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A b s tra c t .

1) The aims o f th is  study were to inves t iga te  the ro le  o f the 

in t r a c e l lu la r  second messengers, c y c l ic  AMP and calcium ions in  the 

generation o f e p i le p t i  form a c t i v i t y ,  and to determine the c e l lu la r  

actions o f the convulsant compound, penty lenetetrazol (PTZ). The 

iso la ted  centra l nervous system o f the pond snail Lymnaea stagnalis 

was used.

2) Two id e n t i f ie d  neurones, B1 and RPD1, showed opposing responses to 

PTZ. The response in B1 consisted o f  d epo la r isa t ion , accompanied by 

bursts o f action po ten tia ls  and paroxysmal depolaris ing s h i f t .  RPD1 

was in h ib ite d  in  the presence o f PTZ.

3) In both Bl and RPD1, the actions o f  PTZ appeared to be mediated by 

an increase in in t r a c e l lu la r  ca lc iun ions. E x tra c e l lu la r  ca lc iun ions 

were not required to i n i t i a t e  a response to PTZ, but was needed to 

maintain the response.

4) The opposing e f fe c ts  o f  PTZ in  the two c e l l  types were due to 

separate calc iurn-activated membrane conductances; ca lc ium-activated 

sodi un conductance in  B l ,  and ca lc ium -activated potassium conductance 

in  RPD1.

5) In trace l 1 ul ar iontophoresis o f  c y c l ic  AMP in to  Bl and RPD1 induced 

a sodiurn-dependent, vo lta g e - in se n s it ive  inward c u rre n t ,  leading to  

depo la r isa tion  o f the membrane.
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6) Penty lenetetrazol had opposing e ffec ts  on the amplitude o f  cAMP- 

induced cu rren t in  the two c e l l  types: amplitude was increased in Bl 

and decreased in  RPD1.

7) Increased in t r a c e l lu la r  calcium ion concentration had no e f fe c t  on 

cAMP-induced inward cu rre n t ,  suggesting th a t  PTZ's e f fe c ts  on the 

cu rren t were not mediated via calcium ions.

8) P en ty lene te trazo l-  and cAMP-stimul ated sodium currents in  Bl were 

shown to d i f f e r  in  t h e i r  v o l ta g e -s e n s i t iv i ty  and t h e i r  s u s c e p t ib i l i t y  

to b locking by pharmacological agents,

9} I t  is  concluded th a t  ind iv idua l neurones may d i f f e r  in  t h e i r  

s u s c e p t ib i l i t y  to  convulsant a c t i v i t y  owing to possession o f  

d i f fe re n t  i n t r i n s i c  membrane conductances. The actions of PTZ appear 

to  be la rg e ly  due to increased in tra ce l 1 ul ar calcium ion 

concentration though cAMP may have a ro le  to play in  some neurones.
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L-PIA L-N6-phenyli sopropyl adenosine

m m i l l i

M mol ar

M mega
2+ ,

Mg magnesi um ion

mins minutes
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n number o f  re p l ica te s

n nano

Na+ sodium ion
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NMDA N-methyl-D-aspartate

n.s. not s ig n i f ic a n t
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Chapter 1 

INTRODUCTION 

1-1 General Aims

The aim of th is  thes is  was f i r s t l y ,  to inves t iga te  the ro le  o f second 

messengers in  the generation o f  e p i le p t i fo rm  a c t i v i t y ,  and secondly 

to inves t iga te  the mode o f action o f the convulsant drug, 

pen ty le n e te tra zo l,  using a molluscan model.

A ro le  fo r  second messengers in  the generation o f e p ile p t i fo rm

a c t i v i t y  has been suspected fo r  many years (S a t t in ,  1971; Lust,

1976), but t h e i r  precise involvement remains unknown. Using molluscan

neurones, Onozuka e t  al (1983) showed th a t  an increase in

in t r a c e l lu la r  c y c l ic  AMP precedes the onset o f e p i le p t i fo rm  a c t iv i t y

and as such c y c l ic  AMP could be the i n i t i a t o r  o f  the e p ile p t i fo rm

a c t i v i t y .  In mammalian t is s u e ,  Ferrende lli  and K inscherf (1977b) and

F e rre n d e l l i  (1984) demonstrated th a t e levation o f  c y c l ic  AMP leve ls

was c lose ly  associated with seizure a c t i v i t y .  Calcium ions have also

been im p lica ted  in  ep il eptogenesis. Heinemann e t  al (1977) showed

2+th a t  e x t ra c e l lu la r  Ca concentration decreased during seizure

a c t i v i t y  in  cat c o r t ic a l  neurones. DeSarro e t  al (1988) demonstrated
2+th a t  p r io r  a pp l ica t io n  o f Ca channel antagonists prevented the

induction o f  seizures in to  mice g e n e t ica l ly  susceptib le  to sound
2+induced seizures. These re su lts  suggest th a t  there is  a Ca in f lu x  

in to  mammalian neurones during seizure a c t i v i t y .
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A useful too l in  the study o f  seizure a c t i v i t y  i s  the convulsant drug 

penty lene te trazo l, which has been shown to elevate c y c l ic  AMP leve ls  

in  both mammalian (F e rre nd e l l i  and K inscherf, 1977; Onozuka e t  a l , 

1989) and molluscan (Onozuka e t a l , 1983) preparations. Thus an 

understanding o f  the mode o f action o f  penty lenete trazo l could y ie ld  

useful in formation about the induction o f e p i le p t i fo rm  a c t iv i t y  

inc lud ing  a poss ib le  ro le  o f c y c l ic  AMP.

In th is  study I have investiga ted  the actions o f pentylenetetrazol in  

two id e n t i f ie d  molluscan neurones which show d i f f e r e n t  responses to 

pen ty lene te trazo l. The properties o f a c y c l ic  AMP-dependent ion ic  

membrane cu rre n t in  both c e l l  types was also studied to  see i f  there 

was any connection between pen ty lene te trazo l's  e f fe c ts  and th is  

cu rren t .  F in a l ly  a comparison o f inward currents induced by cAMP and 

PTZ in  an id e n t i f ie d  neurone was ca rr ied  out.

This in t ro d u c to ry  chapter presents the background to  the e p i le p t ic  

cond it ion  and i t s  possible c e l lu la r  basis. I t  then describes the 

models and compounds used in  the study o f ep ilepsy and ends, w ith  a 

d e ta i le d  descr ip t ion  o f the model used in  th is  study.

1.2 Epilepsy

Epilepsy is  a bra in  d isorder character!sed by sudden, t ra n s ie n t 

a l te ra t io n s  in bra in function leading to motor, sensory, autonomic or 

pyschic symptoms, often accompanied by unconsciousness (Sutherland, 

1969). E p i le p t ic  attacks are recu rre n t,  d is t in g u ish in g  them from 

iso la te d  convulsions. I t  is  estimated th a t  0.5 to  2% o f  the world 's  

population su ffe rs  from th is  cond it ion  -  up to 120 m i l l io n  people
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worldwide. A l l  types o f e p i le p t ic  a ttack s ta r t  w ith  abnormal 

paroxysmal discharges of neurones in  the b ra in , which may spread 

lo c a l ly  or may trave l via the neuronal axons to more d is ta n t  groups 

o f neurones (Sutherland, 1969). The s i te  o f o r ig in  o f  the discharge 

is  ca lled  the e p i le p t ic  focus. When the discharge remains confined to 

a small pa rt o f the cortex and is  o f  short duration i t  may not lead 

to  any obvious symptoms, but y e t  may be detected by 

electroencephalography (EEG; C ull, 1983). The EEG trace shows th a t  

e p i le p t ic  attacks are accompanied by c h a ra c te r is t ic  EEG pa tte rns , 

and, as well as the type o f seizure occurr ing , the area o f  discharge 

can be id e n t i f ie d .  I f  the motor system is involved there is  a loss o f 

vo lun tary  power and th is  is  usually  accompanied by i n i t i a l  muscle 

con trac tion  (the  ton ic  phase), followed by powerful muscular je rks  

(the c lo n ic  phase; Jeavons and A sp ina ll,  1985). When a large part o f 

the cortex or r e t i c u la r  a c t iva t in g  system is  involved the su f fe re r  

loses consciousness, but when the discharge is  confined to sensory 

areas o f  the cortex the su ffe re r  experiences h a llu c in a t io n s  invo lv ing  

s ig h t ,  hearing, smell, tas te  or a lte red  sense o f t ime (Jeavons and 

A s p in a l l ,  1985).

C la s s i f ic a t io n  o f e p i le p t ic  seizures

The c la s s i f i c a t io n  o f e p i le p t ic  seizures has been changed three times 

in  the la s t  ten years, leading to a great deal o f confusion and 

misunderstanding. The In te rna tiona l League Against Epilepsy (ILAE) 

have c la s s i f ie d  e p i le p t ic  seizures in 1981, 1985 and 1989, I shall 

describe the 1981 c la s s i f ic a t io n  as th is  is  the most commonly used 

and understood, being used to the present day in  most published 

materia l despite  the two subsequent re c la s s i f ic a t io n s .  The 1985
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c la s s i f ic a t io n  (ILAE, 1985) used a system whereby the seizures were 

categorised by the syndrome, the syndrome being defined as a c lu s te r  

o f  signs or symptoms occurring at the same time. Thus th is  new 

c la s s i f ic a t io n  described such seizures as 'benign childhood epilepsy 

w ith  centro-temporal sp ike s '.  The 1989 c la s s i f ic a t io n  (ILAE, 1989) 

used a system whereby the seizures were categorised on the grounds o f 

t h e i r  cause: id io p a th ic  (primary) ep ileps ies  o f  genetic o r ig in ;

symptomatic (secondary) ep ileps ies  o f known o r ig in  (e .g . d isorder o f 

the CNS); and cryptogenic ep ileps ies  presumed to  be symptomatic but 

o f unknown o r ig in .

ILAE 1981 C la s s i f ic a t io n  o f E p i le p t ic  Seizures (ILAE, 1981)

This system o f c la s s i f ic a t io n  separates e p i le p t ic  seizures in to  two 

types, p a r t ia l  and generalised. The c l in ic a l  and EEG data ind ica te  

th a t  in  p a r t ia l  seizures only one hemisphere o f the brain is  

a f fe c te d , whereas in  generalised seizures both hemispheres o f  the 

bra in  are a ffec ted .

I .  P a r t ia l  ( lo c a l  /  foca l)  seizures

P a rt ia l seizures may be c la s s i f ie d  in to  one o f the three fo l low ing  

groups.

1) Simple p a r t ia l  seizure. Consciousness is  not impaired but there 

may be motor signs and somato-sensory or special sensory symptoms 

(simple h a l lu c in a t io n s , t in g l in g ,  l i g h t  flashes, buzzing in  ears, 

e tc ) .  Psychic symptoms ind ica t ing  disturbances o f  h igher cerebral 

func tion  may occur. These include fee lings o f  deja vu, d is to r t io n  o f 

time, and fe e l in g s  o f  fear and anger. Autonomic symptoms inc lude
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p a l lo r ,  sweating, f lu s h in g ,  p i lo -e re c t io n  and p u p i l la ry  d i la t io n .

2) Complex p a r t ia l  seizure. Consciousness is  impaired but the seizure 

may s t a r t  w ith  simple p a r t ia l  se izure . There are two types: (a)

simple p a r t ia l  seizure onset followed by loss of consciousness; (b) 

impairment o f consciousness at beginning o f  se izure .

3) P a rt ia l seizures evolving to generalised seizures. These seizures

can be subdivided in to  three types: (a) simple p a r t ia l  seizure

evolving to generalised seizure; (b) complex p a r t ia l  seizure evolving

to  generalised se izu re ; (c) simple p a r t ia l  se izure evolving to  

complex p a r t ia l  seizure evolving to generalised seizure.

I I .  Generalised seizures

The f i r s t  c l in ic a l  changes ind ica te  involvement o f both cerebral 

hemispheres. Impairment o f  consciousness may be the i n i t i a l  

m an ifes ta t ion . Both motor and EEG manifestations are b i la te ra l  

in d ic a t in g  the involvement o f  both cerebral hemispheres. Generalised 

seizures can be c la s s i f ie d  in to  the fo llow ing  subclasses.

1) Absence seizures. Typical symptoms inc lude the sudden cessation o f 

ongoing a c t i v i t y ;  e.g. walking, ta lk in g .  This is  accompanied by a 

blank stare and i n a b i l i t y  to respond to external s t im u l i .

2) Ton ic-c lon ic  seizures. This is  the most common type o f  generalised 

seizure and the one th a t  most laymen associate w ith  ep ilepsy. The 

su f fe re r  loses consciousness accompanied by a sudden contraction  o f 

muscles ( to n ic  phase). The su ffe re r  f a l l s  to the ground and undergoes 

rhythmic je rks  of the muscles (c lo n ic  phase).

3) Myoclonic seizures. Symptoms are s ing le  or m u lt ip le ,  b r ie f ,  shock­

l i k e  contrac tions which are loca l ised  to the face or trunk. The je rks  

may be ra p id ly  re p e t i t iv e  or r e la t iv e ly  is o la te d . Attacks occur
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predominantly around the hour o f going to  sleep or waking.

4) Clonic seizures. This is  a seizure lack ing  a ton ic  component and

is  characterised by r e p e t i t iv e  c lon ic  je rk s .

5) Tonic seizures. Symptoms include v io le n t  muscular contrac tion

which i s  e i th e r  loca lised  or a ffe c ts  a la rge  mass o f muscle.

6} Atonic seizures. Symptoms include a sudden dimunition o f muscle

tone which may lead to slackening o f the jaw and head droop. The loss 

o f  consciousness is  very b r ie f .

I I I .  U nc lass if ied  E p i le p t ic  Seizures

This category includes a l l  the seizures which cannot be c la s s i f ie d  

because o f  inadequate or incomplete data, and some th a t defy 

c la s s i f ic a t io n  in  the above categories. These include some neonatal 

se izures.

1.3 The c e l lu la r  basis o f epilepsy 

Modern techniques have enabled workers to inve s t iga te  in depth the 

c e l lu la r  mechanisms underlying the generation o f seizure a c t i v i t y .  

The e a r l ie s t  o f  these techniques to be employed was in t ra -  and 

e x t ra c e l lu la r  recording. In order fo r  the c e l lu la r  basis of epilepsy 

to  be s tud ied , i t  was f i r s t  necessary to f in d  a su ita b le  model which 

was both simple to use, and which resanbled the condition  seen in  

humans. I t  was found th a t  the most su ita b le  model involved 

p e n ic i l l in - in d u c e d  seizures in  mammalian (usua lly  ra ts  and mice) 

neocortex and hippocampus (Prince , 1978). A f te r  the f i r s t  years o f  

work several hypotheses concerning the mechanism of seizure 

generation were proposed (Prince, 1968; D ich te r, 1969; Ayala, 1970;
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Schwartzkroin, 1975) but these were so varied th a t the un ify ing

theory so eagerly sought seemed remote. Given the evidence of recent 

work which has implicated a great many fa c to rs  in the generation o f 

seizures i t  has become apparent th a t i t  is  very un like ly  th a t  a 

s ing !e  mechanism is responsible fo r  the generation o f seizures.

The f i r s t  major question to be addressed was what caused the seizure 

discharge by the neurones. Was i t  an in t r in s ic  property possessed by 

neurones, which suddenly and inexp l icab ly  resu lted in  neurones 

generating seizure discharges, or was i t  a f a u l t  in  the neuronal 

network? In the p e n ic i l l i n  model i t  soon became c lea r th a t  the 

m a jo r i ty  o f  neurones involved in  seizure discharge were normal 

(D ichter, 1989). This led to the conclusion th a t  there must be two 

mechanisms involved in  the generation o f  a se izure ; f i r s t l y ,  the 

i n i t i a l  generation o f seizure a c t i v i t y  must only happen in  a 

r e la t iv e ly  small number o f  neurones, and secondly normal neurones 

must become a ffec ted  by the seizure generating neurones.

For seizure-generating neurones to  become excited they must become 

depolarised (Matsumoto and Ajmore-Marsan, 1964). This depo laris ing 

s h i f t  leads to bursts o f action p o te n t ia ls  and th is  is  followed by a 

period of hyperpol a r is a t io n  (Matsumoto and Ajmore-Marsan, 1964). 

There are varying theories  about how the depo la r isa tion  occurs but 

one o f the more feas ib le  proposes th a t  enhancement of exc ita to ry  post 

synaptic p o te n t ia ls  (EPSP's) by vo ltage dependent cation currents is  

a major cause. There are f iv e  main ways in  which th is  can occur 

(D ich te r ,  1989):
2+1} by removal o f voltage dependent Mg block o f N-methyl-D-
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aspartate (NMDA) receptors {Mayer and Westbrook, 1985);

2) by a lte ra t io n s  in the space constants o f  dendrites of postsynapyic 

neurones;

3) by the ranoval o f normal in h ib i to r y  mechanisms, thus re su lt in g  in  

increased a c t i v i t y ;

4) by the p o ten t ia t ion  o f  o ther neurotransm itter e f fe c ts  {S tan fie ld  

e t  a l , 1985);

5) by an increase in the frequency o f EPSP's.

In add it ion  to these fa c to rs  there are two other types o f  ca tion  

cu rren t which can cause depo la r isa tion  o f  a c e l l .  The f i r s t  are
4" ? +

slowly a c t iv a t in g  Na and Ca currents (Connors, 1982) and the
2+second a la rge  tra n s ie n t Ca cu rren t (Wong and Prince, 1978). 

Which o f the f i v e  mechanisms are involved depends on the p roperties  

o f the cel 1.

A period o f  hyperpo la r isa tion  occurs a f te r  the i n i t i a l  depo lar isa tion  

causing an in h ib i t io n  o f  the seizure a c t i v i t y  and l im i t in g  the 

dura tion  and frequency o f the seizure discharge {Schwartzkroin and 

Prince, 1977). Under normal conditions there are a t  le a s t  seven 

separate mechanisms by which th is  hyperpo lar isa tion  can occur:

1) in h ib i to r y  post synaptic p o te n t ia ls  (I PSP's) caused by the opening

o f K+ channels (A lge r , 1984);
2+

2) the opening o f Ca dependent Cl channels ^ c i(C a )^ *  Mayer* 

1985);
?+ + rt n n n  i nrt a * P  P a  /1a a a  1/  a  a  n  n  a 1  e** / T

’K(Ca)
p+ +

3) the opening o f Ca dependent K channels Meech,

1972);

4) the opening o f  vo ltage dependent K channels (H i l le ,  1984);
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5) the opening o f GABA mediated Cl" channels (DeLorenzo, 1988};

6} a c t iva t io n  o f the e lectrogen ic  sodium pump (Thomas, 1972);

7) the opening o f  second messenger activa ted C l" channels 

(Higashida and Brown, 1976).

As w ith  the fa c to rs  inducing depo la r isa t ion , the se lection  o f  the 

above methods o f hyperpo lar isa tion  depends on the properties o f  the 

c e l l  .

The d esc r ip t ion  o f the generation o f  seizure discharges so fa r  has 

concentrated on the mechanisms occurring w ith in  s ing le  c e l ls .  A v i ta l  

component in  the generation o f seizure discharges is  how the 

depo la r isa tion  induced in  one ce ll  can spread to  a large number o f  

normal c e l ls .  Not on ly does the depo la r isa tion  have to spread to 

these c e l l s ;  i t  must also spread synchronously. The work o f  Dichter 

and Spencer (1969) ind ica tes  th a t  i t  is  the ac t iva t io n  of recurren t 

synaptic e x c ita t io n  which causes t h i s .  D ichter and Spencer (1969) 

demonstrated the existence o f recurrent c o l la te ra ls  in  r a t  

hippocampus and neocortex. Ayala e t  al (1973) have shown th a t  these 

c o l la te ra ls  act as a pos it ive  feedback mechanism and may act to 

induce the EPSP's which cause the i n i t i a l  depo la r isa t ion . The 

depo la r isa tion  o f  a large population o f c e l ls  is  v i ta l  in  the 

generation o f  se izures. A major fa c to r  in  the development o f  a f u l l  

seizure is  the replacement o f  hyperpo larisa tion  by depo la r isa tion . 

This may occur in  a v a r ie ty  o f  ways.

1) Reduction o f  g lyc ine  and GABA induced synaptic in h ib i t io n .  Glycine 

and GABA induced IPSP's are reduced by low frequency s t im u la t io n , 

exactly the behaviour seen during the depo la r isa tion  p r io r  to seizure
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a c t i v i t y  (Barnes and Die l i te r ,  1984).
7 +2) Neurotransmitters may act to decrease the in tra ce l 1 u lar Ca

concentration re s u lt in g  in  a decreased (Cole and Nicol 1 ,

1984).

3) The increase in  the extracel 1 ul ar K seen during the 

d e po la r isa t ion  would lead to changes in which would tend to

oppose any outward cu rren t (K u f f le r ,  Nicho 11 s and M artin , 1984).

4) The depo la r isa t ion  induced by these above fac to rs  would release
2 +the vo ltage dependent Mg block on N-methyl-D-aspartate receptors 

(Mayer and Westbrook, 1985) and would lead to augmentation o f the 

d epo la r isa t io n .

C learly  the c e l lu la r  mechanisms underlying seizure a c t iv i t y  are 

d ive rse . One fa c to r  which is  apparent is  th a t neuronal e x c i t a b i l i t y  

must play a very important ro le  in  e p ile p t i fo rm  behaviour. In the 

fo l low ing  section the ro le  o f  second messengers in  the contro l o f  

nervous e x c i t a b i l i t y  i s  discussed.

1.4 Control o f nervous e x c i t a b i l i t y  

The ro le  o f second messengers.

The major way in  which neuronal e x c i t a b i l i t y  is  co n tro l led  is  by the 

action o f neuro transm itte rs . Neurotransmitters are released from the 

presynaptic terminal o f neurones and cross a synaptic gap to bind to 

post synaptic receptors. The binding o f the neurotransm itter to the 

receptor induces a sequence o f  events which a ffe c ts  the c e l l ' s  

a c t i v i t y  by a lte r in g  membrane conductance to s p e c if ic  ions. There are 

two main ways in  which th is  can be achieved: 1) the receptor can be 

d i r e c t ly  coupled to an ion channel so th a t  neurotransm itter binding
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causes the ion channel to open; 2) the receptor is  coupled to  an

enzyme system such th a t  when the neurotransm itter b inds, the enzyme

converts a substrate to a product, known as a second messenger. With
2+the exception o f Ca , a second messenger i s  a substance which is  

produced in trace l 1 ul a r ly  by the action o f  an agonist a t  an external 

receptor s i te .  The receptor s i te  i s  coupled to an enzyme which acts 

to convert a substrate in to  the second messenger. The second 

messenger acts in t ra c e l !  ul a r ly  to regulate s p e c i f ic  b io lo g ica l and 

physio log ica l processes, such as ion channel a c t iv a t io n .

A number o f second messengers have been id e n t i f ie d ,  the best

described being cAMP (Berridge, 1985), cGMP (Waldman and Murad,

1987), in o s i to l  1,4,5- trisphosphate (Berridge, 1984) and Ca^+

(Tomlinson, 1985). The response o f  a neurone to an agonist depends on

which second messenger system is  activated. I w i l l  describe the cAMP 
2+and Ca second messenger systems which are the two most re levan t 

to th is  th e s is .

C yc lic  AftP

Production o f  cAMP is  co n tro lle d  by the membrane bound enzyme 

adenylate cyclase. Receptor s i te s  are associated w ith adenylate 

cyclase and binding o f  neurotransm itters can e i th e r  increase or 

decrease cAMP production depending on which receptor complex the 

agonist binds (Enna and Karbon, 1987). Receptors which s t im ula te  

adenylate cyclase a c t i v i t y  inc lude adrenergic (Bloom e t  a l , 1982 ), 

dopamine D1 (Kebabian, 1979), serotonin (Cedar and Schwartz, 1972) 

and adenosine A2 (Daly e t  a l , 1981). Receptors which i n h ib i t

adenylate cyclase a c t i v i t y  include muscarinic ch o l in e rg ic  (Huginar,
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1987 ) and adenosine Al {Daly e t  a l , 1981). Adenylate cyclase is  

associated with one o f two guanine nucleotide binding prote ins (G 

p ro te in s ) .  The G p ro te ins  cannot be a c t ive  u n t i l  GTP binds to  them 

{Berridge, 1985). The binding of an agonist to a receptor s i te  

induces a conformational change in the G p ro te in ,  making i t  

susceptib le  to GTP (Berridge, 1985). This causes the G prote in to 

bind to adenylate cyclase to e ith e r  s tim ula te  or i n h ib i t  depending on 

the G pro te in  invo lved. The G protein-GTP complex is  broken down by 

the hyd ro lys is  o f  GTP to GDP which is  catalysed by the enzyme GTPase 

{Berridge, 1985). Cyclic AMP is  produced by the dephosphorylation of 

ATP to  cAMP by the action o f adenylate cyclase. C yc lic  AMP is  broken 

down to AMP by the action of the enzyme phosphodiesterase (Strada et 

a l , 1984). C yc lic  AMP produces i t s  e f fe c ts  by binding to  a cAMP- 

dependent prote in  kinase ( Walter e t a l , 1977). The prote in kinase is  

composed o f 2 subun its , a receptor s i te  and a c a ta ly t ic  subunit. When 

cAMP binds to the receptor i t  causes the regu la to ry  subun it {which 

conta ins the receptor s i te )  and the c a ta ly t ic  subunit to  separate. 

The c a ta ly t i c  subunit, s tab le  when attached to the regula tory  s i te ,  

is  now a c t iv e  and acts to  phosphoryl ate membrane p ro te ins  which 

produce a v a r ie ty  o f ac tions; e.g. a c t iva t ion  o f ion channels, 

neuro tra n s m it te r  release and synthesis (Krebs and Beavo, 1979).

The cAMP signal is  terminated by dephosphorylation o f the proteins 

phosphorylated by the cAMP dependent p ro te in  kinase (Cohen, 1982). 

The enzyme phosphoprotein phosphatase stops the cAMP induced 

phosphorylation {Cohen, 1982). This enzyme is  i t s e l f  regulated by 

cAMP. When cAMP dependent kinase is  activated i t  phosphorylates a 

phosphatase in h ib i t o r y  p ro te in  which in h ib i t s  phosphoprotein
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phosphatase which otherwise would immediately dephosphoryl ate and

reverse the phosporyl a t ion  reactions stimulated by cAMP (Cohen, 

1982 ). When cAMP leve ls  decrease the phosphoprotein phosphatase 

becomes active  and terminates the action o f cAMP on ta rg e t  proteins 

(Cohen, 1982 ).

Fig 1.1 summarises the processes described in  th is  section.

2+Ca—

Calcium ions play a major ro le  in  modulating normal a c t iv i t y  and

func tion  in the nervous system (Rasmussen, 1986). Among th e i r  most

important ro les  i s  the modulation of synaptic a c t i v i t y  (Katz and

M i le d i ,  1967 ) ,  stimulus secretion coupling (Katz and M ile d i,  1970),

and a ro le  as a second messenger. Whereas cAMP is  generated w ith in

2+the c e l l  by the action o f  adenylate cyclase, Ca can come from
2+in t r a -  o r e x t ra c e l lu la r  sources. E x tra ce l lu la r  Ca can enter the

2+c e l l  v ia  vo ltage se n s it ive  channels, whereas in tra ce l 1 ul ar Ca can
2+be released from stores. The Ca released is  thought to come

mainly from the endoplasmic re ticu lum  in  response to agonist

s t im ula ted membrane phosphoinositide hyd ro lys is  (Berridge, 1984). In

th is  process two ac t ive  m etabolites, in o s i to l  1 ,4 ,5 -  trisphosphate

and di acyl g lycero l are produced frcm the hydro lys is  of

phosphatidyl in o s i to l - 4 , 5-bisphosphate (Berridge, 1984). In o s ito l

1 ,4 ,5- trisphosphate acts on the endoplasmic re ticu lum  to release 
2+Ca which can a c t as a second messenger in  a v a r ie ty  o f  ways.

Calcium ions exert some o f th e i r  e f fe c ts  v ia  the calcium binding

p ro te in ,  calmodulin (Cheung, 1980; Klee e t  a l , 1980). The binding o f



28



Pa
th

wa
y 

of 
cA

MP
 

fo
rm

at
io

n 
an

d 
de

gr
ad

at
io

n.



29

co

CL UJ

O

o
ocr

Pr
ot

ein
 

K
in

as
e



30

2+Ca to  calmodulin forms the calcium/calmodulin complex which is  

capable o f a c t iva t ing  in trace l 1 u la r enzymes. The calcium/calmodulin 

complex binds to  pro te in  kinases leading to conformational changes in 

in t ra ce l 1 u la r proteins and a lte red  c e l lu la r  func t ion  (Cheung, 1980). 

A t le a s t  four calcium/calmodulin dependent p ro te in  kinases have been 

id e n t i f ie d  in  the human b ra in  (Nairn e t  a l , 1985).

Calcium ions can also ac t as a second messenger w ithout binding to

calmodulin. Protein kinase C is  found in  many t issues but is  found in

p a r t ic u la r ly  high concentrations in  the bra in  (Walaas e t  a l , 1983
2+a ,b ).  Protein kinase C is  activated a t  normal in t ra ce l 1 ul ar Ca

concentrations (about 100 nM) by d iacyl g lycero l (N ishizuka, 1984). At
2+higher in t ra ce l 1 ul ar Ca concentrations (1 uM) prote in  kinase C is  

ac tiva ted  by phospholipid (Takai e t  a l , 1979). The p ro te in  kinase C 

then acts on sp e c if ic  substrate proteins to induce conformational

changes which can r e s u l t  in ,  among other th in g s , ion channel 

a c t iva t io n .

Calcium ions are also capable o f  regu la ting  a t lea s t three ion

channels d i re c t ly .

1) Calcium activa ted potassium channel ^K(Ca)^* Increased
2+i n t r a c e l lu la r  Ca causes a c t iva t io n  o f an outward potassium 

c u rre n t which causes a hyperpol a r isa t io n  o f the c e l l  membrane (Meech, 

1978).

2) Cation channel ( I  Calcium a c t iva te s  a channel whichcan om j
is  se lec t ive  fo r  both Na and K ions. The re s u lt in g  curren t is

inward and leads to depo la risa tion  o f  the c e l l  membrane (Kramer and 

Zucker, 1985).
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? +
3) Calcium channel ^Ca(Ca)^* Increased in t r a c e l lu la r  Ca

inac t iva tes  a ca lc i im  channel {Ewald and Levitan, 1987).

A c t iva t io n  o f re su lts  in  a hyperpol a r isa t io n  o f the ce l l

menbrane. A c t iva t ion  of I cat- j0n(Ca) resu^ts  in an i nwarc* curren t a t  

res ting  po ten tia l causing depo la r isa tion  o f the c e l l  membrane. 

In a c t iva t ion  of along with the hyperpol a ri sation caused by

*K(Ca) calcium channel (Ewald and Levitan, 1987).

The ro le  o f second messengers in  epilepsy

A 1 ink between ep il  epsy and second messengers has been suspected fo r  

many years. I t  has been demonstrated th a t  there is  an increase in 

cAMP leve ls  in  e p i le p t ic  mammalian bra ins during seizures 

(Fe rrende ll i  and Kinscherf, 1977b). The increase in  cAMP in p a r t ia l  

seizures in  ra ts  occurs on ly in  the area o f  the brain where the 

discharge o r ig in a te s  (Raabe e t a l , 1978). However the increase in 

cAMP occurs only a f te r  seizure onset, in d ica t in g  th a t the cAMP 

accumulation may be a r e s u l t  o f  the seizure ra the r than the cause 

(F e rre n d e l l i  and K inscherf, 1977b). I t  has been suggested th a t  the 

cAMP increase is  caused by noradrenaline via a c t iva t ion  o f  adenylate 

cyclase ( Folbergrova, 1984; Gross and F e rre n d e l l i ,  1982). H a tto r i e t  

al (1986) showed th a t  induction  o f seizure a c t i v i t y  in r a t  cortex by 

the e x c ita to ry  amino acid glutamate caused increased cAMP le v e ls ,  but 

whether th is  occurred before or a f te r  the onset o f seizure a c t i v i t y  

was no t s ta ted . Working on ra t  cerebral co rtex , Onozuka e t al (1989) 

have shown th a t  in je c t io n  o f the convulsant agent, pentylenetetrazol , 

induced a th re e fo ld  increase in the in tra ce l 1 ul ar concentration o f  

cAMP. Q u a l i ta t iv e ly  s im ila r  re su lts  were obtained by Ferrende lli and
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Kinscherf (1977b) who demonstrated th a t  pentylenetetrazol increased 

the concentration o f cAMP in  a range o f bra in  areas in  ra t .  In the 

Japanese land snail Euhadra peliomphala, penty lenetetrazol induced 

convulsant a c t iv i t y  accompanied by an increase in  in t ra ce l 1 u lar cAMP 

leve ls  (Onozuka e t  a l , 1983). This increase in  cAMP occurred p r io r  to 

seizure onset and was thus thought to play a ro le  in  the generation 

o f  seizure a c t i v i t y .  Thus i t  appears th a t agents which induce 

convulsant a c t i v i t y  cause increases in  the in trace l 1 ul ar cAMP 

concentration in  both mammalian and moll use an preparations, but 

whether th is  increase is  the cause o f the a c t i v i t y  or the re s u l t  o f 

i t  is  not ye t ce r ta in .

2+Because o f Ca ' s ro le  as a second messenger, i t  can be assumed
2+th a t  a l te ra t io n s  in  normal function  o f  Ca -regulated processes 

could underlie some o f  the changes in  neuronal e x c i t a b i l i t y  in

seizure d isorders. Accumulating evidence suggests th a t dysfunction o f

2+ 2+Ca -regu la ted  enzymatic processes or Ca ion channels may
r

underlie  seizure a c t iv ty  (DeLorenzo, 1986).

1.5 Experimental models used in  the study o f e p ile p t ifo rm  a c t iv i t y  

C l in ic a l  studies

Patients su ffe r in g  from epilepsy take part in  a c l in ic a l  t r i a l  by 

consent. The t r i a l  monitors a drug 's  a b i l i t y  to reduce the number o f 

seizures experienced by the pa t ien t.  The number o f seizures before

and a f te r  a spec if ied  drug regime is  recorded to gauge the 

an ticonvu lsant properties o f the te s t  drug (Mattson e t a l , 1985; 

Rodin, 1987; Wilder and Rangel, 1987). The major disadvantage with
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th is  kind o f  study is  the lack o f  w i l l i n g  s u ita b le  volunteers 

su ffe r in g  from the appropriate e p i le p t ic  co nd it io n . T r ia ls  are 

expensive, labour in tens ive  and sub ject to  human e r ro r ,  such as the 

p a t ien t fo rg e tt in g  to take the drug, tak ing the wrong dose, taking i t  

a t the wrong time, e tc .  These stud ies are non-invasive and the only 

in fo rm ation  they provide is  whether a drug is  capable of reducing 

seizure frequency. Such t r i a l s  do not g ive any in formation o f  about 

the te s t  d rug 's  mode of action.

Whole animal studies

These models involve the induction o f e p i le p t i fo rm  a c t iv i t y  in  an 

animal (u su a l ly  ra ts  and mice) by a v a r ie ty  o f  means l is te d  below. A 

te s t  drug is  monitored to gauge i t s  an ticonvu lsan t e f fe c t  on the

induced seizures.

X) K ind ling

This method invo lves the repeated adm in is tra t ion  o f  i n i t i a l l y

subconvulsive e le c t r ic a l  s t im u l i  v ia  implanted b ip o la r  electrodes in 

a designated area o f the b ra in . The i n i t i a l  stimulus often e l i c i t s  a 

p a r t ia l  seizure and subsequent s tim u la t ions  induce the development of 

generalised seizures. When th is  stage is  reached the animal i s  said 

to be k ind led , and can be l e f t  fo r  up to a year, and w i l l  s t i l l

respond with a generalised seizure to one o f  the f i r s t  two e le c t r ic a l

s t im u l i  administered. The amygdala region is  o ften chosen fo r

s t im u la t ion  because o f i t s  s e n s i t iv i t y  to e le c t r ic a l  s tim u lus, but 

o ther regions such as the globus p a l l id u s ,  caudate-putamen and

hippocampus are also used. This procedure has been used by Barraco e t

al (1984) and Minabe e t  al (1987).
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2) E le c t r ic  shock

Wong and Rahwan (1989) have used th is  method to induce seizures in  

mice. A cu rren t o f 50 mA delivered fo r  0 .2  seconds via corneal 

electrodes induces repeatable seizures.

3) Audiogenic seizures

Some s tra in s  o f  mice are susceptib le to sound induced seizures; e.g . 

the Swiss a lb ino  R8 s tra in  (Maitre e t  a l , 1974) and the DBA/2

(DeSarro e t a l , 1988). Sounds o f 100 dB a t  a frequency o f 7500 Hz 

induce seizures in  these mice.

4) Chemically induced seizures

In je c t io n s  o f  proconvul sant compounds such as pentylenetetrazol 

(Speckmann and Caspers, 1978; Oyama, 1987; Diehl e t a l , 1984), 

p e n ic i l l i n  (Schwartzkroin and Prince, 1977), b icu cu l l in e  (DeLorenzo,

1988) and p ic ro to x in  (Alger and N ic o l l , 1980) induce seizures in 

ra ts ,  mice, guinea pigs and ra b b its .  The actions o f  these drugs have 

been f a i r l y  well documented and show th a t  they do not share the same 

mode o f  a c t io n .

Whole animal stud ies usually  set out to inves t iga te  a pu ta t ive  

a n t iconvu lsan t 's  a b i l i t y  to  i n h ib i t  experimentally-induced seizures. 

These studies only ind ica te  whether a drug is  capable of in h ib i t in g  

se izures; they do not ind ica te  a sp e c if ic  mode o f  ac t ion .

In  v i t r o  models

Two areas o f the mammalian CNS have been used fo r  in  v i t r o  studies o f  

e p i le p t i fo rm  a c t i v i t y ;  the hippocampus and the neocortex.

Hippocampal s l ic e s . Transverse sections (400-500 îm th ic k )  o f
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hippocampus are taken and mounted in  a superfusion bath. Tetanic 

cu rren t pulses de livered v ia  s t im u la t ing  electrodes in  the stratum 

pyramidal e o f  the CA3 region induce seizure discharge from pyramidal 

neurones (Higashima, 1988).

Neocortica l s l ic e s . S lices o f neocortex 500 |jM t h ic k ,  containing the

cerebral cortex and corpus callosum, are mounted in  a superfusion

chamber. Seizures can be induced in  one o f  two ways. The f i r s t  is  to 
2+omit Mg from the sa line  which re lieves  the voltage dependent 

block o f  M4DA receptors and resu lts  in  seizure a c t i v i t y  (Jones, 

1989). The second uses tungsten s t im u la t ing  electrodes in  the vtfiite 

matter near the c ingu la te  reg ion, where both evoked and spontaneous 

po ten t ia ls  can be monitored v ia  recording electrodes (Aram e t a l ,

1989).

In both these s l ic e  preparations the te s t  drug is  applied to the 

superfusion bath and i t s  a b i l i t y  to i n h ib i t  seizure discharge can be 

assessed.

The molluscan CNS

The molluscan CNS has been chosen as a model by many groups o f

workers fo r  the fo l low ing  reasons. The context o f  s im p l ic i t y  must be

taken in to  account when comparing the CNS's o f  mammals and molluscs.
14The human CNS contains 10 neurones (Rozsa, 1984) whereas the CNS 

of the freshwater pond sna il Lymnaea s ta g n a l is , fo r  example, contains 

between 10,000 (Rozsa, 1984) and 15,000 (Bogerd e t  a l , 1991). Thus 

the CNS o f snails  i s  many times more 's im ple ' than the mammalian CNS, 

and is  there fo re  advantageous fo r  experimental purposes. In the CNS 

o f many molluscs (e .g . H e l ix  pomatia, Lymnaea s ta g n a l is , Euhadra 

peliomphala, Ap lys ia  c a l i fo rn ic a  and Pleurobranchaea c a l i fo rn ic a )
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ind iv idua l neurones are id e n t i f ia b le .  Each c e l l  type always occurs in 

the same posit ion  in  the CNS and thus id e n t i f ic a t io n  is  easy. Since 

the neurones do not a l l  have the same p rope rt ies  i t  is  no surprise  

th a t  the response o f  d i f fe re n t  c e l ls  to drugs varies . Sugaya e t al 

(1973) have id e n t i f ie d  three d i f fe r e n t  c e l lu la r  responses to 

penty lenete trazo l (PTZ) in  Euhadra peliomphala. This indicates th a t  a 

c e l l ' s  response to  a compound depends on i t s  endogenous p ropert ies ; 

e .g . receptor type and density  on the c e l l ' s  surface, in t r a c e l lu la r  

second messenger systems, and type and density  o f  ion channels 

possessed by the c e l l .  Thus molluscan neurones cannot be treated as a 

homologous population but must be treated as ind iv idua l e n t i t ie s  w ith 

t h e i r  own unique properties.

1.6 Penty lenetetrazol as a convulsant agent 

The compound pentyl enetetrazol (PTZ), also known as pentytetrazol e , 

lep tozo l and m etrazo l, i s  membrane permeable and has the a b i l i t y  to  

induce convulsant a c t i v i t y  in  both mammalian and molluscan 

preparati ons. In je c t io n  o f  PTZ in to  an animal can re s u l t  in  

generalised to n ic /c lo n ic  seizures i f  the co rre c t concentration is  

used (50 mg/kg in  mice, J Wilden, personal communication). Another 

way in which PTZ can induce seizures is  by k in d l in g .  This is  s im ila r  

to  the e le c t r ic a l  k ind l ing  described in  Section 1.5, but instead o f  

an e le c t r ic a l  s tim u lus, subconvulsive doses o f PTZ are used. Diehl jet 

a l (1984) used male Wistar ra ts  which were in jec ted  with 30 mg/kg 

PTZ. Successive d a i ly  in je c t io n s  of PTZ induced seizures such th a t ,  

a f te r  20 in je c t io n s ,  doses in e f fe c t iv e  a f te r  the f i r s t  in je c t io n  

induced a generalised ton ic  seizure. Thus PTZ can induce seizures in 

whole animals, but to  gain a be tte r  understanding o f  PTZ's e f fe c ts



id e n t i f ie d  regions o f  the b ra in ,  or iso la te d  neurones must be used. 

In cu ltu red  dorsal roo t ganglion c e l ls  Speckmann and Casper (1978) 

demonstrated a depo la r isa tion  o f  the c e l l ' s  res t ing  membrane 

po ten tia l in  response to 5-20 mM PTZ, confirm ing PTZ's a b i l i t y  to 

exc ite  these c e l l s .  Bingmann and Speckmann (1986 ) have demonstrated, 

using guinea pig hippocampal CA3 neurones, th a t  PTZ (2-10 mM) induced 

an i n i t i a l  hyperpo lar isa tion  fo llowed by a p e rs is te n t  paroxysmal

depo la r is ing  s h i f t  (PDS). This PDS was dependent upon e x tra c e l lu la r
2+ 2+Ca , in d ic a t in g  th a t  in f lu x  o f  Ca may be in t im a te ly  linked

with PTZ's e f fe c ts .  However a d i f f e r e n t  mode o f action fo r  PTZ has

been proposed by Oyama (1987) who has shown th a t  PTZ (30 mg/kg i . v . )

reduced the amplitude and duration o f the 1^ cu rren t in iso la ted

ra b b it  nodose ganglion c e l l s .  The 1^ cu rren t is  involved with the

contro l o f  neuronal e x c i t a b i l i t y  and f i r i n g  patterns (Connor and

Stevens, 1971); a reduction in  th is  cu rren t leads to increased

neuronal e x c i t a b i l i t y .  Another possible mode o f action fo r  PTZ

invo lves cAMP. Onozuka e t  al (1989) demonstrated th a t in trape r itonea l

in je c t io n  of PTZ (100 mg/kg) induced a 3 fo ld  increase in cAMP

concentrations in  ra t  cerebral co r tex . This in je c t io n  o f  PTZ also
2+caused the release o f Ca from the endoplasmic re ticu lum . There is  

no dispute about PTZ's a b i l i t y  to  induce e p ile p t i fo rm  a c t iv i t y  in  a 

v a r ie ty  o| mammalian preparations but a common mode o f action has not 

y e t  been e luc ida ted .

The e f fe c ts  o f PTZ on molluscan neurones has also been invest iga ted . 

As p rev ious ly  stated the advantage o f the molluscan CNS is  th a t  i t  

contains id e n t i f ia b le  neurones so th a t  the same c e l l  can be used, 

compared to mammalian preparations where work is  carr ied  out on
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regions o f  the brain or iso la ted  c e l ls  from a p a r t ic u la r  area where 

the c e l l s  may not a l l  be the same.

In 1973, Sugaya e t  al f i r s t  showed th a t neurones o f  the Japanese land

snail Euhadra peliomphala show heterogeneous responses to PTZ (10-100

mM). Three c e l l  types were characterised; D, H and I c e l ls .  D c e l ls

were depolarised by acetyl choline and showed a large depo la risa tion

and bursting a c t i v i t y  in  response to  FTZ. H c e l ls  were hyperpol arised

by acetyl choline and showed a moderate degree of exc ita t ion  in

response to PTZ. I c e l ls  were in se n s i t ive  to  acetyl choline and were

p ra c t ic a l ly  in se n s i t ive  to PTZ. In 1978, Sugaya and Onozuka showed

th a t  the calcium ions w ith in  D neurones became concentrated near the

ce l l  membrane fo llow ing  a p p l ica t io n  of PTZ. Later, Sugaya e t al
2+(1978) demonstrated th a t  Ca was released from in t r a c e l lu la r

stores and migrated to the inner surface o f the c e l l  membrane, where

binding induced conformational changes and activa ted ion channels. In

1983, Onozuka e t al showed th a t  cAMP was involved in PTZ's e f fe c ts .

By assaying fo r  cAMP, adenylate cyclase and pro te in  kinase they

concluded th a t  PTZ acted by b inding to adenylate cyclase, re s u lt in g

in  an increase in  cAMP le v e ls .  This cAMP was thought to  cause the 
2+release o f Ca from in tra ce l 1 ul ar lysosome-1 i ke granules (Sugaya

2 +and Onozuka, 1978). The Ca could then ac t a t  the in te rna l side o f

the c e l l  membrane to phosphorylate manbrane proteins and activa te  ion

channels leading to e p ile p t i fo rm  a c t i v i t y .  By 1986, Onozuka e t  al
2+had id e n t i f ie d  th a t  Ca /calmodulin-dependent protein kinase was 

activa ted  in  the presence o f  PTZ, and th a t  i t  phosphoryl ated two 

proteins o f known molecular weight. Sugaya e t al (1987) showed th a t  

PTZ-sensitive neurones responded to PTZ in  two consecutive ways.



F i r s t l y  the neurones exh ib ited bursting a c t i v i t y  as prev ious ly

described. This was followed by a previously unreported

hyperpol a r isa t io n  and cessation o f  bursting a c t i v i t y .  This was
2+thought to be due to the released Ca increasing in  concentration

2+and a c t iv a t in g  Ca -dependent potassium channels (Sugaya e t  a l , 

1988).

Using Ap lys ia  neurones, Hartung and Hermann (1987) showed th a t  PTZ
+ 2+blocked voltage-dependent Ha and Ca currents and also

in h ib i te d  the delayed r e c t i f i e r  cu rren t Pentylenetetrazol

2+increased the Ca activated potassium current ( Qa) anĉ  induced

an inward cu rre n t .  These e ffe c ts  did no t occur when PTZ was in jec ted

in t ra c e l 1 ul a r l y , suggesting an extracel 1 ul ar s i te  o f action. These

re s u lts  expla in  the neuronal a c t i v i t y  seen a f te r  app lica t ion  o f  100

mM PTZ. The depo la r isa tion  was induced by the inward current and was
2 +sustained due to  in h ib i t io n  o f  the delayed r e c t i f i e r .  The Ca

dependent potassium curren t was subsequently ac tiva ted , possibly by
2+the release o f  in t ra c e l !  ul a r ly  stored Ca , and resulted in  the 

c e l l  membrane re p o la r is in g  (Hartung and Hermann, 1987). Walden e t al 

(1988) demonstrated, using id e n t i f ie d  neurones o f  H e ! ix , th a t  PTZ 

(20 -  80 mM) induced a non-spec if ic  inward curren t followed by 

a c t iv a t io n  o f a calcium-dependent potassium cu rren t which resulted in 

repol a r i  sation o f the c e l l .

Working on id e n t i f ie d  neurones o f  Lymnaea, McCrohan and G i l le t t e  

(1988b) described a PTZ-induced slow inward cu rren t which was c a r r i  ed 

by Na . A s im i la r  Na cu rren t was induced by in tra ce l 1 ul ar 

in je c t io n  o f c y c l ic  AMP (McCrohan and G i l le t t e ,  1988a). McCrohan and
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G i l le t t e  (1988b) suggested tha t PTZ activa ted th is  cu rren t by acting 

as a phosphodiesterase in h ib i t o r ,  since isobuty l methyl xanthine { IBMX 

-  a phosphodiesterase in h ib i to r )  mimicked PTZ's a b i l i t y  to  induce 

e p i le p t i fo rm  a c t iv i t y .  They also showed th a t  PTZ increased the 

amplitude o f  the c£MP-induced, sodium dependent inward cu rren t,  

re in fo rc in g  the hypothesis th a t  PTZ may produce i t s  e p i le p t i fo rm  

e f fe c ts  by increasing cAMP concentrations.

From the evidence reviewed above, i t  is  c le a r  th a t  the mechanism of 

action  o f  PTZ has y e t  to  be f u l l y  e luc ida ted . Since PTZ is  in  

widespread use in studies o f the ion ic  basis o f  convulsant a c t i v i t y ,  

fu r th e r  in fo rm ation  concerning i t s  actions would be o f  considerable 

v al ue.

1. 7 A n t ie p i le p t ic  drugs used in animal models o f epilepsy 

There are four main classes o f anticonvu lsant drug used in the study 

o f  e p i le p t i fo rm  a c t iv i t y  in  animal models. These are c la s s i f ie d  by 

t h e i r  mode of action. The benzodiazepines, carbamazepine and 

phenytoin are also in  c l in ic a l  use.

1) GABA enhancing compounds

GABA is  the major in h ib i to r y  neurotransm itter in  the mammalian CNS, 

high concentrations being found in the neocortex, hippocampus and 

other fo re b ra in  s truc tu re s . GABA acts v ia  GABA-A receptors to open 

Cl"* channels, leading to hyperpol a ri sation o f the c e l l  membrane. 

GABA can also a c t a t  G^BA-B receptors to  open K channels pre or 

p o s tsyn a p t ica l ly . An overwhelming body o f data (DeLorenzo, 1988) 

in d ica te s  th a t  the major in h ib i to r y  action o f  GABA in  the CNS is  the
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a b i l i t y  to  regula te  Cl" channel pe rm eab il i ty .  The la rg e s t group o f  

anticonvu lsant drugs to act a t the GABA receptor are the 

benzodiazepines. The mode o f action  o f  benzodiazepines was l i t t l e  

understood u n t i l  Squires and Braestrup (1977) demonstrated the high 

a f f i n i t y  binding o f  [  H]-diazepam to r a t  bra in  homogenate, 

in d ica t in g  the presence o f benzodiazepine receptors in  the CNS. Olsen 

e t  a l , (1986) showed the lo c a l is a t io n  o f  benzodiazepine receptors a t 

the GABA /  Cl ionophore. The binding of benzodiazepines to the 

benzodiazepine receptor enhances binding o f  GABA to  the GABA 

receptor, re su lt in g  in an increased Cl" current and 

h yp e rp o la r isa t io n . There is  a th i r d  s i te  present in  the GABA receptor 

complex. P icro tox in  binding to th is  s i te  in h ib i t s  GABA binding and 

reduces the Cl" cu rren t (Olsen e t  a l , 1986). Ba rb itu ra tes  binding 

to th is  s i te  po ten tia te  benzodiazepine b inding and thus in d i re c t ly  

increase the f low  o f  Cl" (Twyman e t  a l , 1988).

2) NMDA receptor antagonists

The poss ib le  ro le  o f  e xc ita to ry  amino acids in  ep ilepsy was f i r s t  

shown by Hayashi (1951), who reported th a t  in je c t io n  o f sodium 

glutamate and aspartate in to  the cerebral cortex o f  dogs and primates 

induced generalised seizures. Exc ita to ry  amino acids found in the 

mammalian CNS inc lude glutamate, asparta te , q u in o l in ic  acid and 

homocysteate. A ll o f these compounds induce convulsions when in jec ted  

d i r e c t ly  in to  dog bra ins (Johnston, 1973; Stone and Ja v id ,  1983 ). The 

development of dicarboxyl ic  amino acid analogues, which act as 

agonists or antagonists, enabled the study o f  the postsynaptic 

receptor s i te  a t  which glutamate and aspartate exert th e i r  actions. 

Experimental evidence suggests the existence o f  three types o f 

glutamate receptor named a f te r  t h e i r  preferred exogenous agonists;



NMDA, kainate and quisqualate (Watkins and Evans, 1981). Glutamate

activa tes a ll  three receptor types whereas aspartate appears to

a c t iva te  only NMDA receptors. Most rou t ine  central EPSP's are

generated by non NMDA receptors (McDermott and Dale, 1987 ); in
2 +physio log ica l condit ions NMDA receptors are blocked by Mg in a

voltage dependent manner. At res ting  potentia l the NMDA receptors are

blocked but as the c e l l  depolarises the block is  removed and the

receptor becomes receptive  to NMDA agonists (Mayer and Westbrook,

1986). I t  has been postulated th a t the NMDA receptor may be involved

in  e p i le p t i  fon t a c t i v i t y  (Dingledine e t a l , 1986; A rto la  and Singer,

1987; Mody e t  a l , 1988). A number o f  analogues o f  the endogenous

exc ita to ry  amino acids have been shown to have antagon is tic

p rope rt ies  (Perkins e t  a l , 1981; McLennan and L iu , 1982). These

compounds have potent anticonvulsant e f fe c ts  on NMCA-induced

e pi 1 epti fo rm ac t i  v i  t y .

3) Calcium channel antagonists 
2 +C on tro l l in g  Ca en try  in to  the c e l l  i s  the f i r s t  major step in

2+reg u la t in g  the e f fe c t  o f Ca -mediated seizure a c t iv i t y .  Three
2+types o f  voltage gated Ca channel have been described in

mammalian CNS (Tsien e t a l , 1988); the T, L and N channels. T channel

conductance is  sm all, i t s  duration t ra n s ie n t  and i t s  in a c t iva t io n

rap id . L channel conductance i s  la rg e , i t s  duration long la s t in g  and

i t s  in a c t iv a t io n  slow. N channel parameters are intermediate between
2+the T and L values. Ca channel antagonists have been shown to

reduce seizure a c t i v i t y  (Ashton and Wauquier, 1985). Ethosuximide has 

been shown to i n h ib i t  T channels in  thalamic neurones ( Coulter e t a l , 

1988) and in primary a f fe re n t  neurones (Gross e t  a l , 1989) at

th e ra p e u t ica l ly  re levant concentrations. Phenytoin (see l a t e r ) ,
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3
in h ib i te d  binding o f [  H ]n it rend ip ine  (a compound which binds to

2+ 2+ Ca channels in b ra in  membranes with high a f f i n i t y )  to Ca

channels in  the drug 's  therapeutic  concentration range (Greenberg £ t

a l , 1984). DeSarro e t  al (1988) have shown th a t  the Ca^+ channel

antagonists f lu n a r iz in e  and d i hydro pyrid ine are potent

anticonvulsants in  the DBA/2 s tra in  o f  mice (susceptib le  to sound
2 +induced se izu res).  However the general p ic tu re  o f  Ca channel

antagonists is  th a t  they are not used c l i n i c a l l y  due to unconvincing

resul t s .

4) Other an ticonvu lsant agents

a) Carb amaze pine. Carbamazepi ne (CBZ) or Tegretol i s  a t r i c y c l i c  

immunostilbene d e r iv a t iv e ,  re la ted  s t ru c tu ra l ly  to the antidepressant 

imipramine and the an ticonvu lsant phenytoin (Schauf e t  a l , 1974).

Carbamazepine is  used to t r e a t  generalised to n ic /c lo n ic  seizures but 

not generalised absence se izures. I t  is  also used in the treatment o f  

trigeminal neuralgia (Rasmussen and Riishede, 1970) and 

glossopharyngeal neura lg ia  (Savio lo  and Fiasconase, 1987). Schauf e t  

al (1974) showed th a t  CBZ induced a voltage-dependent block of Na+ 

channels in  axons o f  the marine worm Myxicola. Carbamazepi ne (20 jj M) 

in h ib i te d  the Na+ curren t by 40% a t a membrane potentia l o f  -120 mV 

and 95% at -45 mV. The therapeutic  serum concentration o f CBZ is  in  

the same range as used in these experiments. In ra t  bra in 

synaptosomes, the IC^q fo r  in h ib i t io n  o f  b inding o f  [  H] 

batrachotoxin A°< benzoate (BTX) to the receptor s i te  responsible fo r  

a c t iv a t io n  o f  Na+ channels (C a t te ra l l  e t  al , 1981) by CBZ was 131 

jjM (Willow and C a tte ra ll  ,1982). Willow e t al , (1983) showed th a t  40
H*

jiM CBZ in h ib i te d  BTX ac tiva ted  in f lu x  o f  Na in to  cu ltured 

neuroblastoma c e l ls .  These f ind ings  suggest th a t  CBZ's mode of action
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i s  to in te ra c t  w ith the receptor s i te  responsible fo r  the a c t iva t ion
“t" *|“

of fa s t  Na channels and thus reduce Na current.

Recently however i t  has been suggested th a t  p a r t  o f  CBZ's mode o f

action may be mediated v ia  adenosine receptors. In 1982, S ke rr i t

showed tha t 400 uM CBZ in h ib ite d  binding o f  the adenosine analogue L- 

N6-phenyl i sopropyl adenosine, in d ica t in g  th a t CBZ may i t s e l f  bind to 

adenosine receptors . Follow up s tud ies (S k e r r i t ,  1983 a,b) supplied 

add it iona l evidence th a t  CBZ in h ib i te d  L-N6-phenylisopropyl adenosine 

binding and also showed th a t  CBZ mimicked the e ffe c ts  o f  the 

adenosine receptor antagonist theophy ll ine  on e le c t r ic a l ly  stimulated 

guinea p ig i leum. Ma rang os e t  al (1983 ) showed th a t  CBZ in h ib ite d
3

binding o f the adenosine agonist, [  H] d ie thy l phenyl xanthine and

the adenosine antagonist [ H] cyclohexyl adenosine to  adenosine 

receptors. Studies by Wier e t  al (1984) also showed th a t  CBZ 

in h ib i te d  adenosine agonist and antagonist b ind ing . Adenosine 

receptors have been d iv ided in to  three subclasses (Schwabe, 1985), 

the A l, A2 and P s i te s .  Adenosine binds with high a f f i n i t y  ( nM) to 

the A l s i te  and with low a f f i n i t y  a t the A2 s i te  (uM). Adenosine 

receptors are coupled to the enzyme system adenylate cyclase which 

produces cAMP by dephosphorylating adenosine tr iphosphate (ATP). 

A c t iv a t io n  o f  the Al receptor by agonist binding in h ib i t s  adenylate 

cyclase a c t i v i t y  causing a reduction in cAMP le v e ls ,  while A2 

receptor agonist b inding s timulates adenylate cyclase a c t i v i t y  and 

causes an increase in  cAMP le v e ls .  The P s i te  is  in te rna l and 

mediates the in h ib i to r y  e f fe c ts  o f  high concentrations o f  adenosine.

A number o f studies have shown th a t  CBZ binds to the A l receptor
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(Fujiwara e t  a l , 1986; Gasser e t  a l , 1988; Daval e t  a l , 1989; Clark 

and Post, 1989), thus in h ib i t in g  cAMP production. These studies 

ind ica te  two im portant th in gs . F i r s t l y ,  th a t  a t  le a s t  p a r t  o f  CBZ's 

anticonvu lsant e f fe c ts  may be via adenosine A l  receptors, and 

secondly, th a t  adenosine may be an endogenous an ticonvu lsant. I t  has 

been known fo r  some time th a t  adenosine depresses the a c t i v i t y  of 

centra l neurones in  v ivo (Dragunow e t  a l , 1984). In behavioural 

te s ts ,  adenosine and i t s  de riva tives  have been shown to have 

sedative , hypnotic and anticonvulsant a c t i v i t y  (Barraco e t  a l , 1983, 

1984; Dunwiddie and Worth, 1982; Haulica, 1973; Maitre e t a l , 1974; 

Radulovacki e t  a l , 1982). Agents which i n h ib i t  the adenosine

a c t iv a t in g  enzyme, adenosine deaminase, such as deoxyformycin and 

e ry th ro -9 -(2 -hypoxy-3 -nony l) adenine, have sedative e ffe c ts  in  ra ts  

and mice (Radulovacki e t  a l , 1982; Mendel son e t a l , 1983). In h ib i to rs  

o f  adenosine uptake such as n itrobenzyl th io inos ine  and papaverine 

depress locomotor a c t i v i t y  in  mice (Crawley e t a l , 1983). The

adenosine receptor antagonist ca ffe ine  has behav ioura lly  s t im u lan t 

and proconvul sant a c t i v i t ie s  in  mice (Marangos, 1984). This evidence 

suggests th a t  adenosine is  involved in  the regu la t ion  o f  CNS 

e x c i t a b i l i t y .

b) Phenytoin. Matsuki e t  a l , (1984) showed th a t  100 pM phenytoin 

(PUT) blocked sodium channels by increasing the number o f  channels in 

the ina c t iva te d  sta te  and by delaying the t ra n s i t io n  from inactiva ted  

to closed. In a s im ila r  study, Courtney and E tte r  (1983) showed th a t  

PHT s e le c t iv e ly  blocked the in a c t ive  form o f  closed sodium channels 

thus inducing anticonvu lsant a c t iv i t y .  McLean and McDonald (1983) 

showed th a t  PHT a t  1-2 pg/ml ( therapeutic  le v e l)  l im ite d  the a b i l i t y  

o f  mouse spinal cord neurones to sustain high frequency r e p e t i t iv e
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f i r i n g  o f  action  p o te n t ia ls .  I t  was thought th a t PHT slowed the

recovery o f  sodium channels from in a c t iv a t io n .  Sugaya e t al (1983)

showed in  molluscan neurones th a t  PHT in h ib ite d  the changes in

in t r a c e l lu la r  prote in  induced by ' the convulsant drug

p e n ty le n e te tra zo l,  in d ic a t in g  a poss ib le  fu r th e r  mode o f  action o f

PHT. Fe rre nde ll i  and Kinscherf (1977a) showed th a t  PHT in h ib ite d  
2 +Ca in f lu x  in to  c e l ls  o f  mouse brain s l ice s  by blocking vo ltage 

2+gated Ca channels. They also showed th a t  PHT in h ib i t s  cAMP and
+

cGMP accumulation activa ted  by Na in f lu x ,  the i n i t i a t i n g  step fo r  

the accumulation o f these second messengers. These re su lts  ind ica te  

th a t  PHT has a whole spectrum o f  possib le an ticonvu lsant modes o f 

action and may exert i t s  e f fe c ts  by employing one or several of the 

actions described above. I t  seems l i k e l y  th a t  i t s  mode o f  action is  

determined by the preparation, as not a l l  w i l l  contain the necessary 

ta rg e t  s i te s  described. The wide range o f  modes o f  action o f  

an ticonvu lsan ts , described above, adds weight to the view th a t 

ep il eptogenesi s i t s e l f  may have m u lt ip le  o r ig in s .

1.8 The experimental model used in th is  study

The phylum moll use a is  the second la rg e s t in the animal kingdom, 

inc lud ing  about 100,000 species. Although there is  a g reat d iv e rs i ty  

in  the phylum, molluscs can genera lly  be regarded as a group o f  

b i l a t e r a l l y  symmetrical animals. They have a well developed head, 

conta in ing the sensory organs, which is  attached to the muscular 

fo o t,  used fo r  locomotion (Kershaw, 1983).

The class Gastropoda is  the la rg e s t molluscan class w ith  about 75,000



l i v in g  species and is  d ivided in to  three subclasses; prosobranchi a , 

opisthobranchia and pulmonata. The main two subclasses used in 

el ectrophysi ol ogical studies are the opi sthobranchs and the 

pulmonates. The opisthobranchs are a marine subclass which have a 

reduced she ll size or no shell a t  a l l .  They are commonly ca lled  the 

sea slugs and inc lude A p ly s ia , T r i t o n ia , Pleurobranchaea, A rch ido r is  

and A n isod o r is . The pulmonates have the body c a v i ty  modified to form 

a lung and are subdivided in to  two superorders, the basmmatrophora 

(aquatic ) and stylommatophora { t e r r e s t r i a l ) .  Lymnaea and Planorbis 

belong to  the former and H e lix  and Limax belong to the l a t t e r .  There 

are both t e r r e s t r ia l  and aquatic sn a ils ,  but on ly  t e r r e s t r ia l  s lugs. 

In gastropods the body and CNS have become asymmetrical due to a 

process c a lle d  to rs io n .  This invo lves the v iscera l mass and mantle 

being ro ta ted  through 180° (McCrohan and Winlow, 1985). The s n a i l 's  

shell i s  also asymmetrical and i t s  func tion  is  to  p ro te c t the 

animal. (For a general review o f the gastropod molluscs see Kershaw 

1983 ).

The gastropod molluscan CNS is  p a r t ic u la r ly  su ita b le  fo r  

el ectrophysi ol ogical stud ies as the neurones are e a s i ly  v is ib le  on 

the surface o f the ganglia and i t  is  r e la t iv e ly  easy to place 

m icroelectrodes in to  id e n t i f ie d  c e l ls .  The mollusc used in th is  study 

was Lymnaea s ta g n a l is , a freshwater s n a il .  The CNS o f  Lymnaea is
i

estimated to contain between 10,000 and 15 , 000 neurones contaned 

w ith in  11 d isc re te  ganglia , 5 paired and 1 unpaired. This asymmetry 

has been produced by to rs ion  (McCrohan and Winlow, 1985). In the CNS 

to rs ion  has 1ed to the fus ing o f some primary gang lia ; e .g . the r ig h t  

p a r ie ta l  ganglia  and the supra in tes tina l ganglia have fused to  form



48

the modern r ig h t  pa r ie ta l ganglion, and the v iscera l ganglia and the 

sub in tes t ina l ganglia are fused to form the modern v iscera l ganglion.

A la rge  volume o f work has been carr ied  out on the Lymnaea CNS. This

work includes mapping o f the neurones ( Benjamin e t  a l , 1979; Benjamin

and Winlow, 1931; Khennak and McCrohan, 1988; Kiss and Sal anki , 1977;

Winlow and Benjamin, 1976), and in ve s t ig a t io n s  o f the e f fe c t  o f drugs

(Fowler and Partr idge , 1984; G irdlestone e t  a l , 1989; McCrohan and

G i l le t t e ,  1988b), age (Janse e t a l , 1986), metal ions (Audesirk and

Audesirk, 1983) and sensory inpu t (Janse e t  a l , 1988) on neuronal
cfc && bujoc&l cjOJxil<a_

a c t iv i t y .  The synaptic connections o f  id e n t i f ie d  neurones^have been 

invest iga ted  (Rose and Benjamin, 1981 a ,b ; E l l i o t t  and Benjamin, 1985 

a,b) as have the e f fe c ts  of peripheral oxygen concentra tion  (Janse et 

a l , 1985). Recently a large volume o f  work on neurotransm itter

pathways and func tion  has been ca rr ie d  ou t, and is  s t i l l  in  progress 

(Audesirk, 1989; McCaman, 1985; Tuersley and McCrohan, 1988).

In an inve s t ig a t io n  in to  the c e l lu la r  mechanisms underlying ep ilepsy 

an im portant question is  whether a c e l l ' s  inheren t p roperties  

determine i t s  s u s c e p t ib i l i ty  to seizures? To study th is  question, 

id e n t i f ie d  neurones must be used. In the present work a p re lim inary

study was ca rr ie d  out to examine PTZ's e f fe c ts  on a va r ie ty  of

id e n t i f ie d  neurone types in the Lymnaea CNS. The m a jo r i ty  o f  c e l ls

exh ib ited  increased a c t i v i t y  o f  varying degrees in  the presence o f 40

mM PTZ. One c e l l  type however, was in h ib i te d  by PTZ. This c e l l  was 

the r ig h t  pa r ie ta l dorsal 1 (RPD1) c e l l ,  and th is  is  the f i r s t

moll use an neurone to be described in  which PTZ i s  purely in h ib i t o r y .  

McCrohan and G i l le t t e  (1988b) had already described the exc ita to ry
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(convulsant) actions o f PTZ in  buccal neurones, inc lud ing  the 

id e n t i f ie d  motoneurone, B l .  A comparison of PTZ's e f fe c ts  on the B1 

c e l l  and the RPD1 ce ll therefore o ffered an e xce lle n t opportun ity  to  

inves t iga te  PTZ's mode o f action on id e n t i f ie d  neurones which show 

d i f f e r e n t  responses to PTZ.

The Bl neurone.

The paired Bl neurones occur symmetrically in  the buccal ganglia o f  

Lymnaea (Figs 1.2; 1.3). The morphology of the c e l l  was f i r s t

described by Benjamin e t  al (1979) who showed th a t i t  had the la rges t 

c e l l  body on the dorsal surface o f the buccal gang lia , about 100 urn 

in  diameter. The c e l l  sends axonal p ro jec tions  to both r ig h t  and l e f t  

dorsobuccal nerves. The axonal p ro jec tion  d iv ides to send one branch 

to the s a l iv a ry  glands and the other branch to the gut (Benjamin e t  

a l , 1979). I t  has been shown th a t  the Bl c e l ls  are el ectro tonic a l ly  

coupled, probably a t  the buccal commissure where the axons appear to 

be in  very close proxim ity to each o ther (Benjamin e t a l , 1979).

The Bl neurone is  involved in the contro l o f  feeding a c t i v i t y  o f  the 

sn a i l .  The feeding pattern is  generated by a network o f centra l 

pattern generating interneurones, the Nl, N2 and N3 interneurones 

( E l l i o t t  and Benjamin, 1985). The Bl c e l l  is  a motoneurone which 

becomes a c t ive  during the Nl phase o f  feeding. I t  is  thought to 

innervate the sa liva ry  glands ( Be nj ami n e t  a l , 1979) and i t s  function 

may be to  s t im u la te  the glands during the i n i t i a l  stages o f  feeding 

behaviour.
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Figure 1.2

Dorsal view o f the centra l nervous system o f  Lymnaea. Nerves

numbered a f te r  Slade e t  al (1981). A, a n te r io r ;  al , a n te r io r  lobe;
s

brn, buccal re t ra c to r  nerve; cc, cerebral commisure; dbn,
t\

dorsobuccal nerve; L, l e f t ;  Ibn, laterobuccal nerve; Idb la te ra l
e.ro

dorsal body; mdb, medial dorsal body; P, p o s te r io r ;  pbn, postbuccal
- A

nerve; p jn ,  p o s te r io r  jugal is  nerve; R, r i g h t ;  s t ,  s ta tocysL

1. cerebrobuccal connective

2. superior la b ia l  nerve

3. median la b ia l  n.

4. peni s n .

5. ten tac le  n.

6. op tic  n.

7. nuchal n.

r l e f t  pa r ie ta l n.

9. cutaneous p a l l ia !  n.

10. in te s t in a l  n.

11. anal n.

12. genita l n.

13. r ig h t  in te rna l p a r ie ta l

14. r ig h t  external pa r ie ta l n.

15. i n f e r io r  ce rv ica l n.

16. superio r cerv ica l n.

17. col umell ar n .

18. superior pedal n.

19. i n f e r io r  pedal n.

20. median pedal rt.

21. dorsal pedal commissure

22. ventra l pedal commissure

23. medial co lum ellar n.

24. cerebropedal connective

25. pedal pleural connective

Cell types

B l ,  buccal 1 c e l l ;  RPD1, r ig h t  pa r ie ta l dorsal 1 c e l l .
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Fig 1.3. (a) Photograph o f  the Bl neurone in the paired buccal 

ganglia . The c e ll  occurs symmetrical l y  in  the r ig h t  and l e f t  buccal 

gang lia . ( b) The RPD1 neurone is  located in the r ig h t  pa r ie ta l 

gangl ion.
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The RPD1 neurone

This neurone i s  located on the dorsal surface of the r ig h t  pa r ie ta l

ganglion {F igs 1.2; 1 .3 ) .  I ts  diameter varies from 120 - 150 um

making i t  one o f the la rg e s t neurones in the CMS {Benjamin and

Winlow, 1981). I t  sends axonal branches down the in te rna l and 

external pa r ie ta l  nerves but i t s  main axonal branch is  to the r ig h t  

pedal ganglion v ia  the r ig h t  p leura l ganglion {Benjamin and Winlow, 

1981). Kiss and Salanki {1977) showed th a t  the RPD1 c e l l  (they ca lle d  

i t  the P13 c e l l )  is  a ffec ted  by s t im u la t io n  o f  the in te s t in a l  and 

anal nerves, but i t  has no d i re c t  axonal pro jections to these nerves. 

They also showed th a t the RPD1 ce ll  sends axonal p ro jec tions down the 

r ig h t  in te rna l p a r ie ta l neurone but described no pro jections to the 

r ig h t  pedal ganglion.

The RPD1 c e l l  responds to e le c t r ic a l  s t im u la t ion  o f the mantle edge, 

pneumostome area and lung wall (Janse e t  a l , 1985). However i t s  

function  is  s t i l l  unknown.

1.9 Aims o f the p ro je c t

The aim o f th is  study was to inve s t ig a te  the mode o f action of PTZ,

2+and also to  study the ro le  o f  second messengers ( Ca and cAMP) in 

the generation o f e p i le p t i fo rm  a c t iv i t y  in s ing le  neurones. 

Pentylenetetrazol is  a convulsant drug which induces e p ile p t i fo rm  

a c t iv i t y  in  humans, r a ts ,  mice and molluscs. The fa c t  th a t  i t  is  able 

to do th is  in  the wide v a r ie ty  o f  species and c e l l  types suggests 

th a t  i t s  se izure-inducing action may be fundamental to a wide range 

o f  c e l l  types. An understanding o f  i t s  mode o f action  could there fore  

provide an in s ig h t  in to  the general p r inc ip les  governing the



endogenous generation o f  seizures during ep ilepsy.

The molluscan CMS was chosen fo r  th is  study because of the large body 

o f  work which has p rev ious ly  been ca rr ied  out and due to  i t s  la rg e , 

accessible and id e n t i f ia b le  neurones. The Bl and RPD1 c e l ls  were 

chosen as the Bl ce ll  exh ib ited  c h a ra c te r is t ic  e p i le p t i fo rm  a c t i v i t y  

in  response to PTZ whereas the RPD1 c e l l  exh ib ited in h ib i t io n  o f 

a c t i v i t y  in  the presence o f  FTZ.

A cAMP-dependent inward menbrane curren t was also studied in  both 

c e l l  types. The reason fo r  t h is  was th a t  i t  had been proposed th a t  

PTZ may act to increase in t r a c e l lu la r  cAMP leve ls  in  the Bl c e l l  

(McCrohan and G i l le t t e ,  1988b). I f  th is  were the case a comparison o f  

the c h a ra c te r is t ic s  o f  t h is  cu rren t in  the B l and RPD1 c e l ls  might 

prove useful in  determining the mechanisms underlying the opposing 

e f fe c ts  of PTZ in the two c e l l  types.



CHAPTER 2

MATERIALS AND METHODS

2.1 Lymnaea s tagna lis

Specimens o f the pond snail Lymnaea stagnalis  were obtained from the 

animal s u p p l ie rs ,  Blades B io lo g ic a l ,  Cowden, Kent and Sciento, 

Sa lford, Greater Manchester. The sna ils  weighed between 2 and 6 

grammes and were kept in  aerated tap water a t room temperature (20-24 

°C) in f i v e  ga llon p la s t ic  tanks f i t t e d  with undergravel f i l t e r s .  

L igh ting  was provided on a 12 hour per day cyc le  by a s ing le  

f luorescent tube placed above each tank. The sna ils  were fed mainly 

w ith le t tu c e  but were occasiona lly  fed with a preparation (Tetramin) 

intended fo r  gold f is h  when le t tu ce  was d i f f i c u l t  to obta in .

2. 2 Preparation o f the CNS

All experiments were performed on the iso la ted  cen tra l nervous system 

(CNS) with a l l  the ganglia present and a l l  the major nerves attached 

(F ig  1,2). The cerebral commissure was cut to obta in a greater degree 

o f  s t a b i l i t y  when the CNS was pinned down. The remaining 

intergangl ion ic  commissures and connectives ware l e f t  in ta c t .  Cutting 

the cerebral commissure did no t appear to  a f fe c t  the p ropert ies  o f  

the c e l ls  recorded.

The CNS was pinned by i t s  nerves to  a Sylgard (Dow-Corning)-lined 

black 2 ml watch glass. The black watch glass reduced l i g h t  

re f le c t io n  and increased the contras t between the ganglia and the
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d ish . A f te r  the CNS had been pinned down using f in e  insec t p ins , the 

external sheath covering the ganglia to be studied was c a re fu l ly  

removed using f in e  watchmakers forceps. Small lumps o f protease

powder (type XIV, Sigma) were placed on the inner ganglion ic sheath 

fo r  between 5 and 10 minutes, followed by thorough washing with

sa line . This caused softening of the sheath and enabled i t  to be 

removed by care fu l teasing with f in e  forceps. A l l  experiments were

ca rr ie d  out a t  room temperature which varied between 20 and 24 °C.

The watch glass contained 1 ml o f  sa line  fo r  a l l  experiments.

2.3 P hys io log ica l salines

Experiments were carr ied  out in  sa line  buffered with 3-(N-Morphol ino) 

propane-sulphonic acid (MOPS, BDH). Normal saline had the fo llow ing  

composition in  mM (McCrohan and G i l le t t e ,  1988a).

NaCl 60

KC1 1.6

Ca Cl 2 4

MgCl2 1.5

MOPS 10

One l i t r e  o f  sa line  was made up a t a time and adjusted to pH 7.5 by 

the add it ion  o f 1 M NaOH. Sodium free saline had NaCl subs titu ted  by 

equimolar a rg in ine  hydrochloride and pH adjusted using 1 M KOH. High 

calcium saline had the calcium concentration increased to  12 mM; no 

co rrec t ion  was made fo r  the increase in o sm o la r ity .  Low calcium 

sa line  (1 uM calcium) was made fo llow ing  the d ire c t io n s  of Evans and 

Marty (1986) and consisted o f the fo l low ing  in mM.
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NaCl 60

KC1 1.6

CaCl £ 12

Mg Cl 2 1.5

MOPS 10

HEDTA 40

N-hydroxyethyl ethyl ened iam ine-tr iacetic  acid (HEDTA, SIGMA) was used 

as the calcium b u ffe r  ra ther than EGTA as i t  has been shown to have 

greater calcium bu ffe r ing  properties  (Evans and Marty, 1986).

2.4 Drugs

Drugs were dissolved in normal sa line  to g ive stock so lu t ions  so th a t  

add it ion  o f 0.2 ml stock so lu t ion  to the 1 ml o f saline in the

Sy lgard- l ined  dish gave the desired f in a l  drug concentration. The 

exceptions to th is  protocol were experiments c a r r ie d  out in zero

sodium and low or high calcium sa lines . In these instances the drug 

was d issolved in the corresponding sa line p r io r  to addition to the 

bath. Some drugs were not so lub le enough in  water to  be dissolved in 

sa line . Ip ro v e ra t r i l  (D600) was one such drug. In th is  instance the 

drug was dissolved in 100% ethanol and then d i lu te d  in  sa line  u n t i l  a 

5% ethanol so lu t ion  was obtained. Addit ion o f 0.2 mis o f th is

so lu t io n  to the Sylgard l in e d  dish resu lted  in  the desired

concentration o f the drug in  a 1% ethanol so lu t ion . Control studies 

showed th a t  1% ethanol did no t s ig n i f i c a n t ly  a f fe c t  neuronal 

a c t i v i t y .  Carbamazepine (CBZ) was also very inso lub le  in  water but 

could not be treated in th is  way as i t  p re c ip i ta te d  out o f  so lu t ion  

when the ethanol so lu tion  was added to the sa line . I t  was found th a t



the best way to obtain the desired concentration o f  CBZ was to  

d isso lve  the CBZ in 100% ethanol warmed to about 40 °C. A drop of 

th is  so lu t io n  (approximate volume 0.01 ml) was d i r e c t ly  added to the 

bath, re s u lt in g  in  a bath concentration of 1% ethanol w ithout 

p re c ip i ta t io n ,  (see Table 2.1 fo r  a summary o f  a l l  drugs used in th is  

s tu d y ) .

2. 5 E lec trophys io log ica l Recordings

2.5.1 S ing le  electrode; membrane po ten t ia l recording 

In t r a c e l lu la r  recordings were made from id e n t i f ie d  neurones using 

glass microel ectrodes f i l l e d  with 3 M potassium acetate, f i l t e r e d  

through a 0.22 urn M il l  i  pore f i l t e r  (Mil l i  pore SA, 67120 Molsheim, 

France). Microel ectrodes were pu lled  on a S c ie n t i f ic  and Research 

Instruments Ltd v e r t ic a l  pi p e tte -pu ll  er from 1.2 mn diameter, f ib re -  

f i l l e d  c a p i l la ry  tub ing (Clark El ectromedical Instruments, 

Pangbourne, Reading). Microel ectrodes had res istances o f  between 20 

and 30 Mohms. P rio r to record ing, the t i p  o f the microelectrode was 

brushed c a re fu l ly  against the t i p  o f  a p a ir  o f  f in e  forceps. This 

resu lted  in  the t i p  being broken and the res is tance decreasing to  5 

to 15 Mohms. This type o f broken-back m icroelectrode was found to 

produce clean and easy impalements. Immediately p r io r  to use, the 

e lec trode  t i p  was dipped in black waterproof ink  (Rotring drawing ink 

K, e tch ing , 17 black) to f a c i l i t a t e  the viewing o f the t i p  under the 

microscope. The microel ectrode was f i t t e d  to an e lec trode holder 

comprising a s i lv e r  w ire , which contacted the e le c t ro ly te ,  and a 2mm 

plug which was inserted in to  the head stage o f  a Dagan 8500 voltage 

clamp syston. The Dagan 8500 is  a two electrode vo ltage clamp system



60

Table 2.1

Drugs 

Amil oriele

Adenosine 5 '-monophosphate 

(AMP)

Cyclic adenosine 3 '5 ' -  

monophosphate (cAMP)

Carbamazepine (CBZ)

8-(4-Chlorophenyl th io ) -  SIGMA

adenosine 3 '5 '- c y c l ic  

monophosphate (CPTcAMP)

Ethyl eneglyco l-b i s-(B-ami no SI GMA

ethyl ether) N,N N '- te t ra  

acetic acid (EGTA)

Guanosine 3 '5 ' - c y c l ic  SIGMA

monophosphate (cGMP)

Ip ro v e ra t r i l  (D600) KNOLL

3 -Iso b u ty l- l-m e thy l xanthine SIGMA

( IBMX)

Pentylenetetrazol (PTZ) SIGMA

Quinidine SIGMA

Tetrodotoxin (TTX) SIGMA

Tetraethyl ammoni un bromide SIGMA

(TEA)

Supplier

SIGMA

SIGMA

SIGMA

SIGMA

Presumed a c t io n 

Na channel blocker 

Product o f cAMP 

breakdown

In t ra c e l lu la r  second 

messenger
• f

Na channel b locker and 

suspected adenosine A2 

receptor agonist 

Membrane permeable cAMP 

analogue

Ca2+ ch e la to r

In t r a c e l lu la r  second

messenger

2 +Ca and channel

blocker

Phosphodiesterase in h ib i to r

Induces convulsant a c t i v i t y  

( Ca) channel blocker
“t*

Fast Na channel blocker 

Non s p e c if ic  K channel 

blocker
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3,4,5-trimethoxybenzoic SIGMA 

ac id  8 - ( di ethyl ami n o )- 

octy l ester (TMB-8)

2 +Blocker o f Ca from 

in t ra c e l  1 ul ar stores



w ith  two separate e lec trode preampl i f i  e rs , one used fo r  voltage 

sensing and the other p r im a r i ly  fo r current passing. The 

microel ectrode was connected to the former which was arranged as a 

standard in t r a c e l lu la r  microel ectrode a m p li f ie r  with un ity  gain, 

driven guard, bridge balance, capacity compensation and se lectab le
-O w fc

high frequency cu t.  A frequency response of DC to  10 KHz was used. 

Recorded s igna ls  were am p lif ied  a fu r th e r  ten times using an 

add it ional a m p li f ie r  (CFP 8120), whose frequency response was DC to  4 

KHz. The output was viewed on a storage oscil loscope {Tektronix 5111) 

and recorded on video tape using a two channel pulse code modulating 

system (Medical System Corps) feeding a domestic video recorder 

(National Panasonic NVG12). Permanent records were made using a 2 

channel ink j e t  recorder (Gould 2200). A s i lv e r  wire in d i f f e re n t  

e lectrode was placed in  the bath and connected to the v i r tu a l  ground 

(chamber) socket o f  the Dagan 8500. Mains in te r fe ren ce  (50 Hz) was 

e lim inated by enclosing the preparation area w ith in  a 5 mm wire mesh 

Faraday cage. The preparation was l i t  using a f ib r e  op tic  cold l i g h t  

source.

2 .5 .2  Two electrode voltage clamp

The voltage clamp system consists o f three components; a voltage 

sensing e lectrode connected as described in 2 .5 .1 , a cu rren t passing 

electrode and a feedback system which compares the measured membrane 

po ten tia l (Vm) with a desired command po ten tia l (Vc) set by the 

experimenter. The cu rren t passing electrode was connected to the 

second p re am p lif ie r  o f  the Dagan 8500, w ith  the output am plif ied  a 

fu r th e r  10 times by a CFP 8121 a m p li f ie r  before being connected to 

the second channel o f the osc il loscope. Once a ce l l  had been



penetrated with both m icroelectrodes, the Dagan 8500 was se t to  

operate in voltage clamp mode. This en ta ile d  se tt ing  a command 

po ten tia l (Vc) and switching the system to clamp mode 3 to produce a 

f a i r l y  ‘ t i g h t ’ clamp. A voltage clamp uses the d if fe rence between the 

voltages (Vm and Vc) as an e rro r  signal which is  amplif ied to d r ive  

the actual membrane voltage by appropriate cu rren t in je c t io n  such 

th a t  Vm equals Vc and the e r ro r  signal approaches zero. The signal 

th a t  i s  measured in  clamping is  the cu rren t required to be passed to 

maintain Vc. The gain or a m p li f ica t io n  o f  the e rro r  signal feedback 

was increased u n t i l  the curren t trace s ta rted  to o s c i l la te  a t  which 

p o in t  the gain was s l ig h t l y  reduced to provide a c e l l  t i g h t l y  clamped 

a t Vc. Unless otherwise stated the Vc was set a t  -60 mV which was 

close to res ting  po ten tia l fo r  most c e l l s .  (For an overview o f  

voltage clamping see H i l le ,  1984).

2*5.3 Steady-State I-V curves

I f  a c e l l  i s  voltage clamped and Vc swapt very slowly in  a ramp-like 

fashion over a range o f  voltages and p lo tted  against the measured 

cu rren t ,  then a steady-state I-V  curve is  produced. The shape o f th is  

curve re f le c ts  the sum o f a l l  the steady s ta te  conductance pathways 

th a t  are active  a t each voltage and as such can give information 

about vo ltage dependent conductances. The e f fe c ts  o f  drugs on I-V 

curves can y ie ld  information about which conductances are being 

a ffected  by the drug. The steady-state I-V curve only provides 

information about s teady-sta te  ( i . e .  long la s t in g )  conductances, 

since fa s t ,  in a c t iv a t in g  conductances (eg 1̂  underlying action 

p o ten t ia ls )  are q u ick ly  ina c t iva ted . For my experimental purposes the 

neurone was vo ltage clamped as described in  2.5.2. A func tion



generator {Feedback FG601) was connected to the clamp input o f  the 

Dagan 8500, such th a t ,  while in voltage clamp mode, the command 

po ten t ia l could be a lte red  con t in u a l ly  in  a ramp-like fashion. In 

th is  case Vc was a lte red  by 2 mV per second over the membrane 

po ten t ia l range o f  Vc + 5 0  mV, As Vc was -60 mV th is  caused the 

membrane po ten tia l to be varied over the range o f  -10 mV to -110 mV.

2 .5 .4  Iontophoresis o f c y c l ic  AMP

Cyclic AMP was iontophoresed in t r a c e l lu la r ly  during both voltage and 

cu rre n t record ing, both procedures using the same microel ectrode 

con f ig u ra t io n . In t ra c e l lu la r  iontophoresis o f cAMP allows the 

experimenter to  contro l d i r e c t ly  the amount o f  cAMP th a t  passes in to  

the c e l l ,  and provided th a t  the electrode resistance does not change, 

the same ion tophore t ic  cu rren t r e l ia b ly  iontophoreses the same amount 

o f cAMP each time and thus the c e l l ' s  responses to in jec ted  

in t r a c e l lu la r  cAMP are repeatable. The voltage sensing m icroelectrode 

was prepared as described in  2.5.1. The cu rren t microel ectrode was 

prepared from doubl e -ba rre l l  ed 1.5 mm f ib  r e - f i l l e d  glass c a p i l la r y  

tub ing  (Clark Electromedical Instruments, Pangbourne, Reading). Using 

a d e n t is t 's  d r i l l ,  a hole about 5 mm long was d r i l l e d  in to  one side 

of the  microel ectrode. This allowed the cAMP so lu tion  to be in jec ted  

in to  one barre l w ithout contaminating the other b a r re l . I t  was 

essentia l th a t  the glass was clean, so i t  was placed in  detergent- 

conta in ing b o i l in g  water fo r  15 minutes and then rinsed in cold 

d i s t i l l e d  water. I t  was then placed in an oven a t 100 °C overnight 

to  dry i t  thorough ly . To fu r th e r  ensure th a t  there was no crossmixing 

of the so lu tions in  the two b a r re ls ,  the top of the cAMP conta in ing 

barre l was sealed using high strength epoxy adhesive before f i l l i n g



w ith  cAMP. The " d r i l le d "  barrel contained 0 .2  M adenosine 3 '5 ' - c y c l ic  

monophosphate ( cAMP) and 20 mM T r is  bu ffe r  adjusted to pH 7.5 with 1 

M KOH and the other barrel was f i l l e d  with 3M potassium acetate. The 

doub le -ba rre lled  microel ectrode was mounted in  the electrode holder 

w ith  s i l v e r  w ire connecting the potassium acetate conta in ing barre l 

to the cu rren t in je c t io n  probe of the Dagan 8500. A second s i lv e r  

w ire was passed in to  the cAMP contain ing barrel v ia  the d r i l l e d  hole 

in the s ide. This was connected to a s t im u lu la to r  (Grass S48) v ia  a 

stimulus is o la t io n  u n i t  (Grass SIU5). Current pulses o f  5 second 

duration and 1 -  5 jjA were passed to iontophorese the cAMP. The 

cu rre n t re tu rn  was the second barrel o f  the microel ectrode and as 

such no cu rren t crossed the c e l l  membrane. For cAMP iontophoresis 

during vo ltage record ing, both electrodes were inserted in to  the c e l l  

and ide n t ica l voltage regi s tra t io n s  were seen. The cAMP was 

iontophoresed by passing a cu rren t between the two ba rre ls  o f  the 

double b a rre l le d  microel ectrode. The response o f the membrane 

po ten t ia l to  the cAMP was recorded. For cAMP iontophoresis under 

voltage clamp the c e l l  was voltage clamped as described in  2 .5 .2  and 

cAMP iontophoresed as described above, and the cu rre n t response was 

recorded. In experiments where adenosine 5 '-monophosphate (AMP) and 

guanosine 3 '5 ‘ - c y c l ic  monophosphate (cGMP) were iontophoresed the 

procedure was exactly the same as described above.

2 .5 .5  Pressure in je c t io n  o f pharmacological agents 

During e i th e r  cu rren t o r voltage recording, a fu r th e r ,  independent, 

microel ectrode was used to in je c t  compounds in to  the neurone using 

pressure e je c t io n . The e f fe c t  produced on the cu rren t or membrane 

p o te n t ia l  could then be recorded. The pressure e jec t ion



microel ectrode was f i l l e d  with a so lu t io n  conta in ing the compound to

be in je c te d ,  making sure th a t there were no a i r  bubbles. The

e lec trode  was prepared such tha t i t  had a t i  p res is tance o f  less than

5 Mohms a f te r  being broken back. I t  was then connected to a 20 cm

length o f  polythene tubing which was in  tu rn  attached to a 60 ml

p la s t ic  syringe. When viewed down a microscope (x20) i t  could be seen

th a t  depression o f the plunger o f  the syringe caused drops o f

so lu t ion  to be expelled from the t i p  of the microel ectrode.

Depression o f  the plunger o f the syringe by the same amount produced

roughly the same sized drop. Compounds which were pressure in jec ted

were calcium ions, ethyl eneg lyco l-b is- (B-aminoethyl ether) N,N,N‘ ,N '-

te tra a c e t ic  acid (EGTA), potassium ch lo r ide  and pen ty lene te trazo l.

The amount o f the compound in jec ted  could be ca lcu la ted  i f  the

concentra tion  o f the compound in so lu t ion  and the diameter o f the

sphere o f  so lu t io n  in jec ted  were known. The diameter o f  the sphere

was measured using a ca lib ra ted  eyepiece. The pressure e jection

e lec trode  was connected to a separate microel ectrode a m p li f ie r  v ia  a

microel ectrode holder conta in ing 2 M KC1, and i t s  signal was

monitored on a th i r d  channel o f  the o sc il loscope , but not recorded

permanently. Once the neurone had been impaled the compound was

in je c ted  by applying pressure to the syringe plunger. Depression o f

the plunger by the same amount resu lted  in roughly the same sized

response in the neurone (eg repeated in je c t io n  o f  calcium ions

induced a s im ila r  leve l o f  depo la r isa tion  and burs t ing  a c t i v i t y  in

the Bl c e l l )  and i t  was assumed th a t  roughly the same amount o f

compound was being in jec ted . Control in je c t io n s  o f 0.1 M KC1 induced
2+no s ig n i f ic a n t  e f fe c ts .  The Ca so lu t ion  in jec ted  contained 0.1 M 

CaC^ /  0.1 M KC1 in  d i s t i l l e d  water. The PTZ so lu t ion  contained 7



M PTZ and 0 .1 M KC1 . The EGTA so lu t ion  contained 250 mM EGTA and 250 

mM MOPS in  d i s t i l l e d  water adjusted to pH 7.5 by the addition of 1 M 

KC1 .

The e f fe c t  on membrane poten tia l o f in t r a c e l lu la r  pressure in je c t io n  

o f  compounds was investigated by penetrating the neurone with two 

e lectrodes, a voltage sensing electrode as described in  2.5.1 and a 

pressure in je c t io n  e lectrode as described above. For pressure 

in je c t io n  in to  a voltage clamped c e l l ,  the c e l l  was penetrated with 3 

e lec trodes, the pressure in je c t io n  e lectrode and 2 others to  voltage 

clamp the c e l l  as described in  2.5.2.

2+2 .5 .6 . Simultaneous in je c t io n  o f cAMP and Ca— under voltage clamp.

A neurone was impaled with three m icroelectrodes; a s ing le  and a

doub le-barre lled  microel ectrode as described in  2 .5 .4 . ,  and an

addit iona l calcium conta in ing microelectrode as described in  2.5.5.

The purpose o f th is  experiment was to in ve s t ig a te  the e f fe c t  of.
2+increased in t r a c e l lu la r  Ca concentration on the neurone's 

response to iontophoresis o f  cAMP. The neurone was vo ltage clamped a t 

-60mV and contro l pulses o f  c y c l ic  AMP in jec ted  to ensure th a t  the 

c u rre n t response was the same fo r  repeated pulses o f  c y c l ic  AMP. 

Calcium ions were then in t ra c e l l  ul a r ly  pressure in jec ted  u n t i l  a 

cu rre n t response o f  between 1 and 2 nA was obtained. This was used as 

a baseline against which the cAMP induced cu rren t was measured. 

Cyclic  AMP iontophoresis was then superimposed on the calcium 

i n jec t ion .



CHAPTER 3 

RESULTS 

Section I

Mode o f action  o f PTZ in  Bl and RPD1 c e l ls  o f Lymnaea.

In tro du c tio n

In molluscan neurones there have previously been shown to be two
t

types o f  response to  the convulsant agent pentyl ene te r  a zol (PTZ).
IV

F i r s t l y ,  the neurone may be in se n s i t ive  to PTZ and show no response. 

An example o f  th is  type o f  neurone is  the I c e l l  o f  the Japanese land 

sna il Euhadra peliomphala (Sugaya e t a l , 1973). Secondly, the neurone 

may become excited by PTZ. This e x c ita t io n  usua lly  consists o f  

depo la r isa tion  of the c e l l  membrane accompanied by superimposed 

bursts o f  action p o te n t ia ls .  At higher concentrations o f  PTZ 

paroxysmal depo la r is ing  s h i f t  (PDS) may develop. Neurones d isp lay ing 

th is  type o f  behaviour inc lude the D and H c e l l s  o f  Euhadra (Sugaya 

e t al , 1973), the B l,  B2 and B3 neurones o f  H e lix  (Speckman and 

Caspers, 1978), the LP1 6 neurone o f  T r i to n ia  (P a rtr idge , 1975) and 

the B l,  B2 and B4 neurones o f  Lymnaea (McCrohan and G i l le t t e ,  1988b).

This study was in i t ia te d  by completing a survey o f  the e f fe c t  o f  PTZ 

on a v a r ie ty  o f id e n t i f ie d  neurones in  Lymnaea. The m a jo r ity  o f c e l ls  

examined displayed e x c ita t io n  in  the presence o f  FTZ although a few 

c e l l  types appeared to be in se n s it ive  to PTZ. The Bl c e l l  was chosen 

fo r  fu r th e r  study as i t  displayed c lass ic  e p i le p t i fo rm  a c t iv i t y  in  

the presence o f PTZ and a considerable body o f work had already been



ca rr ied  out on th is  c e l l ,  inc lud ing  i t s  response to  PTZ (McCrohan and

G i l le t t e ,  1988b). In the course o f the survey, one c e l l  type, RPD1,

was found to be in h ib i te d  by PTZ. This was the f i r s t  descrip tion  o f  a

c e l l  whose a c t iv i t y  was in h ib i te d  by PTZ. This in  i t s e l f  made i t

worthy o f  fu r th e r  study, but a comparison o f  the e f fe c ts  o f  FTZ on

c e l ls  whose responses were opposite also gave an exce llent

opportun ity  to  inve s t ig a te  FTZ's mode o f  a c t ion . Onozuka e t al (1983 )

have suggested th a t  PTZ's mode o f action in  the D neurone of the

Japanese land snail Euhadra is  mediated by release o f  i  n trace ll  ul a r ly  
2+stored Ca . This p o s s ib i l i t y  was investigated fo r  the Bl and RPD1 

neurones.

Results

Responses o f id e n t i f ie d  neurones to  PTZ.

The response to PTZ o f  various c e l l  types was examined. Figure 3.1 

i l l u s t r a t e s  the response o f  c e l ls  in the r ig h t  pa r ie ta l ganglion. In 

A group c e l ls ,  20 mM PTZ induced bursting  a c t i v i t y  (F ig  3.1a). This 

consisted o f  a depo la r isa tion  o f  the c e l l  membrane by up to  15mV 

accompanied by bursts o f action po te n tia ls  (n=27). In B group c e l l s ,  

20 mM PTZ induced bursting  a c t i v i t y ,  inc lud ing  depo lar isa tion  o f the 

c e l l  membrane by up to  lQmV (F ig  3.1b, n=15). In C group c e l ls ,  20 mM 

PTZ induced a paroxysmal depolaris ing s h i f t  (PDS - see la te r  fo r  

de ta iled  d e sc r ip t io n ) .  The onset of the PDS was very rapid and 

depolarised the c e l l  membrane by up to  45mV (Fig 3 .1c , n = l l ) .

In the RPD2 c e l l  o f the r ig h t  p a r ie ta l  ganglion, 20 mM PTZ induced 

bursts o f  double or t r i p l e  spikes. The afterhyperpol a r isa t io n  

fo llow ing  action po ten tia ls  was abolished and the c e l l  membrane
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Fig 3 .1 . E f fe c t  o f  PTZ on the A group, B group and C c e l ls  o f  the 

r ig h t  p a r ie ta l  ganglion, (a) Application o f 20 mM PTZ induced 

bursting a c t i v i t y  in an A group c e l l .  ( b) In a B group c e ll  20 mM 

PTZ also induced burs ting  a c t i v i t y ,  (c) In a C c e l l  20 mM PTZ 

induced a very rapid paroxysmal depolaris ing s h i f t .
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depolarised by up to 8mV {Fig 3.2a, n=18). A concentration o f  20 mM 

PTZ induced bursting  a c t i v i t y  in  the VD1 c e l l  o f the v iscera l 

ganglion. This consisted o f  depo la r isa tion  o f  the c e l l  membrane by 

between 15 and 20mV accompanied by bursts o f action po ten tia ls ,

in te rrup ted  by b r ie f  periods o f re p o la r isa t io n  (Fig 3.2b, n=6). The 

e f fe c t  o f PTZ on the v iscera l ye llow c e l ls  was to induce a PDS, but 

th is  took a considerable time to occur, up to  4 minutes in  a l l  cases 

(F ig  3.2c, n=3).

Responses o f B1 and RPD1 to  PTZ.

In the B1 c e l l ,  bath a pp l ica t io n  o f PTZ led  to dose-dependent

bursting a c t i v i t y .  The B1 ce ll i s  usua lly  quiescent w ith  a res ting  

membrane po ten tia l of about -60mV. A concentration of 20 mM PTZ led 

to  sustained depol a r isa t io n  o f  the c e l l  membrane by 15.6 + 3.7mV 

(mean + SEM; n=27) accompanied by bursts o f action po ten tia ls  (Fig 

3 .3 a ) . The bursts o f  action  p o te n t ia ls  were f a i r l y  evenly spaced and 

in te rrup ted  by periods o f repol a r isa t io n  o f the c e l l  membrane; 

however, t h is  re p o la r isa t io n  did no t re turn  the membrane po ten tia l to 

contro l le v e ls .  The burs ting  a c t i v i t y  lasted for as long as PTZ was

present in  the bath, and was reve rs ib le  when PTZ was washed out (no t

shown). A h igher concentration of PTZ (40 mM) induced a paroxysmal 

depo laris ing  s h i f t  (PDS) in the B1 c e l l .  This type o f  response is  

s im ila r  to th a t  seen in mammalian neurones during e p ile p t i fo rm

a c t i v i t y  (D ich te r ,  1989). The PDS consisted o f  depo la r isa tion  o f  the 

c e l l  membrane to a plateau 36.4 + 8.7mV above re s t in g  potentia l (Fig

3 .3b, n=19). A t the beginning o f  the PDS, high frequency action

poten tia l f i r i n g  was observed. However as the plateau was reached, 

action  po ten t ia l amplitude decreased u n t i l  generation o f action
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Fig 3 .2 . E f fe c t  o f PTZ on RPD2. VD1 and ye llow  c e l l s ,  (a) In an 

RPD2 c e l l  20 mM PTZ induced double and t r i p le  bursts o f action 

p o te n t ia ls .  ( b) In the VD1 ce ll 20 mM PTZ induced bursts o f  action 

po ten tia ls  which were f a i r l y  regu la r in  frequency. (c) 

Penty lenetetrazol (20 mM) induced a slow paroxysmal depo la ris ing  

s h i f t  in  the ye llow  c e l l .
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Fig 3.3. E f fe c t  o f PTZ on B1 and RPD1 c e l ls ,  (a) In the presence o f 

20 mM PTZ, the B1 c e l l  exh ib ited bursting  a c t i v i t y  which consisted 

o f  depo la r isa tion  o f the c e l l  membrane accompanied by superimposed 

bursts o f action p o te n t ia ls ,  (b) A s le w  depo laris ing s h i f t

developed on app lica t ion  o f  40 mM PTZ to a B1 c e l l ,  (c) In the RPD1 

c e l l ,  a p p l ica t io n  o f  20 mM PTZ in h ib i te d  the c e l l ' s  endogenous 

pacemaker a c t i v i t y  and induced aA hyperpo larisa tion  o f  the c e l l  

membrane. The arrows mark the onset o f PTZ a p p l ica t ion .
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p o te n t ia ls  ceased a lto ge th e r .  In some c e l ls  the plateau was

punctuated by b r ie f  { < 2  sec) hyperpol a r is a t io n s , ind ica t ing  synaptic

inputs from other c e l ls .  Spontaneous re po la r isa t io n  to the o r ig in a l

res t ing  p o te n t ia l ,  as has been described fo r  many molluscan neurones

treated w ith PTZ {e .g .  v iscera l and parie ta l neurones o f  Lymnaea;

Doerner e t  a l , 1982), was never observed in B1 neurones, and the

plateau was maintained in d e f in i t e ly .  This suggested th a t any
2+mechanism fo r  te rm inating or in te r ru p t in g  the PDS (e .g . a Ca - 

dependent K channel) was absent in  B l, or no t s u f f i c ie n t ly  strong 

to be e f fe c t iv e .

In the RPD1 ce ll , ap p lica t io n  o f  PTZ led to in h ib i t io n  o f  spontaneous 

f i r i n g  a c t i v i t y  and hyperpo larisa tion  of the c e l l  membrane (Fig 

3 .3 c ) .  This e f fe c t  was dose dependent, 20 mM PTZ being the lowest 

concentration which would produce these e f fe c ts .  A concentration of 

20 mM PTZ led to hyperpo lar isa tion  o f  the c e l l  membrane by 12.7 + 2.7 

nV (n=44). Higher concentrations o f PTZ caused a decrease in  the time 

fo r  in h ib i t io n  to begin, and produced a greater hyperpo lar isa tion  o f  

the c e l l  membrane (not shown).

Experiments were ca rr ied  to inve s t iga te  FTZ's mode o f  action in  the 

two c e l l  types, B l and RPD1. The f i r s t  of these experiments was to 

id e n t i f y  PTZ's s i te  o f  action -  whether i t  was acting 

ex trace ll  ul a r l y , in t ra c e l l  ul a r l y , or both. In t ra c e l lu la r  pressure 

in je c t io n  o f  PTZ, re s u lt in g  in  a ca lcu la ted in t ra c e l l  ul ar

concentration o f about 40 mM, produced no la s t in g  e f fe c t  in e i th e r  

c e l l  type. In the Bl ce ll  PTZ in je c t io n  induced a tra n s ie n t  burst o f  

action po ten t ia ls  and a depo la r isa tion  o f the c e l l  menbrane, but



these e f fe c ts  ceased as soon as the in je c t io n  o f  PTZ was stopped (Fig 

3.4a, n=3). In the RPDI c e l l  i n t r a c e l lu la r  in je c t io n  of PTZ resulted 

in  a s h o r t - l iv e d  increase in f i r i n g  a c t i v i t y  but t h is  ra p id ly  died 

away (F ig  3.4b, n=3). In both c e l l  types, a f te r  pressure in je c t io n  

had ceased the c e l ls  returned to  t h e i r  normal patte rn  o f  f i r i n g  

a c t i v i t y .  The b r ie f  e f fe c ts  induced by PTZ suggest th a t  i t  may be 

acting both e x tra c e l lu l  a r ly  and in trace l 1 ul a r i y . However i t  should be 

noted th a t  the response o f RPDI to in je c t io n  o f PTZ was opposite in 

p o la r i t y  to  th a t  seen fo l low ing  e x t ra c e l lu la r  a p p l ic a t io n .

2+Role o f e x t ra c e l lu la r  Ca— ions in  PTZ-induced e f fe c ts .
24-

Si nee e x t ra c e l lu la r  Ca ions have been implicated in the 

generation o f  seizures in mammalian preparations (Heinemann e t a l , 

1977), the next l in e  o f  study was to  examine the dependence o f  PTZ's
24-

e f fe c ts  on e x t ra c e l lu la r  Ca . App lica tion  of PTZ was ca rr ied  out
2+in  sa line  which had the Ca concentration buffered to 1 uM by 

HEDTA, a Ca^+ che la to r.  I n i t i a l l y  a sa line with as l i t t l e  Ca^+ as 

poss ib le  was sought, but i t  was found th a t  c e l ls  displayed low

re s t in g  p o te n t ia ls  (about -20mV) and were incapable o f f i r i n g  action
24-

po ten tia l s in  sa line  which contained less than 1 uM Ca . I t
?4-

appears the re fo re  th a t  c e l ls  need a basal leve l o f Ca in order to
24-

func tion  normally . Saline conta in ing Ca buffered to 1 pM was
2+ 2+ termed ’ low Ca s a l in e ' .  In low Ca sa line , PTZ produced

responses in the Bl and RPDI c e l ls  which were q u a l i ta t iv e ly

ind is t in gu ish a b le  from those seen in normal sa line . In the Bl c e l l  20

mM PTZ caused depo la r isa tion  o f  the c e l l  membrane by 22.8 + 0.9mV,

accompanied by bursts o f  action po ten tia ls  (F ig  3.5a, n=5). In the

RPDI ce ll  20 mM PTZ caused hyperpo larisa tion  o f  the c e l l  membrane by
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Fig 3.4. E f fe c t  o f  i n t r a c e l lu la r  pressure in je c t io n  o f PTZ. (a) In

the Bl c e l l  a t ra n s ie n t  depo la r isa tion  o f the c e l l  membrane with a

very short period o f  action po ten tia l f i r i n g  occurred. These

e ffe c ts  las ted  only as long as the PTZ was being in jec te d  in to  the

c e l l ,  (b) The RPDI ce ll  exh ib ited  increased a c t i v i t y  during the

period o f PTZ in je c t io n  but th is  e f fe c t  stopped on cessation o f PTZ

in je c t io n .  The bars ind ica te  periods o f  PTZ in je c t io n .  <̂ iUL P 

cvaG vL .



PTZ

(b) RPD1

PTZ

50mV

20s



82



Fig 3 .5 . E ffects  o f  PTZ in  low Ca^+ sa lin e , (a) In the Bl ce ll  20 

mM PTZ induced a depo la r isa tion  o f the c e l l  membrane accompanied by 

superimposed bursts o f action p o te n t ia ls .  The bursts o f action 

po ten tia ls  were interspersed with periods o f repol a r i  s a t io n . (b) In 

the RPDI ce ll  20 mM PTZ in h ib i te d  the c e l l ' s  inherent f i r i n g  

a c t i v i t y  and caused hyperpol a r is a t io n  o f the c e l l  membrane. The 

arrows mark the onset o f PTZ a p p l ica t io n .
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13.7 + l.OmV, and in h ib i t io n  o f the ce l l  ‘ s endogenous pacemaker

a c t i v i t y  (F ig  3.5b, n=5). The depo la r isa tion  produced by 20 mM PTZ in

the Bl ce ll  was greater than th a t  seen in  normal sa l in e , suggesting
2+th a t  e x t ra c e l lu la r  Ca may p a r t ia l l y  i n h ib i t  PTZ-induced

depo la r isa t ion  in  the Bl c e l l .  The e f fe c t  o f  PTZ on the RPDI ce ll

produced a s im ila r  magnitude o f hyperpol a r i  sation to th a t  seen in

2+normal sa line  in d ica t in g  th a t  e x t ra c e l lu la r  Ca does not a f fe c t

PTZ-induced actions in  the RPDI c e l l .  Thus i t  would appear th a t

2+normal le v e ls  o f e x t ra c e l lu la r  Ca are no t necessary fo r  PTZ to

produce i t s  e f fe c ts  in  both c e l l  types, and indeed e x tra c e l lu la r  
2+Ca may i n h ib i t  PTZ-induced depo la r isa tion  in  the Bl c e l l .

2+Role o f i n t r a c e l lu la r  Ca— ions in  PTZ-induced e f fe c ts .

2+The e f fe c t  o f  ra is in g  in trace l 1 ul ar Ca concentration was s tud ied ,
2+since elevated in tra ce l 1 ul ar Ca leve ls  have been reported in  both

mammalian and moll use an c e l ls  during epil eptogenesi s (Onozuka e t  a l ,
2+1989). In trace l 1 ul ar pressure in je c t io n  o f Ca in pulses of 10 to

40 seconds duration led to responses in both c e l l  types th a t  were

q u a l i ta t iv e ly  s im ila r  to those induced by bath app lica t ion  of 20 mM
2+PTZ. In the Bl c e l l ,  Ca in je c t io n  led to a depo lar isa tion  o f  the

c e l l  manbrane o f  between 5 and 15mV, accompanied by bursts o f action

p o te n t ia ls  (Fig 3.6a, n=8). In the RPDI c e l l ,  i n tra ce ll  ul ar pressure 
2+in je c t io n  o f Ca led to an in h ib i t io n  o f the c e l l ' s  pacemaker

a c t i v i t y ,  and an hyperpol a r isa t io n  o f  the c e l l  membrane (Fig 3.6b,

n=5). The response in RPDI lasted only as long as the period of 
2+Ca in je c t io n .  The response in Bl was more long la s t in g ,

2+continu ing fo r  up to  300 seconds a f te r  the end o f Ca in je c t io n .  

In je c t io n  o f  KC1 had no e f fe c t  on e i th e r  c e l l  type (Fig 3 .7 a ,b ) .
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O'i tA

Fig 3 .7 . Control experiments were carr ied  out in which KC1 was
n

pressure in jec te d  in to  the B l and RPDI c e l ls .  In t ra c e l lu la r  

pressure in je c t io n  o f  KC1 produced no apparent e f fe c t  in  e i th e r  the 

Bl c e l l  (a) or the RPDI c e l l  (b ) .  The bars ind ica te  periods o f 

pressure in je c t io n .
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9 +
These re s u lts  ind ica te  th a t in t r a c e l lu la r  in je c t io n  o f  Ca

produces apparently the same e ffe c ts  as extracel 1 ul ar app lica t ion  o f

PTZ, ra is in g  the p o s s ib i l i t y  th a t  PTZ may be acting in  both c e l l
2+types v ia  an increase in in t r a c e l lu la r  Ca concentration. To

fo l lo w  th is  l in e  o f  s tudy, the next step was to  reduce in trace l 1 ul ar 
2+Ca le v e ls  during PTZ-induced e f fe c ts  in  both c e l l  types.

In both types o f  neurone, in t r a c e l lu la r  pressure in je c t io n  o f  EGTA, 
2+

the Ca ch e la to r ,  abolished PTZ-induced e f fe c ts .  In the Bl c e l l

EGTA in je c t io n  led to an hyperpol a r isa t io n  o f  the c e l l  membrane and

cessation o f  bursting  a c t i v i t y  which had been induced in the c e l l  by

previous a p p l ica t io n  o f 20 mM FTZ {Fig 3.8a, n=5). In the RPDI c e l l ,

EGTA in je c t io n  led to depo la r isa tion  of the c e l l  membrane and

reintroduced action p o ten t ia l f i r i n g  in a ce l l  pretreated with PTZ

(F ig  3.8b, n=6). In both c e l l  types the response to EGTA in je c t io n

outlasted the duration o f  EGTA in je c t io n .  These re su lts  re in fo rce  the
?+f in d in g s  i l l u s t r a te d  in Fig 3.6, th a t  increased in t r a c e l lu la r  Ca

concentration may underlie  a t  lea s t p a r t  o f  FTZ's a c t io n . I f  t h is  is
2+the case, where does th is  Ca come from? There are two possible

v
2+ 2+sources, release o f  Ca from in trace l 1 ul ar s to res , and Ca

in f lu x  across the neuronal monbrane. To inves t iga te  the f i r s t  o f

these p o s s ib i l i t i e s  the compound TMB-8 was used.

The compound 3 ,4 ,5 - tr im e t hoxyben zoic acid 8 - (d ie thy l ami no )-oc ty l
2+e s te r (TMB-8) has been reported to block the release o f  Ca from 

in t r a c e l lu la r  stores in  ra t  pancreatic acin i (Ikeda e t a l , 1984). 

A p p lica t ion  o f TMB-8 in h ib ite d  PTZ-induced e ffe c ts  in  both c e l l  

types, with a delay o f  about 10 minutes. In the Bl c e l l ,  PTZ-induced
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Fig 3.8. E f fe c t  o f  in t ra ce l 1 ul ar pressure in je c t io n  o f  EGTA^in B1 

and RPD1 c e l ls  pretreated with 20 mM PTZ. (a) App lica tion  of 20 mM 

PTZ to  the B1 ce ll induced bursting a c t i v i t y .  Subsequent in je c t io n  

of EGTA resu lted  in  a suppression o f th is  burs ting  a c t i v i t y  and 

re p o la r isa t io n  o f  the c e l l  membrane. The e f fe c t  continued fo r  up to 

a minute a f te r  the in je c t io n  of EGTA had stopped. ( b ) In an RPD1 

c e l l  which had been silenced by ap p lica t io n  o f  20 mM PTZ, 

i ntrace l 1 ul ar pressure in je c t io n  o f EGTA resu lted  in  depo la r isa tion  

o f  the c e l l  membrane and re s to ra t ion  o f f i r i n g  a c t i v i t y .  The bars 

ind ica te  periods o f i n tracel 1 ul ar EGTA pressure in je c t io n .
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burs ting  a c t i v i t y  was abolished by 0.2 mM TMB-8 and the membrane

po ten tia l re polarised to contro l le ve ls  (F ig  3.9a, n=5). In the RPD1

c e l l ,  spontaneous f i r i n g  a c t i v i t y  was restored by 0.2 mM TMB-8 in a

c e l l  previously treated with PTZ, but the pattern o f f i r i n g  was less

regu la r than before treatment w ith PTZ (Fig 3.9b, n=5). The reversal

of PTZ's e f fe c ts  by TMB-8 suggests th a t  PTZ may act v ia the release
2+o f  in t ra c e l  1 ul a r ly  stored Ca .

The e f fe c t  on PTZ's e f fe c ts  of b locking Ca2*1* in f lu x  from the 

extracel 1 ul ar medium was investigated by adding 2 mM CoC^ to 

normal sa line . I t  has been reported by Byerly e t al (1986) th a t

add it ion  o f  d iv a le n t  cations in  the mM concentration range in h ib i t s
2+ 2+ Ca currents in  Lymnaea neurones. In the presence o f 2 mM Co

ions , bath a pp lica t ion  o f  20 mM PTZ induced depo la r isa tion  o f  the

c e l l  membrane accompanied by bursts o f action po ten tia ls . This

e f fe c t ,  however, was short l ive d  and died away w ith in  10 minutes (Fig
2+3.10a, n^5). This re s u l t  ind ica tes th a t  in f lu x  o f Ca is  necessary

fo r  PTZ-induced bursting a c t i v i t y  to be maintained in d e f in i t e ly  in

the B1 c e l l .  In the RPD1 c e l l  20 mM PTZ induced hyperpo lar isa tion  o f

the c e l l  membrane and in h ib ite d  the c e l l ' s  endogenous f i r i n g

a c t i v i t y .  This response however, was sustained (F ig  3.10b, n=5).
2+There is  the re fo re  a discrepancy in  the e f fe c t  o f  b locking Ca

in f lu x  in B1 compared to RPD1. In the B1 c e l l  the re s u lts  imply th a t  
2 +e x t ra c e l lu la r  Ca is  not necessary fo r  PTZ to i n i t i a t e  burs ting

a c t i v i t y ,  but th a t  i t  is  needed fo r  the  maintenance o f the e f fe c t .  An
2+explanation fo r  t h is  i s  th a t  PTZ causes the release o f  Ca from

in t r a c e l lu la r  stores, which induces bursting  a c t i v i t y  in  the c e l l .
2+Once these stores are depleted they are r e - f i l l e d  by Ca in f lu x
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from the e x t ra c e l lu la r  medium. I f  t h is  in f lu x  is  blocked ( in  th is  
2+case by Co ) then the stores are unable to r e f i l l  and the bursting  

a c t i v i t y  stops. An a lte rn a t iv e  explanation must be sought however fo r  

the e f fe c ts  in  the RPD1 c e l l .

Membrane conductances induced by PTZ in  B1.

The responses to PTZ in B1 and RPD1 are l i k e l y  to be produced by

a c t iv a t io n  o f  s p e c if ic  conductance pathways across the neuronal

manbrane. In the next series o f experiments the currents induced by

PTZ were studied under voltage clamp cond it ions . In the B1 c e l l ,  held

under voltage clamp a t  a potentia l o f  -60mV, a p p l ica t io n  of PTZ led

to  a slow inward cu rren t.  The time taken fo r  the cu rre n t to  appear

varied from 20 to  60 seconds a f te r  the onset o f PTZ a p p l ic a t io n ,  and

the time taken fo r  the cu rre n t to  reach i t s  peak amplitude varied

from 60 to  120 seconds. App lica tion  of 40 mM PTZ induced an inward

cu rre n t o f  3.13 + 1.02 nA {Fig 3.11a, n -7 ) .  This cu rre n t lasted fo r

as long as PTZ was present in the bath. Synaptic currents were

superimposed on the cu rren t induced by PTZ, suggesting increased

a c t i v i t y  in  presynaptic c e l ls .  When th is  experiment was repeated in 
*|*

zero Na sa lin e , 40 mM PTZ induced no inward cu rre n t (Fig 3.11b,

n=5), in d ica t in g  th a t  the inward curren t induced by PTZ is  e i th e r

d i r e c t ly  ca rr ied  by Na+ , or at le a s t  dependent on e x t ra c e l lu la r

Na . The PTZ induced inward cu rren t in  B1 was found to be

in s e n s i t iv e  to  te tro do tox in  (TTX). A pp lica tion  o f  10"^ M TTX had no

e f fe c t  on the PTZ-induced inward cu rren t (F ig  3.11c, n=3).
-4Furthermore p r io r  app lica t ion  o f  10 M TTX did no t prevent PTZ 

from inducing an inward curren t in the B1 c e l l  {F ig  3 .l i d ,  n=3). This
-f*

d is t in gu ish es  the cu rren t from the fa s t  TTX-sensitive Na cu rren t
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Fig 3.11, C ha rac te r is t ics  o f  the inward cu rren t induced by PTZ in

the ESI c e l l  under two e lectrode voltage clamp; holding potentia l

-60mV. (a) App lica tion  o f  40 mM PTZ induced an inward cu rren t in

2+the B1 c e l l ,  {b) In zero Na sa line  (sodium ch lo r ide  substitu ted  

by equimolar arg in ine hyd roch lo r ide ), app lica t ion  o f 40 mM FTZ was 

unable to induce an inward cu rren t,  (c) The inward curren t induced 

by 40 mM PTZ was in s e n s i t iv e  to 0.1 mM TTX. (d) P r io r  app lica t ion  

of 0.1 mM TTX did not prevent 40 mM PTZ from inducing an inward 

cu rren t.  The arrows mark the onset o f drug a pp lica t ion .
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associated with the r is in g  phase o f  the action po ten t ia l (Narahashi 

e t a l , 1964).

Membrane conductances induced by Ca— in je c t io n  in  B l .
2+Since Ca in je c t io n  mimicked PTZ's e f fe c ts  on f i r i n g  a c t i v i t y ,  the

2+cu rren t induced in Bl by in je c t io n  o f  Ca ions was studied to

compare i t  with the curren t induced by PTZ. In t ra c e l lu la r  pressure 
2 +in je c t io n  o f  Ca in to  the Bl ce ll induced a repeatable slow inward

cu rren t. The amplitude of the curren t produced depended on the amount 
2 +o f  Ca in jec ted  and was in  the range 1.5 to 2 .5 nA. This cu rren t

2+was t ra n s ie n t  and s ta rted  to decay soon a f te r  the in je c t io n  o f Ca

had ceased (Fig 3.12a, n=5). When th is  experiment was repeated in
+ 2+ zero Na sa line , in tra ce l 1 ul ar Ca in je c t io n  d id  not induce an

inward cu rren t (Fig 3.12b, n -5 ).  This ind ica te s  th a t  the inward
2+ + cu rren t induced by Ca in je c t io n  was probably ca rr ied  by Na .

2 +Like the PTZ-induced inward cu rre n t ,  the cu rre n t induced by Ca
-4in je c t io n  was inse ns it ive  to  10 M TTX (F ig  3.12c, n=5). These

re su lts  ind ica te  s im i la r i t ie s  between the curren ts  induced by PTZ and

Ca . They are both inward, dependent on Na , and TTX-

in s e n s i t iv e .  This provides f a i r l y  strong evidence th a t  they are in

fa c t  the same cu rren t ,  supporting the hypothesis th a t  PTZ acts in the
2 +Bl ce ll  v ia  an increase in in t r a c e l lu la r  Ca .

Membrane conductances induced by PTZ in RPD1.

In the RPD1 ce ll the most l i k e l y  cause o f  the hyperpol a r isa t io n

induced by PTZ is  an e f f lu x  o f K . To inves t iga te  th is  p o s s ib i l i t y

a range o f  X channel b lockers was used to see whether they 

in h ib i te d  PTZ-induced responses in  the RPD1 c e l l .  In h ib i to rs  of K+
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2+
Fig 3.12. (a) I n tracel 1 ul ar pressure in je c t io n  o f  Ca in to  a

voltage clamped Bl c e l l  induced a repeatable inward curren t. The

c e l l  was clamped a t a holding po ten tia l o f  -60mV. This cu rren t

2+began to decay soon a f te r  the in je c t io n  o f Ca had ceased. ( b) 

2 +In je c t io n  o f Ca did not induce an inward cu rre n t in  zero sodium

2+s a lin e ,  (c ) The inward curren t induced by Ca in je c t io n  was

in s e n s i t iv e  to 0.1 mM TTX. The arrows ind ica te  drug app lica t ion  and

2+the bars ind ica te  Ca in je c t io n .
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2+ +channels, and more s p e c i f ic a l ly  in h ib i to r s  o f  Ca -dependent K 

channel, abolished PTZ-induced e ffe c ts  in  the RPD1 c e l l .  The non­

s p e c if ic  K+ channel b locker te tra e th y l ammoniurn (TEA) restored 

f i r i n g  a c t i v i t y  in c e l ls  previously treated with PTZ (F ig  3.13a, 

n=5), w ith  a delay o f  between 1.5 and 2 minutes. As would be expected 

o f a compound which blocks the delayed r e c t i f i e r  (voltage dependent 

K channel) the action po ten tia l duration was g re a t ly  increased,

some action po ten t ia ls  la s t in g  as long as 1 second. Ip ro v e ra tr i l  , or
2+D600, i s  a d e r iv a t iv e  o f the Ca channel antagonist verapamil

(Gola and Ducreux, 1985). I t  has been reported to s p e c i f ic a l ly  block
2  "I*the Ca -dependent K channel in  mol Tuscan neurones a t  a

concentration o f 50 pM (Gola and Ducreux, 1985). App lica tion  of 50 pM 

D600 to  an RPD1 ce ll p rev ious ly  trea ted  with FTZ resulted in

depo la r isa tion  and generation o f action p o te n tia ls  (F ig  3.13b, n=5) 

a f te r  4 and 6 minutes, although the action  po ten tia l frequency did 

not re tu rn  to i t s  contro l le v e l .  This suggests th a t the

hyperpol a r isa t io n  induced by PTZ in the RPD1 ce ll i s  indeed via an
+ 2 + + e f f lu x  of K through a Ca -dependent K channel. Additional

2+ +in h ib i to r s  o f  the Ca -dependent K channel were studied to t r y  

to confirm th is  f ind ing .

O j ,

Quinidine has been reported to i n h ib i t  the Ca dependent K

channel inm o lluscan  neurones (Hermann and Gorman, 1984). App lica tion

o f  1 mM qu in id ine  caused a reversal o f  PTZ-induced e ffe c ts  in  the

RPD1 c e l l  a f t e r  2 minutes. The c e l l  depolarised and action potentia l

f i r i n g  was restored to i t s  o r ig in a l leve l (Fig 3.13c, n=6). Thus
2+ +in h ib i to r s  o f the Ca -dependent K channel block PTZ-induced 

hyperpol a r isa t io n  in the RPD1 c e l l .  To look a t th is  in  more de ta il
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Fig 3.13. E f fe c t  o f  K channel blockers on PTZ-induced in h ib i t io n  

in  the RPD1 c e l l .  In a l l  three recordings the RPD1 c e ll  was 

i n i t i a l l y  in h ib i te d  by a pp l ica t io n  o f 20 mM PTZ. (a) The in h ib i t io n  

induced by PTZ was reversed by 50 mM TEA. Action po ten tia ls  were 

prolonged (b) The compound D600 caused reversal o f  PTZ's e ffec ts  in  

the RPD1 c e l l  leading to re in tro d u c t io n  o f action potentia l f i r i n g ,  

(c) Quinidine caused a re i n troduction o f  action po ten tia l in  the 

RPD1 c e l l .
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2+the curren ts  induced by FTZ and Ca were studied under voltage 

cl amp.

A p p lica t ion  o f  20 mM PTZ to a vo ltage clamped RPD1 c e l l ,  held at -60 

mV, induced a slow outward curren t o f 2.02 +_ 0.47 nA in amplitude 

(Fig 3.14a, n=3). The curren t took between 30 and 60 seconds to 

appear and the time taken to reach i t s  peak amplitude varied between 

60 and 120 seconds. The cu rren t continued fo r  as long as FTZ was 

present and was reve rs ib le  on washout of PTZ (not shown). This 

outward cu rren t was abolished by treatment w ith 50 mM TEA (Fig 3.14b, 

n=3), in d ic a t in g  th a t i t  was ca rr ied  by K . P r io r  a pp l ica t io n  of 50 

jiM D600 prevented FTZ from inducing an outward cu rren t (Fig 3.14c,

n=3), as d id p r io r  app lica t ion  of 1 mM qu in id ine  (F ig  3.14d, n=3).
2+This s tro n g ly  suggests th a t  the cu rren t induced by FTZ is  a Ca - 

dependent K+ current.

I t  could be argued th a t  ap p lica t io n  o f  D600 and quin id ine may cause 

an inward curren t which would tend to oppose the outward curren t 

induced by PTZ, and thus make i t  appear th a t  these in h ib i to r s  were
- j-

d i r e c t ly  b locking a K through Ca -dependent K channels. 

However ap p lica t io n  o f D600 (Fig 3.15a, n=3) and qu in id ine (Fig 

3.15b, n-3) d id not induce an inward cu rre n t ;  there fore  th is

p o s s ib i l i t y  can be discounted.

2+Membrane currents induced by Ca— in je c t io n  in  RPD1.

2+I n t r a c e l lu la r  pressure in je c t io n  o f  Ca induced a repeatable slow

outward curren t in RPD1. The curren t amplitude depended upon the 
2+amount o f  Ca in jec ted  but varied between 1 and 2 nA, and decayed
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Fig 3.14. E ffec ts  o f  FTZ a p p l ica t ion  on the RPD1 ce ll  under voltage 

clamp (hold ing po ten tia l -60mV). (a) App lica tion  o f 20 mM PTZ 

induced an outward cu rre n t in  RPD1. (b) The outward cu rren t induced 

by PTZ was in h ib ite d  by subsequent add it ion  o f 50 mM TEA, 

suggesting th a t  th is  PTZ-induced outward cu rre n t is  caused by an 

e f f lu x  of K through K channels, (c) P r io r  a p p l ica t io n  o f 50 

pM D600 prevented FTZ from inducing an outward cu rre n t ,  as did 

p r io r  ap p lica t io n  o f 1 mM q u in id ine  ( d ) . The arrow marks the onset 

o f  drug ap p l ica t io n .
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(a) RPD1
50 uM D600

v

(b) RPD1 1 mM quinidine
i

50m V

20s

Fig 3.15. A pp lica tion  o f 50 jjM D600 (a) and 1 mM qu in id ine (b) did 

not induce any cu rren t response in voltage clamped RP01 c e l ls  

(holding po ten tia l -60mV). The arrows mark the onset o f  drug 

ap pi ica t io n .
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2 +soon a f te r  Ca in je c t io n  had ceased. I t  took between 15 and 30

seconds to decay to contro l le ve ls  {F ig  3.16a, n-5). The outward
2 +cu rre n t induced by Ca pressure in je c t io n  was abolished when 50 pM 

D600 was added to the bath (F ig  3.16b, n=5) These resu lts  ind ica te  

th a t  PTZ causes a c t iva t io n  o f  an outward K+ cu rre n t ,  s p e c i f ic a l ly
2'j'

v ia  a Ca dependent K channel. The outward curren t induced by
2+ 2+ +Ca also appears to occur through a Ca dependent K channel.

2+This suggests th a t in  the RPD1 c e l l  PTZ acts via in t ra c e l 1 u lar Ca
2 + +

to  ac t iva te  Ca -dependent K channel, re su lt in g  in ah 

hyperpo lar isa tion  of the ce l l  membrane.



(a) RPD1
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(b) RPD1
50 pM 
D600

Ca2+

3nA

20s

o .+.

Fig 3.16. (a) I n t r a c e l lu la r  pressure in je c t io n  o f  Ca in to  a

voltage clamped RPD1 c e l l  (holding po ten t ia l -60mV) produced a

repeatable slow outward cu rren t .  The cu rren t began to  decay soon

a f te r  the in je c t io n  period stopped, (b) The outward current 
2 +produced by Ca in je c t io n  in  the RPD1 ce ll  was in h ib ite d  by 50

2+juM 0600 suggesting th a t  the outward curren t produced by Ca
. . . + 2 + in je c t io n  occurred by an e f f lu x  o f  K through Ca dependent

K channels. The arrow marks ap p lica t ion  of D600 and the bars
2 + .ind ica te  periods o f Ca in je c t io n .
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Section I I

C harac te r is t ics  o f a c y c l ic  AMP-induced inward cu rren t in  B1 and RPD1 

neurones.

In troduc tion

I t  has been denonstrated by a number o f  workers th a t  in t r a c e l lu la r

iontophoresis of the second messenger cAMP induces an inward curren t

in  neurones o f gastropod molluscs ( G i l le t t e  and Green, 1987; McCrohan

and G i l le t t e ,  1988a). The cu rren t induced, however, varies from one

species to another, the major d if fe rences being the ion(s) which

carry  the curren t and the presence or absence o f  voltage s e n s i t iv i ty

o f  the cu rren t.  The cAMP induced inward cu rre n t is  ca rr ied  purely by

Na+ in id e n t i f ie d  neurones of the fo llow ing  species:

Pleurobranchaea c a l i fo rn ic a  (Green and G i l le t t e ,  1983 ), He! ix

pomatia ( A1 denhoff e t a l , 1983), A rch ido r is  montereyensis (Connor and

Hockberger, 1984) and Lymnaea s tagna lis  (McCrohan and G i l le t t e ,

1988a). However in  neurones o f  A p ly  si a c a l i f o r n ic a , a cAMP induced
2+inward cu rren t is  ca rr ied  so le ly  by Ca (Pellmar, 1981). In

4*  4* 24"

neurones o f H e l ix  pomatia, cAMP activa tes Na , K. and Ca

conductances (Kononenko e t  a l , 1983 ), whereas in  an id e n t i f ie d

neurone o f  L i  max maximus, Hockberger and Connor (1984) have described
+ 2+a cAMP induced increase in  Na and Ca conductance. C learly

there is  a d iv e rs i t y  between species and even between neurones o f the 

same species w ith  regard to the c a r r ie r  o f  the cu rren t induced by 

cAMP.

The presence or absence o f  vo ltage s e n s i t iv i t y  o f  the cAMP induced
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cu rren t also va r ies . Pellmar (1981) showed th a t  the cAMP induced

inward curren t in neurones o f the abdominal ganglia o f  Aplys ia

c a l i fo rn ic a  is  vo ltage se n s it iv e ,  amplitude o f  the cu rren t increasing

on depo la r isa tion  o f the c e l l  membrane. S im ila r ly  cAMP induced inward

cu rren t i s  vo ltage se n s it ive  in an id e n t i f ie d  neurone, the ventra l

white c e l l ,  o f the marine moll u scan carn ivore  Pleurobranchaea

cal i fo rn ic a  ( G i l le t t e  and Green, 1987 ); the amplitude o f the cu rren t

increased with depo la r isa tion  of the c e l l  manbrane. Voltage
24-

sen s i t i v i t y  in  t h is  c e l l  was abolished when Ca was removed from
2+the bathing sa line , suggesting th a t  e x t ra c e l lu la r  Ca confers 

vo ltage s e n s i t i v i t y  on the cAMP induced inward cu rren t ( G i l le t t e  and 

Green, 1987). However in  another c e l l  type the amplitude o f the cAMP 

induced inward cu rren t decreased on depo lar isa tion  o f  the c e l l  

membrane (R. G i l le t t e  -  personal communication). This suggests th a t  

vo ltage s e n s i t i v i t y  va r ies  not only between species but also between 

c e l l  types o f the same species. Thus, character!s ing  the voltage 

s e n s i t iv i t y  o f the cAMP induced inward cu rren t can be used to 

d is t in g u ish  c e l ls  and also provide information on the possible 

function  o f  the cAMP induced inward cu rren t.

McCrohan and G i l le t t e  (1988b) showed th a t  PTZ causes an increase in
■j*

the amplitude o f  the cAMP induced inward Na curren t in  the B1 ce ll 

o f Lymnaea. This led  them to conclude th a t  PTZ may exert i t s  e f fe c t  

in  th is  neurone v ia  an increase in in t r a c e l lu la r  cAMP, leading to
■j"

enhancement o f the cAMP-dependent Na current. I f  th is  hypothesis 

were also app licab le  to RPD1, then we might expect to  see a cAMP- 

dependent outward curren t in  th is  c e l l .
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The aim o f experiments described in th is  section was, f i r s t l y ,  to  

examine and compare cAMP-dependent currents in B1 and RPD1, and 

secondly, to  inve s t ig a te  any re la t io n sh ip  between cAMP- and PTZ- 

induced e ffe c ts  in  the two c e l ls .

Results

P ropert ies o f cANP induced curren t in  B1 and RPD1 

In t r a c e l lu la r  iontophoresis o f cAMP induced an inward cu rren t in  both 

the B1 (F ig  3.17a) and RPD1 c e l ls  o f  Lymnaea (F ig  3.17b). The 

ampl itude  o f the cu rren t depended on the magnitude o f  the 

ion tophore t ic  cu rren t pulse. To ensure th a t  s im ila r  amounts o f cAMP 

were iontophoresed in to  each c e l l  type the fo l low ing  protocol was 

used. Cyclic AMP was iontophoresed in to  the B1 c e l l  under voltage 

clamp a t a holding po ten tia l o f  -60mV, inducing an inward cu rren t. 

The cAMP electrode and voltage recording electrode were then removed 

from the B1 ce ll  and inserted in to  the RPD1 c e l l .  Cyclic AMP 

iontophoresis was then repeated in the RPD1 c e l l  using the same 

ion tophore t ic  cu rre n t pulse. Assuming no blocking o f  the 

m icroelectrode (which was checked by monitoring the electrode t i p  

re s is ta n ce ) ,  t h is  procedure resulted in roughly the same amount o f  

cAMP being iontophoresed in to  both c e l l  types. In experiments of th is

kind the amplitude and T, (t ime taken fo r  the cu rren t amplitude to"2
decrease to h a l f  i t s  maximal value) were not s ig n i f i c a n t ly  d i f fe re n t  

in  the two c e l l  types (Table 3.1a, n=6).

In a l l  experiments where a drug's e f fe c t  on the cAMP induced current 

was te s te d , AMP was iontophoresed to provide a c o n tro l .  The drug was 

then added to the bath and cAMP iontophoresed again. A comparison was
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Fig 3.17. C yc lic  AMP dependent inward currents in  the B1 and RPD1 

c e l ls .  Cyclic AMP induced an inward curren t in  the B1 (a) and RPD1 

( b) c e l ls .  C e lls  were vo ltage clamped at a holding po ten tia l o f  

-60mV. There was no s ig n i f ic a n t  d if fe rence  in  the amplitude or 

duration o f the cu rren t in  the two c e l l  types. The cu rren t began to 

decay soon a f te r  the cAMP iontophoresis had ceased, (c) The cAMP 

induced inward cu rren t in  B1 was abolished in  zero sodium sa line . 

The recordings are from the same c e l l ,  in  normal sa line  and in  zero 

Na+ sa lin e , (d) In the RPD1 c e l l ,  cAMP induced inward cu rren t was 

again abolished in  zero sodium sa line .
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Table 3.1. C ha ra c te r is t ics  o f  cAMP induced inward cu rren t in  B1 and 

RPD1 c e l l  types, (a) There was no s ig n i f ic a n t  d if fe rence  between 

the amplitude or o f the cAMP induced inward cu rren t in B1 and 

RPD1 c e l l s ,  (b) In a separate experiment te t ro d o to x in , an in h ib i t o r
4*

o f fa s t  Na channels, did not s ig n i f i c a n t ly  a f fe c t  the amplitude 

o f the cAMP induced inward curren t in  e i th e r  B1 or RPD1 c e l ls .  

Results are presented as the mean + SEM.
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TABLE 3.1

(a) fU RPD1

Ampl itude  ( nA) 2.45 + 0.48 2-75 + 0.49

(secs) 26.9 + 5.6 22.3 + 5.6

( n=6 ) ( n=6 )

""2

(b) B1 Amplitude (nA) RPD1 Amplitude (nA)

Control 1 -5 3 + 0 .1 3  1 .1 9 + 0 .2 9

100 jjM TTX 1.59 + 0.23 1.38 + 0.45

( n=5 , n.s .) ( n=5 , n .s .)
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made between the cAMP induced curren t in  contro l and te s t cond it ions . 

S ta t is t ic a l  analys is involved comparing the two groups (contro l and 

te s t )  using a paired t  te s t .  Results were considered s ig n i f ic a n t  when 

the value o f p was less than 0,05.

In both c e l l  types the c/WP induced cu rren t was abolished when the

sa line was replaced with zero sodium sa line  (F ig  3.17c, B l ,  n=6; Fig

3.17d, RPD1, n=6). This was done by iontophoresing cAMP in a neurone

bathed in normal sa line  to obtain a contro l value. The experiment was

repeated fo r  the same c e ll  bathed in zero sodium sa line . In both c e l l

types the cAMP induced inward curren t was inse n s it ive  to a pp l ica t io n  
-4

o f  10 M te tro d o to x in  (TTX). The amplitude o f  the cAMP induced 

inward cu rren t was not s ig n i f i c a n t ly  d i f fe re n t  from contro l values in 

the Bl ce ll  (Table 3.1b, n=5) or in the RPD1 ce ll (Table 3.1b, n=5). 

These re s u lts  agree with the f ind ings  of Hara e t al (1985) and Connor 

and Hockberger (1984) who showed th a t cAMP induced currents were TTX 

in se n s it ive  in id e n t i f ie d  neurones o f  Ap lys ia  kurodi and Aplys ia  

cal i fo rn ic a  re sp ec t ive ly . These re su lts  suggest th a t  cAMP induced 

inward cu rren t in  B l and RPD1 is  ca rr ied  by Na ions but d i f fe r s  

from the fa s t  Na conductance associated with the r is in g  phase o f  

the action p o te n t ia l ,  both in i t s  slow time course and i t s  

in s e n s i t i v i t y  to  TTX.

Iontophoresis o f  the second messenger cGMP and the cAMP breakdown 

product AMP were ca rr ie d  out to  see i f  e i th e r  o f  these compounds 

could induce an inward cu rren t s im ila r  to th a t  induced by cAMP. This 

was achieved by f i l l i n g  one barrel o f  a doub le-barre lled  

microel ectrode with 0.2 M cAMP and f i l l i n g  one barre l o f  a separate
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doub le -barre lled  m icroelectrode w ith 0.2 M cGMP. Cyclic  AMP was 

iontophoresed in to  the c e l l  as previously described and an inward 

c u rre n t was induced. The cAMP containing m icroelectrode was then 

removed from the c e l l  and replaced by the cGMP conta in ing 

m icroe lectrode, and an iontophoretic  cu rren t pulse passed between the 

two b a rre ls  to iontophorese cGMP in to  the c e l l .  In tracel 1 ul ar 

ion tophores is  o f  cGMP did not induce an inward cu rren t in  the Bl (Fig 

3.18a, n-3) or RPD1 c e l l  (F ig  3.18b, n=3). In some neurones o f 

A rch id o r is  i t  has been found th a t cGMP does induce an inward cu rren t 

(Connor and Hockberger, 1984), but i t  appears th a t ,  in  B l and RPD1 a t 

le a s t ,  th is  inward cu rren t does not occur. In neurones o f  H e ! ix , 

Aldenhoff e t  al (19 83) showed th a t  cGMP (as well as ATP, ADP and 

adenosine) did not induce any cu rren t.

The in a c t ive  cAMP breakdown product, AMP, was iontophoresed in to  both

c e l l  types. The protocol was the same as th a t  used fo r  cGMP

iontophoresis. Iontophoresis of AMP d id not induce a current in

e i th e r  the Bl ce ll  (Fig 3.18c, n=3) or in  the RPD1 ce ll (Fig 3.18d,

n ^ ) .  These re su lts  ind ica te  th a t  the mechanism which activa tes the 
+

inward Na cu rren t is  s p e c i f ic a l ly  ac tiva ted  by cAMP.

Voltage in s e n s i t i v i t y  o f cAMP induced curren t in  Bl and RPD1 

The cAMP induced inward cu rren t was vo ltage in s e n s i t iv e  over the 

membrane po ten tia l range -100 to  -20mV in  both B l and RPD1. Cells 

were vo ltage clamped a t holding p o te n t ia ls  between -100 and -20mV, 

cAMP was iontophoresed and the amplitude o f the cu rren t measured. 

There was no s ig n i f ic a n t  voltage s e n s i t iv i t y  o f  the amplitude o f  the 

cAMP induced inward curren t in  the Bl c e l l  (F ig  3.19, n-5) or the
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Fig 3.18. In t r a c e l lu la r  iontophoresis o f the c y c l ic  nucleotide 

c y c l ic  GMP (cGMP) did not induce an inward cu rren t in  e i th e r  Bl (a) 

or RPD1 (b ) .  S im i la r ly ,  iontophoresis o f the cAMP breakdown product 

AMP did not induced a curren t in Bl (c) or RPD1 ( d ) . The traces in 

the l e f t  hand column ind ica te  contro l ion tophore t ic  in je c t io n s  o f 

cAMP. The traces in  the r ig h t  hand column show ion tophoretic  

in je c t io n s  o f  cGMP or AMP. Neurones were vo ltage clamped a t -60mV. 

The bars in d ica te  5 second ion tophore t ic  cu rren t pulses.
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RPDl ce ll  { Fig 3.20, n=5).

E f fe c t  o f d iva le n t cations on the cAMP induced curren t in  Bl and 

RFD1

?+As Pleurobranchaea is  a marine mollusc and the Ca concentration
2+o f  i t s  sa line  is  10 mM, then i t  i s  possib le  th a t the lower Ca

concentration in the sa line  used fo r  Lymnaea (4 mM) is  too low to

confer vo ltage s e n s i t iv i t y  on the cAMP induced inward cu rre n t ,  as i t

appears to do in the ventral white c e l l  o f  Pleurobranchaea (G i l le t te
2+and Green, 1987). Experiments were ca rr ied  out in  which the Ca

concentra tion  in  the sa line  was increased to  12 mM to see i f  any

vo ltage s e n s i t i v i t y  was induced. The amplitude o f  the cAMP induced

inward cu rren t was s ig n i f ic a n t ly  reduced in  both c e l l  types in sa line
2+conta in ing 12 mM Ca . The reduction in amplitude o f  the cAMP

induced inward cu rren t was seen over the membrane poten tia l range -90

to  -30mV. In the Bl c e l l ,  the amplitude o f  cAMP induced inward

cu rren t was s ig n i f ic a n t ly  (p <  0.05) reduced a t  -90, -60 and -30mV

(Fig 3.21, n=5). At a holding potentia l o f  -60mV the cAMP induced

inward cu rren t was reduced by 45% (Table 3.2a, n=5, p < 0.05)

compared to th a t  in normal sa line . In the RPDl ce ll the cAMP induced

inward curren t was s ig n i f ic a n t ly  reduced a t a l l  three holding

p o te n t ia ls  (Fig 3.22, n-5, p K 0 .05). At a holding po ten tia l o f  -60mV

the cAMP induced inward curren t was reduced by 46% (Table 3.2b, n=5,
2+p <  0 .05). These re su lts  suggest th a t  elevated e x t ra c e l lu la r  Ca

does not confer voltage s e n s i t iv i t y  on the cAMP induced inward
24-cu rren t in  e i th e r  c e l l  type. However the fa c t  th a t  Ca causes a 

reduction in  i t s  amplitude suggests th a t  i t  does i n h ib i t  the movement
4*

o f  Na in to  the c e l l  .
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The e f fe c t  o f  another d iva le n t ca t io n , co b a lt ,  was tested to see

whether i t  was also capable o f  reducing the cu rren t amplitude. In the
2 +B1 c e ll  add it ion  o f  10 mM Co to normal sa line  resulted in a

s ig n i f ic a n t  reduction o f  81% in the cAMP induced inward current

amplitude (Table 3.2c, n=5, p<f 0 .05), and s im i la r ly  in  the RPD1 ce ll 
2+10 mM Co caused a s ig n i f ic a n t  reduction o f 76% in the cAMP

induced inward cu rren t amplitude (Table 3.2d, n=5, p ^  0.05). These

re s u lts  suggest th a t  d iv a le n t  cations possess the a b i l i t y  to reduce

the amplitude o f the cAMP induced inward cu rren t in  both c e l l  types.

A possible explanation fo r  th is  is  th a t  the d iv a le n t  cations plug the
+

channel and prevent Na from crossing the c e l l  membrane ( G i l le t t e  

and Green, 1987).

2+E f fe c t  o f removing e x t ra c e l lu la r  Ca— on the cAMP induced c u r re n t .
2+Removal o f Ca from the sa line  resu lted  in  a s ig n i f ic a n t  increase 

in  the amplitude o f the cAMP induced inward cu rre n t in  both c e l l  

types. In the B1 c e l l  the amplitude o f cAMP induced inward curren t 

increased by 52% (Table 3.3a, n=5, p <  0.05) and in the RPD1 ce ll the 

amplitude o f  cAMP induced inward curren t was increased by 36% (Table 

3 . 3b, n=5, p <  0 .05).

2+Another means used to reduce extracel 1 ul ar Ca was to add 10 mM
2+EGTA, a Ca che la to r ,  to  normal sa lin e . A dd it ion  o f  10 mM EGTA to 

normal sa line  resu lted  in  a s ig n i f ic a n t  increase in  the amplitude o f

cAMP induced cu rren t by 78% in the B1 ce ll  (Table 3.3c, n=5,

p <  0.05) and by 98% in the RPD1 c e l l  (Table 3.3d, n=5, p <  0.05). 

The greater increase in the cAMP induced inward cu rren t amplitude 

seen in c e l ls  treated with EGTA compared to c e l ls  treated with sa line
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Table 3.2. E f fe c t  o f  d iv a le n t  ca tions on the cAMP induced inward
2+current in  the B1 and RPD1 c e l ls .  High Ca saline caused a 

s ig n i f ic a n t  reduction in  the amplitude o f  the cAMP induced inward 

in  both the B1 (a) and RPD1 c e l ls  (b ). Likewise addit ion  of 10 mM 

CoC^ to normal sa line  caused a s ig n i f i c a n t  reduction in the cAMP 

induced inward currents o f  both the B1 { c) and RPD1 c e l ls  (d ) . A ll 

experiments were ca rr ied  out under voltage clamp at a holding 

potentia l o f  -60mV. Results are presented as the mean + SEM. The 

s ta t i s t i c a l  te s t  used was the paired t - t e s t .  A value o f  less than 

0.05 fo r  p ind ica ted  s t a t i s t i c a l  s ign if ica nce .
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( a)

Control 

High calcium

( b)

Control 

High calcium

(c)

Control 

lOmM coba lt

(d)

Control 

lOmM cobalt

TABLE 3.2

B1 Amplitude (nA)

0.97 + 0.16 

0.53 + 0.07 

( n=5, p < 0.05)

RPD1 Amplitude (nA)

2.58 + 0. 23 

1.39 + 0.30 

( n=5 , p <f 0.05)

B1 Amplitude (nA)

2 . 08 + 0. 30 

0.39 + 0.06 

(n=5, p <  0.005)

RPD1 Amplitude (nA) 

3.46 + 0.81 

0.82 + 0.22 

(n=5, p < 0.05)
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2+Table 3.3. E f fe c t  o f  low Ca sa line  on the amplitude o f  the cAMP 

induced inward cu rren t in  the B1 and RPD1 c e l ls .  Omission o f 

CaCl^ from the sa line  resulted in a s ig n i f i c a n t  increase in

amplitude o f the cAMP induced inward curren t in  both the B1 (a) and 

RPD1 c e l ls  ( b) . Add it ion  o f  10 mM EGTA, a Ca^+ ch e la to r ,  to

normal sa line  resu lted in  a s ig n i f ic a n t  increase in  the amplitude 

o f  the cAMP induced inward cu rren t in  both the B1 (c) and RPD1 

c e l ls  (d ). Cells were held under voltage clamp a t  -60mV.

S ta t is t ic a l  te s t  used was a paired t  te s t .  Results are expressed as

mean + SEM.
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(a)

Control 

1 ow ca lc i  um

(b)

Control 

Low ca lc i  um

(c)

Control 

lOmM EGTA

( d )

Control 

lOmM EGTA

TABLE 3.3

B1 Amplitude (nA) 

1 .2 4 + 0 .1 4  

1.88 + 0.22 

( n=5, p < 0.01)

RPD1 Amplitude (nA) 

1.71 + 0 .1 9  

2.32 + 0.15 

( n=5 , p < 0.005)

B1 Amplitude (nA) 

2.22 + 1.05 

3.95 + 1.59 

( n=5 , p < 0.05)

RPD1 Amplitude (nA) 

2.60 + 0.83 

5.16 + 1.35 

( n-5 , p <  0.05)
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24-
in  which the Ca had been om itted , may be explained by the fa c t

?+th a t ,  in the l a t t e r ,  there is  probably a residual Ca

concentration o f about 10 uM owing to leaching and im pu r i t ie s  in

o ther chemicals used to make up the sa line  (G i l le t te  and Green,
24-1987 ), but w ith EGTA the Ca concentration is  buffered to a lower 

concentration than th is .

E f fe c t  on membrane p o ten t ia l o f increased in t r a c e l lu la r  cAMP.

Since iontophoresis o f  cAMP induced an inward curren t in B1 and RPD1

i t  would be expected th a t increased in t r a c e l lu la r  cAMP leve ls  in  both

c e l l  types would cause e xc ita t ion  o f the c e l l  and depo lar isa tion  o f

the c e l l  membrane. To inves t iga te  t h i s ,  in t r a c e l lu la r  cAMP le ve ls

were increased in one of two ways; f i r s t l y ,  by d i re c t ly

iontophoresing cAMP in to  the c e l l  , and secondly, using two

pharmacological agents. In the B1 c e l l ,  in t ra ce l 1 ul ar iontophoresis

o f  cAMP resu lted  in depo la r isa tion  o f  the c e l l  membrane o f between 9

and 17mV, accompanied by bursts o f action po te n tia ls  (F ig  3.23a,

n -5 ) .  This e f fe c t  lasted fo r  a considerable period , between 4.5 and 7

minutes, a f te r  the cAMP iontophoresis had stopped. This is  a very

in te re s t in g  f ind ing  as i t  shows th a t  c/WP's e f fe c ts  la s t  longer in

the unclamped c e l l  than they do in  the voltage clamped c e l l .  This

suggests th a t  the process o f vo ltage clamping c e l ls  in h ib i t s  the

a b i l i t y  o f  cAMP to induce long la s t in g  e f fe c ts .  Bath app lica t ion  o f

the membrane permeable c/WP analogue 8 - (4 -chi oro phenyl th io ) -  adenosine

3 '5 ' - c y c l ic  monophosphate (CPTcAMP), resu lted  in bursting a c t i v i t y  in
-4the B1 ce ll  . A concentration o f  10 M CPTcAMP induced a 

d epo la r isa tion  of the c e l l  manbrane by 13.8 + 1.3mV, accompanied by 

bursts o f  ac tion  p o te n t ia ls  (Fig 3.23b, n = l l ) .  In a s im ila r  fash ion,
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Fig 3.23. E f fe c t  o f  increased in t ra c e l l  ul ar concentrations o f cAMP

in  the B1 c e l l ,  (a) In t ra c e l lu la r  iontophoresis o f  cAMP resulted in

depo la risa tion  o f the ce ll  membrane accompanied by bursts o f  action

po ten tia ls . This e f fe c t  lasted fo r  up to  7 minutes. ( b) Bath

app lica t ion  o f the membrane permeable c y c l ic  AMP analogue, CPTcAMP,
-4a t a concentration o f 10 M, induced depo la r isa tion  o f the ce l l  

membrane accompanied by superimposed bursts o f  action p o te n t ia ls ,

(c) App lica tion  o f 10“^ IBMX, a phosphodiesterase in h ib i t o r ,  

produced s im i la r  e f fe c ts .  Bar ind ica tes  a 5 second ion tophoretic  

current pul se.
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(a) B1

'

cAMP

■ ■1

(b) B1

Control 10-4  M CPTcAMP 
5 mins

(c) B1

Control

ii m
10-4  M IBMX 
5 mins 50mV

20s
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bath a p p l ica t io n  o f  the cAMP phosphodiesterase in h ib i t o r ,  IBMX, 

induced a membrane depo la r isa tion  of 15.3 + 3.7mV with superimposed 

bursts o f  action p o te n t ia ls  (Fig 3.23c, n=15). These resu lts  show 

th a t  increased in t ra ce l 1 u la r cAMP le v e ls ,  produced in three d i f fe re n t  

ways in  the B1 c e l l ,  induced bursting a c t i v i t y  s im ila r  to th a t  

induced by 20 mM PTZ. N-tmfc- o f these three manoeuvres was capable 

o f  producing PDS in  the B1 c e l l ,  suggesting th a t  e i th e r  they do not 

induce a large enough increase in in trace l 1 ul ar cAMP concentrations, 

or th a t  cAMP, no matter what the concentra tion , is  incapable o f  

inducing PDS in th is  c e l l .

In the RPD1 c e l l ,  in tra ce l 1 ul ar iontophoresis o f  cAMP caused a

depo la r isa tion  of the c e l l  membrane by up to  15mV, and an increase in

the f i r i n g  a c t i v i t y  o f  the c e l l  (Fig 3.24a, n=5). This increase in

a c t iv i t y  was short la s t in g  and died away almost immediately a f te r  the

cAMP iontophoresis had ceased. Neither CPTcAMP or IBMX had any marked
-4e f fe c t  on the a c t i v i t y  o f the RPD1 c e l l .  Bath app lica t ion  of 10 M

CPTcAMP (Fig 3.24b, n=5) and 10“ ^ M IBMX (Fig 3.24c, n=9) did not
tV\

r e s u l t  in  a s ig n i f ic a n t  increase^the f i r i n g  a c t i v i t y  in the RPD1 

c e l l .  These e f fe c ts  are d i f f i c u l t  to expla in since i t  was been shown 

in Fig 3.24a th a t  increased in tra ce l 1 ul ar cAMP does cause an increase 

in  f i r i n g  a c t i v i t y .

E f fe c t  o f IBMX on the cAMP induced curren t in  B1 and RPD1.

The re su lts  described above ind icate  th a t ,  in  the RPD1 c e l l ,  IBMX's 

e f fe c ts  are not what one would expect. As IBMX is  a phosphodiesterase 

in h ib i t o r  i t  should re s u l t  in  increased in t r a c e l lu la r  cAMP leve ls  and 

correspond!'ngly increase the cAMP induced inward curren t. The e f fe c t
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Fig 3.24. (a) I n t r a c e l lu la r  iontophoresis o f  c4MP in to  the RPD1

c e l l  resu lted  in  an increase in  a c t i v i t y  in  the RPD1 c e l l  which

lasted fo r  a sho rt period o f  time before the c e l l  resumed i t s
-4endogenous pacemaker a c t i v i t y .  Bath ap p lica t io n  o f 10 M CPTcAMP

(b) or IBMX (c) did not r e s u l t  in  any s ig n i f ic a n t  increase in  

a c t i v i t y  in  the RPD1 c e l l .  Concentrations o f  both drugs up to  1 mM 

were used but did not re s u l t  in  any s ig n i f ic a n t  e f fe c t .  The arrows 

ind ica te  addition o f drugs and the bar ind icates a 5 second 

ion tophore t ic  cu rren t pulse.
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(a) RPD1

cAMP

(b) RPD1

A
I

10 -4  M CPTcAMP

(c) RPD1

A  
I

10-4  M IBMX
50mV

20s
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o f IBMX on cAMP induced inward curren t in  both c e l l  types was

examined.. Isobutylmethyl xanthine caused an increase in  both amplitude

and duration o f cAMP induced inward cu rren t in the B1 ce ll  in a dose

dependent manner. The amplitude o f the cAMP induced inward current

increased in  a sigmoid fashion with the maximal amplitude occurring

a t a concentration of 0.1 mM (F ig  3.25, n=6 ). In 0.1 mM IBMX, the

cu rren t amplitude was s ig n i f ic a n t ly  increased to  169% o f  i t s  control

value (Table 3.4a. 0 =6 ). P lo t t in g  T, o f the current against IBMX
2

concentration also revealed a dose dependent increase in  T^ (Fig

3.26, n=6 ) . At a concentration o f 0.05 mM IBMX there was no increase 

in  the T, which is  d i f f i c u l t  to exp la in . As w ith  the curren t'a
amplitude, the maximal increase in  T, occurred a t the concentration 

o f  0.1 mM IBMX. where the Ti was increased to 308% o f i t s  control 

value (Table 3.4a, n=6 ). In the RPD1 c e l l  0.1 mM IBMX caused a

s ig n i f ic a n t  increase in  the Tj but did not s ig n i f ic a n t ly  a f fe c t  the
'Z

amplitude of the cAMP induced inward cu rren t (Table 3.4b, n=6 ). The 

fa c t  th a t  0.1 mM IBMX did not cause a s ig n i f ic a n t  increase in  the 

amplitude o f the cAMP induced inward current is  d i f f i c u l t  to explain,

when there was a s ig n i f i c a n t  increase o f  484% in the T! (Table
"2

3.4b, n=6 ).

E f fe c t  o f PTZ on the cAMP induced curren t in  B1 and RPD1.

In Section I the possible mode of action o f PTZ in  B1 and RPD1 was

described. The re su lts  ind icated th a t  PTZ probably acts to increase 
2+in t ra ce l 1 ul ar Ca concentrations in  both c e l l  types. This, 

however, may only be p a r t  o f  i t s  mode o f  ac t ion . McCrohan and 

G i l le t te  (1988b) suggested th a t  PTZ may act as a phosphodiesterase 

in h ib i t o r ,  as i t  caused a s ig n i f ic a n t  increase in  amplitude o f the
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Fig 3.25. E f fe c t  o f IBMX on amplitude o f the cAMP induced inward 

curren t in  B l. This p lo t  was obtained by adding various 

concentrations o f IBMX (0.005 - 0-5 mM) to s a lin e , iontophoresing 

cAMP and measuring the amplitude o f the cu rren t produced. Each 

p o in t  represents the mean o f 5 c e l ls ;  *  ind ica te  a s ig n i f i c a n t  

d if fe re n ce  (p <  0.05) from the contro l (100%) value. S ta t is t ic a l  

te s t  used was a paired t  te s t .  The maximal increase in  amplitude 

occurred a t a concentration o f 0.1 mM IBMX. Bars ind ica te  the SEM.
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Concentration of IBMX
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Table 3.4. E f fe c t  o f 0.1 mM IBMX on the amplitude and o f the 

cAMP induced inward curren t in  the B1 and RPD1 c e l l s ,  (a) In the B1

ce l l  0.1 mM IBMX caused a s ig n i f i c a n t  increase in  both the

amplitude and T, o f the cAMP induced inward cu rren t,  (b) In the 

RPD1 ce ll 0.1 mM IBMX caused a s ig n i f ic a n t  increase in  the T. but 

had no s ig n i f ic a n t  e f fe c t  on the amplitude o f the cAMP induced

inward cu rren t .  S ta t is t ic s  used was a paired t  t e s t .  Results are

shown as mean + SEM.
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(a)

Control 

100 juM IBMX

(b)

Control 

100 jjM IBMX

TABLE 3.4

B1

Amplitude { nA) T, (sec)
—   ------------------

1.81 + 0.29 9.00 + 3.36

3.07 + 0.49 27.7 + 9 .4 4

( n=6, p < 0.05) ( n=6, p <  0.05)

RPD1

Amplitude (nA) T, (sec)----------------

2.87 + 0.29 5.08 + 1 - 0

3.19 + 0.42 24.6 + 6.4

{ n=6 , n .s . )  (n=6, p < 0.05)
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Fig 3.26. The e f fe c t  o f  IBMX concentration on the Tt o f  cAMP 

induced inward curent. The cAMP induced cu rren t displayed a dose- 

dependent response. The protocol was the same as th a t described in 

Fig 3.25. The lack o f e f fe c t  using 0.05 mM IBMX is  d i f f i c u l t  to 

e xp la in . *  ind ica te  the po in ts  which are s ig n i f i c a n t ly  d i f f e r e n t  

(p <  0.05) from con tro l (100%) values. S ta t is t ic a l  te s t  used was 

the paired t  te s t .  Bars ind ica te  SEM.
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cAMP induced cu rren t in  Bl. To inves t iga te  whether cAMP is  involved

in the convulsant e f fe c ts  o f PTZ, the e f fe c t  o f PTZ on the cAMP

induced cu rren t in  both c e l l  types was examined. App lica tion  o f PTZ

caused opposite e f fe c ts  on the amplitude o f cAMP induced inward

cu rren t in  the two c e l l  types. In the Bl c e l l  40 mM PTZ caused a

s ig n i f ic a n t  increase o f 59% in  the amplitude o f the cAMP induced

inward cu rren t (Table 3.5a, n=6, p < 0 .05), whereas in  the RPD1 ce ll

bath app lica t ion  o f 40 mM PTZ caused a s ig n i f ic a n t  decrease of 39% in

the amplitude o f  cAMP induced inward cu rren t (Table 3.5b, n=9,

p <  0.05). These re su lts  do not support McCrohan and G i l le t t e 's

(1988b) hypothesis tha t PTZ acts v ia  an increase in  cAMP. a t  leas t in

the RPD1 c e l l .  An a lte rn a t iv e  explanation is  th a t  elevated 
2 +i n t r a c e l lu la r  Ca , caused by FTZ, acts to  increase cAMP-induced

current in  B l and to decrease the same curren t in RPD1. A possible

mechanism could be d i r e c t  enhancement by Ca o f  Na channel
2+a c t iva t io n  in  B l ,  and a c t iva t io n  o f  phosphodiesterase by Ca in

RPD1. The fo l lo w in g  experiment was therefore  ca rr ied  out, to see
2+whether elevated Ca would mimic PTZ's e ffe c ts  on the cAMP-induced 

cu rren t.

2+E ffe c t  o f increased in t r a c e l lu la r  Ca—  on the cAMP induced current 

i n Bl and RPD1.

Cyclic AMP was iontophoresed in to  Bl and RPD1 against a superimposed
2 + . 2 

background o f Ca in je c t io n .  In Bl Ca ions were continuously

pressure in jec ted  u n t i l  a steady inward curren t was seen. This acted

as a baseline against vdiich cAMP induced cu rren t was measured. Cyclic

AMP was then iontophoresed in to  the c e l l  (F ig  3.27a, n=3),
2+In t ra c e l lu l  ar in je c t io n  o f Ca ions did not have any s ig n i f ic a n t



151



Table 3.5. E ffe c t o f e x t ra c e l lu la r  PTZ on the amplitude o f the cAMP

induced inward current in the Bl and RPD1 c e l l s ,  (a) In the Bl c e l l

a pp lica t io n  o f 40 mM PTZ caused a s ig n i f i c a n t  increase in  the 

amplitude of cAMP induced inward cu rren t,  but 40 mM PTZ caused a 

s ig n i f i c a n t  decrease in  the amplitude o f  cAMP induced inward 

current in the RPD1 c e l l  (b ). S ta t is t ic a l  te s t  used was the paired

t  te s t .  Results are shown as mean + SEM.
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(a)

Control 

40mM PTZ

(b)

Control 

40mM PTZ

TABLE 3.5

Bl Amplitude (nA) 

1.41 + 0.22 

2-24 + 0.47 

( n=6 . p <  0.05)

RPD1 Amplitude (nA)

2.19 + 0,39 

1.33 + 0.30 

( n=9, p <  0.005)
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2 +Table 3.6. E f fe c t  o f  increased in t r a c e l1ul ar Ca on cAMP induced
2+curren t in Bl and RPD1. In trace l 1 u lar pressure in je c t io n  o f Ca 

did not produce any s ig n i f ic a n t  e f fe c t  on the cAMP induced inward 

curren t amplitude in  the Bl ( c) or RPD1 c e l ls  ( d ) . Results are 

shown as mean + SEM.
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(a)

Control 

Cal c i m  i nj .

(b)

Control 

Calci m  i n j .

TABLE 3.6

Bl Amplitude ( nA)

2.92 + 0 . 57 

2.85 + 0.63 

(n=3, n .s . )

RPD1 Amplitude (nA) 

3.54 + 0. 79 

3.38 + 0.98 

(n=3 n .s . )
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e f fe c t  on amplitude o f  the cAMP induced cu rren t {Table 3.6a, n=3). 
f\

2+The same protocol was used fo r  the RPD1 c e l l  except th a t Ca

in je c t io n  resulted in  a steady outward cu rren t (Fig 3.27b, n=3).
2+In trace l 1 u lar in je c t io n  o f Ca had no s ig n i f ic a n t  e f fe c t  on cAMP

induced cu rren t amplitude (Table 3.6b, n=3). These re su lts  ind ica te
2+th a t  in tra ce l 1 ul ar Ca does not d i r e c t ly  a f fe c t  the cAMP induced

inward cu rren t in  e i th e r  c e l l  type, and there fore  th a t  the e ffe c ts  o f
2+PTZ on cAMP-induced current are not mediated via Ca .
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Section I I I

Comparison o f cAMP and PTZ induced inward currents in Bl neurones.

In tro d u c t io n .

The re su lts  presented in  the previous sections have shown

s im i la r i t i e s  between PTZ and cAMP induced currents in  the Bl ce ll  o f

Lymnaea. Both are dependent upon e x tra c e l lu la r  Na+ , are TTX-

in s e n s i t iv e  and inward in  d ire c t io n .  Fur thermore, elevated
2+e x tra c e l lu la r  Ca appears to i n h ib i t  cAMP induced inward curren t 

as well as PTZ-induced depo lar isa tion . In the Bl c e l l ,  increased 

in t r a c e l lu la r  cAMP leve ls  led to bursting  a c t i v i t y ,  as d id bath 

a p p l ica t io n  o f  PTZ. This supported McCrohan and G i l le t t e 's  (1988b) 

hypothesis th a t  PTZ may act in  Bl v ia  increased in t r a c e l lu la r  leve ls  

o f  cAMP. leading to bursting a c t i v i t y .  Addit ional evidence f o r  th is  

is  th a t  PTZ caused an increase in the amplitude of the cAMP induced

inward cu rren t in the Bl c e l l .  These resu lts  agree with the f ind ings

of Onozuka e t al (1983), who showed th a t PTZ activated adenylate

cyclase re s u lt in g  in  increased in t r a c e l lu la r  cAMP concentrations in 

the id e n t i f ie d  D neurone o f  Euhadra.

In th is  section the cha rac te r is t ics  o f  the PTZ- and cAMP-induced 

currents in  81 are compared in re la t io n  to th e i r  voltage s e n s i t iv i t y  

and t h e i r  response to three pharmacological agents. These three 

pharmacological agents were carb amaze pi ne, amiloride and TMB-8. 

Ca rb amaze pi ne (CBZ) is  an anticonvulsant agent in  everyday c l in ic a l  

use. I t s  monbrane s ta b i l is in g  properties are thought to be due to i t s  

a b i l i t y  to  block fa s t  sodiun channels associated w ith  the r is in g
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phase o f the action po ten tia l (Schauf e t  a l , 1974), but there is  a

growing body o f  evidence to suggest th a t  i t  may also bind to

adenosine receptors and exert a t le a s t p a r t  o f  i t s  e f fe c t  v ia  th is

rou te  (S k e r r i t ,  1983a). Amiloride is  a d iu re t ic  drug which a t 100 um

in h ib i t s  the Na :H el ectroneutral exchanger (Benos, 1982), but

which a t  a lower concentration o f 10 uM in h ib i t s  Na+ conductance

pathways in e p i th e l ia l  tissue (Sariban-Sohraby and Benos, 1986). More

recent f ind ings suggest th a t  amiloride is  also capable o f in h ib i t in g  
2+T-type Ca channels in  neuronal t is s u e ,  w ith  a K50 o f  30 uM

(Tang e t a l , 1988). Trimethoxybenzoic acid (TMB-8) has been reported 
2+to  block Ca channels (Ikeda e t  a l , 1984). There is  some

2+controversy however as to whether these Ca channels are in the

neuronal membrane or are in the membrane o f  the in t ra ce l 1 ul ar stores.

The end re s u l t  o f TMB-81 s e f fe c ts  is  the same - a reduction in 
2+i n t r a c e l lu la r  Ca concentrations.

Results

E f fe c t  o f holding po ten tia l on the cAMP and PTZ induced cu rren ts .

As i l lu s t r a te d  in Fig 3.19 (Section I I )  the cAMP induced curren t in 

B l i s  vo ltage in se n s it iv e  over the membrane p o ten t ia l range -100 to 

-20mV. The amplitude o f the current was not s ig n i f i c a n t ly  d i f fe re n t  

over th is  manbrane po ten tia l range.

The e f fe c t  o f holding potentia l on the PTZ induced curren t was 

studied by examining the steady s ta te  I-V curve in  the presence and 

absence o f e x trace ll  u la r ly  applied PTZ. The steady sta te  I-V  curve 

reveals the sum o f the slow currents present over a range o f  membrane 

p o te n tia ls .  I t  does not show fa s t  currents as these in a c t iva te  too
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q u ick ly .  The p o in t  where the curve crosses the x -ax is  ind ica tes  the 

equ il ib r ium  po ten tia l ( re s t in g  p o te n t ia l ;  Fig 3.28). App lica tion  o f 

40 mM PTZ caused a s h i f t  in  the curve in the d ire c t io n  o f  inward 

cu rren t,  leading to a s h i f t  in  equ il ib r ium  po ten tia l o f about 30mV, 

in the depo laris ing d ire c t io n  (Fig 3.28, n=7). Pentylenetetrazol also 

induced a region o f negative slope conductance over the menbrane 

po ten tia l range -65 to -50mV (Fig 3 .2 8 ) . This s ig n i f ie s  a region o f  

inward cu rren t development which i s  voltage sens it ive  and reaches i t s  

peak a t  -50mV. A s im i la r  region o f  negative slope conductance has 

also been shown in  neurones o f  T r i to n ia  (Partr idge, 1975), Euhadra 

(Sugaya e t  a l , 1978) and Aplysia (David e t  a l , 1974) and appears to  

be a property o f  neurones which are excited by PTZ. The region o f 

negative slope conductance ind ica tes bursting a b i l i t y  in  the c e l l .  In 

the R15 neurone o f  A p ly s ia , an endogenously burs ting  c e l l ,  there is  a 

region o f  endogenous negative slope conductance (Levitan and Levitan, 

1988).

Thus there appears to  be a fundamental d if fe rence  in  the PTZ and cAMP 

induced inward currents. Cyclic AMP-induced curren t in B l and RPD1 is  

vo ltage in s e n s i t iv e  (Section I I ) .  The negative slope conductance 

induced by PTZ, s ig n i f ie s  th a t  the PTZ-induced curren t i s  voltage 

s e n s it ive .  I t  develops a t close to res ting  membrane poten tia l and 

increases in amplitude w ith depo la r isa tion . This would tend to cause 

e x c ita t io n  in  the c e l l  and expla ins the depo la r isa tion  and bursting 

a c t i v i t y  induced by PTZ in B l.

E f fe c t  o f carbamazepine on the PTZ and cAMP induced cu rren ts . 

Carbamazepine in h ib ite d  PTZ-induced e f fe c ts  in B l.  App lica tion of 20
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Fig 3.28. In the Bl c e l l ,  40 mM FTZ caused a s h i f t  in the steady 

s ta te  I-V  curve. This experiment was ca rr ied  out by voltage 

clamping the c e l l  a t -60mV and imposing a slow ramp o f + 50mV on 

the membrane po ten tia l v ia  a function  generator connected to the 

clamp input of the vo ltage clamp. The curve sh if te d  in  the 

d ire c t io n  of inward cu rren t and a region o f negative slope 

conductance (NSC) appeared over the membrane po ten t ia l range -65 to 

-50mV.
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mM PTZ induced a membrane depo la r isa tion  o f  13.3 + 2.7iriV, accompanied 

by bursts o f  action po ten t ia ls .  Subsequent addition  of 1 mM CBZ 

resulted in  a delayed reversal o f  these PTZ-induced e f fe c ts ,  and 

repo lar ised  the membrane by 11.4 + 2.1nW (F ig  3.29a, n=5) a f te r  a

period o f 170 + 33 secs. Following pretreatment with 1 mM CBZ, 

a p p l ica t io n  o f 20 mM PTZ s t i l l  induced burs ting  a c t iv i t y  and a

depo la r isa tion  o f  14.9 4.2mV in  the Bl c e l l .  However, th is  was

short l iv e d  and the membrane potentia l repo la rised  by 13.7 + 4.1mV 

w ith in  198 + 27 secs (Fig 3.29b, n=5). Carbamazepine in h ib ite d  the 

PTZ induced inward current in Bl. Applica tion  o f 40 mM PTZ induced an 

inward cu rren t o f  1.89 +_ 0.42 nA ( n=5). Subsequent add it ion  o f  1 mM 

CBZ caused a reduction o f th is  curren t by 1.54 + 0.34 nA (F ig  3.29c), 

a f te r  a period o f 235 + 52 secs. P rio r  app lica t io n  o f  1 mM CBZ in  the 

vo ltage clamped Bl c e l l  did not prevent 40 mM PTZ from inducing an 

inward cu rren t o f  2.45 + 0.45 nA, but th is  inward curren t was

tra n s ie n t and decayed by 2.01 + 0.37 nA, a f t e r  210 + 3 7  secs (Fig

3.29d, n=5). As CBZ does no t prevent the PTZ induced curren t, but 

in h ib i t s  i t  a f te r  i t  has been produced, th is  suggests th a t CBZ can 

on ly  block the PTZ activa ted channel a f te r  i t  has been opened by PTZ. 

Carbamazepine reversed PTZ's e f fe c ts  on the the steady s tate  I-V 

curve. Figure 3.30 shows th a t ,  as p rev ious ly  described, FTZ caused a 

s h i f t  in  the steady state I-V  curve in the d ire c t io n  o f inward 

cu rre n t and induced a region o f  negative slope conductance. 

Subsequent app lica t io n  o f 1 mM CBZ caused a reversal of these PTZ- 

induced e f fe c ts  and returned the steady s ta te  I-V curve to close to 

i t s  contro l leve l (n=5).

Carbamazepine had no e f fe c t  on the amplitude or T, o f the cAMP
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Fig 3.29. E f fe c t  o f  c arb amaze pi ne (CBZ) on the PTZ-induced e ffe c ts  

in  the B1 c e l l ,  (a) App lica tion  o f 20 mM PTZ induced depo lar isa tion  

o f  the c e l l  membrane accompanied by bursts o f  action p o te n t ia ls .  

Subsequent addition of 1 mM CBZ abolished these PTZ-induced 

e f fe c ts .  ( b) P r io r  app lica t ion  o f 1 mM CBZ d id  no t prevent 20 mM 

PTZ frcm inducing bursting a c t i v i t y  but th is  was short l iv e d  and 

died out w ith  a few minutes, (c) App lica tion  o f  40 mM PTZ induced 

an inward curren t in  a voltage clamped c e l l ,  held a t  -60mV. 

Subsequent app lica t ion  o f  1 mM CBZ in h ib i te d  the cu rren t a f te r  a 

delay of about 3 minutes, (d) P r io r  a pp l ica t io n  o f 1 mM CBZ did not 

stop 40 mM PTZ from inducing an inward cu rren t in  the B1 neurone 

but th is  cu rren t was short l iv e d  a decayed a f te r  several minutes.
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Fig 3.30. E f fe c t  o f  carb amaze pine on the 40 mM PTZ induced e ffe c ts  

on the steady s ta te  I-V  curve. Carbamazepine (1 mM) caused a 

reversal o f  PTZ induced e ffe c ts  on the steady state  I-V curve. The 

s h i f t  in  d ire c t io n  o f inward cu rren t and the region o f negative 

slope conductance were reversed and the steady state I-V curve 

returned to close to i t s  contro l le v e l .
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induced inward cu rren t in the B1 ce ll (Fig 3.33a, Table 3.7a, n=5).

These re su lts  suggest th a t  CBZ blocks the slow inward current induced 

by PTZ in  the BX c e l l .  This would i n h ib i t  the depo laris ing cu rren t 

which probably underlies the production o f  bursting  a c t iv i t y  induced 

by PTZ in  the B1 c e l l ,  and hence expla in CBZ's anticonvulsant e ffe c ts  

in  th is  preparation. Since CBZ d id  not a f fe c t  the cAMP induced inward 

cu rre n t ,  t h is  suggests th a t  the depo la r isa tion  produced by FTZ is  not 

due to cAMP induced inward cu rren t. Thus i t  seems th a t  the PTZ- and 

cAMP-induced inward currents are d is t in c t  and are manifested via 

separate conductance pathways.

E f fe c t  o f am iloride on PTZ and cAMP induced e f fe c ts .

Amiloride in h ib i te d  PTZ induced e f fe c ts  in the B1 c e l l .  In the Bl 

c e l l  treated with 20 mM FTZ the membrane depolarised by 14.6 + 2.1mV 

(n=5) and bursting  a c t i v i t y  was induced. Subsequent addition of 10 uM 

am ilo r ide  caused a delayed reversal o f  th is  e f fe c t  and repolarised 

the c e l l  membrane by 13.3 + 1.8mV (F ig  3.31a). The time taken fo r  

am ilo r ide  to  e xe rt  i t s  f u l l  e f fe c t  was 145 + 40 secs (Fig 3.31a). 

Pretreatment o f c e l ls  with 10 uM amiloride d id not prevent 20 mM PTZ 

from inducing bursting a c t i v i t y  in the B l c e l l ,  leading to 

depo la r isa tion  o f the c e l l  membrane by 16.0 3.2nW (n=5). However

th is  e f fe c t  o f  PTZ was short l ive d  and the c e l l  membrane repolarised 

by 15.8 + 4.7mV a f t e r  190 + 1 7  secs (F ig  3.31b). Amiloride also 

in h ib i te d  the inward cu rren t induced by PTZ in the Bl ce ll . 

App lica tion  o f 40 mM PTZ to a voltage clamped Bl c e l l  induced an 

inward cu rren t o f 2.77 + 0.38 nA. Add it ion  o f  10 uM am iloride caused 

a reduction o f th is  cu rren t to 0.83 + 0.28 nA over a period of about
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Fig 3.31. E f fe c t  o f  am iloride on FTZ induced e ffe c ts  in  the Bl 

c e l l ,  (a) App lica tion  o f 20 mM PTZ induced burs ting  a c t i v i t y  in  the 

Bl c e l l .  Subsequent app lica t ion  o f 10 juM am ilo r ide  caused an 

in h ib i t io n  o f bursting  a c t i v i t y  and repol a r is a t io n  o f the ce ll  

membrane. This e f fe c t  took about 2 minutes to  occur. ( b) P r io r  

a p p l ica t io n  of 10 jjM amiloride d id  not prevent 20 mM PTZ from 

inducing bursting  a c t i v i t y  in  the Bl ce ll  but th is  a c t i v i t y  only 

las ted  about 2 minutes, (c )  App lica tion  o f 40 mM PTZ induced an 

inward cu rren t in  the Bl c e l l ,  held a t -60mV. This cu rren t was 

in h ib i te d  by 10 pM amiloride a f te r  a period o f about 2 minutes. ( d) 

P r io r  app lica t io n  o f  10 jjM am ilo r ide  did not prevent PTZ from 

inducing an inward curren t in  the Bl c e l l  but th is  inward curren t 

decayed a f te r  about 2 minutes.
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170 + 29 secs (Fig 3.31c, n=7). Pretreatment with 10 uM am iloride did 

not prevent PTZ from inducing an inward cu rren t of 5.53 + 0.29 nA in 

the Bl c e l l ,  but th is  cu rren t however was sho rt l iv e d  and decreased 

by 3.67 + 0.49 nA a f t e r  268 + 34 secs (F ig  3.31d, n=5). The cAMP 

induced inward cu rren t was not s ig n i f i c a n t ly  a ffected by bath 

app lica t ion  o f 10 uM amiloride (F ig  3.33b, Table 3.7b, n=5). The fa c t  

th a t a m ilo r id e 1 s blocking e f fe c t  on PTZ-induced responses was not 

immediate suggests th a t  i t s  e f fe c t  is  not d i r e c t ly  on the PTZ 

activa ted  channel .

E f fe c t  o f TNB-8 on PTZ and cAM3 induced e f fe c ts .

In the Bl ce ll 0 .2  mM TMB-8 in h ib ite d  PTZ induced bursting (Fig 3.32, 

n=5). This is  the same e f fe c t  as described in Section I (F ig  3.9a). 

A pp lica tion  o f 20 mM PTZ to the B l ce ll  resu lted in  bursting  

a c t i v i t y .  Subsequent add it ion  o f 0.2 mM TMB-8 caused an in h ib i t io n  o f 

th is  f i r i n g  a c t i v i t y  and repolarised the c e l l  membrane. The cAMP 

induced inward curren t was not s ig n i f i c a n t ly  a ffec ted  by 0.2 mM TMB-8 

(Fig 3.33c, Table 3.7c, n=7).

These re su lts  support the hypothesis th a t  increased in t r a c e l lu la r  
2 +Ca concentrations play a p a r t  in  PTZ's mode o f a c t ion . The lack 

o f e f fe c t  o f TMB-8 on the cAMP induced inward curren t suggests, as do 

the e f fe c ts  o f  CBZ and am ilo r ide , th a t  the FTZ and cAMP induced 

inward currents are d is t in c t .
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Fig 3.32. E f fe c t  o f  trimethoxybenzoic acid (TMB-8) on PTZ induced 

bursting  a c t i v i t y  in  the Bl c e l l .  App lica tion  o f 20 mM PTZ induced 

bursting  a c t i v i t y  in  the Bl c e l l .  Subsequent app lica t io n  o f  0.2 mM 

TMB-8 in h ib i te d  th is  a c t i v i t y  and repo lar ised  the c e l l  membrane. 

This e f fe c t  took about 10 minutes to occur.
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Fig 3.33. E f fe c t  o f  CBZ, am ilo r ide  and TMB-8 on cAMP induced 

curren t. The cAMP induced curren t was not s ig n i f i c a n t ly  a ffec ted  by 

e i th e r  1 mM CBZ (a ) ,  10 jjM am ilo r ide  ( b) or 0 .2  mM TMB-8 (c) . Bars 

in d ica te  5 second ion tophore t ic  cu rren t pulses. See also Table 3.7.
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Table 3.7. E f fe c t  o f  CBZ, am ilo r ide  and TMB-8 on the cAMP induced 

inward currents in  the Bl c e l l .  The cAMP induced inward current was

not s ig n i f i c a n t ly  a ffected by 1 mM CBZ (a ) ,  10 jjM am ilo r ide  (b) or
s

0.2 mM TMB-8 (c ) .  S ta t i t ic s  used a paired t  te s t .  Results aren
shown as mean + SEM.
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{ a)

Control 

1 mM CBZ

(b)

Control

10 jjM amiloride

(c)

Control 

0.2 mM TMB-8

TABLE 3.7

Amp!itude (nA) 

3.23 + 0.25 

3.26 + 0.33 

(n=5, n .s . )

(s)

23.0 + 6.0

21.0 + 6.6

Amplitude (nA) Ti (s)  —

4.00 + 0.13 34.0 + 3.0

3.80 + 0.24 33.0 + 6.0

(n=5, n .s .)

Amplitude (nA) T, (s)---------------  - 3

2.57 + 0.47 22.3 + 5 . 6

2.81 + 0.51 26.9 + 10.3

(n=5, n .s . )



CHAPTER 4

DISCUSSION

The opposing e f fe c ts  o f  PTZ in  the two c e l l  types, Bl and RPD1 in  

Lymnaea o ffe red  an exce llen t opportun ity to study the c e l lu la r  

mechanisms underlying PTZ's e f fe c ts .  The p a r t icu l ar information 

sought in  th is  study was to c la s s i fy  sp e c if ic  membrane conductances 

ac tiva ted  by PTZ in  each c e l l .  This would ind ica te  whether PTZ acted 

via a common mechanism in both c e l ls .  The fac t th a t ,  in  most c e l l  

types examined. PTZ caused an increase in  e x c i t a b i l i t y ,  suggests th a t 

there is  a common d is t r ib u t io n  o f receptors and channels which 

produce th is  increased a c t i v i t y  among the population o f c e l ls .  

Studying the opposing e f fe c ts  o f PTZ in B l and RPD1 might give an 

in s ig h t  in to  the mechanism underlying d i f fe r e n t  c e l ls '  s u s c e p t ib i l i ty  

to seizure, and furthermore provide information about ce r ta in  

in t r in s i c  c h a ra c te r is t ic s  possessed by c e l ls  which have the capacity 

to e x h ib i t  seizure a c t i v i t y .

Concentration o f PTZ used.

The concentration o f PTZ used to induce e p ile p t i fo rm  a c t iv i t y  in  

molluscan preparations varies from 20 mM (Pacheco e t a l , 1981) to 120 

mM (Williamson and C r i l l ,  1976). The concentration range used in th is  

study was 20 to 40 mM. I t  has been shown by Lucke e t  al (1989) tha t 

the concentration o f PTZ required to induce e p i le p t ic  attacks in ra ts  

and mice varies from 2 mM (80 mg/kg in jec ted  i . p . )  to 8 mM (125 mg/kg 

in jec ted  i . p . ) .  The concentrations used in  th is  study were 

higher than th is  but were s t i l l  w ith in  a reasonable concentration
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range.

The e f fe c t  of 40 mM PTZ on the Bl c e l l  was to induce a PDS. This type 

o f  behaviour i s  never seen in  'n o rm a l',  untreated neurones.

The bursting a c t i v i t y  induced by 

20 mM PTZ did not ind ica te  e p ile p t ifo rm  a c t iv i t y  as th is  type o f 

behaviour is  endogenous to  ce r ta in  c e l ls ;  e .g . the R15 ce ll  o f  

A p lys ia  (Levitan and Levitan, 1988).

S i te  o f action of PTZ.

Pentylenetetrazol is  an uncharged molecule and is  able to cross the

c e l l  membrane (Pacheco e t  a l , 1981). However, re s u lts  presented by

Onozuka e t al (1983), Pacheco e t al (1981) and Hartung and Hermann

(1987) ind ica te  th a t FTZ's s i te  o f action is  extracel 1 ul ar. Using the

D neurone o f Euhadra peliomphala, Onozuka e t al (1983) gave evidence

th a t  PTZ binds to a receptor on the e x t ra c e l lu la r  s ide o f the ce l l

monbrane, which is  associated with the adenylate cyclase enzyme

system. The binding o f  PTZ to  the receptor is  thought to re s u l t  in

increased adenylate cyclase a c t i v i t y  leading to ra ised i ntracel 1 ul ar

cAMP leve ls  (Onozuka e t  a l , 1983). The cAMP is  thought to  cause
2+release o f in t r a c e l l  u la r ly  stored Ca which re su lts  in  bursting 

a c t i v i t y  in  the c e l l .  Pacheco e t  al (1981) in jec ted  PTZ 

in t ra c e l 1 ul a r ly  in to  neurones in the v iscera l and parie ta l ganglia o f 

Lymnaea s ta g n a l is , to  produce an in t r a c e l lu la r  concentration 

equiva lent to the concentration required extracel 1 ul a r ly  to induce



180

bursting a c t i v i t y .  They found th a t  in trace l 1 ul a r ly  in jec ted  FTZ 

resu lted  in  a b r ie f  increase in a c t iv i t y  which ceased as soon as the 

PTZ in je c t io n  had stopped. They concluded from th is  th a t

in tra ce l 1 ul ar in je c t io n  of PTZ had no s ig n i f ic a n t  e f fe c t  on the 

neurones. Hartung and Hermann (1987) showed th a t  e x t ra c e l lu la r  

a pp l ica t io n  o f PTZ induced bursting  a c t iv i t y  in  id e n t i f ie d  neurones 

° ’f: A p ly s ia . They found th a t  PTZ in h ib ite d  1̂  y, 1  ̂ I^ a and 

I^ .  However in t ra ce l  1 ul ar in je c t io n  o f PTZ did not a f fe c t  1^ y or 

£a and so i t  was concluded th a t PTZ was not acting

i ntracel 1 ul a r ly .

The re s u lts  presented in  th is  thes is  show th a t  in t r a c e l lu la r

in je c t io n  o f PTZ in to  the Bl and RPD1 neurones, resu lt ing  in  a 

ca lcu la ted in t r a c e l lu l  ar concentration o f about 40 mM, caused a 

tra n s ie n t increase in  a c t i v i t y  in  both B l and RPD1 c e l ls .  This 

a c t i v i t y  cannot be put down to  an increase in  the c e l l  volume

a c t iva t in g  s tre tch  receptors as control in je c t io n s  o f a s im i la r  

volume o f 0.1 M KC1 produced no s ig n i f ic a n t  e f fe c t .  There are several 

o ther possible explanations, however. F i r s t l y ,  PTZ may act 

i ntracel 1 ul a r ly  but is  broken down so qu ick ly  th a t  the e f fe c t  is  very 

sho rt l iv e d .  Secondly, in je c ted  PTZ may move out o f the c e l l  and bind 

w ith  extracel 1 ul ar receptor s i te s ;  owing to d i lu t io n  in the bath, the 

concentration o f PTZ a t the external side o f the membrane would 

ra p id ly  decrease leading to short l ive d  e f fe c ts .  However, the f ind in g  

th a t in je c t io n  o f PTZ resu lted in  a tra n s ien t increase in a c t i v i t y  in  

RPD1 i s  in  d i r e c t  con tras t to the in h ib i to r y  e f fe c ts  induced by 

e x t ra c e l lu la r  a p p l ica t io n  of PTZ, arguing against th is  second 

possib i l  i t y .
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The fa c t  th a t  e x tra ce ll  ul a r ly  applied PTZ induced long la s t in g  

e f fe c ts  in  both c e l l  types does not necessarily  mean th a t  i t  does act 

extracel 1 ul a r l y . I t  could cross the c e l l  membrane and act 

in t ra c e l 1 ul a r l y . Thus the s i te  o f action o f PTZ in Bl and RPD1 is  

unc lear; PTZ may act in tra ce l 1 ul a r l y , e x tra ce l!u l  a r ly  or both.

The e ffe c ts  o f PTZ are not due to osmolarity changes.

As the concentration o f PTZ used in  th is  study was comparatively 

high, i t  could be argued th a t  the e ffe c ts  o f PTZ were due to 

osm olarity  changes. This has been tested by Williamson and C r i l l  

(1976), Pacheco e t al (1981) and Fowler and Partr idge (1984). 

Williamson and C r i l l  (1976) and Fowler and Partr idge (1984) 

subs t itu ted  equimolar sucrose fo r PTZ and found th a t  th is  had no 

s ig n i f ic a n t  e f fe c t  on the ce ll  membrane. Sucrose however, unlike PTZ, 

is  not membrane permeable. Pacheco e t al (1981) s u b s t i tu te d  

equimolar urea, which i s  membrane permeable, fo r  PTZ and found th a t 

th is  too had no s ig n i f ic a n t  e f fe c t  on the c e l l  membrane p o te n t ia l .  

These re su lts  provide goocL evidence th a t  PTZ's e f fe c ts  in

mol luscan neurones are not due to changes in osm olarity .

The ro le  o f e x t ra c e l lu la r  Ca^- in  PTZ's e f fe c ts .

This has been studied by a nunber o f workers, notably Pacheco e t al

(1981) and Papp e t  al (1990). Pacheco e t  al (1981) omitted Ca^+

from sa line  and found th a t th is  d id not s ig n i f ic a n t ly  a f fe c t  the

a b i l i t y  o f  PTZ to  induce bursting a c t i v i t y  in  Lymnaea neurones.

However i t  has been demonstrated by G i l le t te  and Green (1987) th a t
2+sa line  from which Ca i s  omitted s t i l l  contains between 6 and 10 

2+uM Ca , owing to leaching from the glassware and im purit ies in
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other chemicals. This would probably s t i l l  contain enough Ca to

provide a considerable concentration gradient across the c e ll
2 +membrane { in trace l 1 ul ar concentration o f  Ca in  molluscan neurones

is  about 100 nM; Connor and Hockberger, 1985). Thus the conclusion 
2 +th a t  Ca i s  not needed fo r  PTZ's e ffe c ts  is  not necessarily  v a l id .

Papp e t al (1990) investiga ted  the e f fe c t  o f organic and inorganic 
2 +Ca channel antagonists on PTZ induced bursting in  Helix  neurones.

They found th a t  the d iva le n t cations nickel , coba lt and manganese, a t

a concentration o f 15 mM, in h ib i te d  the slow inward cu rren t induced
2+by PTZ. They also found th a t  the inorganic Ca channel antagonists

d il t ia ze m  and verapamil inh ib ite d  the PTZ-induced slow inward cu rren t

a t  concentrations o f  between 1 and 2 mM. This f in d in g  has also been

reported by A ltrup  e t  al (1991). These re su lts  ind ica te  th a t 
2+e x t ra c e l lu la r  Ca is  important in PTZ-induced e ffe c ts  in  He!ix 

neurones, possib ly as a c a r r ie r  or m od if ie r o f  th is  cu rren t.

Results presented in th is  thes is  agree with the f ind ing  th a t 
2 +e x t ra c e l lu la r  Ca i s  necessary fo r  PTZ-induced e f fe c ts .  The

2+f in d in g  th a t  sa line containing Ca buffered to 1 uM did not

prevent PTZ from inducing bursting a c t i v i t y  in the Bl ce ll  does not
2+mean th a t  e x t ra c e l lu la r  Ca has no ro le  to play in  PTZ-induced

2+e f fe c ts .  Indeed, lowering the concentration o f Ca in  the saline 

led to PTZ inducing a depo la r isa tion  in the Bl c e l l  which was greater 

than th a t  seen in  contro l sa line . This agrees w ith  the f ind ings  o f 

Papp e t  al (1990) who showed th a t  d iva le n t cations i n h ib i t  the inward 

c u rre n t induced by PTZ. The reason fo r  th is  i s  not c le a r  but i t  is  

possible th a t  d iva le n t ca tions "plug" the PTZ activated conductance 

pathway, or a l te rn a t iv e ly  th a t  d iva le n t  ca tions have surface
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2 +p o ten tia l e f fe c ts .  Extracel 1 ul ar Ca may also be used to
2+'recharge' in t ra ce l 1 ul ar Ca stores. This i s  discussed below.

2+The ro le  o f in t r a c e l lu la r  Ca— in PTZ1s e f fe c t s .
2+I n t ra c e l lu la r  Ca is  thought to play a p ivo ta l ro le  in PTZ-induced

e p ile p t i fo rm  a c t i v i t y  in  moll use an neurones (Sugaya and Onozuka,

197 8; Doerner e t a l , 1982). Onozuka e t al (1983) proposed th a t PTZ

a c t iva te s  adenylate cyclase leading to increased le ve ls  o f cAMP which
2+cause release o f stored Ca from in t r a c e l lu la r  lysosome-1 i ke

granules. The Ca is  thought to migrate to  the in te rna l s ide o f

the c e l l  membrane where i t  acts to produce conformational changes in

the c e l l  membrane re su lt in g  in  burs ting  a c t i v i t y .  Doerner e t  a l ,
2+(1982) also suggested th a t  in t r a c e l lu la r  release o f Ca is

involved in  a t le a s t p a r t  o f  PTZ's mode o f ac tion  since carbonyl

cyanide m-chlorophenyl hydrozone, a substance which releases 
2+mitochondria l Ca , mimics the e f fe c ts  o f  PTZ. Hartung and Herman

(1987) however, showed th a t  PTZ is  capable o f inducing e p ile p t ifo rm
2+a c t i v i t y  in  Aplysia neurones where the in t r a c e l lu la r  Ca has been

2+buffered by EGTA, suggesting th a t  increased Ca may not play a 

ro le  in  PTZ-induced e ffe c ts  in a l l  ce l l  types.

The resu lts  in th is  thes is  provide strong evidence to ind ica te  th a t
2 +PTZ does act v ia  an increase in in t r a c e l lu la r  Ca in  Bl and RPD1,

2+probably by causing a release o f Ca from i n tracel 1 ul ar stores.
2+In t r a c e l lu la r  in je c t io n  o f Ca mimicked the e f fe c ts  o f PTZ in  both

2+neurones. In the Bl c e l l  i n t r a c e l lu la r  in je c t io n  o f Ca produced 

s im i la r  e f fe c ts  to those induced by bath a p p l ica t io n  o f PTZ, namely 

i t  induced bursting a c t i v i t y  and a sodium dependent, TTX inse ns it ive
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the e f fe c ts  produced by e x t ra c e l lu la r  a p p l ica t io n  o f PTZ and

2+i n t r a c e l lu la r  in je c t io n  o f Ca . Both induced an outward cu rren t

which was in h ib ite d  by D600 which, a t the concentration used, 
2 "1“in h ib i t s  Ca dependent K channel (Go!a and Ducreux, 1985).

24-
In je c t io n  of EGTA, the Ca c h e la to r ,  reversed the e f fe c ts  of PTZ

in  both c e l l s ,  again suggesting th a t  PTZ acts v ia  e levation o f  
2+in trace ! 1 ul ar Ca .

2+The in t r a c e l lu la r  Ca appears, a t  le a s t  in  p a r t ,  to come from

in tra ce l 1 ul ar stores. The f ind ing  th a t TMB-8 reversed the e ffe c ts  o f

PTZ in  both ce l l  types supports th is  view. There is  some controversy

however, as to TMB-8's precise mode o f action. Ikeda et al (1984)
2+showed th a t  TMB-8 in h ib i t s  release o f  Ca from in t r a c e l lu la r

stores in  ra t  pancreatic a c in i .  However Koj ima e t  al (1986) suggested
2+th a t  TMB-8 in h ib i t s  Ca in f lu x  across the external membrane o f

adrenal glomerulosa c e l ls .  The end re s u l t  o f TMB-8* s actions in both

cases is  the same; i t  w i l l  i n h ib i t  an increase in  in t ra c e l l  ul ar
2+Ca . The time taken for TMB-8 to i n h ib i t  the PTZ-induced e ffe c ts

(about 10 minutes) may be due to a t le a s t two fa c to rs :  f i r s t l y ,  the

time taken fo r TMB-8 to d if fu se  across the c e l l  menbrane and block 
2 +Ca re lease, and secondly, the time taken fo r  the in t r a c e l lu la r  
2+Ca concentration to decrease to a leve l where i t  is  incapable o f 

inducing e x c i ta t io n .  Addit ional evidence fo r  the hypothesis th a t PTZ
O J.

causes release o f in t ra c e l !  ul a r ly  stored Ca is  found in the
2+e ffe c ts  o f  e x tra ce ll  ul a r ly  applied Co . I f  PTZ simply caused a

2+ 2+ 2+Ca in f lu x  the addition o f Co , a Ca antagon ist (Byerly et

a l ,  1982 ), would prevent PTZ from having any e f fe c t .  The re su lts
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2 +produced by Co in  the Bl ce l l  ind ica te  th a t  PTZ has two e ffe c ts
2+ 2+ invo lv ing  Ca . The fa c t  th a t  Co did not i n h ib i t  PTZ's e f fe c ts

, 2+ completely suggests th a t  increased in t r a c e l lu la r  Ca o r ig ina tes

from in t r a c e l lu la r  ra ther than e x t ra c e l lu la r  sources. However, the

burs ting  a c t i v i t y  induced by PTZ was not maintained in  the presence 
2+of Co . Bursting declined and ceased over a period o f about 2 

minutes, although i t  took over 10 minutes fo r  the membrane potentia l 

to re tu rn  to i t s  control le v e l .

A m ilo r ide  also in h ib ite d  the inward cu rren t and bursting a c t i v i t y
24-induced by PTZ in Bl. P r io r app lica t ion  o f am iloride, l ik e  Co ,

d id not prevent PTZ from inducing short l ive d  e f fe c ts .  I t  has been

reported by Tang e t al (1988) th a t  amiloride (30 juM) in h ib i t s  T-type 
2 +

Ca channels in  neuronal t is s u e .  Therefore a possib le  mode o f
2+action o f amiloride is  th a t  i t  in h ib i t s  Ca in f lu x  in to  B l. Since

2+i t  has been proposed th a t  PTZ causes the release o f  Ca from

in t r a c e l lu la r  s to res, any PTZ induced e f fe c t  re ly in g  on th is  release

would die away as the stores became depleted. However, in  the absence 
2+of Ca channel b locker, PTZ's e f fe c ts  were maintained for as long

2+as PTZ was present in  the bath, suggesting th a t  the Ca stores
2+were being replenished; th is  could occur v ia an in f lu x  o f Ca

across the neuronal membrane. P rio r  treatment o f  the Bl ce ll w ith 
2+amiloride or Co did not prevent PTZ from inducing a short period

2+o f  bursting a c t i v i t y .  This could be due to the release o f Ca from
2+in t ra ce l 1 ul ar stores. However i f  Ca in f lu x  is  blocked the stores

might be unable to r e f i l l  and PTZ-induced e ffe c ts  would die away. The
24-

fa c t  th a t  p r io r  ap p lica t ion  o f  amiloride or Co did not prevent 

PTZ from inducing a sho rt period o f  bursting  a c t i v i t y  supports the
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2 +view th a t  the increase in  Ca thought to  be induced by PTZ i s

in t r a c e l lu la r  in  o r ig in .  Amiloride has also been reported to d i r e c t ly  
+

i n h ib i t  Na conductance pathways in e p i th e l ia l  t issue (Sariban-

Sohraby and Benos, 1986), but i t  appears un like ly  th a t amiloride 

d i r e c t ly  in h ib i t s  the PTZ-activated conductance pathway as i t s  e f fe c t  

is  not immediate.

Ca rb amaze pi ne in h ib i te d  bursting  a c t i v i t y  and the inward cu rren t

induced by PTZ in B l. The fa c t  th a t  p r io r  app lica t ion  of CBZ did not

prevent PTZ from inducing short l iv e d  e ffe c ts  suggests th a t CBZ does

not block the inac t ive  PTZ activa ted  conductance pathway but th a t  i t

can only block i t  a f te r  i t  has been opened by PTZ. As CBZ's e ffe c ts

are s im ila r  in  nature and time course to am ilo r ide1 s, i t  seems

reasonable to hypothesize th a t  CBZ may be acting in a s im ila r  way to
2+amiloride i . e .  in h ib i t in g  Ca in f lu x .  Indeed phenytoin, another

2 +c l i n i c a l l y  used an ticonvu lsan t, has been reported to i n h ib i t  Ca 

channels {Fe rrende ll i  and K inscherf, 1977a).

2+The e f fe c ts  o f  Co in  the RPD1 ce ll were d i f fe r e n t  from those in

B l. Cobalt ions d id  not i n h ib i t  PTZ-induced hyper pol a r i sat ion even
2 +over a period o f  60 minutes. This suggests a d if fe rence  in Co 's

e f fe c ts  in B l and RPD1. I t  i s  possible th a t  the Ca2+ stores in RPD1
2+contain a greater amount o f  Ca than in  the Bl c e l l ,  and hence the

2+blocking e f fe c ts  o f Co d id  not have such an immediate e f fe c t .

This seems u n l ik e ly  as the PTZ-induced hyperpo larisa tion  was
2+maintained fo r  more than an hour, and the Ca stores would sure ly

be exhausted in  th a t  time ( M i l l e r ,  1988). Another p o s s ib i l i t y  could
2+be th a t  in RPD1, Ca is  recycl ed in trace l 1 ul a r l y , but in Bl new
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2+ 2 +e x t ra c e l lu la r  Ca is  required to  replenish depleted Ca stores.
2+A less l i k e l y  p o s s ib i l i t y  is  th a t  the Ca channels in RPD1 are,

2+un like  those in  Bl, in s e n s i t iv e  to Co , but such heterogeneity 

seems u n like ly .

2+The type o f  in t ra c e l 1 ul ar Ca store involved is  not known. In
2+Euhadra Sugaya and Onozuka (1978) describe the Ca stores as 

lysosome-like due to t h e i r  appearance, but no such studies have been 

ca rr ied  out in  Lymnaea.

2+I t  appears the re fo re  th a t  Ca ions are important in  the generation

of PTZ-induced e p i le p t i fo rm  a c t iv i t y  in  Lymnaea neurones. In

mammalian tissue th is  also appears to  be the case. In r a t  cerebral

cortex i t  has been shown th a t  there is  a decrease in e x t ra c e l lu la r  
2+Ca during PTZ-induced e p ile p t i fo rm  a c t i v i t y  (Heinemann e t  a l ,

2+1977). This is  thought to be due to an in f lu x  o f Ca in to  c o r t ic a l

neurones. Calcium channel antagonists have also been shown to in h ib i t

bursting a c t i v i t y  in  ra t  CA3 hippocampal neurones (Prince, 1978).
2+More re cen t ly  De Lorenzo (1988) has shown th a t  Ca channel

antagonists are capable o f in h ib i t in g  e p ile p t i fo rm  a c t iv i t y  in

2 +mammalian preparations. I t  is  not c lea r whether the Ca in f lu x  is

maintained during the seizure in  mammalian preparations, as i t  seems
2+to be in  Bl and RPD1. I t  appears th a t  the i n i t i a l  Ca in f lu x  has

two func t ions : f i r s t l y  to depolarise the c e l l ,  leading to a c t iva t ion
2+ 2+ o f  voltage se n s it ive  Ca channels re su lt in g  in  fu r th e r  Ca

2+i n f lu x ,  and secondly, to ac tiva te  Ca dependent processes which 

maintain the e p ile p t i fo rm  a c t iv i t y  (Traub and L linas , 1979).
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S pec if ic  conductances ac tiva ted  by PTZ.

I t  appears th a t  in each c e l l  type PTZ activated only one conductance
■f

pathway; Na cu rren t in  Bl and K cu rren t in  RPD1. This contrasts 

with the f ind ings  o f Hartung and Hermann (1987), who showed th a t PTZ 

a ffe c ts  a t le a s t  four conductance pathways in an id e n t i f ie d  Aplysia

neurone. I t  i s  l i k e l y  th a t  the PTZ-induced currents in B l and RPD1
2+ 2 + are Ca activa ted  since in je c t io n  o f  Ca ions induced s im i la r

currents in  the two c e l ls .  In Bl blockade o f PTZ-induced Na+
+

conductance by s u b s t i tu t io n  o f e x t ra c e l lu la r  Na did no t reveal any
+ 2+ residual outward K curren t. This suggests th a t  Ca -dependent

4*
K channel i s  absent in  Bl and explains why there was no

re p o la r is in g  phase during PDS. Doerner e t al (1981) showed th a t  PTZ-

induced PDS in  neurones in  the v iscera l and pa r ie ta l ganglia o f

Lymnaea is  in te rrup ted  by periods o f repol a r i sat ion where the c e l l

membrane repolarised to  control le v e ls .  This could be due to
2+ +a c t iva t io n  o f  a Ca -dependent K channel. In RPD1, PTZ d id  not

2+ +appear to  ac t iva te  Ca -dependent Na cu rren t as blockade o f  the

PTZ-induced outward cu rren t d id not reveal any underlying inward 

cu r re n t .  This would explain PTZ's i n a b i l i t y  to induce depo la r isa tion  

and bursting  in th is  c e l l  type.

2 + + 2+ +Both Ca -ac t iva te d  Na /ca t ion  currents and Ca activa ted K

curren t have been documented previously (Ewald and Levitan, 1987).
2 +Inward Ca activa ted cation curren t has been shown to be important

during burs ting  a c t i v i t y .  In the R15 neurone o f A p ly s ia , there is  a 
2+b u ild  up o f  Ca ins id e  the c e l l  during a burs t o f  action

2+ 2+p o te n tia ls  (Gorman and Thomas, 1980). This Ca activa tes a Ca -

dependent inward cation cu rren t,  which resu lts  in  fu r th e r  exc ita t ion
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o f  the c e l l .  (The burst is  in te rrup ted  by a period o f cun
2 +  4-

hyperpol a r is a t io n  caused by ac t iva t ion  o f a Ca dependent K

channel ) .  A s im i la r  s i tu a t io n  may occur in B l, pentylenetetrazol
2+ 2+ re su lts  in  increased in t r a c e l lu la r  Ca which activates a Ca -

-f"
dependent Na conductance and leads to an inward curren t and

+increased e xc ita t io n  in  the c e l l .  The Ca -dependent K curren t

i s  fu n c t io n a l ly  opposite to  the Na cu rren t in  th a t  i t  re su lts  in

hyperpol a ri sation o f the c e l l  membrane. In RPD1 the increased 
2+i n t r a c e l lu la r  Ca produced by PTZ leads to a c t iv a t io n  o f th is  

cu rre n t ,  re s u lt in g  in  a long la s t in g  hyperpol a r i  sation o f the c e l l

membrane. I t  appears th a t  Bl and RPD1 each possess only one o f  these
4* 4-

curren ts ; Na and K currents respec tive ly . In D neurones o f

Euhadra, i t  appears th a t  both conductances are present (Sugaya e t  a l ,

1988); a p p l ica t ion  o f PTZ leads to an i n i t i a l  period o f bursting
2+ +a c t i v i t y ,  due to a c t iv a t io n  o f  the Ca -dependent Na channel. 

This gives way however to a period o f hyperpo larisa tion  thought to be
2+ . j.

due to a c t iv a t io n  o f a Ca -dependent K channel .

Possible functiona l ro les fo r  the PTZ-activated cu rren ts .

The Bl ce ll  is  normally quiescent and i t s  function is  thought to be 

to ac t iva te  the sal iva ry  glands during feeding, when i t  generates 

bursts o f  action p o te n t ia ls  (Benjamin e t  a l , 1979). In order to do

th is  i t  must depolarise and an obvious mechanism fo r th is

depo la r isa t ion  is  v ia  an in f lu x  o f Na+. Whether th is  invo lves
2+ + +PTZ/Ca -a c t iva te d  Na in f lu x ,  cAMP-induced Na in f lu x ,  or both

i s not known .

The RPD1 c e ll  normally f i r e s  in a pacemaker fashion. Presumably such
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a c t i v i t y  is  necessary fo r  i t s  normal function (which i s  unknown) and 

th is  might be impaired i f  i t  became e i th e r  too depolarised or 

hyperpol arised - I t  would appear th a t th is  c e l l  never or ra re ly  f i r e s  

bursts o f action p o te n t ia ls ,  and i t s  a c t i v i t y  remains f a i r l y  

constant. Any tendency fo r  the c e l l  to become depolarised, and hence

a c t iva te  voltage dependent cation channels would tend to be countered
2+ 2+ by the increased in t r a c e l lu la r  Ca a c t iva t in g  the Ca -dependent

K channel, resu lt ing  in hyperpol a ri sation o f the c e l l  membrane.

C yc lic  AMP induced a TTX-insensit ive  inward Nck- cu rren t in  Bl and 

RPD1.

The mode o f  ac tion  o f  PTZ in  Bl was p rev ious ly  suggested to be via 

increased in t r a c e l lu la r  cAMP (McCrohan and G i l le t t e ,  1988b), which 

ac tiva ted  the cAMP induced inward curren t leading to  depo la r isa t ion . 

Since PTZ had been shown to increase the amplitude o f  the cAMP 

induced cu rre n t th is  appeared p laus ib le  (McCrohan and G i l le t t e ,  

1988b). Indeed PTZ has been shown to increase in tra ce l 1 ul ar cAMP 

concentrations in ra t  (F e rre nd e ll i  and K inscherf, 1977a; Onozuka e t  

a l , 1989) and mol lu  scan CNS (Onozuka e t a l , 1983). Since elevated 

leve ls  o f  cAMP are in t im a te ly  l inked with e p i le p t i fo rm  a c t i v i t y  

(F e r re n d e l l i ,  1984) a ro le  fo r  cAMP in PTZ induced a c t i v i t y  in Bl 

seemed poss ib le . I t  was also in te re s t in g  to see whether PTZ's 

opposing e f fe c ts  on Bl and RPD1 were somehow mediated by cAMP.

In trace l 1 ul ar iontophoresis o f cAMP in to  both Bl and RPD1 induced an 

inward curren t. S im ila r responses have been reported in  neurones o f 

Ap lys ia  c a l i fo rn ic a  (Pellmar, 1981), A rch ido r is  odheneri (Connor and 

Hockberger, 1984), H e l ix  pomatia (Aldenhoff e t  a l , 1983), L i  max



maximus (Hockberger and Connor, 1984), Lymnaea s tagna lis  (McCrohan 

and G i l le t t e ,  1988a), P1eurobranchaea c a l i fo rn ic a  (G i l le t te  and 

Green, 1987) and Triopha ca ta linea  (Connor and Hockberger, 1984). 

Thus th is  cAMP induced curren t appears to be a phenomenon common to a 

number o f  gastropod molluscs. The res ting  level o f cAMP in  molluscan 

neurones has been ca lcu la ted  to be between 10 and 20 uM (Hockberger 

and Yamane, 1984). Connor and Hockberger (1984) showed, in  neurones 

o f  A rc h id o r is , th a t  in trace l 1 ul ar iontophoresis o f 30-35 uM cAMP was 

enough to  induce depo lar isa tion  and f i r in g  o f  ac tion  p o te n t ia ls .  The 

amount o f  cAMP iontophoresed in the present study was not known.

Ion ic  c a r r ie r  o f cAMP induced curren t in Bl and RPD1.

The ion ic  c a r r ie r  o f the cAMP induced cu rren t varies between the
+

species. The cu rren t appears to  be carr ied  so le ly  by Na in  Bl and

RPD1 neurones o f  Lymnaea; no residual cu rren t (e .g . ca rr ied  by
2+ +Ca ) was seen in zero Na sa line . Likewise, in  the ventra l white

c e l l  (VWC) o f  PI eurobranchaea (G i l le t te  and Green, 1987) and in

neurones o f He!ix  (A ldenhoff e t  a l , 1984) the cAMP induced curren t is

ca rr ie d  by Na . In neurones o f  other species, the cAMP induced

cu rren t is  no t ca rr ied  so le ly  by Na+ . For example in Limax maximus,
+ 2+i t  i s  ca rr ie d  by both Na and Ca (Hockberger and Connor, 1984).

In A p ly s ia , cAMP induced curren t is  not ca rr ie d  by Na a t a l l ;
2+ra the r i t  i s  ca rr ied  by Ca (Pellmar, 1981).

The cAMP induced cu rren t was TTX in s e n s it iv e  in  both Bl and RPD1. 

This TTX in s e n s i t i v i t y  has also been demonstrated fo r  neurones o f 

Ap lys ia  kurodi (Hara e t  a l , 1985) and Aplysia c a l i fo rn ic a  (Connor and 

Hockberger, 1984). Thus i t  appears th a t in B l and RPD1 the cAMP
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+induced cu rren t is  d is t in c t  from the fa s t  Na cu rren t which is  

associated with the r is in g  phase o f the action po te n tia l .

The cAMP induced cu rren t is  voltage inse n s it ive  in  Bl and RPD1.

In th is  study the cAMP induced curren t was found to be voltage

in s e n s i t iv e  over the membrane po ten tia l range -100 to -20itW. Similar 

voltage in s e n s i t iv i t y  has been shown fo r the cAMP induced current in 

the RP1 GC o f A rch idoris  (Connor and Hockberger, 1984). This contrasts 

with cAMP-induced curren t in the ventra l white ce ll  of 

PIeurobranchaea ( G i l le t t e  and Green, 1987) and in neurones o f  

A p lys ia  (Pellmar, 1981; Connor and Hockberger, 1984), which is

voltage se n s it ive , depo lar isa tion  re su lt in g  in increased amplitude o f  

the current. The presence or absence o f  voltage s e n s i t iv i t y  o f the 

cAMP induced cu rren t may have a functional s ign if ica nce . The ventral
hi'QiuJ o rc tir

white c e l l  o f  PI eurobranchaea i s  a J neurone which in i t ia te s

feeding behaviour in the animal ( G i l le t t e  and G i l le t t e ,  1983). I ts  

func t ion  depends on i t s  a b i l i t y  to generate sustained bursts o f

ac tion  p o te n t ia ls .  A possib le means by which th is  i s  achieved is  by 

the fa c t  th a t  when the c e l l  depolarises the amplitude o f the cAMP 

induced cu rren t increases, leading to fu r th e r  depo la r isa tion  and 

increased a c t iv i t y .  This induces a region o f  negative slope 

conductance on the steady state I-V curve, which is  c h a ra c te r is t ic  o f  

bursting neurones (Levitan and Levitan, 1988).

Connor and Hockberger (1984) proposed th a t  apparent voltage 

i n s e n s i t i v i t y  o f  cAMP-induced curren t i s  due to a decreased d r iv in g  

fo rce  fo r  Na ions on depo larisa tion  being equally  balanced by a 

weak voltage s e n s i t iv i t y  o f  the Na+ curren t. This would explain why
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the cAMP induced cu rren t in Bl and RPDl showed complete independence 

o f  vo ltage fo r  d i f fe re n t  holding p o te n t ia ls ,  ra the r than an ohmic 

re la t io n s h ip  between cu rren t and vo ltage. Thus the voltage

s e n s i t iv i t y  seen in  o ther neurones may simply be because voltage
• * * "t*s e n s i t i v i t y  overcomes the decreasing d r iv in g  force fo r  Na ions. 

This explanation in fe rs  th a t  the cAMP induced curren t in B l and RPDl 

i s ,  in  fa c t ,  vo ltage se ns it ive , i f  only weakly.

The func t ion  o f  cAMP induced curren t in RPDl is  not known, but i t s  

fu n c t io n  in Bl may be to modulate the inpu t from the buccal central 

pattern generator. This is  a neural network which generates rhythmic 

feeding motor output ( E l l i o t t  and Benjamin, 1985). The Bl i s  a

motoneurone which innervates the sa l iva ry  glands (Benjamin e t al , 

1979). I t  receives an input from the centra l pattern genetrator

causing i t  to f i r e  bursts o f  action po ten tia ls  in phase with rhythmic

radula movements (Benjamin, 1983). Bl also receives a d i re c t  

e xc ita to ry  synaptic inpu t from the cerebral g ia n t c e l ls  (CGC: 

McCrohan and Benjamin, 1980a). These are a p a ir  o f  g ia n t  serotonin 

conta in ing c e l ls  which modulate feeding a c t i v i t y  (McCrohan and 

Benjamin, 1980b). I t  has been shown th a t loca l app lica t ion  o f 

serotonin to B l induces a depo la r isa tion  (Tuersley and McCrohan, 

1989) and th is  is  f a i r l y  strong evidence th a t  the EPS P's seen in Bl 

fo l low ing  s t im u la t ion  o f the CGC's are mediated by serotonin. Thus 

s t im u la t io n  o f  the CGC's may re s u l t  in  an e x c ita to ry  synaptic input 

to Bl due to release o f serotonin from th e i r  presynaptic te rm ina ls . 

I t  has been shown th a t  a c t iv a t io n  o f  serotonin receptors on many 

neurones s tim ula tes adenylate cyclase to produce cAMP (Cedar and 

Schwartz, 1972). Ocorr and Byrne (1985) have shown th a t serotonin
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produces a dose dependent increase in  cAMP in  sensory neurones o f 

A p lys ia . Therefore a c t iva t io n  o f the CGC's may re s u lt  in increased 

cAMP in  Bl which modulates the output to  sa l iva ry  glands v ia  

a c t iva t io n  o f  cAMP induced inward current.

2 +The f ind ing  th a t Ca did no t confer vo ltage s e n s i t iv i t y  on the

cAMP induced curren t in B l and RPDl demonstrates a fundamental

d if fe re nce  in the cAMP induced curren t in  Bl and RPDl o f Lymnaea and

the ventra l white c e l l  o f  PI eurobranchaea. In the l a t t e r ,  G i l le t te

2+and Green (1987) found th a t  e x t ra c e l lu la r  Ca conferred voltage 

s e n s i t iv i t y  on the cAMP induced curren t. The mechanism o f t h i s ,  

however, i s  not known.

D iva len t cations in h ib i te d  cAMP induced cu rren t in  Bl and RPDl.
2+ 2+D iva len t cations such as Ca and Co in h ib ite d  the cAMP induced

current in  B l and RPDl. S im ila r  resu lts  have been found by G i l le t te

and Green (1987) and Aldenhoff e t  al (1983 ). G i l le t t e  and Green

(1987) found th a t  a series o f  d iv a le n t  cations in h ib ite d  the curren t,

2+but th a t  Ca was the most e f fe c t iv e .  They concluded from th is  th a t

2+there was a f a i r l y  s p e c if ic  receptor s i te  fo r Ca binding. The

re su lts  presented in th is  th e s is ,  however, showed th a t ,  in  sp ite  o f
2+concentration d if fe rences , Co in h ib ite d  the cAMP induced current

2+in  Bl and RPDl to a greater extent than Ca , so th a t  G i l le t te  and

2+Green’ s theory o f  a Ca se lec t ive  receptor s i te  does not apply 

here. A poss ib le  way in  which the d iv a le n t  ca tions could in h ib i t  the 

curren t i s  to ‘ plug’ the cAMP activa ted conductance pathway. The

in h ib i t io n  may not be as simple as th a t ,  however, and may a invo lve o-
in

more complicated mechanism, such as changes surface po te n tia l.  In
n
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neurones o f Li max, the cu rren t is  in s e n s it iv e  to the d iva le n t cations 
2+ 2+Cd and Mn (Hockberger and Connor, 1984). This suggests th a t

the cAMP activa ted  conductance pathway in  Li max is  d i f fe r e n t  from

those described in th is  thes is  and by G i l le t te  and Green (1987).

Indeed the cAMP induced cu rren t in  neurones described here and by

G i l le t te  and Green (1987) is  ca rr ied  by Na+, whereas the cAMP
+ 2+induced cu rren t is  carr ied  by Ha and Ca in neurones o f  Limax

(Hockberger and Connor, 1984).

Increased in t r a c e l lu la r  cAMP excites Bl and RPDl.

In t ra c e l lu la r  iontophoresis o f  cAMP induced prolonged bursting 

a c t i v i t y  in  Bl. S im ila r re su lts  have been shown in  neurones o f 

A rch id o r is  (Connor and Hockberger, 1984), H e l ix  (Aldenhoff e t a l , 

1983; Kononenko e t a l , 1983), PIeurobranchaea ( G i l le t t e  and Green, 

1987). This was re in forced by the f in d ing  th a t  agents which re s u lt  in 

increased in t r a c e l lu la r  cAMP (membrane permeable cAMP analogues; e .g . 

CPTcAMP, and phosphodiesterase in h ib i to r s ;  e.g . IBMX) in d xe d  

burs ting  a c t i v i t y  in  Bl.

In RPDl, in trace l 1 ul ar iontophoresis o f  cAMP ind xe d  only a short 

l ive d  increase in a c t i v i t y .  This increase lasted fo r  only as long as 

the period o f ion tophoretic  in je c t io n .  This seems an odd re s u l t .  

Since the cAMP induced currents were very s im ila r  in Bl and RPDl i t  

would be expected th a t  in jec ted  cAMP would have s im ila r  e f fe c ts  on 

membrane poten tia l . Moreover, th is  e f fe c t  cannot be explained by RPDl 
having a greater a c t i v i t y  o f phosphodiesterase, as i f  th is  were the 

case the Tx o f RPDl would be less than th a t  fo r  Bl.



I t  is  su rp r is ing  tha t CPTcAMP had no e f fe c t  on RPDl. The most l i k e ly  

explanation fo r  th is  is  th a t  CPTcAMP was unable to cross the c e l l  

membrane. I t  cannot be explained by CPTcAMP d i f fu s in g  across the 

menbrane very slowly, as CPTcAMP is  not broken down by 

phosphodiesterase (McCrohan and G i l le t t e ,  1988a) no matter how slowly 

i t  d if fused  across the menbrane, eventually a high enough 

concentration would accumulate in the c e l l  to cause e x c i ta t io n .

In B l and RPDl, the e f fe c ts  o f IBMX on the cAMP induced current were 

what would be expected o f a compound which inh ib ite d  

phosphodiesterase. There was an increase in the amplitude o f the 

cu rre n t in  B l, presumably due to  the iontophoresed cAMP not being

broken down q u ick ly  by phosphodiesterase. The increase in in
"2

both c e l ls  would be due to a decrease in the ra te  o f  breakdown o f  

cAMP. The e f fe c t  was dose dependent and appeared to saturate a t  about 

0.1 mM IBMX.

The lack o f e f fe c t  o f IBMX on f i r i n g  a c t i v i t y  in RPDl, however, was 

unexpected. IBMX is  membrane permeable in th is  c e l l ,  as i t  a ffected 

the cAMP induced curren t. The absence o f any s ig n i f ic a n t  e f fe c t  may 

be put down to RPDl having a very low res t ing  concentration o f cAMP. 

Thus IBMX would be unable to increase cAMP le ve ls  and no increased 

e x c ita t io n  would be seen.

PTZ has opposing e ffe c ts  on cANP induced curren t in  Bl and RPDl. 

McCrohan and G i l le t t e  (1988b) reported tha t bath a p p l ica t ion  o f FTZ 

caused an increase in the amplitude o f the cAMP induced inward 

cu rren t in the Bl c e l l .  They drew the conclusion th a t FTZ was acting



to increase in t r a c e l lu la r  cAMP le v e ls ,  by acting as a

phosphodiesterase in h ib i to r .  This seemed a log ica l conclusion as both

PTZ and cAMP induced bursting a c t i v i t y  in the Bl c e l l ,  probably due

to a c t iva t io n  o f  a TTX-in se n s it ive , inward Na current. In RPDl,

PTZ resu lted  in a s ig n i f ic a n t  decrease in the amplitude o f  cAMP

induced cu rren t. This PTZ induced e f fe c t  cannot be explained by a

decrease in  in t r a c e l lu la r  cAMP as the same amount o f  cAMP was

iontophoresed under contro l and te s t  condit ions. A possible

explanation is  th a t  PTZ acts to increase phosphodiesterase a c t i v i t y ;

G i l le t te  and Green (1987) have shown th a t  increased in t r a c e l lu la r  
2+Ca may a c t  to stimulate phosphodiesterase. However th is  theory

can be discounted; although f a i r l y  strong evidence has been provided
2+to show th a t  PTZ re s u lts  in  increased Ca in RPDl, in t r a c e l lu la r  

2+in je c t io n  o f Ca did not a f fe c t  the amplitude o f the cAMP induced 

cu rren t in  RPDl. Another possible way th a t  PTZ may ac t in  RPDl i s  

e i th e r  to a f fe c t  the cAMP activated conductance pathway d i r e c t ly ,  or 

to a f fe c t  cAMP induced protein phosphorylation. What is  c lea r is  th a t  

changes in the magnitude o f  cAMP-induced e f fe c ts  cannot account fo r 

PTZ's a c t io ns , p a r t ic u la r ly  in  RPDl.

2+The cANP induced cu rren t is  not a lte red  by in t r a c e l lu la r  Ca— .

In Bl i t  seems u n l ik e ly  th a t  PTZ acts in  the same way as i t  i s

thought to act in  the D neurone o f  Euhadra (Onozuka e t a l , 1983 );

namely th a t  PTZ increases in t ra c e l l  ul ar cAMP which releases
2+m tra c e l l  ul a r l y  stored Ca re s u lt in g  in  bursting a c t iv i t y .  The

2 +fa c t  th a t  increased in t r a c e l lu la r  Ca ( in jec ted ) did not a f fe c t  

the cAMP induced curren t suggests th a t Onozuka1 s theory i s  not 

app licab le  in the Bl c e l l .  Kononenko e t  al (1986), have shown tha t
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2+increased in t r a c e l lu la r  Ca resu lts  in  an increase in  amplitude o f

the cAMP induced current in  Hel ix  neurones. They concluded tha t the
2+cAMP ac tiva ted  channel had two phosphorylation centres, one Ca /

calmodulin dependent, and the o ther cAMP dependent. Phosphorylation 
2+o f  the Ca /  calmodulin dependent centre converts the channel to a

"pre active" non conducting s ta te ,  with subsequent addit ion  o f cAMP

resu lt ing  in phosphorylation o f  the second centre and converting the

channel in to  a conducting s ta te . Hence, the greater the in t r a c e l lu la r  
2+Ca concentration the greater the number o f  channels ava ilab le  fo r  

a c t iv a t io n .

In con tras t the re s u lts  in th is  thes is  suggest th a t  increased 
2+in t r a c e l lu la r  Ca concentrations do not play a ro le  in  ac t iva t ion  

or in a c t iv a t io n  o f the cAMP induced inward cu rren t in  e i th e r  Bl or 

RPDl.

D is t in c t io n  between PTZ- and cAMP-induced cu rren ts .

The d if fe rence  in  voltage s e n s i t iv i t y  o f  the PTZ and cAMP induced 

currents  in  Bl ind ica tes  a fundamental d if fe rence  between them, and 

suggests th a t  they are d is t in c t .  Pentylenetetrazol induced a region 

o f  negative slope conductance in the steady s ta te  I-V curve, over the 

membrane po ten tia l range -65 to  -40mV. This region o f  negative slope 

conductance ind ica tes  a region o f inward cu rren t development. In a 

c e l l  where there i s  a region o f  negative slope conductance close to 

th resho ld , the re  is  a continuous flow o f  inward curren t (assuming the 

region o f negative slope conductance i s  below the zero current ax is ) .  

Release from voltage clamp o f  th is  c e l l  would d r ive  the membrane 

potentia l to action poten tia l threshold and re s u l t  in high frequency



action  po ten tia l f i r i n g .  Thus the ce l l  appears unstable and h igh ly  

exc itab le . Such an I-V  curve is  seen in the endogenously bursting  

c e l l ,  R15, o f  Aplysia  (Benson and Adams, 1987). The a b i l i t y  o f  PTZ to  

induce a region o f negative slope resistance has also been shown in  

neurones o f  Aplys ia  (David e t  a l , 1974), Euhadra (Sugaya e t  a l , 1978) 

and T r i to n ia  (Partr idge, 1975). In each o f the above examples PTZ 

induces bursting  a c t i v i t y  which can be explained by the development 

o f an inward curren t occurring around threshold.

The d is t in c t io n  o f  the two currents was also demonstrated in the

e f fe c ts  o f  am iloride, CBZ and TMB-8 . The actions o f Co^+, TMB- 8  and
2+am ilo r ide  suggested th a t PTZ acts to release Ca from

in tra ce l 1 ul ar s tores, which are subsequently r e f i l l e d  by an in f lu x  o f  
2+Ca across the neuronal membrane. Carbamazepi ne may act in  the 

same way as amiloride. Since none o f these drugs in h ib ite d  the cAMP 

induced cu rren t in  Bl t h i s  provides evidence, along with the 

d if fe rence  in  voltage s e n s i t iv i t y ,  th a t the PTZ and cAMP induced

inward currents are d is t in c t .

Comparison o f ep ileptogenic  a c t i v i t y  in  Bl and mammalian 

p repara tions .

Generation o f seizure a c t i v i t y  in  both mammalian and molluscan 

preparations i s  brought about by depo lar isa tion  o f  the neuronal

monbrane leading to PDS. In mammalian studies i t  has genera lly  been 

shown th a t  an inward cu rre n t ,  sometimes accompanied by an outward

cu rren t,  leads to PDS. In ca t c o r t ic a l  neurones the PDS is
Un­

accompanied by a decrease in  extracel 1 ul ar Ca and an increase in

extracel 1 ul ar K in the medium in in timate proxim ity with the
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24 -

neurones (Heinemann e t  a l , 1977 ). This was in te rp re ted  as a Ca

in f lu x  and a K+ e f f lu x  occurring simultaneously, and supporting

seizure a c t i v i t y .  In CA3 neurones o f  guinea pig Bingmann and

Speckmann (1986) showed th a t  decreased e x tra c e l lu la r  Ca caused a

reduction in frequency and duration o f  experimenta lly  induced PDS.
2+Experiments with Ca channel antagonists have provided fu r th e r  

2+evidence th a t  Ca in f lu x  is  v i ta l  in  the generation o f  seizures.

In DBA/2 mice, a s t ra in  g e n e t ica l ly  prone to sound-induced seizures, 
2+in je c t io n  o f  Ca channel antagonists in h ib ite d  electroshock

induced seizures in  mice (DeSarro e t a l , 1988). S im ila r ly  Ca

channel antagonists in h ib i te d  electroshock induced seizures in  mice

(Wong and Rahwan, 1989). Thus i t  appears a general feature o f

mammalian ep ilepsy th a t  generation o f  e p i le p t ic  seizures is  brought
2+on by an in f lu x  o f Ca ions.

In Bl i t  appears th a t  the cu rren t underlying PTZ-induced PDS is

so le ly  ca rr ie d  by Na . The in f lu x  of Na is  brought about by
2+increased in t r a c e l lu la r  Ca . S im i la r ly ,  in  mammalian neurones, i t

2+i s  thought th a t  the in f lu x  o f Ca does not induce the seizure;
2+ra th e r  i t  i s  the in t r a c e l lu la r  e f fe c t  o f  t h is  Ca th a t  s tim ula tes

e p i le p t i fo rm  a c t i v i t y  (Traub and L linas, 1979). I t  has been shown
2+th a t there  is  a delay between the in f lu x  o f Ca and the onset o f

seizure a c t i v i t y  (Traub and L linas , 1979). This has been explained as
2+the time taken fo r  Ca to have i t s  in t ra ce l 1 ul ar e f fe c ts .  The

2+suggested in trace l 1 ul ar actions of Ca include enhanced 

neuro transm itte r release and phosphorylation o f  p ro te in  kinases (Katz 

and M iled i,  1967; Cheung 1980). I t  is  possible th a t  s im ila r  events 

occur in Bl.
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In mammalian c e l ls  cAMP has been shown to be in t im a te ly  associated

with e p i le p t ic  seizures. In r a t  b ra in , increased in trace l 1 ul ar cAMP

was shown to precede seizure discharges (Purpura and Shofer, 1972 }.

However in  r a t  c o r t ic a l  c e l ls ,  PTZ-induced seizure a c t iv i t y  was

accompanied by an increase in cAMP le ve ls  which preceded onset o f

seizure a c t i v i t y  (Onozuka e t a l , 1989). In mouse b ra in ,  i t  has been

shown th a t  PTZ induced seizure a c t i v i t y  i s  accompanied by loca lised

increases in  cAMP (Fe rrende ll i  and Kinscherf, 1977b). This increase

in  cAMP occurred a f te r  development o f the se izure , and as such

appears to be the re s u l t  o f ,  ra ther than the cause of seizure

a c t i v i t y .  The re s u lts  o f the present study suggest th a t ,  contrary  to

the previous hypothesis (McCrohan and G i l le t t e ,  1988b), cAMP may play

only a minor ro le  in i n i t i a t i n g  PDS in  the Bl neurone. Indeed, cAMP

and i t s  analogues were incapable o f  inducing PDS in t h is  c e l l  , though

they did increase e x c i ta t io n .  The major e f fe c t  o f  FTZ appears to  be
2+via increased in t r a c e l lu la r  Ca . However, enhancement o f  cAMP- 

induced Na cu rren t by PTZ would con tr ibu te  to depo la r isa tion . In 

RPDl, cAMP-induced e ffe c ts  would, i f  anyth ing, oppose the in h ib i to ry  

actions o f  PTZ.

Summary and Conclusions.

I t  appears th a t  PTZ's mode o f  action  in Bl and RPDl is  s im i la r ,  i . e .

release o f in t ra c e l !  ul a r iy  stored Ca^+ , presumably by an

in f lu x  of Ca across the c e l l  membrane. The opposing responses

seen in the two c e l ls  appear to be due to d i f fe re n t  ion ic

conductances activa ted by the increased le v e ls  o f  Ca - I ^ a in 

2 +Bl and Ca -dependent 1^ in  RPDl. Thus c e l ls  with d i f fe re n t  

i n t r in s ic  membrane properties may show d i f fe r e n t ia l  s u s c e p t ib i l i t y  to
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se izure . Such underlying mechanisms can be dissected in  th is  way

( i . e .  a t the leve l o f ion currents) in id e n t i f ie d  molluscan neurones.

However i t  seems l i k e l y  th a t  d i f fe r e n t ia l  s u s c e p t ib i l i t y  to  seizure
2+also occurs in  mammalian c e l ls .  I t  appears th a t  Ca ions, ra ther

than cAMP are the major in t r a c e l lu la r  mediator o f  PTZ's e f fe c ts .
2+However, enhanced cAMP-induced cu rren t may supplement Ca mediated 

e f fe c ts  in  Bl. In RPDl however, a ro le  fo r  cAMP in mediating PTZ's 

action is  u n l ike ly .
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