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ABSTRACT

The work described in this thesis is divided into three parts:

Firstly: fitting multinomial models to de-concatenated HF (high frequency : 3-30 MHz) 

spectral multi-counts occupancy data for the years 1982 to 1989. The occupancy of the 

HF radio spectrum is known to depend in particular upon the solar cycle. We compared 

this multinomial fit to the previous work which is binomial fit, and we found out that for 

the data in concatenated occupancy form, the binomial fit is better than the multinomial 

fit, but the differences are small

Secondly: Theoretical development of the ZHAO and PRENTICE (1990) model. Their 

model was for binary counts index n less than or equal 12 where as for our data, n is 

650. So we have adapted their work to make it suitable for our binary counts data. Also 

we found a general expression for the correlation coefficient of this developed model. 

We found that the correlation coefficient is very small for our binary count data, with a 

dependence on one of the estimated parameters.

Lastly: fitting a binary model for each allocation for four thresholds and testing our 

binary count data for correlation. Also producing a transition matrix to find the 

probability of X2 given X1 i.e. if we know the previous signal what is the probability 

distribution of the next one, with this model it is now possible to predict the next signal 

frequency level given the previous level for congestion data.
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CHAPTER 1

Introduction To The High Frequency Radio Spectrum
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1.1 Introduction:

The HF (high frequency) radio spectrum is defined to consist of radio frequencies 

lying between 3 and 30 MHz.

This is also known as " World Band Radio" and the demand for these particular channels 

has made the HF band possibly the most congested part of the radio spectrum

The HF channel has certain advantages compared with other long distance 

communication systems. It functions by exploring the natural phenomenon of the 

ionosphere, which is a cloud of highly ionised electrons situated at a height of 80 - 300 

Kilometers, above the earth surface. By a process of gradual refraction the ionosphere is 

able to reflect HF radio waves, Maslin (1987).

Since the ionosphere is a natural phenomenon, it provides us with an economical means 

of achieving worldwide long distance communication, and its naturality makes it very 

valuable particularly in the times of war when other systems are easy to disrupt.

Also due to the fact that the ionosphere is a natural phenomenon, the associated 

equipment is economical in comparison with other system such as satellites. Hence HF 

sky wave communication continues to be very popular.

Although the ionosphere can be altered by various modification techniques, such as 

chemical releases, radio frequency heating and atmospheric nuclear blasts, the effects are 

generally localised and temporary in duration, Goldberg (1975).
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Propagation via the ionosphere at frequencies below 1.5 MHz suffers heavy absorption 

during the day, whilst frequencies above 30 MHz usually penetrate the ionosphere and 

dissipate into space.

The ionosphere consists of three layers D, E and F which have different effects on HF 

signals as illustrated in Figure (1.1)

11



ajei|dsouo|

I 

111,

n 

& 

oy

Fi
gu

re
 (1

.1
) E

xa
m

pl
e 

Sk
yw

av
e 

C
om

m
un

ic
at

io
n 

M
od

es

ill

12



The optimum angle of propagation and the frequency of transmission are the most 

important parameters in short wave communications.

The calculation of a suitable transmission frequency for a given set of conditions is 

complex, Picquenard (1974), and depends in particular on the time of day, time of year, 

sunspot number, place location of transmitter and intended receiver.

This process may be simplified by using modem technology and computer assistance.

It is necessary to divide the HF band into user allocations as defined by ITU 

(International Telecommunications Union) regulations. Modulation techniques, signal 

bandwidth requirements, transmitter power limitations, and operating producers may be 

different in these separate bands.

Since users in the HF band have different operational requirements, the HF band is 

shared between several radio services as follows:

I- Amateur:- This is a service of self-training communication or for technical 

investigations carried out for personal reasons, or as a hobby, rather than for business or 

profit.

It is one of the oldest services in the HF band and has made great contributions to the 

development and progress of radio. They are allocated frequency ranges at 3.5, 7.0, 

10.0, 14.0, 18.0, 21.0, 24.0, and 28.0 MHz, so that frequencies of different 

characteristics will be available to perform the various kinds of communications and 

experimentations in which amateurs are interested. It also enables amateurs to 

communicate among themselves at different distances for most of the time, as conditions 

vary with time of day, time of year and sunspot number.
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2- Broadcast:- This is a service in which the transmissions are intended for direct 

reception by the public.

This service may include sound, television and other types of transmissions. Several 

exclusive bands are allocated for HF AM broadcasting purpose. Some countries use this 

for domestic coverage, or in tropical areas where the atmospheric noise level may be too 

high for a significant part of the time in the low frequency and medium frequency bands. 

Thus the signals within broadcast allocations are typically high power, with side bands of 

about 4.5 kHz.

3- Fixed:- The fixed service provides for radio communications between fixed points on 

the earth's surface. It has quite a major share in the HF band and is often shared with 

mobile services.

4- Mobile:- It provides for communications between moving vehicles or between land 

stations and moving vehicles.

This service is divided into three main categories: land mobile, maritime mobile and 

aeronautical mobile (aeromobile).

These services are provided with generous allocations throughout the spectrum. Fixed 

and Mobile share quite generally, although there are exclusive allocations to each of 

them, as well as exclusive allocations to maritime mobile and aeromobile. Maritime 

mobile frequencies are used between ships or between ships and coast stations.

1.2 Study of Interference Characteristics at UMIST:-

The UMIST HF communication research group has undertaken a series of 

studies since 1971 in which HF interference structures and characteristics have been 
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investigated. The aim of the work has been to achieve better understanding of 

interference from other users.

This may lead to better system designs and signal processing so that successful 

communication in the presence of interference may be possible.

1.2.1 Definition of Congestion:-

At any moment in time and at a particular place for any one band of frequencies 

selected from the 95 HF bands as defined by ITU regulations (e.g. band 7, 2.85 MHz - 

3.155 MHz), the "occupancy" or "Congestion" at a given threshold (e.g. T=-97dBm) is 

defined as the percentage of that band which contains radio signals with power above the 

chosen threshold level. For measurement purposes, the whole HF spectrum to 30 MHz is 

divided into 30,000 contiguous 1 kHz steps, with signal power measured across each 1 

kHz step.

For the measurement of congestion for the different HF users the receiver, with an IF 

filter bandwidth of 1 kHz was stepped in 1 kHz increments through each user defined 

allocation spending one second at each increment. Each 1 kHz window was defined as 

occupied at a particular threshold level if the RMS signal level in that window exceeded 

the selected threshold at the chosen 1 second observation time.

The occupancy for a whole allocation was calculated as a percentage combining the 

results for all the 1 kHz increments in that allocation. More generally, with this method 

of measurement, congestion is defined as follows

Wtn loo

where 6^ is the congestion evaluated at threshold number m with a resolution filter 

bandwidth of n kHz.
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wtn is the sum of the signal band widths for which the signals exceed the chosen 

threshold level, t.

Wmn is the total width in units of n kHz at a time of the examined portion of the 

spectrum

There is a very large number of actual or potential users within each frequency band. 

Their collective behaviour appears to have a very large random component in it, in that 

casual inspection of the data reveals very little in the way of "obvious patterns", after 

allowing for known physical effects across this spectrum

A major purpose of the UMIST investigation has been to look for patterns in the 

collected data so as to aid prediction of where to find potentially useful, but quiet, bands 

for "interested parties". This stated aim has been achieved with remarkable success, 

despite what appeared at first sight to be highly random and unpredictable data.

To communicate in the presence of interference, it is important that operators and system 

designers know how interference behaves in different parts of the HF spectrum, at 

different times of day, at different seasons and in different parts of the world, so that they 

could change operating procedures and design a suitable system It had been thought to 

be virtually impossible to give an exact description of interference characteristics due to 

the fact that it is largely man made and apparently unpredictable in general. The 

parameter 'congestion' has been found to be a useful indicator of the state of occupancy 

in HF band. Occupancy results could help the operator to determine which frequency 

gives the best chance of achieving reliable communication with their existing system in 

the presence of interference.
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1.3 Measurement of High Frequency Spectral Occupancy:

The system of experimental measurement of the occupancy of the high frequency 

(HF) spectrum has been performed by Professor G. Gott of the Electrical Engineering 

and Electronics at UMIST, and co-workers, since 1982.

By international regulation, the HF spectrum is defined to be between 3 and 30 MHz. 

Signals in this frequency range have the important property that they may be reflected by 

the ionosphere and thus long range communications may be achieved using modest 

transmitter power.

As stated earlier, the ionosphere is a free phenomena and this has resulted in the HF 

spectrum being used very heavily for long range communications.

This has motivated the program in HF spectral measurement and analysis at UMIST, to 

study the characteristics of HF interference with the aim of developing models to assist 

in planning of frequency usage and management.

Although the HF spectrum is formally defined to extend from 3 to 30 MHz, signals 

outside this range may be reflected from the ionosphere, as sky waves, and hence this 

experiment has examined the spectral range of 1.606 to 30 MHz. This HF spectrum is 

divided into 95 frequency allocations used by 12 different types of users.

A flow chart showing the logical basis of the system used by Dr Gott and his co-workers 

for measuring occupancy can be seen in figure (1.2) overleaf. This has been implemented 

under remote computer control over telephone lines at various sites in the United 

Kingdom and abroad. The electronic equipment required on site, such as a radio receiver 

and a spectrum analyser is of the very highest quality and operates at the limits of 

technical feasibility.
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Figure (1.2) Occupancy Measurement across the HF Spectrum
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1.3.1 HF Occupancy Data Collected Since 1982:-

Congestion has been measured twice yearly since 1982. These measurements 

have been made near the time of winter and summer solstices, corresponding to the time 

of maximum and minimum variation in ionospheric activity. During the summer or winter 

measurement sessions, congestions are measured once around midday and once around 

midnight for reasons which are explained below.

There is a band of frequency range over which sky waves can propagate over a given 

distance on earth. The upper limit of this range which is typically valid for 90% of the 

days of the month is known as the Optimum Working Frequency (OWF). The lower limit 

of the frequency range is the Lower Usable Frequency (LUF) which is largely dependent 

on the absorption of signals by the lower ionosphere.

Predictions of OWF and LUF for HF communications are published regularly by the 

Marconi Company on behalf of the British Admiralty.

These predictions assist in the reliable establishment of HF links.

The ionosphere is stable for about four hours around midday and midnight. Hence the 

researchers at UMIST measure congestion during these times, when the ionosphere is 

stable.

Using their present system, with a 1 second dwell time at each 1kHz step, a complete 

scan of the entire HF spectrum from allocations 1 to 95 takes about eight hours, since it 

involves approximately 30,000 separate 1 second measurements, in sequence. The 

measurements are spread over three days as shown below, with typically around 2 hours 

about midnight used on each day, to ensure stable ionospheric conditions and some 

consistency for the normal "date". Much experimental effort has gave into checking the 

validity of this system for consistency, validity and interpretability in terms of congestion.
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Day 1 «MIDNIGHT Day 2«MIDNIGHT Day 3»MIDNIGHT

Allocations 1-35 36-68 69-95

Frequency (MHz) 1.606 - 10 10-20 20-30

1.3.2 Measurement of Occupancy Across The Entire HF Spectrum:

Wong (1983) divided the HF band into 95 user allocation as defined by the ITU. 

This was necessary since different services might have different modulation techniques, 

signal bandwidth requirements, transmitter power limitations, and operating procedures.

Two measuring systems were used by Wong (1983), one of which (the later one) is 

computer controlled and allowed analysis to be done in real time. This system has to be 

manually calibrated. The system block diagram is shown in figure ( 1.3).

The active antenna was a wideband omnidirectional monopole. This was calibrated so 

that a CW signal of -117 dBm at the aerial output corresponded to a received field - 

strength of 0.6 .

A switch at the receiver input allowed a frequency synthesizer to be connected for 

threshold calibration.

Five threshold levels from -117 dBm to -77 dBm in 10 dBm increments were set at the 

receiver input. These particular thresholds were chosen by the researchers for technical 

reasons.

Noise was measured by connecting a 50 Q load to the receiver antenna input. The 

receiver was operated without AGC, and IF gain was manually adjusted so that the 

20



receiver noise was at least 10 dB below the lowest threshold (-117 dBm), and the 

dynamic range was at least 60 dB.

The spectrum analyser connected to the receiver acted only as a logarithmic amplifier 

and detector at the receiver IF. The spectrum analyser produces an output which was 

averaged via its video filter of 10 Hz bandwidth.

Congestion at any allocation was measured by stepping the receiver filter in 1 kHz 

increments through that allocation, staying at each step for a dewell time of one second

These measurements were done twice yearly in 1981 and 1982 near the winter and 

summer solstices. Winter solstice was the time of maximum diurnal variation in 

ionospheric activity while the summer solstice was the time of minimum variation. 

Propagation properties are different during the day from those during the night, so 

measurements were taken at midday and midnight since the ionospheric actives were 

most stable at these times.

Such a period of stability is about four hours, and the results for whole spectrum was 

done over three days and three nights. These measurements have been carried out year 

by year since 1981.

Ray (1985) continued measurements of the congestion, so congestion measurement for 

the period 1982 to 1985 are available.

Ray (1985) applied naive Chisquare tests to the underlying counts, in order to see 

whether there were any statistically significant changes between any of the data sets. He 

found that there were significant changes. He also found significant changes in 

congestion values measured from day to day compared to the changes of these values 

from year to year especially the night observations.
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1.3.3 Automated Measurement System:-

A fully automated measuring system was designed and implemented by Poole 

(1989) to replace Wong's semi-automated system. This new system, is still in use at the 

principal measurement site at Baldoch, Hertsfordshire, which is linked via the public 

telephone network to UMIST. Other systems have since been located in Sweden and 

Germany. The advantage of this system is that UMIST personnel no longer need to 

travel to the remote sites to make measurements. Hence extensive monitoring and 

studies of spectral occupancy can now be contemplated.

Moreover the sophisticated operating system afforded by the HP 310 micro computer 

enabled a modular approach in software implementation. This ensured ease of updating 

and adding to the software. The system is presented in figure (1.4).

The site at Baldock was carefully chosen to have optimum receiving conditions for the 

experiments within the UK

In 1986 Mortel (1986) did some statistical analysis of the congestion data under the 

guidance of Dr P. J. Laycock for data collected in the years 1982 - 1986. A binomial 

model with logit transform was applied to the data, with remarkable success. See Mortel, 

Laycock, Gott and Ray (1988).

Dennigton (1990) continued this work fitting the data for 1982 to 1989.

In the next section the work carried out by Morrel and Dennington (1990) is 

summarized:
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1.4 The Occupancy Model:-

An effort has been made to fit a mathematical model to the occupancy data. The 

model used was suggested by Dr Laycock who has guided its application.

The experimental data in a mathematical model for congestion can be represented

Q — f(x1 »*2 » ’XH )

where xltx2,......,xn represent the parameters on which occupancy may be expected to 

depend, such as time, frequency, bandwidth, threshold level, sunspot number and 

geographical location.

Consider the choice of a linear function of selected variables i.e.

Q^A,X,

Where Xt are in general functions of the parameters and At are coefficients.

The measured values of congestion can be regarded as estimated values of probability, 

and hence their values should fie in the range 0 to 1. Since a significant proportion of the 

observed values of congestion lies on or close to these boundary values, there is a risk 

that a linear model as defined above may give estimated values of congestion which He 

outside this range. A logistic trasformation (logit) has been used to overcome this 

problem, that is

logzï(<2) = In- — — = F

Hence

Q = exp^^ where 0<Q< 1
l+exp(y)
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This transformation has the advantage that it is easily invertible and its properties have 

been thoroughly studied in the statistical literature, Nelder (1989). It has been found to 

work extremely well for these radio frequency data. Other transformations are clearly 

possible (for example any cumulative density function will suffice).

In particular similar results have been obtained using the probit transformation: Q = <D(7), 

where 0 is the c.d f of standard normal variate this is a standard alternative to the 

logistic transformation which it is known to match very closely. Viewed as a c.d.f. these 

transformations imply a probability distribution for the underlying signal strength, S, with 

Q=Prob(S>t) with t the chosen threshold level, In particular, logistic and normal 

distributions for signal strength are implied by the above two transformations.

Extensive and very successful statistical analysis has resulted in the use of the following 

linear function.

Y = Ak + B x thresholdfdbm) + ( C„ + Cxf + C2 f2 ) x S

Where Y = in — is the logit of the theoretical occupancy Q, corresponding to a 
1 -Q

measured occupancy Q for a bandwidth of B steps, with r=bQ modelled as binomial, 

B(b,Q), where

T= threshold level in dbm including its sign.

f= centre frequency of user allocation in MHz.

S= sunspot number for that year.

B, C,, Q, C2 : estimated regression coefficients.

Ak: k=1...95: 95 constants corresponding to the 95 allocations.
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This model has also been successfully extended in to allow for spatial, seasonal and step 

length (more than 1 kHz) variation.

This model has been fitted to the data using the statistical package GENSTAT, 

(developed at Rothamsted Experimental station and now marketed by NAG, Oxford). 

Initially run on an AMDAHL mainframe, then on a SUN workstation and lately on a 486 

PC. Some experimental runs now take place on an IBM mainframe computer-intensive 

facility.

Four models were required: one each for summer day, summer night, winter day and 

winter night.

Bennington (1990) fitted models similar to the that above including the data of 1987 to 

1989, and he also fitted this model using only single user allocations at the time.

Bennington found that the Ak constants produced for a given user could be described by 

a simple polynomial function.

In all cases the model has been used to predict new data and found to be remarkably 

accurate. It should be noted however that there is statistically significant extra-binomial 

variation in most cases. This implies that the underlying independence assumption for the 

binomial model is not completely true, although much experimental effort has gone into 

choosing the experimental parameters so as to ensure this assumption would hold. For 

prediction purposes this does not seem to matter, since the model fits the data, in the 

mean, extremely well. But the main purpose of this thesis has been to attempt to model 

this small but significant (serial) correlation.
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1.4 1 Occupancy Model Variable:

Signal threshold:

in the HF band a channel is said to be occupied if during a one second 

observation period, the signal in that channel exceeds a reference threshold at the aerial 

input to the receiver. In the experiment five reference thresholds are used, these being:

-117dBm, -107dBm, -97dBm, -87dBm, -77dBm

Frequency:

The electromagnetic HF radio spectrum ranges from 1.6 to 30.0 MHz. It is 

divided into 95 user-bands each of which is assigned a normal frequency namely its mid­

point frequency.

Sunspot number:

The model was fitted with (average, latterly individual) Belgian sunspot numbers 

supplied by the propagation group of the Marconi Company. Each season of each year 

yields a different sunspot number.

Time of Day:

Measurements were taken twice during each 24 hours period, at midday and 

midnight when the ionosphere is stable as stated before and a complete set of 

measurements across the 95 allocations takes about eight hours. Alternatives to this 

method have been studied in the past and are currently under review.

Time of The Year/Season: The experiments were performed at two times of the year. 

Once during the summer (July) and the other during winter (February) approximately at 
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the times of the winter and summer solstice when the diurnal variation in the optimum 

working frequency is at a maximum and minimum respectively.

User Type:

The 12 user types listed below (with convenient abbreviations shown). Recall that 

each user is allocated a selection of the 95 available bands spread across the total 

bandwidth of 30 MHz.

1- FIXED/MOBILE FM

2- AMATEUR AM

3- FXD./MOB./AMTR FMA

4- FXD./MOB./BCST. FMB

5- AEROMOBILE AE

6- FIXED/BROADCAST FB

7- MARITIME/MOB ILE MM

8- BROADCAST B

9- FIXED F

10- FEXED/AMATEUR FA

11- RADIO ASTRONOMY RA

12- FXD./MOB/METR FMM
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Since congestion is given by :

Congestion = — x 100 
b

it can then be regarded to a first approximation as a binomial B(b,Q) variate where b is 

the bandwidth, and Q is P(Q>t) ,t is the threshold.

The data values (for congestion of any one season from 1982 - 1989), but not including 

the threshold -117dBm), Dennington (1990) can be usefully considered as independent 

random variables from a binomial distribution.

If the 3040 (8 years, 95 allocations and 4 threshold) observations are specified by the 

parameters ...... ,03040 , then these are related to a linear combination of the

explanatory variables, Xp through the link function g, i.e.

The link function will be described in greater detail later.

The criteria used for fitting is Maximum Likelihood, Morrel (1988) and Dennington 

(1990) have explained the maximum likelihood function for this particular binomial 

distribution and this will be discussed briefly below.

1.5 Binomial Model:

The binomial distribution describes the probabilistic behaviour of the number of 

basic events occuring in a fixed number of independent trials of an experiment.

The basic event can have only two outcomes: it either occurred or did not. Most of the 

work carried out on these data so far has assumed that each of the 3040 (8 years, 95 

allocation and 4 threshold) observations (measured congestion) as being derived from 

independent events. For each of these distributions the event is that the examined RMS 
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"interference" in a 1 kHz bandwidth exceeds the specified threshold. The number of trials 

is the total number of 1 kHz steps in each allocation.

The binomial distribution for one allocation B(b,Q) takes the form

PV(l-0‘’,r = O,l,..... b

There are two standard ways to estimate the linear predictor parameter vector 0 :

1- Least squares.

2- Maximum likelihood.

The method used, via GENSTAT, is maximum likelihood, achieved by an iterative least­

squares technique as described by McCullagh and Nelder (1989).

The likelihood function for one allocation is

( b\ .£(r;0) = tor(l-Qf-'
V )

this can be written as

Ur ; Q) = exp[r log(0 - r log( 1 -Q) + b log( 1 -Q) + log(f * ])] 
v J

This is one member of the family of exponential distributions, see Nelder and McCullagh 

(1989) for more details.

Taking the logarithm of both sides

O (b\Kr,b) = r log(-——) + b log(l — Q) + log( )
1 -Q (rj

Hence the log-likelihood function only for one allocation, for the whole N=3040 (8

years, 95 allocations and 4 threshold) allocations it is
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O
Wi»r2>..........’^3040 >ôl»02...........*03040 )

NI 1 «

The congestion

in each allocation is then described in terms of the explanatory variables which 

characterise that allocation. This is done by modelling the probabilities^ as

Where Xi is a vector of explanatory variables for that data item i.

P is a vector of parameters (common for all data items).

g is the link function.

As was explained before, to ensure that Q is restricted to the range 0 - 1, a logit 

transform has been used for the link function,

vdiere

g(a)=iog<-^-)=^

In our case we have four variables and 95 constants.

So we can write

logC-—-) - A + A +.... +As .... *Pwxa

log( 1 - a ) = -log[ 1+exp(A +A+.... +As + +•■• +p99X4)J

A probit transformation
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?( a)=<»‘‘(â)

where O is the c.d.f of the N(0,l) distribution was also tried, with almost identical 

results.

Thus the log likelihood becomes

3040

I = Xh(A+ +Â5 +A6x1+....+^99x4)-Z>, log( 1+exp( 1+expO?!+ +^95 +^96x1+....+^99x4)))] 
i=l

To obtain the maximum likelihood estimates for p's we find the partial derivatives of I 

with respect to each parameter. Each of these is equated to zero and they are then solved 

simultaneously to yield the estimates.

These simultaneous equations are in general non-linear and have to be solved using 

numerical iteration, which the GENSTAT package does automatically for the user.

This model has been fitted to all sets of data from 1982 to 1989 with four thresholds.

1.6 Markov Mo del: -

Laycock and Gott (1988) pointed out that for the underlying Bernoulli series 

which gave rise to the recorded "occupancy" counts, a Markov model might be thought 

to be more appropriate. This particular model was utilized rather than the more usual 

exchangeable distribution models typically used to explain extra - binomial variation, 

because of the underlying sequential nature of the data, through the frequency.

The stochastic transition matrix was written in the form:

1 -a a
. f i-Æ
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where l-a=prob (frequency i is occupied at threshold t, and subsequently frequency i is 

occupied at that same threshold).

a=prob (frequency i is occupied at threshold t, and subsequently frequency i+1 is 

occupied at that same threshold).

P=prob (frequency i+1 is occupied at threshold t, and subsequently frequency i is 

occupied at that same threshold).

l-p=prob (frequency i+1 is occupied at threshold t, and subsequently frequency i+1 is 

occupied at that same threshold).

It can be shown, Cox and Miller (1965), that for large n the binomial counts of such a 

Markov sequence has asymptotic mean nn, and variance where

no = ——— and = 1-
a+fi

The parameter is called the dispersion parameter and usually <|)>1 in statistical practice, 

which increases the variance relative to that for a binomial distribution. This accounts for 

the name "extra binomial variation", Altham (1978) and Williams (1982).

The Markov model is one of four standard explanations for extra - binomial variation, 

the others being the beta, additive, and multiplicative models, Altham (1978).

The Markov model is an appropriate model for serial correlation.

We can show that the asymptotic correlation between adjacent states is p=l-(a+|3).
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Proof:-

Given two state Markov chain with transition matrix

l-a a ' 
P V-P.

Cox and Miller ( 1965) in their book showed that for large n 

lim Pn l "P a 
a+P _P a

so the limiting distribution is

P 
a+p

a
~~^+P

also in the limiting case

E(x)=E(y)=^ and V(x)=tto ,V(y)=7r1

so

E(xy)=E(xy|x= 1 )P(x= l)+E(xy|x=0)P(x=0)

=lP(y=l|x=l)P(x=l)=(l-p)^1

Since Cov(xy)=E(xy)-E(x)E(y)

therefore Cov(xy)=(l-A)^i - A

=^(1-^)-^

=^1æ0 -nJ}
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— ^1(^0 ~P)

since p= Cov(xy) 
v<*)V(y)

P=^lZ^=1_Z 
^0^1

p — 1—— = 1 — a—P

hence p=—— ^+1

This leads immediately to the estimate 

. 5-1

where 5 is the mean deviance, this result is given in Laycock and Gott (1988).

1.7 Multinomial Model:-

As pointed out by Brian and Bulter (1988), cumulative count data are more 

appropriately analysed using a multinomial model after de-segregation of the data.

For any one band on any one occasion the likelihood is proportional to

Where the product is over K=6 or 5 categories depending on whether the lowest - 

117dbm level is included or not, mj is the number falling in the jth category, and
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Where F is the cumulative distribution function of the chosen distribution and

—co = T„ < 7i <.........< Tk =oo

This model is described in more detail with its applications in chapter four.
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CHAPTER 2

Mathematical Statistics Background
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2.1 Preamble:

In this chapter we give a brief summary of the mathematical methods underlying 

statistical techniques used in this thesis.

For the fitting of a simple linear relationship between several predictor variables 

,x2,..... ,xp and a variable Y, the parameters are chosen so as to produce a fitted data 

set yf that is close to the observed data %.

Tn classical least squares analysis the closeness of a fit is determined by:

SU-A)2

The use of this formula has two implications.

First, the straightforward summation of individual deviations, either | y,-AI or U-A)2, 

each depending on only one observation, implies that the observations are all made on 

the same physical scale and suggests that the observations are independent, or at least 

that they are in some sense exchangeable, so justifying an even-handed treatment of the 

components.

Second, the use of arithmetic differences yt -yt implies that a given model deviation 

carries the same weight irrespective of the value of y. To ensure that variations in model 

residuals y - y are independent of the actual fitted values, mathematicians build into 

their models an explicit frequency distribution for residual variation as in, for example; 

the Generalized Linear Model based on the exponential family of distributions.

In classical least square analysis, we regard the x values as fixed or non-stochastic and 

the y values are assumed to have a normal (or Gaussian) distribution with mean p in 
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which the frequency of Y given p is proportional to exp(-(y-^)2 Ho2 ), where a is the 

standard deviation of the distribution.

We can look at this function in two ways:

(i) If we regard it as a function of y for fixed n, the function specifies the probability 

density of the observations y/s

(ii) For a given observation y, we may regard it as a function of //, giving the relative 

plausibility of different values of for the observed value y. In this second form the 

distribution becomes the Likelihood function, (Nelder and McCullagh, 1989).

2.2 Maximum Likelihood:

To fit the model we usually choose the parameters so that the fitted values Yt are 

'close' to the actual values Y{, and to estimate these parameters there are two standard 

techniques, which happen to be equivalent for the normal distribution:

1- Maximum Likelihood.

2- Least Squares.

2.2.1 Method Of Maximum Likelihood:

Let Yx ,Y2, ,Yn be n continous random variables with joint probability 

f (yi ,y2, ,y„ ; 01,02 > ,0P) where the parameters ex,02, ,6p are unknown. Then 

the probability density function can be denoted by f (y; 0). For discrete random variables 

we can equivalently take f to be the relevant probability distribution or mass function. 

Let Q denote the set of all possible values of the parameter vector 6. Then 0 is the 

value which maximizes the likelihood function ie. the " maximum likelihood estimator".

This means
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L(èvn^ Uôvn forall^eQ

where L(&X) =
i=1

and where the y/s constitute a random sangle from a distribution with density function, 

or more generally probability mass function (p.mf) /(. \0).

Equivalently 6 is the value which maximizes the log-likelihood function (since the 

logarithmic function is monotonic).

Thus 7(%y) = log(L(&y))

Therefore l(9;Y) > l(9;Y) for all 6 eQ

It is usually better and easier to work with the log-likelihood function rather than with 

the likelihood function itself.

Note that, since the logarithm is a monotonically increasing function of its argument, the 

maximization problem is unchanged by the transformation.

Usually the estimator 6 for 9 is obtained by differentiating the log-likelihood function 

with respect to the parameters and equating to zero:

forj=l,2....,p (2.1)

These are called the "likelihood equations".

To check that this stationary value solution gives a maximum, we need to evaluate the 

second derivatives:

A M evaluated at 9=9J ô9jâ9K

41



The Jacobian: |a Jk I must be negative for this to be a (local) maximum

2.2.2 Solving The Likelihood Equations:

To solve the likelihood equations there are two standard methods.

1- Newton-Raphson method.

2- Scoring method.

A property of the exponential family of distribution is that they satisfy enough regularity 

conditions to ensure that the global maximum of the log-likelihood function 1(6, ï) is 
given uniquely by the solution of the equations — = 0.

' 56

In general the equations (2.1) are non-linear and they have to be solved by numerical 

iteration. If the Newton-Raphson method is used, then the mth approximation is given by

.[/<-» (2.2)
CPj Opk

u lwhere (--------- ) is the matrix of second derivative of (1) evaluated at and

u{m is the "score" vector of first derivatives Uj —— evaluated at p=b{m 1}. 
dPj

The second method of sohing the equations is called "Fidler’s scoring method" which is 

some times simpler than Newton-Raphson. It involves replacing the matrix of second 

derivatives in (2.2) by its expected values Le.

This matrix is equal to "Fisher’s information matrix".
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2.3 Sampling Distribution For Maximum Likelihood Estimator:

Suppose the log-likelihood function has a unique maximum at b and that this 

estimator b is near the true value of the parameter p.

The first order Taylor approximation for the score vector U(p) about the point p= b is 

given by

U(P) = U(b)+H(b)(P-b)

where H(b) denotes the matrix of second derivatives of the log-likelihood function 

evaluated at p=b.

Asymptotically H is equal to its expected value which is related to the information matrix 

by

Ç=E(UUt)=E(-H)

Therefore for large samples

U(P) = U(b)-£(P-b)

But U(b)=O because b is the value where the given log-likelihood function will be the 

maximum. so its derivatives are zero:

/. (b-p) = £~lU

this is provided that £ is non-singular. Also if £ is constant then

E(b-p) = £-lE(U) = 0

Since E(U)=0, so b is an unbiased estimator of p.

The variance covariance matrix for b is
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E\(b-p){b-P)T^rV^UT^^^

Since £= E(UUT) and (^l)T = ^-1 since £ is symmetric.

Thus for large samples

from standard maximum likelihood theory, Dobson (1990).

2.4 The components of a generalized linear model;

Generalized linear models are an extension of classical linear models.

First we will simplify and consider the definitions of the classical linear models, and then 

will expand into generalised linear models.

2.4.1 Classical linear models:

A vector of observation y having n components is assumed to be a realization of 

a random variable Y whose components are independently distributed with means n. 

The systematic part of the model is a specification for vector in terms of a number of 

unknown parameters .... ,pp. In the case of ordinary linear models, this 

specification takes the form

j 
j=i

where X j are the model covariates and Pj are the unknown parameters whose values to 

be estimated from the data.

For several observations, with i representing each observation this can be written:
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P 
E(Xt ) ~ fa — i—1,2,.... ,n

J-1

and in terms of matrix notation n = %/?.

Where X is the model matrix and 0 is the vector of parameters.

The second part of a classical linear model is that the distribution of the errors follows a 

Gaussian or Normal distribution, with constant variance o2.

We may thus summarize the classical linear model in the form:

1- The random components: the components of Y have independent Normal distribution 

with mean n and constant variance a2.

2- The systematic component: covariates X15X2,..... ,Xp produce a linear predictor % 

given by

3- The link between the random and systematic components:

H= *1

This specifies that the linear predictor and the expected value of the random component 

are identical.

More generally we can write

Hi

Where g(.) will be called the link function.
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In this formulation, classical linear models have a Normal (or Gaussian) distributed in 

component (1) and the identity for the link in component (3).

The Generalized linear models allow two extensions:

First the distribution in component (1) may come from an exponential family and be 

other than the Normal, and secondly the link function in component (3) may become any 

monotonic differentiable function, McCullagh and Nelder (1989).

2.4.2 Exponential Family:

For a distribution suppose we can write the probability density function (or 

probability mass function, for the discrete case) as

fT ( y ; 0; 0) = exp[(y 0- b ( 0) ) / a ( 0) + c(y, 0) ]

for some functions a( ), b( ) and c( ). If is known this is an exponential family with 

canonical parameters 0. It may or may not be exponential family if is unknown. 

(McCullagh and Nelder 1989)

Examples of exponential family

1- Discrete case (Binomial) suppose y is B(m, ri) and we have one observation then

P(Y=y)=Pv= | (1-ri)m~y y = 0,l,2,....,m and 0< n< 1

a (Pv = exp[(y0-mln(l + ee)) + ln ]
w

where 0=ln(—^—), o = —, b(0) = ln(l+e*), and c(y,0) = log! m I
1- n m J
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2- Continuous case (Normal) suppose y is then

My^<^ = -f==e 2°2

= exp[(y//-^-)/cr2 (^-+ln(2/ro^ ))]

i y2
where 0=^, o2, 6(60 = —, and c(y,0 = --(^-+ln(2^))

2.4.3 Link Function:

The link function relates the linear predictor 77 to be expected value of datum 

y. In classical linear models the mean and linear predictor are identical, and the identity 

link is plausible in that both 7 and n can take any value on the real line. However that 

when we are dealing with counts and the distribution is Poisson, we must have //> 0, so 

that the identity link is not suitable in this case, because 77 may be negative while must 

be positive, and we can avoid that by taking log link 7= log(/z), with inverse = exp( 7).

For the binomial distribution (with index n=l) we have 0<^<l and the link should 

satisfy this condition.

There are many link functions but we shall consider only three particular functions which 

are relevant to the models and data set examined in this thesis:

I- Logit

7=log(-^-)
1-A
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2- Probit

77= O

where is the Normal cumulative distribution function.

This is an alternative to the logit model, and usually indistinguishable from it in practice.

3- Complementary log-log

^=log(-log(l-^))

Figures (2.1), (2.2), (2.3) are the plot of each link function alone and figure (2.4) 

compares the four link functions.

The logistic (logit) and the probit function are almost linearly related over the 

interval 0.1<^< 0.9. For this reason, it is usually difficult to discriminate between these 

two functions on the grounds of goodness of fit. Chambers and Cox (1967).

For small values of n, the complementary log-log function is close to the logistic. As n 

approaches 1, the complementary log-log function approaches infinity much more slowly 

than either the logistic or the probit function.
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2.5 The Linear Logistic Model:

In many respects this is the simplest possible way of representing the dependence 

of a probability on explanatory variables, so that, the constraint 0 < //, < 1 is satisfied.

Let at be the vector of explanatory variables. Then set

^(1+^) = *^

hence

so atp= log(-^—)

u p
and = log(- ) = a^— atsPs

1

we call If the logistic transform since A, is the logit function.

(2.3)

We call expresion(2.3) a linear logistic model.

Cox (1972) presents eight kinds of models related to multivariate binary models, one of 

which is the logistic model.

He states that the simplest, most flexible, and in many ways the most important models 

are probably the logistic representations of the probabilities.

53



Suppose that ^=2^-1 , so that Z's takes the values ±1, since y, = 0 or 1 using the 

standard representation for binary variables, and suppose that

log[?(Zi = Zi,......,Zp = zp)] = a1zl+.......+apzp + anziz2 *-..Aap_xzp_vzp

=> P(ZX =zlt.... ,Zp = zp) = expfa^i +..... +apzp + anzxz2 +.....4-A-1

Where A is a normalizing constant: eA is a sum of exponentials chosen to make the 

probabilities sum to unity.

The logistic model is implicit or explicit in a good deal of work on multivariate binary 

data, but only for small values of p, because of the large number of parameters involved.

2.6 Definition of Multinomial distribution:

The multinomial distribution is a generalization of the binomial to more than two 

categories. Suppose we have N independent identical trials. On each trial, we check to 

see which of q events occurs. In such a situation we assume that on each trial one of the 

q events must occur. Let ,i = 1 be the number of times that the ith event occurs. 

Let Pi be the probability that ith event occurs on any trial. Note that the p/s must satisfy 

Pi + P2+ -+Pq = 1- In this situation we say that has a multinomial distribution

with parameters N,pv,....,pq.

The distribution is

Pr<”i = ,i....... =r«>=77^77 rf.........Pg
rl ‘..... rq !

2.6.1 The Multinomial Model:

Univariate models with response yt given xt have the form pf = h(z^

For a dichotomous response variable y, e {0,1} for example, the logistic model is given by
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K _ exp(^
* l+exp(^

where = i|x,). In the multinomial case ^i=^i=E(yi |xf) is a (q x 1) vector,

7tt = (^1,^2 Here the model has the form

= h{ZtP)

where h is a vector-valued response function.

Z. is a x p) design matrix composed from and p is a (pxl) vector of unknown 

parameters.
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2.7 Generating Function:

The generating functions reflect certain properties of distribution functions. They 

are transform of the density function ( or probability function) defining the distribution.

They can be used to generate moments and cumulatnts. They also are particular 

usefulness in connection with sums of independent random variable.

Definition (1): The Moment Generating Function of a random variable X, denoted by 

M(t), is defined by

= E[e* ] for all real values of t.

Definition (2): The characteristic Function of a random variables, denoted by #/), is 

defined by

^(/) = E[e] for all real values of t.

Note that the moment generating function M(t) does not exist for every distribution for 

all values of t.

2.7.1 Relation Between Moment Generating Function And Moments:

If M(t) can be expanded in power oft, i.e. if

^<0= 
r-O '

then l e •= ar the coefficient of — in the expansion of M(t) as a power series in t. 
rl

and = 0

/. cov(%,y) = ^—Af(/i,f2)ki =0/2 =o 
^1^2
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therefore r(%) = ^

2.7.2 The Correlation Coefficient:

The correlation coefficient has the advantage of being independent of the units of 

measurement.

If weights are measured in kilograms instead of pounds, the covariance and variance are 

changed, but the correlation coefficient remains the same, because it measures the linear 

relationship between x and y. Note that -1 <p< 1 if it is +1 the slope of the line is 

positive, if it is -1 the slope of the line is negative.

The correlation coefficient between X and Y is a dimensionless quantity often denoted 

by p and defined by

cov(x,y)

The correlation coefficient is widely used in the study in the interrelationship among 

dependent random variables.

2.7.3 Regression:

Regression analysis is designed to examine the relationship of a variable Y to a 

variable X

Definition (3): Multiple regression:

In multiple regression, it is assumed to have a "dependent" variable Y which is 

dependent upon p "independent" variables xl,x2i......,xp. Or

Y = +fi2x2 +.......+f}pxp + E
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where a,A,p2t.......,Pp are unknown parameters to be estimated, and xifx2,...... ,xp are 

covariates or known variables, et is observation on a random variables, independent of 

x"s.

Definition (4) Polynomial Regression:

if there are no theoretical reasons for expecting a curve a certain type to represent the 

relationship, polynomials are often selected because of their simplicity and flexibility. The 

lowest degree polynomial that will suffice can often be determined by an inspection of 

the scatter diagram After the degree has been determined, the best-fitting polynomial of 

that degree may then be fitted by the method of least square or Likelihood.

It is usually unwise to use a power higher than degree three because of the inherent 

propensity of a polynomial to oscillate, and oscillation can occur unnoticed "between" 

data values for high order polynomials.
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CHAPTER 3

EXTENSION AND ADAPTATION OF THE ZHAO- 
PRENTICE MODEL
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3.1 Introduction:

Regression analysis of binary data is frequently complicated by correlations 

between the outcomes; for example, in studies with repeated measures on individuals or 

in familial studies. Likelihood analysis of such data is hampered by a lack of realistic 

probability models for multivariate binary response vectors that allow the specification of 

the mean and correlation independently of one another.

Liang and Zeger (1986) and Zeger and Liang (1986) developed an extension to 

quasi-likelihood called the Generalized Estimating Equation (GEE). Also see Lipsitz 

(1991) and Fitzmaurice and Lipsitz (1995).

Since the (GEE) approach requires correct specification of only the mean values of 

the dependent outcomes, it leads to estimates of the regression parameters which are 

consistent and asymptotically normal even if the correlation structure is misspecified. 

Accurate specification of the correlation structure leads to increased efficiency in 

estimation.

Correlated binary data arise in many application areas including studies of disease 

occurrence among family members, studies involving repeated measurements on study 

subjects, longitudinal studies, and studies involving group randomization.
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3.2 Binary Models:

Zhao and Prentice (1990) considered a sample of K, independent, multivariate 

binary observations

# = ..........(4 = 1.2................ K)

They suppose that Yk is distributed according to

Pr(y,) = A?exp(y^+^+CA^

where *y*iy*3>..... ..................... ) . ^*=(^*1.^*2................ ) and

2* =(2*12,2^3,....,2*23»........ ) are "canonical" parameters, and A* =Ak(0k,2*) is the

normalization constant defined byA A = ^exp(y/g.+lPf +C. (/,)).

However, they point out this model is impractical unless nk < 12 VA .This arises from the 

difficulty in finding or calculating of the normalization constants, A*. But for us nk » 700, 

so we propose a modification and approximation to this model so as to make it suitable 

for our binary data.

This section is largely devoted to developing expressions and approximations for this 

normalization constant, so as to enable large values of nk to be used in this type of 

model. Extensive numerical checks laid out in tables have been used to validate these 

alternative formula.

Our first proposal is to assume a strong regularity in the underlying process and use this 

to justify reducing the parameter space initially to two elements 0 & X fully specifying 

the linear and quadratic components respectively.

Taking 0x = 02 =.......= 0* = 0 , Xkn = Xkl3 =..... = Xk23 =..... = 2 and putting Ck (Yk ) = 0,

So
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n n—1
where y.-^y, ys = ^y^M and A =

i=l 1=1 û„

with the last summation being over %={ all 2" possible 0/1 sequences of length n).

By assigning a nominal probability of 2to each sequence in Q„ , this definition of A

can be interpreted as an expectation over a uniform distribution, scaled up by 2

i .e. A = 2"

For this distribution, we examine Pr(y = m) :

we have m={# l's in sequence ,y2,.....,yM } => Pr(m) = ” 2"”

Now from standard properties of expectation

E[e^-+^ * (nA
] = E[E[e^-+^ \m}]=y\E[e^Xy‘ |m] 2"" I M J

But |w] « from the standard linear approximation for non-linear

function expectations. Also note that E[ex ] > this is Jensen's inequality for convex 

functions, see Eggleston (1958) and Laycock (1972)

Now we need to find E[y{ |m] and E[ys |m\

(i) E\yt |m\ = m by definition

M-l
(Ü) E[ys\m} = ^E [y^M | m] 

i=l

but,

E[yiyi+i\m] = E[yiyM\yi = l,m]Pr(y, = l|w) + F[yiy/+1|yj = 0,w]Pr(y, = 0+m)
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-E [ l.yM |yt = 1,nt]—+0 since PrO, =11^+..... +y„ = m), by symmetry, since distribution

is uniform and all possibilities are equally likely.

=^— since Pr(yM=l\y1+y2+....+yi_l+yM+.....+y„=m-= again by

symmetry. 

M-1

..|w] = (m-1) — since = (n-l)k

Hence

E[e^+' 6

So the model assumed for our data will be

1=1 1“1
Pr(y) =

77 A 6n+(m-l)— 

aIW J

3.2.1 Approximation checking:

In this section we demonstrate various checks on the validity and accuracy of 

this approximation, both numerically and theoretically

ie. yy.......
J! =0^2=0 y„ 1=1 i=1 m=0 '

and also check for a varying n that = 1. 
t=l

Checking that the left hand side is approximately equal to the right hand side we will 

take two parts of checking.

63



First for n is small theoretically checking, and second for some chosen values of 

estimating parameters checking the approximation numerically.

Taking n=2 then, the left hand side will be

1 1EEe +yi ) = l+2ey + e 
y{ =0y2 =0

The right hand side will be

( 2 A &n+A(m-l)—

So if n=2 then our approximation is exactly equal to the original one.

Taking n=3, the left hand side will be

2 +^3 +^2^3 )1 = t + 3^ + ^ + 2^2^
fl =0^2 =0^,=0

the right hand side will be

3 3 
mE 

m=0

m a 2^—
exp(Aw + 2(m-l)—) = l + 3e5 + 3e 3 M

+ e30m

we require 3e 3 =e2^ + 2e2^

Or 3e'^ =e2^(l+2e^)

Or 3e3 = l+2ez 

2 4 22 22
or 3(l + -2 + -—+........ ) = 1+2(1+A +—+.......)

3 9 2! 2!

if 2 is small then both sides are equal, so still the approximation is accurate.

Taking n=4, then the left hand side will be
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1111
S S S 2exPtOi +yi+y3 +y2y3 +^4)1
>1 =0^2 =0^3 =0^4 =0

=1 + 4^® + 3^20 + 3^^ + 2^3^22 +

the right hand side will be

y’f lexp(^M + 2(w-l)—) = l+4e^+6e 2 +4e 2 + e4»+3Z
«Iw J nm=0

Again we require

3^+ 3^+2^+2^^ = 6/4^ 4.4/^

,2 1 (—^)2 □
or 3^^^l+^+—-+...... ) + 2e^(/+e^) = 6^^(l+^-2+^—+ ...) + 4e^(l + ^2+...)

or 3g^^(14- 2d------ h....) + 2d----- b....)d-(ld- 22d--—-—K...)]
2! 2! 2!

“6e2^(ld- —2d-....)d-4e3^ (Id- —2d-.......)

Again if 2 is small then both sides are approximately equal.

The second part of the checking is to take typical values for the estimated parameters 6 

and 2, then substitute in both sides and see if they are approximately equal for realistic 

values ofn.

We will take one of the allocations which is allocation 47

After writing the FORTRAN program see appendix (E) we fitted that the parameters

0j = a+/3Tj where 7} = -107,-97,-87,-77

Xj = 2i d- 227^ j—1,2,3,4

65



and the estimates for the parameters are:

a=-11.736 , =-0.086 , ^=11.6843 , ^=0.0855

(1) If T=-107

then e =-2.534 and 2=2.5358

We know that if n=3 we require

1+3^ + 2^+^ + g^or ^P =------------------- ---------------
l+3^ + 3/^

VP= 1 4829 = 1.044 = 1
1.4201

(2) If T=-97 then 2 =-3.394 and 2=3.3908

V P = ^^ = 1.0305 = 1
1.1665

(3) If T=-87 then 6 =-4.2544 and 2=4.2458

y p= L08493 = 1 Q1697 = 1
1.06682

(4) If T=-77 then 5 =-5.114 and 2=5.1008

Y P= L 03579 = 1.0084 = 1
1.02714

We concluded that our approximation is accurate even if n is large.

3.2 .2- Calculating the percentage error for various data sets:

By taking various allocations and from estimating the parameters we compute 9, 

and 2 for ten allocations and we plot the numerator against the denominator. If the 
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developed approximate formula for the normalization constant is correct then these 

ratios should equal one, and we will calculate the mean error and variance error for the 

allocations 47, 68, 65, 63, 58, 53, 50, 48, 36, and 29.

As can be seen from these tables the approximation for the normalization constant is 

accurate across and wide range of parameter values.

In the following table we will calculate theta and lambda for each allocation for four 

thresholds.

e 2 0 2 e 2 6 2

47 -2.534 2.536 -3.394 3.391 -4.254 4.246 -5.114 5.101

68 -3.479 3.478 -4.041 4.037 -4.602 4.596 -5.165 5.155

65 -2.694 2.694 -3.474 3.473 -4.253 4.252 -5.034 5.031

63 -2.635 2.636 -3.137 3.137 -3.638 3.638 -4.141 4.139

58 -2.427 2.428 -2.818 2.807 -3.208 3.186 -3.599 3.565

53 -2.399 2.400 -2.514 2.510 -2.629 2.620 -2.744 2.730

50 -2.514 2.511 -3.374 3.371 -4.234 4.231 -5.094 5.091

48 -2.548 2.554 -3.043 3.045 -3.538 3.536 -4.033 4.027

36 -2.996 2.989 -3.563 3.542 -4.130 4.094 -4.697 4.646

29 -2.349 2.360 -2.519 2.525 -2.689 2.690 -2.859 2.855

Table (3.1) The estimating parameters.
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In the following four tables we will present the calculation of the numerator and 

denominator for ten allocations for four thresholds

for the case T=-107

Table (3.2) Calculation of the numerator and the denominator and the percentages error

Allocation Numerator Denominator Percentages error

47 1.48 1.42 4.225%

68 1.19 1.16 2.586%

65 1.41 1.35 4.444%

63 1.44 1.38 4.348%

58 1.54 1.47 4.762%

53 1.55 1.49 4.027%

50 1.49 1.42 4.93%

48 1.48 1.42 4.225%

36 1.3 1.25 4%

29 1.59 1.52 4.605%

To find the C.V. (error) we need to calculate the mean error and the standard deviation 

error.

mean error=0.058

S.D. error=0.01135
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So C V.=— X 100=^11^ X100= 19.57% 
fi 0.058

Table (3.3) Calculation of the numerator and the denominator and the percentages error 

for the case T=-97

Allocation Numerator Denominator Percentage error

47 1.2 1.17 2.564%

68 1.11 1.08 2.778%

65 1.19 1.15 3.478%

63 1.26 1.22 3.279%

58 1.36 1.31 3.817%

53 1.49 1.43 4.196%

50 1.49 1.47 1.361%

48 1.29 1.24 4.032%

36 1.17 1.14 2.632%

29 1.49 1.43 4.196%

Again we will calculate C. V. for T=-97

Mean error=0.041

S.D.=0.0099

69



cv= 00099 x 1(M) = 24J5% 
0.041

Table (3.4) Calculation of the numerator and the denominator and the percentages error 

for the case T=-87

Allocation Numerator Denominator Percentage error

47 1.08 1.07 0.935%

68 1.06 1.05 0.952%

65 1.09 1.07 1.869%

63 1.16 1.13 2.655%

58 1.24 1.20 3.333%

53 1.44 1.38 4.348%

50 1.09 1.07 1.869%

48 1.17 1.14 2.632%

36 1.09 1.08 0.926%

29 1.41 1.36 3.676

C.V. for t=-87 is

Mean error=0.028

S.D. =0.0148

c V = 00148 x 10() = 52 86% 
0.028
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Table (3.5) Calculation of the numerator and the denominator and the percentages error

for the case T=-77

Allocation Numerator Denominator Percentage error

47 1.04 1.03 0.971%

68 1.03 1.03 0%

65 1.04 1.03 0.971%

63 1.09 1.08 0.926%

58 1.16 1.13 2.655%

53 1.38 1.33 3.759%

50 1.04 1.03 0.971%

48 1.1 1.08 2.0%

36 1.05 1.04 0.962%

29 1.34 1.30 3.077%

C V for T=-77 is

Mean error=0.023

S.D.=0.0195

C.V.= 0 0195 x 100 = 84.78% 
0.023
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3.3- Estimating Likelihood Equation For Threshold Crossing Model in One Band:

We shall now assume that we can write

PrOÿ ) =
g /—I /—I

n —)e n
m )

i=l...n j=1...4

where is the indicator variate for frequency i at threshold j in the selected band.

Hence

ÉÈ9Jyü
g 7=1 <=1 7=1 1=1

4 n

ES
y=i m=0

le 
m )

ejm+Um-1)(-)

Therefore

J=1 /=1 J=1 1=1 J=1 m=0

W । 6jm+Z(m—1)(—) 
m J

7=1 m=0 7=1 /—I 7=1 1=1

We now assume the linear regression 6j = a+^Tj where

Tt = -107 ,T2 = -97 ,T3 =-87 ,T4 = -77 and

this assumption is based on the finding for previous models in Gott and Laycock (1989). 

Hence 1
7=1 m=0' j=Y j=l

(3.1)

where -EÊya
7=1 7=1 1=1

and ^S(2.7)= 
7=1 7=1 1=1
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To find the likelihood equations for the parameters differentiate (3.1) with 

respect to a,p,k, and equate to zero:

" (nA (.a^pr^m^m-1)(-)
'

2Cr(a+pTj )m+A(m—1)(—)

7=1 i 7=1
(say)

A M A ( et*pTj )m+7(m-l)(—) .
where A 1f=m e ” andIm J

" (a+flTj)m+A(m-1)(-) 

m=0

" (nA (a+pTj)m+X(m-1)(-) 
7 m\ Ie "a w

| M | (a+pTj)m+A(m-l)(—)
7 I Ie ”

7=1 J 7=1

-=y at

1 (a+^T^)m+Â(m-l)(—) 
> (w~l)(—) e "
^0 ” 

" f w («+^7})m+A(m-l)(-) 
7 e "6W

Zo W 1^7

We first consider calculating Av ,AV, andA2j. Because of potential overflow or 

underflow problems with these expressions (arising because our "n” is large) great care 

must be taken in evaluating the summations.

We know that
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nn

consider

If 0>O, then put r=n-m, so m=n-r

therefore A = 7 e "6W

(M-r-l)(n-r) (w-l)w-(w-l)r-r(n-r) 
n n

_(n-r)n-(n-l)r-r(n-r)
n

—(n — 1)--- (2m — r — 1)
M

=^n0+À(n-1)
r=0

A mA —rÇOA—(2/i-r-l)) 
where T_ = e ” and v J

therefore 
T,

M A —(r+!)(#<—(2m—r—2)) 
r +1) ”

M ! r ! (m — ?*) ! -(r+l)(#4~(2«-r-2))+r(ô+—(2M-r-l))
(r + l)!(M-r-l)! m!

r + 1
22

where g = exp[-0----- (m-p-1)] 
M

So A = Tr
r-0

where rr+1 = Trrr
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Now if 0< 0, then

But E r — 6 a---- (n-r-1) Mid. Er+1 — E r------
n n

therefore In A = n0+ 2(h -1)+In Tr
r=0

m=0

-ÊT.
m=0

(say)

Where Tm =
H A An+Z(m—1)(—) 

e wm J

Hence
n A 1)+A»(--- )
m )

Define

n ! rn!(» — Wf)!----------------------------- :------ <— g n e n
(m+Yy.ÇN-m-Y)\ »!

_n — m 
m

22
" and

=Hz21e%^ 
m

1 a 22--=-----eye ”
M-l

where

?l = 0 , 7!=^» , ....... 7^ =

We will use the same procedure to calculate A v and A^ 

setting
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We distinguish the two cases 0< 0 and 0> 0:

If e> 0 then since I ”
I m

Ai = 

r=0
e ”

where r=n-m and m=n-r

. A1 = 

r=0 '

—en0+^(n-l) T, 

r-0

Tr+1 »!(» — r — 1) r!(w—r)! -(r+i)[^^(2%-r-2)]+d#+^(2H-r-i)]
r 7^ (r + l)!(n-r-l)l n!(n-r)

r + 1 

22 2/1where Er = 0+—(n-r-1) and £r+1=^r------
n n

T = 5±L 
Tr r r +1

ft-- (»-2)
where 7; =» , 7^ =^7^ "

and so on Tn =v¥n_1Tn_1

If ^<0 then

A, =2r„ (say) 
m=0

A n A ft-^(nf-i)— 
= m le "Jwhere 7^+i =(m + l)| Ie ”&
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1 m

»! mUn — m^ 9(m+i)+^^^ a»+z(m-i)—
, I» ' " 6 "

 2Zm 2Am
Hence « =—-e°e *m n

So ro = 0 , T^ne0

712=4/17j=»e ” xne0 -vre ”

therefore 7w=Y„_1rw_1

Finally calculating A2 in the same way

m=0
» \m)

&n+Um-1)^

Again we will allow for two situations:

Since if 0> 0 then = \m) I n-m

(»-r)(»-r-l)(n^etn-ry+iS" r
M VJ

^2
r=0

(say)

where 7. = 
« V J

d _(^-l)(»-^r n e,n-r-^^^

ana » ^+1/

Hence % %e"Er where £r - #+—(»-r-l)
Tr r +1 n

So T.
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If e< 0 then

, r2 ^TX ................=

m=0

m(m-1) 
n

A2=2r" (say)

where r andn ym) w » ^m+lj

T n,
Hence Y = - = -——e n

«-1

2 — -
So 71=0 , 71=0 , T2 = (m — l)e ” and t; =

When we calculate ^J , Ajt and A27 using these formulas, the under flow or overflow 

of terms can be easily controlled in the programming so as to enable correct evaluation 

of the overall likelihood value.

3.4 Finding a General Expression For Expectation of Y, Variance of Y, Covariance 

of Y and Correlation Coefficient of Y:

To find general expression of the moments, we will use the Moment Generating 

Function.

By definition M. G. ¥.=E(ety) = M(t)

and we also have

/O1 >^2 ,yn) =

Wi+I 
e *=i i-i

n ]
\e m J
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My (/) = £(?*)

” fl =0/2=0 y„=°

^iere

>1" 

^2
Y= . Fl

_y»-i _

2 -

L^J

y2
73

and z>„ = y e ”

SO£(y,) = (^),,^=A/;,(0)

r=ÉÊ Ê Ê^^p(^+^) 
” fi=0f2=° fi=0 f„=o

1 1 I ‘ Mm ^+aEf,/+lE - Z Z Z^ e ,=,+i
fl —° f/-i=0f(+i =0 f„=o

(3.2)

Ex: take n=5, i=3

1 - - - * * Mm

5 ^1 =0/2 -Of, =0^4 =0^5=0

e^^(f3+f4)
g +^2 ) x

5

E(Y,) = ——D,_lD,

1 i i

,2<i<n-l

>1 =0^i =0 ^4=0j>5=0

Putting n=5, [=3 and substituting in equation (3.2) we get E(y3 ) immediately
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e (y3 )= -D2D2 
U5

using the same procedure we can find that:

E (yj ) = — Dj_xDn_j for i^j

j n ^=0 >/=0 >j=0 >n=0

+ji+i +>^_i +jj+i)

1-1 1-2
■ 1 1 Wf+1

[ES.. Ee“ “
J1 =° Jl =° ^/-l =°

7-1 j- 2
i i i ^i+i

ix^ %] 1
^+2 “° ^+3= 0 yj-1

i i i e£yi+*£wM 

xi E E...E^ "/M i
yj+i-° yj+i=^ y»-1=®

e2»f2A
•'• E (,ytyj')= — Dt_vDj_xDn_j (3.3)

Example: if n=9, i=4, j=7 then

using the previous formula, we can write

E (^4^7 ) — 77 D3D2 Di
U9

Proof:

since ^(^7) = —.........^^7^'^^...+^)+^^2+w,+—+w,)
&9 >1 =0>>2 =0 y9~0

g 2 6’+A(>3 +^5 +y6 +ya )

D9

1111111
e +^6 +7, +^, ) g tWi +We Wi )

Ji =0^2 =0y, =0^ =0fg =0)»; =0)i, =0

^_Lg2^ 
D9

1 1 1
{[ yg^i+i'i+j’ij+^+wi)

>1 -0y2=0y3=0

1 1 
x(EEg

x'EE
fS-O^g-O
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y-e^D-.D^ 
u9

Finding Cov^y^y^ , V(yt) , ^(yj) and Corr(yt,yj)

Since Cov(yt ,yj) = E <ytyJ)-E(yi)E(yJ)

20m e*x 9+x

1Jn

2^-22 1
-5——(3.4)

^(^^-(S^,))2 since yj = y? = 0 or 1

0+2 20+22
=—0^0^ —D^D^ 

Un Un

0+2 0+2
therefore ^(^) = —— [1———] (3.5)

^Z1

0+2 0+2
and r(_y7 ) = — Dj_xDn_j [1 — Dj-iPn-j ] (3.6)

Corr(yiyJ) =
cov(^j)

Now by substituting (3.4), (3.5) and (3.6) in the above equation then

20+22 1
—— Di-\Dn_j [Dj-i-1 - —— Dn_tDj_ 1 ]

Corr(yty, ) = ---- . ” " --------
^2 70^2

20+22 1
—-— Dt_xDn_j [Dj-i.i - — Dn_tDj_x ] 

_______________ _______________________________________________________
I Zm 7^1

JA-1 11 - -^r— ] ^y-l Dn-j [1 - -=j— DJ-1 Dn-J JUn V Un Un
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Corr(yiyj) =
e^D^D^Dj^

"n
I e^
Di-lDn-i [1--ZT— Di-lDn-i ]DJ-A-J [1 Dj-lDn-J 1

un

(3.7)

Checking the value of correlation if A = 0

since E(yi) = -^-
. if»)[D^D,^ ] where Dn = e "

If 2 = 0

then ) = ^-[Dt^Dn-i ]

[(l+^y-:(l+^)^

if 2 = 0 then Dn = ” je^” =(l+ee)n since
m=0 v /

{(1+0" "p

therefore E(yj') =----- -

:.E(yi) = E(yj)

VW =
e9

P-TTTl-^)1+e

£(^)=—d+^r2
(1 + e5)2

e2®
= 0

Since Corr(ytyj) =
Cov(yjyj)

VF(7)Fôv)

■•.^(^> = ^=0
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therefore if 2 = 0 then Corr(ytyj ) =0.

It is possible then to Plot the correlation for some values of theta and lambda of various 

correlations for different thresholds.

Figures (3.1), and (3.2), present the correlation between some Y with the rest for four 

thresholds to see the correlation in the four thresholds. In these plots, it is intersting to 

observe that the correlation typically falls, at lag of 1 and 2 kHz, before rising to zero. A 

practical explanation for this has not been obtained, although the the experimenters are 

very interseted in this phenomenon and intend to examine their own data experiments 

and models in the light of this result.

Figure (3.3) presents the different correlations for one allocation for one threshold, in 

this plot we see that the correlation falling from 0.8 to zero as the lag getting bigger.

Figure (3.4) presents all the correlations between one and the rest.

3.4.1 Relation between the correlation coefficient and lambda:

Figures (3.5), (3.6), (3.7), (3.8) show the graph of the correlation against lambda 

for some theta values for separate threshold at some allocations.

and from the various graphs we find that if lambda equal zero the correlation between y5 

and y6 is equal to zero, also as lambda getting bigger the correlation getting bigger, 

where theta is constant, figures (3.9), (3.10), (3.11), (3.12) show the behaviour of the 

correlation when 1<2<3, and from the graph we see that the correlation is filling down 

from zero as lambda is small to -0.7 as lambda getting bigger.
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Chapter 4

Application Of Multinomial Models To HF Radio 
Spectrum Data
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41 Introduction:

We fitted separate models to the marginal binomial counts of the derived multinomial 

data. This model was fitted for "all users" using Genstat Statistical Package. With the 

version of GENSTAT available at the time of doing the work in this section it was not 

possible to fit full models to our ordered categorical multinomial data.

After that we fitted a full multinomial model to "each user" separately instead of "all 

users" at the same time, using the statistical package T. S. P.,which had the required 

facilities for ordered categorical multinomial data. It was not feasible with either package 

to fit "all users" with the full multinomial model.
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The raw occupancy values, Q as recorded can be converted (back) into signal 

exceedancy counts by multiplying with relevant bandwidth, b, and dividing by 100. The 

resultant variable :

R=(Qb)/100

can then be regarded, to a first approximation, as a binomial B(b,Qx 10~2 ) variate.

However the occupancy values "Q” overlap to some extent, since any signal 

which exceeds a given level must necessarily exceed all levels below that one.

For example:

Q= that percentage of signals in a given band on a specified occasion, which exceed - 

107dbm

Q = that percentage of signals in the same band on the same specified occasion which 

exceed -97 dbm.

Then all those signals which are signals counted into Q2 must be counted into Qx ,and 

Q1 > Q2 necessarily.

This clearly violates the standard statistical assumption of independence which in 

particular was used in the maximum likelihood producers for fitting the binomial logistic 

model. This problem has been recognized by Laycock and Gott (1988). The principal 

effect will be in an incorrect estimation of the associated standard errors.

The true situation is more appropriately fitted by a multinomial model after suitable 

differencing of the transformed (to R) Q values. The lowest signal level -117 dbm, is 

known to be close to the inherent noise level of the whole system and this fact is 
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reflected in a relatively poor fit of the binomial model to this portion of the data. Hence it 

was decided to ignore this signal level when constructing the multinomial counts.

These therefore refer to the following five continous intervals of signal strength, S, for 

any one band on any one occasion:

Interval A =(-” -107] 4 =(-107,-97] 4 =(-97-87] 4 =(-87,-77] A =(-77,=o]

Multi-count Ri R? Rs Rs

Probability Pi P2 p3 P4 Ps_________

if the cumulative distribution function of S is Fo, so that

Pr^ < 5)= F/s) then we can write

P^PrCS

and similarly for the other intervals.

Next, if we assume that successive signal strength observations are independent (and the 

experiment was designed to produce this effect if possible) then we can write down a 

multinomial expression for the probability of any one vector R of these counts for a 

particular band on a particular occasion:

P = W)= f f

And finally for a set of n independent observation on Rj , R2 , R3 , R 4 ,R5 
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we can write

n XT |

and hence the log likelihood function is

n 5

/ = lnP = constant ^ln^ 
Ni j-i

where the constant depends only on the data and

Pji = Pr^ elj on the ith occasion)=F^(-107)-F^(-oo) for j=l say

and the parameters to be estimated are contained in the 9^ coefficients.

In particular:

Case 1: S is normally distributed 

dF„ 1

and we set

^=A+A*i+.......*IVp

for a direct linear model dependency of the mean function on the predictors:- such as 

frequency and sunspot number.

Case 2; S is logistic

[1+exp(- ,P>0 , -oo < 5 < oo
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This is the implied signal strength distribution for the binomial logistic fit to the 

occupancy data as described in chapter one .As stated previously the work in this chapter 

is divided into two parts.

1- First part:- Fitting binomial model to appropiate subsets of the multi-counts using 

Genstat program.

2-Second part:- Fitting multinomial model to all counts simultaneously using T. S. P. 

package.

The use of Genstat fitting for a binomial model to these data will be described first:

Extensive data analysis, based on the binomial distribution (see Genstat Manual) of the 

congestion counts within each frequency allocation has resulted in the use of the 

following linear predictor to represent the experimental congestion values.

This model has been fitted to various subsets of the original undiflerenced data by 

students under the supervision of Dr Gott and Dr Laycock. The linear predictor is given 

by

H = G + Ak + B{dBm )+(co + ctfk + c2fk) x sunspot number (4.1)

This is the original model fitted to the percentage occupancy using a link to the binomial 

mean.

A% has 95 values corresponding to the 95 frequency allocation or user band.

B is a single coefficient to be multiphied by the threshold (dBm) including its signals.

c1? c2 are coefficient in a quadatic expression for frequency to be multiplied by sunspot 

number, and is a constant term.
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4 is the mid point frequency of the Kth user band.

This was the original model with all threshold levels fitted for the percentage occupancy 

using Genstat with binomial distribution.

But in our case we will exclude the threshold levels term since we are taking the 

differences between the counts and then fitting a (marginal) binomial model to each 

separate difference at the given threshold partitions e g. (-107,-97)dBm.

Hence B is a constant for each of these separate subsets of the data.

So the model becomes:

£t = G+ Ak +(c0 + crfk + cjk )x sunspot number (4.2)

where all the coefficients are as before except that the constant "B(dBm)" has been 

absorbed into G

It was necessary to make changes to the original Genstat program used by the Gott 

research group (in the department of Electrical engineering and electronic at UMIST) to 

make it suitable for our data. A listing of this program and a sample set of results can be 

found in appendix A. We ran this "binomial model" using logistic link i.e.

qj = \-pj J= 1.....5 k=1.....95

P^l+e^Y1 Q=l-P—(1+e^Y'

e* _ . .
= -—— where // = / which is defined in (4.2)

for every separate multi-count for summer day, summer night, winter day and
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winter night with all users (i.e. all 95 bands at once).

The ANOVA table below gives the marginal analysis for each term of the model, and for 

the model as a whole (less the constant) for "summer day" threshold C5 =(-77,oo).

Source d.£ deviance mean deviance P value

Bands 95 6619.8 70.423 < 0.5 %
Sunsopt 1 4.409 4.409 <5%
Fsun 1 8.681 8.681 <0.5%

F?sun 1 16.774 16.774 < 0.5 %

Regression 97 9338.9 96.227 <0.5%

Residual 662 961.2 1.452 > 50 %

Total 759 10300.1 13.571

Assuming each deviance is asymptotically a chi-squared variate on the corresponding 

degrees of freedom under the corresponding null hypothesis McCullagh and Nelder 

(1989), we see that each term in the model is statistically significant (on the margin), as 

is the whole regression.

Also the residual deviance is consistent with such a .

Since the congestion model is a generalized linear model with identity link, congestion is 

represented by p = where xj are the covariates and Py are the parameters.

The mean deviance of this model for C3 is 1.452 and since a good fit in this context has 

been found to be indicated by a mean deviance less than 10, the model fit for summer 

day C3 =(-77,oo) is more than adequate for all practical purposes, as can be seen by 

examining the histogram of residuals, in appendix 1.
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The terms "constant" and "uband" can used to calculate the 95 band constants A% The 

"constant" term defines A} and the remaining band constants An are found by adding 

"constant” and "band”. For example:

For the band constant :

A^=-14.3(constant)+1.6(uband2)

=-12.7

Histograms for occupancy and errors are produced by the program, where "error" is 

defined as a percentage by:

C-c ---------- ----- ---------- x 100 
# Channels in allocation

Where C is the multi-count under (~77,oo), andC is the fitted number for the multi­

count.

There are 760 observations in the total error histogram showing that the percentage of 

all fitted values within 0.01 of the measured data is 74.7% for "summer day" Cg

in the following section which describe all the model fits, tables will be given which 

quote mean deviance and estimation of p, the "1st order markov chain serial correlation" 

coefficient for each subset of the data calculated by: 

where Ô is the mean deviance.

For more details on estimating this correlation coefficient,Laycock and Gott (1989), and 

also chapter one of this thesis.
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TABLE 4.1 RESULTS SUMMARY FOR THE GENSTAT

RUN COVERING THE DATA SET FOR ALL USERS

AND ALL MULTI-COUNTS. SUMMER-DAY.

MULTI-COUNT RESIDUAL MEAN 
DEVIANCE

1ST ORDER MARKOV 
CHAIN SERIAL CORR.

C. =(-00,-107) 6.504 0.7335

C2 =(-107,-97) 3.813 0.5845

C, 4-97,-87) 2.156 0.3663

C4 =(-87,-77) 1.683 0.2546

C, 4-77,oo) 1.452 0.1843

TABLE 4.2 RESULTS SUMMARY FOR THE GENSTAT

RUN COVERING THE DATA SET FOR ALL USERS 

AND ALL MULTI COUNTS. SUMMER NIGHT.

MULTI-COUNT RESIDUAL MEAN
DEVIANCE

1ST ORDER MARKOV 
CHAIN SERIAL CORR.

C, 4-00,-107) 17.64 0.8927

C2 4-107,-97) 7.455 0.7635

C, 4-97,-87) 6.252 0.7242

C4 4-87,-77) 2.437 0.4181

c5 =(-77,00) 3.702 0.5746
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TABLE 4.3 RESULTS SUMMARY FOR THE GENSTAT

RUN COVERING THE SET FOR ALL USERS

AND ALL MULTI-COUNTS. WINTER-DAY.

MULTI-COUNT RESIDUAL MEAN
DEVIANCE

1ST ORDER MARKOV
CHAIN SERIAL CORK

Q =(-=o-107) 10.93 0.8324

C2 =(-107,-97) 5.508 0.6927

C3 =(-97,-87) 3.78 0.5816

C4 =(-87,-77) 2.822 0.4767

C5 =(-77,oo) 2.536 0.4344

TABLE 4.4 RESULTS SUMMARY FOR THE GENSTAT

RUN COVERING THE SET FOR ALL USERS

AND ALL MULTI-COUNTS. WINTER-NIGHT.

MULTI-COUNT RESIDUAL MEAN 
DEVIANCE

1ST ORDER MARKOV 
CHAIN SERIAL CORK

Q =(-oo,-107) 6.216 0.7228

C2 4-107,-97) 3.95 0.5959

C3 4-97,-87) 3.231 0.5273

Q 4-87,-77) 1.81 0.2883

C, 4-77,=o) 2.642 0.4509
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With the degrees of freedom available for these data, a residual mean deviance of 5 or 

more shows a statistically significant deviance away from the fitted model.

However, examination of the error histograms confirms a commonly observed 

phenomena namely, that £ tests with large degrees of freedom are too sensitive.

A value of 10 or less typically gives a more than satisfactory fit of the model to the data 

for our situation.

From the previous tables for residual mean deviance, note that only Cj has a value which 

exceeds ten. This happens for winter day and summer night.

So we conclude that just the "Cf counts in winter day and summer night are not 

accurate, and all the other multi-counts are accurate i.e fitted very well.

This "rule of thumb" for binomial fits with large data sets can be checked by inspection of 

the histograms, see for instance Appendix (C).
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Second part:- Fitting a full multinomial model to all counts [summer day only].

At the begining we tried to fit the model as before, when we used a Genstat package, 

with all the users and all 95 bands.

Since there are 95 parameters it is not easy to estimate with the T. S. P (Time Series 

Package) because of the capability of the package itself so we changed the model to a 

polynomial model:

^AiZ+Aa/2 +ZW3)X sunspot number

Where f is the mid frequency, and toare parameters (i=l,...,5 for the five 

thresholds bands)

This polynomial model was fitted using logistic response function by Maximum 

Likelihood Estimator via "NEWTON-RAPHSON” using the package T. S. P

Separate models were produced for each user type.

The models that were fitted where the same as the all user model for the Multinomial 

model, with

where H = + e 73 +em +e’h

% = Ai/ +A2/2 +A3/3 +(A4/ +As/2 +Ag/3)X sunspot number 

where f is the mid frequency, and pn to A^^ parameters (i=l,...,5 for the five threshold 

bands).
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So we fit this model for all multi-counts summer day for each user.

This model for multi-counts summer day produced good fit for some users like 

(MM,FM,AE,B,F,FMB) and for the users with a single band allocated, the frequency 

will be constant, so for this reason we remove the terms which depend on frequency only 

e g. and f* to make the model suitable for such data, so the model will then be

77 = G x sun x f sun + A3/2 sun

Next we fitted a multinomial "signal strength" model using a normal distribution for 

signal strength, ie

pj =

F = Pr^ < Sj) from normal distribution

where so = -00 , % = -107 , s2 = -97 , s3 = -87 , s4 = -77 , s, = co

S has normal distribution with mean and variance say.
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C1 C2 C3 C4 C5

P1 P2 P3 P4 P5

Normal distribution function and cumulative Normal function

n2 n4n1 n3 n5

107 97 87

Sample Levels (dBm)

Sample Counts = Bandwidth 
\ in KHz
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7/ - A x sj +A x sun+03 x /mm +A x [identity link] and y 1,2,3,4

PT = [7^-107)-P(-oo)r =[P(-107)-0]”1

P2 =[P(-97)-P(-107)r

P3=[P(-87)-P(-97)r

^=[P(-77)-P(-87)r

=[^(oo)-^-77)r=[l-P(-77)r

where

are the sample counts = band width.

and F(-107) = F[(-107)xP21 +^22 x^+fl23fsun+PMf2sun+P2i x/]

where fsun = / X sunspot number

f2sun - f2 x sunspot number

So log / = log(P1)+»2 log(P2)+«3 log(P3>+-w4 log%)f^ log(P5)

Again fitting this model to our data for each user we obtained good fit for some users 

and again we reduced the terms because we faced the same problem with the previous 

model. Also with this model we used the same procedure except in this program we 

changed the log likelihood function.

Ill



To find the mean and the variance of the distribution we change the model, so the 

model became

p = Bx (x + x sunspot no.+B3 x Fsun+ B^ x F2sun + S5 xFx)

which is a more complicated model since the first cumulative model was a purely linear 

model but this one is not linear in the parameter B, T.S.P had difficulty to achieve the 

maximum likelihood , from an arbitrary starting value. So we put in initial values of the 

parameters deduced from the previous fit.

How do we choose the values of the parameters?

Since from the linear cumulative model we estimate the parameters for each user but in 

this model B2 is multiplied by every parameter.

Therefore BlxB2= B* and hence

#1

where B* is a parameter which is estimated directly by the fitted model.

Then from these parameters we can estimate the mean and the variance for each user.

Since if x is then is N(0,1) or standard normal.
a

So in this program B2X is ---- — and x takes values -107, -97,-87,-77 and
a

+^23 +#24 +#25)
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Table (4.5) gives the associated mean and the variance for each user.

Fitting this model to each user we obtained bad fit for some users.

TABLE (4.5) THE MEAN AND VARIANCE

FOR EACH USER FOR SUMMER DAY

USER MEAN VARIANCE

FIXED/MOBILE -16.139 85.186

AMATEUR -11.297 45.364

FXD./MOB./AMTR -34.618 12.877

FXD./MOB./BCST -52.738 62.152

AEROMOBILE -25.573 101.202

FIXED/BROADCAST -36.374 18.936

BROADCAST -8.366 34.127

FIXED -11.454 34.173

FIXED/AMATEUR -11.186 17.272

RADIO/ASTRONOMY -6.303 31.846

FXD./MOB./METR -4.677 14.875

MARIT IME/MOB ILE -12.876 58.058
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Looking at the output it's clear that the results are similar to the previous C.D.F. 

model (linear model).

Again fitting this model to the data we obtained good fit for some users and again we 

removed some of the terms from the model to make it suitable for some of the 

users, Appendix (C)

4.2 Comparing the Multinomial Fit with the Binomial fit:

It was stated in Chapter Two that Morrel (1988) fitted a binomial model to the 

occupancy data for the years 1982 - 1986 covering a period of the solar cycle when 

sunspot numbers were falling, then Dennigton (1990) fitted the same model to the years 

1982 - 1989 since during the period 1987 - 1989 sunspot numbers were rising .

The form of the model was

H = Ak+b threshold(dBm) + (Ce + €\fk + C2fk ) x sunspot number

where Ak are constants and b,c's are parameters to be estimated

sunspot numbers are 115, 65, 44, 17, 14, 31, 104, 158 for the years 1982 to 1989 

respectively.

He fitted this model for the occupancy data for the years 1982 to 1989 for all user and 

for single user and then produced estimated occupancy data.

A multinomial model was fitted to the multicount occupancy data for the years 1982 to 

1989, and an estimated occupancy data was produced.

The main aim of this section is to compare the binomial fit (using single user) and 

multinomial fit (using single user) to see the difference.

114



The comparison is considered in two ways:

The first comparison is by taking a random year to see the absolute difference between 
the binomial fit and the multinomial fit te. |m-b| to see the variation of the estimated 

occupancy data for both multinomial fit and binomial fit, also the absolute difference 

between the congestion occupancy data and the multinomial fitted occupancy data i.e. 

\c-m\, and finally taking the absolute difference between the binomial fit and congestion 

occupancy data i.e. |c-b| we present these three absolute differences in one graph for 

each threshold for user Aeromobile for year 1989, we present each threshold in one 

graph.

Figure (4.1) presents threshold -107, we can see from the graph that the difference is 

varies between zero and 6% for the three comparisons but for the absolute difference 

between the binomial fit and multinomial fit we can see that the difference is varies 

between zero and 3.5% and only the difference in allocation 52 was 3% but the rest of 

the allocations the difference is varies between zero and 2%.

Figure (4.2) presents threshold -97 , we can see clearly that the difference is nearly varies 

between zero and 3.3% for the the three comparisons, but for the comparison between 

binomial fit and multinomial fit the difference is between zero and 2.4%.

For threshold -87, from figure (4.3) we can see that the difference is varies between zero 

and 2.1% for the three comparisons, but the comparison between the binomial fit and 

multinomial fit the difference is varies between zero and 1.4%.

Finally threshold -77. it is clearly from figure (4.4) that the difference is varies between 

zero and one for the three comparisons, but for the comparison between the binomial fit 

and multinomial fit the difference is varies between zero and 0.5%.
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From the figures (4.1), (4.2), (4.3) and (4 4) we conclude that the binomial fit model and 

the multinomial fit model are very close to each other specially for T=-87 and T=-77.

The second comparison:- by taking the absolute difference between the multinomial fit 

and the binomial fit for each year for user Aeromobile for four thresholds, and for eight 

years of summer solstice day data. Figures (4.5) to (4.12) represent the difference 

between binomial fit and multinomial fit.

For year 1982, we can see from figure (4.5) that the difference in threshold -107 is 

slightly bigger up to 10% and only for two allocations 60 and 73, but for threshold -97 

the difference is varies between zero and 1.9%, for threshold -87 the difference is getting 

smaller which is varies between zero and one, and finally the difference in threshold -77 

it's nearly zero.

For year 1983, it's clear from figure (4.6) that the difference is varies between zero and 

three for threshold -107, for threshold -97 the difference is varies between zero and 1.7% 

for threshold -87 the difference is varies between zero and 0.6% and finally for threshold 

-77 the difference is nearly zero.

And so on for the rest of the figures which produce the difference between binomial fit 

and multinomial fit for each year.

Conclusion:- we conclude that the binomial fit and the multinomial fit are very close to 

each other specially in thresholds -87 and -77, and also in threshold -107 except for some 

allocations.
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CHAPTER 5
APPLICATION OF BINARY MODELS TO HF 

RADIO DATA
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5.1- Introduction:

In this chapter the data presented is modelled by first or higher order Markov 

chains, and also the data is treated to the maximum likelihood estimation on the 

adjustable probability function taken from Zhao paper.(1990).

Subsequently the dependency of our data was checked by testing X is equal to zero or 

not, since in Chapter Three we proved that if X is zero then the correlation coefficient is 

zero.

Also included in this chapter an important results which predict the signal frequency level 

instead of predicting the congestion data as done in previous work and as was noted in 

chapter four.

Finally, the profile likelihood function was plotted to see the confidence interval for our 

estimated likelihood function.
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5.2- The uncertainty and Redundancy of Happenings in a Sequence:-

A fundamental idea in information theory is that the stochastic process is 

characterized by some degree of redundancy between 0 and 100 percent. The simplest 

kind of complete redundancy occurs when one symbol has a probability of one, and 

others have zero probability , so that for example in our case of the sequence of binary 

data of the form {1,1,1,....,!} this state of affairs was approached when the signal is 

higher than the threshold everywhere.

Redundancy which thus depends upon unequal probabilities of individual symbol 

is said to be of the first order. Another form of complete redundancy is 

{1,0,1,0,1,0,.... ,1,0} even though l's and 0's occur with equal frequency such a 

sequence is said to have second order redundancy. A double alternation of form 

{1,1,0,0,1,1,0,0,...,1,1,0,0} has third order redundancy, since prediction of a given 

symbol depends upon a knowledge of the two preceding ones.

It was shown earlier that information, in the binary digits (bits) persymbol, is 

equal to the log of the number of alternative symbols when all symbols are independent 

and equiprobable, which was called a zero-order estimate of H: Attneave (1959).

Ho = V1 plog— = m(—log/w) = logm 
p m

in our case m=4 which is the four thresholds

Ho = logg (4) — log2 2 =2 log2 2—2

likewise , a first order estimate of H.

Ht =^^log(4)

Pt
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(51)
P,

To calculate a second order estimate first the average information in all pairs (just as 

if each pair were a separate symbol).

H (pairs) = ^(^zr^log-— ------
P( pairs)

where the P (pairs)'s are the proportions of all (overlapping) pairs felling into the 

various possible classes of pairs, for example in our case (binary sequence) there are four 

classes : 00, 01, 10, 11, A second order of estimate of H is then obtained by taking the 

difference between H (pairs) and Hu i.e.

H2 = H( pairs) - Hx

A third order estimate is calculated in a manner entirely analogous to that discussed 

above:

H3 = H ( triplets) - H( pairs)

So the general formula will be

Hn = H(N - gram) - H((N -V)-gram)

where H (N - gram) = P(N- gram) log—------ --------
P(N - gram)

With a sequence of observation, the usual estimate of Hi is obtained by taking Pt = in

the (5.1). Also an estimate of H(pairs) is given by

H (pairs) = log(W2 )-N? ^ny logny

ij
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H{pairs) = p{ pairs) log(-----------)
P (pairs)

A similar procedure can be adopted to find the estimation of ^(triplets), Æ(tetragram) 

and so on.

5.2.1 Test for Higher Order Markov Chain:-

By using the results obtained from Chatfield, (1970), (1975) and

Yarmohammadi, (1988), given that the difference between successive values is

Dt - Ht -Hm (Ho = 1)

then A, = 2 (log, 2)Nm Dt where A, is the likelihood ratio to test the null hypothesis is:

hm : The sequence is (i-l)th order markov chain against the alternative hypothesis:

H^The sequence is ith order markov chain.

Since = A2+1 = Y3+2 =.........=

N^^-Çi-1)

and hence A, = 2(log, 2)NMDt

=2log, 2(^-i^-H^) (5.2)

is asymptotically distributed with the following d.f.
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i d.f

0 1

1 1

£ 2 2^

It would be possible to test the following hypothesis (i-1) order against (i) order which 

means

against #1

-1 order vs 0 order

0 order vs 1st order

1st order vs 2nd order

2nd order vs 3rd order

3rd order vs 4th order

The result of values A, degrees of freedom, and critical %2 values for winter (January 

1991) allocation 6 is given in the table below.
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i A,(-117) A,(-107) A,(-97) A,(-87) A, (-77) d.f ^a=0.05

1 408.237 1.415 26.159 156.81 348.034 1 3.84

2 1.94 43.603 39.719 43.967 7.627 2 5.99

3 15.672 2.723 2.071 0.201 4.712 4 9.49

4 7.847 5.372 2.597 1.463 8.749 8 15.5

5 -0.668 5.283 8.241 7.406 1.724 16 26.3

The test hypothesis can be found in the following table. Note that in this table R means 

"Reject" the specified hypothesis and A "Accept" it.

Our conclusion on the order of Markov Chain has been arrived at by application of the 

following rule.

Rule: " If two acceptance are found in succession, stop and accept current HQ, otherwise 

last acceptance found is used, if none of the null hypothesis are accepted, then order 

greater than four assumed."
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_vs #1 -117 dBM -107 dBM -97dBM -87 dBM -77 dBM

-1 vs 0 R A R R R

0 vs 1 A R R R R

1 vs 2 R A* A A A

2 vs 3 A* A A* A* A*

3 vs 4 A A A A A

Conclusion 2 1 2 2 2

Final Conclusion: It seems that this example of Winter (1991) may be modelled by a 

second order Markov Chain, although the dependence is weak.

This may be contrasted with the experiment's original assumption of serial independence 

for these observations.
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5.3. Constrained Monte Carlo Maximum Likelihood Dependent Data:-

Geyer and Thompson (1992) state that maximum likelihood estimates in 

autologistic models and other exponential family models for dependent data can be 

calculated with Markov Chain Monte Carlo method "Gibbs sampler".

The maximum likelihood estimate in the closure of the exponential family may and 

can be calculated by a two phase algorithm, first finding the support of the MLE by 

linear programming and then finding the distribution within the family conditioned on the 

support by maximizing the likelihood for the family.

They used Monte Carlo Maximum Likelihood instead of the exact maximum likelihood 

to estimate the parameters, they assumed that

f0(x) = -^—exp(t(x),0) wherec(#= ^exp(t(x\0)

They call C(0), the Laplace transformation of the measure t(^) of the exponential family 

or "normalizing constant" and they point out that the difficulty with the exact likelihood 

calculation for many exponential family models for dependent data is that the 

normalizing constant C can't be calculated exactly nor are there analytic approximations 

available.

In our case we have found a good approximation to the normalizing constant, so we 

have applied exact maximum likelihood estimation to estimate the parameters in our 

model.
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5.3.1 Maximum Likelihood Estimate of The HF data:-

We know from chapter 3 that the probability density function is

^+1

Pr (y, ) =
■ «

m» 0

where 6= a+pr} and 7) =-107, -97, -87, -77

and Â = Â1 +Â2Tj and Tj—107, -97, -87, -77

By writing a Fortran program using Nag - library to estimate the parameters using

Maximum Likelihood estimation, we estimate the parameters from allocation 1 to

allocation 68. The following table shows the estimation of the parameters:

allocation a P Ai a2

1 -6.915 -0.0443 6.8864 0.044

2 -13.2212 -0.1043 13.2198 0.1039

3 -8.9715 -0.0629 8.9216 0.0623

4 -8.847 -0.061 8.8288 0.0608

5 -8.1442 -0.0552 8.134 0.0551

6 -5.585 -0.0315 5.545 0.031

7 -9.2974 -0.0648 9.2662 0.0645

8 -4.342 -0.0262 2.2652 0.0021

9 -3.296 -0.009 3.1808 0.0077

10 -7.9306 -0.053 7.6474 0.0502
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allocation a P A 22

11 -3.9858 -0.0148 3.8782 0.0136

12 -3.1924 -0.0081 2.9962 0.0057

13 -6.644 -0.0445 5.6515 0.0347

14 -0.574 0.0247 -0.01 -0.0325

15 -3.1302 -0.0076 3.093 0.0071

16 -2.1746 0.0036 2.0923 -0.0046

17 -5.1321 -0.0257 5.0001 0.0242

18 -3.3569 -0.0095 3.1769 0.0076

19 -2.4404 -0.0004 2.3949 -0.0002

20 -6.4042 -0.04 6.3625 0.0396

21 -1.21 0.015 1.1399 -0.016

22 -1.8458 0.0097 -0.01 -0.034

23 -2.3565 0.0015 2.3165 -0.002

24 -9.8747 -0.0751 6.4481 0.0397

25 -2.9587 -0.0034 2.8377 0.002

26 -5.7419 -0.0355 2.78 0.0044

27 -0.0788 0.0333 -0.01 -0.0346

28 -2.3043 0.0036 2.2799 -0.0039

29 -4.1683 -0.017 4.1255 0.0165

30 -5.2439 -0.0279 5.2029 0.0275

31 -2.6582 -0.0021 2.6171 0.0016

32 -9.2901 -0.0657 9.265 0.0654

33 -3.29 -0.0062 3.2707 0.0059
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allocation a P 2i 22

34 -2.298 0.0026 -0.01 -0.0327

35 -1.9393 0.0082 1.7469 -0.0106

36 -9.0632 -0.0567 8.8959 0.0552

37 -9.5352 -0.0666 9.3761 0.065

38 -10.1398 -0.0675 10.136 0.0675

39 -13.1148 -0.0952 13.1034 0.0951

40 -14.2743 -0.1044 14.2437 0.1041

41 -8.6006 -0.0565 8.5735 0.0562

42 -4.2164 -0.015 4.1876 0.0146

43 -9.2272 -0.0619 9.1832 0.0615

44 -10.7864 -0.0702 10.7791 0.0702

45 -7.9495 -0.0515 7.9397 0.0514

46 -17.3464 -0.1271 17.3464 0.1271

47 -11.6843 -0.086 11.6843 0.0855

48 -7.8448 -0.0495 7.8073 0.0491

49 -9.5822 -0.0663 9.5572 0.0661

50 -11.7162 -0.086 11.7129 0.086

51 -9.171 -0.0605 9.1622 0.0604

52 -6.0729 -0.0303 5.9099 0.0287

53 -3.6295 -0.0115 3.5772 0.011

54 -8.5407 -0.0553 8.52 0.055

55 -10.5545 -0.0756 10.547 0.0756

56 -11.4511 -0.0806 11.438 0.0805
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allocation a P 2i ^2

57 -7.6236 -0.0493 7.6093 0.0492

58 -6.6106 -0.0391 6.483 0.0379

59 -2.0875 0.0057 2.0136 -0.0065

60 -15.6783 -0.1153 15.6874 0.1154

61 -8.4693 -0.0541 8.4098 0.0535

62 -9.9242 -0.0683 9.8207 0.0673

63 -8.0059 -0.0502 7.9968 0.0501

64 -16.9335 -0.1299 16.9321 0.1299

65 -11.0395 -0.078 11.0288 0.0779

66 -13.5741 -0.099 13.5759 0.099

67 -14.9882 -0.1139 14.9788 0.1138

68 -9.4922 -0.0562 9.4594 0.0559

5.3.2 Testing of Hypothesis

The second part of the analysis is to test whether 2 equal to zero or not. Setting 

2 = 2j +22 T we will try to test first if 22 equals to zero or not. Then if it is zero we will 

run the program to estimate 3 parameters instead of 4, and the parameters will be 

0-a+pTt and 2, but after performing the test we found that some of the allocations 

tested 22 zero and the rest test 22is not zero, so for this reason I will present some 

examples of the allocations which test zero, and for the rest will test the hypothesis 

2 = 2t + 22 T equals to zero or not.

Theory:- It often occurs that we do not know the distribution of estimators. 

Fortunately some of the standard methods of estimation automatically lead to estimators 

with known approximate distributions for large samples. The maximum likelihood 
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estimators for example are approximately normally distributed with expectation equal to 

the true value. Their variance can be found from a quantity called the Fisher information.

This is defined by 1(0)-V(^)

where L is the log-likelihood. If the maximum likelihood estimator is 0, then for large n

As the variance of 0 is the larger the information the better, the more efficient the

maximum likelihood estimator. An alternative expression for 1(0) that emphasizes this 

point is

& L

The second derivative is a measure of the curvature so 1(0) indicates the expected 

sharpness of the peak of the log likelihood curve, Gilchrist (1984).

In our case, since we have four parameters so 1(0) will be 4x4 matrix, and to find the 

variance of a ,p ,2, ,22 we need to find the inverse of the 1(0) as mentioned above.

var(a) cov(a,P) cov( a,^) cov(a,22)'
cov(a,P) var(/7) covGUi) cov(/?,l2) 
covCa,^) cov(/Ui) var(Ai) cov(^,^2) 
cov(a,22) cov(P,Â2) cov(21,22) var(A2)

KO)

By writing a Fortran program to produce the Hessian matrix which is the second partial 

derivative, and then by taking the inverse of the Hessian matrix we can find an 

approximation to the variance of 21 and the variance of A2.

So the hypothesis will be

tfo:22=0 VS ^^2
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where Z (caL) will be Zc = . -
V^T)

Examples which accepted the null hypothesis:

Allocation 8 n=45

9.5323

A~l= 1.1589 x IO-1
-5.2662

-6.627 x 10-2

1.1589 x IO-1
1.4236 x IO"3 

-6.0447 x 10-2 
-7.7988x10^

-5.2662
-6.0447 x IO-2

4.6182
5.1845 x IO"2

-6.627 lx 10-2 
-7.7988x10^ 
5.1845 x IO-2 
6.0229x10^

therefore Z(cal.)= ° 0021 .==0.0855
76.0229x10^

Z(tab.)=1.96

Since Z(caL)<Z(tab.) we accept the null hypothesis and we reject the alternative 

hypothesis, which means that X = Xx +A2T will reduce to X, again we run the program to 

estimate 3 parameters and to produce 3x3 Hessian matrix and then the inverse of the 

Hessian matrix.

Ho:X = 0

A

VS

" 2.1724
4= 2.9169 x IO-2

4.2766 x 10"1

Hx.X^ 0

2.9169 x IO"2
4.0147 x 10-4
6.5301 x 10"3

4.2766 x 10’1 
6.5301X10"3 
1.5326 x IO"1

2 = 2.0827

Z(cal.)==^^=
71.5326 x IO'1

Since Z(cal.) > Z(tab.) we reject the null hypothesis and accept the alternative 

hypothesis, which means the data in allocation 8 is dependent.
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Next we are going to produce a 2x2 transition matrix.

we know that P(x2
PVxv

— X2 — 0 o r 1

M*1,^) =
1

i?

m=0

)+**!*!

1

P(X 1)= *1,^2)
*2 =0

Am+A(im—1)—

p(Xj) = —[e&1 ]D2

^=0|x1 = l)=*^^ 
p{x 1 = 1)

A ^2 = iki = 0) = p(x\ ~ 0,^2 ~ i) 
p(x 1 =0)

so the transition matrix will be

/ + l + em

1 + /

"777^ ”177^

1
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In allocation 8

0= a+firj and 2 = 2 for four different thresholds

if T=-107

0 =-4.1112+(-0.0235X-107)=-1.5967

2=2.0827

p(^,2) = 0.83 0.17
0.38 0.62

Comparing P(x2\xx) and P(x2)

1Since P(xj, %2 ) — +*2 where in this case n=2
n\ An+2(m-1)-

7 k ” 
) 

m-0 '

1

SO P(x2)=^P(xltX2) 
^=0

P(x2 ) = + 6^2+1)+^ ]

^2

j • 2 âw+Â(m-l)— a 104.1and since £>2 = / I k " =l+2^^ + ^^
"I w )
m=0 ' /

1+e0 (5.1)
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0.20+Z

and P(x2 = 1) =

So for the above allocation we have =-1.5967 and 2=2.0827

P(x2 = 0|xj = 0)=0.83 and ^^2 = 0) =0.693 which is nearly the same.

and P(x2 = 11^ = 0)=0.38 and P(x2 = l)=0.31 which again are nearly equal.

Allocation 15 n=438

Ho:A2 = 0 VS

1.7755 1.9031 x IO"2
1.9031 x 10'2 2.0436x10^

-1.7390 -1.8633xl0"2
-1.8593xl0"2 -1.9960x10^

-1.7390 -1.8593 x IO2
-1.8633X10'2 -1.9960x10^

1.7050 l.8225xlO 2
1.8225 x 10~2 1.9518x10^

var(22)=1.9518xl0^

22 =0.0071

Z(cal.)= 0.0071 
71-9518x10^

= 0.5082

Since Z(caL)<Z(tab.) we accept the null hypothesis and reject the alternative hypothesis, 

again we need to produce 3x3 variance covariance matrix to test the hypothesis

Ho:A = 0 VS

4.3906 x 10‘3 1.7364 x 10-3 -2.7693x10"
1.7364 x 10-5 2.2558 x IO"7 3.5704x10^

-2.7693 x 10“3 3.5704 x IO-6 3.1094x10’-

2=2.4334

Z(cal.)=-—2^334^ = 43 639 
V3.1094X10"3
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Since Z(cal.) >Z(tab.) we reject the null hypothesis and accept the alternative hypothesis.

Next we will produce the transition matrix for T=-97

0=-2.4744+(-O.OOO5)(-97)=-2.4259

2=2.4334

P(0,V =
0.92 0.08
0.5 0.5

Again we need to see the comparison between P(x2 \xt ) and P(x2 ) for Allocation 15 for 

T=-97.

From the above transition matrix we can find that P(x2 =01^ = 0) =0.92 

P(x2 = i|%i =o)=0.08 and by substituting in equation (5.1)P(x2 = 0)=0.86 which is nearly 

equal to P(x2 =0|xt = 0), also ?(x2 =0|xi = i)=0.5 , P(x2 = l|x^ = l)=0.5 and by 

substituting in equation (5.2) P(x2 = l)=0.14

Allocation 18 n=250

To test the hypothesis

Ho:A2=0 VS Zf^^^O

" 5.5411 5.8498x 10-2 -5.9125 -6.2081 x 10"2 "
5.8498 x 10~2 6.1826x10^ -6.2374 x 10"2 -6.5563x10^

' - -5.9125 -6.2374xl0"2 6.2374 6.6663xlO 2
-6.2081 x IO"2 -6.5563 x 10"4 6.6663 x 10"2 7. Ox 10-4

=0.0076
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Since Z(cal.)<Z(tab.) we accept the null hypothesis and reject the alternative hypothesis, 

which means we going to run the program with 3 parameters to produce the variance 

covariance matrix to test the hypothesis

Ho:À = 0 Hi : 2 0

4.913x10'2
5.2283 x 10-4
2.4116 x 10-3

5.2283x10^
6.3147 x IO"6
9.9298xl0"5

2.4116 x IO"3 
9.9298 x 10-5 
7.4769 xlO-3

2 = 2.4635

Z(cal)=-j=^^= = 28.489 
V7.4769X10-3

Z(cal.)>Z(tab.) therefore we reject the null hypothesis and accept the alternative 

hypothesis, to produce the transition matrix we have to calculate 6 and 2 for T=-87

Q = -3.3569 + (-87)(-0.0095) = -2.5304

2 = 3.1769+(-87)(0.0076) = 2.5157

p(0,2) = 0.93 0.07
0.5 0.5

Again we need to see the comparison between P(x2) and P(x2 ) for Allocation 18 for 

T=-87.

From the above transition matrix we can find that P(x2 =O|jq = 0)=0.93 

,P(x2 = i|xj =O)=0.07 and by substituting in equation (5.1) then P(x2 = 0)=0.87 which is 

nearly equal to P(x2 = = 0), also P(x2 =0|xj = i)=0.5 , P(x2 = l|xt = 1) =0.5 and by

substituting in equation (5.2) thenP(x2 = l)=0.13
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The last example will be allocation 59 with n=350

VS H^.^2 * 0'^2 — 0

" 1.6327 x 10"1 1.7509x10-3 -1.6219 x HF1 -1.7395x10-3'
1.7509x10-’ 1.9382x10"’ -1.7331x10-3 -1.9199x10"’variance covariance matrix =

-1.6219 x 10"1 -1.7331x10-3 1.675 lx 10"1 1.7852x10-3
-1.7395x10-3 -1.9199x10-’ 1.7852x10’3 1.9648x10"’

22 =-0.0065

Z(cal.)= -0,0065
71.9648xl0-5

= 1.4664

So we accept the null hypothesis and reject the alternative hypothesis, which means we 

will run the program with 3 parameters to test the hypothesis

^-^ = o VS #1:2*0

8.5743x10-3
^-1= 4.3526x10"’

-4.4257X10-3

4.3526x10-’
5.4198 x IO-7
8.0190 x IO"6

-4.4257x10-3
8.0190x10^
5.2105x10-3

2 = 2.6131

Z(cal.)=-j=l^L= = 36.201 
V5.2105x10-3

Since Z(cal.)>Z(tab.) therefore we reject the null hypothesis and accept the alternative 

hypothesis, next we will estimate the transition matrix for T=-77

0=-2.0875 +(-77)(0.0057) = -2.5264

2 = 2.0136+(-77)(-0.0065) = 2.5141 

p(^,2) - 0.93 0.07
0.5 0.5
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Again we need to see the comparison between P(x21^) and P(x2 ) for Allocation 59 for 

T=-97.

From the above transition matrix we can find that P(x2 = = 0)=0.93,

P(x2 = 11^ =0)=0.07 and by substituting in equation (5.1) then P(x2 = 0)=0.93 which is 

exactly equal to P(x2 =01^ = 0), also P(x2 =o|^ = l)=0.5 , P(x2 =11^ =l)=0.5 and by 

substituting in equation (5.2) thenPO2 = i)=0.14

Those are some examples of the data which accept the hypothesis X2 = 0, also the 

allocations 12, 13, 14, 16, 17, 19, 21, 23, 25, 26, 28, 33, 35, 48, 52.

The rest of the allocations reject the null hypothesis and accept the alternative 

hypothesis, and in the following section we will present some examples to test the 

hypothesis

Ho:Xt=0 VS Hx.Xt * 0

where XT = Xx+X2Tj where 7} = -107.-97,-87,-77

So var(2) = var(21 )+T2 var(22 ) + 27*cov(/l1 ,X2 )

Again by running the same program to produce estimated Hessian matrix and then by 

taking the inverse of Hessian matrix we can find variance covariance matrix.

Allocation 5 n=200

Estimated Hessian matrix is
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5.8203x10, 
-5.6185 x10s
5.6489 x 103 

-5.4458 x10s

-5.6185 x10s 
5.4765 xlO7

-5.4459 x10s 
5.3016xl07

5.6489xl03
-5.4459 x10s
5.5669 xlO3
-5.363 x10s

-54458x10s 
5.3O16xlO7 
-5.363 x10s 
5.2175 xlO7

variance covariance matrix will be the inverse of Hessian matrix

1.7064
1.6882xl0"2 

-1.7189
-1.7012 x 10-2

1.6882 x IO"2 
1.6814X10"4

-1.7013 x IO"2
-1.6952x10^

-1.7189
-1.7013 x IO"2

1.7499
1.7333 x IO"2

-1.7012 x IO"2 
-1.6952X10"4 
1.7333 x IO"2 
1.7288 x IO-4

if T=-107

var(2_107 ) = 1.7499 + (-107)2 (1.7288x 10^) + 2(-107)(1.7333x IO"2 ) = 0.0199

2 = Aj + Aj T

=8.134+(-107X0.0551)=2.2383

Z(cal.)=-^ü = 15.8669
VO. 0199

Since Z(cal.)>Z(tab.) we reject the null hypothesis and accept the alternative hypothesis.

Next we will estimate transition matrix for T=-107 

0=-8.1442+(-O.O552X-lO7)=-2.2378

From the above transition matrix we can find that P(x2 =0|x1 = 0)=0.9, 

P(x2 = i|xi =o)=O.l and by substituting in equation (5.1) then P(x2 = 0) =0.93 which is 

exactly equal to P(x2 = 0|xj = 0), also P(x2 =o|*i = D=0.5 , P(x2 = l|xi = l)=0.5 and by 

substituting in equation (5.2) thenP(x2 = l)=0.18
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if T=-97 then

var(2_97> 1.7499+(-97)2(L7288 x 10^)f2(-97XL7333 x 10"2)= 0.0139

X = 8.134-K-9 7X0.0551)= 2.7893

6= -8.1442+(-0.0552X-97> -2.7898

Z(cal)=4^L = 23.659
V0.0139

Again since Z(cal.)>Z(tab.) so we reject the null hypothesis and accept the alternative 

hypothesis, the transition matrix for T=-97 will be

p(0,2) =
0.94 0.06'
0.5 0.5

From the above transition matrix we can find that P(x2 =0|xj = 0)=0.94, 

P(x2 = ijx1 =o)=O.O6 and by substituting in equation (5.1) then P(x2 = 0)=0.65 which is 

nearly equal to P(x2 = 0|x1 = 0), also P(x2 =01^ = l)=0.5 , P(x2 =l|xj =l)=0.5 and by 

substituting in equation (5.2) thenP(x2 = l)=0.35 

if T=-87 then

var(2_g7)=1.7499+(-87)2(1.7288xl0^)+2(-87X1.7333xl0-2)= 0.0425

2 = 8.134 -K-87)(0.0551)= 3.3403

5=-8.1441+(-0.0552X-87)=-3.3418

Z(cal.)=^=ü2L = 16.203
V0.0425
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Since Z(cal)>Z(tab.) we reject the null hypothesis and accept the alternative hypothesis, 

the transition matrix for T=-87 will be

0.97 0.02
0.5 0.5

From the above transition matrix we can find that P(x2 =01^ = 0) =0.97, 

P(x2 = ijx^ =o)=O.O3 and by substituting in equation (5.1) then P(x2 = 0)=0.97 which is 

exactly equal to P(x2 =0}^ =0), also P(x2 =o\xl =i)=0.5 , P(x2 = = l)=0.5 and by

substituting in equation (5.2) thenP(x2 = l)=0.067 

if T=-77 then

var(2_77)= 1.7499+(-77)2(1.7288 x lO^^.2^-77^t7333 x 10"2> 0.1056

/I = 8.134+(-77X0.0551)= 3.8913

0=-8.1442+(-O.O552X-77)= -3.8938

Z(cal)=-^H = 11.97
V0.1056

Since Z(caL)>Z(tab.) we reject the null hypothesis and accept the alternative hypothesis, 

the transition matrix for T=-77 will be

««-[*” °.?]

From the above transition matrix we can find that P(x2 = 0|^ = 0)=0.98, 

P(x2 = 1=o)=O.O2 and by substituting in equation (5.1) then P(x2 = 0)=0.98 which is 

exactly equal to P(x2 = O|jq =0), also P(x2 =o|xt =i)=0.5 , P(x2 = l|x} =i)=0.5 and by 

substituting in equation (5.2) thenP(x2 = l)=0.04
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The second example will be allocation 6 to test the hypothesis

#.:A = O VS Hi 0

Estimated Hessian matrix is

" 3.8314x10" -3.5647x 106 3.835x10" -3.5716x10^'
A_ -3.5647xlO6 3.3437xl08 -3.5716xl06 3.3536x10s

” 3.835x10" -3.5716x10s 3.8597x10" -3.5992 x10s
-3.5716 x10s 3.3536 x10s -3.5992 x10s 3.3843 x10s

The variance covariance matrix will the inverse of the above matrix

2.0316 x 10-1 2.0306x10^ -2.0065 x 10"1 -2.0021x10^'
!_ 2.0306 x 10"3 2.0804 x 10-5 -1.9976 x IO"3 -2.0429xl0"3
- -2.0065x 10-1 -l.9976xlO 3 2.0143x10^ 2.0041xl0"3

-2.0021X10"3 -2.0429 x IO-5 2.0041xl0"3 2.0431x10"’

var(/lr)= varCA^T2 var(22)+271 cov(21,22)

if T=-107

var(2_107)= 2.0143 x IO"1 +(-l x 07)2(2.0431x 10"5>-2(-107X2.0041 x 10"3)= 6.4671 x 10’3

2 = 5.545K0.031)(-107)= 2.228

5= -5.585-K0.0315X-107)= -2.2145

Z(cal)= 2228 = 27.705
V6.4671X10"3

Since Z(caL)>Z(tab.) so we reject the null hypothesis and accept the alternative 

hypothesis, the transition matrix for T=-107 will be

p(0,v=
0.9 O.f
0.5 0.5
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From the above transition matrix we can find that P(x2 = 0|xj = 0)=0.9, 

P(x2 =i |%i =o)=O.l and by substituting in equation (5.1) then P(x2 =0)=0.83 which is 

nearly equal to P(x2 = =0), also P(x2 =o|xx = l)=0.5 , P(x2 = l|x, =l)=0.5 and by 

substituting in equation (5.2) thenP(x2 = l)=0.18

if T=-97

var(2_97)= 2.0143 x 10-1 -K-97)\2.0431x 2(-97X2.0041x 4.8699 x IO"3

X = 5.545+(0.031X-97)= 2.538

0= -5.585+(-0.0315X-97> -2.5295

Z(cal)=-j=^!= = 36.369 
V4.8699 xio-3

Since Z(cal.)>Z(tab.) we reject the null hypothesis and accept the alternative hypothesis, 

the transition matrix for T=-97 will be

[0.93 0.07]
^'Mo.5 0.5 J

From the above transition matrix we can find that P(x2 =01^ = 0)=0.93, 

P(x2 = 11x1 =o)=O.O7 and by substituting in equation (5.1) then P(x2 = 0)=0.87 which is 

nearly equal to P(x2 =0|Xi =0), also P(x2 =o|xt = l)=0.5 , P(x2 =l|x1 = l)=0.5 and by 

substituting in equation (5.2) thenP(x2 = l)=0.13

if T=-87 then

var(2_g7> 2.0143 x 10’1 +(-87)2(2.0431x 10"5)+2(-87X2.0041x 10"3) = 7.3588 x 10"3

X_g7 =5.545+(0.031X-87> 2.848
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0= -5.585+(-0.0315X-87)= -2.8445

Z(cal.)=^^------- 33.199
J a w in-3V7.3588xlO’3

Since Z(caL)>Z(tab.) so we reject the null hypothesis and accept the alternative 

hypothesis, the transition matrix for T=-87 will be 

ro.95 0.051
^'Mo.5 0.5 J

From the above transition matrix we can find that P(x2 = 0]^ = 0)=0.95, 

P(x2 = l'|Xj =o)=O.O5 and by substituting in equation (5.1) then P(x2 =0)=0.9 which is 

nearly equal to P(x2 =0|x1 =0), also P(x2 =oki = l)=0.5 , P(x2 =l|x1 =l)=0.5 and by 

substituting in equation (5.2) thenP(x2 = l)=0.1

if T=-77, then

var(2_77> 2.0143 x 10-1 +(-77)2(2.0431x 10"5>4-2(-77X2.0041 x 10"3)= 0.0139

2 = 5.545+(0 031X-77)= 3.158

6= -5.585-K-0.0315)(-77)= -3.159

Z(cal.)=-2^L = 26.785
Vo.0139

Since Z(cal.)>Z(tab.) we reject the null hypothesis and accept the alternative hypothesis, 

the transition matrix for T=-77 will be

p(0,A) =
0.96 0.04
0.5 0.5
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From the above transition matrix we can find that PO2 =0|x1 = 0)^=0.96, 

?(x2 = i|%i =0)=0.04 and by substituting in equation (5.1) then P(x2 = 0)=0.92 which is 

nearly equal to P(x2 =0|xj = 0), also P(%2 =oki = l)=0.5 , P(x2 =1]^ = l)=0.5 and by 

substituting in equation (5.2) thenP(x2 = l)=0.08

The last example to test if 2 equal zero or not is allocation 53 with n=500

Estimated Hessian matrix is

" 2.5529 xlO4 -2.6565xl06 2.5034 xlO4 -2.6091x10^
A_ -2.6565x10s 2.7718x10s -2.6091x10s 2.7262x10*

" 2.5034xl04 -2.6091x10s 2.4846xl04 -2.5905x10s
-2.6091x10s 2.7262x10* -2.5905 x10s 2.7082x10*

The variance covariance matrix will be the inverse of the Hessian matrix

1.6147x 10-1 1.6903xl0"3 -1.5087xlO-1 -1.589xl0 3 '
A_v _ 1.6903x 10-3 1.8062xl0"5 -1.5717xl0-3 -1.6932xlO"5

" -1.5087xlO"1 -1.5717x 10"3 1.5609xlO"1 1.6217xIO"3
-1.589X10"3 —1.6932 x 10-5 1.6217 x IO"3 1.7252x10^

var(2r> varCl^T12 var(22)+27cov(21,22)

var(2_107)= 1.5609 x 10’1 +(-107)2(1.7252 x 10"5>4-2(-107X1.6217 x 10"3)= 6.5643 x IO3

2 = 3.5772+(0.011X-107)= 2.4002

3= -3.6295+(-0.0115X-107>-2.399

Therefore Z(cal.)=—. 2,4002 = = 29.6728
^6.5643 xlO-3

Since Z(cal)>Z(tab.) we reject the null hypothesis and accept the alternative hypothesis, 

the transition matrix for T=-107 will be

p(0,2) =
0.91 0.09
0.5 0.5
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From the above transition matrix we can find that P(x2 =O|xj = 0)=0.91, 

P(x2 = 11^ =o)=O.O9 and by substituting in equation (5.1) then P(x2 = 0)=0.86 which is 

nearly equal to P(x2 =01^ =0), also P(x2 =01^ = l)=0.5 , P(x2 =l|xj = l)=0.5 and by 

substituting in equation (5.2) thenPO2 = l)=0.14 

ifT=-97, then

var(2_97)= 1.5609 x 10"1 +(-97)^(1.7252 x lO^2(-97)(l.62l7 x 10"3)= 3.8043 x 10"3

A=3.5772+(0.011)(-97)= 2.5102

0= -3.6295+(-0.0115)(-97)= -2.514

Z(cal)=-=J^= = 40.197 
J3.8043 x IO’3

Since Z(caL)>Z(tab.) so we reject the null hypothesis and accept the alternative 

hypothesis, the transition matrix for T=-97 will be

p(AA) =
0.92 0.08
0.5 0.5

From the above transition matrix we can find that P(x2 =0|xj = 0)=0.92, 

P(x2 =1 \xx =o)=O.O8 and by substituting in equation (5.1) then P(x2 = 0)=0.87 which is 

nearly equal to P(x2 = 0^ = 0), also P(x2 =oki = l)=0.5 , P(x2 =11^ = l)=0.5 and by 

substituting in equation (5.2) thenP(x2 = l)=0.13 

if T=-87

var(2_g7)= 1.5609 x 10"1 +(-87)\1.7252 x 10"5>4-2(-87X1.6217 x 10’3> 4.4946 x 10 3

X = 3.5772+(0.011X-87)= 2.6202
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6= -3.6295+(0.0115X-87)= -2.629

Z(cal.)=-p=£^2L== 39.083
74.4946 xlO-3

Since Z(caL)>Z(tab.) therefore we reject the null hypothesis and accept the alternative 

hypothesis, the transition matrix for T=-87 will be

[0.93 0.071 
o.s]

From the above transition matrix we can find that P(x2 =01^ = 0)=0.93, 

P(x2 = =o)=O.O7 and by substituting in equation (5.1) then P(x2 = 0)=0.88 which is

nearly equal to P(x2 = 0|^ =0), also P(x2 =o|%i = l)=0.5 , P(x2 =l|x1 = l)=0.5 and by 

substituting in equation (5.2) thenP(x2 = l)=0.12

if T—77, then

var(2_77> 1.5609 x 10"1 +(-77)^(1.7252 x 10~5)+2(-77X1.6217 x 10"3> 8.6353 x 10 3

2= 3.5772+(0.011)(-77)= 2.7302

6= -3.6295+(-0.0115X-77> -2.744

Z(cal)=-^Z^L= = 29.38 
V8.6353 xio-3

Since Z(cal.)>Z(tab.) so we reject the null hypothesis and accept the alternative 

hypothesis, the transition matrix for T=-77 will be

p(0,2) =
0.94 0.06
0.5 0.5
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From the above transition matrix we can find that P(x2 = 0|= 0)=0.94, 

P(%2 = iki =o)=O.O6 and by substituting in equation (5.1) then P(x2 = 0)=0.89 vdiich is 

nearly equal to P(x2 =0|x1=0), also P(x2 =0]^ = i)=0.5 , P(x2 =l|x1 = l)=0.5 and by 

substituting in equation (5.2) thenP(x2 = l)=0.11

So after these examples we conclude that all the allocation test significant (X * 0), and I 

proved in chapter 3 that if X = 0 then the correlation is zero, so we conclude that our data 

is correlated data.

From the previous analysis one can see that P(x2 = 0|x1 = 1) = P(x2 = l|*i) = 0.5, and also 

P(x2 = 0|x1 = 0) > P(x2 = 1|%1 = 0).

We conclude may be that most of the data is zero, with occasional sequence of l's in 
which the (number of 1's ) is geonetric with parameter i.e

00001111..10000....

( i y+1
Pr = l — I ,r = 0,1,2,..... where r=number of l's after a 1.

Mean of the geomatric parameter p is — 
P

mean number of l's =1+— = 3 0.5
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5.4 Profile Likelihood

In those instances where they exist, marginal and conditional likelihoods work 

well, often with little sacrifice of information. However marginal and conditional 

likelihoods are available only in very special problems. The profile log-likelihood, while 

less satisfactory from several points of view, does have the important virtue that it can be 

used in all circumstances.

Let (p^ be the maximum likelihood estimate of p for fixed 2. This maximum is assumed 

here to be unique, as it is for most generalized linear models. The partially maximized 

log-likelihood function

l^-y) = % fa -y) = SUp'G, <P,y) 
p

is called the profile log-likelihood for (p. Under certain conditions the profile log­

likelihood may be used just like any other log-likelihood. In particular the maximum 

of?(2;y) coincides with the overall maximum likelihood estimate. Further approximate 

confidence sets for 2 may be obtained in the usual way

where P=dim(2). Alternatively though usually less accurately intervals may be based on 

Â together with the second derivatives of Z(2;y) at the maximum. Such confidence 

intervals are often satisfactory if dim(2) is small in relation to the total Fisher 

information, but are liable to be misleading otherwise, Nelder and McCullagh (1989).

To find the confidence interval for the likelihood functionin our situation we will use the 

previous result
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KX;y)^ KÂ;ÿyv—%x,x-a

where l(A-,y) is the log likelihood function and we can find the profile likelihood function 

by substituting in the log likelihood function with different values of 2.

The next example shows how we calculate 90% , 95% confidence intervals and profile 

likelihood.

Estimated 2 = 6.483 for allocation 58, and minus log likelihood function =159.598 then to

find the confidence interval

90%=Z < 159.598 + ^(2.7 06)= 160.951

95%=/< 159.598+ ^(3.84)= 161.518

The profile likelihood will be

Lambda Minus log likelihood function

6.32 164.003

6.33 163.713

6.34 163.424

6.35 163.135

6.36 162.847

6.37 162.560

6.38 162.274

6.39 161.988

6.40 161.703

6.41 161.419
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6.42 161.137

6.43 160.857

6.44 160.579

6.45 160.308

6.46 160.048

6.47 159.816

6.48 159.646

6.49 159.607

6.50 159.827

6.51 160.477

6.52 161.746

6.53 163.769

6.54 166.598

The following figures show the profile likelihood and confidence interval for some 

allocations with the percentage of the one's for each threshold printed inside the figure.
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CHAPTER 6
DISCUSSION

180



In chapter one we described the HF radio wave data set which has been modelled 

in this thesis and we described previous models developed by other workers for these 

data, typically at a higher level of aggregation than the "disjoint interval counts" or 

"binary data" analysed in this thesis.

Chapter two was concerned with a brief introduction to the underlying statistical theory 

for our modeling techniques.

Chapter three contained the main new theoretical development of this thesis. A 

previously suggested model for binary counts data which take the form

Pr%)=A-; expof + «72, + ct (Kt »

where ....... y 12^*3> ) , -($41,^*2..... and

=(^*12>Ai3... »^*23..... ) are "canonical" parameters, and A* is the

normalisation constant defined byA * = exp(7^0k + Wk + Ck (Yk )).

was successfully extended so as to cope with correlated sequences containing 

considerably more than the twelve, at most correlated binary counts, which this earlier 

model was competent to deal with. The HF radio data generates sequences of several 

hundred correlated binary values and hence an adaptation and extension was necessary to 

this previously suggested multivariate exponential family model.

Several steps of some complexity were required to achieve this successful extension from 

a few to several hundred observations. The main theoretical problem concerned 

calculation of the normalisation constant for this multivarite distribution, since this was 

necessary to evaluation of the likelihood for the data under computing parameter values. 

Model simplification was the first, and necessary, step, followed by some functional 

analysis and then numerical analysis of detailed steps in the computing algorithm
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The model then took the form

^+1

and was then successfully demonstrated on the available data. The practical results also 

discussed in chapter five were to suggest that for this particular set of data (which 

however could only be a very small fraction of the potentially large amount of binary 

data collected over the years by this radio detection equipment stet and developed at 

UMIST) serial correlation was not detectable as measured by statistical significance 

tests.

This is in contrast to the inferences from the other models as described elsewhere in this 

thesis. However, from the radio engineer's point of view the conclusion, overall, seems 

to be that the serial correlation is either non-existent or so small as to make little 

difference to most of the predictive uses for which the data is put.

However, for small scale local frequency predications, in those propagation regions 

where serial correlation is (possibly in future analyses) found to be significant, the 

multivariate model as developed in this chapter could be used to improve local 

conditioned predictions.

In chapter four multinomial models were fitted to a dissaggregated version of the main 

"occupancy over threshold" data sequence. The disjoint intervals used here in place of 

the overlapping intervals as used for previous binomial models had a strong theoretical 

advantage, since the standard assumption of independence for the data stream of 

summary counts was thereby made plausible, as opposed to being literally impossible 

because of the overlapping counts for the binomial model method.
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However, although this method was technically superior, it required a large increase in 

the complexity of the model and on the fitting criterion of most interest to the radio 

engineer ("how well did it fit the data as collected") it failed to perform as well as the 

simpler binomial model, let alone produce an improvament.

However, the multinomial model fit was close enough to the binomial fit for most 

practical purposes and has the major advantage that it could be sensibly and easily 

extrapolated to situations where different thresholds and bands were used.

In chapter five, Markov Chain models and the multivariate exponential models 

were fitted to selected sequences of binary counts ( binary, as opposed to the more usual 

aggregated occupancy counts collected by the radio engineer). After some development 

of the Markov theory, its application to a particular set of data from winter 1991 

suggested that a second order Markov Chain was a suitable model for these data, 

although the dependence was weak. This was in contrast to the results from fitting the 

multivariate exponential model (described in chapter three), and as described earlier in 

this section.

Then we showed that for a given signal either above or below threshold, what is the 

probability of the next one. This was very important result since in the past work they 

relied on this assumption for modelling and predicting the occupancy within bands. In 

this work we were predicting the signals at one threshold for a signal frequency, rather 

than for complete bnad, and this can be used to improve conditional one or two steps 

ahead predication.
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APPINDEX (A) 
DATA EXAMPLES 

MULT-COUNTS OCCUPANCY DATA
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Table la Multi-counts values for summer day 1982
TIME USER BANDWIDTH -00,-107 -107,-97 -97,-87 -87,-77 -77,00

1 S82D FM 204 198 6 0 0 0
2 S82D AM 40 39 1 0 0 0
3 S82D FM 195 190 4 1 0 0
4 S82D FM 255 252 3 0 0 0
5 S82D FMB 200 198 1 1 0 0
6 S82D FM 350 339 7 4 0 0
7 S82D AE 305 303 2 0 0 0
8 S82D FM 45 44 1 0 0 0
9 S82D FMB 200 199 1 0 0 0
10 S82D AE 100 98 2 0 0 0
11 S82D FMA 300 282 16 2 0 0
12 S82D FM 100 93 7 0 0 0
13 S82D AE 50 49 1 0 0 0
14 S82D FB 50 50 0 0 0 0
15 S82D MM 438 406 21 8 3 0
16 S82D FM 212 191 12 6 3 0
17 S82D AE 100 95 3 2 0 0
18 S82D FMB 250 233 15 2 0 0
19 S82D FM 480 431 29 12 7 1
20 S82D AE 250 243 4 3 0 0
21 S82D FM 220 197 14 6 3 0
22 S82D B 250 148 44 35 18 5
23 S82D MM 325 258 25 21 14 7
24 S82D AE 240 227 10 3 0 0
25 S82D FM 235 200 21 11 3 0
26 S82D AM 100 79 13 7 1 0
27 S82D B 200 146 34 13 5 2
28 S82D FM 500 452 32 13 3 0
29 S82D FM 395 324 39 18 14 0
30 S82D MM 305 270 20 11 2 2
31 S82D MM 315 232 38 23 13 9
32 S82D AE 225 213 11 1 0 0
33 S82D F 460 379 40 26 10 5
34 S82D B 400 229 73 55 28 15
35 S82D F 100 92 3 5 0 0
36 S82D AE 100 81 11 4 3 1
37 S82D FA 50 27 10 8 3 2
38 S82D FM 450 301 73 33 27 16
39 S82D FM 575 421 85 33 20 16
40 S82D AE 225 199 14 6 3 3
41 S82D F 250 173 37 19 16 5
42 S82D B 400 143 74 70 59 55
43 S82D F 180 89 47 24 11 9
44 S82D MM 500 364 68 39 23 6
45 S82D MM 470 311 67 49 29 14
46 S82D AE 160 138 18 3 1 0
47 S82D FM 240 150 38 25 18 9
48 S82D B 200 135 23 23 16 3
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Table 1b Multi-counts values for summer day 1982
TIME USER BANDWIDTH -00,-107 -107,-97 -97,-87 -87,-77 -77,00

49 S82D FM 200 140 26 21 9 4
50 S82D AM 350 252 72 19 6 1
51 S82D FM 650 501 78 48 19 4
52 S82D AE 100 69 21 6 3 1
53 S82D B 500 122 112 101 84 82
54 S82D F 400 270 54 41 27 8
55 S82D F 360 239 55 37 25 4
56 S82D MM 500 443 41 12 2 2
57 S82D MM 550 436 59 36 17 2
58 S82D F 140 110 19 4 6 1
59 S82D B 350 105 85 63 53 45
60 S82D AE 130 118 7 3 1 1
61 S82D F 38 34 2 2 0 0
62 S82D AM 100 84 9 7 0 0
63 S82D F 612 500 63 24 18 7
64 S82D MM 120 92 15 10 2 1
65 S82D F 400 371 25 3 1 0
66 S82D F 380 356 17 3 3 1
67 S82D MM 120 112 6 2 0 0
68 S82D F 200 185 9 3 2 1
69 S82D FM 500 472 15 6 5 2
70 S82D FM 500 481 15 3 1 0
71 S82D AM 450 440 6 4 0 0
72 S82D B 420 218 82 52 37 31
73 S82D AE 130 127 2 1 0 0
74 S82D MM 400 372 22 5 1 0
75 S82D MM 455 426 20 8 1 0
76 S82D F 145 139 4 1 1 0
77 S82D FM 200 196 4 0 0 0
78 S82D AE 150 149 1 0 0 0
79 S82D FM 650 646 3 1 0 0
80 S82D FM 500 500 0 0 0 0
81 S82D FM 390 386 3 1 0 0
82 S82D AM 110 110 0 0 0 0
83 S82D MM 210 209 1 0 0 0
84 S82D FM 340 340 0 0 0 0
85 S82D RA 120 119 1 0 0 0
86 S82D B 430 421 7 2 0 0
87 S82D MM 75 75 0 0 0 0
88 S82D FM 325 - 322 3 0 0 0
89 S82D FM 500 490 10 0 0 0
90 S82D FM 500 470 28 2 0 0
91 S82D FMM 500 486 12 1 1 0
92 S82D AM 500 500 0 0 0 0
93 S82D AM 500 500 0 0 0 0
94 S82D AM 700 700 0 0 0 0
95 S82D AM 300 300 0 0 0 0
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Table la Congestion values for summer day 1982
TIME USER BANDWIDTH -117 -107 -97 -87 -77

1 S82D FM 204 17 3 0 0 0
2 S82D AM 40 12 2 0 0 0
3 S82D FM 195 5 3 1 0 0
4 S82D FM 255 7 1 0 0 0
5 S82D FMB 200 5 1 0 0 0
6 S82D FM 350 10 3 1 0 0
7 S82D AE 305 4 1 0 0 0
8 S82D FM 45 9 2 0 0 0
9 S82D FMB 200 5 0 0 0 0
10 S82D AE 100 3 1 0 0 0
11 S82D FMA 300 16 6 1 0 0
12 S82D FM 100 17 7 0 0 0
13 S82D AE 50 10 2 0 0 0
14 S82D FB 50 2 0 0 0 0
15 S82D MM 438 15 7 3 1 0
16 S82D FM 212 18 10 4 1 0
17 S82D AE 100 15 5 2 0 0
18 S82D FMB 250 14 7 1 0 0
19 S82D FM 480 22 10 4 2 0
20 S82D AE 250 8 3 1 0 0
21 S82D FM 220 19 10 8 1 0
22 S82D B 250 63 41 23 9 2
23 S82D MM 325 30 21 13 6 2
24 S82D AE 240 19 5 1 0 0
25 S82D FM 235 28 15 6 1 0
26 S82D AM 100 47 21 8 1 0
27 S82D B 200 43 27 10 3 1
28 S82D FM 500 20 10 3 1 0
29 S82D FM 395 31 18 8 4 0
30 S82D MM 305 24 11 5 1 1
31 S82D MM 315 47 26 14 7 3
32 S82D AE 225 20 5 0 0 0
33 S82D F 460 39 18 9 3 1
34 S82D B 400 67 43 24 11 4
35 S82D F 100 16 8 5 0 0
36 S82D AE 100 53 19 8 4 1
37 S82D FA 50 80 45 25 10 6
38 S82D FM 450 70 33 17 10 4
39 S82D FM 575 67 27 12 6 3
40 S82D AE 225 50 12 5 3 1
41 S82D F 250 70 31 16 8 2
42 S82D B 400 90 64 47 28 14
43 S82D F 180 82 50 24 11 5
44 S82D MM 500 57 27 14 6 1
45 S82D MM 470 68 34 20 9 3
46 S82D AE 160 47 14 2 1 0
47 S82D FM 240 66 37 22 11 4
48 S82D B 200 66 32 21 9 1
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Table lb Congestion values for summer day 1982
TIME USER BANDWIDTH -117 -107 -97 -87 -77

49 S82D FM 200 60 32 17 9 1
50 S82D AM 350 55 28 7 2 0
51 S82D FM 650 49 23 11 4 1
52 S82D AE 100 57 31 10 4 1
53 S82D B 500 96 80 55 33 16
54 S82D F 400 54 32 19 9 2
55 S82D F 360 55 34 18 8 1
56 S82D MM 500 28 11 3 1 0
57 S82D MM 550 47 21 10 3 0
58 S82D F 140 44 21 8 5 1
59 S82D B 350 88 70 40 28 13
60 S82D AE 130 25 9 4 2 1
61 S82D F 38 28 10 5 5 0
62 S82D AM 100 28 16 7 0 0
63 S82D F 612 34 18 8 4 1
64 S82D MM 120 37 23 11 2 1
65 S82D F 400 18 7 1 0 0
66 S82D F 380 23 8 2 1 0
67 S82D MM 120 16 7 2 0 0
68 S82D F 200 21 7 3 2 1
69 S82D FM 500 13 6 3 1 0
70 S82D FM 500 10 4 1 0 0
71 S82D AM 450 14 2 1 0 0
72 S82D B 420 71 48 29 10 7
73 S82D AE 130 11 2 2 0 0
74 S82D MM 400 17 7 1 0 0
75 S82D MM 455 15 6 2 0 0
76 S82D F 145 9 4 1 1 0
77 S82D FM 200 5 2 0 0 0
78 S82D AE 150 1 1 0 0 0
79 S82D FM 650 2 1 0 0 0
80 S82D FM 500 1 0 0 0 0
81 S82D FM 390 2 1 0 0 0
82 S82D AM 110 0 0 0 0 0
83 S82D MM 210 2 0 0 0 0
84 S82D FM 340 0 0 0 0 0
85 S82D RA 120 2 1 0 0 0
86 S82D B 430 3 2 0 0 0
87 S82D MM 75 3 0 0 0 0
88 S82D FM 325 3 1 0 0 0
89 S82D FM 500 9 2 0 0 0
90 S82D FM 500 22 6 0 0 0
91 S82D FMM 500 19 3 0 0 0
92 S82D AM 500 0 0 0 0 0
93 S82D AM 500 0 0 0 0 0
94 S82D AM 700 1 0 0 0 0
95 S82D AM 300 0 0 0 0 0
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APPINDEX B 
BINARY DATA EXAMPLES
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ALLOCATION ONE

T—107

1101000101000011110111001110100000001100110000 
0000000000110100100010000000001100000000000000 
0110110000011000000001111000000001111110011011 
0001111010100100000011010000011000001111110000 
0000000 1 1 100 1 100 1 1 1 1 :

T=-97
0000000100000010010100000100000000000000110000 
0000000000000100000000000000000000000000000000 
0000000000000000000001100000000000101110010000 
0001011000000000000000000000000000000110010000 
00000000000001001111:

T—87
0000000000000000010100000100000000000000000000 
0000000000000000000000000000000000000000000000 
0000000000000000000000100000000000000000000000 
0000000000000000000000000000000000000110000000 
00000000000000001010:

T—77
0000000000000000000000000000000000000000000000 
0000000000000000000000000000000000000000000000 
0000000000000000000000000000000000000000000000 
0000000000000000000000000000000000000010000000 
00000000000000000000:
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ALLOCATION 2

T—107

1000001010111101111111000100011000100000:

T—97

0000001000111100111111000000000000000000:

T=-87

0000000000000000111100000000000000000000:

T—77

0000000000000000000000000000000000000000:

ALLOCATION 5

T=-107

0000011001110000010000010000010100000000100010

0001110101011000001110000001000110001101111100 

0100000100001111001010000101100111100010000000 

0011111100101000000001111001011001000001111111 

0000000000001100:

T=-97

0000011001110000010000000000000100000000000000 

0000000100011000000000000000000000000101111100 

0000000000000101000010000000100110000000000000 
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0011110100000000000000110000001001000001110111

0000000000001100:

T—87

0000001000000000000000000000000000000000000000 

0000000000000000000000000000000000000000111000 

0000000000000001000000000000000110000000000000 

0011110000000000000000100000001000000000000111 

0000000000000000:

T—77

0000000000000000000000000000000000000000000000  

0000000000000000000000000000000000000000000000 

0000000000000000000000000000000110000000000000 

0000000000000000000000100000001000000000000110 

0000000000000000:

ALLOCATION 6

T—107

1000100001100000001001101100000100011011010000 

1111111111110001101111001011000011111111000000 

0011001111100001001000011111111110101011111100 

0011011100000000001110110011110010111111111110 

0111110011011101001100000000000011011110111111 

0000110000000001110011110110011111111111111000 

0000101000010000010111101001100001011111100001 

1111010111111110000111111110:

192



T—97

1000000000100000001001100000000100011001010000 

0101100101000001100111000011000010111111000000  

0011000110100001001000000011111110000011111100  

0011011000000000000000010011110010111110011100 

0011100001011100000100000000000010011100111110 

0000010000000001110010000010001110111111111000 

0000000000010000010010001000100000011111100001 

1100000111111000000110111000:

T—87

0000000000000000000001100000000000001000000000 

0000000000000000100000000011000000011110000000 

0011000000100001001000000011111000000001011100 

0011011000000000000000000001000000111110001100 

0010000000011100000000000000000010000000011000 

0000000000000000100000000000000000010011101000 

0000000000000000000010000000000000001011100001 

1000000111110000000100000000:

T—77

0000000000000000000000000000000000000000000000 

0000000000000000000000000000000000000000000000 

0001000000000000000000000010010000000000011100 

0000000000000000000000000000000000000000000100 

0010000000000100000000000000000000000000000000 

0000000000000000000000000000000000000010100000

193





T=-97

0001110000010001011001111111111100000000111110

0000011100110011110000000010010011100111101011

1001110101000111110001111011111111100001000000

0001111011111001011111111111011111000000001000

1111111101010111100011100111110000001001110000

1110000001000111000011001100101111111011111100

000011111000101111110000:

T—87

0000110000000001000000011000001000000000100000

0000000000110011110000000000010000000111001000

1001010100000011100001101011101111000000000000

0000111000000000000010000100000010000000000000

1000111100000000100011000011000000001000110000

0000000000000100000000000100000110000000101000

000000010000000111110000:

T=-77

0000000000000000000000011000000000000000000000

0000000000110000000000000000000000000000000000

1000000000000011100000000010100101000000000000

0000000000000000000000000000000010000000000000

1000000000000000100001000000000000000000000000

0000000000000000000000000000000000000000100000

000000000000000010110000:

195



ALLOCATION 12

T—107

1011100111110101000000011010011111011011111111

1111111111111111101111111111111111000100110011

11111111:

T—97

1001000101110001000000001000000011000011111111

1111111011100111001110010101111010000000110000 

11111111:

T—87

0001000101100000000000000000000001000011101111

1111101001100011000110000000011010000000110000

11110010:

T=-77

0000000100000000000000000000000000000000000111  

1000100001000011000100000000011000000000100000 

01110010:

196



ALLOCATION 15

T—107

1111111111100111110011111000000110011001101110

0000001100111011110010001010111111111011001011

1111111111101100000001110101111100001011111111

1110101110101111101111111111111000001111011000

1100111011101111101111111011100010011111101111

1100011011111111111111111111111001111011111011

1111111100111111011111111111111110011100011111

1111111101111101110001001111111111110000001111

1111011010111100011011111111111111110001111111

001100101100111100010100:

T—97

1111110111100011100011111000000100010000100100

0000000000110011110000000010001111100000000000

1111101111001100000000110100111100000000001111

1110000010001110001000100010101000001101000000

0000111011001111101100000011000000001111001111

1100001011111110101111111110111000111011111011

0111111100111111000110111111110110011100011111

1111111101111101110001001110111111110000001111

1110011000101100010011100011111001010000111111

001100001000000100000000:

197



T=-87

1110000100100001000011111000000100000000100100  

0000000000010010000000000010001111100000000000 

0111000011001100000000000000011100000000000011 

1100000000000110000000100000000000000100000000 

0000000011001111000100000001000000001101001111 

1100001011111100101011110110111000011011111011 

0111111100101111000110001111000110011100011011 

1111011101111101110001001110111111100000001001 

1110001000000000010000100001111000000000101111 

000000001000000000000000:

T—77

1110000000100001000010100000000100000000000100  

0000000000010010000000000000000110000000000000 

0000000010000100000000000000000000000000000000 

0000000000000100000000100000000000000000000000 

0000000000001101000100000000000000001000000000 

1000000001110100000011110100100000010000000010 

0111100100101011000000001111000110001100001010 

1000011000011100100000001000111111100000000001 

1100000000000000000000000001010000000000100100 

000000000000000000000000:

198



ALLOCATION 18

T=-107

1011111111111111111110001111111111010000000001 

0111111111111111111111001011111111111111011111 

0111111111111111011111111110100111000011111111 

1111111111111111111011111001111111100111011100 

0111111111010110110011100011111111101110011111 

11111110011010111110:

T—97

1000011101110001101010001111101111000000000001

0000111011111111000101000000011110100000011110 

0001100010110000000001111110000001000011111111 

1111111111111000010001101001111110100001001000 

0100011100010110100001000010010111101100010011 

11001100001000001000:

T—87

1000010000100000101010001110100111000000000001

0000100001100011000100000000011000100000011000

0001000010000000000001110000000000000010110111

1100001110011000000000100000110110000000001000

0000001000000100000001000000010011101100000000 

10001100000000001000:

199



T—77 

0000000000100000001000000100000010000000000000

0000000000000010000000000000001000000000000000

0001000010000000000000010000000000000000000001

0000000100000000000000000000000000000000001000

0000001000000000000000000000010001100000000000

10000100000000001000:

ALLOCATION 19

T—107

1100111111111111011110001100111000110010110011

0111111111011111111000011111110011111111000001

0010111111011101011011110010111111011111110010

0110000111111110100001101111111101110001010111

1110011111011111111100011111101111111111011101

1111111111111111110111111111111111111111110111

1001111111111111111111111111011000111111100111

1111111101111111111111111110101111101111111111

1111111110111101111111111111111111110011111110

1111011111111111111111111111001100000110011111

11111111011011111000:

200



T—97 

1100011111110101011110000100000000010000100001

0111111101001111101000011111000011111100000001 

0000010111001000011011110010011111011111000010 

0110000100001100100000000111111101100000000111 

1110011111010011110000001111101111111111011101  

1111111111100101100111111111110101111101110111  

1000011101100011111100011110011000011111100010 

0011110101111110011100111100000011100011111111 

1111100000011100011111110011111111110001111100 

1111001111011001100001110111001100000010001101  

11111111011011000000:

T—87

1000000001110001011110000100000000000000000000 

0110111100001010100000011110000000011000000001 

0000010010001000011000010000000111000101000010 

0110000100001000000000000111011101100000000011 

1000000111000011110000001011000111111110011100 

1111111111100001000011101111100001101100100101 

1000001000000010100100011100011000011101000010  

0011100000100110011100111000000001100011110011 

1110000000001000001100100001111011000001101100 

0110000111011001100001110010001100000000001100 

11111110000011000000:

201



T=-77 

0000000001110000011110000000000000000000000000

0100011100000000100000011100000000001000000001 

0000010010000000001000000000000100000000000000 

0110000000001000000000000010011101100000000010 

0000000000000000000000001010000111110110000000 

1100110101100001000010000000000001101100100001 

0000001000000000000100001000001000001001000000 

0001100000000100011100010000000001100000000001 

1110000000001000000000100001000010000001000000 

0000000010001001000001110010000100000000000000 

11100110000011000000:

ALLOCATION 23

T—107

1111100000100111110000000011110001110001010100 

0111101111011111111011110000001111010001011100 

0000000111111111101000100101111111111111010111 

1110011101111111011111111111111111111111111111 

1101001111110011111000011111111111111111111101 

1111111111111111110111101111111111101110110010 

0111111111111111111111111111111111111111111111 

111:

202



T—97

1001000000000111110000000001100001110000000000  

0000100110001111100000110000001110000001011100 

0000000010001110000000000000100001111111000011 

1100011101110111001111111111111101111111110011 

1100001111110000111000001100011111111100111000 

1111111111111111110110101111101001101110110000 

0111100111111111111111111111111111011111111000 

010:

T=-87

0001000000000011000000000000000000110000000000 

0000000110000110100000110000000110000001001100 

0000000010001100000000000000100001111111000011 

1100001100110111001111011101111000110111110011 

1000001001100000011000001100011110101100111000 

1011110111011111010110100011101001100100010000 

0110100111110111001111111101111111010111110000 

000 :

T=-77

0000000000000000000000000000000000000000000000  

0000000110000100000000110000000110000000000000 

0000000000000100000000000000000000100000000011 

1100000000110111000111011000111000110001110001 

0000000001000000001000001100011110100000011000 

1010110111000100010000000011001001100000000000

203



0000000111000011000111111101110001000111110000 

000:

ALLOCATION 25

T—107 

1111111111111111111011111111111111111110101111

1111111111111111111111111111111101111110111111 

1111111111111111111111111111111111111111111111 

1111111101111011110101111101111111111111111111 

1110000000111111111101111111111111111011111111 

11101:

T=-97 

1110100000111111111011110001111000100000000100

0100111110000111111110011100011100001100000010 

1001010011111111110011101000000000000111100111 

1111001001110001110000111100100011111111111001 

1100000000111111100101111111111111111000111100 

11101:

T—87 

0110000000011101101001100001101000000000000000 

0000111100000111111110011100010000000100000000 

0001000001111111110000100000000000000011000100 

0010000001110001110000110100000001110101111001 

0000000000100111100000001111001010000000111100 

10101:

204



T=-77 

0010000000000000000000000001100000000000000000 

0000001000000100111100001000000000000100000000 

0000000000111111100000000000000000000000000000 

0000000000000000110000000000000000000000000000 

0000000000000000000000000100000000000000110100 

00000 :

ALLOCATION 28

T—107 

1111111111111111111111111111111111111111111111

11111111111111111111 111 11111111111111111111111

1111111111111111111111111111111111111111111110

1111111111110011111110111111111000100111111111

1111111111111101111111101011101110011100100000

1010000011111110110000111001111111111111110111

0111111101101111000000011111111111111110110011

1011111110101111011111111111111111111111111111

1111111111111000111000111110000110001111011100

1111111111111111111111111111111111111111111101

1101110011111001110000110110110001111110:

T—97 

1111111111110111111111111111111111110100111111

1111111111111111111111001000111111111111111111

1111111111111111000111111111111111111100101000

0000011100110011111110111111100000000000101111 

205



1111111111111001111110000000001110011100000000 

1010000000111110000000111000100100011111010111  

0001111001101111000000001111100000100000000001 

1011111100001110001100001111111111111011111111 

1111101111110000110000111110000110000111001100 

1110111011111111111111101101000111011110111101 

1100100001111000110000100010110000111110:

T—87

1111111111000011110011111111111111010000111111  

1111111111111111111111000000001111111111111111 

1111111111111111000011011111111111111000100000 

0000011100000011111110000011100000000000000011 

1111000001100000111010000000001110001000000000 

0010000000011100000000001000100000011111000011  

0000111001101110000000001111100000000000000001  

1001110000001000001100001111111101001010111111 

1111000100000000110000111100000010000100001000 

0110010000000111111110100100000000011100001001 

1100000001111000110000000010000000111100:

T=-77

1000111110000001000010001111011000000000100111 

1100000011111111111100000000000001111110001111 

0111110111001101000000010111111111001000100000 

0000011100000000011000000011100000000000000010 

0110000000100000011010000000001110000000000000

206



0000000000000000000000000000000000001110000001

0000000001101100000000000111000000000000000001

1001010000000000001100000000100000001010111011

0011000000000000110000000000000000000100000000

0000010000000111111100000000000000011100000000

1100000000001000110000000000000000110100:

ALLOCATION 33

T—107

1111011101110000000111111111111111111001111111

0111111111111111011111001111111111111111111011

1111111011101101111111000000001100111111110000

0011111111011110110111001111111111110111101001

0001110000001000000001000111111111111100110101

1011001111100111011110111110011111110011000011

0001111101101000001110010100111111111111111111

1111111111111110001111111111111111111111001111

1111111111111111111111111111111111111111111111

1111111111111111111111111111111111111111111111:

T—97

0111000100110000000011011111101110111001111111

0011111111111111011110000011111011111111100000

1111111000000001000001000000001100011111110000

0011111100011100110000001110010011100010000000

0001110000000000000000000111101111111000010101

0000000111100001011110010010001001110000000011 

207



0000111100000000000100000000110011011111111111 

1011110000011100000111111111111111111111000001 

1111111111111111111111011111111111111111111111 

1111111001111111111111111111111111111111111111:

T—87

0000000100010000000000011111100000110001111111 

0011111001111011001100000010000000000111100000  

1111111000000000000000000000000000001111110000 

0011111000011100110000000110010011100010000000  

0001110000000000000000000111000111110000000000  

0000000011000000000110000000001000000000000000  

0000001000000000000000000000010001001011111111 

0011010000000000000001111111111111111111000001 

0111011111111111110010001111111111111111111111 

1110100000010111111111111111111111111111111000:

T—77

0000000000000000000000000000000000000001100000 

0011111000111000000000000010000000000110100000 

0100010000000000000000000000000000000010000000  

0011100000011100110000000000000011000010000000  

0000100000000000000000000010000111100000000000 

0000000010000000000000000000001000000000000000 

0000000000000000000000000000010001000011111111 

0001000000000000000001100110111011111101000000

208



0010001011111110000000001001101111111111111110

0100000000000011110011111111111111111111100000:

ALLOCATION 35

T—107

1111111111111111111111111111001111111111111111 

1111100100111111111111111111111111111110001000 

11111111:

T=-97

1111100001111111111111101110000010001111111111

1110000100000111111111110111111010110110000000 

01111001:

T—87

1100100001111111111111000000000000000000011111  

0110000000000001111111100111001000110010000000 

00 1 1 1 00 1 :

T=-77

1000000000110011110100000000000000000000011000

0000000000000000001110000001000000010000000000  

00001001:

209



ALLOCATION 53

T—107

1100111111111111111111000100001000010000100100

0011111101100111100111111111101101011111111111

1111111011011111111111011111100111110011010111

1111111111111111111001111111111111011111011100

1111111111111101111000000010001110011111001000

1001111011111111111111000000001100111000100011

1111111111111111111111111111110000100001000010

0001111111111110000000111100000000000011111111

1011110110111111111111111111111111101001111111

1110011110111111100111111111111110011100010111

1111111011111111101111001110000001111110:

T—97

1000000000110111110110000100001000010000100000

0001111001000111000001011111100000001011101111

1011010010010110011100011000100111000010000111

1111111111111111011000000001100010000000001000

0101111111111000101000000010000100011000000000

0000011000100001100110000000001000011000100001

1111111111100011111111111111110000100001000010

0000111111111100000000011000000000000010111111

0010000100001011011111111111100111101000111010

0110001000011000100011001111100010011100000110

1111111000100001000010000100000000010000:

210



T—87

0000000000100001000000000000001000000000100000 

0000110000000010000000011110000000000001000011  

0000000010000100001000000000000001000010000100  

1111111111111000010000000001000010000000001000 

0001111110010000100000000010000100001000000000  

0000010000100001000010000000000000010000000001  

0011111101000010111111111110000000000000000000  

0000000010000100000000010000000000000000000100  

0010000100001000011101100001000010000000001000  

0100001000010000100010000111000000011000000000  

1101010000000001000010000100000000010000:

T—77

0000000000100001000000000000000000000000000000 

0000100000000010000000001000000000000000000010  

0000000000000000000000000000000000000000000000  

0111000110000000000000000000000000000000001000  

0000001000010000000000000000000100001000000000  

0000000000010000100001000000000000001000000000  

0000011000100000001011000100000000000000000000  

0000000001000000000000001000000000000000000010  

0000000000000000001000000000100001000000000100 

0010000000000000000000000001000000000100000000 

01000000000000000000000000100000000000000:

211



ALLOCATION 58

T—107

0000000000001011000000000000011000100100111111 

1000000111101001110110000000000000011100001111  

1111101010000000000000010000000000000110001111  

10

T=-97

0000000000000000000000000000001000000100101100 

1000000011001000110100000000000000011000000011  

0001101010000000000000000000000000000010000100 

00

T=-87

0000000000000000000000000000000000000000000000 

0000000000001000100000000000000000011000000010 

0001100000000000000000000000000000000000000100 

00

T—77

0000000000000000000000000000000000000000000000  

0000000000000000100000000000000000001000000010 

0000000000000000000000000000000000000000000100 

00

212



ALLOCATION 59

T—107

1110001111111011111111101100011100111101110011

1111111111111111111111111111111111110101111111

1111111111111111111111111111111111111111011110

0000000100001111111100110111111111101111011110

1111111111111111110100000011000100001011111111

1110000000111111101111111111111111111111111111

1111111111111111111110111111111111111111111101

1111111111111111111111111111:

T—97

0000000001110001111111000100001100011000110001

1111111111110011111111111111111111100101110111

1111110010011111111111111111110111100111000100

0000000100000000111000010011110111001100001000

0110001111111111100000000010000100000000111000

1000000000100001000011111111111001111111111111

1111111111111111100110001101111101111101000000

1111111111111100111111111111:

T—87

0000000000100001100011000000001000001000100000

1111111001000010000101001101111010000000100011

1001000000000011111111110000000001000111000000

0000000100000000010000000001000010000100001000

0100001010111000100000000000000100000000010000
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1000000000100001000001111111111000111100100011

1000100011100010000100001000111000100001000000

0001100111010000001110111000:

T=-77

0000000000000001000010000000001000001000000000

1000100001000000000100000000010000000000000010

0001000000000000111111000000000001000000000000

0000000000000000000000000001000010000000001000

0100000000011000000000000000000000000000010000

1000000000000000000001001101000000110000000001

1000000001000010000000000000011000100000000000

0000000010000000001000010000:
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APPENDIX C 
GENSTAT PROGRAM EXAMPLE 

SUMMER DAY PROGRAM 
PROGRAM RUN FOR ALL USERS AND MULTI­

COUNT C, =(-77,.o)
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7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

SCALAR [VALUE = 760] N

VARIATE [VALUES = 1 ...N] INDEX

UNITS

"Xset DEFINES THE TERMS FOR THE MODEL FITTING"

TEXT [VALUE- UBand + Sunspot + FSun + F2Sun Xset

"C DEFINE THE Q MULTINOMIAL VALUES TO BE USED " 

" C5=(-77,INFINITY) " 

TEXT [VALUE = 'C5'] C

TEXT [VALUE=1 Index, Vlevs,Sunspot,Bandno,C,FC,CErr1] Pset

TEXT [VALUES- 10,10,10,10,10,10,10 ’] Fset

" RESULTS WILL BE RESTRICTED TO THESE USERS "

VARIATE [VALUES= 1...12] 
Usrset

" THESE ARE SUMMER SUNSPOT NUMBERS"

VARIATE [VALUES=95( 115,65,46,30.8,14,31,104,189)] Sunspot

"THESE ARE WINTER SUNSPOT NUMBERS" 

"VARIATE [VALUES=190(137,93,60,16.5,14,18,58,14)] Sunspot"

CALCULATE Sunspot2=Sunspot*Sunspot

TEXT
[VALUES=FM,AM,FMB,AE,FMA,FB,MM,B,F,FA,RA,FMM] ALLOCS

FACTOR[LABELS=Allocs; VALUES=((1,2,1,1,3,1,4,1,3,4,5,1,4,6,7,1,4,3,\ 

1,4,1,8,7,4,1,2,8,1,1,7,7,4,9,8,9,4,10,1,1,4,9,8,9,7,7,4,1,8,1,2,1,4,8,\ 

9,9,7,7,9,8,4,9,2,9,7,9,9,7,9,1,1,2,8,4,7,7,9,1,4,1,1,1,2,7,1,11,8,7,1,1,\

1,12,2,2,2,1))8] User

FACTOR[ LEVELS=95; VALUES=((1 ...95)8)] Bandno

VARITE[NVALUES=95;VALUES=204,40,195,255,200,350,305,45,200,100,\ 

300,100,50,50,438,212,100,250,480,250,220,250,325,240,235,100,\
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38 200,500,395,305,315,225,460,400,100,100,50,450,575,225,250,400,\

39 180,500,470,160,240,200,200,350,650,100,500,400,360,500,550,140,\

40 350,130,38,100,612,120,400,380,120,200,500,500,450,420,130,400,\

41 455,145,200,150,650,500,390,110,210,340,120,430,75,325,500,500,\

42 500,500,500,700,300] Bandwidth

43 VARIATE [NVALUES=95] Freq

44 CALCULATE Freq = 1606 + CUM(B andwidth) - (Bandwidth/2)

45 VARIATE VFreq ; VALUES = !(( Freq)8)

46 VARIATE VBands ; VALUES = !(( Bandwidth)8)

47

48 VARIATE Vuser ; VALUES =•(( 1,2,1,1,3,1,4,1,3,4,5,1,4,6,7,1,4,3,\

49 1,4,1,8,7,4,1,2,8,1,1,7,7,4,9,8,9,4,10,1,1,4,9,8,9,7,7,4,1,8,1,2,1,4,8,\

50 9,9,7,7,9,8,4,9,2,9,7,9,9,7,9,1,1,2,8,4,7,7,9,1,4,1,1,1,2,7,1,11,8,7,1,1,\

51 1,12,2,2,2,1)8)

52

53 CALCULATE FBand = Bandno + 0 / (Vuser. IN .Usrset)

54 SORT [INDEX=FBand ; GROUPS=UBand]

55

56

57

58

CALCULATE Sunspot = Sunspot / 1000

& F Sun = VFreq*Sunspot

& F2Sun = VFreq*FSun

READ [CHANNEL=5] C1,C2,C3,C4,C5

Identifier Minimum Mean Maximum Values Missing

Cl 23.0 248.2 700.0 760 0

C2 0.00 23.98 143.00 760 0 Skew

C3 0.00 14.01 128.00 760 0 Skew

C4 0.000 8.116 129.000 760 0 Skew

C5 0.000 4.628 126.000 760 0 Skew

59

60 RESTRICT C; CONDITION = (Vuser. IN. Usrset)
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61 " HELP environment,  "*

62 MODEL [DISTRIBUTION = binomial; LINK = logit ; DISPERSION^ || 
C;\
63 NBINPMIAL = VBands; FITTEDVALUES=FC

64 TERMS \\ Xset

65 FIT [CON STANT=e] WXset

* MESSAGE : The following units have high leverage :

737 0.58

******** Regression Analysis ********

Response variate : C5

Binomial totals : VBands

Distribution : Binomial

Link function : Logit

Fitted terms : Constant + UBand + Sunspot + FSun + F2Sun

*** Summary of analysis ***

d.f deviancemean deviance

Regression 97 9338.9 96.277

Residual 662 961.2 1.452

Total 759 10300.1 13.571

Change -97 -9338.9 96.571

* MESSAGE : The following units have large residual :

134 -3.33

344 -3.28

402 3.44

595 3.47

615 4.64

623 3.54

718 -3.61
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750 0.44

751 0.46

758 0.61

*** Estimates of regression coefficients ***

estimate s. e t

Constant -14.3 19.9 -0.72

UBand 2 1.6 28.3 0.06

UBand 3 0.1 28.2 0.00

UBand 4 -0.2 28.1 -0.01

UBand 5 0.1 28.2 0.00

UBand 6 -0.5 28.2 -0.02

UBand 7 -0.3 28.2 -0.01

UBand 8 1.6 28.3 0.06

UBand 9 8.4 19.9 0.42

UBand 10 0.8 28.2 0.03

UBand 11 -0.3 28.2 -0.01

UBand 12 0.8 28.2 0.03

UBand 13 1.5 28.3 0.05

UBand 14 1.5 28.3 0.05

UBand 15 8.5 19.9 0.43

UBand 16 9.4 19.9 0.47

UBand 17 0.9 28.3 0.03

UBand 18 8.2 19.9 0.41

UBand 19 8.3 19.9 0.42

Uband 20 0.0 28.2 0.00

UBand 21 8.2 19.9 0.41

UBand 22 11.5 19.9 0.58

UBand 23 10.8 19.9 0.54

UBand 24 7.8 19.9 0.39

UBand 25 8.8 19.9 0.44

UBand 26 8.3 19.9 0.42
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UBand 27 10.6 19.9 0.53

UBand 28 9.3 19.9 0.47

UBand 29 9.6 19.9 0.48

UBand 30 10.1 19.9 0.51

UBand 31 11.5 19.9 0.58

UBand 32 0.2 28.2 0.01

UBand 33 9.7 19.9 0.49

UBand 34 11.6 19.9 0.58

UBand 35 8.7 19.9 0.44

UBand 36 9.3 19.9 0.47

UBand 37 10.4 19.9 0.52

UBand 38 10.4 19.9 0.52

UBand 39 9.9 19.9 0.50

UBand 40 8.8 19.9 0.44

UBand 41 10.1 19.9 0.51

UBand 42 12.6 19.9 0.63

UBand 43 10.8 19.9 0.54

UBand 44 10.0 19.9 0.50

UBand 45 11.1 19.9 0.56

UBand 46 8.2 19.9 0.41

UBand 47 10.7 19.9 0.54

UBand 48 11.3 19.9 0.57

UBand 49 10.0 19.9 0.50

UBand 50 7.7 19.9 0.39

UBand 51 9.6 19.9 0.48

UBand 52 10.4 19.9 0.52

UBand 53 12.7 19.9 0.64

UBand 54 10.2 19.9 0.51

UBand 55 10.2 19.9 0.51

UBand 56 9.1 19.9 0.46

UBand 57 10.1 19.9 0.51

UBand 58 9.5 19.9 0.48
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UBand 91 -2.3 27.0 -0.09

UBand 92 -2.5 26.9 -0.09

UBand 93 3.8 19.9 0.19

UBand 94 -3.1 26.5 -0.12

UBand 95 -2.4 26.4 -0.09

Sunspot 5.52 3.15 1.75

Fsun -0.001168 0.000475 -2.46

F2sun 0.58E-07 0.17E-07 3.42

66 RESTRICT FC, QErr ; CONDITION = RESTRICTION 

67 CALCULATE [PRINT=summary] CEn = 100*(#C-FC)/VBands

Identifier Minimum Mean Maximum Values Missing 

CErr -6.203 0.00 7.125 760 0

68 & CErr = AB S( CErr)

Identifier Minimum Mean Maximum Values Missing

CErr 0.0000 0.5153 7.1252 760 0 skew

69 

70 "PRINT \\ Pset; FIELDWIDTH = \\ Fset" 

71 CALCULATE [PRINT + summary] Q=100*\\ C/VBands

Identifier Minimum Mean Maximum values missing

Q 0.000 1.292 25.200 760 0 skew

72 VARIATE [VALUES = 1,2...40] CBounds

73 HISTOGRAM [LIMITS = CBounds ; SCALE = 20] Q

Histogram of Q grouped by CBounds

- 1.000 568 ****************************

1.000-2.000 73 * * * *

2.000-3.000 35 * *

3.000-4.000 20 *

4.000-5.000 11 *

5.000-6.000 8

6.000-7.000 9

7.000-8.000 4
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8.000-9.000 3

9.000-10.000 5

10.000-11.000 2

11.000-12.000 1

12.000-13.000 5

13.000-14.000 4

14.000-15.000 1

15.000-16.000 1

16.000- 17.000 3

17.000-18.000 2

18.000-19.000 0

19.000-20.000 2

20.000-21.000 1

21.000-22.000 0

22.000-23.000 1

23.000-24.000 0

24.000-25.000 0

25.000-26.000 1

26.000-27.000 0

27.000-28.000 0

28.000-29.000 0

29.000-30.000 0

30.000-31.000 0

31.000-32.000 0

32.000-33.000 0

33.000-34.000 0

34.000-35.000 0

35.000-36.000 0

36.000-37.000 0

37.000-38.000 0

38.000-39.000 0

39.000-40.000 0
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40.000- 0

Scale: 1 asterisk represents 20 units.

74 VARIATE [VALUES = 1... 50] PBounds

75 HISTOGRAM [LIMITS = PBounds ; SCALE = 20] CErr

Histogram of CErr groubed by PBounds

• 1.000 642 ****************************

1.000 - 2.000 68 * * *

2.000 - 3.000 21 *

3.000 - 4.000 14 *

4.000 - 5.000 9

5.000 - 6.000 3

6.000 - 7.000 2

7.000 - 8.000 1

8.000 - 9.000 0

9.000 - 10.000 0

10.000 - 11.000 0

11.000 - 12.000 0

12.000 - 13.000 0

13.000 - 14.000 0

14.000 - 15.000 0

15.000 - 16.000 0

16.000 - 17.000 0

17.000 - 18.000 0

18.000 - 19.000 0

19.000 - 20.000 0

20.000 - 21.000 0

21.000 - 22.000 0

22.000 - 23.000 0

23.000 - 24.000 0

24.000 - 25.000 0
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PROGRAM

LINE ***********************************

1

2

3

3

4

5

6

7

8

9

10

11

12

13

14

15

15

16

16

17

17

18

18

19

19

20

20

21

22

SET M=3800;

SMPL 1,M;

READ(FORMAT=FREE,FILE-GLAM5 S DATA)

QCAT,INDEX,YR,BAND,N,T;

READ (FORMAT=FREE,FILE=, METTS3 DAT ') Fl;

READ (FORMAT=FREE,FILE- SUNSPOTS DATA ') SUN;

READ (FORMAT=FREE,FILE- BWIDTH DATA ') W;

F2=F1*F1;

F3=F2*F1;

FSUN=F 1 * SUN ;

F2SUN=F2*SUN;

SELECT T=4;

MSD QCAT YR BAND N Fl F2 F3 FSUN F2SUN;

DUMMY BAND;

DUMMY QCAT;

FRML EQI LOGL=N*[QCAT2*XQ2 + QCAT3*XQ3 + QCAT4*XQ4 +

QCAT 5 *XQ4-LOG[ 1 +EXP(XQ2)+EXP(XQ3 )+EXP(XQ4)+EXP(XQ5 )]] ;

FRML EXPT EXPECTED=W*EXP(QCAT2*XQ2+QCAT3*XQ3+QCAT4*

XQ4+QC AT 5 *XQ5 )/( 1+EXP(XQ2)+EXP(XQ3)+EXP(XQ4)+EXP(XQ5 ));

FRML EQXQ2 XQ2=B21*F1+B22*F2+B23*F3+B24*SUN+B25*FSUN+

B26*F2SUN;

FRML EQXQ3 XQ3=B31*F1+B32*F2+B33*F3+B34*SUN+B35*FSUN+

B36*F2SUN;

FRML EQXQ4 XQ4=B41*F1+B42*F2+B43*F3+B44*SUN+B45*FSUN+

B46*F2SUN;

FRML EQXQ5 XQ5=B51*F1+B52*F2+B53*F3+B54*SUN+B55*FSUN+

B56*F2SUN;

EQSUB EXPT EQXQ2 EQXQ3 EQXQ4 EQXQ5;

EQSUB (NAME=LOGIT3) EQ1 EQXQ2 EQXQ3 EQXQ4 EQXQ5;
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23 PARAM B21-B26 B31-B36 B41-B46 B51-B56;
24 ML (HITER=N,HCOV=NBW,MAXIT=  100) LOGIT3;

25 GENR EXPT;

26 DIFF=AB S(N-EXPECTED);

27 MSD EXPECTED DIFF;

28 HIST (MIN=0,MAX= 100,NBIN= 10)DIFF;

29 END;

RESULTS OF COVARIANCE PROCEDURE

NUMBER OF OBSERVATIONS : 560

MEAN STD DEV MIN MAX SUM VAR

QCAT 3.00000 1.41548 1 5 1680.000 2.00358

YR 4.5 2.29334 1 8 2520.000 5.25939

BAND 46.35714 31.76119 1 95 51920 1008.773

N 32.35714 67.1298 0 305 18120 4506.416

Fl 10.64982 6.56715 3.0025 8.27499 5963.899 43.127

F2 156.469 170.3303 9.015 581.251 87622.66 29012.42

F3 2755.58 3954.29 27.068 1268.645 1543124 1.564D+7

FSUN 791.814 841.643 42.035 438.7266 443415.8 708362.8

F2SUN 11633.47 17913.6 126.21 1023.000 6514743 3.2089D8

MAXIMUM LIKELIHOOD ESTIMATION

EQUATION: LOGIT3

Working space used: 26565

STARTING VALUES

B51 B52 B53 B54 B55 B56

VALUE 0.000 0.000 0.000 0.000 0.000 0.000

B41 B42 B43 B44 B45 B46

VALUE 0.000 0.000 0.000 0.000 0.000 0.000

B31 B32 B33 B34 B35 B36

VALUE 0.000 0.000 0.000 0.000 0.000 0.000
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B21 B22 B23 B24 B25 B26

VALUE 0.000 0.000 0.000 0.000 0.000 0.000

F=9163. FNEW= 589.6 ISQZ=0 STEPSIZE=1.0000 CRITERIORION=59119

F=65896 FNEW=5936.1 ISQZ=1 STEPSIZE=O. 5000 CRITERIORION=2093.5

F=5936.1 FNEW=5839.9 ISQZ=0 STEPSIZE=1.0000 CRITERIORION=161.25

F=58399 FNEW=5812.0 ISQZ=0 STEPSIZE=1.0000 CRITERIORION=44.467

F=5812.0 FNEW=5802.2 ISQZ=0 STEPSIZE=1.0000 CRITERIORION= 15.938

F=58O22 FNEW=5799.8 ISQZ=0 STEPSIZE= 1.0000 CRITERIORION=4.0882

F=57998 FNEW=5799.6 ISQZ=0 STEPSIZE= 1.0000 CRITERIORION=0.3905

F=5799.6 
02

FNEW=5799.6 ISQZ=0 STEPSIZE=1.0000 CRITERIORION=0.4E-

CONVERGENCE ACHIEVED AFTER 8 ITERATIONS 

17 FUNCTION EVALUTIONS.

LOG OF LIKELIHOOD FUNCTION = -5799.6

NUMBER OF OBSERVATIONS =560

STANDARD

PARAMETER 
STATISTIC

ESTIMATE ERROR T-

B51 -3.215163 0.3611698 -8.902083

B52 0.3505505 0.49008E-01 7.15292

B53 -0.102687E-01 0.16628E-02 -6.175389

B54 -0.242236E-01 0.18895E-01 -1.281981

B55 0.708722E-02 0.32278E-02 2.195658

B56 -0.362479E-03 0.14511E-03 -2.497965

B41 -2.167767 0.1656282 -13.008815

B42 0.2414497 0.2503614E-01 9.644047

B43 -0.756435E-02 0.9493676E-03 -7.967780

B44 -0.274003E-01 0.1235463E-01 -2.217818

B45 0.36853 IE-02 0.2197146E-02 1.677316

B46 -0.104807E-03 0.9691849E-04 -1.081389

B31 -1.482506 0.6289108E-01 -23.57260

B32 0.1546792 0.8834038E-02 17.50945
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B33 -0.4443248E-02 0.3095046E-03 -14.356

B34 -0.2272254E-01 0.4481996E-02 -5.069737

B35 0.3901287E-02 0.8540896E-03 4.567772

B36 -0.1595019E-03 0.3937604E-04 -4.050736

B21 -1.127314 0.3842442E-01 -29.33849

B22 0.1146356 0.5169533E-02 22.17523

B23 -0.3230564E-02 0.1711181E-03 -18.87915

B24 -0.2200017E-02 0.2811201E-02 -7.825899

B25 0.3684900E-02 0.499954IE-03 7.370478

B26 -0.1313949E-03 0.2143541E-04 -6.129803

ANALYTIC SECOND
DERIVATIVES (NEWTON).
STANDARD ERRORS COMPUTED FROM

STANDARD

PARAMETER ESTIMATE ERROR T-STATISTIC

B51 -3.215163 0.3885539 -8.274691

B52 0.3505505 0.5282603E-01 6.635943

B53 -0.1026872E-01 0.1793650E-02 -5.725041

B54 -0.2422355E-01 0.2738607E-01 -0.8845209

B55 0.7087223E-02 0.4207269E-02 1.684519

B56 -0.3624796E-03 0.1658688E-03 -2.185339
B41 -2.167767 0.1198476 -18.08769

B42 0.2414497 0.1822602E-01 13.24753

B43 -0.7564352E-02 0.6949467E-03 -10.88479

B44 -0.274003 IE-01 0.9462624E-02 -2.895636

B45 0.3685308E-02 0.1562203E-02 2.359045

B46 -0.1048065E-03 0.6464116E-04 -1.621359

B31 -1.482506 0.2727166E-01 -54.36068

B32 0.1546792 0.3959954E-02 39.06085

B33 -0.4443248E-02 0.1449826E-03 -30.64677

B34 -0.2272254E-01 0.2208962E-02 -10.28652

B35 0.3901287E-02 0.4130235E-03 9.445678
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B36 -0.1595019E-03 0.1853864E-04 -8.603757

B21 -1.127314 0.1140544E-01 -98.84009

B22 0.1146356 0.1555627E-02 73.69091

B23 -0.3230564E-02 0.5291072E-04 -61.05688

B24 -0.2200017E-01 0.9384048E-03 -23.44422

B25 0.3684900E-02 0.1554689E-03 23.70185

B26 -0.1313949E-03 0.6244278E-05 -21.04244

STANDARD ERROR
FIRST DERIVATIVES

COMPUTED FROM 
(BHHH).

COVARIANCE OF ANALYTIC

STANDARD

PARAMETER ESTIMATE ERROR T-STATISTIC

B51 -3.21563 0.4542794 -7.077503

B52 0.3505505 0.6449236E-01 5.435536

B53 -0.1026872E-01 0.226904 IE-02 -4.525576

B54 -0.2422355E-01 0.1675936E-01 -1.445374

B55 0.7087223E-02 0.3979133E-02 1.781097

B56 -0.3624796E-03 0.2052578E-03 -1.765972

B41 -2.167767 0.2660041 -8.149372

B42 0.2414497 0.4072235E-01 5.929169

B43 -0.75643 52E-02 0.155182IE-02 -4.874501

B44 -0.274003 IE-01 0.1858786E-01 -1.474097

B45 0.3685308E-02 0.3835004E-02 0.9609660

B46 -0.1048065E-03 0.1824213E-03 -0.5745302

B31 -1.482506 0.1773598 -8.358751

B32 0.1546792 0.2471988E-01 6.257278

B33 -0.4443248E-02 0.8339258E-03 -5.328110

B34 -0.2272254E-01 0.1106335E-01 -2.053858

B35 0.3901287E-02 0.2267256E-02 1.720708

B36 -0.1595019E-03 0.1072944E-03 -1.486581

B21 -1.127314 0.1544759 -7.297673

B22 0.1146356 0.2066464E-01 5.547427
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B23 -O.323O564E-O2 0.6649648E-03 -4.858248

B24 -0.2200017E-01 0.1006938E-01 -2.184859

B25 0.3684900E-02 0.209025IE-02 1.762898

B26 -0.1313949E-03 0.9732304E-04 -1.350090

STANDARD ERRORS COMPUTED FROM ANALYTIC FIRST AND SECOND 
DERIVATIVES (EICKER-WHITE)

RESULTS OF COVARIANCE PROCEDURE

NUMBER OF OBSERVATIONS : 560

MEAN STD DEV MIN. MAX. SUM VAR.

EXPECT. 32.35714 66.34075 2.25D-09 300.9192 18119.99 4401.095

DIFF. 2.73600 3.91628 2.25D-09 10.22681 1532.159 15.33722

HISTOGRAM OF DIFF

MIN.

0.0

MAX

526

526

2Q ******************** g
********************

20 * 2
*

30* 1
*

40 * 0
*

50* 0
*
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60

70

80

90

*

*

*

*

*

*

*

0

0

0

0
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T.S.P PROGRAM EXAMPLE 
SUMMER DAY 

PROGRAM RUN FOR ALL MULTI COUNT 
AND USER FIXED MOBILE USING C.D.F. OF 

NORMAL DISTRIBUTION
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PROGRAM

LINE
*******************************************************************

1 SET M=3800;

2 SMPL 1,M;

3 READ(FORMAT=FREE,FILE=,GLAM5S

3 DATA')QC AT,INDEX, YR,B AND,N,T ;

4 READ (FORMAT=FREE,FILE=, METTS3 DAT ’) Fl ;

5 READ (FORMAT=FREE,FILE- SUNSPOTS DATA ') SUN;

6 READ (FORMAT=FREE,FILE=, BWIDTH DATA ') W;

7 F2=F1*F1;

8 F3=F2*F1;

9 FSUN=F 1 * SUN ;

10 F2 SUN=F2* SUN ;

11 SELECT T=l;

12 MSD QCAT YR BAND N Fl F2 F3 FSUN F2SUN;

13 DUMMY BAND;

14 DUMMY QCAT;

15 SET B21=0.005;

16 FRML EQI LOGL=N*[QCAT1*LOG[CNORM(XQ2)-0]+QCAT2*LOG

16 [CNORM(XQ3>CNORM(XQ2)]+QCAT3*LOG[CNORM(XQ4)-

16 CNORM(XQ3)]

16 +QCAT4*LOG[CNORM(XQ5)-CNORM(XQ4)]+QCAT5*LOG[1-

16 CNORM(XQ5)]];

17 FRML EXPT EXPECTED =W*EXP[[QCAT1*LOG[ CNORM(XQ2>0]+

17 QCAT2[CNORM(XQ3)-CNORM(XQ2)]+QCAT3*LOG[CNORM(XQ4)-

17 CNORM(XQ3)]+QCAT4*LOG[CNORM(XQ5>
CNORM(XQ4)]+QCAT5*LOG

17 [ 1-CNORM(XQ50]]];

18 FRML EQXQ2 XQ2=B21 *(- 107)+B22*SUN+B23 *FSUN+B24*F2SUN+

18 B25*F1;

19 FRML EQXQ3 XQ3=B21*(-97)+B22*SUN+B23*FSUN+B24*F2SUN+

19 B25*F1;
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20 FRML EQXQ4 XQ4=B21*(-87)+B22*SUN+B23*FSUN+B24*F2SUN+

20 B25*F1;
21 FRML EQXQ5 XQ5=B21*(-87)+B22*SUN+B23*FSUN+B24*F2SUN+

21 B25*F1;

22 EQSUB EXPT EQXQ2 EQXQ2 EQXQ3 EQXQ4 EQXQ5;

23 EQSUB (NAME=LOGIT5) EQI EQXQ2 EQXQ3 EQXQ4 EQXQ5;

24 PARAM B21-B25 B31-B34 B41-B44 B51-B54;

25 ML (HITER=N,HCOV=NBW,MAXIT=  100) LOGIT5;

26 GENR EXPT;

27 DIFF=AB S(N-EXPECTED);

28 MSD EXPECTED DIFF;

29 HIST (MJN=0 , MAX=100, NBIN=10)DIFF;

30 END;

RESULTS OF COVARIANCE PROCEDURE

NUMBER OF OBSERVATIONS : 1120

MEAN STD DEV MIN MAX SUM VAR

QCAT 3.00000 1.41548 1 5 3360.000 2.00179

YR 4.5 2.29334 1 8 5040.000 5.25469

BAND 46.35714 31.76119 1 95 51920 1008.773

N 71.50714 139.9917 0 649.000 80088.00 19597.67

Fl 13.89962 9.49204 1.70800 29.84999 15567.57 90.0987

F2 283.2177 288.7442 2.91726 891.0217 317203.8 83373.22

F3 6617.284 8003.361 4.98268 26506.99 7411358 6.4ÎD+O7

FSUN 1033.437 1161.012 23.91199 5641.645 1157448 1347948

F2SUN 21057.23 30847.21 40.84164 168403.1 2.36D+O7 9.52D+O8
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MAXIMUM LIKELIHOOD ESTIMATION

EQUATION: LOGIT3

Working space used: 26565

STARTING VALUES

B21 B22

VALUE 0.005 0.000

B23

0.000

B24

0.000

B25

0.000

F=0.12E+6 FNEW=55157
CRITERIORION=0.12E6

ISQZ=0 STEPSIZE=1.0000

F=55157 FNEW=48625
CRITERIORION= 11088

ISQZ=0 STEPSIZE=1.0000

F=48625 FNEW=47726
CRITERIORION-1601.3

ISQZ=0 STEPSIZE=1.0000

F=47726 FNEW=47683
CRITERIORION=82.266

ISQZ=0 STEPSIZE=1.0000

F=47683 FNEW=47683
CRITERIORION=0.3987

ISQZ=0 STEPSIZE=1.0000

CONVERGENCE ACHIEVED AFTER 5 ITERATIONS

10 FUNCTION EVALUATIONS.

LOG OF LIKELIHOOD FUNCTION = -47682.5 

NUMBER OF OBSERVATIONS= 1120

STANDARD

PARAMETER 
STATISTIC

ESTIMATE ERROR T-

B21 0.117389E-01 0.103561E-03 113.3522

B22 0.381808E-01 0.363799E-03 104.9501

B23 -0.416143E-02 0.51293 8E-04 -81.12938

B24 0.976854E-04 0.160984E-05 60.68027

B25 0.1553404 0.106783E-02 145.4736
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STANDARD ERRORS COMPUTED FROM ANALYTIC SCOND 

DERIVATIVES (NEWTON).
STANDARD

PARAMETER 
STATISTIC

ESTIMATE ERROR T-

B21 0.117389E-01 0.122160E-04 960.9411

B22 0.381808E-01 0.398566E-04 957.9529

B23 -0.416143E-02 0.533449E-05 -780.0994

B24 0.976854E-04 0.171240E-06 570.4583

B25 0.1553404 0.126054E-03 1232.331

STANDARD ERRORS COMPUTED FROM CONVERIANCE OF ANALYTIC
FIRST DERIVATIVES (BHHH).

STANDARD

PARAMETER 
STATISTIC

ESTIMATE ERROR T-

B21 0.117389E-01 0.962655E-03 12.19426

B22 0.381808E-01 0.341521E-02 11.17963

B23 -0.416143E-02 0.502525E-03 -8.281036

B24 0.976854E-04 0.154465E-04 6.324121

B25 0.1553404 0.962682E-02 16.13622

STANDARD ERRORS COMPUTED FROM ANALYTIC FIRST AND SECOND
DERIVATIVES (EICKER-WHITE).

RESULTS OF COVARIANCE PROCEDURE

NUMBER OF OBSERVATIONS: 1120

MEAN STD DEV MIN. MAX. SUM VAR.

EXPECT. 71.50713 138.9511 0.00001 643.7893 80087.98 19307.40

DIFF. 19.34163 30.92411 0.00001 27.03441 21662.62 956.3007
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HISTOGRAM OF DIFF

NUMBER OF OBSERVATIONS: 1081

MIN MAX

8.00 664

q ************************************************************  664
************************************************************

20 ******************** 150
********************

20 *********** 82
***********

30 ****** 48
******

40 ***** 38
*****

50 **** 29
****

60 **** 30
****

70 ** 18
♦*

80 * 8
*

90 ** 14
* *

8.000 644.0

MIN.
MAX.

END OF OUTPUT
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T.S.P PROGRAM EXAMPLE
SUMMER DAY

PROGRAM RUN FOR ALL MULTI-COUNTS 
AND USER

FIXED MOBILE USING C.D.F. OF NORMAL 
DISTRIBUTION

(FULL MULTINOMIAL MODEL)
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PROGRAM

LINE

1

2

3

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

20

20

20

20

21

21

21

21

SET M=3800;

SMPL 1,M;

READ(FORMAT=FREE,FILE='GLAM5 SDATA’)

QCAT,INDEX,YR,BAND,N,T;

READ (FORMAT=FREE,FILE- METTS3 DAT ') Fl;

READ (FORMAT=FREE,FILE= , SUNSPOTS DATA ') SUN;

READ (FORMAT=FREE,FILE=' BWIDTH DATA ') W;

F2=F1*F1;

F3=F2*F1;

FSUN=F 1 * SUN ;

F2 SUN=F2 * SUN ;

SELECT T=l;

MSD QCAT YR BAND N Fl F2 F3 FSUN F2SUN;

DUMMY BAND;

DUMMY QCAT;

SET B21=0.011738;

SET B22=3.25;

SET B23=-0.354502;

SET 624=0.0083216;

SET 625=13.23307;

FRML EQI LOGL=N*[QCAT1*LOG[CNORM(XQ2)-0]+QCAT2*LOG

[CNORM(XQ3)-CNORM(XQ2)]+QCAT3*

LOG[CNORM(XQ4)-CNORM(XQ3)]

+QCAT4*LOG[CNORM(XQ5)-CNORM(XQ4)]+QCAT5*LOG[1-

CNORM(XQ5)]];

FRML EXPT EXPECTED =W*EXP[[QCAT1*LOG[ CNORM(XQ2)-0]+

CAT2[CNORM(XQ3)-CNORM(XQ2)]+QCAT3*LOG[CNORM(XQ4)-

NORM(XQ3 )]+QCAT4*LOG[CNORM(XQ5)-CNORM(XQ4)]+QCAT  5 *LOG 

1-CNORM(XQ50]]];
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22 RML EQXQ2 XQ2=B21*((-107)+B22*SUN+B23*FSUN+B24*F2SUN

22 B25*F1);

23 RML EQXQ3 XQ3=B21*((-97)+B22*SUN+B23*FSUN+B24*F2SUN

23 B25*F1);

24 RML EQXQ4 XQ4=B21*((-87)+B22*SUN+B23*FSUN+B24*F2SUN

24 B25*F1);

25 RML EQXQ5 XQ5=B21*((-77)+B22*SUN+B23*FSUN+B24*F2SUN
25 B25*F1);

26 EQSUB EXPT EQXQ2 EQXQ2 EQXQ3 EQXQ4 EQXQ5;

27 QSUB (NAME=LOGIT5) EQI EQXQ2 EQXQ3 EQXQ4 EQXQ5;

28 ARAM B21-B25 B31-B34 B41-B44 B51-B54;

29 ML (HITER=N,HCOV=NBW,MAXIT= 100) LOGIT5;

30 GENR EXPT;

31 DIFF=ABS(N-EXPECTED);

32 MSD EXPECTED DIFF;

33 HIST (MIN=0,MAX= 100,NBIN= 10)DIFF;

34 END;

RESULTS OF COVARIANCE PROCEDURE

NUMBER OF OBSERVATIONS : 1120

MEAN STD DEV MIN MAX SUM VAR

QCAT 3.00000 1.41548 1 5 3360.000 2.00179

YR 4.5 2.29334 1 8 5040.000 5.25469

BAND 46.35714 31.76119 1 95 51920 1008.773

N 71.50714 139.9917 0 649.000 80088.00 19597.67

Fl 13.89962 9.49204 1.70800 29.84999 15567.57 90.0987

F2 283.2177 288.7442 2.91726 891.0217 317203.8 83373.22

F3 6617.284 8003.361 4.98268 26506.99 7411358 6.41D+07

FSUN 1033.437 1161.012 23.91199 5641.645 1157448 1347948

F2SUN 21057.23 30847.21 40.84164 168403.1 2.36D+O7 9.52D+O8
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MAXIMUM LIKELIHOOD ESTIMATION

EQUATION: LOGIT5

Working space used: 27567

STARTING VALUES

B21 B22 B23 B24 B25

VALUE 
213.23307

0.01174 3.2500 -0.35450 0.0083

F=47683 FNEW=47683 ISQZ=0
CRITERIORION=0.17763

CONVERGENCE ACHIEVED AFTER 1 ITERATIONS

10 FUNCTION EVALUATIONS.

LOG OF LIKELIHOOD FUNCTION =

NUMBER OF OBSERVATIONS=

STANDARD

STEPSIZE= 1.0000

-47682.5

1120

PARAMETER 
STATISTIC

ESTIMATE ERROR T-

B21 0.117389E-01 0.103561E-03 113.3522

B22 3.252518 0.314177E-01 103.5251

B23 -0.3545047 0.4553 55E-02 -77.85247

B24 0.832179E-02 0.144106E-03 57.74759

B25 13.23291 0.886515E-01 149.2689

STANDARD 
DERIVATIVES

ERRORS COMPUTED 
(NEWTON).

FROM ANALYTIC SECOND

STANDARD

PARAMETER 
STATISTIC

ESTIMATE ERROR T-

B21 0.117389E-01 0.122159E-04 960.9582

B22 3.252518 0.307612E-02 1057.344

B23 -0.3545047 0.462890E-03 -765.8504
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B24 0.832179E-02 0.156074E-04 533.1967

B25 13.23291 0.820141E-02 1613.492

STANDARD ERRORS COMPUTED 
FIRST DERIVAIT VES (BHHH).

FROM COVARIANCE

STANDARD

OF ANALYTIC

PARAMETER 
STATISTIC

ESTIMATE ERROR T-

B21 0.117389E-01 0.962665E-03 12.19431

B22 3.252518 0.3344272 9.725640

B23 -0.3545047 0.473045E-01 -7.494105

B24 0.832179E-02 0.14092IE-02 5.905300

B25 13.23291 0.9969773 13.27303

STANDARD ERRORS COMPUTED FROM ANALYTIC FIRST AND SECOND 
DERIVATIVES (EICKER-WHITE).

RESULTS OF COVARIANCE PROCEDURE

NUMBER OF OBSERVATIONS = 1120

MEAN STD DEV MIN. MAX. SUM VAR.

EXPECT 71.50713 138.9512 0.00001 643.7896 80087.98 19307.42

DIFF. 19.34163 30.92411 0.00001 27.03572 21662.52 956.3063

HISTOGRAM OF DIFF

NUMBER OF OBSERVATIONS : 1081

MIN MAX

8.000 644

_q *************************************************************  664
*************************************************************

10 ******************** 150
********************

20 *********** g2
***********
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go ****** 48
******

40 ***** 38
*****

50 **** 29
****

60 **** 30
****

70 ** 18
**

80 * 8
*

90 ** 14
* *

8.000 644.0

MIN
MAX.

END OF OUTPUT
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APPENDIX E

FORTRAN PROGRAMS
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PROGRAM MAXIMUM

C

Q ****************************************************************

C * THE AIM OF THIS PROGRAM IS TO FIND THE ESTIMATION

C * OF THE PARAMETERS USING MAXIMUM LIKELIHOOD METHOD

Q ****************************************************************

INTEGER N, LH, LIW, LW

PARAMETER(Nl=200,NS=4)

PARAMETER(N=4,LH=N*(N-1 )/2,LIW=2,LW=7*N+N*(N-1)/2)

INTEGER NOUT

PARAMETER (NOUT=6)

C LOCAL SCALARS

DOUBLE PRECISION DELTA, ETA, F, STEPMX, XTOL

INTEGER IBOUND, IF AIL, IPRINT, J, MAXCAL

C LOCAL ARRAYS

DOUBLE PRECISION BL(N), BU(N), G(N), HESD(N)

DOUBLE PRECISION HESL(LH), W(LW), X(N)

INTEGER ISTATE(N), IW(LIW)

C EXTERNAL SUBROUTINES

EXTERNAL E04HCF, E04KDF, FUNCT, MONIT

INTEGER Y(N1,NS)

COMMON S,T

DOUBLE PRECISION S(2,NS),T(NS)

OPEN(11,FBLE-AL68- 107.DAT)
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CALL E04HCF (N, FUNCT, X, F, G, IW, LIW, W, LW, IF AIL)

IPRINT = 1

MAXCAL =50*N

ETA= 0.5E+0

XTOL = 1.0E-12

DELTA = 0.0E+0

STEPMX = 4.0E0

BOUND = 0

BL(1)= -20.0E+0

BU(1)= 14.0E+0

BL(2)= -3.0E+0

BU(2)= 3.0E0

BL(3)= -1.0E-2

BU(3)= 18.0

BL(4)=-4.0

BU(4)=5.0

C SET UP STARTING POINT

X(l)= -1.0E-4

X(2)=-1.0E-4

X(3)= 1.0E-4

x(4)=-1.0E-4

IF AIL = 1

CALL
E04KDF(N, FUNCT,  MONIT, IPRINT,  MAXCAL,  ETA,XTOL,DELTA, STEPMX,
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* IBOUND,BL,BU,X,HESL,LH,HESD,ISTATE,F,G,IW,LIW,W,LW,

* IFAIL)

IF(IFAIL.NE.O) WRITE (15,FMT=99998) IFAIL

IF(]FAIL.NE. 1) THEN

WRITE (15,FMT=99997) F

WRITE (15 ,FMT=99996) (X(J),J=1,N)

WRITE (15,FMT=99995) (G(J),J=1,N)

WRITE (15,FMT=99994) (ISTATE(J),J=1,N)

WRITE (15,FMT=99993) (HESD(J),J=1,N)

WRITE ( 15,FMT=99992) XTOL

END IF

STOP

C

99999 FORMAT (' E04KDF PROGRAM RESULTS',/IX)

99998 FORMAT (///' ERROR EXIT TYPE', 13,'- SEE ROUTINE DOCUMEN )

99997 FORMAT (///'FUNCTION VALUE ON EXIT IS', F16.8)

99996 FORMAT (' AT THE POINT', 3F9.4)

99995 FORMAT ( THE CORRESPONDING(MACHINE DEPENDENT GRADIENT 
IS',/23X,

* 1P,3E12.3)

99994 FORMAT ('ISTATE CONTAINS',315)

99993 FORMAT ('AND HESD CONTAINS',3E12.4)

99992 FORMAT ( AND XTOL CONTAINS',D12.4)

END
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GC( 1 )=GC( 1 )+LAAM 1(N 1 ,THETA,LAMBDA)/LAAM(N 1 ,THETA,LAMBDA)

25 CONTINUE

GC(2)=0.0

DO 15 J=1,NS

THETA=XC(1)+T(J)*XC(2)

LAMBDA=XC(3)+T(J)*XC(4)

GC(2)=GC(2)+T(J)*LAAM1(N1,THETA,LAMBDA)/LAAM(N1,THETA,LAMBDA)

* -T(J)*S(1,J)

15 CONTINUE

GC(3)=0.0

do 35 j=l,ns

THETA=XC(1)+T(J)*XC(2)

LAMBDA=XC(3)+T(J)*XC(4)

GC(3)=GC(3)+LAAM2(N1,THETA,LAMBDA)/LAAM(N1,THETA,LAMBDA)

* -S(2,J)

35 CONTINUE

GC(4)=0.0

DO 45 J=1,NS

THETA=XC( 1)+T(J)*XC(2)

LAMBDA=XC(3)+T(J)*XC(4)

GC(4)=GC(4)+T(J)*LAAM2(N1,THETA,LAMBDA)/

* LAAM(N1,THETA,LAMBDA)-T(J)*S(2,J)

45 CONTINUE
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RETURN

END

SUBROUTINE
MONIT(N,XC,FC,GCJSTATE,GPJNRM,COND,POSDEF,NITER

*,NF,IW,LIW,W,LW)

INTEGER NOUT

PARAMETER (NOUT=6)

DOUBLE PRECISION COND, FC, GPJNRM

INTEGER LIW,LW,N,NF,NITER

LOGICAL POSDEF

DOUBLE PRECISION GC(N), W(LW),XC(N)

INTEGER ISTATE(N), IW(LIW)

INTEGER ISJ, J

WRITE (15,FMT=99999) NITER, NF, FC, GPJNRM

WRITE (15,FMT=99998)

DO 20 J=1,N

ISJ=ISTATE(J)

IF(IS J. GE. 0)THEN

WRITE( 15,FMT=99997) J, XC(J), GC(J)

ELSE IF (ISJ.EQ.-l) THEN

WRITE(15,FMT=99996) J, XC(J), GC(J)

ELSE IF (ISJ.EQ.-2) THEN

WRITE( 15 ,FMT=99994) J, XC(J), GC(J)

ELSE IF (ISJ.EQ.-3) THEN

WRITE( 15,FMT=99994) J, XC(J), GC(J)
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END IF 

20 CONTINUE

IF(COND.NE.O.OEO) THEN

IF(COND.GT.1.0E6) THEN

WRITE( 15,FMT=99993)

ELSE

WRITE( 15,FMT=99992) COND

END IF

IF( .NOT. POSDEF) WRITE (15,FMT=99991)

END IF

RETURN

99999 FORMAT(//TTNS FN EVALS FN VALUE NO',

* RM OF PROJ GRADIENT,/IX, 13,6X, 15,2(6X, 1P,E2O.4)) 

99998 FORMATAI X(J) G(J) STA',

* 'TUS')

99997 FORMATC ,I2, IX, 1P,2E2O.4,' FREE )

99996 FORMATC ',12, IX, 1P,2E2O.4,' UPPER BOUND')

99995 FORMATC ',12,IX, 1P,2E2O.4,' LOWER BOUND )

99994 FORMATC ',12, IX, 1P,2E2O 4,' CONSTANT) 

99993 FORMAT(/*ESTIMATED CONDITION NUMBER OF PROJECTED 
HESSIAN IS MO',

* 'RE THAN 1.0E+6')

99992 FORMAT (/'ESTIMATED CONDITION NUMBER OF PROJECTED 
HESSIAN =',1P,

♦ E10.2) 

99991 FORMAT^PROJECTED HESSIAN MATRIX IS NOT POSTIVE DEFINITE')
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END

C

C==—=====■■■* * —==aaM-.-- :,;-=========-; ■------------

FUNCTION LAAM(N,THETA,LAMBDA)

DOUBLE PRECISION THETA,LAMBDA,LAAM

DOUBLE PRECISION E,NR,NM,T,PSI,LAM

INTEGER M,N,R,T1

T=FLOAT(N)*EXP(THETA)

LAM=T+1

DO 20 M=1,N-1

PSI=(FLOAT(N-M))/(FLOAT(M+1))*EXP(THETA)

* *EXP((2*LAMBDA*M)/N)

T=PSI*T

LAM=LAM+T

20 CONTINUE

LAAM=LAM

RETURN

END

FUNCTION LAAM1(N,THETA,LAMBDA)

DOUBLE PRECISION THETA, LAMBDA, LAAM1

DOUBLE PRECISION E,NR,NM,T,PSI,LAM

INTEGER M,N,R

C CALCULATING THE NORMALIZING CONSTANT

C=-———----- --  ========----------------------------- -------
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T=FLOAT(N)*EXP(THETA)

LAM=T

DO 20 M=1,N-1

PSI=(FLOAT(N-M))/(FLOAT(M))*EXP(THETA)

**EXP((2*LAMBDA*M)/N)

T=PSI*T

LAM=LAM+T

20 CONTINUE

LAAM1=LAM

RETURN

END

FUNCTION LAAM2(N,THETALAMBDA)

DOUBLE PRECISION THETA,LAMBDALAAM2

DOUBLE PRECISION E,NR,NM,T,PSI,LAM

INTEGER M,N,R

T=(FLOAT(N-1))*EXP(2*THETA)*EXP((2*LAMBDA)/(FLOAT(N)))

LAM=T

DO 20 M=2,N-1

PSI=(FLOAT(N-M)/FLOAT(M-1 ))*EXP(THETA)

* *EXP((2*LAMBDA*M)/N)

T=PSI*T

LAM=LAM+T

20 CONTINUE

LAAM2=LAM

RETURN
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PROGRAM FIS

C =^--^=======^7^-^======= =

C THE AIM OF THIS PROGRAM IS CALCUKATING HESSIAN MATRIX

C - —jaiass=============^— _

* .. Parameters..

INTEGER N, LHES, LWORK

PARAMETER (N=4,LHES=N,LWORK=N*N+N)

INTEGER NOUT

PARAMETER (NOUT=6) 

* .. Local Scalars..

DOUBLE PRECISION EPSRF, OBJF

INTEGER I, IF ALL, IMODE, IWARN, J, MODE, MSGLVL

* .. Local Arrays ..

DOUBLE PRECISION HCNTRL(N), HESIAN(LHES,N), HFORW(N), 
OBJGRD(N),

+ USER(1), WORK(LWORK), X(N)

INTEGER INFO(N), IUSER(1)

* .. External Subroutines ..

EXTERNAL E04XAF, OBJFUN

* .. Executable Statements..

PARAMETER (Nl=200,NS=4)

INTEGER Y(N1, NS)

COMMON S,T

DOUBLE PRECISION S(2,NS),T(NS)
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T(l)=-107

T(2)=-97

T(3)=-87

T(4)=-77

OPEN( 15 ,FILE-ALII .RES’)

OPEN( 11 ,FILE-AL68- 107.DAT')

OPEN( 12,FELE—AL68-97D.DAT)

OPEN( 13,FILE—AL68-87D.DAT)

OPEN( 14,FILE-AL68-77D.DAT)

READ( 11,10 IXYft 1),I=1,N1)

READ(12,1O1XY(I,2),I=1,N1)

READ(13,1O1)(Y(I,3),I=1,N1)

READ(14,1O1)(Y(I,4),I=1,N1)

101 FORMAT(79I1)

DO 15 J=1,NS

S(l,J)=0.0

DO 10 1=1,N1

S(1,J)=S(1,J)+Y(I,J)

10 CONTINUE

S(2,J)=0.0

DO 21 I=1,N1-1

S(2, J)= S(2, J)+Y(I, J)* Y(1+1, J)

21 CONTINUE

15 CONTINUE

WRITE (15,*) FIS PROGRAM RESULTS'
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MSGLVL = 0

* Set the point at which the derivatives are to be estimated.

X(l)=-5.7429

X(2)=-0.0177

X(3)=3.8605

X(4)=0.0559

* Take default value of EPSRF.

EPSRF = -1.0D0

* Illustrate the different values of MODE.

DO 40 IMODE = 0, 2

MODE = IMODE

WRITE (15,*)

IF (MODE.EQ.0) THEN

WRITE (15,*)

+ Find gradients and Hessian diagonals given function only*

WRITE (15,*) '( i.e. MODE = 0 ).'

ELSE IF (MODE.EQ. 1) THEN

WRITE (15,*)

+ 'Find Hessian matrix given function and gradients'

WRITE (15,*) '( i.e. MODE = 1 ).'

ELSE IF (MODE.EQ.2) THEN

WRITE (15,*)

+ 'Find gradients and Hessian matrix given function only"

WRITE (15,*) '( i.e. MODE = 2 ).'

END IF
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* Set HFORW(I) = -1.0 so that E04XAF computes the initial trial

* interval.

DO 20 I = 1, N

HFORW(I) = -1.0D0

20 CONTINUE

IFAIL = 1 

*

CALL E04XÆ(MSGLVL,N,EPSRF,X,  MODE, OBJFUN,LHES,HFORW,OBJF, 

+ OB JGRD,HCNTRL,HESIAN,IWARN,WORK,  RJSER^USER, INFO,

+ IFAIL)

*

IF (IFAIL.EQ.0 OR IFAIL.EQ.2) THEN

WRITE (15,99999) 'Function value is OBJF

IF (MODE.EQ. 1) THEN

WRITE (15,*) 'Gradient vector is'

WRITE (15,99998) (OBJGRD(I),I=1,N)

ELSE

WRITE (15,*) 'Estimated gradient vector is'

WRITE (15,99998) (OBJGRD(I),I=1,N)

END IF

IF (MODE.EQ. 0) THEN

WRITE (15,*) 'Estimated Hessian matrix diagonal is'

WRITE (15,99998) (HESIAN(I,1),I=1,N)

ELSE

WRITE (15,*)
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+ ’Estimated Hessian matrix (machine dependent) is’

WRITE (15,99998) ((HESIAN(I,J),J=1,N),I=1,N)

END IF

ELSE

WRITE (15,*)

WRITE (15,99997) On exit fromE04XAF IF AIL = ', IFAIL 

END IF

40 CONTINUE

STOP 

*

99999 FORMAT (1X,A,1P,D12.4)

99998 FORMAT (3(1X,1P,D12.4))

99997 FORMAT (1X,A,I2)

END 

*

SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER)

* .. Scalar Arguments ..

DOUBLE PRECISION OBJF

INTEGER MODE, N, NSTATE

* .. Array Arguments ..

DOUBLE PRECISION OBJGRD(N), USER(*), X(N),T1

INTEGER IUSER(*) 

* .. Local Scalars ..

PARAMETER(N1=200,NS=4)
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DOUBLE PRECISION
S(2,NS),THETA,LAMBDA,LAAM,LAAM1,LAAM2,T(NS)

COMMON S,T

* .. Executable Statements..

OBJF=0.0

DO 10 J=1,NS

THETA=X( 1 )+T( J)*X(2)

LAMBDA=X(3)+T(J)*X(4)

OBJF = OBJF+ LOG(LAAM(N1,THETA,LAMBDA))-THETA*S(1,J)

+ -LAMBDA* S(2, J)

10 CONTINUE

IF (MODE.EQ. 1) THEN

OBJGRD(1)=0.0

DO 25 1=1,NS

THETA=X(1)+T(J)*X(2)

LAMBDA=X(3)+T(J)*X(4)

OBJGRD(1) =OBJGRD(1)+ LAAM1(N1,THETA,LAMBDA)/

+ LAAM(N1,THETA,LAMBDA)-S(1,J)

25 CONTINUE

OBJGRD(2)=0.0

DO 15 1=1,NS

THETA=X(1)+T(J)*X(2)

LAMBDA=X(3)+T(J)*X(4)

OBJGRD(2) =OBJGRD(2)+ T(J)*LAAM1(N1,THETA,LAMBDA)/

+ LAAM(N1,THETA,LAMBDA)-T(J)*S(1,J)
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15 CONTINUE

OBJGRD(3)=0.0

DO 35 J=1,NS

THETA=X(1)+T(J)*X(2)

LAMBDA=X(3)+T(J)*X(4)

OB JGRD(3 )=OB JGRD(3 )+LAAM2(N 1 ,THETA,LAMBDA)/

+ LAAM(N1,THETA,LAMBDA)-S(2,J)

35 CONTINUE

OB JGRD(4)=0.0

DO 45 J=1,NS

THETA=X( 1 )+T( J)*X(2)

LAMBDA=X(3)+T(J)*X(4)

OBJGRD(4)=OBJGRD(4)+T(J)*LAAM2(N1,THETA,LAMBDA)/

+ LAAM(N1,THETA,LAMBDA)-T(J)*S(2,J)

45 CONTINUE

END IF

RETURN

END
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FUNCTION LAAM(N,THETA,LAMBDA)

DOUBLE PRECISION THETA,LAMBDA,LAAM

DOUBLE PRECISION T,PSI,LAM,T1

INTEGER M,N

T=FLOAT(N)*EXP(THETA)

LAM=T+1

DO 20 M=1,N-1

PSI==(FLOAT(N-M))/(FLOAT(M+1))*EXP(THETA)

+ *EXP((2*LAMBDA*M)/N)

T=PSI*T

LAM=LAM+T

20 CONTINUE

LAAM=LAM

RETURN

END

FUNCTION LAAM1(N,THETA,LAMBDA)

DOUBLE PRECISION THETA, LAMB DA, LAAMI

DOUBLE PRECISION T,PSI,LAM

INTEGER M,N

T=FLOAT(N)*EXP(THETA)

LAM=T
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DO 20 M=1,N-1

PSI=(FLOAT(N-M))/(FLOAT(M))*EXP(THETA)

+ *EXP((2 *LAMBDA*M)/N)

T=PSI*T

LAM=LAM+T

20 CONTINUE

LAAM1=LAM

RETURN

END

FUNCTION LAAM2(N,THETA,LAMBDA)

DOUBLE PRECISION THETA,LAMBDA,LAAM2

DOUBLE PRECISION T,PSI,LAM

INTEGER M,N

T=(FLOAT(N-1))*EXP(2*THETA)*EXP((2*LAMBDA)/(FLOAT(N)))

LAM=T

DO 20 M=2,N-1

PSI=(FLOAT(N-M))/(FLOAT(M- 1))*EXP(THETA)

+ *EXP((2*LAMBDA*M)/N)

T=PSI*T

LAM=LAM+T

20 CONTINUE

LAAM2=LAM

RETURN

END
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PROGRAM CORR

C

C ================================== ---------=

C THE AIM OF THIS PROGRAM IS TO CALCULATE THE CORRELATION

C COEFFICIENT OF YI AND YI+1

C----- __============ , ...:;==;=============================

INTEGER N,I,J,K,L,M

PARAMETER (I=5,J=4,K=495,L=500,M=0,N=494)

REAL LAMBDA, THETA,FC,LAAM

THETA=-1.9521

LAMBDA=1.96

FC=(EXP(theta+lambda)*LAAM(J,THETA,LAMBDA)*

* LAAM(N,THETA,LAMBDA))*(LAAM(m,theta,lambda)

* -(LAAM(k,theta,lambda)*LAAM(I,THETA,LAMBDA)/

* LAAM(L,THETA,LAMBDA)))/(sqrt(LAAM(J,THETA,  LAMBDA)*

* LAAM(k,THETA,LAMBDA)*( 1-(EXP(THETA+LAMBDA)*

* LAAM(J,THETA,LAMBDA)*LAAM(K,THETA,LAMBDA))/

* LAAM(L,THETA,LAMBDA)))

* * sqrt(LAAM(I,theta,lambda)*LAAM(n,theta,lambda)

* *( l-(EXP(theta+lambda)*LAAM(I,theta,lambda)*

* LAAM(n,theta,lambda))/LAAM(L,THETA,LAMBDA))))

WRITE(*,*) TC—

WRITE(*,*) FC

END
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C

C===='===;,-======—----- 

c

FUNCTION LAAM(N,THETA,LAMBDA)

REAL THETA,LAMBDA,LaAM

REAL E,NR,NM,T,PSI,LAM

INTEGER M,N,R

T=FLOAT(N)*EXP(THETA)

LAM=T+1

DO 20 M=1,N-1

PSI=(FLOAT(N-M))/(FLOAT(M+1))*EXP(THETA)

* *EXP((2.0 *LAMBDA*M)/N)

T=PSI*T

LAM=LAM+T

20 CONTINUE

LaAM=LAM

RETURN

END
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PROGRAM INVERS

C

C---------

C THE AIM OF THIS PROGRAM IS TO FIND

C THE INVERS OF THE MATRIX

270

C

* .. Parameters..

INTEGER NIN, NOUT

PARAMETER (NIN=5,NOUT=6)

INTEGER NMAX, LDA, LWORK

PARAMETER (NMAX=8,LDA=NMAX,LWORK=64* *NMAX) 

* .. Local Scalars..

INTEGER I, IFAIL, INFO, J, N

* .. Local Arrays ..

DOUBLE PRECISION A(LDA,NMAX), WORK(LWORK)

INTEGER IPIV(NMAX)

* .. External Subroutines ..

EXTERNAL DGETRF, DGETRI, X04CAF

* .. Executable Statements ..

WRITE (NOUT,*) 'Program Results'

* Skip heading in data file

READ (NIN,*)

OPEN(5,FILE-RAB.DAT)

READ (NIN, 102) N

102 FORMAT(I4)



IF (N.LE.NMAX) THEN

" Read A from data file 

K

OPEN(3 3,FILE—MAT 1. DAT)

READ (33,103) ((A(I,J),J=1,N),I=1,N)

103 FORMAT(3D12.4) 

it

‘ Factorize A 

c

CALL DGETRF(N,N,A,LDA,IPrV,INFO)

WRITE (NOUT,*) 

IF (INFO.EQ.0) THEN

‘ Confute inverse of A

CALL DGETRI(N,A,LDA,IPIV,WORK,LWORK,INFO)

' Print inverse

IFAIL = 0

CALL X04CAF('General',' ',N,N,A,LDA,'Inverse',IFAIL) 

ELSE

WRITE (NOUT,*) 'The factor U is singular1
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END IF

END IF

STOP

END
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PROGRAM NORM1

C = ,—======—=======-===_=

C THE AIM OF THIS PROGRAM TO FIND THE INVERS

C OF THE NORMAL DISTRIBUTION FUNCTION

C ==========-------=====

INTEGER NOUT

PARAMETER (NOUT=6)

DOUBLE PRECISION X

INTEGER I, IF AIL

DOUBLE PRECISION P(8)

DOUBLE PRECISION GOICEF

EXTERNAL GOICEF

DATA P/0.001E0, 0.01E0, 0.1E0, 0.2E0, 0.8E0, 0.9E0,

* 0.99E0,0.999/

WRITE (NOUT,*) GOICEF EXAMPLE PROGRAM RESULTS'

WRITE (NOUT,*)

WRITE (NOUT,*) ' PROB. DEVIATE'

WRITE (NOUT,*)

DO 20 1=1, 8

IFAIL = 1

X = G01CEF(P(I),IFAIL)

IF(IFAIL.NE.O) THEN
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WRITE (NOUT,99999) P(I),* FAILED IN G01CEF. IFAIL =', 

* IFAIL

ELSE

WRITE (NOUT,99998) P(I), X

END IF

20 CONTINUE

STOP

99999 FORMAT (1X,F7.3,A,I2)

99998 FORMAT (1X,F7.3,F11.4)

END
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