Alternatively, the huddling behaviour exhibited by group housed animals which 

can maintain raised microclimate temperature may be lost during individual 

housing, and affect responses to injection of CRF.

Therefore, this study was designed to investigate the effects of altering the 

method of temperature measurement (colonic probe or remote radiotelemetry), 

housing conditions (individual or group housed), or ambient temperature (to 

simulate huddling temperatures) of the animals injected icv with a midrange 

dose (3 p,g) of CRF.

5.4.1 Experimental Design

CRF (3 (ig) or vehicle was injected (icv) at 10:00 h (0 h) in rats housed

individually or in groups, while core body temperature was monitored by remote

radiotelemetry or colonic probe at either 22 or 26°C:

i. Individual housing plus colonic probe

ii. Group housing plus telemetry

iii. Group housing plus colonic probe

iv. Individual housing plus telemetry at 26°C

v. Individual housing plus colonic probe at 26°C
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5.4.2 Results

Injection of 3 |ng CRF (icv) induced significant hypothermia (MANOVA: p<0.05 

vs Vehicle) in rats monitored using colonic probe (Figure 5.4.1 A), similar to that 

seen in studies described in the previous section (5.3) in which body 

temperature was measured by remote radiotelemetry. Core body temperature 

declined after 0.5 h, reaching a nadir (1°C below control) at the 1.5 h time point 

(t-test: p<0.001 vs Vehicle), before returning to control values after 3.5 h.

Injection of CRF (3 pg, icv) in rats housed in pairs in small cages, also induced 

significant hypothermia (MANOVA: p<0.05 vs Vehicle) when monitored by 

remote radiotelemetry (Figure 5.4.1 B). Core body temperature declined within 

0.5 h to a minimum temperature (1°C below control) 1 h after injection (t-test: 

p<0.001 vs Vehicle), before returning to control values after 4 h.

In animals housed in their original home cages (5-6 rats per cage), 

administration of CRF (3 pg, icv) elicited significant changes in temperature 

(MANOVA: p<0.01 vs Vehicle) (Figure 5.4.1 C) when measured by colonic 

probe, which contrasted with those observed previously. As before, core body 

temperature declined within 0.5 h after injection, to a nadir 0.5°C below control 

(t-test: p<0.05 vs Vehicle) at the 2 h time point. Subsequently, body 

temperatures of the animals rose dramatically to reach a plateau after 4 h, 

1.5°C above control (t-test: p<0.001 vs Vehicle).
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Figure 5.4.1. Core body temperatures of rats injected (icv) with 3 jig CRF 

and (A) housed individually plus colonic probe, (B) housed in pairs (small 

cages) plus telemetry, or (C) housed in home cages (5-6/cage) plus 

colonic probe
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In animals housed at an ambient temperature of 26°C, administration of CRF (3 

pg, icv) induced changes in core body temperature when monitored by remote 

radiotelemetry, that were not significantly different between treatment groups 

when analysed over the whole 6 h time course (MANOVA) (Figure 5.4.2A). 

However, analysis of treatment by time, revealed significant changes 

(MANOVA: p<0.001 vs Vehicle): core body temperature declined within 0.5 h 

after injection, to a nadir 1°C below control (t-test: p<0.05 vs Vehicle) at the 1 h 

time point, before returning to control values 2 h after injection. MANOVA over 

this time period revealed significant difference (p<0.05 vs Vehicle). 

Subsequently, body temperatures of animals treated with CRF continued to rise 

(MANOVA: p<0.05 vs Vehicle) to peak (1.5°C above control) at the 6 h time 

point (t-test: p<0.001 vs Vehicle).

In the same experiment, animals injected with 3jxg CRF (icv) did not exhibit 

hypothermia when core body temperature was monitored by colonic probe 

(Figure 5.4.2B). However, CRF induced hyperthermia (MANOVA: p<0.01 vs 

Vehicle) that was maximal 5.5 h after injection (1.5°C above control; t-test: 

p<0.001 vs Vehicle), and was maintained for the remainder of the 6 h 

experiment.
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Figure 5.4.2. Core body temperatures measured by (A) telemetry, or (B) 

colonic probe, in rats housed at 26°C ambient temperature, and injected 

(icv) with 3 iig CRF
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5.5 In flu e n c e  o f  A m b ie n t  T e m p e r a tu r e  on  C o r e  B o d y  T e m p e r a tu r e  

R e s p o n s e s  to  In je c tio n  o f  CRF

The studies described in the previous section illustrate the importance of 

experimental conditions in temperature responses to injection of CRF. Perhaps 

the most interesting finding is that the core body temperature responses to CRF 

administration appear to be different at normal room temperature (22°C; 

Section 5.3) and at higher ambient temperatures (26°C; Section 5.4) when 

measured by radiotelemetry or colonic probe. This study investigated further the 

influence of ambient temperature on effects of CRF on core body temperature.

5.5.1 Experimental Design

In separate experiments, rats were housed individually at ambient temperatures 

of 22, 24, 26, or 28°C for 24 h before and after injection (icv) of a hypothermic 

dose (3 jig) of CRF or vehicle at 10:00 h (0 h). Core body temperatures were 

monitored by remote radiotelemetry.

5.5.2 Results

At 22°C, injection of CRF elicited hypothermia (MANOVA: p<0.05 vs Vehicle) as 

seen in the previous section (5.3). Body temperatures of rats declined within 0.5 

h to a nadir (1.0°C below control) 1.5 h after injection (t-test: p<0.01 vs Vehicle), 

which returned to control values after 4 h (Figure 5.5.1 A).

CRF administration to rats housed at 24°C induced modest (0.7°C below 

control; t-test: p<0.01 vs Vehicle), transient (2 h), but significant (MANOVA: 

p<0.001 vs Vehicle) hypothermia (Figure 5.5.1 B). This was followed by an
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increase in body temperature above vehicle-treated animals (MANOVA: 

p<0.05), which was maximal (0.7°C above control) at the 5 h time point (t-test: 

p<0.01). A similar response was observed after injection of CRF in rats housed 

at 26°C (data not shown).

Animals housed at 28°C did not exhibit hypothermia in response to CRF 

(Figure 5.5.1 C). In contrast, core body temperature of animals increased 1 h 

after injection and rose to a maximum value (1.6°C above control; t-test: 

p<0.001 vs Vehicle) 6 h after treatment (MANOVA: p<0.001 vs Vehicle).

The results of these experiments are displayed as deviation from mean control 

temperatures, and are depicted together to allow visual comparison between 

experiments (Figure 5.5.1 D).
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Figure 5.5.1. Core body temperatures of rats housed individually, injected 

with CRF (3 |ig, icv) at ambient temperatures of (A) 22°C, (B) 24°C, or (C) 

28°C; deviation of body temperatures from mean control temperature are 

depicted in (D)
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5.6  E f fe c t  o f  C R F  R e c e p to r A n ta g o n is t on C R F-Induced C hanges in 

C o re  Body T e m p era tu re

Experiments described previously (Section 5.2) revealed that the CRF receptor 

antagonist D-Phe CRF12-4 i failed to affect leptin-induced changes in core body 

temperature, Moreover, preliminary studies found injection (5 pig, icv) of this 

compound ineffective on CRF-induced hypo- or hyperthermia. Therefore in this 

study, an alternative CRF receptor antagonist, a-helical CRF9.41, injected icv at 

a higher dose, similar to those administered in previous studies (Rothwell, 1989; 

Rothwell, 1990a; Richter & Mulvany, 1995), was co-administered with CRF.

5.6.1 Experimental Design

CRF (3 pig) or vehicle was injected (icv) with the CRF receptor antagonist, a- 

helical CRF9.41 (30 jug) or vehicle at 10:00 h (0 h), in animals housed at 22°C or 

28°C.

5.6.2 Results

In animals housed at an ambient temperature of 22°C, injection of CRF (3 pg,

icv) induced hypothermia (MANOVA: p<0.05 vs Vehicle), which was maximal 

1.5 h later (0.5°C below control; ANOVA: p<0.05) and sustained for 3 h (Figure

5.6.1 A). Hypothermia over this time period was abolished (MANOVA: p<0.001) 

by concomitant injection (icv) of a-helical CRF9.41 (30 pg), so that the response 

of animals receiving both CRF and a-helical CRF9.41 did not differ significantly 

from vehicle-treated animals (MANOVA). However, injection of the antagonist 

alone caused marked and sustained (6 h) hyperthermia (MANOVA: p<0.001 vs
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Vehicle), which peaked at the 3 h time point ( 1 ° C  above control; ANOVA: 

p<0.01). MANOVA (treatment by time) revealed no significant difference 

between the shapes of the response to C R F ,  and C R F  plus a-helical C R F 9 .4 1 .

In contrast (Figure 5.6.1 B), injection of C R F  (3 jig, icv) induced hyperthermia in 

animals housed at 28°C (as shown previously in Section 5.5). Body 

temperature began to rise 2 h after injection of C R F ,  was maximal at the 5.5 h 

time point (1°C above control; ANOVA: p<0.001), and was sustained over the 6 

h time course (MANOVA: p<0.05 vs Vehicle). Injection (icv) of a-helical C R F 9-41 

(30 jig) alone also induced hyperthermia (as seen above, at 22°C) after 0.5 h, 

reaching a peak value 3 h after injection (1°C above control; ANOVA: p<0.001), 

before declining towards the 6 h time point (MANOVA: p<0.01 vs Vehicle). 

Simultaneous injection of C R F  and a-helical C R F 9-41 induced hyperthermia that 

showed a similar initial rise to that induced by a-helical C R F  alone, but then 

continued to rise in parallel with the response to C R F  (approximately 0.5°C 

above C R F ;  MANOVA: p<0.05), reaching a plateau after 4.5 h (MANOVA: 

p<0.001 vs Vehicle), 1°C above control (ANOVA: p<0.001). MANOVA 

(treatment by time) revealed that there was no significant difference between 

the shapes of the response to C R F ,  and C R F  plus a-helical C R F 9 - 4 1 .
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Figure 5.6.1. Core body temperatures of rats co-injected (icv) with CRF (3

pg) and a-heiical CRF9.41 (30 pg), and housed individually at ambient 

temperatures of (A) 22°C, or (B) 28°C
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5.7 In flu e n c e  o f  CRF o n  T e m p e r a tu r e  R e s p o n s e s  t o  L eptin

It has been suggested (Section 5.2) that CRF mediates actions of leptin on 

food intake and body weight, but not body temperature. Studies described in 

this chapter have also suggested paradoxical actions of CRF on 

thermoregulation (Section 5.3-5.6). Therefore, this study investigated whether 

CRF itself affects increase in body temperature in response to leptin.

5.7.1 Experimental Design

Leptin (4 pg) or vehicle was injected icv at 10:00 h (0 h). Vehicle, or a dose (0.3 

pg) of CRF found previously (Section 5.3) not to induce changes in core body 

temperatures (non-hypothermic / subthreshold) was injected (icv) 1.5 h after 

leptin. Core body temperatures were monitored using remote radiotelemetry for 

10 h after injection of leptin, until the end of the light phase.

5.7.2 Results

Administration of leptin (4 pg, icv) induced a significant rise in body temperature 

(MANOVA: p<0.001 vs Vehicle), which began 2 h after injection (Figure 5.7.1). 

This increase was maximal 5 h after injection (1.1 °C above control; ANOVA: 

p<0.001), and then body temperature declined steadily towards the end of the 

time course. A sub-threshold (non-hypothermic) dose (0.3 pg) of CRF 

administered 1.5 h after injection of leptin (to coincide with the start of leptin 

hyperthermia), delayed the increase in core body temperature observed in 

response to injection of leptin (MANOVA: p<0.05). Body temperatures of 

animals that received both leptin and CRF rose after the 3.5 h time point,
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peaked 7 h after injection of leptin (1°C above control, ANOVA: p<0.01) and 

then returned to values exhibited by animals injected with leptin alone 

(MANOVA: p<0.01 vs Vehicle).
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Figure 5.7.1. Effects on core body temperature of a subthreshold dose of 

CRF (0.3 \ig, icv) injected 1.5 h after 4 leptin (icv)

5.8 In flu e n c e  o f  CRF on  IL-1 F ever

The experiment described above suggests that CRF inhibits leptin-induced 

changes in core body temperature. CRF has been reported to mediate various 

actions of cytokines (e.g. IL-1) including fever (Rothwell, 1989; Rothwell, 1990b; 

Rothwell & Cooper, 1992), and data presented in Chapter 4 suggests that IL-1 

mediates body temperature responses to leptin. Therefore this study 

investigated whether CRF inhibited IL-1 as well as leptin fever.
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5.8.1 Experimental Design

A subthreshold (non-hypothermic) dose (0.3 pg) of CRF or vehicle (as in 

Section 5.7) was injected (icv) 0.5 h (to coincide with onset of fever) after 

vehicle, IL-1 p (5 ng, icv) or IL-1a (50 ng, icv) at 10:00 h (0 h). Injections were 

performed in rats housed at an ambient temperature of 22°C.

To investigate whether responses were dependent on ambient temperature, 

animals were acclimatised to an ambient temperature of 28°C for 24 h before 

administration of IL-1 p (5 ng, icv) or vehicle at 10:00 h (0 h). These injections 

were followed (0.5 h later) by icv injection of a subthreshold dose (0.3 pg) of 

CRF or vehicle.

5.8.2 Results

At an ambient temperature of 22°C, administration of IL-1 p (5 ng, icv) induced a 

rise in body temperature which began 0.5 h after injection and was maximal at 

the 2.5 h time point (1.5°C above control; ANOVA: p<0.001), and sustained 

beyond 6 h (MANOVA: p<0.001 vs Vehicle) (Figure 5.8.1 A). A sub-threshold 

(non-hypothermic) dose (0.3 pg) of CRF administered after 0.5 h (to coincide 

with the initiation of fever), attenuated the febrile response to IL-1 p until 5 h after 

IL-1 p injection (MANOVA: p<0.05).

In contrast, fever induced by injection of IL-1 a (50 ng, icv) that rose after the 1 h 

time point, peaked 2 h after injection (1.9°C above vehicle, ANOVA: p<0.001) 

and remained elevated for the remainder of the experiment (MANOVA: 

p<0.001), was unaffected by a subthreshold dose of CRF (Figure 5.8.1 B).
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Injection (icv) of IL-1 p ( 5  ng) at an ambient temperature of 28°C, induced fever

0 . 5  h after injection, that peaked at the 2 h time point (2°C above vehicle; 

ANOVA: p c O . 0 0 1 ) ,  and was sustained for 6 h (MANOVA: p < 0 . 0 0 1  vs Vehicle; 

Figure 5.8.1 C). A sub-threshold dose ( 0 . 3  pg) of CRF administered after 0 . 5  h 

(as above), attenuated the febrile response to IL-1 p over the first 4 h after 

treatment (MANOVA: p < 0 . 0 1 ) .



Chapter 5 Leptin and CRF 199

22° C39.0-

38.5-

38.0-

E 37.5-

37.0 -o -  Vehicle -&-IL-1(3 
-"▼-CRF IL-1 (3/CRF

4 5 61 0 1 2 3
Time (hours)

22° C39.0*1

38.5-

38.0-

a> 37.5-

-o -  Vehicle -A-IL-1 a  
-▼-CRF IL-1 a/CRF

4-1 1 3 5 60 2
Time (hours)

28° C39.5- 

y  39.0- 

S 38.5-

38.0-a.

37.0- - o  Vehicle -A-IL-1 (3 
-▼-CRF IL-1 (3/CRF

1 4 50 1 2 3 6
Time (hours)

Figure 5.8.1. Effects on core body temperature of a subthreshold dose of 

CRF (0.3 pg, icv) injected 0.5 h after (A) IL-1 p (5 ng, icv), or (B) IL-1 a (50 

ng, icv) at 22°C, or (C) IL-1|3 (5 ng, icv) at 28°C
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5,9  S u m m a r y

Studies described here indicate that leptin-induced reduction in food intake and 

body weight, but not its effects to increase core body temperatures, are 

mediated by CRF (Section 5.2). However, increased core body temperatures 

observed in response to injection of leptin were attenuated by administration of 

a subthreshold dose of CRF (Section 5.7), indicating a paradoxical relationship 

between leptin and CRF in regulating energy balance.

The results of these experiments also indicate that CRF can markedly influence 

body temperature in the rat, but that the duration, magnitude and direction of 

the response is dependent on the method of temperature measurement, 

housing conditions, and ambient temperature. Thus, at an ambient temperature 

of 22°C, CRF caused dose-dependent hypothermia (Section 5.3) in individual 

animals whose core body temperature was measured by remote radiotelemetry 

or colonic probe (Section 5.4). However, in group-housed rats, in which body 

temperature was measured using colonic probe, CRF caused transient 

hypothermia followed by hyperthermia (Section 5.4). This response was also 

observed in animals injected with CRF, and housed at raised ambient 

temperatures (Section 5.4-S.5).

CRF-induced hypothermia was inhibited by a-helical CRF9.41 at 22°C (Section 

5.6). In contrast, at an ambient temperature of 28°C, the receptor antagonist 

exacerbated CRF-induced hyperthermia (Section 5.6). However, the antagonist 

alone induced hyperthermia at both ambient temperatures (Section 5.6). 

Furthermore, a subthreshold dose of CRF attenuated fever induced by leptin 

(Section 5.7) and !L-1p, but not IL-1 a (Section 5.8).
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5.10 D is c u s s io n

These studies provide the first direct evidence that effects of leptin on food 

intake (Figure 5.2.1) and body weight (Figure 5.2.2) are dependent on the 

action of CRF (Section 5.2). These results were published in the first volume of 

Nature Neuroscience (Gardner et al., 1998), and preceded a similar publication 

by Uehara et al some weeks later (Uehara et al., 1998). This later study 

reported that morning injection (into the third ventricle) of 3 p,g leptin, inhibited 

food intake after 2 h by 33% in rats that were deprived of food for the previous 

18 h. Simultaneous icv administration of 5 p.g a-helical CRF9.41 attenuated this 

anorexic effect of leptin. It was also reported that injection of leptin increased 

hypothalamic CRF content at this 2 h time point. Attention may be drawn to the 

use of food-deprived animals in this study, which in addition to exhibiting 

increased appetite responses, may also have activated HPA axes and 

increased levels of CRF due to stress. Nevertheless, these studies (Uehara et 

al., 1998; Gardner et al., 1998), together with those reporting activation of CRF- 

containing neurones by injection of leptin (Schwartz et al., 1996; Elmquist et al., 

1998), and the presence of leptin receptors on these hypothalamic neurones 

(Hakansson et al., 1998), provide strong evidence that CRF mediates central 

actions of leptin on food intake and body weight in rats.

The CRF receptor antagonists (a-helical CRF9.41 and D-Phe-CRFi2-4i) injected 

icv in these studies (Uehara etai., 1998; Gardner etal., 1998) do not distinguish 

between the different CRF receptors. Therefore actions of leptin affected by 

these antagonists cannot be localised to specific brain regions or CRF receptor 

subtype. Indeed, the effects of leptin on food intake and body weight, which are
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mediated by these CRF receptor antagonists may be due to the inhibition of 

actions of urocortin on CRF receptors. Neither do these studies elucidate the 

involvement of potential pathways subsequent to the actions of CRF, such as 

POMC and MSH in stimulating these responses to leptin.

Considering that the effects of leptin on food intake and body weight were 

attenuated by antagonism of the CRF receptor, and that CRF has been 

reported previously to induce thermogenesis (Rothwell, 1989; Rothwell, 1990b; 

Rothwell & Cooper, 1992), the observation that CRF reduced core body 

temperature in rats is a paradox. Nevertheless, data presented here reveal that 

CRF induces dose-dependent hypothermia (Figure 5.3.1), measured by remote 

radiotelemetry in individually housed rats, at 22°C ambient temperature 

(Section 5.3). One potential explanation for these effects of CRF on body 

temperature may be that CRF injected into the brain is ’leaking’ out across the 

blood-brain barrier to exert systemic effects on the circulation and peripheral 

tissues. Previous studies have reported that CRF has differential effects on 

cardiovascular functions when acting in the brain or periphery. Peripheral 

administration of CRF induces hypotension and bradycardia, whereas central 

administration has been reported to increase blood pressure and heart rate 

(Richter & Mulvany, 1995). However, peripheral sites of action are unlikely to 

explain the results obtained here because additional experiments showed that 

intravenous, intraperitoneal or subcutaneous injection of the same dose of CRF 

(3 pg) produced no change in core body temperature, indicating that the effects 

observed here result from the direct action of CRF in the brain.
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The doses of CRF used in this study are high compared with some studies (0.1 

ptg) that demonstrate physiological responses of CRF (Holt & York, 1989; 

Diamant & De Wied, 1991; Behan et al., 1995). However similar doses to those 

used here have been applied to investigate thermoregulation and energy 

balance in previous studies in this laboratory (LeFeuvre et al., 1987; Rothwell, 

1989; Rothwell et al., 1991) and by other groups (Britton et al., 1984; Eaves et 

al., 1985; Negri et al., 1985; Arase et al., 1988).

In addition to studies demonstrating that CRF can inhibit pyrogenic responses 

to cytokines (Bernardini et al., 1984; Opp et al., 1989), there is one previous 

report that describes hypothermia in response to icv injection of CRF, similar to 

the effects on body temperature observed here (Sausen et al., 1996). This 

study described how core body temperature (measured using radiotelemetry) 

and oxygen consumption were recorded for 30 min before and for 90 min after 

icv injection of saline, 0.3 or 3 jig CRF in Long-Evans rats. Core temperature fell 

significantly at 90 min in response to 0.3 jag CRF, and at 60 and 90 min in rats 

injected with 3 jig CRF. Oxygen consumption also fell over the course of the 

post-injection period for saline and 0.3 jig CRF, but not in response to injection 

of 3 jag CRF. These data suggest a complex relationship between metabolic 

and thermoregulatory responses to CRF, and strongly support the data 

presented here.

The dose-dependent hypothermia described here in response to icv injection of 

CRF (Section 5.3), contrasts markedly with previously published reports from 

this laboratory, which suggest that CRF increases core temperature and 

metabolic rate (Rothwell, 1989; Rothwell, 1990b; Rothwell, 1994). The studies
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from which this latter conclusion was drawn, were conducted at ambient 

temperatures of 24°C, using the colonic probe method for measuring core body 

temperature, while animals were confined to small metabolic cages for the 

measurement of oxygen consumption (Rothwell, 1989; Rothwell, 1990a; 

Rothwell, 1990b; Rothwell et al., 1991; Strijbos et al., 1992). Therefore, these 

differing conditions may have contributed to the contrasting responses 

observed. This hypothesis is supported by the data presented here, which 

reveal that responses to injection of CRF were dependent on housing 

conditions, method of temperature measurement, but predominantly by ambient 

temperature (Section S.4-5.5).

Injection of 3 [ig CRF elicited similar hypothermic responses in rats exposed to 

the following conditions (Section 5.3-5.4):

i. Individual housing plus telemetry (Figure 5.3.1)

ii. Individual housing plus colonic probe (Figure 5.4.1 A)

iii. Group housing plus telemetry (Figure 5.4.1 B).

However, the combination of group housing (home cages) plus the colonic 

probe method of temperature measurement resulted in modest hypothermia, 

followed by hyperthermia (Figure 5.4.1 C). These results may be explained by 

considering that although rats were familiarised to temperature measurement by 

colonic probe for a week before experiment, prolonged exposure to this 

procedure (every 30 min for 6 h) and the disturbance caused by monitoring core 

temperatures of littermates, may have induced stress in the animals. The 

associated increase in stress hormones (including CRF) therefore may have
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contributed to the increased core temperatures seen in response to injection of 

CRF. Moreover, heat conservation and increased microclimate temperature 

induced by huddling behaviour is likely to have played a role in this paradigm 

where animals were housed in groups of 5-6 in their home cages, thereby 

facilitating any increases in core body temperature.

Indeed, the influence of ambient temperature in responses to injection of CRF 

was found to be of primary importance (Section S.4-5.5), as demonstrated by 

the results of increasing ambient temperature from 22°C to 26°C to simulate 

thermal protection provided by huddling behaviour. Individually-housed animals, 

which at 22°C to exhibit hypothermia only, exhibited both hypo- and 

hyperthermia with the use of radioteiemetry (Figure 5.4.2A). This effect was 

exacerbated in animals, in which temperature was measured by colonic probe, 

such that at 26°C hyperthermia only was observed (Figure 5.4.2B). These 

studies further support the proposal that a combination of environmental factors 

(i.e. stress from colonic probe method and increased ambient temperature) 

alters effects of exogenous CRF on core body temperature.

Further studies however, found that altering ambient temperature alone was 

sufficient to influence temperature responses to icv injection of CRF (Section 

5.5). These studies were performed using radioteiemetry, allowing continuous, 

undisturbed temperature-measurement, and therefore limiting stress that may 

otherwise be exhibited by animals monitored using colonic probe. It is possible 

that animals were exposed to stress and/or infection during peritoneal surgery 

required for implantation of the radiotransmitter. However, all animals appeared 

to recover from the operation at the end of the one week post-operative period.
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Experiments show that CRF, rather than inducing hypothermia, results in 

hyperthermia at higher ambient temperatures (22-28°C) (Figure 5.5.1 A-D).

Sauvagine, a CRF-related peptide isolated from the skin of a South American 

frog (Phyllomedusa sauvagei), with similar biological activity to CRF (Turnbull & 

Rivier, 1997; Vale et al., 1997) has been demonstrated to induce hypothermia 

via a dopaminergic mechanism (Broccardo, 1990; Broccardo & Improta, 1994). 

Therefore, CRF hypothermia may be mediated by similar ambient temperature- 

dependent dopaminergic pathways, whereas CRF-induced hyperthermia may 

be mediated by activation of sympathetic mechanisms (Brown et al., 1982; 

Rothwell, 1990b; Rothwell, 1994).

Perhaps the most likely mechanism of these ambient temperature-dependent 

effects is that CRF influences both heat production and heat loss. It has been 

demonstrated that CRF induces thermogenesis, which at higher ambient 

temperatures (as described here) could increase core body temperature. 

However, CRF (like sauvagine) may also increase heat loss (Broccardo & 

Improta, 1994). This action is unlikely to have significant effects on body 

temperature in warm environments where the potential for heat loss is minimal, 

but may induce hypothermia at lower ambient temperatures, when body heat 

may be lost more readily.

Thus, at low ambient temperatures (22°C) CRF-induced heat production 

mechanisms may not be sufficient to balance heat loss, and so the latter 

predominates, resulting in hypothermia. Conversely, at higher ambient 

temperatures, the potential for heat loss is reduced, thereby allowing heat
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production mechanisms to predominate. This rather complex hypothesis is 

depicted in the following schematic diagram (Figure 5.10.1).

Hypothalamus

Heat V  ^
Production Heat Loss

High Ambient 
Temperature

V V

Low Ambient 
Temperature

Hyperthermia Hypothermia

Figure 5.10.1. Schematic representation of proposed mechanisms of 

effects exogenous CRF on body temperature at different ambient 

temperatures

These mechanisms appear to be mediated centrally since central injection of a- 

helical CRF9-41 inhibited CRF-induced hypothermia at 22°C ambient 

temperature (Section 5.6). However, these data are difficult to interpret 

because injection of the antagonist exacerbated CRF-induced hyperthermia at 

28°C, and alone induced hyperthermia at both 22 and 28°C (Figure 5.6.1 A-B), 

suggesting that CRF may have a role in the regulation of normal body 

temperature. Effects on core body temperature induced by a-helical CRF9.41
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were not induced by endotoxin contaminants, since the results of a LAL assay 

on samples of the CRF receptor antagonist were negative. These responses 

may however result from complex interactions of a-helical CRF9.41 with other 

CRF-like neuropeptides, CRF-binding protein, or from partial agonist effects 

(Behan et al., 1996; Turnbull & Rivier, 1997; Vale et al., 1997). This antagonist, 

at doses of 5 and 25 jig (icv), has been shown to dose-dependently induce 

tachycardia and behavioural activation, suggesting partial CRF agonist activity 

(Diamant & De Wied, 1991). Flowever, the hyperthermic response induced at 

22°C ambient temperature is the reverse of that induced by CRF (which elicited 

hypothermia). It is also perhaps misleading to attribute an exacerbation of CRF- 

induced hyperthermia to this antagonist, since the response to injection of CRF 

plus a-helical CRF9.41 was less than the sum of the individual responses.

These results, although confusing, allow discussion of the study on the effects 

of CRF on leptin-induced hyperthermia (Section 5.7). The data described in this 

section show that a subthreshold dose of CRF attenuated the increase in core 

body temperature induced by leptin (Figure 5.7.1). Because CRF has also been 

implicated in mediating effects of cytokines such as IL-1 (3, but not IL-1 a 

(Busbridge et al., 1989), this experiment was repeated to observe the effects of 

a subthreshold dose of CRF on fever induced by these cytokines (Section 5.7). 

Interestingly, a similar inhibitory effect of CRF on leptin hyperthermia was 

exerted on IL-1 p, but not IL-1a fever (Figure 5.8.1 A-B). Furthermore, this 

response was apparent at both 22°C and 28°C ambient temperatures (Figure

5.8.1 A and C).
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These data may be explained by considering the level of involvement of CRF in 

each pathway. If CRF-mediated thermogenesis is maximal during leptin and IL- 

1p-induced fever, injection of exogenous CRF may affect only the heat loss 

mechanisms active during CRF-mediated hypothermia, resulting in an 

attenuation of the febrile response. This may also explain why IL-1 p fever is still 

attenuated by administration of CRF at 28°C, rather than exacerbated as might 

be predicted from the hyperthermia observed in response to injection of CRF at 

28°C. The failure of CRF to affect IL-1 a fever may be explained by considering 

that the CRF pathway is not activated during this response (Busbridge et al., 

1989). Therefore a dose of CRF that alone does not affect core body 

temperature, will have neither stimulatory nor inhibitory effects on IL-1 a fever.

The results presented in this chapter support the suggestion that leptin effects 

on food intake and body weight are mediated by CRF in the brain. Furthermore, 

the data indicate that central administration of CRF can exert either hyper- or 

hypothermia. The magnitude and duration of which depends on a combination 

of environmental factors such as the housing conditions, method of temperature 

measurement, ambient temperature, and/or the balance between heat loss (via 

dopaminergic pathways) and heat production (via sympathetic pathways). In 

addition, CRF can modulate fever involving the activation of CRF-mediated 

pathways. These effects of CRF on core body temperature are likely to be due 

to actions on effector mechanisms, rather than an influence on the body 

temperature set point. This suggestion could be investigated further by 

additional experiments to measure the metabolic rate and preferred ambient 

temperature of animals in response to injection of CRF. These data
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demonstrate complex actions of CRF, and underline the importance of 

experimental conditions when investigating the role of CRF in thermoregulation. 

Nevertheless, the results described in this chapter involving injection of CRF, 

although fascinating, pose more questions than they answer.
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6.1 T h es is  A im s

The general aims of the studies described in this thesis were to investigate the 

actions of leptin and its interactions with cytokines and other neuroimmune 

mediators. Experiments were designed to elucidate whether actions of leptin 

resembled, (Chapter 3) and were mediated by pro inflammatory cytokines 

(Chapter 4), and to investigate the involvement of CRF in normal untreated 

animals, or those injected with leptin or cytokines (Chapter 5).

6.2 S u m m a r y  o f  R esu lts

The results presented in Chapter 3 described how injection of leptin induced 

cytokine-like actions, not only on food intake and body weight, but also on core 

body temperature, and that the latter response only was mediated by release of 

PGs. However, work described in Chapter 4 showed that all three responses, 

but particularly core body temperature, were mediated by release of IL-1 {3 in the 

brain. Furthermore, leptin-induced release of IL-6 in the brain may be involved 

in suppressing such responses. Chapter 5 demonstrated that in contrast to the 

involvement of PGs, CRF mediates food intake, but not temperature responses 

to injection of leptin. Furthermore, responses to injection of CRF in normal and 

febrile animals varied by altering housing conditions, method of measuring core 

body temperature and ambient temperature, underlining the importance of 

experimental conditions when investigating the role of CRF in thermogenesis.
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These data have important implications in understanding the mechanisms 

involved in energy balance in host defence responses to disease. A summary of 

these responses is presented in the following schematic diagram (Figure 6.2.1).
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'h Body Temp. |

PGs
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IL-1 & Other 
Local <  
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Infection
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Figure 6.2.1. Schematic representation of potential mechanisms involved 

in mediating actions on leptin in experimental and disease responses
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6.3 R e le v a n c e  of  Ex p e r im e n ta l  A pp r o a c h e s

There are three major points of discussion about the experimental procedures 

performed in studies described in this thesis:

6.3.1 Administration of substances into the brain

Although similar acute doses of LPS, IL-1 (3 and leptin as used in this study, 

have been administered to rodents for the observation and characterisation of 

responses in previous reports (Strijbos et al., 1992; Schwartz et al., 1996; 

Luheshi et al., 1996), there remains doubt whether such doses are relevant to 

actual pathophysiological conditions. Osmotic minipumps have been used 

effectively for the chronic administration of substances in concentrations that 

purport to resemble physiological concentrations (Plata-Salaman et al., 1996; 

Gayle et al., 1997). Even so, such studies requiring chronic treatment are not 

without their disadvantages, such as the extended experimental time course 

before responses may be observed, and the development of tolerance to the 

substances administered (Plata-Salaman et al., 1996). Pathophysiological 

concentrations of IL-1 (3 in human brain CSF have been reported to extend from

0.5 to 1.5 pg/jul (Lopez-Cortes et al., 1993). Caution must be applied when 

comparing these data with concentrations of substances injected into brains of 

rodents, since substances present in patient’s CSF is ‘spill-over’ from brain 

tissue, whereas in contrast, substances injected icv have to diffuse into those 

tissues from the CSF. Therefore concentration gradients in each case are likely 

to be in opposition. Nevertheless, assuming that a rat's normal CSF volume is 

400 jil (Plata-Salaman, 1994), after initial diffusion, a 5 ng dose of IL-1 (and
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assuming no loss) could lead to a concentration of 12.5 pg/jxl, which is tenfold 

higher than for CSF measured in human patients. Assuming a turnover of 

approximately 1% total CSF per minute (Lai et al., 1983) (and excluding any 

active clearance of IL-1 (3), this concentration would be halved every hour, 

thereby reaching acceptable concentrations within 3 h after injection (at the 

febrile peak). Thenceforth IL-1 (3 concentrations would be within 

pathophysiological limits for the remainder of the experimental time course. It 

may be argued therefore, that the observed rise in core body temperature of 

animals injected with IL-1 (3 was a result of excessive concentrations. However, 

febrile body temperatures persisted beyond the 3 h time point, indicating that 

acute administration can induce pathophysiological responses. Similarly, 

previous investigations using rats have reported induction of physiological 

responses after chronic infusion (icv) of leptin (12 p,g/day for 4 days) (Cusin et 

al., 1998). Therefore an acute 4 jig dose of leptin as used in this study would 

elicit similar acceptable CSF concentrations within 3 h after injection.

It may also be questioned whether icv administration of substances is a 

physiologically useful approach, since icv injection may influence brain regions 

that are not normally exposed to the endogenous ligand. Moreover, the fact that 

leptin is produced in peripheral adipose tissue (Zhang et al., 1994; MacDougald 

et al., 1995; Guerre-Millo, 1997) implies that systemic administration of leptin is 

the more physiologically relevant route of administration for the observation of 

responses in vivo. However, leptin has been suggested to have direct actions 

on the brain where it is more potent and so requires lower concentrations to 

elicit responses (Seeley et al., 1996; Schwartz et al., 1996). Therefore
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performing icv injections prevented the high costs of injecting large doses of 

leptin peripherally.

6.3.2 IL-1RI (-/-) Mice

There are several flaws the preliminary experiment described in Section 4.4, 

not least the use of mice that are not exact controls for the IL-1 Rl (-/-) mice. The 

knockout mice appear to exhibit a degree of heterogeneity. This is most 

apparent by the fact that some (most) animals exhibit the black coat colouring of 

C57BL/6s, while the others possess the faun colouring of the 129 strain. There 

also appears to be variation in body weights between these black and faun 

mice, and between different litters.

Solutions:

1. A comprehensive breeding programme should be established such that 

original IL-1 Rl (-/-) mice are back-crossed with either C57BL6s or 129s so 

that C57BL6 or 129 mice may be used as a control.

2. Alternatively, knockout mice should be crossed with a C57BL/6 or a 129, to 

obtain heterozygotes (+/-). Inbreeding these heterozygotes would then yield 

an mixed 1:2:1 (+/+):(+/-):(-/-) F1 litter, whose weights should be devoid of 

variation other than that elicited by differences in genotype.

6.3.3 Telemetry Versus Colonic Probe

Experiments presented in Chapter 5 indicated that although animals exhibited 

similar responses when core body temperature was measured using either 

remote radioteiemetry or colonic probe, additional environmental influences
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caused resulting responses to deviate. These findings reinforce the argument 

that remote radioteiemetry, which allows continuous undisturbed monitoring of 

core body temperature has a distinct advantage over the colonic probe method 

in obtaining physiologically accurate data (Gallaher et al., 1985; Clement et al., 

1989; Matthew, 1997). The only negative aspect of this method is the 1 week 

period necessary to facilitate recovery from implantation surgery. However, 

animals implanted icv with a guide cannula were required to undergo this 

treatment anyway.

6.4  R e la t io n s h ip  to  O th e r  W o r k

These studies are the first to describe that injection of ieptin induces increases 

in core body temperatures of normal rats (Chapter 3). Others have 

demonstrated that the suppressed body temperatures of ob/ob mice are 

normalised in response to leptin administration (Pelleymounter et al., 1995; 

Harris et al., 1998). Earlier experiments performed on rats have shown modest 

increases in body temperatures, although these effects were induced in 

response to injection of leptin peptide fragments, not the complete molecule 

(Fruhbeck etal., 1998).

These studies are also the first to demonstrate induction of cytokines in 

response to leptin administration (Chapter 4). Whereas others have shown that 

leptin upregulates LPS-induced cytokines (Loffreda et al., 1998), and that 

conversely, proinflammatory mediators induce increased leptin expression
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(Grunfeld et al., 1996; Sarraf et al., 1997; Janik et al., 1997; Bornstein et al., 

1998; Faggioni etal., 1998).

Furthermore, work presented in Chapter 5 demonstrating that CRF mediates 

actions of leptin on food intake resulted in the first publication of such effects 

(Gardner et al., 1998). Uehara et al. later reported similar findings, although 

these were observed in food-restricted rats (Uehara etal., 1998).

Studies described in Chapter 5 agree with a study performed by Sausen et al. 

showing that icv injection of CRF induces hypothermia in rats (Sausen et al., 

1996). These effects were also similar to those observed in response to 

injection of the CRF-like molecule Sauvagine (Broccardo, 1990; Broccardo & 

Improta, 1994), indicating the possibility that these molecules are stimulating 

shared receptor-mediated pathways.

6.5 C o n c lu s io n s  R ela tin g  t o  H u m a n  C o n d it io n s

It is difficult to relate the data obtained in this thesis using rodents to the actions 

of leptin in the human condition of obesity, due to its heterogeneous nature 

(Leibel, 1997; Comuzzie & Allison, 1998). Although humans may exhibit genetic 

predispositions to the development of obesity, environmental factors such as 

poor diet and inactivity are likely to be of primary aetiological importance in 

determining body fat content (Hill & Peters, 1998). There has only been one 

recent study, which has demonstrated congenital leptin deficiency in man 

(Farooqi et al., 1998). Most studies in humans have suggested that deficiencies 

in the leptin receptor pathways are linked to the aetiology of obesity (Clement et
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al., 1998; Comuzzie & Allison, 1998). However, others have detected leptin 

receptor polymorphisms in obese individuals, but these have not been 

significantly linked with the obese phenotype (Rolland et al., 1998). Therefore 

leptin-related effects resulting in obesity are proposed to be present in the 

downstream signal transduction mechanisms regulating energy balance, 

rendering direct pharmacological targeting of the leptin receptor obsolete in 

prospective treatments of obesity. Nevertheless, the studies described here 

indicate that leptin may play an important cytokine-like role in 

pathophysiological responses such as food intake and body temperature. 

Indeed, it is possible that leptin, rather than IL-6, is the ‘elusive’ circulating 

neuroimmune mediator involved in inducing CNS-mediated responses to 

disease such as fever. Leptin is synthesised in the periphery, released into 

circulation, from where it is able to cross the BBB to stimulate areas of the brain 

known to be involved in regulating energy balance. Therefore leptin appears to 

satisfy many of the criteria that such a molecule should possess.

Results presented in this thesis have important implications in host defence 

responses to disease and infection. By targeting the leptin pathway, it may be 

possible to inhibit cytokine actions in the brain that contribute to cachexia and 

other disorders (Moldawer et al., 1992; Tisdale, 1997; Moldawer & Copeland, 

1997; Matthys & Billiau, 1997). Furthermore, the finding that leptin induces 

febrile 'side-effects1 mediated by IL-1 also has serious implications for the use of 

leptin, or leptin-derived molecules in the future treatment of obesity.
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6.6  Q u es tio n s  A r ising  fro m  W o r k  P r es en ted  in  th is  T h esis

There are several questions and points of further study arising from the data 

presented in this thesis:

•  What is the role of leptin in IL-1 Rl (-/-) and IL-6 (-/-) mice?

•  What are the sites and mechanisms of interaction between leptin, IL-1, CRF 

and PGs?

•  How does CRF modify body temperature?

•  Does CRF affect the hypothalamic thermoregulatory set point?

•  Is CRF pyrogenic or cryogenic?

•  is leptin the circulating afferent mediator of fever?

•  Are IL-1 and CRF involved in the normal regulation of energy balance and 

body temperature?
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