
Deforming NURBS Surfaces & B-rep
Models

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

in t h e F a c u l t y of S c ie n c e a n d E n g in e e r in g

April 2003

YingLiang MA

Departm ent o f Computer Science

ProQuest Number: 10756859

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10756859

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

^ ^ ■ 2 3 5 ■

Contents

List of Figures 8

Abstract 12

Declaration 13

Copyright & Ownership 14

Dedication 15

Acknowledgement 16

1 Introduction 18

1.1 Background...18

1.2 Main Contributions..21

1.3 Thesis Outline.. 24

2 Introduction to NURBS 26

2.1 B-Spline Curves and Surfaces..26

2.1.1 Definition of B-Spline Curves and Surfaces......................................26

2

Contents 3

2.1.2 Properties of B-Spline Curves and Surfaces..28

2.2 NURBS Curves and Surfaces.................................... 30

2.2.1 Homogeneous Coordinates.. 30

2.2.2 Definition of NURBS Curves and Surface...31

2.2.3 Properties of NURBS Curves and Surfaces...32

2.2.4 Derivatives of NURBS Curves and Surfaces.......................................33

2.3 Fundamental Algorithms.. 35

2.3.1 Knot insertion................. 35

2.3.2 Curve & surface decomposition..37

2.3.3 Degree Elevation.. 39

2.3.4 Knot Removal..40

2.4 Construction of Common Surfaces ... 41

2.4.1 Bilinear Surfaces... 41

2.4.2 Extruded Surfaces... 42

2.4.3 Ruled Surfaces................................. 44

2.4.4 Revolved Surface.. 45

2.5 NURBS Solid Model.. 46

2.5.1 Trimmed NURBS Surfaces.. 48

2.5.2 Adaptive Tessellation...49

2.5.3 Curve and Surface Intersection.. 50

2.5.4 B-rep Model........................ 52

2.6 Summary.. 53

3 Deformation M odel 54

Deforming Surfaces & B-rep Models Contents

Contents 4

3.1 Introduction... 54

3.2 Geometric Deformation .. 55

3.2.1 Direct Control Point Manipulation..55

3.2.2 Free-Form Deformations..56

3.2.3 Extended Free-Form Deformations ... 59

3.3 Metaball Deformation Method.. 61

3.3.1 Background.. 61

3.3.2 The definition of metaball m odel..63

3.4 General Constraints...66

3.4.1 Point constraint................................... 66

3.4.2 Line segment constraint..66

3.4.3 Polyline constraint.. 67

3.4.4 Circle line constraint... 68

3.4.5 NURBS curve constraint..69

3.4.6 Disk constraint...70

3.4.7 Sphere constraint... 71

3.4.8 Cylinder constraint... 72

3.4.9 Sphere volume constraint...................................... 73

3.4.10 Cube volume constraint..73

3.4.11 Summary.. 74

3.5 Deformations for Metaball Model... 75

3.5.1 Moving the control points...76

3.5.2 Modifying the weights..78

Deforming Surfaces & B-rep Models Contents

Contents 5

3.6 Closing.. 80

4 Point Inversion and Projection 81

4.1 What and w hy?.. 81

4.2 Previous w orks.. 82

4.3 Outline of algorithm 84

4.3.1 Algorithm for NURBS curve.................. 84

4.3.2 Algorithm for NURBS surface.. 85

4.4 Control Polygon and Control Point Net detection......................................85

4.5 The Relationship between the test point and Bezier curve or Bezier Patch

..90

4.6 Find the closest point on the NURBS curve... 96

4.7 Find the closest point on the NURBS surface..97

4.8 Boundary conditions of NURBS surface ..99

4.9 The Newton-Raphson method for a NURBS surface 100

4.10 Examples..101

4.11 Comparison.................. 104

4.12 Point Inversion... 107

4.13 Conclusion... 107

5 Adaptive Tessellation 108

5.1 Previous work.. 108

5.1.1 Adaptive Forward Differencing.. 108

5.1.2 Tessellation Under Highly Varying Transformation......................... 109

Deforming Surfaces & B-rep Models Contents

Contents 6

5.1.3 Fast Dynamic Tessellation of Trimmed NURBS surface................ 110

5.1.4 Triangulating Trimmed Surfaces for Stereo lithography Applications

 110

5.1.5 Triangulating The Trimmed NURBS Surface in Parameter Domain

..................................... 113

5.1.6 Summary...115

5.2 New Approach............................... ...116

5.2.1 Tessellating the untrimmed NURBS surface.....................................118

5.2.2 Finding The Bounding Box and Splitting The Surface.....................119

5.2.3 Removing The Patches... 120

5.2.4 Closing the Outer and Inner Boundary with a Set of Triangles.......124

5.2.5 Summary of the Algorithm................................... 126

5.3 Conclusions..126

6 Deforming B-rep Model 128

6.1 Deformation on a single untrimmed NURBS surface........................ 128

6.2 Deformation on a trimmed NURBS surface.. 130

6.3 Deformation on a B-rep M odel..133

6.4 Summary... 138

7 Conclusions 139

7.1 Summary of Work D one... 139

7.2 Future work.. 141

Deforming Surfaces & B-rep Models Contents

Contents 7

A openNURBS Toolkit 143

A,1 Overview of openNURBS toolkit... 143

B YLNurbsLib 146

B.l 0 0 definitions of NURBS objects.. 146

B.2 Memory Management...149

References 150

Deforming Surfaces & B-rep Models Contents

List of Figures

Figure 1.1: Point projection for NURBS curve................. 21

Figure 1.2: The adaptive tessellation for a car model..23

Figure 2,1: Strong convex hull property of B-Spline curve................................ 28

Figure 2.2: Moving a control point to change the shape of B-Spline curve 29

Figure 2.3: Homogeneous Transformation...30

Figure 2.4: Modifying a weight to change a NURBS curve............................... 32

Figure 2.5: NURBS representation of a full circle ...33

Figure 2.6: Knot insertion to obtain polyhedral approximation to the NURBS

surface.......................... 37

Figure 2.7: subdividing a NURBS curve.................................. 37

Figure 2.8: The subdivision of a NURBS surface.. 38

Figure 2.9: The decomposition of a NURBS curve...38

Figure 2.10: The decomposition of a NURBS surface..39

Figure 2.11: An ellipsoid before and after degree elevation............................... 40

Figure 2.12: Removing a knot from a NURBS ellipse..41

Figure 2.13: Bilinear Surfaces.......................... 42

Figure 2.14: Extruded Surfaces..43

Figure 2.15: Extruding an ellipse along a path curve...43

Figure 2.16: A Ruled Surface... 44

Figure 2.17: Revolved Surfaces... 46

Figure 2.18: A CSG model through two subtraction operations.........................47

Figure 2.19: The trimming loops of the trimmed NURBS surface.................... 48

List o f Figures 9

Figure 2.20: Adaptive Tessellation.. 49

Figure 2.21: 2D Bounding rectangles overlap for curve intersection.................51

Figure 2.25: A cylinder and its face connectivity structure................................ 53

Figure 3.1: Direct control point manipulation...56

Figure 3.2: A simple 3x3 FFD transformation (Made in 3DS M ax)................. 57

Figure 3.3: A parallelepipedical lattice...................................... 58

Figure 3.4: Cylindrical lattice... 60

Figure 3.5: An illustration of the metaball model...64

Figure 3.6: Point constraint deformation....................... 66

Figure 3.7: The deformation of line segment constraint............................... 67

Figure 3.8: The deformation of polyline constraint...68

Figure 3.9: Distance calculation for a circle line... 69

Figure 3.10: Generalized metaball for a circle line.. 69

Figure 3.11: The deformation of NURBS curve constraint................................ 70

Figure 3.12: The generalized metaball of a disk.. 70

Figure 3.13: The generalized metaball of a square.................... 71

Figure 3.14: The generalized metaball of a sphere...71

Figure 3.15: Cylinder constraint... 72

Figure 3.16: The outer surface of the generalized metaball for a cylinder

constraint....................................... 73

Figure 3.17: Generalized metaball of a cube volume..74

Figure 3.18: Some general constraints..................................... 75

Figure 3.19: The procedure of moving control points for metaball deformation

.. 77

Figure 2.20: Modifying a weight for a revolved surface.................................... 78

Figure 3.21: Applying weight based modification to the metaball deformation

................ 79

Figure 4.1: Minimum distance between a point and a curve.............................. 82

Figure 4.2: Wrong result for point projection on the complex curve................. 83

Figure 4.3: Discarded Bezier patch..85

Deforming Surfaces & B-rep Models List o f Figures

List o f Figures 10

Figure 4,4: Type of control polygons of 2D cubic Bezier subcurve...................86

Figure 4,5: Valid polygon detection...87

Figure 4.6: Control point net.. 91

Figure 4.7: Conditions for 2D Bezier curve (satisfied)...................................... 91

Figure 4.8: Conditions for 2D Bezier curve (unsatisfied).................................. 92

Figure 4.9: Conditions for 3D Bezier curve.. 93

Figure 4.10: Boundary curves of the NURBS surface...99

Figure 4.10: The Newton-Raphson method for surface..................................... 101

Figure 4.11: Point Projection for NURBS Curves... 102

Figure 4.12: Point Projection for NURBS Surfaces 104

Figure 5.1: Generation of mapping polygons by splitting of trimmed region 111

Figure 5.2: Subdivision of triangles. .. 113

Figure 5.3: Tessellating the untrimmed NURBS surface...................................117

Figure 5.4: Generating triangles from the Bezier patch..................................... 118

Figure 5.5: The wire frame of tessellating result.. . 118

Figure 5.6: Rendered picture of tessellating result... 119

Figure 5.8: Splitting surface to fit with the bounding box................................. 120

Figure 5.10: Positive and negative regions... 121

Figure 5.9: U Scanline................................ 122

Figure 5.10: The procedure of removing patches.. 124

Figure 5.11: Final results of tessellation... 125

Figure 6.1: deforming “MVC” on the NURBS surfaces.............................. 128

Figure 6.2: Apply different constrained deformation methods on the surface 130

Figure 6.3: Trimmed NURBS surface and its trimming loops......................... 132

Figure 6.4: Deforming the trimmed NURBS surface by using metaball model

.. 133

Figure 6.5: Deforming the B-rep model by using method one (Made in Rhino).

...135

Figure 6.6: Deforming the B-rep model by using method two (Made in Rhino).

...136

Deforming Surfaces & B-rep Models List o f Figures

List o f Figures 11

Figure 6.7: original edge curves, deformed edges curves and surface patches

............................... 137

Figure 6.8: The final result by using method three (Made in Rhino)............... 137

Figure A .l: Hierarchy Chart of openNURBS toolkit libaray 145

Figure B .l : Hierarchy Chart of YLNurbsLib libaray... 147

Deforming Surfaces & B-rep Models List o f Figures

Abstract

UNIVERSITY OF MANCHESTER

ABSTRACT OF THESIS submitted by YingLiang MA for the Degree of

Doctor of Philosophy and entitled Deforming NURBS Surfaces & B-rep

Models.

Month and Year of Submission: April 2003

Object deformation is an important technique in computer graphics and CAD.

In this thesis, a metaball deformation method on NURBS surfaces and B-rep

models is presented. This method enables the user to interactively deform the

NURBS object by specifying a series of constraints, which may consist of

points, lines, curves and surfaces, their effective radii and maximum

displacements, and the deformation model creates a generalized metaball for

each constraint.

This thesis presents several research contributions relative to metaball

deformation models. Point projection for NURBS object is introduced as a

method for calculating the minimum distance between the 3D test point and

NURBS objects. A new tessellation method for trimmed NURBS surfaces is

presented. Finally, an extended method for the deformation of B-rep models is

discussed. It provides a flexible method to change the shape of CAD solid

models.

12

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

of qualification of this or any other university or other

institution of learning.

13

Copyright & Ownership

1. Copyright in text of this thesis rests with the Author. Copies (by

any process) either in full, or of extracts, may be made only in

accordance with instructions given by the Author and lodged in the

John Rylands University Library of Manchester. Details may be

obtained from the Librarian. This page must form part of any such

copies made. Further copies (by any process) of copies made in

accordance with such instructions may not be made without the

permission (in writing) of the Author.

2. The ownership of any intellectual property rights which may be

described in this thesis is vested in the University of Manchester,

subject to any prior agreement to the contrary, and may not be

made available for use by third parties without the written

permission of the University, which will prescribe the terms and

conditions of any such agreement.

Further information on the conditions under which disclosures and

exploitation may take place is available from the Head of the

Department of Computer Science.

14

Dedication

To my parents, thanks for all your support.

15

Acknowledgement

First and foremost, I would express my sincere thanks to my supervisor, Mr.

W. T. Hewitt, for his guidance during my research work and during the writing

up of this thesis.

I should also like to thank all staffs in the Manchester Visualization Centre,

who have given me assistance. I should especially like to thank Collin C.

Venters, George Leaver, Yien Kwok, Mark Riding and Mary McDerby.

Thanks are also due to Robert Haines for proof reading my papers and

discussing ideas during last two years. Thanks also go to all my friends,

particularly, Jie Fang, Zhong Chuan Yu, ZhiMing Pan, XiaoXia Ni,Yang Xu

and Shi Yuan Shen. They bring such good fun in the last three years.

I would also thank Dr. XiaoGang Chen, the senior lecture in department of

textiles (UMIST), created the opportunity to implement my NURBS library

into their CAD system. Thanks also go to all members in CAD/CAM lab,

textiles department, UMIST, especially to Dr. XinCai Tan and XueGong Ai.

I must also thank my girlfriend Ning Li and my parents for providing for their

support and sacrifice during the lengthy production of this thesis.

16

Acknowledgement 17

Finally, I should like to thank the Department of Computer Science for the

financial assistance.

Deforming Surfaces & B-rep Models Acknowledgement

Chapter 1

Introduction

1.1 Background
The use of computers to aid the design and manufacture of parts has a history

of more than 30 years [75]. The first 3D CAD system appeared in the early

1970’s, and it used wire frames to display the 3D model. Since then, the

various systems have become better, faster and cheaper. The rendering of 3D

objects has been developed from wire frame through wire frame with hidden

line removal, two and half dimensions, 3D surfaces to 3D solid models [75].

Nowadays, CAD techniques are widely used in almost every manufacturing

industry particularly in automobile, aeronautics and marine industry.

Thus the design and visualization of 3D objects is a major research area for

CAD and Computer Graphics. Design refers to the creation and modification

process, and the task of the visualization is to show the 3D objects on the 2D

computer screen. Much of the research in design process is to create the

algorithms for the design, modification and assembling of models. The

algorithms for visualizing 3D objects are designed to create as many fast and

realistic effects as possible on the 2D computer screen.

18

Chapter 1. Introduction 19

In the last few years, surface manipulation methods have been developed which

not only professionals but also laymen can use. They do not require a user to

have a detailed knowledge of the surface which they are manipulating [75].

This thesis presents a number of issues with respect to surface design and

modification method as well as method of trimmed surface visualization. They

can be categorised as geometry representation, deformation, surface

visualization and reverse engineering.

• Geometry Representation

By the late 1970s, the CAD/CAM industiy recognized the need for a

modeller that had a common internal method of representing and storing

different geometric entities. The solution is to use NURBS (Non Uniform

Rational B-Spline) [1]. NURBS are the best available mathematical form

for representation of both analytical shapes and free-form curves or

surfaces.

• Deformation

Although much progress has been made in the area of 3D surface

modelling, creating complex free-form surfaces is still very difficult and

tedious [2]. Deformation provides a more flexible method to construct a

surface from a skeleton in an interactive environment. In computer

animation, morphing based on the deformation technique presents an

amazing way to transform one object to another [2].

• Surface Visualization

The primary putpose of 3D computer graphics is to produce a 2D image of

a scene or an object from a description or model of the 3D object. In a

CAD system, surface visualization can assist the user to create the model in

an interactive way by displaying the wire-frame or rendered objects. The

surfaces in the model can have some complex shapes with holes and

curved boundaries. For rendering the surface, the surface is usually

Deforming Surfaces & B-rep Models Chapter 1. Introduction

Chapter 1. Introduction 20

tessellated into a set of triangles or quadrilaterals. Another application of

surface visualization is to assist the engineer to analyse the surface to find

out both geometric and physical properties.

• Reverse Engineering

The need for reverse engineering comes about for a variety of reasons;

chief among them is the need to replace a broken or obsolete part that is

no longer available from the original manufacturer. In the reverse

engineering of an object’s form, 3D data can be collected by a touch

probe or laser range sensor (laser scanner). Surface fitting is used to

construct the surface from the set of sampled point data. If we use

NURBS or other types of parametric surface, we need to recover the

parameters of the sampled points by applying the point projection

method. However, projecting the sampled points to the surface is very

expensive and numerical computation is not very stable [57].

This thesis focuses on the research of providing a deformation tool for CAD

based on metaballs model [3][4] [5][6][7][8]. The author also covers the

visualization of a metaballs model and geometric analysis of the metaballs

model, as well as one improved traditional algorithm.

Deforming Surfaces & B-rep Models Chapter 1. Introduction

Chapter 1. Introduction 21

1.2 Main Contributions
The main contributions for metaballs deformation applied on the NURBS

surface and solid model described by the author are:

1. Point Inversion and Projection for NURBS Curves and Surface

Point inversion and projection for curves or surfaces is a fundamental

problem in curve and surface fitting, robotics, animation and interactive

systems. The central problem of point inversion and projection is to

calculate the minimum distance between the test point and a NURBS

curve or surface. The method [17] widely used at the moment uses an

iterative method based upon the Newton-Raphson method. Figure 1.1

shows the results of our method.

Figure 1.1: Point projection for NURBS curve.

However, good initial values must be given to achieve convergence. It is

difficult to get such values due to the complex shape of NURBS curves or

surfaces.

The aim of author’s approach is to provide the good initial value. The

NURBS curve or surface is first subdivided into a set of Bezier curves or

Deforming Surfaces & B-rep Models Chapter 1. Introduction

Chapter 1. Introduction 22

patches. By analysing the relationship between the test point and the

control polygon of Bezier curve or the control point net of the Bezier

patch, the candidate Bezier curves or patches are extracted and the

approximate candidate points are calculated. Finally, by comparing the

distances between the test point and candidate points, the closest point is

found. The accuracy of the closest point can be improved by applying the

Newton-Raphson method to it.

This pre-processing means less iterations and this approach achieves better

results both in efficiency and stability than the traditional methods. It also

is applied in the metaballs model to calculate the distance function.

2. Adaptive Tessellation for Trimmed NURBS Surface

Trimmed surfaces have a fundamental role in computer-aided design

[9][10][11]. Most complex objects are generated by some sort of trimming

or scissoring process. Trimmed patches are also the result of Boolean

operations on solid objects bounded by NURBS surfaces. In the CAD

pipeline, the trimmed patch undergoes a number of processes such as

rendering for visualization, cutter patch generation, area computation or

rapid prototyping. The simplest method to accomplish all of this is to

approximate the trimmed patch by triangular facets to within a user given

tolerance.

There are two ways to subdivide the trimmed patch: uniform or non-

uniform. Uniform tessellation is to sample the surface at uniform

parametric intervals. However this often leads to regions of a surface

which are either overcomplicated or undersampled. Non-uniform

(adaptive) tessellation focuses more attention in regions of highest

curvature. A minimal number of polygons can be generated for a

particular subdivision tolerance.

Deforming Surfaces & B-rep Models Chapter 1. Introduction

Chapter 1. Introduction 23

The author presents an adaptive tessellation method for trimmed NURBS

surfaces. Based on the subdivision of a NURBS surface by using the knot

insertion algorithm, the surface is tessellated into a set of ‘flat’ enough

Bezier patches [24]. A Scanline algorithm is applied to remove the patches

inside the inner trimming loop. The result of tessellation is both

quadrilaterals and triangles which can be passed into the rendering

pipeline (figure 1.2).

Figure 1.2: The adaptive tessellation for a car model

This method is performed completely in parametric space, and

furthermore it does not adopt any complex methods to generate triangles,

so that the procedure runs fast and reliably.

3. Generalized Metaballs Deformation on The Solid Model

In an interactive CAD system, the shape of object can be finely controlled

by interactively adjusting the positions of its vertices or control vertices.

However, to most users, this manipulation is tedious and inefficient.

The most popular deformation method is the free-form deformation (FFD)

technique developed by Sederberg and Parry [12]. FFD is typically

conducted by embedding an object to be deformed into a parametric space

of a trivariate Bezier volume whose control points are organized as a

Deforming Surfaces & B-rep Models Chapter 1. Introduction

Chapter 1. Introduction 24

lattice, the deformation of the object being obtained by moving the control

points of the trivariate Bezier volume. However in FFD the user is forced

to define some control points in the space to be deformed.

To overcome the disadvantages of FFD-based method, Xiaogang Jin,

Youfu Li and Qunsheng Peng [8] developed a constrained deformation

model based on generalized metaballs. In their method, constraints are

generalized to include points, lines, surfaces and volumes. The user need

only define a set of constraints with desired displacements and an effective

radius associated with each constraint. However, their method is applied

on the mesh model rather than any parametric surface or solid model.

The author extends this method to the trimmed NURBS surface and

further to the solid model. The new method modifies the positions of

control points on the NURBS surface so that it obtains a more accurate

model after defoimation than the mesh model. The visualization of

geometric properties of the deformed surface is given to assist the user to

analyse the quality of the NURBS surface.

1.3 Thesis Outline
The remainder of this thesis is organized as follows.

Chapter 2 gives a brief introduction of the fundamentals of NURBS curves and

surfaces, including the definitions and properties of NURBS curves and

surfaces, the basic algorithm for NURBS, the fundamental surface construction

techniques and multiple trimmed NURBS surfaces (B-Rep model).

The next chapter describes the mathematical background of general constrained

deformations based on the generalized metaball. This chapter also reviews

other deformation and surface manipulation methods.

Deforming Surfaces & B-rep Models Chapter 1. Introduction

Chapter 1. Introduction 25

The subsequent three chapters devote themselves to the previously described

research contributions. For each chapter, some brief background information

on the problem is given and the approach to the problem is presented.

Chapter 4 presents a novel solution for point inversion and projection for

NURBS curves and surfaces.

Chapter 5 reviews methods for the tessellation of trimmed NURBS surfaces,

presents an adaptive method and gives the results and conclusions.

Chapter 6 describes the method for applying the metaball model on the solid

model

Chapter 7 summarises the results of the research on the metaball model, along

with conclusions and further work.

The appendix presents an overview of the two utility libraries which are used in

my testbed software.

All images and geometric figures appearing in this thesis have been produced

using the author’s prototype surface design and deformation software, except

those highlighted.

Deforming Surfaces & B-rep Models Chapter 1. Introduction

Chapter 2

Introduction to NURBS

In this Chapter, we first introduce the definitions and properties of NURBS

curves and surfaces. Geometric algorithms, common surface construction

techniques and the B-Rep model are also introduced in this chapter, which are

related to the metaball model described in the next four chapters.

2.1 B-Spline Curves and Surfaces
We start with the B-Spline curves and surfaces. More detailed discussions

about B-Spline curves and surfaces can be found in [13] [14].

2.1.1 Definition of B-Spline Curves and Surfaces
A p -degree B-Spline curve is defined by

C(i0 = t lN, . M pi a < u < b (2.1)

26

Chapter 2. Introduction to NURBS 27

where the {/>}are the control points in 3D Euclidean space, and the

{NitP(u)}are the/>th-degree B-Spline basis functions defined on a knot vector

* ,„ («) = (1 if
[0 otherwise

(m+1 knots) U - {wy }'"̂ +p+l by the Cox-deBoor recuiTence relations [13] [15].

C(u) is a point on the curve corresponding to the parameter u e U ,

Ni,p (u) = — Ui N itP_i (a) + U'*P*i ~ H N (u) (2.2)
Ui+P ~ ui ui+p+l- u M

We now list a number of important properties of the B-Spline basis functions.

• Local support: NitP (u) - 0 if u is outside the interval [Uftui+p + i).

• Non-negativity: Ni p(u) > 0 for all i,p and u.

n
• Partition of unity: p(u) = 1 for all w e t/ .

i=0

• Differentiability: in the interior of a knot span [w/5w/+1) 5 Ni p(u) is

continuously differentiable. At an interior knot, Ni p(u) is p - k times

continuously differentiable where k is the multiplicity of the knot.

• Extrema: for p * 0, Ni p(u) attains exactly one maximum value.

The knot vector of a B-Spline curve has the form

U {0,...,0, w p+1 Un, 1,
+̂i p+i

which yields the endpoint inteipolation, as C(0) = P0 and C(l) = Pn.

A B-Spline surface is obtained by taking a bi-directional net of control points,

two knot vectors, and the products of the univariate B-Spline functions
» m

S(u,v) = Z £ * ,,>) iV /,,(v)JP,J (2.3)
r'=0 j= 0

Deforming Surfaces & B-rep Models Chapter 2. Introduction to NURBS

Chapter 2. Introduction to NURBS 28

where, similar to (2.1), the {P(y} are the control net in 3D space, Nip {u) and

Nj q(v) are the normalized B-Spline basis functions of degree p and degree q

in the u and v parameter directions, respectively. These basis functions are

defined over the knot vectors

U = {Ô ^O, wp+, un, lv-d}
p+i p+i

and

V = {0^0, vq+l,..., vm, lv^J}
q+1 q+\

S(u,v) is a position on the surface corresponding to the parameters u e U and

v e V .

2.1.2 Properties of B-Spline Curves and Surfaces

The most significant and useful properties of B-Spline curves and surfaces are:

• Strong convex hull property: The whole B-Spline curve or surface is

contained within the union of individual convex hulls of its segments or

patches (figure 2.1).

Figure 2.1: Strong convex hull property of B-Spline curve

• Variation diminishing: no line (plane) has more intersections with a B-

Spline curve than its control polygon. This property can be extended to the

surface.

• Differentiability: C(u) is infinitely differentiable in a knot span and is

p - k times differentiable at a knot (k is the multiplicity of the knot).

Deforming Surfaces & B-rep Models Chapter 2. Introduction to NURBS

Chapter 2. Introduction to NURBS 29

S(u,v) is p - k (q - k) times differentiable with respect to u (v) at a u knot

(v knot) of multiplicity k.

• Local modification: The movement of a control point Pf changes the

curve C(u) only in the knot interval [ui}ui+p+l) . Figure 2.2 shows the

effect of the control point P3 being moved. If a control point P(J is moved,

it affects the surface S(u,v) only in the rectangle [w,-, ui+p+l) x [vy, vj+q+l).

Figure 2.2: Moving a control point to change the shape of B-Spline curve

Affine invariance: Affine transforms including transformations,

rotations, scalings and shears can be expressed as A[P] = L[P] + v , where

L is a 3x3 matrix, vector v and P is a point in 3D space. From (2.1) and

the partition of unity of the B-Spline basis function, we have:

A[C(u)] = A

i=0

This result can be extended to a B-Spline surface, which means a B-Spline

curve or surface is closed under affine transformations. An affine

transformation of the control points will apply an affine transformation to the

B-Spline curve or surface.

The local modification property of the B-Spline surface is very important in the

metaball model in Chapter 3. The strong convex hull property plays an

Deforming Surfaces & B-rep Models Chapter 2. Introduction to NURBS

Chapter 2, Introduction to NURBS 30

important role in the algorithm of point inversion and projection for NURBS

curves and surface which will be discussed in Chapter 4.

2.2 NURBS Curves and Surfaces
We can develop the non-rational forms of B-Spline to their rational forms

(NURBS) by using homogeneous coordinates. A comprehensive discussion

about NURBS and its application can be found in [16][17] [1][18].

2.2.1 Homogeneous Coordinates
Before defining the NURBS curves and surfaces, we need to define the

homogeneous coordinates, A homogeneous coordinate simply projects a 3D

point into a 4D space. So, a single point P = (jc, y, z) is represented by

Pw = {wx,wy,wz,w), where w is known as the weight. Normally, w is not equal

to zero, however in some special cases, w can be zero, which represents an

infinite point in 3D space. Figure 2.3 illustrates the relationship between the 3D

point P and the 4D Pw.

4D

3D

Perspective

Affine
Transformation

LP + V
Homogeneous
Transformation

MPW

Figure 2.3: Homogeneous Transformation

Deforming Surfaces & B-rep Models Chapter 2. Introduction to NURBS

Chapter 2. Introduction to NURBS 31

In order to convert from 4D homogeneous coordinate point back to 3D point,

we introduce the notation P - H{P"'} where H is a projective map from 4-

space to 3-space:

/ , \ wxf w
wy

} = wylw - ywz
W Z / W j lu

The advantage of representing points in E? as homogeneous coordinates is that

homogeneous transformations may be applied to them. A homogeneous

transformation can be expressed as a 4x4 matrix, which can combine a series of

affine and perspective transformations.

2.2.2 Definition of NURBS Curves and Surfaces

A pth-degree NURBS curve is defined by:

C(«) = ^2_ a < u < b
(2.4)

!=0

where the {/>} are the control points (control polygon), the {w f are the

weights and the {Ni p (u)} are defined as in equation (2.1).

A NURBS curve can be also expressed in homogeneous coordinates as

C* («) = £ # , (2 . 5)
1=0

A NURBS surface of degree p in the u direction and degree q in the v direction

is defined by

r r / \ ’ -V j=®
S («’V) = —7-S-------------------------

Z £ W '< >) A0 > K . , ;
r= 0 j = 0

(2.6)

Deforming Surfaces & B-rep Models Chapter 2. Introduction to NURBS

Chapter 2. Introduction to NURBS 32

It can also be redefined in the homogeneous coordinates as

n m
S"(u,v) = £ 2 X , («) Nj,,(v)pu (2-7)

(=0 j=0

2.2.3 Properties of NURBS Curves and Surfaces
NURBS inherit all of the properties of B-splines. Besides these, the

introduction of weight gives NURBS the following further properties:

• Closed under perspective transformation: Like B-Spline curves and

surfaces, NURBS curves and surfaces are closed under affine

transformations. Furthermore, they are also closed under perspective

transformation.

• Local shape control using weight: The shape of NURBS curves and

surfaces can be modified not only via the control points, but also by

changing the weights [19][20]. If we change the weight associated

with the control point Pn the shape of the NURBS curve is modified only

in p + 1 knot spans [w/5w/+p+1). If increases (decreases), the curve is

pulled toward (pulled away from) P: , pushed away from (pulled toward)

PjU * 0 • An example is shown in figure 2.4.

Po

Figure 2.4: Modifying a weight to change a NURBS curve

Deforming Surfaces & B-rep Models Chapter 2. Introduction to NURBS

Chapter 2. Introduction to NURBS 33

• NURBS representation of conic sections is exact: NURBS can

precisely represent not only the conic curves, but also the commonly

used quadric surfaces by the introduction of weights. Figure 2.5 shows a

NURBS circle with 9 control points.

p2 w2 = l

'5 = S / 2

□ r\
w, V2/ 2

0̂ _ ̂ 8
w0 = Wg = 1
Pi
Wn = V2 / 2

r/ = rooo 1/ 1/ 1/ 1/ 3 / 3 / 1111^ / 4 ’ / 4 ’ /2* / 2’/ 4 ’/4

Figure 2.5: NURBS representation of a full circle

2.2.4 Derivatives of NURBS Curves and Surfaces

In general, compared to the computation of derivatives of non-rational basis

functions, derivatives of rational functions are complicated to compute,

involving denominators with high powers. If Cw(u) is a non-rational curve in

four-dimensional space, we can express the derivatives of a NURBS curve

C(u) in terms of the derivatives of C w(u). Let

C(u) -
w(u) w(a)

Where, the numerator of (2.4), A(u) is the function whose coordinates are the

first three coordinates of C"’(u).

If C [k)w{u) is the Mi derivative of C w(u), then

= (2 .8)

Deforming Surfaces & B-rep Models Chapter 2. Introduction to NURBS

Chapter 2. Introduction to NURBS 34

where

u i + p u i u i + p + 1 u i + 1V J
Then the first derivative of a NURBS curve can be written as

C \ u) - w (M)A X u) - w X u) A(u)

w(ii)A'{u) - w'(u)w(u)C(u) _ A'(u) - w'(u)C(u) ^ 9)
w(u) w(u)

In a similar way the second derivative

= w(M)2A"(u) - 2w(u)w'(u)A\u) + (2w'(u)2 - w(u)w'r(u))A(u)
w3(u) (2' 10)

Calculating the derivatives of NURBS surfaces is done in a similar way to the

calculation of the derivatives of NURBS curves. We only need to derive

formulae for the derivatives of S(u, v) in terms of the derivatives of S w (u, v) (a

non-rational surface). Here the derivatives of non-rational surface are given by

Then the first and second partial derivatives of a NURBS surface are given by

wA„ -w„A (2 .12)

wAv - wvA (2.13)

wlA»„ -2 w w tlAu +(2wf - w w m)A (2.14)

Deforming Surfaces & B-rep Models Chapter 2. Introduction to NURBS

Chapter 2. Introduction to NURBS 35

w2A„ -2v>w.,Av +(2w* - w w „) A (2.15)
v v

s .
w2Am - wwuA v -w v y l,, +(2w„wv - w w „) A (2.16)

For simplicity the (w,v) parameters are omitted from (2.12) to (2.16).

The surface normal calculation involves the first derivatives in both u and v

direction and a cross product. Therefore the normal of a NURBS surface is

relatively expensive to compute. The normal gives the direction of

displacement for control points in the metaball model, which will be discussed

in detail in chapter 3.

A number of fundamental geometric algorithms can be applied to NURBS

curves and surface. They are knot insertion, curve or surface decomposition,

degree elevation and knot removal.

2.3.1 Knot insertion

Inserting one or several knots into a defined knot can increase the flexibility of

a NURBS curve or surface without changing its shape.

For a given NURBS curve Cw{u) defined over the knot vector U = [w0,

a new knot u ^[uk)uk+l) is inserted into U to form a new knot vector

U = [u0,....,uk,u,uk+l,..,um]. By setting up and solving the following system of

linear equations:

2.3 Fundamental Algorithms

it

Deforming Surfaces & B-rep Models Chapter 2. Introduction to NURBS

Chapter 2. Introduction to NURBS 36

where NjjP(u) are the plh degree B-spline basis functions defined over U , [21]

develops the solution as:

(2.17)
where

a,- - <
_ 1
U - U i

U j + p U j

0

i < k ~ p
k — p + 1 < i < k

i > k +1

Only p control points of the control polygon (n+J control points) are

recalculated. The above knot insertion equation can be generalized for inserting

a knot u e[uk>uk+l) with multiplicity r. Suppose u has initial multiplicity s

and s + p < p . Denote the / th new control point in the r th insertion step

bye;;;, with

Then:

Q”r = C1 ~ at.r 1 (2.1 8)
where

a i r u -n
u i + p - r + \ u i

0

i < k - p + r - 1

k - p + r<: i <k~s

i > k - s + 1

The knot insertion algorithm can be extended to surfaces by applying equation

2.17 or 2.18 to the control points in either the u or v parameter directions. It is

often necessary to insert many knots at once; this is called knot refinement. The

applications of knot insertion and knot refinement include:

• Increasing the flexibility of the NURBS curves or surfaces by adding more

control points.

• Decomposing the NURBS curve or surface into a set of Bezier subcurves

or Bezier patches - we elaborate this in the next section.

Deforming Surfaces & B-rep Models Chapter 2. Introduction to NURBS

Chapter 2. Introduction to NURBS 37

• Obtaining polygonal or polyhedral approximations to curves or surfaces.

Refined knot vectors bring the control polygon or net closer to the curve

or surface (figure 2.6).

Figure 2.6: Knot insertion to obtain polyhedral approximation to the NURBS

2.3.2 Curve & surface decomposition
As discussed in the last section, in some applications a curve or surface needs

to be subdivided into a number of Bezier curves or Bezier patches. First, we

give the algorithm for subdividing a single curve or surface into two segments.

For a p\h degree NURBS curve, inserting multiplicity p knots into the knot

vector U will split the curve into two separate parts. For a given NURBS

surface of degree p in the u direction and degree q in the v direction, inserting

multiplicity p knots into U knot vector, or multiplicity q into the V knot vector

will subdivide the surface into two patches. Figure 2.7 gives the example of

subdividing a curve and figure 2.8 shows the subdivision of a surface.

surface

Figure 2.7: subdividing a NURBS curve

Deforming Surfaces & B-rep Models Chapter 2. Introduction to NURBS

Chapter 2. Introduction to NURBS 38

Figure 2.8: The subdivision of a NURBS surface

The decomposition of NURBS curves or surfaces is to subdivide them into

their piecewise Bezier form. The algorithms are given by

• For a given NURBS curve, the rational Bezier subcurves are obtained by

inserting each interior knot until it has multiplicity p.

• For a given NURBS surface, the rational Bezier patches are obtained by

inserting each interior knot in U until it has multiplicity p and then

inserting each interior knot in V until it has multiplicity q.

• The resulting piecewise Bezier form can be further converted to power

basis form, which is often used for fast evaluation of curves or surface in

computer graphics. Figures 2.9 and 2.10 shows the decomposition of a

curve and a surface respectively.

Figure 2.9: The decomposition of a NURBS curve

Deforming Surfaces & B-rep Models Chapter 2. Introduction to NURBS

Chapter 2. Introduction to NURBS 39

-a -

Figure 2.10: The decomposition of a NURBS surface

2.3.3 Degree Elevation

As another basic operation for NURBS, degree elevation increases the degree

of a curve or surface whilst keeping the curve or surface unchanged. For a

given pth degree NURBS curve defined in equation 2.4, it must be possible to

elevate its degree from p to p+1, because it is a piecewise polynomial curve

and rational degree elevation is based on non-rational degree elevation. Denote

the elevated curve as

c ; j u) = f i N,pju) Q :
/=0

=2X„ (»)'*/'
i= 0

where p+](u) are the (/?+7)th degree B-spline basis functions defined on the

new knot vector U . Degree elevation of the NURBS curve refers to the

algorithm for computing the unknown QJ, U and n . Degree elevation is

accomplished for a given NURBS surface by applying the curve degree

elevation algorithm to the rows and columns of the control net. A good

summary of the reference material concerning the degree elevation algorithm is

given in [17]. Figure 2.11 shows an ellipsoid before and after degree elevation.

Deforming Surfaces & B-rep Models Chapter 2. Introduction to NURBS

Chapter 2. Introduction to NURBS 40

Figure 2.11: An ellipsoid before and after degree elevation

2.3.4 Knot Removal

Knot removal is the reverse process of knot insertion and it is an important

utility in several applications. For example, when a NURBS curve or surface is

interactively modified, knots are inserted into the knot vector to increase the

flexibility of the curve or surface by adding new control points. After the

modification, new control points may be removed. Knot removal may be

involved to obtain the most compact representation of the curve or surface.

Another application is to link several NURBS curves together. Knot removal is

used to remove unnecessary knots in the knot vector of the new NURBS curve.

After unnecessary (removable) knots are removed, the shape differences

between the new curve and the old curve should be within the tolerance, which

is specified by the user.

• Knot-removal routines for curves

For a given p\h degree NURBS curve:

/=0

Deforming Surfaces & B-rep Models Chapter 2. Introduction to NURBS

Chapter 2. Introduction to NURBS 41

If ur is an interior knot of multiplicity s in U, we remove ur t times

(1 < t < s). Denote the new knot vector as Ut . We only can get the new curve

as

/=o

if ur is t times removable. The algorithm of knot removal must determine if

knot is removable (how many times) and compute the new control points QJ.

A comprehensive discussion about this algorithm can be found in [22].

• Knot removal from a surface
n ttt

Let S w(u,v) - X X (U)NJ>P (v)P,j be a NURBS surface. A u knot (v knot) is
/=o y=o

removed from S w(utv) by applying the knot removal algorithm to m+1

columns (n+1 rows) of control points.

Figure 2.12 shows an example of removing a knot from a NURBS ellipse.

a'

Figure 2.12: Removing a knot from a NURBS ellipse

2.4 Construction of Common Surfaces
There are a number of techniques for building a NURBS surface from curves.

The most common NURBS surfaces are bilinear, extruded, ruled and revolved.

2.4.1 Bilinear Surfaces

Deforming Surfaces & B-rep Models Chapter 2. Introduction to NURBS

Chapter 2. Introduction to NURBS___ 42_

Let four points Po,o, Pi,o> Po,i and P u be defined in three-dimension space. Four

line segments Po,oPi,o» Po,iPi,i, Po.oPo,i and Pi,oPi,i can be formed. A bilinear

NURBS surface (non-rational) can be created by a simple linear interpolation

between the opposite boundary lines in both u and v directions:

% v) = X X JV,, (U)N„ (v)Plt (2.19)
1=0 ;= 0

with the knot vectors U = V = {0,0,1,!} •

If four points lie on a common plane, the bilinear NURBS surface represents

the planar surface patch whose control points are the comer points of the planar

patch (figure 2.13(a)).

(a) Planar line boundaries (b) non-planar line boundaries

Figure 2.13: Bilinear Surfaces

2.4.2 Extruded Surfaces

n

Let E be a vector and C(u) = r (u)P, be a pth degree NURBS defined on
»=0

the knot vector U, with weights w,. Then the extruded surface can be obtained

by sweeping C(u) a distance of IIEll along E. The extruded surface has the form

n 1

S(u,v) = (2.20)
1=0 j =0

Deforming Surfaces & B-rep Models Chapter 2. Introduction to NURBS

Chapter 2. Introduction to NURBS 43

Where the knot vector U is the knot vector of C(w)and V = {0,0,1,1}. The

control points are given by Pl Q = P(, Pt X = P(+ E and wi0 = wi X = w,.

(a) Gear (b) Elliptic Cylinder

Figure 2.14: Extruded Surfaces

Figure 2.14(a) shows a gear, which is created by extruding a cross-section.

Figure 2.14(b) shows a right elliptic cylinder by extruding a NURBS ellipse

normal to the plane of the ellipse.

Another kind of extruded surface is created by extruding the profile curve C(w)

along the path curve. Figure 2.15 shows a thread of fabric by extruding a cross-

section of ellipse along a path curve.

Figure 2.15: Extruding an ellipse along a path curve

Deforming Surfaces & B-rep Models Chapter 2. Introduction to NURBS

Chapter 2. Introduction to NURBS 44

2.4.3 Ruled Surfaces

Assume we have two boundary NURBS curves

Ck(u) = £ /? ,,„ («)!»* = 1,2
1=0

defined on the knot vectors U0 and U\ respectively.

Because of the tensor product nature of the surface, the two boundary curves

Ck (u) must have the same degree and be defined on the same knot vector. The

process to make the two curves share the same degree and same knot vector is

called the compatibility-proceed [23]. A ruled surface S(u,v) is created by

linear interpolation between C0(w) and C,(w) in v direction. The desired

surface form is

s(u,v) = z ZJt(,tPXjfl)(u,v)p;’
1=0 j = 0

where V = {0,0,1,1}, U = t/, UU2, p = max{p0?Pi}» ^ ,0 an<̂ w, o are taken from

the compatibility-processed C0(w) and, PlA and wi{ are taken from the

compatibility-processed C,(w).

Figure 2.16 shows a ruled surface constructed from two edge curves.

Figure 2.16: A Ruled Surface

Deforming Surfaces & B-rep Models Chapter 2. Introduction to NURBS

Chapter 2. Introduction to NURBS 45

2.4.4 Revolved Surface
Considering that a NURBS profile curve (figure 2.17 (a)) lying on the xz-plane

has the form

m

C(v) = I Rj„Wpj
j = 0

which is defined on the knot vector V, then the full revolution surface can be

created by revolving the profile curve a full 360° about z-axis. Let us use the

nine-point circle representation, with U = {0,0,0,X)X>X5K 5X>Kd!U}and

weights wt = {1, ̂ 2 ,1 , ^2,1} • Then the required surface has the

form 8 m
S(U, v) = ^ v)-̂ < j (2.21)

where

• The knot vector U = { 0 ,0 ,0 ,% X X X X X U S1}

• The knot vector V is same as the profile curve.

• For / = 0, PUJ =P0J =Pjt

• For fixed j\ Pu (i - 0,...,,8) lie on the plane z = zj forming a nine-point

circle square control polygon of width 2xt with centre on the z-axis

(figure2.17 (b)).

42w.- -7lWj 4lWj .

Deforming Surfaces & B-rep Models Chapter 2. Introduction to NURBS

Chapter 2. Introduction to NURBS 46

(b) Control net (c) Rendered surface

Figure 2.17: Revolved Surfaces

(a) Profile curve

2.5 NURBS Solid Model
Arbitrary solid objects can be represented within the computer by several

categories of data structures, such as the boundary representation (B-rep),

spatial decomposition and constructive solid geometry (CSG). However, B-rep

and CSG are exact representations, while the spatial decomposition method is

an approximate model description.

In CSG, solids are described as combinations of simple solids (primitives) in a

series of Boolean operations. An illustration is given in figure 2.18. The

advantages of CSG are its compactness and ability to record Boolean

operations and changes of transformation quickly, including undo operations.

CSG models can be converted to other representations but it is difficult to

convert arbitrary models back to CSG. However, CSG models cannot represent

objects with complex surfaces such as the wing of airplane or the body of ship.

Deforming Surfaces & B-rep Models Chapter 2. Introduction to NURBS

Chapter 2. Introduction to NURBS 47

Figure 2.18: A CSG model through two subtraction operations

On the other hand, B-rep models represent a solid indirectly by a representation

of its bounding surfaces. A B-rep solid is represented as a volume contained in

a set of surfaces together with the topological information which defines the

relationships between surfaces. Because B-rep includes such topological

information, a solid is represented as a closed space in three-dimension space.

Therefore, B-rep can represent a wide class of objects but the data structure is

complex, and it requires a large memory space.

In this thesis, we deform only the B-rep model where the deformation takes

place in one of the bounding surfaces. All bounding surfaces are converted into

the form of trimmed NURBS surfaces. Therefore we call this solid model the

NURBS solid model.

Deforming Surfaces & B-rep Models Chapter 2. Introduction to NURBS

Chapter 2. Introduction to NURBS 48

2.5.1 Trimmed NURBS Surfaces

Trimmed surfaces have played a fundamental role in Computer Aided Design

and computer graphics for many years [9] [11]. Most complex geometrical

objects are generated from some sort of trimming process such as fillet, blend

and chamfer operations. Trimmed surfaces are also the result of a Boolean

operation on the solid objects, which is bounded by a set of trimmed NURBS

surfaces.

• The definition of trimmed NURBS surfaces

A trimmed NURBS surface is a NURBS surface defined by (2.5) and several

trimming curves. The trimming curves are normally in NURBS form so that

there will be a uniform data structure to describe the whole trimmed surface.

Assume that N such curves are defined as

C*(0 = («*(0,V*(f)) = S PX .y (0
,=0 (2 .22)

k - 1,2,..., jV

These curves form a set of trimming loops: one outer loop and several inner

loops. The outer loop corresponds to the outer boundary of the trimming

region. The inner loops actually indicate holes in the surface. As shown in

figure 2.19, in parametric space (UV space) the solid-line loop is the outer

trimming loop and two dash-line ones are the inner trimming loops.

The valid region of
parametric space.

Figure 2.19: The trimming loops of the trimmed NURBS surface

Deforming Surfaces & B-rep Models Chapter 2. Introduction to NURBS

Chapter 2. Introduction to NURBS 49

2.5.2 Adaptive Tessellation

Both in Computer Aided Design and Computer Graphics, trimmed surfaces are

tessellated into a set of triangles or quadrilaterals for rendering, visualization,

area computation and rapid prototyping. There are several tessellating methods

which can be classified into two simple categories [24]:

• Uniform subdivision. This is the simplest case and involves a user

specifying a level at which uniform subdivision of all patches is to

terminate.

• Non-uniform subdivision. This means stopping the division when the

subdivision products meet a patch flatness criterion.

The second category is theoretically preferable as it generates fewer polygons

than the first one. More subdivision takes place in the areas of high surface

curvature. The methods in second category are also called as adaptive

tessellation. An example of this is shown in figure 2.20.

Figure 2.20: Adaptive Tessellation

Deforming Surfaces & B-rep Models Chapter 2. Introduction to NURBS

Chapter 2. Introduction to NURBS 50

2.5.3 Curve and Surface Intersection

In the process of creating a solid model, it is often necessary to find the

intersection between two curves or surfaces.

• NURBS Curve Intersection

A comparison of three Bezier curve intersection algorithms is given by

Sederberg [25]. We extend these methods to calculate the intersection of

NURBS curves both in 2D and 3D. An algorithm for 2D curve intersection is

given as follows (An illustration is given in figure 2.21.);

Algorithm 1. Curvelntersection (Cl, C2)
Input: The two curves Cl and C2

Output: The list of intersection points Pts

begin
find the two bounding rectangles RC1 and RC2 for these two curves
if No intersection ofRCl andRC2 return No intersection points

else
if two curves are flat enough

then

find the intersection point of two straight lines {approximate two curves}

return the intersection point
else { two curves are not flat enough}

subdivide Cl into two subcurves NCI and SCI,
subdivide C2 into two subcurves NC2 and SC2.
Curve Intersection (NCI, NC2);
Curve Intersection (SCI, SC2);

end if

end if

end of Algorithm 1.

Deforming Surfaces & B-rep Models Chapter 2, Introduction to NURBS

Chapter 2. Introduction to NURBS 51

Figure 2.21: 2D Bounding rectangles overlap for curve intersection.

• NURBS Surface Intersection

The intersection between two NURBS surfaces is much more difficult to solve

than the intersection of two NURBS curves. The result of intersection may be a

point, curve or plane. The approach to surface intersection can be classified

into four main categories [26]:

• Analytic

• Lattice Evaluation

• Marching

• Subdivision

We only discuss the method of subdivision as it gives a robust solution for the

majority of cases and it is also the easiest one to implement. In a similar way to

the 3D curve case, the overlapping test of bounding boxes is carried out to find

out the possibility of intersection. If this is so, the surfaces are subdivided and

the test is repeated. This subdivision continues until the surface patch is flat

enough, which can be approximated by a plane patch. Then the intersection

Deforming Surfaces & B-rep Models Chapter 2. Introduction to NURBS

Chapter 2, Introduction to NURBS 52

between two surfaces can be approximated by calculating the intersection of a

set of plane patches.

2.5.4 B-rep Model

Many of the current solid modelling systems are based on Boundary

Representation (B-rep). B-rep overcomes the disadvantages of CSG model in

that it also can represent sculptured solids, whose boundaries are represented

by trimmed rational parametric surfaces. This is a wide family of objects that

can represent exactly quadrics, tori and free-form solids [27]. In this section,

we give a brief introduction to B-rep. Comprehensive reference materials can

be found in [27] [28][30][31][32].

The B-rep representation of a solid lends itself to a description in terms of

faces, edges and vertices. Each face is a trimmed parametric surface patch,

which defines the solid boundary. Each of the trimming curves form an edge,

and is formed by an intersection of two surfaces (usually faces). Finally,

endpoints of edges form the vertices. They can be represented as an

intersection of three surfaces. Figure 2.25 shows an example solid and the face

connectivity structure that we maintain. Each graph vertex represents a patch,

with graph edges expressing the adjacency information (i.e., which patches are

next to each other). We also maintain the two faces that are adjacent to each

edge, and an anticlockwise order of faces around each vertex. We convert all

trimmed parametric surface patches and trimming curve into the form of

trimmed NURBS surfaces and NURBS curves respectively, so that all data

except vertices have the form of NURBS. We call this a NURBS B-rep model.

Deforming Surfaces & B-rep Models Chapter 2. Introduction to NURBS

Chapter 2. Introduction to NURBS 53

Figure 2.25: A cylinder and its face connectivity structure

2.6 Summary
This chapter has discussed some fundamentals of NURBS and operations on

NURBS including NURBS solid B-rep model, which will be necessary to

describe the deformation on untrimmed NURBS surface, trimmed NURBS

surface and NURBS solid model in rest chapters. The properties and flexibility

of NURBS, along with their ability to represent free-form curves and surfaces,

handle discontinuities, and accurately model conic sections, make them a good

candidate for use in a curve/surface representation schemes. Trimmed NURBS

surfaces, as the surface boundary of NURBS B-rep model, play a very

important role in CAD and Computer Graphics. The tessellation of trimmed

NURBS surfaces will be discussed in chapter five.

Deforming Surfaces & B-rep Models Chapter 2. Introduction to NURBS

Chapter 3

Deformation Model

3.1 Introduction
The generation of complex surfaces is a problem that has been addressed by

many researchers and commercial systems [76], Although much progress has

been made in geometric modelling, creating complex free-form surfaces is still

very difficult and tedious. One major reason is that the users often have to

construct complex models starting with most fundamental elements, such as

points, curves or simple primitives. Great effort has been made on improving

the modelling efficiency in the last two decades [76]. In the case of NURBS-

based modelling, although effective shape editing tools are now available,

state-of-the-art technology still does not allow the user intuitive control over

the smooth blending of the complex models [34],

In this chapter, we will discuss several deformation models for the NURBS-

based modelling system, and we present our approach of generalized metaball

modelling for NURBS.

54

Chapter 3. Deformation Model 55

3.2 Geometric Deformation
Three major geometric deformation methods: direction control point

manipulation [35][36], Free-form deformation (FFD) [38][40] and its extension

(EFFD) [33] have been developed in the last twenty years. All of them can be

applied in the NURBS-based modelling system.

3.2.1 Direct Control Point Manipulation

Moving the control point is a fundamental way of modifying the shape of

NURBS surface and it is used in every NURBS-based modelling system. A

surface editor in such a modelling system provides a method for selecting a

single or a group of control points and manipulating them in three dimensions.

According to the NURBS property of local shape control, this manipulation

will affect only the area around these control points (figure 3.1).

However, this can often be a clumsy and tedious method for surface design,

especially for complex surfaces with hundreds of control points. It has several

disadvantages:

• The number of control points the user will have to move depends on the

size of the deformation region. For example, the design of a large bump

may require moving many control points whereas designing small bumps

may be impossible.

• The shape of the deformed region (both along its boundary and within its

interior) is imposed by the shape of surface isoparametric lines, this is, by

the position of neighbouring control points. Designing a bump with a

circular boundary, for example, is almost impossible.

Deforming Surfaces & B-rep Models Chapter 3. Deformation Model

Chapter 3. Deformation Model 56

• The position of the deformed region on the surface is imposed by the

position of the control points since only the control points are moved.

Some of these problems can be partially solved by using refinement techniques

(knot refinement). In [35] and [36] Piegl also gave a method of combining

control point-based and weight-based modifications. The weight-based

technique is a nice solution for the size problem.

Figure 3.1: Direct control point manipulation

3.2.2 Free-Form Deformations

Another widely used deformation method for surface modelling is free-form

deformation (FFD) [38]. The basic concept of FFD is that an object to be

deformed is imagined as flexible and embedded in a pliable solid.

Deformations applied to the surrounding solid directly affect the embedded

geometry. In [37], Barr first presented a set of powerful transformations for a

solid object that is the origins of FFD. The transformations include stretching,

bending, twisting, and tapering operations. They were applied in a hierarchical

manner as a set of multiplied matrices either in global space or the local space

of the object.

Deforming Surfaces & B-rep Models Chapter 3. Deformation Model

Chapter 3. Deformation Model 57

Sederberg and Parry [38] present a deformation tool in which the

representation of the surface is hidden by a FFD lattice embedding the object.

The deformations of the FFD lattice are automatically passed to the object.

FFD has proved to be an intuitive and efficient modelling technique

appreciated by designers [39]. Figure 3.2 has a sample 3x3 FFD of a teapot,

which shows how a complicated surface can be transformed with the

movement of only a few mesh points.

Figure 3.2: A simple 3x3 FFD transformation (Made in 3DS Max)

Here we give a brief introduction of the theory of FFD, more can be found in

[37][38][40]. Free-Form Deformation consists of embedding the geometric

model or the region of the model that has to be deformed into a

parallelepipedical 3D lattice regularly subdivided, as shown in figure 3.3. The

Deforming Surfaces & B-rep Models Chapter 3. Deformation Model

Chapter 3. Deformation Model 58

deformations of the FFD lattice are then automatically passed to the model. Let

/, m and n be the number of subdivisions along each of the three directions, U,

V and W. These numbers can be chosen by the user depending on the

deformation he wants to produce (in figure 3 .3 ,1^2, m=l and n=2).

606

Figure 3.3: A parallelepipedical lattice

The 3D lattice is represented by a tensor product piecewise Bezier volume.

This volume is defined by an array of (31 +1) x (3m +1) x (3n +1) control points

Pijk. Each subdivision element, also named “Chunk” by Clark in [41], is

defined by:

L(u,v, w) = £ B. (u)Bj (v)Bk 0 < u,v, w < 1 l .
i , J , k = 0 ^ ’ '

where the Bt(t) are the degree 3 Bernstein polynomials, the Ptjk are the chunk

control points.

The Free-Form defoimation technique is divided into two steps:

• Before defoiming the 3D lattice, the coordinates us , and in the

lattice parametric space, of each object point are computed. With

Deforming Surfaces & B-rep Models Chapter 3. Deformation Model

Chapter 3. Deformation Model 59

parallelepipedical lattices, this step requires only the resolution of three

linear equations. For any point X interior to the lattice, 0 <us <l>

0 <vs < m and 0 < < n .

• After deforming the 3D lattice, the deformed positions of the object points

are computed. The deformed position Xjjd of an arbitrarily point X with

coordinates (usivs,ws) in the lattice parameter space is computed in two

steps. First, determine the chunk where the point lies by computing the

floor values (wo>v0’wo) of (usivs,ws). Let u = us - u 0> v = v ^ -v 0 and

w = ws - w0 be X coordinates in the chunk parameter space. The second

step consists of generating the Cartesian coordinates of Xjjd from u, v, w

and the matrix of 4><4><4 control points PiJk of the chunk, according to

(4.1).

The deformation is specified by moving the (/ + l)x(m + l)x(« + l) control

points corresponding to the corner points of the volume elements (or chunks).

Only these points are represented on figure 3.3. The tangents at the corner

control points can also be modified by the user. The other control points are

automatically updated. Two modes exist for the manipulation of comer control

points. Constant tangent mode, where the tangents of the point remain constant

when the point is moved, and non-constant tangent mode where the tangents of

the point are updated according to the position of the neighbour points

simulating a C-Spline interaction [41]. These two modes can be chosen

independently for each of the three directions.

3.2.3 Extended Free-Form Deformations

Although FFD is a very intuitive method for surface modelling, it is still

restricted by the shape of lattice when it applies to the complex sculptured

Deforming Surfaces & B-rep Models Chapter 3. Deformation Model

Chapter 3. Deformation Model 60

surfaces. Extended Free-Form Deformations (EFFD) allow the user to modify

the complex surface using the non-parallelepipedical lattices. EFFD lattices are

equivalent to FFD lattices; only the initial lattice shape is different. The EFFD

technique can be described in four steps (notice that the EFFD lattice is defined

independently of the surface to which it will be applied.):

1. Editing an EFFD lattice.

An EFFD lattice is defined either from a predefined three-dimensional

lattice or from two-dimensional lattices. A very useful non-

parallelepipedical lattice is the cylindrical lattice, which is obtained by

welding two opposite faces of a parallelepipedical lattice and by merging all

the points of the cylinder axis (figure 3.4). EFFD lattices can also be created

from two-dimensional lattices in the same way as surfaces are defined from

curves (loft, sweep, extrusion...). Traditional modelling methods are

employed to define them.

Figure 3.4: Cylindrical lattice

2. Associating an EFFD lattice with the surface.

The next step consists in taking an EFFD lattice out of the library and

associating it with the desired surface. While an EFFD lattice is associated

with a surface, one can still edit it without deforming the surface. At this

Deforming Surfaces & B-rep Models Chapter 3. Deformation Model

Chapter 3. Deformation Model 61

time, an attractive capability is to allow the user to move the lattice to a user

specified point on the surface.

3. “Freezing” an EFFD lattice.

Now, we deform the surface. Assuming that several lattices are associated

with the surface, the user must first select one of the EFFD lattices and

“freeze” it. Freezing a lattice consists of computing the

coordinates of each point of the surface in the EFFD lattice parameter

space. For each surface only one EFFD lattice can be frozen at a time. With

arbitrarily shaped lattices, finding the 0^ ,v5,vi^) coordinates of the surface

points is decomposed into two steps. First, the chunk where the point is

supposed to lie is determined by using the convex hull property of Bezier

volumes. The (w,v, w) coordinates inside the chunk are then computed using

Newton approximation.

4. Deforming the surface.

When an EFFD lattice is frozen, all the transformations applied by the user

to the lattice are passed to the surface. Only moving transformations are

valid for frozen lattices. The computation of the Xjj-d coordinate points of

the deformed surface is equivalent to the FFD one.

3.3 Metaball Deformation Method
3.3.1 Background
Although FFD-based methods can achieve a variety of deformations, the user is

forced to define some control points in the space to be deformed and then move

these control points. This indirect interface may be unnatural for some

applications. Hsu W. and Hughes J. [42] addressed this problem and proposed

a direct interface that involves solving a complex equation system, but its

computational cost is high. Borrel and Bechmann [43] developed a general

Deforming Surfaces & B-rep Models Chapter 3. Deformation Model

Chapter 3. Deformation Model 62

deformation model in which the deformation is defined by some user-specified

point displacement constraints. The desired deformation is obtained by

selecting a solution obeying the constraints. Nevertheless, the shape of the

resulting deformation in this method is not strongly correlated to the constraints

except that the constraints are satisfied. To overcome this, Borrel and

Rappoport [44] introduced a local defonnation method which they term simple

constrained deformation (Scodef). In Scodef, the user defines some constraint

points, each of which is associated with a user-defined displacement and an

effective radius. The displacement of any point to be deformed is the blend of

the local B-Spline basis functions determined by these constraint points. Note

that the deformation achieved by Scodef is both local and intuitive and the

constrained points can be directly located on the boundaiy surface of the object

to be deformed. To extend the flexibility of the local deformation, however,

defonnation models based on line, surface and volume constraints are desired.

Borrel and Rappoport point out that their model could not be generalized to

deal with these kinds of constraints.

Motivated by the concept of a metaball, Xiangang Jin, Youfu Li and Qunsheng

Peng [8] present a new constrained defonnation model based on the special

potential function distribution of generalized metaballs. In this method,

constraints are generalized to include point, line, surface and volume

constraints. The user need only define a set of constraints with desired

displacements and an effective radius associated with each constraint. A

generalized metaball is then set up at each constraint with a local potential

function centered at the constraint falling to zero for points beyond the

effective radius. The displacement of any point within the metaball is a blend

of these generalized metaballs. This deformation model produces a local

deformation and is independent of representation of the underlying objects to

be deformed. The constraints generate some “bump” shapes over the space

based on the type of constraint and its associated potential function, and

Deforming Surfaces & B-rep Models Chapter 3. Deformation Model

Chapter 3. Deformation Model 63

influence the final shape of the deformed object directly. The location and

height of a bump are defined by a constraint’s effective radius.

In this thesis, we are going to apply this method to an untrimmed NURBS

surface, then to a trimmed NURBS surface, finally to a NURBS solid model.

3.3.2 The definition of metaball model
Metaball modelling has been recognized as a flexible technique for implicit

surface modelling. It is very convenient for designing closed surfaces and

provides simple solutions for creating blends, ramifications and advanced

human character design [44] [45][46] [47][48]. A good introduction to metaball

modelling and implicit surfaces can be found in [49]. The generalized

metaballs are defined as an isosurface of a scalar field which is generated from

some field generating points. The field value at any point is determined by the

distance to generating point calculated through the potential function. The

constraints for generalized metaballs include lines, surfaces and volumes

[48][49], which are termed skeletons.

The skeleton-based model provides an intuitive way to define the desired

shapes with implicit surfaces. Let L be the skeleton, P(x, y, z) be a point in 3D

space, r(P,L) be the minimal distance from P(x,y,z) to the individual point

Q(u,v,w) on the skeleton L, Then,

r(P>L) = \P -Q \ g e £ (3.1)

Figure 3.5 give an illustration of the metaball model for the disk constraint.

Deforming Surfaces & B-rep Models Chapter 3. Deformation Model

Chapter 3. Deformation Model 64

P(x, y , z)
m

:eleton
r(P,C)

Figure 3.5: An illustration of the metaball model

Then the potential function associated with skeleton L can be defined as the

composition of a potential function / (r, R) and a distance function r(P, L)

F (r (P , L), R) = f { r , R) o r(P, L) (3.2)

where R is a specified distance called the effective radius. Euclidean space is

often adopted as the distance space for calculating r (P , L) and

r(P, L) = i j (x - u)2 + (y - v)2 + (z - w f Q e L (3.3)
There are several potential functions which can be used for generalized

metaballs: Blinn’s exponential function [50], Nishimura’s piecewise quadric

polynomial [50], Murakami’s degree four polynomial [50] and Wyvill’s degree

six polynomial [50]. Wyvill’s degree six polynomial is the better one as it

blends well and can avoid the calculation of a square root.

4 r

f (r , R) = \ 9 U
+ ■

17 (

\ P y
22 f r \ 2

9 I R
+ 1 0 < r < R

(3.4)

r > R

The local space deformation of metaball modelling can be achieved by

interactively specifying the constraints and their effective radii. The constraints

can either be points, lines, surfaces or volumes.

Deforming Surfaces & B-rep Models Chapter 3. Deformation Model

Chapter 3. Deformation Model 65

Let I be a constraint skeleton, R be the effective radius, and S be the

corresponding distance surface.

We define the tuple M = { S , f (r , R)) as a generalized metaball based on the

skeleton L.

A generalized constrained deformation model based on generalized metaballs

can then be defined. Let P = (x}y,z) be a point in 3D space, Deform(P) be a

deformation function which maps P to Deform(P). Let L, be a constraint which

consists of points, lines, surfaces and volumes, A b e its displacement, be

the effective radius of Lj . Then the deformation function affected by constraint

Lj is defined as

The deformation model (3.6) has some useful properties.

fDeform(P) = P + AD,.F(0, R,) = P + AD(VP e Z,
\ Deform(P) = P + ADfF(Rn Rt) = P

Therefore, if the distance from P to constraint L, is larger than R, the value of

distance function is equal to zero. The deformation function yields a local

deformation, which generates a deformation precisely within the effective

radius of the user-specified constraint.

The above deformation model can be extended to deal with multiple

constraints. The deformation functions for n constraints is defined as

S = { P (x , y , z) e S \ r (P , L) = R} (3.5)

Deform(P) = P + A D,P(r(P, L t), R .) (3-6)

11

(3.7)

Deforming Surfaces & B-rep Models Chapter 3. Deformation Model

Chapter 3. Deformation Model 66

3.4 General Constraints
Constraints for a generalized metaball can be a point, a line segment, a piece of

surface, or even a volume. We give the computation methods for some typical

cases.

Point
constraint

(a) Original Surface (b) Deformed Surface

Figure 3.6: Point constraint deformation

3.4.1 Point constraint
Let Li be a point constraint. Then r(P,L) is just the distance from point P to

Li(r(P,Li) = ||P - Lt|). Figure 3.6 gives an illustration.

3.4.2 Line segment constraint
Let L, be a line segment determined by its two end points P0 and Pt. The

distance r(P,Li : P0P̂) can be computed through vector calculation.

Let P be a test point in 3D space, Vj be a vector from P0 to P, V2 be a vector

from Pj to P, VL is a vector from P0 to Pi and Vc be a vector from P to Pc (The

projection point from P to line segment PoPj). Then the projection vector Vc

can be calculated:

Deforming Surfaces & B-rep Models Chapter 3. Deformation Model

Chapter 3. Deformation Model 67

a =

cos 6 = V, Vi *VL V*VL

*

V,
V\.VL

Pc = (1 - a) * P0 + a* P[

V =PrPc 1 c l

At last, the distance function r (P , L { : P0/>) = |Ft. | . The line segment constraint

of metaball deformation is given in figure 3.7.

Line segment

(a) Original Surface (b) Deformed Surface

Figure 3.7: The deformation of line segment constraint

3.4.3 Polyline constraint
Let constraint Lt be a polyline define by /V 5//3?.../3,,. For any line segment

Pi-\Pj(i = 1,2,3,..,n), we can obtain r(P,/%|F>) by the line segment constraint

r(P,L,: />„/>/> ...P J = min{r(/>,/>.,/>)} (3.8)
/ e [l .n]

Deforming Surfaces & B-rep Models Chapter 3. Defonnation Model

Chapter 3. Deformation Model 68

method as described above. The distance between any space point P and Li is

the minimum of the obtained distances.

An example is shown in figure 3.8.

Figure 3.8: The deformation of polyline constraint

3.4.4 Circle line constraint
Let L, be a circle line whose radius is Rc. For simplicity, we transform the

circle line onto the xz plane, and its centre is transformed into the origin. For

any 3D point P, we apply the same transformation and obtain P = (jc,y,z).

From figure 3.9, it is obvious that OB = Rc ,OP = yjx2 + y 2 + z 2 , thus

P B 2 = A B 2 + y 2 = { y l x 2 + z 2 - Rc) 2 + y 2

Then

r{P ,Lt) = + x 2 + y 2 + z 2-2 R cJ x r t l P

Deforming Surfaces & B-rep Models Chapter 3. Deformation Model

Chapter 3. Deformation Model 69

Rc

Figure 3.9: Distance calculation for a circle line

Its corresponding metaball is a torus whose major radius equals Rc +/?, and

minor radius equals Rc - R { as illustrated in figure 3.10.

Figure 3.10: Generalized metaball for a circle line

3.4.5 NURBS curve constraint
Let Li be a NURBS curve C{u) of degree p. The minimum distance from a 3D

point P to Lt either lies in its end points, or lies in the points satisfying the

equation:

(P - C («)) C » = 0
Chapter 4 will give our algorithm to solve this equation. It is obvious that the

corresponding metaball is a generalized cylinder. Figure 3.11 gives a sample of

NURBS curve constraint.

Deforming Surfaces & B-rep Models Chapter 3. Deformation Model

Chapter 3. Deformation Model 70

Figure 3.11: The deformation of NURBS curve constraint

3.4.6 Disk constraint
Let Lj be a disk whose radius is Rc. We first calculate the distance r, from a

3D point P to the plane where the disk lies. If the perpendicular point of P lies

within the disk, r(P, L,) = r,; otherwise we calculate the distance r2 from P to

the circle line, and set r(P,Li) = r2. The shape of corresponding generalized

metaball of a disk is shown in figure 3.12. The result can easily be extended to

the planar polygon constraint. Figure 3.13 gives the generalized metaball of a

square.

Figure 3.12: The generalized metaball of a disk

Deforming Surfaces & B-rep Models Chapter 3. Deformation Model

Chapter 3. Deformation Model 71

Figure 3.13: The generalized metaball of a square

3.4.7 Sphere constraint
Let L, be a sphere whose radius is Rc, its centre is located in the origin of

coordinate system (0(xc,yc,zc)). Then the distance from a 3D point P to the

sphere is

r{P^L,) = A/(;C- * e)2 + 0 '- .> 'e)2 + (z -Z c)2 -R ,

The cross section for this metaball is shown in figure 3.14.

Figure 3.14: The generalized metaball of a sphere.

Deforming Surfaces & B-rep Models Chapter 3. Deformation Model

Chapter 3. Deformation Model 72

3.4.8 Cylinder constraint
Let Lt be a cylinder whose radius is RC) and its height is h. We do some

transformations so that its bottom surface lies on the xz plane and its centre line

coincides with z axis (figure 3.15). We apply the same transformations to the

3D point P to obtain P = (x ,y ,z) . The distance function is

min(Rc - Vx2 + z 2,y , h ~ y)

- y
y - h

^x2 + z 2 - R c

■Jr.'2 + * 2 + ? 2 + z 2 - 2 R .J

p i + x 2 +(y - h)1 + z 2 -2 R ^ x 2 + ' f if -Jx1 + z 2 > R,

X 2 + z 2

if 2+ z 2 <RC

if j x 2+ z 2 <RC

if -yjx2 + z 2 < Rc

if sjx2 + z 2 > Rc

if V*2 + z 2 > Rc

and 0 < y <h

and y < 0

and y >h

and 0 < y < h

and y < 0

and y > h

The outer surface of the generalized metaball for a cylinder constraint is shown

in figure 3.16.

z

F igure 3.15: Cylinder constraint

Deforming Surfaces & B-rep Models Chapter 3. Deformation Model

Chapter 3. Deformation Model 73

Figure 3.16: The outer surface of the generalized metaball for a cylinder

constraint

3.4.9 Sphere volume constraint
Let L, be a sphere volume whose radius is Rc and its centre is 0 (x c , y c , z c) .

Let r(P, L,) equal zero if the 3D point P lies inside the sphere volume.

Otherwise, the distance from P to the sphere volume is

r (P , L ,) = y l (x - x c) 2 + { y - y c) 2 + (z - z c) 2 - Rc

3.4.10 Cube volume constraint
Let L,be a cubic volume, whose edge length is 2a. We apply transformations

so that the centre of cube is at the origin and its edges are parallel to the three

coordinate axes. Then we apply the same transformations to the 3D point P so

that we get P = (x , y , z) . If P lies inside, r(P,Lt) equals to zero. Otherwise the

point nearest to P either lies on the faces of the cubes, or lies on the edges, or

lies on the vertices of the cube according to the position of P . The distance can

be measured from the nearest point of f to P . The shape of the generalized

metaball for a cube volume is shown in figure 3.17.

Deforming Surfaces & B-rep Models Chapter 3. Deformation Model

Chapter 3. Deformation Model 74

Figure 3.17: Generalized metaball of a cube volume

3.4.11 Summary
In this section, we presented the computation methods of the distance function

r(P,L,) for some typical cases. For those constraints which are not listed

above, their distance functions can be calculated similarly. Because this

deformation model is a local one, the point will not be affected if the distance

from it to the constraint is larger than the effective radius. Therefore, we can

apply the bounding boxes for the individual constraints to improve the

efficiency of the algorithm. If a point does not lie inside the bounding boxes of

the constraint of metaball, the distance function does not need be calculated

and the constraint has no effect on this point. Finally, some examples of

constrained deformation on a single NURBS surface are given in figure 3.18.

(a) The generalized metaball for a disk

Figure 3.18

Deforming Surfaces & B-rep Models Chapter 3. Deformation Model

Chapter 3. Deformation Model 75

(b) The generalized metaball for a circle line

(c) The generalized metaball for a rectangle

Figure 3.18: Some general constraints

3.5 Deformations for Metaball Model
The general constraint deformations based on metaballs can be applied to both

polygonal meshes and parametric surfaces. For polygonal meshes, it achieves

faster computation for the displacement of vertices than in the parametric

surface model. However, it may lose accuracy in the geometric representation

so it is not suitable for CAD and geometry modelling. On the other hand, it is

very useful for computer animation [8],

Deforming Surfaces & B-rep Models Chapter 3. Deformation Model

Chapter 3, Deformation Model 76

We will adopt this model for parametric surfaces, more specifically, NURBS

surfaces. There are two ways to deform the surface: moving control points or

modifying the weights. It is also possible to combine these two methods

together to modify the shape of a NURBS surface.

3.5.1 Moving the control points

According to the locality property of a NURBS surface, moving a group of

control points will change the shape of NURBS locally. Therefore, we apply

general constrained deformation to the control net of a NURBS surface to

achieve the metaball deformation on the surface. We divide the procedure of

deformation for the NURBS surface into three steps:

• Refining the control net of the NURBS surface

The control net is refined to increase the density of the control points. The

density of control points is decided by the effective radius R. The

calculation of the density is given by (3.9).

where A is the number of control points inside the circle whose radius is R.

N can be counted from the distance function r(P>Li) for the point

constraint. The density X is the parameter controlled by the user.

• Moving the control points

The displacement of an individual control point is calculated via the

potential function (3.4). If the value of potential function is greater than

zero, the control point is moved along the normal vector of this control

point.

• Removing unnecessary knots (unnecessary control points)

After moving the control points, we remove any unnecessary knots

(unnecessaiy control points) to reduce the memory consumption and

Deforming Surfaces & B-rep Models Chapter 3. Deformation Model

Chapter 3. Deformation Model 77

simplify the data for the NURBS surface. The algorithm of knot removal

for a NURBS surface has been given in section 2.3.4.

The whole procedure of moving a control point for a general constraint is

illustrated in figure 3.19.

(a) The original surface (4><4 control points)

(b) The surface after knot refinement (19x19 control points)

(c) The surface after deformation (19x19 control points)

(d) The surface after knot removal (10x10 control points)

Figure 3.19: The procedure of moving control points for metaball deformation

Deforming Surfaces & B-rep Models Chapter 3. Deformation Model

Chapter 3. Deformation Model 78

3.5.2 Modifying the weights

Weight-based shape modifications rely on the geometric meaning of the

weights. From section 2.2.3, we know that as a weight w associating a control

point P increases / decreases, the curve or surface will be pulled / pushed

toward / away from P . From [35], we also know that a moderately larger

number (e.g. 100) causes the curve or surface to pass very close to the control

point P . Figure 3.20 gives an example.

(a) The weight set to 1. (b) The weight set to 100.

Figure 2.20: Modifying a weight for a revolved surface

In the metaball deformation model, the control net is refined before applying

the general constraints. The knot refinement of a NURBS surface brings the

control net closer to the surface and modifying the weights only changes the

shape of the NURBS surface within the control net. Therefore, it is not possible

practically to use only the weight-based shape modification to achieve the

metaball deformation. Together with control point based modification, the

weight-based modification can be used as a refined method in the metaball

deformation model. We apply equation 3.10 similarly to equation 3.6 to change

the weights.

Deform(w) = w + AD, F(r(P, L,), R,) (3.6)

Deforming Surfaces & B-rep Models Chapter 3. Deformation Model

Chapter 3. Deformation Model 79

Figure 3.21 gives an illustration which shows the effect of using weight-based

modification combined with control point based modification.

(a) The original surface

(b) The control point based modification

(c) Weight based modification combining with control point based

modification

Figure 3.21: Applying weight based modification to the metaball deformation

Deforming Surfaces & B-rep Models Chapter 3. Deformation Model

Chapter 3. Deformation Model 80

3.6 Closing
This chapter has generalized the method for general constrained deformations

based on generalized metaballs. Furthermore we apply it on the NURBS

surface by both moving the control points and changing the weights. This

chapter also presents a list of pictures to demonstrate the different types of

constraints. All these pictures are generated by author’s testbed software.

To solve the problem of the minimum distance from a 3D point to the NURBS

curve, chapter 4 gives an innovative algorithm and also extends the method for

NURBS surfaces. Chapter 5 presents a solution for tessellating the trimmed

NURBS surface on which we apply the metaball deformation.

Deforming Surfaces & B-rep Models Chapter 3. Deformation Model

Chapter 4

Point Inversion and Projection

4.1 What and why?
Projecting a test point to a NURBS curve or surface finds the closest point on

the curve or surface and point inversion finds the corresponding parameters (u)

for the curve or (u, v) for the surface for this point. Both point projection and

point inversion are common problems for interactively selecting a NURBS

curve or surface and curve or surface fitting. When the user clicks somewhere

near the curve or surface, we can find out which curve or surface has been

selected based on the minimum distance between the nearest point on the curve

or surface and the test point. In curve and surface fitting we need to calculate

the tolerance, which is the minimum distance from the interpolation point to

the desired curve or surface.

In order to solve the distance function of the NURBS curve constraint in the

metaball deformation model, we need to find out the minimum distance

between the 3D point and the closest point on the curve, which is to solve the

problem of point projection for the NURBS curve. Point projection for NURBS

81

Chapter 4. Point Inversion and Projection 82

surfaces is the extension of the algorithm for NURBS curves and can also

provide the solution of the distance function for the NURBS surface constraint.

4.2 Previous work
Much of the early work in this area comes from the robotics and computational

geometiy communities [51], Their work has often focused on use of polygonal

models for finding the minimum distance between two geometric objects. Chin

[52] and Edelsbrunner [53] both describe O(logN) algorithms for finding the

minimum distance between two convex polygons. However, all these

algorithms involve presumably large number of tests on polygons and the result

for the minimum distance is not accurate enough for the computer graphics and

computer aided design communities. In contrast, parametric models provide

more accurate solutions.

Using a parametric model, Mortensen [54] gave a numerical approach to this

problem. For the calculation of the minimum distance between the test point

and the curve, we need to find a vector (p-q) from the point p to the curve q(u)

that is perpendicular to the tangent vector / f a t p . Figure 4.1 shows the vector

geometry. Mathematically, we express the required conditions as

rfmin = \ p -<}\ w h e n (P - q) p “ = o .

p - q

o

Figure 4.1: Minimum distance between a point and a curve

Deforming Surfaces & B-rep Models Chapter 4. Point Inversion and Projection

Chapter 4. Point Inversion and Projection 83

He chose to use the Newton-Raphson method to the find the roots of the

polynomial (P ~ $ ' P ~ ^ . However, he needed to find a good initial value for

the Newton-Raphson method. Similar to the curve, finding the minimum

distance between a point and a surface involves finding the minimum distance

between a point and a plane. Let the point be denoted by q and the plane by kn,

where n is the unit normal vector. Let p denote the point on the plane closest to

q. Then we have dm[n = \p -q \, wherep must satisfy { p - q)x n = 0. Finally, we

also need the Newton-Raphson method to find the roots. Limaiem [55] has

presented another approach to find the minimum distance to convex parametric

curves and surfaces. Lin [56] provides the approach for finding the minimum

distance for concave surfaces. Both approaches use the Newton-Raphson

method to find the roots for some distance equations. Therefore, both finding

the minimum distance between a point and a curve and between a point and a

surface need a good initial value for achieving the convergence result.

However this initial value is hard to obtain due to the complexity of the

NURBS curve or surface shape [57]. Furthermore, the Newton-Raphson

method may give the wrong answer when projecting a point near the

intersection point of the NURBS curve (figure 4.2) and it fails quite often for

the points near the boundaries of the surface [57].

/

(a) Cubic NURBS curve (73 control points), (b) Wrong point projection.

Figure 4.2: Wrong result for point projection on the complex curve

Deforming Surfaces & B-rep Models Chapter 4. Point Inversion and Projection

Chapter 4. Point Inversion and Projection 84

Piegl and Tiller [57] recently provided another method to solve the point

projection problem for a NURBS surface. Their algorithm consists of three

steps:

• Decompose the NURBS surface into quadrilaterals.

• Project the test point onto the closest quadrilateral.

• Recover parameters from the closest quadrilateral.

Obviously, decomposing the NURBS surface into quadrilaterals and finding

the closest quadrilateral are very expensive.

Our approach for point projection and point inversion provides a good initial

value for the Newton-Raphson method, reduces the computation of the

algorithm and increases the stability of the recursive function for the Newton-

Raphson method.

4.3 Outline of algorithm

4.3.1 Algorithm for NURBS curve
Our approach consists of three stages: subdivision of the NURBS curve, control

polygon detection and the relationship between the test point and the Bezier

subcurve. In the first stage, we decompose the NURBS curve into its piecewise

Bezier form (see section 2.3.2). In section 4.4, we give the algorithm to find the

2D/3D simple and convex control polygon of the Bezier subcurve. In section

4.5, we analyse the relationship between the test point and control polygon and

in section 4.6 we give the overall algorithm.

Deforming Surfaces & B-rep Models Chapter 4. Point Inversion and Projection

Chapter 4. Point Inversion and Projection 85

4.3.2 Algorithm for NURBS surface
Similar to the algorithm for NURBS curve, first, we decompose the surface

into a set of Bezier patches (section 2.3.2). Then we check every control point

net of the Bezier patch is a valid control point net or not, which will be

discussed in section 4.4. After obtaining a valid control point net, we analyse

the relationship between the test point and the Bezier patch and discard the

Bezier patch whose closest point lies on the one of four boundary curves

(Figure 4.3). Finally, we project the test point to the candidate Bezier patches to

obtain the candidate points and select the closest one as the result. The

accuracy of the closest point can be improved by using the Newton-Raphson

method.

r

Figure 4.3: Discarded Bezier patch

4.4 Control Polygon and Control Point
Net detection
For a NURBS curve, before we can establish the relationship between the test

point and the Bezier subcurve, we need to classify the control polygons to

simplify the problem. As we know, polygons can be divided into simple and

non-simple polygons. Simple means no crossing edges. As shown in figure 4.4,

polygon (5) is a non-simple polygon. Furthermore, simple polygons can be

grouped as convex and concave polygons. Polygons (1), (2), (3) are convex and

(4) is concave. Now, we define the valid control polygon as the simple and

Deforming Surfaces & B-rep Models Chapter 4. Point Inversion and Projection

Chapter 4. Point Inversion and Projection 86

convex polygon in 2D. In order to generalize the definition to 3D, we give a

fast way to check whether the control polygon is valid or not both in 2D and

3D.

For a NURBS surface, we only analyse the relationship between the test point

and the valid control point net. After the definition of a valid control polygon,

we can specify the valid control point net, as every polygon in both the U and

V parameter directions is valid.

(i) (2) (3)

(4)

Figure 4.4: Type of control polygons of 2D cubic Bezier subcurve.

4.4.1 Fast valid control polygon detection algorithm

We give a fast way to detect whether the control polygon is simple and convex,

or not, by checking the dot product result of two vectors. As shown in figure

4.5(a), for a given control polygon of a Bezier curve of degree p (p>2), we can

detect the sign of the dot product ^ ~ < (w/2» or

R - V\Pt • V2Pq(i > (n!2)) determine whether vertex P, is in the “convex”

direction or not. If the result of dot product is greater than zero, then this vertex

is in “concave” direction. Note that edge PoPn is the chord of Bezier subcurve

and vertices P0, P } ... P„ are the control points. ^ and are the points

projecting from the vertex P, and one of endpoints: Pn (z < (/7̂)) or P0

Deforming Surfaces & B-rep Models Chapter 4. Point Inversion and Projection

Chapter 4. Point Inversion and Projection 87

(z > («/ 2)) pne segment Pf.jPi+h respectively. If the dot product R is

negative, we move to the next vertex and repeat this procedure until we find

one is positive or finish detecting all vertices except P0 and Pn. If all results are

negative then the control polygon is a simple and convex one.

i+ i

P i+ 3i+2

i+4

P nPo

(a) Dot product of two vectors. (b) Vertices direction for concave.

(c) Vertices direction for non-simple polygon.

Figure 4.5: Valid polygon detection

This algorithm also works for detecting non-simple polygons. As shown in

figure 4.5(c), although this algorithm does not tell you the vertex direction

properly, it does tell you it is not a convex polygon no matter if it is a concave

or non-simple one. This algorithm can generalise to 3D. We will call the 3D

simple and convex polygon which satisfies the dot product conditions as

previously discussed a 3D valid control polygon.

4.4.2 Pseudo code

In summary, the simple and convex polygon (valid polygon) detection

algorithm is shown as follows:

Deforming Surfaces & B-rep Models Chapter 4. Point Inversion and Projection

Chapter 4. Point Inversion and Projection 88

Algorithm 1. IsValidPolygon {Detecting the simple and convex polygon}

Input: The control polygon P of Bezier subcurve. n is the highest index in control
polygon.
Output: the result of detection,
begin

for i = 1 to i< n by /++ do

begin

compute projection vector V fi;

if i < (n/2) then

compute projection vector FjPn;

R = VxPj • VxPn ;{R is the result of dot product}

else

compute projection vector V̂ P̂ ;

R — V̂ Pj • V\Pq ;{R is the result of dot product}

end if

if R > 0 then return FALSE; (The polygon is not a simple or convex one}
end if

endjEnd of the loop for}

return TRUE; (It is a simple and convex polygon}
End of Algorithm 1.

Finally, we define the control point net whose polygons in both the U and V

parameter directions are valid as the valid control point net. The detection

algorithm is given as follows:

Deforming Surfaces & B-rep Models Chapter 4. Point Inversion and Projection

Chapter 4. Point Inversion and Projection 89

Algorithm 2. IsV a ild C P N et {Detecting the valid control point net}
Input: The control point net of Bezier patch, n is the highest index of control points in

U direction, m is the highest index of control points in V direction,

Ouput: the result of detection,
begin
for i~ 0 to i <m by i++ do

{Detect every control polygon in U direction}

begin
generate a control polygon P;

if (Is_Valid_Polygon(P) return FALSE) then

return FALSE; {control point net is not valid.)
end if

end (End of loop for}

for i - 0 to i < n by i++ do

{Detect every control polygon in V direction}
begin

generate a control polygon P;
if (Is_Valid_Polygon(P) return FALSE) then

return FALSE; {controlpoint net is not valid.}

end if

end {End of loop for}

return TRUE;
End of Algorithm 2.

Deforming Surfaces & B-rep Models Chapter 4. Point Inversion and Projection

Chapter 4. Point Inversion and Projection 90

4.5 The Relationship between the test
point and Bezier curve or Bezier Patch
For a curve, after decomposition, we obtain a set of Bezier subcurves. When

detecting the valid control polygon, if we do not get a desired control polygon,

we continue to subdivide the Bezier subcurve until we get a valid control

polygon or the control polygon is flat enough. For a valid polygon, we analyse

the relationship between the test point and the valid control polygon of the

Bezier subcurve.

For a surface, after decomposition, we obtain a set of Bezier patches. When

detecting the valid control point net, if we do not get a desired control point

net, we continue to subdivide the Bezier patch until we get a valid one or the

control point net is flat enough.

For a valid control point net, we analyse the relationship between the test point

and the valid control point net of the Bezier patch. As shown in figure 4.6, for

given a valid control point net, we can extract valid control polygons both in

the U direction and V directions. Therefore, we can analyse the relationship

between each valid control polygon and the test point to generalize the

relationship between the valid control point net and the test point. We analyse

the relationship between the valid control polygon (Bezier curve) and the test

point as follows:

Deforming Surfaces & B-rep Models Chapter 4. Point Inversion and Projection

Chapter 4. Point Inversion and Projection 91

Figure 4.6: Control point net

Lemma 1. As shown in figure 4.7, suppose that an n (n>l) degree 2D Bezier

curve has a valid control polygon P0, ...,P„ and a test point P. We have four dot

products = P 0P » P 0Pl , R2 =PP„«3 = V o * PnP and

R4 = PnP0 • P0P . I f R] < 0 or R2 < 0 and R3 * R4 > 0, then the nearest point must

be one of endpoints (P0 or Pn).

n-L

Figure 4.7: Conditions for 2D Bezier curve (satisfied)

Proof. The dot product R/ and R2 will be positive if the test point is within the

area AP()P„B and the multiplication will be negative if the test point is

within the area CPqPJD.

According to the formula (4.1) of the derivative of a Bezier curve, we can

obtain the formulas for the end derivatives (4.2).

Deforming Surfaces & B-rep Models Chapter 4. Point Inversion and Projection

Chapter 4. Point Inversion and Projection 92

n - 1

C'(«) = «]£ V - ,(«)« -+i -P ,) (4.1)
/=0

rc'(o)=»(Pi--p0)

where Bin_{(u) is the Bezier basis function and P0,...,Pn are the control points,

for an n degree Bezier curve.

n-1

Figure 4.8: Conditions for 2D Bezier curve (unsatisfied)

Notice that, in figure 4.8, C'(0) is the vector and C'(l) is the vector

Pn-\Pn • We assume that Pc is any point on the Bezier subcurve. If the control

polygon is simple and convex, according to the strong convex hull property, Pc

must be inside the control polygon. Therefore, ZPPQPC must be larger than 90°

if P is outside of area AP0PnB and area CP0PUD. Furthermore, according to the

property of the triangle, ZPP0PC is larger than ZP{)PCP , therefore, \PPC\ is larger

than |PP0| . It is obvious that P0 is the nearest point of P.

We can extend this rule to a 3D valid control polygon of a Bezier curve.

Although in 3D space the valid control polygon sometimes does not lie on the

same plane, we can set the control polygon plane as the plane constructed from

the first two edges of the control polygon. As shown in figure 4.9, we also have

Deforming Surfaces & B-rep Models Chapter 4. Point Inversion and Projection

Chapter 4. Point Inversion and Projection 93

P.P ' >|P0P '|(P ' and Pc are the projection points from P and Pc to control

polygon plane respectively and Pc is a any point on the Bezier curve.)

0
p

Figure 4.9: Conditions for 3D Bezier curve.

Also

P P =c J Pc'p'2 + (|PP’| + PcPc f (Refer to figure 4.9) |P0P| = ^|P0P'|2 +|PP'f

Therefore |PCP| > |P0P |.

Theorem 1. Suppose that an n (n>l) degree 2D/3D Bezier subcurve has a valid

control polygon P0>...,P„ and a test point P is in the 3D space. We have four dot

products P^PqP^PoP!, R2 = PPn • P„_xPn , R2 =PnPQ*PnP and

R4 = PnPQ • P0P . If Pj < 0 or R2 < 0 and P3 * P4 > 0, then the nearest point must

be one of endpoints (P0 or P„).

For the curve case, we analyse the relationship between the test point and a

valid control polygon. We do four dot products, which are described in

Theorem 1. If this case does not satisfy the conditions in Theorem 1, the

Deforming Surfaces & B-rep Models Chapter 4. Point Inversion and Projection

Chapter 4. Point Inversion and Projection 94

nearest point must be one of the endpoints. Furthermore we can discard this

Bezier subcurve. In summary, we give the algorithm as follows:

A lgorithm 3 . Poin t_N earest_B ezier_C urve (Detecting whether the nearest point is
one of endpoints or not according to the result offour dot products).

Input: The control polygon P of Bezier curve, n is the highest index in control
polygon.
Output: the result of detection,
begin

- P0P • P0f , R2 = PPn* Pn-\Pn

^3 “ ^7^0 • PnP > P4 - PnPo • PqP

i f R-i < 0 or R2 < 0 and R2 * R4 > 0

then return FALSE;
else return TRUE;

en d i f

E n d of Algorithm 3.

Then, for the surface case, we consider the relationship between the test point

and a valid control point net. We also do four dot products with every polygon

in the U direction and V direction. If every polygon in the U direction or every

polygon in the V direction does not satisfy the dot product conditions described

in Theorem 1, the nearest point must be on the one of four boundary curves.

Furthermore we can discard this Bezier patch.

In summary, we give the algorithm as follows:

Deforming Surfaces & B-rep Models Chapter 4. Point Inversion and Projection

Chapter 4, Point Inversion and Projection 95

Algorithm 4 Point_Nearest_Bdzier_Patch
{Detecting whether the nearest point is the point on the boundary curves.}
Input: The control point net of Bezier patch, n is the highest index of control points in

U direction. m is the highest index of control points in V direction.

Output: the result of detection,

begin

Flag <— FALSE;

f o r i = 0 to i < m by i++ do

{Detect every control polygon in U direction}

begin

generate a control polygon P;
i f (PointJNearestfBezierJZurve(P) return TRUE) then

Flag <- TRUE;

break;

en d i f

en d {End of loop for}

i f Flag == FALSE then

return FALSE; { the nearest point is the point on the boundary curves.}

end i f

Flag 4- FALSE;

f o r i = 0 to i <n by i++ do

{Detect every control polygon in V direction}
begin

generate a control polygon P;

i f (Point_Nearest_Bezier_Curve(P) return TRUE) then

Flag <- TRUE;

break;

en d i f

en d {End of loop for}
i f Flag == FALSE then

return FALSE; { the nearest point is the point on the boundary curves.}

en d i f

return TRUE; { the nearest point is the point on the Bezier patch.}
E nd of Algorithm 4

Deforming Surfaces & B-rep Models Chapter 4. Point Inversion and Projection

Chapter 4. Point Inversion and Projection 96

4.6 Find the closest point on the
NURBS curve
By extracting the Bezier subcurves as candidates, we subdivide these candidate

subcurves recursively until the control polygon is flat enough or reaching a

recursion limit. By “flat enough”, we mean that the control polygon is close

enough to a straight line so that we can approximate the nearest point

(candidate point) in that region by calculating a projection vector from the test

point to the straight line. The algorithm for finding the candidate points from

the NURBS curve is given as follows.

Algorithm 5. Find the candidate points for projecting a point to a NURBS

curve.

Nearest_Candidate_Points_Curve(P,n, U,m, Valid.pt)

P: array point of control points.
n: The highest index in the control points.
U: array pointer of knot vector,

m: The highest index in the knot vector.
Valid: flag variable for valid polygon.

(TRUE is valid. FALSE is invalid)
pt: 2D/3D test point.

Begin

if (Curve is a Bezier curve)

if (Valid) then

if (Point JVearest_BezierjSurve return FALSE) then
return no candidate point was found;

else
if(control polygon is flat enough or recursive limit reached) then

return the candidate point on the Bezier subcurve;
end if

end if

Deforming Surfaces & B-rep Models Chapter 4. Point Inversion and Projection

Chapter 4. Point Inversion and Projection 97

else{Valid, is FALSE}

if(Is_ Valid ̂ Polygon return TRUE) then

Valid = TRUE;
end if

end if

Subdivide the curve at midpoint of knot vector;

Nearest_Candidate_Po ints_Curve(left half);
Nearest_Candidate_Points_Curve(right half);

else (The curve is not a Bezier curve.}

Subdivide the curve at midpoint of knot vector;
end if

end
End of Algorithm 5.

We start the recursive function with Valid set to FALSE. After the termination

of this function, we select the nearest point from candidate points and improve

its accuracy by applying the Newton-Raphson method. Section 4.10 gives some

examples of projecting a set of points to the NURBS curve both in 2D and 3D.

4.7 Find the closest point on the
NURBS surface

By extracting the Bezier patches as candidates, we subdivide these candidate

patches recursively until the control point net is flat enough or reaching the

recursion limit. By “flat enough”, we mean that the control point net is close

enough to a plane so that we can approximate the nearest point (candidate

point) in that region by projecting the test point to the approximate plane. The

algorithm for finding the candidate points from the NURBS surface is given as

follows:

Algorithm 6 Find the candidate points for projecting a point to a NURBS

surface.

Deforming Surfaces & B-rep Models Chapter 4. Point Inversion and Projection

Chapter 4. Point Inversion and Projection 98

NearestCandidate_Points_Surface(pSur, Dir, Valid,pt)
pSur: The pointer of NURBS surface object
Dir: The direction for splitting. (TRUE for U direction and FALSE for V direction.)

Valid: flag variable for valid control point net. (TRUE is valid. FALSE is invalid)
pt: 3D test point.

Begin
if (Surface is a Bezier patch)

if (Valid is TRUE) then

if (Point_Nearest_BezierPatch return FALSE) then

return no candidate point was found;
else

if (control point net is flat enough or recursive limit reached) then

return the candidate point on the Bezier patch;
end if

end if

else {Valid is FALSE}

if(Is_Vaild_CPJLet return TRUE) then Valid = TRUE;

end if
end if
if (Dir is TRUE)

Split the surface at midpoint of U knot vector;
else

Split the surface at midpoint of V knot vector;
end if

Nearest_Candidate_Po intsJSurface (pSurl, Dir, Valid,pt);
(pSurl is one half surface in the U or V direction.}

Nearest_Candidate_Points_Surface(pSurl,Dir, Valid,pt);
(pSur2 is the other half surface in the U or V direction.}

else {The surface is not a Bezier patch.}

if (Dir is TRUE) Split the surface at midpoint of U knot vector;
else Split the surface at midpoint of V knot vector;
end if

End
End of Algorithm 6

Deforming Surfaces & B-rep Models Chapter 4. Point Inversion and Projection

Chapter 4. Point Inversion and Projection 99

4.8 Boundary conditions of NURBS
surface
After termination of the recursive function described in the last section, we

select the closest point from the candidate points as well as the points

projecting from the test point to the boundary curves.

If a NURBS surface is not closed both in the U direction and V direction, it has

four boundary curves. On the other hand, if the surface is closed in the u

direction or v direction, it has two boundary curves. In some cases, it has only

two “boundary points” as shown in figure 4.10.

Unclosed surface with four
boundary curves

Closed surface with two
boundary curves

(c)
Closed surface with two

boundary points

Figure 4.10: Boundary curves of the NURBS surface

For an unclosed NURBS surface, we have four projection points, projected

from the test point to the four boundary curves. For a closed NURBS surface,

Deforming Surfaces & B-rep Models Chapter 4. Point Inversion and Projection

Chapter 4. Point Inversion and Projection 100

we also have two projection points. From the projection points and candidate

points, we can find the closest one as the solution for the point projection for

the NURBS surface.

4.9 The Newton-Raphson method for a
NURBS surface
The Newton-Raphson method is used to improve the accuracy of the closest

point. Piegl and Tiller [17] used the Newton-Raphson method to minimize the

distance between the test point and the whole NURBS surface. However after

some tests, we find Newton-Raphson occasionally still gives the wrong answer

even with a quite good initial value when applied to the whole NURBS surface.

Therefore, instead of applying it to the whole NURBS surface, we apply the

Newton-Raphson method to the quadrilateral which is a “flat enough” Bezier

patch.

(a) Wrong point projection (applying Newton-Raphson method to the whole

NURBS surface).

Deforming Surfaces & B-rep Models Chapter 4. Point Inversion and Projection

Chapter 4. Point Inversion and Projection 101

(b) Right point projection (applying Newton-Raphson method to the Bezier

patch).

Figure 4.10: The Newton-Raphson method for surface.

4.10 Examples
For illustrative purposes we present three pictures of points projected to a 2D

cubic NURBS curves (figure 4.11(a)), a 2D NURBS curve of degree 5 (figure

4.11(b)) and a 3D cubic NURBS curve (figure 4.11(c)) respectively.

We also present some pictures of points projected to the NURBS surface.

Figure 4.12(a) gives the result of projecting a set of points from a straight line

to the NURBS surface. Figure 4.12(b), (c) present the results of projecting two

isocurves which are created and offset from the NURBS surface in the U

direction and V direction respectively. Figure 4.12(d) gives the result of

projecting a set of points from a vertical line to the NURBS surface. Finally,

Figure 4.12(e) presents the result of projecting a set of points to a closed

NURBS surface.

Deforming Surfaces & B-rep Models Chapter 4. Point Inversion and Projection

Chapter 4. Point Inversion and Projection 102

(a) Point projection for a 2D cubic NURBS curve

(degree =3, 26 control points)

(b) Point projection for a 2D cubic

NURBS curve

(degree =5, 40 control points)

(c) Point projection for a 3D NURBS curve,

(degree =3, 20 control points)

Figure 4.11: Point Projection for NURBS Curves

Deforming Surfaces & B-rep Models Chapter 4. Point Inversion and Projection

Chapter 4. Point Inversion and Projection 103

(a) straight line projection

(b) Isocurve projection (U direction)

(c) Isocurve projection (V direction)

Deforming Surfaces & B-rep Models Chapter 4. Point Inversion and Projection

Chapter 4. Point Inversion and Projection 104

(d) Vertical line projection

'r

(e) Point projection for Closed NURBS surface

Figure 4.12: Point Projection for NURBS Surfaces

4.11 Comparison
We give the results of comparing our method with Piegl and Tiller’s method

[17] for point projection on the NURBS curves both in efficiency and accuracy.

Piegl and Tiller’s method first evaluates curve points at n equally spaced

parameter values for the whole NURBS curve. Then they compute the distance

Deforming Surfaces & B-rep Models Chapter 4. Point Inversion and Projection

Chapter 4. Point Inversion and Projection 105

of each point from the test point P and choose the parameter value u0 to be the

value yielding the point closest to the test point P . Finally, they apply the

Newton-Raphson method to the closest point to improve the its accuracy. The

accuracy of the result can be evaluated by equation (4.3) (zero cosine).

|C '(„,).(C (a,)-P)|_
|C'(K,)|[C(«,)-P|

where C(u) is the NURBS curve, P is the test point and s is the tolerance for

zero cosine.

All examples are implemented with Visual C++ 6.0 with Windows98 in the

same compatible personal computer with Pentium II 400 CPU chip and 64 M

memory. Table 4.1 lists iteration times of our method, the number of equally

spaced curve parameters for Piegl and Tiller’s method (n \ the CPU time and

the accuracy.

• Example 1 2D Curve in figure 4.11(a) (degree =3, 26 control points)

Index t (CPU time ms) Iteration time / n Accuracy (zero cosine)

Our Method (1) 3.003 59 2.083230e-07

NLib(l) 3.252 100 1.1625887e-07

Our Method (2) 3.491 69 1.13872e-012

NLib (2) 3.481 100 2.560200e-012

Our Method (3) 2.517 61 3.626256e-09

Nlib (3) 3.172 100 5.1356532e-09

Deforming Surfaces & B-rep Models Chapter 4. Point Inversion and Projection

Chapter 4. Point Inversion and Projection 106

• Example 2 2D curve in figure 4.11(b) (degree = 5, 40 control points)

Index t (CPU time ms) Iteration time / n Accuracy (zero cosine)

Our Method (1) 5.195 89 4.6637136e-08

NLib (1) 5.627 200 1.319305e-011

Our Method (2) 4.558 77 1.4516641 e-08

NLib (2) 5.701 200 2.693517e-011

Our Method (3) 4.356 87 1.507982e-010

Nlib (3) 5.256 200 4.032916e-08

• Example 3 3D curve in figure 4.11(c) (degree = 3, 20 control points)

Index t (CPU time ms) Iteration time / n Accuracy (zero cosine)

Our Method (1) 2.358 53 9.8645779e-08

NLib (1) 2.643 80 1.2507234e-09

Our Method (2) 2.359 55 1.2857904e-08

NLib (2) 2.892 80 1.0723880e-08

Our Method (3) 3.806 61 2.609440e-013

Nlib (3) 2.997 80 1.187688e-012

• Example 4 complex 2D curve in figure 4.2 (degree = 3, 73 control points)

Index t (CPU time ms) Iteration time / n Accuracy (zero cosine)

Our Method (1) 12.779 239 1.313991e-010

NLib (1) 22.781 1000 4.4269524e-09

Our Method (2) 12.276 229 1.292864e-010
NLib (2) 21.762 1000 5.0203867e-07

Our Method (3) 19.974 307 2.8378485e-09

Nlib (3) 21.446 1000 5.3175793e-07

Deforming Surfaces & B-rep Models Chapter 4. Point Inversion and Projection

Chapter 4. Point Inversion and Projection 107

4.12 Point Inversion
The point inversion problem is veiy similar to point projection. The only

difference is that the candidate Bezier subcurves or patches are extracted based

upon the strong convex hull property [17]. Then, for a curve, we apply

algorithm 5 to these candidate Bezier subcurves to extract the closest point on

the NURBS curve and its corresponding curve parameter values. For a surface,

we apply algorithm 6 to these candidate Bezier patches to extract the closest

point on the NURBS surface and its corresponding surface parameter values.

4.13 Conclusion

In this chapter we have presented a novel method to solve both point projection

and point inversion problems. This method achieves better results both in

accuracy and efficiency, especially in dealing with complex NURBS curves.

Furthermore, this method extracts all candidate points for point projection so

that it avoids selecting the wrong initial value for the Newton-Raphson method

in the self-intersecting curve case. It also provides a good initial value to

achieve reliable convergence for the Newton-Raphson method.

On the other hand, for NURBS surfaces, this method dramatically decreases

the computation of the algorithm compared with the method [57], which

decomposes the NURBS into a set of quadrilaterals. We also apply the

Newton-Raphson method on the Bezier patch instead of the whole NURBS

surface, which improve the stability of the algorithm.

Deforming Surfaces & B-rep Models Chapter 4. Point Inversion and Projection

Chapter 5

Adaptive T essellation

5.1 Previous work
A brief introduction about trimmed NURBS surfaces has been given in section

2.5.1 and also a short introduction to adaptive tessellation methods has been

presented in section 2.5.2. In this section, we give an overview of previous

work done in the areas of tessellating trimmed NURBS surfaces.

5.1.1 Adaptive Forward Differencing
Shantz and Chang [58] describe a direct hardware rendering technique for a

trimmed surface based on the adaptive forward differencing (AFD) method.

Similar to the scanline algorithm for rendering a polygon, this method is

suitable for special graphics VLSI. However, it is not practical for

implementation on variant graphic hardwares, because this technique directly

renders surface without going through the intermediate form of triangles.

Furthermore, the computation becomes very expensive, when this method

108

Chapter 5. Adaptive Tessellation 109

subdivides the surface down to pixel size in order to render a high quality

image. The method operates in 5 steps;

1. The NURBS trimming curves are converted to piecewise Bezier curves

by knot insertion.

2. The Bezier curves are subdivided so they are monotony in the u

parameter direction.

3. The Bezier curves are converted to forward a difference basis.

4. They are sorted in u parameter order by their minimum u value.

5. For each AFD forward step in the u direction (from curve to curve) the

active trimming curve sections are forward-stepped down to find

intersections with the new curve. The appropriate portions of the surface

curve are drawn based on the trim curve-winding rule.

5.1.2 Tessellation Under Highly Varying Transformation
Salim S. Abi-Ezzi and Leon A. Shirman [59] provide a dynamic and uniform

tessellation method for arbitrary degree polynomial and rational Bezier patches.

NURBS surfaces are converted into Bezier patches before applying this

method. They designed two approximation criteria: a size criterion which uses

a threshold on the size of triangles, and a deviation criterion which uses a

threshold on the deviation of these triangles from the actual surface. This

method involves highly varying the modelling and viewing transformations

[59] (between world coordinates and display coordinates) and performing the

complex operations of finding derivative bounds, computing norms of

transformations, and factoring of views at data creation time. Therefore, it is

expensive and not practical for high degree Bezier patches because it will

generate more triangles for higher degree surfaces. It is obvious that the

uniform tessellation generates more triangles than the non-uniform method.

Deforming Surfaces & B-rep Models Chapters. Adaptive Tessellation

Chapter 5. Adaptive Tessellation 110

5.1.3 Fast Dynamic Tessellation of Trimmed NURBS
Surface
Salim S. Abi-Ezzi and Srikanth Subramaniam [60] present a dynamic and non-

uniform tessellation method developed from the previous method (section

5.1.2). Similar to the previous one, it converts the NURBS surface into Bezier

patches and the Bezier control points are used for further computations. Then

the trimming patches are further simplified into monotonic regions, which

contain several trimming curves. The next step contains two phases of

traversal.

The first phase reduces each trimming NURBS loop into its Bezier

components, then processes each trimming curve to determine the maximum

and minimum value of U and V on each trimming segment, then computes its

intersection with the U/V knot line. The intersection problem can be solved by

using a Bezier root-solving algorithm. Finally, it handles some special cases to

ensure the stability of the algorithm.

The aim of the second phase is to extract the triangles from both trimmed and

untrimmed patches. For untrimmed patches, triangles are generated from two

U/V isolines. For trimmed patches, triangles are generated from the U/V

isolines and trimming Bezier curves.

5.1.4 Triangulating Trimmed Surfaces for
Stereolithography Applications
Sheng and Hirsh [61] presented a method for triangulation of trimmed surfaces

in parameter space. This approach first maps the trimmed regions of the surface

into parametric space and the trimmed regions are approximated by 2D

polygon regions, which are then triangulated by a restricted Delaunay

triangulation algorithm. The generated triangles are subdivided further until

each edge of the triangles is smaller than the allowed length that results from

Deforming Surfaces & B-rep Models Chapter 5. Adaptive Tessellation

Chapter 5. Adaptive Tessellation 111

the surface definition and the specified tolerance. The detailed algorithm is

described as follows:

1. Creation of mapping polygons

To generate the mapping polygons in parametric space, the surface is first split

into patches along their common boundaries (see figure 5.1). After splitting, the

boundary of a mapping polygon consists of splitting lines and trimming curves.

The mapping polygons are connected by these splitting lines and trimming

curves. To form the ordinary boundary of a polygon, each trimming curve is

subdivided into line segments for a given tolerance.

Trimmed
Region

Patches
M apping
polygons

Figure 5.1: Generation of mapping polygons by splitting of trimmed region

2. Evaluation of the flatness of a patch

In their method, only the triangulation of the surface is considered, because it is

the only one arising in their applications. The evaluation can be formulated as

follows: given a parametric patch of a C surface and an arbitrary triangle with

its vertices on the surface, determine the maximum distance between the

surface and triangle with the same parametric bound. If the distance is smaller

than a user-specified tolerance, the patch is said to be sufficiently flat. The goal

of this operation is the condition for the termination of subdivision of

triangulated patches. Therefore, the triangles that are generated from the

Deforming Surfaces & B-rep Models Chapter 5. Adaptive Tessellation

Chapter 5. Adaptive Tessellation 112

restricted Delaunay triangulation are subdivided further until all the edges fall

within the allowed bounds. The allowed bound is defined as: Let £2 be the

maximal edge length of the triangle, the distances between the centre of the

triangle and its vertices are not greater than (2/3) Q [62]. If (2/3) Q. is less than

the user-specified tolerance, they say the triangulated patch is flat enough.

3. Restricted Delaunay Triangulation

Once, the mapping polygon for each patch has been established, it can be

triangulated separately. The goal of the triangulation is to obtain triangles

whose edge lengths do not exceed the allowed length Q determined in the

previous section. To minimize the number of triangles produced, it is obviously

desirable that each edge length of the triangles be as close to £2 as possible (an

equilateral triangle is optimal).

On the basis of the principle of the restricted Delaunay triangulation, each

mapping polygon of the patches is first split into a set of triangles. By

measuring the edge lengths, one can decide whether a triangle has to be further

subdivided. If the edges of the triangle exceed the allowed bound £2, a

refinement procedure divides the triangle into two, three or four subtriangles at

the middle points of the edges. The procedure is shown in figure 5.2. While the

subdivision in figure 5.2(a) and 5.2(c) are unique, one has to select one of the

two possibilities for figure 5.2(b). The refinement procedure runs recursively

until the edge lengths of all generated triangle fall short of the maximum.

Deforming Surfaces & B-rep Models Chapter 5. Adaptive Tessellation

Chapter 5. Adaptive Tessellation 113

(a) All three edges larger than Q. (b) Two edges larger than Q. (c) One edge

larger than Q.

Figure 5.2: Subdivision of triangles.

5.1.5 Triangulating The Trimmed NURBS Surface in
Parameter Domain
Piegl and Richard [63] propose a somewhat similar algorithm to triangulate a

trimmed NURBS surface: they use the same criterion for maximum edge

length, but the method does not split the surface into several regions

representing Bezier patches in parameter space. This tessellation method

consists of 5 steps. Step 1 is to compute the longest edge size in the parameter

domain. Step 2 obtains a polygonal approximation of the trimming curves. Step

3 selects points inside the valid region. Step 4 triangulates the trimmed region.

The final step is to map the triangles onto the surface and build a 3D triangular

database for further processing. The details of the algorithm are given as

follows.

X. Computing the longest edge size

The 3D triangles, obtained by mapping the 2D ones onto the surface,

deviate from the surface by less than e, where e is a user specified

tolerance. The edge length can be calculated from the upper bounds of

the second derivatives, computed over the entire patch [63]. This way of

Deforming Surfaces & B-rep Models Chapters. Adaptive Tessellation

Chapter 5. Adaptive Tessellation 114

the calculation of edge length is more adaptive than Sheng and Hirsh ‘s

method [64] (Directional adaptive).

2. Polygonal approximation of trimming curve

In the previous section, they calculate a maximum edge length X such

that triangles in the parameter domain with sides less than X map onto

3D triangles that are within s distance from the surface. The task now is

to subdivide the trimming curves into polylines, such that no edge is

longer than X,

3. Selection of points inside trimmed region

The selection of points inside the trimmed region is done via a simple

scanline-type algorithm used in raster graphics to fill a polygon. Once

the trimming curves are approximated, points inside the trimmed region

are selected in a similar way to pixel selection in the polygon fill

algorithm [65].

4. Triangulating the trimmed region

This step is tied to a specific data structure to store points as well as the

boundary edges of the trimming curves. This structure is obtained by

putting a uniform grid over the points and processing each point and

edge into a grid cell. Each cell then has a list of points lying inside the

cell, and a list of edges intersecting the cell. By applying a Delaunay

triangulation algorithm, the points in each cell are transformed into a set

of Delaunay triangles.

5. Mapping triangles onto the trimmed surface

Deforming Surfaces & B-rep Models Chapter 5, Adaptive Tessellation

Chapter 5, Adaptive Tessellation 115

Once the triangulation of the trimmed domain is completed, the domain

triangles are mapped onto the surface forming a tessellation. Although

this is a straightforward map, a data structure has to be maintained so

that triangles can be passed onto a postprocessor, such as a contouring

program or a shader based on polygonal objects.

5.1.6 Summary
The first method is designed for the special graphic hardware for rendering

triangles which are generated from the AFD method. It works for cubic Bezier

surfaces only and it is not practical for tessellating high degree surfaces. The

second method is a uniform tessellation that generates more triangles than non-

uniform methods.

The other three methods perform tessellation in parametric space. The first

method is both dynamic and non-uniform tessellation. However, it involves

some complex algorithms which could reduce the stability of the whole

method. The second method takes special care of the edges of the solid that is

being subdivided, and guarantees the absence of cracks. This method has two

main disadvantages: it is not adaptive (global bounds for second derivatives are

found for every patch), and second, it does not care about the shape of the

resulting triangles. The consequence of not being adaptive is that the number of

triangulation vertices is too large. The third method is adaptive and not

sensitive to the complexity of the trimmed patch. Unlike the first method, it

calculates the bound for second derivatives locally, therefore it achieve more

efficient flatness testing.

All three methods have common advantages and disadvantages as general

tessellation methods in the parametric domain.

Advantages:

Deforming Surfaces & B-rep Models Chapters. Adaptive Tessellation

Chapter 5. Adaptive Tessellation 116

• Methods that operate on triangles are far easier and numerically more

stable than those dealing with freeform geometry.

• The piecewise triangular approximation is a parameter independent

representation of the trimmed surface.

Disadvantages:

• Adequate representation of a trimmed patch with high curvature areas

requires large numbers of triangles.

• The triangulation, if not done properly, can result in triangles of different

sizes, and, in particular, in long and skinny triangles which, in turn, can

cause numerical problems.

5.2 New Approach
Like the two tessellation methods that are discussed in the previous section, our

method has most of the advantages that the other tessellation methods in the

parametric domain have. Our new approach differs in the way it checks the

flatness of the desired patches, and its way of subdividing the surface. The

subdivision and flatness checking have the same methodology as the solution

to the problem of point projection for NURBS curves and surfaces. The

tessellation is based on the individual Bezier patch that is flat enough. The

whole algorithm consists of the following steps:

• Finding the bounding box for outer trimming loops and spitting the

surface to fit the bounding box. The splitting method uses knot

refinement.

• Subdividing the surface into a set of Bezier patches which are flat enough.

• Removing the patches outside the boundary of the outer trimming loop

and removing the patches inside the boundary of the inner trimming

loops.

• Closing the outer and inner boundary with a set of triangles.

Deforming Surfaces & B-rep Models Chapter 5. Adaptive Tessellation

Chapter 5. Adaptive Tessellation 117

(a) The original NURBS surface.

(b) “flat enough” Bezier patches.

(c) The holes between the Bezier patches. (d) Rendering picture for the

holes and patches.

Figure 5.3: Tessellating the untrimmed NURBS surface

Deforming Surfaces & B-rep Models Chapter 5. Adaptive Tessellation

Chapter 5. Adaptive Tessellation 118

5.2.1 Tessellating the untrimmed NURBS surface

Before we start to tessellate the trimmed NURBS surface, we give an

introduction to the tessellation of an untrimmed NURBS surface, which is

based on the methodology of subdividing the NURBS surface into a set of “flat

enough” Bezier patches. If we only accept the set of “flat enough” Bezier

patches as the result of tessellation, some holes will appear between patches

due to the approximation of a patch boundary by a straight line. An example of

this degenerative process is shown in figure 5.3.

The solution for this problem is to use triangles to approximate the Bezier

patches if it has midpoints along its boundary. We designed an easy way to

generate triangles from the Bezier patches, which have at least one midpoint

(See figure 5.4). As the exception, a patch with one midpoint generates three

triangles. Generally, the patch with n midpoints generates (n+4) triangles.

Finally, figures 5.5 and 5.6 show the tessellation using this solution.

1 Point 2 Points 3 Points 4 Points
Figure 5.4: Generating triangles from the Bezier patch.

Figure 5.5: The wire frame of tessellating result.

Deforming Surfaces & B-rep Models Chapter 5. Adaptive Tessellation

Chapter 5. Adaptive Tessellation__ 119

Figure 5.6: Rendered picture of tessellating result.

5.2.2 Finding The Bounding Box and Splitting The
Surface

From the definition of trimmed NURBS surface, we know that the trimmed

surface has one outer trimming loop and several inner trimming loops. For the

outer trimming loop, we define the outer bounding box in the parametric

domain as the box containing all trimming curves in the outer trimming loop.

On the other hand, the inner bounding box is the box containing all trimming

curves in one inner trimming loop. As shown in figure 5.7, the solid-line

rectangle is the outer bounding box and the dash-line one is the inner bounding

box.

After obtaining the outer bounding box, we split the surface in both U, V

directions in the parametric domain to make the remain surface fitting with the

outer bounding box (showing in figure 5.8).

Deforming Surfaces & B-rep Models Chapter 5. Adaptive Tessellation

Chapter 5. Adaptive Tessellation 120

/ - i 1 - x \/— A
(\

/

1

\ ;
V - -V y

M— ____ 7

Figure 5.7: Bounding Boxes

(a) Original NURBS surface.

(b) The surface trimmed with the outer bounding box

Figure 5.8: Splitting surface to fit with the bounding box.

5.2.3 Removing The Patches
After we obtain the surface that fits within the outer bounding box, we

tessellate it as an untrimmed NURBS surface, which is described in section

5.2.1. We now have a set of “flat enough” Bezier patches. By mapping these

Bezier patches into parametric space (U, V), we get a set of small rectangles

instead. We also have all the trimming loops in parametric space and separate

them as one outer trimming loop and several inner trimming loops. By

Deforming Surfaces & B-rep Models Chapter 5. Adaptive Tessellation

Chapter 5. Adaptive Tessellation 121

applying the scanline algorithm [66][67] [68][69], we remove the patches

outside the outer trimming loop and inside the inner trimming loops. At the

same time, we build a point array for recording all boundary points along inner

and outer boundaries. These points are used to generate the triangles for closing

the boundaries.

1. Scanline Algorithm

The scanline algorithm provides the tools to determine whether a Bezier

patch is inside the trimming loops, intersects with trimming curves or

outside the trimming loops. As shown in Figure 5.9, uniformly

distributed scanlines are placed in the U direction of parameter space

and the density of U scanlines is determined by the tolerance of the

tessellation. The Bezier patches are created between the two

neighbourhood scanlines. Each scanline may have an odd or even

number of intersection points with trimming loops. If we get an odd

number of intersection points, we can repeat the tangent point to

generate the even number of intersection points (No. 4 scanline in figure

5.9). According to the sequence of the intersection points, we can divide

the region into a positive one and a negative one. The positive one is

inside the trimming loops and the negative one is outside the loops

(figure 5.10). Finally, we can compare the Bezier patch with the

positive and negative regions, remove the patches inside the loops, and

create a patch to fit with the loop boundary if the patch intersects with a

loop.

1______________ 2 3____________ 4

/ + V / + \
1 2 3 4

Figure 5.10: Positive and negative regions

Deforming Surfaces & B-rep Models Chapter 5. Adaptive Tessellation

Chapter 5. Adaptive Tessellation 122

A V

Figure 5.9: U Scanline

2. Summary

In summary, we give the algorithm for detecting the Bezier patches

outside the outer boundary.

A Igor ith m 1 Bezier Patch Outside Outer Bo undary
Input: A Bezier patch and outer trimming loop.
Output: the result o f detection.
Begin

{m is the highest index o f outer trimming curves}
fo r i = 0 to i < m by /++ do

{Detect whether outer trimming curve intersect with the Bezier patch}
begin

generate a polyline to approximate the trimming curve;
i f (the Bezier patch intersects the polyline) then

Generate a new patch which f it with the outer boundary;
Add the boundary points into array;
return the result o f intersection and the new patch;

end i f
en d {End o f loop for}

Flag <— FALSE; {Flag TRUE: inside; FALSE: outside}
fo r i = 0 to i < m by /'+ + do

{Detect whether the patch is inside the outer trimming loop or not.}
begin

generate a polyline to approximate the trimming curve;
i f (the Bezier patch is inside the trimming loop) then

Flag <—TRUE;
en d i f

en d {End o f loop for}

i f Flag = = TRUE then
return the patch inside the outer trimming loop;

else

Deforming Surfaces & B-rep Models Chapter 5. Adaptive Tessellation

Chapter 5. Adaptive Tessellation 123

return the patch outside the outer trimming loop; {The patch will be
removed;}
E nd o f Algorithm 1

We have a similar algorithm to detect the Bezier patches inside the inner

boundary.

A lgorithm 2 Bezier Patch Inside inner Boundary
Input: A Bezier patch and inner trimming loops.
Output: the result o f detection.
Begin

{m is the highest index o f inner trimming loops}
f o r i = 0 to i < m by /++ do

{Detect whether the Bezier patch is inside one o f the inner trimming
loops}

begin
generate a polygon to approximate the trimming loop;
i f (the Bezier patch is inside the polygon) then

return the patch is inside the polygon; {The patch will be removed;}
else i f (the Bezier patch intersects with polygon) then

generate a new patch fitting with the inner boundary;
add the boundary points into array;

return the result o f intersection and the new patch;
en d i f

en d {End o f loop for}

return the patch outside the inner trimming loops;
E n d o f Algorithm 2

Finally, figure 5.10 gives the illustration of this procedure.

(a) The surface fitting with outer bounding box.

Deforming Surfaces & B-rep Models Chapter 5. Adaptive Tessellation

Chapter 5. Adaptive Tessellation 124

liWmm

(b) The tessellation result with removing all patches outside the outer

boundary and inside the inner boundary.

(c) Rendered picture

Figure 5.10: The procedure of removing patches

5.2.4 Closing the Outer and Inner Boundary with a Set of
Triangles
The aim of this step is to generate smooth boundaries for both the outer and

inner trimming loops. The point array that is generated in the last section is

used to generate the triangles through the neighbouring points. To obtain the

correct rendering effect, we need to set the points in anti-clockwise or

clockwise direction in all triangles. Figure 5.11 gives the final result both in

wire frame and rendering mode.

Deforming Surfaces & B-rep Models Chapter 5. Adaptive Tessellation

Chapter 5. Adaptive Tessellation 125

(a) Wire frame picture of final result 1.

(b) Rendered picture of final result 1.

(c) Wire frame picture of final result 2.

(d) Rendered picture of final result 2.

Figure 5.11: Final results of tessellation

Deforming Surfaces & B-rep Models Chapter 5. Adaptive Tessellation

Chapter 5. Adaptive Tessellation 126

5.2.5 Summary of the Algorithm
The summary of the whole algorithm is given by the following the pseudo

code.

Algorithm 3 TessellationfTrimmed_NURBS_Surface
Input: A trimmed NURBS surface
Output: a set o f quadrilaterals and triangles
Begin

Get the outer bounding box;
Split the NURBS surface to f it with outer bounding box in parametric space;
Tessellate the surface as an untrimmed NURBS surface; {The result is a set o f

Bezier patches}
(m is the highest index o f the Bezier patches.}

fo r i = 0 to i < m by /++ do
{Detect whether to remove, generate a new patch or keep the pa tch }

begin
i f (Bezier_PatchOutside JduterJBoundary return intersection) then

Add the new patch into patch array;
else i f (Bezier_Patch_Outside_Outer_Boundary return inside) then

A dd the original patch into patch array;
end i f

{n is the highest index o f inner trimming loops.}
fo r j~ 0 to j< n by j+ + do

begin
if(Bezier_Patch_Inside_inner_Boundary return intersection) then

Add the new patch into patch array;
else i f (Bezier_Patch_Inside_inner Boundary return outside) then

Add the original patch into patch array;
end i f

end {End o f loop for}

end {End o f loop for}

Generate quadrilaterals and triangles from the patch array;
Generate triangles from the boundary point array;
End o f Algorithm 3

5.3 Conclusions
In this chapter, we have presented an algorithm for tessellating a trimmed

NURBS surface in the parametric domain. Based on the flatness test, the

method stops the subdivision of the surface and obtains a tessellation within a

Deforming Surfaces & B-rep Models Chapters. Adaptive Tessellation

Chapter 5. Adaptive Tessellation 127

user specified tolerance. The tessellation is performed completely in parametric

space, and furthermore this method does not adopt any complex method to

generate triangles, so that the procedure runs fast and reliably.

One drawback is that the surface subdivision involves high computation which

reduces the efficiency of the whole algorithm. The subdivision techniques

using knot insertion have been described by Boehm [70] and Cohen and others

(the Oslo algorithm) [71]. The efficiency can be improved by computing only

part of the control net in the knot insertion algorithm to speed up the procedure

of the flatness test for control net of the Bezier patch.

Deforming Surfaces & B-rep Models Chapter 5. Adaptive Tessellation

Chapter 6

Deforming B-rep Model

6.1 Deformation on a single untrimmed
NURBS surface
As described in chapter 3, we apply the metaball deformation model on a single

NURBS surface. By moving the control points on the refined control point net

of the NURBS surface, we can deform single or multiple general constraints on

the surface. Figure 6.1 shows an example of deforming “MVC” on the NURBS

surfaces.

O s i g n « and programmed by Ma YmgLwng

Figure 6.1: deforming “MVC” on the NURBS surfaces.

128

Chapter 6. Deforming B-rep Model 129

There are two ways for applying multiple constraints on a single NURBS

surface. Method one is to apply them individually so that the constraints will

overlap each other. Method two is to calculate the minimum distance for all

constraints and apply them together as a group on the surface. Figure 6.2 gives

an illustration of deforming multiple constraints on single surface.

(a) Original NURBS Surface and general curve constraints.

(b) Applying method one on the surface.

Deforming Surfaces & B-rep Models Chapter 6. Deforming B-rep Model

Chapter 6. Deforming B-rep Model 130

(c) Applying method two on the surface.

Figure 6.2: Apply different constrained deformation methods on the surface

From figure 6.2(b) and figure 6.3(c), we can see that method one accumulates

the displacements for individual curve constraints. On the other hand, method

two calculates the distances for all curves instead of just one curve and selects

the minimum one which generates the displacement.

6.2 Deformation on a trimmed NURBS
surface
According to the definition of the trimmed NURBS surface described in

section 2.5.1, we give the data structure of the trimmed surface in a C++ style.

class TrimNURBSSurface

{
NURBSSurface m_Surf; //untrimmed NURBS surface.

NURBSCurveArray m_CurArr; //trimming curve array in parameter space.

TrimmingLoopArray m_LoopArr; //trimming loop array (Both inner and outer).

};

The data structure of TrimmingLoop is defined as:

Deforming Surfaces & B-rep Models Chapter 6. Deforming B-rep Model

Chapter 6. Deforming B-rep Model 131

Class TrimmingLoop

f
IntArray mjndexes; //curves1 index for each loop.
BOOL mjype; //TRUE for outer loop; FALSE for inner loop.

};

We keep trimming curves (both inner trimming loops and outer trimming

loops) unchanged on the parametric domain when deforming single or multiple

general constraints on the trimmed NURBS surface. However, the shape of

trimming curves in 3D space could be changed after the deformations. In our

prototype system, deformation on a trimmed NURBS surface is divided into

three steps.

1. Extract outer trimming loops and calculate its bounding box

We only move the control points which are inside the enlarged outer

bounding box. The enlarged outer bounding box is box which is offset

toward the outer direction by a distance of the effective radius in the

metaball model. The goal of only moving points inside the enlarged outer

bounding box is to reduce the computation of metaball deformations. Figure

6.3 gives an illustration. The dash-line curves are the inner trimming loops

and the solid-line curves are the outer trimming loop. The square-dot

rectangle is the bounding box for outer trimming loops and the round-dot

one is the enlarged bounding box.

Deforming Surfaces & B-rep Models Chapter 6. Deforming B-rep Model

Chapter 6. Deforming B-rep Model 132

(a) A trimmed NURBS surface.

enlarged
bounding box

bounding
box

(b) Outer bounding box and its enlarged bounding box (parametric space).

Figure 6.3: Trimmed NURBS surface and its trimming loops

2. Deforming the trimmed NURBS surface

Similarly to deforming the untrimmed surface, we deform the untrimmed

NURBS surface (m Surf) in the data structure of the trimmed surface by

moving the control points inside the enlarged bounding box.

3. Tessellating the deformed and trimmed NURBS surface

During the deformation process, we only change the untrimmed NURBS

surface and keep other data numbers unchanged. Using the tessellation

method describe in chapter 5, we subdivide the deformed surface, remove

unwanted Bezier patches and close the boundary with a set of triangles. The

final result is given in figure 6.4 (using the same surface as figure 6.3).

Deforming Surfaces & B-rep Models Chapter 6. Deforming B-rep Model

Chapter 6. Deforming B-rep Model 133

(a) Deformation on an untrimmed surface

(b) Deformation on a trimmed surface

Figure 6.4: Deforming the trimmed NURBS surface by using metaball model

6.3 Deformation on a B-rep Model
A NURBS B-rep model contains several trimmed NURBS surfaces which form

the faces of the B-rep model. Each face has several edge curves connecting

with other faces. In this thesis, we only discuss the method of deforming one

face of a B-rep model. Deforming two or more faces at the same time is much

more complicated and is left for future discussion.

Deforming a face on the B-rep model may change one or more edges on this

face. That leads to changes to other faces which are associated with these

Deforming Surfaces & B-rep Models Chapter 6. Deforming B-rep Model

Chapter 6. Deforming B-rep Model 134

edges. There are three methods to solve the modification of other faces in a B-

rep model.

Method one first maps these edges (trimming curves) into the parametric space

of individual faces (trimmed NURBS surfaces). The mapping involves

converting 3D NURBS curves into 2D NURBS curves in the parameter

domain. Point inversion for a NURBS surface, described in chapter 5, can find

the parameter values (u, v) for reconstructing the 2D trimming NURBS curve

in parametric space. Then we regenerate the modified faces by resetting the

trimming curve array in the data structure of the trimmed NURBS surface, as

described in section 6.2. Finally, we connect all faces, edges and vertices

together to regenerate the B-rep NURBS model. An example is given in figure

6.5. We deform a line constraint on the top surface of the B-rep model. That

causes changes to two edges connecting with two general cylinder surfaces

(holes). The red coloured surfaces are changed.

(a) The broken original B-rep model.

Deforming Surfaces & B-rep Models Chapter 6. Deforming B-rep Model

Chapter 6. Deforming B-rep Model 135

(b) The broken deformed B-rep model (deforming only the top surface; two

general cylinder surfaces are also changed).

Figure 6.5: Deforming the B-rep model by using method one (Made in Rhino).

However, when we apply method one to some complex B-rep models, some

edges may go beyond the boundary of associated faces and it is also impossible

to extend the faces in some degree due to the complex shape of the faces.

Method two overcomes this disadvantage. The only condition is that we must

know the history of the construction of this B-rep model so that we can

reconstruct the B-rep model from the deformed trimmed NURBS surface. For

example, we extrude one trimmed surface to create a B-rep model (figure 6 .6a).

If we deform a straight-line constraint on this trimmed surface and then extrude

the surface again to recreate the B-rep model (figure 6 .6b).

Although method two is simple, fast and accurate, it is not suitable for all B-rep

models. A simple B-rep solid model does not contain any information about the

construction history while a CSG solid model does. The third method can

provide a complete solution for the deformation of a B-rep model.

Deforming Surfaces & B-rep Models Chapter 6. Deforming B-rep Model

Chapter 6. Deforming B-rep Model 136

(a) The original trimmed surface and B-rep model

(b) The deformed trimmed surface and reconstructed B-rep model

Figure 6 .6 : Deforming the B-rep model by using method two (Made in Rhino).

The third method is to create one or more surface patches between the

deformed edges and original edges. The patches are the blending surfaces. The

blending surface can be created from two boundary NURBS curves. Therefore,

the blending surface fits the gap between the original edge and the deformed

edge, as shown in figure 6.7. The final result is shown in figure 6 .8 . The red

colour surfaces are the surface patches (blending surface). A comprehensive

survey of blending surfaces is given in [72][73][74]. The size of blending

surface depends on the effective radius in the metaball deformation model.

Because the sizes of blending surfaces are normally much smaller than the

whole size of the B-rep model, we can apply the method of creating a ruled

surface, described in section 2.4.3, to create the blending surface. It is the

simplest blending surface.

Deforming Surfaces & B-rep Models Chapter 6. Deforming B-rep Model

Chapter 6. Deforming B-rep Model 137

Figure 6.7: original edge curves, deformed

Figure 6 .8 : The final result by using method three (Made in Rhino).

edges curves and surface patches

Defonning Surfaces & B-rep Models Chapter 6. Deforming B-rep Model

Chapter 6. Deforming B-rep Model 138

All three methods have both advantages and disadvantages. Method one

involves point inversion and reconstructing a trimmed NURBS surface, so that

the computation cost is high. Another problem is that the new trimming curve

may go beyond the boundaries of the original NURBS surfaces. In that case,

we have to extend the surface to the new boundaries. The advantages of

method one are that no additional information is required to reconstruct the B-

rep model and no additional surfaces are added. Also the whole structure of the

B-rep remains unchanged.

Method two gives a simple solution for reconstructing the B-rep model from

the deformed surface. It does not involve any geometric computation and the

new B-rep is robust. However, not all B-rep models can be recreated from the

single surface.

Method three is the best solution. Blending surfaces are created to fit the gaps

between the deformed edges and the original edges. No complicated geometric

computation is needed.

6.4 Summary
This chapter has generalized the technique of deforming general constraints on

a single untrimmed NURBS surface, trimmed NURBS surface and a NURBS

B-rep model by using the metaball deformation model.

Deforming Surfaces & B-rep Models Chapter 6. Deforming B-rep Model

Chapter 7

Conclusions

7.1 Summary of Work Done
This thesis describes a number of contributions to CAD and computer graphics.

Those contributions are highlighted in this chapter:

1. A novel approach for the point projection and inversion for NURBS

curves and surfaces is presented in chapter 4. This method provides a

good initial value for Newton-Raphson method to achieve a

convergence and that makes the algorithm more reliable. Furthermore,

for a NURBS surface, this approach dramatically decreases the

computation of the algorithm by decomposing the NURBS surface into

a set of quadrilaterals. It also applies the Newton-Raphson method on a

Bezier patch instead of the whole NURBS surface, which improves the

stability of the algorithm. The algorithm is incorporated into the

metaball deformation model (chapter 3 and 6) to calculate the distance

between the control points on the NURBS surface to a general constraint

(a NURBS curve or surface). The algorithm has been extensively tested

139

Chapter 7. Conclusions 140

through projecting thousands of control points from the NURBS surface

to the constraint to prove its stability and efficiency. The algorithm of

point projection for NURBS curves and surfaces has been published in

[79].

2. Tessellating trimmed NURBS surfaces is one of the remaining research

problems in CAD. A new method has been introduced in Chapter 5. The

whole surface is tessellated into a set of both triangles and

quadrilaterals, which can be sent directly to the graphics pipeline for

rendering. It has the advantages of both optimising the number of

polygons (triangles and quadrilaterals) and dynamically subdividing the

surface based on the curvature of surface. It does not involve any

complex triangle generation algorithm so that the performance of this

method is fast and reliable. This research has been published in [80].

3. A new approach to deform the untrimmed NURBS surface, trimmed

NURBS surface and NURBS solid model are presented in Chapter 3 and

Chapter 6 . Previous work on the metaball deformation model is

implemented on the mesh model (tessellated solid model) which no

longer has accurate geometric information such as boundary surfaces,

edge curves, trimming curves and etc. By modifying the position of

control points of the NURBS surface, we extend the metaball

deformation model to the NURBS objects. The metaball model for

NURBS objects can achieve accurate geometric modification, which is

suitable for the CAD domain. In the case of NURBS solid models

represented by B-Rep, our method deforms one of the boundary surfaces

and creates blending surfaces fitting the gap. Deforming the solid model

not only keeps more accurate geometric information than deforming the

mesh model, but also achieves better rendering results.

Deforming Surfaces & B-rep Models Chapter 7. Conclusions

Chapter 7. Conclusions 141

7.2 Future work
The ideas presented in this thesis open up several interesting directions for

future research:

• Point Inversion and Projection for NURBS Curves and Surfaces: The

extension of this algorithm to calculate the minimum distance between

two NURBS curves or two NURBS surface could be considered. The

analysis of the relationship between a single test point and a Bezier

subcurve or a Bezier patch can be extended to analyse the relationship

between two Bezier subcurves or two Bezier patches. By finding a pair of

candidate Bezier subcurves or Bezier patches, we recursively subdivide

them until they can be approximated by straight line or a plane. The final

minimum distance can be calculated through computing the distance

between two straight lines or two planes.

In a similar way, this algorithm could also be extended to compute the

minimum distance between NURBS curves and NURBS surfaces.

• Adaptive Tessellation for Trimmed NURBS Surface: Future work on

adaptive tessellation techniques will be extended to tessellate the whole

NURBS solid model, which contains several trimmed NURBS surfaces

forming its boundary surfaces. Tessellating all boundary surfaces

separately is not acceptable, because it may lead to holes along the

boundary edges. Holes on the edge are caused by the discontinuous vertex

connections between two neighbourhood boundary surfaces. Therefore,

research into tessellating the whole solid model involves creating unified

vertices along edges.

Deforming Surfaces & B-rep Models Chapter 7. Conclusions

Chapter 7. Conclusions 142

• Metaball Deformation Model for NURBS Objects: Initially, we may

incorporate different potential functions into the metaball deformation

model to create different blending effects. Alternative potential functions

are B linn’s exponential function, Nishimura’s piece-wise quadric

polynomial, and Murakami’s degree four polynomial [50]. Further

attention should be directed toward incorporating some physical

properties into the metaball model also, so that the displacement of

individual control points is not only decided by the distance function but

also affected by other functions associated with the physical properties.

Furthermore, deforming two or more neighbourhood boundary surfaces

should be considered, providing a more flexible deformation tool for

NURBS solid modelling.

Deforming Surfaces & B-rep Models Chapter 7. Conclusions

Appendix A

openNURBS Toolkit

The testbed software includes two libraries: openNURBS toolkit and

YLNurbsLib, which has been developed by the author. This appendix gives an

overview of the toolkit. The openNURBS toolkit is available on the

openNURBS website (www.opennurbs.org) which is funded by Robert

McNeel & Associates.

A.l Overview of openNURBS toolkit
The openNURBS toolkit can read and write the complete Rhinoceros file

format. Rhinoceros is a design software package, developed by Robert McNeel

& Associates. Rhinoceros data files contain NURBS curves, surfaces, and

solids. These data types can accurately hold all of the 3-D geometry found in

most other CAD/CAM file formats including IGES [77], STEP [78], VDA/FS,

ACIS, Parasolid, etc.

The openNURBS toolkit is written in standard C++, which can be compiled in

Windows, Mac and Linux environments. Object-oriented design makes it

possible for the user to understand the relationships between individual

143

http://www.opennurbs.org

Appendix A. openNURBS Toolkit 144

geometric objects that are represented by NURBS. A base geometric object

class (CRhinoObject) is derived from an abstract class: CRhinoChunk, which

has a unique ID number and virtual functions for reading and writing geometric

data. CRhinoObject has some common attributes shared by all geometric

objects, such as colour, material, label and bounding box. Figure A .l shows the

hierarchical relationships between all classes inside in the openNURBS toolkit.

Deforming Surfaces & B-rep Models Appendix A. openNURBS Toolkit

Appendix A. openNURBS Toolkit 145

I
CRhinoChunk

CRhinoObiect

-► CRhinoAgCurve

CRhinoBrep

CRhinoAgFace

-► CRhinoAgShell

CRhinoMesh

"► CRhinoMeshGeometry

CRhinoNurbsCurve

-► CRhinoAgSpline

CRhinoNurbsSurface

-► CRhinoAgSurface

-► CRhinoPointSet

-► CRhinoSpotlight

-► CRhinoViewport

► CRhinoBumpMap

CRhinoEndOfTable

CRhinoLayer

CRhinoLayerlndex

CRhinoName

CRhinoNotes

CRhinoRGB

CRhinoTextureMap

CRhinoT ransparency

CRhinoXdata

Classes Not Derived from

CRhinoFile CRhinoArray

CRhinoMaterial — ► CRhinoCurveArray

CRhinoWorkSpace — ► CRhinoIntArray

CRhinoXform — ► CRhinoNurbsCurveArray

— ► CRhinoSurfaceArray

Figure A.l: Hierarchy Chart of openNURBS toolkit libaray

Deforming Surfaces & B-rep Models Appendix A. openNURBS Toolkit

Appendix B

YLNurbsLib

Based on the infrastructure of the openNURBS toolkit, the author developed

the YLNurbsLib library, which works as a geometry kernel for his testbed

software. It has the object-oriented definitions of NURBS curve, NURBS

surface, trimmed NURBS surface and mesh. It also includes methods of point

projection and tessellation, which are described in chapter 4 and 5.

B.l OO definitions of NURBS objects
A simple class; CYLNLibObject, an abstract class for the whole library,

contains only colour information and several virtual functions. Derived from

this abstract class, CYLNLibNurbsCurve and CYLNLibNurbsSurface have

common NURBS data (knot vector, control points and degree), basic functions

(evaluation, knot insertion, splitting) and some advanced functions (point

projection, tessellation for surface only). Figure B.l gives the relationships

between all classes within the YLNurbsLib library.

146

Appendix B. YLNurbsLib 147

CYLNLibObject

-► CYLMesh

-> CYLNLibNurbsCurve

-► CYLNLibNurbsSurface

-► CYLNLibTrimSurface

Figure B.l: Hierarchy Chart of YLNurbsLib libaray

To define a NURBS curve in YLNurbsLib, the user needs to give dimension

(must be 3D), type (rational or non-rational), degree and number of control

points in the NURBS curve construction function:

CYLNLibNurbsCurve (int dimension, BOOL blsRational, int degree, int cv count);

The public functions SetKnot(int index, double k) and SetCV(int index,

POINT STYLE style, const double* Point) in CYLNLibNurbsCurve class are

used to set up the knot vector and control point array. The length of knot vector

can be calculated through equation B.l.

lengthJmot = degree + I + cv count (B .l)

Here is an example of a NURBS curve declaration in YLNurbsLib library:

Classes Not Derived from

CYLNLibArray

► CYLNLiblntArray

 CYLNLibNurbsCurveArray

 ^ CRhinoNurbsCurveArray

 ^ CYLNLibSurfaceArray

CYLNLibColor

CYLNLibException

CYLNLibMaterial

Deforming Surfaces & B-rep Models Appendix B. YLNurbsLib

Appendix B. YLNurbsLib 148

Int i , knot_count;

C YLN LibN urbsC urve *NewCurve;

//define a n on -ra tional N U R B S cubic curve w ith 5 co n tro l p o in ts

N ew C urve = new C Y LN LibN urbsC urve (3, FALSE, 3, 5);

fo r (i= 0 ; i< 5; i+ +)

SetCV(i, y l n o t rational, P i); //S e t up non-rational co n tro l p o in t a rra y

knot_count = 3 + 1 + 5 ;

F or(i= 0 ; i<knot_coun t; i+ +)

SetK not(i, K i);

Similar to the NURBS curve, a NURBS surface can be defined through the

surface construction function:

CYLNLibNurbsSurface (

int dimension, //Must be 3

BOOL blsRational, //True for rational, False for non-rational

int degreeju, //degree in U direction

int degree_v, //degree in V direction

int cv_count_u, //CVcount in U direction

int cv_count_v //CVcount in Vdirection

);

Also two public functions (SetKnot and SetCV) are used to set up the U, V knot

vectors and control point net.

The class declaration of trimmed NURBS surface has been already described in

section 6.2. The trimmed NURBS in YLNurbsLib has some additional private

data members such as point arrays for external boundaries and internal

boundaries, which are used by the functions inside class and are not accessible

from functions outside the class even the derived class.

Deforming Surfaces & B-rep Models Appendix B. YLNurbsLib

Appendix B. YLNurbsLib 149

B.2 Memory Management
Memory management is an important issue in software development. Memory

leakage is a serious problem in many applications. If the software has a

memory leakage problem and runs for a veiy long period, the computer may

run out of memory and crash. The YLNurbsLib library uses a dynamic array to

store all NURBS objects. CYLNLibArray is a template dynamic array. Because

NURBS objects are a complex class, it is not possible to directly put the object

in the dynamic array. Instead pointers to NURBS object classes are stored in

the dynamic array. Therefore, to prevent the memory leakage problem, it

requires two steps to release all memory used by the NURBS objects.

• Step 1: delete NURBS objects.

• Step 2: delete all pointers allocated in the array.

Here is an example of dynamic NURBS curve array:

• Definition
c la ss N u rb sC u rv eA rra y : p u b lic C Y L N L ib A rra y< C Y L N L ib N u rb sC u rve* >

{
p u b lic :

N u i'bsC u i'veA ?ray(s i z e j = 0) ;

-N u r b s C u rv e A rr a y ();

};

• Release all memory
size = NurbsCurveArray.GetSize();

for(i=0;i<size;i++)

delete NurbsCurveArray[iJ;

NurbsCurveArray.RemoveAllO; //Remove all pointers inside the dynamic array

Deforming Surfaces & B-rep Models Appendix B. YLNurbsLib

References

[1] L Piegl. On NURBS: A Survey. IEEE Computer Graphics and Applications,

11(1):55-71, 1991.

[2] Xiang Fang, Hujun Bao and Pheng Ann Heng. Continuous field based free­

form surface modelling and morphing. Computer & Graphics, 25: 235-243,

2001 .

[3] Blinn JF. A generalization of algebraic surface drawing. ACM Transactions

on Graphics, l(3):235-56, 1982.

[4] Nishimura H, Hirai M and Kawai T. Object modelling by distribution

function and a method of image generation. Transaction on IECE, 68 -

D(4):718-25, 1985.

[5] Wyvill G, McPheeters C and Wyvill B. Data structure for soft objects. The

Visual Computer, 2:227-34, 1986.

[6] Shen J and Thalmann D. Interactive shape design using meta-balls and

splines. In: Brian Wyvill, Marie-Paule Gascuel, editors. Proceedings of

implicit surface’95. France: Grenoble, pp. 187-96, 1995.

[7] Bloomenthal J and Wyvill B. Interactive techniques for implicit modelling.

Computer Graphics, 24(2) 109-16, 1990.

[8] Xiaogang Jin, Youfu Li and Qunsheng Peng, General constrained

deformations based on generalized metaballs. Computer & Graphics

24:219-231,2000.

150

References 151

9] Miller, J R, Sculptured surfaces in solid models: issues and alternative

approaches. IEEE Computer Graphics & Application. 6(12):37-48, 1986.

LO] Casale, M S. Free-form solid modelling with trimmed surface patches, IEEE

Computer Graphics & Application. 7(1): 33-43, 1987.

11] Farouki, R T. Trimmed surface algorithms for the evaluation and

interrogation of solid boundary representations. IBM Journal Research &

Development, 31(3): 314-334, 1987,

12] Sederberg TW and Parry SR. Free-form deformation of solid geometric

models. ACM Computer Graphics, 18(3):21-30, 1984.

13] C De Boor. A Practical Guide to Splines. Springer-Verlag, 1978.

14] G Farin. Curves and surfaces for Computer Aided Geometric Design: A

Practical Guide. Academic Press, 3rd edition, 1983.

15] M G Cox. The Numerical Evaluation of B-Splines. Journal o f Institute of

Mathematics and its Applications, 10(2): 134-149, 1972.

16] W Tiller. Rational B-Splines for Curve and Surface Representation. IEEE

Computer Graphics & Applications, 3(6):61-69, 1983.

17] L Piegl and W Tiller. The NURBS Book. Springer-Verlag, 1995.

48] L Piegl and W Tiller. Curve and Surface Constructions Using Rational B-

Splines. Computer-Aided Design, 19(9):485-498, 1987,

19] L Piegl. Modifying the Shape of Rational B-splines. Part 1: Curves.

Computer Aided Design, 21(8):509-519, 1989.

20] L Piegl. Modifying the Shape of Rational B-splines. Part 2: Surfaces.

Computer Aided Design, 21(9):538-546, 1989.

21] W Boehm, Inserting New Knots into B-spline Curve. Computer Aided

Design, 12(4): 199-201, 1980.

22] W Tiller. Knot-removal algorithms for NURBS curves and surfaces.

Computer Aided Design, 24(8):445-453, 1992.

23] F Lin. NURBS in CAD and Computer Graphics. Ph.D thesis, University of

Manchester, 1996.

’24] Alan Watt. 3D Computer Graphics (ThirdEdition). Addison-Wesley, 2000.

Deforming Surfaces & B-rep Models References

References 152

[25] T W Sederberg and S R Party. Comparison of Three Curve Intersection

Algorithms. Computer Aided Design, 18(1): 58-63, 1986.

[26] N M Patrikalakis. Surface-to-Surface Intersections. IEEE Computer

Graphics and Applications, 13(l):89-94, 1993.

[27] Keyser, J., Krishnan, S and Manocha, D. Efficient and accurate B-rep

generation of low degree sculptured solids using exact arithmetic: I

— representations. Computer Aided Geometric Design 16:841-859, 1999.

[28] Keyser, J., Krishnan, S and Manocha, D. Efficient and accurate B-rep

generation of low degree sculptured solids using exact arithmetic:

II— Computation. Computer Aided Geometric Design 16:861-892, 1999.

[29] Hoffmann, C.M. Geometric and Solid Modelling. Morgan Kaufmann, San

Mateo, CA, 1989.

[30] Hoffmann, C.M. How solid is solid modelling, in: M.C. Lin and D.

Manocha, eds., Applied Computational Geometry, Springer, Berlin, 1-8,

1996.

[31] Krishnan, S. Efficient and accurate boundary evaluation algorithms for

sculptured solids. Ph.D Thesis, Department of Computer Science, University

of N. Carolina at Chapel Hill, 1997.

[32] Mantyla, M. An Introduction to Solid Modelling. Computer Science Press,

Rockville, Maryland, 1988.

[33] Coquillart, S. Extended Free-form Deformation: A sculpturing Tool for 3D

Geometric Modelling. Proceedings o f SIGGRAPH’90, Computer Graphics

24(4): 187-196, 1990.

[34] Xiang Fang, Hujun Bao, Pheng Ann Heng and etc. continuous field based

free-form surface modelling and morphing. Computers & Graphics 25:235-

243,2001.

[35] L. Piegl, Modifying the Shape of Rational B-Splines. Part 1: Curves.

Computer Aided Design, 21(8): 509-518, 1989.

[36] L, Piegl. Modifying the Shape of Rational B-Splines. Part 2: Surfaces.

Computer Aided Design, 21(9):538-546, 1989.

Deforming Surfaces & B-rep Models References

References 153

[37] A. H. Bari*. Global and Local Deformations of Solid Primitives. Proceedings

ofSIGGRAPH’84, Computer Graphics 18(3):21-30, 1984.

[38] T. W. Sederberg and S. R. Parry. Free-Form Deformation of Solid

Geometric Models. Proceedings of SIGGRAPH’86, Computer Graphics

20(4): 151 -160? 1986.

[39] J. E. Chadwick, D. R. Haumann, and R.E. Parent. Layered Construction for

Deformable Animated Characters. Proceedings o f SIGGRAPH‘89,

Computer Graphics 23:243-252, 1989.

[40] T. W. Sederberg and S. R. Parry. Free-Form Deformation of Polygonal

Data. Second Image Symposium: 633-639, CESTA, 1986.

[41] J. H. Clark. Parametric curves, surfaces and volumes in computer graphics

and computer aided geometric design. Technical report 221, Stanford

University, 1981.

[42] Hsu W., Hughes J. and Kaufmann H. Direct manipulations of free-form

deformations. Computer Graphics 26(2): 177-184, 1992.

[43] Borrel P. and Bechmann D. Deformation of N-dimensional Objects.

International Journal of Computational Geometry and Applications

l(4):427-453, 1991.

[44] Borrel P. and Rappoport A. Simple constrained deformations for geometric

modelling and interactive design. ACM Transactions on Graphics

13(2):137-55, 1994.

[45] Blinn JF. A generalization of algebraic surface drawing. ACM Transactions

on Graphics 1(3):235-256, 1982.

[46] Nishimura H., Hirai M. and Kawai T. Object modelling by distribution

function and a method of image generation. Transaction on IECE 68-

D(4):718-725, 1986.

[47] Wyvill B. and Wyvill G. Field functions for implicit surfaces. The Visual

Computer 5:75-82, 1989.

[48] Bloomenthal J. and Wyvill B. Interactive techniques for implicit modelling.

Computer Graphics 24(2): 109-116, 1990.

Deforming Surfaces & B-rep Models References

References 154

[49] Bloomenthal J., Bajaj C., Blinn J., Cani-Gascuel M., Rockwood A., Wyvill

B. and Wyvill G. An introduction to implicit surfaces. Los Altos, CA:

Morgan Kaufmann Publishers, 1997.

[50] Nishita T. and Nakamae E. A method for displaying metaballs by using

Bezier clipping. Computer Graphics Forum 13(3):271-280, 1994.

[51] David E. Johnson and Elaine Cohen. A framework for efficient minimum

distance computation. Proc. IEEE Intl. Conf Robotics & Automation,

Leuven, Belgium, 16-21:3678-3684, 1998.

[52] Chin, Francis and Wang, Cao. An Optimal algorithms for the intersection

and the minimum distance problems between planar polygons. IEEE

transactions on Computers, C-32(12): 1203-1207, 1983.

[53] Edelsbrunner, H. On computing the extreme distances between two convex

polygons. Tu Graz, Tech. Rep. F96, 1982.

[54] Michael E. Mortenson. Geometric Modeling. John Wiley & Sons, New

York, pp 305-317, 1985.

[55] Limaiem, Anis and Trochu, Francois. Geometric algorithms for the

intersection of curves and surfaces. Computer & Graphics, 19(3):391-403,

1995.

[56] Lin, Ming and Manocha, Dinesh. Fast interference detection between

geometric models. The Visual Computer. 541-561, 1995.

[57] Piegl L. and Tiller W. Parametrization for surface fitting in reverse

engineering. Computer Aided Design, 33:593-603, 2001,

[58] Michael Shantz and Sheue-Ling Chang. Rendering trimmed NURBS with

adaptive forward differencing. Computer Graphics Proceedings of

Siggraph’88, 1988.

[59] Salim S. Abi-Ezzi and Leon A. Shirman. Tessellation of curved surfaces

under highly varying transformation. Proceedings o f EUROGRAPHICS J93,

pp385-397, 1993.

[60] Salim S. Abi-Ezzi and Srikanth Subramaniam. Fast tessellation of trimmed

NURBS surface. Proceedings o f EUROGRAPHICS ’94, 1994.

Deforming Surfaces & B-rep Models References

References 155

[61] Sheng, X and Hirsh, B.E. Triangulation of trimmed surfaces in parametric

space. Computer-Aided Design 24(8):437-444, 1992.

[62] Filip, D, Magedson, R and Markot, R. Surface algorithm using bounds on

derivatives. Computer-Aided Geometric Design 3:295-311, 1986.

[63] Piegl, L.A. and Richard, A.M. Tessellating trimmed NURBS surface.

Computer-Aided Design 27(1): 16-26, 1995.

[64] Vigo, M. Directional adaptive surface triangulation. Computer-Aided Design

16:107-126, 1999.

[65] Alan Watt. 3D Computer Graphics (Third Edition). Addison-Wesley, pp

128-129.

[66] Jonathan E. Steinhart and James Arvo. Graphics Gems II. ISBN 0-12-

064480-0, Academic Press, Inc, 1991.

[67] Hanan Samet. Applications o f Spatial Data Structures. ISBN 0-201-50300-

X, Addison-Wesley, Reading, MA. (1.9 Scanline Coherent Shape Algebra;

IV.7 Quadtree /Octree-to-Boundary Conversion), 1990.

[68] Hanan Samet. The Design and Analysis of Spatial Data Structures. ISBN 0-

201-50255-0, Addison-Wesley, Reading, MA (1.9 Scanline Coherent Shape

Algebra), 1990.

[69] William D. Atkinson Method and Apparatus for Image Compression and

Manipulation. United States Patent Number 4,622,545. (1.9 Scanline

Coherent Shape Algebra), 1986.

[70] Wolfgang Boehm. Inserting New Knots into B-Spline Curves. Computer

Aided Design 12:99-201, 1980.

[71] Elaine Cohen, Tom Lyche, and Richard Riesenfeld. Discrete B-Splines and

Subdivision Techniques in Computer-Aided Geometric Design and

Computer Graphics. Computer Graphics and Image Processing 14, 1980.

[72] J. Vida, R. R. Martin, and T. Varady. A Survey of Blending Methods That

Use Parametric Surfaces. Computer Aided Design, 26(5):341-363, 1994.

[73] L Bardis and N. M. Patrikalakis. Blending Rational B-Spline Surfaces. In

Proceedings o f Eurographics ’89, 1989.

Deforming Surfaces & B-rep Models References

References 156

[74] P C Filkins, S. T. Tuohy, and N. M. Patrikalakis. Computational Methods

for Blending Surface Approximation. Engineering with Computers, (9):49-

62, 1993.

[75] Marian Bozdoc and Auckland NZ. History of Computer Aided Design. URL:

http://www.thocp.net/software/cad.htm.

[76] W Welch and A Witkin. Variational Surface Modelling. In Proceedings o f

SIGGRAPH’92, pp 157-167,1992.

[77] ANSI. The Initial Graphics Exchange Specification (IGES) Version 5.2,

1993. ANSI Y14.26M.

[78] ISO. Standard for Exchange o f Product Model Data (STEP), 1994. ISO

10303,

[79] Y. Ma and W. T. Hewitt. Point inversion and projection for NURBS curve

and surface. Computer Aided Geometric Design. (Article in press)

[80] Y, Ma and W. T. Hewitt. Adaptive Tessellation for Trimmed NURBS

Surface. Short presentation, Proceedings of EUROGRAPHICS '2002,

Germany, 2002.

Deforming Surfaces & B-rep Models References

http://www.thocp.net/software/cad.htm

