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ABSTRACT

This thesis deals with certain aspects of "The Fourier Analysis
of Light Curves of Eclipsing Variables". The subject has been worked
out mainly by Kopal in a series of papers starting in 1975, to devise
swift and reliable methods for obtaining the elements of eclipsing
binary systems from their observed photometric data.

When the fractional loss of light o< was identified with a Hankel
transform of zerc order (Kopal, 1977a) it became possible to derive
general expressions (Kopal, 1977b, ¢; Demircan, 1977b, 1978b) for
the requisite basic quantities o< , I and Agm = integrals of the
analysis. In this thesis a number of useful new algebraic expressions
for the same basic quantities, in addition to those already referred to,
have been presented. Their fast efficient computation has been put
into practice, This has opened an easy way to practical applications
of the frequency domain methods which have been constructed in the
last four years of continuous effort.

Practical procedures (KKopal and Demircan, 1978) for obtaining
the elements of any eclipsing system from observed photometric data
by an analysis in' the frequency domain have been reviewed. The methods
for obtaining the elements of wide eclipsing binaries from a single
minimum light curve have been automated and tested successfully on

the light curves of YZ(21) Cassiopeiae and F Persei (Algol). A method

;
/

has been developed for the iterative solution of the two fundamental




eclipse parameters a and c::D . Numepical tables of some new functions
required in the analysis have been constructed.

It was noted that the determinacy of the unknown eclipse para-
meters depends on not only the accuracy of observations but also the
nature of the employed g-functions. The choice of the most convenient
g=function to obtain a good determinacy for the eclipse elements has |
been discussed. In this connection, i) the m dependence of the moments
Agm s and the errors in ¢iae their observational values have been con~
sidered, ii) different practical procedures for the solution of eclipse

elements were introduced, and iii) different types of moments were

tested.
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INTRODUCTION

The importance of the study of eclipsing variables in contemporary
stellar astronomy is well known., Knowledge of all stars is increased by
what eclipsing stars can tell us of the sizes, masses, densities, and
luminous efficiencies of the stars of various spectral types. In fact,
they try to tell us more than these, for example, about the nova phenorm-—
enon, xX—ray emission mechanism, mass flow, extending atmospheres
of Wolf-Rayet variables, etc.

Their fortunate characteristics are given below:

1. 0.1% of the stars in the vicinity of the Sun happen to be binary
systems exhibiting eclipses. If a similar proportion were characteristic
of our galaxy as a whole, the total number of eclipsing binary systems
within it should be of the order of 1O8 (Kepal, 1975%a, Introduction) and
probably closer to 109.

2. From the physical point of view, close binary systems are found
to occur amongst all types of stellar populations, in all regions of the
Hertzsprung-Russell diagram occupied by the stars. They include the

"dwarf stars', '"neutron stars', "red giants", as well as the probable

"black holes'".

3. They represent the only kind of double stars whose nature can be
recognized by their characteristic variation of light or radial velocity
across the great distances in space, including external galaxies.

The characteristic light and radial velocity changes of eclipsing




binaries exhibited in the course of each orbital cycle are the principle
sources for their investigation. These changes can be observed by
different methods (photormetric or spectroscopic) with considerable
accuracy. For the collection of the recent observations of eclipsing
binaries see, e.g., Koch et al (1970), and Fracastoro (1972).

Many methods have been developed so far for the study and inter—
pretation of observational data of eclipsing binharies, starting with the
attempt by Fickering (1880) to determine the elements of Algol. Most
investigators including Russell and Shapley (1912), Fetlaar (1923),
Sharbe (1224), Krat (19834), Piotrowski (‘1 987) and Schneller (1849) in
this field worked in the direction of separating the specific parameters
into groups, among which there is little or no correlation permitting
determination separately. For example, it has long been known that
the limb~darkening coefficient L,_J1 ; the ratio of the radii K , and the
maximum geometrical depth PO form one such group. Some others

are the "rectification” parameters, the luminosities LS and L

g

and finally i, r_ and t‘"g in their usual meaning.

=

Kopal, in a series of papers starjting in 1941 and culminating in
the monograph of 1859, introduced an iterative approach to the solution
of the problem. He says, "As the problem proves to be highly nonlinear
in quantities to be determined, its mathematical solution can be approached
only by successivé approximations."
On ancther line, Krat's (1940) suggestion about a minimization

method was found to lead to the numerical experimentations of the




iterative minimization procedures. Many investigators have worked on
this line, since the job here is only the simple numerical experimentation
to select the optimum theoretical light curve by using electronic com=
puters. The required computations in this approach are too extensive
even for the simplest physical models of binary systems with known
initial parameters. Therefore, the analyst here has to work not with

the large amounts of original observations, but judiciously manufactured
small number of normal points. In spite of the above limitations, the
methods in this line have been advanced, taking into account '"reflection™
and "distortion" effects as well as limb and gravity darkening. However,
one should expect that, just as in other areas, this approach may yield
useful and, very often, unexpected results.

In fact, it is known that the main problem here in the description
of the forms and the luminosities of the components of eclipsing binaries
is one of the most complicated problems in stellar astronomy. Close
binaries are never the spherical, uniformly luminous bodies moving in
circular orbits that would make for easy analysis. They are deformed
in body and complicated in radiation intensity by rotation and gravitation
as well as reflection. Further complexities come from other possible
companions in the system, eccentric orbits, rotating apsides, mass
flow, mass exchange, star spots, surrounding materials, equatorial
rings and tides. But as it was noted, the labour in this field has been
most profitable .

As the inevitable results of the above complexities one should not




expect to find trustworthy solutions by using oversimplified models

(use of spheres or two similar rotational ellipsoids for the shape of the
components, and unrealistic "rectification" of the observational light
curves). If the components of the system are sufficiently Faxgﬂ apart for
their mutual distortion to be ignored (therefore both components can be
regarded as spheres) the methods for the solution of the eclipse elements
seem to be adequate, and to make them more adequate attempts have
been made to minimize the effects of observational errors by least-
squares procedures -developed by Wyse (1839) and Kopal (1959). Whéﬁ,A
however, the two components are brought closer so that the photometric
proximity effects caused by the rotational and tidal distortion and radiative

interaction of the components, become appreciable, the satisfactory

situation with regard to solution for the elements of the system disappears.

So, what could be done for the proper analysis of the light curves of at
least uncomplicated systems?

With about twenty years of experience Kopal (1960) gradually came
to a conclusion that a considerable alteration of the architectural style
of the problem may be necessary for the proper analysis of the photo-
metric observations of eclipsing binaries. Radically different methods
should have been developed for the parallel (rather than consecutive)
operations on the proximity and eclipse effects. This analysis would
be possible, not in the time—~-domain, but in the frequency—-domain, i.e.,
it is not the light curve itself which should be subject to orbital analysis,

but rather its Fourier transform. Some of the underlying analysis in




the frequency domain was carried out by Kopal in 1959-1860, but
unexpected preoccupation with the problems of the solar system between
18611973 caused a postponement of the problem. Then, the "Fourier
analysis of the light changes of eclipsing variables' attracted the
attention of Mauder (1962, 1966) and Kitamura (1965, 1987) and they
could develop in some respects the required techniques for the analysis.
During these years, another novel integral approach was introduced to
the solution of the problem by Cherepashcuk, Goncharskii and Yageala

in a series of papets starting in 1966, by determining the light curve of
an eclipsing system by a pair of Fredholm integral equations of the first
kind.

After Kopal returned to the subject in 1973, the Fourier techniques
have been developed to devise swift and reliable methods of deriving
definite information on stars from ec lipsing binary light curves. This
work was chiefly instituted by Kopal (1975a,b,c,d,e, Papers I-V; Kopal,
Mar*keﬂcs and Niarchos, 1976, Paper Vi; 1976a, b, Papers VIII and IX;
1977a,b,c, Papers X-XII, Kopal and Demircan, 1978, Paper XIV).
Other contributions to the subject have been made by Kurutag (1976),
Smith (1976, PaperVil;1977), Livaniou (19773 1978), Al-Naimiy (1977a;b),
Niarchos (1977q),Budding (1977), Tsouroplis (1977), Caracatsanis (1977),
Najim (1977), Kaskambas (1977), Theokas (1 977~?’3},Demircan (1977a;
1977b, Paper XI1II; 1978a,b, Papers XV and XVI), and Edalati and
Budding (1978, Paper XVII).

The present work is addressed to an outline of the certain aspects




of this novel approach: "Fourier analysis of the light curves of eclipsing
variables", The most parts of the work given here are unpublished
original work of the author. For some parts which are quoted in the
text the Papers [, X, XI, XII, XIII, XIV, XV and XVI will be the
fundarmental sources,

In the application of the methods a background knowledge of some
special functions such as X, -~ and I-integrals is still required. Extensive
tables of these functions have been published by Tsesevich (1939, 1940),
Kopal (1947), Merrill (1950), Irvine (1962) and Davis (1964), and so
much effort has been exercised to appr&gimate these tables by some
interpolating polynomials. This was successful for ol and inverse p-
functions only in the case of linearly limb-darkened stars with the
accuracy of almost four decédmal places (cf. Jurkevich, 1870, and Fligel
and Wilson, 1968). The I-integrals have been e valuated so far as elliptic
integrals, just like X ~functions, directly by the iterative solutions of
the Landen type transforms (cf., e.g., Budding, 1974), and recently
the author (Demircan, 1976) has re-tabulated these integrals for partial
eclipses by making use of the hypergeometric functions 2?1

However, Kopal has recently shown in Paper XI that all these
integrals can be defined as Hankel transforms in the frequency—domain.
;This new definition gave rise to a number of new useful expressions for
the evaluation of respecti;/e integrals which will be the subject of
Chapter I,

The &{ - and I-integrals are of fundamental importance for an




analysis of the light curves of eclipsing variables in the time-domain.

In the frequency-domain, however, they play but an auxiliary role, for
the fundamental quantities used there as a basis for the solution of the

- elements of the respective system are the "moments of the light curves®
Agm . The second chapter is designed to provide an outline for these
quantities. Some expressions for the theoretical moments Agm which
have been derived by employing the expressions given in Chapter I will
be given.

Chapter Il contains some discussions of the computational aspects
for the quantities ¢ 's and Agm's as they are given in Chapters I and
II. They have been checked numerically and the algorithms for their
numerical computations for any set of parameters will be enclosed.

Chapter IV gives a review of the practical procedures (which are
given in Paper XIV) for the solutions of the elements of any eclipsing
system with the applications to two certain eclipsing binaries: ¥YZ Cas-
siopiea (see Paper XV) and /13 FPersei (Algol),

Chapter V is devoted to the conclusions and the accuracy of the
Fourier analysis of the light curves of eclipsing variables. A discussion
of the methods and the results is given, and various limitations in the
practice and the further possible research are indicated.

In the Appendices the tables of a number of necessary functions
for the analysis are given for grey plane-parallel stellar atmospheres

up te four significant digits at intervals permitting linear interpolation.




CHAPTER 1

THE LOSS OF LIGHT
o< AND THE RELATED INT EGRALS

The concept of "loss of light" is one of the most important concepts
in the light curve analysis of the eclipsing binary systems. In this
chapter we shall discuss this concept.

In section 1.1 we shall review briefly the certain aspects of the
light changes of close binary systems. In section 1.2 a novel approach
(see Kopal, 1977b; Paper XI) to the loss of light will be outlined and in
the following sections a number of useful new expressions, developed
by Kopal (1977b, ¢; Papers XI, XII) and the present author (cf., e.g.,
Demircan 1977b; Paper XIII), for the loss of light suffered by mutual

eclipses of the components of close binary systems will be given.

1.1 Light Changes of Close Binary Systems.

A general task of determining the elements of eclipsing binary
systems from an analysis of their light curves necessarily requires a
knowledge of the light changes of close binary systems. This variation
in light evidently depends on the form of both components as well as on
the distribution of brightness over their apparent discs. Important
contributions to this subject have been made by a number of authors,

von Zeipel (1924)
includingjTakeda (1934, 1937), Russell (1989) and Kopal (1942, 1947,

1954).

The surfaces of the components of close binary systems deviate




from a sphere and take one of the equilibrium form under instantanecus
rotational and tidal forces. In these systems the proximity effects
upon the light variation involve two main influences of "ellipticity" and
"reflection™ which correspond to the gravitational effects and the radi-
ative interactions. The description of "ellipticity™ effects arising from
rotational and tidal forces, in terms of spherical harmonics of up to
and including fourth order has been given by Kopal (1942). We shall
approach this description by considering the instantaneous luminosity 1

of a close binary system of the form

U"Al (1.1)

where U represents the sum of the uneclipsed luminosities L§1 5
3

of both components when the phase angle © becomes QOQ or QTOD s

which is presumed to be constant and usually set equal to unity, and

is the luminosity correction due to both distortion and reflection effects

which can be given more concisely (cf. Kopal 1876b, Eq. 2.6) as

A

2‘(: Ler'® Z__,}‘Cmoq +
[=0

+ L,Zd i /QZL" JE(L p(U} /

(1.2)

where suffix 1 and 2 refer, respectively to the eclipsed and the eclipsing
star and L. stands for the luminosity of the respective sphere which

represents the distorted component. The last two summations represent
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"eclipse effect" upon the light variation of the system which is decarmposed
in two parts: the first summation gives the "circular” part of the resulting
loss of light, while the second summation stands for the "boundary cor-
rections arising from the distortion of t‘he components, both summations
vanish if there is no eclipse. The first summation on the r.h.s. of
(1.2) as a power series in cos 6 represents the light variation of the
system which is free from any eclipse effects. For the reduction pro-
cedures of this ellipticity effect, together with the reflection from the
observations between minima, see Paper IX. However, an assumption
is made here that "the proximity effect obtainable from the observations
between minima can be extrapolated for the eclipse phases."

The C(D‘s on the r.h.s. of (1.2) are associated with the law of
limb darkening of degree /\. in powers of the cosine of the angle

of foreshortening of the form

and given by Equations (2.4) and (2.5) of Paper 1I as rational fractions

in terms of the coefficients of limb darkening LLI s Un s o u u,,\n as

C(Ol (=l = Uz~ ”‘_UA oncl (L) Uy

. o P AU * 1.4
J U Lor j>0 - RO (1.4
[ — — 7 _ J U
2+ / bl
=1 L .—2.‘5“[]
J=

The quantity f, relates to the correction to the luminosity of the

eclipsed area of the undergoing star and contains only the functions

c;{hm ,» while f1 o represent the photometric contributions of the

2




-1 -

"boundary corrections™ arising from the distortion of the primary and

secondary components. These quantities f contain only the j

1,2
and I-integrals.

Thus, apart from the reflection eff ect, the whole complexity of

the light changes of close binary systems between minima as well as

i Cne n’l
. . ¥l
within eclipses is evidently stored in the evaluation of G*(:,L 5 ‘_J; y
o 11 2o
and /5 ¥ —-integrals. These eclipse functions, occurring on the
2

r.h.s. of (1.2) have been extensively investigated (cf. Kopal, 1959,
sections V.4 and IV.5) by a purely geometrical approach and put into
practice by a number of authors including Jurkevich (1970), Linnell and
Proctor (1970, 1971), Budding (1978), Soderhjeim (1974) and Demircan
(1977a).

The difficulty in carrying out the reductions for the above "photo-—
metric perturbations" by employing the formulae obtained by the geo-
metrical approach is to work with different f*‘%i)r*mulae‘ of eclipse functions
for different indices and different types of eclipses (partial, total,
annular). For this reason computations are not only time—-consuming,
but also require extensive care,

However, recently, Kopal (1977b; Paper XI) proved that, in the
Fourier approach, the "circular integrals” C‘;é_z and "boundary cor-

rections™ f, and ‘F1 of the theory of light curves of distorted

52
eclipsing systems can be expressible in terms of Hankel transforms

of the optical properties of the eclipsing and eclipsed components.,

Although this new approach may appear to be less "elementary" than




the geometrical approach it possesses several distinct advantages.
The following sections of the present chapter will be devoted to this

novel approach and its advantages.

D

1.2 A New Definition for ::;{L .

Kopal has recently shown in Paper XI that the fractional loss of
light ¢4 due to mutual eclipses of the components of close binary
systems can be expressed as a cross—correlation of two apertures
representing the eclipsing and eclipsed discs in terms of Hankel trans—
forms of the optical properties of the components. The advantages of
such a strategy over the more conventional (geometrical) approach, as
fully discussed by Kopal, are (a) greater symmetry of the respective
expressions; (b) greater affinity of expressions arising from distortion
with those expressing the light changes due to eclipses of spherical
stars; and (c) greater freedom in dealing with the effects of particular
distribution of brightness over the disc of the star undergoing eclipse
(generalized limb~darkening), as well as of possible semi-transparency
of the eclipsing component. [n this approach the orders of raspective
Hankel transforms of the products of two Bessel functions depend on
the physical characteristics (distribution of brightness, opacity) of the
two components, and the geometry of the system (i.e., the fractional

radii of the two companents and the inclination 1 of the orbital

r
1,2

plane) enter only through the arguments of those two Bessel functions.

We shall approach this new definition of the loss of light by




considering first the stars as representing circular apertures and the
function f(x,y) the distribution of brightness within this aperture in
the rectangular coordinates whose xy plane is tangent to the celestial
sphere and the origin is at the centre of our aperture. If so, the two—
dimensional Fcuriéw transform F(u,v) of the aperture function f(x,y)
is known to be given by

F(U,U‘): [/*Q(X 55’)

—_ D

ol gv) olx of J

By a resort to Jacobi's well-known expansion theorem (cf., e.g.

Watson, 1945; p 22 or 368) which permits us to assert that

-s-zm'gF‘ Ceb (55'15 Cfé) 20l GV Sl 77“-,&-'— r;?)

e !

N

—n

:L {-g},l %ﬂ(zrr«;r) Cus zn(%;»%@—gii 20197) 8ln (20w ) (£ 48 ,)} ;
=0

(2.2)

i

= el &y = 2L 7{2(94/‘!’2}0 J

where the symbols Jn(x) denote the Bessel functions of the first kind,

Eg. (2.1) can be easily rewritten in the form

A

F[@f) = Zﬁ[ Tﬂ(r) j{zrrﬂ‘)}"“(}{!/‘ P (2.3
o
o
in the spherical coordinates., If, moreover, we assume the distribution

of brightness f(x,y) is radially symmetrical and can be given by Eq.
(1.3) of the previous section, then the Fourier transform F(q) of the
aperture function f(r) can be defined (cf. Paper XI, Eqg. 2.15) as a

series given by
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=L, Z_Cm_;z“ [(v) L(znin)
[=o

(zrgin)Y ’ (2.4)

where L_1 is the luminosity of the aperture, and the coefficients CO)
depend on the limb-darkening for the apertures which have been defined

by Eg. (1.4) of the previocus section, and

L+ 2
2. (2.5)

et us now turn our attention to an off-centre aperture (cf. Figure 1)

which represents the eclipsing component, situated on the x-axis at a

Figure 1. After Kopal (1977b)
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distance O from the origin of coordinates., If so, the Fourier trans-
form G(u,v) of the "transparency function® 3(%" » i’f,) of this second
aperture should ~ by analogy with (2.1) —~ be defined as

- 7 oo\ mem [ YU+ ]
6“(&)9‘)2 f(gﬁ ?5)'?) =4 cly ol 17 (2.8)

— &0

If, in particular, this second aperture is also circular and the trans—
parency function is unity within the aper\tur‘e, i.e., it is wholly opaque
for 1)7 < ro and wholly transparent for 5) e r‘g , 1t can be shown
that the above integrals can be evaluated in a closed form, by resorting

to Eg. (2.2), as

¥
, —zt 59 Cos b [ T ,
G(4.0)= 2n EMTE [ T lenge) pd

- Z
AL 2.7)

in the spherical coordinates.
A frequency convolution of two Fourier transforms of the respective
aperture functions given by (2.4) and (2.7) should define the loss of light

el ; thus, it would follow that

L
L,e¢ = [f Flu, v Glu, vy olu ol v (2.8

which obviocusly is zero if the apertures do not overlap, and increases
with an increase of their common intercept, weighted in accordance

with the relative brighthess of each element occulted. By making use
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of Equations (2.4) and (2.7) for the transforms F and G , and con-—

sidering that

O o
ol = LC ) . 2.9)

it can be shown that (cf. Paper XI, Eqg. 2.32) the associated o< functions

2
oé.?’ of zero order are expressible as

J(zn f .
o, §)= 2oy [ 201 ) Jemyra) J(2iry§) ol (eay ). 2.10)
L @nyry’
This equation represents the associated alpha-functions of zero order
as Hankel transforms of zero order of the products of two Bessel functions

of orders V and 1 . This definition (2.10) holds good for any type of

eclipse and any value of r\l 5 rg and § . In other words, the oé: 's
as given by Eqg. (2.10) represent real and continuous non—negative
functions of & between minima as well as within eclipses of any type.
Let us remember that it holds good, to be sure, only if the eclipsing
disc is wholly opaque. However, this result has been generalized in
Paper X1 to a case in which the light changes arise from occultations

by discs which are increasingly transparent with the angle of foreshort—

ening in the same manner as the limb~darkening of the eclipsed star.

The generalized result (cf. Paper XI, Eq. 2-38) can be given by

, A4V y = [[ﬁ?i”) _](’ fi{F
Py s o f o i (fﬂé j]/rfm- (211)
‘3‘\5_[5“@)‘” =2 [(hn) ]/)§ (2rgry (zzr?r*‘}?\ J e )d( 2




- 17 —

for the radigally-symmetric transparency function j,(f) given by

7 - f/i 274 é‘é- Z
4(%) = LG )t e 2.12)
) o P/ )"}V}_ .

By the way, we shall not work on this latter form of the fractional loss
of light c‘:><: (due to the occultations by semi-transparent eclipsing
stars) in the present work,

The right—-hand sides of the results (2.10) and (2.11) contain three
parameters as multiplicédtive factors of the arguments of the Bessel
functions occurring in it, namely r,, r. and 5 . It is, however,

1 2

possible by a convenient change of notation, by writing

20y = 0 (2.18)

that the number of parameters can be reduced to two. For some par-—
ticular values of a1, the arguments of the respective Bessel functions

and the new parameters of the fractional loss of light a\,j in this new

“

notation have been listed in the accompanying Table I. Eq. (2.10) for

(r‘ , &), for example, can be readily rewritten in terms of

the above new parameters listed in Table [, as

=4

it (ke 2 he 2 = 2 ;\j {\{f‘ Tk T dx,  @as

[=}

o e =S\ oV T I (kx n X '
Q\EL[](‘EEE:TL)AEZB& 2'[) (/u,x J(x) L(hx) dx (2.15)

[



Table I
M= L= | st o uss | e ln-n
r r r "
o ar w 1 1y 1y 1w
1 X ookl Dox ] Dox ) oy
o Pty S I, “Pgi
, r r P r
e, | x| x| 2m x| 22 X
i 1" 2 & AP
o ' f
2nqé S ¥ Oox |2 X O - N ‘
r r r e i O ‘
1 2 2 7172} |
Parameters _ o " ™ " , i
» K=— K=— a = T K =— a = —
of o] ™ 2 RS- 9 Iry=rp]
s r\ > r'd
= h = < c = = i - h = sg c = (é)-r‘
1 o "o $ [ry ™

f’”(@r no - >- 2" [y (1-e )J (a;)“’ f([r*a]:«”//\}uix? 2.16)

¥, ,Lrg, rEfe

(2.17)

(et he ) - 2 TE0 f (;{ﬁ) T (%) el

and

J
)”‘ 2 vy (- a)J C(f;v j@’ ‘C‘m) (QX/\@C)‘/)(’;‘JB)

7/{)(1'_ 73/‘( s C= -_?._..,
SOl [f,~t2]

(2]
respectively. These integrals given by Equations (2.14) - (2.18) can
be expanded in series of different types of hypergeometric functions and

will mainly be the subject of the following sect ions. It is known that




for the convergence of those hypergeometric functions their variables
which will usually be the parameters of the above respective ééz 'S

. are required to be one or smaller than one. In this respect, the parti-
cular values of these parameters at certain critical points of both
occultation and transit types of eclipses together with the notes on
applicability for the respective expansions of the above ihtegr%s for c::;i
have been given in the accompanying Table 2.. It is seen that in general
Eq. (2.16) will be the most useful one for the expansions in series of
hypergeometric functions, but it should be kept in mind that the con-

vergence of the respective series to éii 's are slowed down with in-

creasing values of / which has been introduced by (2.13).
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1.3 Expansions for C{Z in Series of Appell Hypsrgeometric Functions

of the First Kind.

In order to derive these expansions let us first consider the

()
coefficients Q?('t (cf. e.g., Paper IV, Eg.2.1) given by

3 o

;(n}‘_‘ 21 f—”‘il ¢

Q' = - fé -STO@ : G.1)
do

This equation for n =0 makes it evident that, since <, ( 51) =0

for any 1,

FanY
w
I

g

{o) . 5 ,é_iﬂ CZ(& = C::‘{az(é)a>

as the respective obscuration at the time of maximum eclipse when
) . . o .
o = 50 . If, moreover, we remember the derivative of OQL with

respect to & (cf. e.g., Paper 1I, Eq. 2.17) of the. form

° A AW W, 2V e -L, % |
(35 hmsts BRI TF (LK) oo

for partial eclipses, in which the modulus

= e 9 (Sada')

Y RO
L

a beta function




as a numerical factor and the gl:1 stands for the ordinary hyper-

geometric series. Now, on insertion of (38.3) in (3.2) it follows that,

for partial eclipses

£ “\—$sﬂ;,u->?r~{"_.i§;,3;315&\ 5
‘/,Qf{ o e Li} Vv Z._‘ w) é%) h;’b 4 & o |4 ".x};
Ggéta‘a@)“ 5 fﬁé, (? PR\ r iy AN A{';i \)%fr 1; juu (3.8)

Normalizing the limits by introduction of the auxiliary variable

( ¢
b o= Y .
U o= e (3.7)
(5,,“— o
we can write that
Kr (8+8) (S+1=12)
™= 41, &
. - L (3.8)
;*’:L-i,i MU(!"‘"%}U) (1"’ é"‘L U) )
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o= S 90 . ‘
Y : (3.11)
;




The integral [ on the right hand side of (3.9) given by (3.10) can be
identified as an Appell generalized hypergeometric function of the first
kind., To prove this let us first appeal to known expansion of QF’

which permits us to assert, by making use of Eq. (8.8) for the modulus

K2 that

N um(z—gu)“m{l— %—f‘i U)m- (3.12)

Accordingly, inserting (3.12) in (3.10) we get

. /V/n, J«\f[”/l'/“() no, m
[ =- ) M“‘”/[MWLJ—) ( L)

+ /B VM=
-4 N z / U =
N AT u) Al (3.19)
2.1’;
(3

On the other hand, we have (c¢f. e.g., Erdelyi et al, 1953, Vol. 1, p 231,

Eq. 5

. {
'J/C \

, / -1, GGl
(C D, LJ) }f\)g/ m.’:—?{;")l’yﬁ d jU ) (j*-:«‘{U (l C/U)(}!Lj;
o> 0 and (&= >0, (3.14)

as the integral definition of the Appell generalized hypergeometric
functions of first kind., A combination of Equations (3.9), (3.13) and

(3.14) discloses that for & = (-50




9)= 5t 2T Xy ) L) led)
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as the desired expression for partial eclipses, in which vy is as given
by (3.11) and
é; - 5
A =TT (8.18)

This equation given by (3.15) represents the general expansion
of the associated X —functions of zero order in series of Appell hyper—
geometric functions of the first kind. It is valid for any arbitrary degree
1 of the adopted law of limb—-darkening in only partial phases, since

the derivative (3.83) as it stands holds good, to be sure, only as long as

the eclipse remains partial when 5? < & L 5, . At the commence-
ment of totality, when é = és? = F‘E - r‘1 s we find that
I -
=1 and g:]n« fam 1y afi { (3.17)
L1
At the moment of annular phase when & = é:, =g,
7 ) J/- — P -
x =1 and Y= |- o ; (3.18)
r Vhe“% ’;\z

while at the commencement of the eclipses of any kind, when § = §, =

o+ r

; o both parameters vanish and so does e:{"é s expected., Thus,

above expansion (3.15) converges for partial eclipses —~ occultation or




transit type

= but not for total and annular phases. Fortunately, for

total eclipses the ol ~functions take the simplest forms, as they are

well-known from the geometrical approach (cf. e.g., Kopal, 1947)

that, in general

24 v! Fefi”{"l"”*L\ 24041
oM : / L, and 2 (8.19)
2y VF&M WIY N3 j)./ ZV

where /i is an integer and v may take both integral and half-integral

values.

During annular phases of transit eclipses the modulus K2 as

defined by Eqg. (8.4) becomes greater than one (which would make the

hypergeometric series on the r.h.s. of (3.3) diverge) and, for central

eclipses, it

tends to infinity as § — 0 (see Figure 2). In order to

evaluate a similar expansion for annular eclipses Eq. (3.2) is to be

replaced by

e/t Y :
a-:;!{x;s@g =

Szé &
O, [ (2] S — :i':":‘;&) s
o= TS }fow-t | (3 $ ?%if‘* ’ (3.20)

g
2 Cp

where the integrand of the first integral will continue to be given by

Eg. (3.3) and the integrand of the second integral will be given (cf.

Paper 11, Eq. 2.30) in the form

D ol ; \

- e

b A,

EIRY) :i/ (7%
I | 3.21
(702 [) e

with the same modulus K as it is given by (8.4). The remaining




integrations in (8.20) can be performed in the same way as before to
Q
derive the expansion of the loss of light CDQL for the annular eclipses

in series of Appell hypergeometric functions of the first kind.
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Figure 2

1.4 Expansions for gsf;‘z in Series of Appell Hypergeometric Functions

of the Four‘tbﬁKind.

Here, we shall make use of the expressions (2.14) — (2.18)
established in section 2.2 of the present chapter, for the fractional loss

of light «<, of zero order. To do so, let us first avail ourselves of

a theorem by Bailey (1936), asserting that
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where F4 stands for the Appell hypergeometric function of the fourth

Kind, For the outside eclipse phases when 5“,}, r‘1 + ry it is easily

seen from the combination of one of the equations (2.14) - (2.18) and

(4.1) that outside eclipses @ii becomes zero, since in this case

N /\v‘}\iﬂ'l"'f) = [ (o) = oo . (4.2)

If we consider now the total eclipses ( de < & g r. - r‘1) the conditions

2
attached to (4.1) will be satisfied if K&Vv,Az0 , =1 and {= I~V

and the combination discloses that, for totalkeclipseg C>’;z becomes 1/v
as known value from the geometrical approach. Should, however, the
eclipse become annular ( §< & < e, = ry) which conforms again to the
necessary conditions for the application of (4.1)if K= 1, Az0 s MEV

and 37 =z |-V and the outcome of the respective combination for

annular eclipses can be given as

Z — s 7
C = = (I—Vl'zl-ia o7
“y rz Ty S A ) (4.3)

2
which reduces to r_. /r

5 only for uniformly bright discs (v = 1), and

1

for even values of 1 it becomes a polynomial. If the inclination i is

o . . - .
90 , at the moment of maximum eclipse Eq. ( 4e3") becomes




, - 4.4y
P R I (} R >\) .
= 5 o

in agreement with Eq. (8.9) of Paper IIl. Similarly, at the moment of

internal tangency (&= é‘?’ =, - r‘g) Eqg. (4.8) reduces to the ordinary

1

hypergeometric series gi’:1 as

V?P?f- (9\)5 (rz,

)w T /t=v, vt ] o
[ (v [wx’) g

z,[z v+ j B ,} - -9
If, however, the eclipse becomes partial, Eq. (4.1) can no longer
be applicable for the evaluation of the integrals (2.14) - (2.18). We
shall, in what follows, extend the above results given in Paper XI by
Kopal to cover all types of eclipses by introducing an expression for
the Bessel functions of first kind (cf., Q%g ., Luke, 19689, Vol. II,

p.49, Eq. 8) of the form

- S‘i@;w(@w) [{n++4) j (VE %) |

L =VE a @0

n=o
If we now choose, for example, (2.16) for the fractional ioss of light
G—é,i to eixaluate with the aid of (4.6), it can be weritten by setting
B= c::ﬁaf in (4.6) that

— 3 o DCCqnt1\ T 4 4-
C“""L“\/‘;TT g")(v)b’> e (4 73/(}2 )

X

A o n!
T Sy ] O e dy

(4.7)




where we set b =1 - a . It may be noted that the r.h.s. of (4.7) will
be infinity for ¢ = 0 which means this equation will no longer be
applicable when the inclination 1 is nearly QOO, but it may be 'nighiy
convergent for partial eclipses. If we resort to the Bailey's theorem
given by (4.1) for the evaluation of the integral on the r.h.s. of (4.7)
by setting K=v , A= 1, #0= 4n+ 1 and accordingly ¢¢= a ,

5 =b and .4 :Ec , we get

, 2 e;;’?@m—/)) (/f”

sz'—"

— 2 ]_}—3 \ N a8
T ( n, 2+ V?L/)i;a L>,‘acrf;§;1( )

2.C* ir:f—

as the desired expression valid whenever ch = 1, 1i.e.,cosi =
0.71 (r‘1 + rgji Note that the above Appell function F4 ié identified
as a polynomial since first term of it is a negative integer and the
coefficient of this polynomial does not depend on the degree 1 of the
limb darkening.

Next, we shall derive three other expressions in terms of the
F4zfunctions for c‘s{if alternative to (4.8). For the first expression
let us resort to a Neumann-type expansion for Bessel functions (cf.

Erdélyi et al, 1953, Vol. 1, p.99, Eq. 3) in the form

L6350) =V 56p urt) ) Ltllorns)

N=o

C{ﬁ' (crd) J  (x),

M+2NH (4.9




(=)
where the C@.n 's denote the ultraspherical polynomials of even
orders. For M =0 and by setting sin 8 = c, Eqg. (4.9) will take the

form

_‘Ar_
nyk ( ) p (
J(ex) = V£ 7<2—ﬂ s D p iz g 0,
20+ (4.10)
where the F’Qn's denote the Legendre polynomials of the argument
V1 -c? . A combination of Equations (2.16) and (4.10) with the aid of

the Bailey's formula (4.1) yields that
(=]
FA e
c:q:i = —%— Z‘(E_""’Lé)iﬁ(\/"(i% Er( A+L o MH VL 25 0;13)}(4.11)
N=o '

valid for any type of eclipse and any degree 1 of the limb darkening.

The coefficients of the F4 series are independent of limb darkening,

but at this time F4 which is the function of only variable a is not a

polynomial.

. e ., . s
The second expression for é'ii. interms of the F , series,

4
alternative to (4.8) can be obtained by a resort to another Neumann-

type expansion for the Bessel functions J,, (cf., e.g. Er‘delyl et al,

953, Vol. 1, p.64, Eq. 8) of the form
Jo (xi) e >—°—‘i [(nin) (i) /E (—ﬂ,ﬁ-fyw/o{z) T &

(¢ XY Y [ on) P n! 2 1 V) 2N

7(4.12)
Vopt, Vet =2 @, =1, =Z,—3,

which for positive integral values of ( V=t ) transforms the Bessel

functions of integral or fractional order v into Bessel functions of

order (Mm+ 2n). However, it has been found that for u =0 and the
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positive (including zero) values of real v expansion given by (4.12)
takes the form
j =0
(et X : "-“2 F /] oe) T (x
e e &ﬂ?_}j[ ( V1 s j ‘}‘); (4.13)
XY 20 Ty & h
n=o
where &, denotes the Neumann's number: £, =1 and &, =2 for
n > 0. For the Bessel functions of the zero order, (4.13) yields, if

we replace o by ¢ that
A, 0 ;
(‘15’<> ' ( C&) jzn()\>' (4.14)

On inserting this result on the r.h.s, of Eq. (3.16), we find the latter

to assume the form

e 2T 50 () (10 J09 L6 4y o

Z-a QVU'V

n=o o

Since a+b =1, Bailey's formula given by (4.1) can help once more to
evaluate the integral on the r.h.s. of Eq. (4.15). The outcome discloses

that
=
L2 Ne n F “f’lﬂ’?/ ;.)( o pepe k2 o2
<) = = %"«n ’??_IL‘( ;1€ E{_ -0, 1+ ; 2,0+ B g ) (4.16)
n=o

as the general expansion for the loss of light f::{;j of zero order in terms
of the products of two hypergeometric functions 2}:1 and ?4 both
reduce to polynomials in this expansion and thus, can be easily evaluated.
Moreover, let us note that the above expansion which converges undepr

all circumstances is valid for any type of eclipse, occultation or transit,

regardless of whether r, >< £y and for any degree 1 of the law of
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limb=darkening which does not occur in the first factor 2\:1 . The
variable parameters a and ¢ of c’Cf occur in different constituent
factors 2F1 and F-“4 of terms in the form 2F1(c) F4(a) which
makes E£qg. (4.16) more convenient for automatic computation.

For the third alternative expansion of e< in series of F ~
L a

functions use will be made of a formula due to Bailey (1935) of the form

=y ot Y S,
1 X ) bX) = C7-+?~ﬂ‘ (neK)
_j ((?f ‘}\) -T ( ‘)\> F&fh—-[) F(L)'}'l) ’L? ‘f -

2

x ;Eq(—n)ﬂ-##’;/wﬂ,u—#;; 2 A) ; @17
L+2n

o < o, b ), eaa+b

With the aid of this formula we can write that

XY ] (o) ] (bx) = ;_[ - L@mm ey

J(x)
F (i’? N+Ky 2, vHl, L, G£> '*”?ff\ . (4.18)

And, moreover, let us consider (¢f., 22.g., Watson, 1952, p.439) that

7° " AR
g (<) ] (rt) 25 = :<A< ) —
M0 M WAV Rk,
o 2B [{ve) ] {__*gjr)
F ( i%’it’ ;Mo ;A%( ) _ﬁa) (4.19)
Tl V| Bz )’




- 33 -

Now , by substituting (4.17) in (2.16) and evaluating the remaining

integral with the aid of (4.19) we are left with

.\?rii;aK—&
0 Z l;)l* 6}“17 [ (/’H";\)]
- 005
v - ('7 ’)"
= o (4.20)
1
2 1

where K is a real number provided that K &£ 2 . This general ex—
pansion has all the advantages of (4.8), (4.11) and (4.18), and moreover,
the free parameter K in it can be used conveniently in the question of

the speed of convergence of the expansion.

1.5 Expansions for ai‘z in Fourier Cosine Series,

L.et us first consider a summation theorem for the Bessel function

‘Jo (cf.;e.g., Magnus and Oberhettinger, 1948, p.31) in the form
=2 .
L(?w’li:-—ﬂ@) = > én J;?(—:}f}{> C@“JJQ"’Z@'; &.1)

where €&, is the Neumann's number as it is given in the previous section.
By substituting (56.1) into (2.16) after setting ¢ as sine 8 in(5.1)we

are left simply with
)

) LW
i 2T b ) G Ky cozag, o

n=uo
representing an expansion of the fractional loss of light G{,Z in the Fourier

cosine series, where we have abbreviated

Bo= o e
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with ¢ = 5/0*1 + r*g) as in (2.18), and following from the combination
of (2.16) and (5.1) to yield (5.2) the coefficients E{E\D of the respective
Fourier expansion can be given by

Ly j et A) 2
,z"( I s A
K = g J (b )J (fz%;\)a{éig (5.4)

" e X)Y

o}

being functions of a only (a = r"‘1/(r-1 + 1"*2)). Our next task is to evaluate
the above integral (5.4). For this, use will be made of an equation due

to Bailey (1985) of the form

(Sep| o L5 P 2P
Chx)® J(xcww)](m;é) rfmw

3i(*})’7(,¢4-,cu+zﬁ+~f—) [(oens+) [(Qnsven++)
) w! vty [(urn+i)

n=o ) (5.5)
F(ﬂzyz}%m-;zv+zn+i ’,Zﬁ) T (%) .
:Z ; &\)EFI .-}—D+23’l—r*

_ 2
By replacing 1, V¥V, b and a as M sV, cos ;5 and sin g, res-

pectively in Eq. (5.5), we get

T [:" +ZM- -»=a . 3
j\g (a{x [[gx) - Z_ f‘xz (viamtd [u,;,‘,w.z.)/"’(pm,}

(4. ) F(wr m! Cm+(>‘/ f(ugr_z{

) F (=2_y«t, 2w+2M+3! Ci) j (X)

2" 2v+! V42 2 (5.6)

e

as the product of the first two Bessel functions on the r.h.s. of Eq.
1
(5.4) for the coefficients ngj . Putting together these two results we

have
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The integral on the r.h,s. of (6.7) does not contain the parameters a
and ¢ any more and can be easily evaluated with the aid of Bailey's

formula given by (4.1), since § =12 (X=%)+ (F =1%). Consequently

we have )
=4}

“/@)_ - E 25*\ (mm J(\)wm /'3)X
‘Kn" 2V Ty “’{v+ ) - pal (rar )]
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(5.8)

Alternatively, we can resort to ancther expression — instead of

(5.5) - due to Bateman (1905) of the form

oD

; \ozad’ T [Qsvinr) [orne)).
J () ] (bx) = 24 “0 (20 4 U
n X y X % ﬂg‘g} é 2n + >HIF&«H—I’2‘—1)[ﬁ(¥’ O}

E):’Z j (X) 5 (5.9)
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which permits us, for = 1 and V= v, to write that

é’ )m (UEF—Z.W: f’&) F‘(\)i—éwﬂ) F(Vsz—ta;i.,vi 2_)
T A R CON

a) ; J )

VH+2Zi 4+ 2.

¥

T, J(bx) =

(5.10)

It can pbe found by following the same way that Eq. (5.8) for the coeffici~
ents KS) of the Fourier cosine series (5.2) of c{f takes slightly dif-

ferent form as

F(L)__ b E cor (e [ vz 2) ['ormnt) [Grma)
;mu(

ni)* (VH) ral (1) ! F(u,f,m_,,gja,z)

M, M r2) 2 I
x{f“{( - IGI}J \ Dﬁ (n—\) ML, N N, AL Zr )

z
(5.11)
Ferms of W
Note that the'infinite summation on the r.h.s. of (5.8) for Kn vanishes

if n22 m+v +% for odd values of 1 ; while the similar t&t%ggs on the
r.h.s, of (6.11) for the same coefficients KS) vanishes if n 22 vV + m+ 2
for even values of 1 .

Next it will be shown that the fractional loss of light c}iz assumes
another form of expansiocn inh Fourier cosine series. [n order to {llustrate
this here we shall introduce another summation formula (cf. e.g.,
Watson, 1945, p.3568) for the Bessel function JQ s given by

J(RA) = 2\ e, J(rx) J (§X) Corn &, 5.12)
A= o

valid for all positive values of R, r and 57 if they are the sides of
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a triangle such that the angle between the sides r and S’ is equal to

Q,i.e.,

K; _ rz_f_fyZ_g_y“fC-M@-

On insertion of the above expansionfor R = ¢, r =z a and {5 b in
the r.h.s. of Eqg. (2.186) we can rewrite the latter in the form of a Fourier

cosine series as

A = O(L) )
i = 2" [(v) b g € U, Copn &, (5.14)
n=o
where it follows from (5.138) that
o 4-h*-c?

B = Cer —— - (5.185)

and we have abbreviated the coefficients of the above Fourier expansion

o0

W J, (ex) vt N
Oﬂ = 05 *‘@:‘)‘J j,(é}() JR(O{X) ]n(é’/\> ol x (5.16)

bein g a function of a = r\1/(r*1 + r\g) only so that it may be given in one
column tables just as the KEP‘S . For the esaluation of these integrals
if we utilize Eq. (5.9) and the Bailey's theorem given by (4.1) in the
same way as before we get

O o b i@)m (za+zeart) | {zn +MH)
Oﬂ - gi?’i]’[uﬂ) ml (nh)*

"
A

PR

2 r '
/=™, A+t . j—‘ (’ - RV ER RN cat L
x[zﬂ( N+ | b T4 IR O, 25 é;) g

(5.17)




in which both hypergeometric functions 21:1 and F4 turn out to be

polynomials and, moreover, the 2!:1 is independent of limb—darkening.

Note that the Fourier expansions (5.2) and (5.14) of the fractional
loss of light o(f can also be easily identified as the expansions in

series of the Chebyshev polynomials

Tn (CML(?) = Cedx Ny (5.18)

and the outcomes will be

(s
of = 22 Tb ) e K, T, (1-c2) (5.19)
N=o

and
o0

O
ok F(V 232_ O F (401{9) ’ (5.20)

1
respectively, with the respective coefficients KEP and Of_]') given by
(6.8), (6.11) and (6.17). In (5.19) and (5.20) we employed the shifted

Chebyshev polynomials
_{:K‘(X):-};(ZXﬂ) T (\/X = ]E(ﬁéT ! ”K) (5.21)

since it is customary in our problem to work with the normaltized

arguments varying between zero and one.




o]

1.6 Expansions for c{f in Series of Jacobi Polynomials.

To derive the expansions of the loss of light o] , utilizing the
integral form (2.16), in series of Jacobi polynomials we shall start
with writing a formula (cf., a.g., Watson, 1952, p.413, Eq. 7) in the

form
dx _ < pt ¥t

J S0 L), (70 X T T [Tl =

Z( NG ﬂﬂ’ﬂm!)/ O«t+v+fz+z) F(V}-ﬂg—,')r(/_tﬂlif_‘ﬁ ﬂ%[)
: n! [Quentr) | —!'(vﬂi_"g;s .y

X

X

i /H“;__L,t':ﬁ-mﬂ) iz&i&*’_ﬂ/ b"‘") _F(-n,/mwn-'rf/F)Z (6.1)
' o r ’

2 )D'H V+I

MAVEGFL 2 A 2 =5 ) 0SB, ~IS Y|, <+E=1.
This formula can be applied to evaluate the integral (2.16) for a{z and

the outcome, by setting ({=v , y=1 , {20 and A= V+! and

accordingly ol = a , }3 =b and ¥ =c in (6.1), discloses that

0 ‘EZ )ﬂ!V}‘Z.ﬂ'l‘g) (ﬂ-{-f) !
o 25 Floens))

Lo /aH, Nt |,
A)J:’f!( ), e

or, alternatively, by setting M= , vav, §=0, A= v+l X = b,

r—-

’F =N, V+A+2
) 2

2 |

fp= a and F = C in(6.1)we get
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) < i (v+2A+2) ]_(V+fl+i>
= b nzva v (e o)

n, A+V+2 12 VA=, ne) ], (6.3)
[E( o)) F O ),

The last expansion turns out to be identical with the formula given by

Eq. (2.84) of Paper XII. Next, following the same way as Kopal did in
Paper XII, Eqg. (6.2) and Eq. (6.3) can be rewritten in the simple forms
in terms of Jacobi pelynomials. To do so let us first introduce shifted
Jacobi pelynomials in hypergeometric form as

ol 3

P\G&Jl)(x) - ey RKEED) -, MEX ] |
0 = }’ per [ X)) 6.4)
yzl F ( 1314) 2!

where A = K +j3 ] and it is required that 0 & x £ 1 . If, more-

over, we consider that
Lo cco-b ((;—é;tg c-b :
F( =08 Rt ), s

then, Equations (6.2) and (6.3) take the following simple form

vt , 0)

o (1~C:">Vﬂ () nf(wzm?.) [f\(' \? )J };{ (68 o.0

(rzH ['Corn)l" 1

which is valid for any type of eclipse and for any degree 1 of the law

of limb—darkening. In this general expansion we used shifted Jacobi
polynomials for the same reason as noted before that variation intervals
of the parameters a and c¢ which are now the arguments of the above
polynomials are (0, 1) but. not (-1, 1) as required in general. Eq. (6.86)
for C«{i can then be easily automated with the aid of known certain

recursion formulae for shifted Jacobi polynomials given by




RR-H(X) =(Ayx + By) R = C R (x) ©.7)

with the coefficients

iﬂ\ _ (en+d) (zntA+1)

(n+1) (n+X) ’
B = (2nd) (*=p241) = (2ns ) , 6.8
L 2 (ne1) (n+A) (zn+A=1)

and
C = (n+=) (n+ 7)) (A4 A +1)
“n T (k) (n+A) (zn+ A=)

where A= <X +R+ | as given in definition (6.4). First a few values
of Rn's for n=0, 1, 2, ... can be easily obtained from definition
(6.4) as

P ()

I

!
i*i)@@fi)(}() - a(]?'fﬂﬂ " (A‘FO % | )
EOR (/’3..;.;;) ([5.;_3) (A+z)(aspg> | 5(593
[, (0 = ST~ () () X QIR e

»
L]
.

etc. Finally, it should be noted that the numerical value of the coefficient
in expansion (6.6) rapidly increases with increasing number of terms
as a disadvantage in practice in spite of the simple structure of this

7]
expansion for &< L

We shall in what follows present a number of alternative expressions

(see Paper XIII) to (6.6) for the fractional loss of light s:a::? . In order

to demonstrate how those expressions are derived let us first re—-resort
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to Bailey's formula given by (5.5) for the expansion of the product of
the first two Bessel functions on the r.h.s. of (2.16) as it is given by
Eg. (6.6). On insertion of this result in integral (2.16) for e{‘z s

we find the latter to assume the form

[}

é‘iL-":-

) b fi( 7 (V*ZH*Z>F(I?+——~)F[Q . ?)
2;,: [(v+n+i)

(6.10)

x F[(‘Zﬁ,2§+29+3/ )fg"‘_[ (x) j(cx)pl

V4204 3‘

The integral on the r.h.s. of (6.10) can be evaluated with the aid of
Eq. (4.19) by setting vV = V+21 +%_7 y M0, N=E VT

and accordingly ol = | and B = C and the outdome can be
given as

(=t

S T () J(Gx) dx = g F(WM F( o / %)

JH-H 3 /

=]

Putting together the results (6.10) and (6.11) and making use of the

transformation formula (6.5) for QF1 —functions we have

o n 2Ty B*(1- c:f—) Z{:«)n ,(V"“Z”?fz,), F[{“L—")
Vir [{vener)

— — e 3
, ]L ( 21, ‘ZJ’H-ZLH‘Z/ t!;> zj_} -1, P'f'-"l’f‘"a_/ C‘l);

2 3 /

z

6.12)

(5*15}
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or alternatively

( :)f] (V+Z/I lﬂb F{p{;r].;_ J__>

peyap) Cle) !

: ~ZN, ZNn+2V+23} - =
 FO ]Q‘) Fmmors]ee) .

X

(6.13)

It can be easily shown that the ordinary hypergeometric functions 2F1

on the r.h.sides of (6.12) and (6.13) can be identified as shifted Jacobi

polynomials (see Eqg. 6.4) and (6.12) and (6.18) take the forms

,,,..
l

o 4 (VE éé """*L (vten+ 2 F/ﬂ=fm)
B ‘F L (3’“’)(5%2) [{vrari)

(zv,2

u+a,’a) .
R (b) R (c®) (6.14)

F(ZVH) b=, v (zn) @+2ﬁ+£>ﬁ[p.ﬁq+_r_>
oy = PF(\H-,,L) (1- C) £ OC_}Z,L;)J F(Eé’l-f-ZvH)

(E., zv) 6}+2_ 5 g)

R () - R, (9 ©.15)

respectively. These algebraic expressions for the fractional loss of
light C;{f are also valid for any type of eclipse and arbitrary degree

1 of limb darkening. They can be easily automated with the aid of (6.7) -
(6.9). It is seen that the numerical value of the coefficient of the shifted
Jacobi polym@mialg in (6.14) decrease rapidly with increasing numbetr of

terms which should be an important advantage for (6.14) over the other

formulae of its kind.
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Further alternative expressions to (6.8) can be obtained. For
the sake of illustration, let us consider combination of (2.16) and (4.1 0}
with the aid of (5.6), (4~19) and (6.4) (cf. Paper XIII, Eq. 2.21 and 2.22)
given by

e ['(v) [(zv)) T2 e [(n+4-) €4, 0)
Al [(v+ -+ )H = ,q)'/(ln+ R (¢2)

A=ao

=

Z" ) (zm)f(ﬂ+m)’(\z+am+ =)
C— il (m+)! [lopezra) F/U’L“" rz+-_->

mM=0

L LOrmr By Tvimr B o2 Z"‘) (6.18)
]_'(V+M+ﬂ+z) ["(n-m++) (

A combination of (2.16) and (4.14) with the aid of (6.8), (4.19) and (6.4)

(cf. Paper XIII, Eq. 2.25) discloses to a similar expansion of Q{Z
as in (6.18):

- bl (zwo)ﬁ@ }Q (fﬂ)Lco (g;@f(vjt%,u)x

ml(mr) ! (p-ni-p) |

(v+M+—L) F[v+m+ J (fizz"’)( )
; a4)r 617y
F(EWZH +l> r(v+m+ﬁ+ Z’J F DA _ég) T2

Both expansions (6.18) and (6.17) become again algebraic but in the
form of double summations of the product of two shifted Jacobi poly-
nomials. As the advantage here, the first series on the r.h. sides of
(6.16) and (6.17) are independent of limb darkening, and it can be

observed that second series in (6.16) terminates whenever m=n -V -



3/2 for odd values of the degree 1 of the law of limb darkening.
‘The second series in (6.17) also terminates in any case whenever

m=n-1

1.7 Expansions for a{:‘z in Series of Kopal's J-Integrals.
Here, it will be shown (cf. Paper XIII) that the fractional loss of

light o’

[ > as well as Kopal's (1947) modified associated o< -

functions A?L can be expanded in rapidly converging series of simple
combinations of Kopal's J-integrals which are defined (see Eq. 7.30)
in terms of well-known and best studied J-integrals of eclipsing binaries.
For J-integrals refer chiefly to Kopal (1947) and Lanzano (1976).
First, let us consider, for egampl,e, Eq. (2.15) for @:;‘;_ s
replacing x by kx for &< =1 in (4.13) we get
L0 ié’l [Lorn) J (kx) 7.1
(k¥ 2 L (o) [fvens) 207

v,}OgE@:” and €= Z for R > 0 ’

which can be utilized for the first Bessel function on the r.h.s. of (2.15).

Thus, a combination of (2.15) and (7.1) discloses that

b ~, 1% o <, 7 i
L= v[] (\O] .2_ F(u~nti~1){/l’?[v+n+1) Kzn 7.2
n=0o

where we have abbreviated
K_ln: ggﬂ(kx),z(x)_];(éx) olx , k= 7'::' oond b=

=]

, (7.8)

2
2
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which is a function of k and h but independent of the degree 1 of the
law of 1imb darkening. Note that the infinite series on the r.h.s. of
(7.2) terminates whenever n= V+ 1 for integral values of v so that
for even integer 1, the loss of light é\iz can be expressible in closed
form. On the other hand, the above integrals given by (7.3) turn out to
be expressible in terms of the derivatives of c{z with respect to k
which are simpler in evaluation. To prove this, let us first write the
o
derivative of o{, from (2.15) as
k)
> < rJ.C
k'—:cﬁf = —2['(v) | 2l - (X)j(ll)Q dx (7.4)
(kx)¥
By a resort to Eq. (4612) for x = kx and eo¢ = 1, the first Bessel
function on the r.h.s. of (7.4) can be given as
T (kx 2
JW’} ) ]"( ) CI‘H'[) j (; ) 5
PR =1 . (7.5
(ko ' F ( v-n) ' (v+r1+2.) 2n+2

Substituting this result in (7.4) we have

Do) < (h+1)=
Sk T (F Y } ]71: ) [ (v+n+2) KZ’“’i

>k
in terms of same irxtegr*als th given by (7.8). Hence, by inverting

(7.6)

this series, which also reduces to a sum of (v ) terms for positive

integral values of v , the integrals K oh the r.h.s. of (7.2)

2n
will be expressible in terms of the derivatives of o{i with respect to

k . Furthermore, the above derivatives can be identified as Kopal's

J-integrals, since (cf. Kopal, 1959; Chapter IV.5, Eq. 5.30)




<] {
2% = - 25 o 2

- !

3,0 o, N

* 7.7)

Thus, we can invert from Eq. (7.6) for even values of 1 that

Kg = 3@

=i,

Kz,.::"’j

=12 ——*l}o
K, = 10 1° 1°
6 ;j"i*- ZZ+ jzo | (7.8)
/o °
}\8_ 35?{5_451 -HS]z ).
Kto = Zéj —1247 -Hﬁ?,éj L;Lj!laﬁ j
etc. By rnaking use of equ ation
=<2 = K, + K, " @.9)

which can be deduced from (7.2) for 1= 0, the fractional loss of light

C’ig

L for some particular values of 1 can be given from expansion

(7.2) as follows

°© L g oe? 2 -4 4 ~ F e L4 oL (710
o =S 5 Ko Ky+ 55 K E’;T}\S}"WK}; 719

! :%[C@}s5+(’i> g&»}/“_.éﬁ\/g_saj (7.11)
D:-fi = -«e«—- kR T!12)
"E S 75 K + 315 F 155 Kg ‘
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mzzéxgﬁLfg—KzﬂL—é— Ko (7.18)
O¢° = ;2_.@(_"3,}_:@_ < ,'L.i |-~ ._._'EL ¥, — i A e (7.14)

37T 5 Tl kg Ny }\zﬁ 23] K¢ 3003 N

D B A L L 7.15
<y =g X+ 52K+ K+ Ky (7.15)

S e "3 + - e (7
T F Ke o Kot g Kyt @

etc., where

R P e : 2t St
= ;E%L and = §-5 _ hf-n*to (7.17)

r&. - 25 }hz,
which are used in Eq. (7.11) for o(f (cf. e.g., Kopal, 1959, Chapter
IV.4, and many other sources). Note from equations (7.10) = (7.186)

L s . ] : . ) ] v [+
that the fractional loss of light o, for even indices such as o, LK, , Xy,
etc. were all expressible in closed form, in general

o ! 0 v :
X, = o o, A (7.18)
' L+ z

where we have abbreviated
L+t

° |Z S o
PIE.L - (H‘)[FHH)] 'Z? [ (rz=n) [(L+24n) K;?_.rl (Lety Dzt @19

For odd indices the a{i’ 's remain to be infinite series form in the

foregoing formulation. However, if we replace equations (7.1) and (7.5)

by the forms
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od

J O Tled) 57 Tlwd) Citd) g gy

(kx)’~z 2z n=o n! v F-0) [(v+ar) 20+ (7.20)
v ;—12:- ’

and

ol

Jo{x) _ T(v-4) 5 Tl g) (2n+ £ T (e,

(/ixu % v~§. i?’ [(v- Lo ,7 /—’(wn—s—g) 20+ (7.21)
v = % )

which can be deduced from (4.12) by setting x = kx and < 1 , then

the fractional loss of light c{“’ takes a different form

[=a]

O{E:E [ F("’LL)Z;*I'/C({)”; ﬂ)(;;;;f M P (7.22)

where we have abbreviated

Mm j J (Ax J(X) J(/LX) ‘ (7.23)

2+ +

-

o

On the other hand, if we consider that (see Eq. 7.4 and 7.7)

jb = 2" ['(v) j jw' J(X) J(/'IX> olX - (.28
it (kXY™ R

a combination of (7.2.1) and (7.24) will become

T, TN iy M 72 B 0

20+2.
n=o

in terms of the same integrals as given by (7.23). The foregoing

formulation of the problem enables us to rewrite equations (7.10) ~
(7.186) in terms of the Mgn —integrals given by (7.23) which are also

expressible in terms of the 3=iﬂtegnﬁals by inversion from (7.28). This
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time it can be observed that the fractional loss of light <:«><°L for odd

values of 1 turns out to be expressible in closed form, i.e.,

o
CX:.GL" = - 3’*‘ Q{Za + ]q

ZL- 20~ i 201 (7.26)

where we have abbreviated

L (za+%) | (n+5
ﬂ" ﬁYzFﬂ 2_ [rs) M
n=1

i F[ [ +1= n)F{l+n+ an
Yo M (7.27)
ozl 2
since both equations (7.22) and (7.25) reduce to a closed form for positive
odd values of 1 . Furthermore, it may be observed that the quantities
A‘{ given by (7.19) and (7.27) are identical with the Kopalsmodified
associated o{ -functions of zero order.

In the foregoing expressions the fractional loss of light @:ii has
been established in a general form in terms of known associated series
(terminating or infinite) which converge rapidly to the desired results
for any type of eclipse and are easily programmable for automatic
computations. The expansion given by (7.2) gives the fractional loss
of light Q»if for any degree 1 of the law of limb darkening, in terms
of Kopal's J~integrals and c-<: which can be easily evaluated with the
aid of explicit formula (7.11). Thus, the whole complexity of D{Z is
evidently stored in o, and the g‘;x —-integrals if we use Eq. (7.2).

It may also be added that general formula given by (7.2) for c»:iz

can be further simplified for occultation type of eclipses. To illustrate




this let us combine Eq. (2.15) with (4.13) for <K = 3 , when we

get
o0
o N ff -1, N 7 < |
Q‘il—"t\%l_é“l (w:’k)Q K< (7.28)
n=o

which reduces to (7.2) for k =1 and diverges if k >1 , where we

have abbreviated

Q, ) = sz‘ﬂ(’xb JOO T (hxydx .20

which is a function of h (or § ) only. Note that the Q, 's are simply
the Kgn's for k=1, in other words the an‘s can also be defined as
a
a linear combination of the j: - (k =1, h) integrals with the aid of
=4
(7.4) and (7.7). Furthermore, the ordinary hypergeometric series on
- - . . th s 2
the r.h.s. of (7.28) is a Jacobi polynomial of n~ degree in Kk (see
the definition given by 6.4). It seems this simpler structure of the r.h.s.
of Eq. (7.28) for occultation type of eclipses lends itselt more conveni-
ently for automatic computations.
The constituent J-integrals in (7.2), (7.21) and (7.28) have long
been known (cf. Kopal, 1947) from the theory of the light changes that
¥+ S ¥ f b 5 i
'j “( ) __q>:»~. j -ﬁf] (7.30)
[ I 2, Y 2 21 Y
- }
, . o !
and the J-integrals ] and J which are required to
E'} Z'X _1; Z-X

evaluate the Kgﬂ‘s and an‘s can be readily automated by taking
advantage of the recursion formulae

J ’“‘;[j ‘-Iiar’] A

-, 5+ 2




and

| 2 (¥+2) e T :
J. = T4 Ix,a’ /“j } (7.82)

=L ¥+2 =1, %

since the starting values for ¥ =0 are known as

o ! —
- i = L= 2 :
:’IG —TIIF Con m and 371,0* T \/1 M= (7.33)

if the eclipse is partial, and

|
T° = and J =0 (7.34)
—l,0 -L,e

if it is annular, where M  continues to be given by (7.17).

Finally, another alternative approach of the foregoing type will

o

be presented for obtaining the fractional loss of light @{L

To do so,
let us first combine equations (2.16) and (4.13) replacing = by a in
the latter. The outcome of this combination yields that

oo
=] E N\ Lo %n; n } % -
<L =Y _L“Enj:l vir CL) I 4 (7-89)
. n=o

zn

€ = and €= 2Z for n> 0,

where we have abbreviated

=0

[ = (] 6ot (e dx. a0
A 2n

[e]

This expansion opens the alternative way to approach the fractional
loss of light .;:(Z , but the series on the r.h.s. of (7.35) does not
terminate in any circumstance. The ordinary hypergeometric series
in this equation is also ¢f Jacobi polynomials. As for the evaluation of

the integrals I2n » we can introduce ancother expansion of the form




with ’Fhe same integrals 12n as given by (7.38). This last expansion
can be obtained by derii%ng (2.16) with respect to a and utilizing the
definition (7.7) of the J-integrals and the expansion given hy (4.12) for
ol 2 a . Consequently, if we take into account N terms in (7.37),
N independent equations can be constructed for N different values of
1 (remember that Igh's do not depend on 1 at all), and this set of
linear equations can be solved numerically or otherwise for 12 inte~-
grals. Hence, the s{i integrals given by (7.38) become expressible
again in terms of Kopal's Je-integr*als which can be easily’ automated as

it has been outlined before,

1.8 Other Expressions for Q(‘E .

Here we shall present two expressions for the fractional loss of
light @{E . The first expression may be stated by substituting
J, @x) from (4.9)for s =V and sin® = a in integral (2.16)

of the :{f that

A [ ] No F( *L%)[/wz 31__)
<;=\F 2T [} ) HF(MHT

H=o

ey (1)
, Cif)(\/}?é{?) , E; | 8.1)

X

=3|p

n=o i | (7.37)



where we have abbreviated

n

T 0 |
FO_ ( izg;_\gifji J(bx) T(ex) olx . o

&

which remains yet to be evaluated. The Gen's in (8.1) stand for the
ultraspherical polynomials.

For the second expression we shall introduce a Neumann series
for J, (cf. e.g., Erdelyi et al, 1953, Vol. 1I, p.66, Eg. 16) of the

form

T (2 %)

]

=2 [ ‘,;f;’k
Av> [z.x( A)]l J (X)

]?'( vin (8.3)

nh=vo
On insertion from this result by setting v = 0 and A = ¢ in Eq.
(2.16) we find the latter to assume the form

o) = 20 (V) 52_ n,"m Hy o (8.4)

(z.a)"

where we have abbreviated

J(ax)
H)‘Z - g (&‘;’n j(!a,x)f (x) dx , (8.5)

which also remains yet to be evaluated. Note that the Hn's are inde-

pendent of ¢ (or . )} and thus can be presented in the form of uni-

variate tables.

1.9 Differential Equations Satisfied by o<

4]
I 55?1 r éa‘;“'l- + 'a,r —~ o .1
i 2
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° liz 7
o _ §\/ v :
o 5523V
0 L+2 0
o = . Vo, ,
3) G’ E)QL = Z("ﬁ'> * L,L (.8)
dX[ . T°
4 v, Sy 2 -g,L (9.4)
3Fedy Ly 5 Lo po_pe 71
5 TysE T s 58 T L"F(’}T) "‘—“”"‘éaﬁg "’__IM_Z (9.5)
3t ¢y -
‘SZT;L + 6 5“‘ —-E(/\) [0 b\ X S‘“’](Lx _](x ](éx)o/x,
6) :
§r 2, 59 Tho) (749
5 7 aé*”%*in”fﬁgvf&@ﬂ&ﬂka
. _ 1 =
| !\:-—;_Ee M‘ ;l—--;_;- b}
7)

ﬂ‘t(%z t=d) s s f 2n+2) | o _ o0
Zeo )(t-4) Lt o= o (K, h=o),
2" nl
teho . OF)
2k ,
We have given a number of known differential equations for ﬁ-{i
For first five equations which have long been known from the geometrical
approach of the problem see Kopal (1959, Chapters IV.4 and IV.5).
The last two equations have been presented in Paper XII by Kopal. For
the solution of the second differential equation given by (8.2), refer to
section 1.3 in the present chapter. In these foregoing differential

equations, in general,
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I, = I

Lo

(9.9)

[
*F
o

and they can be expressed in terms of ordinary hypergeometric functions

for p =-1,m=1 and ¥ = 1 of the form

DEEIETKTA(LE IR e

if the eclipse is partial, i.e., §, < & & &, , and

I - AP KT

if it is annular, t.e., &, £ § < &8, and r, L r,

I l

-, 1

For m=0 we have

I = @l KRR o

=

if the eclipse is partial, and

L= SEBEKT R ()

-

L

K‘f) (9.12)

if it is annular, where K continues to be given by (8.4) of the present
chapter. The J-integrals for m=0 and F = =1 which appear in (8.4)
are as given by Eq. (7.30) and they can be rearranged by making use of
Eq. (9.8) ih terms of the I-integrals in the form
jo _ E)Z\) IG 2 I‘ } . (9.13)
| =Ny N =1, | £ { '

Substituting directly from (8.9) - (9.12) for I-integrals in (8.13) we find

|

that the J's assume the following forms in terms of hypergeometric




functions:

, R ]
e (aw'f iK)]’éZéégg’ L

In all the foregoing equations Vv continues to be givenas Vv =
(1+2)2 and B(x, y) stands for a beta function which can be expressed
as in (8.5)for x = v and y=%. Inthe last differential equation given
by (2.7) the fractional loss of light c(,i (k, h=0) atthe moment of

central eclipse when & =0 - is known that for occultation eclipses’

E‘iz(k;h’—'o) =

L (9.16)
Vv

which is equal to the maximum value of o{f attained during totality

(see Eq. 8.19); while if the eclipse is a transit type

-2\Vv
cd(kihzo): "’“’(,;‘kz) (9.17)

(see Eq. 4.4). If, moreover, we set




occultation
L= f (kA)

[=v (1-K*)v '
v B ﬁ {k»’h) ) transit

(9.18)

@i}f(k,h):{

it follows that the differential equation (9.7) can be rewritten as

_y N t(t~2) - ,
=2 [f Z,,!i+§£-;;)-]-ﬂ:o (9.19)

o [t AlterY ot (E-2) (4 o (H-2n42) T
N“f’l.[l + (-1) ]}LE

2t 2% 21 2n nl

and more concisely

N=o =29
N;i. C&’“Z) ")t[ =0 o
Nez  (ta)(tg)f, = o .20

N: f (t-2) (£-4) -+ (+-2n) 7€L -0

with the same t defined by (9.7). Consequently, the differential Eq.

(9.7) takes the following form:

(‘f*z—) (t=4) .o (1’:—2.{2) ﬁ = 0 (9.21)

which is exact only if n is allowed to approach infinity; but remains

approximate for finite values of n & oo : the approximations it




~ 5O ~

represents being the more accurate, the larger the value of n . It

can be shown that the solution of this equation gives us
o
(k,hy=5 C_ h* c
I 3 7 n (2.22)
n=l1

as the expansion of ‘FL in power series of the quantity h only. Un-

fortunately, this expansion does not converge if & > r However, it

o
can be proved by making use of Eq. (2.16) instead of (2.15) in the deri-

vation of (9.7) that Eq. (9.22) can be replaced by

, =22
%L (C{z c) = 2_ Kn c*ft - (8.28)
n=1

which converges under all circumstances, since ¢ varies between zero
and one. The quantity a which depends on the sizes of the components
enters only through the coefficients Kn which can be defined by the
boundary conditions of the problem. These boundary conditions in

addition to (8.16) and (9.17) can be listed as follows:

&ii’ (Q{;Q:)) = 0 (8.24)
(g o df) = 0 (9.25)

M) “ 0 (9.26)

o \Tra. ,
(cg i) E‘{LJ a — 2 %> %)Z\}lll t(a) é£> 7& 5 ©.27)
fa . |
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As for the higher derivatives, it can be shown (cf. Paper XI, Equations

8.40 ~ 3,42) that

(9.28)

(a”g}fi) _ [0 fwn-i%i;l
Cs—'éi

38" e ,)Zw n > i_—r’-—ii
Z
for even values of 1, and

é”o{i) _ 0 -forr fl#“z
S 5. g i(m)( j (n) ’) for ne L33 (329

for odd values of 1. On the other hand, at the moment of inner contact
for transit eclipses, these higher derivatives will exhibit a pole whenever
n > -ng . In the derivation of the foregoing boundary conditions

given by (9.25) ~ (9.29), it should be remembered that (see Figure 2)

(K (Kz occ.’“ ’ ’(KZZZ_#&]:’ o (KEL:@; a0

1.10 The Alpha-Functions o(}" of Higher Orders (m > 0).

Kopal in the final section of Paper XI has shown how to proceed to
develop similar expressions for the associated alpha-functions Ci{L
of higher orders (m > 0) in terms of the Hankel transforms. The associ-
ated o{ =functions of the type eﬁ?{m > O) are required to represent the
photometric effects of "gravity darkening" over the surface of a distorted
star undergoing eclipse.

We develop in this section the requisite expressions for these




functions by mainlty following the known strategy from Paper XI. Let

us note in the beginning that for m 2 2 the relations between the

resulting expressions and the o< Zi —-integrals become complicated and

make it difficult to write the explicit Hankel transforms for the @{? 's
In order to derive the requisite expressions we shall proceed as

follows: Fiprst, it is known that in the presence of distortion the aperture

function f(x, y) in Eq. (2.1) will be of the form (Paper XI, Eq. 4.10)

—f(x’;g) = Xmgn (10.1)

or, in spherical coordinates

$(r,6) = 1™ (a6 CesY

(10.2)

where ¥ stands for the angle of foreshortening. By remembering that

A
B 2 , [UL '
L: = I 72(&) [,‘ L, —~7] ] , (10.3)

and, hence (see Eq. 1.8)
Yy o1 [ (rza!ifz
ZC( c@fi' 8‘ CMX = —g"lrzuea> } <10‘4>
i

the Fourier transform of the aperture function f(r, ©) will then be

0(}

YTF‘&

of the form (Paper XI, Eq. 4.11)

F(7’¢’) S%(F[S-zmcirc&a(ﬁ- ¢) oo de | Fdr. o

In order to evaluate the integral with respect to & in (10.5) we

resort not to the Jacobi expansion (2.2) but for simplicity to another
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expansion (cf. e.g., Magnus and Oberhettinger, 1948; p.27) of the

form

369 Zeg ik 1(3) Cooky

(10.6)

where the é’k‘5 denote Neumann's numbers as defined before. Sub-
stituting from (10.6), by setting cos(p Z -~ (s ((.p+7?’) and g = 2277 ¥

in the respective integral we have

T enior ces (6@ =
Sezm?rc@% ém g@{é Lék Lli J}c(g}"r?y-> .
=0

-1
il
xSCﬁL(-@ G-11) Cos™ 6 ol &
-1
k+ ,
_nml )_ er K[1=CD Jcork (@) Lerr) o
o !;::Q ﬂ(Mﬁgg!:M) ]“(wwiu-a) "k

mtkt

(n [,‘(.E,)

Cork (6-@-n) Con @ olg = ]"m!‘:@’}k@“"")

- [ [mchery 0o

It may be noted that the terms of the summation on the r.h,s. of (10.7)
vanish for odd values of (m + k). Moreover, if (m + k) is an odd number
(m = K) also becomes an odd number; thus, if we consider only even
values of (m - k) the infinite summation on the r.h.s. of (10.7) terminates
whenever m =k . From a combination of (10.5) and (10.7) it follows

that
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Mkt

= ) = Tl = ey ) [r-(—l) Jees kep
F(g, ¢) g kz) [ forons)

57% ] (anm . (0.9

which for m =0 reduces to (2.8). If, moreover, we assume that the
function f(r) continues to obey the law of limb~darkening of the form
(1.8), for the evaluation of the remaining integral on the r.h.s. of
(10.9), we can employ a formula (cf. e.g., Erdelyi et al, 1954; Vol. II,

p.26, Eq. 34) of the form

;At/,,(.,dvﬂ v .M+\2+i‘
g X (6=Xx3) j (xy)olx = - [t [ (72
) » :l—-(vH F[)H’HL gb‘l-l-\)-{-i )

,i‘[w\)'i“’
F ( s _ CXE%Z) ? (10.10)
g Vel o, f”;_"____f;w’;e;s;}\ 4 '

by considering the definition (10.4) for f(r) and setting M= m+ 1,

AzvV-L, VvE and accordingly x = r, y= 3277 and

a = P thus, the outcome yields that

: A Lk m+k Mokt
co " A e R T ()
S'fsz) J(ZFT7F) y IOLV* = "%‘ZC I(gj?k; ]“ Vb m-}-k<+2. )
o : LZO ( >

itk sz
x T ( %

4 2

.,_(.Zg.jf)l) ) (10.11)

Thus, the evaluation of the Fourier transform for the aperture function
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F(x, ¥) is completed. On the other hand, the Fourier transform
G(u, v) of the occulting disc remains the same as in Eq. (2.7). The
convolution integral (given by 2.8) of the transforms F and G , then
furnishes the r‘equisite For‘m

o mLrm 00 Z et M- ]
M = - LC [Y Mk i k' [M-i-k.‘fi) }'—’ m;—.&%z_

e K M+2li+z
g(mam) Ji(znwz)}f—‘ ki W’f‘i )(EFC?_’")

Q
' S
- Coa ,
x[ gaflf” 7 @ k¢d¢}o{(zn?fa>. (10.12)
" -
The integral with respect to §2§ here can be easily evaluated with the

aid of (10.6) for % = 21775 and cos f = - cos g , and we have

n e
5%2H£?£CM¢MA¢d¢ ZE (l.) ][Zng)

-1

n
s fc;anqﬁ Cosk polgp =

(10.13)
= 27 (_l)k]k(zﬁ‘?:g)
as the result, since
T ©  for n#F L k
Sd@éntpémk(pc(cp: T for n=m (10.14)
= 0 for k=0O0andn=1,2,8,

ZIT for n=0 and k=0
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Furthermore, by making use of a formula (cf. e.g., Luke, 1975; p.58,
Eqgq. 1) of the form

£ (] F) = TenG)) Eurdi (e ooy

b,c ni (b, (c)y

13

(10.15)

L J 03,

zn+ ol
where d=b+c—-a-1 is not a negative integer, and (a)j =a(a+ 1)a+z).
@A+, (ai)c‘3 =1 are Pochhammer symbols. The hypergeometric

functions _F, onthe r.h.s. of (10.12) can be rewritten in terms of the

172
Bessel functions J,, as
E (J‘_ﬁﬁ.& (gﬂ’jﬁ ) (Eﬂiﬁ v+ch:’(ézzm+ ).
PN e, ”‘“*“%v n! (ntk))

F[wn) [ (v k) [+ M+1§+a) (“i """) « ] (2mgn). (10.16)

r'(v) [(nsv+ tt2) 2n+vik

Consequently, by a substitution directly from (10.18) and (10.13) in

(10.12) we have the convolution integral M of the transforms F and G,

in the form
. D T ey (1R [:—(—:) "]
[\/{ =mlln ) C[ ,Z Kml-\* r'{m k—k?_) n

o (enrvik) [(n+v) | (n+v+!=.) (k e

;?o 1! k) | F(PH-D-# _w_ﬁ*“‘*;'**’*)

(10.17)

A DS T agr) ] (mpe) d Gy
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where the summations terminate inh many cases: remember that

2 [,_(_:\)WEH :l — ©  for m4k=1, 8,5,
M,k = ' (10.18)
Z  for m+k=0, 2,4,
and
o for m=k, n# 0
(k,m _ [ ‘ for n=0
= /n ) for%i+1:in,m%}< and
-k=2, 4, 6,
Tl ) "
C" for m-k=1, 8, 5,
F(“”'"‘H 1)
(10.19)
Hence, we can rewrite (10.17) more concisely as
o & ) T ok € A
pomL (0F et
= = M=V )
Z.
L=0 k=o
Z - 1)"(zn+u+!< F(n+\)5 [(n+v+k)
— nl(n+k) ] [(ntv+ N +1) F[N +l—n>
J (Z” n) ¢10.20)
x g 2n+ve k l (zrr FE) Jk(szfjg) o{(znjr}_) , '
(zmyr) |
where we have abbreviated \
N: = M;.,k ? and Nz.:' rk (10.21) ‘

The quantity AM,k. denotes a number defined by (10.18). This result \

representing the convolution integral M of the transforms F and G



should somehow lead us to the associated ol =functions. For m =0

and 1 we find that this is raeally the case, i.e.,

(M), = L) O

l=o
and

A
(M)M:f = ﬁL, F,ZC@ 0(;_ (10.28)
: .

i m
But, for the higher values of m the relation between M and @{L

i

becomes complicated. For example, for m =2 we have

L-V] (U ol® o
(M) 5 O i T,

=1 Lz
L;O

+2° ['(v) g J"’“gzﬁ J(Eﬂ?f J(er;'?é) @{(/zﬂ7f;> (10.24)

(2191

where for the identification of the integrals as c:(z and j L2
=y, L2

the Hankel transforms (2.10) and (7.24) for these functions. The last

[v]

o
see

term involving the integral on the r.h.s. of (10.24) may define the
function O('..T for m = 2. The physical signhificance of why the relations
between the convolution M and the associated ol -functions 5{.?
become complicated with increasing values of m is not perfectly clear
at the moment.

On the other hand, these functions for m > 1 may well be obtain-
able in terms of the cx_’z‘ ; xti and L‘TL —-integrals by making use of

the recursion formulae established by Kopal (1959, Chapter IV.4-5).
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Some of the results from Kopal's (1978) work are given below:

Cd+2z 1o {+3 . &
28/ _ (10.25)
L= 7 ( h ) ]-F-!,L L+2, > Ig l+z
: l+4[ 5 8 0 o
2 0 o I8 205 -
2, = °<’L - °<L' 2 +(—-£‘- [ e - ] (10.26)
t T 1",) £ I}){_ LL-I-.'L
. 2 l+3 & 1 _ l+s y '
=5 o) 2 S -2
o LT e R U Tig S Tlaz
2 3\2 ! 5 { rn\Z i
3Q{:L+B) c{“"[z"”] T(5:) <
L { r, L 7 é L2 gg) [+4 (10.27)
4 3 o, S 3(L3+Jol+ac) : ;J i
= —— o<+ f—[ (S\& Jogt o
N (TR YC RV R S (L+4) (L+4) ("? )

R L+5 /285 S
“;%[Lwﬂi L+6 hl)+( >]o<i+""

r 2
oz T L/ N !
R AN zéJ°<L+4 i) =<y o (028)

where s and M continue to be given by (7.17).

1.11 ‘Fher’j and I-Integrals.

The J and I-integrals additional to Q{T must be invoked to
describe the photometric effects of the mutual eclipses of distorted
élose binaries. These integrals are connected with the distortion of
the projected boundaries of the two components, and they are purely
geometrical. The aim of the present section will be to give a number

of necessary expressions for the evaluation of these integrals in addition




to the expressions given in Sections 1.7 and 1.8,
It can be shown (cf. Paper XII, Equations 4.8 and 4.9) by a partial
differentiation of (2.10) with respect to ry and S and considering

Equations (9.2) and (9.8) that

7° = 27 W) kvg £, (k9 J, 00 ], (hx) el (i

-1l 1
It = 27T k*’j J(kX)J(x) I(Ax)o!
= ° (11.2)

as Hankel transforms, where k= r‘1/’r~2 and h = (S/r*2 as before.
For the similar expression for the J—intagr*als see E£q. (7.24). The
above integrals may well be evaluated by employing the same methods
described in the previous sections. If, for example, we utilize the
formula (7.1) by changing over from k and h to a and c¢ for the

parameters of the respective integrals, we have

N2 - cd) TV n n!(viznt) [ pfo,v)
INGRERD Jer g,

N’ ‘

and

2v . v v (I N O
[' =6 be0-e) IO T A )
=i h=o

nt Tpev+) o (.4

where all the notations are in their usual meaning. For the closed
form expressions in terms of the ordinary hypergeometric functions
see Equations (8.9) - (8.12). The above expansions for the respective

I-integrals in series of shifted Jacobi polynomials = unlike the close
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form expressions for the same integrals — are valid for any type of
eclipse and any degree 1 of the limb~darkening. A similar expansion
for the ZDL =integrals c-an be set up simply by substituting (11.3)
and (11.4) in (9.13).

All these functions for higher values of m > 1 may also be

generated successively by making use of the well-known recursion

relations established by Kopal (1859; Chapter IV.4-5) and Lanzano (1976).
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CHAPTER 2

THE MOMENTS OF LIGHT CURVES

The basic data for the analysis of the light curves of eclipsing
variables in the frequency domain are represented by a set of the

guantities Azm defined (cf. Paper I, Eq. 3.1) by

!ei

}q2m - gki—t)d(%ﬁm%ﬁ : 0.1)

o

as the areas subtended by the lines 1 =1, singm% = 0 , and the actual
shape of the light curve of the respective spherical system in the

1= Siﬁeme coordinates (see Figure 3). The certain relations between
the moments 'Agrﬂ and the eclipse elements, for m=1, 2 and 3,
have been developed in Papers I-1V and XIII under the following assump-
tions: 1) Distribution of brightness over the apparent discs of spherical
components of the system is radially symmetric, ii) components of the
system revolve about their common centre of gravity in circular orbits,
For the explicit expressions in the case of annular and partial eclipses
refer also to Kurutag (1976), and Demircan (1976). In Papers I and II

it has been shown that the respective expressions turn out to be algebraic
for m=1, 2 and 3, but this was not the case for annular and partial
eclipses.

When, however, we utilize the expressions for the fractional loss

of light @{.z given in the preceding chapter in the evaluation of the
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integral (0.1) of the moments Agm » it becomes possible to derive
general expressions for Aem in the simple forms of series expansions
which aﬁe valid for any type of eclipse, any degree 1 of limb darkening
and for any positive real value of m .

The main aim of the present chapter will be to represent such
expressions developed by Kopal (1977¢) in Paper XII and the present

author (partly in Paper XV).

Sin*mg

Figure 3.

2.1 The Moments A

as Hankel Transforms.
2m =

Firstly, if we. consider that

A
- A
- = L‘j C o<y ¢1.1)
_ =
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and

J(5:279) = m 08" (50 52) o2, §,= i a2

which can be obtained from the well-known formula given by
‘2 20 g B i 1.8
5L: S5 St i + Cos L, (1.3

the moments of the light curves A o C8N then be easily rewritten as

A= ZC f@;_ 52y c>< ol &% (1.4)
l=0 42

r—]
or, by making use of the Binom expansion for (;S'L ésa) given by

: A\ 6"" D! 2_[ -
(§2- 82) / J!(m“"‘”‘_j Y & ) 5 “ (1.8)
/=0
we have =

- .
- 1) @d l,)i | ‘:"f"ij 2j o 2
.AZM: ML Cre LC[ Z j’(i"‘f‘}ﬂ)[ G‘éo) zg a 5 oo

(2]

Next, by a direct substitution from the Hankel transform (2.10) of

Chapter 1 for o< inEq. (1. 6) we are left with
b - 2 ¢ gt ]
P EOTEL K, o

where we have abbreviated éz-
K=2 NJ}‘?(W ) J(zmn) fé"’"ﬂw?é)d&z d@ng). o
éz

In order to evaluate the above integral with respect to & , use can be

made of an Equation (cf. Erdelyi et al, 1953; Vol. II, p.90, Eq. 7) of




the form

(a3 OG5 1OS @) o

v-i M,
‘where the symbol S(3g) denotes the Lommel functions. Consequently,

Eqg. (1.7) can be r*ewmtten in terms of Hankel transforms, as

HP’—H: 2l Cac™ Z CU)Z j(lﬂ;m;-)j DY 5'2)“&} ,

lzo  j=o
[Lkh)= Tk + Tk h) = Lkk) | o

where I_] and 12 are two Hankel transforms given by

(o)== YJ““W L9 T TS (k) d

vEZj+l 2,1 (1.11)
=}
and
1+2h
Y J( Jlhx x)d
Il(k,}q)_ F/\*’) g szm ) ( )—gﬂ}(?) X (12
being yet to be evaluated, where K=l"1/t"22 hD; éa/r-g and h1 = ‘S:‘/Fg'

The Lommel functions S(hx) occurring on the r.h.sides of (1.11) and
(1.12) can be easily obtained by the known recursion relations

5 (hx (17)() {(ZJ'H J S (hx) , (1.18)
2j+2,-1 2,

and
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S (hx) = ™ = (2jt2)" 5 (/vx)

2)+3,0 2jHl, 0 (1.14)
since

— _ ,

It may be observed that (1.10) is valid for only positive integer values
of m , and reduces to Equations (3.11) = (3.13) of Paper XII for m =

» 2 and 3. Furthermore it may be verified that the integrals (1.11)
and (1.12) can be expressed in terms of c’éi and its derivatives with
respect to r,, r, and & . Alternatively, known methods from
Chapter 1 for the evaluation of similar Hankel transforms can be utilized

to evaluate these integrals. This work to develop explicit forms of the

integrals (1.11) and (1.12) has been left to be investigated.

2.2 Expansions for A in Series of Polynomials.

2m

A general expansion for the moments Aam has been given by
Kopal in Paper XII. We shall approach his result by substituting directly
from Eqg. (6.8) of Chapter 1 in Eq. (1.4) for the moments. This sub-
stitution gives us

A (u

» = T{wﬂﬂ)
Aamz Z \.J["(w-: L ' (vrente) S (n+1) |

n=o

N+

(V;V+’)CX>J% 5 (I Cz Gs(w;; !, (;) 0{52' (@.1)




where the same notations have been adopted from Paper XII. The

symbol Gﬂ stands for the Jacobi polynomials defined by

G‘(le?x F(!’IHJ-D(])

n! [lnved) B, (p-1]
m) ﬁ (ZK-—))

nl F(VH' o(') (é{"?’);(F"‘>]
F(zn-#a;} é (%)

i

I

(2.2)

In Eq. (2.1), replacing & by (r’~1 + ﬁg)c as the variable of integration,

and normalizing the limits by introducing an auxiliary variable

Co C@
|~ C&

?

U =

we can rewrite (2.1) as

A

: ' 1) M+v+!
ﬂz = ML, {(rﬂ‘fz,)@ﬂijzm C\)( (I—CQ -

A (V"l’l

|
il
o

ZL N (v+znse) ol (Wnﬂ) [(Bn-

(n-H) [

+

2
v, VH, q)} x

S‘um "~ u vHG— (v+2 I, )CLM

R __._4_

| z z ‘ | [
= m| LI [:—S&)a [Cm-&) Cactl — Csj‘zijm —(—\)T C(

- M2,
l=o

(2.3)

(2.4)
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X

gi(wmh(wamz) (n-1)1 7(3‘” (V‘Ff’is‘*’“: C‘> 1=

pyrens e
= (n+1) . Bn,v+)

ZC ) i (ntv+z); (;——c})“""‘j’“

<M+v+2,)! it (n-i)!

j-—o
where (94 = < (E*{'H) (éf‘f“z) vee (‘f"i"f‘l‘“f); (Gi)asl are Pochhammer

symbols. This result representing a general expansion for the moments
A2m in polynomials is due to Kopal (1977c).

However, we can rewrite this result given by (2.4) more concisely

as
bz (_L.* Y"‘“ g\
Azm L,*a—z"m o (’*CoaB ﬁm(c( Co) (2.5)

where we have abbreviated
L e S n! (v+entz) [é‘v) }Z‘x
-F [l Lc( ( Z(ﬂﬂ) [(ven+)t ' 0 (e

2\(* yiLlnsvra+) (-t 2.6)

(M+\2+§;+J) j' Cﬂ;j)!

in terms of shifted Jacobi polynomials (since 0 £ ¢ < 1) defined by

Eqg. (6.4) of Chapter 1. This expression (2.5) in algebraic form,

representing a general expansion for the moments Agm of the light

curve, is valid for every type of eclipse for any positive real value of

m and for any arbitrary degree 1 of the adopted law of limb darkening.
An alternative expression for the same moments has been given

by the present author (Demircan, 1878b) in Paper XV. We shall in
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what follows outline the development of this alternative general expansion
for the moments AQm . To do so, let us first consider the expansion
(6.14) in Chapter 1 for the fractional loss of light o(f (see also
Demircan, 1977b, Paper XIII for this expansion). If we now substitute

for @iz directly from this result in Eq. (1.4), a general series ex—

pansion for the moments 'AQm can be obtained:

_zml, b® o D, n (Vv+en+= )/(nr—'j,i-
H‘Z’M: G -ZC F()ZED [(v+n+i) >x

”ZFI (—zn!z;wzuﬁl E) 5(‘5’?‘—3:‘3&ﬁ1(1¥¢2‘> F( n+v+ l )dé" (f;.
5

where a=r /(r +r)), b= 1-a=r/(r +ry) and C=6/(r, +r,)

in their usual meaning. Normalizing the limits of the integral on the
r.h.s. of (2.7) by making use of a new variable u as defined by (2.3)

we can rewrite (2.7) as

Ao = 2B (v caci ] LC(’)F CICS
2 N (\!+Zﬂ+{u+n}:[:;+-“- F( 2n, an—rzv-f-'z‘ b)

| 2
x SUM '(1-u) “;_F;( o Z{CEJ du . (&-8)

e

It has been shown by the present author (Demircan, 1978a, also refer

to Demircan, 1978b) that the above type of integrals can, in general,
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be given as

{
(o™ oo™ O ”,gf,”l! 3(-w)) olu =
ey [+ ) [(n+a+) J

= e (?) JHn=j) ) [+ 41) F[;‘“M-f—ﬁ e
J o

where A= o<+ + | . For PB=0 the r.h.s. of (2.9) reduces

to an ordinary hypergeometric form:

(Um0 1= 50m0) =

(2.10)

o L0 [(nrectt) = /=, naetri|
=€ nl [p+=tr)z 1L fHecT! }§>

A combination of Equations (2.8) and (2.10) discloses that

Ay L L L (e Cbﬂijm; COTC-

(v+zn+—-—§ [+ & C2n, Zntzpe3
»«2: [(n+v+1) ) F;( 3 [ E)x

C :)J F(”*‘V*”*JB (’ ﬂaz)mMH 2.11)
S ) .
F(M+U+=—+J) J'(”-"J)I

or




F[M 0 2 | : ZM:E‘ it
Appn= i—\?’?—i—- L, b [(mrz) Cse lJ Lca"]"{v) (=57
l=o

nl [lvensr) [y + 2

5 ot 3 Trooed)

n=o

~24, 21 +2V+3 T /~n, n+v+3
I8 R <)
2! 3 21 ) PtV 2| ’

Note that both hypergeometric functions on the r.h.s. of (2.11) are

(2.12)

polynomials. Thus, this expression, in simple algebraic form, con-
stitutes an alternative to that given by Kopal, and represents another
genepral expansion for the moments Agm of the light curves, valid for
any type of eclipse, any arbitrary degree 1 of limb darkening, and

any positive real value of m . Form =0 it reduces to .

- ,
]13(@ = Ll Zcmoéz ’ (2.18)

[=o
It may alse be noted that first hypergeometric function can be identified
as shifted Jacobi polynomials (see Eq. 6.4 of Chapter 1) so that the

moments Agm can be given more concisely as

4l B, R/ Vg
Aam: F [(3.(3"" (["‘Cv?’> : &;ni) ‘7&@(‘3‘; Ca) (2.14)

where




", ) [p+2n+~’*'- r{("‘-‘*“g)
-F(Gl Co) = ( 'LC( F( @n+l)(2_n+a ]—'(nwf—)

Rl S o G

]—'{m+y+-+ga) 3 (n=j) !

VHZRE S F»‘”Wm FH#W— =
= [t ZC“ [, nfcznm()zni)r/)mioP(miw %)
K F

On the other hand, if we use the expression (6.15) for @(Z

- Cﬂa} ] (2.15)

3
Py + 2

given in Chapter 1 in the same way as we followed in this section, another

similar expression for the moments A"-.’m can be obtained in the form

A= E2 (- of T ) Ao

where we have abbreviated

(t) r(zvﬂ (zn\l(zn+v+3 F[v+ﬂ+J=§
‘Fzm(&" CD) - (MH LC v]_'[w—L) (n;—:} r[2n+zv+15 )

(2~J zv)

x - 7 (CA L( = [(rtvr£+3) (=esy

[M+\2+-—-+J) Jjt(n- J),

= Tl Z ol )ffjjji (e
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(zn)! (2n+\)+ )F(v+ﬂ+—‘-—) F(V+ﬂ+§—>
L nt (H-H}f F(ZE’I-FZU-H) F(M.;-\)-f- .2_>

h=o
-
éz’zﬁ —}:( N, A+V+ = ) I"'Caz> (2.17)
4 - :E‘ : 7 |
WiV + >

For the evaluation of the shifted Jacobi polynomials which occur in the
foregoing expressions in this section, see certain three-term recursion

relation (6.7) with (6.8) and (6.9) given in Chapter 1.

2.8 Further Expansions for Ag

Here, we shall present some further expressions for the moments
AQm . To do so, let us first resort to the expansion (6.19) in Chapter 1
for the fractional loss of light Q(Z (see also Paper XIII for this expan—

sion). Substituting this result in (1.4) for Agm's we are left with

0 - 0
A, = m L, e LC 2 [v) ) a6tk
n=o

Z

s T dse

Z
=0

where T; 's denote shifted Chebysheyv ﬁ:olyﬁamials, the coefficients
KS) which are the function of only quantity a = r_]/(r‘,] + F‘g) have been
given by (5.8) and (5.11) in Chapter 1. In order to evaluate the integrals
on the r.h.s, of (8.1) if we change over the variable of integration

from © to u with the aid of (2.8) and remembering that ¢ = é/oﬁ1 +ry)

we have
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& rael i 'm! .
L= | (smsA T e o 8 = e e U™ T ol

8% . 0 (8.2)

Let us moreover utilize the result (6.21) from Chapter 1 which can be

easily rewritten by making use of the series expansion for 2F1 s as
% z [ (_n! n . rZ
] n (_C. ) = f'( n ] 1= C
2
mi(—fchﬂ),j (gczj
T L Ly, !
=@,
- ! 3.8
“ﬁ> 1’ (Vl'ﬂ DR ( 1~c2) (-9
J’(ﬂi IT(i+L)
since
_ L+

= ) and - = ljﬂﬁi 3.4
(c’{)} T‘(D{«) ' ( ) =G0 F[QE‘J'f") (8.4

This result permits us to rewrite the integral (3.2) as

!

= 57) SHBAL G- .

J=o °

The integral on the r.h.s. is a beta function B(m, j+1). Thus, con-

sequently, we have

A= Tlme) V7 L, (s, amf"“Z@wz\)/"{v),_'
. £

17, V(¢ et
€ &) K (”ﬁﬂ ~ 0 ) (3.6)
— =) [ ()] [ (5

ﬂ':..
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which can also be written in the same form as (2.13) and (2.15). Note
that a similar expression for the moments Agm can be obtained by
making use of Eq. (5.20) from Chapter 1.

Next, we shall represent another similar expression for AEm

due to Kopal (1977c). This expression can be obtained if we replace

(4.11) of Chapter 1 in (1.4) for the moments, leading to
A = '
znt, T )\ 7
L v CY ) Cenrd) .
| ' l=0 n=o

3.7)

Er(ma; n+l; vtl, Q [;i) 5(5; ga IP (\/1—(35)@!5’-
S2

In changing over (as before) from § to U as the variable of integration,

we can evaluate (3.7) as

A, = ml b (5 e - “"’)1 C(‘)Z(zn+~f—

-F (n+a y bl vl 2 ol EE)J P(\/i*c& ) olu
L, b* (§*Csci—Car M.ZJ‘ C(UL n@n)! (4n+)

iﬁﬂ'ﬂ (n!};‘

2 ("D (i’H
a(ﬂ+=’;n+f,u+i 2; 4 l:)) (M+: [ ) (8.8)

where ?ﬁ‘s stand for the Legendre polynomials, the F‘4 is the Appell

function of fourth kind, and for the symbol (@:‘)J see Eq. (8.4)
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Finally, we wish to present an expansion for Azm in series of
polynomials. This can be derived on insertion for c:{f directly from

(4.20) of Chapter 1 in (1.4):

A = L e LZ;@’C(UT(MH;X[F&(M@E

n

S /
x El_(ﬁfzg neK; 25 vl bY cF) (52_55);}?("”""’%/ c:?-> ol 2
8 | (3.9)
Re K £ 2 .

For K =1, for example, if we use (2.8) and (2.10) for the evaluation

of the above integral, results enable us to rewrite (8.9) in the form

Ay N
2 = b
A = Lbe(s cseifeed Y 2 C Zé X onti)
Z;D N=o

X 'F (gn} s / I“Cf) 'F (‘Vl, n+l, 2, Vi /;s?; 6’(2)‘ (3.10)
21 i+ 4_

All the foregoing expressions for ’l?:ha moments Agm in this
section hold good likewise for any type of eclipse, any positive real
value of m and any arbitrary degree 1 of i;he adopted law of limb-
darkening. |

It should be observed that many additional expressions are obtain—
able for the moments Agm of the light curves by simply replacing the

expansions for D{i directly from Chapter 1 into the Eqg. (1.4) of the
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present chapter for the moments.

2.4 Closed Form Expressions for Integral VValues of m .

We begin with integrating Eq. (1.4) by parts to yield
LM 3 3 o{
A =-L, Zd ((sz syt =<l s, o
remembering that
o<i o [(§=85)" ] = d [eq (s 52y | - (6=52) ‘\3";"5‘015
<y (&)="7o . - | @

) e
By making use of the Binom expansion for ( 5 8EYy L Eg. @.1)

discloses that

(t) 2 (i)
7%-2-&‘ L CJL{: LLC Z I(m—';)]( g@) C{J ! (4.3)

which leads us to the desired closed form expressions® for the moments

A2m when m is a positive integer humbe.m where we have abbreviated

These expressions have been given by the present author in
Paper XV for m=0, 1, 2 and 3. The methods will be developed

in this section to generalise these results.
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St
o=~ | 52ty

4.4)
So

which is yet to be evaluated and obviously reduces to c{f (50)
for j=m =0 (see Eq. 3.2 in Chapter 1) so that we have (2.13) for the
moments AG which can be deduced from observations as U - A (where

U is the total maximum light received on the quadratures when % = —g;

or 210 » while the quantity A in the same scale represents the total

light received at the time of maximum eclipse'when =8, = cos i,
or 8=0 or 77 ).
N a _—
It may be proved that the quantities L given by (4.4) (which
are validfor 0L j&£m and 0 £ 1 L4\ ) can be expressed in terms
of the C><Z and I-integrals. Our next task will be to illustrate this and

to utilize the results in the evaluation of the desired closed form expres—

sions for the moments Agm s by simply substituting the results for
Gy |
oy in Eq. (4.3).
In order to approach our aim we resort to a basic recursion
formula derived by Kopal (1975¢) in Paper I1I which permits us to
assert that

(L+4)+2) C{Cj)w -;f;s Q(iﬂ) [[i-(rzu O((J) f"“ %?f)é;m-sz

“which holds good for any type of eclipse. By re~arranging the terms
in this recursion formula and remembering from the geometrical

approach that




S Lz o1
<55L> T z(‘%yalll )
~i, (4.5)

then (4.5) can be readily rewritten as

o= L oD 1o () e o

l"f'-.é;. ' - | , ,—
(LN ORR g2 , o
* [+2 ﬁ) (r; >‘§é :—[’;i-i'(‘?-éa) y ) > 4.7)

This result permits us to construct successively all the requisite values
of C‘{(!j) if the functions eéz and 1 can be regarded as known. Thus,
the closed form expressions for the moments Agm may easily be
written in terms of @Cf and I-integrals for any positive integer

value of m . To illustrate this here analytically, for the firs few

values of m , let us proceed as follows: as for the C{(Z) , if for

example j =0, from (4.4) we have
. (0) 0 ‘
Q’CL = o () » (4.8)

and for j=1, 2 and 8 it can be deduced from (4.7) that

(1)
4 _,(_@)EO("—;_ 2 (FZLM -9
(2
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:{( '+ AR )J I i-:i(&) jz

+2

+ [+4 f
[:,e_? > [%) - ’] Q[-f-z -f;zf i:—j. m;)l—}-éQL_Hi’
Ay ¢
. fi —;;"’) m;) IIIHE (4.10)
and |

(3)
Qg_ [+12. Cz_) ,
= —— _ 3 (2 {4 g
ré 42 K4 A [ (ﬁ) - 7 Q)+ L;(L) ﬁ”f-)_j;[ﬂ

— [\ iz [r\*,
[(ﬁ>+ L+4 *~ 1 ) <t+4)(i+é)(r,>J

+[ 4(L+0) rp, g (L+12) (ny 2(Ls)
[(1*'2)([*4) r’)+(1+z)(l+4)(L+£ 0 ——(Z—fz_)(lﬁtz,)&jj

+;[l+:or)ﬁ({,+lz) ry\2 @,,_.:i. rLLH,, .
a0 1) 9yt Tt =0,

4(LH0) 11 ‘te L+ - z(l+io)(L+i2) l+3
! [( S_ ’] (r’) QL+4 (l+z)(1+4)([+5)(r QL+5

(L+2) (1+4)
A “""(5%& ~ rl)( 58 ) I -
ey W) 2 e @.11)

w(lr2y srltéys 83 |
+ : ( 1
, , h z
(lr2) (1+4) N F;) =) !
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70
where for the symbol j see Eq. (7.80) or (9.13) in Chapter 1,

=1,

and we have abbreviated

Q = ID +f§?§l—’ . @.12)

n ""gn | "’)n

If, now, we rewrite Eq. (4.8) in the form

B FooAZM ,
AZM: L: '3',2&7) aéﬁ(abcg) (4.18)

it can be shown for m=20, 1, 2 and 3, that

7&/ B EC@)&{O (4.14)
o ' L

{=o
(see Eq. 2.18)

A .
¢ T D sz @ (o]
f,=)C -5 o + 7 A
[_:D

L
. oz 2 D)
A -0
a (D s 2 () @)
_f?r“lc([?ﬁgt“ ‘f?fc’tl —rl;_‘fc‘lt]
=0
_ (})?.w__ cz\% ps L2 4 (1) o
=(%E) 4+ i G =
. - (4.16)
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A o
7 3 Z Col Cff 521 o35 o4 L o |
1 .

!

A
S () -,:'fzc(“qf

A

b2y 24 |
1l )%([1‘4)(“5) ﬂl-rz)(ﬁ%) C( r&10

o 3 * » 3 3 .
where G{L , &, b and Cc are all in their usual meaning as in

Chapter 1. The quantities 51 R Sg and 58 are again the functions
of a and C, - They can be given in terms of Kopal's I-integrals (cf.

Demircan, 1978b) as

31 = (%SLHQHL ’ “ (4.18)
S, = W) T+ (il (e +

-1,

)
=), Lz 4.19)

+(L£)( L+2Q +22(£+4)(é3 C)I

and

1o + p)(b%a ({8
S ::([ 1)(l+1$_ (E LZQLM (_12_ [z(tﬂ ( 8{) 3(t+ JQLM,

3 (L+¢) a*

+{£+4(‘@)l'z[étfz;—fz)(éz°ga“SCDa)+3(Cﬂ JQM




+ﬁg(i) [a(ﬂé ([+ID)E1_3(L+6)([+8) a[(l—HD) ja L

az . =1, l+2

(Lﬂo) (Z‘HE) o4 7° / -— N
ey @ 2R

el gy (B

=1, 1+2 (4.20)

The quantities j ¥ and Qﬁ are defined in terms of the I-integrals
=i

- @
(see Equations 7.30 or 9.18 in Chapter 1 for j X‘s and (4.12) for

2
Qn's}. For these well-known and best studied functions of eclipsing

binaries refer chiefly to Kopal (1247) and Lanzano (1976).

The fém's given by (4.14) - (4.17) hold good for any type of
eclipse and any degree 1 of the adopted law of limb—darkening. Ll.et
us consider now what happens when the eclipses become total. It is
known that all the I-~integrals vanish for total eclipses, so do Sm's
since all the Q's and J's are zero there. Thus, for total eclipses
Equations (4.14) - (4.17) reduce to

+, —LLQTZ C o=
=

(4.21)

az - (4.22)




4
T
and
a
- (s dyise)S o O,
= cZ_
i %52%_ @+a>(tﬁ)(t+gj c (4.29)

for any degree 1 of the law of limb darkening. The summations on the

r.h. sides of (4.23) and (4.24) become

Iss?ul , 3(}5’%&(,) 37(359{? M,)
5(3-U,) s (3-u) and 33[3-%7 (4.25)

respectively, for the linear law of limb darkening, and

2(I5-FU;- mu?_) ({15~ Fu - ic?u?,) 3(’140 ?éu,—msu,_j

, and (4.26)
s(4- zu,=3u) 5(é 24,3 Uy) :,z@(g 2U, - 2UL)

for the quadratic law of limb darkening. If the distribution of brightness
over the disc of totally eclipsed components is uniform, then, Equations

(4.21) = (4.24) further reduce to

'{:/ = | (4.27)
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/o br-cf
—{la a= (4.28)
) 2-
G- ) ar
(4.29)
and
—g = [7521"] * 3(_2_)?'— 7%: +("c%‘)a (4.30)

It may be noted from (4.21) and (4.22) that 'fc‘: and fgl do not depend

on limb darkening for total eclipses.
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CHAPTER 8

NUMERICAL COMPUTATION OF O{, 'S, I’S AND
Apm'S.

The requisite basic quantities for the Fourier analysis of the
light curves of eclipsing variables are known to be the moments Azm
and the & and I-integrals. In the foregoing chapters all these quantities
have been redefined as Hankel transforms and these transform integrals
have been expanded to a number of convergent series hopefully to gain
new properties of the respective quantities and utilize them for the
proper and fast analysis.

The present chapter is devoted to the numerical computation of
the above functions. This will show us the way to the prdactical appli-
cations of the certain methods which have been constructed in the last
fcéuiﬂ years of continuous effort.

' The numerical integration of the respective Hankel transforms
were performed and the results were quoted in the first section. In
section two the computation of the same regquisite quantities were made
by employing their series expansions. Section three is devoted to the
. development of some certain recursion formulae to reduce the round-off
error and speed up the computations. The revised expressions for the.
moments A‘Qm were also given in this section. Finally, in the last
section fast and general fortran programs were enclosed for the

numerical computations of these functions.




- 06 -

3.1 Numerical Integrations.

For the application of numerical quadrature methods we considered

here two integrals, namely the fractional loss of light e for uniform

limb=darkening:

s = 2 f SR 70 T (hx) dx
kX

4]

o0 7 a.1
=z b L0 T, (o) ], (ex) dx
and for linear 1imb=dar‘}<eniﬁg
oo = T 2 2 7,00 J, (hx) ol
- .}:a [&mkx kaeakx]](X)f(hx)
p (1.2)

_ b g [&max OIXCG%C{XJJ(EX ](ax)dx

(ax)3

as Hankel transforms which can be easily deduced from the general
results (2.15) and (2.16) of Chapter 1, vyhere the parameters k, h, a,
b and ¢ are as given in (2.15) and (2.16). We have these two functions
in tabular form (cf. e.g., Tsesevich, 1939, 1940) which enable us to
check our results. Here, it will be useful to note the following correl-
ations between the notations used in the present work and in the tablves

of Tsesevich for these functions:




X
—~
Q
|

pl=
Ii

R

o<, (a %’é) = @f{;f’xqt’(k)xkz‘ (1.3)
where k=rﬂS/r~g and
Plk)= of(a>ts c= gt )
- & [ 53R +4 (4k-3)ekr) K R |
s | (1.4)

(c:f". Kopal, 1959; Chapter IV.4) and see also Eq. (4.5) in Chapter 1 for
more general expression.

For the numerical integration of (1.1) and (1.2), first the simple
trapezoidal rule was employed for some particular values of k and h .
In Table 3 we present one such computation of (1.1) for :'\1/1'“2 = 0.6
and & ,/r"2 = 0.76 (or p = =0.4).

It is seen from Table 3 that the number n of the trapezoids should
be large even though the upper limit of infinity in (1.1) may be reduced
to a number as low as twenty (see column two of Table 3) owing to the

strongly oscillating character of the integrand (see Figure 4). In the
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Table 3

n x ) - X(0.6, 0.76)
85 0.1 0,024 921580 0.00288
10 0.2 0.049 37449 0.01092
20 0.4 ' 0.085 Q7400 0.04091
40 0.8 0.162 98179 0.14802
80 1.6 0.168 00908 0.43601
160 3.2 -0.001 10881 0.66224
320 6.4 -0.000 03498 0.70149
640 12.8 0.000 57792 0.68750
1280 20 0.000 06773 | 0.68670
Exact value QléBSQ?

beginning the faster approximation to the true result is also observable
from Table 3., For example, the first zer‘cjcf the integrand is about
3.17 in the above example and the integration up to this point with only
159 trapezoids gives us almost two significant decimals (0.6623). If.
steps ih x apsisas are taken to be larger than that of the example,
better accuracy for the result cannot be secured even if the integration
is performed until much higher limits. For example, if the upper
limit is taken to be 50 and the step is 0.1, we get % = 0,68649, on
the other hand, if we use 500 trapezoids between 0 and 5, and 1000
trapezoids between 5§ and 25, we have ;= 0.68691 for the same

L}

parameters k and h .-







In what follows, we give some important results which are
revealed from the application of the trapezoidal rule for the numerical
integration of the Hankel transforms (1.1) and (1.2).

D The numerical integration of the Hankel transforms (1.1) and (1.2)
by means of primitive formulae are possible with the high—-speed com-
puting machines by using very large values of n .

At) The integrands of the respective Hankel transforms are strongly
oscillatory (see Figure 4), which requires very large number of divisions
in the numerical integrations by means of primitive formulae.

iil) The rate DN‘F convergence to the true results is usually very fast

in the beginning - for small values of x - but slowes down rapidly with
increasing values of the variable x | of integration. As a result of this
property we may truncate the summation at a certain point, depending
on the requisite accuracy for the approximation.

Next, it was intended to apply some of the more efficient numerical
methods. The Gaussian-type formulae have been employed for some
different values of the parameters kand h . For comparison purposes
we give here a table. In this example we chose the same parameters
k and h as in the earlier example in Table 3 and the upper limit B
of integration was taken as 30.

It is obvious from Table 4 t hat we gain better accuracy by employ~-
in§ Gaussian-type formulae. It may also be noted that G24 is enough
to secure four figures in this case. The error of 10-4 in the result is

obviocusly caused by the neglected part of the integration beyond 30.
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Table 4

Rule (s (0.6, 0.76)

G4 0.64268

G116 0.876387
Ga4, 382, 48, 64 0.68705
Exact value 0.68697
G4 = Gaussian 4=point formula;
G16= Gaussian 16-point formula, etc,

The Chebyshev and Laguerre integration formulae have also been
employed for different values of the parameters k and h . It was found
that in most cases 3-4 significant figures can be secured easily in the
results. But, unfortunately, in the beginning of eclipses, i.e., if
h o~ 1+ kp for occultation type eclipses and h ~ k + p for transit
typ;%—: eclipses, almost all the accuracy vanishes and 2 significant figures
can hardly be achieved even if much higher point formulae are employed.
For example, Gauss - 82 — point formula gives X9 (0.2, 1.2) = ~0.093
instead of true value zero in this first céntact point.

Expansions (5.19), (5.20), (7.2) and (8.4) from Chapter 1 have
been automated by employing Gaussian 82-point formula (G32) for the
evaluation of their coefficients. It may be useful to note that the
numerical values of the coefficients Hﬁ in (8.4) rapidly increases with

increasing n , but contrary (1 = cg)n/’en/a“' /n! diminish more rapidly
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so that we, in most cases (for }arge values of ¢ ), have the convergent
results. If ¢ ~ 0 (or 5~ 0) the respective expansion diverges,

It was found from the practical applications in addition to the
above results (which are also true for the applications of these expansions)
that approximations to the true results are also highly oscillatory with
irregularly diminishing amplitudes by increasing n . For this see the
accompanying Table 5 which was constructed by employing (5.20) from
Chapter 1 in the first contact point ( & = 5,—3 ry ) for ro/r, =0.6.

In this case

()

o0
<3 (a, 8) = 2b) & Oy =0 (1.3)
n=ce '

NE)
The coefficients O!I were evaluated by G382 where the upper limits

of respective integrals were taken to be 30. This example reveals that
the present numerical method for (1.8) is unable to secure more than
three figures in the respective points. |

In all the foregoing numerical integrations we reduced the infinite

interval to a finite one by ignoring the "tail" of the integral, as

00 B 22 |
S +(x) dlx = g fodlx, el = S F09 dx & Tolerance
0 0 3

where it is difficult to fix the quantity B owing to its dependence on the
val'ues of parameters k and h in addition to the tolerance in the result.
On the other hand, since the integrand is highly oscillatory in our case,

summation of the positive and negative contributions to the results




0

10
11
12
13
14
15
16
17 |
18
19
20

Exact value

r_

(@), 2 _
Op =09

—1

0.119 840

0.027 696

0.001765

0.000 215

-0.000 873

—-0.000 569

—0.000 557

~0.000 407

-0.000 261

~0.000 249

-0.000 149

~-0.000 093

~0.000 083

~0.000 036

0.000 015

0.000 035

0.000 032

0.000 019

0.000 005

-0.000 001

n

o A

1

0.189 838
-0.039 622
0.001 Bég
~0.000 727
—0.000 405
0.000 908
0.000 052
0.000 889
0.000 280
0.000 673
0.000 299
0.000 522
0.000 382
0.000 508
0.000 452
0.000 430
0.000 483
0.000 435
0.000 463
0.000 455
0.000 452

0.000 000
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cause some loss of accuracy even if B is properiy fixed, especially i
the successive contributions are almost equal in absolute value. This
happens in the case of first contact points when 5 = r=—1 + rg in our
problem. There are, of course, Aumerous devices to speed up the
convergence of series summation. It is the author's expectation that
these devices would not give satisfactory improvement in our problem,
besides their application will require some additional time=consuming
operations. However, they may be worth applying.

In the following section we shall compute the respective Hankel
transforms without any numerical integration, but by series of hyper-

geometric functions which have been developed in Chapter 1 for the o

and I-integrals, and in Chapter 2 for the moments A’gm

3.2 Apprjqximatic:hs by Series Summatiqﬁs.

In this section the numerical evaluation of the requisite functions
will be examined by series summation from their expansions in series
of hypergeometric functions (see Chapter 1). In these expansions terms
c:c:r;\sist of the product of two or three hypergeometric functions of the
type glf and F-‘4. As it is well-known (cf. Erdelyi et al, 1953; Vol.1,
Chapters 1 and 8)

RO la)= L @

2 | nN=o0

and
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- =& ﬁD (BDmsn omon
’E{_(HL EI;CI,CZ.)'XJY) Z)Z ’ﬂﬂ?zg’ (Cy:)n X7 .2)

h=p =0

where (c{)n is the Pochhammer symbol as defined before. Below we

produce Fortran programs for these two hypergeometric functions.

Fortran program for 2[——’1

1 FUNCTIZN F?ica B,C,q)
TA=A
T3=8
Tc=C
5 o 1
IA
Ti=TA
T2=TB
, T3=TC
10 5 =1,+4((A%B)I/C) %G
102 1a=IA+y
PzPx(IA+])
T1=T14(A+IA)
) TP=T2+(B+IA)
15 TR=T3x(C+IA)
AA:IA+1
13k kA
A= (TlfT?)k(TZip)kal
) 5644
20 AWSABS (W)
IF(AA=Q,00000001)10L,101,102
101 Foi=g
' RETURN
END




10

20

- 1086 -

Fortran program for F4

FUNCTION FAa(AL,B1,C1,C2,%,¥)
51y tALRBIAX/CL4ALRBLAy/C2
Ti=A}
T2=531
M=l
6 AERERE
Ti=Ti#(AI+FLBAT(N))
T2=T2*(BI+FLAAT(N))
YMzN$2
Dé 2 IT:I;M\"‘
I=11=1
MaMMel]
rj:SAM(C2+FLHATE1))XSA%(CEJ
rquAW(C1+FL3ATCW)JXSA%CCIJ
RMEFLAAT(M)
RIZFLAATC(D)
XXZXAXRM
YYSYaXR]
f=£I5;T33x(rgfrqgk(XXfSAﬂ(Rl+L.JJ*CYY!GA%ERM+1.33
a=Lt o 7
2 CANTINUE
ANEASS(4) ' )
LF(AN=D,00000001)12,12,8
12 Fa=s
RETURN
END

Thus, with the aid of these programs 2;1 and F4=Functi@ns can
be evaluated efficiently if the respective series given by (2.1) and (2.2)
are rapidly convergent. If they are not rapidly convergent, the above
Fortran programs may give inaccurate results owing to the growth of
ﬁcund?DﬁE error with n . However, the following transformation formula
(see above reference, p.108) may be used to speed up the convergence

of 2F1ﬁfuncticns if Q}' %
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. M) '(c-A- ?3)
F(ﬂ | IQ) (CA (C E)ll ﬁ“l-[&- C‘H[’ @)+

-A~B [ () ['(A+B-C) A, C-B 2.3
(- ['(#) T(B) = F( c.ﬁ-zscﬂ [-a) 7

which reduces to
- [-n, B, !‘:— ~1)n ‘ fim )
j:z( c [ ) (CHn 7L (l 1+ B-C (2.4)

if 2131 concerned is a polynomial of degree n .
To terminate the summation routine in the above programs we

make the following assumption: if

N (BN N (Ap (B
%Q =< 3I6 then 26_ n ﬂ {;toler‘ance

G N CCa)n ni
(2.5)
for _F, and similarly if
2 1
NG )Mm(B’)Mw M N
SIG,
MlN'(Cl)M (cz_)NX 7< then
oo (= &)
A Dman (BY) :
Z Z__(m:):??a) (?.3.1 X'm yn <. tolerance (2.8)

n=N M=M

for ?4=functiohs, where arbitrarily small real number SI1G has been
taken to be 1@58 just as an example. Thus, once W becomes equal to
or smaller than SIG the routine terminates. Inthe "FUNCTION F4",

GAM( (. ) stands for the Gamma functions F (@i} . Computer
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software for T'(DQ can be found in any subroutine lihrary.

Gauss' relations between 2!:1 and its two contiguous functions
(see above reference, p.103) can be used as the three term recursion
relations for the evaluation of the n dependent 2?1ﬁfuncti®ns. This

procedure 1) considerably shortens the computing time, and ii) reduces

the round-off error. Moreover, if the quantity A or B in 2F’f1
happens to be a negative integer, then the above procedure leads us to
utilize the three-term certain recursion relation for the shifted Jacobi
polynomials (see Equations 6.4, 6.7 and 6.8 in Chapter 1).

Expressions (4.3), (4.11), (6.3), (6.6), 6.12), (6.13), (6.14), and
(6.15) for the fractional loss of light &<} , (11.8), (11.4) for 5?}1
and 131

Fiﬂtegrals all from Chapter 1, and in addition (2.5), (2.11),,

51
(2.13), (2.14) and (2.16) for the moments Ag, from Chapter 2 have
been automated. For this the above programs of 2[: 1 and F a0 and
the certain recursion relation (6.7) with (8.8) (from Chapter 1) for the
shifted Jacobi polynomials have been utilized. The ;cables of ol i 3
I_‘.O,,l e I’_j 1,1 and fgm-sfunctioh% with large intervals in a and c have
been constructed for small values of 1 and m by employing the above
automated expressions. An inhspection of the numerical tables leads to
the following conclusions:

1. In general, all the approximations to true values show irregularly
and slowly damping oscillations (see Table 5). This gives rise to a

question: How and where to stop the summation of the respective series?

It is obvious that here a similar criterion to (2.5) cannot be applied.
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When a term for n =N becomes smaller than an arbitrarily small
SIGMA, the summation beyond N may well-be large amount. We
decided from the applications that the criterion can be put on the maximum
numbenr of the eonsidered terms to achieve the wanted accuracy. For
example, in general, the summation of about the first 20 terms is enough
to éééure three significant figures for <;><'.Z from expansions (6.3),
(6.6), (6.12), (6.18), (6.14) and (6.15).

2. If the recursion relations are used in the re—-computation of terms
in the series summation of the respective expansions, in general, the
results with 4-5 significant figures are obtainable, but in the first and
second contact points (when § = P, + r, and = Ir‘1 - F‘E[ ) the conver-
gence of the expansions is considerably slowed down. Therefore, in

this case 4 figures are hardly obtainable by considering first 80 terms
for c’ci and more than 100 terms for I-integrals. As it was noted,

3 %igures for c{f are usually obtainable by the summation of only the
first 20 terms.

3. If the expressions include a quﬁmc‘cicn in double infinite series
form, in many points round-off error st.ar*ts propagating before we
achieve three figures in the results. Moreover, these expressions are
time consuming, since we have no existing recursion relation for the
re-computation of n dependent F’4—fuhc‘tions for successive values of n .
4. All the expansions (6.12) - (6.15) show identical behaviour in

approaching to the exact values. In convergence they seemed to be

slightly faster than the expansions (6.3) and (6.6) for the same <><f: -




functions, but the former expansions take more computing time than

the latter, since they include a shifted Jacobi polynomial of even order

for w!;’\ich the recursion relation is algebraically complicated and has

not been employed in ocur computations.

5. The elgebraic expansions (2.6), (2.15) and (2.17) for the functions

fEm hardly secure two significant figures up to n —~ 15, After this

point round-off error starts propagating as it has been shown by the

present author (Demircan, 1978a) and consequently the respective series

diverge. This loss of significance in computations is caused by the

successive subinstructions of almost equal quantities in the last sum=~

mations in the form

MM,«) o F(n+<:<+1) X!
() = Z- T(mreriy J1(n=j) |

ch

T(n+) F ~n, HE{{X) .7

ni J{mte)? k=

of the respective expansions. Here, for the sake of illustrating the way

in which the round-off error propagates with n , we extracted the
following numerical example (see Table 7) from Demircan (1878a).
This example gives the machine results of the summation of the 1.h.s.
of (.7)for X =1, m=0 and o =3. It can be shown that for these

elements (2.7) reduces to

-Efz)o>(—]) —~ é—Dn

(2.8)
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Table 7
77777 0 N
n i n Z
i=0 j=0
0 1.000 00000 12 1.000 00054
1 =1.000 00000 13 -0.9989 99332
2 1.000 00000 14 1.000 01144
3 -1.000 00000 15 -1.000 19455
4 1.000 00000 16 0.999 19128
5. ~1.000 00000 17 -0.994 75098
8. 1.000 00000 18 . :1.,051 147486
7. -1.000 00000 19 -1.275 39063
8 1.000 00000 20 0.476 56250
o ~0.999 99989 21 ~-5.515 62500
10 0.999 99998 20 —-36.906 25000
11 -1.000 00027 23

689,750 00000

In order to improve the numerical results for the functions f2m s

it is necessary to get rid of the propagating round—off error in the com-

putations so that we could consider larger number of terms in the res—

pective expansions.

Numerically it is known that nothing can be done,

for example, use of a double precision arithmetic would merely delay,
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but not prevent the growth of error. However, the analytical methods
as the development of a recursion relation for the successive numerical
evaluation of the summation (2.7) for any set of parameters may solve

the problem.

3.3 Recursion Relations and the Revised Formulae for A2 's,

—

The basic quantities of the problem are a{i s 131 L2 11,1 .
-1, =9,

and fgm . All the other requisite quantities may be defined in terms
of these basic ones. In point of fact a::{f constitutes merely a

particular case of fEm if m =0 (see Eq. 2.13 in Chapter 2) and 1_11 1
2

0

: 3 o
- :
may be written in terms of 1 and 1_1 , 142

11 by means of a recursion
51

relation provided by Kopal (1959, p.215, Eq. 5.52) in the form

- M

MEl Moy |
:IF;K “/M I]S)X "*"—%2? él IF‘ s . 3.1)

2

where M is as given by (7.17) of Chapter 1. Thus, actual basic

guantities are only the Ii 1
2

and F2m’ The 131 1 may be easily and
efficiently evaluated by means of its algebraic but slowly converging
general expansion (11.8) glven in Chapter 1. Its Fortran program will
be produced in the following section. As for the f‘gm—f?urﬁctions} it will
be more convenient ~ as it has been discussed in the previous section -
to work with the algebraic expressions (2.6), (2.15), and (2.17) whose
simple analytic structure lend themselves readily for automatic com-

putation by means of computers of very modest size. The computing
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time may be considerably shortened by using the recursion relation
(6.7) for the shifted polynomials R‘,n from Chapter 1. However, a
serious problem in the computation of these fgmeFunctior‘\s is the slow
convergence of the respective series and propagating round-off error
with increasing n (see the conclusion 5 in the previous section) where
m the computation of summation (2.7) the following procedures have

been employed:

n
i) Set M'\:.Zaj ) 'l,LD: e,
J=o

p = 2 e !l"l |
i Find =Ty, o Orla2y s 3.2)

i M= T

Maoreover, we have utilized the recursion relation

TUn+e<)
n! [ {m+ed)

_ (nj(n+ et
T (Hy(mrectj) i’

X, o= (3.3)
in the successive evaluation of the respective terms. This recursion

relation may be easily deduced by a combination of well-known formula
N 7 , n -
T(a+rn+1) = (a+0)" [(A+1) .4

for the Gamma functions, and (2.7) with the definition i) in Eq. (8.2).
We shall, in what follows, represent two other methods (cf., e.qg.,
Davis and Robinowitz, 1975, p.216) to reduce the round-off error in

the computation of the summation (2.7) which is a factor in Equations
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(2.6), (2.15) and (2.17) for the functions fgm of Chapter 2.

METHOD 1.
n
1) Set Mﬂ = g C{j P Ebo = d,
J=o
g . — 4. . [=0,1,2,v00, A1
i) Find %L'-H = -tl T Uiy 7 sha&y s
T _ _ (8.5)
fziﬁ“*t‘ﬂ tL "sm’ Tig Higr )
W[,’.! = “‘)L éi‘f‘l 7 wu = 0
iii) ,
7 — ‘LU' [
Mfl Etﬁn t n
METHOD 2.
n
i Set — = — - .
) Mnﬁzgjg ts 'a(,a/ 'I;—Og, E;[_”Q
J=eo .
ity Find 7, — 1, . — a. ¢
Q‘L = O + ‘SH ; U= tb—al +a;
g = ('fg-; - ng) + 4; (3.6)

iiij M n o Uq

These methods are based upon the fact that when a small number is
added to a large number a part of the accuracy inherent in the former
will be lost.

Next, we shall represent the derivation of a recursion relation (cf.
Demircan, 1978a, b) by which all the sequence of the summation (2.7)
for the successive values of n can be generated recursively in a very
simple manner. The process is not only fast but also prevents the

round—-off error from propagating. It is well adapted to modern computing
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machinery, and may be useful even if only one member of the sequence
is desired.
In order to illustrate the derivation of this recursion relation
let us first write the well-known three~term recurrence relation satisfied

by the erthogonal polynomials
MnH(X) = (ﬁﬂ Xt En) Mn(X) T Cn Mrz—lcx) ' ©.7

It may be shown that summation (2.7) as polynomials of degree n in X

satisfies this recurrence relation (¢f. Demircan, 1978a). In order to

derive the respective coefficients Anj ﬁ and C:ﬁ let us write (2.7)

more explicitly for n-1, n and n+ 1, as

(M;Oi), \ ' n-4§ -
Mn—: (x) = Clp, 0 T Gy Koot Cﬁ,_,?n_fx (3.8)
M) n
o+ O X
I\/fn (x) = C(ILD + aﬂg ! x * /2,[2 (8.9)
(M ) ) n+l
+ 0o X+ e+t O X
M CX> = C‘nﬂm e, N+, A+ ©.10)
where
, i r(“""c"iﬂ) | .
o .= &D » =1 - (3.11)

ni F(M*i‘@éﬂ) H{n-j)!

It may be easily shown that
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(j"’n) (n"-d;}'\f) O{ , ¢

] — . B 7
n, () (M) ) (8.12)
(see Eq. 3,3) and
A+ el +] ) ' ,
( x y s 0 (8.13)

ClL = L
ntt,j (nri-§y 1
Now, if we construct the r.h.s. of (3.6) with the aid of (8.7) and (3.8)

we get

M(M;ai)(x) = [ Bn Ao T Cn qn-:,a] *

n ;

gl
|

0 %ot Booy, +C, Qﬂ,,}x ot

..!}.

)
ﬂn aﬂ n-2 * Bf? nnﬁf+ C a ]}ﬂ’ﬁ~1+

=i, n-1
+(7£} a ., + B, a ]X"+7f:} a  x
n =1 N I?,ﬂ n n}n)(

(3.14)

Thus, one can easily write by comparing Equations (3.10) and (3.14)

that

Ay, 0 = Ba Gpo + Cr Ot ;N>
Car, 1 = Th Qo # B+ Gd s
Vet on-t = ﬁn qﬂgrz-zuf‘ Bn qz’l,n—[!"i Cn qﬁ@!,n—-l y N2 2




- 117 -

— , . (3.15)
aﬂﬂ,n - 74'? O‘n;,n-: u Bn c‘n{,n )y N>
C"n—mnﬂ = ﬁﬂ Qn,,n y 2o

Consequently, we find fpom these results by using definition (3.11) and

recursion relations (3,12) and (3.13) that

_A — (?msos) (zn—fczﬁa I)
; (n+1) (m+n + <)
n(rmrnte<-1)

B, = (en+ed +

(2/} +o<-—]r) n (3.16)
and
_ (nred(ntx-)) (b)) R
Cn on(aH) n ~ 1

Thus, the derivation of the requisite recurrence relation for computation
of the sequence l\/ﬁ?’ﬁ{) (X) given by (2.7) is completed. This procedure
not only shortens the computing time, but also reduces the round-off
error in the evaluation of (2.7) for any set of parameters m, o{ and
n . Therefore, the functions fgm(a, cé) can now be evaluated easily -
and effectively by means of the recursion relations (6.7) for the shifted.
Jacobi polynomials from Chapter 1, and newly derived (8.7) with (8.16)
for the new polynomials.

Finally, we want to give a few special values of summation (2.7)

for Nn=0, 1and 2
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M(“"J "3{)()0 T["{\ _

(M, ) G"‘J"d ’ N , :
M)y = M (x}[%-a——-——m?iigﬂ

(3.17)

and

, M, ) iy )
M0 = M( (x) {—;._—ﬁ(fﬁ')f’ﬁi’ifﬁf% ’

Z

o (1) (X + 2) (¢ + 3) N ]
2(m+od) (ma-ot+1)
which will be necessary to start the computation of the sequence
( " )(><) by using recurrence relations derived,
According to the above development, Equations (2.5), (2.6), (2.14),
(2. 158), (2.16) and (2.17) for the moments may be revised as follows:

75\, L ;; S,mz) (1 M+Lf‘ (Gf Co | - (8.18)

2m

where

< pl(viens 2)

=W, o2

= Tlon) ) COot-e) Gt
- phY Z M, V+2)
[ f{(n (00) M(n (1= c)

) 2 ( VIZA+ S *3
= 7&, [M+IZ_Cl ) (- C@) Zgnﬂ)(énf)?)f]?{zm})(s 20)

(3.19)
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R, () M - )

or

M

By [(zvt) £V en)! enwvr ) [(vent£)
F[m+: LC{ vl (I- ) L (n+)! F(ZR—FZV-H)

2,2V) /\/I(m vt 2
ézn CG‘) , nJ &(’“ Céz) ) (8.21)

(@)
3.4 Algorithms for o B Ig 1 and Fgmfl:uncti@ns.

X

1. FUNCTION ALFAO

Purpose

ALFAQ calculates approximate values (accuracy almost 4 figures)
of the fractional loss of light ac;‘z for any type of eclipse and any degree
1 of the adopted law of limb=darkening (see Eq. 1.3 in Chapter 1).

Method

It uses the formula (6.6) for a{i with the recursion relation (6.7)
for the shifted Jacobi polynomials from Chapter 1. The coefficients_

ol vienez) |
F = ['(v) — 4.1)
n (n#1y v+ n+1)

in (6.8) are also evaluated recursively without any resort to gamma

functions, as

- (v+zn+2)
Fn - F[IZ Ty (4.2)
where
Flog = Flo” Gorns
o no (ven+t)

(4.3)
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el dor n= | = = A
=-L ‘ﬁé’f n=o, F[, = \!(v-f-l) —f@-f n=1, ete, @.4)

Usage

It can be used solely through the argument list,
It requires no subprograms.

Description of paﬁamete rs

L - An integer specifying the adopted degree 1 of the law of limb-
darkening (L. = O for 0{5 , L=1 for c{f , etc.).

NM - Number of terms to be considered from the _inﬁ"nite series
summation (6.6) of Chapter 1. It is related with the accuracy

of the results for NM < 100.

—
A1l - Stands for the quantity a = r1/(P1 + r‘é} .
C11 - Stands for the quantity ¢ = &/(r, + 1)
Accuracy
For NM = 15 , ~ 2 significant figures are accurate.’
For NM =25 , ~ 8 significant figures are accurate.

For NM = 80 , ~ 4 significant figures are accurate.

FUNCTIAN ALFADCL, N, 811,C11)
MENSTI g ' X
3;;3:5I34 R1(8D),R2(80),F180)
X aNYmy
VEFLBAT(L+2) /2,
§w=335cz11-1,3
LF(Cr=,000 )
| 20 Ag?&azoga 1120,20,11
. YETURN
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IFCA11~,5342,43;43
Koz, 2, xA11=-Cit
IFCKA+-3331}43441 41 -
ALrﬁa 1.7V
RETIRN
2V,
I=Vi2.
Y9+ ,)
31.1211“"\,11
A12=341 %2

3123311 ax2

c12521liax?

to231,.-C012

Tz312xCo2xaPp

R ER VAV

Tt (st s vet ) /v
¢1(2)=<.f(v+2 Y/ (V1 2V
FozF10x(vi2.) -

s Fl(tax(ved n/r2,
TRsFL(2)a(vEg,. )73,

Rt L)z (VHL )+ (AFL, V&AL

R2(1)=Qu(R¢1,)4CR2

R1(2Y3(VHL(Ia0/72, =34 (+2, ) %A1+ (Q+2,)4(0+3,)2a1272,
R2(2)7R1/72, (21, x(Q¢t 2 3*»22+(J+? Yx(a+3.)72, kﬁ32#i2¢
Als. rP+FQ*R1(1)kk2 *%2(1)+“R*R1(2)k*2 kR2(2)

23 100 N=2,NX .
NyzNged . *
ANZFLAAT(N)
3yz2, %AN
RNIFLAAT(NN)
Fyz2, 43N .

1(”V) FLONIxRY/(VERN)
FaF L (NNYACVERNI2, Y Z7CRNEL )
31L=(Bﬂ+mlx(§V+m+1 Y/R/CANTR)
JPAR(BN+QI A (2 -VA~2 )= CBN+Q)k*$.
Dgi:E'kRW*(&WfQJx(3N+Q 1,)
DsC“cA!+1.)t(AW+VJx(3ﬂ+m+1 )

D{0=RN& AN+ A (BNEA=L )

212=01A/D18

313=015/01D

b PIETTAE) '

I9224Mx AN+ Q] ,)4D21 /7 (3N+Qn 1,)+BN¢2
Jo3z (AN~ l.ijﬁP/AV i4N+Q;*(AV+U 1)/ AN/RN
a1(ﬂq)-(oi1*Ait+01?)*R1{N}-013AR1(ﬂ 1)
R2(NNY=(D21%022+D22) 4kR2(N) wD23ARE(N=1)
;-Fialfﬂ%)*kg,kﬁ?(VN) .

AL ALYG .

CONTINUE .

ALFADSALAE:

RETURN

IND

— = i
PRI AR R F TN ) U

B L

R R a T R R P e R e R R
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2. FUNCTION AINTO

Purpose
AINT O calculates approximate values (accuracy almost 4 figures)
0 ,
of the 1~ 11 =integrals for any type of eclipse and for any value of real
2
12 0.
Method
, - 0
It uses the formula (11.3) for 1

: =1,1
relation (6.7) for the shifted Jacobi polynomials from Chapter 1. A

—integrals with the recursion

recursion relation similar to (4.2) is also employed for the successive

evaluation of the coefficients

:Fn - T - n!(\s—rznﬂ) | | .5

T(venti)

in (11.3) for the respective integrals, as

Fﬂ = F[n % (V+Zﬁ+;) o 4.6)

where
| = F et
FIM: ; F[*? " REvi (4.7)
with

Fl =L forn=o, Fl ==l forn=i . . s

! U('\t‘-l-l
‘ Usage
It can be used solely through the argument list,

It requires no subpragrams.
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Description of parameters,

Same as inh ALFAQ.
Accuracy

Slightly lower than that of ALFAO.

FUNCTIAN AINTOC(L,NMaalL,Ci1)

DTMEINSIAN RI(BI), RECSDJ F1(80)

Nyz Ny

Ny =Nx=1

V=FLAAT(L+2) /2,

CH=ABS(Cii~1,)

IF(CH=,0001)2Y,20,11

ATNTO=D,

RETURN

IF(A11n,5)42,42,43

Xazl, =2,xA11-C11

IF(XA+,0001343,41,41. _

ATNTO=0, .
RETURN

V=2, %y

=Vile

A=9x(Q+t)

311=14mA1l

Ap2=ALlxa?

31233 1 xad

12301 &2

Co2=3t.wCy2

Fidsta /v

Ftcl)"i.xCVfliJ/V

2y=2,/70ve2.07(Vel )2y

FLO0x (VL)
FL{1)*x(Ve3 )
i
{1
)=

;UJ‘VJ"

LT I T § I F N | I

2)#(V+5e}
/B811)YavVVABI25022%aY
Se(VELLIH(0r1 ) 8ALL
Y=3=(Q¢1,24C22
?1(2}-(V+? 1Aafz.aca+1 YJA(AF2 I RALLH(QE2, )6 (W3, I AAL2/2,
R2C2)F (VR I XQ/2,=(B+1, ) x(Q+2,) %022+ (042,04 (Q+3,)XC224%2/2,
Als. rPfFJ*Rl(l}it? *q?(11+rR*RLCE}A*S,kRE(E)
23 100 Nz2,8X
'BEATS
ANsFLAAT(N)
3Ns2,KAN
RNSFLAAT (NN)

U“‘ll‘
Mp—-p‘ﬂ"

CPy=2 kRN e e e o e 8+ R £ e
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N =F  CND) AR/ (VERND -
TCNNY & (VEPNYL,) :
=CBV+QIAC%V+ +1,)/RN/ (AN+Q)
:(3%+Q3kt1_~th2.)-(BV+D}Ak3.
1220 ARNACAN+ I A (BNER L)
31’:=1\‘J*(AN+V)*C8N+Q+1:)
J10=QNa AN+ Y& (BN+AmL,)
22=D1A2D10
213=21C/D1D
dolz=D11
I22=ANK (AN D1 ) AD21 /7 (3N+Qwl, ) +BN¢ ]
2233 (AN+Q-1, 3*32°/A” (AN+Q)% (AN#R=1,)/AN/RY
JEVNI SO AAL [ +D12)4R{ (NI «D{3kRI(N=1)
R2(N) = (D21 %C22+D22) AR (NI wD234RE (V1)
3zF H?l{\l\t)k*aa xR2(NN)
3 AU=ALS
100 CONTINUE
L ATHTO=ALAE
e TJRN
IND : ‘)

8., FUNCTION F2m

Purpose

F2M calculates approximate values (accuracy almost 4 figures)
~ of the constituent f"‘gm(a; ¢ )-functions (see Eq. 4.18 in Chapter 2) for
- the moments A, of the light curves fér any type of eclipse and for

the quadratic law of limb=darkening (£ =2). -
- -

Method
It uses (3.18) of the previous section to construct f;m's;
. ‘ =}

£’ = % (1™ ﬁm ) 4.9

{Zm QZM .
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The recursion relation (8.7) with (6.8) from Chapter 1, and (8.7) with
(8.16) from the previous section have been utilized to evaluate the

fgm's recursively. Remember that the general form

& | |
-]Q;M = L c(l) 73 ) C(4.10)

2
[=0

reduces to

. A . :
- — ~U
ol = 2_ C CaéL 4.11)
l=o

“for m = 0 , where the coefficients GCI) are associated with the law

of limb-darkening of degree £\ ., T hey can be given by (see Eq. 1.4

in Chapter 1)

(Q) 3 "u; "("‘) 3“!
cfL A, s

— L e———

T o3- U, 3~ ) (4.12)

for a linear law of limb-darkening (i.e., when 4\ = 1) and
C(o) LGRS
T (- 2u-3u5)
C(’): 7 5 u, ) (4.18)
(6-2u, -3 Uy)
Noatg L

for a quadratic law of limb darkening (4\ = 2). Thus the "FUNCTION

FaM" for m = 0 permits us to evaluate the :::{.i ~functions as well,
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FUNCTION F2M also utilizes the closed form expressions in the case
of total eclipses for integer values of m (see Equations 4.21 - 4.24 in
Chapter 2). |

It can be used through the argument list. The user must supply
one additional function program: GAM(A) for the gamma fun;:tichs [_' (A).
Moreover, the following coefficients have to be f:r‘ovided by the main
program or by another subprogram. This is done to save the computing
time since the F2M is called repeatedly with the same coefficients given
below,

i) The coefficients C denoting the Gﬂ)‘s for the quadratic law
of limb—-darkening (see Eq. 4.13).

i) Fn as-given by (4.1) for every adopted 1 (for the guadratic
law 1 =0, 1 and 2) and considered n .

iil) The coefficients D11, D12 and D13 (for every 1 and n ) of
the recursion relation for the shifted Jacobi polynomials as given by
(6.8) of Chapter 1.

iv) The coefficients D21, D22 and D23 (forevery 1, mand n)
of the recursion relation for the new polynomials MnQX) as given by
(8.7) and (8.16) ir? the previous section.

Description of parameters

NM —~ Same as in ALFAQC and AINTO.

M - An integer specifying the index m of Fgm A

All, C11 - Same as in ALFAQ and AINTO.
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D11, D12, D13 = The coefficients Ah, Bn and Cn of the recursion
relation for the Rn(X)spcslynomials. -
D21, D22, D23 - The coefficients Aﬂ, Bh and Cn of the recursien
relation for the Mn(X}spglyncmials.
Restriction
The parameter M cannot be any integer but 1, 2, 8, 4, 5, 6, 7
and 8 specifying m=0, 1, 2, 8, %, 3/2, % and ¥ respectively.
Accuracy

Almost the same as in ALFAQ.

FUNCTION F2MCNM, M, ALLCID

EXTERNAL GAM

COMMON CC3) pFE3,000),D11¢3,i00),012¢3,100) 1 D13¢541007,
1021 (8,3,1002,022(8,3,100),D23(8,3,100) "
DIMENSION FM(3),R1¢80),R2¢20N)

211=1,=A11 '

E12aA19 %%

B12=B19%x2

Z1=B12/A12

C12=CTdwxs

NX=NM~1

1TF(A11m, 5042, 42,43
42 XA21 =2 2 AT1-019

TFCOXAY 43447044
41 XE(B12rC12) /492

GO TO (44,45,46,47)H
b F2r=1q,

RETURN
45 FevsX
RETURN ”
46 FotaXwu2+zx(C()+ 8./15. « C(2)+1-/3. » C(3))
RETURN '

47 FRMaxX*»3eXaxZ[x(3. «C(1)+8./5.xC(2) + C(3)) +

I __C2231,-012 - - S —

izn{ca)+4&fm5}¥g@4&1ygdﬁctsn - : : —

- RETURN
43 GO TO(41,12413:14,1 | J A
11 Kl=g . 14, 5115117318)N
G0 TO 20
12 REET,
60 10 20
13 kM=g,

¢O 70 20




14
15
16
17

18
20

50
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RM=3E

GO YO 20

RME:S

60 TO 20

RM=,1 15

60 TO 20

RMFuZS

60 TO 20

KM=,75

po 30 -11=1.3
IFCCCIIXIBT1,50:51
FMCII)=0,

GO TO %0

IL=]1mq 7
VEFLOAT(IL+2) /2,
FR=RM+Y+1,
ESB12XCARX*PP/AT2X*RINGAMERM*A ) wCCTT)

10

30

A::V+2:
RI(I)= =(V+1:) + (V+3:)x All

RI2)= Ax (VW) /2. = Ax(A+2) = All + (A +L')-an—(ﬁ+3*)/_2_. = AlZ
RMA=RM&A : '

GA=GAM(A)

GMASGAM(RMA)

SEGA/GMA .

R20=8S

KPSARAW(A+1 ) *CR2/RMA

R2{1)=XPws o L e
XR=A*(A*1e>/3-"A*(A*i,3*(A*Z,)*C22/RHA+A*§A+1,)*(A*g‘)*
1022%%2/2, IRMA/ CRMA% Y% (A+3) .

RE(2)=XR%§ .

FO=A/ (A=2 .} .

F1=CA+2 .0/ CA=1 0/ (Am2 ) 12,

Fa=g % (A% )/ (Amq D/ (A=) ) IA] 3,
AL:;O*R§O+F1*R1(1)**2#R3(1)*F2*R1(ggf*g*gacd)

DO 10 N=2,NX

HN=N

R7(NN}=(D11(IIpN)*A11*Q1E(II,N))WR1(N)ﬂDTJ(IIgN)*RT(N,1)

n”_ﬁ___MRE(NNijﬂglQHR:IIJE)&Q§g+DEﬁKNRrIIpN))*Ré(N)*Dﬁé(NR:I§;N}

1% R2Z(N-1)
GﬁF(MReIIFNN)*R1(NNJ**3*92(NN)
AL=AL*G
CONTINUE
FMCIT)=ALE
CONTINUE
FANEEMCT ) +FM(2)+FH (3,

RETURN

"~ END
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CHAPTER 4

THE PRACTICAL PROCEDURES FOR OBTAINING THE

ECLIPSE ELEMENTS

In the preceding chapters the fundamental quantities for the new
approach to the problem of an analysis of the light changes of eclipsing
binary systems in the frequency-domain have been given as the simple
algebraic formulae and their fast efficient computation in practice h;ég
been discussed. The algorithms in Fortran have alsc been enclosed for
the numerical evaluation of these guantities.

The moments AEm of the light curves (for the spherical model)
have been presented (Chapter 2) 1) in the form of general closed expres-
sions in terms of the KopalsJ-integrals for integer values of the quantity
m , and ii) in the form of infinite series expansions. In these latter
expressions, the terms have been given as the product of two different
polynomials which satisfy certain three~term recursion formulae. Thus,

~the numerical values of the theoretical moments Agm can be generated
recursively up to four significant figures for any given set of eclipse
elements.

When we evaluate the observational values of these moments with
the aid of definition (0.1) in Chapter 2 for any positive value of real m ,
they constitute simple algebraic relations between the unknown elements
of the eclipses and the observed characteristics of the light curves,

This can be utilized to solve the eclipse elements in two ways: i) with
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a direct method as minimization{t?tthe observational moments AEm
(area fitting), and ii) with an indirect method (for the procedures see
Paper XIV) as a suitable elimination of the unknown parameters and
solving the remaining two non—-linear independent equations for the
remaining two unknown parameters a and c, -

The aim of the present chapter will be to utilize the results cbtained
in the preceding chapters for the development of practical procedures
(cf. Paper XIV) for obtaining the elements of any eclipsing system from |
the observed photometric data by their analysis in the frequency domain
for any type of eclipse, any proximity of the two components, and any
degree of the law of limb-darkening of the eclipsed star.

In the first section the wide binaries with 5_«53 spherical c@mp@ngnts
will be considered. The generalized proceduresgthe s,ystems con=
sisting of arbitrarily distorted stars will be given in section 2, In these
pﬁécedures » the distribution of surface brightness for the apparent
discs of the stars will be assumed to be radially symmetrical and the
respective limb darkening coefficients will be taken to be known from
the theory of the stellar atmospheres. Section 3 is devoted to the develop-
ment of a method to the solution of the two respective simultaneous néﬁ—
linear equations for' the unknown parameters a and c, The methods
from section 1 for obtaining the eclipse elements of wide binaries from
one observed minimum alone have been automated and tested on the light
curves of YZ(21) Cassiopeiae (cf. Paper XV) and ]3 Persei (Algol).

The results of these applications will be given in the final section.




- 1381 =

4.1 Systems Consisting of Spherical Stars.

The aim of the present section will be to outline the practical
methods (cf. Paper XIV) by which an analysis of the light curves for
the elements of eclipsing systems which consist of spherical stars can
be performed in the frequency—-domain for any type of eclipse. At first
sight, the adoption of spherical shape for both components of such sys-—
tems may seem to be unduly restrictive, and limit the applicability of
a model based upon it only to a very small class of systems which are
sufficiently wide for mutual distortion of both stars to be negligible.

However, by virtue of their relatively low probability of discovery .
(narrow eclipses) alone, such systems are likely to constitute but a very
small fraction of eclipsing systems known to us at the present time. As
the probability of their discovery increases with increasing proximity
of their components, so does their mutual distortion; and the proximity
effects arising from it are bound to cease to be negligible. However,
as it will be outlined in Section 2, a solution for the elements of dis—
torted eclipsing systems can always be reduced to one based on a spheri-
cal model., This fact should make the subject matter of the present
section fundamental for an analysis of any light curve in the frequency-
domain = regardlgss of whether or not the form of the components whose
mutual eclipses give rise to the observed light changes is spherical or
distorted: in the former case, it represents the final solution; in the
latter, a necessary prerequisite for subsequent developments.

As has been pointed out already in Chapter 2, the fundamental
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observed quantities which will serve as a basis for a determination of
the elements of the eclipse giving rise to the observed light curve are
the moments A’Em of such light curves defined by Eg. (0.1) in Chapter
2. The basic data from which we depart inh quest of cur solution are
represented by a set of these moments Agm » the number of which

must not be less than that of the unknowns sought for. The zeroth

moment (see Eq. 2.13 in Chapter 2)

N R X e
= o

(1.1) -
= L, X (a¢c)

where A £ 1(0) stands for the lignt of the system at the moment of
conjunction of the respective minimum (caused by an eclipse of the star
of fractional luminosity 151); The (a, r;:o) = &, signifies the maxi-
mum obscuration of the star undergoing eclipse, of luminosity L,aei s
depending on a and S, - The fractional luminosities L are

1,2

defined so that
L +L. = 1. (1.2)

Even in the absence of a knowledge of the foregoing parameters a, Cy
and 1_1 » the value of AO can be ascertained from Eq. (1.1) in terms

of the observed depth /\ of the respective minimum;wﬁile atl higher

moments (corresponding to m > 0) can be established (cf. Figure 3)
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by a quadrature (or planimetry) of its observed light curve . As could
be expected from the fact that, within eclipses, sin © £ 1 and there-
fore, sin  © <X 1 for increasing values of m , it follows that,

numerically, A, > A for m < 4t

M
On the other hand, the theoretical values of the moments Azm
for any type of eciipse, expressed in terms of the elements IE1 , & and
S, s have been established in the previous Chapters 2 and 3.
Suppose, now, that the coefficients w of limb—-darkening can ba’
estimated from the theory of stellar atmospheres, and that l@ur‘ aim is
to determine the four elements Pis oo i and L.1 of the eclipse from -

the moments A:;m (the number of which must not be less than four),

In general, if we form the ratios

k. Ak, VK
— ﬂx,ﬂxé“‘ 74;&:

*J'l ‘ J; i‘.' ' Jm

Ay Ay, Ay,

g5

we can obtain that

ok, pke kg
R = ‘Fx, —}sz N _fzx” g(a, Co) (1.4
B Iz Jrn
76?; ﬁi 7L§m

provided that

HI

!’,‘IXI—*-k3x3+'.'+kﬂxﬂ=!f;g(+jzgg+“'+-};ﬁ§'m ’ (1.5)

with real powers kﬁ’s and jm‘s , and the positive orders xﬁ's and
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yn%s (m,n=1,2, 8, ...). Atleast two values of ym‘s should be

different from xﬁ's, For two different sets of parameters kn, X,

n

jm and ym » £9. (1.4) constitutes two independent relations between
the observed quantities and the eclipse parameters a and Co , Since
the quantities B given by (1.8) can be established from the observations
as ratios of the respective powers of the respective moments of the

light curves. In particular, if we suppose that n = m = 2; j_] =k, =

k2:1; Xy f-xgse and yi’;o, 2;y2=4,8, we obtain

—= = —— = jz(mjc,) (1.8) -
A e f Ty

and

Ao e
Lt = (cx C> 1.7
Haf}g ‘7€7QZ . e

These two simultaneous nonlinear functions can be solved for the para-—
meters a and c, (this will be the subject of the Section 3 of this
chapter). Once the values of the unknown parameters a and c, have

bee L t ti
een determined we can use any one of the ratios Axl/A X (x # x ) to

determine the fractional radius r‘1 of the star undergoing eclipse. If,

for example, we use the ratio AQ/AQ , with the aid of (3.18) of Chapter

3 it may be inverted to yield ry s as

-




o® £, A.

rf& = - (1.8)
(-2
(- ¢ 37% ;QQ + oL A,
or with the aid of Eq. (4.9) of Chapter 3
/
2 _ 720 Az (1.9)

o= €otl 7 iy
(-;j%aﬁ&'}aﬁﬁa

since in (3.18) of Chapter 3

Sint = [ 1~ (&Y VE‘%:]J": f (1:10)

The other parameters can be obtained very easily; r_, from the defin-

2
itionof a , as
| (1= e)
R T ', (1.11)
i from the definition of c, »as
. -1
I = Cuh [(r}+r_,_) ‘1.:] , (1.12)

and, finally, L_1 from the moment AO =1 - A (see Eq. 1.1),

L A A

o /i C;_) ﬁ 7%,3

In more specific terms, the fortran program F2M given in the
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previous chapter can be used as a basis of the construction of appro-

priate tables of the quantities g(a, (;—D} for two different sets of para—
meters; and these tables, for example, in the case of 95, 9, May be
inverted to yield the unknown parameters a(gg,‘ 94) and co(gg, 94) in
terms of the qbser\vable guantities 95 and 94 for any adopted values

of the coefficients Y of limb-darkening. This work has been done for

Sn and 9, for a quadratic law of limb=darkening, characterized by the
coefficients u1 = 0.6500 and u, = =0.0226 , which reproduces the
solution of the equation of radiative transfer in grey plane-parallel
étellar* atmospheres within errors graphically shown on the accompanying
Figure 5. The corresponding tables of gg(a_, CED), g4(a, GD) were con=
structed (see the Appendices 4 and 8) with the aid of a CDC 7600 elec—~
tronic computer of the University of Manchester, and their values
accurate to almost four significant digits (tabulated at intervals permit—
ting linear interpolation between neighbouring entries within errors not

in excess of 0.0004). The general behaviour of these functions is
illustrated on thé accompanying Figures 6-11, and the graphically inverted
almost two digit accurate a(gg, g 4) and co(gg, g 4’) tables are given in

the accompanying Tables 8 and 9.
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=-0240\

~-:0760

=+0080

<0000

Figure 5. Deviations of the linear (I) and quadratic (II) approximations
of the law of limb-darkening from the exact solution of radiative
transfer in gr*ley plane-parallel atmospheres (abscissae) plotted
against cos ¥ of the angle of foreshortening (ordinate). Curve |
represents the deviations of the exact solution of the problem from

“a linear approximation of the form J(¥)= 0.4+ 0.6 cos ¥ ; curve
11, the corresponding deviations from the gquadratic approximation

JC¥ )=0.373 + 0.650 cos ¥ - 0,028 cos® ¥ (after Kopal, 1949).
Y
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Figure 8, A plot of the function gg(ai cD) versus ¢ for fixed values

of a.
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Figure 7. A plot of the function g,(a, ¢ ) versus a for fixed values
of c_ . ‘
- %o
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Figure 8. A plot of the function PICH ¢,) versus c_ for fixed values
of a . ) ' -
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Figure 9. A plot of the function 94(:6., c;c) versus a for fixed values
of c_ . ' '
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Figure 10. A diagrammatic representation of the function gg(a, c )
as defined by Eq. (1.8), inthe (a, c@; plane, for every type of
eclipse. .
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Figure 11. A diagrammatic representation of the function gu(a, ©)
, o

as defined by /E:qg (1.8), inthe (a, co) plane, for every type
of eclipse,
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Table Ba. a(gg, 94) = functions for the occultation-type eclipses.

9492 0.60 0.61 0.62 0.68 0.64 0.65 0.66 0.67 0.68 0.69 0,70 0.75
0.800 {0.47
0.805]0.46 0.46 0.46 0.45
0.810 0.46 0.44 0.44 0.44 0.44
0.815 0.44 0.43 0.43 0.43 0.43
0.820 .0.42 0.42 0.42 0.42
0.825 0.40 0.41 0.41 0.41
0.830 0.88 0.38 0.40 0.40
0.835 0.84 0.37 0.38 0.39
0.840 0.31 0.34 0.85 0.38
0.845
0.850

Table 8b. cgﬁgg, o] 4) - functions for the occultation-type eclipses.
9492 0.80 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.75
0.800|0 0
0.805]0.06 0.04 0.03 0.01
0.810 0.28 0.12 0.09 0.02 O
0.815 0.20 0.13 0.10 0.06 ©
0.820 0.24 0.12 0.07 ©
0.825 0.28 0.15 0.10 O
0.830 0.43 0.23 0.13 0.05
0.835 0.51 0.29 0.22 0.14
0.840 0.56 0.39 0.30 0.05
0.845

0.8580
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Table 9a. a(gg, 94) - functions for the transit-type eclipses.

g492 0.60 0.61 0.62 0,683 0.84 0.685 0.66 0.67 0.68 0.69 0.70 0.75

0.,800|0.88 0.88

0.805]0.58 0,89 0.59 0.60

0.810 0.61 0.62 0.682 0,61

0.815 0.63 0.84 0.84 0.63

0.820 0.65 0.66 0,685 0.84 0.64

0.825 0.87 0.68 0.67 0.66 0.65 0.65

0.830 0.70 0.70 0.70 0.69 0.67

0.835 .72 0.72 0.71 0.69

0.840 0.75 0.78 0.72

0.845 0.80 0.78 0.75

0.850 | 0.84 0.82 0.70
Table 9b. CQCQEQ g 4} - functions for the transit-type eclipses.

g4g2 0.60 0.61 0.62 0.63 0.84 0.65 0.66 0.67 0.68 0.69 0.70 0.75

0.800|0.10 0.08

0.805{0.20 0.17 0.12 0.05

0.810 0.23 0.20 0.18 0.07

0.8158 0.30 0.25 0.22 0.08

0.820 0.36 0.30 0.25 0.22 0.05

0.825 0.39 0.83 0.30 0.24 0.12 0

0.830 0.48 0.41 0.39 0,32 0.21

0.835 0.49 0.45 0.39 0.3t

0.840 0.568 0.47 0.41

0.845 0.62 0.82

0.850 0.88 0.20
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With the values of 95 and g 4 ascertained from the observations

.we can enter these tables to establish the corresponding values of a

and c,. It is interesting to note that for many pairs of 95 and 9,
there is no solution. If, however, the solution discloses that
0 < a < % (1.14)

the eclipse under analysis turns out to be an occultation (i.e., P, < Pg);

while if
¥ < a < 1 |, (1.15)

it proves to be a transit (r\g < r‘1)i Moreover, if the value of =

happens to be such that

1 e, > [2a ~ 1] ) " (1.16)

the eclipse is bound to be partial., If

<, < 1 -2a s (1.17)

the eclipse becomes total; while if

c, < 2a-1 , (1.18)

it happens to be annular.

To make the formulae (1.8) = (1.18) for the eclipse elements
practicable, four’*%igit tables of FQ‘(a, co) and fo* = fg‘/ﬁo' » permit-
ting linear interpolation for intermediate entries, have also been con-
structed and given in the Appendices 1 and 2. For the behaviour of

FO '(a, GQ) - functions see Figures 12 = 14. The above tables should
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malke a determination of r‘1 from (1.9) a malter of simple algebra;
and to obtain the other unknowns from Equations (1.10) = (1.18) is
str‘aightforwar‘d enough. It may be noted that if a < % énd c, < 1~2a-
i.e., if the eclipse under investigation proves to be total = a solution

for the elements becomes wholly algebraic, requiring no aid of any
auxiliary tables, and can be carried out in a closed form by methods
already investigated in Papers I and II.

The entire process described so far can be carried out on the basis
of the light curve of any one minimum - say, the primary (deeper) one -
alone, without any recourse to the secondary minimum; the only necessary
prerequisite béihg a knowledge of the light level (i.e., the luminosity
of the system outside eclipses) subtending the areas representing the
moments Agm . The process furnishes, moreover, a direct solution
of ocur problem with the aid of necessary tables for a and Co s rgl (r*g, 1);
and L1(L,2 =1 - L_1} in that order. Its feasibility depends, however, on
the accuracy with which the two simultaneous equations like (1.6) and
(1.7) based on the observations of the same minimum, can be solved

for the parameters a and cy (see Section 3 of the present Chapter);

and this, in turn, depends on the numerical magnitude of the Jacobian

| B(gm) 3@)
> (@, &)

. (1.19)

J =

As is well known, the vanishing of this Jacobian would imply a

functional relationship to exist between successive functions g(a, cg)

JOHN RYLANDS |
UNIVERSITY
LIBRARY
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which would render a simultaneous solution of Equations like (1.8) and
(1.7) indeterminate. In general, this will not be the case. However,,
if the Jacobian J , while non vanishing, is numerically small - as is
likely to be the case for shallow partial eclipses = a simultaneous
solution of equations of the form (1.6) and (1.7) for a and c, may be
feasible only if the left-hand sides of these equations can be deduced
from the observations with the requisite degree of accuracy.

Suppose, however, that the simultanecus solution of equations
like (1.8) and (1.7) for a and = based upon a given light curve is
weak, or borders on indeterminacy. If so, the determinacy of such a
solution may be restored if we are in possession of the light curve of
the alternate (secondary) minimum of the same system. -In such a case,
the roles of the fractional radii r 1 and r, are interchanged, and the
unknown quantities a and ¢, can be solved from the pair of equations

like

[l

( 745 9 (@&, Cp) ’ (1.20)
Ao 7%4. fri -

) e
Y. g/ Sec.

based on the same moments 'AQm of the alternate minima. Such a

procedure is generally to be followed in an analysis of the light curves

of systems (like WW Aur, for instance) whose minima are due to partial
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eclipses of comparable depth; and tables of ggiag co) continue to be
available to facilitate this task.

Suppose, however, that the depth of the secondary minimum is so
shallow that the proportional errors <., of the moments Aém on
the 1.h.s. of Eq. (1.21) become too large to make this latter equation
of any practical use - a situation frequently encountered in typical Algol
systems with cool secondary components. In such cases, only Equation
(1.20) remains significant, and additional independent relations between
a and o;:o must be sought.

In order to construct such a relation based on the depth of both
minima alone, we may proceed as follows. Let A o, b denote the
remaining fractional light at maximum occultation or transit eclipses
alternating in each system, and o< (a, cc), (b, c;o) be the fractional
losses of light of the camponents La’ l“b . The subscript a will here-
after refer consistently to the smaller component of the two (an eclipse
of which is, therefore, an occultation) and the subscript b to the larger
star (an eclipse of which is a transit) - regardless of whether L.a %}_ Lb;

while, in the arguments of e , a continues to be equal to r*_];’cr*1 + r‘g}

and

Vi+re

(1.22)
If so, then an occultation eclipse (r, & ry)

Ay = 1= X (a, ) Lo (1.23)
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.

while half a revolution later, during a transit Cr‘1 > ),
A= 1= e<(be) Ly . (1.24)

An elimination of L.a between (1.23) and (1.24), taking advantage of

,b

(1.2), discloses that during an occultation eclipse,

- Ab

o Y(ae)

ol (m, €)= I= Aq + (1.25)

while during a transit,

o< (b, ) = I=Ap + (1= Aa) (—E’_)z V(a;, Cg) ) (1.26)

where we have abbreviated

| e ed(be
() = (&) =

ol (o«!ca)

e

(1.27)

representing a slowly varying function of its parameters as well as of
the coefficients of limb=-darkening of both stars, whose theoretical value
may be obtained by use of Eq. (1.1).

Equations (1.25) and (1.26) represent a second desired relation
between the parameters a(orb = 1-a) and . based on the depth of
the two minima of light, and whichever of them should be adjoined to
(1.20) to obtain the solution for a and c, depends on the nature of

the eclipses giving rise to the observed minima. Should the primary
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minimum be due to an occultation eclipse (i.e., if )\‘ = Ac{ ), Eg. (1.25)
should be used; while if it is a transit ( A, & Ay ), (1.26) should be
adopted. If, moreover, the occultation happens to be total (i.e., if

< (a, cO) = 1), Eq. (1.25) can be solved to yield

- AL

(T) - Ao 7(5‘.: Ca}

(1.28)

for the depth a/b (L 1) of the respective system; and for an annular
transit a similar equation holds good, provided that the fractional
luminosity }\L refers to the light intensity of the system at the com-
mencement of the annular phase.

In general, only one of the alternatives A = A, , or Aé will
lead to a real solution for a and c, Such a solution can be facilitated
by a recourse to tables of QSCa, 'c@), < (a, cO) = f(‘;(a, CD) and Y(a, c;g)i
The tables of function Y(a, co) have also been constructed for the same
distribution of brightness over the apparent discs of the two stars, and
given in the Appendix 8. For the behaviour of this Y(a, CO)— function’
see Fpgure 15, For machine computations, the fortran program F2M -
given in the previous chapter is sufficient alone to perform the respective
tables for any adopted values of the coefficients of limb-darkening, and
once these have been done and the parameters a and c@ inverted,
the respective solutions can be obtained in the same way as before from
the Equations (1.8) = (1.10) or alternatively, for the fractional luminos-

ities L_a b of the two stars can be evaluated from the following equations:
2
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Lo _ ({_BL y(gg Co) N | (1.29)

and
Lo 4+L =1 . (1.30)

Eq. (1.29) can be derived with the aid of (1.23), (1.24) and (1.27).
Should, lastly, the depth 1 - Ag of the secondary minimum be
negligible - as it would be if the secondary component were effectively
dark = this would imply that L_1 =1 (or very close to it). In such a
case, the second independent relation between a and. co to be adjoined

to (1.20) would follow from (1.1) in the form
a{(m) CZ,;)

o< (b, ¢

(1.81)

depending on whether the observed minimum of depth 1 - ;)\, , is due
to an occultation or transit eclipse. Only one of these, together with
(1.20), will yield a real solution for a(b =1 - a) and c, and once

their values have been obtained, the remaining elements ¥ )2 and 1

can proceed in the same way as before.

4.2 Systems Consisting of Distorted Stars.
In the preceding section the practicable procedures for an analysis

of the light curves of any type of eclipsing system have been developed
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which are directly applicable to systems whose components can be
regarded as spherical. However, as soon as photometric effects
arising from their proximity cease to be negligible, such effects will
produce a continuous light variation of the system throughout its orbital
cycle, which will superpose upon the changes of tight arising from
possible eclipses. This fact will, in turn, necessitate certain modific=-
ations of the reduction procedures outlined in Section 1 to make them
applicable also to an analysis of the light changes exhibited by close
eclipsing systems; and the aim of the present section will be to outline
the requisite modifications from Paper XIV.

In order to extend the methods of Section 1 to an analysis of the
light curves of distorted eclipsing systems, we must first re-define in
an appropriate manner the respective moments of the light curves. In
the case of spherica’l systems treated in Section 1, the upper limit of
integration on the r.h.s. of Eq. (0.1) of Chapter 2 was taken to be
sinEme' , where the value of the angle ©' of the first contact of the
eclipse could be read off the observed light curve. For distorted
eclipsing systems the variation of light 1(8) will continue beyond 6 > o',
and the position of the angle ©' on the light curve can no longer be
ascertained in advance without ambiguity. In order to avoid this

ambiguity, the moments of the light curves are redefined as

ﬁ’z_m = QU% - 1(®) ] d(=T0) , - 2.1)

v
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where 1(T/2) denotes the maximum brightness of the system at the time

of quadratures (@ = -"2: ) % ). This new definition is indeed quite con-
sistent with that represented by Eq. (0.1) of Chapter 2 — for in the case

of spherical stars — an extension of the upper limit of integration beyond
the moment of first contact would not affect the numerical values of

Aém , as their integrand 1 - 1 vanished outside eclipses It agrees,
moreover, with Eq. (4.2) of Paper V. Since, however, the range of
integration adopted on the r.h.s. of Eq. (2.1) extends now from the
moments of conjunction to that of the quadrature, the empirical values

of Agm can again be ascertained directly from the observations - without ..
any prior knowledge of the properties of the respective system. In par=
ticular, we do not need to know whether or not the system exhibits eclipses,
or whether the observed light curves are due to the photometric proximity
effects alone. We may also add that the definition (2.1) of Ay ~ like

(0.1) in Chapter 2 for A o holds hood also for m = 0, in which case

2
Eq. (1.1) is to be replaced by

—~—~

A,

and represents the total amplitude of the observed light changes between

[(—;:r) - “D) ) (2.2)

il

quadrature and conjunction of the respective minimum.

The straight theoretical moments A of the spherical case as

2m
defined by Equations (8.17) = (8.20) of Chapter 3, in terms of the eclipse

elements are then related exactly with the empirical moments AQm

by Eq. (2.11) of Paper X, of the form
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—_ T(422) ‘
A&M (J+z+am) ¢+ ﬂam H }gz*‘“ ’

(2.8)

‘n r\/) =~

valid for any value of m (including zero), where the quantity on the
l.h.s. of Eq. (2.3) represents the empirical )observed) moment obtain-
able by planimetry of the respective light curve, and the cj's are the
amplitudes of the proximity effects varying as cosjé. The physical
significance of these constants has been established in Section 2 of
Paper V (Kopal, 1975e; Eq. 2.48) to which the reader is referred for
fuller details; hereafter we shall regard them as unknowns to be deter-
mined by subsequent analysis. Lastly, the Fﬁém's stand for the 'photo-
metric perturbations', within eclipses, arising from distortion both of
the eclipsed portion of the disc and of the eclipsing limb.

The numerical magnitude of the /?—ng's is generally quite small,
and for moderately distorted systems they constitute the smallest term
of Eq. (2.8). This, however, is not true of the weighted sum

T(42)

! 2_ T’/}-}-Z%ZH) (2.4)

of the constants ;j . Indeed, for close eclipsing systems, those cor—
responding to even harmonics j (and in particular, C, factoring the
second harmonic of tidal erigin) may become relatively large, and their

weighted sum (2.4) comparable in magnitude with Agm on the left~-hand

side of Eqg. (2.8). In such cases the numerical magnitudes of the Gj 's




must be established, from those parts of the light curves which are
unaffected by eclipses, before an analysis for the elements of the eclipses
(if any) can get under way.

As is well known (cf., e.g., Kopal, 1954 and subsequent publications),
the range of possible eclipses in close binary systems is bounded even
if their components are in actual contact, and the mass ratios not in ex-~
cess of 10:1, their duration cannot exceed 6' = SDG. Moreover, if i <X 900
and (or) if one (or both) components become detached from their respective
Roche limits, &' <= SOD, If s0, however, it was shown in Papers V and
IX that the values of the individual constants Cj zan be established by a -
suitable ‘modulation' of the light curve betweén eclipses — i.e., by an

evaluation (through quadratures or otherwise) of integrals of the form

X
, : - (o, 7)
cj = ﬂ[(%)al(-&)]?; (¢ 8) ol (¢os B) @.5)
-Q

where j denotes, as before, the degree of the respective harmonic

factoring cj » N is the total number of such harmonics included in a

simultaneous solution, and a = cos 8'.* The explicit forms of the
e, 1)

'modulation polynomials’ , (cos ©) for different ranges of eclipses
J

and the first four partial harmonics included in the analysis (n = 4)

have already been given in Paper IX for the following ranges assumed

Not to be confused with the a used before.
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to be free from any effects of the eclipses: .

() ©60° < e <120°; a=%: Equations (5.18) - (5.21),
iy 458° <« o € 135° ; a=Y2/2: Equations (5.42) - (5.45),
(ii) 30° <6 <L 15OD ;& =ﬁ/2 : eq;:ations (5.65) - (5.68),
in which we have set cos 8 x .

The actual range to adopt should be ascertained by an inspection
of the respettive light curve. If the light changes are continuous and
exhibit no obvious indication of an onset of the eclipses, we can never
go wrong by adopting range (i). Should, however, a piecewise discon-
tinuity in the shape of the light curve indicate the phase angle &' at
which eclipses commence, then range (ii) or (iii) should be chosen within
which © > 8' . The more extended the range, the greater the accuracy
with which the values of the cj 's can be determined from the light curve
by a modulation represented by Eq. (2.5). On the other hand, should
we allow &' to lie within the adopted range, a determination of the c¢.'s
may then be \éi:tiated by eclipse effects.

It should also be noted that, inasmuch as these constants occur on
the r.h.s. of Eq. (2.3) only through their sum (2.4), the value of this
sum could also be obtained directly by an analogous modulation of the
uneclipsed part of the light curve — by use of the polynomials as given
by Equations (5.23) - (5.25), (5.46) - (56.48) or (5.869) - (56.71) of Paper
f o ol (-_){a,n) s - . 7
X, replacing the f}. (}c) 5 on the r.h.s, of (2.5) without seeking to
specify the cj‘s individually. The latter possess, however, a distinct

information content of their own, which can be utilized in due course
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(for instance, for a specification of the amount of gravity-darkening of
the respective stars, or of their mass-ratio, with the aid of Eq. (2.48)
of Paper V). Therefore, an individual determination of the cj's and
subsequent formation of the sum (2 4) from them should generally be
preferable. Should .th'e sum so obtained turn out to be sensibly equal to
the corresponding empirical moments Kgm (thereby implying the
quantities A, - as well as /B?’M to be negligible), this would signify
that the respective system does not eclipse, and that its observed light

changes are due solely to the proximity effects.

Lastly, the leading terms of the 'photometric perturbations’ /BZH .
corresponding to the first three spherical-harmonics in rotational or
tidal distertion, have been established for total eclipses in Section 6 of
Paper V, and their investigation subsequently extended by L.ivaniou (1976,
1977, 1978) to.every other type of eclipse (annular, partial; occultations
or transits), and recently this quantity has been tabulated (Edalati and
Budding, 1978; Paper XVII) by employing the automated procedures of

Budding (1974) for the numerical evaluation (by simple trapezoidal

guadratures) of the integrals

S‘Z' 7
S0 i 4012
EH:mL!chLZ ~°7>—* O R

(cf. Paper VvV, Eq. 6.8), for the fixed mass ratio (mg/m,] = 1), limb-
darkening (u = 0.8) and gravity—-darkening ( T =1). The }Bgm's consist

of two parts: 1) a distortion of the eclipsing limb of the component in




front, and il) effects associated with the distortion of the eclipsed
star. The former effects are purely geometrical and relatively simple;
their evaluation discloses that, for total eclipses, and for m =1, 2 and

3:

2] @y @ 3 2 { i C;L (2) ]
ﬁf L:C;[ Tx) g’f": ”"w‘“L'?“WZ'} 4X‘,3% G } " @)

Z + jie.8)

3 "f (2.9)
where
\ > (1‘“)/ C vz Ltz
= ; 7 == ;
XJ' = L vl viz) e (vi]) = (2.10)

L=o
are corstants which depend (through CCD) on the coefficients LJ1 of

limb-darkening of the eclipsed star;

g 3
Lé:-)::(l-f* "'m"’)rz_

Mg (2.11)
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and

a) _ om,
W, = M, V2 (2.12)

are coefficients associated with the rotational and tidal distortion of
the eclipsing component (where (cf. Equations 2.48 — 2,50 of Paper V)
m, /m‘,2 denotes the meas—-ratio of the respective stars); and the con-

continue to be related with the geometrical elements r

e :
stants th 1,2

and i by Equations (8.26) - (3.28) of Paper I. The foregoing expressions
(2.7) = (2.9) should be sufficient for an analysis of the primary minima,
due to total eclipses, of systems with subgiant components in which the
primary (early-type) star is essentially spherical - so that a distortion
of the secondary's shadow cylinder represents the only perturbation
which needs to be taken into account,

The explicit form of the terms arising from ii) depends not only
on the geometrical distortion of the component undergeing eclipse, but
also on the distribution of brightness (gravity-darkening) over the surface
of the eclipsed star, and need not be reproduced in this place.” For the
explicit results the reader is referred to the sources already quoted.
These contain, tg be sure, only the Fgm's correspondingto m > O.

However, for m=0,

| A o |
== (ST s )
ﬁo:Lt‘/_)_C (-ﬁe*% +f2 ] ! (2.18)
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1 1 . ;
where the functions F*( ) and f1< :)g are given by Equations (3.32), (8.33)
2

and (3,34) of Paper V. If the eclipse is total, F1 M = FgO) = 0 identically
at the moment of maximum eclipse (& = 0); and only f*m # 0 for the
distorted primary star.- If, however, the latter can be regarded as
spherical, then alsc:.v f*cl) = 0 and, in consequence, F@ =0.

The actual method of computation of the elements of distorted
eclipsing systems can now be summarized by the following scheme:

1) First, determine the requisite number of the empirical moments
Kgm of the observed light curves, as defined by Eq. (2.1) above.

2) Next, evaluate the requisite number n of the constants cj by
appropriate modulation of the 'uneclipsed' parts of the light curve, by
use of Eqg. (2.5), and form their weighted sum (2.4)

38) Transpose the sum (2.4) on the r.h.s. of Eqg. (2.3) to the left,
ignore P’gm , and evaluate the Agm's. |

4) With the aid of ‘rectified' moments AEm of the light curve,
evaluate the elements of the systermn by the method of Section 1.

5) By use of the elements . i and L so obtained,
2

1,2

evaluate the corresponding 'photometric perturbations! Eém , transpose

them together with (2.4) to the 1.h.s. of Eq. (2.3) to obtain an improved

set of the Agm's ; and from these improved elements r and 'L_1

i
1,2? ,2

8) Should these improved elements differ significantly from their
first version, repeat steps 3-5 until both sides of Eq. (2.3) can be
satisfied by the same set of the values of Py oo i and L1 o and these

2 2

constitute the final solution of our problem.
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First, it may be noted that — unlike in the case of light changes
exhibited by mutual eclipses of spherical stars treated in the preceding
section of this chapter, which could be solved directly when we use the
necessary tables = a solution for the elements of distorted systems can
be obtained only by iterations even if we use the tables. The need to
iterate arises solely from a presence of the photometric perturbations
B, onthe r.h.s. of Eq. (2.8) relating Xgm with A, . Since,
however, the numerical magnitudes of the E32m's will generally be
small, iterative solutions should converge with sufficient rapidity to
make more than cne repetition of steps 3 -~ 5 of the foregoing cycle un-
necessary. Should, however, this cycle fail to converge, our solution -
in fact, any solution consistent with a physically sound model of the
system = would then become indeterminate from the photometric evidence
alone, and additional (e.g., spectroscopic) evidence may be required to
alter this situation.

Second, it should be stressed that = unlike in the previous treat—
ment of the subject in the time domain by more conventional methods -
each step of our present analysis can be expressed in algebraic form
(as closed formulae, or convergent series of satisfactory asymptotic
properties) whic;lj is amenable to automation, and the entire solution
can be obtained at high speed with the aid of electronic computers. The
investigator without ready access to such computers, and working by
hand or aided only by a desk=type (or pocket-type) computer, can per-

form his task expeditiously with the assistance of auxiliary tables
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accompanying this chapter; but their almost Four‘-dig_it precision will
also set the limits to the accuracy of his work. However, once the
empirical values of the moments Agm or Kgm have been determined,
-automatic computers can be programmed to perform the rest of the
solution internally. To do so, the only remaining difficulty is the
solution of the parameters a and €, from the simultaneous nonlinear
equations like (1.6) and (1.7); in terms of the observed quantities g(Agm)i
In the Folloning section a method, for the solution of these key parameters
a and- Cys will be given to complete the automation of the whole pro-

cedures outlined, for obtaining the elements of any eclipsing binary

system.

4.3 A Method for the Solution of the Parameters a and ¢, -

In the preceding two sections the procedures have been outlined
for obtaining the elements of the eclipsing binary systems. The only
remaining problem is the solution of the two simultaneous nonlinear
equations like (1.8) and (1.7) of Section 1, for the two key parameters
a and cg of the eclipsing system concerned. In this section we shall
develop an iterative method for the solution of the respective two
simultaneous nonlinear equations of the form

B(l\ _ %m (a) Co) (3“13

and

B@\ - 3(5’-3(% Cp)

(3.2)
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(see Equations 1.2 and 1.3 in Section 1 of the present chapter) for the

two different sets of parameters kK , x , j . and vy . Thel.h. sides
n n m m

in (8.1) and (8.2) can be estabdished from the observations as ratios

of the respective powers of the respective moments of the light curves.

Thus, if we rewrite (8.1) and (3.2) as
' F(a, GD) = 0 _ ‘ (8.3)
and
G(a, c@) = 0 8.4

and if a point (.31 R cm) close to a solution has been determined by
graphical methods (for 9 and 9, pair this approximate solution may
be taken directly from Tables 8 and 9) or otherwise, a clgser solution
(a, GD) can usually be obtained as follows:

Let a-a, = da, o, = Coy T Sco . Expand F(a, ¢ ) and
G(a, cc) in Taylor's series to terms of the first degree, and assume
that (a, CO) is a solution, i.e., F(a, ca) = G(a, GQ) =0 . Then,

appraximately,

Fla . G)+ 5ﬁ>a§a * (%EEO);,S e =0 (5:9)

G"CG‘I Co: (éG> 50(-!- 56‘) §¢, = o

26 /Co (3.6)

These two linear simultaneous equations in two unknowns are solved

for 8O and § ¢,




- 169 =

pELY - (L)

Co o Coy

o= ' - - -
( é [:)) (}_\ 3(-’-\) (é ,ﬂ,) (5 3(&))
,5”5{ a, ¢ Cof_ 2, )Cal oa o

Z)

¢ ig‘i )m - 3(2)(%])0(

_%3;’)&(_%_3&,)%’“%32!):”(%3—;)&

S Ca C,

$

) (8.7

!

$¢c, = )  (8.8)

and the new approximation to the solution is given by
Q:E{’ﬁ—gC{ ) ¢, = Coyt&C CRS))

The process is repeated with the new valugs of a and Cé until the
desired accuracy is secured. If it is'found that the values of the partial
derivatives of ,gC")‘ and 9(2) with respect to a and ¢, are not much
changed in successive calculations, we need not recompute them at
every step, but merely copy tham for the previous step.

For the evaluation of the partial derivatives occurring in (3.7) and
(8.8), we may proceed as follows: lLet us assume, for example, that

gg given by (1.6) in Section 1 is one of the gct)(a, GO)—FunCtiDnS con-—

cerned. Then, we can write that

‘ "&Lj 3;23}(]9’3 _ﬁ;“jg?ﬁhj&c? 724_ (3.10)

and by derivation.of (8.10) with respect to a and ¢, we have
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, 20 2 ;a 7@4 o (3.11)
and
232 _ (?— ,,57@2-_} >ty 1 >F4
g,c:p - 33" ,7@1 Y .ﬁp dc, 7(4_ Sc, ¢ (8.12)

D - > Tz
Finally, the partial derivatives —égcf’f‘ and ——-éleéi" on the
r.h. sides of (8.11) and (3.12) may be easily derived from one of the
algebraic expressions (3.19), (3.20) and (8.21) given in Chapter 3,

From (38.18), for examplé we have

;Bi‘%\ = {M_Hz— (l (- c’.’g)Lnn (v+n+z)(v+zn+g)F/u+ﬂ+l) Fﬂk}mli)

o v[{v+2) (niye fmas vi2)
Cn, mwz LA, N3 [/, ez z |
F( vil 14 0 ( y+2 }&)zh( b Vs, /?—Cp), (8.18)
and
) I (l) (- Cz) i vtznz) [ [{v+n+) /T”‘"*Z)
‘f‘z.wx =~ 2¢, (M+!>L \J]TW:) ’H" /[1@ 0! [+ v2)

2 e .
-, N+V+Z /=0, NEVAED (8.14)
F Ve ' /M:\:—:}\l 1-cd) .

Let us now turn back ’ngzﬁuatic:ﬁs@;?) and (3.8), where if the

" =

" (nrvie =Nl ARV R ‘ — fi], AV )
( ) r( ) }l*—QL v F '),. 3 ]lrcf
C&M=‘=\?+2} 2 AVE Y !“5._{?‘ 4L 1456 YR
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denominator vanishes at or near a supposed solution of F(a, :;D) =0,
expeet | ' o
G(a, cO) =0 we may antieipate difficulty with the method. The vanishing

denominator may indicate i) the large difference between the approxi-

mate solution we start with and the true parameters a and CD , i) the

all, In this case we may re~estimate the approximate solution (a 17 %o 1)
as starting point for the iterations and may include the second partial

derivatives in Equations (3.5) and (3.6).

4.4 Applications to YZ(21) Cassiopeiae and /3 Persei (Algol).

We shall illustrate in this section the numerical examples to the
solutions of eclipse elements from one observed minimum alone by the
applications to the light curves of ¥YZ Cas and }?> Per, un;ier the spherical
model assumptions,

Our aim Eer*e is not only to solve the elements of a system, but
also to try to establish how the procedures of the new methods work
and acquire some understanding of the problems related with the deter-
minacy of the solution. Having this in mind, it was decided to study
the light curves of well known eclipsing binary systems YZ Cas and

F Per.

(1) YZ(21) Cassiopeiae.

As is well known, YZ(21) Cassiopeiae has a simple model with
detached spherical components and circular orbit. We have highly
accurate (with the probable error £ 0,002 magnitude) observations of this

system in A =4500A and A =6700A by Kron (1939 and 1942).
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Almost no rectification is needed for the proximity effects. Thus, the
solution may be expected to be free from any rectific;:.aticn error; and
the accuracy of the solution may be directly related with the accuracy
of the observational moments and the geometrical determinacy of the
unknown parameters a and c, -

The fundamental quantities from which we depart for the solution
of eclipse elements of YZ Cas have been given in Table 10 for occultation
(secondary minimum) and transit (primary minimum) eclipses in two
colours. These data for the moments Aém have been extracted from
the work by Kurutag (1876). The 92‘5 and 94‘5 in Table 10 have been
derived from the moments by making use of the 1.h. sides of Equations
(1.6) and (1.7). There are conspicuous differences between the derived
values of the gg‘s and 94'5 for the light curves in two colours which
are noticeably greater than the probable error of observations. They
may be caused mainly by errors arising from the numetrical evaluation
of moments Azm by a simple trapezoidal quadrature. If we use the
moments from Jurkevich (1878) obtained by a more sophisticated
Kalman filter method for the transit eclipses of blue observations, it
can be found that 95 = 0.7059 and 9y = 0 8265. As an inevitable result
of these differences the eclipse elements will be different for the light
curves observed m different wavelengths.

The uncertainties of moments in Table 10a,b have been obtained

by using the formula (cf. Demircan, 1977a; Eq. 4.7)

g . 2m
AﬁmzAUSﬂﬂﬂgf ) 4.1)
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The Observed Quantities of YZ Cas in A = 4500 A

Ocecultation min.

Transit min.

Aq 0.0822 t0.0007 0.807 *0.006
A, 0.001274 T 0.000036 0.005243 *0.000028
Ay 0.00008434 T 0.0000019 0.0001283 +0.00000183
A 0.000001099 £ 0.000000096 | 0.000003809 I 0.000000062
95 0.7599 $0.,0077 0.6979 £ 0.00098
9 0.8422 £0.0042 0.8243 10.00111
Table 10b
The Observed Quantities of YZ Cas in A = 6700 A
Occultation min. Transit min.
Aq 0.1022 +0.001 0.267 i‘o_rcﬁoca
Ag 0.002048 +0.000046 0.004895 T 0.000028
A, 0.00005357 +0.0000025 0.0001225 +0.0000013
Ag 0.000001701 *0,00000013 0.000008652 T 0.000000063
g, 0.7661 to0.0088 0.7328 to.0010
0.8238 *0.0046 0,8394 t 0015
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where A U is the error in the unit of light U , while @' stands for
the phase angle of first contact point. In order to estimate the uncer-
tainties in 95 and g, we used the formulae

AR AR A, [A4A/qg+ A@A;‘:\#]

Ag —— 4.2)

: AEA

L 2 AAA AR, - Al [AcAR o+ AAA)
g, =" prraE
2 /4

(see also Paper XV; Equations 5.2 and 5.3) which can be easily obtained
by differentiation of Equations (1.86) and (1.7). The standard errors in
the unit of light were taken from Kurutac (1976) as To. 0006 in blue and
red colours for. primary minimum and £0.007 inblue and £0.0010

in red colours for secondary minimum.

In principle, the intersection point P(a, cD} of g, and g n (see
Figures 10 and 11) gives us two fundamental parameters a and g »
but in practice the intersection point will not be precise as long as the
observational values of 95 and g, are subject to any uncertainty. Tﬁis
situation has been illustrated schematically in Figure 16. Every point
in the gatched area (solution doma in) satisfies the nonlinear Equations
(1.6) and (1.7) simultaneously within the error of the observational 95
and g, - Larger values of A& and AL, for the sclu?:ic;n domair{

will mean larger uncertainties in the final elements,
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In order to estimate the solution points P1 » P, and M (see

2

Figure 16) minimization routine given in the previous section has not
been employed for the solution of the simultaneocus nonlinear Equations
(1.6) and (1.7), since it will give only any one of the points in the solution
domain, and fails if there is no intersection for the adopted A ‘31 and
qu_ . The parameters a and GO in the expected solution domain
have been adjusted in small steps (0. 001 ), and the 0 - C values for 9o
and g 4 have been computed for every step together with the final ele-
ments r i and L - Then by inspection of the 0-C values, the

1,2 1,2

limit points P1(a1 , Co1) and F’2Ca§, c » and the most probable point

02)
M(am, ch) for the rmost accurate solution have been estimated graphically
(see Table 11). For the computations, Equations (8.18) and (3.19) from
Chapter 3 have been employed separately and noted that (3.18) is more
practicable to work with. It is also noteworthy that whole computations
have been performed in approximately 30 seconds on the CDC 7600. For
occultation eclipses it was found that the functions 95 and ¢ a do not
intersect each other (see Figure 17). Only under the assumption of

large uncertainties could we estimate the points M(am R com) together

with the most probable elements. The expected large errors in these

final elements are due to the shallowness of secondary minimum and

the larger dispersion of observations within these eclipses which

increases the uncertainties in the fundamental observed guantities A Zpa "







Table 11a

The Elements of YZ Cas in A = 4500 A

~177-

Occultation

, Transit min.
; min _ _ - — — _ _

M(0.86, 0.11) | P, (0.685,0.000)| P(0.68,0.28)| M(0.651,0.136)
r‘g Q.148 0.140 0.148 0.143
r*s 0.082 0.080 0.076 0.077
i 8876 00°0 8750 88’3
L1 0.082 0.810 1.089 0.938
U1(adcps 0.4 0.5 0.5 0.8

ted)
- Table 11b
The Elements of YZ Cas in A = 6700 A
Occultatic ) - ] l
ul.,atlén Transit min.
min. ) ) 7 7 B

M(0.37, 0.09) | P, (0.645,0.000)| P(0.665,0.207)| M(0.655,0.140)
r‘g 0.143 0.141 0.147 0.144
F‘s 0.084 ) 0.078 0.074 0.076
i 88’8 90%0 87%4 881
L.._I 0.102 0.813 0.984 0.893
U, (adop- 0.4 0.3 0.3 0.3

ted)
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‘lf

«i‘ii

Ig:‘;a . C)j{ ‘5

Figure 17. The functions e and g  for the occultation eclipses of
YZ Cas do not intersect each other. Only under the assumptions
of large observational uncertainties A ds and égﬁf , intersection
point may be estimated (see text).
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(@ _PB Persei(Algo).

A study of the three light curves (in A = ABED‘A narrow band,

A = 5500 A narrow band, and A = 5500 A broad band observations
of Wilson et al, 1972) of Algol has also been carried out by employing
the same automated methods for obtaining the eclipse elements from one

-observed minimurm alone, under the spherical model assumptions, Algol,
as a semi-detached system, presents an extreme case of differing shapes
for the components since the primary is nearly spherical, whereas the
secondary almost certainly fills its Roche libe and is thus very highly
distorted. Although this is the main point against a spherical model
analysis, we have found reaonable results in good agreement with one
another and .the other published results which have been derived using
totally different approaches.

In the following Table 12 the observed quantities of Algol which
have been ext;*acted from Demircan (1977a) and in Table 13 the resulting
elements fram the present investigation of these data are presented.

The results of the certain applications to the light curves of YZ‘
Cas and Algol as given in Tables 11a,b and 18 may show the success of
the new methods. The same automated method ~ by the present author =
for obtaining the glemehts of an eclipsing binary system from its one
observed minimum alone (see Section 1 of the present chapter) has also
‘been successfully employed by Kaskambas (1977), Al-Naimiy (1977),

1t "

Gudur (1978) and Edalati (1978).
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The Observed Quantities of Algol for Occultation Minimum

A = 4850A A = B500A A = 5500A probable
narrow narrow broad uncertainty
Aq 0.7025 0.6867 0.6832 T0.008
A, 0.04335 0.040883 0.04114 1t 0.000387
A, 0.00429 0.00891 0. 00401 T 0.000075
Ag 0.00052 0.00046 0.00048 +0.000014
9, 0.624 0.621 0.618 T0.007
9, 0.816 0.814 0.814 0. 001
Table 183
The Elements of Algol from Occultation Minimum
A = 4350A A = 5500A 2 = 55004
narrow narrow broad
ry 0.250 0.245 0.247
P 0.216 0.212 0.214
i 8178 82°0 8179
L, 0.947 0.927 0.921
U1 (adopted) 0.58 0.43 0.48
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CHAPTER 5

CONCLUSIONS AND THE ACCURACY OF THE
FOURIER TECHNIQUES

The practical procedures for the solutions of the elements of any
eclipsing system in the frequency-domain have been outlined in the
previous chapter (¢f. also Paper XIV). The fundamental quantities
from which we depart in quest of our solution are two g-functions
defined by the moments Agm (see Equations 1.8 = 1.5 in Chapter 4,
and also Equations 2.13 - 2,16 in Paper XIV, or Equations 3.2 - 3.6 in
Paper XV). If we establish the observational values for these functions,
they constitute two ihdependent'relatiohs between the unknown parameters
a and c, s and the observed quantities and can be solved numerically
(see Section 3 of Chapter 4) with the aid of the general expressions for
the respective moments .‘

The fundamental guantities

f

Zz
’af Z = (0.1)
749 F‘"-’b 72:7 ﬁfp

fu( &) =

and

A

—

) A A h Kk ' 0.2)

PACHD

have been studied in detail for the solution of eclipse elements. The
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necessary functions for the analysis have also been tabulated for grey
plane-parallel stellar atmospheres up to four significant digits at inter-
vals permitting linear interpolation (see Appendices 1 = 5), The methods
for obtaining the elements of wide binaries from their only one observed
minimum have been automated and applied successfully on the light
curves of YZ(21) Cassiopeiae and [3 Persei (Algol). From these
practical applications it was noted that the errors in the final elements
are caused by not only the observational uncertainties in the moments,
but also by the geometrical behaviour of two employed g-functions.
Determinacy of the parameters a and ;Q which are the fundamental

quantities for obtaining the final elements r i and L. evidently

1,2° 1,8

depends on the intersection angle of the two g-functions employed. In
particular, the 95 and 94 intersect each other, in most cases, at
very low ahgles (see Figures 10 and 11 in Chapter 4). The larger inter-
section angles may be obtained by using different combinations of the
moments Azm f‘or" different positive values of real m ; or in other
ways.

The above idea has been worked out by the present author in Paper
xXV1, to gain a fuller understanding of the geometrical determinacy of
the fundamental e.clipse parameters a and c, - In this final Chapter
we have given the results of this work from Paper XVI. In Section 1,
different combinations of the moments Agm have been worked out as

g-functions. For the index 2m , the values between zero and six were

;
applied. It has been noted that the behaviour of these functions vary
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but very little with applied different combinations of the moments, A
choice of the njost convenient moments to obtain a good determinacy for
the eclipse elements were discussed. In this connection, in Section 2

the m dependence of the moments and the errors in their observational
values have been considered. In Section 3, different practical procedures
for the sc}ution of eclipse elements were introduced, and finally in
Section 4, a different type of moments was tested.

In the computations of f

am—functiaﬂs, Eq. (8.17) with (8,18) from

Chapter 38 (hereafter (8.8.17) and (3.3.18)) have been employed; three
terms for the first summation and eighty terms for the second summation
have been used to construct 4D tables of the requisite g—functions. All
the g-functions studied throughout this chapter have been tabulated for '
grey plane—parallel stellar atmospheres, and in terms of the values of

a =0.1(0.01)0,.9 and c, = 0(0.02)0.98 for every type of eclipse.

5.1  On the g-Functions.

These functions have been defined by Egs. (1.3) = (1.5) of Chapter
4. In this section, first the following particular forms of g~functions
have been studied to investigate the form and power dependence of these

functions

Az A: A - As ? A A A A
A Ay AR, AAA A AL AAL
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AAL ALK /%7%5 CAAL AL A
AEAL AALARAL O ALAL T A AL

A Ad A Al

ﬂi’?

ARA, AAAE AAA ATALAD O

for only integral powers and even moments. Note that every form -
except first one = consist of the moments A Ag’ A and AES . The
0.5~th, 0.2-nd and 0. 1-st powers and logarithmics of the foregoing
g~functions have also beerj computed and their behaviour illustrated
diagr*ammatically, The results are;

1. The intermediate curves between 95 and g 4 (see Figures

10 and 11 in Chapter 4) have been obtained. This result enables us to

say that the behaviour of g-functions depends but very little on different

combinations and powers of the same moments.,

2. Numerical values of g—-functions increase and varying intervals

shorten with decreasing positive real powers. So, for some particular

powers the most useful short tables permitting linear interpolation

can be constructed. These powers are approximately 0.2 and 0,5 for
three-digit short .tables of 95 and g 40 respectively. These powers
become 0.05 and 0.10 for four-digit short tables for the same g-functions,
respectively. It should be noted that further decrease of these powers
requires fifth significant digit in the numerical values and this cannot

;
be achieved for the above forms of g=functions if we employ the series
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expansion (3.17) with (3.18) for the constituent moments A2m , from
Chapter 3,

8. A logarithmic behaviour of g—functions is similar but the use

of logarithms will increase considerably their numerical range; there-

fore in practice no advantage can be obtained by working with the

logarithm of g-functions rather than with the functions themselves.

Next, it was decided to study the simplest form as given by

Ag, ’a‘é‘z 765, 72&;_

such that x = E{é(y1 + 32), with fixed powers and gradually decreasing

(1.4)

3(& ) =

val ues of real x and y1 o ¢ The following particular g-functions in
,2

this form have been tabulated and their behaviours investigated:

As A AL AL AL
Ae fu A AA AA A AL

A2 2 2 2 1.5)
ﬁ_’g— -, = AT,‘; ) T aqpd %
ARy AAL A AL A A

An inspection of the numerical tables and diagrams of these g~functions,
leads to the following conclusions:

1. In general, the behaviour of g-functions depends very little

on the specific moments employed.

2. Any change in the behaviour of the g—functions is caused by
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[

changes of the orders x and Yi o (see the accompanying Figures 18-

22), These orders control the curvature of g—functions., The greater

the values of x and vy

Yy o2 the lesser the curvatures in the respective

g-functions.

3. Larger numerical values of any g—function are obtained if the

difference between two radii r, and r. is large and the inclination i

..I

2

. . o 3t . .
or orbital plane is near to 90~ for the eclipsing system in question.

,ﬁi‘:’; or | 3 (::3() Co)' = jmax. (1.6
L 0

The minimum values are always attained if the radii of the components

are equal to each other and the inclination i of orbital ptane is 90°

(a=% and C@‘:-O): i.e.,

SN 3(@{; Co) = ¢ . (1.7)
00— % T

Co—d ©

Thus, g(a, f::@) varies between these two values Cgmih < 9(a, co) 5;

gmax)a These limit values are listed in Table 14 for the g-functions

given by (1.5).

4. In general, the scale for numerical values of g-functions can

be altered by changing the differences between x and The

Y1, =

smaller the differences, the larger are the numerical values for the

respective g-function., Thus, we can note three factors which are

effective on the scale of numerical values of g-functions,




Figure 18, The functional behaviour of the g-function

A2A4
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Figure 20, The functional behaviour of the g~function |
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) Powers of g-functions,

iy different values of x and Yy o2 and -

iif)  different values of |x~y.[ , )5#;/2{ and ly1 *ygj;
For the results 3 and 4 see Table 14,

In order to utilize the foregoing results for our purpose in choosing
most useful two g-functions, we should look for a greater difference
between their curvatures, which means better-defined intersections of
these two functions., By resorting to second result mentioned above, if
we recall A and A’ as the mean values of the adopted orders -'x, Y4
and Yo for two different g-functions, the most important conclusion is

that

]AEA’I o qé(ca, Co) (1.8)

wher*’e c;ls stands for the angle of intersection between the two adopted
g-functions. This means that when we use the first and last gaf“unc:tioné
from Table 14,we get better interseci:ions and,‘ohzzsaquent‘ly, a better
determinacy for the eclipse parameters a and c,

But, in practice, there are two restrictions to be considered:
i) Numerical values accurate to more than four digits are required for
g-functions of very small orders. It is obvious that much higher accur-
acy can be achieved for empirical values of g-functions given by (1.4)
if, and only if, the differences [><=y1{ R [x§y2{ and Iy1ﬂy2] between
the adopted moments are sufficiently small. In this case, the errors

/

of the respective moments become comparable and largely cancel in




Table 14

The Limit Values of Some g-Functions

9 min Qmax 9 Irmin Irmax
2 z )
ﬁ 0.794 0.989 AA;Z 0.963 1.000
2 7 14 o 71k
2. z
ﬁ 0.921 0.997 __]z}ﬁi_ 0.980 1.000
z 7 V4 e 7%
2 2.
J;E_s 0.872 0.997 .,__1%;"?__, 0.986 1,000
A, A Ao AL
2 Z
ﬁ_ 0.528 0.989 4‘5 - | 0.990 1.000
A@ 7’3{4 75}‘3 75\%%
ar | | A%
— AL o.7s2 0.997 1% 0.996 1.000
As Ha ' o ﬂg‘;
2. 2
,.ﬁ_gi,_ 0.897 1.000 . ?‘9—"7 1.000 1.000
IQ(E 70[1 /[:I‘a H‘EL';Q
2.
?ﬁ_;_‘ 0.943 1.000
e ‘%‘
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the formation of the ratio (1.4) for the g-functions. But even though

this may be so, it will be difficult to deal with large numerical values

if one wants to use the tables and diagrams for these functions in practice.
il) The moments with the large orders which are used in constructing the
first g-functions in Table 14 are subject to larger obsérvatic;nai errors.
Thus, these g~functions may be of little practical use.

The difficulty in dealing with large numerical values of the g—-functions
of very small orders may be removed by using the powers of respective
g-functions (see result 4 i above). The better understanding of the second
restriction will be the subject of the following section.

§.2 The m-Dependence of the Moments A and Errors in their
2m —
Qbservatloﬂal Values.

In the study of different g-functions (section 1), required f=functions
were also tabulated in terms of the values of a = 0.1(0.01)0.9 and
cé = 0(0.02)0.98 for every type of eclipse. For m fifteen different
values between zero and three were applied, With the aid of these
tables, theoretical values of the moments Azm can be obtained for

ahy set of elements r i and L, , and for any value of m between

1,27 "

zero and three, by means of Equations (2.2.17) = (8.3.18). To illustrate
the way in which the numerical values of thesemoments decreass with

increasing values of m , their behaviour for ry = 0.1, 0.3 and i=

90° has been plotted on the accompanying Figures 23 and 24 for fixed

values of a . Note that, if r, is fixed in 0.1, ro becomes 0.9 when
;

0.1 and diminishes to 0.025 when a =0.8, If r is 0.8, the

it




~ 184 -

minimum value of a will be 0.8 for r~2 =0.7, and ry reduces to

0.375 for a=0.8. For a & 0.5 (total eclipses) it is seen that AO =

———

l=1 , and when a > 0.5, then AO < 1;1 . It can be observed that the

rate of decrease of the moments Aam increases when a tends to % .

These results permit a conclusion that, in practice, more care should

be exercised in dealing with higher moments = especially i) when the

eclipse is of transit type and the luminosity of the eclipsed component

constitutes a small portion of total lum inosity — conditions which produce

a shallow minimum in the light curve of the respective system. ii) When

the radii of the components of the system are comparable to each other,

which gives rise to two minima of shorter duration for the total phases.

Next, the proportional errors of the empirical morents as the

functions of m and eclipse elements r i and L1 will be con—

1,2°
sidered. The accompanying diagrammatic representations of these
errors, as the functions of m and eclipse elements will aid us better
to understand this important point in practice.

As has been shown in Demircan (1877, Eq. (4.7)), the probable
errors in the empirical values.of moments Aem can be defined by
Eqg. (4.1) of Chapter 4 (hereafter 4.4.1). If we use Equations (8.3.17)

and (4.4.1) to define the proportional errors of the empirical moments ;

Agm » we get

z'ZM = AZM = L‘ bz(lg C.:')M-*-l \ V‘i _fi,zm (2. -‘)

ll‘

Afpm . AU (&;ﬂéfhi)zmt
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2mM

Figure 23. The m dependence of the moments A " for r"1 = 0.3,

i =80° and fixed values of a . 2
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On the other hand, if we introduce the apparent separation of

centres of the two stars, projected on the celestial sphere, as

§2 = L0 Pl + Can®l 2.2)

in terms of the phase angle 6 , and the inclination i of the orbital
plane of the system to the celestial sphere, this permits us to rewrite

Eq. (2.1) as

where the error A U can be obtained from observations, so can Ig1
if the eclipse it total. It is now obvious that the numerical values of

the proportional errors é;g;q in the empirical Aém’s can be evaluated

with the aid of availabl e tables of me for any set of eclipse elements
and for different values of real m between zero and three. So, the m

dependence of the 3 M‘s and the effect of the inclination i can be

2.n

worked out numerically. This has been done, and the results are
diagrammatically shown in the accompanying Figures 25 and 26. If,

for smaller values of a (occultation eclipses) !s,] has smaller values

and for larger values of a (transit eclipses) if it becomes larger,

then the effect of 1_1 on the proportional error of Agm‘s becomes

inthe way to bring the curves of the Figures 25 and 26 nearer to one
another. Another obvious fact can be observed from the Figures 25 and

;
26: namely, that the proportional error of the moments Aém increases




Figure 26. The m dependence of the \‘L/ oy functions.
_ L ARk

= — - (see Eq. 2.3).
Yem™ 28U " A

TG AR R T T TR AR R




Figure 26. The functional behaviour of the "Lj/ m for m=1 and
fixed values of c_ (for the ‘&{/’ o functions see Eq. 2.3).
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with increasing values of real m and the parameter a . Figure 26

represents the effect of inclination 1i: the smalle r the value of inclin-

ation i (the smaller the eclipse) is, the larger the proportional error

in the observational moments Agm .

For the comparable vaocues of

r*1 and £y (a ~ 0.5) which produce a minimum with shorter duration

of complete phases, note the relatively increasing values of zSMin
Figure 26, One more thing noteworthy is that for lﬂéI tends to zero (in
the case of, for example, optical light curves for X~ray binaries), E;M

goes to infinity for a =0 (see Eg. (2.3) and Figure 28) which can be

given as

{ ! S&M ody

L'eao
A= 0

i

(2.9

This situation coincides with the occultation minima of the optical
light curves of X~-ray binaries which are always absent in the observations,
In the case of transit minimum of the optical light curve of any X—ray

binary, L 1 becomes unity since L., of the X-ray component is zero

1
in the optical domain, and the proportional ertror 23‘&‘ of the moments
Aem for this indistinguishably shallow minimum becomes approximately
one (see Eq. (2.3_) and Figure 26).

If the foregoing results given in the present and previous sections
are utilized to choose the most useful two g-functions from Table 14

for a good determination of the eclipse parameters a and < in the

geometrical sense, the following facts may be observed:
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1. If we deal with a moderately deep occultation minimum with
a moderately long duration of total phases, one can use higher moments
in construction of the g-functions — i.e., one of the g—functions with
higher orders x, Y, and Yo can be used from Table 14. For the
second adopted g}‘functién, the orders x , Y, and Yo should be smaller
than those for the first g-function. Remember that the georetrical
determinacy of a and = depends on the absolute value of the difference
between the mean values of orders x , vy ’ and Yo for two different
g-functions in question. In the applications to YZ Cassiopeiae (see
Chapter 4) which shows moderately deep minima with total phases, the
functions 95 and 9, (see Equations (0.1) and (0.2)) have been applied.
Another g—-function with smaller orders x , Y, and Yo eould be applied
instead of 95 for better determination of the eclipse elements.

2. If the minimum we deal with is i) a transit type, ii) shallow,
c:m‘ iii) deep encugh but of short duration of complete phases, we should
restrict ourselves to the use of higher moments. In such a case, for

example, the following two g-functions can be attempted:

AL A, ),

A, A, Ao Az

, (2.5)

where the twenty seventh power of the second g-function was taken to
extend the very small numerical range (see Table 14) for this g-function,
as well as that of the first g-function, This removes the difficulty in

dealing with large numerical values of g—-functions of very small orders.
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Remember that the second g-function (without power) can be obtained
from observations with high accuracy, since the proportional errars of
the empirical Agm's become cormparable for the smaller differences
]x—y” , ]xﬁyel , and !3”1"5’21 (here these differences are | /1 00,
1/1 00 and 1/50 » respectively) and they largely cahcel. each other in
the ratio for the respective g-function. But, as was noted before, it
may be difficult to deal with large numerical values - especially if the
tables and diagrams of these functions are used in practice.

It has been noted in Chapter 4 that the geometrical determinacy of
the unknown parameters a and c:@ depends on the numerical magnitude

of the Jacobian

J

| 3 ( 3(’) ? 2,(&))
>(a, ¢)

"

(2.6)

for applied two g-functions g and g® . The vanishing of this
Jacobian would imply a functional relationship to exist between succes—
sive g-functions, which would render the solution for a and cD indeter-
minate., Therefore, the functional behaviour of this Jacobian for differ-
ent pairs of g-functions would tell us definite results in connection with
the geometrical determinacy of the parameters a and c, and the
above results can be verified in this way. The explicit expressions

for the above Jacobian have been developed by Kopal (1977b) and the

promising numerical work was undertaken by Edalati (1978).
/v'
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5.3 Different Procedures for the Solution of Eclipse Elements.

In the present section, two additional alternative ways will be
outlined for obtaining the elements of eclipsing systems by the analysis
of their observed ph@tqmetr*ic data in the frequency-domain. The same
moments AEm and the polynomial expansion (3i8.1?).with (8.3.18) for
the evaluation of their theoretical values will be utilized. In the first
alternative way, methods caﬁ be applicable if the phase angle 6, in

the first contact ﬁciht when § = éf =2r, +r,
light curves. In order to derive the requisite equations let us consider
Eqguation (2.3) of the preceding section. If we write it out for two dif-

ferent moments Aém for two different values of m and perform their

ratio, we get ' .

&y Aﬁ%ﬁ, 7’5}% Vo

By making use of the expressions (4.4.1) and (2.3) for the probable

Fop Aﬁi’f»"“ A \Vou

(3.1)

ernc 's & Fions ' spectivel
errors A A2m s and for the functions \[L/Z’H s , respectively,

Equation (3.1) can be rewritten in the form

Zqz,w‘ [méquw; jé_’ (8.2

Ay o s

is known from the observed
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as a definition of the ratio of proportional errors & and £

7 Fad

o and AQ/A’ [t can be proved by

use of the general expansion (8.8.17) for the moments together with

of two respective moments A

Eqg. (2.2) that Eqg. (8.2) is exact. To illustrate this, let us consider

Eq. (2.2) for § = &, . It can be shown that

(1-cE) -2

.

Vy z c{; Mé,
S‘«L«n()

On insertion of (8.3) in (8.8.17) it follows that

=2 A

7% [:2;;.419"} = L-, Lz(,,%a>7g(&!%>__ | (3.4)

Zm Z2im
Now, if we write (3.4) for two different values of m and perform their
ratio we get Eqg. (8.2). This proof also shows that the expressions
(4.4.1) and (2.3) for the errors of the moments Agm are correct.

If the values of the left-hand side of the preceding equation (3.2)
can be established for two different values of real M and /_4*' from
the observations, these two simultaneous equations constitute two
independent relations between the unknown constants a and g s and
can be solved numerically for them. Therefore, these functions can
be utilized just as the g-functions for obtaining the eclipse elements
of an eclipsing system, but if the phase angle 8 of first contact point
can be established from the cbservations in addition to the respective

;

moments Aém . These functions given by (3.2) were also tabulated
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in the same manner as in the g-functions, for the values of m between
zero and three, [t may be noted that they behave just like the g—functions.

-,
The functional behaviour of Ajsin ‘{@1/#\1
4

1 has been presented in Fig-

ure 27, for the sake of an example.
As another way to deduce the eclipse elements, the use of a
product of a g-function and an F(a, c:e)—f“uﬁction can be considered.
But, the new function F(a, e@) should be set in such a way that the
intersection points of the g-functions and the g x F-products become
well determined in respect to the intersection points of two g-functions.
If, in practice, theadopted suitable F-function cannot be established
from observations as g's , it may be approached iteratively just like !
the use of Y(a, c@}—fuﬁctions (see Eg. (1.27) in Chapter 4), However, %
the construction of these F~functions suitably for our purpose remains
yet to be studied. In this work, the behaviour of g x F-product was

examined for only the F(a) being a parabola given by
F(Cﬂ = ~33S 0% +335 O + 03625 - (8.5)

as a polynomial of second degree in a . The gECa, c@) (see Eq. 0] )
has been applied as g-function. It is found that the behaviour of gx F

in this case becomes very different (see Figure 28) from those of g-
functions so that the intersection pbints P(a, c Q) of a g=function and
ggia; r:;o) x F(a)~product (where F(a) being given by (8.5)) are well

determined.

o
/

In this way, the strategy for obtaining the eclipse elements of
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‘2
AL
Figure 27, The functional behaviour of 7= sin *gr

%
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4 5 6 T 5 g9

Figure 28, The functional behaviour of gp X F (for 9o and F see
" Equations 1.5 and 3.5). '
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any eclipsing system can be outlines as follows:

1, First, determine the requisite number of empirical moments
A2m of the observed light curves.

2. Free these moments from the proximity effects, ignore the
"photometric perturbations' (see Chapter 4), and evaluate the respective
empirical g-function with the aid of so-called "rectified" moments.

3. Adopt a trial value for a = if we do not know what kind of
eclipse we deal with, we may depart from an assumption of a=%,
and set F =F({4, 0) from the adopted F—-functions for a=1% and c, =
0.

4. From the product g(a, c ) x F(a, ¢ ) establish the corresponding
value of C, for known a and F .

5. From the g-function establish new value of a for known
value of S, 3 and determine the new value of F(a, co) for known a
and c_ .

6. Repeat the operations 4 and 5 until the differences between
the newly derived and the previously adopted values for a and co
become tolerable,

7. By using the resulting values of a and c, » determine the

eclipse elements r

1002 i and I=1 of the system as described in
' 2

Section 1 of Chapter 4 , and by these elements perform the reductions
for the "photometric perturbations™ to obtain an improved set of the
2m

A 's and from these improved set of elements.

8. Repeat the operations 3-8 until the differences between the
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improved elements and their previously adopted values become in-

significant,

6.4 A Different Type Moments and the ({ -Functions.

A different type moments were introduced by Kopal (1877b) for
obtaining the eclipse elements of close binary systems in the frequency-
domain, which can be descr‘ibed ag follows: Let us first consider our

conventional moments with their probable errors, as

. e

A= A, 7 aUsT6 4.1

If we write

2 (4.2)

K A/ .-
7['\\ B - H?_m = E
2! .
as the definition of new moments, provided that 2m'+ k =2m , (m # m"),

cancel. There-

probable uncertainties of the moments A '

2m and AEm
fore, the moments Bém should be free from any observational error
except that inherent in the cobserved value of 87", Let us note that
these moments are app’l{cable only for the wide binaries if the phase
angle ' can be Eieter*mined from the observations.

In this section, the explicit expressions for these new type moments
will be developed and they will be tested numerically to obtain the ele—

ments of eclipsing binaries,
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It can be shown, by using the expression (8.8.17) with (3.3.18)

for the moments A that the moments B_  can be given by a
2m 2m ) -
similar expansion to that of Agm‘s as
, E mt | '
B,.=L, 2 GEV (- h (e, -9
—2m ! azw /

where we have abbreviated

h (acy= () Zc“ Fey (e -

= L (4.4)
o nl(vien+2) G, v) ]2 M,\H—Z—) . |
L(K-H) F{U+’\+;) [& (G() An (1 Co)‘, Rgm>é

with the polynomials

(m, od) LCI) F(A{-o(-i-j (\J+j+l)

[(ias oty J1(n=))! -9

These polynomials satisfy a three term recursion relation of the form

Q.00 = (7% Xt C\) (¥ - G, Q (x) 4.6)

with the coefficients

(Zﬂ’{*'?{s (ZV\+D€+I>(;4+Q<‘)

7[\": ) (1) (s n+ &) (n+e-1)

’ (4.7)
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R = ém+é{) i N(rtn+e=1) (n+v) A 4.8
. ,

n (zn+=1) (N +e-1)

and

Cn _ I+ - it =<-1) B (e (nre-y)

n n{n+1) ’ (42

2
where X = 1 - c, and o¢ = V +2 . Inthe foregoing expressions

for the moments B

orm ? the notations are consistent with those used

in the preceding papers of this series. This expansion (4.3) for the
moments B m is also valid for every type of eclipse for any positive
real value of m > 0 and for any arbitrary degree 1 ofl the adopted
law of limb darkening. It is readily seen from Equations (4.2) and
(4.3) that, with the aid of egpaﬁsion (8.8.17) for Agm‘s » the functions

hgm(a, co) can be given in terms of the functions Fgm(a, co) , as

A (Q(C 7{ {0( CP - 'é (Qfﬁ:a};

M (4.10)

Re m >0 and Rek >0 .

Thus Eqg. (4.3) can be rewritten by use of (4.10), as

Bzm=L:'§::( )?f <) %(ac‘p %(MD 7 (411

ﬁf’; M?O and fie_k >0
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in terms of f-functions given by (3.3.18). The ratios

[52m
Arm

for Re m > o (4.12)

will depend on only the parameters a and cQ through the h and

f-functions, as

Bow  haultcd
7 e 2mat 70 70 = (—QZM(&}CQ) : (4.13)

Aom (0,

which can be rwrittten, with the aid of Eq. (4.10), in terms of f-functions,
as
E —F Co(; CD) - ‘ﬁ (D(; Ca) )
ozm _ lam-k 2.m

= Lp C@fJ Co) 3

Fewm ” ']ezw'\(ab c@) Zm

—

(4.14)

Re m >o and Re k >0 .

The ((33 ~functions given by (4.13) and (4.14) can serve - just like the
g-functions = to evaluate the elements of an eclipsing system. Their
theoretical values have been computed for m=1 and k=2 and their .
similar behaviour as g-functions was presented diagrammatically in
Figures 29-31, When we use the (67 ~functions for obtaining the elements
. of an eclipsing system a difficulty arises in finding the phase angle 6!
which occurs in the left~hand side of Eq. (4.14) from the observed

/

light curve of the system. It can be estimated within about 17 error
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Figure 30. A plot of the function C&i ~ versus ¢ for fixed
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m=1 (see Eq. 4.14).

Figure 31. The functional behaviour of Clﬁ?

‘am

m —functions for
l2m



from the photoelectric observations of only well-behaved wide binaries.
In this connection, if the 8' is not treated as an additional unknown in
the solution, the uncertainties encountered by its estimated empirical

values should be considered. By differentiation from Eq. (4.2) we get
) ) / k'“‘l ~ /7 . /
._'.'—_'; - A‘Q * k x gﬁ;‘a ‘8‘ x C.ffx"f) @ . .
4B, =7 A0A,,

In what follows, we shall demonstrate the comparison of the

probable errors in the empirical moments A_  and B, , on an
2m 2m

actual example. To do so, let us consider a system consisting of two
components of fractional radii ry = r~2 = 0,2 and the inclination 1 of
the arbital plane is SQQ . The corresponding values of a, GD and ©'
thenare a=0.5,c_=0 and ©'= 23988 , respectively. Let us,
moreover, assume that AU = +0.001 , A= +4° , and the limb dark-

ening coefficient LJ1 for the undergoing star is u1 = 0.8. Under these

conditions, the even moments A and B of the light changes
2m 2m

arising during eclipses can be evaluated together with the probable

errors in their empirical values with the aid of Equations (1.3), (2.1),
(4.2) and (4.15) of the present chapter for m = 0(1)3 and k=2 ; and

the results for thfa linear law of limb darkening are presented in Table 15
for Lﬁ=1 = 0.20 and 0.80. It can be seen from Table 15 that the numerical
values of the B-moments diminish more rapidly than those of conventional
A=-moments. The uncertainties in the observational B-moments are caused

by the error in determining the phase angle 8' from the observations,
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while the uncertainties in the observational A-moments are caused by
the error in determining the unit of light U . On the basis of an in—
spection the numerical values in Table 15 and the equations from which
these _numer‘ica’l values are established, we can conclude that the
probable errors encountered by empirical determination of @' are
larger than those caused by the empirical determination of U , in

other words, the probable errors of the empirical B-moments appear

to be larger than those of the empirical A-moments even if the phase

angle 6' is well determined (this is possible for only wide binaries)

from the observations. Therefore, the usefulness of the B-moments is

likely to be limited, and the conventional A—-moments preferred for

practical work.




Table 15a

L, 0.20
~AG 0.20 + 0. 001
A2 0.008 T 0.000167
A 4 0.000608 * 0.0000278
Ag 0.0000582 T 0.00000464
2 0.024 + 0.,00256
B, 0.000672 + 0.000102
Bg 0.0000391 T 0.00000778

Table :15b

L 0.80

Aq 0.80 = 0.001
Aé 0.032 + 0.000167
Ay 0.00243 + 0.0000278
Ag 0.000233 T 0.00000464
B, 0.096 * 0.0102
84 0.00269 + 0.000410
B 0.000156 T 0.0000311
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