THREE PROBLEMS IN SCATTERING

THEORY

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER
FOR THE DEGREE OF PH. D.

IN THE FACULTY OF SCIENCE

By
Christopher J. Luke
Department of Mathematics

September 1993

“v W
B
A




ProQuest Number: 10758740

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 10758740

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346






Contents

Abstract 8
Declaration 9
Dedication 10
Acknowledgements 11
The Author 12
1 Introduction 13
2 Smooth Elastic Body — Acoustic Medium 21
2.1 Introduction and formulation of the problem.. . . . .. .. .. .. 21
2.1.1 The velocity potential in the fluud. . . ... .. ... ... 22

2.1.2 The motion of thesolid. . . ... ... ... ........ 25

2.1.3 Transmission conditions. . . . . . . . . .. ... ... ... 27




CONTENTS 3

2.1.4 Sommerfeld’s radiation condition. . . . . .. . ... ... 28
2.1.5 Function spaces and smoothness of the solutions. . . . .. 28
2.2 Uniqueness. . . . . . . o . i e e e e 30
2.3 Representation theorems and applications. . . . .. .. .. .. .. 35
2.3.1 Single and double layer operators. . . . . .. ... ... .. 37

2.3.2 Limits of the single and double layer potentials as 9Q is

approached. . . . . ... L L 37

2.4 Operators associated with the solid’s displacement field. . . . . . . 39
2.5 Weakly singular, singular and hypersingular kernels. . . . . . . .. 41
2.5.1 Regularization, the symbol matrix and regularity. . . . . . 43

2.6 Boundary integral equations. . . . . .. ... oL L. 48
2.6.1 The simplest direct boundary integral equations. . . . . . . 49
2.6.2  Anindirect method #1. . . . .. ... L L 62
2.6.3 Single integral equation. . . . . .. .. ... L. 64
2.6.4 Anindirect method #2. . . . ... ... ... ... ... 71

2.7 Conclusion. . . .. . . . ... e 75
3 Elastic Polygon — Acoustic Medium 7

3.1 Introduction.




CONTENTS 4

3.2 Preliminaries. . . . . . ... e 78
3.3 Integral equations. . . . . ... ... Lo 82
3.4 Mellin transforms and the convolution theorem. . . . . .. .. .. 85
3.5 Propertiesinthewedge. . . .. .. ... ... .. ... ...... 88
3.6 Properties in the polygon. . . . . ... ... Lo 109
3.7 The adjoint problem and bijectivity of the system. . . . . . .. .. 118
3.8 Conclusions. . . . . . . ... 120
4 Asymptotics of Scattering Frequencies 122
4.1 Introduction . . . . . . . ... L 122
4.2 The formulation of the problem. . . . . . . .. .. ... ... ... 124
4.2.1 The velocity potential in the fluid. . . .. .. . ... ... 125
4.2.2 The motion of thesohd. . . ... ... ... ... .... 126
4.2.3 The matching conditions across 9 . . . . . .. ... ... 127
4.2.4 Radiation condition. . . . ... ... ... ... ... ... 127

4.3 The exterior problem. . . . . .. .. .. ... L Lo 128
4.3.1 Proof that A™(w?; €) is square-summable. . . . . ... .. 142

4.3.2 The analytic continuation of A™ (w?;¢) and the proof of

Lemma 13. . . . . . . . . . 145




CONTENTS 3

4.3.3 The truncated problem. . . ... ... ... . ... ..., 151

4.3.4 The relationship between the exterior problem and the trun-

cated problem. . . ... ... ... . oL 157

4.3.5 The large submergence depth limit. . . . . ... ... ... 159
4.3.6 Summary of exterior problem. . . . . . . . ... ... 160

4.4 The interior problem. . . . . . . .. . ... ... L 161
4.4.1 The spectrum of B(w?0). . . . . . ... ... ... ..., 163

4.4.2 The eigenvalues of B(w? ¢) and their connection to the

eigenvalues of B(w?,0) . . . .. .. ... .. ... 166
4.4.3 The expansion of Po{wd)B(w €)Po(wd). . . . . . . . . . .. 173

444 The imaginary parts of the eigenvalues for real frequencies. 177

4.5 Scattering frequencies. . . . .. .. ... oL 180
4.5.1 Uniqueness theorem for frequencies with positive imaginary

part. . ... 181

4.5.2 The imaginary parts of the scattering frequencies. . . . . . 187

A Jones’ modes and Jones’ frequencies. 192

A1l Whatis a Jones’mode? . . .. ... ... L o L. 192

A.2 Examples of Jones’ modes. . . .l ................... 193

A21 Thecylinder. . .. ... ... .. .. . ... .. ..., 193




CONTENTS

A22 Thesphere. . . . . . . . .. .

A.3 Bodies of rotation. . . . . . . . . ... o

A4 Thierry Hargé’s work. . . . ... ... ... ... ... .....

B Some proofs from
B.1 Proof of (B.1)
B.2 Proof of (B.2)

B.3 Proof of (B3)

C Sobolev Spaces

D Uniqueness Proof

Chapter 4.

.............................

.............................

194

195

197

203

204

208

211

213

216




List of Figures

2.1

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

4.6

4.7

The projection of 9, onto the tangem? plane. . ... ... .. .. 53
The polygonal domain. . . . . . .. .. .. .. ... 78
The coordinate system around the wedge. . . ... .. ... ... 101
The curve 8. . . . . .o 110
The coupled system. . . . . . . . . . ... ... 124
Spherical polar coordinates. . . . . .. .. .. ... ... ... 129
The image point. . . . . . . . . L e 136
The contourin the k plane. . . . . . ... ... ... ... .... 137
The rearrangement of the series. . . . . . . . ... ... ... ... 143
The growth of the eigenvalues of B(w?0). . .. .. ... ... .. 166
Line joining w?(e) toreal axis. . . . . . . . . . ... ... ..., 188




Abstract

UNIVERSITY OF MANCHESTER

ABSTRACT OF DISSERTATION submitted by Christopher J. Luke

for the Degree of Ph. D. and entitled Three Problems in Scattering Theory

Month and Year of Submission: September 1993

We study three transmission problems. The first problem deals with the cou-
pling of a smooth elastic body and an acoustic medium. We investigate integral
equation methods for finding the scattered pressure field and the transmitted elas-
tic displacement field produced when an acoustic wave is incident on the body.
In the second problem we investigate the corner singularities in the scattered and
transmitted waves when an acoustic wave is incident on an elastic polygon. Fi-
nally, we deal with the coupling of a smooth elastic body and an incommpressible
fluid with a free surface. We look at the asymptotic behaviour of the scatter-
ing frequencies, as the submergence depth tends to infinity. We show that their

imaginary parts are exponentially small.
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Chapter 1

Introduction

In this work we study three related transmission problems. Each chapter is con-
cerned with a single problem. The first two are very closely related; they both deal
with the coupling of a compact elastic body and an infinitely extended acoustic
medium. The difference lies in the fact that in Chapter 2 only sufficiently smooth
bodies are considered whereas in Chapter 3 we consider polygonal bodies. By
restricting our attention to polygons in Chapter 3 we aim to isolate the feature of
the transmission problem, involving bodies with edges, that makes the it different

from the one studied in Chapter 2.

In both these chapters the situation is this: an incident wave in the acous-
tic medium causes a transmitted elastic wave within the body and a scattered
acoustic wave. The problems of bodies with edges differ from the problems of
smooth bodies both physically and mathematically. Physically, the presence of
edges leads to transmitted and scattered waves with large gradients near the
edges. This is not even a localised effect. The incident field could vanish in a

neighbourhood of an edge but the transmitted and scattered waves would still, in

13




CHAPTER 1. INTRODUCTION 14

general, have large gradients there. Mathematically, this is expressed by saying
that the transmission condition does not apply. That is to say, in the problems
involving sufficiently smooth bodies the transmitted and scattered waves are as

smooth as the incident wave. With bodies with edges this is no longer the case.

The coupling of the two media in these problems is referred to as weak cou-
pling. This expresses the fact that only the normal component of displacement of
the elastic body is coupled to the fluid’s motion. This allows, as we shall see, the
possibility of elastic oscillations that do not transmit at all to the fluid. These
oscillations, which we here call Jones’ modes, have been noted before; they are
mentioned by, inter al., Jones [13], Norris [24] and Goswami et al. [8]. It is a
mathematically interesting (although, probably not physically important) prob-
lem to try to classify the bodies that can accommodate a Jones’ mode. This is
discussed in Appendix A. This appendix includes a translation of {11]. In this
paper it was proved that, in the class of smooth bodies, bodies that have a Jones’

frequency in a given compact range are infinitely rare.

The problem in Chapter 2 has been studied elsewhere. In Goswami et al.
[8], for example, a system of integral equations that is identical to one of the
systems derived here is used. We should mention the work of Sanchez Hubert
and Sanchez Palencia [27], who, like Norris [24], have studied this problem in the
physically important case when the acoustic medium has a much smaller density

than the elastic body; in this case, asymptotic techniques can be used.

Integral equation techniques are widely used for studying problems of this
kind. The excellent book by Colton and Kress [4] deals with such techniques in
acoustic and electro-magnetic wave scattering problems in great depth. Kirsch

[15] collected together many of the results on the continuity properties of acoustic
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integral operators. In Martin [20, 21] and Martin and Rizzo [22] integral equation
techniques are used in the study of elastic scattering problems. In Kupradze [16],

also, integral equation techniques are used in the study of elasticity problems.

We are here interested in deriving systems of integral equations that are solv-
able at all frequencies. The motivation is entirely theoretical; we wish to prove
the existence and uniqueness of solutions to the transmission problem and do
not make any claim for these systems with respect to the degree they facilitate
computation of the scattered and transmitted fields. We are interested in making
rigorous the reasoning that the systems we derive can be treated exactly as Fred-
holm systems despite involving non-compact operators. Furthermore, in order to
be as general as possible, the boundary is required to be only in the class C%<,

for 0 < o < 1.

In Section 2.1 we formulate the transmission problem. This involves determin-
ing the basic field equations, transmission conditions and the radiation condition.
In Section 2.2 we prove that the transmission problem has at most one solution.
The fundamental solutions of Helmholtz’s equation and the elastic wave equa-
tion are introduced in the next two sections. We then introduce the single-layer
and double-layer potentials for both Helmholtz’s equation and the elastic wave
equation. We discuss in Section 2.5 the properties of integral operators with
weakly-singular, singular and hypersingular kernels. The regularization of op-
erators with singular kernels is discussed in this section. Regularization means
taking an operator that is not of the classical Fredholm form and operating on
it by an operator so that the product is. The theory in Section 2.5 is heavily

indebted to the books by Kupradze [16] and Zabreyko [31].

In Sections 2.6 we derive four systems of integral equations for solving the
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transmission problem. The first system is derived by a direct method; this means
that it involves physically relevant entities. The system involves the trace of the
elastic double layer potential, which has a singular kernel. We apply the regu-
larization techniques of the previous section to show that the system is solvable
at all frequencies. This leads to a proof of the existence of a solution to the
transmission problem. There are frequencies at which this system is singular;
these occur when an interior Dirichlet problem has non-trivial solutions and at
Jones’ frequencies. We shall call the eigenvalues of the interior Dirichlet problem
spurious frequencies. The second system is indirect; it involves functions that are
not physically relevant. This system is closely related to the adjoint of the first

system and is shown to have identical properties to it.

The third system avoids the problem of spurious frequencies. This system also
involves the fewest unknowns (three) of any of the four systems. It has, however,
an operator with a hypersingular kernel. Fortunately, a special feature of the
problem allows us to regularize the system. The fourth system is an indirect

system and is solvable for all frequencies except Jones’ frequencies.

Problems in polygonal domains, wedge-shaped domains and domains with
edges have been extensively studied. For example, Ola [25] has studied the
transmission problems for the scalar and vector Helmholtz operators in three-
dimensional domains having edges. The normal derivative of the acoustic double
layer potential was looked at by Costabel and Stephan [6]. In [7] Costabel and
Stephan calculate the effects of curvature on the singularities. Costabel [5] has
studied the properties of integral operators on Lipschitz domains. Von Petersdorff
and Stephan [26] have looked at the regularity of solutions of Laplace’s equation
in polyhedra. Our approach here is similar to many of these previous studies.

Mellin transform techniques are extensively used. The feature that differentiates
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this work from the aforesaid works is the involvement of an elastic body. This
makes the actual calculation of the singularity set much more complicated, as we

shall see. It also introduces the possibilty of Jones’ modes.

We should note the work of Grisvard, who in his excellent book [9] studied the
properties of the Laplacian in polygons and in [10, Chapter 4] studied elasto-static

boundary value problems in polygons without using Mellin transform techniques.

In the first two sections of Chapter 3 we formulate the transmission problem
and show that it has at most one solution except at Jones’ frequencies. The work
of Costabel [5] is used in Section 3.3 to extend the definition of the boundary
integral operators first defined in Chapter 2 to larger function spaces. We then
derive the simplest direct system of boundary integral equations — identical to

the first system derived in Chapter 2.

In Section 3.4 we discuss some aspects of Mellin transforms and the Mellin
convolution theorem. This section borrows heavily from the, as yet unpublished,
work of Dr. Lassi Paivarinta. In Section 3.5 we utilise the important results from
the previous section in a discussion of the properties of the boundary integral
operators and their resolvents in wedge-shaped domains. We apply the results
of this section in the following section to the transmission problem. We show
that the scattered pressure and the elastic displacement field are as smooth as
the incident pressure away from the corners and are supplemented by singular
functions at the corners. We then demonstrate the uniqueness of the solution of
the system for fnctions in H°(d1), where s lies between 0 and % We prove in
Section 3.7 that the adjoint system has at most one solution in the space H=*(90)
except at irregular frequencies. This leads us to the conclussion that the system

of boundary integral equations we derived is solvable except at eigenvalues of
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an interior Dirichlet problem and at Jones’ frequencies. Finally, we prove the

existence of solutions to the transmission problem.

The problem in the final chapter was motivated by the work of Vullierme-
Ledard [29, Chapter 2]. She studied the transmission problem of water coupled
to a deeply submerged elastic body. She was interested in the complex scatter-
ing frequencies and proved that the scattering frequencies associated with sim-
ple modes have asymptotic expansions in inverse integer powers of submergence
depth and that each coeflicient in the expansion is real. We expand on her work
here to say something about non-simple modes and, more importantly, about the
imaginary parts of the scattering frequencies. We should expect that these are
exponentially small and this is indeed verified. It is expected that there should
be no real scattering frequencies for finite submergence depth as the existence
of a real scattering frequency would imply the existence of a free oscillation at
that frequency. As in the case of a rigid scatterer, no such oscillation is ex-
pected but, as yet, no proof is available. It was hoped that we could prove that
for large submergence depths the imaginary parts of the scattering frequencies
must be non-zero. It seems though that this may only be possible for individual
geometries. Even that task may prove difficult because the algebraic manipula-
tions required to obtain just the second term in the asymptotic expansion of the

imaginary part of the scattering frequency are fiendishly complicated!

In the first two sections of this final chapter we formulate the transmission
problem. In Section 4.3 we pose an exterior Neumann boundary value problem
and prove that it is solv'able except possibly at a set of isolated frequencies. We
achieve this by showing solvability is equivalent to the non-vanishing of a function
which is holomorphic in the square of the frequency; this function is shown not

to vanish when the square of the frequency has positive imaginary part and thus
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has isolated zeros. In doing this we set up a problem which is equivalent to the
exterior Neumann problem but which is set in a compact domain — called the
truncated problem. Although this proves convenient, it is not neccessary. Other
authors have solved similar exterior problems by using weighted Sobolev spaces,
see, for example, Neittaanmiki and Roach [23]. Vullierme-Ledard [29] also set up
an equivalent truncated problem, but she used integral equation techniques,‘a,s
did Lenoir, Vullierme-Ledard and Hazard [18] for a similar problem. Here we use
expansions of multi-poles to construct the truncated problem; again see [18]. The
truncated problem approach has an advantage over the weighted Sobolev space
approach only in so far as familiar function spaces are used throughout. There
does not seem to be any distinct advantage or disadvantage in using multi-pole

expansions over integral equations.

Using the results of Section 4.3 we pose an interior problem in the next section.
This problem is solvable at only an isolated set of frequencies. It turns out
that the problem is solvable when a particular operator, which depends on the
submergence depth and holomorphically on the square of the frequency, has an
eigenvalue equal to 1. We are able to determine the behaviour of the eigenvalues
of this operator for large submergence depths. This allows us in Section 4.5 to
see how the frequency must depend on submergence depth for the transmission

problem to be solvable. In particular, we prove that
w?(e) = wi + are + aze® + o(e?),

where w denotes the frequency, € is the inverse submergence depth and w2, a,
and ap are real constants. Finally, we adapt a proof from Harrell and Simon
[12] to determine the leading order behaviour of the imaginary part of a scat-
tering frequency. We show that the imaginary part of a scattering frequency is

exponentially small; that is to say, it is smaller than any power of ¢.
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Finally, we should add that each chapter in this thesis is intended to be as

self-contained as possible and so a degree of repetition is unavoidable.




Chapter 2

Smooth Elastic Body —

Acoustic Medium

2.1 Introduction and formulation of the prob-

lem.

Let us consider the interaction between an elastic body and a compressible, in-
viscid fluid. The elastic body occupies a compact open set of R3 of non-zero
measure, §};. It is coupled to a compressible fluid, which occupies the region
R3\ ;. We shall suppose that the boundary between the media, which we shall
call 912, is smooth. We shall state later more precisely the smoothness conditions

required of the boundary. We shall call the complement of Q; (..

The two media are coupled in two distinct ways. The first of these is the
kinematic boundary condition. To ensure that a well defined boundary between

the fluid and the solid persists, the normal velocity of the fluid on one side of the

21




CHAPTER 2. SMOOTH ELASTIC BODY — ACOUSTIC MEDIUM 22

boundary must match the normal velocity of the solid on the other side. There
is no such restriction on the tangential component of velocity because the fluid

has zero viscosity and so it can slip over the surface of the solid absolutely freely.

The second coupling process is the dynamic boundary condition. This results
from the balance of forces on all parts of the boundary. Each boundary element

is, after all, massless and so a non-zero resultant force acting on it is prohibited.

We suppose that a time-harmonic acoustic wave, with frequency w, is incident
on the solid. We look here into the existence and uniqueness of any resulting
scattered wave and will describe methods for determining the scattered wave.
In addition to the assumptions already made, we shall assume that all motions
are small — we shall, therefore, ignore all terms quadratic or higher in small
quantities — and we shall assume that, before the incident wave was created, the

fluid was at rest and that now all transient solutions have decayed away.

2.1.1 The velocity potential in the fluid.

The circulation of an inviscid fluid remains constant. We assume that the motion
of the fluid was generated from rest and that all transient solutions have com-
pletely decayed leaving just the time-harmonic motion. The motion of the fluid
must then be irrotational for all time. By a well known result of analysis, the

fluid velocity, v, can be written in the form

v(x,t) = Vxd(x, 1), (2.1)

where ®(x,1) is a real-valued, scalar function defined in the domain Q. ® R.
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We kunow that ®(x,?) is time-harmonic and, thus, we can separate the spatial

and temporal dependence and write:

B(x,1) = R($(x) exp(—iwt)), (2.2)
where Rz represents the real part of any complex number z and where w is the

frequency.

The momentum equation is

av

Py + pv.Vv = —Vp, (2.3)

where p represents the fluid density and p the pressure.

The following conservation of mass equation is satisfied

Dp
el V= 2.4
o7 TPVv =0, (2.4)

where the first term is the convective derivative of p.

Because the pressure and density vary little with respect to the uniform and

constant background pressure and density, po and po, respectively, we can write

p=po+p

and
p=potp

where p and g are small. Consequently, the fluid velocities are small.

Equations (2.3) and (2.4) become after linearisation

dv 1_.
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and

9p
a + pDV.V = 0.

Equations (2.1) and (2.5) imply

96 B _
v(atJrPo)_O’

which 1mplies that

Now write

Equation (2.7) implies

Equations (2.1), (2.2) and(2.6) imply
Lwﬁ = ﬂ0v2¢,

where, once again,

p(x; 1) = R(P(x) exp(—iwt)).

24

(2.6)

(2.7)

(2.8)

(2.9)

Clearly, we need a third relationship between the three quantities f, g and v.

Let us consider only barotropic fluids. That is to say,

p = p(p)
with

po = p(po).

(2.10)
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This implies that

where

po

Combining equations (2.8), (2.9) and (2.11), we obtain

Vi +k*¢ =0
and
V25 + k*p =0,
where
=

From now on we shall drop the tilde over the letter p.

2.1.2 The motion of the solid.

The displacement field, u(x,t), satisfies

o*u

Par = V.o(u),

23

(2.11)

(2.12)

(2.13)

(2.14)

where p now denotes the solid’s density. (The linearisation of the problem is

implicit in this formulation.)

o(u) is the stress tensor satisfying, for the class of materials in which we are

mainly interested,

Oi5 = CijhlCkI,
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where
1 [ Ouyg N Owy
e ==l 5— t 75—
2\ dz;  Ou=y,
is the strain tensor and
Cijhi = Cjikl = Cijlk = Cklij-

The summation convention is being followed here and will be subsequently used

unless otherwise stated.

We are only interested in isotropic, homogeneous materials; for such materials
cijit = A0izop + p(bindj + dudji),

where A and g are real constants (called Lamé constants) and §;; is the Kronecker
delta. They satisfy

2
A+ il >0 and p>0. (2.15)

Therefore, if, as before, we write
u(x; 1) = R(u(x)exp(—iwt))
and use equation (2.14), we obtain
(A+ 1) V(V.aa) + V2 + pw?u = 0. (2.16)
Call the sum of the first two terms in the last equation L(u).

There is another class of materials that possess a “memory” of their strain

history. For such materials we have

a(u;t) = /oo c(x;7 —t): e(x;7)dr. (2.17)

—co
Here c(x; ) vanishes if 7 > 0 — this property is a consequence of causality; the

stress cannot depend on future strains!
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For materials that are isotropic and homogeneous
Cir (X7 —t) = M7 — t)6;560 + p(7 — ) (61 + 6ubsr),

where A and p are now functions of time. Furthermore, if the motion is time
harmouic, i. e. if
o(a(x;t)) = R(o(u(x)) exp(—iwt))
and
e(x; ) = R(e(x) exp(—iwt)),
then
oii(u) = Aewdi; + 2jieij,

where ) and fi are the Fourier transforms of A and p respectively.
Tt can be shown that A and ji must satisfy
~ 2 .
R(A+ 3 1) >0, Ri >0 (2.18)

and
~ 2
(A + 5[) <0, S < Q. (2.19)

Such a material is effectively like an elastic material with complex Lamé con-

stants.

2.1.3 Transmission conditions.

The kinematic condition is

g% = —fwn.u.
on J§). This and equation (2.8) imply
3j
2P _ pownau (2.20)

on
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on 9. The kinematic condition is neccessary to emsure that the two media

remain in contact.
The dynamic condition is
—pn =g(u).n (2.21)

on d2. The dynamic condition ensures that the resultant force acting on a given

surface element vanishes.

2.1.4 Sommerfeld’s radiation condition.

We split the pressure field in . into two parts:

P = Dine + Ps-

Dinc 15 the incident wave and p, is the scattered wave. p, satisfies the Sommerfeld

T, (i) (2.22)

|x[?

radiation condition:
x

Vp, — tkps
|x|

as x| — oo. This must hold true wherever the origin is taken to be.

2.1.5 Function spaces and smoothness of the solutions.

We shall say that a function, f(x), defined in a subset of R*, D, which may

be a manifold or a set of non-zero measure, belongs to C'(D) if it is continuous

everywhere in D.

Similarly, we shall say that it belongs to CP(D)), where D is now supposed to

be open, if its first p derivatives belong to C(D).
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f(x) belongs to the Holder continuous space, C%%(D), where « is some posi-

tive constant, if

sup | f(x)]

xebD

exists and
lF(x) = f(¥)] £ K|x —yl|*,

where K is some positive constant and x and y are any two points in D. C%*(D)

has the norm

_ B [7(x) = F¥)I
I llooey= sup I£(x)l+ sup == g

f(x) belongs to the Holder continuous space, CP<(D) if

Hprtp2 +p3 il

9t Db Oal?

€ 0% D),
if D is a subset of R® of non-zero measure, where
b

P1+p2+p3 <p,

or if
apl-HJz f

Ot Oxl?

€ C™(D),

if D is a two dimensional manifold and z; and x5 are coordinates in it, where

p1+p2 <p.

We shall assume that the incident wave, p;,., belongs to C%(D), where D is
an open subset of R? that contains §2;; this allows for the possibility that pi,. is
generated by, for example, a point source situated somewhere in .. We shall

look for a solution (p,u) with

p € C*D)NC(D)
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and
u € CHQ) N C(),
It is also required that

op
on a0

and

Il.O'(ll)',gQ

exist as the limits, as ~ tends to zero from above, of
n(x).Vp(x + hn{x))

and
n(x).o(u(x — hn(x))

respectively.

2.2 Uniqueness.

30

Suppose that there were two solutions to the problem we have just formulated.

Call these (p1,u1) and (p2, us), with obvious notation.

Call
p=pP1— D
and
u = u; — Us.
Clearly, we have
Vip+ k*p =0in Q.,

L(u) 4 pw?u = 0 in 9,

(2.23)

(2.24)
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the transmission conditions (2.20) and (2.21) and p satisfies the Sommerfeld ra-

diation condition (2.22).

By an application of the divergence theorem

ap _

£ — 9p D

. P35, dS Joq PoEdS + [q. Vp. VBV (2.25)
+ Joo PVpdV,

where 0, is the surface of the sphere of radius a, which encloses Q;, and Q¢
1s the region between 92, and 9. Using equation (2.23) and the transmission

conditions we obtain

op

- p%dS = —po? [yq n.o(u).udS + [q. Vp.VpdV (2.26)

—F Jou [p|2aV.

Let us first consider the case when w, and hence k, are real. Take the imagi-

nary parts of both sides of equation (2.26)

Cx 613 — 2Cy =
S ( /a N p%ds) = — oS ( /a ) n.cr(u).udS) . (2.27)

As ¢ tends to infinity
S pQ]_ZdS — —k lim / |p|?dS, (2.28)
a0, On a0 Jaq,
by virtue of p satisfying equation (2.22).

Furthermore, by the divergence theorem in ; and equation (2.24),

/a no(u)TdS = o, o(w) : VEAV (2.29)

—pw? fo, wudV.

For purely elastic bodies,

o(u) : Vu = Mew|* + 2pue;;e:;.
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Thus

o(u) : Va

is real. Therefore, equations (2.27), (2.28) and (2.29) imply that

Q00

lim |p|*dS = 0. (2.30)
890

It can be easily shown that p must have the following expansion:

exp(ik|X|) = F‘n(97¢')

X 2

n=0

p(x) = , (2.31)

where the functions F), (6, ¢) are derived from the recurrence relation

1 0%F, 4
sin 94?

: 1 9 (. -
2kF, =n(n—1)F,_ 1+ nd 50 (5111(9 ) +

S111

6 and ¢ here represent, respectively, the usual longitudinal and latitudinal an-
gular coordinates in spherical polars. (See, for example, Colton and Kress [4,

Theorem 3.6].) Clearly,

Lm [ |p*dS = ] | Fy|?dS,
Qe any

a—co

where 0f); is the unit sphere.
Equation (2.30) implies that
F() = 0

This determines, through the recurrence relation, that each F,, is identically zero.
Thus p vanishes in a neighbourhood of infinity. Any solution of Helmholtz’s
equation that is twice differentiable is analytic in the spatial variable, and so, by

continuation, p vanishes everywhere in .. Thus,

a??-anm '
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Therefore, from equations (2.20) and (2.21),

unlpga =0 and n.o(u)|sq = 0. (2.32)

Equation (2.24) along with the boundary conditions (2.32) do not necessarily
imply that u vanishes in ;. It is known that there are, for certain geometries
and for certain frequencies, non-trivial solutions to this problem. We call these
Jones’ modes and the associated frequencies Jones’ frequencies. More 1s said

about these in Appendix A.

Let us now consider the case when w and k have positive imaginary parts.

The expansion (2.31) implies that p decays exponentially at infinity. Clearly then
lim |p|*dS = 0.
a—0o0 aQq
This and equation (2.26) imply that
0 = — poi? /m n.o(u).udS +/ﬂ Vp.VEdV — EZ/Q Ip|?dV. (2.33)

Equations (2.29) and (2.33) imply

0 = —poi? /Q o(u) : VEdV + poplw?|? /Q wudV  (2.34)

+ Jo. VD.VEAV — & fo, Ip[2dV.

Take the imaginary part of equation (2.34):

H(w?) (po [ otw): veav + glz / m%zv) ~ 0. (2.35)

Thus

or p vanishes in 2, and
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vanishes in ;. In the latter case, u is constant in ;. The transmission condi-
tion (2.20) together with the fact that p vanishes in {2, imply that u vanishes on

00, Therefore, u vanishes in §);.

If

w? must be negative (recall that we assumed w is not real). Therefore, each term

in equation (2.34) is positive and so

p=0 and u=0.

We can perform a similar analysis on the problem with a visco-elastic material.

For real w?, the analysis is identical up to equation (2.29). We have

~ 2 - 1 . 1
0'(11) Vi = (/\ -+ gu)lckklz + Q;L(eij — gekkéz‘j)(a‘j — §m5”) (236)
The conditions (2.19) imply that
S ( [ otu: Vﬁdv) <0. (2.37)

Equations (2.27) and (2.28) still apply. These and equation (2.37) imply that

lim |p[*dS = 0.

a—co aQa
As before,
p=0

in Q.. Equations (2.28) and (2.29) imply that

S Uﬂ o(u) : vmv) =0,

Assuming that the material is genuinely wisco-elastic, equation (2.36) implies that

u is constant in {2;. Since p vanishes, the transmission conditions make it clear
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that u vanishes in £2;. So, for real frequencies, the solution to the problem of
the interaction of a visco-elastic material and an acoustic medium, if it exists, is

unique.

2.3 Representation theorems and applications.

In this section we introduce the concept of the fundamental solution to the
Helmholtz equation and state Green’s second representation theorem. This will
be applied to the fundamental solution along with the scattered and incident
waves. The proofs will be only sketched. The reader is refered to Colton and

Kress [4, Chapter 3] for more details.

It can be readily verified that the function

_ exp(ikjx —yl)
G(X7Y) - 47F|X—y| 3

which is defined for x # y, is a solution of the three dimensional Helmholtz

equation:

VG + kG =0,

the differentiation being taken with respect to y (respectively x), with x (respec-

tively y) fixed. G(x,y) is called the fundamental solution.

If D is an open, compact subset of R® whose boundary, 8D, is C** then

Green’s second representation theorem is true

v ou
29 T2\ — g
/D(uv v — oV2u)d\ /aD (uan v@n) ds (2.38)

for all functions in C?(D)( C(D). The basic idea is to first prove the result on a

parallel surface to @D inside D and then to take the limit as the distance between
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this surface and @D itself tends to zero. In fact, we have already used Green’s

first representation theorem in the uniqueness proofs of the previous section.

If we apply equation (2.38) to pin. and G in );, we obtain

BG s a inc 0 if x < Qe
[ (o) 28530 _ gy 200) 45, -
a0 n(y n(y) —Pine(x) ifx e
(2.39)

Here, and in what follows, n(y) means the vector normal to 9§} at the point
y. Similarly, n(x) means the vector normal to 9 at the point x. In the above

equation the integration is carried out over all points y on 9f1.

The first of the two results in equation (2.39) is clear because both p;p. and
the fundamental solution solve Helmholtz’s equation everywhere in §2; and so the
integrand on the left hand side of equation (2.38) 1s zero everywhere. The second
result is obtained by applying equation (2.38) to the domain ; \ B, where B
denotes a small closed ball centred on x and then taking the limit as the radius
of B tends to zero. The right hand side of equation (2.38) now involves two
integrals — one over d{} and one over the surface of the ball. The limit of the

second integral can be found by using the mean value theorem.

Similarly, it can be shown that

06000 g1y 200 g5, | 219 i3
L (P 282~ Gy 28] s, - e, o

This time the domain used is * (as defined in Section 2.2) and the limit is taken
as a tends to infinity. The radiation condition is used to show that the limit, as

a tends to infinity, of the integral over 9, vanishes.
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2.3.1 Single and double layer operators.

It will prove convenient to write equations (2.39) and (2.40) in operator notation.
Let us then now define respectively the double and single layer operators, D and

S. If fis a function defined on the domain 02, then

D)) = 2 [ fty) Toedas,
and
(SF)(x _—2/ ¥)G(x,y)dSy.

We shall say later what smoothness conditions f needs to satisfy for these inte-

grals to exist.

With this new notation, equations (2.39) and (2.40) can be rewritten as

OPine 0 ifx e .
(Dpinc)(x) — | S o (x) = (2.41)
20ine(x) i x €Q;

and

Ips —2ps(x) ifx €
N G R B ; (2.42)

2.3.2 Limits of the single and double layer potentials as

A1) is approached.

If fis continuous on 9 then one can show that (Sf)(x) is defined up to and
including 0} and is continuous as x passes through the boundary. (Df)(x),

however, is not continuous as x passes through the boundary. In fact,

lim  (Df)(x) = (K f)(x0) = f(xo) (2.43)

XENe—Xo €N
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and
olim (D) = (F 1)lxo) + (o), (2.44)
where
(& o) = -2 [ 1) 2500V,
and
Xg € 0.

K f exists if f € C(09).

The normal derivative of Sf exists on 982 if f is continuous. It is not contin-

uous as the boundary is crossed. Its behaviour is similar to the behaviour of Df.

We have
olim n(x0). V(S () = (7)) + f(x0) (2.45)
and
ealim () V(SP)x) = (K ) (xo) — (o) (2.46)
where
(e Hxo) = =2 [ 1) 5o Yas,,

We can even take the normal derivative of Df, but for existence up to the
boundary we require f to belong to C1*(99), where « is any positive constant.
Let us call this operator V. N f is continuous across the boundary. For details

see Colton and Kress [4, p. 62].
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2.4 Operators associated with the solid’s dis-
placement field.
The results and proofs of this section parallel those of the previous section. For

this reason this section will be even briefer than the last, and only the salient

points will be noted. See Kupradze [16, Chapter 5] for details.

Firstly, we note that we have a result analogous to Green’s second represen-

tation theorem:

/an(u.cr(v).n —v.o(u)n)dsS = / (uw.V.(o(v)) — v.V.(o(u)))dV. (2.47)

Q;
The fundamental displacement tensor is, for x £ y,

1 1
G(X,y) = ;Z\IIS(X) y)I + wvv (\I,s(xa y) - \I]P(x) y)) ’

where

o

5 ‘I,
and
k? — p""’z

PN+ 2]

and where
] (X y) — exp(iks X = yl)
A dm|x —y|

and

exp(iky|x — y|
By(x,y) = SN

From equation (2.47) we have

0 ifx € Q.
|, (0@)-03(G(x, )~ G(x,¥) y(u(y))dSy = . (248)
u(x) ifxey
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where oy (G(x,y)) means that the derivatives are taken with respect to the y

variable.

Next define the elastic single layer and double layer operators to be

(S.£)(x) =2 /Q 1(y).G(x,y)dSy (2.49)

and

(DA)x) =2 | £(y).05(Glx,¥))m(y)dSy (2.50)

for x in Q; |J Q..
So equation (2.48) becomes

0 if x € Q.
(D.u)(x) — (S.n.o(u))(x) = (2.51)
2u(x) ifx e

(8.f)(x) is continuous as x passes through 9Q, whereas (D.f)(x) and n(x).ox(S.f)(x)
exhibit jumps:
Df=x5f+K'f (2.52)
and

n.ox(S.f) = +f + K.f. (2.53)

In each case the upper (resp. lower) sign corresponds to passing through 052 from

Qe (resp. Q) to Q; (resp. Q). K and K~ aze defined by

(K.f)(x) =2 oo f(x).0x(G(x,y)).n(x)dSy

and
(K*.£)(x) = 2 /a _£(x).0y(G(x,¥))-n(x)dSx,

where now x € 0Q and the integrals are defined in the sense of the Cauchy

principal part.
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The traction of the elastic double layer potential is defined by
(N.f)(x) = n(x).0x(D.f)(x). (2.54)

As in the case of the analogous acoustic operator, (N.f)(x) is continuous across

oq.

2.5 Weakly singular, singular and hypersingu-

lar kernels.

Let D C R® have non-zero measure and let D be its boundary. An integral
operator,

(ANE) = [ A Y)F(y)dSy,

has a weakly singular kernel if
|A(X, y)' = O(|X - Y|7—2)y

as

|X—y|*~+0,

for some positive constant v. It has a singular kernel if

IA(X) Y)l = O(!X - Y|—2)>

as

Ix -yl —0.

Finally, it has a hypersingular kernel if

|A(x,¥)| = O(]x —y17"7?),
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as

|x —y[—0,

for some positive constant ~.

It is not difficult to show that S, K, K~ and S have weakly singular kernels.

K and K~ have singular kernels and N and N have hyper-singular kernels.

For the existence of Sf, Kf, K f and S.f it is required that f and f are
continuous. It is known that for the kernels of each of these four operators the
constant, -y, above equals 1. Therefore, not only are they compact on C(982), but
also on C®?(9Q), for any 4 lying between zero and one. Furthermore, if f and f
are continuous on 9, then Sf, K f, K f and S.f all belong to C%?(8Q), for any
B lying between zero and one. I, K~ and S map C%#(4Q), for any S € (0,1),

into C1#(9Q). (See, e. g., Kirsch [15}.)

For the existence of K.f and K .f, f must belong to C%#(dQ), for some

oy =% .
positive 4. K and K are, however, not compact on this space.

For the existence of Nf and N.f, f and f must belong to a smaller space than
C%P(8Q). One can show that it is sufficient to take them in C*#(9%), for any S

lying between zero and one. See Colton and IKress [4, p. 62].

S, 8, N and N are self-adjoint when the inner product is defined to be

< fg>= /a _ Fgds.

K and K~ and K and K~ are mutually adjoint with this inner product.
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2.5.1 Regularization, the symbol matrix and regularity.

Consider an operator

A X - X,
where X is a Banach space. The bounded operator
B:X - X
is called a left equivalent regularizer if
BA=1+T,
where I denotes the identity and 7" is compact in X, and if the equations
Au=f

and

BAu=Bf

are equivalent. Similarly, the bounded operator
C. X—-X
is called a right equivalent regularizer if
AC =T1+T,
where 7" is compact in X, and if any solution of
Au=f

can be written as

u = Cu,

for some v in X, and vice versa.
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The index of an operator is the difference between the dimension of its null
space and the dimension of the null space of its adjoint. We have the following

important results:

Theorem 1 If A admits both left and right reqularization, then the indes of A

18 finite.

Theorem 2 If a closed operator admits a left regularization, then for the solv-
ability of

Au=f
it is sufficient (and of course necessary) that f be orthogonal to every element

of the null space of the adjoint. We say A is normally solvable when it has this

property.

An immediate corollary of Theorem 2 is the fact that if A admits a right reg-

ularization, then A* is normally solvable, where A* denotes the adjoint operator

of A.

The question that concerns us here is this: Given a system of operators of the

form
(Au)(x) = ulx) + [ k(x,y)u(y)dSy,

where k(x, y) is singular and A is considered to be acting on L%(912), under what

conditions does a regularizer having the form

(Ba)() = u(x) + [ K(x,y)u(y)dSy

exist? To answer this question some general results will be used without being

proved. Very detailed accounts of the theory of regularization of two dimensional
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singular integral operators are given in Zabreyko [31, Chapter 2] and in Kupradze

[16, Chapter 4].

It 1s obvious that since () is smooth enough, a normal to the surface can be
defined at every point on the surface. If n(xg) denotes the normal at xo, then
n(xp) is in the Holder continuous space C1*(91). Let us define the cylinder Ck,

to be
Cx, = {y € R%|(y — x) x n(x0)] £ d,—1 < (y — x).n(x0) <},

where [ and d are chosen to be small enough so that the orthogonal projection
of the intersection of 92 and Cx,, which we shall refer to as S(xo,d), onto the
base of Cy, is conformal. Let 7(xg,d) be the intersection of Cx, and the tangent
plane to 0Q at xo. If ¢ is the image of the orthogonal projection of a point x in
S(xq,d) onto 7(xp,d) and f is any function with domain S(xg, d), then we shall

denote by f’ the function in 7(xo,d) with

We suppose that the point xo is mapped to the origin of R? under the orthogonal

projection.

Suppose that

kii(Com) = 1i;(C, € — ) + mis(¢,m) (2.55)
and

LG, H(¢ —m) = t7705(6, ¢ — ), (2.56)

for all ¢ > 0 and { # n. Suppose, further, that ;;({, x) and all its derivatives
with respect to & when considered as a function of { belong to C*(7(xo, d)), for

all £ of unit modulus. Finally, suppose that m;;((,n) satisfies the following two
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conditions:

Imii(¢'yn) — mii (¢, ) < MIC" — ¢ P(v(¢, ¢ )" (2.57)
and
Imis(¢, ') — mis(C ™) < My — 7" PPlo(n’, ", €))7, (2.58)

where M is a positive constant and, for example,

v(¢’,¢" n) = min{|¢" — |, |¢" — 9]}

If all three of these conditions hold, then A is said to belong to the class G(3).

Suppose that A isin the class G(f) and that ty, is a unit vectorin 7(xgq, d) that
makes an angle § with some fixed line in 7(xo,d). All the derivatives of [;;({, )
with respect to x were supposed to exist. [;;((,tx,) may thus be expanded as a
Fourier series

oo
lij(x0,tx,) = > ag-]) exp(inf).
n=—00
n#0
Define

s 1id
oij(X0,txy) = bij + 210 Y Z—a,(;}) exp(ind).

||

n—=-—-0o0

n#0

The terms for n = 0 in the two series above are missing, because, for the existence

of A.u, we have to assume that

/ (¢, #)ds = 0.
|g|=1

Let us define o(xo, #) to be the matrix whose entries are the oy;(xg, tx,)’s defined

in the last equation.

The main result of the general theory is given below.
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Theorem 3 If

inf | det o(xo,6)| > 0,
Xg € aN

g € [0,2m)
then a double-sided regularizer of A of the correct form exists in L*(0S). More-

over, the regularizer is in the class G(3).

We shall need the following theorems.

Theorem 4 If B s the regularizer of A in Theorem 3, then the index of B plus

the indez of A equals zero.
Theorem 5 If the symbol matriz is Hermitian, then the indez of B is zero.

Thus, if A satisfies the conditions of Theorem 3 and its symbol matrix is
Hermitian, then its index 1s zero. So this and Theorem 2 imply that A satisfies
the Fredholm properties. We follow the example of the Russian authors and say

that such an operator is quasi-Fredholm.

Suppose that A is in the class G(f). Suppose that
kij(x,y) € CY*(S(x0,6)), (2.59)

as a function of its first argument uniformly in y € 5\ S(xo,6), where § is
any positive number less than d/2, and the function m;;({,7) in equation (2.55)

satisfies the following property:

/( Y mi(C,mu(n)dS, € CHP(r(xo,d)) (2.60)
T{(Xo,

whenever

u € C%(7(x0,d)),
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for 0 < f < . Then A is said to belong to class G'(f).

We have the following important regularity result:

Theorem 6 Let 3 be any positve number less than or equal to «. If
Au={,

where A is a singular integral operator in the class G'(B), { belongs to C1#(9Q)
and u belongs to L*(9N), then u belongs to C1P(9N).

The effect of this theorem and the preceeding results is that any operator
in G'(B) that satisfies the conditions in Theorems 3 and 5 is quasi-Fredholm on

C1A(9Q), for any positive number 3 less than or equal to a.

2.6 Boundary integral equations.

In this, the main section of this chapter, we derive a series of four sets of boundary
integral equations and use them to prove the existence of a solution to the coupled
problem. Each subsequent set of boundary integral equations will be increasingly
sophisticated. The first two will consist of four equations in four unknowns. Each
of these two will exhibit spurious irregular frequencies, at which the system of

integral equations is singular but the actual problem is not.

It is sometimes important not to have these irregular frequencies. If, for
example, the ratio of the densities of the fluid and the solid is small, then there
are scattering frequencies with negative imaginary part but which are, however,
close to the real axis. (See, for example, Norris [24] and Sanchez Hubert and

Sanchez Palencia [27, Chapter 9].) In this case the response curve will have peaks
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near the scattering frequencies and these may be difficult to distinguish from the
peaks due to the irregular frequencies. It could be the case too that Jones’ modes
are possible and, once again, it may be difficult to distinguish between the peaks

in the response due to these and the peaks due to irregular frequencies.

In view of this, the third and fourth sets of boundary integral equations
derived here are designed so that the irregular frequencies do not occur. The
third set consists of three equations in three unknowns. For three-dimensional
problems this is likely to be optimal. However, the price to be paid is in the

increased complexity of the surface potentials utilised.

2.6.1 The simplest direct boundary integral equations.

Let us begin with equations (2.41) and (2.42) and take the limits of them as we
pass to a point on the surface, 2. In both cases we shall take the limit as the

surface is approached from the inner region. Equation (2.44) implies that

6pinc

Pine + _I\_,*pinc -5 = 2pinc (261)
on
and
e+ Kps — S22 = ¢ (2.62)
Ds L P on .
Adding equations (2.61) and (2.62) we obtain,
o Jp
K'p— 82 = 2pinc. 2.63
p+Kp—55 =2 (2.63)

Similarly, if we use equation (2.51) and equation (2.52), we obtain

u— K" .u+S(n.o(u)) =0. (2.64)
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Now use the transmission conditions (2.20) and (2.21) to get
p+ K p— pow?S(u.n) = 2p;,. (2.65)
and
~u+K .u+S.(np)=0. (2.66)
We look for a solution with p and u in C1#(9), for some positive constant /.

This is the first set of boundary integral equations. It will prove helpful to

write this system in the following form

I+EK" —pow?Sny —powlSng —pow?Sng \ P
S11ny + S1ane + Signs  —1+ Ky K, K, Uy (2.67)
So1n1 + Saang + Sazng K, —14+ K, K, Uy
Saina + Szeng + Ssans K K3, —14+ K3 Us
2Dinc
0
= . :

\O

where
(R£)x) =2 [ F(¥)(0y(Gx,y))n(y))sdSy,
(Su)x) =2 [ F¥)Gx,¥))isdSy
and

(Snaf)(x) = =2 | Fy)niG(x,y)dSy.

The system (2.67) is not Fredholm because it is not of the form: identity plus

a compact operator. It is under certain conditions quasi-Fredholm.

The system is quasi-Fredholm if the symbol matrix 1s invertible. To calculate

the symbol matrix we need to identify the singular terms in equation (2.67). The
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only terms that can be singular are the K;; terms. Let us then examine the

kernels of each of these terms. After a routine calculation, one obtains
20y (G(x,¥))0(y))i; = yni(y)X;D® + (86, + n;(y)X:) DU (2.68)
2 Ca a 2 L 4
+.I\Tz_(ni(Y)Aj + nj(y)A,- -+ 95,3)1)2(\1’ — (I)) + Eﬁ@A{Ajpa(@ - (I’)

Here D denotes the differential operator

Ld
RAR’

and

T2\t )

is Poisson’s ratio. In addition,

_exp(ik,R)

¢ =
27 R

and
U= _exp(¢ksR)
B 2rR

As R tends to zero we have

DU — @) = (ks = k) ller ter (2.69
= ——m—i— smaller terms . )

and
3(k? — k2)
D30 — 3) = ——P2  terms. 2.
(¥ — D) yy + smaller terms (2.70)
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We know that

6] < KR?,
where K is a positive constant that is independent of position (compare with [4,
Theorem 2.2]). This and equation (2.70) show that the final term on the right

hand side of equation (2.68) is weakly singular. Similarly,

2
I‘EgéijDz(\I’ — (I’)

and

95,-le1/

are weakly singular. It is easy, if somewhat tedious, to show that the weakly
singular terms in equation (2.68) and the other weakly singular operators in the
system (2.67) satisfy the conditions (2.57), (2.58) and (2.60). To do this we must

bear in mind that, because of the smoothness properties of the boundary, n(x)

and n(y) are in C1=(90).

The remaining terms on the right hand side of equation (2.68) can be rear-

ranged into

(na(y)X; = ns(y)Xo) (20 — 1)
41 R3 (v—1)"

(2.71)

For a particular point x € 99, let us define I(x) to be the unitary matrix that
rotates the coordinate system so that the new ez axis is normal to 9§ at x. Let

us denote vectors in the new frame with a prime. We have
A B Y
Ai - JlJ";\'.T
and
TN 1l (ol
ni(y') = lins(y').
In the new frame the kernels

ni(y') X3

- i=1,2,3




CHAPTER 2. SMOOTH ELASTIC BODY - ACOUSTIC MEDIUM 53

Figure 2.1: The projection of dDe onto the tangent plane.

and

A Ym and , = 1,2,3

are weakly singular.

The only singular terms are

sail (2.,21

Let us now project the functions in equation (2.72) from S(x,d) onto r(x, d).
Let us adopt a cylindrical polar coordinate system in r(x, d), with 0 the angle a
line makes with the ei axis and r the distance of a point from the origin. (See

Figure (2.1).)

nUy')-*: K (x') + K(y') - »3(x")))*!
R3 (2+

We have

(r2+ A )32 = r3(1 + 0(r2+2)),
K(y'") - < M\x! - y'|1+a,

for some positive constant M, and

nNx'") = L
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The singular term is (the /;; in the notation of equation (2.55)).

cos 8
r2

The Holder continuity of the normal as a function of position implies that the
remaining weakly singular terms satisfy conditions (2.57), (2.58) and (2.60), for

B = a. The second term in equation (2.72) may be similarly analysed.

The operator on the left hand side of equation (2.67) is then in class G'(«).

Its symbol matrix is

1 0 0 0

o0 =T | 0 0 s L(x), (2.73)
0 0 -1 2%'1’ llj)z sin @
0 %%—'1'-—1172 cos 8 2(11/ lgzsmé) -1

where L(x) is the 4 x 4 square matrix with the entries given by

)

1 fi=j5=1
0 ife=1landyjy#1
Lij(x) = ;
0 ifiZland j =1
| licig(x) Hr#landj#1

and where LT(x) denotes the transpose of L(x).

Obviously,
(2v —1)2

det @(X,G) = m -

(2.74)

The condition
inf | det ©(x, §)| > 0,
where the infimum is taken over all points x € €2 and over all angles 8, is fulfilled
if
3
1 4
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The conditions on the Lamé constants in equations (2.15), (2.18) and (2.19)
make a Poisson ratio of this value impossible. We conclude that the system of
integral equations (2.65) and (2.66) is quasi-Fredholm when the solid is elastic or
visco-elastic. The symbol matrix is Hermitian and so the index of the system is
zero. Consequently, a unique solution to equations (2.65) and (2.66) exists if the

following homogeneous problem has just one solution:

p+ K p—pwS(nu) =0 (2.75)
and
u—-K .u-S.(np) =0. (2.76)

Suppose that the system (2.75) and (2.76) has a non-trivial solution: (p’,u’) in
L?(0R2). The fact that the operator is in G'(8) implies that the solutions p’ and
u’ are in CHA(99).

Define

pe(x) ifxe
(Dp')(x) — pow?(Sn.u’)(x) = (2.77)
pi(x) ifxe;
and

) , u.(x) ifxeN,
(D.u')(x) + (Snp')(x) = (2.78)

u;(x) ifxe
The continuity of the single and double layer potentials up to the boundary
implies the continuity of pe, p;, u. and u; up to the boundary. The fact that
their kernels are smooth and satisfy Helmholtz’s equation, in the case of equa-
tion (2.77), and equation (2.16), in the case of equation (2.78), means that p, and
p; are smooth and satisfy Helmholtz's equation in their respective domains and

that u. and u; are smooth and satisfy equation (2.78) in their respective domains.

Moreover, due to the far field behaviour of the kernels, p, satisfies Sommerfeld’s
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radiation condition and u. satisfies the following radiation condition:

x| (gl‘fl - z'icpug) -0 (2.79)

Oug .
x| (w — zk,,ue) — 0,

as |x| tends to infinity, where

1
Ulé = —EV(V.HG)
P
and
ul = u. —ub.

From equations (2.75) and (2.77) and using the limit in equation (2.44) we

have
pilaa = 0.

It is well known that for each compact domain D, there is only a countably
infinite number of wave-numbers at which a non-trivial, square-integrable func-
tiom, satisfying Helmholtz’s equation in D and satisfying a homogeneous Dirichlet
boundary condition on the surface of D, exists. (See e. g. Sanchez Hubert and
Sanchez Palencia [27, Chapter 2].) We shall call the squares of such wave-numbers

etgenvalues of the interior Dirichlet problem.

Suppose that k% is not an eigenvalue of the interior Dirichlet problem, then

p; vanishes in ;. Thus
Opi
on

= 0.
aq

From the continuity of the normal derivative of the double layer potential across

0§t and the jump conditions (2.45) and (2.46) we obtain

Ope
on

dp;
aq On

= —2pgwin.u’.
o9
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So,
%Pe = —2pgwin.u’. (2.80)
n |50
Evaluate p. on the boundary:
pe(X)]on = —p' + K p' — pow?Sn.u’ = —2p', (2.81)

from equation (2.75).
From equation (2.76) and the jump conditions in equation (2.52), we have

ue(x)k—)g} =0,

u. satisfies equation (2.16) and the radiation condition (2.79). For the case of a
purely elastic material the proof that u. vanishes is given in Kupradze (16, pp.
132 - 136]. For the case of a visco-elastic material the proof of the same result is

given in Appendix D. Therefore,
n(x).o(u.)(x)|ag = 0.
Evaluating the jump in the surface tractions across the boundary we have
n(x).0(ue)(x)|aa — n(x).o(ui)(x)loa = 2np/,
from equation (2.53). Thus,

n(x).o(u;)(x)|aq = —2np’. (2.82)

After using equation (2.76) to evaluate u; on the boundary, we have

u;(x)|on = 2u'(x). (2.83)

Equations (2.80), (2.81), (2.82) and (2.83) imply that (—p,,u;) solves the

homogeneous transmission problem. We know, therefore, if the solid is either
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elastic or visco-elastic that
(—pe,us) = (0,0),
unless a Jones’ mode is possible.

If a Jones’ mode is ruled out, then equations (2.81) and (2.83) imply that

(»',u’) = (0,0).

The right hand sides of equations (2.65) and (2.66) are in C1*(92). In this

case, a solution, p and u in C1*(9Q) of this system exists.

Now define

P = pipe — %Dp + %powgS(n.u) (2.84)
and
1 1
U= §D.u + §S.(np). (2.85)

It is clear from the smoothness of the kernels and the continuity up to the bound-

ary of the potentials that
Pla, € C(D) ﬂ C*(D)

and

Ulg, € C(Q:) [ C* (%),

as required. Because of the regularity result, the normal derivative of P and the
surface traction of U on 0 exist in the sense of limits mentioned earlier. P
satisfies the Helmholtz equation in R? \ 9. It is clear from the construction of
P that P — p;,. satisfies the Sommerfeld radiation condition, and that U satisfies

equation (2.16) in R? \ 0Q. Denote by P_ the limiting value of P as 9§ is
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approached from ;, and by P, the limiting value of P as 9} is approached from

Q.. U_ and U, are similaxly defined.

From equation (2.65),

P_ =0.

We have assumed that k? is not an eigenvalue of the interior Dirichlet problem

and, so,
P=0
in ;. Therefore,
OP_
on 0.

So, as before, the jump in the normal derivative of P across the boundary implies

OP,

2
5, = Pwinu. (2.86)
Moreover,
P, =p. (2.87)
Similarly,
n.o(U_) = ~pn (2.88)
and
U_=u (2.89)

Equations (2.86), (2.87), (2.88) and (2.89) imply that the transmission con-
ditions (2.20) and (2.21) are satisfied.

Before we begin the next section, let us examine what happens when £? is an
eigenvalue of the interior Dirichlet problem and/or £ is a Jones’ frequency. Let Pp

now denote a non-trivial solution of the interior Dirichlet problem. By applying
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Green’s second representation theorem to Pp and the fundamental solution in
the domain §; \ B, where B is a small, closed ball centred on a point x in ),

and taking the limit as the radius of B tends to zero, we get.

Pp(x) = —% (5‘9{%) (x).

Use equation (2.45) to obtain

dPp

(I +K) F™

= (.

On the boundary, we have
dPp

s n

= 0.

Let {Uf,");i =1,...,n} be a base of the space of Jones’ modes. It is clear that
(I-K".UY =o.
From what we have already done, we know that
I-X
is quasi-Fredholm. Therefore, the equation
(I-K)b=0
has at least n independent solutions. Let {b();i=1,...,m} be a base of

N(I - K).

It is easy to see that the space spanned by {S.b();7 = 1,...,m} is the space of
interior displacement fields with zero surface tractions. Thus, each Jones’ mode

can be expressed as S.b, for some b. Clearly,

(I-K)b=0
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and

n.S.b=0.

The adjoint, homogeneous version of the system (2.65) and (2.66),
(I+K)a-~nSb=0

and

(I-K).b - pow?nSa =0,

has the solution

0P

on 20

and with b as above.

61

Conversely, it can easily be shown that the only solution of the adjoint system

has
n.S.b =0,
I-K)b=0
Sa =10
and
(I+K)a=0.

From equation (2.39) we have

8])1' ne

2pc'nc = Pinc + F"pinc - S .
an

Therefore, the inner product of (2pinc,0) with (a,b), with ¢ and b as above,

equals

apim’:
an

< Pinc T —f?*pin.c -5 , @ >
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This equals

a inc
< Pine, (I + I()CI, > —< gn N Sa >= 0.

Therefore, the system is solvable at all frequencies. Thus, the transmission
problem is solvable at all frequencies. The system is singular at eigenvalues of
the interior Dirichlet problem and at Jones’ frequencies. The singularities at
eigenvalues of the interior Dirichlet problem are spurious because we know that
the transmission problem is uniquely solvable at these frequencies, unless, of

course, they happen to coincide with Jones’ frequencies.

The system derived in the next section will not improve on this result. It
is included only as an example of an indirect method. Indirect in this context
means that the quantities found ave not in themselves physically relevant. In
contrast to indirect methods, direct methods, are those in which the quantities

found are physically relevant. The method we have just used was direct.

2.6.2 An indirect method #1.

Look for a solution of the form
u=S.g (2.90)
and
p=Sp+ pine. (2.91)

We require that both g and g belong to C%#(9Q), for some positive constant 3.
Equation (2.90) implies

n.d(u)lag =—-g-+ K.g (2.92)
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and equation (2.91) implies

apinc

on 50

e,
hitd Y
on g

Furthermore,
u|aQ p S g
and

p|aQ = S:U' +pinc-

Using the transmission conditions (2.20) and (2.21), we obtain

apinc

i+ Ky — pow?n.S.g = — 5n

and

—g+ K.g+nS5u = —pien.

We discovered in the previous section that the system

I+ K —pyw?Sn
-Sn I-K

is quasi-Fredholm. This implies that the system

I+K" —Sn
—pow?Sn I-K"

63

(2.93)

(2.94)

(2.95)

(2.96)

(2.97)

(2.98)

(2.99)

1s quasi-Fredholm too, because its singular part is identical to that of the former

system. Because the index is zero, the relationship between this system and its

adjoint is symmetric. Therefore,

I+ K —pow?n.S
nsS I-K

is quasi-Fredholm.

(2.100)
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Thus, the system in equations (2.96) and (2.97) is quasi-Fredholm. In addition
to this, the system is solvable if and only if k2 is not an eigenvalue of the interior
Dirichlet problem and a Jones’ mode is not possible. To see this, note that, due to
the vanishing index, the null-space of the system (2.100) has the same dimension

as the null space of the system (2.99). We have the easily verifiable identity

10 I+ K —pew?Sn
0 pow?l -Sn I-XK
I+ K" —Sn 10

—pow?Sn I-K 0 pow?l
Clearly the null space of system (2.98) has the same dimension as the null space

of system (2.99). The claim then follows.

If k2 is not an eigenvalue of the interior Dirichlet problem and w is not a Jones’

frequency, then the system (2.96) and (2.97) has the unique solution (4, g).

The pressure and displacement fields are then given by the equations (2.90)
and (2.91). As for the direct formulation, it is easily verified that this is indeed

the solution of the transmission problem.

2.6.3 Single integral equation.

In this section, we shall derive a system of three equations in three unknowns

that has no irregular frequencies.

We have the ansatz
u=8Sng+S.f, (2.101)

where
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and g and f belong to C%P(80), for some positive constant f.

From Green’s second representation theorem and the jump conditions (2.44)

and (2.46), we have

S dp
Cp— S— = 2 2.102
p+ K p San 2Dine (2.102)
and
ap ,ap _ apinc
e K B + Np=2 5 (2.103)

Use the transmission conditions and equation (2.102) to obtain
n.o(u)n + K (n.o(u).n) + pow?S(u.n) = —~2pinc. (2.104)
From equation (2.101) we have
n.o(u) = —gn —f + K.ng + K.f. (2.105)
Now substitute equation (2.105) into equation (2.104) to give

¢g—nKng—nKf+Kg— K (nKn)g—K (nK).f (2.106)

~pow?S(m.S.n)g — pow?S(n.S).f = 2pie.

Similarly, by using equations (2.101) and (2.103) and the transmission condi-

tions one can obtain

pow?n.S.ng + pow?n.S.f — pow?K(n.S.n)g — pow?K(n.S).f (2.107)

apinc
on

+Ng— NnK.n)g — N(nK).f =2

Now let us add equation (2.106) to in times equation (2.107), where 7 is a

constant to be chosen later. We have

g—nKng—nKf+FK g— K (nKn)g—EK (nK)f (2.108)
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~pow?S(n.S.n)g — pow?S(n.S).f + inpow?n.S.ng

+inpown.S.f — inpew? K (n.S.n)g — inpow? K (n.S).f

6piru:
on

+iyNg —inN(n.K.n)g — inN(n.K).f = 2p;pc + 2ty

Moreover, since

c(u).n — nn.o(u).n = 0,

f—(K.nn)g+n(nKmn)g—Kf+nnK)f=0

We now require that g and f belong to C1?(9Q), for some 8 € (0,1).

66

(2.109)

Before we prove that the system (2.108) and (2.109) is quasi-Fredholm, let

us first see whether the homogeneous version of the system has a non-trivial

solution. Suppose (¢’,f') is a solution of the homogeneous system. In addition ¢’

and f’ belong to C18(91), for some S € (0,1). Let
u=S.ng+Sf

and

2
p="""5(n.S.n)g + B"ziS(n.S).f' - %Dg' + %D(n.K.n)g'

—%Dn.f’ + %D(n.K).f’.

Equations (2.109) and (2.110) imply that
o(u).n —nn.o(u).n = ' .nn.

Therefore,

and

(2.110)

(2.111)
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Let us once again adopt the notation that a negative (resp. positive) subscript

denotes that a limit has been taken on 90 as the boundary is approached from

Qt (resp. Q).

Equation (2.111) implies that

2 2
p- = Sn.Sm)g + =S (n.8).t - %g’ - %F*g' (2.112)

1 11— 1 —
+§11.K.ng’ + §K (n.K.n)g' + é-n.K.f’ + %K (n.K).f'

and

w2 Ld2
’ 0 0

On_ 2
Po P n.S.ng — &

on 2

2
”0; K(n.S).f — %Ng' + %N(n.K.n)g’ + —;—N(n.K).f’.

n.S.f +

K(n.S.n)¢ (2.113)

+

Equations (2.112) and (2.113), and the fact that (¢’,f’) is a solution of the

homogeneous version of equation (2.108), imply that
. Op_
p_ -+ 277% = 0.
Therefore,

_ . . Op_
0= /zm - (p_ -+ mm) ds.

By the divergence theorem and Helmholtz’s equation

_ _gd—'“Z/‘Z/' T5dV.
0 /;mlp! S —ink ﬂ¢|p| dl —I—zn/QinVpcﬂ

Assuming that F(%?) > 0 then choose 5 to equal

EE

|k[*
Now take the real part of the last equation. Clearly p_ vanishes. If $(k?) > 0

then the gradient of p vanishes in 2;. Consequently, p itself vanishes.
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If k2 is real then p_ still vanishes. To complete the analysis, let us note that

we obtain a very similar equation by considering

Op— . Op_
foo (P- + “779;) as.
Now we have

2
-\ 4 - szﬂ_ p|2dV + /Q Vp.VEdV.

0= an

an

Taking the imaginary part of this last equation, with 5 equal to 1 or —1, we have

that
dp_
o =0

No non-trivial solution of Helmholtz’s equation in §2; which vanishes on 0§} and

whose normal derivative vanishes on 9f) exists. Therefore, p vanishes in ;.

So
dp_

an

The jump conditions (2.45) and (2.46) imply that

0.

%pt = pow?n.S.ng’ + pew?n.S.1'. (2.114)
n
Moreover,
u_ = S.ng + S.f, (2.115)
We have
o{u_)yn = —¢'n — ' + K.ng' + K.f' (2.116)
and
P+ =¢ ~nKng — nK.f, (2.117)

since p_. equals 0.
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The transmission conditions are satisfied by p

a. and u|g,. Clearly the field
equations are also satisified and p|q, satisfies the Sommerfeld radiation condition.

Therefore,
(pla.,ula;) = (0,0),
unless a Jones’ mode is possible. If not then u_ vanishes. The continuity of the
single layer potential implies that u; vanishes. Therefore, by Kupradze [16],
uige =0.
Clearly,
0=oc(uy) —o(u-) = 2¢'n + 2f".
Since f'.n vanishes then
g =0

and

f'=o0.

So the system is unique unless w is a Jones’ frequency.

We must now prove the existence of solutions to the system (2.108) and
(2.109). Let us write

N — [\fg + (_['\!" - 1\’0),

where Ny is to kg, a wavenumber whose square is neither an eigenvalue of the
interior Dirichlet problem nor an eigenvalue of the interior Neumann problem —

i. e. the interior problem with homogeneous Neumann conditions — what N is

to k.
Ny is invertible with

Not = So(I+ Ko)y ™ (=T+ Ko)7t,
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where Sy and Ky have analogous definitions to Ny. See Colton and Kress [4,
p. 90]. It is clear from the last formula that N is compact on C%#(9Q1) and

that Ny' maps C%?#(99) into C1A(60).

N — Np) is compact on C%#(9Q) since its kernel is weakly singular. Its kernel
g

also satisfies the conditions (2.57), (2.58) and (2.60).

By operating on the left on equation (2.108) with Ng!, we obtain

Nilg — Ngy'(nKn)g — Ny (nK).f + N; 'K g — Ny 'K (n.K.n)g (2.118)
—Ny Y E'n.K).f — Ny'n.K.f — pow?Ny15(n.S.n)g — pow? Ny ' S(n.S).f
+inpow?Ny ' (n.8.n)g + inpw? Ny ' (n.S).f — inpow? Ny ' K (n.S.n)g

—inpow? NG K (n.8).f + ing — ipn. K.ng — inn. K £ + i Ny (N — No)g

—ip Ny (N — No(n.K.n)g — in Ny (N — No(n.K).f = 25! (pmc + in ag?:) -

By dividing equation (2.118) through by 7, we can see that

2 inc .
g — (n.K).f + compact terms = =Ny (17 8; - zpinc) . (2.119)
n n

We can see that the system (2.109) is in G'(f), for 0 < f < a. It is easy to

calculate the symbol for this system. It is

1 (2—2(’1’5%%7, cos gz(‘l’—j/;i sin &
O(x,0) = ZT(X) —%—2(1;:—32' cos f 1 0 I(x),
—%—2(-‘1—’:—37} sin § 0 1

where [(x) is the rotation matrix introduced in subsection 2.6.1. Clearly,

sup | det ©(x,8)| >0
x € 90

b € [0, 2]
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for all feasible values of Poisson’s ratio.

We know from this that the only solution of the homogeneous system is the
trivial one. Thus, the Fredholm property of the system (2.109) and (2.118) implies
the existence of a solution in C1*(951). Once the solution, (g,f), is known, the

solution to the transmission problem is
u=_S.(ng)+S.f

and

1 1 1
p= 5p0w25(n.S.n)g + iposz(n.S).f — EDQ

1 1
-|—§(nKn)g + ‘i(nK)f + Pinc-

2.6.4 An indirect method #2.

We now conclude this chapter by describing another indirect method.

Let us begin by representing p and u as
p=3Su+ Dy + Pine (2.120)
and
u=S.ng+S.f. (2.121)
We require that x belongs to C1#(9Q) and that g and f belong to C%#(8R), for
some positive f.

Now apply the transmission conditions (2.20) and (2.21). We obtain

= apinc

p+ Kp+iNp — pow?(n.S.n)g — pw?(n.S).f = “an
n

(2.122)

¢g—(nKmn)g —nK.f+ig—iK pt— Sit= Pine (2.123)
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and

f-Kf—-(Kn)g+nnK).f+nnKmn)g=0. (2.124)

Equation (2.124) comes from

o(u).n —n(n.o(u).n) = 0,

Let 4" in CY#(9Q) and (¢', ') in C%#(9Q) solve the homogeneous version of

the system (2.122) to (2.124).
Let
P =S5y 41Dy

and

U = S.ng’ + S.t".

Equation (2.124) implies that

n.f = 0.

This and the homogeneous version of equation (2.122) imply that

= pow?U_.n. (2.125)
The homogeneous version of equation (2.123) implies that
o(U_)n=—P.n, (2.126)

So unless w is a Jones’ frequency, P

0. and Ulg, both vanish. So assume that w
1s not a Jones’ frequency. The continuity of the single layer potential implies that
U, vanishes. This in turn implies that Ulg, vanishes. The jump in the surface
tractions due to the displacement fields in 2, and Q; clearly vanishes. From the

jump conditions (2.53) we have

o(Us)n —o(U).n = 2¢'n + 21,
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Clearly then both ¢’ and f’ vanish.

Furthermore,
P_ =P, + 2y = 2iy/
and
OP_ 0P,
. _ 2 ! — _2 !
on on # H
So,
P_+ T:BP_ = 0. (2.127)
on
Therefore,
0 = foo P (P-—i%=)ds (2.128)

= foq |P-12dS — i [o, VPNPAV +iF [y, |P[2dV.
Taking the real part of equation (2.128) implies
0= P_|?dS + S(k? P|*dV. 2.129
g \P-2as + () [ |PIay (2.129)

We assumed that F(k?) > 0. Then P_ vanishes and from equation (2.127),

oP_
an

= 0.

Green’s seccond representation theorem implies that P vanishes in ;. Therefore,
p vanishes and the homogeneous version of equations (2.122) to (2.124) has only

the trivial solution when g lies in C*#(9Q).

We must now prove the existence of solutions to equations (2.122) to (2.124).
The first of these three equations clearly has a hypersingular term. To find a

regularizer for this, we write

j\f = [\rg ‘I— (I\T - j\’o),
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where, once again, Ny represents the gradient of the double layer potential for a
wavenumber that is an eigenvalue of neither the interior Newmann nor the interior
Dirichlet problems. Thus it is invertible. Its inverse and (N — Np) are compact

on C%8(99). Equation (2.122) becomes, when operated on on the left by Ny,

i+ NG YN — No)po + Nyt + Ny Ky — po (2.130)

1 apinc
on

wENO—l(n.S.n)g — pow? N (n.8).f = — N

Let us rewrite the equations (2.122) to (2.124) as

1 apinc
87'2. ’

i+ compact terms = ¢y

g— (n.Kmn)g — (n.K).f +ix+ compact terms = pjp.

and

f-Kng—Kf+nnKn)g+nnK).f=0.

As before, n.K.n is actually compact on C%8(82). The singular part of n.K

18
(2v — 1) X,
— kE=1,2,3.
4r(l —wv)R3 23
The singular part of K.n is
(2v — 1) X},
—_— t=1,2,3.
4r(1 — v)R3 k=123
The singular part of K — nn.K is
— D (y) X
@ = Dm0 Xs 9

d7(l — v)R®
Here the coordinates have been rotated so the normal to 9§ at x points in the es
direction. The symbol matrix is, once again, simple to calculate and the result
is identical to the preceeding results. The system is, thus, quasi-Fredholm with

index zero, for all feasible values of Poisson’s ratio.
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We must now turn our attention to the regularity of the solutions to the
system. Specifically, we must show that the function g in C*#(9Q), that is a
solution of the system, is actually in the smaller space C1#(9), for some positive

B. To do this, note that we have

1 0pinc
on

i+ compact terms =t N

and that the label “compact terms” refers to terms in equation (2.130) that are

of the form

Ni',

where ¢ belongs to C%#(9Q). The mapping propeties of Nyt indicate that the
image of ¢ under Ny' belongs to C3(9Q). Obviously, x also belongs to this

class.

This regularity property of the solutions, the uniqueness property of the ho-
mogeneous version of the system and the quasi-Fredholm property of the system
with the vanishing of the index imply that the system is always solvable unless

w is a Jones’ frequency.

2.7 Conclusion.

We have seen four different approaches to tackling the transmission problem by
means of integral equation methods. The first two systems involved integral
operators that had considerably simpler kernels than the final two systems. This
latter pair had the advantage of not having had spurious frequencies at which

the system of integral equations was singular but the real problem was not.

The main theoretical result of this chapter was the proof of the existence of

¥ JORN RVLANDS
UNIVERSITY
| LIBRARY _




CHAPTER 2. SMOOTH ELASTIC BODY — ACOUSTIC MEDIUM 76

a solution to the transmission problem at all frequencies, for both the elastic
and visco-elastic cases, and the proof of uniqueness at all frequencies other than

Jones’ frequencies.




Chapter 3

Elastic Polygon — Acoustic
Medium

3.1 Introduction.

In this chapter we shall consider a problem that is very similar to the one con-
sidered in the previous chapter. We are interested now in the effect that edges
have on the solutions to the transmission problem. We know that when the elas-
tic body occupies a sufficiently smooth domain the solution is as smooth as the
datum, that is to say, the incident wave. This, as we shall see, is no longer the

case when the body has an edge.

For simplicity, we shall consider only two-dimensional polygonal domains. By
this means the essential feature of the problem will be isolated. The extension to

three-dimensional problems of bodies with edges is straightforward.

77
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C

Figure 3.1: The polygonal domain.

3.2 Preliminaries.

We shall denote by 2; the compact, open subset of R? that is occupied by the
elastic body. 2, will denote the set R?\ {1; and 91, the boundary, is the comple-
ment of ; J€2e. Let us suppose that the polygonal domain, §2;, has N corners.
Let us label these

{C1,C4,...,Cn}.

Let us denote by 0§, for j € {1,2,..., N — 1}, the edge that joins C; to Cj41.
00y is the edge that joins Cy to Cy. Let us denote by «; the interior angle at

the corner C;. See Figure (3.1).

The equations satisfied by the displacement field in §2; and by the pressure field
in {2, are unchanged. This is true of the transmission conditions too. Recalling

equations (2.13) and (2.16), we have
Vip+k¥*p=10in Q. (3.1)

and

(A + p)V(V.a) + ¢V + pw?u = 0 in Q. (3.2)

|
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Let us rewrite the transmission conditions (2.20) and (2.21)

ap| 2
B . = pow?n.ulpg (3.3)
and
— (pn)]aa = (o(u).n)|sn- (3.4)

We split the pressure field up into an incident part, pinc, and a scattered part, p,.

The scattered part satisfies the Sommerfeld radiation condition

T, (é) (3.5)

as x| — oo. This is a modified version of the radiation condition of equa-

X
— . Vps — 1kp,
[Xl P P

tion (2.22). The modification is due to the reduction of dimension from three to

two.

We shall search for a solution of the transmission problem expressed in equa-
tions (3.1) to (3.5) with

r € Hlsoc(Qe>

and

u € H(Q;),
for s lying in the range (3, 3).

For p € H{. (), with 1 < s < 2, one can define the trace of p on 9.

The trace map is continuous from Hj () into H*~z(0). This is Gagliardo’s
trace lemma. The same, of course, applies to the trace map from H*(Q;) into
H*=3(09). These trace maps have right continnous inverses, which are sometimes

called lifting operators.

Suppose now that p € H} (Q.) and p satisfies Helmholtz’s equation. Then

one can define the normal derivative of p on 9§ to be the unique element of
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H-3(09) satisfying

dp

on oyt ey~ F f, PRIV - V&V,
< Bn’qs Z a4 oa)ut (o9) k /ﬂe pddV /ﬂe Vp.Vaodv,

where ¢ is any member of H32 (0K2), @ is a lifting of ¢ that vanishes in a neighbour-
hood of infinity, ® denotes the complex conjugate of ® and the angled brackets
denote the duality product. Similarly, for any solution u, of equation (3.2) in
HY(;), its surface traction can be uniquely defined as an element of H~3(8(2)

through the equation

_ . ! _ 2 avs
< n.o(u),v > n-} ooyt om) = /ﬂ.- o(u): Vv'dV — pw /ﬂs u.v'dV,

where now v’ is a lifting of v.

We shall later require the following uniqueness result.

Theorem 7 Let Rw? > 0. Suppose pin. vanishes and that u € HY(Q;) and
p € HL (Q) satisfy equations (3.1) to (8.5). Then u and p vanish identically in

their respected domains unless a Jones’ mode is possible.

Proof: We first note that the transmission conditions actually make sense since
the normal derivative of p on 92 and the surface traction of u exist. Let ¥ be
the boundary of a cixcle that completely encloses {};. Let €' be the open domain

bounded by the curves ¥ and 9. The transmission conditions imply that

dp

2
S 3P Zu-tpamteaT TPV < n.o(u),u 7 u-% o) 0a) (3.6)

It 1s evident that the left hand side of this equation equals

X / Ip[*xdV — / Vp.VpxdV,
Q. Qe




CHAPTER 3. ELASTIC POLYGON — ACOUSTIC MEDIUM 81

where y is a smooth function that takes the value 1 within (2.’ and that vanishes
in a neighbourhood of infinity. It is well known from regularity theory that p is

smooth in any open subset of Q}.. Therefore, we have

9p
k? 2/d/'—f NVoxdV = [ =pdS.
/R?\n; IpPxdl R2\Q, Vp-VExdl /)3 anPdS

Therefore,

o .2 2
= 7
< 57z’p -} )t (99) =k /ﬂ, |p|*aV — / Vp.Vpd) -I—/

Similarly,

OPoas.  (3.7)

— pow? < n.o(u),u > = ppo|w|* / u.udV — pow / Vu.VudV.

—“FemHY @)

(3.8)
Equations (3.6), (3.7) and (3.8) imply that
.2 2 3])
k / Ip[2dV — / Vp.VpdV +/ pdS (3.9)
= S — wdV.
ppojw|* /m u.adV — pow /ﬂs Vu.VudV.
Suppose first that w? and k? are real. Then
/ --pdS = 0. (3.10)
Equation (3.10) is true regardless of the radius of the circle. Write
P _
B tkp+g.
Equation (3.10) implies that
1
a5 = -5 (7 [Lopis). .
/r. |p|*dS & (kfggp S (3.11)
Thus, we have
(B [ 191745 <11 g Izl p lzaesy (3.12)
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The radiation condition and inequality (3.12) imply that

i pllr2m)— 0 (3.13)

as the circle’s radius tends to infinity. Asin the three-dimensional problem of the
previous chapter, this implies that p vanishes in a neighbourhood of infinity. By
analytic continuation p vanishes everywhere in {2.. The transmission conditions

1mply that u vanishes unless a Jones’ mode is possible.

If w?, and hence k%, have positive imaginary parts, then, as in the three-
dimensional case, p decays exponentially at infinity. Therefore, the limit of the
integral in equation (3.10) as the radius tends to infinity is zero. So the imaginary
part of each term on the left hand side of equation (3.9), with . replaced by 2.,
is positive and the imaginary part of each term on the right hand side is negative.
Thus, p vanishes and u is constant in {};. The transmission conditions imply that

u.n vanishes on 9. Therefore, u must vanish in Q.

3.3 Integral equations.

Let us recall the integral operators introduced in the previous chapter. We here
define analogous operators. For the problem in two dimensions the fundamental
solutions are now

~iiH§(kR)
for Helmholtz’s equation and

| R 1
_ZEZHO(A'SR)I—lewz

iVV(Ho(ksR) — Hy(kyR))
for the elastic wave equation, where Hj(z) is a Hankel function and

R=|x-yl|
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These operators were previously defined on Hélder continuous spaces; we now
wish to extend their definitions to larger spaces. From Costabel [5],ifo € (-1, 1),

the operators

S H™3t9(90) — HIt7(R?) (3.14)
D : Hi+o(50) — HM (1)
D: H3t(0Q) — H™(Q,)

S H-3%(dQ) — Hrte(50)

K H-5t(9Q) — H~5t(99)

K" : Hrto(90) — Hzt(99)

N : H3to(9Q) — H-5+o(99)

as well as their elasticity counterparts are bounded extensions of the previously
defined operators. We shall not distinguish between the single layer operator
that maps H~5+7(9Q) to Hit?(R?) and the operator that maps H~z+7(d9) to
H¥o (). Nor shall we distiguish between the double layer operator that maps

H3+(80) to H'7(€Y;) and the one that maps H+(90) to H*+(£,).

Furthermore, if p, belongs to H}.(Q.) and satisfies Helmholtz’s equation,

1 1 8ps . —ps(x) if x - Qe
PRI =S =y T )

For pin. we have

1 1. . OPine 0 ifx € Qe
o (DPinc)(x) = 5(5 gn )(x) = : (3.16)
. pinc(x) ifx e

Similarly, for u in H*'(Q;) satisfying equation (3.2) in the sense of distributions

1 1 0 if x € Q,
—2~(D.u)(x) — §(S.O‘(U).H)(X) = . (3.17)
u(x) ifxe,
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From equations (3.15) and (3.16) we see that

—p ifx e,
(Dp)(X) - %(S% (X) - pinc(x) - z(X) . (318)
0 if x € Q;

1
2

Moreover, for 3 belonging to H=%(89),

(%) — (S)_ = 0 and (%?)Jr _ (9%’)* — 2%, (3.19)

where the + subscript denotes taking the limit onto dQ from the exterior and

the — subscript denotes the limit taken from the interior. For 3 belonging to

HY(0),

(D)y — (D) = 2¢) and (%?’—b-) - (agzp) = 0. (3.20)
). ~

This 1s true of the elasticity potentials too. The proof of all these claims may be

found in Costabel [5]. Define the operators K and K through the identities

R = — + (D)4

and

£

K. v=v+(Dv),.

Equation (3.18) implies that

e a
P+ Ep— S = Wine (3.21)
an
and equation (3.17) implies that
u—K u+S.o(u)n=0. (3.22)

Now substitute the transmission conditions into equations (3.21) and (3.22)

to obtain
p+ K p— pow?S(un) = 2pine (3.23)
and
u-K'u—-Snp=0. (3.24)

r
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3.4 Mellin transforms and the convolution the-

oreinnn.

Mellin transforms will play a large role in what follows. The Mellin transform of

a function f, belonging to C§°(0, 00), is

Mf(z) = /0 T ()t (3.25)

The definition of the Mellin transform can be extended to functions in L?(0, o).

In fact, the map
1
M : L*(0,00) — L*(Rz = 5)
is an isomorphism. The inversion formula is

) =g [ R (3.26)

2w

for f € L?(0, o), where, of course, f represents the Mellin transform of f.

The Mellin transform can be extended to a still wider class of functions. We

have

Lemma 1 Let f € L% (0,00) and let the numbers a and b be given by
a = sup{a; f(t) = O(t™) as t — 04}
b =sup{B; f(t) = O(t™") as t — oo}

with b > a. Then the integral in equation (8.25) converges uniformly for a <

Rz < b and defines a holomorphic function there.

Fora < z < b we have

lim f(z+iy) =0,

y-——r:l:oo
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for any subinterval I of (a,b) the function
N(f,1,y) = sup | F(z + iy)|
is continuous with respect to y and satisfies

Jm N(f, Iy) = 0.
The inversion formula (8.26) 1s valid along any line Rz = ¢ fora < c < b.

The proof of this may be found in, for example, Bleistein and Handelsman

[3].

Now we introduce the space LQ'C(%), by defining that a function f belongs to
it if
o0
JARENOIRT
0
exists. Equipped with the obvious norm these spaces become Banach spaces. We

can prove that

M [P (%é) — LRz = ¢)

is an isomorphism.

The inversion formula (3.26) has to be modified slightly. For f € L2<(%)

lim /C“M £ f(2)ds = f(t), (3.27)

Moo 21 Je—iM

for almost every t € (0, 00).

The Mellin transform is useful for solving integral equations of the form

T

[70(3) s = hie). (3.28)

13 t
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The left hand side of equation (3.28) is called the Mellin convolution of f and g.

Formally the application of Mellin transforms yields

§(=)f(2) = R(z). (3.29)

For f € L?¢(%) and § € L*(Rz = c) this can be rigorously proved. The inversion

formula (3.28) then enables us to write

c+HiM 7
M:mi/%%%&

M—oo 2% Je—iM §(z)

Let us call S, the subspace of D(0, 0}, the dual space of C§°(0,00), defined
by
Se = {f € D(0,00); e f(e*) € S(—00,00)}.

The Mellin transform of any v € S. can be defined on the line £z = c. Here
S(—00,00) stands for the space of distributions for which a Fourier transform

can be defined. e f(e®) is the distribution g defined by

< g, >=< f,t ¢(lnt) > .

Let us state the convolution theorem for distributions and restate the convo-

lution theorem for functions:

Theorem 8 If f € L?%(0,00) and g € S, is such that § is bounded, then

[7o(6) 0% = pim L [ o e (3.30)

t Moo 210 Je—im
If f € L¥(0,00) and g is such that § € L*(Rz = ¢), then

/ooo g (%) f(t)% - Zim f.:“oo 57 f(2)g(z)dz. (3.31)

—ico
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3.5 Properties in the wedge.

Here we shall concern ourselves with the properties of the boundary integral

operators on the boundary of a wedge-shaped region
T'= {(,0);x > 0} J{(scos o, ssin @); s > 0},

where « is some constant in the range (0,27). To this end, let us introduce the
space Z5(0,00), for s > 0 and s — § not equal to an integer. It is defined to be

the space consisting of elements of the form

n my

u=1uo+ », Y cyw(z)a ln’ 2.

k=135=0
P denotes the set

{(pr,mr) e RON {0}k =1,2,...,n},
0<pi<pe<...<pn < [3"";‘]’
x is a variable that measures the distance from any point on I' to the origin, uo
belongs to H4(0,00) and w(z) is a smooth function which takes the value 1 for
z in a neighbourhood of zero, and which vanishes in a neighbourhood of infinity

and, finally, ¢x; are constants. u € H#(0,00) if the continuation of u by zero

belongs to H*(0,c0). We define the norm of v in Z§(0,00) by

n o my
| u Hzg 0,000=] Uo lreo,00) + D D lewsl*-
k=1 75=0

This is similar to the space defined by Costabel and Stefan [6]. See also Ola [25]

for a similar singularity space.
Z5(0,00) is independent of the choice of w(x).

Let us define the space Z3(T") to be the space of functions on the boundary
of the wedge, I', with the property that the restriction of the functions to each

arm of the wedge belongs to Z5(0, c0).
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Let
PO = ("), mM);k =1,2...,20)
and
PA = {(p,mV); k= 1,2...,n®}
denote two singularity sets. We define the sum of these
P =Pl PO

to be the set
{{pe, ) b =1,2,...,n},

where

{m} = (UG
and

my = mf),
for y =1,2,if
Pr = P}.Jf)

and if py does not belong to {p,(ﬁ"j); k'=1,2,...,n3-9} On the other hand,

my = mS) + mgj,) +1
if

pe = py) = pl.

The first result of this section is the following:

Lemma 2 Let T' be an integral operator with a smooth kernel k(t,s). Letu €
Z$(0,00) have compact support in [0, L} for some constant L. If x(t) is a smooth

cut-off function with support in [0, L], then

x(%) /OL k(t, s)u(s)ds
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1s smooth and we have the estimate

|| xTw ch(o,oo)S M || U Hz,k,(o,oo)a

for some constant M independent of u, where

I+ Nlow 0,00

denotes the supremum norm.

The proof of this lemma is straightforward. We have

d _dx(t) d(Tu)(t)
a(/\(t)(T“)(t)) = T(T“)(t) + x(t) T
The second term equals
. 1 L
Jim x(t) 1 /0 (k(t+ At, s) — k(t, s))u(s)ds. (3.32)

By the mean value theorem,

. . AL Ok(s) Ok(t', s) B Ok(t,s)

for some #' lying between t and ¢t + Af. Again using the mean value theorem this

equals
Ok(t,s) , 0%k (", s)
R
for some t" in [¢,#].
A?k(t", s)
at?

is bounded for all (¢",s) in [0, L] ® [0, L]. Thus the limit in (3.32) equals

x(t) /OL (—C)k'—gt;i)zz(s)(ls.

By induction we can see that all higher order derivatives exist.

The estimate is readily obtained.
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Denote by Z3(T'; N) the subspace of Z3(T') consisting of functions whose
supports are contained in a fixed compact neighbourhood, N, of the corner of

the wedge.

Lemma 3 Suppose that u belongs to Z5(T'; N), where
P = {(pr,mp); k=1,...,n},

s > 0 and s—1 is not an integer. Then xSu, where ) is a smooth cut-off function,

belongs to Z3h) p.(T'), where
P = {(k, 0% =0,1,2,3,...,[s — %_]}

and

Pl =A{(pr +l,me);k=1,...,n and [ = 1,3,5,...}.

Moreover,

xS |

z;;,;p,{r)i M || w ||Z;,(r)a

for some positive constant M.

S has the same properties.

Proof: We shall prove the lemma only for S. The proof for S is identical.

If we write u, a function on T', as

Ug
U
where w4y and u_ denote the values of w taken on the upper and lower arms of

the wedge respectively, we may write Su as

Set S4- u
04 + (3.33)
S_4+ S__ U
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Here we have

(Seau) = = [7 (13 = 1ok
+ J5° ki(2, s)u(s)ds = (S__u)(t)

Ju(s)ds + —1-11175/00 Jo(kls — t|)u(s)ds
™ 0

and

=]

(Se_u)(t) = 111((3 — cos )? + sin? @) Jo(k

[

s — t|)u(s)ds

+1nt [5° Jo(k|s — t))u(s)ds + [5° k2(2, s)u(s)ds = (S_yu)(t),

where k1(¢,s) and ky(t, s) are smooth and Jy(z) is a Bessel function.

Denote the integral operator with kernel

1 In(|2 —1]) In((2 — cos a)? + sin® )
= ' Jo(kls — )
T In((% — cos@)? + sin® a) In(]2 —1])

by So. (Sou)(t) equals

/oo In(]2 - 1) In(($ — cos @)% + sin® a) ut(8)
In((% — cos a)? + sin” o) In(]2 —1]) u_(s)
2m )mk?m ( 3 E) 2m

X mz_:o T L-- ds.

See, for example, Abramowitz and Stegun [1, Chapter 9] for the small argument
asymptotics of Bessel functions. Let us call the square matrix in the previous

equation M (¢, s; o). Thus, (Sou)(t) equals

1 o0 nzkznz oo 2m (277’1,)‘ t 2m—n
L Mt cdsials) S5 EmL_ (LY
- 20: T (mi)? / t,s;a)s u(s)nZ:: ( s

“(2m —n)ln! \ s

The reversal of the order of integration and summation is justifiable.

It is easily verifiable that

1
111 Z -1 .t2m.—n
i
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and

1 2
In ((E — COS c.\') + sin? a') 2m-—n

belong to L%~2m+nte(() o), for 0 < ¢ < 1. It is clear that since all the expo-
nents in the singular parts of uy and u_ are greater than —1, then t*™uy(t) €
L2—2m+¢(() 00), for ¢ in the range

(max{—s + %, 0},1).

Thus from the Mellin convolution theorem and Lemma 2, we can represent xSu

by

2 (—1)mkm Zm (2m)! \f(m)/ .
- z ¢ 3.34
2 4m(ml)2 g::o (2m — n)In! 27t Sremc—2mtn v (3:34)

m=0
cos m(z+2m—n) cos(r—a)(z+2m—n) ~
% (z+2m—n)sinw(z+2m—-n) (z+2m—n)sinw(z+2m—n) Uy (Z +2m+1 ) .

(r—a)(z42m—n) w(zt2m—r ~
(z+c2f’1in;\s)i(nfr(z+2m—n) (z+21:3-sr’1r) sinfr(z+;)m—n) u_"(z + 2m + 1)
+x(2)(S1u)(2),

where @ represents the Mellin transform of v and where

A 7T (o8] 1 1 S
X('L)(Slu)(a,) = i\(i)hlﬂ,‘/ u+( ) Jg(k‘|8 - IL‘|)(Z.S
T 111 u_(s)

plus smooth functions. The integral in equation (3.34) is to be interpreted in the

sense of equation (3.27).

t4(z + 2m 4 1) are meromorphic to the right of ® = ~s — 2m with poles
of order my at —py, — 2m — 1. Thus, if we move each contour of integration in
equation (3.34) to the left to the ine Rz = —s — 2m — 1 we pick up contributions
from the poles of @4 (z + 2m + 1) at —py, — 2m — 1 and from the simple poles of
the matrix in equation (3.34), which are situated at z = —N 4+ n — 2m, where
N is a positive integer that is smaller than [s + ] and from the double poles

situated z = n — 2m. The log singularity due to the double poles exactly cancels
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the log singularity in S;. The residue at a pole, not due to a singularity of the
square matrix in equation (3.34), is proportional to the residue of @, and @_
there. This is proportional to the coefficient of the singular part of @, and ..
Suppose that @1(z) do not have poles at 2 = —N + n — 2m, where N takes one
of the values N = 0,1,2,...,[s — 1], then there is a simple pole in the integrand

in equation (3.34) at this point. The residue at this point is proportional to

1 Z 1)mk2m i’i (2m)! (—1)mzN (3.35)
T = 4m(m' ez 41 (2m = n)ln! =N +2m —n '
1 cos(m—a)(—N+4n—2m) ,&+(_~1\7 + 2m + 1)

cosw(—N+n—2m)

cos(m—a)(—N+n—2m)
cos w(—N+n—2m)

U_(—N +2m + 1)

(=] )m ]\'flm
Z: m(m!)? (e )

1
1
7T
X ( .
z=—=N+42m+-1

The part of the residue due to the singular parts of wy is proportional to
the coefficients of the singular parts of uy. The large m behaviour of the Mellin
transform of the singular part is O(L?™), where L is a constant that depends only
on the compact neighbourhood N. The part of the residue due to the non-singular

parts of us is proportional to

/ tNHIm o (1) dt
0

and

o0
./0 VI 0t (t) dt.

It can easily be shown that

/ [N (1) |de
0
and

o0
/ [N 0 fug ()| dt
0
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are less than
ML™ || wox | 40,000

where M and L are constants that depend only on the compact neighbourhood

N.

Therefore, the term in equation (3.35) exists and has a modulus less than or

equal to a constant times

| vt |z (0.00) -
The more complicated cases of multiple poles are dealt with in a similar way.
Finally, if we bear in mind Lemma 2, we have the sum of squares of coefficients
of the singular terms of ¥ 5w is less than or equal to a positive constant multiplied
by the sum of squares of coefficients of the singular terms of u plus the norm in

H#(T) of the non-singular part of u. (H*(I') denotes the space of distributions

on I' whose component on each arm of the wedge belongs to H*(0, c0).)

The non-singular part of ySu is

) m ]"?.m 2m

1y f ot 3.36
z ( ) Rr=—2m—s— 1L v ( )

n=max{0,[2m—s- 1]} 2

X o0
P

m(ml)?

cos w(z+2m—n) cos(w—a)(z+2m—n) -~
% (z4+2m—n) sinw(z+2m—n) (z+2m—n)sinn(z+2m—n) Ut (Z +2m + 1) dz
cos(r—a)(z+2m—n) cos w(z+2m—n) ~
(z+2m—n)sina(z+2m—n)  (z+2m—n) sin7(z+2m—n) U— (Z +2m + 1 )

plus smooth terms. This is the term that belongs to H* 1 (T"). To see this we
note that, when t — 1 is not an integer and u belongs to H*(0, co),
w || ge = 1 z)|*d|=
e hasor= f,_,,, (4 Y]
where @ represents the Mellin transform of w. This is Parseval’s identity. Thus,
the term in integral (3.36) belongs to H*t*(I"). Furthermore, it is easy to show

that the norm in H*+1(TI") of the term in integral (3.36) is less than the norm in
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H°(T) of the part of w in H$(T'). This results from the fact that all the terms in
the matrix in the integral (3.36) are bounded on the lines Rz = —2m — s — 1.
This, together with the result about the singular part of ySu and Lemma 2,

is enough to show that xS is continuous between Z3(T') and Zphl, (T). This

completes the proof. O

The kernel of K~ consists of a singular part and a continuous part. Let K,
be the integral operator whose kernel is the singular part of the kernel of K.

Similarly, let Kj be the integral operator whose kernel is the singular part of the

kernel of K.

Let us now prove the following lemma:

Lemma 4 Suppose that f belongs to ZE(T), where k > %, k—2 is not an integer

and does not equal

or

mmw

2r — o’
for any integer m. Let u, belonging to H*(T') and having compact support, with
0 < s <1, satisfy

(I +XKo)u=f.
Then u belongs to ZX.(T) and we have the estimate
|| ||Z;~;,(r)§ M| f [l 25 () (3.37)

where M is a positive constant and

P ='P+{(ﬂ,0);,327 or 3 = S and m € Z}
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if the ratio of o to w 1s irrational. Otherwise,

!
P =P+{(B,1);8= %ﬁ = 2:?@ and m,m' € Z}.

Proof: Let us begin by writing (I + K,)u as

1 K, _ U
* ", (3.38)
F—+ 1 U_
where
- 1 joo fsina ds —
K g)(t) = -] ‘ , Y (T 0.
Koo = [ aap rara?®) 5 = (B0

u belongs to L*° (%) for 0 < ¢ < 1. It is easy to see that

o |t

1 2 .2
<7~cosa) + s o

belongs to L%° (‘—';1) for 0 < ¢ < 1. By the convolution theorem we can write the

term (3.38) as

{ 1 sin\!;lx;— c: )z Ga{z
o | il PRRCE ")
278 SRe=—st} sin(r—a)z 1 i (z)

The Mellin transform of f is meromorphic to the right of Rz = —k + . We

may write

f+(t) _ 1/ . Fo(2)
f-(t) 271 Ja=—st}

f-(2)

dz. (3.40)

Comparison of the integral (3.39) and the integral in equation (3.40) implies

that

1o (a) | [ A (3.41)
sin(roa)s ¢ i_(2) F-(2)

sin @z
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Thus the Mellin transform of v is

sin Tz SiN T2 — Sill(ﬂ' — CI’)Z f+(Z) (3 42)
sinazsin(2r —a)z | sin(r — a)z sin 7z f-(2)
We have
1
u’(t) = 57?;-/§]‘1‘.z:——3+1_t_31(z)dz' (3.43)

We may move the contour in equation (3.43) to the left to the line Rz = —k + ;.
By doing this we pick up contributions due to the poles of f and contributions
due to the singularities (poles) of the square matrix in (3.42). These latter poles
occur when
sinaz = 0,
or when
sin(27 — a)z = 0.

Therefore, if the ratio of o to 7 is irrational, the poles of the matrix are all

simple. If, on the other hand, the ratio of @ to « is rational the matrix may (and,

generically, will) have double poles.

So w(t) is the sum of the singular terms due to the poles and the integral

1
e t*u(z)dz. 3.44
oo oa

2

It is readily verified that this last term is bounded in the H*(I') norm and the

truth of inequality (3.37) is also evident. This is what we wanted to prove. O
The analysis of the equation
(I-Ku=t

is essentially the same. The difference lies in the increased complexity of the

kernel of K. We have the following lemma:
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Lemma 5 Letf belong to ZE(T'), where k > 1, k— % is not an integer and is not
a root of the equation (3.45). If u belonging to H*(T'), with 0 < s < }, satisfies
(I- K*)u =,

and u has compact support, then u belongs to Z;%HD,(I‘). Here we have

P = {(pk)?nk)}v

where, for each k, —pi 1s a root of the equation

2
sin® o« — %‘:—_%%_ sin® z(2r —a)) =0 (3.45)

2

——(2"sin’ o — sin® za)(z
sin* 7z

lying in the strip

1
—k+§<§RZ<O

and my, is the order of that root.

Proof: Let us first identify the singular terms in the kernel of K*. A routine

calculation shows that for the (7, 7)th term these are

5 1 2A 4+ 2 X X0
—ni(y)X; + Xin; 66;; ; 3.46
)\—|-2,U,( 77,()/') 3+‘Xn.3(y)+ J)’.’TR2+ /\_*_2# R4 ( )
where
Xi =y — i,
R=ly—x]
and
0 =(y —x).n(y).
Let us write (I — Kj).u as
I-K, ~-K._ u
A * T, (3.47)

—-I?;,*. I-K u.
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where, as in the acoustic case, the + (resp. —) subscript denotes the function
defined on the upper (resp. lower) arm of the wedge. Here K:_ 4 K:__, K. + and
_K‘“*

are two by two matrices.

It will prove convenient to write u, as

ug)e+ + 1L$)f+,

where e denotes a unit vector parallel to the upper arm of the wedge, and where
f; denotes a unit vector perpendicular to the upper arm and pointing into the

wedge. Similarly, we shall write
u_ = uMe_ +u®f_,

where e_ and f_ denote unit vectors parallel to the lower arm of the wedge and

perpendicular to it respectively. (See Figure (3.2).)

An elementary calculation shows that

— — oo - 0 1 u (1
Kitu=K__u= / £ _ et dy,
0

At2p |y 0 m(y — ) wa(y)

where the integral is meant in the sense of the Cauchy principal value, and

— — o0 1 @ sin o u1(y)
K, u=K_,u= /(; (A, )_7}_}?,_2 — B(m,y)—ﬂRT,) dy,
u2(y)
where
¢ ysinq & - Y Cos
Alz,y) =
A2pu X .
x—ycosa —ysina
and
2\ + 2 .
Byi(z,y) = v————tﬁ("f cos o — 2ay cos® o — ay sin” a + y* cos a),
A+ 2u
2) +2 . .
Bia(z,y) = + “(:vz sin o — 2y sin @ cos @),

A4 2p
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Figure 3.2: The coordinate system around the wedge.

2H2/i, 2, .
B2A(x,y) = A £ i (y sinov—xy cos a sina)
and
gZng,y)\ = —%%:r 22/? Xy sinza,
and where

R = y™M2—2X%cosa + y2.

The distribution sending u(tf) 6 C"°(0,00) to

mee 1

Vo t—1
where the integral is meant as a Cauchy principal part, belongs to Sc for ¢ < 1.
A(t, 1) belongs to L2c(y) for 0 < ¢ < 1 and B(t, 1) belongs to L2c(y) for
—A <c< 1. Asu 6 HST) for 0 < s < | we may use the convolution theorem

for Mellin transforms. We see that

(I-Ko).u

may be written as

1-4(z) —B(z) v 0e)

— f

27T sxz=-s+

t Zz,
-B(z) [I-A(z) J
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where
A(z) = E__ otz o
A+ 2pu 1 0
and
1 1 : .
By1(z) = e 2,1@(()\ + 2u) sin (e — 7) cos @ — pcos z(a — w) sin
+(A + p)z cos z(a — ) sin ),
1 1 . .
Baa(z) = 3 Z’UE-;(~(A +2p)sin z(a — w) cos @@ -+ pcos z(a — ) sin e
+(A + p)z cos z(a — 7) sin @),
1 1 . .
Biy(z) = ~ Y25 wz((/\ +2p)sinz(a — @) sin o + g cos z{(or — ) cos &
+{A + p)zsin z(a — 7) sin @)
and
1 1 . .
By (z) = — T2k sinfn‘z((/\ + 2p) sin z(o — 7) sina + pcos z(o — ) cos a

—(A 4+ p)zsinz(a — 7) sin a).

Let us denote

I—A(z) —B(z)
—B(z) I- A(z)
by MI(z). We can show that its determinant is

A I |
(()\ _:-;;))4 ey z?sin® o — sin® za) (A + p)?2% sin® o — (A + 3p) 2 sin? z(a — 27)).
(3.48)

Define

Thus we have

() NEC) | (3.49)
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u(z) is meromorphic to the right of the line

1
Rz=—k+ =
+2

with poles of order my at py and at the poles of f(z). It is clear that L(z) is
bounded on any line parallel to the imaginary axis that does not contain a zero
of the determinant (3.48). Let us call the set of zeros of the determinant (3.48)

(). We have

uy(z f.(z
+E; =2im/gtz=_s+Lt~zL(z) ;E; dz. (3.50)

As before, we may move the contour to the left to line

1
§Rz_—k+§.

Additional terms, due to the poles of L(z) and the poles of £ (z) and f_(z), are

picked up.

It is clear why the points z = 1 are not poles of the matrix L(z). It is
because the zero in the denominator of the determinant of L(z) is cancelled by

the zero in its numerator due to the sin? z7 term.

Double poles (and perhaps poles of higher orders) are possible. Double poles

are possible when « satisfies

sin o
= cos %,
o
where u satisfies
w = tanu.

We show in Lemma 6 that there is only a finite number of poles between the

lines Rz = —k +- % and Rz = —s + %
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Lemma 6 There are only finitely many real roots of the equation (3.45). There

s only a finite number of roots of this equation within the strip
a< Rz <,

for any real numbers a and b. % is the greatest lower bound for the set of modulii

of the real parts of the roots.

Proof: For the first assertion we only need show that the equation

where ¢ is a constant that is smaller than 1, has finitely many real solutions.
Obviously, this equation has no real solutions for which
|z] > a1
Thus all the real solutions are contained in the region
[, ™Y

If there were an infinite number of roots in this region, we should be able to find
a non-isolated zero of

a’z? —sin? 2.
As this is clearly a holomorphic function everywhere, by a well known result of

analysis it would vanish everywhere. This is patently absurd. Therefore, there

must be a finite number of real roots.

The second assertion will be proved for the equation
az = sin z.

If we write

z = a +ty,
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where © and y are both real, then we have
ax = sinz coshy

and

ay = sinh y cos x.
The second equation implies that
0 <cose <a.

Let us call the solution of

cos & = a,

lying between 0 and I, b. The real part of a root could lie between

2nw + b and (20 + %)'71‘,

where n is an integer. In this case, the allowable range of values coshy is

a(2nw + b)

g < coshy < 2nan.
sin b

Alternatively, @ could lie between
1
(2n — =) and 2n7w — b
2 ¥
where, once again, n is an integer. In this second region, however, the terms
ax and sine coshy

are of different signs and so, in fact, no root with real part lying in the aforesaid

range exists.

Thus, the roots of

az = sin z,
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lying in the region
c< Rz < d,

for real constants ¢ and d, are contained in a finite number of finite area rectangles.
Thus, if there were an infinite number of roots, at least one rectangle would
contain an infinite number of roots. This would mean that we could find a non-

isolated zero of the holomorphic function
az — sin z.

As before, this is impossible.

We can perform a similar analysis for the equation
az = —sinz

and prove an identical result.

These results apply to the equation (3.45) because any root of that equation

is a root of
22 sin? o = sin? zav (3.51)
or
A\ 2
((T_i%zz sin? & = sin® z(a — 27), (3.52)
H

and each of these is of the form we have just analysed for all o in the range (0, 27)

and for all allowable values of the Lamé constants.

All that remains to be done is the proof of the third assertion. Clearly,
sin za coshya
is convex as a function of @ over the range (0, 1), for all admissible a. We have

sin = cosl > | si - a[ ]1 in o
—coshya > |sin — cos —| = |=sinal.
g COPYA = Mg gl = g oha
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This and the convexity imply that
| sin zacoshya| > |esinal,

over the entire range (0, ). Thus, equation (3.51) has no roots with ®z < 1. By

identical reasoning, the same is true of equation (3.52).

Finally, we note that, if {a,} is a sequence that tends to the limit 27 and if

zp, 18 the root with the smallest positive real part corresponding to ¢, then

1
lim Rz, = —.
im 2

n—oo

This completes the proof. O

An immediate consequence of Lemma 6 is the following.

Lemma 7 Iffy in Lemma 5 belong to H%"‘S(O,oo) for some constant 6 greater

than zero and

then u belongs to H §+5'(I‘), where &' 1s a constant greater than zero.

An identical result is true for the equation

(I + Ko)u = f.

Proof: All that needs to be verified is that uy and u_ each belong to Hz+¥'(0, c0)

and that

u4(0) = u_(0). (3.53)

~

f(z) is meromorphic to the right of the line Rz = —§ with simple poles situated

at the points

z=0,-1,-2,...,—[6].
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Furthermore, the residues of f, and f_ at z = 0 are identical. Thus @ has poles

at

z=0,-1,-2,...,—[6],

and at the zeros of the determinant (3.45). Since there are no zeros between the
lines Nz = —3 and Rz = , the first two poles of & occurs at z = 0 and at
z=—1—§" say. Thus
u(t) = uo(t) + us(t),

where ug(t) is a smooth function that is constant in a neighbourhood of the origin
and vanishes in a neighbourhood of infinity and where u;y belongs to H3+%8"(T"),
The residues of i, and ii_ at the origin are equal since the residues of f; and f_ at
the origin are and since L(z) is meromorphic at the origin. Thus equation (3.53)

is verified. Finally, choose §’ to lie in the region
. 3
(0, min{Rs", 5})
and we are done.

Similarly, in the acoustic case no singularities of the Mellin transform of I +1,

occur in the region [—£, 1] and, therefore, the same result holds. O

Before proceeding to study the problem in the polygon we shall need one more
lemma.
Lemma 8 Letw € ZE(T; N), where
P = A{(pr,mu); k=1,2,...,m},
k — 1 is not an integer and k > 0. Kou belongs to Z5,(T), where

1
73’ = 'P'{' {(]J,O),p= 031121'--7[k_ E]}a
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and XK u = x(K~ — Kg)u belongs to ZEHY(T), where

1
P = {(px+1,m); 1 =2,4,6,..} +{(p,0);p=0,1,2,...,[k— 5]}

and where x is a smooth cut off function.
Moreover, the operators are bounded.

The same result holds for the equivalent elasticity operators.

This is proved in a similar way to Lemma 3.

3.6 Properties in the polygon.

We can apply the results of the last section to the polygon. We can split the

problem of solving equations (3.23) and (3.24) into N wedge problems.

We wish to determine the behaviour of a solution, which we know to be in
H*(09), where 0 < s < 1, of the system (3.23) to (3.24) in a neighbourhood of
the corner Cj, say, given that we know that p;,. is contained in H*(99), where

N
H+(09) = T] H*(9%%),
i=1
for some number k. To this end we introduce a new open, compact region ;.
This region is delineated by the curve 92, which consists of that part of 90
outside a sufficiently small open neighbourhood of Cj, call this part 8], together
with a smooth curve 9Q; whose endpoints join smoothly onto the endpoints of

9] but which does not intersect 9§ anywhere else. (See Figure (3.3).)

Let us denote by Q' the complement of Q;' and let us label the points where
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Cin

Figure 3.3: The curve €Y.

oY, and 9Q; meet on 90;_; and 88 by ¢ and ¢, respectively. Let r; and ry be

points on dQ' situated between ¢; and C;_; and between ¢, and C;y respectively.

Suppose that p and u, belonging to H*(9N), solve equations (3.23) and (3.24).
Define p; on 9’ to be equal to p on that part of 8Q between ry and ry to vanish
on 99, and to equal

wilx)p(x) j=1,2

in the intervals (g;,r;), where each w;(x) is a smooth function which takes the
value 1 in a neighbourhood of r; and which vanishes in a neighbourhood of g;.
Let us define u; in an analogous way. Let us suppose, without loss of generality,
that the corner point C; is contained in 2.'. Nothing essential changes in the

following analysis if C; is contained in ;.

The functions p; and u; belong to H*(9Q'). According to equations (3.14),
Sp1 and S.uy belong to Hf (R?), for all ¢ € (1,2). We note that the equa-
tions (3.14) are indeed applicable to 92 as well as 8. The restrictions of Dp;
and D.u; to Q. belong to H(f.'). By construction, Sp;, S.uy, Dp; and D.uy

satisfy Helmholtz’s or the elastic wave equation in .'. By interior regularity

theory, each of these four functions is smooth on (Cj, ¢1) and (C;, ¢2).
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Let s; and sy be points on 0Q;_1 and 9%, lying between C; and ¢, and ¢q,
respectively. Let py equal p on 982 between C; and ¢;, between C; and ¢, let it
equal

(1 —wix)p(x) =12,
between ¢; and rj, and let it be equal to 0 everywhere else on 9. Define u,

analogously. Let y(x) be a smooth function equal to 1 on any point of 9Q; |J 0241

between C; and s;, where j = 1,2, and let it vanish between g; and r;.
Let us rewrite equations (3.23) to (3.24) as

¥(Dps + Dpy) — pow?y(Sn.uy + Sn.ug) = 29pine (3.54)

and

y(D.us + Doy ) + 4(S.npy + S.npy) =0, (3.55)

where, for example,

_ 9G(x,y)
Dpy(x) =2 by anly) D (y)dly|
and
_ IG(x,y)
DPQ(X) =2 o9 an(y) pl(y)db"

In equation (3.54) v denotes the trace operator from Q. to (C;,ry) U(Ci,r2) and

in equation (3.55) it denotes the trace operator from §; to (Cy, ri) U(C, r2).
Let us now multiply equations (3.54) and (3.55) by x(x) to get

(I + K )py — pow?xSnug = yy(—Dpy + Snuy) + 2xYPine (3.56)

and

x(I—K").us — xS.np; = —xy(—~D.u; + S.npy). (3.57)
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Let us call the right-hand sides of equations (3.56) and (3.57) f and g, respec-
tively. We shall now rearrange equations (3.56) and (3.57) thus
(I +Kg)xpz — pow?xSnuy = (1 — x)Koxpz — xKo(1 — X)p2 (3.58)

—XF{Pz +f

and
(T - Kp).xuz — xS.np: = —(1 — x)Ko.xuz + XK. (1 — x)u, (3.59)
+xKjuz + g,
where

K=K-K,

We know from our previous analysis and from the assumptions about the smooth-
ness of the datum p;,. that f' and g’, where now, for example, f’ denotes the

continuation by zero of f on the wedge I' of angle «;, belong to Z&(T'), with

P = {(1,0);1:0,1,2,...[4%—%]}-

As in Chapter 2, it is easy to see that the solution is as smooth as the incident
wave away from the corners. Therefore, p; belongs to Z 7’;'(,-)(1") and us belongs to
1

Z,’;g,») (') for some unknown singularity sets P{") and P{”. By Lemma 8,
(1= x)Koxpa — xKo(1 = x)pz — xK1p2
belongs to Z;”;:E,-) (T'), and
~(1 = x)Kg-xuz + xKo.(1 = x)us + xKi.uy

belongs to Z;;(,\)(I‘), with P{” and 'P‘Ei), as in Lemma 8.
4
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Let us re-label the terms in equations (3.58) and (3.59). Demnote by p the
continuation by zero of xps2, by u the continuation by zero of yus, by f the right-
hand side of equation (3.58) and by g the right-hand side of equation (3.59). Now

we have a problem in the infinite wedge of angle ;.

(I+ K3)p — pow?xSn.uy = f (3.60)
and
(I-K;)u+ yS.np, = g. (3.61)

Let us denote by {81,..., 3.} the set of values of

m ,_mT
— and ——
a; (27 — «;)’

for integer m, lying in [0, [k — 1]]. Let m; be zero if the equation
sin a;zsin(27 — a;)z = 0

has a simple root at z = §; and let it equal one if the equation has a double root
there. Denote by {v1,...,7,} the set of roots of the determinant (3.48) with real
part lying in the interval [0, [k — 1]]. Let p; equal zero if 7; is a simple root, one

if it is a root of order two, and so on,

If we let

P = (o ok =1, 1),

and

P = (o= 1,... 1),

then, according to Lemma 8, f has a singular part characterized by the set

P = {(pM + 2, sk =1,...,t;;1=1,2,3,..} + {(1,0);1=1,2,3,...}.
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According to Lemma 3, the singular part of pow?ySn.u, is characterized by
PO = (P +20— 1,8k =1,....450=1,2,3,.. }+ {(,0);1=1,2,3,...}.

The sum

F+ pow?ySn.u,

1s characterized by
P = PP Y
From equation (3.60) and Lemma 4, the singular part of p is characterized by

{(Bi,ma)} + P

For consistency it is required that this equals 73'1“). There is a similar relationship

between P§ and {(;, pi)}.

It 1s easy to calculate the singularity sets of p and u for particular sets
{(B;,m;)} and {(vi,p:)}. For example, suppose that neither $; nor +; are in-

tegers, for all .. Furthermore, suppose that
Bi + 20 # ~; +2m + 1,

for all + and j and for all non-negative integers | and m, such that
Bi+ 2l and v; +2m + 1

lie in [0, [ — 3]], and

Bi+20+1# v+ 2m

for all 2 and j and for all non-negative integers [ and m such that

Bi + 20+ 1 and v; + 2m.
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The singularity set 731(i) then consists of the elements

(B, ma), (Br + 2,mq), (1 + 4,m1),. ..

(Brsmn), (B + 2,my), (Br +4,my), . ...

(’Yl + 11]’1)5(’)’1 + 331;'1)’(71 + 5)71}1))' .o

('}'q + lwpq)a ('}’q + 3&Pf1)7 (7{1 + 511)(1)7 e

(0,0),(1,1),(2,2),(3,3), (4,4),...

732(2) consists of analogous terms.

We now apply this reasoning to each corner in turn, but first w eneed a

definition.

Let

P=PlePHeg.. . oPM),

where each PV denotes a singularity set. Let Z5(99) denote the space of func-

tions u, such that

U = U + U1,

where the restriction of ug to 9Q; belongs to H*(9Q;), for each ¢ = 1,2,..., N,
where v is function with singular behaviour in the 7th corner, characteristic of

functions with exponents in PO, Z§(90) is equipped with the obvious norm.

Theorem 9 Let p and u in H*(09), where 0 < s < 3, solve equations (3.23)

and (8.24) with pinc belonging to H*(9Q) with k > & and k — 1 not a root of the
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equation

N

I Ai)Bi(z) =0, (3.62)

i=1
where

Ai(z) = Sin oz si.11(27r — )z
sin 7z
and
. A+3p)? .
Bi(z) = e 7rz(z2 sin® oy — sin® o;2) (2% sin® oy — ((/\__:-,uit))z— sin® @;2),

fori=1,...,N. p and u belong to Z5,(00N) and Z§,(90), respectively, where
N v
P =11PY
i=1

and

N
PH — H Pé’-)’
i=1
with PY and ’Pz(i) as above.

Moreover, we have the estimate

| p ”z;;,(an) +{u “z;,,(aa)f M| pinc llreroay + | P @0y + || W llmea0)),

for some constant M.

As a consequence of Lemma 7 we have:

Lemma 9 If p and u belong to H*(0Q) and solve equations (8.23) and (8.24)
With Pine in H*(OQ) for k > 3, then p and u belong to HY(8Q) for some t lying

in (3,2).

Let us now prove the following lemmas:
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Lemma 10 If p and u belong to H*(0Q), where 0 < s < 3, and solve equa-

tions (8.23) and (8.24) with pine = 0, then p and u vanish as long as k is not an

etgenvalue of the interior Dirichlet problem and w is not a Jones’ frequency.

Proof: By the previous lemma, p and u belong to H'(9Q) for some ¢ in (3,3

373):
By the Sobolev imbedding theorem, p and u belong to C%~z(dK) (see, e. g.,
Sanchez Hubert and Sanchez Palencia [27, p. 33]). Define

2 Pg X lf X € Q.,j
PE(X) 1f X € Qe

and

U;(x)if x € Q;
%D.u + %S.np = &) .
U.(x)if x € .

The jump conditions imply that
P;loq = 0. (3.63)

Since k 1s not an eigenvalue of the interior Dirichlet problem, P; vanishes in its

domain. Thus,
ob;
an

Since p is Holder continuous, the normal derivative of the double layer potential

= 0. (3.64)
2193

is continuous across df). Therefore,

P,
an

= pw’n.u. (3.65)
20

From the jump conditions and equation (3.61), we have

Pe‘an =D (366)

We have

Ue|ag = 0. (3.67)
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By construction U, satisfies the elastic wave equation in {2, and an appropriate
radiation condition. Therefore, from Kupradze [16, pp. 132-136], U, vanishes in
Q. So

o(U,).njsq = 0. (3.68)
As before, since u is Holder continuous, the tractions corresponding to D.u
are continuous across JQ). Therefore, from the the jump conditions and equa-
tion (3.68), we have

o(U;).njoq = pn. (3.69)
Clearly,

Uiloq = u. (3.70)

Equations (3.65), (3.66), (3.69) and (3.70) imply that the transmission con-
ditions are satisfied by P. and U;. U; cleaily satisfies the elastic wave equation
in Q; and belongs to H'(;). P, satisfies Helmholtz’s equation in §2, with the
Sommerfeld radiation condition and belongs to H} (Q.). Lemma 1 implies that
P, and U; vanish identically if w is not a Jones’ frequency. Therefore, p and u

vanish. This completes the proof. O

3.7 The adjoint problem and bijectivity of the

system.

Now let us consider the equations
f+Kf—-nSg=0 (3.71)

and

g —K.g— pw?nSf =0. (3.72)
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The system in equations (3.71) and (3.72) is the adjoint of the one in equa-

tions (3.23) and (3.24). Suppose that these equations have a non-trivial solution

in H*(09), for 0 < s < 1. Let

and

We know that P and U belong to H}_(R?) and that P satisfies Helmholtz’s
equation in §2; and in . and that U satisfies the elastic wave equation in ; and

in Q. Now equation (3.71) implies that

aP.

—*| =n.Ulsg, (3.73)
an |y

where the + subscript refers to the limit as the surface is approached from the

exterior. Later the — will refer to the limit as the surface is approached from the

interior. Equation (3.72) implies that

((U_).n)lsq = —pots?Prso. (3.74)

By amending the proof of Theorem 7 slightly we can show that P vanishes in
Q. and U vanishes in ; unless w is a Jones’ mode. If P does vanish in . then
it vanishes on 0. In this case it vanishes within ; unless k is an eigenvalue of

the interior Dirichlet problem. Thus,

i

! B aP_
p= an

on =0

on

an

If U vanishes within ;, then it vanishes on 9. From Kupradze [16, pp.132-136],

then, U vanishes everywhere. Clearly, this implies that u vanishes.

We are now in a position to prove the following theorem:
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Theorem 10 If k is not an eigenvalue of the wnterior Dirichlet problem and w

is not a Jones’ frequency, then the system
I+ K —powSn.
San (I-K".

is bijective in H*(0Q) for 0 < s < 3.

Proof: We have already proved that the system is injective. We shall suppose
that it is not subjective and show that this leads to a contradiction. If it were
not subjective, then there would exist elemenis of the space H~*(9Q) that are
perpendicular to the image of H*(0Q) under the system. That is to say, there

would exist f and g belonging to H~*(9Q) with the property that
<fi(I+K)p—pow?Snu>+<g,(I-K)u+Snp>=0,

for all p and u in 7*(9Q2), where the angled brackets denote the duality product
between H~*(9Q) and H*(9Q). Therefore,

<({I+K)f+nSgp>+<(I-K)g—pwnSf,u>=0.

This would imply the existence of a non-trivial solution of equations (3.71) and
(3.72). As we have already seen, this is impossible under the given assumptions.

Therefore, the system is subjective. O

3.8 Conclusions.

We have proved the existence of a solution of the transmission problem, at least
for frequencies that are neither eigenvalues of the interior Dirichlet problem nor

Jones’ frequencies; we have p € Hf () and u € H*(£;), for s > 1. As in the
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case of a smooth elastic body, which was studied in the previous chapter, the
non-solvability of the system at eigenvalues of the interior Dirichlet is spurious;
a solution exists at all frequencies including Jones’ frequencies. Furthermore, the

solution is unique at all frequencies except Jones’ frequencies.

In this chapter we showed what kind of singularity behaviour is to be expected
near the corners. Similar results would hold in the three-dimensional problem of
a body with edges (see Ola [25] for the three-dimensional transmission problem
involving a field satisfying Helmholtz’s equation coupled to another field satisfying
Helmholtz’s equation). If the body had curved sides then we should expect the
leading singular behaviour to be unchanged, but with modifications appearing
at higher orders. (See Costabel and Stephan [7] for the effects of curvature in a

related problem.)




Chapter 4

Asymptotics of Scattering

Frequencies

4.1 Introduction

In this chapter we consider the problem of an elastic body deeply submerged in
an incompressible, inviscid fluid. The fluid is subjected to gravity and has a free
surface. The body occupies a compact region of R® of non-zero measure. The

solid—fluid interface is infinitely smooth.

We consider here only free oscillations of the system. That is to say, we will not
study the problem in which some external forcing term is present. Furthermore,
the oscillations are assumed to be small. This means that we will ignore all non-
linear terms. This assumption also means that the positions of surfaces (e. g. the

free surface and the solid-fluid interface) do not change with time.

The elastic body and the fluid are coupled in two separate ways. Firstly, the

122
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normal component of the velocity of the solid must match the normal component
of velocity of the fluid at the interface between the two. Secondly, the surface
traction is to be continuous across the interface. The first of these two couplings,
which we will call the kinematic boundary condition, is necessary to ensure that
the fluid and the solid remain in contact. We note that there is no link between
the tangential components of the velocities across the interface. This is because
we are assuming that the fluid is inviscid, and so it can slip over the surface of
the elastic solid. The second matching condition (the so-called dynamic boundary

condition) results from the force balance across elements of the interface.

The motion is assumed to be time-harmonic with frequency w. We will gen-
eralise the problem to allow the possibility of w having non-zero imaginary part.
We will then show that there is a countably infinite number of values of w for
which the generalised problem has a non-trivial solution. We call these scattering

frequencies.

We shall treat the problem as a perturbation to the problem of an elastic
body surrounded by an incompressible and inviscid fluid that is unbounded in all
directions. That is to say, in the unperturbed problem there is no free surface. It
is easily shown that there is a countably infinite number of values of w for which
the unperturbed problem has a non-trivial solution. The problem of finding the
scattering frequencies of the perturbed problem was studied by Vullierme-Ledard
[29]. She showed that the scattering frequencies associated with simple modes

have purely real asymptotic expansions in inverse powers of submergence depth.

The presence of the free surface will allow waves to be generated. These waves
radiate energy away. If waves appear, then a free oscillation with real w will,

therefore, be an impossibility. We intuitively expect that waves will always be
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FS
’

e >

e

Figure 4.1: The coupled system.

generated and, so, we concentrate here on the imaginary parts of the scattering
frequencies. We shall confirm that they are non-zero for finite but very large
submergence depth and we shall show that they are “exponentially small”; i. e.
they have zero asymptotic expansion in inverse powers of submergence depth to

all orders. This is consistent with Vullierme-Ledard’s result.

4.2 The formulation of the problem.

The reader is refered to Figure (4.1). The elastic solid occupies the compact

region {); and the fluid occupies the region
Qe = {(,9,2);9 > —1/e} \ .
The common boundary of {2, and €; is 9 and the free-surface is the set
FS={(z,-1/¢,2);2 € R,z € R}.

The vector normal to 0} is denoted by n and the origin is assumed to be contained

in §2;.

In what follows we shall denote by x any position vectorin Q;U9QUN. UFS

and t will be the temporal variable.
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4.2.1 The velocity potential in the fluid.

The circulation of an inviscid fluid remains constant. We assume that the motion
of the fluid was generated from rest and that all transient solutions have com-
pletely decayed leaving just the time-harmonic motion. The motion of the fluid
must then be irrotational for all time. By a well known result of analysis, the

fluid velocity, v, can be written in the form

V(X,f) - vx(I)(X’t)$ (41)

where ®(x,t) is a real-valued, scalar function defined in the domain . ® R.

We know that ®(x,t) is time-harmonic and, thus, we can separate the spatial

and temporal dependence and write:

®(x,t) = R(P(x) exp(—iwt)), (4.2)

where Rz represents the real part of any complex number 2.

If po 1s the density of the fluid, then the following conservation of mass equa-
tion is satisfied:
D/)g

—mﬂ + ng.v = 0,

where the first term is the convective derivative of pg. The assumption of incom-

pressibility means that the first term in this equation vanishes. Therefore,

V=0 in Q. (4.3)

Equations (4.1) to (4.3) imply that ¢ satisfies
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V24 = 0.

The equation satisfied by ¢ on F'S — the so-called linearised free surface

0  w?
(%+7@

where ¢ represents the acceleration due to gravity. This results from the combi-

condition — is

=10,

FS

nation of a kinematic boundary condition and a dynamic boundary condition on

FS.

4.2.2 The motion of the solid.

Our starting point is the basic equation of motion of a homogeneous, isotropic
elastic body:

0%u

where the constant p represents the density of the solid in its undeformed state.

o 1s called the stress tensor and is given in terms of the displacement vector
u, by
o(u) = MV.u)I+ p(Vu + (Vu)?). (4.5)

I represents the identity matrix and if A is any matrix then AT is its trans-
pose. A and p arve the Lamé coefficients. They are independent of both x and

t.

Equations (4.4) and (4.5) together imply that u satisfies

d*u

L(u) = pViu + (g + \)V(V.a) = Pap (4.6)
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As with ®(x,t), we write

u(x,t) = R(u(x) exp(—iwt)).

Equation (4.6) implies

L(u) + pw?u = 0. (4.7)

4.2,3 The matching conditions across 602

The kinematic boundary condition implies

— fwu.n = ¢ on 0{,, (4.8)

n

and the dynamic boundary condition implies

n.o(u) = 1pgwen on 08,. (4.9)

Equation (4.9) comes from substituting equations (4.1) and (4.2) into the
linearised Stokes equation. We see that the part of the fluid pressure that is

varying harmonically is given by ipqw¢.

4.2.4 Radiation condition.

To complete the formulation of the problem, we must add a radiation condition.
This ensures that any solution is physically relevant — that is to say, that energy

is radiated away. The radiation condition is given by

2

ds =0, (4.10)

R—oo

lim /‘g%—iwg—zqﬁ
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where the integral is taken over the surface of a vertical cylinder of radius R.

This is the Rellich radiation condition.

4.3 The exterior problem.

We now proceed to solve for ¢ with u.n|sq in equation (4.8) given as datum.
Once ¢ has been found in terms of u.n|gg, equations (4.6) and (4.9) are utilized
in order to derive a single equation for u. This equation will be solvable for only

a discrete set of (in general complex) values of w?.

We shall first deal with the case in which the frequency, w, is real. Later, we

shall see how the problem for non-real frequencies can have meaning.

The exterior problem is: Find ¢ € H} (Q.) such that

Vip =0 in Q, (4.11)
d¢ 2
W = 12
(9y+g¢)m 0, (4.12)
B¢ . N
%Iag = —zwu.n|ag = ]" ¢ L (BQ), (4~13)
Lim d.S' = 0. (4.14)
R—co

Theorem 11 The exterior problem has a unique solution for every f € L*(99)

exzcept possibly at a set of isolated values of w?.

The first step to proving the theorem is to consider the problem below. Given

h € H3(00,), find ¢ € HL (Q,) satisfying

V=0  in Q, (4.15)
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Figure 4.2: Spherical polar coordinates.

Plag, = h, (4.16)
O w -
(ay —q—t,b) o 0, (4.17)
. 09 .2 ’ _
}%Lngo ‘ﬁ —1=-¢| d5=0. (4.18)

Q, is the set {x € ;x| > a} and 89, = {x; x| = a}. We choose a so that
0Qq C Q..

Firstly, we express h as a sum of Legendre polynomials and trigonometric

functions:

h = Z Z P™(cos 0){cmn cos m¢ + dpyy, sSin M), (4.19)

m=0n=m

where § and ¢ are coordinates on 9Q,— see Figure (4.2).

Lemma 11 & belongs to Hz(9%Y,) if and only if

Z Z (Iemnl® + |dmn? )(lli-%?— ezists, (4.20)

m=0 n=m ( —17 )'

Proof: We shall start by showing that the condition is necessary. Let us suppose

that the condition is not necessary. h clearly belongs to a smaller space than
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L?(0Q,), so suppose

h € H*(0R,), where 0 < s < %

Denote by B, the interior of the sphere of radius a. Let f be any member of

H1-2(09,) and let £~ be a continuous lifting from H!=*(99,) to HE—*(B,); i. e.

f*!aﬂn = f a‘n‘d || .f* ||H%-—8(Bn)§ I( “ .f ”I{l—s(aﬂa)?

for some positive constant K independent of f.

We can assert the existence of a distribution v, belonging to Hz+*(B,) with
the properties
’UlaQ a = h,

Vie=0 in B,.

Furthermore,
10 gy yee 5y S C I A llH0(000), (4.21)

for some constant C'. This is a result of the theory of Lions and Magenes [19,
Chapter 2]. In their terms, the problem with the operator —V?%, with the Dirichlet

boundary, condition is a properly elliptical problem.

We define the normal derivative %, of v on 9Q,, via the formula

/ % ris = / V.V V. (4.22)
0. On Ba

The integral on the right hand side of equation (4.22) exists for all pairs (v, f*)
because Vv € H-2+*(B,), Vf* € H:=*(B,) and H-:+%(B,) is the dual space of
H37%(B,), since s lies between zero and one half. Therefore, 22 is a well defined

on
member of H*~1(9Q,).
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The following inequalities hold:

| VoV Fav] <Vl V" e, (4.23)

._<..” v ”H%'-FS(BG)” f* ”H%-—-s(Ba) .

The first inequality is a direct consequence of the definition of the norm of an
element of H~37%(B,). Remember that if y € X', the dual space of some Banach

space X, then

<Y, >xix

|y llx= sup

sexazo |l @ |lx

Inequalities (4.21), (4.23) and the fact that the lifting from H!'=*(8%,) —
H %“S(Ba) is continuous imply a third inequality, which, once again, is a conse-

quence of the definition of the norm of an element of a dual space:

%
on

< M| B |l ae@a.) - (4.24)
H:=1(aQ,)

If we define the injection V' as the operator that sends % to gﬁ, then inequality
(4.24) implies that V is bounded when thought of as an operator between H*(9,)

and H°71(0Q,). So the range of V is closed in H*~1(99,).

We must now prove that the range of V' is deuse in the subspace H*~1(92,)\ L

k)

where L is the space of constant functions on 99,.

Suppose this were not true. Then there would exist a non-trivial element f,

belonging to H'=*(0Q,) \ L, with the property that

/a _(VR)fdS = 0 for all h € H*(80). (4.25)

Since H'=#(98,) C H*(99,) (remember that s < 1—s), we can choose b = 7,
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where f denotes the complex conjugate of f. Equations (4.22) and (4.25) imply

0= /a L (V)fds = /B VPV, (4.26)

f* is the solution of the Dirichlet problem: Find f* € H#~*(8%,), with
Vif* =0 and f*|aq, = f.

Equation (4.26) implies that f* is constant. Clearly, then, f is constant. Since

f is perpendicular to L, f = 0.

So we have proved that the range of V is closed and dense in H*~1(9%,) \ L.

Thus the range of V = H*-1{9Q,) \ L.

We now go on to prove that the range of V is in H=°(9Q,). Let h and g be

defined as
h= E Z P (cos 8)(cmn cos me + dpy, sin mep) (4.27)
m=0n=m
Z Z P™(cos 0)(amn cOS M + by sinmg), (4.28)
m=0n=m

where the coefficient pairs (cpn, dmn) and (@my, bnn) satisfy the condition (4.20).

Thus h and ¢ belong to H*(98,).

If v is the solution of the interior Dirichlet problem, with v = & on 9§1,, then

fo's) co
= Z Z m COS 9 cmn COs 7')2,(]5 —I_ dnm 8111 ?71@5)(7 /CL)
m=0n=1

where r is the distance from the origin. Hence V1, the normal derivative of v on

08, is given by

an Z Z na ' P (cos 8)(cmn cos M + dpmy, sinmae).

m=0n=m

Therefore

> n (n+m)
Z > (Crnmn + donbmn) ( )

1 3
o=, n+ 3 (n —m)!

V (Vh) gclS‘ <C

|
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for some constant C'. This comes from the orthogonality property of Legendre

polynomials:

1 |
[ Br@Pr(de = Lo AT
-1 n+ 3 (n—m)

where 6, denotes the Kronecker delta. Clearly then

n 4+ m)!
< I{ Z Z (|Cmn||a’mn) 'IL‘ Idmn”bmnD‘(‘_—_"—')—

m=0n=m ('JZ - ')TZ.)!

I/ (Vh)gdS

b

for some constant K. Schwarz’s and the triangle inequalities imply

y
‘AQG(T h)gdS| <

(5 3 el + ) 22 ) (2 3 el + lom >E”+’”))

m=0n=m m=0n=m n]’)

Hence the inner product of Vh and ¢ exists. Since h and g were arbitrarily
chosen, the range of V is a subset of H=%(9€},). This implies that H*~1(9Q,) C
H=*(0Q,), which, in turn, implies that —s < s —1, or s > 2. We assumed at the

beginning that s < 3. This is clearly absurd. Therefore, s = 3.0

We shall now prove that the condition h € H %(aﬂa) is sufficient for the

condition (4.20) to hold true, where the notation of equation (4.19) is followed.

We know that there exists a unique solution of the interior Dirichlet problem:

Find v € H'(B,) such that
Vi =0 in B,
v|ag, = h.

Clearly, the solution for v is

— Z Z P (cos 0)(cmn cOs M + dypn sinme)(r/a)".

m=0n=m
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The normal derivative of v on 09, is defined by the equation

/m o fdS = / VoV frdv,

where f is any member of H %(BQQ), and f* is a continuous lifting of f to H*(B,).

g” is, therefore, a well defined member of H=2(99,). Hence, the inner product

of h a,nd > must exist. That is to say,

Gv 5 n(n+m)!

m=0n=m n+ 2 (Tl,

where ¢, = 7 if m # 0 and ¢, = 27 if m = 0, exists since

(o]
Z Z na 1P"" (cos 8)(cimn cos Mm@ + dpn SIn M),

m=0n=m

(977,

It 1s obvious, then, that condition (4.20) is true. O

Lemma 12 The exterior Dirichlet problem described in equations (4.15)—(4.18)
is uniquely solvable for all h € Hz(00,) except possibly at o set of isolated values

of w?.

Proof: We fixst note that there is at present no uniqueness theorem for this

problem when the submergence depth is arbitrary.

Regularity theory implies that v is infinitely smooth in the closure of £2,. Con-
sequently, 1 can be written as a multi-pole expansion. Multi-poles are solutions
of Laplace’s equation everywhere except the origin. They satisfy the radiation
condition (4.10) and the free surface condition. The leading order asymptotic
behaviour of the (m,n)th symmetric (resp. anti-symmetric) multi-pole for small

radial distances from the origin is given as

P (cos §) cos m (resp. sinmg) =", (4.29)
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0 measures the angle from the vertical and ¢ measures the azimuthal angle. (See

Figure (4.2) for further explanation. )

Let us briefly see how expressions for the multi-poles are obtained. The

(m,n)th symmetric (resp. anti-symmetric) multi-pole is written as
(2 (r, 0) + e (r,0)) cosmae (resp. sinme).

For real w, ¥7(r,0) and x7(r,6) are real valued functions. The multi-poles
satisfy Laplace’s equation and they are infinitely smooth functions everywhere
in y > —1/e, except at the origin where their asymptotic behaviour is given in
(4.29). Bearing all this in mind, we write

Pm™(cos §)
rntl

P (r, 8) +ix7(r, 0) = + /C F(k)Jm (krsin ) exp(—kr cos 0)dk, (4.30)

where f(k) is a function which is to be found, J,, is the mth Bessel function of
the first kind and the contour C is chosen so that the radiation condition (4.10)

1s satisfied.

The trick that is commonly used is to write

Py (cos )
-l

P (cos 6")

—(_ m+4n
—( 1) pintl

on F'S

and

(P (cos )r=(n+1))
dy

P™(cos §')r'~ (n+1) )

— (__1ym+n+1 (

on F'S,

where r' is the distance to the image point of the origin when reflected in the
plain F'S, and ¢ is the angle subtended by the line joining the point on FS to

the image point to the vertical. (See Figure (4.3}.)

For r cos + 2/e > 0 we may use the identity

P &'
"7-(1223 ) = / k™ T (kv sin 0) exp(—k(r cos 8 + 2/€))dk (4.31)

(n —m)
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Tmoge Poinb

FS

7o

Figure 4.3: The image point.

See, for example, Wang [30].

From equations (4.30), (4.31) and the free surface condition we have

(_ l)m+n
(n —m)!

+/ Ym (k7 sin f) exp(k/e)dk = 0.

/ (k + 22)k" Ty (kr sin 8) exp(—F/e)dk (4.32)

Equation (4.32) implies that we must take

__1\m+n k + UJT
Fry = U ( )k"exp(—Zk/e)

~ (n—m)! (k _ ué)

and C' as an open contour with one end at the origin and the other at plus infinity.
2
C must not pass through the point L"T. We choose C' as in Figure (4.4). The

contour is chosen to pass underneath ‘—%— in order that the radiation condition is

satisfied.
Thus,
,’;‘(7*,9) = P™(cos 9)1*‘("“) (4.33)
m+n oo k +
(n— )] / g A"J,,,(M sin 8) exp(—k(r cos § + 2/¢€))dk
and
(_1)m+n +1 2
X2 (r,0) = er( > )" J,,,( rsin 6) cxp(—*(? cosf +2/¢)), (4.34)
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Figure 4.4: The contour in the k plane.

where the integral in (4.33) is to be interpreted as a Cauchy principal value

integral.

Finally, we use the identity

0 (_ l)sfm(ki’)s

Jm(fer sin#) exp(—hrcos §) = Y _Zs_-iz__;ﬁ)! Psn(cos#)
to write
V>T™™(r «) = P™(cos (4.35)
(_Ny*+e> roo k -f —
+ Fém(n )G+ m) !IPgL(cos 6)vsJ/0 P OA rrks-i-"exp(—Qk/e)afk,
and
XZ(r0)= £ 2 r +n+'r‘{{_jl—\:7j:exp(—z Ao (4.3 6)

Once again, refer to [30].

We must now write the surface distribution % in the statement of Lemma 12

as
@ ©®

N=Y Y Pn(AX){Gmcos g+ dmnsin 71170),
m=0n=m

where, of course, the condition (4.20) is satisfied. We wish to write /4 as the trace

on dfla of a sum of multi-poles. This means, we want to be able to write
® ®
h=1Y Y W(<LO) + *Xn (a»#))(fllmcos 7770+ 6mmsill 7770)an+1. (4.37)
m—On=m
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The following lemma is very useful:

Lemma 13 Any element h € Hﬂ@ﬂa) can be written in the form of equation
(4.37) emcept possibly at a set of isolated values of w?. The coefficients amn and

bmn are meromorphic in w? and have no poles in the upper half plane.
1 D !

Proof: We have

Z Z A P (cos 0) cosmg (4.38)
m=0n=m
+ Z Z Z 1)8+n ,;-|—s+1pm( 9) ¢
amn s \COS COS 1M
m=0 n=m s=m 77?)'(8 + 777,)1
2
X g kn-{-s 2 3 dl{,‘
L exa(-20/9)
g
+Z i f: i a ( 1)'9+n 27ran+s+1((i)z)s+n+1
m=0n=m s=m " (77 - ?'l?,) (S + 'ITL)' g

x exp(— 2""72/ )P (cos @) cos mg

= Z Z Cmn P (cos 8) cos mg.

m=0n=m

There is a similar relationship between the coefficients of the anti-symmetric part.

From equation (4.38) and the orthogonality property of the associated Leg-

endre functions, we have

amn (4-39)

2

( )s+n n+s+1 e k + % .5+n . . A

+ szm ams m)l(n T m)'( /0 - o kT exp(—2k/e)dk
g

2
)“"'J”"‘Jrl exp(—2%-/€) = cpn.

+i§: s 27 (=1 CL"‘LSH(
=" (s s —m)l(n+ m)!

g

Let us now multiply each ¢, and each ¢, by a factor

((n + m)!) :
(n —m)!
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That is to say, let

L
_ (n+m)\2
®mn = Gmn Y

(n —m)!

and

(n —m)!

L
_ (n+m)l\?
7nm = Cmn

Equation (4.39) becomes

Z (6113 + Azls(w2’ 6))(1’,713 = ’Ymn, (44.0)
where
Am(w?e) = L : a®torl(—1)5tr (4.41)
(s + m)l(s — m)l(n + m)l(n — m)! '

X /oo s “; ko exp(~2k/€)dk + 2mi( - )””“ e‘{p(—Zw——z/e)
0 L g_ g '

g

We have to show under what conditions equation (4.40) is uniquely solvable,

given that

Z Z |'7mn|2

m=0n=m

exists.

Firstly, we can say that it is solvable if
Z Z Z |Ans w ;6)|2 <1
m=0 n=m s=m
This is a consequence of the following iterative procedure: Let a9, = .., and
ang—l) = Ymn — Z Am (w ’6 ms »
s=m

where N =0,1,2,3,...

Clearly,
(ag\;-l-l) a(N) ZAm L«J 6 Q(N) Q(N 1))

m.n ms ms
s=m
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Therefore,

Y jall — ol <

m=0Q0n=m

(i i f IAz;(wz;e)P) (i i o) ~a$£i*“|2).

m=0nR=m s=m m=0 s=m

Hence, alV+1) — ofN) tends to zero in 12 @ > — the product of the space of

all square-summable series with itself. Since /> ® [* is complete,

(N) = Qmp €Xists

hm Oyl =

and, furthermore, «,,,, belongs to [?®{%. It is easily verified that a,, is a solution

to equation (4.40). The uniqueness of the solution is also plain to see.

Suppose next that

AT (W e)|*

exists, but is greater than one. It must be the case that we can choose N such

nMg

that

> Z 3o AR (W) < 1,

=0 n=m/ s=m/
where m/ is the maximum of N 4+ 1 and m. For the moment, consider all those

Omy's with m and n each less than N + 1 as given, and solve the remaining

equations:

Qmn + Z Ans E)Qfms = Ymn — Z A::Ls §€)ams (442)
s=N-+1 s=m

when m' < N 4+ 1 and

Qmn + Z A::s w e)ams = Tmn (443)

s=m

when m > N. Both (4.42) and (4.43) are solvable from the previous analysis.

Suppose that the solution to equation (4.42) is given as

Qmn = Z B::; ')'m.q Z A th) (444)

s$=m t=m
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Let us denote by D™(w?;¢) the term

nt

D B €) A (s ).

Equation (4.44) becomes
N oo

Qmn + t;} D (w?s €) e = s;m By (w?; €)Yms- (4.45)
Equation (4.45) is a square matrix equation in a finite number of unknowns. If the
homogeneous version of equation (4.45) has just one solution, then equation (4.45)
is solvable whatever the right hand side of it is. If the homogeneous equation has
a non-trivial solution then equation (4.45) will, in general, not be solvable. The
range of the matrix will be perpendicular to the space spanned by the solutions

of the homogeneous adjoint equation.

Let us denote by K(w?;¢e) the matrix operator whose (m,n,s)th entry is

A™(w? €). Equation (4.40) can be re-written as

(I + K(w?€))a =c, (4.46)

where a and ¢ denote elements of I? ® {2 whose (m,n)th entries are cp, and Yy
respectively. The above analysis shows that [ + K(w?;€) is a Fredholm operator
on @ I2. Thus the necessary and sufficient condition for solvability of equa-
tion (4.40) with any right hand side is that the only solution of the homogeneous
equation,

(I + K(w%€))a =0, (4.47)

1s the trivial solution.
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4.3.1 Proof that AT (w?;¢) is square-summable.

We must show that

i i i |47, (w5 €)]* < oo (4.48)

m=0n=m s=m

2n+23+2

(n— m)'(n + m)l(s — m)l(s + m)!

2

|AR (w5 e) =

o k4 -
X f ———g—k‘”‘" exp(—2k/e)dk
0

g w?

g

i21r yermrt exp(—2%-/¢)

Let us consider the two terms on the right hand side of equation (4.49) indi-

vidually. First of all, we shall find a bound for

a2n+2s+2

m=0n=m s= (3 - 771’)‘(3 + ?7?,) (77' - 777’) (?'L + 777)

2
/mﬂ"ﬂ_am —ok/e)dk
X Y € .
0 T ot exp( a
g

The leading order term in the asymptotic expansion for large s + n and for fixed

¢ of the integral
w
I() = / — 10 gt expy(—2k/e)dk,
Y _w

is
s+n+l

!
(q + 7?) 2s+n+l

This is true because the part of the interval that dominates the integral for very

. 0 . 2
large s + n is well away from the singularity at ‘—";—

It is, therefore, true that Sy(e) exists if and only if

[ o]

SCEDIDIDS

oS o 28 2(s — m) (s + m) ! (n — m)(n 4+ m)!

2.9+2n+2 2n+25+2((3 _I_ 71) )2
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Figure 4.5: The rearrangement, of the series.

exists. We have

S,(e) < JU (US2)S2(e), (4.50)

for sufficiently small e, where M(u>2) is independent of e. This can be deduced
from the asymptotic behaviour of each term of Si(e) for small e. Now change the
counting variables

5 —>8S — 777

n i—>n — 77.

Thus,

00 00 00
C = V w /o e \2s+2n+4m + 2 ((s+ 7L+ 277712

m-on=0s—0 2/ sU(s + 2777)17711(77 + 2777)!
All the terms in this series are positive and so it exists if and only if any rear-
rangement of it exists. Instead of summing rows of columns, we sum the series

by taking the terms in the order indicated in Figure (4.5). Hence,

S2(e) - 4.51)
o w» /"
— ((r + 2777)1)2
n}?: 0];‘: 0];::0 VY , 0t + 2 — —1 + 2777
If o <t < 7, then
1 AT |

<!(r - (([t/2pDH2 a”
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1 1
(r —t 4 2m)!(t + 2m)! = ({[r/2] + 2m)N)?’

where [r/2] denotes the integer part of r/2.

Each term in the series for Sy(e€) is, therefore, bounded by

ag) 2ram+2 ((r +2m)!)?
(3) (72D (/2] + 22 (4.52)
Equations (4.51) and (4.52) imply that Sy(e) exists if
_ _(_7'3_6_2 oo 0o &E_ 2r+4-4m (7,_'_1)((71_'_2,”2)!)2
$O=F22(5) GG
exists. Furthermore,
0< 52(6) < 53(6). (453)

Claim:

e (r + 1)((r + 2m)})? _2
w5 g (([r/2))2(([r/2) + 2m))? 7

The claim is proved by considering the large r asymptotic behaviour of each
of the factorial functions in the left hand side.

1

(r 4+ 2m)t ~ r?mpl ~ P2ty exp(—r)(27)3,

-

([r/2D)! ~ (r/2)"%" exp(—r/2)(27)?
and

([r/2] + 2m)! ~ (r/2)"([r/2])!

~ (r/2)FF exp(—r/2)(2m)".

See, for example, Abramowitz and Stegun [1, p. 257]. Therefore, each term in
S3(€) is bounded by

C ( ea )2:‘-]—4m+2’
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where C' 1s some positive constant. That is to say, Ss(¢) exists if

Si(6)=C 3 3 (ea)rim? (4.54)

m=01r=0
exists. It is clear that Si(¢) exists if |ea| < 1. Furthermore,

Ss(e) < Sa(e). (4.55)

Thus (4.50), (4.53), (4.54) and (4.55) imply

€ 1 (w? (ca)’
S1(e) < M( )C(1 mypmOTTR AT (4.56)

It is easy to see that a bound for the second term in equaton (4.49) is

2 2
2%(1.2%" exp(QWT(a —1/€)).

Hence,
Ss(€) < N(w?)a exp(—24 ), (4.57)
where
w?y2
Ss(e) = dn? i i i (%) exp(—2“—)z/e)
o S (= m)i (e 4+ m) (s — m)l(s + m)! g

and N(w?) is independent of e.

The bounds (4.56) and (4.57) imply the condition (4.48).

4.3.2 The analytic continuation of A™(w?;¢) and the proof

ns

of Lemma 13.

Before we prove Lemma 13, we shall consider the extension of equation (4.40) to

non-real values of w?.
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The function A™ (w?; €) can be analytically continued into C \ R, where R_
denotes the negative reals. For Sw? > 0 the analytic continuation of A™ (w?;¢)

is

m 2. ¢) = 1 i
Amlwte) = ((3 + m)l(s — m)!(n + m)l(n — m)') (4:58)

X(—a) et foo S s exp(—2k/€)dk,

and for Sw? < 0 it is

1/2
1
Am 2. — _ L \nts+1 4.
e ) ((s + m)(s — m)(n+m)l(n— m)!) (—e) (4:59)
w?
oo M s W\ ksl w?
x| Jo " ke exp(—2k/e)dk + 4mi(*-) exp(—2%-/e)
k__.._
g

It can be shown that, just as in the case of real w?, the condition (4.48) holds

true for complex w?.

2

The operator K(w?;e€) is, for fixed €, bounded-holomorphic in w? everywhere

in C \ R-. This is because the inner product
(K (w? €)a, Bngr

is holomorphic with respect to w? for all ¢ and b in [2 ® [2. It is easy to see that

this last assertion is true if we bear in mind the fact that, because

(K(w a b l2®12 = Z Z Z Am Qmsﬂmn:

m=0n=m s=m

where ay,s and f,, are the entries of the matrices @ and b respectively, the inner
product is uniformly bounded in a neighbourhood of every point of w?-space, and

each term in the above identity is holomorphic in w?.

Let us denote by S1(w?; €) the inverse of I+ K (w?; €), when it exists. We shall
now show that S;(w?;€) is meromorphic with respect to w?. For this we need the

following theorem, which is Theorem 1.3 in Kato [14, Chapter 7].

|
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Theorem 12 Let T(z) : X — X be a closed operator which is defined at v =
0 and let ¢ belong to the resolvent set of T'(0). Then T'(x) is holomorphic at
z = 0 if and only if ( belongs to the resolvent set of T'(x) and the resolvent
R(¢2) = (T'(z) — )~ 1s bounded-holomorphic for sufficiently small |z|. R((;2)
is even bounded-holomorphic in the two variables on the set of all ({,x) such that

¢ belongs to the resolvent set of T'(2) and |z| is sufficiently small (depending on
¢)-

It should be noted that we have not yet said what it means for an unbounded
operator to be holomorphic. It 1s enough to note that for our present application
of Theorem 12 we deal with bounded-holomorphic operators only. The point

z = 0 is not essential in the theorem — we could have chosen any point.

We apply the first part of this theorem with K(w?;€) taking the role of T'(z),

X is the product of the square-summable series with itself and { = —1.

The theorem tells us, if we bear in mind the Fredholm property of I+ K (w?; €)
and the holomorphicity of K (w?; €), that 5 (w?; €) is holomorphic with respect to
w? if and ouly if the homogeneous equation (4.47) has only one solution — the

trivial one.

We must now define the projection operator onto the subspace of eigenvectors
of K(w?; €) associated with the eigenvalue (—1). Let us call this subspace M. Let
C be a curvein the complex ¢ plane that encloses ( = —1 but no other eigenvalue

of K(w?; ¢€). The projection operator P(w?;¢€), is defined by

P(w?e) = % (e - e,

We wish now to prove that the set of points @, for which (—1) is an eigenvalue
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of K(w?;€), consists of isolated points. Suppose that it does not. Let {w?} be
a sequence of such points that converge to a point w2 not in the sequence. We
do not yet know whether or not w? is in Q. The second part of Theorem 12
implies that P(w?;¢) is holomorphic in w?. Hence, without loss of generality, we
can assume that

|P(w?;€) — Plwg;e)| < 1,

2

whenever w? is in some neighbourhood of w?,. Hence, the dimension of the ranges

2

of P(w?¢) and P(w?;€) are equal whenever w? is close enough to w? , and we

can choose an invertible holomorphic operator U(w?; €), with the property that
U(w?; e)P(w?; e)U(w? €)™ = P(wl ;e).
The proof of this can be found in Kato [14, Section 4.6, Chapter 1].

The implication of all of this is that the eigenvalue problem for points enclosed
by C for K(w?€), is equivalent to the eigenvalue problem for the holomorphic

matrix given by
Ki{w? ) = P(w2; €)U(w?; €) K (w?; €)U(w?; €) L P(w2 ;s €). (4.60)

K1 (w?; €) operates in the fixed and finite dimensional subspace of eigenvectors of
K (w2 ; €) associated with the eigenvector (—1). Whether w? belongs to @ or not
depends on whether

det(Nq(w?e)+ 1) =0

or not.

Clearly det(I;(w?;€) + I) is a holomorphic function of w?. It vanishes at
the points {wZ} which accumulate at w?. By a well known result of complex
analysis, this implies that the determinant vanishes identically inside C. By

the equivalence of the eigenvalue problems for K (w?;¢) and for the matrix, this
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implies that every point enclosed by C is in @, and by continuation every point
in C\R-isin Q. We only have to find a point not in @, therefore, to prove that

() counsists of isolated points.

The fact that every singularity of S1(w?;€) is a pole can be seen by construct-
ing the projection operator and the analogy of identity (4.60) for the singularity.
The singular parts of Si(w? €) and (K;(w?;€) + 1)~! are equivalent. The latter

is the quotient of two holomorphic functions (by Cramer’s rule).

We shall now prove that every point in the upper half plane is not in Q.

Equivalently, when Sw? > 0 the equation (4.47) has only the trivial solution.

Suppose this were not true. That is to say, there exists an element of 1? ® 2
with

Z (6311 =+ Az;(w2, E))Q'mn = 01

n=m

for all m and s greater than m. Now construct the function

cO

Y= i i a1 P (cos §) (4.61)

m=0n=m s=m

1/2
S m
X ( Sene | T AT (W 6)) ((3+m ) Qtmn COS M.

A glance at equation (4.58) tells us that AT

ns

(w?; €) decays faster at infinity
when the imaginary part of w? is positive than when w? is real. A more detailed

analysis (see Appendix B) shows that ¢ in equation (4.61) satisfies
(147272 € LH(Qy),

Vip € (L*(a))°,
and

p|ps € Lz(FS).
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Most important of all is the property that

Plag, = 0.

This comes about because the ayy,,’s are solutions to the homogeneous equation
above. These conditions imply that ¢) vanishes — the proof of this can be found

in Lenoir and Martin [17]. This, in turn, implies that each ay,, is zero.

We know that the spectrum of K (w?;€) is either the whole plane, or consists
of a set of isolated points. The above result implies that the latter alternative is

true. This completes the proof of Lemma 13. O

Once we have Lemma 13 it is evident that the solution of the problem de-

scribed in equations (4.15) to (4.18) is

Y= > (rr,0) +ix™(r,0))(@mn cos M + by sin me)a™ T, (4.62)

m=0n=m

This is because the solution, 1, must have the form given in equation (4.62) and,
to ensure that its trace on 9, belongs to L%(0%,), the coefficients amy, and by,
must satisfy the condition in the statement of Lemma 13. Thus we have proved

Lemma 12. O

It can easily be shown that the normal derivative of ¥ in equation (4.62)
on 99, belongs to H3(99,). Let T(w? ¢) be the operator that maps h to the

normal derivative of 1 on 98,. T(w? ¢) acts on 1) in the following way:
g way

T(w?e)p = Z Z Z (@mn €08 M@ + bpyp SIn M) (4.63)

m=0n=m s—=m

1/2
X(— L, 4 8 (Yt Y2 g (02 ) P (cos ).

Of course, T'(w?; €) can be continued into C\'R_. It is, according to Lemma 13,
a meromorphic function of w? with no poles in the upper half plane. T'(w?;¢) is

bounded when considered as acting between Hz(9§),) and H~5(08,).
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4.3.3 The truncated problem.

We are now in a position to define a problem equivalent to the exterior problem.
This problem will be called the truncated problem. It is equivalent to the exterior
problem in two senses. Firstly, if either problem is unique, then so is the other
and, secondly, the solutions of the two problems are related in a very simple way.
Before we proceed, we shall define the domain Q% as the open set between the

surfaces 99, and 9. The truncated problem is:

Find ¢ in H1(Q¢) with the following properties:

V=0  in O, (4.64)
91~ perron,), (4.65)
In |90

Il e,
Bnla, T(w% ¢)(bloq, ) (4.66)

where f is considered as some given datum, just as in the exterior problem. We

shall assume that T'(w?; €) is defined.

Lemma 14 The truncated problem has a unique solution for all f in L*(0Q,)

except possibly at o set of isolated points in the complez w? plane.

Proof: The equations (4.64) to (4.66) are equivalent to the weak formulation:

Find ¢ in H'(Q%), such that

Joe VBV = [ (T p)is = - [ fBS, (467

for any ¢ in H'(Q*). Let us denote by A(w?€)(.,.) the sesquilinear form on the

left hand side of equation (4.67). To any sesquilinear form we can associate an
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operator. Let us denote by A(w? €) the operator associated with A(w?;¢€)(.,.).

That 1s to say,

(A(w?; €)1, $)mi(asy = A(w? €)(, ¢).
Taking ¢ equal to A(w?; €)y implies

I A 9% By <1 lrsaml] A 9 lz o
T3 0 Ly oy | A3 9 Lt
< (1 Nimgae + 1 T 9 Wy o, ) 1 A €09 ey
< (I Moy M 119 1y 0, ) | A 0 e

S (1 + ]\’I) ” 'l,b ”Hl(ga) A(wQ; G)T,b ||H1(Qa) .

The second and fourth inequalities are due to the continuity of the trace map

from H(Q¢) into H3(dQ,) and the third inequality is due to the continuity of

T'(w?; €) from H?(8%,) into H5(9%),). So A(w? e) is bounded in H(02%).

That A(w?; €) is holomorphic with respect to w?, except at a set consisting of

isolated points, is seen by observing that the sesquilinear form A(w?;¢€)(v, @) is

holomorphic with respect to w?, for all 4 and ¢ in some fundamental subset of

H'(2%). This is a result of the properties of T(w?;¢).

Let us call the inverse of A(w?;¢€), when it exists, S2(w?;€). We will use the

following result

Lemma 15 A(w?;¢) is a Fredholm operator of index zero. Consequently, Sy(w?;¢)

ezists if and only if the homogeneous equation
Alw e =0

has only the trivial solution.
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Proof: We shall demonstrate the existence of a double-sided regularizer of
A(w?*€). To do this we will write A(w?;¢€) in the form of the identity plus an
operator whose real part is positive plus a compact operator. The inverse of the

identity plus the positive operator exists; this is the aforesaid regularizer.

If
Y= i i (P (a, ) + ix™(a, 8))(Cmn cOS MP + by, sin MP) 0™
m=0 n=m
then
aﬂﬂ(T(w2§ €)3)bdS = (4.68)

n n+m)!
am 300 Zntm Cm{lamal* + |brnrt|2)(_7(z+l1}%()_(:——;—q)ﬁ

—qaTm Em =0 n m E?S_-m m(anmm + bnmm) 3+§/2 (ETZZ;'%:J—FZZ)') Am (w 6)

+a7r an =0 En‘—m 5-—-771 Cm(amnams + bmnbms) 711-’1-}2 (E:_'_:zg E:+:Z)[) Anl ( 2 )

—amw Zm =0 Ziim s._m Et_m m(amnams + b'rnnbﬂw)
% (!n-l—m)'!s-l—m!') Am (w2; G)Z:;'(wZ, 6),

(n—m)!(s—m)! ns

where
2 ifm=20

m o

1 otherwise

We know from equation (4.41) and its extension that

. 1 1/2 nts+l
AR(whe) ~ ((a +m)(s —m)H(n + m)(n — m)!) (n+s)! (__2—)

as n + s tends to infinity. As in the proof of Lemma 13,

. Am wZ. €
}1111 ns( 3 ) 7 — k,
n+s—00 ntst1 (__l_m_)
(a.e) 2w(nts—m+1)

where k is less than or equal to one. As ae < 1, it is clear that if n or s is

sufficiently large |AZ (w?;€)| is less than any given positive number. It is clear
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then that the analogous term to the right hand side in equation (4.68) with n,
s and ¢ all greater than some number N, chosen so that AT (w?;¢€) is less than
one quarter when n or s is greater than it, always has a positive real part. The
remaining sum consists of a finite number of terms — the sum over m from zero
to N and the sums over n, s and ¢ from m to N. This term is associated with

an operator whose range is of finite dimension, which is therefore compact.

The second term in the definition of A(w?;¢)(.,.) is

/Q V.Vgav.

This can be written as

(¢7 qs)HI(Q") - ("‘,l’, ¢)L2(Qa).

The former term is associated with the identity and the latter term is associated

with the imbedding operator from H(Q?) into L?(Q¢), which is compact.

Let us write

A(w?e) = I 4+ Ky (w?e) + Kay{w?e),

where I denotes the identity, K;(w?; €) satisfies

R(K1(w?; €)th, ) p2(qey > 0,

for all ¢ belonging to H'(Q?), and K>(w?; €) is compact. I + K;(w?;€) is clearly
a coercive, bounded operator in H'(Q?). The Lax-Milgram Theorem (see, e. g.
Sanchez Hubert and Sanchez Palencia [27, p. 76]) tells us that I + K;(w?;€) has
a bounded inverse in H*(02%), let us call it B(w?;¢). B(w?;¢) is a left equivalent

regularizer of A(w?;e€), since

B(w? e)A(w?; €) = I + Kz(w?;e),
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where K3(w?;€) is a compact operator in H*(29). (Recall that the product of
a bounded operator and a compact operator is compact.) It is called equivalent
because

Alw? e = F

and
B(w? e)A(w?; ) = B(w?; e) F

are equivalent for all F ¢ H1(Q9),
B(w?;€) is also a right equivalent regularizer since
A(wl e)B(w?e) = I + Ky(w?e),
where Iy(w?;¢€) is compact in H1(Q2%). It is called equivalent because
A(w? e)yp = F (4.69)

and

Aw? e)B(w?e)p = F (4.70)

are equivalent in the following sense. Equations (4.69) and (4.70) are either both
solvable or both unsolvable. To any solution % of equation (4.69) there is a

corresponding solution ¢ of equation (4.70) with

¥ = B(w?;e)d.

The result of all of this is that A(w?; ¢) is a Fredholm operator with index

zero and Lemma 15 is proved. O

We have then that A(w?;€) has a bounded inverse if and only if the homoge-

neous equation,

A(w?; e =0, (4.71)
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has only one solution. We now utilise Theorem 12 with A(w?; €) taking the role of
T(z), H(2%)is X and w? is &. Thus Sy(w?; €) exists and is bounded-holomorphic

at w? if and only if the equation (4.71) has only one solution.

As with the case of the Dirichlet problem in the region outside the sphere, it
can be proved that equation (4.71) has just one solution if Sw? > 0. In fact, this
is proved in an identical way as before. That is to say, we show that the existence
of a non-trivial solution of equation (4.71) implies the existence of a distribution
1, with

(1472712 € 12(9,),
Vi € (LH(Q))?,
$irs € L*(FS)
and

Plaa = 0.

As with Si(w?;€), we can show that Sy(w?; €) is meromorphicin C \ R_.

Now write equation (4.67) as

Al ey = F(f),

where
(E(F) Dy == | _F34S, (4.72)

for all ¢ belonging to H*(Q2%). It is clear that F' is continuous from L?(99) into
H'(Q*). The solution of the truncated problem given in equations (4.64) to (4.66)

is then

P = Se(w? e)F(f).
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We know that Sy(w?;€)F is defined everywhere except at a set consisting of
isolated points and that it is bounded from L%#(89) into H'(Q?). Thus Lemma 14

is proved. O
Before we proceed further let us define the operator S3(w?;€) by

Ss(w? €)f = vS2(w? €)F(f),

where 7 is the trace operator on 9 between H*(?) and H(8Q).

4.3.4 The relationship between the exterior problem and

the truncated problem.

We have said that the exterior problem for complex values of w? can be thought of
as being defined from the truncated problem together with the Dirichlet problem
in the exterior of the sphere. It will be helpful, however, to explicitly write down
the exterior problem in the case when the imaginary part of w? is positive. Any
solution can be expressed as a sum of multi-poles. A glance at the expressions
for the extended multi-poles (equation (4.73) below) will tell us that the solution

will decay faster at infinity than is the case for real w?.

i (r,8) + ix™(r,8) = P (cos §)r~ ("1 (4.73)
2
+& o= :::1 I u-‘)]z k™ T (kr sin 6) exp(—k(r cos 8 + 2/¢€))dk.

° I

Whereas, for real w? the solution belonged to HY () we might expect that,
for the case of Sw? greater than zero, the solution will belong to a smaller space,
W, if its trace on 8 belongs to Hz(9S). Appendix B shows that 1 belongs to
W, defined below:
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Define
W = {th; (1 +r?)~ V2% € L2(), Vib € (L*(Q))® and o|rs € L2(FS)}.

The exterior problem in this case is: Given f belonging to L*(0Q), find v € W

satisfying
Vi =0 in Q., (4.74)
‘;_‘P _ (4.75)
™ lag
N 2 _
()], e

Lenoir and Martin [17] have given a proof of the existence of a solution to

this problem.
Let us denote by S4(w?;€) the operator that maps f to ¥ and let

Ss(w?; €) f = vSa(w?; €) f.

It looks as if the poles of S3(w?;€) will depend upon the construction of the
truncated problem. That is to say, they depend on the radius of the chosen
sphere. We can see that this is not the case because the operators Ss(w?;e)
and Ss(w?;¢) are identical in the upper half plane. This is a consequence of the
equivalence between the exterior problem and the truncated problem. Ss(w?;e)
is clearly independent of the construction of the truncated problem. S3{w?;e) is,
therefore, equal to the continuation of Ss(w?; €) everywhere, and the poles of this

operator are independent of the construction of the truncated problem.




CHAPTER 4. ASYMPTOTICS OF SCATTERING FREQUENCIES 159

4.3.5 The large submergence depth limit.

In this part we shall show that if K is any compact subset of C \ R_ and if ¢ is
smaller than some positive number depending on K, then no poles of S3(w?;¢)

are in K.

We know from the bounds (4.56) and (4.57) that T'(w?; €) exists for any w? in
K if € is smaller than a certain number — call it €;(/). This is true because if €

is sufficiently small then

220 2 lAnwhalf <1,
m=0n=m s=m
Thus the poles of Sy(w?;€), which were defined on page 20, lie outside K.

Furthermore, equation (4.68) tells us that we can choose a number M > 0

such that

—R [ (T(wke)p)pdS > M || ¥ |2,

0 HZ(9Qq)
if € is sufficiently small — smaller than e,(K'), say, which is smaller than ¢ (KX).
To see this note that the modulus of each A™(w?;€) in equation (4.68) can be
made as small as we like. Thus the final three terms on the right-hand side of that
equation can be made as small as desived. Then the equivalence of the H% (£,
norm and the norm in the first term on the right-hand side of equation (4.68) is

a consequence of Lemma 11.

We have already seen that S3(w?;¢) has a pole if and only if the truncated
problem with zero boundary datum has a non-trivial solution. Let us consider,
then, equation (4.67) with f = 0. Putting ¢ equal to ¢ and taking the real part

we have

/ﬂ V.GV~ R /8 (5 epp)pas =o.
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If € is less than e(J), then

- .
| V.VEv + M || b 14 0

As M > 0, the last equation implies that 1 vanishes on 99, and, thus, the
gradient of 1 is zero in Q*. The condition ¥ = 0 on 99, means then that

vanishes inside °. Clearly then S3(w?;¢) has no poles in K if € is less than

62(.[{)

4.3.6 Summary of exterior problem.

The exterior Neumann problem was described for the case of real w?. To solve
this problem we set up a Dirichlet boundary value problem in the exterior of a
sphere. We extended the problem to non-real frequencies and showed that this
problem is solvable for every value of w? except those contained in a set consisting
of isolated points. This lead to the definition of a problem that is equivalent to
the exterior problem when the frequency is real, set in a bounded domain — the
truncated problem. This has the advantage of involving only familiar function

spaces. Using this problem, extended exterior problems were defined.

The truncated problem was shown to be solvable except at a set of isolated
frequencies. Furthermore, the operator connecting the Neumann datum to the
solution was proved to be meromorphic with respect to w? with no poles in the
upper half plane. As the depth of submergence increases the poles of the operator
were shown to “tend to infinity”. The physical interpretaion of this is as the body
is more deeply submerged the effect of the free surface lessens and so the situation
more and more “resembles” the case of a body surrounded by an incompressible,

inviscid fluid that extends infinitely in all directions; the Neumann problem in
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this case 1s known to be uniquely solvable at all real frequencies. The point
about this problem being solvable in the large submergence depth limit for all
frequencies is a truism since the frequency dependence has disappeared in this

limit.

4.4 The interior problem.

Let us now assume that w? lies in some compact region K, of C\ R_, and that ¢

is smaller than e;(K). Thus S3(w?;€) exists.

We know that the trace of the solution on 9 of the exterior problem, given

Neumann boundary datum, f, is
Sa(w?;e)f.

If we return to the matching conditions across 9§} given in equations (4.8) and
(4.9) we see that the surface traction and the surface displacement of the elastic

body must be related in the following way

n.o(u) = pow?nSs(w?; ¢)(u.n). (4.77)

Thus the interior problem is: Find u belonging to H'(£2;) such that the
boundary condition (4.77) holds as well as the equation (4.7), which shall be
re-written below

L(u) + pw?a =0

in the sense of distributions. Here we adopt the notation that, for example,
H'(£;) stands for (H1(£;))® — the space of all three-dimensional vector distri-

butions, each component of which belongs to H'(§;). No confusion should occur
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as 1t will be obvious when we are talking about vectors and when we are talking

about scalars.

The above formulation is equivalent to the weak formulation: Find u €

H(;) such that
pow? /an v.nS;3(w?; €)(u.n)dS + pw? /0.' u.vdV (4.78)
. /ﬂ o(u): VvdV =0
for all v e H ().
Let us denote by B(w?;€) the operator defined by

(B(w?; €)u, v) g, = pow? /an v.nSs(w?; €)(u.n)dS (4.79)

(L + pw?) / wvdv.

T

S3(w?;0) is actually independent of w?. We have

S3(w?;0) = y(A(w? 0)) 7 F.

2

The dependence of A(w?;0) on w? comes from T'(w?;0). This can be seen not to

depend on w? from equation (4.63). This is true becanse each A™(w?;¢) vanishes

in the limit as € tends to zero according to equation (4.41).
Before we proceed further we note that

/ o(u) : VvdV + / w.vdV
Q2 Q;

defines an inner product in H(Q;).
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4.4.1 The spectrum of B(w?;0).

We want to show that B(w?;0), when considered as acting in H*({2;), is compact.

Therefore, for fixed w?, B(w?;0) has a countable number of eigenvalues. Bach of

2

these eigenvalues is real when w? is real and passes through the value one as w?

1s increased from zero.

From the definition of B(w?;0) in equation (4.79) with v equal to B(w?;0)u,
we have
| B 0)u oy
< po? || 0B’ 0)u lpemll Sa(w”; 0)(wn) lzzon)
+(1+ pw?) | [z2q || B(w?; 0)u [|r2(a:)
< Mpow? || B(w?;0)u |lm@nll u |l 2(o0)
+(1+ pw?) || u {|z2een || B(w?; 0)u [0,

where M is independent of w? and u. We have used the boundedness of S3{(w?; 0)

and the boundedness of the trace operator from H'(;) into L?(9).

The compact imbedding of H!(£;) into L*(Q;) and into L%(9)) shows that

B(w?;0) is compact in H(£2;).

B(w?;0) is self-adjoint. (We are identifying the dual of H*(£;) with H'(£2;).)
The self-adjointness results from the Hermitian-symmetry of the form in equa-

tion (4.79) when ¢ is zero. The Hermitian-symmetry of

/8 _¥.nSy(w’0)(un)ds

is a consequence of the Hermitian-symmetry of

/a o T(*50)pds (4.80)




CHAPTER 4. ASYMPTOTICS OF SCATTERING FREQUENCIES 164

_ R T §:1+1“n+m!!
= —2a7w Em—O ;ozm(a'mncmn + bmndmn) (2n+l)(n—m)!Cm’

where
2 fm=0
1 #m#0
and where
) = Z Z P™(cos 8)(amn cosme + by sin mde)
m=0n=m
and
[oe] [o.e]
¢ = Z Z P (cos 8)(cmn cosme + dpmy sin me).
m=0n=m
Call

¢ = A(w? €)' F(u.n).
From equation (4.67),
(F(un), A(w? e) " F(u.n)) g ge) = /Q V4.VgdV
- [ @ 0ypps.
Now from the definition of F' in equation (4.72), the left hand side of this last
equation is

- /a _ unSa(w? o(Tn)dS

since

S3(w?€) = yA(w? €)' F

by definition. Now, from equation (4.80),
u.n5;3(w?;0)(u.n)dS
[, TnSa(w?; 0)(un)
is always positive whenever u # 0. Therefore,

(B(wz; 0)1.1, u)Hl(Qi)
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is always positive.

The compactness, self-adjointness and positive properties of B(w?;0) ensure
that its spectrum consists of a countably infinite number of real points which have
no accumulation point other than zero. The maximum distance from any point
in the spectrum to zero is finite and every point in the spectrum is an eigenvalue
of B(w?;0) except for zero. This result is well known and a proof of it can be

found in Sanchez Hubert and Sanchez Palencia [27, Chapter 1].

A useful result is the max-min principle. This is closely related to the so-
called Minimax principle to be found in Propostion 7.1 in Sanchez Hubert and

Sanchez Palencia [27, Chapter 1].

Lemma 16 The nth largest eigenvalue of B{w?;0) is given by

A = min(p({wy,. .., Wn1})), (4.81)

where
(B(wg; O)u, u)mm”

| u ”%II(Q,-)

p({wi,..., Wai1}) = sup ) (4.82)

where in equation (4.82) the supremum 1s taken over all elements in the subspace

perpendicular to the span of
{wi,oywai}
and in equation ({.81) u({w1,...,Wn_1}) is minimised over all possible choices
of the (n — 1) elements {w1,...,w, 1} of H(S%).
This is proved by adapting the proof of the Minimax principle given in [27].

An immediate consequence of Lemma 16 and equation (4.79) is that each

eigenvalue of B(w?;0) increases monotonically as w? is increased. In fact, it
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Figure 4.6: The growth of the eigenvalues of JEXU;2;0).

is clear that the dependence of each eigenvalue on o.2 will be linear in vs2. It
is evident then that there is a countably infinite set of values of w2 for which
B(ud; 0) has an eigenvalue equal to one — call this set . See Figure (4.6). The
figure also makes it clear that Q has no finite accumulation point and that there

is no largest point in Q.

4.4.2 The eigenvalues of B(u2'e¢) and their connection to

the eigenvalues of B(u2;0)

We begin this section by noting that D(a;2;e) is holomorphic with respect to a4

for fixed e. We have

(B (v2;e)u,v)Hi(ii)

= (1 + pOy2) fn.uvdV + puj2 fdOv.n53(w2;e)(u.n)ds.
We have, by definition,
S3(u2e) = 7(.4(cj2;e)) 1F.

So 53(u;2;e) and therefore B(u>2;¢) are holomorphic with respect to w2 for fixed

e because A(co2;e) is invertible and holomorphic in vs2.
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B(w?; €) has an asymptotic expansion in integer powers of ¢. This expansion is

uniform in w?. Let us begin by showing that A(w?; ) has an asymptotic expansion

in powers of € and that this is uniform in w?.

(A(w?; €)X, %) m(ae) (4.83)
= — [4 J7 aPdedd (S0 X 52 (e €08 10 + By sin )

% (6o + 2B AT ) P

(Em _0 om0 Lamo{Cmn COS M + By sin M) 2

< (ot Do+ 5y /B AT ) Pr(O))

+ Jao VX.VipdV,

where
X = Z Z Z(amn cos M@ + L sinme)
m=0n=0 s=0
K3 (b bt 4 (07 ) ) P (cos )
and

¢ = Z Z Z('Ymn cos 7n¢ "f‘ 6mn Sill ’ITLQS)

m=0n=0s=0
XL (s + - is___”_‘ﬂ”"'iAm ( . ) Pm( o 9)
a \n¢ (s+m)l(n—mj!* "ns n \COSU).

Of course, if x and ¥ are to be independent of w? and ¢ then, for each m and n,

Cmns Brns Yme and 85, will depend on w? and e. The dependence of a,,, on w?

and ¢ is shown in the equation (4.40), which is rewritten below:

Z((Sns + A,,?s(w2; 5))Qms = Qmn, (4’84)

where a,,, is the constant given by

Qmn = nt 1/2 (n —m) / (8, ) P*(cos 8) cos mepdS.
Cma’m \l (n +m)! Joq,
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Similar results hold true for f,.n, Ymn and ,r.

We know that the series in equation (4.83) are absolutely convergent and, so,

we can exchange the order of integration and summation to obtain

(A(w?; €)X, ¥)m(ae) (4.85)
= am }:m 0 Ef;m E?;m E;’;m Cm(amnm + ﬂmnm)

x ((n + 1)5n55ts + (77- + 1)5ns '(ﬂ)!—@ﬂ m(w 6)

(stm)(n—m)!

s—m m)! gm .
_Séts \I (s+m;'(:+m) Ans‘(w2> 6)
s=m)t [(n—m)l(ttm)! 4m (e (stm)!
SEs+m; En—rm) W(t—m)! Ans(w ) ts (w23 6)) (s+1/2)(s—m)!

F fou VX. VGV

It i1s can be verified that

n+s+1
(n + 8)! ( a~g—)

ge n+s+1
Am (w2 e) = (2 2) (4.86)
\/(n + m){n —m)l(s + m)l(s —m)l \ew
wz n+a+l
(n+s+q)! (—a —)
_9 EP=1 g (g_ﬁ2) n+s+g+1
\/(n+m)!(n—m)!(s+m)!(s—m)! 2w

Folemtstrtly,

So each AT (w?; €) has an asymptotic expansion in integer powers of € and
each term in the expansion is real if w? is real. Therefore, equation (4.85) and

the expressions for Qmn, Bmny, Ymn and 8, show that the sesquilinear form
(A(w?; €)X, P) r(an)
has an asymptotic expansion in €:
(AW )x, P)ar(ae) = Ao, ¥) + eAi(x, 1) + €A (w?) (X, ) + ... (4.87)

Each of the sesquilinear forms A,(w?)(.,.) is bounded in H'(Q¢). It is a feature

of this problem that the first two sesquilinear forms are independent of w?. In




CHAPTER 4. ASYMPTOTICS OF SCATTERING FREQUENCIES 169

fact, we have

Ao(x, %) = fﬂ VX VAV (4.88)
+am Ci_o Lt Com (@mnTom + andonn) 1547 (4.89)

and
Ai(x, %) = 6a’r(aooCoo + boodoo)- (4.90)

Let us denote by A, (w?) the operator associated with the form A, (w?)(.,.).

Equation (4.87) can be rewritten as
Aw? ) = Ao+ edy + EAy(w?) + ... (4.91)

Ap is invertible and its inverse is bounded in H*'(Q2%). The first few terms of its

asymptotic expansion are

1
Alw? o)™t = Al — A7 A AT + 62(§A51A1A61‘41A51 — Ag Ag(w?)AFH) + ...
(4.92)

Let us recall the relationship between B(w?; ) and A(w?e) ™"

(B(w* e)u, v)mg,) = (1+ powZ)/n u.vdV

+pw? foq vA(W? €) T F(u.n)v.ndS.
This implies that B(w?; ¢) has an asymptotic expansion in powers of €:
B(w?€) = By(w?) + By (w?) + ¢ By(w?) + ...
From equation (4.92) it is clear that
(By(w)u, V)i gy = —pw® /a AT AT F(un)vindS.  (493)
The definition of F' and the equation (4.93) imply that

(Bl (w2)u, V)Hl(Qi) = pr(AalAlAalF(u.n), F(V.n))gl(ga). (494)
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Equation (4.88) implies that Ay is self-adjoint and, therefore, so is Ag*. This fact

together with equation (4.94) imply

(Bl(uﬂ)u, "V’)HL(Q‘.) = pwz(AlAalF(u.n), AEIF(?.H))Hl(Qa). (495)

Let XAy be an eigenvalue of B(w};0). Denote by P(w?; €) the operator

1

272

Pt = —>— [ (Blhe) - () de, (4.96)

where C' is a simple positively orientated curve that encloses Ay but no other
eigenvalue of B(w?; 0) and that is contained entirely within the resolvent set
of B(w?;0). P(w?e¢) is the sum of the eigenprojections associated with all the

eigenvalues of B(w?; €) enclosed by C'. (See, for example, Kato [14, p. 67].) Since

(B(wz; 0)11, V)H’l(Qi)

is holomorphic with respect to w? in a neighbourhood of w? contained in K for
all u and v, then B(w?;0) is holomorphic with respect to w? Theorem 12 and
the fact that the curve C is contained in the resolvent set of B(w2;0) imply that

the resolvent operator,

(B(w%0)—-¢)!

is holomorphic at wj for all points of C'. Clearly, since the spectrum of B(w?;0)

consists of isolated points,

sup |(B(wg;0) — €)' (4.97)

1s finite, where the supremum is taken over all points of C. The identity

(B(w*0) -~ (4.98)

= (I +(B(wg;0) = ()7 B(w? 0) = B(w3; 0))) 1 (B(wd; 0) — ()7,
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the holomorphicity of B(w?;0) and the fact that the supremum (4.97) is finite
unply that
|(B(w?0) — ()7 < M, (4.99)

for some constant 3/, for all ( on C and for all w? in some neighbourhood N(w3?)

of wi, contained in K.

In a similar way we can say that, because
(B(w%e) =)™
= (I + (B(w?0) — {)"Y(B(w?e€) — B(w?;0)))"Y(B(w?0) — ()t

and using the fact B(w?: €) is continuous at € = 0 uniformly in w?
3 y 3

[(B(w?e) = ()7 < M’ (4.100)

for a constant M’ and for all ( on C, for all w? in N and for all € smaller than

some positive number es(K).

Since B(w?; €) has an asymptotic expansion with respect to ¢, which is uniform
in w?, then the resolvent operator has an asymptotic expansion with respect to

¢, which is also uniform in w?:

(B(w%e) — )7t = (B(w?0) — )L+ eRy(w? () + ... + Rp(w?; () + o).
(4.101)

This expansion is also uniform in ¢. The bound (4.100) implies that
|RBp(w?; Q)] < M,(w?), (4.102)

for all points on C and where each M,(w?) is a function of w? only. Thus, the
bounds (4.102) 1mply that if the resolvent in equation (4.96) is replaced by its

asymptotic expansion (4.101), then each term can be integrated separately and,
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finally, the projection operator can be expanded asymptotically around e=0:
P(w?e) = Po(w?) + eP(w?) + ... + e P,(w?) + o(eP™1), (4.103)

where

Ro(w?) =~ [ (Bl?0) = )7 de.

The bound (4.100) implies that P(w?; €) is holomorphic with respect to w? in

N and for all € belonging to the interval [0, e3(K)].
Equation (4.103) and the holomorphicity of P(w?;€) imply that
|P(w?;€) — Po(wg)| < 1,

if € is smaller than some positive number e4(K), say. This implies that, just as
in Subsection 4.3.2, we can (non-uniquely) construct a transformation function

U(w?;€), that has the property
U(w?; ) Po(wi)U(w?; €)™t = P(w?e). (4.104)

U(w?;€) and U(w?;€)~! can be chosen to be holomorphic with respect to w? and

to have asymptotic expansions with respect to €.
Since
P(w?; €)B(w?; €) P(w?;€) = U(w?; €) Py(w?) B(w?; €) Po(w?)U(w?; €)Y,

where
B(w; €) = U(w; €)' Bl e)U(w? e), (4.105)

finding the eigenvalues of B(w?;€) in the subspace

M(w?€) = P(w?; e) H' (),
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is equivalent to finding the eigenvalues of B(w?;¢) in the subspace

M(w3) = Pofwl) H'(52).

M (w?) is a fixed subspace and is finite dimensional. This is because it is the
eigenspace associated with the eigenvalue A of B{w?;0) and these eigenspaces

are known to be finite dimensional, as has already been noted.

The eigenvalues of B(w?;€) in N ® [0, e5(K)] are precisely the solutions of the

polynomial equation

det(Py(w?) B(w?; €) Py(w?) — ) = 0. (4.106)

4.4.3 The expansion of Py(w?)B(w?;e)Py(wi).

We know that
B(w5¢) = Bo(w?) + eBi(w?) + ... + @By(w?) + Cplu?; o),
where
Cp(w?; €) = of€”).

Denote by f(w?;€) the product

~(B(5 €) — Bo(w?)u, Vimia,
where u and v are any two elements of H(9;). Clearly,

(B1(w?)u, V), = lim f(w? €) = f(w?;0).

We have

/(j‘ €) — f(w?0))dw?
ZfA:

/ | f(w?;€) w?;0)] dw?
(Cl( )ll V HYQ |dw

— 0
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as € — 0, where A is any triangle in N. Therefore,

0= %1_)11(1)/A f(w? e)dw? = /ABl(wQ)dwz,

by Cauchy’s theorem. By Morera’s theorem, Bj(w?) is holomorphic in N. We
can continue this process to prove that B,(w?) is holomorphic in N for all p.

Therefore,

B(w?€) = Boo + (w? = w?)Bo1 + (w? — wi)?Boa + ...
+eBo + e(w? — wi) By + e(w? —w)?Bia + ...
+e2Byg + €*(w? — wg) By + €2(w? — w2)?Bay + . ..
+:
+Cp(w?; ).

The series converges absolutely in N and, therefore, it can be rearranged.

B(w?¢) = Byo + (w? — w?)Bo; + €Big (4.107)
+(w? — wl)?Byy + e(w? — w2): By + €2 By
+:
+ Xhoo € (w? — Wi By pq

+D(w?; €).
The same is, of course, true for P(w?;e).
The transformation function U(w?; €) can be chosen to be

(L= (Po(wd) = P(w?; €))%)™H/*(Po(wd) P(w?; €)+(I = Po(w§)) (I~ P(w?€))), (4.108)

where

(I = (Po(wg) — P(w?;€))?)™"2
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is defined as

o [ —1/2
> / (—(Polwg) = P(w?5€))*)".

n=0 T
This makes sense if

| Bafuod) = Plwse) 1< 1.

The proof of this is in Kato [14, Section 4.2, Chapter 2].
Evidently, U(w?; €) can be expanded as a double power series:

Uw?e) = I+ (w? = wg)Un + elro + . ..

175

This all implies that there is a double power series expansion for B(w?; €):

B(w?; €) = Byo(w?) + (w? — wl)Boy(wd) + eBio(w?)
+w? — w§)?Boaw}) + e(w? — w§) Bua (w§) + €2 Byo(w])
+:
+ Zg=0 e (w? — wg)pgqéq p—q(‘-‘-’g)

+5(w2; €).

It is immediately clear that

From equation (4.108)
Uor = Po(wg) Por(wg) — Por (w§) Po(wg),

where

X P(w?: 0) — Py(w?
Py = lim (W 2) 20(%).
w2 —wl w* — wy

(4.109)

(4.110)
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Equation (4.105) implies

Po(wg) Boy (wg) Po(wg) = Po(wg)Boi(wd) Po(wg) (4.111)

— Po(wd) Uor (w§) Boo(wd) Po(wd) + Po(w) Boo(ws) Uor(wg) Po(wg).
It is proved in Kato [14, Chapter 2] that
Poy = —Po(wy)Boi (wj)S(wg) — S(wd)Boi(wg) Po(wd),

where S(w¢) is the reduced resolvent of B(w?;0); i. e.

1
Swou= 3, T we
JjeQ v
where the A;’s are the eigenvalues of B(w?;0), the e;’s are the corresponding

normalized eigenvectors, A is the particular eigenvalue for which Pp(w?) is the

projection operator, )’ is the set of j’s for which A; does not equal A and

U; = (11, ej)Hl(Q;)'

Given this it is easy to verify that the last two terms on the right hand side

of equation (4.111) vanish.

Therefore,
Po(w§) Bor (wd) Po(w]) = Po(wd) Bor (wd) Po(w]).- (4.112)
Similarly,
Po(wd) Bro(wg) Po(wg) = Po(wd) Bio{wg) Po(w3)- (4.113)
Thus,
(Po(wd) Bo (wd) Po(wd)u, v)im(ay = p/n; u'.vdv (4.114)

+p0 foq S(w2; 0)(u' .n)v/.ndS
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where

and

From equations (4.90) and (4.95)
(Po(wg)ém(wg)Po(wg)u,V)Hx(g‘.) = 6(127pr§(¢100€00 -+ booaoo), (4.115)

with obvious notation.

4.4.4 The imaginary parts of the eigenvalues for real fre-

quencies.

The eigenvalues of B(w?;0) for real w? are all real. The eigenvalues of B(w?;¢)
for real w? and for non-zero € need not be real. Our intuition tells us that they
are never real regardless of the shape of the body and the value of € except for

the special case of Jones’ modes. This, however, has yet to be proved.

Suppose that w? is real and that A(w?;€) is an eigenvalue of B(w?;¢), with

u(w?; €) the corresponding normalized eigenvector. Define
Ph(w? e) = A(w?; €)' F(u(w?; ¢).n).

P(w?; €) satisfies
Vih(w?e) = 0 in 2,
G (w?; €)

an

= u(w?€).n
an

and

O (w?e)

on

= T ejp(w;e)|,, -

(2198




CHAPTER 4. ASYMPTOTICS OF SCATTERING FREQUENCIES 178

P(w?; €) belongs to H'(2?). Furthermore, from the definition of S3(w?;¢), we
g

have
p(w?e)|, = Ss(w? e)(u(w?; ¢).n).
Therefore,
/an u(w?; €).nS3(w?; €)(u(w? €).n)dS = -/m Vip(w?; €). Vi (w €)dV
+ foq, T(w?% €)pp(w?; €)pp(w?; €)dS.
Finally,

S / w(w?; €) mSs(w?; ¢)(u(w?; €).n)dS = & /BQGT(w2;e)'l,b(w2;e)'gb(wz;e)ds.

(4.116)
Clearly,
A(w?e) = (B(w? e)u(w?; €), u(w?; €))m . (4.117)
Therefore,
AW e) = Fpw? [ T ) nSa(w? €)(u(w?; €)n)dS. (4.118)
Equations (4.116) and (4.118) imply
N6 =S [ Tk p(?i (w 9ds (4.119)

Now suppose that

oo

@b(wz;e)‘an = i i Z(o:mn(wz;e) cos M@ + Prn(w?; €) sinmg) (4.120)

m=0 n=m s=n

w
~

n— m)‘ n -+ m)!

n+s-|—1 o k _|_
X (6,18 — ( f g LS"‘” exp(—2k/e)dk

(Maw__2)11+s+l

—2m1 g I exp(—ZW-g—gda/e)) P (cos ),

(n—m)!(n +m)!
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then

T(w &) ($(w’s €, ) (4.121)

= = Ym0 Lomem Zf—)—m(amn( % E) cos ¢ + Bun (w?‘; 6) sin md)

w?

nt+é k+
x(—-—“:”éns— b 5 ke exp(~2k/ )
k

(n—m)!(n+m)! .

g

2
(-t

—%”{t,f)—(n;me\p( 2w / )) P (cos ).
Equations (4.119), (4.120) and (4.121) yield the following
SA(w?;€) (4.122)
= 8ra 0 Xl T Con(un (%5 €)tms (73 €) + Bran (05 €) B (w7 )

(_aw2 )n+ 41 w2
x (s—m)Y{n—m)! e\p( 7/6)

Equation (4.122) can be rewritten as

SA(w?; ) (4.123)
2 2
aw__)n-{-us
= —871%a2w? Enl_o C ( Z?:yn amn( 6) ()i
2
(__aui)n-{-a
+ E?zo:m ﬁmn (wz; e)(n—fm)l_-'
X ex; )(—2“)—2/6)
X] = /€).
amn(w?;€) and B, (wkie) are continuous in € in the interval
[0, e4(I)].
To see this recall equation (4.84), with
1/2 —m)!
tmn(W?; €) = 72::&2/ , 71; n :3' /anﬂ €)' F(u(w?; €).n) P™(cos 6) cos mpdS

and similarly for 8,,,(w?;€). The eigenvector u(w?; €) is continuous in € and so the

result is clear. Equation (4.123) tells us that the imaginary part of any eigenvalue
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of B(w?;¢€), for real w?, is non-positive and is bounded by an exponentially small

term.
Similarly, for any element of H*((};),

Q(B(wz; E)ll,ll)[_[i(g'.) = O(Ep), (4124)

for all powers p when w?

is real. Therefore, it is clear that in the expansion of
B(w?; €) in equation (4.107) each coefficient, B;;, is real. This implies that each co-
efficient in the equivalent expansion for P(w?; ¢) is real. This determines, through
equation (4.108), that the Uj;, the coefficients in the expansion of U(w?;€), are

real. Thus, due to equation (4.105), the coefficients in the expansion of B(w?;e)

in equation (4.109) are all real.

4.5 Scattering frequencies.

Suppose we now look for scattering frequencies — i. e. those values of w? for

which, for a given value of ¢, one is an eigenvalue of B(w?;¢) — then we must
solve

det( Po(w?)B(w?; ) Py(wl) —1) =0 (4.125)
for w?. We shall look for the scattering frequencies in a neighbourhood of wé,

where wi is such that

B(w};0)

has eigenvalue 1. Let us call the multiplicity of this eigenvalue m. The holo-
morphicity of B(w?; €) and U(w?;e) with respect to w? for fixed e implies that
B (w?; €) 1s holomorphic with respect to w? for fixed e. Thus the left hand side of

equation (4.125) is holomorphic in w?. The left hand side of equation (4.125) is
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continuous with respect to ¢ uniformly for w? on some simple closed curve, C’,

that encloses w? but no other scattering frequency. Thus
| det(Po(wd) B(w?; €) Po(wd) — 1) — det(Po(wg) B(w?; 0) Po(wg) — 1)]
< | det(Po(w) B(w?; 0) Po(w?) — 1))
on C',
Using Rouché’s theorem (see e. g. Ahlfors [2, p.152]) equation (4.125) has,

counting multiplicty, m solutions. Thus, there are m not necessarily distinct

scattering frequencies in the vicinity of «wg.

4.5.1 Uniqueness theorem for frequencies with positive

imaginary part.
We wish to prove the following result

Lemma 17 There are no scattering frequencies with

Sw?(e) > 0.

Proof: Suppose the lemma were not true. Let u(e) be the eigenvector of

B(w?*(e); €) associated with the eigenvalue 1. Define
P(6) = —iw(e) A (e); &) F(u(e) m).

Let ¢(€) be the function that satisfies Laplace’s equation in )., the free surface
condition and the Rellich radiation condition and whose restriction to 9¢ equals
¥'(€). Lemma 12 guarantees the existence of such a function. We already know

that, since the imaginary part of w?(e) is positive,

¥(e)|ps € LA(FS),
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and
Vip(e) € LHQe). (4.126)

Equation (4.126) and the radiation condition imply that

. 0
lim / b —nge)w(e)ds =0,

b—oo J¥
where ¥ is the semi-infinite cylinder of radius b that lies below the free surface.

Thus,

/m &g?(ze)w)czs - fﬂ V(e)-Vip(e)aV ~ ‘—"2;—6) fF ; [B(e)l*ds.

u(e) satisfies

0= pw2(e)/.u e).u(e)dV — /ﬂi o(u(e)) : Vu(e)dV
—pow?(€) foq Ss(w?(€); €) )(u (6)-n)ﬁfe_)~nd5-

Finally, we have

0= ﬂw'l(e)/ mll(ﬁ)(“f - /;L O'('LI(E)) : VU(E)d‘/ (4127)
g,vfé—)'fne V. VH(AV + ol [ () 2dS.

By taking the imaginary part of equation (4.127) we can see that u(e) must
vanish. This contradicts what was said earlier and so the assumption that there

exists a scattering frequency with positive imaginary part must be false. O

Vulliecrme-Ledard [29] showed that, when the algebraic multiplicity of the scat-
tering frequency is 1 (that is to say, when m equals 1), the scattering frequency

has an asymptotic expansion in integer powers of € and all the coefficients in the

expansion are real.

We aim to extend this to look at scattering frequencies whose algebraic mul-
tiplicity 1s greater than 1 and to examine the behaviour of the imaginary part of

each scattering frequency.
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Firstly, let us note that the ecigenvalues of B(w?;0) are semi-simple, that is to
say,

(B(w?0) — A\)P(w?) =0, (4.128)
where A is any eigenvalue of B(w?;0) and P(w?) is the projection operator onto
the eigenspace associated with this eigenvalue. It has already been noted that
B(w?0) is self-adjoint. So the eigenvectors corresponding to different eigen-
values are orthogonal and by the Gram-Schmidt orthogonalization process the
eigenvectors corresponding to the same eigenvalue can be selected to be mutu-
ally orthogonal. Therefore, a complete set of eigenvectors can be chosen to be

mutually orthogonal and of unit modulus. Call this set

{61, €, .. }

This set spans the whole of H((;).

So, if an element of H(;) is

o0
w=Yue,
i=1
then

B(w?0)u =Y Xj(w?)uje;.

j=1

If {ei,eit1,. .., €i4m-1} are the m eigenvectors associated with the eigenvalue A,

then the projection operator is given by

m—1

Plwhu = > ui e
Jj=0
Thus
m—1
(B(50) — \)P?)u = (Be?0) = 0) Y vigseins = 0
7=0

and equation (4.128) is verified.

This leads us to the following result:
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Lemma 18 The scattering frequencies have exzpansions in € that begin like
w?(€) = wj + are + aze® + o(e?),

where a, and ay are real.

Proof: Begin by writing
Po(wd)(B(w? €) — 1) Po(wy))

as

Po(wd)(Boo — 1 = (w? — w2)Boy + eBig + D(w?; €)) Po(w}).

Equation {4.128) implies that

Po(wh)(B(w?; €) — 1)Po(wd) = Po(wd)((w? — w§)Bor + €Bro + D(w?; €)) Po(w5)-
(4.129)

At a scattering frequency,
det(Po(ws)(B(w?; €) — 1)Py(wp)) = 0.
This implies that
F(w?;€) = det(Po(wi)((w? = w§) Bor + eBig + D(w?; €)) Po(wg)) = 0. (4.130)

We already know that there must be m solutions of this equation. For a first
approximation, try

w? — Wi = e,

where 2; is the jth solution of the polynomial

Q(z) = det(Po(w?)(2Boy + Buo)Po(wd)) = 0. (4.131)
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Equation (4.131) is equivalent to
det(Po(w2)(2 + Bait Bio) Po(w?)) = 0. (4.132)

B! exists because from equation (4.112) its non-existence would imply the ex-

istence of a non-trivial solution to
B(]]_ll = 0.
From equation (4.114),

0 /Q wvdV + po /a _S(wh;0)(um)v.ndS =0,

for all v in H'(Q;) and for v=u in particular. Finally, we know that the second
integral never vanishes when v is u and, therefore, u must be zero. This contra-
dicts what was said before and so the initial asumption that Bg;' does not exist

must be false.
Equations (4.114) and (4.115) imply that
B3 Buo

is self-adjoint. Therefore, equation {4.132) has m real solutions — we have called

these {21,...,2m}.

Again, since
By Big
is self-adjoint its eigenvalues must be at worst semi-simple. Let P’ be the projec-
tion operator onto the eigenspace spanned by one of the eigenvalues and suppose

the dimension of this space is p. Near this particular eigenvalue — call it z; —

equation (4.130) becomes

det( P’ Po(wd)((w? — wi — x¢) Boy + D(w?; €)) Po(wd)P') = 0. (4.133)
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Now write D(w?; €) as
€ By + €(w? — wd) By + E(w?e),
and write this as
€2 (Bao + @;Byy) + €(w? — «f — xj€) By + E(w?e).

Define the new variable

w? —wl — e
(=2 T
Equation (4.133) becomes
det(P' Po(wd)(¢Boy + Bao + ;811 + F((;€)) Po(w?)P') = 0, (4.134)

with obvious notation. Denote by g({;€) the left hand side of equation (4.134).
We have
9(¢;0) = det(P'Po(w5) (¢ Bor + Bao + %;Bu1) Po(w}) P').

This has zeros at {y1,...,¥,}, say. Let C be a simple positively orientated curve

enclosing just one of these points, y;, say. Now,
inf |g(¢;0)] = s >0,
where the infimum is taken over all points ¢ on C. Furthermore,
sup |g(¢, €) — g(C;0)] < s,

for all ¢ smaller than some suitably small positive number. So, by Rouché’s
Theorem, ¢g((; €) has the same number of zeros inside C as g(¢;0). The smaller
we take € to be, the smaller the curve can be allowed to be. Consequently, the
kth zero of g(C;€) is

Yr + o(1).
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Finally, each yyi is real. To see this we note that there must be a u satisfying
(kam + By + %173’11)11 =0.
So

((Bg(} + $j-é11)u» U)H‘I(Q;)

(Bmu; u)mn (2:)

Ye ==

We know that each of these terms is positive.

We have
w?(€) = w + xje + yrpe® + o(?)

and we know that a; and y are real. So the lemma is proved. O

We cannot go any further with the expansion because we cannot use the

reduction process any more. That is to say, the eigenvalues of
'kam + Byo + :Uj]::?’u
need not be semi-simple.

If the eigenvalue we started with had been simple, we could have proceeded

indefinitely and re-captured Vullierme-Ledard’s result.

4.5.2 The imaginary parts of the scattering frequencies.

We now wish to investigate the imaginary part of the scattering frequencies. The

scattering frequency is a solution of

where A(w?;€) is the eigenvalue of B(w?;¢). We adapt a proof from Harrell and

xSimon [12] to prove that the imaginary part of each scattering frequency is
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Figure 4.7: Line joining w?(e) to real axis.

bounded by an exponentially small term. We are interested in showing that it is

non-zero but, unfortunately, this has not been done completely.

Mw?; €) is a root of

det(B(w?;€) — AI) = 0.

For fixed €, A(w?; €) is holomorphic with respect to w? except at a discrete set
of ezceptional points. In any compact domain, there is only a finite number of
exceptional points. This is found in Kato [14, p. 64]. So we can draw a straight
line from the point w?(€) to the real axis that avoids every singularity. Suppose

this line makes an angle o with the real axis, as indicated in the Figure (4.7).
Denote by T¢(z) the function
SA(Rw?(e) — z cos a + 1Sw?(€) — i@ sin «; €).
We shall use the mean value theorem on T (z) to find Sw?(e) in terms of the
value taken by T (z) at the endpoints of its range and in terms of its deriva-

tive with respect to & somewhere in the range. We then find the leading order

behaviour of this derivative as € tends to zero.
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Cleaxly,
T.(0) = 0.
Equation (4.123) implies that
o?
T, (iw—(i)») = FA(Rw?(e) — Sw?(€) cot a; €) (4.135)
sin o

= f(Rw?(e) — Sw?(e) cot e €) exp(—2(Rw?(e) — Sw?(e) cot ) /e),
where

F(Rw?(e) — Sw?(e) cot av; €)
2

2
(_aw )n+s

2
(,,_a W____ ) nte
200 o g g
n=m —Mmn (n -—rn,) 1

+ ;)z?:vn ﬁmnml—

= —8n%a’w? T Cm (

|

From the holomorphicity of A(w?;€) at all points on the line and the mean

value theorem, we have

(Swz(e) o) o (%gf_(g)_) i (4.136)

S1N o sin o

o7,
oz |,

= f(Rw?(€) — Sw?(e) cot o €) exp(—2(Rw?(e) — Sw?(e) cot &) /e),

where c lies in the interval

0 %uﬂ(e)]
" sina
We have
% — sina IS (z;€)
Oz C_ ! 0%z |’
where

¢ = Rw?(e) — ccos a + 1Sw?(e) — icsin a.

Since the line contains no exceptional points, A(z; €) must have a Taylor expansion

around every point. This implies that Y.(x) is twice differentiable at every point
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on the line. Therefore,

oY, o7,
= 7 o(1).
5.1: 3:1: 8“.;2!6!
We have
9T, —sna IS (z;€)
5.’8 Fw2(e - 632 ol ’
where

" = Rw?(e) — Sw?(e) cot c.
S0, by this and the Cauchy-Riemann equations, equation (4.136) becomes

a%a)\g(ej €) ) Swi(e) = F(Rw?(e) — Sw?(e) cot a; e) (4.137)

X exp(~2(Rw?(e) — Sw?(e) cot a)/e)(1 + o(1)).

Clearly,
OMNA(z5e) _ OA(z1¢)  .O0VA(z5€)
Rz 02 TToRz

Equation (4.124) implies that

IS (z; €)
oR=

= o(e”),

C"

for all powers p. A(z;€) can be expanded around the point € = 0:
Azy€) = AM(z;0) + o(1).

This expansion is uniform in z and, therefore,

IX(z;€)
0z

_ 9Mz;0)
Oz

+ o(1).

C”

Furthermore, since
Po(w§)(B(z;0) — 1) Po(w})
= Po(w})(B(70) — B(w§; 0)) Po(wf)

= (2 — w3) Po(wi) Bor Po(wd),
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(recall that, since B(w2;0) is self-adjoint,
Po(wd)(B(w5;0) — 1) Po(w3) = 0)
then
Mz0) =1+ 2(z - wi),

for some constant @ — the eigenvalue of Py(w?)Boy Po(wd) — and so

0A(z;0)
0z

_ OX=0)
- Oz

1 2
[ wo

(Recall the linear dependence of A(z;0) on z.) Thus, we have,

ORM(z; €)

T = (1 + o(1)).

!

Equations (4.137) and (4.138) imply that to leading order

2. 2
Sw?(e) = G exp(—2a1/g) exl)(—Q%Q/e),
@
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(4.138)

(4.139)

where @, is the order one term in the expansion of w?(e), which, according to

Lemma, 18, has the form:

Rw?(e) = wi + ae + o(e).

We note that f(w?;0) is never positive. This is consistent with the fact that no

scattering frequencies lie in the upper half plain. If f(w?2;0) is non-zero, then, of

course, the scattering frequency has a non-zero imaginary part. Even if f(wé;0)

vanishes it seems likely that a higher order term of Sw?(e) does not vanish; this

appears to be difficult to prove, however.




Appendix A

Jones’ modes and Jones’

frequencies.

A.1 What is a Jones’ mode?

Let ©Q be an open, compact domain of non-zero measure. A Jones’ mode —
named after Professor Douglas Jones, who emphasized their importance — is a

non-trivial solution of the equation
Vo(u)+ku=0
that satisfies
u.n|ag =0

and

o(u).nlpg =0,

where 00 denotes the surface of Q and n denotes the outward pointing normal

to 0. k is called a Jones’ frequency.
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A.2 Examples of Jones’ modes.

A.2.1 The cylinder.

Suppose that we look for a Jones’ mode in a cylinder of radius a. We write u in

the form
u=V x(Ve,),

where ¥ is a function that depends only on the radial variable R and e, is a unit
vector parallel to the axds of the cylinder. It is not difficult to show that ¥ must

satisfy Helmholtz’s equation
V20 + k2T = 0,

where

Within a multiplicative constant the only regular solution is
U(R) = Jo(ksR),
where Jo(z) represents the zeroth Bessel function. Thus,
u = —kyJ)(k;R)eg,

where e4 denotes the angular unit vector. Immediately we see that the normal

component of dispacement vanishes on 9f).
The surface traction on 0} is given by
2 71 ks 7
W2 () + T ).
This vanishes if and only if

2y (ksa) = kyado(ksa)




APPENDIX A. JONES’ MODES AND JONES’ FREQUENCIES. 194

whre Ji(z) denotes the first Bessel function. Since the first and second Bessel

functions have interlacing zeros this equation has infinitely many solutions.

A.2.2 The sphere.

Consider a sphere of radius a. Let (r, 8, ¢) represent a spherical coordinate system.

Let us look for a Jones’ mode of the form
u=V x(U(e,cosf — egsin b)),
where V¥ is a function of r only.
As with the cylinder, ¥ satisfies Helmholtz’s equation. Thus,
U == jo(ker),
where jo(z) denotes the zeroth spherical Bessel function. Therefore,
u = kyjg(ksr) sin feg.

The normal component of displacement automatically vanishes on 9§). The

surface traction is given by
(k250 (sa) — % it (kya)) sin fe,.
A neccessary and sufficient condition for this to vanish is that
371(ksa) = ksajo(ksa),

where j;(2) denotes the first spherical Bessel function. There are infinitely many

values of k, for which this is true.
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A.3 Bodies of rotation.

Suppose that 2 is the body formed by rotating the two dimensional body §
about some axis. Let the boundary of S comsist of a finite number of smooth
pieces joined at non-zero angles. Let (R, ¢, z) denote the usual cylindrical polar

coordinates and let us look for a Jones’ mode of the form
u = uey, (A.1)

where u depends only on R and z. Let us stipulate that « must vanish on the

axis of rotation.

The condition of vanishing normal component of displacement on the surface

is automatically satisfied. The surface traction is given by
Ju en + du e
(| == ——e. | .ney.
FA\OR®® ™ 3% ?

The equation satisfied by w in the interior is

v 20u O,
W+E3—}2+5§+LSM—D' (A2)

Let us define the Hilbert space V' by supposing that a distribution u belongs

to V if
/ Rluf?dS
S

exists. The inner product between two elements u and v of this space is

/ RuvdS.
s

The Hilbert space H is the space of those distributions belonging to V for which

/SR( z)ds

2

du
OR

du

0z
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exists. The inner product of « and v is given by
du v Oudv
RuvdS / ds.
s + (3R or " 8- aﬁ)
We have
Hcv=V cH.
Furthermore, the imbeddings are compact. To see this let us consider a sequence
{u:} in H with
” U; HH: 1forz e WN.
Let
u; = U;ey,

where each u; is now considered as a function in {) that does not depend on ¢.
Clearly,

i lry= 27 || wi ||&
and

| wi lle2 @)= 27 || wi [|v -

From the compact imbedding from H*(Q) into L%(Q) (see, for example, Sanchez-
Palencia and Sanchez-Hubert [27, Chapter 1]) there exists a convergent subse-
quence of {u;} in L*(Q). Consequently, there exists a convergent subsequence of
{w;} in V. Thus, the imbedding from H to V is compact. From this, one can

show that the imbedding from V to H' is compact.

Let us take the function w in equation (A.1) and consider it as a function in

S. From equation (A.2), we have

B 9w 2 0u 0% 2
V= /R”(3R2+30R+a 2““)‘”
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where v is any smooth function in S. By integrating by parts we can see that
(w,0)pr = (k2 + 1) (u,v)v. (A.3)

It is well known that there is a countably infinite number of values of k, for
which there is a non-trivial solution to equation (A.3). These solutions are, in
fact, smooth within S. Thus a large class of rotationally symmetric bodies can

support Jones’ modes.

A.4 Thierry Hargé’s work.

We might guess that a body that has no axis of symmetry cannot support a Jones’
mode. It seems likely that Jones’ modes are always of the form in equation (A.1).
That is to say, they are always a torsional mode. This is pure speculation. We
do know, though, that, in a sense, the class of smooth bodies having a Jones’
frequency in any finite range is infinitely rare. This was proved in a paper by
Thierry Hargé. The author’s own translation of this work is included here as the
work does not seem to appear in English anywhere else. We note that what we

have called a Jones’ frequency Hargé calls an exceptional eigenvalue.
FREE OSCILLATIONS OF AN ELASTIC BODY.

Preliminaries Denote by L the usual elasticity operator, that is to say
Lu= (A + p)V(Y.u) + puV?2u, (A.4)

where A and ;o are the usual Lamé constants. Let 2 be an open, bounded and
simply conected subset of R?® that has a “smooth” boundary. Define an operator

A(Q) defined on a domain D(A(Q)) = {u € H%(Q); B(Q)u = 0} by

A(Q)u = — L, (A.5)
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B is the surface traction operator and is given by
B(Q)u = AV.un |gq +u(Vu + (Yu)?).n |aq,
where n is the outward pointing normal to the surface 912.

If considered as an operator from L?(Q) — L*(§)), A(Q2) is unbounded, self-

adjoint, positive and anti-compact (i. e. its resolvent is compact).

We call ecigenvalue w of A(}) exceptional if the associated eigenfunction u is

such that u.n |go= 0.

Fix Q and let B = {¢ € C=(R,R?)}. Let {1y be the open domain of R?® that

consists of points x with x = ¢(¢£), where € € (.

Theorem 13 There exists a countable ensemble of open subsets of E, {Grlnen,
with each G, dense in E and with Gny1 © G, such that for any ¢ € G,
A(Qy) does not have an ezceptional eigenvalue in the range [0,n]. Consequently,
of we restrict ourselves to a compact region of Ry, then almost every body with a

boundary of class C* will not have an exceptional eigenvalue in this region.

Proof: We call A4 the unbounded operator on L*(f2) defined in the domain

D(44) = {u € H*(Q); B(Qy)(4n) = 0}

Ap(u) = ¢7(A(Qs)(4u)) (A.6)

In this notation, if u is a vector field defined in 2, then ¢,u is the vector field

defined in Qg4 that is given by

(¢-u)(x) = u(f), (A7)
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where x = ¢(§).

Similarly,

(¢7u)() = u(x). (A.8)
Ay is self-adjoint for the scalar product

LHQ)(f,9)s = ($uf, 29)12(2,)- (A.9)

Ag and A(Qy) have identical spectra and for every exceptional eigenvalue of

A(Qg) there exists an eigenfunction u of Ay such that
u.("d¢) ' (n) |an= 0, (A.10)

where (*d¢)~! denotes the transpose of

a0 =(a)

If we define By(u) = ¢*B(Qy)(¢«u), then By is a first order linear differential

operator whose coeflicients depend lineatly on (d¢)~!.

For simplicity, we write Ar and By as A and B respectively. Let J be a lifting
operator from Hz(dQ) into H2(Q), such that B.J = I.

For any g € L*(2) and A € C the equation
(Ag—Nu=g (A.11)
is equivalent to the equation for (u,v) € D(4,) @ D(A)

v= u-—J((B— Bg)u)
(A.12)
(A=ANv = g+ (A= Ay)v— (44— N)J(B — By)u,

which shows that the spectrum of 4, depends continuously on ¢ € F.
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An eigenvalue is said to be stable if there exists a neighbourhood U of wg and
a neighbourhood V of I in E such that, for all ¢ € V| the operator A, has only

one eigenvalue in U.
Simple eigenvalues are, of course, stable.

A function ¢ € C*°(; R?) is chosen and T + s is called ¢,, where | s | is
small. We denote d—i"’i |s=0 and %:—3 |s=0 as Aand B respectively. Then A (resp.
B) depends linearly on %’ and %" (resp. ¥'). As a result of equation (A.12), we

have the following lemma.

Lemma 19 Let wy be stable eigenvalue of A, w(s) the corresponding eigenvalue
of Ag,, and F(s) the associated space of eigenfunctions. Then w(s) and F(s) are

analytic in s for small |s| and if u(s) € F(s) belongs to the class C' we have
pa(0) = (A—wo) ™ [~pAu(0)]—pJ Bu(0)+ (A —wo) " [p(A—wo)J Bu(0)], (A.13)

where p the orthogonal projection operator in L?(Qs; R3) of the space F(0).

Lemma 20 Under the hypotheses of Lemma 19, a funclion 1 can be chosen so
that, for all u(s) F(s) with u(0) # 0,

fl—[u(s)-(‘d%)‘l(n)]szo £ 0. (A.14)

ds 50
Proof: Suppose xy € 0); we construct 7 in a small neighbourhood of xq. Let
d =dim F(0), and let {u,}, for 1 < j < d, be a base of F(0). {v,},for1 <j; <<
d, is a base of the space spanned by {u;.n |sn}. There exists a neighbourhood W
of xg in 88 in which the vectors {v; |sa\w }1<j<i are linearly independent. By the
theorem of Holmgren, the vectors {u; |yv}1<j<q are linearly independent. There

then exists d points, X1,...,Xq, in W and d vectors in R3, ay,...,aq, such that
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the matrix (u;(xg).ax); is invertible. Without loss of generality, we can suppose

that ag.n(x;) # 0. Let v € (0,%) and let € > 0 be small. Define

ai. X

. ) n(x), (A.15)

d
Pe(x) = Z 9k(X)€2+U sin (

k=1
where the 8y € C§°(R3) have mutually disjoint supports contained in W and
Op(xx) = 1for each 1 < k < d. I {uj(s)}icjca is a base of F(s) such that

u;(0) = u; and u(s) = T9_; a;(s)uje(s), where a; € C?, we have

d[u(s)_(t(lﬁ;)—l(n)]mo o= (A.16)

E ci'j,E(O)uj.n !aQ +3 CB]'ﬁ(O)[I‘lj’E.n — u]-.tdz,be(n)] |aﬂ .

It suffices to verify that, for € sufficiently small,

Zﬁ?,c_{_zaie = 1
and
D Bicvi+ > aje[p(itje).n — ujtdypen] |ag= 0

cannot both be true.
Clearly, lim._q . = 0 in H*(R?), so, because of Lemma 19,
lim p(0;e), 1 [on=0
in H?(8Q). Since the vectors {v; looy\w } are linearly independent and
Z 53',5'%' |an\w= 0,
Bje = 0.

Therefore,

lim 3 ajcu;.fdpe(n) |op= 0 (A.17)
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in H3(89). So, for all k
0 = lim Br(x)e't cos (:ai;—{—) ag. Y ajcu;(x)n(xg).n(x) oq (A.18)
in H7(d9).This implies that

lim a. > ajeu;(xk) = 0. (A.19)

It must then be the case that lim._,o o = 0.

The spectrum of A(£,) is continuous in ¢ and so G, must be open.
The proof that G, is dense in E.

Let F[ﬁ,"] be the vector space generated by the eigenvectors of A(f),) associated
with an eigenvalue in the range [0,7]. Let F¢ be the set of u.n |gg, where u runs
through the space spanned by the eigenvectors of A(2y) associated with A. Let

U be any open set of E.

Let Uy be the open subset of U defined as
Uy = {¢ € U;dim F[‘g,n] is minimal }.

Let U; be the open subset of Uy in which the number of distinct eigenvalues is
maximal. In U, the eigenvalues are then stable. Finally, let Us be the open subset
of U, consisting of elements, ¢, for which
Z dim £ ¢
A€[0,n)

is maximal.

Then according to Lemma 20,

> dim B¢ = dim F[‘g,n]
/\E[O.n]

for ¢ € Us. Thus, U3 C G,, and G, is dense.




Appendix B

Some proofs from Chapter 4.

Let
P(x) = P1(x) + Ya(x),
where
© > 1/2 pm
_ n+l (n —m)! P™(cos 0)
Y= ,Eo n;z @ Qtn coS T ((n + m)!) ekl
and
B [T ] - (il)m+n+1
v 'EO 'ER © G ((n +m)H(n —m)!)1/2

X foo S Em exp(—k(y + 2/€)) Jm (K R)dE.
Suppose that K # 0 and that a is smaller than 1/(2¢).

The «,,,,’s are constants and

| Cmn |2

gL

>

m=0n

m

exists.

We want to show that

203
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(L+2%)" 29 (x) € L*(Q), (B.1)
Vip(x) € (L*(Q))° (B.2)

and
Y(x)|rs € L*(FS). (B.3)

B.1 Proof of (B.1)

Evidently,

s (x)]? < 2]ty (x)[* + 2ap2(x)]%.

Clearly,
L@+ ) fav
exists if and only if
| ex)pav

exists.

This last term is less than

00 k3 2w o co _ | 1/2 5m 2
/ /9 @ d?’d9d¢ sin ¢ Z Z an+1 Qymn COS 771(]5 ((72 771)-) Pn (COS 8) ! .
r=a J0=0 J¢=0

(n + m)! rrtl
Therefore,

m=0n=m

-2 2 Taint2 2 dr
[ neolav < $m o, milemlc, [ b

— co oo 27"10'17:n|2
- m=0 Zn:m (2n+1)2 Cmaa

where
2 dm=0

m —
1 otherwise
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This last sum exists. The exchange of the order of summation and integration
that has taken place above is justifiable because each term in the sum is non-

negative.

Now split the ,(x) term in two as

oo o0

’(pz(x) = CLQ!()()BQQ(X) "}‘ Z Z a"+1amann(X),

m=0
n=1m

n#0

where

(___ 1)m+n+1

Binn(x) = ((n+m)!(n —m)!)1/2

[ty it
o k—K

Using the well known identity:

P,;“(COS 9,) — 1 ® RN A 8 n
pint1 - (n _ ,’n)! ‘/0 k e"\P(_‘l"(y + 2/6))Jm(I\R)d]\.,
we have
1 2 Py(cost') 2 Py(cost)
Buyo(x) = 7—,+ET+ P
— % I5° B exp(—k(y + 2/€)) Jo(kR)dk,
where
= R+ (y + 2/e)?
and
¢ = arctan ——.
arctan yT 2/6
Therefore,

/S | Boo(x)[2dS = 2
—4AR [5, dSL{J5° L exp(—k(y + 2/€)) Jo(kR)dk }

2
+4 Js, dS |J5° i exp(=k(y +2/e))Jo(kR)dE|
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where S, is the hemisphere with radius ¢ centred on the image point (v’ = 0) and

lying below y = —2/e. Denote by R(c) the difference

/S | Boo(x)|2dS — 2r.

It 1s easy to see that R(c) decays to zero as ¢ approaches infinity. So 27 is the

leading order term in the asymptotic expansion of

/S | Boo(x)[2dS.

Clearly, then,

[ lecomBo(x)av < [ j° ca|anol? | |Boo(x)[*dSde.
a 1/e e

This exists because
o / 2 / | Boo(x)|2dSde
1/e Se
exists. Therefore,

[Q (1 4+ 12)"1 | Boo(x)[2dV

exists.

We now aim to show that

[o.0]

[ o]
Z Z an-{-lamann(X)

m=0
n=m

n # 0

belongs to L*(€,). This will imply that

fa+r)

2
0 0

Z Z a’n+10-'mann (X) dVv

m=0n=minx0

exists.

Let

Cmn(y,p, Q) = f(an(—‘l/e, R, qﬁ)) exp(—py),
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where
f(an(_l/ﬁ, R, ¢))

denotes the Fourier transform of B,,(—1/¢, R, $) when considered as a function

in R? and
p= P+
Let

¢’ = arctan 1
P

It is easy to show that

( 1)11/2-{-m+1 P+ DI
(n4+m)n—m/2 p—- K

Crunly,p,q) = 27 p" " exp(—p(y + 2/€)) cos mg’

when n is even and

(~1)71/2+7n+1/2 2,0 K

Conn(P0) = 2 ST =i, — g ¥ ¥Ry +2/€)) cosmdf

when n is odd. We now use Parseval’s equality to show that

~ 2 /: = 2 a
‘/_1/6 _/"22 |an(x)| C“ [_1/5 /R‘Z IC,,,,n(y,p,g” d‘

and, thus

-2
/ IB’"" clT S (n-{-m)ﬁ!{n m)! Ll/f dy IO dp d¢ ‘Z+§:

x p*" "t exp(—2p(y + 2/ 6))

— 2w co pt+ I
 (ntm)(n— m’fD lpip K

xp* T [2c dy exp(=2p(y + 2/€))

12
ullZl fo dp I”"”‘..

= (n+m)l{(n—m) p—K

=2 exp(—2p) )

Xp
< sy do” dpp™ % exp(—2p/€)

2n=2)! e
= Clarayiitmy (e/2)" 7,
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where M and C' are constants independent of n and m.

We now use the fact that if the sum

oo
Z 2% |ay, |2
n=1
exists then
oo co
| Za’nlil S Zznlan|2
n=1 n=1

to see that

Ji

2

S S @By, R §)| dV

m=0n=m;n#0

—_ Em:O Zn:m;n;éo 2m+na2n+2la“m |2 fﬂﬂ len(y’ R) QS) lZd‘/

! —2)!
< CGB ?1?_0 Z:;O:m;n;éo 2m+n|G"1n|2 2 (ae/z)Zn !

(n+m)t(n—m)

2. (@n-2)t -
< 2Ca® Zm =0 n—m nF#0 |a"m| St (a6)2n g

(n+m)!(n—m)!

It is true that

(2n — 2)! < (2n — 2)!

(n+m)l(n—m)! = nln!
_ 2n(2n— 2)(2n 4)..2 % (2n—1)(2n—3)(2n—5)...1 1
- n! 2n(2n-1)
92n
< 2n(2n-1)"
Therefore,
) 00 2
[ X Y ™ amBualy, B ¢)| &V
Qe m=0 n=mn#x0
exists if

exists. If a < 1/(2¢) the result is true.

B.2 Proof of (B.2)

n—m)! 1/2
Vd]l(x) = m-—O En—"m a® lam" (%&%3—!')
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{jﬁ%ﬂP”‘ (cos ) cosme e,

ff,’log pm (cos ) cosme eg

b1} m
— s P (cos ) sinmé e¢}

Therefore,
2n42 1)2
/ VPV <3 S / ( ) |ty |2 (M +m) 7Cmdr (B.4)
m=0n=m + 1/2
ntl (n—m)! /2 2
'I" faoo fil 7’2 Zﬁ?:o Zoo_m in—t2 an ( ) ((n-l—m) ) \% 11— C2 Wodedr
+T, ,
where
+1 2
OO n . |
T < /g mZO 2 s ——— Ctun P™ () (cos ) %sin@cos me| dV,

where (2 is the region between the surfaces of the spheres centred on the origin

and of radii ¢ and 2a. Let

h = Z Z Cr COS 110¢D (n—m). Pm(cosﬂ)

— .5, (n 4+ m)!
and let
2 & (n —m)!
Z: nz;; 2n+1 Ctmn COS M ()] ——————=P"(cos §).

Lemma 11 implies that h and ¢ belong to Hz(X,) and H E(Ega) respectively. By
the theory of Lions and Magenes [19, Chapter 2], there exists a unique function
in H'(}) satisfying Laplace’s equation and whose traces on the boundaries are
h and g. Clearly this function is the restriction of t; to Q8. Therefore, Vi,
belongs to L?(QF) and so T is finite.

It is easy to see that the first term on the right hand side of equation (B.4) is

finite. The second term is bounded by

MZ 3 / dr/ de|cimnl? (2“)2"+2 L ) (Pr'(e)’,

m=0n=m (71 + 771)!
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where M is some constant. Define

I= / (Pr'(e)" (1 — A)de
Integration by parts and the equation satisfied by Legendre functions give

I=n{n-+ 1)_/11 (P™(c))? dc —m /1 wdc.

-1 1—¢2
Thus
_ 2n(n+ 1 +m)! m(n + m)!
 (2n+1)(n —m)! (n—m)!
So
| IVihepav
exists 1f

Z Z /°° 2” 2 2n(n+1) m
72n+2 Gmnl\ 2n 11

m=0n=m

exists. This last term equals

1 i i Lt ? 2n(n+1)  m
Cimn (2n+1)2 2n+1

yn—o n=m

and, therefore, exists.

_1)m+n+1

V'l,bz(X) - Zm =0 n—m a H—lam" ((ntm){{n—m)1)i/2

{ Joo K pntl exp(—k(y + 2/€))Jm "(kR)dk cosmger

— J5° BE e exp(—k(y + 2/€)) T (kR)dk cos m e,

RN ’”.H\ k™ exp(—k(y + 2/€))Jm(kR)mdk sin me e,,;}

Rewrite this as

-1 et

v¢2(x) = Em =0 Zz.ozm (l."+101mn ((n-|-(:11)!)(11—m)!)1/2
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x {5 K kvt exp(— k(y + 2/¢))
{%(Jm_l(kR) — Jms1(kR)) cos m¢ er

—Jm(kR)dk cosm¢ e,

—%(J,,,.,.l(kR) + Ji—1(kR))sin m¢ qu} dk} .

It is clear from the previous section that

Viha(x) € (L*(€2))

if we bear in mind that

J_1(Z) = —Jl(Z).

B.3 Proof of (B3)

'(,b(X)lpg = Z Z an+lamn(—1)m+n+1

m=0n=m

((n+m)'?t11:\ m)HL/2 ID L I\ 6\1)( 2'1"/6) (AR)d’]"

(Recall that
Pm(cos 6)
rntl

P (cosb')

m+n
( 1) int1

on F'S.)

The Fourier transform of ¥(x)|ps is

X pa = 4 Z Z a” an )m+n+1Am

m=0n=m

((n+m)!({f——m)!)1/2 k'f}\,. exp(—2k/e) cosmg’,

where

(—1)m/? if m is even

Anz =
(=1)m+0/2 if m is odd
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k=+/p?+ ¢

and

¢' = arctan g
2

So, ¥ (x)|rs € L*(FS) if and only if y € L*(R?). We, once again, use the

result

o0 [e.9]
|2 anl* <32 2% an?

n=1 n=1
to see that the Fourier transform of #(x) belongs to L?(R?) if

k.211+1

oo o0 oo ’ r ) " 2
mz=0,; (n +m)l (n—m) (f |k P exp( 4k/e)) ||

exists. For very large n each term in the sum is close to

(2n —1)!
(n +m)l{n—m)!

(€a/2)"" |ctmnl .
This last term is bounded by
1 2n| ., 2
M—(ea)™|amnl?,
n

where M is a constant. As a is smaller than 1/¢, the series converges and we are

done.




Appendix C

Sobolev Spaces

This appendix is intended as a brief overview of the theory of Sobolev spaces.

We will concentrate only on those results that are directly relevant to our task.

Let us suppose that {2 is an open subset of R3. Denote by D(f2) the space
of infinitely smooth functions whoose support is completely contained in 2. A
distribution on 2 is defined as any member of the dual space of D(Q); i. e. for

any distribution, g, and any member of D(§2), f, the integral

/ gfdV exists.
Q

The derivative up to any order of a distribution can be defined via the equation

L @eg)fav = (=) [ g(D=)av,

where a = (a1, s, a3), each «; is a non-negative integer,

| a (= Eaia

and
Hlel

D= —rn0rnp .
Jr Oy 0z
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Armed with this definition of the distributional derivative, we can go on to

define the Sobolev spaces H*(Q2).

Firstly, if s is a non-negative integer, then g € H*(Q) if and only if
> ] | D%g | dV exists.
|l|=s

The H*(!) norm of g is then defined to be

I 9 lme@)= (Z / | D¢ |? dv) . (C.1)

|or|=0
If s is non-negative, but not an integer, and if we write s = m + ¢, where m is an
integer and 0 < ¢ < 1, then the H*(Q)) norm of ¢ is defined to be
1/2

| Dog(x) = Dg(y) | 5 13
d&°xd’y
nen | X — y |3+r/2 X

g o= (n 9 Wiy + [
|a|=m

(C.2)

Of course, g € H*(Q) if and only if the right hand side of (C.2) exists. If s =0

then it is usual to write H*(Q2) as L?(Q2).

If s < 0, then we cannot simply define H*(§2) as the dual space of H~*(2)
because this is not a space of distributions. Instead, the space Hy *(£2) is defined
as the closure of D(f) with respect to the norm defined in (C.1) or (C.2) (de-
pending, of course, on whether s is an integer or not). H*(Q) is then defined as

the dual of Hy*(2). It is known that this space consists of distributions.

0 <s <t then HY{Q) C H*(Q). This is an obvious consequence of
(C.1) and (C.2). Furthermore, the imbedding is compact. Suppose, now, that

s <t <0. Let g be any member of H*(?). The duality product between g and

any element, f, of H5*(Q) is

< g, f>= /Q gfdv, (C.3)
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where f denotes the complex conjugate of f. Clearly, (C.3) will also be true
for any element of H*(§2) since H;*(R) is contained in Hg*(R2). Therefore, ¢

belongs to H*(£2). Again, the imbedding is known to be compact.

Similar spaces can be defined on surfaces in R3. They are normed in a similar
way to the Sobolev spaces that are defined on subsets of R> of non-zero measure.
They have identical compactness and imbedding properties as before and if the
surface, 0Q2, is closed, then H~°(0R) is the dual space of H*(0{) regardless of

whether s 1s positive or negative.

If 60 is the boundary of €, then H*(99), for s > 1, consists entirely of
traces of distributions in H*+3(Q). The trace of a distribution is analogous to
the boundary value of a function. Furthermore, for every g € H*(9Q) there exists
an element, g*, of H*+5(Q) whose trace on 9 equals g. ¢~ is called a lifting of
g. It can be shown that this lifting operation is continuous; i. e. there exists a

positive constant K, independent of ¢ and g* such that

“ g* “H"}’;‘{Q)S K ” g “HS(BQ) '

In addition to the spaces that have already been defined, we shall need the
space HL (Q). This is the completion of functions with compact support in

loc

with respect to the H! norm. This means that the restriction to any compact

subset, (', of @ of any distribution in H},(Q) is in H*(Q).




Appendix D

Uniqueness Proof

In this appendix we prove that any function, u, satisfying
(A4 p)VV.a+ Vi + pw?u =0

in any exterior domain {)., vanishing at infinity, and having homogeneous Dirich-
let or Neumann boundary conditions, vanishes identically when the Lamé con-

stants satisty
R ()\ + g,u) >0,
3
Ru > 0,
2
& (/\ + gﬂ) <0
and

Su < 0.

It is well known that w may be written as

u=V3+VxT,
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where
2
2 pw -
Vidp + g 2#<I> 0
and
2
Vg + Py —o.

U

We require that u vanish at infinity; therefore, ® and ¥ cannot be exponentially
increasing functions. They must, therefore, be exponentially decreasing. Whence,

u is exponentially decreasing. Therefore,

0= lim U.o(u).ndS,
R—co Jyp

where ¥ p denotes the surface of a sphere of radius R, n is an outward pointing
normal to £x and o(u) is the stress tensor. From the divergence theorem we

have

/ V.(W.o(u).n)dV =0,

e

where the homogeneous boundary condition has been taken into account. Thus

1 V= 2 wdl/
/QeVu.a(u)cl‘i pw /Qeu.ucﬂ.

Taking the imaginary part of this equation yields

2 1 1
S(A+ §M)|€kk]2 +29eij — gemdiy) (@5 — gemdis) =0,

where the summation convention is employed and

ei= L[ O 0%
R on;  Oni)’

The conditions on the Lamé constants imply that e vanishes. Thus u is constant.

The condition that it must vanish at infinity implies it vanishes identically.
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