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A bstract

U NIV ERSITY  OF M ANCHESTER

A B S T R A C T  O F D IS S E R T A T IO N  submitted by C h ris to p h e r  J . L uke 

for the Degree of Ph. D. and entitled T h ree  P ro b lem s in  S c a tte r in g  T h e o ry

Month and Year of Submission: September 1993

We study three transmission problems. The first problem deals with the cou­

pling of a smooth elastic body and an acoustic medium. We investigate integral 

equation methods for finding the scattered pressure field and the transm itted elas­

tic displacement field produced when an acoustic wave is incident on the body. 

In the second problem we investigate the corner singularities in the scattered and 

transm itted waves when an acoustic wave is incident on an elastic polygon. Fi­

nally, we deal with the coupling of a smooth elastic body and an incommpressible 

fluid with a free surface. We look at the asymptotic behaviour of the scatter­

ing frequencies, as the submergence depth tends to infinity. We show tha t their 

imaginary parts are exponentially small.
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C hapter 1

In trod u ction

In this work we study three related transmission problems. Each chapter is con­

cerned with a single problem. The first two are very closely related; they both deal 

with the coupling of a compact elastic body and an infinitely extended acoustic 

medium. Tlie difference lies in the fact tha t in Chapter 2 only sufficiently smooth 

bodies are considered whereas in Chapter 3 we consider polygonal bodies. By 

restricting our attention to polygons in Chapter 3 we aim to isolate the feature of 

the transmission problem, involving bodies with edges, tha t makes the it different 

from the one studied in Chapter 2.

In both these chapters the situation is this: an incident wave in the acous­

tic medium causes a transm itted elastic wave within the body and a scattered 

acoustic wave. The problems of bodies with edges differ from the problems of 

smooth bodies both physically and mathematically. Physically, the presence of 

edges leads to transm itted and scattered waves with large gradients near the 

edges. This is not even a localised effect. The incident field could vanish in a 

neighbourhood of an edge but the transm itted and scattered waves would still, in

13



CHAPTER 1. INTRODUCTION 14

general, liave large gradients there. Mathematically, this is expressed by saying 

tha t the transmission condition does not apply. That is to say, in the problems 

involving sufficiently smooth bodies the transm itted and scattered waves are as 

smooth as the incident wave. W ith bodies with edges this is no longer the case.

The coupling of the two media in these problems is referred to as weak cou­

pling. This expresses the fact tha t only the normal component of displacement of 

the elastic body is coupled to the fluid’s motion. This allows, as we shall see, the 

possibility of elastic oscillations that do not transmit at all to the fluid. These 

oscillations, which we here call Jones’ modes, have been noted before; they are 

mentioned by, inter a l Jones [13], Norris [24] and Goswami et al. [8]. It is a 

mathematically interesting (although, probabty not physically im portant) prob­

lem to try to classify the bodies tha t can accommodate a Jones’ mode. This is 

discussed in Appendix A. This appendix includes a translation of [11]. In this 

paper it was proved tha t, in the class of smooth bodies, bodies th a t have a Jones’ 

frequency in a given compact range are infinitely rare.

The problem in Chapter 2 has been studied elsewhere. In Goswami et al. 

[8], for example, a system of integral equations tha t is identical to one of the 

systems derived here is used. We should mention the work of Sanchez Hubert 

and Sanchez Palencia [27], who, like Norris [24], have studied this problem in the 

physically im portant case when the acoustic medium has a much smaller density 

than the elastic body; in this case, asymptotic techniques can be used.

Integral equation techniques are widely used for studying problems of this 

kind. The excellent book by Colton and Kress [4] deals with such techniques in 

acoustic and electro-magnetic wave scattering problems in great depth. Kirsch 

[15] collected together many of the results on the continuity properties of acoustic
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integral operators. Ill Martin [20, 21] and M artin and Rizzo [22] integral equation 

techniques are used in the study of elastic scattering problems. In Kupradze [16], 

also, integral equation techniques are used in the study of elasticity problems.

We are here interested in deriving systems of integral equations tha t are solv­

able at all frequencies. The motivation is entirely theoretical; we wish to prove 

the existence and uniqueness of solutions to the transmission problem and do 

not make any claim for these systems with respect to the degree they facilitate 

computation of the scattered and transm itted fields. We are interested in making 

rigorous the reasoning tha t the systems we derive can be treated exactly as Fred- 

holm sj'stems despite involving non-compact operators. Furthermore, in order to 

be as general as possible, the boundary is required to be only in the class C 2,a, 

for 0 < a  < 1.

In Section 2.1 we formulate the transmission problem. This involves determin­

ing the basic field equations, transmission conditions and the radiation condition. 

In Section 2.2 we prove tha t the transmission problem has at most one solution. 

The fundamental solutions of Helmholtz’s equation and the elastic wave equa­

tion are introduced in the next two sections. We then introduce the single-layer 

and double-layer potentials for both Helmholtz’s equation and the elastic wave 

equation. We discuss in Section 2.5 the properties of integral operators with 

weakly-singular, singular and liypersingular kernels. The regularization of op­

erators with singular kernels is discussed in this section. Regularization means 

taking an operator tha t is not of the classical Fredliolm form and operating on 

it by an operator so tha t tlie product is. The theory in Section 2.5 is heavily 

indebted to the books by Kupradze [16] and Zabreyko [31].

In Sections 2.6 we derive four systems of integral equations for solving the
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transmission problem. The first system is derived by a direct method; this means 

tha t it involves physically relevant entities. The system involves the trace of the 

elastic double layer potential, which has a singular kernel. We apply the regu­

larization techniques of the previous section to show that the system is solvable 

at all frequencies. This leads to a proof of the existence of a solution to the 

transmission problem. There are frequencies at which this system is singular; 

these occur when an interior Diriclilet problem has non-trivial solutions and at 

Jones’ frequencies. We shall call the eigenvalues of the interior Dirichlet problem 

spurious frequencies. The second system is indirect; it involves functions tha t are 

not physically relevant. This S3rstem is closely related to the adjoint of the first 

system and is shown to have identical properties to it.

The third system avoids the problem of spurious frequencies. This system also 

involves the fewest unknowns (three) of any of the four systems. It has, however, 

an operator with a hypersingular kernel. Fortunately, a special feature of the 

problem allows us to regularize the system. The fourth system is an indirect 

system and is solvable for all frequencies except Jones’ frequencies.

Problems in polygonal domains, wedge-shaped domains and domains with 

edges have been extensively studied. For example, Ola [25] has studied the 

transmission problems for the scalar and vector Helmholtz operators in three- 

dimensional domains having edges. The normal derivative of the acoustic double 

layer potential was looked at by Costabel and Stephan [6]. In [7] Costabel and 

Stephan calculate the effects of curvature on the singularities. Costabel [5] has 

studied the properties of integral operators on Lipschitz domains. Von Petersdorff 

and Stephan [26] have looked at the regularity of solutions of Laplace’s equation 

in polyliedra. Our approach here is similar to many of these previous studies. 

Mellin transform techniques are extensively used. The feature th a t differentiates
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this work from the aforesaid works is the involvement of an elastic body. This 

makes the actual calculation of the singularity set much more complicated, as we 

shall see. It also introduces the possibilty of Jones’ modes.

We should note the work of Grisvard, who in his excellent book [9] studied the 

properties of the Laplacian in polygons and in [10, Chapter 4] studied elasto-static 

boundary value problems in polygons without using Mellin transform techniques.

In the first two sections of Chapter 3 we formulate the transmission problem 

and show that it has at most one solution except at Jones’ frequencies. The work 

of Costabel [5] is used in Section 3.3 to extend the definition of the boundary 

integral operators first defined in Chapter 2 to larger function spaces. We then 

derive the simplest direct system of boundary integral equations — identical to 

the first system derived in Chapter 2.

In Section 3.4 we discuss some aspects of Mellin transforms and the Mellin 

convolution theorem. This section borrows heavily from the, as yet unpublished, 

work of Dr. Lassi Paivarinta. In Section 3.5 we utilise the im portant results from 

the previous section in a discussion of the properties of the boundary integral 

operators and their resolvents in wedge-shaped domains. We apply the results 

of this section in the following section to the transmission problem. We show 

tha t the scattered pressure and the elastic displacement field are as smooth as 

the incident pressure away from the corners and are supplemented by singular 

functions at the corners. We then demonstrate the uniqueness of the solution of 

the system for fnctions in H s(dD), where s lies between 0 and We prove in 

Section 3.7 tha t the adjoint system, has at most one solution in the space H~s{dD) 

except at irregular frequencies. This leads us to the conclussion tha t the system 

of boundary integral equations we derived is solvable except at eigenvalues of
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an interior Dirichlet problem and at Jones’ frequencies. Finally, we prove the 

existence of solutions to the transmission problem.

The problem in the filial chapter was motivated by the work of Vullierme- 

Ledard [29, Chapter 2]. She studied the transmission problem of water coupled 

to a deeply submerged elastic body. She was interested in the complex scatter­

ing frequencies and proved tha t the scattering frequencies associated with sim­

ple modes have asymptotic expansions in inverse integer powers of submergence 

depth and tha t each coefficient in the expansion is real. We expand on her work 

here to say something about non-simple modes and, more importantly, about the 

imaginary parts of the scattering frequencies. We should expect tha t these are 

exponentially small and this is indeed verified. It is expected th a t there should 

be no real scattering frequencies for finite submergence depth as the existence 

of a real scattering frequency would imply the existence of a free oscillation at 

th a t frequency. As in the case of a rigid scatterer, no such oscillation is ex­

pected but, as yet, no proof is available. It was hoped th a t we could prove that 

for large submergence depths the imaginary parts of the scattering frequencies 

must be non-zero. It seems though tha t this may only be possible for individual 

geometries. Even th a t task may prove difficult because the algebraic manipula­

tions required to obtain just the second term in the asymptotic expansion of the 

imaginary part of the scattering frequency are fiendishly complicated!

In the first two sections of this final chapter we formulate the transmission 

problem. In Section 4.3 we pose an exterior Neumann boundary value problem 

and prove tha t it is solvable except possibly at a set of isolated frequencies. We 

achieve this by showing solvability is equivalent to the non-vanishing of a function 

which is holomorphic in the square of the frequency; this function is shown not 

to vanish when the square of the frequency has positive imaginary part and thus
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has isolated zeros. In doing this we set up a problem which is equivalent to the 

exterior Neumann problem but which is set in a compact domain — called the 

truncated problem. Although this proves convenient, it is not neccessary. Other 

authors have solved similar exterior problems by using weighted Sobolev spaces, 

see, for example, Neittaanmaki and Roach [23]. Vullierme-Ledard [29] also set up 

an equivalent truncated problem, but she used integral equation techniques, as 

did Lenoir, Vullierme-Ledard and Hazard [18] for a similar problem. Here we use 

expansions of multi-poles to construct the truncated problem; again see [18]. The 

truncated problem approach has an advantage over the weighted Sobolev space 

approach only in so far as familiar function spaces are used throughout. There 

does not seem to be any distinct advantage or disadvantage in using multi-pole 

expansions over integral equations.

Using the results of Section 4.3 we pose an interior problem in the next section. 

This problem is solvable at only an isolated set of frequencies. It turns out 

th a t the problem is solvable when a particular operator, which depends on the 

submergence depth and holomorphically on the square of the frequency, has an 

eigenvalue equal to 1. We are able to determine the behaviour of the eigenvalues 

of this operator for large submergence depths. This allows us in Section 4.5 to 

see how the frequency must depend on submergence depth for the transmission 

problem to be solvable. In particular, we prove that

oj2 (e) =  wg T  a \e  - f  0,2^  ~t~

where to denotes the frequenc}', e is the inverse submergence depth and wg, a\ 

and «2 are real constants. Finally, we adapt a proof from Harrell and Simon 

[12] to determine the leading order behaviour of the imaginary part of a scat­

tering frequency. We show that the imaginary part of a scattering frequency is 

exponentially small; tha t is to say, it is smaller than any power of e.
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Finally, we should add tha t each chapter in this thesis is intended to be 

self-contained as possible and so a degree of repetition is unavoidable.



C hapter 2

S m ooth  E lastic B od y  —  

A cou stic  M edium

2.1 Introduction and formulation of the prob­

lem.

Let us consider tlie interaction between an elastic body and a compressible, in- 

viscid fluid. The elastic body occupies a compact open set of 7Z3 of non-zero 

measure, 0;. It is coupled to a compressible fluid, which occupies the region 

TZ3 \  Oj. We shall suppose tha t the boundary between the media, which we shall 

call dfl, is smooth. We shall state later more precisely the smoothness conditions 

required of the boundary. We shall call the complement of fb fle.

The two media are coupled in two distinct wa} ŝ. The first of these is the 

kinematic boundary condition. To ensure tha t a well defined boundary between 

the fluid and the solid persists, the normal velocity of the fluid on one side of the

21



CHAPTER 2. SMOOTH ELASTIC B O D Y  —  ACOUSTIC MEDIUM 22

boundary must m atch the normal velocity of the solid on the other side. There 

is no such restriction on the tangential component of velocity because the fluid 

has zero viscosity and so it can slip over the surface of the solid absolutely freely.

The second coupling process is the dynamic boundary condition. This results 

from the balance of forces on all parts of the boundary. Each boundary element 

is, after all, massless and so a non-zero resultant force acting on it is prohibited.

We suppose tha t a time-harmonic acoustic wave, with frequency u?, is incident 

on the solid. We look here into the existence and uniqueness of any resulting 

scattered wave and will describe methods for determining the scattered wave. 

In addition to the assumptions already made, we shall assume th a t all motions 

are small — we shall, therefore, ignore all terms quadratic or higher in small 

quantities — and we shall assume that, before the incident wave was created, the 

fluid was at rest and tha t now all transient solutions have decayed away.

2*1*1 T h e v e lo c ity  p o ten tia l in th e  fluid .

The circulation of an inviscid fluid remains constant. We assume tha t the motion 

of the fluid was generated from rest and that all transient solutions have com­

pletely decayed leaving just the time-liarmonic motion. The motion of the fluid 

must then be irrotational for all time. By a well known result of analysis, the 

fluid velocity, v , can be written in the form

v(x,f) = V x<I>(x,t), (2.1)

where $ (x ,t)  is a real-valued, scalar function defined in the domain Oe ® 7Z.
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We know th a t ^ (x , t) is time-harmonic ancl, thus, we can separate the spatial 

and temporal dependence and write:

$ (x ,t)  — 3ft($(x) exp ( ( 2 - 2 )

where represents the real part of any complex number 2 and where to is the 

frequency.

The momentum equation is

d v
^  +  ^v -V v =

where p represents the fluid density and p the pressure.

The following conservation of mass equation is satisfied

+ />V.v — 0, (2.4)

where the first term  is the convective derivative of p.

Because the pressure and density vary little with respect to the uniform and 

constant background pressure and density, p0 and po, respectively, we can write

p = Po + p

and

P -  po +  p

where p and p are small. Consequently, the fluid velocities are small.

Equations (2.3) and (2.4) become after linearisation
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and

^  +  poV.y  =  0. (2.6)

Equations (2.1) and (2.5) imply

which implies that

^  , _P 
di po

(2.7)

is a constant. By suitably adjusting we can obtain

d<f> _  p
Ot po'

Now write

p (x ;t) =  5f£(j5(x) exp(—iujt)).

Equation (2.7) implies

^  =  iu4>. (2.8)
Po

Equations (2.1), (2.2) and(2.6) imply

icop =  p0V 2^, (2.9)

where, once again,

p(x;£) — 5R(p(x) exp(— itot)).

Clearly, we need a third relationship between the three quantities p, p and v. 

Let us consider only barotropic fluids. That is to say,

V =  P{p) (2.10)

with

Po =p{po)-
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This implies that
„ dp 

p =  p dp
Po

1-2 d2P 
+ 2P d p +

PO

After linearisation, this becomes

P — c p (2 .11)

where
dp 
dp

po

Combining equations (2.8), (2.9) and (2.11), we obtain

v 2̂  + r  cj) = o ( 2 .12)

and

V 2p + k2p =  0, (2.13)

where

k2 =
U)

From now on we shall drop the tilde over the letter p .

2.1 .2  T h e m o tio n  o f th e  so lid .

The displacement field, u(x , t), satisfies

=  V.o-(u), (2.14)

where p now denotes the solid’s density. (The linearisation of the problem is 

implicit in this formulation.)

<r(u) is the stress tensor satisfying, for the class of materials in which we are 

mainly interested,

&ij  ~~ C-ijkl &kl i
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where
_ 1 /  dufc dui \

&kl 2 dxk)

is the strain tensor and

('ijkl C-jikl Cijlk C-klij •

The summation convention is being followed here and will be subsequently used 

unless otherwise stated.

We are only interested in isotropic, homogeneous materials; for such materials

Cijkl — ^ d i j S u  +  +  & il6 jk),

where A and p are real constants (called Lame constants) and is the Kronecker 

delta. They satisfy
2

^ +  o/* > 0 and f-1 > 0- (2.15)o

Therefore, if, as before, we write

u (x ;t)  =  9£(u(x) 

and use equation (2.14), we obtain

(A -f /i)V (V .u) +  /iV 2u +  pto2u = 0. (2.16)

Call the sum of the first two terms in the last equation L(u).

There is another class of materials tha t possess a “memory” of their strain 

history. For such materials we have

/OO

c(x; t  — t )  : e(x; t ) c I t .  (2.17)
-oo

Here c(x; r )  vanishes if r  > 0 — this propert}^ is a consequence of causality; the 

stress cannot depend on future strains!
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For materials th a t are isotropic and homogeneous

Cijjw(x; r — t) — A(t — t)SijSki +  ^ ( t  -  t)(SikSji +  £,■/£,*),

where A and p are now functions of time. Furthermore, if the motion is time 

harmonic, i. e. if

<j(u(x;t)) =  Sft(cr(u(x)) exp(—iujt))

and

e(x ;t) =  9£(e(x) exp(—?xet)),

then

(u  ) — A^ k k ^ i j  T  2/iG)j  , 

where A and /i are the Fourier transforms of A and p respectively.

It can be shown th a t A and p must satisfy

SR(A + p i)  > 0 ,  SR/i > 0 (2.18)
o

and

^(A +  - p )  < 0, cAp < 0. (2.19)
o

Such a material is effectively like an elastic material with complex Lame con­

stants.

2.1 .3  T ransm ission  con d ition s.

The kinematic condition is
d<j)
—  =  —zum.u.
o n

on dfl. This and equation (2.8) imply
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011 dfl. The kinematic condition is neccessaiy to ensure tha t the two media 

remain in contact.

The djmamic condition is

on DU, The dynamic condition ensures that the resultant force acting 011 a given 

surface element vanishes.

2 .1 .4  S om m erfe ld ’s rad iation  con d ition .

We split the pressure field in Oe into two parts:

P  =  Pine  +  Ps-

P inc is the incident wave and ps is the scattered wave. ps satisfies the Sommerfeld 

radiation condition:

as |x| —> 00 . This must hold true wherever the origin is taken to be.

2.1 .5  F un ction  spaces and sm o o th n ess  o f  th e  so lu tion s.

We shall say tha t a function, /(x ) , defined in a subset of D, which may 

be a manifold or a set of non-zero measure, belongs to C (D ) if it is continuous 

everywhere in D.

Similarly, we shall say tha t it belongs to CP(D), where D is now supposed to 

be open, if its first p derivatives belong to C(D).

— pn =  cr(u).n (2 .21)

( 2 .22 )
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/ ( x )  belongs to the Holder continuous space, C0,a(D), where a- is some posi­

tive constant, if

s u p |/(x ) |
xeD

exists and

I/(x) -  / ( y)| < K \* ~  y|°‘,

where K  is some positive constant and x  and y are any two points in D. C0,a(D ) 

has the norm

I I / | | c . . (D)= ™ p  ! /(* ) !+  sup I / M - / M l
xe£> ‘ x,ye£> |x — y \a

/ (x )  belongs to the Holder continuous space, CP'°'(D) if

e C°’Q'(D),
f l p i + P 2 + P S  fu J ^ 0,cv,

d x ^ d x p22d x f  

if D is a subset of 1Z3 of non-zero measure, where

Pi +  P2 +  P3 <  P,

or if
f ) P \ .+ P 2  f

E C°'Q{D),
d x ? d x ?

if D is a two dimensional manifold and x\  and are coordinates in it, where

Pi +  p2 <  P-

We shall assume that the incident wave, p(nc, belongs to C 2(D), where D is 

an open subset of 7Z3 that contains H;; this allows for the possibility tha t pinc is 

generated by, for example, a point source situated somewhere in f le. We shall 

look for a solution (p, u) with

p € C \ D )  f l  C(D)
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and

It is also required tha t
dp
dn

and

n.<7(u)|an

exist as the limits, as h tends to zero from above, of

n(x).V p(x +  /m(x))

and

n(x).cr(u(x — /m(x))

respectively.

2.2 Uniqueness.

Suppose th a t there were two solutions to the problem we have just formulated. 

Call these (p^U i) and (p2,U2), with obvious notation.

Call

p = p x - p 2

and

u — u, -  u 2.

Clearly, we have

V 2p +  k2p =  0 in Oe, (2.23)

L(u ) +  pto2u  =  0 in fb, (2.24)
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the transmission conditions (2 .20) and (2 .21) and p satisfies the Sommerfeld ra­

diation condition (2 .22).

By an application of the divergence theorem

L a p% ,d s  = fm  p^ d S + v p-v pd v  (2-25)

+  In<,pV2pdV,

where dfla is the surface of the sphere of radius a , which encloses H,-, and Qa 

is the region between dCla and dD. Using equation (2.23) and the transmission 

conditions we obtain

! m Vl fn dS  =  Imi n .a lu j .udS  + JU,L Vp .V pdV  (2.26)

- P  In* W d V .

Let us first consider the case when and hence are real. Take the imagi­

nary parts of both sides of equation (2.26)

(L„ i S ) = (L • (2-27)
As a tends to infinity

^  (  f  P ' J - d S ) -5- —k lim /  |p|2d5, (2.28)\Jdtia a n  )  0-+QO Jma

by virtue of p satisfying equation (2 .22).

Furthermore, by the divergence theorem in U,: and equation (2.24),

I  n.<r(u) JufS1 =  Jn . <r(u) : V u c lV  (2.29)
Jdil 1 1

fn- VL.udV.

For purely elastic bodies,

cr(u) : V u  =  A|efcfc|2 +  2p e { j e H .
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Thus

(j(u) : V u

is real. Therefore, equations (2.27), (2.28) and (2.29) imply th a t

lim [  Ip\2clS = 0 . (2.30)
n-+co Jana

It can be easily shown that p must have the following expansion:

P(x) =  expja ; |x |) f  Ff ; + 1,  (2.31)
lXl n—0 lx r

where the functions Fn(0, <j>) are derived from the recurrence relation

o - i  tp (  i m t i  , 1  d  (  ■ n d F n - i \  , 1  d 2 F n ~ i2ikFn =  n{n -  l ) i v . i  +  - —-  —  sin 0——— + —
sin 9 89 \  89 J sin2 6 d<f>2

9 and <f> here represent, respectively, the usual longitudinal and latitudinal an­

gular coordinates in spherical polars. (See, for example, Colton and Kress [4, 

Theorem 3.6].) Clearly,

lim f  \p\2dS — f  \Fo\2dS ,
J d  o„ Jdtti.

where is the unit sphere.

Equation (2.30) implies that

F0 =  0 .

This determines, through the recurrence relation, that each Fn is identically zero. 

Thus p vanishes in a neighbourhood of infinity. Any solution of Helmholtz’s 

equation tha t is twice differentiable is analytic in the spatial variable, and so, by 

continuation, p vanishes everywhere in Ile. Thus,

dp
8n

=  0 .

on
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Therefore, from equations (2.20) and (2 ,21),

u.n|an =  0 and n .o -(u )|^  =  0 . (2.32)

Equation (2.24) along with the boundary conditions (2.32) do not necessarily 

imply tha t u vanishes in fl,-. It is known that there are, for certain geometries 

and for certain frequencies, non-trivial solutions to this problem. We call these 

Jones’ modes and the associated frequencies Jones’ frequencies. More is said 

about these in Appendix A.

Let us now consider the case when to and k have positive imaginary parts. 

The expansion (2.31) implies tha t p decays exponentially at infinity. Clearly then

lim f  \p\2dS =  0 .a—oo j dSla

This and equation (2.26) imply that

0 = - p 0u 2 [  n.cr(u).udS+ f  V p . V p d V - k 2 I  Ip\2dV. (2.33)
J Jcie

Equations (2.29) and (2.33) imply

0 =  ~p0UJ2 /  cr(u) : V u dV  +  pop\u)2\2 [  u .udE  (2.34)
u O i Jq,*

+  W d v .

Take the imaginary part of equation (2.34):

$j(to2) (p0 [  <j(u) : V u dV + ~  f  |p|2^V’>) =  0 . (2.35)
V JQj C Jue /

Thus

^ ( u 2) =  0

or p vanishes in S7e and.

a(u) : V u
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vanishes in H;. In the latter case, u is constant in fi,;. The transmission condi­

tion (2 .20) together with the fact tha t p vanishes in Oe imply tha t u vanishes on 

dO. Therefore, u vanishes in fl,-.

If

^(w 2) =  0 ,

uj2 must be negative (recall tha t we assumed w is not real). Therefore, each term 

in equation (2.34) is positive and so

p = 0 and u — 0 .

We can perform a similar analysis on the problem with a visco-elastic material. 

For real co2} the analysis is identical up to equation (2.29). We have

cr(u) : V u =  (A + -A )leu -|2 +  2/i(e(-j — ~ekk$ij){eij — (2.36)

The conditions (2.19) imply that

9  ( J  <r{u) : Vu<fl/) <  0. (2.37)

Equations (2.27) and (2.28) still apply. These and equation (2.37) imply that

lim /  Ip\2dS =  0.
Jdna

As before,

p =  0

in He. Equations (2.28) and (2.29) imply that

O' |'J  cr(u) : V u clV  ̂ =  0.

Assuming tha t the material is genuinely msco-elastic, equation (2.36) implies that 

u is constant in fl,;- Since p vanishes, the transmission conditions make it clear
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tha t u vanishes in H;, So, for real frequencies, the solution to the problem of 

the interaction of a visco-elastic material and an acoustic medium, if it exists, is 

unique.

2.3 Representation theorems and applications.

In this section we introduce the concept of the fundamental solution to the 

Helmholtz equation and state Green’s second representation theorem. This will 

be applied to the fundamental solution along with the scattered and incident 

waves. The proofs will be only sketched. The reader is refered to Colton and 

Kress [4, Chapter 3] for more details.

It can be readily verified tha t the function

n u .  „ \  _  exp(ifc |x - y |)
—  7—j-------------j-5

47r|x  — y|

which is defined for x  /  y , is a solution of the three dimensional Helmholtz 

equation:

the differentiation being taken with respect to y (respectively x), with x (respec­

tively y) fixed. G'(x, y) is called the fundamental solution.

If D is an open, compact subset of 1Z3 whose boundary, <9D, is C 2,a then 

Green’s second representation theorem is true

[  (uV2» -  v V 2u)dV = f  ( u ^ - v ~ } d S  (2.38)
Jd  JdD \  o n  o n  J

for all functions in C 2(D) f] C(D).  The basic idea is to first prove the result on a 

parallel surface to dD  inside D and then to take the limit as the distance between
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this surface and dD  itself tends to zero. In fact, we have already used Green’s 

first representation theorem in the uniqueness proofs of the previous section.

If we apply equation (2.38) to pinc and G in 0 ;, we obtain 

f  (  ( ^ ( x , y )  rit AC _ \  0 i f x e O e
L { V" " ( y )  M y )  " G(X’y ) 3 n ( y ) J ^  =  | _ pmc(x) i f x e n ;

(2.39)

Here, and in what follows, n(y) means the vector normal to <90 at the point 

y. Similarly, n(x) means the vector normal to <90 at the point x. In the above 

equation the integration is carried out over all points y on <90.

The first of the two results in equation (2.39) is clear because both pinc and 

the fundamental solution solve Helmholtz’s equation everywhere in 0 ; and so the 

integrand on the left hand side of equation (2.38) is zero everywhere. The second 

result is obtained by applying equation (2.38) to the domain 0,- \  £ ,  where B  

denotes a small closed ball centred on x  and then talcing the limit as the radius 

of B  tends to zero. The right hand side of equation (2.38) now involves two 

integrals — one over <90 and one over the surface of the ball. The limit of the 

second integral can be found by using the mean value theorem.

Similarly, it can be shown that

<9G(x >y) ,d p s( y ) \ P o ( x )  i f  X  £  0 P
(2.40)

0 if x  £ 0 i

This time the domain used is 0 a (as defined in Section 2 .2 ) and the limit is taken 

as a tends to infinity. The radiation condition is used to show tha t the limit, as 

a tends to infinity, of the integral over <90a vanishes.
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2 .3 .1  S ingle and d oub le  layer op erators.

It will prove convenient to write equations (2.39) and (2.40) in operator notation. 

Let ns then now define respectively the double and single layer operators, D  and 

S. If /  is a function defined on the domain <9f2, then

<«/)«.
and

(S /) (x )  =  - 2 /  /(y)G(x,y)<fSy .
J dQ

We shall say later what smoothness conditions /  needs to satisfy for these inte­

grals to exist.

W ith this new notation, equations (2.39) and (2.40) can be rewritten as

(  d v  \  I 0 if x  G
(U pincX x)- [ S ^  ( x ) = (  (2.41)

 ̂ * ( 2pmc(x) if X e Hi

and

(  dv \  ~ 2ps(x) if x  G

2.3 .2  L im its o f  th e  sin gle  and doub le layer p o ten tia ls  as 

dQ is approached .

If /  is continuous on dQ, then one can show that ( S f ) ( x )  is defined up to and 

including dD and is continuous as x passes through the boundary. (D /)(x ), 

however, is not continuous as x  passes through the boundary. In fact,
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and

lim (X>/)(x) =  (T f ) ( x 0) +  / ( x  o), (2.44)
xGii{—►XoCaft

where

( T  f ) ( x 0) = - 2  j j ( y ) ° Y ^ Y dSy

and

Xo 6  dn .

TT*/  exists if /  6  C (dn).

The normal derivative of S f  exists on dO if /  is continuous. It is not contin­

uous as the boundary is crossed. Its behaviour is similar to the behaviour of D f .  

We have

n(x0) .V (S /)(x )  =  (A'/)(x0) +  / ( x  0) (2.45)
XCS2e—*̂Xo GoU

and

xen}iS0can n (Xo)-V (5 / ) ( x ) =  (Jf / ) ( x o) -  / ( x o ) ,  (2.46)

where

(A'/)(x0) =  - 2  f  .f(y)dCi {* ' y ) dsy
Jdn o n y x )

We can even take the normal derivative of DJ\ but for existence up to the 

boundary we require /  to belong to C 1,Q'(<9n), where ci is any positive constant.

Let us call this operator N. N f  is continuous across the boundary. For details

see Colton and Kress [4, p. 62].
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2.4 Operators associated with the solid’s dis­

placement field.

The results and proofs of this section parallel those of the previous section. For 

this reason this section will be even briefer than the last, and only the salient 

points will be noted. See Kupradze [16, Chapter 5] for details.

Firstly, we note tha t we have a result analogous to Green’s second represen­

tation theorem:

[  (u.cr(v).n — v.cr(u).n)d5< =  [  (u.V.(cr(v)) — v.V.(<7(u)))dV. (2.47)
Jdfl

The fundamental displacement tensor is, for x y,

G(x,y)  = i $ , ( X)y ) I +  2_vv($.(x,y) -  * p(x,y)) ,
[I p to 1

where

and

2 P0J2
ki =

and where

and

p A + 2p'

exp(ifc*|x -  y |)
47r|x  — y| 

exp(z/sp|x -  y |)
47r |x  — y |

From equation (2.47) we have

f  (u(y).<7y (G (x ,y ) ) -G (x ,y ) .< r y(u(y)))dSy =  j 6 ' , (2.48)
u(x) if x  6 fl;
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where <ry (G (x, y)) means that the derivatives are taken with respect to the y 

variable.

Next define the elastic single layer and double layer operators to be 

(S .f)(x) =  2 ^ f ( y ) .G ( x ,y ) d S y

and

(D .f)(x) =  2 [  f(y).<7y (G (x ,y )) .n (y )dSy
\ J, j

for x  in 0 ; [j De.

So equation (2.48) becomes

( 0 if x  G De
(D .u)(x) -  (S.n.cr(u))(x) =  I (2.51)

1̂ 2u(x) if x  G Lli

(S .f)(x) is continuous as x  passes through dfi, whereas (D .f)(x) and n(x).<jx(S.f)(x) 

exhibit jumps:

D .f =  if f  4- K*.f (2.52)

and

n.o-x(S.f) =  ± f  H-K.f. (2.53)

In each case the upper (resp. lower) sign corresponds to passing through dfl from

fie (resp. f li) to fli (resp. fle). K  and K* are defined by

(K .f)(x) = 2 [  f(x).<7x(G(x,y)).n(x)cZSy
Jen

and

(K*.f)(x) = 2 !  f(x).< jy(G (x,y)).n(x)r/5x,
Jen

where now x  G dQ and the integrals are defined in the sense of the Cauchy 

principal part.

(2.49)

(2.50)
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The traction of the elastic double layer potential is defined by

(N .f)(x) =  n(x).crx(D .f)(x). (2.54)

As in the case of the analogous acoustic operator, (N .f)(x) is continuous across

dQ.

2.5 Weakly singular, singular and hyper singu­

lar kernels.

Let D C 7Z3 have non-zero measure and let dD  be its boundary. An integral 

operator,

(A /)(x ) =  f  A ( x , y ) f ( y ) d S y i
J d D

has a weakly singular kernel if

|yl(x,y)| =  0 ( | x - y r 2),

as

l*-y| -* o,
for some positive constant 7 . It has a singular kernel if

|A (x ,y )| =  0 ( | x - y | - 2),

as

| x - y |  -> 0.

Finally, it has a hypersingular kernel if

|A (x ,y )| =  0 (|x  — y)-7-2),
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as

| x - y |  -> o,

for some positive constant 7 .

It is not difficult to show that S', K , IT* and S have wealdy singular kernels. 

K  and K* have singular kernels and N  and N  have hyper-singular kernels.

For the existence of S '/, K f ,  IT*f  and S.f it is required th a t /  and f  are 

continuous. It is known that for the kernels of each of these four operators the 

constant, 7 , above equals 1 . Therefore, not only are they compact on C(dfl) ,  but 

also on C0,/3(dfl ) i for any (3 lying between zero and one. Furthermore, if /  and f  

are continuous on cKl, then S / ,  K  f\ IT* f  and S.f all belong to C°’̂ (<9n), for any 

(3 lying between zero and one. If , IT* and S  map C0,/3(Sn), for any (3 £ (0,1), 

into <71,/3(Sn). (See, e. g., Kirsch [15].)

For the existence of K .f and K*.f, f  must belong to C°'^(dLl)^ for some 

positive f3. K  and K* are, however, not compact on this space.

For the existence of N f  and N .f , /  and f must belong to a smaller space than 

C°*0(0n). One can show that it is sufficient to take them in C 1,/3(<9f2), for any /3 

lying between zero and one. See Colton and Kress [4, p. 62].

S', S, N  and N  are self-adjoint when the inner product is defined to be

< / , < / > =  /  fgdS.Jdn

K  and IT* and K  and K* are mutually adjoint with this inner product.
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2.5 .1  R eg u la r iza tio n , th e  sy m b o l m atr ix  and regularity .

Consider an operator

A :  X  —¥ X ,

where X  is a Banach space. The bounded operator

B  : X  —> X  

is called a left equivalent regularizer if

B A  = I  +  T,

where I  denotes the identity and T  is compact in X , and if the equations

Au — f

and

B A u  = B f

are equivalent. Similarly, the bounded operator

C : X  -» X

is called a right equivalent regularizer if

AC  =  I  +  T , 

where T 1 is compact in X , and if any solution of

Au = f

can be written as

u =  C v1

for some v in X , and vice versa.
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The i7idex of an operator is the difference between the dimension of its null 

space and the dimension of the null space of its adjoint. We have the following 

im portant results:

T h eo rem  1 I f  A  admits both left and right regularization, then the index of A  

is finite.

T h eo rem  2 I f  a closed operator admits a left regularization, then for the solv­

ability of

Au ~  f

it is sufficient (and of course necessary) that f  be orthogonal to every element 

of the null space of the adjoint. We say A  is normally solvable when it has this 

property.

An immediate corollary of Theorem 2 is the fact tha t if A  admits a right reg­

ularization, then A* is normally solvable, where A* denotes the adjoint operator 

of A.

The question tha t concerns us here is this: Given a system of operators of the 

form

(A .u)(x) =  u(x) +  f  k (x ,y ).u (y )d S y,
Jan

where k(x, y) is singular and A is considered to be acting on L 2{dUl), under what 

conditions does a regularizer having the form

(B .u)(x) =  u(x) +  f  k /(x ,y ),u (y)d5 'y 
J <9fi

exist? To answer this question some general results will be used without being 

proved. Very detailed accounts of the theory of regularization of two dimensional
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singular integral operators are given in Zabreyko [31, Chapter 2] and in Kupradze 

[16, Chapter 4].

It is obvious tha t since dft  is smooth enough, a normal to the surface can be 

defined at every point on the surface. If n(xo) denotes the normal at x 0, then 

n(xo) is in the Holder continuous space Ca,Q(<9fl). Let us define the cylinder CXo 

to be

Cx0 =  { y e  U 3\ |(y -  x) x  n (x 0)| <  d, - /  < (y -  x ).n (x 0) < I},

where / and d are chosen to be small enough so tha t the orthogonal projection 

of the intersection of dLl and CXo, which we shall refer to as 5(xo, d), onto the 

base of CXo is conformal. Let t ( x 0 , d) be the intersection of CXo and the tangent 

plane to <90 at x 0. If £ is fhe image of the orthogonal projection of a point x  in 

S(x.o,d) onto r ( x 0,d) and /  is an3' function with domain S ( x 0,d ), then we shall 

denote by f 1 the function in r(xo,d) with

/'(C) = /(x).

We suppose th a t the point Xo is mapped to the origin of 7L2 under the orthogonal 

projection.

Suppose that

K j i C u i )  =  v )  + (2.55)

and

hj{C0 (C -  r})) = C,C — »/), (2-56)

for all t  ^  0 and  ̂ ~j— I'j. Suppose, fuitlxei, that j /̂ ) and all its derivatives 

with respect to when considered as a function of £ belong to C 1,a(r(xo,d)),  for 

all k. of unit modulus. Finally, suppose tliat rf) satisfies the following two
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conditions:

m A C ,r i )  -  < M\C -  C f { v ( C , C ' , v ) ) - 2 (2.57)

and

~  m ij(Ci rin)| <  M\i]! -  7]nf(v{r t,, ‘i],\  ())  2, (2.58)

where M  is a positive constant and, for example,

If all three of these conditions hold, then A is said to belong to the class G(j3).

Suppose tha t A is in the class G(/?) and that t Xo is a unit vector in r(xo, cl) that 

makes an angle 6  with some fixed line in r ( x 0,d). All the derivatives of «) 

with respect to k were supposed to exist. /ty(C ,tXo) may thus be expanded as a 

Fourier series

The terms for n = 0 in the two series above are missing, because, for the existence 

of A .u , we have to assume that

OO

M x o , t Xo) =  aj") exp(m^).

n — —oo

Define

n — — oo

Let us define cr(x0, 9) to be the m atrix whose entries are the cqy(xo, t Xo)’s defined 

in the last equation.

The main result of the general theory is given below.
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T h e o re m  3 I f

inf | det <r(x0,0)| > 0, 
x 0 £ dll

B <E [0,2?r]

then a double-sided regularizer of A of the correct form exists in L 2 (dLl). More­

over, the regularizer is in the class G(/3).

We shall need the following theorems.

T h e o re m  4 J /B  is the regularizer of A  in Theorem. 3, then the index of B plus 

the index of  A  equals zero.

T h e o re m  5 I f  the symbol matrix is Herm.itian, then the index of  B is zero.

Thus, if A  satisfies the conditions of Theorem 3 and its symbol m atrix is 

Hermitian, then its index is zero. So this and Theorem 2 imply tha t A satisfies 

the Fredholm properties. We follow the example of the Russian authors and say 

tha t such an operator is quasi-Fredholm..

Suppose tha t A  is in the class G(f3). Suppose that

as a function of its first argument uniformly in y  E S  \  5(xo,^), where 6  is 

any positive number less than cl/2, and the function in equation (2.55)

satisfies the following propert}':

%(x,y)GC1’“0S(xo,*)) (2.59)

( 2. 60)

whenever

■u <E C 0 ,/3( t ( x 0 , cl))
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for 0 < (3 < a. Then A is said to belong to class G' (/?).

We have the following im portant regularity result:

T h e o re m  6 Let (3 be any positve number less than or equal to a. I f

A .u =  f,

where A is a singular integral operator in the class (■?'(/?), f  belongs to C 1,̂ (dLl) 

and u belongs to L 2{dLl), then u belongs to C 1̂ (dLt).

The effect of this theorem and the preceeding results is th a t any operator

in G'{(3) tha t satisfies the conditions in Theorems 3 and 5 is quasi-Fredholm on

C l^(d1l). for any positive number f3 less than or equal to a.

2.6 Boundary integral equations.

In this, the main section of this chapter, we derive a series of four sets of boundary 

integral equations and use them to prove the existence of a solution to the coupled 

problem. Each subsequent set of boundary integral equations will be increasingly 

sophisticated. The first two will consist of four equations in four unknowns. Each 

of these two will exhibit spurious irregular frequencies, at which the system of 

integral equations is singular but the actual problem is not.

It is sometimes im portant not to have these irregular frequencies. If, for 

example, the ratio of the densities of the fluid and the solid is small, then there 

are scattering frequencies with negative imaginary part but which are, however, 

close to the real axis. (See, for example, Norris [24] and Sanchez Hubert and 

Sanchez Palencia [27, Chapter 9].) In this case the response curve will have peaks
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near tlie scattering frequencies and these may be difficult to distinguish from the 

peaks due to the irregular frequencies. It could be the case too tha t Jones’ modes 

are possible and, once again, it may be difficult to distinguish between the peaks 

in the response due to these and the peaks due to irregular frequencies.

In view of this, the third and fourth sets of boundary integral equations 

derived here are designed so tha t the irregular frequencies do not occur. The 

third set consists of three equations in three unknowns. For three-dimensional 

problems this is likely to be optimal. However, the price to be paid is in the 

increased complexity of the surface potentials utilised.

2.6 .1  T h e s im p lest d irect b oun dary in tegra l eq u ation s.

Let us begin with equations (2.41) and (2.42) and take the limits of them as we 

pass to a point on the surface, <90. In both cases we shall take the limit as the 

surface is approached from the inner region. Equation (2.44) implies that

 ______  Q<n ■
pinc +  K  pinc ~  S -  2pinc (2.61)

and

ps +  Ii*ps -  S ^  =  0. (2.62)

Adding equations (2.61) and (2.62) we obtain,

p + K  p -  =  2pinc, (2.63)

Similarly, if we use equation (2.51) and equation (2.52), we obtain
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Now use the transmission conditions (2.20) and (2.21) to get

p +  K*p — p0uj2 S(n.  n) =  2pinc (2.65)

and

— u +  K*.u +  S.(np) =  0. (2.66)

We look for a solution with p and u in C 1 ,̂ (dD, ) 1 for some positive constant (3.

This is the first set of boundary integral equations. It will prove helpful to

write this system in the following form

(  I  + k " -p a ^ S n - i —p0<jo2S n 2 - p0Lo2S n 3 (  \  
P

SnUi  -f- S 1 2 TI2 +  * S i 3 ? ^ 3 - l  +  ^ i ^12 CO Ui

*5*21̂ 1 4“ S22^2 4- S 2 3 II3 - 1 + ^ 2
7-

23 U2

y  4* Sz2 ^ 2  A S 3 3 II3 ^31 ^32 14" K 33 ) \  U 3  J

2» \"lJinc

0

0

v °  ;
where

( ^ / ) ( x )  =  2 /  / ( y ) ( f f y ( G ( x ,y ) ) .n ( y ) ) , j d 5 y ,
Jd\t

( S i j f ) ( x )  =  2 f  / ( y ) ( G ( x , y ) ) iid5y 
J c?fl

and

(Snif ){x) = - 2  [  f ( y ) n iG ( x iy)dSy.
Jdtl

The system (2.67) is not Fredholm because it is not of the form: identity plus 

a compact operator. It is under certain conditions quasi-Fredholm.

The system is quasi-Fredholm if the symbol matrix is invertible. To calculate 

the symbol m atrix we need to identifj'- the singular terms in equation (2.67). The
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only terms tha t can be singular are the K tJ terms. Let us then examine the 

kernels of each of these terms. After a routine calculation, one obtains

(2<7y(G(x,y)).n(y))ij- =  'yni( y)Xj D<I> +  (68^ -f nj ( y ) Xi)D'& (2.68)

+ y ) Xj  +  nj (y)X;  +  O S r f D ^  -  <I>) +  L g X iJ i -  <I>).

Here D  denotes the differential operator

1 d 
R d R ’

X{ = x ; -  y, ,

R =  |X|, 

v
7

1 -  / /  

0 =  n(y).X

and
Av —

2(A -j- y) 

is Poisson’s ratio. In addition,

<t> =  exP ( i k p R )  

2ttR

and
=  exp (iksR) 

2wR '

As R  tends to zero we have

D 2(\& — <I>) =  —  ̂ -f smaller terms (2.69)
4tt R 3

and

£)3(\p _   ̂ ^ +  smaller terms. (2.70)
47rft5
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We know that

\0\ < K R \

where K  is a positive constant tha t is independent of position (compare with [4, 

Theorem 2.2]). This and equation (2.70) show that the final term  on the right 

hand side of equation (2.68) is weakly singular. Similarly,

L s B y D 'V *  -  *)

and

OSijDIf

are weakly singular. It is easy, if somewhat tedious, to show that the weakly 

singular terms in equation (2.68) and the other weakly singular operators in the 

system (2.67) satisfy the conditions (2.57), (2.58) and (2.60). To do this we must 

bear in mind that, because of the smoothness properties of the boundary, n(x) 

and n(y) are in C 1,a'(5fl).

The remaining terms on the right hand side of equation (2.68) can be rear­

ranged into
("i(y )A j -  n.j(y)X,)  (2)/ -  1) 

4 ifR3

For a particular point x  6 dfl, let us define l(x) to be the unitary m atrix tha t 

rotates the coordinate system so that the new e3 axis is normal to dD at x. Let 

us denote vectors in the new frame with a prime. We have

x;  = i{jx 3

and

n'i(y') = hjn'jiy').

In the new frame the kernels
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Figure 2.1: The projection of dDe onto the tangent plane.

and

nA Y m  and , =  1,2,3
R 3 R 3

are weakly singular.

The only singular terms are

sa il (2 . , 21

Let us now project the functions in equation (2.72) from S (x ,d ) onto r(x , d). 

Let us adopt a cylindrical polar coordinate system in r(x , d), with 0 the angle a 

line makes with the ei axis and r the distance of a point from the origin. (See 

Figure (2.1).)

nUy')-*: _  K (x ')  +  K (y ')  -  »3(x')))*!
R3 (,-2 +

We have

( r2 + A f ) 3/2 = r 3(l +  0 ( r 2+2“ )), 

K ( y ')  -  < M\x! -  y ' |1+a,

for some positive constant M , and

n^(x') =  1.
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The singular term  is (the Uj in the notation of equation (2.55)).

cos 6

The Holder continuity of the normal as a function of position implies tha t the 

remaining weakly singular terms satisfy conditions (2.57), (2.58) and (2.60), for 

/3 = a. The second term  in equation (2.72) may be similarly analysed.

The operator on the left hand side of equation (2.67) is then in class G'(a). 

Its symbol m atrix is

/  „ „ \

0 (x , 8) = TT(x)

1 0 0 0

0 - 1 0 (ll'-O.i cos 0

0 0 - 1 ~  977""')sin ^

0 i(T ^)ZC0S^ 2( 1 - ^  Sm^ — 1

T(x), (2.73)

where T(x) is the 4 x 4  square matrix with the entries given by

1 if i =  j  — 1

0 if i =  1 and j  ^  1

0 if i /  1 and j  =  1

/(—ljj—i(x) if ?. ^  1 and j  ^  1

and where L T(x.) denotes the transpose of T(x).

L.j(x) =  <

Obviously,

det 0 (x , 9) =  ^ - 1 . (2.74)
4(1 -

The condition

inf | det 0 (x , 0)| > 0, 

where the iniimum is taken over all points x € dUt and over all angles is fulfilled
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The conditions on the Lame constants in equations (2.15), (2.18) and (2.19) 

make a Poisson ratio of this value impossible. We conclude tha t the system of 

integral equations (2.65) and (2.66) is quasi-Fredholm when the solid is elastic or 

visco-elastic. The symbol m atrix is Hermitian and so the index of the system is 

zero. Consequently, a unique solution to equations (2.65) and (2.66) exists if the 

following homogeneous problem has just one solution:

p + 'K*p — pu2S(  n.u) =  0 (2.75)

and

u - K * .u  -  S.(np) =  0 . (2.76)

Suppose tha t the system (2.75) and (2.76) has a non-trivial solution: (p ',u ') in 

L 2(dD). The fact tha t the operator is in G'(j3) implies tha t the solutions p 1 and 

u ' are in C 1̂ (dQl).

Define

Ipe(x) if x  £ fL
(2.77)

P i ( x )  if x  £ fli

and

|u e(x) if x  £ fL
(2.78)

U,;(x) if x  £ Qj

The continuity of the single and double layer potentials up to the boundary 

implies the continuity of pe, p;, u e and U; up to the boundary. The fact that 

their kernels are smooth and satisfy Helmholtz’s equation, in the case of equa­

tion (2.77), and equation (2.16), in the case of equation (2.78), means tha t p e and 

Pi are smooth and satisfy Helmholtz’s equation in their respective domains and 

tha t u e and u t- are smooth and satisfy equation (2.78) in their respective domains. 

Moreover, due to the far field behaviour of the kernels, p e satisfies Sommerfeld’s
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radiation condition and u e satisfies tlie following radiation condition:

M -  ifcpU?) -» 0 (2.79)

<9us \
^  -  ikpu l ) -  0 ,

as |x| tends to infinity, where

<  =  - 7 ^ V (V -u*)

and

From equations (2.75) and (2.77) and using the limit in equation (2.44) we 

have

pf:|an =  0 .

It is well known that for each compact domain £>, there is only a countably 

infinite number of wave-numbers at which a non-trivial, square-integrable func­

tion, satisfying Helmholtz’s equation in D and satisfying a homogeneous Dirichlet 

boundary condition on the surface of D , exists. (See e. g. Sanchez Hubert and 

Sanchez Palencia [27, Chapter 2].) We shall call the squares of such wave-numbers 

eigenvalues of the interior Dirichlet problem.

Suppose th a t k2 is not an eigenvalue of the interior Dirichlet problem, then 

Pi  vanishes in 0,-. Thus
fh1):

=  0 .dpi
dn an

From the continuity of the normal derivative of the double layer potential across 

dO and the jum p conditions (2.45) and (2.46) we obtain
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So,
dpe
dn

=  - 2 p 0Lv2n.u'. (2.80)
on

Evaluate pe on the boundary:

Pe(x)|an =  - p 1 +  ~K*p* -  pou2Sn.xi' -  - 2 p \  (2.81)

from equation (2.75).

From equation (2.76) and the jump conditions in equation (2.52), we have

u e(x )|SQ =  0 .

u e satisfies equation (2.16) and the radiation condition (2.79). For the case of a 

purely elastic material the proof that u e vanishes is given in Kupradze [16, pp. 

132 - 136]. For the case of a visco-elastic material the proof of the same result is 

given in Appendix D. Therefore,

n(x).cr(ue)(x)|an =  0.

Evaluating the jump in the surface tractions across the boundary we have

n(x).cr(ue)(x)|5n -  n(x).<7-(u;)(x)|sn =  2112/ ,

from equation (2.53). Thus,

n (x ).0-(uj)(x)|fln = -Z n p 7. (2.82)

After using equation (2,76) to evaluate u 4 on the boundary, we have

Ui(x)|e>n =  2u/(x). (2.83)

Equations (2.80), (2.81), (2.82) and (2.83) imply tha t (—pe,u t-) solves the 

homogeneous transmission problem. We know, therefore, if the solid is either
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elastic or visco-elastic tliat

( ~ P e ,  Ui) =  (0,0), 

unless a Jones’ mode is possible.

If a Jones’ mode is ruled out, then equations (2.81) and (2.83) imply tha t

(p 'X )  =  (0 , 0 ).

The right hand sides of equations (2.65) and (2 .66) are in C 1,“ (^fi). In this 

case, a solution, p and u  in C 1,a(dPl) of this system exists.

Now define

P  =  Pinc -  ~Dp  + i p 0w2S(n .u) (2.84)

and

u  =  1 d . u +  Is.(n p ). (2.85)

It is clear from the smoothness of the kernels and the continuity up to the bound­

ary of the potentials that

Plu, e C ( D ) f \ C \ D )

and

U |nf G C(Tfj) P]

as required. Because of the regularity result, the normal derivative of P  and the 

surface traction of U  on dD exist in the sense of limits mentioned earlier. P

satisfies the Helmholtz equation in 7Z2 \  dPl. It is clear from the construction of

P  th a t P  — pinc satisfies the Sommerfeld radiation condition, and tha t U satisfies 

equation (2.16) in IZ2 \  dPl. Denote by P_ the limiting value of P  as dPl is
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approached from 0 ;, and by P+ the limiting value of P  as dLt is approached from 

fle. U_ and U + are similarly defined.

From equation (2.65),

P_ =  0 .

We have assumed tha t k2 is not an eigenvalue of the interior Dirichlet problem 

and, so,

P  =  0

in f lt. Therefore,

So, as before, the jump in the normal derivative of P  across the boundary implies

dP+ „ , x
  — pco2 n.u. (2 .86)
dn

Moreover,

P+ =  p. (2.87)

Similarly,

and

n.<j(U_) =  —pn (2.88)

U_ = u. (2.89)

Equations (2.86), (2.87), (2.88) and (2.89) imply tha t the transmission con­

ditions (2 .20) and (2 .21) are satisfied.

Before we begin the next section, let us examine what happens when k2 is an 

eigenvalue of the interior Dirichlet problem and/or k is a Jones’ frequency. Let Pjj 

now denote a noil-trivial solution of the interior Dirichlet problem. By applying
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Green’s second representation tlieorem to Po and the fundamental solution in 

the domain f l { \  B y where B  is a small, closed ball centred on a point x  in 0,-, 

and taking the limit as the radius of B  tends to zero, we get,

ftw- 4 ( slr )<x)-
Use equation (2,45) to obtain

On the boundary, we have

(7 + J O ^ U o .

S ^  = 0 .on

Let { U ^ ;»  =  1 , . . .  , n} be a base of the space of Jones’ modes. It is clear that

(I -  K * ) X S f  =  0.

From what we have already done, we know that

I — K*

is quasi-Fredholm. Therefore, the equation

(I — K).b =  0

has at least n independent solutions. Let {fcb'L i =  1 , . . . ,  m}  be a base of

iY ( I - K ) .

It is easy to see tha t the space spanned b}r {S.bb); i =  1, . . . ,  m}  is the space of 

interior displacement fields with zero surface tractions. Thus, each Jones’ mode 

can be expressed as S.b, for some b. Clearty,

(I — K).b =  0
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and

n.S .b  =  0,

The adjoint, homogeneous version of the system (2.65) and (2.66),

(I  +  K)a  “  n .S .b  — 0

and

has the solution

(I — K ).b  — pQoPnSa — 0,

dPrDa -
dn an

and with b as above.

Conversely, it can easily be shown tha t the only solution of the adjoint system

has

n.S .b  =  0,

(I — K ).b  =  0 ,

Sa = 0

and

(I  +  K)a  =  0.

From equation (2.39) we have

■ Spine
^Pinc P inc  T R Pinc  S' dn

Therefore, the inner product of (2pinc,0 ) with (a, b), with a and b as above, 

equals
i ~yy* r< Spine^  Pinc  T R Pinc  S ~ , CL > .dn
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This equals

<  P i n o ,  ( I  +  I < ) a  > - <  ^ 2 ,  S a  > =  0.

Therefore, the system is solvable at all frequencies. Thus, the transmission 

problem is solvable at all frequencies. The system is singular at eigenvalues of 

the interior Dirichlet problem and at Jones’ frequencies. The singularities at 

eigenvalues of the interior Dirichlet problem are spurious because we know that 

the transmission problem is uniquely solvable at these frequencies, unless, of 

course, they happen to coincide with Jones’ frequencies.

The system derived in the next section will not improve 011 this result. It 

is included only as an example of an indirect method. Indirect in this context 

means th a t the quantities found are not in themselves physically relevant. In 

contrast to indirect methods, direct methods, are those in which the quantities 

found are physically relevant. The method we have just used was direct.

2 .6 .2  A n  in d irect m eth o d  # 1 .

Look for a solution of the form

u -  S.g (2.90)

and

p =  Sfl A Pinc- (2.91)

We require tha t both g and fi belong to C0,/3($n), for some positive constant j3.

Equation (2.90) implies

n.cr(u)|ao =  - g  +  K .g (2.92)
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and equation (2.91) implies

Furthermore,

and

dp
dn

dp
— (t +  A p, 4*

an dn an

plan =  S f i + p inc.

(2.93)

(2.94)

(2.95)

Using the transmission conditions (2.20) and (2 .21), we obtain

dpincp, + K p  -  pqoj'2n.S.g =
dn

and

g + K.g +  nSf i  =  - p incn.

(2.96)

(2.97)

We discovered in the previous section tha t the system

I  + K* - p 0io2Sn  

— S.n I — K*

is quasi-Fredholm. This implies that the system

/ I  +  K  —S n 

2 <

(2.98)

(2.99)
\-pou> 2S.n  I - K  J

is quasi-Fredholm too, because its singular part is identical to tha t of the former 

system. Because the index is zero, the relationship between this system and its 

adjoint is symmetric. Therefore,

 ̂ I  P K  —p0Lo2n.S  ^

n S I - K
(2.100)

is quasi-Fredholm.
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Thus, the system in equations (2.96) and (2.97) is quasi-Fredholm. In addition

to this, the S3rstem is solvable if and only if k2 is not an eigenvalue of the interior

Dirichlet problem and a Jones’ mode is not possible. To see this, note that, due to

the vanishing index, the null-space of the system (2 .100) has the same dimension

as the null space of the system (2.99). We have the easily verifiable identity 

/  \  /  _ \

\

1 0 

0 p0co2I

I  -f K  ~ p 0uj2Sn  

—S.n I — K*

( \ ! i  o \

y 0 pou2I  j

I  -f K  —S n 

 ̂ — po<jo2$.i\ I — K*

Clearly the null space of sj^stem (2.98) has the same dimension as the null space 

of system (2.99). The claim then follows.

If k2 is not an eigenvalue of the interior Dirichlet problem and to is not a Jones’ 

frequency, then the system (2.96) and (2.97) has the unique solution (p,g).

The pressure and displacement fields are then given bjr the equations (2.90) 

and (2.91). As for the direct formulation, it is easily verified tha t this is indeed 

the solution of the transmission problem.

2.6 .3  S ingle in tegra l eq u ation .

In this section, we shall derive a system of three equations in three unknowns 

tha t has no irregular frequencies.

We have the ansatz

u = S.nflr + S.f, (2.101)

where

f.n =  0
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and g and f  belong to C0,^(dQ), for some positive constant (3.

From Green’s second representation theorem and the jum p conditions (2.44) 

and (2.46), we have

p + K ' p - S ^  = 2pinc (2.102)

and

-  A 'Ip  +  Np = 2 % ^ .  (2.103)
On on on

Use the transmission conditions and equation (2 .102) to obtain

n.<r(u).n +  I T  (n.cr(u).n) + p0io2S(u.n) — - 2 p inc. (2.104)

From equation (2.101) we have

n.<r(u) =  —gn — f +  K .n<7 +  K.f. (2.105)

Now substitute equation (2.105) into equation (2.104) to give

g -  n.K.ng -  n.K.f +  ~K*g -  K*(n.K.n)g  -  K*(n.K ).f (2.106)

—p0uj2S(n.S.Ti)g — p0io2S( n.S).f =  2pinc.

Similarly, by using equations (2.101) and (2.103) and the transmission condi­

tions one can obtain

pok->2n.S.n<? +  poto2n .S . i  — p0uj2K(n .S .n )g  — p0oj2 K  (n.S) .f (2.107)

+N g  -  N(n .K .n )g  -  JV(n.K).f =

Now let us add equation (2.106) to ig times equation (2.107), where g is a 

constant to be chosen later. We have
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—pou2S(n.S.n)g  — p0w25'(n.S).f +  ir}pou>2n.S.ng

+«7/^o^2n .S .f — ir}pQLo2K  (n.S.n)g — irj p0u>2 K  (n.S) .i

d u ■
+ir}Ng -  igN(n .K .n)g  -  ir)N(n.K).f  = 2pinc +  2 i g - ^ .

Moreover, since

(j(u).n — nn.cr(u).n =  0 , 

f  — (K .n )<7 - f  n(n .K .n )#  — K .f +  n (n .K ).f  =  0 .  (2.109)

We now require tha t g and f  belong to C 1,/3(<9Q), for some (3 E (0,1).

Before we prove tha t the system (2.108) and (2.109) is quasi-Fredholm, let 

us first see whether the homogeneous version of the system has a non-trivial 

solution. Suppose (g\  P) is a solution of the homogeneous system. In addition g' 

and f ' belong to C 1,̂ (dfi), for some {3 E (0,1). Let

u =  S .n ^  +  S.f' (2.110)

and

P = ^ -5 ( n .S .n ) j '  + ^ ~ S { n.S).f' -  '-Dcf + i.D(n.K.n)</ (2.111)

_ l£ > n .f ' +  iu ( n .K ) .f '.

Equations (2.109) and (2,110) imply that

<7(11).n — nn.<r(ii).n =  f '.nn .

Therefore,

f '.n  =  0

and

nn,(j(u).n  = <r(u).n.
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Let us once again adopt tlie notation tha t a negative (resp. positive) subscript 

denotes tha t a limit has been taken on dfi  as the boundary is approached from 

Hi (resp. Oe).

Equation (2.111) implies that

p~ =  ^ r s (n -s -n )3' +  ^ y - s ( n -s )-f ' -  \ g '  -  a' (2 .112)

+  in .K .n ff' +  ^ K " (n .K .n )g '  +  tn .K .f'  +  l ^ ( n . K ) . f '

and

Op_ n C , PO^ a n, , POW2 c , , /0 11Q\= ------ n .S .n g  — n.S.f + A (n.S.n)</ (2.113)

PqL02 , 1 , 1  1
A’(n .S ).f/ -  - N g '  -f -iV (n .K .n )g' +  -tV (n .K ).f'.

' 2  v ' 2 2 ' 2

Equations (2.112) and (2.113), and the fact that (g\  f ') is a solution of the 

homogeneous version of equation (2.108), imply that

• d p -  np _ +  W - z — — 0 . 
on

Therefore,

0 =  L _ P - [ P - +  dS '=  f  P - ( l  Jan \

By the divergence theorem and Helmholtz’s equation

0 = /  \p^\2d S - i i ] k 2 j  \p\2dV + i r}[  Vp.VpdV.  
J dn Jn  ̂ Jn;

Assuming that ^s(k2) > 0 then choose ?/ to equal

Now take the real part of the last equation. Clearly p_ vanishes. If $s(k2) > 0 

then the gradient of p vanishes in 0/. Consequently, p itself vanishes.
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If k2 is real then still vanishes. To complete the analysis, let us note that 

we obtain a very similar equation by considering

L (p- + ̂ 1dn

Now we have

0 =  ig [  - I z .  d S - k 2 [  \p\2dV  +  /  Vp.VpdV.
JdSl O i l  JO; JQi

Taking the imaginary part of this last equation, with ?/ equal to 1 or —1, we have 

tha t
dp^
dn

= 0.

No non-trivial solution of Helmholtz’s equation in which vanishes on dO and 

whose normal derivative vanishes on dLl exists. Therefore, p vanishes in f

So
dp-
dn

= 0 .

The jump conditions (2.45) and (2.46) imply that

dp+

Moreover.

dn
= poLo2n.S.ng'  +  p0ai2n.S .f'.

u_ =  S.ng1 +  S.f'.

(2.114)

(2.115)

We have

and

cr(u_).n =  —g'n -  f  +  K.ng'  +  K .f '

p+ =  g‘ — n .K .n  g' — n .K .f ',

(2.116)

(2.117)

since equals 0 .
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The transmission conditions are satisfied by pjne and u |n r  Clearly the field 

equations are also satisified an dp |ne satisfies the Sommerfeld radiation condition. 

Therefore,

(2> k ,u |n .) =  (0 , 0 ),

unless a Jones5 mode is possible. If not then u_ vanishes. The continuity of the 

single layer potential implies tha t u + vanishes. Therefore, by Kupradze [16],

u |ne =  0 .

Clearly,

0 =  <t(u+) — o-(u_) =  2ff'n + 2f'.

Since fbn  vanishes then

</ =  0

and

f ' =  0 .

So the system is unique unless to is a Jones’ frequency.

We must now prove the existence of solutions to the system (2.108) and 

(2.109). Let us write

N  = N 0 +  (N  -  No),

where No is to &0, a wavenumber whose square is neither an eigenvalue of the 

interior Dirichlet problem nor an eigenvalue of the interior Neumann problem — 

i. e. the interior problem with homogeneous Neumann conditions — what N  is 

to k.

N q is invertible with

iVo- 1 =  S0(I + K o y ' i - I + K o ) - 1,
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where So and I(q have analogous definitions to N0. See Colton and Kress [4, 

p. 90]. It is clear from the last formula that Â 1 is compact on C°^(dD)  and 

tha t N ^ 1 maps C°'f3(dD) into C 1,/3(dfl).

(N  — N q) is compact on C0,^(dft) since its kernel is weakly singular. Its kernel 

also satisfies the conditions (2.57), (2.58) and (2.60).

By operating on the left on equation (2,108) with A/^1, we obtain

N ^ g  -  N ^ 1 (n.K .n)# -  A ^ n .K J . f  +  N ^ T F g  -  N ^ l T ( n . K . n ) g  (2.118) 

- N q 'CK*n .K ).f -  A ^1n .K .f -  p0u 2N ^  S(n.S.n)g -  Polj2 N ^ S i n.S).f 

+z7/)oow2Ar0“1(n.S.n)</ +  z^ o o A A ^ fn .S j.f  — i p p ^ N ^ 1 JGfn.S.n)#

—i p p o u P N ^ K  (n .S ) . f  + igg — ipn.~K.ng — ipn .K . i  +  z?/Â ( N  — N 0)g

-ipN0 1(N  -  N 0(n.K.n)g  -  ipN0 -  Ar0(n .K ).f =  2N0 1 pinc +  ip. dpi
dn

By dividing equation (2.118) through by ip, we can see tha t

g — (n .K ).f +  compact terms =  —N 0 1 ( p—̂
p V on Wt (2.119)

We can see th a t the system (2.109) is in (?'(/?), for 0 < /3 < a. It is easy to 

calculate the symbol for this system. It is

/

0 (x , 9) = /T(x)

1

2 ( 1 -* /)

cos 9 H?' sin 9 ^2(1—v) 2(1—t/)

I COS

_  .(.fozllo sin e \  2 ( 1 - 1/ ) 1 b l U t 7

l(x),

where /(x) is the rotation matrix introduced in subsection 2 .6 .1 . Clearly,

sup | det 0 (x, 0)| > 0 

x G dD

9 G [0,2tr]
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for all feasible values of Poisson’s ratio.

We know from this tha t the only solution of the homogeneous system is the 

trivial one. Thus, the Fredholm property of the system (2.109) and (2.118) implies 

the existence of a solution in C 1,a(dQ). Once the solution, (</,f), is known, the 

solution to the transmission problem is

u =  S.(ng)  +  S. f

and

P =  ^ W ^ n . S . n ) #  +  ~p0u 2S(n .S) . f  -  ^Dg  

+ i ( n . K . n )<7 +  “ (n .K ) . f  +  pinc.

2 .6 .4  A n  in d i r e c t  m e th o d  # 2 .

We now conclude this chapter by describing another indirect method.

Let us begin by representing p and u as

p  = Sp  +  iDp  +  p inc (2.120)

and

u =  S.ng +  S.f .  (2.121)

We require tha t p belongs to C 1,/3(<9fl) and tha t g and f  belong to C 0,/3(dfl ) t for 

some positive /?.

Now apply the transmission conditions (2.20) and (2 .21). We obtain

p +  K p  +  iN p  — p0co2(n.S.n)g  — p0cj2(n .S ) . f  =  — ? (2.122)
on

g -  (n.K.n)g  -  n .K . f  + ip -  H(*p -  Sp  =  Pinc (2.123)
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and

f  -  K .f -  (K.n)flf +  n (n .K ).f +  n(n.K.n)</ =  0 . (2.124)

Equation (2.124) conies from

<j(u).n — n(n.cr(u).n) =  0 .

Let g! in C 1,̂ (dQ) and (g \P )  in C0,/3(dfl) solve the homogeneous version of 

the system (2.122) to (2.124).

Let

P = S g 1 + iDg1

and

U — S.ng1 4- S.f'.

Equation (2.124) implies that

n . f  -  0 .

This and the homogeneous version of equation (2.122) imply tha t

8P
— — = p0cu2U _.n. (2.125)

o n

The homogeneous version of equation (2.123) implies tha t

<r(U_).n =  —P+n. (2.126)

So unless w is a Jones’ frequency, P\ae and U|n,. both vanish. So assume that u> 

is not a Jones’ frequency. The continuity of the single layer potential implies that 

U + vanishes. This in turn implies that U |^e vanishes. The jum p in the surface

tractions due to the displacement fields in Oe and clearly vanishes. From the

jump conditions (2.53) we have

<j(U+).n -  <j(U_).n =  2g'n +  2 f .
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Clearly then both g' and f7 vanish. 

Furthermore,

P- — P+ -f 2ig f =  2^ '

and

So,

dP-  dP+ n ,
dn dn

-  2 / i '  =  - 2 / i 1 .

P . + ^  = 0. (2.127)

Therefore,

0 = JanP ( P . - i % ^ ) d S  (2.128)

=  / sn |P_ |2d5 -  i V P .V P d V  +  tfc2 \P\HV.

Taking tlie real part of equation (2.128) implies

0 =  /  |P_|2dS +  Q(fc2) /  |P |2dV. (2.129)

We assumed that ;r(k2) > 0. Then P_ vanishes and from equation (2.127),

9P- „
dn ~

Green’s second representation theorem implies tha t P  vanishes in fit-. Therefore, 

/d vanishes and the homogeneous version of equations (2.122) to (2.124) has only 

the trivial solution when j.t lies in C 1,̂ (5 C).

We must now prove the existence of solutions to equations (2 .122) to (2.124). 

The first of these three equations clearly has a liypersingular term. To find a 

regularizer for this, we write

N  =  No +  (N  -  No),
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where, once again, JY0 represents the gradient of the double layer potential for a 

wavenumber th a t is an eigenvalue of neither the interior Neumann nor the interior 

Dirichlet problems. Thus it is invertible. Its inverse and (N  — No) are compact 

on C0,/3(dfl). Equation (2.122) becomes, when operated on on the left by N ^ 1 ■,

ip, +  iN 0 1(JV — N q){,i +  N q 1 fi +  N q 1K  p — po (2.130)

w2Ar0_1(n .S .n )<7 -  ^0o;2iV0" 1(n .S).f =
on

Let us rewrite the equations (2.122) to (2.124) as 

p, +  compact terms — i N ^ 1 ^ 1
dn  ’

g — (n.K .n)g — (n .K ).f +  ip +  compact terms =  pinc

and

f  — K.n</ — K .f +  n (n .K .n)#  +  n (n .K ).f — 0 .

As before, n .K .n  is actuall}' compact on C0,̂ (dH). The singular part of n .K

is
(2i/ -  l ) X k

k — 1,2,3.

k = 1,2,3.

47r( l — v)R3

The singular part of K .n  is

(2// -  l ) X k 
47r(l — v)R?

The singular part of K  — nn .K  is

(2v -  l )nm( y )Xk 
47t(1 — v )R3

Here the coordinates have been rotated so the normal to dPl at x  points in the e3 

direction. The symbol m atrix is, once again, simple to calculate and the result 

is identical to the preceeding results. The system is, thus, quasi-Fredholm with 

index zero, for all feasible values of Poisson’s ratio.

&,m =  l, 2 ,3.
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We must now turn  our attention to the regularity of the solutions to the 

system. Specifically, we must show that the function fi in C 0,̂ (<9fl), tha t is a 

solution of the system, is actually in the smaller space C 1'(i(dD)i for some positive 

(3. To do this, note th a t we have

/i +  compact terms =  iN P1 ^ mc
On

and th a t the label “compact term s” refers to terms in equation (2.130) tha t are 

of the form

N o 1^

where <f> belongs to C°^(dD).  The mapping propeties of A^ 1 indicate tha t the 

image of <f> under N ^ 1 belongs to C l^{dLl). Obviously, (a also belongs to this 

class.

This regularity property of the solutions, the uniqueness property of the ho­

mogeneous version of the system and the quasi-Fredholm property of the system 

with the vanishing of the index imply tha t the system is always solvable unless 

a; is a Jones’ frequency.

2.7 Conclusion.

We have seen four different approaches to tackling the transmission problem by 

means of integral equation methods. The first two systems involved integral 

operators tha t had considerably simpler kernels than the final two systems. This 

latter pair had the advantage of not having had spurious frequencies at which 

the system of integral equations was singular but the real problem was not.

The main theoretical result of this chapter was the proof of the existence of

JOHN RYLANDS 
UNIVERSITY 

LIBRARY
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a solution to the transmission problem at all frequencies, for both the elastic 

and visco-elastic cases, and the proof of uniqueness at all frequencies other than 

Jones’ frequencies.



C hapter 3

E lastic P o lygon  —  A coustic  

M edium

3.1 Introduction.

In tliis chapter we shall consider a problem that is very similar to the one con­

sidered in the previous chapter. We are interested now in the effect tha t edges 

have 011 the solutions to the transmission problem. We know tha t when the elas­

tic body occupies a sufficiently smooth domain the solution is as smooth as the 

datum, th a t is to say, the incident wave. This, as we shall see, is no longer the 

case when the body has an edge.

For simplicity, we shall consider only two-dimensional polygonal domains. By 

this means the essential feature of the problem will be isolated. The extension to 

three-dimensional problems of bodies with edges is straightforward.

77
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f i t

Figure 3 .1 :  The p o l y g o n a l  domain.

3.2 Preliminaries.

We shall denote by 0* the compact, open subset of 7Z2 th a t is occupied by the 

elastic body. 0 e will denote the set 7Z2 \  H; and 50 , the boundary, is the comple­

ment of O j(JO e. Let us suppose tha t the polygonal domain, Ot-, has N  corners. 

Let us label these

Let us denote by 5% , for j  £ {1, 2 , . . . ,  N  — 1}, the edge tha t joins Cj to Cj+1. 

5 0  jy is the edge tha t joins Cn  to C\. Let us denote by ay the interior angle at 

the corner C*. See Figure (3.1).

The equations satisfied by the displacement field in Oj and by the pressure field 

in Oe are unchanged. This is true of the transmission conditions too. Recalling 

equations (2.13) and (2.16), we have

V 2p -f- k2p ~  0 in Oe (3-1)

and

(A + ^)V (V .u) + ^V 2u +  puj2\i =  0 in 0*. (3-2)
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Let us rewrite tlie transmission conditions (2.20) and (2 .21)

dp
dn pQu*n.u\dn (3.3)

an

and

-  (pn)|an =  (<r(u).n)|5n. (3.4)

We split the pressure field up into an incident part, pinc, and a scattered part, p3. 

The scattered part satisfies the Sommerfeld radiation condition

/  1
.Vps -  ikps = o

x
(3.5)

as |x| —> oo. This is a modified version of the radiation condition of equa­

tion (2.22). The modification is due to the reduction of dimension from three to 

two.

We shall search for a solution of the transmission problem expressed in equa­

tions (3.1) to (3.5) with

p e fl£.(n.)

and

u 6 t f s(a-),

for s lying in the range ( | ,  f ).

For p E Hioc(f2e), with ~ < s < one can define the trace of p on d f l . 

The trace map is continuous from Hioc(De) into H s~^(dD). This is Gagliardo’s 

trace lemma. The same, of course, applies to the trace map from H s(Cli) into 

H s~^(dD). These trace maps have right continuous inverses, which are sometimes 

called lifting operators.

Suppose now tha t p E i7/oc(n e) and p satisfies Helmholtz’s equation. Then 

one can define the normal derivative, of p on dO to be the unique element of



CHAPTER 3. ELASTIC POLYGON  — ACOUSTIC MEDIUM 80

H  satisfying

k2 f p$dV  -  f  V p.V ldV ,dn H 2(9n)H2(an) JUe

where (f> is any member of iJa (<9Q), $  is a lifting of <f tha t vanishes in a neighbour­

hood of infinity, <L denotes the complex conjugate of $  and the angled brackets 

denote the duality product. Similarly, for any solution u, of equation (3.2) in 

H 1(n i), its surface traction can be uniquely defined as an element of H~^(d(l)  

through the equation

<  „ .a ( u ) ,  v  > B _ W *(an)=  J 0) c (u )  : V v W  -  pu,2 f  u V d V ,

where now v ; is a lifting of v.

We shall later require the following uniqueness result.

T h eo rem  7 Let 9£tu2 > 0. Suppose pinc vanishes and that u  G and

p € Hioc(Oe) satisfy equations (3.1) to (3.5). Then u and p vanish identically in 

their respected domains unless a Jones> mode is possible.

P roof: We first note tha t the transmission conditions actually make sense since 

the normal derivative of p on dLl and the surface traction of u exist. Let S be 

the boundary of a circle tha t completely encloses ft,-. Let f l /  be the open domain 

bounded by the curves E and dO. The transmission conditions imply tha t

dp
K dTi’P >»-W*(«1)= ~ p < "•<T(u)’u > « - i V* )n h ia 0 ) ■ (3-6)

It is evident tha t the left hand side of this equation equals

k2 [  \p\2x d V  -  [  Vp.VpxdV,
J -J Hg
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where x  *s a smooth function tha t takes the value 1 within De' and th a t vanishes 

in a neighbourhood of infinity. It is well known from regularity theory that p is 

smooth in any open subset of 0 e. Therefore, we have

k2 f \p\2xdV  -  f  Vp.VpxdV  = f % d S .
Jn2\we Jn?\n'e Js on

Therefore,

<  ?P v >  . , .2 I  1-12 j t ;  r w _ v , _ . , T ,  , f  dP =  .
dn H~2(dsi)H2{dn) = k2 [  \p\2dV  -  [  V p . V p d V P  f  -zrpdS. (3.7)

I JSi' JQ,'e JS

Similarly,

-  p0w2 < n.ff(u), u > H- i(sn)ffi(8n)=  /V>oM4 u.udK -  po^2 / ni Vu.VudV. 

(3.8)

Equations (3.6), (3.7) and (3.8) imply that

k 2 f  \p\2dV -  f  Vp.VpdV + [  Tr-pdS (3.9)
Ai; J Je dn

=  p/?0M 4 [  u .udV — pqlu2 [  Vu.V udV ’.
Jtlj ‘'fit

Suppose first tha t uj2 and k2 are real. Then

9  L  = ° '  (3,10)

Equation (3.10) is true regardless of the radius of the circle. Write

dp , 
a ^  = lkp + 9 -

Equation (3.10) implies that
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The radiation condition and inequality (3.12) imply that

II P | | l2(s)—> 0 (3.13)

as the circle’s radius tends to infinity. As in the three-dimensional problem of the 

previous chapter, this implies tha t p vanishes in a neighbourhood of infinity. By 

analytic continuation p vanishes everywhere in 0 e. The transmission conditions 

imply th a t u vanishes unless a Jones’ mode is possible.

If a?2, and hence A:2, have positive imaginary parts, then, as in the three- 

dimensional case, p decays exponentially at infinity. Therefore, the limit of the 

integral in equation (3.10) as the radius tends to infinity is zero. So the imaginary 

part of each term  on the left hand side of equation (3.9), with 0 ' replaced by Oe, 

is positive and the imaginary part of each term on the right hand side is negative. 

Thus, p vanishes and u  is constant in Ot-. The transmission conditions imply that 

u .n  vanishes on <90. Therefore, u must vanish in 0*.

3.3 Integral equations.

Let us recall the integral operators introduced in the previous chapter. We here 

define analogous operators. For the problem in two dimensions the fundamental 

solutions are now

for Helmholtz’s equation and

- L i H l ( k , R ) l  -  ~ i V V { H l0(ksR) -  Hv{kpR))
4 î 4 pUJL

for the elastic wave equation, where H q(z) is a Hankel function and
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These operators were previously defined on Holder continuous spaces; we now 

wish to extend their definitions to larger spaces. From Costabel [5], if cr £ ( — 5, 5), 

the operators

D : Hi+°(dQ)  -> f f 1+<’(fii) 

D : Hi+°(dCl) -> Qe)

S : dfl) -> H i +°(d fi)

K  : H-$+*{dn) -» H - i +c,{dn) 

K*  :  Hl+*(d f i )  - >  Hi+°{d f i )  

n  : H ^ ( d n )  -* f M + ^ d f i )

as well as their elasticity counterparts are bounded extensions of the previously 

defined operators. We shall not distinguish between the single layer operator 

tha t maps 2+<r(<9Q) to Hi*** (7Z2) and the operator tha t maps H~^+cr{dLl) to 

H 5+<r(dO). Nor shall we distiguish between the double layer operator tha t maps 

H ^ +a(dCt) to H 1+(T(Di) and the one that maps H ^ +er(dCt) to i? 1+<r(fle).

Furthermore, if ps belongs to H}-0C(Lle) and satisfies Helmholtz’s equation,
/

1 1 fin ~ Ps(x) if x  e  n e
5 (K p.)(x) -  - (S -£ - ) (x )  =  . (3.15)

0 if x  ^ n t-V
For pinc we have

Similarly, for u in Jff1(n t) satisfying equation (3.2) in the sense of distributions

(3.14)

(3.16)
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From equations (3.15) and (3.16) we see that

1 1 dv if x  €
- ( D p ) ( x ) - - ( 5 — ) ( x ) - Pi„c(x) =   ̂ . (3.18)

1 I 0 if x  £ fti

Moreover, for ?/; belonging to

(SW+ -  (Stf)_ =  0 and (3.19)

where the -f- subscript denotes taldng the limit onto dQ, from the exterior and 

the — subscript denotes the limit taken from the interior. For ijj belonging to

H h { 0  n),

(.Di>)+ -  (X?^)_ =  2-0 and ~  { j j f )  =  (3-20)

This is true of the elasticity potentials too. The proof of all these claims may be 

found in Costabel [5]. Define the operators K* and K through the identities

K*$  =  +  ( D ^ )+

and

K*.v — v +  (D.v)+.

Equation (3.18) implies that

J \ *  r> —
dn

p P T C  p -  S^ j -  = 2 pinc (3.21)

and equation (3.17) implies that

u — K*.u +  S .c(u).n  =  0 . (3.22)

Now substitute the transmission conditions into equations (3.21) and (3.22) 

to obtain

p +  K*p -  p0co2S(u.n) = 2pinc (3.23)

and

u — K*.u — S.np  =  0. (3.24)
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3.4 M ellin transforms and the convolution the­

orem.

Mellin transforms will play a large role in wliat follows. The Mellin transform of 

a function / ,  belonging to C^°(0 , oo), is

POO
M f { z )  =  /  t*-1 f(t)dt. (3.25)

Jo

The definition of the Mellin transform can be extended to functions in T2(0, oo). 

In fact, the map

M  : L2{0,oo) -> L2(ffiz =  - )
2

is an isomorphism. The inversion formula is

m  = A f  , r * f { z ) d z  (3.26)
I ' Kl  Jdl z= l-

for /  £ L 2(0, co), where, of course, /  represents the Mellin transform of / .

The Mellin transform can be extended to a still wider class of functions. We 

have

L em m a 1 Let f  £ Tj?oc(0 , oo) and let the numbers a and b be given by

a =  sup{a; f ( t )  = 0 ( t~ a) as t —> 0+}

b - sup{/?; f{ t )  = 0(t~P) as t —> oo}

with b > a. Then the integral in equation (3.25) converges uniformly for a < 

< b and defines a holomorphic function there.

For a < x < b we have

lim f { x  + iy) = 0 ,y-+±oo
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for any subinterval I  of (a, b) the function

N(.f, G y)  = sup | f ( x  -f iy) | 
are/

is continuous with respect to y and satisfies

lim N ( f , I , y )  = 0.y—>± oo

27ie inversion formula (3.26) is valid along any line = c for  a < c <b.  

The proof of this may be found in, for example, Bleistein and Handelsman

[3],

Now we introduce the space L 2'c{~ ), by defining tha t a function /  belongs to 

it if
roo

/  t2c~l \f( t) \2dt 
Jo

exists. Equipped with the obvious norm these spaces become Banach spaces. We 

can prove that

M  :  ( j \  - »  L2(Mz = c)

is an isomorphism.

The inversion formula (3.26) has to be modified slightly. For /  £ L2’c(y )

1 r c + i M  „

Mm 9^7 /  '1, r ' ' f (Z)dz = (3-27)M —voo 27TZ J c —iM

for almost every i £ (0 ,oo).

The Mellin transform is useful for solving integral equations of the form

r a ( i )  m i = h ( x ) - (3-28)
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The left hand side of equation (3.28) is called the Mellin convolution of /  and g. 

Formally the application of Mellin transforms yields

g(z ) f ( z ) = H z )- (3.29)

For /  G L2,c(y )  and g G L 2{ffcz — c) this can be rigorously proved. The inversion 

formula (3.28) then enables us to write

X rc+iM 111 z \
f ( t )  — l i m   r f  t ~ z — d z .

M-+oo 2?rz Jc-iM q { z )g ( z )

Let us call S c the subspace of £>(0,oo), the dual space of C^°(0 ,oo), defined

by

S e =  { /  G X>(0, oo); ecx f{ex) G <S(-oo,oo)}.

The Mellin transform of any u G <SC can be defined on the line — c. Here 

S ( —oo,oo) stands for the space of distributions for which a Fourier transform 

can be defined. ecx f ( e x) is the distribution g defined by

< g , f  > = <  / , t c“V(lni) > .

Let us state the convolution theorem for distributions and restate the convo­

lution theorem for functions:

T h eo rem  8 I f  f  G L2,c(0,oo) and g G Sc is such that g is bounded, then

fOO /  o \  r j f  1 pC + iM

I  9 i t )  m T  = xfe. 2Vi  L m  s " ‘ ^ z )A z- <3-3°)

I f  f  G L2,c(0,oo) and g is such that g G L 2(JRz = c), then

poo /  c \  fJ i  1 pc+ioo

I  9 i t )  f { t ) J  = 2wi L , „  S~S f ^ 9 ^ d z - (3'31)
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3.5 Properties in the wedge.

Here we shall concern ourselves with the properties of the boundary integral 

operators on the boimdary of a wedge-shaped region

r  =  {(x, 0); x > 0} [J{(s cos a-, s sin a); s > 0},

where a  is some constant in the range (0,2tt). To this end, let us introduce the 

space Z-p(0, oo), for s > 0 and s — |  not equal to an integer. It is defined to be 

the space consisting of elements of the form
n mk

u =  Wo + Y  Y  CkMx)xPk 1117 X.
k~lj=0

V  denotes the set

{(pfc,mjt) € 71® AT 1J{0}; k =  1, 2 , . . .  ,n} ,

0 <  pi < P2 < ■ • • < Pn < [S ~  “ ], 

x is a variable tha t measures the distance from any point on T to the origin, w0 

belongs to H s(0, oo) and to(x) is a smooth function which takes the value 1 for 

x in a neighbourhood of zero, and which vanishes in a neighbourhood of infinity 

and, finalfy, Ckj are constants, u <E JT*(0,oo) if the continuation of u by zero 

belongs to H s(0, oo). We define the norm of u in Zj,(0 , oo) by
n mk

|| ^ |j |̂,(0,oo) || «0 ||//5(0,oo) T ^ j ^  ) l^'j l •
A.— 1 j=0

This is similar to the space defined by Costabel and Stefan [6]. See also Ola [25] 

for a similar singularity space.

Zj>{0 , oo) is independent of the choice of w(a:).

Let us define the space Zj, (T) to be the space of functions on the boundary 

of the wedge, T, with the property tha t the restriction of the functions to each 

arm of the wedge belongs to Z?>(0 ,oo).
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Let

^ (1) =  {(pi1)5m fc1)); k =  1>2... ,n (1)}

and

*p{2) _  {(p£2),77i£2)); fc =  1 ,2 . . . , ti(2)} 

denote two singularity sets. We define the sum of these

— -p(i) ^  p(2)

to he the set

where

and

for j  = 1, 2 , if

{(i?*,m*); & =  1 ,2 ,. . .  ,?*},

{Pk} =  {pl^LH Pfc0}

(i)-  mfcr,

Pk = p $

and if pk does not belong to {p$ k* = 1 ,2 , . . .  ,?^3 J)}. On the other hand,

m.k = m[y  +  + 1

if

(!) (2)Pk =  Pk' =  Pk"'

The first result of this section is the following:

L em m a 2 Let T  be an integral operator with a smooth kernel k(t ,s) .  Let u € 

^£(0, oo) have compact support in [0, L] for some constant L. I f  x(t) is a smooth 

cut-off function with support in [0 ,L], then
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is smooth and we have the estim.ate

II H c ^ f O j O o ) ^  M  || u  | | z £ ( 0 , o o ) i

for some constant M  independent of u, where

|| • | | c ' » ( 0 , o o )

denotes the supremum norm.

The proof of this lemma is straightforward. We have

The second term  equals

1 rL
h m ( k ( t  + At ,$) ~  k(tys))u(s)ds.  (3.32)

By the mean value theorem,

k(t +  At, s) -  k[t ,  s) =  A + At U W ,  *) dk( t ,  s)
dt  \  dt dt

for some t' lying between t and t +  At. Again using the mean value theorem this 

equals

for some t” in [t,t']-
d2k(t' \ s

d t2

is bounded for all (t", s) in [0, L] ® [0, Lj. Thus the limit in (3.32) equals

*(t) £  “(*)*•
By induction we can see that all higher order derivatives exist.

The estimate is readily obtained.
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Denote by ^ (T jiV )  tlie snbspace of Zp {T) consisting of functions whose 

supports are contained in a fixed compact neighbourhood, iV, of the corner of 

the wedge.

L em m a 3 Suppose that u belongs to Z.p(T;N), where

V  ~  {(pk,mk)>k =  1 , . . .  ,ra},

s >  0 and s — |  is not an integer. Then x ^ u ,  where x  a smooth cut-off function, 

belongs to Z p t \ ‘P,(T)} where

7>' =  { (M );fc  =  0 , l , 2 , 3 , . . . , [ s - i ] }

and

V '  =  {(Pk +  k = 1 , . . . ,  77. and I = 1 ,3 ,5 ,...} .

Moreover,

II x Su  M  II u N ( r >’

for some positive constant M .

S has the sam.e properties.

P roof: We shall prove the lemma only for S .  The proof for S is identical.

If we write u, a function on T, as

M
V /

where u+ and u _ denote the values of u taken on the upper and lower arms of 

the wedge respectively, we may write Su  as



CHAPTER 3. ELASTIC  POLYGON  — ACOUSTIC MEDIUM 92

Here we have

and

1 s 1 r ° °
(S++u)(t) = — /  l n ( | - — 1|) J 0(^|-s — H— In i /  J0(k\s — t\)u(s)di

7T JO t  TT Jo

+  /o° h( t , s )u ( s )d s  = (S — u)(t)

POO g

(5+_u)(t) =  / ln((-  — cos a )2 sin2 a) J0(k\s — t\)u(s)ds
Jo t

+ ln t /0°° J0(k\s — t\)u(s)ds +  / 0°° &2(i, s)u(s)ds =  (£_+«)(£), 

where &i(i,.s) and fc2(A*s) are smooth and Jo(f) is a Bessel function.

Denote the integral operator with kernel

. I ln(|^ — 1|) ln ((f — cos a )2 +  sin2 a)

 ̂ ln (( j — cos a-)2 +  sin2 a) W lf  — M)

by Sq. (S0u)(t) equals

Jo(k\s — t|)

7

V7T Jo
ln ( | |  — 1|) ln ((f ~  cos a')2 +  sin2 a)

 ̂ ln ( ( | — cos a)2 -f sin2 a) W lf  “  1-1)
00 ( /  

x  V ' i ) (■,____±Q 4 m(fn!)a V S ds.

See, for example, Abramowitz and Stegun [1, Chapter 9] for the small argument 

asymptotics of Bessel functions. Let us call the square m atrix in the previous 

equation M ( t , s ; a j .  Thus, (Sou)(t) equals

 ̂x 2m  — nI f  (z.1_)m*am r M« s-a)s>"'u(s) f (2m)!
TT 0 4m(?77!)2 Jo ’ ’ “ J (2m — 7l)!n!

The reversal of the order of integration and summation is justifiable. 

It is easily verifiable that

ds.

In i2 m —i
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and

In — cos -j- sin2 t2m~n

belong to T2,~2m+ri+c(0, oo), for 0 < c < 1. It is clear th a t since all the expo­

nents in the singular parts of u+ and u_ are greater than —1, then t2mu±(t) G

L 2 ’- 2 m + c ( 0 ,  qq) ̂  for c jn r a n g e

(m ax{—s +  i ,  0}, 1).

Thus from the Mellin convolution theorem and Lemma 2, we can represent x ^ u

by

\ J- / I*-’ % '

nĥ O 4m(??l!)2 “  (2m -  n)\n\ 2ni J^z~c-2m+n- J
(3.34)

I
x

cos 7 r (z + 2 m —n) co s(tt—a ) ( z + 2 m —i \
( z + 2 m  — n )  s in 7 r (z + 2 m  — n) ( ^ + 2 m - t i )  s in  ir (^ + 2 m —n)

cos(-?r—Q ')(g + 2 n i—n )  ______ cos-<r(g+2m —n )

+  2m -f 1) \
dz

i costTr-a)^+Zm-nj cosTT̂ +2m-n) ~ / , n . ■, n
\  ( s + 2 m  — n ) s in 7r(s+ 2?? i—n) (2 + 2m  —jx) s in  ir(z-\-2m—n) J \  ' J

+ X ( a ; ) ( 5 i « ) ( » ) ,

where u represents the Mellin transform of u and where

X(®)('5'iw)(a:) =  In x j  
7r Jo

< x  i w

v 1 O

\
Jo(fc|s — x\)ds

u+{s)

\  w_(s) J

plus smooth functions. The integral in equation (3.34) is to be interpreted in the 

sense of equation (3.27).

u±(z  +  2m +  1) are meromorphic to the right of 5ft =  ~~s — 2m with poles 

of order m^  at — — 2m — 1. Thus, if we move each contour of integration in

equation (3.34) to the left to the line =  ~~s — 2m — |  we pick up contributions 

from the poles of u±(z  +  2m +  1) at —p^ — 2m — 1 and from the simple poles of 

the m atrix in equation (3.34), which are situated at z = —N  -f n — 2m, where 

Ar is a positive integer tha t is smaller than [s -f |]  and from the double poles 

situated z = n — 2m. The log singularity due to the double poles exactly cancels
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the log singularity in Si. The residue at a pole, not due to a singularity of the 

square m atrix in equation (3.34), is proportional to the residue of u+ and u_ 

there. This is proportional to the coefficient of the singular part of £t+ and u_. 

Suppose th a t tf±(x) do not have poles at z — ~ N  -1- n — 2 m , where N  takes one 

of the values N  = 0 ,1 ,2 , . . . ,  [s — |] , then there is a simple pole in the integrand 

in equation (3.34) at this point. The residue at this point is proportional to

(2m)! ( —1 ) " ^1 ~  ( - 1  )mk2m ^
J A m  ( I \  2 f J

(
* m = 0  4 "l (m !) n=2m 

1

'N+1 (2m — 7̂ ) !?t,! — N  -f 2m — n
(3.35)

cos^ir—a ) ( —jV + n —2,i,) \  +  2 m  1 )

cos(ir—Q')( — N-\ -n—2m ) 
k  cos ir( — N + n —2m)

c o s t t ( — N + n —2m )  

1 /  ̂ u - ( ~ N  +  2m  +  1) y

x
1 1

1 0 0£  \ i.) h, , .N
TT “ Q 4m(??d)2 

\

z ~ —]V + 2m -|-l

The part of the residue due to the singular parts of is proportional to 

the coefficients of the singular parts of The large m  behaviour of the Mellin 

transform of the singular part is 0 ( L 2m), where L is a constant tha t depends only 

on the compact neighbourhood N.  The part of the residue due to the non-singular 

parts of u± is proportional to

i — N + 2 m u0±(t)dt.

and

It can easily be shown that

f  OO

/ t~N+2mh\tit0±(t)dt. J o

poo
/  \t~N+2mu0±(t)\dtJo
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are less than

2mM L  m || u0± ||#*(0loo)»

where M  and L  are constants tha t depend only on the compact neighbourhood 

N .

Therefore, the term in equation (3.35) exists and has a modulus less than or 

equal to a constant times

II u± 11̂ 1,(0,00) •

The more complicated cases of multiple poles are dealt with in a similar way. 

Finally, if we bear in mind Lemma 2, we have the sum of squares of coefficients 

of the singular terms of yFu is less than or equal to a positive constant multiplied 

by the sum of squares of coefficients of the singular terms of u plus the norm in 

H S(T) of the non-singular part of u. (H s(T) denotes the space of distributions 

on T whose component on each arm of the wedge belongs to H s(0, oo).)

The non-singular part of x $ u

71'i ir 'n  4m(?7i!)2 JStz=-2m-8-±m~u v ’ u=max{0,[2m-s-|)} 2

 ̂ _c o s ? r (z + 2 m —n)  cos(7r— Q')(g-j-2m—n)  ^
( i + 2 m - n )  s in ir ( s + 2 m —n)  ( s + 2 m —n) s in  7r(£-f2m  —n)

cos ( f f — n)  cos T r(a+2m —n)______
\  ( z + 2 m —n ) s in t r ( s + 2 n i— n ) (* + 2 m  —n ) sin  n ( z + 2 m —n) J

/ / x \u+(z -f 2m  +  1)
clz

 ̂ u - ( z  +  2m  +  1) j

plus smooth terms. This is the term that belongs to H S+1(T). To see this we 

note tha t, when t — \  is not an integer and u belongs to JT*(0,oo),

u 11̂ ( 0,00)= /  , (X + \z\2Y\u(z)\2d\z\,

where u represents the Mellin transform of u . This is Parseval’s identity. Thus, 

the term  in integral (3.36) belongs to H S+1(T). Furthermore, it is easy to show 

that the norm in H S+1(T) of the term in integral (3.36) is less than the norm in
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H S(T) of the part of u in H S(T). This results from the fact tha t all the terms ill 

the m atrix in the integral (3.36) are bounded on the lines — —2m — s — | . 

This, together with the result about the singular part of X $ u and Lemma 2, 

is enough to show that is continuous between Zj,(T) and Z $ f+V,{L), This 

completes the proof. □

The kernel of ~K* consists of a singular part and a continuous part. Let ~K*Q 

be the integral operator whose kernel is the singular part of the kernel of ~K*. 

Similarly, let Kq be the integral operator whose kernel is the singular part of the 

kernel of K*.

Let us now prove the following lemma:

L em m a 4 Suppose that f  belongs to Z^(T),  where k > |  is not an integer

and does not equal
??7.7T

a

or
mw 

2tt — Q'5

for any integer m. Let u, belonging to H S(T) a,nd having compact support, with 

0 < s < I, satisfy

Cl  + T Q u = f .

Then u belongs to Zy>,(T) and we have the estimate

II u ||z*#(r)^  M  || /  ||^ft(r)i (3.37)

where M  is a positive constant and

V  = V  +  {(/?, 0);/? = ----  or (3 = ———— and m  E Z }
a 2tt — a
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i f  the ratio of a  to 7T is irrational. Otherwise,

V  = V  + {(/?, 1); (I = ------=    and m , m  G Z } .a 27t — a

P ro o f: Let us begin by writing (I  +  TC^)u as

/
l  TT \

\  K - +  1

f  \u+

\  ll~ }

(3.38)

where

( K i s m  = -  f
7T JO

j  sm a
(j  — cos a-)2 -f sin a s

u belongs to L 2,c f°r 0 <C c <c 1. It is easy to see that

( j  — cos a  j +  sin2 a

belongs to L 2,c for 0 <1 c <C 1. By the convolution theorem we can write the 

term  (3.38) as

J
2iri Jdiz=-S+ l

^  s i n ( i r — cv)jg \

s i n ( 7T— c v ) g  

s i n  t t z
l

u+(z) \
dz.

ii_(z) t
(3.39)

The Mellin transform of /  is meromorphic to the right of 

may write

/+ w  '

/-(< ) j
27vi J$lz=-a+\r t' 1 /+(*)  ̂

V f - (* )  )

dz.

■k + \ .  We

(3.40)

Comparison of the integral (3.39) and the integral in equation (3.40) implies
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Thus the Mellin transform of a is

/
sm irz

sin az  sin(27r — a)z
sin 7TZ sin(7r — a)z

\

 ̂ — sinfvr — a)z  sin 712: ^

/
/+ (* )

/-(* )

\
(3.42)

We have

u (t) — 7:—7 [  t Zu(z)dz.  (3.43)2tTI J$tz=-S+ l

We may move the contour in equation (3.43) to the left to the line =  — k +  | .  

By doing this we pick up contributions due to the poles of /  and contributions 

due to the singularities (poles) of the square matrix in (3.42). These latter poles 

occur when

sin az  — 0,

or when

sin(27r — a) 3 = 0.

Therefore, if the ratio of a  to tt is irrational, the poles of the m atrix are all 

simple. If, on the other hand, the ratio of a  to 7r is rational the m atrix may (and, 

generically, will) have double poles.

So u(t) is the sum of the singular terms due to the poles and the integral

h  L - k+A ^ (z)dz' ( 3 ' 4 4 )

It is readily verified tha t this last term is bounded in the H k(Y) norm and the 

tru th  of inequality (3.37) is also evident. This is what we wanted to prove. □

The analysis of the equation

(I — Kq)u — f

is essentially the same. The difference lies in the increased complexity of the 

kernel of K q. We have the following lemma:
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L em m a 5 Let f  belong to Z £ ( r) ; where k > k ~  |  is not an integer and is not 

a root of the equation (3.45). I f  u belonging to H a(P)} with 0 < s < -, satisfies

(I — K*)u =  f,

and u has compact support, then u belongs to Zj,+p,(T)- Here we have

H' =  {{PkUKk)}, 

where, for each k, —pk is a root of the equation

—; t— (z2 sin2 a  — sin2 za) ( z2 sin2 or — sjn2 ^ 2^ _  =  o (3.45)
sm tvz A (A + ^)

lying in the strip

— k A — < < 0

and mk is the order of that root.

P roo f: Let us first identify tfie singular terms in the kernel of K*. A routine 

calculation shows tha t for the ( i , j ) th term these are

f-L t  ^  ( ^ rw  i v  „  i sr a f , 2A +  2p,  X i X j O

A +  2 f ~ ni(y)X l + Xini{y)  +  +  T W T j f T ’ (3'46)

where

A* — yi Xi,

R  = |y -  x|

and

6 =  (y -  x).n(y). 

Let us write (I — K j).u  as
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where, as in the acoustic case, the +  (resp. —) subscript denotes the function 

defined on the upper (resp. lower) arm of the wedge. Here K ++, K+_, K l + and 

k L  are two by two matrices.

It will prove convenient to write u+ as

«+5e+ +  u ^ f+ ,

where e+ denotes a unit vector parallel to the upper arm of the wedge, and where 

f-l- denotes a unit vector perpendicular to the upper arm and pointing into the 

wedge. Similarly, we shall write

u_ =  u ^ e _  + uL2̂ f_,

where e_ and f_ denote unit vectors parallel to the lower arm of the wedge and 

perpendicular to it respectively. (See Figure (3.2).)

An elementary calculation shows that

K _|_ +
—  r.u =  K — .u =  /

Jo

/ / 0 1

- 1  0 n(y -  a)
/

«i (y)

M y )  j
dy ,

where the integral is meant in the sense of the Cauchy principal value, and

K r y  /  i f  \ 1  n /  \ X  sill Q' .
h— u =  K _+.u =  ^  ( A ( a ^ ) —  ~  b (x uj)~_-e i ~i )

ttR 4

\

where
/

A(x ,y )  = fj,
A -b 2 (.1

M v )  

{  M v )

\

dy ,

y sin a- x — y cos a 

^ x — y cos a —y sin a J

and

B u (x }y) =  -y ~ t7 t~ (x2 cos a ~  2xv cos2 Q' — xv s n̂2 a a  y2 cos a )iA +  2 fi 

&i2  0 » , y )  =
2A +  2y 2 , .
—------— (x sin a — xy  sm a  cos a ) ,
A -j- 2(-i
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e -

Figure 3.2: The coordinate system around the wedge.

B 2\(x ,y )  =
2 H 2 / i  2 . .

(y sin cv — xy  cos a  sin a)

and

and where

A -f- 2/i

n ( \ 2A + 2/i . 2B 22{x,y) = — — xy  sin a ,
A +  2/i

R  =  y^r2 — 2x?y cos a  + y2.

The distribution sending u(tf) 6 C^°(0,oo) to

/ ■ ° °  1 
/  7----Vo t — 1

where the integral is meant as a Cauchy principal part, belongs to S c for c < 1. 

A ( t , l )  belongs to L2,c ( y )  for 0 < c < 1 and B(t,  1) belongs to L 2,c ( y )  for 

— 1 <  c < 1. As u 6 H S[T) for 0 < s < |  we may use the convolution theorem 

for Mellin transforms. We see that

( I - K o ) .u

may be written as

—  f
27Tl J X z = - S +  \r

I - A ( z )  —B(z)  

- B ( z )  I - A ( z )  J

u ( + ) ( z ) t Zdz ,
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where

A(z) /*
A T 2/i

cot irz

V i ° )
and 

B n (z )  =
A -f 2 jj, sin 7rz

((A +  2/i) sin z(a — ir) cos a — /i cos z(a — ir) sin a 

+(A +  fi)z cos z(a — 7r) sin ck),

B 22{z) —

1 1
A +  2/i sin irz (—(A +  2/i) sin z(cn — ir) cos a  +  /i cos 2,(a  — 7r) sin ck 

+(A +  /i)^ cos z (a  — 7r) sin a),

=  -

and 

5 2i(2T) -

A +  2/i sin7rz

A T  2/t siii7rz

((A +  2/i) sin z(a — 7r) sin a- -f /i cos 2r(a- — tr) cos a  

+(A +  j.i)z sin 2r(a — tv) sin a)

((A +  2 / i )  sin z[a  — ir) sin a- -j- /i cos z (a  — ir) cos a  

— (A +  /i)^ sin z(a  — it) sin a).

Let ns denote

I -  A ( z )  ~ B { z )  ^

\  ~ B ( z )  I - A ( z )  j  

by A4K(z).  We can show that its determinant is 

f A T m)2 1
/ \ ■ r> \ s : 4---- (z2 sin2 a  — sin2 2cl')((A -f y)2z2 sin2 a — (A + 3/i)2 sin2 z (a  — 27r)).(A +  2/i)4 sin' irz v "

Define

(3.48)

L(z) = (M K ( z )) \

Thus we have
u+{z)

\ u-(z)
L(z) !+(*) 

M *) /
(3.49)
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u(V) is meromorpliic to tlie right of the line

Stz =  - k  +  -  
2

with poles of order nik at p*. and at the poles of f ( z ) .  It is clear th a t L(z)  is 

bounded on any line parallel to the imaginary axis tha t does not contain a zero 

of the determinant (3.48). Let us call the set of zeros of the determinant (3.48) 

Q. We have

f U+ (z)

V a - ( z )

\
= A f  r-’L(z)

2-7TV. JVtz=-B+ L f+(Z) 1 
V J

dz. (3.50)

As before, we may move the contour to the left to line

Kz =  - k  + i .

Additional terms, due to the poles of L(z)  and the poles of f+(z) and f-(z ) , are 

picked up.

It is clear why the points z — ±1 are not poles of the m atrix L(z).  It is 

because the zero in the denominator of the determinant of L ( z ) is cancelled by 

the zero in its numerator due to the sin4 ztt term.

Double poles (and perhaps poles of higher orders) are possible. Double poles 

are possible when a  satisfies
sm a

a
cos u

where u satisfies

u = tantf.

We show in Lemma 6 tha t there is only a finite number of poles between the 

lines 3̂ 0 =  — k *f |  and =  — s -f-
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L em m a 6 There are only finitely m.any real roots of the equation (3.45). There 

is only a finite number of roots of this equation within the strip

a < ?Rz < 6,

for any real numbers a and b. |  is the greatest lower bound for the set of modulii 

of the real parts of the roots.

P roo f: For tlie first assertion we only need show that the equation

2 2 * 2a z = sm z,

where a is a constant tha t is smaller than 1, has finitely many real solutions. 

Obviously, this equation has no real solutions for which

\z\ > a " 1.

Thus all the real solutions are contained in the region

—a -1, a -1].

If there were an infinite number of roots in this region, we should be able to find 

a non-isolated zero of

a2z 2 — sin2 z.

As this is clearly a holomorphic function everywhere, by a well known result of 

analysis it would vanish everywhere. This is patently absurd. Therefore, there 

must be a finite number of real roots.

The second assertion will be proved for the equation

az = sin z.

If we write

z = x + iy ,
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where x and y are both reed, tlien we have

ax — sin x cosh y

and

ay — sinh y cos x .

The second equation implies that

0 <  cos x < a .

Let us call the solution of

cos x =  a

lying between 0 and | ,  6. The real part of a root could lie between

2mr +  b and (2n +  — )?r,
2

where n is an integer. In this case, the allowable range of values coshy is

a(2mr +  b)
sin b

Alternatively, x could lie between

< coshy < 2naw.

(2n — —)tt and 2im — 6, 

where, once again, n is an integer. In this second region, however, the terms

ax and sin x cosh y

are of different signs and so, in fact, no root with real part lying in the aforesaid 

range exists.

Thus, the roots of

az = sin z.
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lying in the region

c < < d,

for real constants c and d, are contained in a finite number of finite area rectangles. 

Thus, if there were an infinite number of roots, at least one rectangle would 

contain an infinite number of roots. This would mean th a t we could find a non­

isolated zero of the holomorpliic function

az — sin 2 .

As before, this is impossible.

We can perform a similar analysis for the equation

az = — sin z

and prove an identical result.

These results apply to the equation (3.45) because any root of tha t equation 

is a root of

z2 sin2 a  =  sin2 za  (3.51)

or

/  ^~~ \0z 2 sin2 a = sin2 z(a  — 27t), (3.52)
(A +  3fi)2

and each of these is of the form we have just analysed for all a  in the range (0 ,2ir) 

and for all allowable values of the Lame constants.

All tha t remains to be done is the proof of the third assertion. Clearly,

sin x a  cosh ya

is convex as a function of x over the range (0, |) ,  for all admissible a. We have

. ex 1 , ex a ,  . 1 . .
sm — cosh ya  > sm — cos — = — sin a  .

2 J “  1 2 2 1 ‘2 1
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This and the convexity imply that

| sin x a  cosh ya\ > |a; sin a \,

over the entire range (0, |) .  Thus, equation (3.51) has no roots with $tz <  By 

identical reasoning, the same is true of equation (3.52).

Finally, we note tha t, if {a,,} is a sequence that tends to the limit 2tt and if 

zn is the root with the smallest positive real part corresponding to a n then

lim
1
2

This completes the proof. □

An immediate consequence of Lemma 6 is the following.

L em m a 7 I f  f± in Lemma 5 belong to H 2+5(0,oo) for some constant 6 greater 

than zero and

is a, constant greater than zero

An identical result is true for the equation

(I  +  K*0)u = f .

P roof: All tha t needs to be verified is tha t u + and u_ each belong to H 2+J/(0, oo) 

and tha t

u+(0) =  u_(0). (3.53)

f (z) is meromorphic to the right of the line =  — 6 with simple poles situated

at the points

2 =  0 , - l , - 2 , . . . , - [ S ] .
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Furthermore, the residues of f+ and f_ at z — 0 are identical. Thus u has poles 

at

2  =  0 , - 1 , - 2 , . . . , - [S] ,

and at the zeros of the determinant (3.45). Since there are no zeros between the 

lines |  and =  | ,  the first two poles of u occurs at z =  0 and at

z — — |  — 5", say. Thus

u(i) =  u0(t) +  ui(t),

where Uo(t) is a smooth function that is constant in a neighbourhood of the origin 

and vanishes in a neighbourhood of infinity and where U! belongs to H z +m"(T). 

The residues of u+ and u_ at the origin are equal since the residues of f+ and f_ at 

the origin are and since L(z)  is meromorphic at the origin. Thus equation (3.53) 

is verified. Finally, choose S' to lie in the region

(CfiminfSfM", 5})

and we are done.

Similarly, in the acoustic case no singularities of the Mellin transform of I + Jv0 

occur in the region [— | ,  |]  and, therefore, the same result holds. □

Before proceeding to study the problem in the polygon we shall need one more 

lemma.

L em m a 8 Let u Zip{T\N)} where

'P  =  { { P k , m k ) ;  k  =  1 , 2 , . . .  , m } ,  

k — I is not an integer and k > 0. K qU belongs to Z^,(T), where 

7>' =  7> +  {(p,0);p =  0 , l , 2 , . . . , [ * - ! ] } ,
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and x K i u =  x(K* ~  o)u belongs to where

'P" =  { { P k  +  J =  2 ,4 ,6 ,.. .}  +  {(p,0);p =  0 ,1 ,2 , . . . ,  [k -  i ] }  

and where x  is a smooth cut off function.

Moreover, the operators are bounded.

The same result holds for the equivalent elasticity operators.

This is proved in a similar way to Lemma 3.

3.6 Properties in the polygon.

We can apply the results of the last section to the polygon. We can split the 

problem of solving equations (3.23) and (3.24) into N  wedge problems.

We wish to determine the behaviour of a solution, which we know to be in 

i l s(dft), where 0 < s < | ,  of the system (3.23) to (3.24) in a neighbourhood of 

the corner C,-, say, given tha t we know that pinc is contained in Ttk{dVt), where

n k(dn) = f [ H k(dai)>
i = 1

for some number k. To this end we introduce a new open, compact region f t/ . 

This region is delineated by the curve <9fty, which consists of tha t part of <9ft 

outside a sufficiently small open neighbourhood of Ci, call this part dhl\, together 

with a smooth curve dO!2 whose endpoints join smoothly onto the endpoints of 

<9ftj but which does not intersect dPl anj^where else. (See Figure (3.3).)

Let us denote by fte' the complement of f t /  and let us label the points where
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S l i

Figure 3.3: The curve dO!.

dLl[ and dUl2 meet on 1 and dQ; by qi and q2 respectively. Let ?q and r2 be 

points on dD' situated between q\ and C\-\ and between q2 and 1 respectively.

Suppose tha t p and u, belonging to H s(dD), solve equations (3.23) and (3.24). 

Define p\ on dll'  to be equal to p on that part of <90̂  between rq and r2 to vanish 

on <9D' and to equal

wi(x )p(x ) i  =  i ,2

in the intervals ((?j, ), where each uq(x) is a smooth function which takes the

value 1 in a neighbourhood of ?q and which vanishes in a neighbourhood of qj. 

Let us define Ui in an analogous way. Let us suppose, without loss of generality, 

that the corner point Ci is contained in Llef. Nothing essential changes in the 

following analysis if C; is contained in fV-

The functions pi and Ui belong to H s(dD!). According to equations (3.14), 

Spi and S.Ui belong to Hfoc(7l.2), for all t £ ( | 5§)* We note tha t the equa­

tions (3.14) are indeed applicable to dD! as well as <9fi. The restrictions of Dpi 

and D.Ui to Ute' belong to By construction, Spi,  S.Ui, Dpi and D.Ui

satisfy Helmholtz’s or the elastic wave equation in H /. By interior regularity 

theory, each of these four functions is smooth on (C^qi)  and (C ;,^)*
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Let Si and S2 be points on 5 0 ,-1 and 50,;, lying between Ci and gi and <22, 

respectively. Let p2 equal p on 5 0  between C, and gi, between Ci and 52, let it 

equal

(1 -u>j(x) )p (x)  j  =  1,2,

between qj and 7 7 , and let it be equal to 0 everywhere else on 50 . Define U2 

analogously. Let x (x ) be a smooth function equal to 1 on any point of 50; U 5 0 l+i 

between Ci and Sj, where j  =  1, 2 , and let it vanish between qj and 77.

Let us rewrite equations (3.23) to (3.24) as

7 (Dp2 +  Dpi) -  pou)2/y (Sn .u2 +  Sn.ui) =  2 jp inc (3.54)

and

7(D .u2 +  D.Ui) -f 7 (S.np2 +  S.npi) =  0 , (3.55)

where, for example,

D pi(x) = 2 j  ^ y ~ y ^ P i( y ) d |y |
Jdct{ 5n(y)

and

D p i { x ) = 2 L ^ S p M y ) d l y l -

In equation (3.54) 7 denotes the trace operator from 0 e to (C,-, 7 7 ) U(C;, ?’2) and 

in equation (3.55) it denotes the trace operator from 0 ; to (C,-, 77) U(Cn r 2)-

Let us now multiply equations (3.54) and (3.55) by x (x )

X(I  A K*)p2 -  p0co2x S n . u 2 = x^f(~Dp1 +  Sn.Ui)  +  2x7Pine (3.56)

and

X ( l - K * ) . u 2 ~  xS .n p 2 =  - X 7 (“ d -u i +  S . n ^ ) .  (3.57)
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Let us call the right-hand sides of equations (3.56) and (3.57) f  and g, respec­

tively. We shall now rearrange equations (3.56) and (3.57) thus

(.I  +  K*0)x P2 ~  pow2x 5 n .u 2 =  (1 -  xWoXPi ~  X ^o (l ~  x)P2 (3.58)

- X K 1P2 +  /

and

(I -  K q)-Xu 2 -  xS .np2 =  - ( 1  -  x )K qvyu 2 +  X*C(1 ~  x )u 2 (3.59)

+ x k ;.u2 +  g,

where

= K* -  K q.

We know from our previous analysis and from the assumptions about the smooth­

ness of the datum  pinc tha t f '  and g ', where now, for example, f  denotes the 

continuation by zero of /  on the wedge V of angle a,;, belong to Z£(F), with

? > = { ( / ,0);f =  0 ,1 , 2 , . . . [ f c - i ] } .

As in Chapter 2, it is easy to see tha t the solution is as smooth as the incident 

wave awa3' from the corners. Therefore, p2 belongs to Z*(f)( r )  and u2 belongs to 

Z kD(i) (T) for some unknown singularity sets and • By Lemma 8,
”2

(1 “  x )K*oXP2 ~  X ^ o ( l  -  X)P2 ~  x K*i P2 

belongs to Z ^ f T ) ,  and

“ (I “  x)Ko-XU2 + xKq.(1 -  x)u2 + xK*.u2

belongs to Z j\;)( r ) ,  with and V± \  as in Lemma 8.
'4
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Let us re-label the terms in equations (3.58) and (3.59). Denote by p the

continuation by zero of XP2 ? hy u the continuation by zero of x u 2> by /  the right-

hand side of equation (3.58) and by g the right-hand side of equation (3.59). Now 

we have a problem in the infinite wedge of angle a t.

(I  +  K*0)p — /9ow2x S n .u 2 =  /  (3.60)

and

(I -  K q) . u  -f xS .np2 =  g. (3.61)

Let us denote by { /? ! ,. . . ,# ,}  the set of values of

777.7T 1117T
and

a { (27r -  a-/) ’

for integer m,  lying in [0, [k — |]]. Let ???.,• be zero if the equation

sin ctiZ sin(27r — cti)z =  0

has a simple root at z =  /3-i and let it equal one if the equation has a double root 

there. Denote by {71, . . . ,  ^ ie se! °f I'oots of the determinant (3.48) with real 

part lying in the interval [0, [k — |]]. Let pt- equal zero if 71- is a simple root, one 

if it is a root of order two, and so on.

If we let

7>iw =  {(pi1,. 4 1));* =

and

=  {(p£2’>42));*  =  1........*2},

then, according to Lemma 8 , /  has a singular part characterized by the set

= { (d 11 +  21, 4 1’); k =  1 , . . . ,  h-1 = 1 ,2 ,3 ,...}  +  {(l, 0); / =  1 ,2 ,3 ,...} .



CHAPTER 3. ELASTIC POLYGON  — A CO USTIC MEDIUM  114

According to Lemma 3, the singular part of pow2xSn.vL2 is characterized by

v P  =  { ( p P  +  2 1 - 1 , 4 2)); k  =  1 , . . . ,  i 2; J =  1 ,2 ,3 , . . . }  +  {(/, 0); I =  1 ,2 ,3 , . . . } .

The sum

/  +  p0u)2x S n . u 2

is characterized by

From equation (3.60) and Lemma 4, the singular part of p is characterized by

{(A:,™*)}

For consistency it is required that this equals V ^ .  There is a similar relationship 

between and { (7 ;, p;)} •

It is easy to calculate the singularity sets of p and u for particular sets 

{(A>m t)} and {(7t,Pi)}. For example, suppose that neither A a 01’ 7* are i11- 

tegers, for all i. Furthermore, suppose that

A T 2/ 7j +  2m +  1,

for all i and j  and for all non-negative integers I and ?7i, such tha t

A  21 and 7j T 2m T 1

lie in [0 , [k — |]], and

A +  2/ +  1 ^  7j +  2m

for all i and j  and for all non-negative integers I and m  such tha t

A +  21 +  1 and 7j -j- 2m.
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The singularity set then consists of the elements

( f t , m i), ( f t  +  2, m i), ( f t +4,771!),...

(fti, m n), (fti +  2, 7?Zn ) ,  ( / ^ n  +  4, ? ? 2 n ) ,  . . .

(7i +  l ,P i) ,(7 i +  3 ,p i),(7 i +  5 , ,p i ) , . ..

(7? +  (7« + 3 ,^g), (79 +  5,p9) , . . .

(0,0), (1,1), (2,2), (3,3), (4 ,4 ) ,...

consists of analogous terms.

We now apply this reasoning to each corner in turn, but first w eneed a 

definition.

Let

7> =  7>(1) ® P (2) 0  . . .  <8> P (iV\

where each VU) denotes a singularity set. Let Z£(dQ)  denote the space of func­

tions tt, such that

u =  u0 +

where the restriction of uq to dfli belongs to H k(dfli), for each i =  1 ,2 ,.. ., IV, 

where Ui is function with singular behaviour in the zth corner, characteristic of 

functions with exponents in P ^ \  Z-p(dLi) is equipped with the obvious norm.

T h eo rem  9 Let p and u  in H s(dLl), where 0 < s < solve equations (3,23) 

and (3.24) with pinc belonging to 7ik(dD) with k > |  and k — \  not a root of the
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equation
N

(3.62)

where
sin a.{Z sin(27r — cti)z

and

for i = 1 , . . . ,  N. p and u belong to Z^fdLl)  and Z.p„(dLl), respectively, where

Moreover, we have the estimate

II P llz*,(an) +  II u  IU* „ (a n )^  ^ (1 1  Pine ||w*(90) +11 P | |#«(an) +  || u  ll irqan)),  

for some constant M .

As a consequence of Lemma 7 we have:

L em m a 9 I f  p and u  belong to H s{dPl) and solve equations (3.23) and (3.24) 

with p i nc in H k(dD) for k > theri p  and, u belong to for some t lying

N
•p' =  JJ-pW

and
N

v "  = n  r P

with and as above.

Let us now prove the following lemma:
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L em m a 10 I f  p and u  belong to H s(dLl), where 0 < s < ~} and solve equa­

tions (3.23) and (3.24) with pinc = 0, then p and u vanish as long as k is not an 

eigenvalue of the interior Diii.ch.let problem, and to is not a Jones’ frequency.

P ro o f: By the previous lemma, p and u  belong to H l(dfl) for some t in ( | ,§ ) .  

By the Sobolev imbedding theorem, p and u belong to (see, e. g.,

Sanchez Hubert and Sanchez Palencia [27, p. 33]). Define

puj2 n 1 I -Pi(x) if x  G a ,:
-hn.u — - D p  =

2 2 ' pe( x ) i f x e a

and

1 i  Uj(x) if x  G Di
-D .u  -j- -S .n p  =  <

( U e( x ) i f x G f i e

The jump conditions imply that

Pi\aa = 0. (3.63)

Since k is not an eigenvalue of the interior Dirichlet problem, Pi vanishes in its 

domain. Thus,
DP:

=  0. (3.64)
m
dn an

Since p is Holder continuous, the normal derivative of tlie double la}rer potential 

is continuous across dD. Therefore,

dPf
=  pu)2 n.u. (3.65)

do.dn

From the jump conditions and equation (3.61), we have

Pe |an =  p- (3.66)

We have

Ue|an =  0. (3.67)
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By construction U e satisfies the elastic wave equation in Lle and an appropriate 

radiation condition. Therefore, from Kupradze [16, pp. 132-136], U e vanishes in 

S7e. So

<j(Ue).n|af2 =  0. (3.68)

As before, since u is Holder continuous, the tractions corresponding to D .u  

are continuous across dD. Therefore, from the the jump conditions and equa­

tion (3.68), we have

cr(U().n|an =  pn. (3.69)

Clearly,

=  u. (3.70)

Equations (3.65), (3.66), (3.69) and (3.70) imply tha t the transmission con­

ditions are satisfied by P e and U.(-. U; clearly satisfies the elastic wave equation

in Di and belongs to P e satisfies Helmholtz’s equation in with the

Sommerfeld radiation condition and belongs to Hloc(De). Lemma 1 implies that 

P e and Uj vanish identical^ if co is not a Jones’ frequenc}^. Therefore, p  and u 

vanish. This completes the proof. □

3.7 The adjoint problem and bijectivity of the 

system .

Now let us consider the equations

/  +  K f  — n .S .g =  0 (3.71)

and

g -  K .g -  p0to2n S f  =  0 . (3.72)
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The system in equations (3.71) and (3.72) is the adjoint of the one in equa­

tions (3.23) and (3.24). Suppose that these equations have a non-trivial solution 

in i? “s(c?n), for 0 < s < Let

p N s f

and

We know that P  and U  belong to Hjoc{TZ2) and tha t P  satisfies Helmholtz’s 

equation in and in Lle and tha t U  satisfies the elastic wave equation in flj and 

in He. Now equation (3.71) implies that

c>P+
-  n.U |ao, (3.73)

andn

where the -f subscript refers to the limit as the surface is approached from the 

exterior. Later the — will refer to the limit as the surface is approached from the 

interior. Equation (3.72) implies that

(o-(E L ).n)U  -  - Pou2P n \dn. (3.74)

By amending the proof of Theorem 7 slightly?' we can show tha t P  vanishes in 

He and U  vanishes in unless u) is a Jones’ mode. If P  does vanish in fie then 

it vanishes on dll. In this case it vanishes within 0 ; unless k is an eigenvalue of 

the interior Dirichlet problem. Thus,

dP_dP+
P

an
= 0.

andn

If U  vanishes within fb, then it vanishes on dD. From Kupradze [16, pp. 132-136], 

then, U  vanishes everywhere. Clearly, this implies that u vanishes.

We are now in a position to prove the following theorem:
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T h eo rem  10 I f  k is not an eigenvalue of the interior Dirichlet problem and to 

is not a Jones’ frequency, then the system

I  +  7T — pow2Sn. ^

v S.n ( I - K * ) .  ,

is bijective in H s(dSl) for  0 < s < | .

P roo f: We have already proved that the system is injective. We shall suppose 

tha t it is not subjective and show that this leads to a contradiction. If it were 

not subjective, then there would exist elements of the space H ~ s(dLl) that are

perpendicular to the image of H s(dD) under the system. T hat is to say, there

would exist /  and g belonging to H~s(dLl) with the property tha t

< / ,  (I  +  l C ) p  — /Oo^Sn.u > +  < g, (I -  K*).u -f S.np > =  0,

for all p and u  in H s(dQ), where the angled brackets denote the duality product 

between H ~s(dfl) and H s(dQ). Therefore,

< (I  +  K ) f  +  n .S .g ,p  > +  < ( 1 -  K ).g -  poto2n S f ,  u  > =  0.

This would imply the existence of a non-trivial solution of equations (3.71) and 

(3.72). As we have already seen, this is impossible under the given assumptions. 

Therefore, the system is subjective. □

3.8 Conclusions.

We have proved the existence of a solution of the transmission problem, at least 

for frequencies tha t are neither eigenvalues of the interior Dirichlet problem nor 

Jones’ frequencies; we have p e Hioc(De) and u G for s > 1. As in the
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case of a smooth elastic body, which was studied in the previous chapter, the 

non-solvability of the system at eigenvalues of the interior Dirichlet is spurious; 

a solution exists at all frequencies including Jones’ frequencies. Furthermore, the 

solution is unique at all frequencies except Jones’ frequencies.

In this chapter we showed what kind of singularity behaviour is to be expected 

near the corners. Similar results wordd hold in the three-dimensional problem of 

a body with edges (see Ola [25] for the three-dimensional transmission problem 

involving a field satisfying Helmholtz’s equation coupled to another field satisfying 

Helmholtz’s equation). If the body had curved sides then we should expect the 

leading singular behaviour to be unchanged, but with modifications appearing 

at higher orders. (See Costabel and Stephan [7] for the effects of curvature in a 

related problem.)



C hapter 4 

A sym p to tics  o f Scattering  

Frequencies

4.1 Introduction

In this chapter we consider the problem of an elastic bod}' deeply submerged in 

an incompressible, inviscid fluid. The fluid is subjected to gravity and has a free 

surface. The body occupies a compact region of 7Z3 of non-zero measure. The 

solid-fluid interface is infinitely smooth.

We consider here only free oscillations of the system. That is to say, we will not 

study the problem in which some external forcing term is present. Furthermore, 

the oscillations are assumed to be small. This means tha t we will ignore all non­

linear terms. This assumption also means that the positions of surfaces (e. g. the 

free surface and the solid-fluid interface) do not change with time.

The elastic body and the fluid are coupled in two separate ways. Firstly, the

122
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normal component of the velocity of the solid must match the normal component 

of velocity of the fluid at the interface between the two. Secondly, the surface 

traction is to be continuous across the interface. The first of these two couplings, 

which we will call the kinematic boundai^y condition, is necessary to ensure that 

the fluid and the solid remain in contact. We note that there is no link between 

the tangential components of the velocities across the interface. This is because 

we are assuming tha t the fluid is inviscid, and so it can slip over the surface of 

the elastic solid. The second matching condition (the so-called dynamic boundary 

condition) results from the force balance across elements of the interface.

The motion is assumed to be time-harmonic with frequency u). We will gen­

eralise the problem to allow the possibility of to having non-zero imaginary part. 

We will then show tha t there is a countably infinite number of values of lo for 

which the generalised problem has a non-trivial solution. We call these scattering 

frequencies.

We shall treat the problem as a perturbation to the problem of an elastic 

body surrounded by an incompressible and inviscid fluid tha t is unbounded in all 

directions. That is to sajr, in the unperturbed problem there is no free surface. It 

is easily shown tha t there is a countably infinite number of values of oj for which 

the unperturbed problem has a non-trivial solution. The problem of finding the 

scattering frequencies of the perturbed problem was studied by Vullierme-Ledard 

[29]. She showed that the scattering frequencies associated with simple modes 

have purely real asymptotic expansions in inverse powers of submergence depth.

The presence of the free surface will allow waves to be generated. These waves 

radiate energy away. If waves appear, then a free oscillation with real to will, 

therefore, be an impossibility. We intuitively expect tha t waves will always be
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--------------- -̂-----------------------------------------------------------_  p s

A

Figure 4.1: The coupled system.

generated and, so, we concentrate here on the imaginary parts of the scattering 

frequencies. We shall confirm that they are non-zero for finite but very large 

submergence depth and we shall show that they are “exponentially small” ; i. e. 

they have zero asymptotic expansion in inverse powers of submergence depth to 

all orders. This is consistent with Vullierme-Ledard’s result.

4,2 The formulation of the problem.

The reader is refered to Figure (4.1). The elastic solid occupies the compact 

region Ot- and the fluid occupies the region

=  { ( a ,y, *0; y > - i / £} \

The common boundary of Oe and fh is <90 and the free-surface is the set

F S  = { { x ^ - l / e . z ^ x  e n , z  e K } .

The vector normal to <90 is denoted by n and the origin is assumed to be contained 

in

In what follows we shall denote by x  any position vector in O; U <90 U Oe U F S  

and t will be the temporal variable.
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4 .2 .1  T h e v e lo c ity  p o ten tia l in th e  fluid.

The circulation of an inviscicl fluid remains constant. We assume tha t the motion 

of the fluid was generated from rest and that all transient solutions have com­

pletely decayed leaving just the time-liarmonic motion. The motion of the fluid 

must then be irrotational for all time. By a well known result of analysis, the 

fluid velocity, v, can be written in the form

v (x ,t)  =  V x<I>(x,t), (4.1)

where <I>(x,£) is a real-valued, scalar function defined in the domain Ple <g> IZ.

We know that (I>(x, t) is time-liarmonic and, thus, we can separate the spatial

and temporal dependence and write:

4>(x,i) =  5fi(^(x) exp(—iwi)), (4-2)

where dtz represents the real part of any complex number 2 .

If pQ is the density of the fluid, then the following conservation of mass equa­

tion is satisfied:

^  +  />oV.v = 0,

where the first term  is the convective derivative of p 0 . The assumption of incom­

pressibility means that the first term in this equation vanishes. Therefore,

V .v =  0 in Qe. (4.3)

Equations (4.1) to (4.3) imply tha t (f> satisfies
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V 2<£ =  0.

The equation satisfied by <j> on F S  — the so-called linearised free surface 

condition — is
d(f) to2
d y  +  9 ^

=  0,
FS

where g represents the acceleration due to gravity. This results from the combi­

nation of a kinematic boundary condition and a dynamic boundary condition on 

FS.

4*2.2 T h e m o tio n  o f  th e  solid .

Our starting point is the basic equation of motion of a homogeneous, isotropic 

elastic body:
d2u ,  ,

V -  =  ^ .  (4.4)

where the constant p represents the density of the solid in its undeformed state.

a is called the stress tensor and is given in terms of the displacement vector

u, by

<7(u) =  A(V.u)I +  p (V u +  (V u)T). (4.5)

I  represents the identity m atrix and if A is any m atrix then A T is its trans­

pose. A and p are the Lame coefficients. They are independent of both x  and 

i.

Equations (4.4) and (4.5) together imply that u satisfies 

L{ u) =  /iV 2u + (,< +  A)V(V.u) = (4.6)
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As with $ (x ,t ) ,  we write

u(x , t) =  5ft(u(x) exp(—iwt)).

Equation (4.6) implies

L(u) +  puPn =  0. (4.7)

4 .2 .3  T h e m atch in g  con d ition s across dU

The kinematic boundary condition implies

d(p— iuju.n = 7 — on dOa. (4.8)
on

and the dynamic boundary condition implies

n.cr(u) ~  ip0Lo<f>n on (4.9)

Equation (4.9) comes from substituting equations (4.1) and (4.2) into the

linearised Stokes equation. We see tha t the part of the fluid pressure that is 

varying harmonically is given by ipouxj).

4 .2 .4  R a d ia tion  con d ition .

To complete the formulation of the problem, we must add a radiation condition. 

This ensures tha t any solution is physically relevant — tha t is to say, that energy 

is radiated away. The radiation condition is given by

lim / 
ft— J

d<l> . j i . clS = 0. (4.10)
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where the integral is taken over the surface of a vertical cylinder of radius R . 

This is the Rellich radiation condition.

4.3 The exterior problem.

We now proceed to solve for <p with u .n |so in equation (4.8) given as datum. 

Once <f> has been found in terms of u.n |an, equations (4.6) and (4.9) are utilized 

in order to derive a single equation for u. This equation will be solvable for only 

a discrete set of (in general complex) values of to2.

We shall first deal with the case in which the frequency, to, is real. Later, we 

shall see how the problem for non-real frequencies can have meaning.

The exterior problem is: Find <f) € Hi0C(Qe) such tha t

v 2<j) = 0 in n e, (4.11)

4 + ^dy 9
=  0, (4.12)FS

an = -ztou.n|an =  /  € L2(dt t), (4.13)

lim
R —t-co/ dS  =  0. (4.14)

T h e o re m  11 The exterior 'problem, has a unique solution for every f  £ L2(dfl) 

except possibly at a set of isolated values of to2.

The first step to proving the theorem is to consider the problem below. Given 

h € i ? 2(d n a), find ip € i?/oc(Sln) satisfying

V 2ip =  0 in 0„, (4.15)
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Figure 4.2: Spherical polar coordinates. 

$\ dSla =

=  0,—̂  4- dy a FS

lim /R-+oo J dS =  o.

(4.16)

(4.17)

(4.18)

£la is the set {x £ Oe; |x| > a} and dOa =  {x; |x| =  a}. We choose a so that 

dOa C  O e .

Firstly, we express h as a sum of Legendre polynomials and trigonometric 

functions:

* = E  E  i r  (cos#)(cnm cos iTi(f> +  dnm sinm ^), (4-19)
m = 0  n = m

where 0 and <j> are coordinates on dQ,a— see Figure (4.2).

L em m a 11 h belongs to H^(dOa) if  and only if

( l c m n | 2 +  M n m l 2 ) f c - ^ — Xj e x i s t s .  
m = 0  ii=rn { l l  ~  m ) \

(4.20)

P ro o f: We shall start b})r showing tha t the condition is necessary. Let us suppose 

tha t the condition is not necessary, h clearly belongs to a smaller space than



CHAPTER 4. A SY M PT O T IC S  OF SCATTERING FREQUENCIES 130

L 2(dfia), so suppose

h G H s(dOa), where 0 < s < i
z

Denote by B a the interior of the sphere of radius a. Let /  be any member of 

H 1~s(dOa) and let /*  be a continuous lifting from H 1~s(d0.a) to H ^~s(Ba)\ i. e.

f*\dQa ~  /  and II t*  ll/fl“s(Ba) -  K  II f  ll^-'fona)*

for some positive constant K  independent of / ,

We can assert the existence of a distribution v, belonging to H ^ s{Ba) with 

the properties

—  h,
V 2u =  0 in B a.

Furthermore,

v

for some constant C. Tliis is a result of the theory of Lions and Magenes [19, 

Chapter 2]. In their terms, the problem with the operator — V 2, with the Dirichlet 

boundary, condition is a •properly elliptical problem..

We define the normal derivative |^ ,  of v on dlln, via the formula

f  ^ L f d s =  I  V u .V fW . (4.22)
Jana chi' JBa

The integral on the right hand side of equation (4.22) exists for all pairs (u, /*) 

because Vu G H ~ 2 +s(Ba), Vf* G H 2 ~s(Ba) and H ~ z+3(Ba) is the dual space of 

H 2 ~s(Ba)) since s lies between zero and one half. Therefore, is a well defined 

member of H s~1(dOa).
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The following inequalities hold:

L V v . V / W <11 V v I L _ i _ _  J |  V/ *

— II v II^H s(sa)H ^ Htfl-qsa) *

(4.23)

The first inequality is a direct consequence of the definition of the norm of an 

element of H ~ 2 +s(Ba). Remember tha t if y 6 X 1, the dual space of some Banach 

space X , then

V ||A''= snp
<  2/» x >x' ,x

II * IU

Inequalities (4.21), (4.23) and the fact that the lifting from H 1~s(dOa) —> 

H*~s(Ba) is continuous imply a third inequality, which, once again, is a conse­

quence of the definition of the norm of an element of a dual space:

dv
dn

< M  II h (4.24)

If we define the injection V  as the operator that sends h to then inequality 

(4.24) implies tha t V  is bounded when thought of as an operator between H s(dQ,a) 

and H s~l (dQ,a). So the range of V  is closed in H s~l (dOa).

We must now prove that the range of V  is dense in the subspace H s~1(dOa)\L ,  

where L  is the space of constant functions on dOa.

Suppose this were not true. Then there would exist a non-trivial element / ,  

belonging to H 1~s(dfla) \  L, with the property that

fdSla
(V h ) fd S  =  0 for all h £ H s(d n a). (4.25)

Since H 1 s(dOa) C H s(dQa) (remember that s < 1 — <s), we can choose h =  / ,
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where /  denotes the complex conjugate of / .  Equations (4.22) and (4.25) imply

0 =  f  ( V j ) f d S  = [  V F - V / W .  (4.26)
JdSla JBa

f*  is the solution of the Dirichlet problem: Find /*  € H ^~s(dfla), with 

V 2/* =  0 and r \ dQa =  / .

Equation (4.26) implies tha t /*  is constant. Clearly, then, f  is constant. Since 

/  is perpendicular to L, /  =  0.

So we have proved tha t the range of V  is closed and dense in LP~1($fiin) \  L , 

Thus the range of V  =  H s~1(d^la) \  L .

We now go on to prove tha t the range of V  is in .ff“s(dfta). Let h and g be 

defined as
oo oo

X! E  Pn (cos (cnm cos +  dmn sin m</>) (4.27)
m = 0  n —m
oo oo

< / = E  E  p;;i (cos^)(amn cos irnf) +  bmn sinmcj)), (4.28)
m = 0  n = m

where the coefficient pairs (cmnidmn) and (amnybmn) satisfy the condition (4.20). 

Thus h and g belong to H s{d£la).

If v is the solution of the interior Dirichlet problem, with v — h on dfia, then

OO OO
I E  I E  1 (cos 61) (c mn cos ??2(j) + c/mn sin m<j>)(r /  a)n t
oo oo

V =
m = 0  n = m

where r  is the distance from the origin. Hence V7?., the normal derivative of v on 

6>Oa, is given by

3 d oo oo
~n~ =  IE IE «a_1H”l(cos 0)(cmn cos ?7?,̂  +  dm„ sin m^).
°^n  m = 0  n = m

Therefore

f  (Vh)gdS < C
IdQa

Y'' / , i i \ n (n  "h m )*
/  j /  . \Cr>inG>mn r  U n m ^ n m J  . i /  \ t

r7i =  0 n=ni  » +  | ( n - m ) !
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for some constant C. This comes from the orthogonality property of Legendre 

polynomials:

f  P?(c)P?'(c)dc =  ? jj,
J - 1  n  +  |  {n — m) \

where 8ns denotes the Kronecker delta. Clearly then

/  ( v h ) 9d s  < k  f ;  f ;  (|c„,n||am„i +  +
Jdtia ni=On=m 1Tl)>

for some constant K.  Schwarz’s and the triangle inequalities imply

K  (  (\r  I2 I I 1 l2 ^ ( n  ???,) - N\  f  V ~ '' V"~v / 1 |2  I 17 [ 2 \  {n m V- \  2

Hence the inner product of Vh  and g exists. Since h and g were arbitrarily 

chosen, the range of V  is a subset of H ~s(dPla). This implies th a t U s" 1(<9na) C 

i f _s($ n a), which, in turn, implies tha t —s < s — 1, or s > | .  We assumed at the 

beginning tha t s < This is clearly absurd. Therefore, s =  | .  □

We shall now prove that the condition /?. £ (dQa) is sufficient for the 

condition (4.20) to hold true, where the notation of equation (4.19) is followed.

We know that there exists a unique solution of the interior Dirichlet problem: 

Find v £ H 1(Ba) such that

V 2u =  0 in B a, 

u lsn« — h.

Clearly, the solution for v is

v = Y l  ^nl(cos/9)(cmu cos m(f> 4- clmn sin m<f))(r/a)1
m—0n=m
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Tlie normal derivative of v on dfla is defined by the equation

f  A f d S  =  f  V v . V f d V ,
Jdna on JBa

where /  is any member of H^(dOa)̂  and /*  is a continuous lifting of /  to

is, therefore, a well defined member of (dlla). Hence, the inner product 

of h and must exist. That is to say,

f  ^  n 12 i j  12\ n (rc +  m)!J«U J MS -  £ 0nS l Cm(|Cra" 1 +  1 "ml )a ^ T I ( n  -  m )!’

where cm =  7T if m  ^  0 and cm = 2k if m  — 0, exists since

dv PA PA
~  =  V  V )  H a  P n ( C 0 S  ® ) ( C m n  C O S  m<f) +  dmn S 1 T L  m(j)).
® 11 m ~ 0  n - m

It is obvious, then, that condition (4.20) is true. □

L em m a 12 The exterior Dirichlet problem, described in equations (4-15)— (4-18) 

is uniquely solvable for all h £ H^(dfi,a) except possibly at a set of isolated values 

oftoA

P ro o f: We first note tha t there is at present no uniqueness theorem for this 

problem when the submergence depth is arbitrary.

Regularity theory implies tha t is infinitely smooth in the closure of Da. Con­

sequently, f) can be w ritten as a multi-pole expansion. Multi-poles are solutions 

of Laplace’s equation everywhere except the origin. They satisfy the radiation 

condition (4.10) and the free surface condition. The leading order asymptotic 

behaviour of the (m ,n )th  symmetric (resp. anti-symmetric) multi-pole for small 

radial distances from the origin is given as

Pff (cos 0) cos m f  (resp. s m m f )  r~^n+1\  (4.29)
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6 measures the angle from the vertical and cj> measures the azimuthal angle. (See 

Figure (4.2) for further explanation. )

Let us briefly see how expressions for the multi-poles are obtained. The 

(m, n)th  symmetric (resp. anti-symmetric) multi-pole is written as

Q) +  ?'Xn(r ) 0)) cos m<t> (resp. sin rri(f>).

For real to, V)nn(r > 0) and A'™('/\ 0) are real valued functions. The multi-poles 

satisfy Laplace’s equation and they are infinitely smooth functions everywhere 

in y > —1/e, except at the origin where their asymptotic behaviour is given in 

(4.29). Bearing all this in mind, we write

P m (c o s  0 1 f
V’n (Th A) +  A) -  n\ n+i  ̂ /  f ( k ) J m(kr sin 0) ex.-p(-kr cos 0)dk, (4.30)

7 J C?

where }{k)  is a function which is to be found, Jm is the m th Bessel function of 

the first kind and the contour C is chosen so that the radiation condition (4.10) 

is satisfied.

The trick th a t is commonly used is to write

P l ( c ^ = +nP l ( c o p  o a F S
yi/n+1

and

dy dy

where r’ is the distance to the image point of the origin when reflected in the 

plain F S ,  and 0' is the angle subtended by the line joining the point on F S  to 

the image point to the vertical. (See Figure (4.3).)

For r cos 0 +  2/e > 0 we ma}  ̂use the identity

P m(cos0f) 1 r00
nr ,n+1—  — -̂-------- y  j  kn Jm(kr sin 0) exp( — k(r  cos 0 +  2/e))dk.  (4.31)
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^ 0

Figure 4.3: The image point.
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See, for example, Wang [30],

From equations (4.30), (4.31) and the free surface condition we have

/ p r a + n  yoo 2
(n ~ m ) \  Jo +  ’̂ - ) k ' , J„ ,(krs inS)exp(-k /e )dk  (4.32)

+ (
to k ) f (k )  Jm(kr sin#) exp(k/e)dk  =  0.

Equation (4.32) implies that we must take

m  = ( - i ) m+n k T —  a
kn exp(—2k/e)

(n -  to)! U  _

and C  as an open contour with one end at the origin and the other at plus infinity.
2

C must not pass through the point We choose C as in Figure (4.4). The
2

contour is chosen to pass underneath in order tha t the radiation condition is 

satisfied.

Thus,

0™(?’, #) =  P " l(cos 0)r *"+1) 

roo k-\-

(4.33)

+
r” re

Y J o

to

(n — m)l Jo _ to
a 7,n 

2 knJm(kr sin 0) exp(—k(r cos 0 +  2/e))dk

and

(^■nm+n 2 2 2
* " M )  =  J ) W ^ 2T(tv )"+1J'" (!v rsin6 ')exp(“ ^ (rco ^  +  2 /e ))’ (4-34)
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£

Figure 4.4: The contour in the k plane.

where the integral in (4.33) is to be interpreted as a Cauchy principal value 

integral.

Finally, we use the identity

00 (_  1 )s+m(ki')s 
J m(fcr sin#) exp( — hr cos 8) =  Y  — -— ;--- —— Psm(cos#)

(s +  777)!

to write

V>™(r,«) =  P™(cos

(_!)*+•>

(4.35)

+ E=m (n -  m )!(5 + m)

roo k -f —
■ PgU(cos 6)vs /  ------^rks+" exp(—2k/e)dk,
! Jo j  o r

and

2 ( — lV+n 2
XZ(r,0)  =  £  2 ^ r +n+' r ‘ }__ —  -exp( —2 ^ - / ( 4 . 3 6 )

(7? — 777.)!

Once again, refer to [30].

We must now write the surface distribution h in the statem ent of Lemma 12

as
OO OO

^ = Y  Y  Pn ( COS0){Cmn COS 171(f) +  dmn s i l l  7770),
m=0n=m

where, of course, the condition (4.20) is satisfied. We wish to write h as the trace 

on dfla of a sum of multi-poles. This means, we want to be able to write
OO OO

h = Y  Y  W (<L0) +  *Xn (a»#))(flmn COS 7 7 7 0 +  6mn sill 7770)an + 1 . (4.37)
m—0 n=m
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The following lemma is very useful:

L em m a 13 Any elem.ent h £ Hi(d£la) can be written in the form of equation 

(4-37) except possibly at a set of isolated values of to2. The coefficients amn and 

bmn are meromorphic in to2 and have no poles in the upper half plane.

P ro o f: We have

amnPn ( co s  0)  COS 7770 ( 4 .3 8 )
m = 0 n = m

oo oo oo ( _ 1 \ s + n

+ E  E  EE “”>’>?------- \7r~T— - y "  ' l^T(co,e)cos m4

roo k +  ~
x  /  -------^ k n+s exp(-2k/e)dk

Jo j to 
a

oo oo oo / __ 1 y s + n  9

+ * E E  E «n."7—  m! . ' , 2 ^ - |-s+1(!̂ r +n+1
m = 0  n ^ n  a =m  ( n  ~  ™ ) K S +  m ) ! 5

x  exp(—2 ^ - / e ) P ™(cos 6) cos m<j>
oo oo

=  ^ 2  Y 1  C m n P , " 1 (  C O S  0 )  C O S  7 7 7 0 .  
m = 0  n = m

There is a similar relationship between the coefficients of the anti-symmetric part.

From equation (4.38) and the orthogonality property of the associated Leg­

endre functions, we have

(4.39)
.2

~  f - l T +n r ° ° k -F —
+  E  a ™*7--------- J  ,------rT«,)+s+1 /   e x p { - 2 k / e ) d k(s — m)!(n -f ?7̂ )! Jo ? lo1

a
00 /'_,1 V+n- 2 2

+ 7  a m S 2 7 T y - - - - - - - - - - - - - — — -----  a n + » + l ( ^ _ ) s + « + l  e x p ( „ 2 ^ - / e )  =  C n m .
( s - m ) ! ( n  +  ???.)! 9 9

Let us now multiply each amn and each cnm by a factor

(77 +  ???.)!
(77  —  777) !



CHAPTER 4. ASY M P T O TIC S  OF SCATTERING FREQUENCIES  139 

That is to say, let
. L

_  (n 4- 772)!
&mn =: &mn

[ n  —  7 7 2 ) !

and
(?2 +  777)!

7nm — Crim
(72 — 772)!

Equation (4.39) becomes

OO
] T  ( $ n s  +  - A n U ^ 2 ; e ) ) c W  =  7 n m ,  ( 4 - 4 0 )

s = m

where

^™s(w2i <0 =  + m y^s _  m)!^; + m)!(n _  j  an+s+1( - l ) ’+n (4.41)

^ k +  ~   _ ( t2 , , , , ,2CO
^■ks+n exp(~2k/e)dk  +  2xz( ~ ) s+n+1 exp(—2— /e) I .

v 0 k - y -\  9

We have to show under what conditions equation (4.40) is uniquely solvable, 

given that

Ew  I
Z-r \Tr.

exists.

oo oo
|2

Im n
m = 0 n = m

Firstly, we can say th a t it is solvable if

oo oo oo

E  E  E  K ‘> V ) I 2 < i.
t o —0 n —m  s = m

This is a consequence of the following iterative procedure: Let o :^  =  7mn and

OO
(iV+l) _  _  AVl / 2. f \MN)
n m  ~  ( n m  Z - r  ^±n s \ UJ ) t / u m s  r

5  — TO

where N  =  0 ,1,2 ,3 , . . .

Clearty,
OO

(«7„+1) -  4 S )  = E  A"‘> 2; <0(“ S$ -  4 L l))-
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Therefore,

OO OO
/  -j I m n  pin. i —

m = 0  n = m
oo oo oo \  /  oo oo

E  E E K > V ) i ! E E
7ii=0 n = m  s= m  /  \m = 0  s = m

a { N )  _  ( i V - l ) |2
u m s ^ m s  I

Hence, a'7im+1) -  4 m } tends t0 zero in I2 0  P — the product of the space of 

all square-summable series with itself. Since I2 0  I2 is complete,

liixi =  a mn exists
jY—+co

and, furthermore, a mn belongs to I2® I2. It is easily verified th a t a mn is a solution 

to equation (4.40). The uniqueness of the solution is also plain to see.

Suppose next that
OO OO OO

E  E  E  I4T.(“ V ) I 2
7ij.= 0  r i= m  s = m

exists, but is greater than one. It must be the case tha t we can choose N  such 

tha t
oo OO CO
E  E  E  lA"Uw2;e)|2 < ! .

m = 0  77=771' s = m '

where m { is the maximum of N  +  1 and m , For the moment, consider all those 

CL'mn’s with in and n each less than N  +  1 as given, and solve the remaining 

equations:

oo N

a m n  +  e ) a ™* =  7 m n  ~  X )  e ) a 'm s ( 4 - 4 2 )
s = iV + l  s = m

when m  < IV +  1 and

oo

° n i t i  T  A™ 3( l0 2 ] € )o im s  =  7 m n  ( 4 . 4 3 )
5  =  771

when m  >  N.  Both (4.42) and (4.43) are solvable from the previous analysis. 

Suppose tha t the solution to equation (4.42) is given as

oo N

«n,n =  E  K «)(7m. -  E  e ) a mt). (4.44)
s=m 1—tn
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Let us denote by D™t{uj2\ e) the term

OO
£  e ) A Z ( ^ ; e).
s~ m

Equation (4.44) becomes

N  oo

+ S  D nt(u2\ e)amt =  B™(lu2] ej'jms- (4.45)
t—7ii s= m

Equation (4.45) is a square m atrix equation in a finite number of unknowns. If the 

homogeneous version of equation (4.45) has just one solution, then equation (4.45) 

is solvable whatever the right hand side of it is. If the homogeneous equation has 

a non-trivial solution then equation (4.45) will, in general, not be solvable. The 

range of the m atrix will be perpendicular to the space spanned by the solutions 

of the homogeneous adjoint equation.

Let us denote by I\(co2;e) the matrix operator whose (??2, n, s)tli entry is 

A”ls(cj2;e). Equation (4.40) can be re-written as

(I  +  it'(a;2; e))a =  c, (4.46)

where a and c denote elements of I2 0  I2 whose (??t,, n)tli entries are a mn and 7mn 

respective^. The above analysis shows that I  +  /^(w2; e) is a Fredholm operator

on I2 0  I2. Thus the necessary and sufficient condition for solvability of equa­

tion (4.40) with any right hand side is that the only solution of the homogeneous 

equation,

(.I  + K { u 2\e))a =  0, (4.47)

is the trivial solution.
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4.3 .1  P r o o f  th a t A™(o;2;e) is sq u are-su m m ab le.

We must show that
oo  oo  oo

E E E W ' ) f < » .  (4.48)
m = 0 n = m  s = m

W . ( " V ) I S =
* 2n“h25'h2

(77 — 777)! (77 4- m)!(s — 777.) !(s +  777)!
(4.49)

I jL , LO2 poo h, ~f- ---
2

2 . 2 d

x

/  \  fcs+" exp( 2 lc/e)dk
Jo jr. _ LO

2, ( t 2_).+.,+ i exp( - 2^ - /e )

/V a

Let us consider the two terms on the right hand side of equation (4.49) indi­

vidually. First of all, we shall find a bound for

2?z4"25H-200 00 00

= 0nt^, s=Zi (s -  m)!(s -1- 777)!(77 -  777)!(?7 +  777.)!

/  U LO2 \f OO K -—

/   ar /fcs+,'exp(-2fc/eWfc
\io k ~ l T  )

The leading order term in the asymptotic expansion for large s +  n and for fixed 

e of the integral
, » k + ^ -  

1(e) =  V ^ +"exp(-2fc/e)clfc,
Jo

I S

k - y -a

(s +  77.)!
.S + n+l
2^+n + l

This is true because the part of the interval that dominates the integral for very

large s +  n is well away from the singularity at LO

It is, therefore, true tha t 5] (e) exists if and only if

€2.+2n+2a2»+2-+2^5 +  n ) !J2OO OO OO

22s+2"+2(s -  7 7 7 ) ! ( S  +  7 7 7 ) ! ( ? 7  -  ? 7 7 ) ! ( 7 7  +  7 77 ) !
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exists. We have

Figure 4.5: The rearrangement, of the series.

S , ( e )  <  jU ( u .'2 ) S 2 ( e ) , (4.50)

for sufficiently small e, where M(u>2) is independent of e. This can be deduced 

from the asymptotic behaviour of each term of Si(e) for small e. Now change the 

counting variables

5  l—> S  —  777

n  i— > n  —  777 .

Thus,
OO OO OO

C  =  V  W  / o e \ 2 s + 2 n + 4 m  +  2 ( ( s  +  77. +  2 7 7 7 . ) ! ) 2

'  2  /  s ! ( s  +  2 7 7 7 .) ! 7 7 ! ( 7 7  +  2 7 7 7 ) !m = 0 n = 0 s = 0

All the terms in this series are positive and so it exists if and only if any rear­

rangement of it exists. Instead of summing rows of columns, we sum the series 

by taking the terms in the order indicated in Figure (4.5). Hence,

S 2 ( e )  -

OO OO » / __^
E E E  Y

n i = 0 r = 0 t = 0  v  ^  7

(4.51)
( ( r  +  2 7 7 7  ) ! ) 2

t\(t. +  2777)1(7 '  — — t +  27 7 7 ) !

If 0 < t <  7', then
1 ^ 1

<!(r -  (( [r /2])!)2 a"
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(r — t -f 2m)!(i +  2???.)! (( [r /2] +  2??r)!)2 ’

where [rf2] denotes the integer part of r / 2 .

Each term  in the series for 5*2 (e) is, therefore, bounded by 

' a e \ 2r+4m+2 ((r +  2??^)!)2

2 J  (( [r /2])!)*(([r/2] +  2m )!)*‘ (4'®2)

Equations (4.51) and (4.52) imply tha t 5*2(e) exists if

C n  _  a V  V  V  / ' « e y +4ra (>• +  l) ( ( f  +  2m)!)2
4 n“ o V  2 /  (([r/2])!)>(([r/2] +  2n>)!)»

exists. Furthermore,

0 < S2(e) < S3(e). (4.53)

C laim :
(r +  l ) ( ( r  4- 2?7r)!)2 2

r1H1i 22r+4m(Q7Y2])!)2(([r/2]4- 2777)!)2 7T'

The claim is proved by considering the large r asymptotic behaviour of each 

of the factorial functions in the left hand side.

(r +  2?77)! ~  r 2mr! ~  7’2m?'r+2 exp(—r)(27r)2,

([r/2])! -  ( r /2 )^ e x p (-r /2 )(2 7 r)2

and

([r/2] +  2m ) ! ~ ( r / 2 )J"([r/2])!

~  (i’/ 2)£±1? :<i exp(—)’/2)(27r)t.

See, for example, Abramowitz and Stegun [1, p. 257]. Therefore, each term in 

63(e) is bounded by

C(ea)2r+4m+2,
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where C is some positive constant. That is to say, S3 (a) exists if

CO OO

5 4(e) =  c j 2  X > a )2,'+4'"+2 (4 -54 )
m = 0 0

exists. It is clear tha t 64(e) exists if \ea\ <  1. Furthermore,

63(e) <  64(e). (4.55)

Thus (4.50), (4.53), (4.54) and (4.55) imply

* ■ < ■ >  5  ■ ) ■ ( “ 6 >

It is easy to see that a bound for the second term in equaton (4.49) is

27ra2^ e x p ( 2 ^ ( a -  1/e)).

Hence,

where

6 5 ( e )  < Ar(w2)a2e x p ( - 2 ^ e ) ,  (4.57)

00 00 00 1 aJ \2

5S(£) S  ^  L  L  L  ( n - m )!(n +  ™)?(s) - m )l(s +  m )!

and N{lo2) is independent of e.

The bounds (4.56) and (4.57) imply the condition (4.48).

4.3*2 T h e  a n a ly t ic  c o n t in u a t io n  o f  A™s(uj2] e) a n d  th e  p r o o f  

o f  L e m m a  13.

Before we prove Lemma 13, we shall consider the extension of equation (4.40) to 

non-real values of uj2.
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The function A™ (tu2; e) can be analytically continued into C \  1Z- , where TZ- 

denotes the negative reals. For Ssu2 > 0 the analytic continuation of A”ls(u>2; e) 

is

- ^ ( " V )  =  ( 7  r r  H7 TT7 77)  (4.58)\ ( s  +  m)  !(s — m)\(n  +  777)! (77 — m)! J
2

x ( - a )n+s+1 / 0°° kn+s e x p (-2k/e)dk,
a

and for Ssto2 < 0 it is

A™( ^; e) =(    1  - )  ( -a )" + s+1 (4.59)
\ ( s  +  m)l{s ~~ m)\(n  +  ??7j!(?7 — m ) \  J

(  ^
/ 0°° -—^-&n+s ex]>(—2k/e)dk +  4?n( — )n+s+1 exp(—2— /e)

CO 9 9
\  9 /

X

It can be shown tha t, just as in the case of real a;2, the condition (4.48) holds 

true for complex up.

The operator K{to2\ e) is, for fixed e, bounded-holomorphic in to2 everywhere 

in C \  1Z_. This is because the inner product

( / i ( w 2 ; e ) a ,  & ) / 2 0 j 2

is holomorphic with respect to to2 for all ct and b in I2 <g> I2. It is easy to see that 

this last assertion is true if we bear in mind the fact that, because
OO OO OO

(A. (ct7 , e)<z, /));2(g)/2 — y  y   ̂ y  A ns(tc> }£)o'ms/?mri,
i7? = 0  n=m s=m

where a ms and j3mn are the entries of the matrices a and b respectively, the inner 

product is uniformly bounded in a neighbourhood of every point of cj2-space, and 

each term in the above identity is holomorphic in to2.

Let us denote by S\{to2\ e) the inverse of I  +  /v (u;2; e), when it exists. We shall 

now show tha t 5i(u;2; e) is meromorphic with respect to to2. For this we need the 

following theorem, which is Theorem 1.3 in Kato [14, Chapter 7].
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T h e o re m  12 Let T(x)  : X  —» X  be a closed operator which is defined at x = 

0 and let (  belong to the resolvent set of T ( 0). Then T{x)  is holomorphic at 

x ~  0 i f  and only i f  (  belongs to the resolvent set of T(x)  and the resolvent 

R{(] x) =  (T(x) — ( ) _1 is bounded-holomorphic for sufficiently sm,all |cc|. R((]x)  

is even bounded-holomoiphic in the two variables on the set of  all {( ,x)  such that 

£ belongs to the resolvent set o fT ( x )  and |a;| is sufficiently small (depending on

a -

It should be noted tha t we have not 3ret said what it means for an unbounded 

operator to be holomorphic. It is enough to note tha t for our present application 

of Theorem 12 we deal with bounded-holomorphic operators only. The point 

x =  0 is not essential in the theorem — we could have chosen any point.

We apply the first part of this theorem with K(vo2; e) taking the role of T(V), 

X  is the product of the square-summable series with itself and £ =  — 1.

The theorem tells us, if we bear in mind the Fredholm property of 1 +  K ( uj2\ e) 

and the holomorphicity of K { u 2\ e), that ^ (cu2; e) is holomorphic with respect to 

w2 if and only if the homogeneous equation (4.47) has only one solution — the 

trivial one.

We must now define the projection oiterator onto the subspace of eigenvectors 

of K(to2; e) associated with the eigenvalue ( — 1). Let us call this subspace M.  Let 

C be a curve in the complex (  plane that encloses (  =  — 1 but no other eigenvalue 

of K(u>2‘ e). The projection operator P(ca2; e), is defined by

We wish now to prove that the set of points Q, for which ( — 1) is an eigenvalue
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of 7f(6o2;e), consists of isolated points. Suppose that it does not. Let {u;^} be 

a sequence of such points tha t converge to a point not in the sequence. We 

do not yet know whether or not is in Q. The second part of Theorem 12 

implies tha t P(co2; e) is holomorphic in uj2. Hence, without loss of generality, we 

can assume that

|P(w2;e) -P (u & ;e ) | < 1,

whenever to2 is in some neighbourhood of to^. Hence, the dimension of the ranges 

of P{uP\ e) and P(o>^; e) are equal whenever to2 is close enough to and we 

can choose an invertible holomorphic operator U(to2; e), with the property that

U(co2-,e)P(co2-e)U(co2; e ) ^  =  P(u& ;e).

The proof of this can be found in Kato [14, Section 4.6, Chapter 1].

The implication of all of this is that the eigenvalue problem for points enclosed 

by C for K ( u j 2 ] e), is equivalent to the eigenvalue problem for the holomorphic 

m atrix given by

/£i(w2; e) =  P(o;^; e)U(cu2] e )K (u2; e)U{co2; e)~l P ( e). (4.60)

K\{to2\ e) operates in the fixed and finite dimensional subspace of eigenvectors of 

K (w j,; e) associated with the eigenvector ( — 1). W hether to2 belongs to Q or not 

depends on whether

det (JC(u;2;e) +  /)  =  0

or not.

Clearly det(JlTi(w2; e) +  J) is a holomorphic function of w2. It vanishes at 

the points j ^ 2,} which accumulate at lô .. By a well known result of complex 

analysis, this implies tha t the determinant vanishes identically inside C. By 

the equivalence of the eigenvalue problems for Ii (to2; e) and for the matrix, this
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implies tha t every point enclosed by C is in Q, and by continuation every point 

in C \  IZ- is in Q, We only have to find a point not in Q, therefore, to prove that 

Q consists of isolated points.

The fact tha t every singularity of iSi(w2; e) is a pole can be seen by construct­

ing the projection operator and the analogy of identity (4.60) for the singularity. 

The singular parts of 5i(u>2;e) and (Ki(co2;e) T  l )-1 are equivalent. The latter 

is the quotient of two holomorphic functions (by Cramer’s rule).

We shall now prove tha t every point in the upper half plane is not in Q. 

Equivalently, when Qto2 > 0 the equation (4.47) has only the trivial solution.

Suppose this were not true. That is to say, there exists an element of I2 (g) I2 

with
oo
T .  {$an +  ^n s(^2) e))^mn =  0, 

n = m

for all m  and s greater than ???,. Now construct the function

OO CO OO

^ = E E E » “+1f ; ( » s 9 )  (4.6i)

A glance at equation (4.58) tells us that A™s(w2; e) decays faster at infinity 

when the imaginary part of to2 is positive than when to2 is real. A more detailed 

analysis (see Appendix B) shows that ‘ip in equation (4.61) satisfies

(1 +  ?’2) 1/fV  E f 2(fia),

6 (T2(Ofl))3,

and

*I>\FS G L2(FS).
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Most im portant of all is the property that

01 dna = 0.

This comes about because the a mn’s are solutions to the homogeneous equation 

above. These conditions imply tha t ip vanishes — the proof of this can be found 

in Lenoir and Martin [17]. This, in turn, implies tha t each a mn is zero.

We know tha t the spectrum of K(to2\ e) is either the whole plane, or consists 

of a set of isolated points. The above result implies tha t the la tter alternative is 

true. This completes the proof of Lemma 13. □

Once we have Lemma 13 it is evident that the solution of the problem de­

scribed in equations (4.15) to (4.18) is
OO CO

■0 =  1C X! (0n (r > 0) +  LYn (r > 0))(<W C O S  m.tp +  6mn sinm<p)an+1, (4.62)
m = 0  n —m

This is because the solution, 0, must have the form given in equation (4.62) and, 

to ensure tha t its trace on df la belongs to L 2(dOa)> the coefficients amn and bmn 

must satisfy the condition in the statement of Lemma 13. Thus we have proved 

Lemma 12. □

It can easily be shown that the normal derivative of ip in equation (4.62) 

on dOa belongs to H~^(dOa). Let T(u?2;e) be the operator th a t maps h to the

normal derivative of ip on dOa. T(co2; e) acts on ip in the following way:

OO OO CO

T(w2;e)V> = E  E  E  (amn cos m<p +  bmn sin m<p) (4.63)
m = 0  n = m  s = m

Am (w2.e))p ,ll(cose).

Of course, T{lo2\ e) can be continued into C\7Z-. It is, according to Lemma 13, 

a meromorphic function of to2 with no poles in the upper half plane. T ( lo2; e) is 

bounded when considered as acting between H^(dOa) and H~^(dOa).
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4.3 .3  T h e tru n ca ted  prob lem .

We are now in a position to define a problem equivalent to the exterior problem. 

This problem will be called the truncated problem. It is equivalent to the exterior 

problem in two senses. Firstly, if either problem is unique, then so is the other 

and, secondly, the solutions of the two problems are related in a very simple way. 

Before we proceed, we shall define the domain f2a as the open set between the 

surfaces dHa and <9H. The truncated problem is:

Find 0  in with the following properties:

V 20  =  0 in Oa, (4.64)

/  € L2(dtta), (4.65)
dn

d0
dn

o n

T(a;2;e )(^ |5 n J ,  (4.66)

where /  is considered as some given datum, just as in the exterior problem. We 

shall assume th a t T{oj2\ e) is defined.

L em m a 14 The truncated problem has a unique solution for all f  in L 2(d$la) 

except possibly at a set of isolated points in the complex to2 plane.

P ro o f: The equations (4.64) to (4.66) are equivalent to the weak formulation: 

Find 0  in H 1(fl“), such that

L  v ^ dv -  L n {u)2' t m d S =■ L  ( 4 -6 7 )

for any <f> in H 1{Qa), Let us denote by A{oj2\ e )(.,.) the sesquilinear form on the 

left hand side of equation (4.67). To an}7 sesquilinear form we can associate an
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operator. Let us denote by A(tu2;e) the operator associated with A(uj2', e )(.,.). 

That is to say,

(A(lo2; e)ip, <j>)w{n°) =  A{uj2\ e)Wb <!>)■

Taldng <p equal to A{lj2\ e)tp implies

II A(uj2;e)ip | |^ 1(na)<|| ip |kqo«)|| A(w2\e)ip ||ffi(n«)

+  || T(io2\ e)ip ||ff^ (a0a)|| A W W  ||ffi(efla)

<  ( l l  I l f f i ( n « )  +  II T(io2;efP l l ^ - i ( a f 2 ( i ) )  II A(io2]e)ip | | ^ ( n « )

< (jl ip | | T M  || ip ||ffi (a0a))  II A(lo2\ e)ip ||ffi(na)

< (1 +  M)  || ip ||//i(no)|| A(a>2; e)ip ||#i(Qa) .

The second and fourth inequalities are due to the continuity of the trace map 

from i f 1 (ST1) into H^(dCta) and the third inequality is due to the continuity of 

T{lo2; e) from H ^(dQ a) into H~^(dQ,a). So ,A(u;2;e) is bounded in 7J1(flcl).

That A(to2; e) is holomorphic with respect to a;2, except at a set consisting of 

isolated points, is seen by observing that the sesquilinear form A{uj2\e){if,<p) is 

holomorphic with respect to a;2, for all ip and <p in some fundamental subset of 

H 1(Qa). This is a result of the properties of T{lo2\ e).

Let us call the inverse of A(to2\ e), when it exists, 62(tu2; c)- We will use the 

following result

L em m a 15 A{oj2\e) is a Fredholm operator of index zero. Consequently, 52(n>2; e) 

exists i f  and only i f  the homogeneous equation

A(w2;e)y> = 0

has only the trivial solution,
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P ro o f: We shall demonstrate the existence of a double-sided regularize! of

A(a>2;e). To do this we will write A{uP\e) in the form of the identity plus an 

operator whose real part is positive plus a compact operator. The inverse of the 

identity plus the positive operator exists; this is the aforesaid regularizer.

If

OO OO
 ̂ S  Wn (a> 9) +  *Xn K  9)){amn cos 711(f) +  bmn sin m<f)anJrl

m = 0 n = m

then

— I  (T(co2; e)^)ilfdS — (4.68)

E”=o E~ m Cm( k ,n|2 +

- ^ e “ =0e “  E S m  <0
ES=0 ESLm E” „. Cm(amn5 ^  +

E “=o ESLm E£m E £ ra C,m(a,„„â 7 + bmnbms)

y  f  ( » + m ) ! ( s + n p ! N\ X/ 2 /  2 . i2 - A
\ ( n —m ) ! ( s —m )!  /  '>e)A st{U> y Q y

where

f 2 if 777. =  0
Cm =  I

I 1 otherwise 

We know from equation (4.41) and its extension that

<0 ~  ( ( 5 +  m )!(s _  ,„)!(„ +  m)!(n _  m )i) (n +  s )! ( - y )

as 77, +  s tends to infinity. As in the proof of Lemma 13,

lim ------------------------ m  = k,
n+̂ ° °  (06)"+*+! ( ____ 5____ V ̂ ' \  2 j r (n + s  — m +  l )  /

where k is less than or equal to one. As ae < 1, it is clear tha t if n or s is 

sufficiently large |A™(o>2;e)| is less than any given positive number. It is clear
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tlien tha t the analogous term  to the right hand side in equation (4.68) with n, 

s and t  all greater than some number Ar, chosen so tha t A™ (to2; e) is less than 

one quarter when n or s is greater than it, always has a positive real part. The 

remaining sum consists of a finite number of terms — the sum over m  from zero 

to N  and the sums over ??,, s and t from m  to Ar. This term  is associated with 

an operator whose range is of finite dimension, which is therefore compact.

The second term  in the definition of A(to2; e )(.,.) is

f  Vip.VpdV,
Jna

This can be written as

The former term  is associated with the identity and the la tter term  is associated 

with the imbedding operator from APfO0) into L 2(Qa\  which is compact.

Let us write

A(to2; e) =  I  +  /vi (to2; e) +  /^ ( to 2; e), 

where I  denotes the identity, K i (lj2; e) satisfies

9 (̂7y!(cu2; e)-0, > 0,

for all ip belonging to AT^ST1), and /v2(u>2; e) is compact. I  +  Ab(to2; e) is clearly 

a coercive, bounded operator in H 1((1°). The Lax-Milgram Theorem (see, e. g. 

Sanchez Hubert and Sanchez Palencia [27, p. 76]) tells us tha t I  +  AA(to2; e) has 

a bounded inverse in i J 1(n n), let us call it H(to2; e). H(to2; e) is a left equivalent 

regularizer of A (to2; e), since

B ( to2; e)A(to2; e) = I  +  Â 3(to2; e),
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where K 3(to2]e) is a compact operator in H 1^ 0), (Recall th a t the product of 

a bounded operator and a compact operator is compact.) It is called equivalent 

because

A(u>2; e)ip =  F

and

B(u)2\ e)A(cj2; e)^ =  B{uj2\ e)F 

are equivalent for all F  6 H 1( 0°),

B{uj2\ e) is also a right equivalent regularizer since

A(w2; e)B(uj2; e) = I  +  R 4(u>2; e),

where K a{lo2\ e) is compact in i J 1(n n). It is called equivalent because

A(to2] e)tp =  F  (4.69)

and

A(u>2\e)B(w2\e)<P = F  (4.70)

are equivalent in the following sense. Equations (4.69) and (4.70) are either both 

solvable or both unsolvable. To any solution 'ip of equation (4,69) there is a 

corresponding solution (f) of equation (4.70) with

ip — B{lo2\ e)cf>.

The result of all of this is that A(co2; e) is a Fredholm operator with index 

zero and Lemma 15 is proved. □

We have then tha t A(u>2; e) has a bounded inverse if and only if the homoge­

neous equation,

A(to2\ e)'ip — 0, (4.71)
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has only one solution. We now utilise Theorem 12 with A( lo2] e) taking the role of 

T(&), f7'1(ST') is X  and to2 is x. Thus ^ (w 2; e) exists and is bounded-holomorphic 

at lo2 if and only if the equation (4.71) has only one solution.

As with the case of the Diriclilet problem in the region outside the sphere, it 

can be proved tha t equation (4.71) has just one solution if Ssuj2 > 0. In fact, this 

is proved in an identical way as before. That is to say, we show tha t the existence 

of a non-trivial solution of equation (4.71) implies the existence of a distribution 

•0, with

(1 +  ?’2) € T2(fle),

€  (T 2(Oe))3, 

</>\FS e L 2(FS)

and

ip\on — 0.

As with 5i(oj2; e), we can show that ^(cu2; e) is meromorpliic in C \  71-.

Now write equation (4.67) as

A(w2;e)^  =  F ( f ) ,

where

( F ( f ) t <f>)m m  =  -  f  f$dS ,  (4.72)
J dn

for all (j) belonging to i71(fla). It is clear that F  is continuous from L 2(dVt) into 

i f 1 (ST1). The solution of the truncated problem given in equations (4.64) to (4.66) 

is then

1> = S2(u>2-i e)F(f).
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We know that 62(w2; QF  is defined everywhere except at a set consisting of 

isolated points and tha t it is bounded from L 2(dO) into Thus Lemma 14

is proved. □

Before we proceed further let us define the operator Ss(cu2; e) by

S3( ^ e ) f  = 1 S2(io2]e)F(f ) ,  

where 7  is the trace operator 011 dO between H 1(n°) and H^(dO).

4 .3 .4  T h e re la tionsh ip  b etw een  th e  ex ter ior  p rob lem  and  

th e  tru n ca ted  prob lem .

We have said tha t the exterior problem for complex values of to2 can be thought of 

as being defined from the truncated problem together with the Dirichlet problem 

in the exterior of the sphere. It will be helpful, however, to explicitly write down 

the exterior problem in the case when the imaginary part of to2 is positive. Any 

solution can be expressed as a sum of multi-poles. A glance at the expressions 

for the extended multi-poles (equation (4.73) below) will tell us tha t the solution 

will decay faster at infinity than is the case for real to2.

#T M ) + *:CM ) = P,T( c°s0)r-<’,+I> (4.73)

k M
+ '7™ )’’ /o”  — ^ 2  knJm(kr sin 0) exp(~k(r  cos 0 + 2/e))dk.

k ~ 9

Whereas, for real u>2 the solution belonged to i7^c(P e) we might expect that, 

for the case of Is to2 greater than zero, the solution will belong to a smaller space, 

W, if its trace on dQ, belongs to H^(dQ,). Appendix B shows that belongs to 

IT, defined below:
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Define

W = {V; (1 + r2)-1/20 e £ 2( f U  V</> € (L2(n e))3 and i>\FS 6 L2{FS)}.

The exterior problem in this case is: Given /  belonging to L 2(dO), find ij) 6 IF 

satisfying

V 2,0 =  0 in S7e, (4.74)

dif> 

an
/ ,  (4.75)

=  0. (4.76)
FS

Lenoir and M artin [17] have given a proof of the existence of a solution to 

this problem.

Let us denote by S^ia2; e) the operator tha t maps /  to and let

Sb{^2\ Q f  =  7&i(ta2;e)/.

It looks as if the poles of *S3(cu2; e) will depend upon the construction of the 

truncated problem. That is to say, they depend on the radius of the chosen 

sphere. We can see tha t this is not the case because the operators .^ (ta^e) 

and 5s (ia2; e) are identical in the upper half plane. This is a consequence of the 

equivalence between the exterior problem and the truncated problem. 65 (ta2; e) 

is clearly independent of the construction of the truncated problem. Sa(to2; e) is, 

therefore, equal to the continuation of 65(u;2; e) everywhere, and the poles of this 

operator are independent of the construction of the truncated problem.
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4*3.5 T h e large su b m ergen ce d ep th  lim it.

In this part we shall show that if K  is any compact subset of C \  71- and if e is 

smaller than some positive number depending on K , then no poles of 63(u;2; e) 

are in K.

We know from the bounds (4.56) and (4.57) tha t T ( u 2\ e) exists for any u)2 in 

K  if e is smaller than a certain number — call it ei(K).  This is true because if e 

is sufficiently small then

OO OO 00

E  E  E W > 2;< o r< i -
m = 0  n = m  s = m

Thus the poles of 5*1 (a;2; e), which were defined on page 20, lie outside K.

Furthermore, equation (4.68) tells us that we can choose a number M  > 0 

such tha t

L n  >  M  || if) ||2 1JdQa H^(dQa)

if e is sufficiently small — smaller than e2(i l ) , say, which is smaller than (K)-

To see this note tha t the modulus of each A ”ls(to2;e) in equation (4.68) can be

made as small as we like. Thus the final three terms on the right-hand side of that

equation can be made as small as desired. Then the equivalence of the H 2 (dQ,a)

norm and the norm in the first term on the right-hand side of equation (4.68) is

a consequence of Lemma 11.

We have already seen tha t ^ ( w 2; e) has a pole if and only if the truncated 

problem with zero boundary datum  has a non-trivia! solution. Let us consider, 

then, equation (4.67) with /  =  0. Putting (j) equal to 1f) and talcing the real part 

we have

/  V ^ . v ^ d l /  -  5ft /  ( T V 2 ; eW$dS  =  0 .
Jfla JdCla



CHAPTER 4. A SY M P T O TIC S OF SCATTERING FREQUENCIES 160

If e is less than 62 (/C), then

/  V i p . V M V  +  M  II ip ||2 1 =  0.

As M  > 0, the last equation implies that ip vanishes on dfla and, thus, the

gradient of ip is zero in fia. The condition ip = 0 011 dFta means then tha t ip 

vanishes inside Oa. Clearly then S^{u2\t)  has 110 poles in K  if e is less than 

e 2 ( I < ) .

4 ,3 .6  S u m m ary o f  ex ter ior prob lem .

The exterior Neumann problem was described for the case of real to2. To solve 

this problem we set up a Dirichlet boundary value problem in the exterior of a 

sphere. We extended the problem to non-real frequencies and showed tha t this 

problem is solvable for every value of to2 except those contained in a set consisting 

of isolated points. This lead to the definition of a problem tha t is equivalent to 

the exterior problem when the frequency is real, set in a bounded domain — the 

truncated problem. This has the advantage of involving only familiar function 

spaces. Using this problem, extended exterior problems were defined.

The truncated problem was shown to be solvable except at a set of isolated 

frequencies. Furthermore, the operator connecting the Neumann datum  to the

solution was proved to be meromorphic with respect to to2 with no poles in the

upper half plane. As the depth of submergence increases the poles of the operator 

were shown to “tend to infinit}^’. The physical interpretaion of this is as the body 

is more deeply submerged the effect of the free surface lessens and so the situation 

more and more “resembles” the case of a body surrounded by an incompressible, 

inviscid fluid tha t extends infinitely in all directions; the Neumann problem in
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this case is known to be uniquely solvable at all real frequencies. The point 

about this problem being solvable in the large submergence depth limit for all 

frequencies is a truism since the frequency dependence has disappeared in this 

limit.

4.4 The interior problem.

Let us now assume th a t u>2 lies in some compact region o i C \  7£_, and tha t e 

is smaller than e2(K).  Thus exists.

We know tha t the trace of the solution on dfl  of the exterior problem, given 

Neumann boundary datum, / ,  is

^ ( w 2; e)f.

If we return to the matching conditions across dO given in equations (4.8) and 

(4.9) we see tha t the surface traction and the surface displacement of the elastic 

body must be related in the following way

n.<r(u) =  po<x>2nSz(oj2\ e)(u.n). (4.77)

Thus the interior problem is: Find u  belonging to JET1 (SI;) such tha t the 

boundary condition (4.77) holds as well as the equation (4.7), which shall be 

re-written below

L( u) +  puj2u =  0

in the sense of distributions. Here we adopt the notation tha t, for example, 

i f 1 (n*-) stands for (W ^fl;))3 — the space of all three-dimensional vector distri­

butions, each component of which belongs to H’1(ri,;), No confusion should occur
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as it will be obvious when we are talking about vectors and when we are talking 

about scalars.

The above formulation is equivalent to the weak formulation: Find u G 

I f^fi*) such tha t

Pqlo2 [ v.nSs(co2\ e)(u.n)dS +  poP [ u .v d V  (4.78)JdU JO,}
-  [  <r(u) : V v d V  =  0 

JQi

for all v  G FT1(n t).

Let us denote by B{u>2; e) the operator defined by

(B(io2;e)u,v)m{Qi) = p0Lu2 f  v .n S s(u>2]e)(u.n)dS  (4.79)
Jan

+(1 + pco2) [  u.vdV.

S z {uj2 \ 0) is actually independent of oj2 . We have

53(w2;0) =  7(A(o;2;0 )) -1F.

The dependence of A(tx>2; 0) on to2 comes from T(to2\ 0). This can be seen not to

depend on oj2 from equation (4.63). This is true because each A™ (cj2; e) vanishes

in the limit as e tends to zero according to equation (4.41).

Before we proceed further we note that

/  (t(u) : V v d V  +  [  u .vdV  
J S7 i </

defines an inner product in H 1 (ST;).
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4.4 .1  T h e sp ec tru m  o f  £?(tij2;0).

We want to show tha t B(uj2] 0), when considered as acting in i41(S7l-), is compact. 

Therefore, for fixed o j2 , B ( o j2 ; 0) has a countable number of eigenvalues. Each of 

these eigenvalues is real when o j 2 is real and passes through the value one as o j 2 

is increased from zero.

From the definition of £ ( uj2; 0) in equation (4.79) with v  equal to B(uj2; 0)u, 

we have

|| B(a;2;0)u  ||#-i(n(.)

< p0to2 || n .£ (iu2;0)u  Hl2;- - ;11 53(cu2;0)(u .n) ||z,2(sn)

- f ( l  +  p u 2 )  || U ||L2(0,-) || £ ( w 2; 0)u | | l 2(0;)

<  Mpoto2 II £ ( u j 2 ; 0)u | | i r i ( n , ) l l  u  I U 2 ( a n )

-f( l +  pu2) || u 11Z/2 || £ (w 2;0)u Hffqn,.),

where M  is independent of to2 and u. We have used the boundedness of S3 

and the boundedness of the trace operator from i71(n, ) into L 2(dQ),

The compact imbedding of 771(n j) into L 2(Oi) and into L 2(dPt) shows that 

B(to2\ 0) is compact in

B{lo2\ 0) is self-adjoint. (We are identifying the dual of i f 1^ ; )  with ff^ f i ,) .)  

The self-adjointness results from the Hermitian-symmetry of the form in equa­

tion (4.79) when e is zero. The Hermitian-symmetry of

/  v .n 5 3(w2; 0)(u.n)4S 
JdSl

is a consequence of tile Hermitian-symmetry of

/  $ T (u 2-0)i>dS (4.80)

^
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— —On27T V ° °  (n r 4- h rl N ( n + l) (n + m )!  ^ah /( /_jm=0 ^/n=mV ^ m n W u n  \ (2n+l)(n-m)\

where
2 if m = 0

c m =  ;
1 if m  ^  0

and where

and

^  =  I ]  £  P n ( C O S  f y f a m n  C O S  1 1 1 ( f)  +  b m n  s i l l  7 7 7< £) 
m = 0  n = m

^  =  X !  E  P n ( C O S  6 ) ( C m n  C O S  111(f) +  C?m „  s i l l  7 7 7 < ^ ) .
m = 0  n —m

Call

^ =  A(o;2; e)-1 .F(u.n).

From equation (4.67),

-  [  (r(u>2; 0U)^<iS\
J dCla

Now from the definition of F  in equation (4.72), the left hand side of this last 

equation is

— I  u.nS3(4;2; e)(u.n)dS
Jdfl

since

S3(co2] e) =  7 A(cn2; e ^ F  

by definition. Now, from equation (4.80),

[  u .n53(t42; 0)(u.n)d5 
Jdn

is always positive whenever u ^  0, Therefore,

(B(co2; 0)u, u)//i(nf)
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is always positive.

The compactness, self-adjointness and positive properties of i?(u;2;0) ensure 

tha t its spectrum consists of a count ably infinite number of real points which have 

no accumulation point other than zero. The maximum distance from any point 

in the spectrum to zero is finite and every point in the spectrum is an eigenvalue 

of j B ( w 2 ; 0) except for zero. This result is well known and a proof of it can be 

found in Sanchez Hubert and Sanchez Palencia [27, Chapter 1].

A useful result is the max-min principle. This is closely related to the so- 

called Minimax principle to be found in Propostion 7.1 in Sanchez Hubert and 

Sanchez Palencia [27, Chapter 1].

Lem m a 16 The nth largest eigenvalue of jE?(u;2;0) is given by

An =  m in (^({w i,. . . ,  w„_i})), (4.81)

where

f.t({ w 1, . . . , w n_1}) = su p   — (4. 82)
II u ll/run,-)

where in equation (4-82) the swpremum is taken over all elements in the subspace 

perpendicular to the span of

{w1, . . . , w n_i}

and in equation (4-81) ^({w i , . . . ,  w n_i}) is minimised over all possible choices 

of the (n — 1) elements {w j, . . . ,  w n_ i} of LCffh).

This is proved by adapting the proof of the Minimax principle given in [27],

An immediate consequence of Lemma 16 and equation (4.79) is tha t each 

eigenvalue of B{ uj2\ 0) increases monotonicalfy as to2 is increased. In fact, it
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Figure 4.6: The growth of the eigenvalues of jE?(u;2;0).

is clear tha t the dependence of each eigenvalue on o j 2 will be linear in u j 2 . It 

is evident then that there is a countably infinite set of values of u j 2 for which 

B(uA; 0) has an eigenvalue equal to one — call this set Q. See Figure (4.6). The 

figure also makes it clear tha t Q has no finite accumulation point and that there 

is no largest point in Q.

4.4 .2  T h e eigen values o f  B ( u 2',e) and th e ir  con n ection  to  

th e  e igen values o f  B ( lu2;0)

We begin this section by noting tha t D(a;2; e) is holomorphic with respect to aA 

for fixed e. We have

( B ( v 2; e ) u ,v ) Hi({ii)

= (1 + p0uj2) f n . u v d V  + puj2 fdQ v .n 5 3(w2; e )(u .n )dS.

We have, by definition,

S3(u2;e) =  7(.4(cj2;e))_1F.

So 53(u;2;e) and therefore B(u>2;c) are holomorphic with respect to uo2 for fixed 

e because A(co2; e) is invertible and holomorphic in u j 2 .



CHAPTER 4. ASY M P T O TIC S  OF SCATTERING FREQUENCIES 167

£(u;2;e) lias an asymptotic expansion in integer powers of e. This expansion is 

uniform in to2. Let us begin by showing that A(u>2; e) has an asymptotic expansion 

in powers of e and tha t this is uniform in u>2.

{A(lo2; (4.83)

=  -  I - 1 Jo2" a2dcd(f) (j2m=o cos ni(f) +  6mn sin m<j>)

x ( « « +  u ^ v ) )  ™ )

X (Ern=0 T,%Lo ESo(ftnm COS m<f> +  /?mn sill ?77<̂ )f 

x ( - ( «  +  i)6ns +  *)) T O )

+  / n. v x . v w

where

oo oo oo

*  =  1 3  1 3  COS 7?^  +  s i l l  ?77</>)
m = 0  n —0 s = 0

x J (« .. +  y ^ i i ^ : r > V ) )  a r (c o s« )

and

oo oo  oo

^  =  1 3  1 3  1 3 ( T m n  cos +  5mn sin m(j))
m = 0  n = 0 s— 0

*S ( S n .  +  P™(oo.tf).

Of course, if x  an<i  ^  are f° be independent of oj2 and e then, for each rn and 77, 

ffmii) /^mnj 7nm and £m„ will depend on to2 and e. The dependence of amn on uj2 

and e is shown in the equation (4.40), which is rewritten below:

OO

]T(<5ns +  X''ls(iu2; e))aIJIS =  anm, (4.84)
5=0

where amn is the constant given by 

77 +  1/2
Cma27r \

(n — 777.1! p
7— ;------77 /  X (9 > 4) P™ ( cos 0)  cos m (j>dS.(n +  777)! Jdna
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Similar results hold true for /?,nn, j mn and 6mn.

We know that the series in equation (4.83) are absolutely convergent and, so, 

we can exchange the order of integration and summation to obtain

(A(u;2; e ) x ,  V O t f q n * )  (4.85)

“  a 7f  E m = 0  C > n ( & m n 7 m t  +

x ((n  +  1 )Sns6ts +  (n +

_  fs-m)! / (n - m ) \ ( t + n 7 ) \  Am  /  2 . fU m /w2. (s+m)l
(s+m)! y  (n+m)!(i—771)! J )J (s+1/2) (s—m)!

+  /o« Y x - ^ d V .

It is can be verified that
/ 2 \ n+s+l

(n +  s)! ( —a — J /  ae \ n+s+l
K ls(“ 2', e) =  r— -  ( ) (4.86)

y(?7. -f 7?̂ )!(?t. — ?7?.)!(s +  m)!(s — ?n)! '

( 2\ 7i+s+i

.  _ ” ' c ^ r + * 'H+1
 ̂ \/(n+m)!{n— ??i)!(a+m)!(s—m)! v2w2/

+o(en+a+p+1).

So each A™ (a;2; e) has an asymptotic expansion in integer powers of e and 

each term in the expansion is real if to2 is real. Therefore, equation (4.85) and 

the expressions for a mn, f3mn, 7mn and Smn show that the sesquilinear form

{ A ( lq2\ e ) y ,  V O t f 1^ 0 ) 

has an asymptotic expansion in e:

{A(uP\ e)X) V 0 t f l ( f ta ) — Ad(x> VO +  ej4i(x> VO +  e2y42(^2)(x? V1)  +  ■ • • (4.87)

Each of the sesquilinear forms A„(u;2) ( . , .) is bounded in H 1(Oa). It is a feature 

of this problem tha t the first two sesquilinear forms are independent of u>2. In
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fact, we have

M x , i > ) =  /  V x - V H V  (4.88)
JUa

Yair o E!£=m Cm {amncXE -f bmndmn) (4 .59)

and

— 6a27r(aooCoo T ^oo^oo)- (4.90)

Let us denote by An(u;2) the operator associated with the form An(u;2) ( . , .). 

Equation (4.87) can be rewritten as

A{lo2\ e) =  A0 +  eAi -\~ e2A2(w2) +  . . .  (4.91)

A q is invertible and its inverse is bounded in iJ 1(S7a). The first few terms of its 

asymptotic expansion are

A(to2; e) =  A 0 1 — eA01 AiA0 1 -f lj4 i^ o 1 — A )1 A ( ^ 2)A>1) +  • • •

(4.92)

Let us recall the relationship between B{uo2\ e) and A(u>2; e)_1:

(B(u)2]e)u ,v )Hi{ni) -  (1 +  p0̂ 2) /  u.vdV  

Ypw2 Ian 7 a (co2; e)~1F(u.n)v.n<i$'.

This implies tha t B(co2; e) has an asymptotic expansion in powers of e:

B(co2; e) =  B 0{u2) +  e B ^ u 2) +  e2B 2{u>2) +  . . .

From equation (4.92) it is clear tha t

(JB1(cj2)u ,v ) //i(fii.) =  -pcu2 f  7 Ad1A1Ad1F (u .n )v .ndF . (4.93)
Jd£l

The definition of F  and the equation (4.93) imply that

(£ i(u;2)u, v )tfi(ot.) =  puj2(Ad1 A t A ^ 1 F{u,n),  F{v .n))m{ila). (4.94)
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Equation (4.88) implies tliat A 0 is self-adjoint and, therefore, so is A 01. This fact 

together with equation (4.94) imply

( ^ ( w ^ u ,  v)tfi(nf) =  puP{Al AU1F (u .n ), A~ lF (v .n ) )m{nay  (4.95)

Let Ao he an eigenvalue of B (uJq] 0). Denote by P{uj2\ e) the operator

P {u 2\ e) =  (B (u 2\ e) -  C)_1 d(,  (4.96)

where C is a simple positively orientated curve that encloses A0 but no other 

eigenvalue of B{to2\ 0) and tha t is contained entirely within the resolvent set 

of jB(w2;0). P{uo2\e) is the sum of the eigenprojections associated with all the 

eigenvalues of B ( lo2; e) enclosed by C . (See, for example, ICato [14, p. 67].) Since

(B (u 2] 0)u, v)j/i

is holomorphic with respect to to2 in a neighbourhood of ujq contained in K  for 

all u and v, then B{uj2\ 0) is holomorphic with respect to a;2. Theorem 12 and 

the fact tha t the curve C is contained in the resolvent set of B{u)q\ 0) imply that 

the resolvent operator,

(l?(u,2; 0 ) - C ) - \

is holomorphic at uo\ for all points of C. Clearly, since the spectrum of 0)

consists of isolated points,

s u p | ( 5 ( ^ ; 0 ) - C ) _1| (4.97)

is finite, where the supremum is taken over all points of C . The identity

( B K i O ) - C ) - 1 (4.98)

= ( /  + (S M ;  0) -  0) -  B(u%i 0)))-‘(B K ai 0) -  ( ) - \
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tlie holomorpliicity of 5(oj2 ;0) and the fact that the supremum (4.97) is finite 

imply that

| (B (a ,2; 0 ) - C ) " 1| < M ,  (4.99)

for some constant M , for all (  on C and for all to2 in some neighbourhood N(u Jq )  

of ujo, contained in K .

In a similar way we can say that, because

( V i  *) -  C)"1

= (J + (B(̂  0) -  f)-‘(B K ;f) -  0)))-'(B(u?-, 0) -  fl"1

and using the fact B { uj2\ e) is continuous at e =  0 uniformly in a;2,

< M '  (4.100)

for a constant M '  and for all (  0 1 1  C, for all uj2 in N  and for all e smaller than 

some positive number £3 ( K ) .

Since B { u j 2\ e) has an asjunptotic expansion with respect to e, which is uniform 

in lo2. then the resolvent operator has an asymptotic expansion with respect to 

e, which is also uniform in u j 2 :

e )  -  O ' 1 =  0) -  C)"1 +  e « i(w 2; 0  +  . . .  +  e - R p ( w2; C) +  o(eO+1).

(4.101)

This expansion is also uniform in £. The bound (4.100) implies that

| . R > 2; C ) |< M , , ( u ,2), (4.102)

for all points on C and where each M p (uj2) is a function of u j 2 only. Thus, the 

bounds (4.102) imply tha t if the resolvent in equation (4.96) is replaced by its 

asymptotic expansion (4.101), then each term can be integrated separately and,
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finally, the projection operator can be expanded as3'inptotically around e=0:

P(w 2; e) =  P0(w2) +  ePi(w2) +  . . .  +  epPp(u>2) +  o fe ^ 1), (4.103)

where

P o ^ )  = ~ T j c { B ^ 0 ) - o - 1dC

The bound (4.100) implies tha t P{lo2\ e) is holomorphic with respect to u>2 in 

N  and for all e belonging to the interval [0, e3(A")].

Equation (4.103) and the holomorphicity of P(a>2; e) imply that

| P ( a , 2 ; e ) - P o K 2 ) | < l ,

if e is smaller than some positive number e4(K ), say. This implies that, just as 

in Subsection 4.3,2, we can (non-uniquely) construct a transformation function 

U(lo2; c), tha t has the property

U(u>2] e)P0(ujQ)U(uj2; e)”1 — P ( u 2\e). (4.104)

U{lo2\ e) and U(lo2; e)-1 can be chosen to be holomorphic with respect to u 2 and

to have asymptotic expansions with respect to e.

Since

P(ca2; e )P (w 2; e)P(u2\ e) = U(lo2\ e)P0(w2)P (w 2; e)P0(cJo)t/(ca2; e)-1 ,

where

B ( lo2; e) = U(to2] e)~l B(uj2', e)U(co2-e), (4.105)

finding the eigenvalues of B ( lo2\ e) in the subspace

M(w2;e) =  P(u.2;e )frI (n i),
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is equivalent to finding the eigenvalues of P(o>2; e) in the subspace

M ( lo2) =

is a fixed subspace and is finite dimensional. This is because it is the 

eigenspace associated with the eigenvalue A0 of P(tt>2;0) and these eigenspaces 

are known to be finite dimensional, as has already been noted.

The eigenvalues of B{lo2\ e) in N  (g> [0, e4(.P)] are precisely the solutions of the 

polynomial equation

det(P0(u>o)i?(u;2; e)P0(w2) -  A) =  0. (4.106)

4 .4 .3  T h e  e x p a n s io n  o f  Pq(uq)B(co2; e)P0(^o)*

We know that

B(co2- e) =  B 0(lo2) +  eB^co2) +  . . .  +  epBp{to2) +  Cp(co2; e),

where

Cp(w2;e) =  o(ep).

Denote by f(co2; e) the product

1
((B(cu2;e) -  P 0(cu2))u, v )^ i(n.),

c

where u and v  are any two elements of H 1(Qf ). Clearly,

(Pi(n;2)u, v)tfi(0 .} =  U m /(w 2; e) =  /(w 2; 0).

We have

/  (/(w 2;e) -  f(co2;0))dcj2 < f  |/(u>2; e) -  /(w 2; 0)| du2
J A J  A

=  J a  7 |(C i (oj2; e)u, v)/yi(n,*)|

0
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as e —> 0, where A is any triangle in Ar. Therefore,

0 =  lim [  f(u>2] ejdto2 — f  B i ( d 2)cIlo2,
JA JA

by Cauchy’s theorem. By Morera’s theorem, B i {uj2) is holomorphic in N.  We 

can continue this process to prove tha t Bp(u)2) is holomorphic in N  for all p. 

Therefore,

B ( u 2\ e) =  Bqo +  (w2 — luq)Bqi T (u>2 — oj2)2Bq2 +  • • •

TeZ?io +  e(uj2 — coq)B h  +  e[uj2 — lo2)2B i 2 T ■ • •

+e2l?2o +  €2(co2 — tv2)B2i +  e2(u>2 — 0Jq)2B 22 +  • * •

-\-Cp(lo2 ; e).

The series converges absolutely in N  and, therefore, it can be rearranged.

B{lo2\ t) — Boo ~t~ (^ 2 ~  m^ B qi T eBio (4.107)

+  (w2 — cuq)2Bo2 +  e(uj2 — u)q)2B i 2 +  e2 B 2q 

+:

+ Z Pq=0er(u>*-u>*)r-9B qp- g 

AD{  cu2;e).

The same is, of course, true for P( oj2\ e).

The transformation function U(lo2; e) can be chosen to be

e )+ ( I -P 0( ^ ) ) ( / - P ( u .2; e))), (4.108)

where

(7-(Po(co02) - P ( w2; e ) ) V /2
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is defined as
°o (  - 1 /2  ^

n=0 u y

This makes sense if

P0(u2) - P ( u , 2-e) ||< 1.

The proof of this is in Kato [14, Section 4.2, Chapter 2].

Evidently, U(to2; e) can be expanded as a double power series:

U{u>2; e) — 7 +  {to2 — oĵ )Uoi +  HJio +  • • •

This all implies tha t there is a double power series expansion for B(u>2; e):

B{to2\ e) — B m H )  +  (to2 — a?o)J5oi(wo) +  e7?10(c<;Q)

+ ( o >2 — o;q)2J9o2(^o) +  e(u?2 — ^0)^11 (Vo) T  e2-^20(^0)

+ E?=o “  uiy-qBqp„q{u2)

+ j I ) { oj2 \ e) .

(4.109)

It is immediately clear that

P o o ( < V > )  — B ( w o ;  0 ) .

From equation (4.108)

U01 = PoM)Poi(ul)  ~  PoiK2)PoK2), (4.110)

where
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Equation (4.105) implies

PoK 2)-BoiK 2)PoM )  =  P o (^ )B o iM )P o K )  (4.111)

-PoM )% i(w o2)S o o K )P o K 2) +  PoH 2)UooK2) % iK 2)P o M ).

It is proved in Kato [14, Cliapter 2] that

Poi =  - P o M ) S o iK ) S M )  -  S(w2)B0i ( ^ ) P o ( ^ ) ,  

where «S(n>o) is the reduced resolvent of \ 0); i. e.

s { u l ) u  =  Y  T r n ^ ’
jeQ> a j A

where the A/s are the eigenvalues of B  (Wq ; 0), the e / s  are the corresponding 

normalized eigenvectors, A is the particular eigenvalue for which Po(u>q) is the 

projection operator, Q' is the set of j ’s for which A j does not equal A and

Uj = (u, ej)Hi(n{y

Given this it is easy to verify tha t the last two terms on the right hand side 

of equation (4.111) vanish.

Therefore,

PoK 2)j5o iM )P oK 2) =  PoH 2)Boi(co2)P0(u;2). (4.112)

Similarly,

P o M )P io K 2)PoK 2) =  PoH 2)B10H 2)PoK 2). (4.113)

Thus,

(Po(^)i?oi(t^)Po(w o)u, v)tfi(no =  p f  u '.W F  (4.114)
J j

+Po fan ‘S 'M ; 0)(u '.n )v7.ndS
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where

u' = Po(wo)u

and

v' =  P o K 2)v .

From equations (4.90) and (4.95)

(P0( ^ ) P 10(a;^)Po(wo)u; v )^ i(nl.) — 6a27r/?u>o(ctooCoo 4~ Voodoo ), (4.115)

with obvious notation.

4 .4 .4  T h e im agin ary  p arts o f  th e  e igen valu es for real fre­

q uencies.

The eigenvalues of B{io2\ 0) for real lo2 are all real. The eigenvalues of B{u)2\e) 

for real to2 and for non-zero e need not be real. Our intuition tells us tha t they 

are never real regardless of the shape of the body and the value of e except for 

the special case of Jones5 modes. This, however, has yet to be proved.

Suppose tha t to2 is real and that A(u;2;e) is an eigenvalue of B(w2;e), with 

u (co2\e) the corresponding normalized eigenvector. Define

, 2 . _  y j / , . , 2 . ^ - i

0(u;2; e) satisfies

^ (o ;2; e) =  A(to2; e) P (u (w 2; e).n).

V 2^ (n ;2; e) =  0 in  f P ,  

^ ( o ; 2;e)

and

dn

d^{to2]e)

=  u(u;2; e).n
dn

dn
= T ( u ; V ) ^ 2;e)
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t/>(u>2; e) belongs to H 1(S7a). Furthermore, from the definition of 53(t<;2;e), we 

have

^ 2; 4 , =  e)(u (w2; e)-n )-

Therefore,

f  u(u;2; e).n53(u?2; e)(u(o;2; e).n)dS = j  Vt/?(co2] e).Vip(to2', e)dV Jon Jqv

+  fsna ? V 2; < #(w 2; e)0(w2; e)dS.

Finally,

f  u(n>2; e).nS3(w2; e)(u(u;2; e).n)c/5 = Sr [  T(u>2\ e)^(w2; eWda;2; e)dS.
Jen JdQa

Clearly,

(4.116)

A(w2; e) =  (B(co ; e)u(to2-e), u(w2; e))Hi{n{]. (4.117)

Therefore,

^A(t<;2;e) =  Sspuj2 j  u(n>2; e).n£3(o>2; e)(u(u;2; e).n)dS. (4.118)
Jon

Equations (4.116) and (4,118) imply

A(w2;e) =  9 ? /  T(Lo2\e)‘if)(uj2\e)^(u}2]e)dS. (4.119)
Jdna

Now suppose tha t

oo oo oo

S f ia =  ^  S  S  ( a 'm n ( w 2 ; e) cos mcf> +  ^ m „ ( u ; 2 ; e) sinm ^) (4.120)
m = 0  n —m  s = m

X
 ̂ (—a)n+s+1 r°° k +  ~
dns -  7--------- CTT— ;----rr /--- -------\ k s+n exp(—2k/e)dk

; [ n  — 7?t.)!(77 +  717.)! J o t o z
V  ' 9
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th en

T(co2 ; e ) (^ (u j 2 ;e) & a )

=  -  E “ =0  ES=m E S m ( a mn(w2; e) cos m<̂  +  ^ „ ( w 2; e) sinm<^) 
/

X

(4.121)

4 “ ^ n s  ( n - m ) ! ( n + m ) !  0̂°° ” ^ A : s + n  6Xp( 2 k/c)dk
9

, ,2 \  
s f -  —  W + H - 1 9

.2̂ 1  ____ evDf' —2—  Ma ( u —m ) ! ( n + m ) !  ■* 1 V g /  / Pam(cos 0).

Equations (4.119), (4.120) and (4.121) yield the following
/

A(u>2;e) (4.122)

=  E n = o  E n = m  E S m  C m (anm(w2; e)ctmfi(w2; e) +  /3m„(u;2; e)/?ms(u+; e))

(-a —  )"+*+!
X 7---- +7------77 exp( — 2  —  /e).( s —m ) ! ( n —m )!  v 9 1 1

Equation (4.122) can be rewritten as

Q'Afo;2; e)

—  —87r2a2o;2 £ ~ =0Cm E n = m  Q m n ( w 2 i f )  (n~m)\

a ~ ) n+3a '
E ”=„, A » ( “ ’ i e) + + ) T

X ex p (-2 — /e).

«nm(w2;e) and /?mn(w2;e) are continuous in e in the interval

[0

To see this recall equation (4.84), with 

72+1/2
^ V )  = Cma27r \

(4.123)

(72 — 777.1 ̂ f
 — /  A(u>2] e)“1_P(u(cj2; e).n)P"l(cos 6) cos mc^dS

(72 +  772)! JdUa

and similarly for j3mn(co2;e). The eigenvector u(a>2; e) is continuous in e and so the 

result is clear. Equation (4.123) tells us tha t the imaginary part of any eigenvalue
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of B{lo2\ e), for real u>2, is 11011-positive and is bounded by an exponentially small 

term.

Similarly, for any element of i? 1(0 1),

S(-B(w2;e )u ,u )ffi (nf) =  o(ep), (4.124)

for all powers p when lo2 is real. Therefore, it is clear th a t in the expansion of 

B{lo2\ e) in equation (4.107) each coefficient, Bij, is real. This implies tha t each co­

efficient in the equivalent expansion for P(lo2; e) is real. This determines, through 

equation (4.108), tha t the f/*y, the coefficients in the expansion of ? 7 (c j2 ; e ) ,  are 

real. Thus, due to equation (4.105), the coefficients in the expansion of B(lo2; e) 

in equation (4.109) are all real.

4.5 Scattering frequencies.

Suppose we now look for scattering frequencies — i. e. those values of lo2 for 

which, for a given value of e, one is an eigenvalue of B ( lo2; e) — then we must 

solve

det(P0(Lo2)B(u)2', e)Po(^o) ~  1) -  0 (4.125)

for lo2. We shall look for the scattering frequencies in a neighbourhood of tu2, 

where a% is such tha t

B(wo2;0)

has eigenvalue 1. Let us call the multiplicity of this eigenvalue m. The liolo- 

morphicity of B(u>2\ e) and U(to2;e) with respect to to2 for fixed e implies that 

B(lq2\ e) is holomorphic with respect to oo2 for fixed e. Thus the left hand side of 

equation (4.125) is holomorphic in lo 2 . The left hand side of equation (4.125) is



CHAPTER 4. ASY M PT O TIC S  OF SCATTERING FREQUENCIES 181

continuous with respect to e uniformly for l o 2 on some simple closed curve, C", 

tha t encloses loq but no other scattering frequency. Thus

[ det(P0(^o)-^(a;2; e)Po(wo) ~  1) -  det(P0(Lo%)B(u2; 0)Po(^o) 

< | det(Po(c^)P(cu2;0 )P oM ) “  1)1

on Cf.

Using Rouche’s theorem (see e. g. Ahlfors [2, p. 152]) equation (4.125) has, 

counting multiplicty, m  solutions. Thus, there are m  not necessarily distinct

scattering frequencies in the vicinity of loq,

4.5 .1  U n iq u en ess th eo rem  for frequencies w ith  p o s it iv e  

im agin ary  part.

We wish to prove the following result

L em m a 17 There are no scattering frequencies with

Ssto2(e) > 0.

P roo f: Suppose the lemma were not true. Let u(e) be the eigenvector of

B(co2(e);e) associated with the eigenvalue 1. Define

0'(e) =  -?:w(e)A(cu2(e);£)“1P(u(e).n).

Let -0(e) be the function tha t satisfies Laplace’s equation in fle, the free surface 

condition and the Rellich radiation condition and whose restriction to Qa equals 

0'(e). Lemma 12 guarantees the existence of such a function. We already know 

that, since the imaginary part of w2(e) is positive,

i f ( e ) \ F S  e L 2(FS),
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and

V?/>(e) G L 2 ( O e). (4.126)

Equation (4.126) and the radiation condition imply that

where £& is the semi-infinite cylinder of radius b tha t lies below the free surface. 

Thus,

/  ^E i l> (e )d S  =  -  /  V?(e).Vtf(e)dV -  ^  /  |^(e)|2rf5.
Jan on Jae g Jfs

u(e) satisfies

0 =  pu>2(e) [  u(e).u(e)dV — [  cr(u(e)) : V ufeJdF
Jtoi  J Qi

- p 0uj2(e) f dn 53(oj2(e); e)(u(e).n)u(e).ndS.

Finally, we have

0 =  puj2(e) f  u (e).u (e)dV — /  <j(u(e)) : V u (e)dV (4.127)
** * t/ i

+(a° i S |  to. v W ) - V m d V  +  IFS m e)\2dS.

By taking the imaginary part of equation (4.127) we can see th a t u(e) must 

vanish. This contradicts what was said earlier and so the assumption tha t there 

exists a scattering frequency with positive imaginary part must be false. □

Vullierme-Ledard [29] showed that, when the algebraic multiplicity of the scat­

tering frequency is 1 (that is to say, when m  equals 1), the scattering frequency 

has an asymptotic expansion in integer powers of e and all the coefficients in the 

expansion are real.

We aim to extend this to look at scattering frequencies whose algebraic mul­

tiplicity is greater than 1 and to examine the behaviour of the imaginary part of 

each scattering frequency.
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Firstly, let us note tha t the eigenvalues of B{u)2\ 0) are semi-simple, tha t is to

say,

(B(lo2', 0) -  X)P{oj2) = 0, (4.128)

where A is any eigenvalue of B(u)2\ 0) and P{to2) is the projection operator onto 

the eigenspace associated with this eigenvalue. It has already been noted that 

B(to2] 0) is self-adjoint. So the eigenvectors corresponding to different eigen­

values are orthogonal and by the Gram-Schmidt orthogonalization process the 

eigenvectors corresponding to the same eigenvalue can be selected to be m utu­

ally orthogonal. Therefore, a complete set of eigenvectors can be chosen to be 

mutually orthogonal and of unit modulus. Call this set

{ei, e2, . . .} .

This set spans the whole of

So, if an element of i?1^ )  is

OO

u =  Y uJeB 
3=1

then
OO

£(u;2;0)u  =  X ) ^ ‘(w2)wj ej- 
3=i

If {e*, et-+1, . . . ,  e,-+m_i}  are the m  eigenvectors associated with the eigenvalue A, 

then the projection operator is given by

m—1
P(U32)U =  ^  Ui+JQi+J- 

3=0

Thus
m—1

(B(lo2; 0) -  X)P(co2)u =  (B(uj2- 0) -  A) £  ui+Jet+J =  0
j=o

and equation (4.128) is verified.

This leads us to the following result:
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L em m a 18 The scattering frequencies have expansions in e that begin like

u;2(e) =  u?q a±€ +  a 

where ai and a2 are real.

P roo f: Begin by writing

P0(t^ )(P (u ;2;e) -  l)-Po(^)

as

Po(u20)(Boo — 1 ~  {of2 — u?o)5oi +  eI?io +  P(u>2; e))Po(^o)-

Equation (4.128) implies that

P o M ) ( B ( c 2; e) — l)P o K 2) =  -Po(wo)((w2 — wo)-Poi +  e^io  +  D(to2; e))Po(^o)-

(4.129)

At a scattering frequency,

d et(P oK 2)(P (u ,2; e) -  l)P o K 2)) =  0.

This implies that

/ (a ;2; e) =  det(Po(n>o)((n;2 — ^ 0 ) ^ 0 1  +  ePio +  D(u)2', £))Po(o;q)) =  0. (4.130)

We already know that there must be rn solutions of this equation. For a first 

approximation, try

U)2 — CJq =  Xj 6 ,

where Xj is the j tli solution of the polynomial

Q(x) =  det(P0(n;2)(.TP01 +  B 1q)P0(lu2)) =  0. (4.131)
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Equation (4.131) is equivalent to

det(PoK 2)(a.-J +  Bol'BjoJPoOoo)) =  0- (4-132)

B qi exists because from equation (4.112) its non-existence would imply the ex­

istence of a non-trivial solution to

An u =  0.

From equation (4.114),

p [  u .vdV  +  po [  S(lOq\ 0)(u .n)v .nd5 =  0,
Jd; Jdil

for all v  in H 1 (H/) and for v = u  in particular. Finally, we know that the second 

integral never vanishes when v is u and, therefore, u must be zero. This contra­

dicts what was said before and so the initial asumption tha t B^i does not exist 

must be false.

Equations (4.114) and (4.115) imply that

A n1 *io

is self-adjoint. Therefore, equation (4.132) has m  real solutions — we have called 

these ^&i, . . . ,  x m },

Again, since

B q\ B\o

is self-adjoint its eigenvalues must be at worst semi-simple. Let P'  be the projec­

tion operator onto the eigenspace spanned by one of the eigenvalues and suppose 

the dimension of this space is p. Near this particular eigenvalue — call it Xj — 

equation (4.130) becomes

d e t(P 'P 0(w2)((w2 -  wg -  +  P(w2; <e))P0(w2)P') =  0. (4.133)
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Now write D{lo2\ e) as

^ E 20 +  e(w2 — lJq)Bu +  E{lo2\ e),

and write this as

€2(-^2o +  $ jB n ) +  e(u>2 — o?o — Xj€.)Bn +  E{oj2] e).

Define the new variable

£ =  u2  X J 6
e2

Equation (4.133) becomes

det (P 'P 0( ^ ) ( ( B 01 +  B20 +  XjBu + F(C; e))P0^ l ) P ' )  =  0, (4.134)

with obvious notation. Denote by f/((;e) the left hand side of equation (4.134). 

We have

9((] 0) — det(P'P0(wo)(C^oi + B2o + xjBu)Bo{<^o)P')‘

This has zeros at {f/i,. . . ,  ?/p}, say. Let C be a simple positively orientated curve 

enclosing just one of these points, say. Now,

inf |</(C; 0)| = s > 0,

where the inhmum is taken over all points (  on C. Furthermore,

s^p |</(C,e) — J7(C; 0)1 <

for all e smaller than some suitably small positive number. So, by Rouche’s 

Theorem, g((; e) has the same number of zeros inside C as g{Q 0). The smaller 

we take e to be, the smaller the curve can be allowed to be. Consequently, the 

kill zero of g((; e) is

Vh +  o(l).
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Finally, each y k is real. To see this we note tha t there must be a u satisfying

(?/fc#oi +  #20 +  £ j # n ) u =  0.

So,

=  ((#20 +  ^ i # n ) u , u ) F i ( f l t)

(# 01U:
We know th a t each of these terms is positive.

We have

io2(e) =  loq +  Xjt +  yke2 +  o(e2) 

and we know tha t Xj and y k are real. So the lemma is proved. □

We cannot go any further with the expansion because we cannot use the 

reduction process any more. That is to say, the eigenvalues of

VkBoi +  #20 T £jr'#n

need not be semi-simple.

If the eigenvalue we started with had been simple, we could have proceeded 

indefinitely and re-captured Vullierme-Ledard’s result.

4*5.2 T h e im agin ary  parts o f th e  sca tter in g  frequencies.

We now wish to investigate the imaginary part of the scattering frequencies. The 

scattering frequency is a solution of

A(tu2; e) =  0,

where A(u>2; e) is the eigenvalue of #(u;2; e). We adapt a proof from Harrell and 

xSimon [12] to prove th a t the imaginary part of each scattering frequency is
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Figure 4.7: Line joining tu2(e) to real axis.

bounded by an exponentially small term. We are interested in showing tha t it is 

11011-zero but, unfortunately, this has not been done completely.

A (a?2; e) is a root of

det(i?(u;2; e) — XI) = 0.

For fixed e, A(cj2; e) is holomorphic with respect to to2 except a t a discrete set 

of exceptional points. In any compact domain, there is only a finite number of 

exceptional points. This is found in Kato [14, p. 64], So we can draw a straight 

line from the point oj2(e) to the real axis that avoids every singularity. Suppose 

this line makes an angle a  with the real axis, as indicated in the Figure (4.7).

Denote by  T £(.t) the function

r̂A(3£u>2(e) — x cos a  -f- «Q:a;2(e) — ix sin a*; e).

We shall use the mean value theorem on T £(.t) to find Qxj2(e) in terms of the 

value taken by T e(x) at the endpoints of its range and in terms of its deriva­

tive with respect to x somewhere in the range. We then find the leading order 

behaviour of this derivative as e tends to zero.
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Clearly,

T e(0) =  0.

Equation (4.123) implies that

Ye ^—;— — £rA(3£ui2(e) — 'Auj2( c) cot a; e)

=  f(dtu)2(e) — $sto2(e) cot cn; e) exp(—2(5Rw2(€) — Sstu2(e) cot a )/e ),

where

/(9£tu2(e) — 9:a;2(e) cot a-; e)

=  —87r2a2cj2 E S = o^ r

(4.135)

/ f >2( _ n ^ L ) n + *
2 , ,2

( - a  —  ) " * '  v ^ o o  Q g 
2 ^ n = m  r m n  (n _ m )i

n , a
Z—tn —in m n  ( n —m )! +

\

From the holomorpliicity of A(a>2;e) at all points on the line and the mean 

value theorem, we have

d T (
dx

ŜLO2t o
sin a

-  0  =  T e
$sui2(e)
sm a

0 (4.136)

=  f(dtu)2(e) ~~1suj2(e) cot a; e) exp(—2(5Rc<;2(e) — Qro2(e) cot «)/e), 

where c lies in the interval

[ o , 5 ^ ] .
sm a

We have
a x ,
dx

= sm a
dSs\{z] e)

where

c' — 3ftu;2(e) — ccos a  -f z'Qx<j2(e) — i c sin a.

Since the line contains no exceptional points, A(z; e) must have a Taylor expansion 

around every point. This implies tha t Ye(a:) is twice differentiable at every point
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011 the line. Therefore,

a r c _  d r t— _  —-— o(l).
OX OX

sin  a

We have

190

d r e
dx SJw2 ( e) =  Sill Q'

d^X{z;e)
dlsz

where

c" — Jftw2(e) — St<;2(e) cot a.

So, by this and the Cauchy-Kiemann equations, equation (4.136) becomes 

<?3ftA(z; e)
d$tz

$sto2(e) =  f(JRto2(e) — Qw2(e) cot a; e) (4.137)

Clearly,

dfftz

Equation (4.124) implies that

X exp(—2(3£o>2(e) — $m?2(e) cot <a)/e)(l +  o(l)).

39£A(z;e) _  d\(z \e )  _  d S \ ( z \ e )
dz d $ z

d$s\(z; e)
d $ z

for all powers p. A(z\e) can be expanded around the point e = 0:

X(z\t)  =  A(z;0) +  o( 1).

This expansion is uniform in z and, therefore,

dX{z;e) 0A(*;O)
dz

Furthermore, since

P oK 2) ( ^ ; 0 ) - l ) P o K 2)

dz
+ o(l).

-  Po(Wg)(5 (s;0 ) -  P K ;0 ) ) P o K 2) 

=  (z -  ô2)^o K 2)^o iP o K 2),
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(recall tha t, since I?(u>q; 0) is self-adjoint,

^ o K 2) ( ^ K 2;0 ) ~ i ) P o K 2) =  0)

tlien

A(z;0) =  1 +  x(z -  wg), 

for some constant x — the eigenvalue of Pq(u;2 )B 01P0 (oJq) — and so

dX(z\ 0)
dz

d \ ( z \ 0)
d'<

x.

(Recall the linear dependence of X(z\ 0) on z.) Thus, we have,

d$tX(z; e)
d m

— «t(1 -T o(l)). (4.138)

Equations (4.137) and (4.138) imply that to leading order

(e) =  ex p (_ 2 a i/g) exp(—2— / e),
x 9

(4.139)

where cq is the order one term  in the expansion of cu2(e), which, according to 

Lemma 18, has the form:

5Rw2(e) — U q -f a \ e  +  o(e).

We note tha t /(u^ ; 0) is never positive. This is consistent with the fact that no 

scattering frequencies lie in the upper half plain. If / ( luq; 0) is non-zero, then, of 

course, the scattering frequency has a non-zero imaginary part. Even if / ( u>q; 0) 

vanishes it seems likely tha t a higher order term of 7nu2(e) does not vanish; this 

appears to be difficult to prove, however.
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J o n es’ m odes and J o n es’ 

frequencies.

A .l W hat is a Jones’ mode?

Let 91 be ail open, compact domain of non-zero measure. A Jones’ mode — 

named after Professor Douglas Jones, wlio emphasized their importance — is a 

non-trivial solution of the equation

V.cr(u) +  k2 u =  0

th a t satisfies

u .n |an =  0

and

<j(u).n|sn = 0,
where dfl  denotes the surface of O and n denotes the outward pointing normal 

to dfl. k is called a Jones’ frequency.

192
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A .2 Examples of Jones’ modes.

A .2.1 T h e cylinder.

Suppose tha t we look for a Jones’ mode in a cylinder of radius a. We write u in 

the form

u =  V X (T ez),

where is a function tha t depends only on the radial variable R  and ez is a unit 

vector parallel to the axis of the cylinder. It is not difficult to show that ^  must 

satisfy Helmholtz’s equation

V 2J> +  = 0,

where

W ithin a multiplicative constant the only regular solution is

$(i?.) =  Jo(KR),  

where Jq{z) represents the zeroth Bessel function. Thus,

xi — J\.s hs <̂j> *

where e</, denotes the angular unit vector. Immediately we see tha t the normal 

component of dispacement vanishes on DPI.

The surface traction on dPl is given by

, i ( - k 2.Jg{k.a)  +  P j ^ { k sa))e4>.

This vanishes if and only if

ê tJ\  ( cl ^ —  A-g ci J q ^  fas ^ )
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whre Ji(z)  denotes the first Bessel function. Since the first and second Bessel 

functions have interlacing zeros this equation has infinitely many solutions.

A .2.2 T h e sphere.

Consider a sphere of radius a. Let (?’, #, <f>) represent a spherical coordinate system. 

Let us look for a Jones’ mode of the form

u =  V X  (d; (er cos 8 — e<? sin#)),

where 4/ is a function of r only.

As with the cylinder, 4> satisfies Helmholtz’s equation. Thus,

where jo(z) denotes the zeroth spherical Bessel function. Therefore,

u =  ksj'0(ksr) sin 8e<f>.

The normal component of displacement automatically vanishes on dD. The 

surface traction is given by

(h a )  -  — j'0(ksa)) sin de^. 
ct

A neccessary and sufficient condition for this to vanish is tha t

3ii(fcsa) =  ksaj0(ksa ),

where j i ( z )  denotes the first spherical Bessel function. There are infinitely many 

values of ks for which this is true.
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A .3 Bodies of rotation.

Suppose tha t H is tlie body formed by rotating the two dimensional body S  

about some axis. Let the boundary of S  consist of a finite number of smooth 

pieces joined at non-zero angles. Let (R,cf),z) denote the usual cylindrical polar 

coordinates and let us look for a Jones’ mode of the form

u =  ue0 , (A .l)

where u depends only on R  and z. Let us stipulate tha t u must vanish on the

axis of rotation.

The condition of vanishing normal component of displacement on the surface 

is automatically satisfied. The surface traction is given by

( du du \
"  i a i f *  +  ne*■

The equation satisfied by u in the interior is

d2u 2 du d2u 2
d &  +  H d R  +  + k°u =  °- (A-2)

Let us define the Hilbert space V  by supposing tha t a distribution u belongs

to V  if

J  R\u\2dS

exists. The inner product between two elements u and v of this space is

J  RuvclS.

The Hilbert space H  is the space of those distributions belonging to V  for which
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exists. Tlie inner product of u and v is given by

f  n f  -  f  du dv d u d v \
Is  + L R ( d R d R + d ; d i J dS-

We have

H  C V  = V' C H'.

Furthermore, the imbeddings are compact. To see this let us consider a sequence 

{■Uj} in H  with

II Ui  | | i / =  1 for i e Af.

Let

Uf

where each Ui is now considered as a function in 0  tha t does not depend on <J>. 

Clearly,

II ||ffi(fi)= 2?r || ui ||/j

and

II u i | | l 2 ( £ 1 ) =  2?r || Ui \ \ v  •

From the compact imbedding from H l (D) into L2(Q) (see, for example, Sanchez- 

Palencia and Sanchez-Hubert [27, Chapter 1]) there exists a convergent subse­

quence of {iij-} in T2(H). Consequently, there exists a convergent subsequence of 

{it*} in V. Thus, the imbedding from H  to V  is compact. From this, one can 

show th a t the imbedding from V  to H'  is compact.

Let us take the function u in equation (A .l) and consider it as a function in 

S. From equation (A.2), we have

f  ( d2u 2 du d2u 2 \
0  “  J s R v [ d &  +  R d R  +  +  f c s U J d S ’
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where v is any smooth function in S. By integrating by parts we can see that

(u ,v )H = (k*+ l ) (u ,v )v .  (A.3)

It is well known tha t there is a countably infinite number of values of ks for 

which there is a non-trivial solution to equation (A.3). These solutions are, in 

fact, smooth within S. Thus a large class of rotationally symmetric bodies can 

support Jones’ modes.

A .4 Thierry Harge’s work.

We might guess th a t a body tha t has no axis of symmetry cannot support a Jones’ 

mode. It seems likely tha t Jones’ modes are alwaj^s of the form in equation (A .l). 

That is to say, they are alwnys a torsional mode. This is pure speculation. We 

do know, though, tha t, in a sense, the class of smooth bodies having a Jones’ 

frequency in any finite range is infinitely rare. This was proved in a paper by 

Thierry Harge. The author’s own translation of this work is included here as the 

work does not seem to appear in English anywhere else. We note tha t what we 

have called a Jones’ frequency Harge calls an exceptional eigenvalue.

F R E E  O S C IL L A T IO N S  O F A N  E L A S T IC  B O D Y .

P re lim in a r ie s  Denote by L the usual elasticity operator, tha t is to say

Lu  =  (A +  +  ^V 2u, (A.4)

where A and /.i are the usual Lame constants. Let 0  be an open, bounded and 

simply collected subset of 7L3 that has a “smooth” boundary. Define an operator 

.A(fi) defined on a domain D(A(Jl)) = {u £ H 2(Q);B(fi)u  =  0} by

A(H)u =  —Lu. (A.5)
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B  is the surface traction operator and is given by

B(Q)u = AV.un |5n + ^ (V u  +  (V u)T).n |9n, 

where n is the outward pointing normal to the surface dO.

If considered as an operator from L2(fl) —> L2(f1), A(H) is unbounded, self- 

adjoint, positive and anti-compact (i. e. its resolvent is compact).

We call eigenvalue to of A (n) exceptional if the associated eigenfunction u  is 

such tha t u .n  |sn= 0.

Fix H and let E  = { f  G 7̂ -3)}. Let fl<f> be the open domain of 7Z3 that

consists of points x  with x  =  </>(£)> where ( G f i .

T heorem  13 There exists a countable ensemble of open subsets o fE ,

with each Gn dense in E  and with Gn+i C  Gn, such that for any <f> G Gn,

A (n^) does not have an exceptional eigenvalue in the range [0,n], Consequently, 

i f  we restrict ourselves to a compact region of1Z+, then almost everp body with a

boundaip of class C°° will not have an exceptional eigenvalue in this region.

Proof: We call A<j> the unbounded operator on L2(0) defined in the domain 

D{A+) =  {u <= H 2{n);B (%)(</,,u) =  0}

by

A*(u) =  ^*(A (n*)(^ .u ))  (A.6)

In this notation, if u  is a vector field defined in fl, then </>*u is the vector field 

defined in £1$ tha t is given by

(<M )(x) =  u (0 ,  (A.7)
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where x  =  0(<f).

Similarly,

(<Tu)(£) =  u (x ) .  (A .8)

A 4> is self-adjoint for the scalar product

L 2(0)(f,g)d> =  (<£*/, (A.9)

A«£ and A (n^) have identical spectra and for every exceptional eigenvalue of 

A(H^) there exists an eigenfunction u of A 4 such that

u.(*d0)_1(n) |afi=  0, (A.10)

where (AZ^)-1 denotes the transpose of

If we define B<j,(u) =  6* B  , then B<j> is a first order linear differential

operator whose coefficients depend linearly on (d^)_1.

For simplicity, we write A j  and B j  as A and B  respectively. Let J  be a lifting 

operator from H ^ d D )  into H 2(Q), such tha t B . J  =  I.

For any g E L2(fi) and A E C the equation

(A# — A)u = g (A.11)

is equivalent to the equation for (u, v) E D (A<j>) 0  D ( A ) 

v =  u - J ( { B - B 4)u)
(A.12)

(A -  A)v =  g +  (A -  A^)v -  (A^ -  A) J (B  -  B 4})u, 

which shows tha t the spectrum of depends continuously on <j> E E.
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An eigenvalue is said to be stable if there exists a neighbourhood U of u>o and 

a neighbourhood V of I  in E  such that, for all (p E V, the operator A $ has only 

one eigenvalue in U.

Simple eigenvalues are, of course, stable.

A function ip E C°°(Q;7Z3) is chosen and I  +  sip is called <p8, where | s | is 

small. We denote |s=o and |s=o as A  and B  respectively. Then A  (resp. 

B)  depends linearly on ip* and ip" (resp. ip'). As a result of equation (A.12), we 

have the following lemma.

L em m a 19 Lettoo be stable eigenvalue of A, lo( s ) the corresponding eigenvalue 

of A ^ ,  and F(s) the associated space of eigenfunctions. Then to(s) and F(s) are 

analytic in s for small | s |  and i fu ( s )  E F(s) belongs to the class C l we have

pu(0) — ( A - loq)~1[ - pA u (0)]~pJ B i i(Q)-\-(A-ujq)~1[p ( A - ooq) J B u (Q)], (A.13)

where p the orthogonal projection operator in L 2(QS-,1Z3) of the space F ( 0).

L em m a 20 Under the hypotheses of Lem.m.a 19, a function ip can be chosen so 

that, for all u(s) F(s) with u(0) 0,

d
^ [ u {S).(td<ps) £  0. (A.14)

an

P roo f: Suppose x 0 E SQ; we construct ip in a small neighbourhood of x 0. Let 

d =dim  .F(O), and let {u?}, for 1 < j  < d, be a base of F(0). {^j}, for 1 < j  < I <  

d, is a base of the space spanned by {uy.n |an}■ There exists a neighbourhood W  

of xo in dD in which the vectors {uj |an\vy}i<i</ are linearly independent. By the 

theorem of Holmgren, the vectors {iiy |vv}i<j<d are linearly independent. There 

then exists d points, x 1}. . . ,x^, in W  and d vectors in 7£3, a i , . . . ,  a^, such that
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the m atrix (\ij(xk)-ak)j,k is invertible. W ithout loss of generality, we can suppose 

tha t ajfc.n(xfc) ^  0. Let v  £ (0, | )  and let e > 0 be small. Define

*MX) =  ]C  #fc(x)e2+l' sin f  n (x fc), (A.15)
k=l V e /

where the Ok £ Cj°(IZ3) have mutually disjoint supports contained in W  and 

Qkfek) = 1 for each 1 < k < cl. If {uj)e(s)}i<j<d is a base of F ( s ) such that 

U j ( 0 )  =  u j and u(s) =  YJj=i a i,e(s )u j,e(s)> where aj £ C 1, we have

S ---------------lan= (A-16)

Eoj,c(0)U j.n |an + E “ i«(0)[uj,£- » “ iij.1# !(ii)] Ian •

It suffices to verify that, for e sufficiently small,

E C  + E « i  =  i

and

n -  UjJd^.n]  |an= 0

cannot both be true.

Clearly, lime_ 0 =  0 in H 2(JZ3), so, because of Lemma 19,

lim p(ui)£) ,n  |dn= 0
c—

j

in H 5 ( 0 0 ) .  Since the vectors { v j  |an\w} are linearly independent and

Pwv3 |sn\M'= 05

A,e =  0.

Therefore,

\sa= 0 (A.17)



APPENDIX A. JONES’ MODES AND JONES’ FREQUENCIES. 202

in H^(dO).  So, for all k

0 =  lim 0fc(x)e1+I/ cos ) a^. Y  a ’i ,eU j ( x ) n ( x fc) . n ( x )  \9Q (A.18)e—i-U \  £ /

in H ^(d D ).This implies tliat

lim afc. Y  =  0 . (A.19)6—►U

It must then be the case tha t lime_,0 a j,<i = 0.

The spectrum of A(O^) is continuous in (f> and so Gn must be open.

T h e  p ro o f  th a t  Gn is dense in  E.

Let T|q(U] be the vector space generated by the eigenvectors of A(fl^) associated 

with an eigenvalue in the range [0, n]. Let be the set of u .n  where u runs 

through the space spanned by the eigenvectors of A(fi^) associated with A. Let 

U be any open set of E.

Let U\ be the open subset of U defined as

Ui — {J e U\ dim F ^ r̂  is minimal }.

Let U2 be the open subset of U\ in which the number of distinct eigenvalues is 

maximal. I11 U2 the eigenvalues are then stable. Finally, let U3 be the open subset 

of U2 consisting of elements, r/>, for which

Y ,  dim Fx 
AC[0 ,n]

is maximal.

Then according to Lemma 20,

L  d im ^A =  d im -FtO,n]
Ae[0,n]

for J  £ U3 . Thus, U3 C  Gn and Gn is dense.
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Som e proofs from  C hapter 4

Let

where

and

0 (x )  =  01 (x) +  0 2(x),

, ^  ^  n+1 -  ??z)!y/2 P"l (cOS^)

'h = L £ a Qm"cosmH ( ^ ) i j

m=0nSIB ((n +  ™)Kn “  m ) ')1/2
X fo°° exp(-fc(y + 2/e)) Jm(kR)dk.

Suppose tha t QPf 7̂  0 and tha t a is smaller than l/(2e).

The cimn’s are constants and

£  £
m = 0  n= m

|2&rnn

exists.

We want to show that

203
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(1 + r V /V W € i !(fi“), (B.l)

Vi/>(x) € (£2(fi“))3 (B.2)

and

V-(x)|FS e l 2(f s ). (b.3)

B .l  Proof of (B .l)

Evidently,

|^ (x)|2 < 2|?/)1(x)|2 + 2|'02(x )|2.

Clearly,

f  (1 + r 2)_1|^i(x)|2dy

exists if and only if

f  r~2\'ipi(x.)\2dV  
Jna

exists.

This last term  is less than

roo rw p2iv ® ~  i  f  ( n  -  ™ ) ! \ 1/2 P™(COS0)
/ / / drd9d<p sm 0 > > a + amn cos md> \ )--------- ------------- --------

J r = a  J o = 0 V (™  +  m ) ! J  r " + l

Therefore,

L r " 2i M x )i2rfvr < s™ =oE ” z
  sr̂ oo v^°° 27r|Q-m n |2 si

Z j m = 0 2-Jti—m  ( 2 n + l ) 2 m  i

where

jo'nm |2 r '  r ° °  dr  
la  r 2n+2

2 if m  =  0
Cra =  ,

1 otherwise
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This last sum exists. The exchange of the order of summation and integration 

tha t has taken place above is justifiable because each term in the sum is non­

negative.

Now split the ip2(x) term  in two as

OO CO

*02 (■̂■) ®Q-'00-̂ Oo(-̂ -) “f" ^   ̂ P  ̂ & Ctm7iEmn(X})
m=0

n = m  

n /  0

where

Rmn^yP) ~ ( -1 ) m+n-t-l r°° k +  K
((n -j- m)!(n — m)!)1/2 Jo k — K

V  exp( - %  +  2/e ))Jm{kR)dk.

Using the well known identity:

we have

P m (COS 9'} 1

" J U .  = I  k" exP ( - fc(^ + 2M)Jn.(kR)dk,

„ . , 1 , 2  P,(cosff') 2 .P Jcosfl')i?oo(x) =  — H ^ +  . . .  H p ------- -
v A' r'2 A> j-'p+ i

- j f e - T  f^ e x p (- fc (7 / +  2 / t ) )J0(kR)dk,

where

and

Therefore,

r' = \JR2 +  (y +  2/e)2

b =  arctan
y + 2/e

 ̂ |S0o(x)|2<i5 = 2jt

- 4 * 4  e/S'i { /0~  &  exp( - %  + 2/e)) J 0(fcP)<O:} 

+ 4 4  | / “  jA_ exp(—%  +  2/e))J0( k R ) d k f  ,
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where Sc is the hemisphere with radius c centred 011 the image point (r1 

lying below y — —2/e. Denote by R(c) the difference

/  l-BooMpdS — 2tt. 
J sc

It is easy to see tha t R(c) decays to zero as c approaches infinity. So 

leading order term in the asymptotic expansion of

[  \B00(x)\2dS.
Jsc

Clearly, then,

?’/_2|aa'oo-£ta)(x)\2dV < c~2a2\a00\2 \BQo(x)\2dSdc.

This exists because

27r [  c~2 [  \Boo(x)\2dSdc 
J 1 / e  JSC

exists. Therefore,

/  (1 +  r2)~1\Boa{x.)\2dV
Jfio

exists.

We now aim to show that

oo oo
Y  Y  atl+1a mnB mn(x.)

m = 0

n =  777.

77 ^  0

belongs to L 2(Ha). This will impfy that

L  f1+ r ~ 2)JQa

exists.

oo oo
Y  Y  ctn+1a mnB mn(x)

m = 0  n = m ; n ^ Q

2

dV

Let

Cmn(y,p,q)  =  f { B mn( - l / e , R ,  </>)) exp(-py ),

— 0) and

27r is the
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wliere

' F { B mn( 1 /e, jR, <£))

denotes the Fourier transform of 2?mn( —1/e, i7, >̂) when considered as a function 

in 7£2 and

P = \jp2 +  <?2-

Let

a 7<p =  arctan —,
P

It is easjr to show that

f _ X V x/ 2 + m + 1  o 4- i K  
Cmn(yiP,<l) = 2-7T-— < N l/   N m/0 ~------------ 1 ex p (-p (y  +  2/e)) cos

((?2 +  m)!(n — ???.)!)1/2 p — K

when n is even and

/  l ) n / 2 + m + l / 2  ^  _  f t
Cmn(p>q) = 2tt . ----------— —------ — pn 1 exp(-/?(y -f 2/e)) cosm ^'

((72 +  m)\{n — p — A

when n is odd. We now use Parseval’s equality to show that

/ OO p  poo p

/  |Bnm(x)|2rfy =  /  /  | c ran(y ,p ,5 ) |2d y
- l / e  Jit2 J-l/cJn*

and, thus

P + K
P - K

x p 2n 1 exp(—2p(y +  2/e))

P + K
p - K

x p 2n 1 Sa°1/<Ldyexp(-2p(y  + 2/e))

-rr M  roo
[ n + m ) ! ( n —j?i)! ^0 dp

x p 2n~2 exp(—2p/e)

P + K
P—K
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where M  and C  are constants independent of n and m.

We now use the fact tha t if the sum
OO

E 2"la"l2

exists then

E “ n | 2 5  E 2 " K I
n—1 n=l

to see tha t

/ oo oo

dV

<

an+lamnBmn( y , R t <f>)
m—0 n = m ; n ^ 0

E “ =o E S U w o 2m+’“a2n+2|amn|2 |B mn(y, R, </>)\*dV

< Ca3 E “ =0 E “  m;n̂ o 2m+1«m„|2FFM ^ ( « e / 2 )  

<  2C«2E “ =„ E ~  h m n l ' H ^ o r C ^ ) 2" - 1'

It is true tha t

(2 7 7 .  —  2 ) !  ( 2 ? 7 - 2 ) !

2n—1

(?7 -J- 777)!(77  — 777)! 77177!

_  2 n ( 2 n —2 ) ( 2 n —4). . .2  ( 2 n - l ) ( 2 n - 3 ) ( 2 n - 5 ) , . , l  1
n! n\ 2n(2n — l)

<
22n

2 n ( 2 n  —1) ‘

Therefore,

exists if

/ GO OO

m—0 n=m\n^0
dV

11, J2
(2ae:12ii—1

Cl'r

m = 0 n=m
exists. If a < l/(2e) the result is true.

B.2 Proof of (B.2)

W i (x) = E~=oE“ „,«"+1a„,„ (fS fH )1/2
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x j- Pnl(cos 0) cos m<j> e,. 

- ^ P n ' i ^ o s  0) cos m(j) ee

,P"l(cos 0) s in m ^ e ^ j, .n+2 s jn 0 ■

Therefore,

/  |V^i(x)|2rfV < t t f  C )
* ^ a m = 0  n—m a '

2 n + 2

a. (n +  1)'

i r°° fi „,2 v °°
^  Ja J—1 i j m = 0

7 2  +  1 / 2  

1 / 2  2

+  ??2 7rCmdr (B.4)

£ “=m f + a , , mp n"-'(c) (|2== ||) V T ^

+ r ,

irCmdcdr

where

r < L EQa2 m=0
E  — ^QW -P^l'(c)(cos e),

n = m  1

( 7 2 -  7 2 2 ) !  .

sin 0 cos m<p dV,
(72 +  772)!

where f22 is the region between the surfaces of the spheres centred on the origin 

and of radii a and 2a. Let

k  =  S  a rnn COS 777^
m=0n=m

(?2 — 777.)! 

(72 +  772.)!
(cos 61)

and let
OO OO

0 “  Y1 X! ^pC lfmnCOS?72̂ J
m = 0 n = m  "

(77 — 777.)! 

(77 +  772)!
P„m(cos0).

Lemma 11 implies th a t h and g belong to H^(T>a) and JT^(S2a) respectively. By 

the theory of Lions and Magenes [19, Chapter 2], there exists a unique function 

in H 1^ 2) satisfying Laplace’s equation and whose traces on the boundaries are 

h  and g. Clearly this function is the restriction of 7/q to fl2. Therefore, Vi/q 

belongs to _L2(fl2) and so T  is finite.

It is easy to see tha t the first term 011 the right hand side of equation (B.4) is 

finite. The second term is bounded by

|2 / 2 a  \  2,7+2 ( 7 2  —  7 7 7 ) !0 0  00 poo r 1

i + E  *■ /
7 7 7 = 0  7 1 = 7 7 1  2 f l

a ,
(77  +  777) !

(1 -  c2) (P™'(c)) ,
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where M  is some constant. Define

/  =  / _ U p " ' '{c)) 2 ( 1 - c2)dc-

Integration by parts and the equation satisfied by Legendre functions give 

I  =  n(n  +  1) I  (P™(c))2 dc -  m 2 I  E ? E F -dc.
J 1 4—1 X C

Thus
2n ( n  - j -  l ) ( n  +  m ) \  ( n  +  m ) !

/  —  — ..........     —  7 7 7    —

(2 n +  1 )(n — m)\ (n — 777)!

So

exists if

/  |VVh(x)| ldV

~  ~  (2 fl)2n /  2n(n +  1) \
C? ?’2” + 2 Q,7m V 277 +  1 7

exists. This last term  equals

1  ^  /  2l%(l% +  1 )  777
L  L  i° ’

m —0 n—m

and, therefore, exists.

2 f l ^ o « m l “ r a n i  V ( 2 7 7  +  l ) 2  2 7 7  +  1

VibHx) — V 00 T°° un+1n: (~1)?n+n+1v ~  Z ^m =0 l s n = m  a  a mn ((„+m)!(n_ m)t)i/2

X {/o°° SSif &n+1 exP( ~ H y  +  2/ e))Jm'(kR)dk cos mcfieR

-  Jo0 exp(— + 2/e))Jm(kR)dk  cos m<f> ey

~ i J o °  I e x p ( - f c ( y  +  2/e))Jm(kR)mdk smm<j>e$j .

Rewrite this as

V « X )  =  £m=0 £ ~  «n+1« . .m T + + + + ) T ^
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x { / 0” |^ f c " + 1e x p ( - %  +  2 /e))

\ { J m- l (kR )  -  Jm+l(kR)) cos mcf) eR 

~ J m(kR)dk  cos mcj) e y 

— l ( J m+1(k.R) +  J m ^ k R ) )  s inm ^e^}  dk}

It is clear from tlie previous section that

v « x )  6 (L2(na))

if we bear in mind that

J- i (z )  =

B.3 Proof of (B3)

v>(x)iFS = E  E  «n+1«„,n( - 1)n,+n+1
m = 0 n —m

X ((n+m )!(n-m )!)1/ 2 ^0 kZJc e x P ( —2 f c /e)Jm(kR)dk

(Recall tha t
■P™(COS0) =  f_ i r + „5T(cOS_^)

on F S .)

The Fourier transform of ^>(x)|j?s is

OO OO

x(p,q) = 4tt X] <in+1o:mn( - l ) m+n+1Am
m = 0  n=m

( ( n + m J U n - m ) ! ) 1/^ k^K  e x p (  — 2 k/ e)  COS

where
(_]V «/2 j-f m js even

-  <!
(— 1 )(m+-0/2 if m  is odd
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k — \Jp2 +  q2

and

(j)r =  arctan —.
P

So, ^ (x ) |F5 € L 2(FS)  if and only if y € L 2(1Z2). We, once again, use the 

result
OO 00

| G«|2 ^  £  2n|an|2
n = l  ra=l

to see tha t the Fourier transform of ’*/>(x) belongs to L 2{1Z2) if

(2a2)" / ' / ■ « „  fc2"+i , , , , y ,  l2
„ S . £ .  (« +  m.)!(n -  m)! [ I  d k \k -  7f|2 eXp( 4fc/t)J

exists. For very large n each term  in the sum is close to

(n +  m)\(n  — ???.)! 

This last term  is bounded by

1

(2”  1)1 (ea/2)2" |a , 12

M - ( e a ) 2n|a-mn|2 , 
n

where M  is a constant. As a is smaller than 1/e, the series converges and we are 

done.
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Sobolev  Spaces

This appendix is intended as a brief overview of the theory of Sobolev spaces. 

We will concentrate only on those res\ilts that are directly relevant to our task.

Let us suppose tha t Lt is an open subset of 7£3. Denote by D(fl) the space 

of infinitely smooth functions whoose support is completely contained in fi. A 

distribution on Q is defined as any member of the dual space of D(fl); i. e. for 

any distribution, <7, and any member of £>(H), / ,  the integral

/ g f d V  exists. 
Jsi

The derivative up to any order of a distribution can be defined via the equation 

/  (Dag ) f d V  =  ( - l ) l “ l f  g{Daf ) d V , 

where a  — (ci'i, CK2, <*3), each C17 is a non-negative integer,

Q’ J ^   ̂Cl i ,
i= 1

and
d\<*\

D  =
d xaidya*dzaz ' 

213
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Armed with this definition of the distributional derivative, we can go on to 

define the Sobolev spaces H s(ft).

Firstly, if s is a non-negative integer, then g € H s(fl) if and only if

J 2  /  I Dag |2 dV  exists.
| c t |= s

The H s(fl) norm of g is then defined to be

II 9 ll»*(°)= (  £  / n I ° a9 I2 d A  • (C.l)

If s is non-negative, but not an integer, and if we write s = m - \ - t , where m  is an

integer and 0 < t  < 1, then the H s(fl) norm of g is defined to be

( \ x/2
■ » ir - m + z j L ' ■

(C.2)

Of course, g € if and only if the right hand side of (C.2) exists. If s = 0

then it is usual to write H s(Ll) as L2(0).

If s < 0, then we cannot simply define H S(D) as the dual space of H~s(Ll) 

because this is not a space of distributions. Instead, the space HCs{Ll) is defined 

as the closure of V(Ll) with respect to the norm defined in (C .l) or (C.2) (de­

pending, of course, on whether s is an integer or not). H s(Ll) is then defined as 

the dual of H q s(SI). It is known that this space consists of distributions.

If 0 < s < tj then H ^Q )  C I I s(ft). This is an obvious consequence of 

(C .l) and (C.2). Furthermore, the imbedding is compact. Suppose, now, that 

s < t <  0. Let g be any member of U f(0). The duality product between g and 

any element, / ,  of HQt(fl) is

< 9 , f > =  JQ 9fdV,  (C.3)
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where /  denotes the complex conjugate of / .  Clearly, (C.3) will also be true 

for any element of H f s(0)  since Hq s(H) is contained in Hq1(fi). Therefore, g 

belongs to H S(D). Again, the imbedding is known to be compact.

Similar spaces can be defined on surfaces in 7Z3. They are normed in a similar 

way to the Sobolev spaces that are defined on subsets of 1Z3 of non-zero measure. 

They have identical compactness and imbedding properties as before and if the 

surface, dO, is closed, then H ~s(dLl) is the dual space of H s(dLl) regardless of 

whether s is positive or negative.

If dO is the boundary of H, then H s(dD), for s > | ,  consists entirely of 

traces of distributions in H s+z(Ll). The trace of a distribution is analogous to 

the boundary value of a function. Furthermore, for every g E H s(dll) there exists 

an element, (/*, of H 8+̂ (Jl) whose trace 011 8 0  equals g. g* is called a lifting of 

g. It can be shown th a t this lifting operation is continuous; i. e. there exists a 

positive constant K , independent of g and g* such that

II g* K  II 9 l l ^ n) ■

In addition to the spaces that have already been defined, we shall need the 

space Hioc(D). This is the completion of functions with compact support in S7 

with respect to the H 1 norm. This means that the restriction to any compact 

subset, IT, of 0  of any distribution in H ^ L l )  is in H 1(n /).
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U niqueness P ro o f

In this appendix we prove tha t any function, u, satisfying

(A + r iV V .u  +  ^ V 2u + pto2u =  0

in any exterior domain De, vanishing at infinity, and having homogeneous Dirich 

let or Neumann boundary conditions, vanishes identically when the Lame con 

stants satisfy

3ft >  0,

Sft/i > 0,

s  ( a +  < o

and

ŝ/.i < 0.

It is well known th a t u may be written as

u =  V ' H V x  d',

216
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where
2

v 2<l> +  / u>„ $  = 0A -j- 2(.l

and

v 2$ + — $ = o. 
v

We require tha t u  vanish at infinity; therefore, <1> and cannot be exponentially 

increasing functions. They must, therefore, be exponentially decreasing. Whence, 

u is exponentially decreasing. Therefore,

0 = lim / u,a(u).ndS,
R^ooJT,n v ’

where Er denotes the surface of a sphere of radius U, n is an outward pointing 

normal to Er  and c r ( u )  is the stress tensor. From the divergence theorem we 

have

[  V .(u.<r(u).n)dy =  0, 

where the homogeneous boundary condition has been taken into account. Thus

f  V u : a(\i)dV  — pio2 f  u .u dV.

Taking the imaginary part of this equation yields

kkI2 ~  ^ ehk^ij){Fij — -eFkdij) — 0,

where the summation convention is employed and

1 /  dui duj  \
2 \d i i j  dn-i)

The conditions on the Lame constants imply that e vanishes. Thus u is constant. 

The condition tha t it must vanish at infinity implies it vanishes identically.
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