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Abstract

UNIVERSITY OF MANCHESTER

ABSTRACT OF THESIS submitted by YingLiang MA for the Degree of 

Doctor of Philosophy and entitled Deforming NURBS Surfaces & B-rep 

Models.

Month and Year of Submission: April 2003

Object deformation is an important technique in computer graphics and CAD. 

In this thesis, a metaball deformation method on NURBS surfaces and B-rep 

models is presented. This method enables the user to interactively deform the 

NURBS object by specifying a series of constraints, which may consist of 

points, lines, curves and surfaces, their effective radii and maximum 

displacements, and the deformation model creates a generalized metaball for 

each constraint.

This thesis presents several research contributions relative to metaball 

deformation models. Point projection for NURBS object is introduced as a 

method for calculating the minimum distance between the 3D test point and 

NURBS objects. A new tessellation method for trimmed NURBS surfaces is 

presented. Finally, an extended method for the deformation of B-rep models is 

discussed. It provides a flexible method to change the shape of CAD solid 

models.
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Chapter 1 

Introduction

1.1 Background
The use of computers to aid the design and manufacture of parts has a history 

of more than 30 years [75]. The first 3D CAD system appeared in the early 

1970’s, and it used wire frames to display the 3D model. Since then, the 

various systems have become better, faster and cheaper. The rendering of 3D 

objects has been developed from wire frame through wire frame with hidden 

line removal, two and half dimensions, 3D surfaces to 3D solid models [75]. 

Nowadays, CAD techniques are widely used in almost every manufacturing 

industry particularly in automobile, aeronautics and marine industry.

Thus the design and visualization of 3D objects is a major research area for 

CAD and Computer Graphics. Design refers to the creation and modification 

process, and the task of the visualization is to show the 3D objects on the 2D 

computer screen. Much of the research in design process is to create the 

algorithms for the design, modification and assembling of models. The 

algorithms for visualizing 3D objects are designed to create as many fast and 

realistic effects as possible on the 2D computer screen.

18
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In the last few years, surface manipulation methods have been developed which 

not only professionals but also laymen can use. They do not require a user to 

have a detailed knowledge of the surface which they are manipulating [75]. 

This thesis presents a number of issues with respect to surface design and 

modification method as well as method of trimmed surface visualization. They 

can be categorised as geometry representation, deformation, surface 

visualization and reverse engineering.

• Geometry Representation

By the late 1970s, the CAD/CAM industiy recognized the need for a 

modeller that had a common internal method of representing and storing 

different geometric entities. The solution is to use NURBS (Non Uniform 

Rational B-Spline) [1]. NURBS are the best available mathematical form 

for representation of both analytical shapes and free-form curves or 

surfaces.

• Deformation

Although much progress has been made in the area of 3D surface 

modelling, creating complex free-form surfaces is still very difficult and 

tedious [2]. Deformation provides a more flexible method to construct a 

surface from a skeleton in an interactive environment. In computer 

animation, morphing based on the deformation technique presents an 

amazing way to transform one object to another [2].

• Surface Visualization

The primary putpose of 3D computer graphics is to produce a 2D image of 

a scene or an object from a description or model of the 3D object. In a 

CAD system, surface visualization can assist the user to create the model in 

an interactive way by displaying the wire-frame or rendered objects. The 

surfaces in the model can have some complex shapes with holes and 

curved boundaries. For rendering the surface, the surface is usually

Deforming Surfaces & B-rep Models Chapter 1. Introduction
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tessellated into a set of triangles or quadrilaterals. Another application of 

surface visualization is to assist the engineer to analyse the surface to find 

out both geometric and physical properties.

• Reverse Engineering

The need for reverse engineering comes about for a variety of reasons; 

chief among them is the need to replace a broken or obsolete part that is 

no longer available from the original manufacturer. In the reverse 

engineering of an object’s form, 3D data can be collected by a touch 

probe or laser range sensor (laser scanner). Surface fitting is used to 

construct the surface from the set of sampled point data. If we use 

NURBS or other types of parametric surface, we need to recover the 

parameters of the sampled points by applying the point projection 

method. However, projecting the sampled points to the surface is very 

expensive and numerical computation is not very stable [57].

This thesis focuses on the research of providing a deformation tool for CAD 

based on metaballs model [3][4] [5][6][7][8]. The author also covers the 

visualization of a metaballs model and geometric analysis of the metaballs 

model, as well as one improved traditional algorithm.

Deforming Surfaces & B-rep Models Chapter 1. Introduction
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1.2 Main Contributions
The main contributions for metaballs deformation applied on the NURBS 

surface and solid model described by the author are:

1. Point Inversion and Projection for NURBS Curves and Surface

Point inversion and projection for curves or surfaces is a fundamental 

problem in curve and surface fitting, robotics, animation and interactive 

systems. The central problem of point inversion and projection is to 

calculate the minimum distance between the test point and a NURBS 

curve or surface. The method [17] widely used at the moment uses an 

iterative method based upon the Newton-Raphson method. Figure 1.1 

shows the results of our method.

Figure 1.1: Point projection for NURBS curve.

However, good initial values must be given to achieve convergence. It is 

difficult to get such values due to the complex shape of NURBS curves or 

surfaces.

The aim of author’s approach is to provide the good initial value. The 

NURBS curve or surface is first subdivided into a set of Bezier curves or

Deforming Surfaces & B-rep Models Chapter 1. Introduction
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patches. By analysing the relationship between the test point and the 

control polygon of Bezier curve or the control point net of the Bezier 

patch, the candidate Bezier curves or patches are extracted and the 

approximate candidate points are calculated. Finally, by comparing the 

distances between the test point and candidate points, the closest point is 

found. The accuracy of the closest point can be improved by applying the 

Newton-Raphson method to it.

This pre-processing means less iterations and this approach achieves better 

results both in efficiency and stability than the traditional methods. It also 

is applied in the metaballs model to calculate the distance function.

2. Adaptive Tessellation for Trimmed NURBS Surface

Trimmed surfaces have a fundamental role in computer-aided design 

[9][10][11]. Most complex objects are generated by some sort of trimming 

or scissoring process. Trimmed patches are also the result of Boolean 

operations on solid objects bounded by NURBS surfaces. In the CAD 

pipeline, the trimmed patch undergoes a number of processes such as 

rendering for visualization, cutter patch generation, area computation or 

rapid prototyping. The simplest method to accomplish all of this is to 

approximate the trimmed patch by triangular facets to within a user given 

tolerance.

There are two ways to subdivide the trimmed patch: uniform or non- 

uniform. Uniform tessellation is to sample the surface at uniform 

parametric intervals. However this often leads to regions of a surface 

which are either overcomplicated or undersampled. Non-uniform 

(adaptive) tessellation focuses more attention in regions of highest 

curvature. A minimal number of polygons can be generated for a 

particular subdivision tolerance.

Deforming Surfaces & B-rep Models Chapter 1. Introduction
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The author presents an adaptive tessellation method for trimmed NURBS 

surfaces. Based on the subdivision of a NURBS surface by using the knot 

insertion algorithm, the surface is tessellated into a set of ‘flat’ enough 

Bezier patches [24]. A Scanline algorithm is applied to remove the patches 

inside the inner trimming loop. The result of tessellation is both 

quadrilaterals and triangles which can be passed into the rendering 

pipeline (figure 1.2).

Figure 1.2: The adaptive tessellation for a car model

This method is performed completely in parametric space, and 

furthermore it does not adopt any complex methods to generate triangles, 

so that the procedure runs fast and reliably.

3. Generalized Metaballs Deformation on The Solid Model

In an interactive CAD system, the shape of object can be finely controlled 

by interactively adjusting the positions of its vertices or control vertices. 

However, to most users, this manipulation is tedious and inefficient.

The most popular deformation method is the free-form deformation (FFD) 

technique developed by Sederberg and Parry [12]. FFD is typically 

conducted by embedding an object to be deformed into a parametric space 

of a trivariate Bezier volume whose control points are organized as a
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lattice, the deformation of the object being obtained by moving the control 

points of the trivariate Bezier volume. However in FFD the user is forced 

to define some control points in the space to be deformed.

To overcome the disadvantages of FFD-based method, Xiaogang Jin, 

Youfu Li and Qunsheng Peng [8] developed a constrained deformation 

model based on generalized metaballs. In their method, constraints are 

generalized to include points, lines, surfaces and volumes. The user need 

only define a set of constraints with desired displacements and an effective 

radius associated with each constraint. However, their method is applied 

on the mesh model rather than any parametric surface or solid model.

The author extends this method to the trimmed NURBS surface and 

further to the solid model. The new method modifies the positions of 

control points on the NURBS surface so that it obtains a more accurate 

model after defoimation than the mesh model. The visualization of 

geometric properties of the deformed surface is given to assist the user to 

analyse the quality of the NURBS surface.

1.3 Thesis Outline
The remainder of this thesis is organized as follows.

Chapter 2 gives a brief introduction of the fundamentals of NURBS curves and 

surfaces, including the definitions and properties of NURBS curves and 

surfaces, the basic algorithm for NURBS, the fundamental surface construction 

techniques and multiple trimmed NURBS surfaces (B-Rep model).

The next chapter describes the mathematical background of general constrained 

deformations based on the generalized metaball. This chapter also reviews 

other deformation and surface manipulation methods.
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The subsequent three chapters devote themselves to the previously described 

research contributions. For each chapter, some brief background information 

on the problem is given and the approach to the problem is presented.

Chapter 4 presents a novel solution for point inversion and projection for 

NURBS curves and surfaces.

Chapter 5 reviews methods for the tessellation of trimmed NURBS surfaces, 

presents an adaptive method and gives the results and conclusions.

Chapter 6 describes the method for applying the metaball model on the solid 

model

Chapter 7 summarises the results of the research on the metaball model, along 

with conclusions and further work.

The appendix presents an overview of the two utility libraries which are used in 

my testbed software.

All images and geometric figures appearing in this thesis have been produced 

using the author’s prototype surface design and deformation software, except 

those highlighted.

Deforming Surfaces & B-rep Models Chapter 1. Introduction



Chapter 2

Introduction to NURBS

In this Chapter, we first introduce the definitions and properties of NURBS 

curves and surfaces. Geometric algorithms, common surface construction 

techniques and the B-Rep model are also introduced in this chapter, which are 

related to the metaball model described in the next four chapters.

2.1 B-Spline Curves and Surfaces
We start with the B-Spline curves and surfaces. More detailed discussions 

about B-Spline curves and surfaces can be found in [13] [14].

2.1.1 Definition of B-Spline Curves and Surfaces
A p  -degree B-Spline curve is defined by

C(i0 = t lN, . M pi a < u < b  (2.1)
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where the {/>}are the control points in 3D Euclidean space, and the 

{NitP(u)}are the/>th-degree B-Spline basis functions defined on a knot vector

* ,„ ( « ) = ( 1 if
[0 otherwise

(m+1 knots) U -  {wy }'"̂ +p+l by the Cox-deBoor recuiTence relations [13] [15]. 

C(u) is a point on the curve corresponding to the parameter u e U ,

Ni,p (u) = —  Ui N itP_i (a) + U'*P*i ~ H N  (u) (2.2)
Ui+P ~ ui ui+p+l- u M

We now list a number of important properties of the B-Spline basis functions.

• Local support: NitP (u) -  0 if u is outside the interval [Uftui+p + i).

• Non-negativity: Ni p(u) > 0 for all i,p  and u.

n
• Partition of unity: p(u) = 1 for all w e t/ .

i=0

• Differentiability: in the interior of a knot span [w/5w/+1) 5 Ni p(u) is 

continuously differentiable. At an interior knot, Ni p(u) is p - k  times 

continuously differentiable where k is the multiplicity of the knot.

• Extrema: for p *  0, Ni p(u) attains exactly one maximum value.

The knot vector of a B-Spline curve has the form

U {0,...,0, w p+1 Un, 1,
+̂i p+i

which yields the endpoint inteipolation, as C(0) = P0 and C(l) = Pn.

A B-Spline surface is obtained by taking a bi-directional net of control points, 

two knot vectors, and the products of the univariate B-Spline functions
» m

S(u,v) = Z £ * ,,> ) iV /,,(v)JP,J  (2.3)
r'=0 j= 0
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where, similar to (2.1), the {P( y} are the control net in 3D space, Nip {u) and

Nj q(v) are the normalized B-Spline basis functions of degree p  and degree q

in the u and v parameter directions, respectively. These basis functions are 

defined over the knot vectors

U = {Ô ^O, wp+, un, lv-d}
p+i p+i

and

V = {0^0, vq+l,..., vm, lv^J}
q+1 q+\

S(u,v) is a position on the surface corresponding to the parameters u e U and 

v e V .

2.1.2 Properties of B-Spline Curves and Surfaces

The most significant and useful properties of B-Spline curves and surfaces are:

• Strong convex hull property: The whole B-Spline curve or surface is 

contained within the union of individual convex hulls of its segments or 

patches (figure 2.1).

Figure 2.1: Strong convex hull property of B-Spline curve

• Variation diminishing: no line (plane) has more intersections with a B- 

Spline curve than its control polygon. This property can be extended to the 

surface.

• Differentiability: C(u) is infinitely differentiable in a knot span and is 

p - k  times differentiable at a knot (k is the multiplicity of the knot).
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S(u,v) is p - k  (q - k ) times differentiable with respect to u (v) at a u knot 

(v knot) of multiplicity k.

• Local modification: The movement of a control point Pf changes the 

curve C(u) only in the knot interval [ui}ui+p+l) . Figure 2.2 shows the 

effect of the control point P3 being moved. If a control point P(J is moved, 

it affects the surface S(u,v) only in the rectangle [w,-, ui+p+l) x [vy, vj+q+l).

Figure 2.2: Moving a control point to change the shape of B-Spline curve

Affine invariance: Affine transforms including transformations,

rotations, scalings and shears can be expressed as A[P] = L[P] + v , where 

L is a 3x3 matrix, vector v and P  is a point in 3D space. From (2.1) and 

the partition of unity of the B-Spline basis function, we have:

A[C(u)] = A

i=0

This result can be extended to a B-Spline surface, which means a B-Spline 

curve or surface is closed under affine transformations. An affine 

transformation of the control points will apply an affine transformation to the 

B-Spline curve or surface.

The local modification property of the B-Spline surface is very important in the 

metaball model in Chapter 3. The strong convex hull property plays an
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important role in the algorithm of point inversion and projection for NURBS 

curves and surface which will be discussed in Chapter 4.

2.2 NURBS Curves and Surfaces
We can develop the non-rational forms of B-Spline to their rational forms 

(NURBS) by using homogeneous coordinates. A comprehensive discussion 

about NURBS and its application can be found in [16][17] [1][18].

2.2.1 Homogeneous Coordinates
Before defining the NURBS curves and surfaces, we need to define the 

homogeneous coordinates, A homogeneous coordinate simply projects a 3D 

point into a 4D space. So, a single point P = (jc, y, z) is represented by

Pw = {wx,wy,wz,w), where w is known as the weight. Normally, w is not equal 

to zero, however in some special cases, w can be zero, which represents an 

infinite point in 3D space. Figure 2.3 illustrates the relationship between the 3D 

point P  and the 4D Pw.

4D

3D

Perspective

Affine
Transformation

LP + V
Homogeneous
Transformation

MPW

Figure 2.3: Homogeneous Transformation
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In order to convert from 4D homogeneous coordinate point back to 3D point, 

we introduce the notation P -  H{P"'} where H  is a projective map from 4- 

space to 3-space:

/  , \  wxf w
wy

} = wylw - ywz
W Z / W j lu

The advantage of representing points in E? as homogeneous coordinates is that 

homogeneous transformations may be applied to them. A homogeneous 

transformation can be expressed as a 4x4 matrix, which can combine a series of 

affine and perspective transformations.

2.2.2 Definition of NURBS Curves and Surfaces

A pth-degree NURBS curve is defined by:

C(«) = ^2_ a < u < b
(2.4)

!=0

where the {/>} are the control points (control polygon), the {w f  are the 

weights and the {Ni p (u)} are defined as in equation (2.1).

A NURBS curve can be also expressed in homogeneous coordinates as

C* («) = £ # , ( 2 . 5 )
1=0

A NURBS surface of degree p  in the u direction and degree q in the v direction 

is defined by

r r /  \  ’ -V  j=®
S («’V) = —7-S-------------------------

Z £ W '< > ) A0 > K . , ;
r= 0  j = 0

(2.6)
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It can also be redefined in the homogeneous coordinates as

n m
S"(u,v) = £ 2 X , ( « )  Nj,,(v)pu  (2-7)

(=0 j=0

2.2.3 Properties of NURBS Curves and Surfaces
NURBS inherit all of the properties of B-splines. Besides these, the 

introduction of weight gives NURBS the following further properties:

• Closed under perspective transformation: Like B-Spline curves and 

surfaces, NURBS curves and surfaces are closed under affine 

transformations. Furthermore, they are also closed under perspective 

transformation.

• Local shape control using weight: The shape of NURBS curves and 

surfaces can be modified not only via the control points, but also by 

changing the weights [19][20]. If we change the weight associated 

with the control point Pn the shape of the NURBS curve is modified only 

in p + 1 knot spans [w/5w/+p+1). If increases (decreases), the curve is 

pulled toward (pulled away from) P: , pushed away from (pulled toward) 

PjU  * 0 • An example is shown in figure 2.4.

Po

Figure 2.4: Modifying a weight to change a NURBS curve
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• NURBS representation of conic sections is exact: NURBS can 

precisely represent not only the conic curves, but also the commonly 

used quadric surfaces by the introduction of weights. Figure 2.5 shows a 

NURBS circle with 9 control points.

p2 w2 = l

'5 = S / 2

□ r\ 
w, V2/ 2

0̂ _ ̂ 8 
w0 = Wg = 1
Pi
Wn = V2 / 2

r/ = rooo 1/  1/ 1/  1/  3 / 3 / 1111^ / 4 ’ / 4 ’ /2* /  2’/ 4 ’/4

Figure 2.5: NURBS representation of a full circle

2.2.4 Derivatives of NURBS Curves and Surfaces

In general, compared to the computation of derivatives of non-rational basis 

functions, derivatives of rational functions are complicated to compute, 

involving denominators with high powers. If Cw(u) is a non-rational curve in 

four-dimensional space, we can express the derivatives of a NURBS curve 

C(u) in terms of the derivatives of C w(u). Let

C(u) -
w(u) w(a)

Where, the numerator of (2.4), A(u) is the function whose coordinates are the 

first three coordinates of C"’(u).

If C [k)w{u) is the Mi derivative of C w(u), then

= (2 .8)
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where

u i + p  u i u i + p + 1 u i + 1V J
Then the first derivative of a NURBS curve can be written as

C \ u )  -  w (M)A X u ) - w X u) A( u)

w(ii)A'{u) -  w'(u)w(u)C(u) _ A'(u) -  w'(u)C(u) ^  9)
w(u) w(u)

In a similar way the second derivative

= w(M)2A"(u) -  2w(u)w'(u)A\u) + (2w'(u)2 -  w(u)w'r(u))A(u)
w3(u) (2' 10)

Calculating the derivatives of NURBS surfaces is done in a similar way to the 

calculation of the derivatives of NURBS curves. We only need to derive 

formulae for the derivatives of S(u, v) in terms of the derivatives of S w (u, v) (a 

non-rational surface). Here the derivatives of non-rational surface are given by

Then the first and second partial derivatives of a NURBS surface are given by

wA„ -w„A (2 .12)

wAv -  wvA (2.13)

wlA»„ -2 w w tlAu +(2wf - w w m)A (2.14)
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w2A„ -2v>w.,Av +(2w* - w w „ ) A (2.15)
v v

s .
w2Am - wwuA v -w v y l,, +(2w„wv - w w „ ) A  (2.16)

For simplicity the (w,v) parameters are omitted from (2.12) to (2.16).

The surface normal calculation involves the first derivatives in both u and v 

direction and a cross product. Therefore the normal of a NURBS surface is 

relatively expensive to compute. The normal gives the direction of 

displacement for control points in the metaball model, which will be discussed 

in detail in chapter 3.

A number of fundamental geometric algorithms can be applied to NURBS 

curves and surface. They are knot insertion, curve or surface decomposition, 

degree elevation and knot removal.

2.3.1 Knot insertion

Inserting one or several knots into a defined knot can increase the flexibility of 

a NURBS curve or surface without changing its shape.

For a given NURBS curve Cw{u) defined over the knot vector U = [w0, 

a new knot u ^[uk)uk+l) is inserted into U to form a new knot vector 

U = [u0,....,uk,u,uk+l,..,um]. By setting up and solving the following system of 

linear equations:

2.3 Fundamental Algorithms

it
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where NjjP(u) are the plh degree B-spline basis functions defined over U , [21] 

develops the solution as:

(2.17)
where

a,- -  <
_  1
U  -  U i

U j + p  U j  

0

i < k ~  p  
k — p + 1 < i < k 

i > k +1

Only p  control points of the control polygon (n+J control points) are 

recalculated. The above knot insertion equation can be generalized for inserting 

a knot u e[uk>uk+l) with multiplicity r. Suppose u has initial multiplicity s 

and s + p < p .  Denote the / th new control point in the r th  insertion step 

bye;;;, with 

Then:

Q”r = C1 ~ at.r 1 (2.1 8)
where

a i r u -n
u i + p - r + \  u i 

0

i < k - p  + r - 1 

k - p  + r<: i <k~s

i > k - s  + 1

The knot insertion algorithm can be extended to surfaces by applying equation 

2.17 or 2.18 to the control points in either the u or v parameter directions. It is 

often necessary to insert many knots at once; this is called knot refinement. The 

applications of knot insertion and knot refinement include:

• Increasing the flexibility of the NURBS curves or surfaces by adding more 

control points.

• Decomposing the NURBS curve or surface into a set of Bezier subcurves 

or Bezier patches -  we elaborate this in the next section.
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• Obtaining polygonal or polyhedral approximations to curves or surfaces. 

Refined knot vectors bring the control polygon or net closer to the curve 

or surface (figure 2.6).

Figure 2.6: Knot insertion to obtain polyhedral approximation to the NURBS

2.3.2 Curve & surface decomposition
As discussed in the last section, in some applications a curve or surface needs 

to be subdivided into a number of Bezier curves or Bezier patches. First, we 

give the algorithm for subdividing a single curve or surface into two segments.

For a p\h degree NURBS curve, inserting multiplicity p  knots into the knot 

vector U will split the curve into two separate parts. For a given NURBS 

surface of degree p  in the u direction and degree q in the v direction, inserting 

multiplicity p  knots into U knot vector, or multiplicity q into the V knot vector 

will subdivide the surface into two patches. Figure 2.7 gives the example of 

subdividing a curve and figure 2.8 shows the subdivision of a surface.

surface

Figure 2.7: subdividing a NURBS curve
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Figure 2.8: The subdivision of a NURBS surface

The decomposition of NURBS curves or surfaces is to subdivide them into 

their piecewise Bezier form. The algorithms are given by

• For a given NURBS curve, the rational Bezier subcurves are obtained by 

inserting each interior knot until it has multiplicity p.

• For a given NURBS surface, the rational Bezier patches are obtained by 

inserting each interior knot in U until it has multiplicity p  and then 

inserting each interior knot in V until it has multiplicity q.

• The resulting piecewise Bezier form can be further converted to power 

basis form, which is often used for fast evaluation of curves or surface in 

computer graphics. Figures 2.9 and 2.10 shows the decomposition of a 

curve and a surface respectively.

Figure 2.9: The decomposition of a NURBS curve
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-a -

Figure 2.10: The decomposition of a NURBS surface

2.3.3 Degree Elevation

As another basic operation for NURBS, degree elevation increases the degree 

of a curve or surface whilst keeping the curve or surface unchanged. For a 

given pth degree NURBS curve defined in equation 2.4, it must be possible to 

elevate its degree from p  to p+1, because it is a piecewise polynomial curve 

and rational degree elevation is based on non-rational degree elevation. Denote 

the elevated curve as

c ; j u ) = f i N,pju ) Q :
/=0

=2X„ (»)'*/'
i= 0

where p+](u) are the (/?+7)th degree B-spline basis functions defined on the

new knot vector U . Degree elevation of the NURBS curve refers to the 

algorithm for computing the unknown QJ, U and n . Degree elevation is 

accomplished for a given NURBS surface by applying the curve degree 

elevation algorithm to the rows and columns of the control net. A good 

summary of the reference material concerning the degree elevation algorithm is 

given in [17]. Figure 2.11 shows an ellipsoid before and after degree elevation.
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Figure 2.11: An ellipsoid before and after degree elevation

2.3.4 Knot Removal

Knot removal is the reverse process of knot insertion and it is an important 

utility in several applications. For example, when a NURBS curve or surface is 

interactively modified, knots are inserted into the knot vector to increase the 

flexibility of the curve or surface by adding new control points. After the 

modification, new control points may be removed. Knot removal may be 

involved to obtain the most compact representation of the curve or surface. 

Another application is to link several NURBS curves together. Knot removal is 

used to remove unnecessary knots in the knot vector of the new NURBS curve. 

After unnecessary (removable) knots are removed, the shape differences 

between the new curve and the old curve should be within the tolerance, which 

is specified by the user.

• Knot-removal routines for curves

For a given p\h degree NURBS curve:

/=0
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If ur is an interior knot of multiplicity s in U, we remove ur t times 

(1 < t < s ). Denote the new knot vector as Ut . We only can get the new curve 

as

/=o

if ur is t times removable. The algorithm of knot removal must determine if 

knot is removable (how many times) and compute the new control points QJ. 

A comprehensive discussion about this algorithm can be found in [22].

• Knot removal from a surface
n  ttt

Let S w(u,v) -  X  X  (U)NJ>P (v)P,j be a NURBS surface. A u knot (v knot) is
/=o y=o

removed from S w(utv) by applying the knot removal algorithm to m+1 

columns (n+1 rows) of control points.

Figure 2.12 shows an example of removing a knot from a NURBS ellipse.

a'

Figure 2.12: Removing a knot from a NURBS ellipse

2.4 Construction of Common Surfaces
There are a number of techniques for building a NURBS surface from curves. 

The most common NURBS surfaces are bilinear, extruded, ruled and revolved.

2.4.1 Bilinear Surfaces
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Let four points Po,o, Pi,o> Po,i and P u  be defined in three-dimension space. Four 

line segments Po,oPi,o» Po,iPi,i, Po.oPo,i and Pi,oPi,i can be formed. A bilinear 

NURBS surface (non-rational) can be created by a simple linear interpolation 

between the opposite boundary lines in both u and v directions:

% v )  = X X  JV,, (U)N„ (v)Plt (2.19)
1=0 ;= 0

with the knot vectors U = V = {0,0,1,!} •

If four points lie on a common plane, the bilinear NURBS surface represents 

the planar surface patch whose control points are the comer points of the planar 

patch (figure 2.13(a)).

(a) Planar line boundaries (b) non-planar line boundaries

Figure 2.13: Bilinear Surfaces

2.4.2 Extruded Surfaces

n

Let E be a vector and C(u) = r (u)P, be a pth degree NURBS defined on
»=0

the knot vector U, with weights w,. Then the extruded surface can be obtained 

by sweeping C(u) a distance of IIEll along E. The extruded surface has the form

n  1

S(u,v) = (2.20)
1=0 j =0
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Where the knot vector U is the knot vector of C(w)and V = {0,0,1,1}. The 

control points are given by Pl Q = P(, Pt X = P( + E and wi0 = wi X = w,.

(a) Gear (b) Elliptic Cylinder

Figure 2.14: Extruded Surfaces

Figure 2.14(a) shows a gear, which is created by extruding a cross-section. 

Figure 2.14(b) shows a right elliptic cylinder by extruding a NURBS ellipse 

normal to the plane of the ellipse.

Another kind of extruded surface is created by extruding the profile curve C(w) 

along the path curve. Figure 2.15 shows a thread of fabric by extruding a cross- 

section of ellipse along a path curve.

Figure 2.15: Extruding an ellipse along a path curve
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2.4.3 Ruled Surfaces

Assume we have two boundary NURBS curves

Ck(u) = £ /? ,,„  («)!»* = 1,2
1=0

defined on the knot vectors U0 and U\ respectively.

Because of the tensor product nature of the surface, the two boundary curves 

Ck (u) must have the same degree and be defined on the same knot vector. The

process to make the two curves share the same degree and same knot vector is 

called the compatibility-proceed [23]. A ruled surface S(u,v) is created by 

linear interpolation between C0(w) and C,(w) in v direction. The desired 

surface form is

s(u,v) = z  ZJt(,tPXjfl)(u,v)p;’
1=0 j = 0

where V = {0,0,1,1}, U = t/, UU2, p = max{p0?Pi}» ^ ,0 an<̂  w, o are taken from 

the compatibility-processed C0(w) and, PlA and wi{ are taken from the 

compatibility-processed C,(w).

Figure 2.16 shows a ruled surface constructed from two edge curves.

Figure 2.16: A Ruled Surface
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2.4.4 Revolved Surface
Considering that a NURBS profile curve (figure 2.17 (a)) lying on the xz-plane 

has the form

m

C(v) = I  Rj„Wpj
j = 0

which is defined on the knot vector V, then the full revolution surface can be 

created by revolving the profile curve a full 360° about z-axis. Let us use the 

nine-point circle representation, with U = {0,0,0,X)X>X5K 5X>Kd!U}and

weights wt = {1, ̂ 2 ,1 , ^2,1} • Then the required surface has the

form 8 m
S(U,  v) = ^  v)-̂ < j  (2.21)

where

• The knot vector U = { 0 ,0 ,0 ,% X X X X X U S1}

• The knot vector V is same as the profile curve.

• For / = 0, PUJ =P0J =Pjt

• For fixed j\ Pu (i -  0,...,,8) lie on the plane z = zj forming a nine-point

circle square control polygon of width 2xt with centre on the z-axis

(figure2.17 (b)).

42w.- -7lWj 4lWj .
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(b) Control net (c) Rendered surface

Figure 2.17: Revolved Surfaces

(a) Profile curve

2.5 NURBS Solid Model
Arbitrary solid objects can be represented within the computer by several 

categories of data structures, such as the boundary representation (B-rep), 

spatial decomposition and constructive solid geometry (CSG). However, B-rep 

and CSG are exact representations, while the spatial decomposition method is 

an approximate model description.

In CSG, solids are described as combinations of simple solids (primitives) in a 

series of Boolean operations. An illustration is given in figure 2.18. The 

advantages of CSG are its compactness and ability to record Boolean 

operations and changes of transformation quickly, including undo operations. 

CSG models can be converted to other representations but it is difficult to 

convert arbitrary models back to CSG. However, CSG models cannot represent 

objects with complex surfaces such as the wing of airplane or the body of ship.
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Figure 2.18: A CSG model through two subtraction operations

On the other hand, B-rep models represent a solid indirectly by a representation 

of its bounding surfaces. A B-rep solid is represented as a volume contained in 

a set of surfaces together with the topological information which defines the 

relationships between surfaces. Because B-rep includes such topological 

information, a solid is represented as a closed space in three-dimension space. 

Therefore, B-rep can represent a wide class of objects but the data structure is 

complex, and it requires a large memory space.

In this thesis, we deform only the B-rep model where the deformation takes 

place in one of the bounding surfaces. All bounding surfaces are converted into 

the form of trimmed NURBS surfaces. Therefore we call this solid model the 

NURBS solid model.
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2.5.1 Trimmed NURBS Surfaces

Trimmed surfaces have played a fundamental role in Computer Aided Design 

and computer graphics for many years [9] [11]. Most complex geometrical 

objects are generated from some sort of trimming process such as fillet, blend 

and chamfer operations. Trimmed surfaces are also the result of a Boolean 

operation on the solid objects, which is bounded by a set of trimmed NURBS 

surfaces.

• The definition of trimmed NURBS surfaces

A trimmed NURBS surface is a NURBS surface defined by (2.5) and several

trimming curves. The trimming curves are normally in NURBS form so that 

there will be a uniform data structure to describe the whole trimmed surface.

Assume that N such curves are defined as

C*(0 = («*(0,V*(f)) = S PX .y (0
,=0 (2 .22)

k - 1,2,..., jV

These curves form a set of trimming loops: one outer loop and several inner 

loops. The outer loop corresponds to the outer boundary of the trimming 

region. The inner loops actually indicate holes in the surface. As shown in 

figure 2.19, in parametric space (UV space) the solid-line loop is the outer 

trimming loop and two dash-line ones are the inner trimming loops.

The valid region of 
parametric space.

Figure 2.19: The trimming loops of the trimmed NURBS surface
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2.5.2 Adaptive Tessellation

Both in Computer Aided Design and Computer Graphics, trimmed surfaces are 

tessellated into a set of triangles or quadrilaterals for rendering, visualization, 

area computation and rapid prototyping. There are several tessellating methods 

which can be classified into two simple categories [24]:

• Uniform subdivision. This is the simplest case and involves a user 

specifying a level at which uniform subdivision of all patches is to 

terminate.

• Non-uniform subdivision. This means stopping the division when the 

subdivision products meet a patch flatness criterion.

The second category is theoretically preferable as it generates fewer polygons 

than the first one. More subdivision takes place in the areas of high surface 

curvature. The methods in second category are also called as adaptive 

tessellation. An example of this is shown in figure 2.20.

Figure 2.20: Adaptive Tessellation
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2.5.3 Curve and Surface Intersection

In the process of creating a solid model, it is often necessary to find the 

intersection between two curves or surfaces.

• NURBS Curve Intersection

A comparison of three Bezier curve intersection algorithms is given by 

Sederberg [25]. We extend these methods to calculate the intersection of 

NURBS curves both in 2D and 3D. An algorithm for 2D curve intersection is 

given as follows (An illustration is given in figure 2.21.);

Algorithm 1. Curvelntersection (Cl, C2)
Input: The two curves Cl and C2 

Output: The list of intersection points Pts 

begin
find the two bounding rectangles RC1 and RC2 for these two curves 
if No intersection ofRCl andRC2 return No intersection points 

else
if two curves are flat enough 

then

find the intersection point of two straight lines {approximate two curves} 

return the intersection point 
else { two curves are not flat enough}

subdivide Cl into two subcurves NCI and SCI, 
subdivide C2 into two subcurves NC2 and SC2.
Curve Intersection (NCI, NC2);
Curve Intersection (SCI, SC2); 

end if 

end if

end of Algorithm 1.
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Figure 2.21: 2D Bounding rectangles overlap for curve intersection.

• NURBS Surface Intersection

The intersection between two NURBS surfaces is much more difficult to solve 

than the intersection of two NURBS curves. The result of intersection may be a 

point, curve or plane. The approach to surface intersection can be classified 

into four main categories [26]:

• Analytic

• Lattice Evaluation

• Marching

• Subdivision

We only discuss the method of subdivision as it gives a robust solution for the 

majority of cases and it is also the easiest one to implement. In a similar way to 

the 3D curve case, the overlapping test of bounding boxes is carried out to find 

out the possibility of intersection. If this is so, the surfaces are subdivided and 

the test is repeated. This subdivision continues until the surface patch is flat 

enough, which can be approximated by a plane patch. Then the intersection
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between two surfaces can be approximated by calculating the intersection of a 

set of plane patches.

2.5.4 B-rep Model

Many of the current solid modelling systems are based on Boundary 

Representation (B-rep). B-rep overcomes the disadvantages of CSG model in 

that it also can represent sculptured solids, whose boundaries are represented 

by trimmed rational parametric surfaces. This is a wide family of objects that 

can represent exactly quadrics, tori and free-form solids [27]. In this section, 

we give a brief introduction to B-rep. Comprehensive reference materials can 

be found in [27] [28][30][31][32].

The B-rep representation of a solid lends itself to a description in terms of 

faces, edges and vertices. Each face is a trimmed parametric surface patch, 

which defines the solid boundary. Each of the trimming curves form an edge, 

and is formed by an intersection of two surfaces (usually faces). Finally, 

endpoints of edges form the vertices. They can be represented as an 

intersection of three surfaces. Figure 2.25 shows an example solid and the face 

connectivity structure that we maintain. Each graph vertex represents a patch, 

with graph edges expressing the adjacency information (i.e., which patches are 

next to each other). We also maintain the two faces that are adjacent to each 

edge, and an anticlockwise order of faces around each vertex. We convert all 

trimmed parametric surface patches and trimming curve into the form of 

trimmed NURBS surfaces and NURBS curves respectively, so that all data 

except vertices have the form of NURBS. We call this a NURBS B-rep model.
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Figure 2.25: A cylinder and its face connectivity structure

2.6 Summary
This chapter has discussed some fundamentals of NURBS and operations on 

NURBS including NURBS solid B-rep model, which will be necessary to 

describe the deformation on untrimmed NURBS surface, trimmed NURBS 

surface and NURBS solid model in rest chapters. The properties and flexibility 

of NURBS, along with their ability to represent free-form curves and surfaces, 

handle discontinuities, and accurately model conic sections, make them a good 

candidate for use in a curve/surface representation schemes. Trimmed NURBS 

surfaces, as the surface boundary of NURBS B-rep model, play a very 

important role in CAD and Computer Graphics. The tessellation of trimmed 

NURBS surfaces will be discussed in chapter five.
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Deformation Model

3.1 Introduction
The generation of complex surfaces is a problem that has been addressed by 

many researchers and commercial systems [76], Although much progress has 

been made in geometric modelling, creating complex free-form surfaces is still 

very difficult and tedious. One major reason is that the users often have to 

construct complex models starting with most fundamental elements, such as 

points, curves or simple primitives. Great effort has been made on improving 

the modelling efficiency in the last two decades [76]. In the case of NURBS- 

based modelling, although effective shape editing tools are now available, 

state-of-the-art technology still does not allow the user intuitive control over 

the smooth blending of the complex models [34],

In this chapter, we will discuss several deformation models for the NURBS- 

based modelling system, and we present our approach of generalized metaball 

modelling for NURBS.
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3.2 Geometric Deformation
Three major geometric deformation methods: direction control point 

manipulation [35][36], Free-form deformation (FFD) [38][40] and its extension 

(EFFD) [33] have been developed in the last twenty years. All of them can be 

applied in the NURBS-based modelling system.

3.2.1 Direct Control Point Manipulation

Moving the control point is a fundamental way of modifying the shape of 

NURBS surface and it is used in every NURBS-based modelling system. A 

surface editor in such a modelling system provides a method for selecting a 

single or a group of control points and manipulating them in three dimensions. 

According to the NURBS property of local shape control, this manipulation 

will affect only the area around these control points (figure 3.1).

However, this can often be a clumsy and tedious method for surface design, 

especially for complex surfaces with hundreds of control points. It has several 

disadvantages:

• The number of control points the user will have to move depends on the 

size of the deformation region. For example, the design of a large bump 

may require moving many control points whereas designing small bumps 

may be impossible.

• The shape of the deformed region (both along its boundary and within its 

interior) is imposed by the shape of surface isoparametric lines, this is, by 

the position of neighbouring control points. Designing a bump with a 

circular boundary, for example, is almost impossible.
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• The position of the deformed region on the surface is imposed by the 

position of the control points since only the control points are moved.

Some of these problems can be partially solved by using refinement techniques 

(knot refinement). In [35] and [36] Piegl also gave a method of combining 

control point-based and weight-based modifications. The weight-based 

technique is a nice solution for the size problem.

Figure 3.1: Direct control point manipulation

3.2.2 Free-Form Deformations

Another widely used deformation method for surface modelling is free-form 

deformation (FFD) [38]. The basic concept of FFD is that an object to be 

deformed is imagined as flexible and embedded in a pliable solid. 

Deformations applied to the surrounding solid directly affect the embedded 

geometry. In [37], Barr first presented a set of powerful transformations for a 

solid object that is the origins of FFD. The transformations include stretching, 

bending, twisting, and tapering operations. They were applied in a hierarchical 

manner as a set of multiplied matrices either in global space or the local space 

of the object.
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Sederberg and Parry [38] present a deformation tool in which the 

representation of the surface is hidden by a FFD lattice embedding the object. 

The deformations of the FFD lattice are automatically passed to the object. 

FFD has proved to be an intuitive and efficient modelling technique 

appreciated by designers [39]. Figure 3.2 has a sample 3x3 FFD of a teapot, 

which shows how a complicated surface can be transformed with the 

movement of only a few mesh points.

Figure 3.2: A simple 3x3 FFD transformation (Made in 3DS Max)

Here we give a brief introduction of the theory of FFD, more can be found in 

[37][38][40]. Free-Form Deformation consists of embedding the geometric 

model or the region of the model that has to be deformed into a 

parallelepipedical 3D lattice regularly subdivided, as shown in figure 3.3. The
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deformations of the FFD lattice are then automatically passed to the model. Let 

/, m and n be the number of subdivisions along each of the three directions, U, 

V and W. These numbers can be chosen by the user depending on the 

deformation he wants to produce (in figure 3 .3 ,1^2, m=l  and n=2).

606

Figure 3.3: A parallelepipedical lattice

The 3D lattice is represented by a tensor product piecewise Bezier volume. 

This volume is defined by an array of (31 +1) x (3m +1) x (3n +1) control points 

Pijk. Each subdivision element, also named “Chunk” by Clark in [41], is 

defined by:

L(u,v, w) = £ B. (u)Bj (v)Bk 0 < u,v, w < 1 l .
i , J , k = 0 ^ ’ '

where the Bt(t) are the degree 3 Bernstein polynomials, the Ptjk are the chunk 

control points.

The Free-Form defoimation technique is divided into two steps:

• Before defoiming the 3D lattice, the coordinates us , and in the 

lattice parametric space, of each object point are computed. With
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parallelepipedical lattices, this step requires only the resolution of three 

linear equations. For any point X interior to the lattice, 0 <us <l> 

0 <vs < m and 0 < < n .

• After deforming the 3D lattice, the deformed positions of the object points 

are computed. The deformed position Xjjd of an arbitrarily point X with

coordinates (usivs,ws) in the lattice parameter space is computed in two 

steps. First, determine the chunk where the point lies by computing the 

floor values (wo>v0’wo) of (usivs,ws). Let u = us - u 0> v = v ^ -v 0 and 

w = ws -  w0 be X coordinates in the chunk parameter space. The second 

step consists of generating the Cartesian coordinates of Xjjd from u, v, w 

and the matrix of 4><4><4 control points PiJk of the chunk, according to 

(4.1).

The deformation is specified by moving the (/ + l)x(m + l)x(« + l) control 

points corresponding to the corner points of the volume elements (or chunks). 

Only these points are represented on figure 3.3. The tangents at the corner 

control points can also be modified by the user. The other control points are 

automatically updated. Two modes exist for the manipulation of comer control 

points. Constant tangent mode, where the tangents of the point remain constant 

when the point is moved, and non-constant tangent mode where the tangents of 

the point are updated according to the position of the neighbour points 

simulating a C-Spline interaction [41]. These two modes can be chosen 

independently for each of the three directions.

3.2.3 Extended Free-Form Deformations

Although FFD is a very intuitive method for surface modelling, it is still 

restricted by the shape of lattice when it applies to the complex sculptured
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surfaces. Extended Free-Form Deformations (EFFD) allow the user to modify 

the complex surface using the non-parallelepipedical lattices. EFFD lattices are 

equivalent to FFD lattices; only the initial lattice shape is different. The EFFD 

technique can be described in four steps (notice that the EFFD lattice is defined 

independently of the surface to which it will be applied.):

1. Editing an EFFD lattice.

An EFFD lattice is defined either from a predefined three-dimensional 

lattice or from two-dimensional lattices. A very useful non- 

parallelepipedical lattice is the cylindrical lattice, which is obtained by 

welding two opposite faces of a parallelepipedical lattice and by merging all 

the points of the cylinder axis (figure 3.4). EFFD lattices can also be created 

from two-dimensional lattices in the same way as surfaces are defined from 

curves (loft, sweep, extrusion...). Traditional modelling methods are 

employed to define them.

Figure 3.4: Cylindrical lattice

2. Associating an EFFD lattice with the surface.

The next step consists in taking an EFFD lattice out of the library and 

associating it with the desired surface. While an EFFD lattice is associated 

with a surface, one can still edit it without deforming the surface. At this
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time, an attractive capability is to allow the user to move the lattice to a user 

specified point on the surface.

3. “Freezing” an EFFD lattice.

Now, we deform the surface. Assuming that several lattices are associated 

with the surface, the user must first select one of the EFFD lattices and 

“freeze” it. Freezing a lattice consists of computing the

coordinates of each point of the surface in the EFFD lattice parameter 

space. For each surface only one EFFD lattice can be frozen at a time. With 

arbitrarily shaped lattices, finding the 0^ ,v5,vi^) coordinates of the surface

points is decomposed into two steps. First, the chunk where the point is 

supposed to lie is determined by using the convex hull property of Bezier 

volumes. The (w,v, w) coordinates inside the chunk are then computed using 

Newton approximation.

4. Deforming the surface.

When an EFFD lattice is frozen, all the transformations applied by the user 

to the lattice are passed to the surface. Only moving transformations are 

valid for frozen lattices. The computation of the Xjj-d coordinate points of

the deformed surface is equivalent to the FFD one.

3.3 Metaball Deformation Method
3.3.1 Background
Although FFD-based methods can achieve a variety of deformations, the user is 

forced to define some control points in the space to be deformed and then move 

these control points. This indirect interface may be unnatural for some 

applications. Hsu W. and Hughes J. [42] addressed this problem and proposed 

a direct interface that involves solving a complex equation system, but its 

computational cost is high. Borrel and Bechmann [43] developed a general
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deformation model in which the deformation is defined by some user-specified 

point displacement constraints. The desired deformation is obtained by 

selecting a solution obeying the constraints. Nevertheless, the shape of the 

resulting deformation in this method is not strongly correlated to the constraints 

except that the constraints are satisfied. To overcome this, Borrel and 

Rappoport [44] introduced a local defonnation method which they term simple 

constrained deformation (Scodef). In Scodef, the user defines some constraint 

points, each of which is associated with a user-defined displacement and an 

effective radius. The displacement of any point to be deformed is the blend of 

the local B-Spline basis functions determined by these constraint points. Note 

that the deformation achieved by Scodef is both local and intuitive and the 

constrained points can be directly located on the boundaiy surface of the object 

to be deformed. To extend the flexibility of the local deformation, however, 

defonnation models based on line, surface and volume constraints are desired. 

Borrel and Rappoport point out that their model could not be generalized to 

deal with these kinds of constraints.

Motivated by the concept of a metaball, Xiangang Jin, Youfu Li and Qunsheng 

Peng [8] present a new constrained defonnation model based on the special 

potential function distribution of generalized metaballs. In this method, 

constraints are generalized to include point, line, surface and volume 

constraints. The user need only define a set of constraints with desired 

displacements and an effective radius associated with each constraint. A 

generalized metaball is then set up at each constraint with a local potential 

function centered at the constraint falling to zero for points beyond the 

effective radius. The displacement of any point within the metaball is a blend 

of these generalized metaballs. This deformation model produces a local 

deformation and is independent of representation of the underlying objects to 

be deformed. The constraints generate some “bump” shapes over the space 

based on the type of constraint and its associated potential function, and
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influence the final shape of the deformed object directly. The location and 

height of a bump are defined by a constraint’s effective radius.

In this thesis, we are going to apply this method to an untrimmed NURBS 

surface, then to a trimmed NURBS surface, finally to a NURBS solid model.

3.3.2 The definition of metaball model
Metaball modelling has been recognized as a flexible technique for implicit 

surface modelling. It is very convenient for designing closed surfaces and 

provides simple solutions for creating blends, ramifications and advanced 

human character design [44] [45][46] [47][48]. A good introduction to metaball 

modelling and implicit surfaces can be found in [49]. The generalized 

metaballs are defined as an isosurface of a scalar field which is generated from 

some field generating points. The field value at any point is determined by the 

distance to generating point calculated through the potential function. The 

constraints for generalized metaballs include lines, surfaces and volumes 

[48][49], which are termed skeletons.

The skeleton-based model provides an intuitive way to define the desired 

shapes with implicit surfaces. Let L be the skeleton, P(x, y, z) be a point in 3D 

space, r(P,L) be the minimal distance from P(x,y,z) to the individual point 

Q(u,v,w) on the skeleton L, Then,

r(P>L) = \P -Q \ g e £  (3.1)

Figure 3.5 give an illustration of the metaball model for the disk constraint.
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P(x, y , z )
m

:eleton
r(P,C)

Figure 3.5: An illustration of the metaball model

Then the potential function associated with skeleton L  can be defined as the 

composition of a potential function / (r, R) and a distance function r(P,  L)

F ( r ( P , L ), R) = f { r , R) o r(P, L) (3.2)

where R is a specified distance called the effective radius. Euclidean space is 

often adopted as the distance space for calculating r ( P , L) and

r(P,  L) = i j (x -  u)2 + ( y  -  v)2 + (z -  w f  Q e L  (3.3)
There are several potential functions which can be used for generalized

metaballs: Blinn’s exponential function [50], Nishimura’s piecewise quadric

polynomial [50], Murakami’s degree four polynomial [50] and Wyvill’s degree

six polynomial [50]. Wyvill’s degree six polynomial is the better one as it

blends well and can avoid the calculation of a square root.

4 r

f ( r , R )  = \ 9 U
+  ■

17 (

\ P y
22 f  r \ 2

9 I R
+ 1 0 < r < R

(3.4)

r > R

The local space deformation of metaball modelling can be achieved by 

interactively specifying the constraints and their effective radii. The constraints 

can either be points, lines, surfaces or volumes.
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Let I  be a constraint skeleton, R be the effective radius, and S  be the 

corresponding distance surface.

We define the tuple M = { S , f ( r , R) )  as a generalized metaball based on the 

skeleton L.

A generalized constrained deformation model based on generalized metaballs 

can then be defined. Let P = (x}y,z)  be a point in 3D space, Deform(P) be a 

deformation function which maps P  to Deform(P). Let L, be a constraint which 

consists of points, lines, surfaces and volumes, A b e  its displacement, be 

the effective radius of Lj . Then the deformation function affected by constraint 

Lj is defined as

The deformation model (3.6) has some useful properties.

fDeform(P)  = P  + AD,.F(0, R,) = P  + AD( VP e  Z,
\  Deform(P) = P  + ADfF( Rn Rt) = P

Therefore, if the distance from P  to constraint L, is larger than R, the value of

distance function is equal to zero. The deformation function yields a local 

deformation, which generates a deformation precisely within the effective 

radius of the user-specified constraint.

The above deformation model can be extended to deal with multiple 

constraints. The deformation functions for n constraints is defined as

S  = { P ( x , y , z ) e S \ r ( P , L )  = R} (3.5)

Deform(P) = P  + A D,P(r(P, L t ), R .) (3-6)

11

(3.7)

Deforming Surfaces & B-rep Models Chapter 3. Deformation Model



Chapter 3. Deformation Model 66

3.4 General Constraints
Constraints for a generalized metaball can be a point, a line segment, a piece of 

surface, or even a volume. We give the computation methods for some typical 

cases.

Point
constraint

(a) Original Surface (b) Deformed Surface

Figure 3.6: Point constraint deformation

3.4.1 Point constraint
Let Li be a point constraint. Then r(P,L) is just the distance from point P to 

Li(r(P,Li) = ||P - Lt| ). Figure 3.6 gives an illustration.

3.4.2 Line segment constraint
Let L, be a line segment determined by its two end points P0 and Pt. The 

distance r(P,Li : P0P̂ ) can be computed through vector calculation.

Let P be a test point in 3D space, Vj be a vector from P0 to P, V2 be a vector 

from Pj to P, VL is a vector from P0 to Pi and Vc be a vector from P to Pc (The 

projection point from P  to line segment PoPj). Then the projection vector Vc 

can be calculated:
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a =

cos 6 = V, Vi *VL V\*VL

*

V,
V\.VL

Pc = (1 - a ) *  P0 + a*  P[

V =PrPc 1 c l

At last, the distance function r ( P , L { : P0/>) = |Ft. | . The line segment constraint 

of metaball deformation is given in figure 3.7.

Line segment

(a) Original Surface (b) Deformed Surface

Figure 3.7: The deformation of line segment constraint

3.4.3 Polyline constraint
Let constraint Lt be a polyline define by /V 5//3?.../3,,. For any line segment 

Pi-\Pj(i = 1,2,3,..,n), we can obtain r(P,/%|F>) by the line segment constraint 

r(P,L,: />„/>/> ...P J = min{r(/>,/>.,/>)} (3.8)
/ e [ l .n ]
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method as described above. The distance between any space point P and Li is 

the minimum of the obtained distances.

An example is shown in figure 3.8.

Figure 3.8: The deformation of polyline constraint

3.4.4 Circle line constraint
Let L, be a circle line whose radius is Rc. For simplicity, we transform the 

circle line onto the xz plane, and its centre is transformed into the origin. For 

any 3D point P, we apply the same transformation and obtain P = (jc,y,z).

From figure 3.9, it is obvious that OB = Rc ,OP = yjx2 + y 2 + z 2 , thus 

P B 2 = A B 2 + y 2 = { y l x 2 +  z 2 -  Rc ) 2 + y 2

Then

r{P ,Lt) = + x 2 + y 2 + z 2-2 R cJ x r t l P

Deforming Surfaces & B-rep Models Chapter 3. Deformation Model



Chapter 3. Deformation Model 69

Rc

Figure 3.9: Distance calculation for a circle line

Its corresponding metaball is a torus whose major radius equals Rc +/?, and 

minor radius equals Rc - R { as illustrated in figure 3.10.

Figure 3.10: Generalized metaball for a circle line

3.4.5 NURBS curve constraint
Let Li be a NURBS curve C{u) of degree p. The minimum distance from a 3D 

point P to Lt either lies in its end points, or lies in the points satisfying the 

equation:

( P - C ( « ) ) C »  = 0
Chapter 4 will give our algorithm to solve this equation. It is obvious that the 

corresponding metaball is a generalized cylinder. Figure 3.11 gives a sample of 

NURBS curve constraint.
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Figure 3.11: The deformation of NURBS curve constraint

3.4.6 Disk constraint
Let Lj be a disk whose radius is Rc. We first calculate the distance r, from a 

3D point P  to the plane where the disk lies. If the perpendicular point of P  lies 

within the disk, r(P, L,) = r,; otherwise we calculate the distance r2 from P  to 

the circle line, and set r(P,Li) = r2. The shape of corresponding generalized

metaball of a disk is shown in figure 3.12. The result can easily be extended to 

the planar polygon constraint. Figure 3.13 gives the generalized metaball of a 

square.

Figure 3.12: The generalized metaball of a disk
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Figure 3.13: The generalized metaball of a square

3.4.7 Sphere constraint
Let L, be a sphere whose radius is Rc, its centre is located in the origin of 

coordinate system (0(xc,yc,zc) ). Then the distance from a 3D point P to the 

sphere is

r{P^L,) = A/(;C- * e)2 + 0 '- .> 'e)2 + (z -Z c)2 -R ,

The cross section for this metaball is shown in figure 3.14.

Figure 3.14: The generalized metaball of a sphere.
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3.4.8 Cylinder constraint
Let Lt be a cylinder whose radius is RC) and its height is h. We do some 

transformations so that its bottom surface lies on the xz plane and its centre line 

coincides with z  axis (figure 3.15). We apply the same transformations to the 

3D point P  to obtain P = (x ,y ,z ) . The distance function is

min(Rc -  Vx2 + z 2,y , h ~ y )

- y
y - h

^x2 + z 2 - R c

■Jr.'2 + * 2 + ? 2 + z 2 - 2 R .J  

p i  + x 2 +(y - h)1 + z 2 -2 R ^ x 2 + ' f  if -Jx1 + z 2 > R,

X 2 + z 2

if 2+ z 2 <RC 

if j x 2+ z 2 <RC 

if -yjx2 + z 2 < Rc 

if sjx2 + z 2 > Rc

if V*2 + z 2 > Rc

and 0 < y  <h 

and y  < 0 

and y  >h 

and 0 < y < h

and y  < 0

and y > h

The outer surface of the generalized metaball for a cylinder constraint is shown 

in figure 3.16.

z

F igure 3.15: Cylinder constraint
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Figure 3.16: The outer surface of the generalized metaball for a cylinder

constraint

3.4.9 Sphere volume constraint
Let L, be a sphere volume whose radius is Rc and its centre is 0 ( x c , y c , z c) . 

Let r(P, L,) equal zero if the 3D point P  lies inside the sphere volume. 

Otherwise, the distance from P  to the sphere volume is

r ( P , L , ) = y l ( x - x c) 2 + { y - y c) 2 + ( z - z c) 2 -  Rc

3.4.10 Cube volume constraint
Let L,be a cubic volume, whose edge length is 2a. We apply transformations

so that the centre of cube is at the origin and its edges are parallel to the three 

coordinate axes. Then we apply the same transformations to the 3D point P  so 

that we get P = ( x , y , z ) . If P lies inside, r(P,Lt) equals to zero. Otherwise the 

point nearest to P either lies on the faces of the cubes, or lies on the edges, or 

lies on the vertices of the cube according to the position of P . The distance can 

be measured from the nearest point of f  to P .  The shape of the generalized 

metaball for a cube volume is shown in figure 3.17.
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Figure 3.17: Generalized metaball of a cube volume

3.4.11 Summary
In this section, we presented the computation methods of the distance function 

r(P,L,) for some typical cases. For those constraints which are not listed

above, their distance functions can be calculated similarly. Because this 

deformation model is a local one, the point will not be affected if the distance 

from it to the constraint is larger than the effective radius. Therefore, we can 

apply the bounding boxes for the individual constraints to improve the 

efficiency of the algorithm. If a point does not lie inside the bounding boxes of 

the constraint of metaball, the distance function does not need be calculated 

and the constraint has no effect on this point. Finally, some examples of 

constrained deformation on a single NURBS surface are given in figure 3.18.

(a) The generalized metaball for a disk 

Figure 3.18
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(b) The generalized metaball for a circle line

(c) The generalized metaball for a rectangle 

Figure 3.18: Some general constraints

3.5 Deformations for Metaball Model
The general constraint deformations based on metaballs can be applied to both 

polygonal meshes and parametric surfaces. For polygonal meshes, it achieves 

faster computation for the displacement of vertices than in the parametric 

surface model. However, it may lose accuracy in the geometric representation 

so it is not suitable for CAD and geometry modelling. On the other hand, it is 

very useful for computer animation [8],
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We will adopt this model for parametric surfaces, more specifically, NURBS 

surfaces. There are two ways to deform the surface: moving control points or 

modifying the weights. It is also possible to combine these two methods 

together to modify the shape of a NURBS surface.

3.5.1 Moving the control points

According to the locality property of a NURBS surface, moving a group of 

control points will change the shape of NURBS locally. Therefore, we apply 

general constrained deformation to the control net of a NURBS surface to 

achieve the metaball deformation on the surface. We divide the procedure of 

deformation for the NURBS surface into three steps:

• Refining the control net of the NURBS surface

The control net is refined to increase the density of the control points. The 

density of control points is decided by the effective radius R. The 

calculation of the density is given by (3.9).

where A  is the number of control points inside the circle whose radius is R. 

N can be counted from the distance function r(P>Li) for the point 

constraint. The density X is the parameter controlled by the user.

• Moving the control points

The displacement of an individual control point is calculated via the 

potential function (3.4). If the value of potential function is greater than 

zero, the control point is moved along the normal vector of this control 

point.

• Removing unnecessary knots (unnecessary control points)

After moving the control points, we remove any unnecessary knots 

(unnecessaiy control points) to reduce the memory consumption and
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simplify the data for the NURBS surface. The algorithm of knot removal 

for a NURBS surface has been given in section 2.3.4.

The whole procedure of moving a control point for a general constraint is 

illustrated in figure 3.19.

(a) The original surface (4><4 control points)

(b) The surface after knot refinement (19x19 control points)

(c) The surface after deformation (19x19 control points)

(d) The surface after knot removal (10x10 control points)

Figure 3.19: The procedure of moving control points for metaball deformation
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3.5.2 Modifying the weights

Weight-based shape modifications rely on the geometric meaning of the 

weights. From section 2.2.3, we know that as a weight w associating a control 

point P increases / decreases, the curve or surface will be pulled / pushed 

toward / away from P . From [35], we also know that a moderately larger 

number (e.g. 100) causes the curve or surface to pass very close to the control 

point P . Figure 3.20 gives an example.

(a) The weight set to 1. (b) The weight set to 100.

Figure 2.20: Modifying a weight for a revolved surface

In the metaball deformation model, the control net is refined before applying 

the general constraints. The knot refinement of a NURBS surface brings the 

control net closer to the surface and modifying the weights only changes the 

shape of the NURBS surface within the control net. Therefore, it is not possible 

practically to use only the weight-based shape modification to achieve the 

metaball deformation. Together with control point based modification, the 

weight-based modification can be used as a refined method in the metaball 

deformation model. We apply equation 3.10 similarly to equation 3.6 to change 

the weights.

Deform(w) = w + AD, F(r(P, L,), R,) (3.6)
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Figure 3.21 gives an illustration which shows the effect of using weight-based 

modification combined with control point based modification.

(a) The original surface

(b) The control point based modification

(c) Weight based modification combining with control point based

modification

Figure 3.21: Applying weight based modification to the metaball deformation

Deforming Surfaces & B-rep Models Chapter 3. Deformation Model



Chapter 3. Deformation Model 80

3.6 Closing
This chapter has generalized the method for general constrained deformations 

based on generalized metaballs. Furthermore we apply it on the NURBS 

surface by both moving the control points and changing the weights. This 

chapter also presents a list of pictures to demonstrate the different types of 

constraints. All these pictures are generated by author’s testbed software.

To solve the problem of the minimum distance from a 3D point to the NURBS 

curve, chapter 4 gives an innovative algorithm and also extends the method for 

NURBS surfaces. Chapter 5 presents a solution for tessellating the trimmed 

NURBS surface on which we apply the metaball deformation.
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Point Inversion and Projection

4.1 What and why?
Projecting a test point to a NURBS curve or surface finds the closest point on 

the curve or surface and point inversion finds the corresponding parameters (u) 

for the curve or (u, v) for the surface for this point. Both point projection and 

point inversion are common problems for interactively selecting a NURBS 

curve or surface and curve or surface fitting. When the user clicks somewhere 

near the curve or surface, we can find out which curve or surface has been 

selected based on the minimum distance between the nearest point on the curve 

or surface and the test point. In curve and surface fitting we need to calculate 

the tolerance, which is the minimum distance from the interpolation point to 

the desired curve or surface.

In order to solve the distance function of the NURBS curve constraint in the 

metaball deformation model, we need to find out the minimum distance 

between the 3D point and the closest point on the curve, which is to solve the 

problem of point projection for the NURBS curve. Point projection for NURBS

81



Chapter 4. Point Inversion and Projection 82

surfaces is the extension of the algorithm for NURBS curves and can also 

provide the solution of the distance function for the NURBS surface constraint.

4.2 Previous work
Much of the early work in this area comes from the robotics and computational 

geometiy communities [51], Their work has often focused on use of polygonal 

models for finding the minimum distance between two geometric objects. Chin 

[52] and Edelsbrunner [53] both describe O(logN) algorithms for finding the 

minimum distance between two convex polygons. However, all these 

algorithms involve presumably large number of tests on polygons and the result 

for the minimum distance is not accurate enough for the computer graphics and 

computer aided design communities. In contrast, parametric models provide 

more accurate solutions.

Using a parametric model, Mortensen [54] gave a numerical approach to this 

problem. For the calculation of the minimum distance between the test point 

and the curve, we need to find a vector (p-q) from the point p  to the curve q(u) 

that is perpendicular to the tangent vector / f a t  p  . Figure 4.1 shows the vector 

geometry. Mathematically, we express the required conditions as

rfmin = \ p -<}\  w h e n  (P - q )  p “ = o .

p - q

o

Figure 4.1: Minimum distance between a point and a curve
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He chose to use the Newton-Raphson method to the find the roots of the

polynomial (P ~ $ ' P ~ ^ . However, he needed to find a good initial value for 

the Newton-Raphson method. Similar to the curve, finding the minimum 

distance between a point and a surface involves finding the minimum distance 

between a point and a plane. Let the point be denoted by q and the plane by kn, 

where n is the unit normal vector. Let p  denote the point on the plane closest to 

q. Then we have dm[n = \p -q \, wherep  must satisfy { p - q)x n = 0. Finally, we

also need the Newton-Raphson method to find the roots. Limaiem [55] has 

presented another approach to find the minimum distance to convex parametric 

curves and surfaces. Lin [56] provides the approach for finding the minimum 

distance for concave surfaces. Both approaches use the Newton-Raphson 

method to find the roots for some distance equations. Therefore, both finding 

the minimum distance between a point and a curve and between a point and a 

surface need a good initial value for achieving the convergence result.

However this initial value is hard to obtain due to the complexity of the 

NURBS curve or surface shape [57]. Furthermore, the Newton-Raphson 

method may give the wrong answer when projecting a point near the 

intersection point of the NURBS curve (figure 4.2) and it fails quite often for 

the points near the boundaries of the surface [57].

/

(a) Cubic NURBS curve (73 control points), (b) Wrong point projection. 

Figure 4.2: Wrong result for point projection on the complex curve
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Piegl and Tiller [57] recently provided another method to solve the point 

projection problem for a NURBS surface. Their algorithm consists of three 

steps:

• Decompose the NURBS surface into quadrilaterals.

• Project the test point onto the closest quadrilateral.

• Recover parameters from the closest quadrilateral.

Obviously, decomposing the NURBS surface into quadrilaterals and finding 

the closest quadrilateral are very expensive.

Our approach for point projection and point inversion provides a good initial 

value for the Newton-Raphson method, reduces the computation of the 

algorithm and increases the stability of the recursive function for the Newton- 

Raphson method.

4.3 Outline of algorithm

4.3.1 Algorithm for NURBS curve
Our approach consists of three stages: subdivision of the NURBS curve, control 

polygon detection and the relationship between the test point and the Bezier 

subcurve. In the first stage, we decompose the NURBS curve into its piecewise 

Bezier form (see section 2.3.2). In section 4.4, we give the algorithm to find the 

2D/3D simple and convex control polygon of the Bezier subcurve. In section 

4.5, we analyse the relationship between the test point and control polygon and 

in section 4.6 we give the overall algorithm.
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4.3.2 Algorithm for NURBS surface
Similar to the algorithm for NURBS curve, first, we decompose the surface 

into a set of Bezier patches (section 2.3.2). Then we check every control point 

net of the Bezier patch is a valid control point net or not, which will be 

discussed in section 4.4. After obtaining a valid control point net, we analyse 

the relationship between the test point and the Bezier patch and discard the 

Bezier patch whose closest point lies on the one of four boundary curves 

(Figure 4.3). Finally, we project the test point to the candidate Bezier patches to 

obtain the candidate points and select the closest one as the result. The 

accuracy of the closest point can be improved by using the Newton-Raphson 

method.

r

Figure 4.3: Discarded Bezier patch

4.4 Control Polygon and Control Point 
Net detection
For a NURBS curve, before we can establish the relationship between the test 

point and the Bezier subcurve, we need to classify the control polygons to 

simplify the problem. As we know, polygons can be divided into simple and 

non-simple polygons. Simple means no crossing edges. As shown in figure 4.4, 

polygon (5) is a non-simple polygon. Furthermore, simple polygons can be 

grouped as convex and concave polygons. Polygons (1), (2), (3) are convex and 

(4) is concave. Now, we define the valid control polygon as the simple and
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convex polygon in 2D. In order to generalize the definition to 3D, we give a 

fast way to check whether the control polygon is valid or not both in 2D and 

3D.

For a NURBS surface, we only analyse the relationship between the test point 

and the valid control point net. After the definition of a valid control polygon, 

we can specify the valid control point net, as every polygon in both the U and 

V parameter directions is valid.

(i) (2) (3)

(4)

Figure 4.4: Type of control polygons of 2D cubic Bezier subcurve.

4.4.1 Fast valid control polygon detection algorithm

We give a fast way to detect whether the control polygon is simple and convex, 

or not, by checking the dot product result of two vectors. As shown in figure 

4.5(a), for a given control polygon of a Bezier curve of degree p  (p>2), we can

detect the sign of the dot product ^  ~ < (w/2» or

R -  V\Pt • V2Pq(i > (n!2)) determine whether vertex P, is in the “convex” 

direction or not. If the result of dot product is greater than zero, then this vertex 

is in “concave” direction. Note that edge PoPn is the chord of Bezier subcurve

and vertices P0, P } ... P„ are the control points. ^  and are the points

projecting from the vertex P, and one of endpoints: Pn ( z < (/7̂ ) ) or P0
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( z > («/ 2)) pne segment Pf.jPi+h respectively. If the dot product R is 

negative, we move to the next vertex and repeat this procedure until we find 

one is positive or finish detecting all vertices except P0 and Pn. If all results are 

negative then the control polygon is a simple and convex one.

i+ i

P i+ 3i+2

i+4

P nPo

(a) Dot product of two vectors. (b) Vertices direction for concave.

(c) Vertices direction for non-simple polygon.

Figure 4.5: Valid polygon detection

This algorithm also works for detecting non-simple polygons. As shown in 

figure 4.5(c), although this algorithm does not tell you the vertex direction 

properly, it does tell you it is not a convex polygon no matter if it is a concave 

or non-simple one. This algorithm can generalise to 3D. We will call the 3D 

simple and convex polygon which satisfies the dot product conditions as 

previously discussed a 3D valid control polygon.

4.4.2 Pseudo code

In summary, the simple and convex polygon (valid polygon) detection 

algorithm is shown as follows:
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Algorithm 1. IsValidPolygon {Detecting the simple and convex polygon}

Input: The control polygon P of Bezier subcurve. n is the highest index in control 
polygon.
Output: the result of detection, 
begin

for i = 1 to i< n by /++ do 

begin

compute projection vector V fi; 

if  i < (n/2) then

compute projection vector FjPn;

R = VxPj • VxPn ;{R is the result of dot product} 

else

compute projection vector V̂ P̂ ;

R — V̂ Pj • V\Pq ;{R is the result of dot product} 

end if

if R > 0 then return FALSE; (The polygon is not a simple or convex one} 
end if

endjEnd of the loop for}

return TRUE; (It is a simple and convex polygon}
End of Algorithm 1.

Finally, we define the control point net whose polygons in both the U and V 

parameter directions are valid as the valid control point net. The detection 

algorithm is given as follows:
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Algorithm 2. IsV a ild C P N et {Detecting the valid control point net}
Input: The control point net of Bezier patch, n is the highest index of control points in 

U direction, m is the highest index of control points in V direction,

Ouput: the result of detection, 
begin
for i~  0 to i <m by i++ do

{Detect every control polygon in U direction} 

begin
generate a control polygon P; 

if  (Is_Valid_Polygon(P) return FALSE) then 

return FALSE; {control point net is not valid.) 
end if 

end (End of loop for}

for i -  0 to i < n by i++ do

{Detect every control polygon in V direction} 
begin

generate a control polygon P; 
if (Is_Valid_Polygon(P) return FALSE) then 

return FALSE; {controlpoint net is not valid.} 

end if 

end {End of loop for}

return TRUE;
End of Algorithm 2.
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4.5 The Relationship between the test 
point and Bezier curve or Bezier Patch
For a curve, after decomposition, we obtain a set of Bezier subcurves. When 

detecting the valid control polygon, if we do not get a desired control polygon, 

we continue to subdivide the Bezier subcurve until we get a valid control 

polygon or the control polygon is flat enough. For a valid polygon, we analyse 

the relationship between the test point and the valid control polygon of the 

Bezier subcurve.

For a surface, after decomposition, we obtain a set of Bezier patches. When 

detecting the valid control point net, if we do not get a desired control point 

net, we continue to subdivide the Bezier patch until we get a valid one or the 

control point net is flat enough.

For a valid control point net, we analyse the relationship between the test point 

and the valid control point net of the Bezier patch. As shown in figure 4.6, for 

given a valid control point net, we can extract valid control polygons both in 

the U direction and V directions. Therefore, we can analyse the relationship 

between each valid control polygon and the test point to generalize the 

relationship between the valid control point net and the test point. We analyse 

the relationship between the valid control polygon (Bezier curve) and the test 

point as follows:

Deforming Surfaces & B-rep Models Chapter 4. Point Inversion and Projection



Chapter 4. Point Inversion and Projection 91

Figure 4.6: Control point net

Lemma 1. As shown in figure 4.7, suppose that an n  (n>l) degree 2D Bezier 

curve has a valid control polygon P0, ...,P„ and a test point P. We have four dot

products = P 0P » P 0Pl , R2 =PP„«3 = V o  * PnP and

R4 = PnP0 • P0P . I f  R] < 0 or R2 < 0 and R3 * R4 > 0, then the nearest point must 

be one of endpoints (P0 or Pn).

n-L

Figure 4.7: Conditions for 2D Bezier curve (satisfied)

Proof. The dot product R/ and R2 will be positive if the test point is within the 

area AP()P„B and the multiplication will be negative if the test point is

within the area CPqPJD.

According to the formula (4.1) of the derivative of a Bezier curve, we can 

obtain the formulas for the end derivatives (4.2).
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n - 1

C'(«) = « ]£  V - ,(« )« -+i -P ,)  (4.1)
/=0

rc'(o)=»(Pi--p0)

where Bin_{(u) is the Bezier basis function and P0,...,Pn are the control points, 

for an n degree Bezier curve.

n-1

Figure 4.8: Conditions for 2D Bezier curve (unsatisfied)

Notice that, in figure 4.8, C'(0) is the vector and C'(l) is the vector

Pn-\Pn • We assume that Pc is any point on the Bezier subcurve. If the control 

polygon is simple and convex, according to the strong convex hull property, Pc 

must be inside the control polygon. Therefore, ZPPQPC must be larger than 90° 

if P  is outside of area AP0PnB and area CP0PUD. Furthermore, according to the 

property of the triangle, ZPP0PC is larger than ZP{)PCP , therefore, \PPC\ is larger

than |PP0| . It is obvious that P0 is the nearest point of P.

We can extend this rule to a 3D valid control polygon of a Bezier curve. 

Although in 3D space the valid control polygon sometimes does not lie on the 

same plane, we can set the control polygon plane as the plane constructed from 

the first two edges of the control polygon. As shown in figure 4.9, we also have
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P.P ' >|P0P '|(P ' and Pc are the projection points from P  and Pc to control

polygon plane respectively and Pc is a any point on the Bezier curve.)

0
p

Figure 4.9: Conditions for 3D Bezier curve.

Also

P P =c J  Pc'p'2 + (|PP’| + PcPc f  (Refer to figure 4.9) |P0P| = ^|P0P'|2 +|PP'f

Therefore |PCP| > |P0P |.

Theorem 1. Suppose that an n (n>l) degree 2D/3D Bezier subcurve has a valid 

control polygon P0>...,P„ and a test point P  is in the 3D space. We have four dot

products P^PqP^PoP!, R2 = PPn • P„_xPn , R2 =PnPQ*PnP and

R4 = PnPQ • P0P . If Pj < 0 or R2 < 0 and P3 * P4 > 0, then the nearest point must 

be one of endpoints (P0 or P„).

For the curve case, we analyse the relationship between the test point and a 

valid control polygon. We do four dot products, which are described in 

Theorem 1. If this case does not satisfy the conditions in Theorem 1, the
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nearest point must be one of the endpoints. Furthermore we can discard this 

Bezier subcurve. In summary, we give the algorithm as follows:

A lgorithm  3 . Poin t_N earest_B ezier_C urve (Detecting whether the nearest point is 
one of endpoints or not according to the result offour dot products).

Input: The control polygon P of Bezier curve, n is the highest index in control 
polygon.
Output: the result of detection, 
begin

-  P0P • P0f  , R2 = PPn* Pn-\Pn

^3 “  ^7^0 • PnP > P4 -  PnPo • PqP

i f  R-i < 0 or R2 < 0 and R2 * R4 > 0

then return FALSE; 
else return TRUE; 

en d  i f

E n d  of Algorithm 3.

Then, for the surface case, we consider the relationship between the test point 

and a valid control point net. We also do four dot products with every polygon 

in the U direction and V direction. If every polygon in the U direction or every 

polygon in the V direction does not satisfy the dot product conditions described

in Theorem 1, the nearest point must be on the one of four boundary curves.

Furthermore we can discard this Bezier patch.

In summary, we give the algorithm as follows:
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Algorithm 4 Point_Nearest_Bdzier_Patch
{Detecting whether the nearest point is the point on the boundary curves.}
Input: The control point net of Bezier patch, n is the highest index of control points in 

U direction. m is the highest index of control points in V direction.

Output: the result of detection, 

begin

Flag <— FALSE;

f o r  i = 0 to i < m by i++ do

{Detect every control polygon in U direction} 

begin

generate a control polygon P;
i f  (PointJNearestfBezierJZurve(P) return TRUE) then  

Flag <- TRUE; 

break; 

en d  i f  

en d  {End of loop for} 

i f  Flag == FALSE then  

return FALSE; { the nearest point is the point on the boundary curves.} 

end i f

Flag 4-  FALSE;

f o r  i = 0 to i <n by i++ do

{Detect every control polygon in V direction} 
begin

generate a control polygon P;

i f  (Point_Nearest_Bezier_Curve(P) return TRUE) then  

Flag <- TRUE; 

break; 

en d  i f  

en d {End of loop for} 
i f  Flag == FALSE then

return FALSE; { the nearest point is the point on the boundary curves.} 

en d  i f

return TRUE; { the nearest point is the point on the Bezier patch.}
E nd of Algorithm 4
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4.6 Find the closest point on the 
NURBS curve
By extracting the Bezier subcurves as candidates, we subdivide these candidate 

subcurves recursively until the control polygon is flat enough or reaching a 

recursion limit. By “flat enough”, we mean that the control polygon is close 

enough to a straight line so that we can approximate the nearest point 

(candidate point) in that region by calculating a projection vector from the test 

point to the straight line. The algorithm for finding the candidate points from 

the NURBS curve is given as follows.

Algorithm 5. Find the candidate points for projecting a point to a NURBS 

curve.

Nearest_Candidate_Points_Curve(P,n, U,m, Valid.pt)

P: array point of control points.
n: The highest index in the control points.
U: array pointer of knot vector, 

m: The highest index in the knot vector.
Valid: flag variable for valid polygon.

(TRUE is valid. FALSE is invalid) 
pt: 2D/3D test point.

Begin

if (Curve is a Bezier curve) 

if (Valid) then

if (Point JVearest_BezierjSurve return FALSE) then 
return no candidate point was found; 

else
if(control polygon is flat enough or recursive limit reached) then 

return the candidate point on the Bezier subcurve; 
end if 

end if
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else{Valid, is FALSE}

if(Is_ Valid ̂ Polygon return TRUE) then 

Valid = TRUE; 
end if  

end if

Subdivide the curve at midpoint of knot vector;

Nearest_Candidate_Po ints_Curve(left half); 
Nearest_Candidate_Points_Curve(right half); 

else (The curve is not a Bezier curve.}

Subdivide the curve at midpoint of knot vector; 
end if  

end
End of Algorithm 5.

We start the recursive function with Valid set to FALSE. After the termination 

of this function, we select the nearest point from candidate points and improve 

its accuracy by applying the Newton-Raphson method. Section 4.10 gives some 

examples of projecting a set of points to the NURBS curve both in 2D and 3D.

4.7 Find the closest point on the 
NURBS surface

By extracting the Bezier patches as candidates, we subdivide these candidate 

patches recursively until the control point net is flat enough or reaching the 

recursion limit. By “flat enough”, we mean that the control point net is close 

enough to a plane so that we can approximate the nearest point (candidate 

point) in that region by projecting the test point to the approximate plane. The 

algorithm for finding the candidate points from the NURBS surface is given as 

follows:

Algorithm 6 Find the candidate points for projecting a point to a NURBS 

surface.
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NearestCandidate_Points_Surface(pSur, Dir, Valid,pt) 
pSur: The pointer of NURBS surface object
Dir: The direction for splitting. (TRUE for U direction and FALSE for V direction.) 

Valid: flag variable for valid control point net. (TRUE is valid. FALSE is invalid) 
pt: 3D test point.

Begin
if (Surface is a Bezier patch) 

if (Valid is TRUE) then

if  (Point_Nearest_BezierPatch return FALSE) then 

return no candidate point was found; 
else

if (control point net is flat enough or recursive limit reached) then 

return the candidate point on the Bezier patch; 
end if 

end if  

else {Valid is FALSE}

if(Is_Vaild_CPJLet return TRUE) then Valid = TRUE; 

end if  
end if
if (Dir is TRUE)

Split the surface at midpoint of U knot vector; 
else

Split the surface at midpoint of V knot vector; 
end if

Nearest_Candidate_Po intsJSurface (pSurl, Dir, Valid,pt);
(pSurl is one half surface in the U or V direction.} 

Nearest_Candidate_Points_Surface(pSurl,Dir, Valid,pt);
(pSur2 is the other half surface in the U or V direction.} 

else {The surface is not a Bezier patch.}

if (Dir is TRUE) Split the surface at midpoint of U knot vector; 
else Split the surface at midpoint of V knot vector;
end if  

End
End of Algorithm 6
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4.8 Boundary conditions of NURBS 
surface
After termination of the recursive function described in the last section, we 

select the closest point from the candidate points as well as the points 

projecting from the test point to the boundary curves.

If a NURBS surface is not closed both in the U direction and V direction, it has 

four boundary curves. On the other hand, if the surface is closed in the u 

direction or v direction, it has two boundary curves. In some cases, it has only 

two “boundary points” as shown in figure 4.10.

Unclosed surface with four 
boundary curves

Closed surface with two 
boundary curves

(c)
Closed surface with two 

boundary points

Figure 4.10: Boundary curves of the NURBS surface

For an unclosed NURBS surface, we have four projection points, projected 

from the test point to the four boundary curves. For a closed NURBS surface,
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we also have two projection points. From the projection points and candidate 

points, we can find the closest one as the solution for the point projection for 

the NURBS surface.

4.9 The Newton-Raphson method for a 
NURBS surface
The Newton-Raphson method is used to improve the accuracy of the closest 

point. Piegl and Tiller [17] used the Newton-Raphson method to minimize the 

distance between the test point and the whole NURBS surface. However after 

some tests, we find Newton-Raphson occasionally still gives the wrong answer 

even with a quite good initial value when applied to the whole NURBS surface. 

Therefore, instead of applying it to the whole NURBS surface, we apply the 

Newton-Raphson method to the quadrilateral which is a “flat enough” Bezier 

patch.

(a) Wrong point projection (applying Newton-Raphson method to the whole

NURBS surface).
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(b) Right point projection (applying Newton-Raphson method to the Bezier

patch).

Figure 4.10: The Newton-Raphson method for surface.

4.10 Examples
For illustrative purposes we present three pictures of points projected to a 2D 

cubic NURBS curves (figure 4.11(a)), a 2D NURBS curve of degree 5 (figure 

4.11(b)) and a 3D cubic NURBS curve (figure 4.11(c)) respectively.

We also present some pictures of points projected to the NURBS surface. 

Figure 4.12(a) gives the result of projecting a set of points from a straight line 

to the NURBS surface. Figure 4.12(b), (c) present the results of projecting two 

isocurves which are created and offset from the NURBS surface in the U 

direction and V direction respectively. Figure 4.12(d) gives the result of 

projecting a set of points from a vertical line to the NURBS surface. Finally, 

Figure 4.12(e) presents the result of projecting a set of points to a closed 

NURBS surface.
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(a) Point projection for a 2D cubic NURBS curve 

(degree =3, 26 control points)

(b) Point projection for a 2D cubic 

NURBS curve 

(degree =5, 40 control points)

(c) Point projection for a 3D NURBS curve, 

(degree =3, 20 control points)

Figure 4.11: Point Projection for NURBS Curves
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(a) straight line projection

(b) Isocurve projection (U direction)

(c) Isocurve projection (V direction)
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(d) Vertical line projection

'r

(e) Point projection for Closed NURBS surface

Figure 4.12: Point Projection for NURBS Surfaces

4.11 Comparison
We give the results of comparing our method with Piegl and Tiller’s method 

[17] for point projection on the NURBS curves both in efficiency and accuracy. 

Piegl and Tiller’s method first evaluates curve points at n equally spaced 

parameter values for the whole NURBS curve. Then they compute the distance
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of each point from the test point P and choose the parameter value u0 to be the 

value yielding the point closest to the test point P . Finally, they apply the 

Newton-Raphson method to the closest point to improve the its accuracy. The 

accuracy of the result can be evaluated by equation (4.3) (zero cosine).

|C '(„,).(C (a,)-P)|_
|C'(K,)|[C(«,)-P|

where C(u) is the NURBS curve, P  is the test point and s is the tolerance for 

zero cosine.

All examples are implemented with Visual C++ 6.0 with Windows98 in the 

same compatible personal computer with Pentium II 400 CPU chip and 64 M 

memory. Table 4.1 lists iteration times of our method, the number of equally 

spaced curve parameters for Piegl and Tiller’s method (n \ the CPU time and 

the accuracy.

• Example 1 2D Curve in figure 4.11(a) (degree =3, 26 control points)

Index t (CPU time ms) Iteration time / n Accuracy (zero cosine)

Our Method (1) 3.003 59 2.083230e-07

NLib(l) 3.252 100 1.1625887e-07

Our Method (2) 3.491 69 1.13872e-012

NLib (2) 3.481 100 2.560200e-012

Our Method (3) 2.517 61 3.626256e-09

Nlib (3) 3.172 100 5.1356532e-09
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• Example 2 2D curve in figure 4.11(b) (degree = 5, 40 control points)

Index t (CPU time ms) Iteration time / n Accuracy (zero cosine)

Our Method (1) 5.195 89 4.6637136e-08

NLib (1) 5.627 200 1.319305e-011

Our Method (2) 4.558 77 1.4516641 e-08

NLib (2) 5.701 200 2.693517e-011

Our Method (3) 4.356 87 1.507982e-010

Nlib (3) 5.256 200 4.032916e-08

• Example 3 3D curve in figure 4.11(c) (degree = 3, 20 control points)

Index t (CPU time ms) Iteration time / n Accuracy (zero cosine)

Our Method (1) 2.358 53 9.8645779e-08

NLib (1) 2.643 80 1.2507234e-09

Our Method (2) 2.359 55 1.2857904e-08

NLib (2) 2.892 80 1.0723880e-08

Our Method (3) 3.806 61 2.609440e-013

Nlib (3) 2.997 80 1.187688e-012

• Example 4 complex 2D curve in figure 4.2 (degree = 3, 73 control points)

Index t (CPU time ms) Iteration time / n Accuracy (zero cosine)

Our Method (1) 12.779 239 1.313991e-010

NLib (1) 22.781 1000 4.4269524e-09

Our Method (2) 12.276 229 1.292864e-010
NLib (2) 21.762 1000 5.0203867e-07

Our Method (3) 19.974 307 2.8378485e-09

Nlib (3) 21.446 1000 5.3175793e-07
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4.12 Point Inversion
The point inversion problem is veiy similar to point projection. The only 

difference is that the candidate Bezier subcurves or patches are extracted based 

upon the strong convex hull property [17]. Then, for a curve, we apply 

algorithm 5 to these candidate Bezier subcurves to extract the closest point on 

the NURBS curve and its corresponding curve parameter values. For a surface, 

we apply algorithm 6 to these candidate Bezier patches to extract the closest 

point on the NURBS surface and its corresponding surface parameter values.

4.13 Conclusion

In this chapter we have presented a novel method to solve both point projection 

and point inversion problems. This method achieves better results both in 

accuracy and efficiency, especially in dealing with complex NURBS curves. 

Furthermore, this method extracts all candidate points for point projection so 

that it avoids selecting the wrong initial value for the Newton-Raphson method 

in the self-intersecting curve case. It also provides a good initial value to 

achieve reliable convergence for the Newton-Raphson method.

On the other hand, for NURBS surfaces, this method dramatically decreases 

the computation of the algorithm compared with the method [57], which 

decomposes the NURBS into a set of quadrilaterals. We also apply the 

Newton-Raphson method on the Bezier patch instead of the whole NURBS 

surface, which improve the stability of the algorithm.
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Adaptive T essellation

5.1 Previous work
A brief introduction about trimmed NURBS surfaces has been given in section

2.5.1 and also a short introduction to adaptive tessellation methods has been 

presented in section 2.5.2. In this section, we give an overview of previous 

work done in the areas of tessellating trimmed NURBS surfaces.

5.1.1 Adaptive Forward Differencing
Shantz and Chang [58] describe a direct hardware rendering technique for a 

trimmed surface based on the adaptive forward differencing (AFD) method. 

Similar to the scanline algorithm for rendering a polygon, this method is 

suitable for special graphics VLSI. However, it is not practical for 

implementation on variant graphic hardwares, because this technique directly 

renders surface without going through the intermediate form of triangles. 

Furthermore, the computation becomes very expensive, when this method
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subdivides the surface down to pixel size in order to render a high quality 

image. The method operates in 5 steps;

1. The NURBS trimming curves are converted to piecewise Bezier curves 

by knot insertion.

2. The Bezier curves are subdivided so they are monotony in the u 

parameter direction.

3. The Bezier curves are converted to forward a difference basis.

4. They are sorted in u parameter order by their minimum u value.

5. For each AFD forward step in the u direction (from curve to curve) the 

active trimming curve sections are forward-stepped down to find 

intersections with the new curve. The appropriate portions of the surface 

curve are drawn based on the trim curve-winding rule.

5.1.2 Tessellation Under Highly Varying Transformation
Salim S. Abi-Ezzi and Leon A. Shirman [59] provide a dynamic and uniform 

tessellation method for arbitrary degree polynomial and rational Bezier patches. 

NURBS surfaces are converted into Bezier patches before applying this 

method. They designed two approximation criteria: a size criterion which uses 

a threshold on the size of triangles, and a deviation criterion which uses a 

threshold on the deviation of these triangles from the actual surface. This 

method involves highly varying the modelling and viewing transformations 

[59] (between world coordinates and display coordinates) and performing the 

complex operations of finding derivative bounds, computing norms of 

transformations, and factoring of views at data creation time. Therefore, it is 

expensive and not practical for high degree Bezier patches because it will 

generate more triangles for higher degree surfaces. It is obvious that the 

uniform tessellation generates more triangles than the non-uniform method.
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5.1.3 Fast Dynamic Tessellation of Trimmed NURBS 
Surface
Salim S. Abi-Ezzi and Srikanth Subramaniam [60] present a dynamic and non- 

uniform tessellation method developed from the previous method (section 

5.1.2). Similar to the previous one, it converts the NURBS surface into Bezier 

patches and the Bezier control points are used for further computations. Then 

the trimming patches are further simplified into monotonic regions, which 

contain several trimming curves. The next step contains two phases of 

traversal.

The first phase reduces each trimming NURBS loop into its Bezier 

components, then processes each trimming curve to determine the maximum 

and minimum value of U and V on each trimming segment, then computes its 

intersection with the U/V knot line. The intersection problem can be solved by 

using a Bezier root-solving algorithm. Finally, it handles some special cases to 

ensure the stability of the algorithm.

The aim of the second phase is to extract the triangles from both trimmed and 

untrimmed patches. For untrimmed patches, triangles are generated from two 

U/V isolines. For trimmed patches, triangles are generated from the U/V 

isolines and trimming Bezier curves.

5.1.4 Triangulating Trimmed Surfaces for 
Stereolithography Applications
Sheng and Hirsh [61] presented a method for triangulation of trimmed surfaces 

in parameter space. This approach first maps the trimmed regions of the surface 

into parametric space and the trimmed regions are approximated by 2D 

polygon regions, which are then triangulated by a restricted Delaunay 

triangulation algorithm. The generated triangles are subdivided further until 

each edge of the triangles is smaller than the allowed length that results from
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the surface definition and the specified tolerance. The detailed algorithm is 

described as follows:

1. Creation of mapping polygons

To generate the mapping polygons in parametric space, the surface is first split 

into patches along their common boundaries (see figure 5.1). After splitting, the 

boundary of a mapping polygon consists of splitting lines and trimming curves. 

The mapping polygons are connected by these splitting lines and trimming 

curves. To form the ordinary boundary of a polygon, each trimming curve is 

subdivided into line segments for a given tolerance.

Trimmed
Region

Patches
M apping
polygons

Figure 5.1: Generation of mapping polygons by splitting of trimmed region

2. Evaluation of the flatness of a patch

In their method, only the triangulation of the surface is considered, because it is 

the only one arising in their applications. The evaluation can be formulated as 

follows: given a parametric patch of a C surface and an arbitrary triangle with 

its vertices on the surface, determine the maximum distance between the 

surface and triangle with the same parametric bound. If the distance is smaller 

than a user-specified tolerance, the patch is said to be sufficiently flat. The goal 

of this operation is the condition for the termination of subdivision of 

triangulated patches. Therefore, the triangles that are generated from the
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restricted Delaunay triangulation are subdivided further until all the edges fall 

within the allowed bounds. The allowed bound is defined as: Let £2 be the 

maximal edge length of the triangle, the distances between the centre of the 

triangle and its vertices are not greater than (2/3) Q [62]. If (2/3) Q. is less than 

the user-specified tolerance, they say the triangulated patch is flat enough.

3. Restricted Delaunay Triangulation

Once, the mapping polygon for each patch has been established, it can be 

triangulated separately. The goal of the triangulation is to obtain triangles 

whose edge lengths do not exceed the allowed length Q determined in the 

previous section. To minimize the number of triangles produced, it is obviously 

desirable that each edge length of the triangles be as close to £2 as possible (an 

equilateral triangle is optimal).

On the basis of the principle of the restricted Delaunay triangulation, each 

mapping polygon of the patches is first split into a set of triangles. By 

measuring the edge lengths, one can decide whether a triangle has to be further 

subdivided. If the edges of the triangle exceed the allowed bound £2, a 

refinement procedure divides the triangle into two, three or four subtriangles at 

the middle points of the edges. The procedure is shown in figure 5.2. While the 

subdivision in figure 5.2(a) and 5.2(c) are unique, one has to select one of the 

two possibilities for figure 5.2(b). The refinement procedure runs recursively 

until the edge lengths of all generated triangle fall short of the maximum.
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(a) All three edges larger than Q. (b) Two edges larger than Q. (c) One edge

larger than Q.

Figure 5.2: Subdivision of triangles.

5.1.5 Triangulating The Trimmed NURBS Surface in 
Parameter Domain
Piegl and Richard [63] propose a somewhat similar algorithm to triangulate a 

trimmed NURBS surface: they use the same criterion for maximum edge 

length, but the method does not split the surface into several regions 

representing Bezier patches in parameter space. This tessellation method 

consists of 5 steps. Step 1 is to compute the longest edge size in the parameter 

domain. Step 2 obtains a polygonal approximation of the trimming curves. Step 

3 selects points inside the valid region. Step 4 triangulates the trimmed region. 

The final step is to map the triangles onto the surface and build a 3D triangular 

database for further processing. The details of the algorithm are given as 

follows.

X. Computing the longest edge size

The 3D triangles, obtained by mapping the 2D ones onto the surface, 

deviate from the surface by less than e, where e is a user specified 

tolerance. The edge length can be calculated from the upper bounds of 

the second derivatives, computed over the entire patch [63]. This way of
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the calculation of edge length is more adaptive than Sheng and Hirsh ‘s 

method [64] (Directional adaptive).

2. Polygonal approximation of trimming curve

In the previous section, they calculate a maximum edge length X such 

that triangles in the parameter domain with sides less than X map onto 

3D triangles that are within s distance from the surface. The task now is 

to subdivide the trimming curves into polylines, such that no edge is 

longer than X,

3. Selection of points inside trimmed region

The selection of points inside the trimmed region is done via a simple 

scanline-type algorithm used in raster graphics to fill a polygon. Once 

the trimming curves are approximated, points inside the trimmed region 

are selected in a similar way to pixel selection in the polygon fill 

algorithm [65].

4. Triangulating the trimmed region

This step is tied to a specific data structure to store points as well as the 

boundary edges of the trimming curves. This structure is obtained by 

putting a uniform grid over the points and processing each point and 

edge into a grid cell. Each cell then has a list of points lying inside the 

cell, and a list of edges intersecting the cell. By applying a Delaunay 

triangulation algorithm, the points in each cell are transformed into a set 

of Delaunay triangles.

5. Mapping triangles onto the trimmed surface
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Once the triangulation of the trimmed domain is completed, the domain 

triangles are mapped onto the surface forming a tessellation. Although 

this is a straightforward map, a data structure has to be maintained so 

that triangles can be passed onto a postprocessor, such as a contouring 

program or a shader based on polygonal objects.

5.1.6 Summary
The first method is designed for the special graphic hardware for rendering 

triangles which are generated from the AFD method. It works for cubic Bezier 

surfaces only and it is not practical for tessellating high degree surfaces. The 

second method is a uniform tessellation that generates more triangles than non- 

uniform methods.

The other three methods perform tessellation in parametric space. The first 

method is both dynamic and non-uniform tessellation. However, it involves 

some complex algorithms which could reduce the stability of the whole 

method. The second method takes special care of the edges of the solid that is 

being subdivided, and guarantees the absence of cracks. This method has two 

main disadvantages: it is not adaptive (global bounds for second derivatives are 

found for every patch), and second, it does not care about the shape of the 

resulting triangles. The consequence of not being adaptive is that the number of 

triangulation vertices is too large. The third method is adaptive and not 

sensitive to the complexity of the trimmed patch. Unlike the first method, it 

calculates the bound for second derivatives locally, therefore it achieve more 

efficient flatness testing.

All three methods have common advantages and disadvantages as general 

tessellation methods in the parametric domain.

Advantages:
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• Methods that operate on triangles are far easier and numerically more 

stable than those dealing with freeform geometry.

• The piecewise triangular approximation is a parameter independent 

representation of the trimmed surface.

Disadvantages:

• Adequate representation of a trimmed patch with high curvature areas 

requires large numbers of triangles.

• The triangulation, if not done properly, can result in triangles of different 

sizes, and, in particular, in long and skinny triangles which, in turn, can 

cause numerical problems.

5.2 New Approach
Like the two tessellation methods that are discussed in the previous section, our 

method has most of the advantages that the other tessellation methods in the 

parametric domain have. Our new approach differs in the way it checks the 

flatness of the desired patches, and its way of subdividing the surface. The 

subdivision and flatness checking have the same methodology as the solution 

to the problem of point projection for NURBS curves and surfaces. The 

tessellation is based on the individual Bezier patch that is flat enough. The 

whole algorithm consists of the following steps:

• Finding the bounding box for outer trimming loops and spitting the 

surface to fit the bounding box. The splitting method uses knot 

refinement.

• Subdividing the surface into a set of Bezier patches which are flat enough.

• Removing the patches outside the boundary of the outer trimming loop 

and removing the patches inside the boundary of the inner trimming 

loops.

• Closing the outer and inner boundary with a set of triangles.
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(a) The original NURBS surface.

(b) “flat enough” Bezier patches.

(c) The holes between the Bezier patches. (d) Rendering picture for the

holes and patches.

Figure 5.3: Tessellating the untrimmed NURBS surface
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5.2.1 Tessellating the untrimmed NURBS surface

Before we start to tessellate the trimmed NURBS surface, we give an 

introduction to the tessellation of an untrimmed NURBS surface, which is 

based on the methodology of subdividing the NURBS surface into a set of “flat 

enough” Bezier patches. If we only accept the set of “flat enough” Bezier 

patches as the result of tessellation, some holes will appear between patches 

due to the approximation of a patch boundary by a straight line. An example of 

this degenerative process is shown in figure 5.3.

The solution for this problem is to use triangles to approximate the Bezier 

patches if it has midpoints along its boundary. We designed an easy way to 

generate triangles from the Bezier patches, which have at least one midpoint 

(See figure 5.4). As the exception, a patch with one midpoint generates three 

triangles. Generally, the patch with n midpoints generates (n+4) triangles. 

Finally, figures 5.5 and 5.6 show the tessellation using this solution.

1 Point 2 Points 3 Points 4 Points
Figure 5.4: Generating triangles from the Bezier patch.

Figure 5.5: The wire frame of tessellating result.
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Figure 5.6: Rendered picture of tessellating result.

5.2.2 Finding The Bounding Box and Splitting The 
Surface

From the definition of trimmed NURBS surface, we know that the trimmed 

surface has one outer trimming loop and several inner trimming loops. For the 

outer trimming loop, we define the outer bounding box in the parametric 

domain as the box containing all trimming curves in the outer trimming loop. 

On the other hand, the inner bounding box is the box containing all trimming 

curves in one inner trimming loop. As shown in figure 5.7, the solid-line 

rectangle is the outer bounding box and the dash-line one is the inner bounding 

box.

After obtaining the outer bounding box, we split the surface in both U, V 

directions in the parametric domain to make the remain surface fitting with the 

outer bounding box (showing in figure 5.8).
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Figure 5.7: Bounding Boxes

(a) Original NURBS surface.

(b) The surface trimmed with the outer bounding box 

Figure 5.8: Splitting surface to fit with the bounding box.

5.2.3 Removing The Patches
After we obtain the surface that fits within the outer bounding box, we 

tessellate it as an untrimmed NURBS surface, which is described in section 

5.2.1. We now have a set of “flat enough” Bezier patches. By mapping these 

Bezier patches into parametric space (U, V), we get a set of small rectangles 

instead. We also have all the trimming loops in parametric space and separate 

them as one outer trimming loop and several inner trimming loops. By
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applying the scanline algorithm [66][67] [68][69], we remove the patches 

outside the outer trimming loop and inside the inner trimming loops. At the 

same time, we build a point array for recording all boundary points along inner 

and outer boundaries. These points are used to generate the triangles for closing 

the boundaries.

1. Scanline Algorithm

The scanline algorithm provides the tools to determine whether a Bezier 

patch is inside the trimming loops, intersects with trimming curves or 

outside the trimming loops. As shown in Figure 5.9, uniformly 

distributed scanlines are placed in the U direction of parameter space 

and the density of U scanlines is determined by the tolerance of the 

tessellation. The Bezier patches are created between the two 

neighbourhood scanlines. Each scanline may have an odd or even 

number of intersection points with trimming loops. If we get an odd 

number of intersection points, we can repeat the tangent point to 

generate the even number of intersection points (No. 4 scanline in figure 

5.9). According to the sequence of the intersection points, we can divide 

the region into a positive one and a negative one. The positive one is 

inside the trimming loops and the negative one is outside the loops 

(figure 5.10). Finally, we can compare the Bezier patch with the 

positive and negative regions, remove the patches inside the loops, and 

create a patch to fit with the loop boundary if the patch intersects with a 

loop.

1______________ 2 3____________ 4

/ + V /  + \
1 2 3 4

Figure 5.10: Positive and negative regions
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A V

Figure 5.9: U Scanline

2. Summary

In summary, we give the algorithm for detecting the Bezier patches

outside the outer boundary.

A Igor ith m 1 Bezier Patch Outside Outer Bo undary 
Input: A Bezier patch and outer trimming loop.
Output: the result o f  detection.
Begin

{m is the highest index o f  outer trimming curves} 
fo r  i = 0 to i < m by /++ do

{Detect whether outer trimming curve intersect with the Bezier patch} 
begin

generate a polyline to approximate the trimming curve; 
i f  (the Bezier patch intersects the polyline) then 

Generate a new patch which f it with the outer boundary;
Add the boundary points into array; 
return the result o f  intersection and the new patch; 

end i f  
en d  {End o f  loop for}

Flag <— FALSE; {Flag TRUE: inside; FALSE: outside} 
fo r  i = 0 to i < m by /'+ + do

{Detect whether the patch is inside the outer trimming loop or not.} 
begin

generate a polyline to approximate the trimming curve; 
i f  (the Bezier patch is inside the trimming loop) then  

Flag <—TRUE; 
en d i f  

en d  {End o f  loop for}

i f  Flag = =  TRUE then  
return the patch inside the outer trimming loop; 

else
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return the patch outside the outer trimming loop; {The patch will be 
removed;}
E nd o f  Algorithm 1

We have a similar algorithm to detect the Bezier patches inside the inner 

boundary.

A lgorithm  2 Bezier Patch Inside inner Boundary 
Input: A Bezier patch and inner trimming loops.
Output: the result o f  detection.
Begin

{m is the highest index o f  inner trimming loops} 
f o r  i = 0 to i < m by /++  do

{Detect whether the Bezier patch is inside one o f  the inner trimming
loops}

begin
generate a polygon to approximate the trimming loop; 
i f  (the Bezier patch is inside the polygon) then

return the patch is inside the polygon; {The patch will be removed;} 
else i f  (the Bezier patch intersects with polygon) then

generate a new patch fitting with the inner boundary; 
add the boundary points into array; 

return the result o f  intersection and the new patch; 
en d i f  

en d {End o f  loop for}

return the patch outside the inner trimming loops;
E n d  o f  Algorithm 2

Finally, figure 5.10 gives the illustration of this procedure.

(a) The surface fitting with outer bounding box.
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(b) The tessellation result with removing all patches outside the outer 

boundary and inside the inner boundary.

(c) Rendered picture 

Figure 5.10: The procedure of removing patches

5.2.4 Closing the Outer and Inner Boundary with a Set of 
Triangles
The aim of this step is to generate smooth boundaries for both the outer and 

inner trimming loops. The point array that is generated in the last section is 

used to generate the triangles through the neighbouring points. To obtain the 

correct rendering effect, we need to set the points in anti-clockwise or 

clockwise direction in all triangles. Figure 5.11 gives the final result both in 

wire frame and rendering mode.
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(a) Wire frame picture of final result 1.

(b) Rendered picture of final result 1.

(c) Wire frame picture of final result 2.

(d) Rendered picture of final result 2. 

Figure 5.11: Final results of tessellation
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5.2.5 Summary of the Algorithm
The summary of the whole algorithm is given by the following the pseudo 

code.

Algorithm 3 TessellationfTrimmed_NURBS_Surface 
Input: A trimmed NURBS surface 
Output: a set o f  quadrilaterals and triangles 
Begin

Get the outer bounding box;
Split the NURBS surface to f it  with outer bounding box in parametric space; 
Tessellate the surface as an untrimmed NURBS surface; {The result is a set o f  

Bezier patches}
(m is the highest index o f  the Bezier patches.} 

fo r  i = 0 to i < m by /++  do
{Detect whether to remove, generate a new patch or keep the pa tch }  

begin
i f  (Bezier_PatchOutside JduterJBoundary return intersection) then 

Add the new patch into patch array; 
else i f  (Bezier_Patch_Outside_Outer_Boundary return inside) then 

A dd the original patch into patch array; 
end i f

{n is the highest index o f  inner trimming loops.} 
fo r  j~ 0  to j< n  by j+ +  do 

begin
if(Bezier_Patch_Inside_inner_Boundary return intersection) then 

Add the new patch into patch array; 
else i f  (Bezier_Patch_Inside_inner Boundary return outside) then 

Add the original patch into patch array; 
end i f  

end {End o f  loop for}

end {End o f  loop for}

Generate quadrilaterals and triangles from the patch array;
Generate triangles from the boundary point array;
End o f  Algorithm 3

5.3 Conclusions
In this chapter, we have presented an algorithm for tessellating a trimmed 

NURBS surface in the parametric domain. Based on the flatness test, the 

method stops the subdivision of the surface and obtains a tessellation within a
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user specified tolerance. The tessellation is performed completely in parametric 

space, and furthermore this method does not adopt any complex method to 

generate triangles, so that the procedure runs fast and reliably.

One drawback is that the surface subdivision involves high computation which 

reduces the efficiency of the whole algorithm. The subdivision techniques 

using knot insertion have been described by Boehm [70] and Cohen and others 

( the Oslo algorithm) [71]. The efficiency can be improved by computing only 

part of the control net in the knot insertion algorithm to speed up the procedure 

of the flatness test for control net of the Bezier patch.
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Chapter 6

Deforming B-rep Model

6.1 Deformation on a single untrimmed 
NURBS surface
As described in chapter 3, we apply the metaball deformation model on a single 

NURBS surface. By moving the control points on the refined control point net 

of the NURBS surface, we can deform single or multiple general constraints on 

the surface. Figure 6.1 shows an example of deforming “MVC” on the NURBS 

surfaces.

O s i g n «  and programmed by Ma YmgLwng

Figure 6.1: deforming “MVC” on the NURBS surfaces.
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There are two ways for applying multiple constraints on a single NURBS 

surface. Method one is to apply them individually so that the constraints will 

overlap each other. Method two is to calculate the minimum distance for all 

constraints and apply them together as a group on the surface. Figure 6.2 gives 

an illustration of deforming multiple constraints on single surface.

(a) Original NURBS Surface and general curve constraints.

(b) Applying method one on the surface.
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(c) Applying method two on the surface.

Figure 6.2: Apply different constrained deformation methods on the surface

From figure 6.2(b) and figure 6.3(c), we can see that method one accumulates 

the displacements for individual curve constraints. On the other hand, method 

two calculates the distances for all curves instead of just one curve and selects 

the minimum one which generates the displacement.

6.2 Deformation on a trimmed NURBS 
surface
According to the definition of the trimmed NURBS surface described in 

section 2.5.1, we give the data structure of the trimmed surface in a C++ style.

class TrimNURBSSurface 

{
NURBSSurface m_Surf; //untrimmed NURBS surface.

NURBSCurveArray m_CurArr; //trimming curve array in parameter space. 

TrimmingLoopArray m_LoopArr; //trimming loop array (Both inner and outer).

};

The data structure of TrimmingLoop is defined as:
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Class TrimmingLoop

f
IntArray mjndexes; //curves1 index for each loop.
BOOL mjype; //TRUE for outer loop; FALSE for inner loop.

};

We keep trimming curves (both inner trimming loops and outer trimming 

loops) unchanged on the parametric domain when deforming single or multiple 

general constraints on the trimmed NURBS surface. However, the shape of 

trimming curves in 3D space could be changed after the deformations. In our 

prototype system, deformation on a trimmed NURBS surface is divided into 

three steps.

1. Extract outer trimming loops and calculate its bounding box

We only move the control points which are inside the enlarged outer 

bounding box. The enlarged outer bounding box is box which is offset 

toward the outer direction by a distance of the effective radius in the 

metaball model. The goal of only moving points inside the enlarged outer 

bounding box is to reduce the computation of metaball deformations. Figure 

6.3 gives an illustration. The dash-line curves are the inner trimming loops 

and the solid-line curves are the outer trimming loop. The square-dot 

rectangle is the bounding box for outer trimming loops and the round-dot 

one is the enlarged bounding box.
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(a) A trimmed NURBS surface.

enlarged 
bounding box

bounding
box

(b) Outer bounding box and its enlarged bounding box (parametric space).

Figure 6.3: Trimmed NURBS surface and its trimming loops

2. Deforming the trimmed NURBS surface

Similarly to deforming the untrimmed surface, we deform the untrimmed 

NURBS surface (m Surf) in the data structure of the trimmed surface by 

moving the control points inside the enlarged bounding box.

3. Tessellating the deformed and trimmed NURBS surface

During the deformation process, we only change the untrimmed NURBS 

surface and keep other data numbers unchanged. Using the tessellation 

method describe in chapter 5, we subdivide the deformed surface, remove 

unwanted Bezier patches and close the boundary with a set of triangles. The 

final result is given in figure 6.4 (using the same surface as figure 6.3).
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(a) Deformation on an untrimmed surface

(b) Deformation on a trimmed surface 

Figure 6.4: Deforming the trimmed NURBS surface by using metaball model

6.3 Deformation on a B-rep Model
A NURBS B-rep model contains several trimmed NURBS surfaces which form 

the faces of the B-rep model. Each face has several edge curves connecting 

with other faces. In this thesis, we only discuss the method of deforming one 

face of a B-rep model. Deforming two or more faces at the same time is much 

more complicated and is left for future discussion.

Deforming a face on the B-rep model may change one or more edges on this 

face. That leads to changes to other faces which are associated with these
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edges. There are three methods to solve the modification of other faces in a B- 

rep model.

Method one first maps these edges (trimming curves) into the parametric space 

of individual faces (trimmed NURBS surfaces). The mapping involves 

converting 3D NURBS curves into 2D NURBS curves in the parameter 

domain. Point inversion for a NURBS surface, described in chapter 5, can find 

the parameter values (u, v) for reconstructing the 2D trimming NURBS curve 

in parametric space. Then we regenerate the modified faces by resetting the 

trimming curve array in the data structure of the trimmed NURBS surface, as 

described in section 6.2. Finally, we connect all faces, edges and vertices 

together to regenerate the B-rep NURBS model. An example is given in figure 

6.5. We deform a line constraint on the top surface of the B-rep model. That 

causes changes to two edges connecting with two general cylinder surfaces 

(holes). The red coloured surfaces are changed.

(a) The broken original B-rep model.
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(b) The broken deformed B-rep model (deforming only the top surface; two 

general cylinder surfaces are also changed).

Figure 6.5: Deforming the B-rep model by using method one (Made in Rhino).

However, when we apply method one to some complex B-rep models, some 

edges may go beyond the boundary of associated faces and it is also impossible 

to extend the faces in some degree due to the complex shape of the faces.

Method two overcomes this disadvantage. The only condition is that we must 

know the history of the construction of this B-rep model so that we can 

reconstruct the B-rep model from the deformed trimmed NURBS surface. For 

example, we extrude one trimmed surface to create a B-rep model (figure 6 .6a). 

If we deform a straight-line constraint on this trimmed surface and then extrude 

the surface again to recreate the B-rep model (figure 6 .6b).

Although method two is simple, fast and accurate, it is not suitable for all B-rep 

models. A simple B-rep solid model does not contain any information about the 

construction history while a CSG solid model does. The third method can 

provide a complete solution for the deformation of a B-rep model.
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(a) The original trimmed surface and B-rep model

(b) The deformed trimmed surface and reconstructed B-rep model 

Figure 6 .6 : Deforming the B-rep model by using method two (Made in Rhino).

The third method is to create one or more surface patches between the 

deformed edges and original edges. The patches are the blending surfaces. The 

blending surface can be created from two boundary NURBS curves. Therefore, 

the blending surface fits the gap between the original edge and the deformed 

edge, as shown in figure 6.7. The final result is shown in figure 6 .8 . The red 

colour surfaces are the surface patches (blending surface). A comprehensive 

survey of blending surfaces is given in [72][73][74]. The size of blending 

surface depends on the effective radius in the metaball deformation model. 

Because the sizes of blending surfaces are normally much smaller than the 

whole size of the B-rep model, we can apply the method of creating a ruled 

surface, described in section 2.4.3, to create the blending surface. It is the 

simplest blending surface.
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Figure 6.7: original edge curves, deformed

Figure 6 .8 : The final result by using method three (Made in Rhino).

edges curves and surface patches
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All three methods have both advantages and disadvantages. Method one 

involves point inversion and reconstructing a trimmed NURBS surface, so that 

the computation cost is high. Another problem is that the new trimming curve 

may go beyond the boundaries of the original NURBS surfaces. In that case, 

we have to extend the surface to the new boundaries. The advantages of 

method one are that no additional information is required to reconstruct the B- 

rep model and no additional surfaces are added. Also the whole structure of the 

B-rep remains unchanged.

Method two gives a simple solution for reconstructing the B-rep model from 

the deformed surface. It does not involve any geometric computation and the 

new B-rep is robust. However, not all B-rep models can be recreated from the 

single surface.

Method three is the best solution. Blending surfaces are created to fit the gaps 

between the deformed edges and the original edges. No complicated geometric 

computation is needed.

6.4 Summary
This chapter has generalized the technique of deforming general constraints on 

a single untrimmed NURBS surface, trimmed NURBS surface and a NURBS 

B-rep model by using the metaball deformation model.
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Conclusions

7.1 Summary of Work Done
This thesis describes a number of contributions to CAD and computer graphics.

Those contributions are highlighted in this chapter:

1. A novel approach for the point projection and inversion for NURBS 

curves and surfaces is presented in chapter 4. This method provides a 

good initial value for Newton-Raphson method to achieve a 

convergence and that makes the algorithm more reliable. Furthermore, 

for a NURBS surface, this approach dramatically decreases the 

computation of the algorithm by decomposing the NURBS surface into 

a set of quadrilaterals. It also applies the Newton-Raphson method on a 

Bezier patch instead of the whole NURBS surface, which improves the 

stability of the algorithm. The algorithm is incorporated into the 

metaball deformation model (chapter 3 and 6) to calculate the distance 

between the control points on the NURBS surface to a general constraint 

(a NURBS curve or surface). The algorithm has been extensively tested
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through projecting thousands of control points from the NURBS surface 

to the constraint to prove its stability and efficiency. The algorithm of 

point projection for NURBS curves and surfaces has been published in

[79].

2. Tessellating trimmed NURBS surfaces is one of the remaining research 

problems in CAD. A new method has been introduced in Chapter 5. The 

whole surface is tessellated into a set of both triangles and 

quadrilaterals, which can be sent directly to the graphics pipeline for 

rendering. It has the advantages of both optimising the number of 

polygons (triangles and quadrilaterals) and dynamically subdividing the 

surface based on the curvature of surface. It does not involve any 

complex triangle generation algorithm so that the performance of this 

method is fast and reliable. This research has been published in [80].

3. A new approach to deform the untrimmed NURBS surface, trimmed 

NURBS surface and NURBS solid model are presented in Chapter 3 and 

Chapter 6 . Previous work on the metaball deformation model is 

implemented on the mesh model (tessellated solid model) which no 

longer has accurate geometric information such as boundary surfaces, 

edge curves, trimming curves and etc. By modifying the position of 

control points of the NURBS surface, we extend the metaball 

deformation model to the NURBS objects. The metaball model for 

NURBS objects can achieve accurate geometric modification, which is 

suitable for the CAD domain. In the case of NURBS solid models 

represented by B-Rep, our method deforms one of the boundary surfaces 

and creates blending surfaces fitting the gap. Deforming the solid model 

not only keeps more accurate geometric information than deforming the 

mesh model, but also achieves better rendering results.
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7.2 Future work
The ideas presented in this thesis open up several interesting directions for 

future research:

• Point Inversion and Projection for NURBS Curves and Surfaces: The

extension of this algorithm to calculate the minimum distance between 

two NURBS curves or two NURBS surface could be considered. The 

analysis of the relationship between a single test point and a Bezier 

subcurve or a Bezier patch can be extended to analyse the relationship 

between two Bezier subcurves or two Bezier patches. By finding a pair of 

candidate Bezier subcurves or Bezier patches, we recursively subdivide 

them until they can be approximated by straight line or a plane. The final 

minimum distance can be calculated through computing the distance 

between two straight lines or two planes.

In a similar way, this algorithm could also be extended to compute the 

minimum distance between NURBS curves and NURBS surfaces.

• Adaptive Tessellation for Trimmed NURBS Surface: Future work on 

adaptive tessellation techniques will be extended to tessellate the whole 

NURBS solid model, which contains several trimmed NURBS surfaces 

forming its boundary surfaces. Tessellating all boundary surfaces 

separately is not acceptable, because it may lead to holes along the 

boundary edges. Holes on the edge are caused by the discontinuous vertex 

connections between two neighbourhood boundary surfaces. Therefore, 

research into tessellating the whole solid model involves creating unified 

vertices along edges.
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• Metaball Deformation Model for NURBS Objects: Initially, we may 

incorporate different potential functions into the metaball deformation 

model to create different blending effects. Alternative potential functions 

are B linn’s exponential function, Nishimura’s piece-wise quadric 

polynomial, and Murakami’s degree four polynomial [50]. Further 

attention should be directed toward incorporating some physical 

properties into the metaball model also, so that the displacement of 

individual control points is not only decided by the distance function but 

also affected by other functions associated with the physical properties. 

Furthermore, deforming two or more neighbourhood boundary surfaces 

should be considered, providing a more flexible deformation tool for 

NURBS solid modelling.
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Appendix A 

openNURBS Toolkit

The testbed software includes two libraries: openNURBS toolkit and 

YLNurbsLib, which has been developed by the author. This appendix gives an 

overview of the toolkit. The openNURBS toolkit is available on the 

openNURBS website (www.opennurbs.org) which is funded by Robert 

McNeel & Associates.

A.l Overview of openNURBS toolkit
The openNURBS toolkit can read and write the complete Rhinoceros file 

format. Rhinoceros is a design software package, developed by Robert McNeel 

& Associates. Rhinoceros data files contain NURBS curves, surfaces, and 

solids. These data types can accurately hold all of the 3-D geometry found in 

most other CAD/CAM file formats including IGES [77], STEP [78], VDA/FS, 

ACIS, Parasolid, etc.

The openNURBS toolkit is written in standard C++, which can be compiled in 

Windows, Mac and Linux environments. Object-oriented design makes it 

possible for the user to understand the relationships between individual
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geometric objects that are represented by NURBS. A base geometric object 

class (CRhinoObject) is derived from an abstract class: CRhinoChunk, which 

has a unique ID number and virtual functions for reading and writing geometric 

data. CRhinoObject has some common attributes shared by all geometric 

objects, such as colour, material, label and bounding box. Figure A .l shows the 

hierarchical relationships between all classes inside in the openNURBS toolkit.
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I
CRhinoChunk

CRhinoObiect

-► CRhinoAgCurve

CRhinoBrep

CRhinoAgFace

-► CRhinoAgShell

CRhinoMesh

"► CRhinoMeshGeometry

CRhinoNurbsCurve 

-► CRhinoAgSpline 

CRhinoNurbsSurface

-► CRhinoAgSurface

-► CRhinoPointSet

-► CRhinoSpotlight 

-► CRhinoViewport

► CRhinoBumpMap

CRhinoEndOfTable 

CRhinoLayer 

CRhinoLayerlndex 

CRhinoName 

CRhinoNotes

CRhinoRGB 

CRhinoTextureMap 

CRhinoT ransparency 

CRhinoXdata

Classes Not Derived from

CRhinoFile CRhinoArray

CRhinoMaterial — ► CRhinoCurveArray

CRhinoWorkSpace — ► CRhinoIntArray

CRhinoXform — ► CRhinoNurbsCurveArray

— ► CRhinoSurfaceArray

Figure A.l: Hierarchy Chart of openNURBS toolkit libaray
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YLNurbsLib

Based on the infrastructure of the openNURBS toolkit, the author developed 

the YLNurbsLib library, which works as a geometry kernel for his testbed 

software. It has the object-oriented definitions of NURBS curve, NURBS 

surface, trimmed NURBS surface and mesh. It also includes methods of point 

projection and tessellation, which are described in chapter 4 and 5.

B.l OO definitions of NURBS objects
A simple class; CYLNLibObject, an abstract class for the whole library, 

contains only colour information and several virtual functions. Derived from 

this abstract class, CYLNLibNurbsCurve and CYLNLibNurbsSurface have 

common NURBS data (knot vector, control points and degree), basic functions 

(evaluation, knot insertion, splitting) and some advanced functions (point 

projection, tessellation for surface only). Figure B.l gives the relationships 

between all classes within the YLNurbsLib library.
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CYLNLibObject 

-► CYLMesh

->  CYLNLibNurbsCurve 

-► CYLNLibNurbsSurface

-► CYLNLibTrimSurface

Figure B.l: Hierarchy Chart of YLNurbsLib libaray

To define a NURBS curve in YLNurbsLib, the user needs to give dimension 

(must be 3D), type (rational or non-rational), degree and number of control 

points in the NURBS curve construction function:

CYLNLibNurbsCurve (int dimension, BOOL blsRational, int degree, int cv count);

The public functions SetKnot(int index, double k) and SetCV(int index, 

POINT STYLE style, const double* Point) in CYLNLibNurbsCurve class are 

used to set up the knot vector and control point array. The length of knot vector 

can be calculated through equation B.l.

lengthJmot = degree + I + cv count (B .l)

Here is an example of a NURBS curve declaration in YLNurbsLib library:

Classes Not Derived from

CYLNLibArray

► CYLNLiblntArray

 CYLNLibNurbsCurveArray

 ^  CRhinoNurbsCurveArray

 ^  CYLNLibSurfaceArray

CYLNLibColor

CYLNLibException

CYLNLibMaterial
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Int i , knot_count;

C YLN LibN urbsC urve *NewCurve;

//define a n on -ra tional N U R B S cubic curve w ith  5 co n tro l p o in ts  

N ew C urve  =  new  C Y LN LibN urbsC urve (3, FALSE, 3, 5);

fo r ( i= 0 ;  i< 5; i+ + )

SetCV(i, y l n o t  rational, P i); //S e t up non-rational co n tro l p o in t a rra y

knot_count =  3 + 1 + 5 ;

F or(i= 0 ; i<knot_coun t; i+ + )

SetK not(i, K i);

Similar to the NURBS curve, a NURBS surface can be defined through the 

surface construction function:

CYLNLibNurbsSurface (

int dimension, //Must be 3

BOOL blsRational, //True for rational, False for non-rational 

int degreeju, //degree in U direction

int degree_v, //degree in V direction

int cv_count_u, //CVcount in U direction

int cv_count_v //CVcount in Vdirection

);

Also two public functions (SetKnot and SetCV) are used to set up the U, V knot 

vectors and control point net.

The class declaration of trimmed NURBS surface has been already described in 

section 6.2. The trimmed NURBS in YLNurbsLib has some additional private 

data members such as point arrays for external boundaries and internal 

boundaries, which are used by the functions inside class and are not accessible 

from functions outside the class even the derived class.

Deforming Surfaces & B-rep Models Appendix B. YLNurbsLib



Appendix B. YLNurbsLib 149

B.2 Memory Management
Memory management is an important issue in software development. Memory 

leakage is a serious problem in many applications. If the software has a 

memory leakage problem and runs for a veiy long period, the computer may 

run out of memory and crash. The YLNurbsLib library uses a dynamic array to 

store all NURBS objects. CYLNLibArray is a template dynamic array. Because 

NURBS objects are a complex class, it is not possible to directly put the object 

in the dynamic array. Instead pointers to NURBS object classes are stored in 

the dynamic array. Therefore, to prevent the memory leakage problem, it 

requires two steps to release all memory used by the NURBS objects.

• Step 1: delete NURBS objects.

• Step 2: delete all pointers allocated in the array.

Here is an example of dynamic NURBS curve array:

• Definition
c la ss  N u rb sC u rv eA rra y  : p u b lic  C Y L N L ib A rra y< C Y L N L ib N u rb sC u rve* >

{
p u b lic :

N u i'bsC u i'veA ?ray( s i z e j  =  0 ) ;

-N u r b s C u rv e  A rr a y  ();

};

• Release all memory
size = NurbsCurveArray.GetSize(); 

for(i=0;i<size;i++)

delete NurbsCurveArray[iJ;

NurbsCurveArray.RemoveAllO; //Remove all pointers inside the dynamic array
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