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Abstract

This study investigates turbulence models for application to boundary layer flows. 

Firstly, steady channel flow and transient pipe flows are considered. Calculations of 

a low-Reynolds-number k-e model, a k-e-S model (a strain param eter model which 

has not been applied to unsteady flows previously) and a Reynolds Stress Transport 

model are compared with experimental and DNS data. The eddy viscosity turbu­

lence models (k-e, k-e-S) satisfactorily predict the mean flow parameters of steady 

channel flow. However the k-e-S model proves superior in comparison with turbu­

lence quantities. Near to the pipe wall, the k-e-S model best captures the details of 

periodic pipe flow detail, whereas in the outer flow region the RSTM gives closest 

agreement with the experimental data.

The high-Reynolds-number k-e and k-l eddy viscosity turbulence models are ex­

amined in a separate study of oscillatory flows over smooth and rough beds. The 

computations are considered over a wider range of experimental parameters than 

previously investigated. The turbulence models are assessed by comparison with 

field measurements and laboratory data sets including a new set of experimental 

measurements. Both models predict the bed shear stress and velocity adequately, 

but the k-e model emerges as the superior scheme when considering turbulence 

quantities. An attem pt is made to quantify the uncertainty in the Reynolds shear 

stress and eddy viscosity experimental data. The k-e model calculations more fre­

quently lie within the experimental uncertainty bands. However this uncertainty 

range is wide; any improvement would require a corresponding improvement in the 

experimental resolution of rough bed flows.
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Nomenclature

Roman symbols

a particle amplitude of freestream velocity

clr relaxation factor

Cf friction coefficient, Tb/~pU^

c-Ui Cfcj Cs convergence criterion for £/, k and S

dm  constant for parabolic mesh spacing

D  channel or pipe internal diameter

Dk height or diameter of roughness particle

/  frequency

f w wave friction factor

f i  Nyquist frequency

g acceleration due to gravity

h to ta l depth

k turbulent kinetic energy

K  number of vertical computational cells

ks roughness parameter

I length scale

p pressure

P  turbulence production

r, 9, z  cylindrical polar co-ordinates

n j  residual of k equation

R  channel or pipe internal radius
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Re Reynolds number

Reb Reynolds number based on bulk velocity, pUbD /p

S strain parameter

Si source term  in generic transport equation

S m maximum surface slope

t time

t total to ta l time

T period of oscillation

Tl large scale turbulent time scale

Ts small scale turbulent time scale

j , 'lift Cartesian tensor velocity components (fluctuating)

U{ 5 Uj, Ufa Cartesian tensor velocity components (ensemble-averaged)

U,  V , W Cartesian velocity components (fluctuating)

Ui, Uj, Uk Cartesian velocity components (ensemble-averaged)

U r , U g , uz cylindrical polar velocity in r, 6, £ directions (fluctuating)

UTi Ug, Uz cylindrical polar velocity components r, 0 , z  directions (ensemble-averaged)

Uo freestream velocity

u b bulk velocity

UM amplitude of velocity variation

UT friction velocity, rb/p

X i , X j  , Xk Cartesian tensor co-ordinates

x , y , z Cartesian co-ordinates

z normal distance from wall, R  — r

Greek symbols
5 boundary layer thickness

5ij Kronecker delta

e rate of dissipation of turbulent kinetic energy 

e modified dissipation variable

7  amplitude of bulk velocity oscillation as a fraction of time-averaged value
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p dynamic viscosity

CO angular frequency, 27r /

e phase

V kinematic viscosity, ji/p

V t eddy viscosity

K von K arm an’s constant

P density

a co-ordinate for computational mesh or standard deviation

a1 uniformly spaced mesh coordinate

turbulent P randtl number

n bed or wall shear stress

$ u phase of ensemble-averaged velocity

tfiuw phase of ensemble-averaged Reynolds shear stress

(j>T phase of wall shear stress

S u b scrip ts

radial, temporal and axial node reference

b bed or wall

c centreline

t turbulent

data experimental data

fit least-squares fit

min minimum value

max maximum value

poly polynomial fit

1  first node in computational mesh

1 (t) first turbulent node in staggered computational mesh

S u p e rsc r ip ts

fluctuating component
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— time-average

instantaneous value 

+ normalised by wall variables, (rw/p\ v) 

n time step

N otation
< >  ensemble-averaged

11 amplitude

‘capitals5 mean component

eye number of cycles of oscillation

in t  sampling interval

iz  number of vertical computational nodes

ntper number of numerical time steps

Additional term s in numerical models
A  flatness factor ( 1  -  |(A 2 -  As)) in RSTM

A 2,As  second and third invariants Oijajk<iki) in RSTM

ADj, A M j , A P j, AUj coefficients in discretised transport equations 

a,ij anisotropic Reynolds stress tensor, <  U{Uj > /k

Ci, c2 functions in pressure-strain term  of RSTM

ce, Cei, ce2, ce3 constants in dissipation equation

constant in constitutive equation for eddy viscosity 

cs constant in diffusion term of RSTM

D e term  relating e to e, e =  e +  _De

dij diffusion term in Reynolds stress equation of RSTM

€ij dissipation term  in Reynolds stress equation of RSTM

/i ,  f 2 functions in dissipation equation (in pressure-strain term  of

RSTM)

f e function in dissipation term of RSTM

fn function in constitutive equation for eddy viscosity

25



f s  function in constitutive equation for k-e-S model eddy

viscosity

vt turbulent kinematic viscosity

4>ij pressure-strain term  in Reynolds stress equation

Pij production term  in Reynolds stress equation

Ret turbulent Reynolds number, k2/ve

Vki&e, &s turbulent Prandtl number for diffusion of e, S

< UiUj > Reynolds stress
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Chapter 1

Introduction

The study of numerical modelling of turbulence in physical systems is of practical 

importance in many situations both in the natural world and in engineering systems. 

Turbulence models may be applied to calculate unsteady flows for which the mean 

and turbulence flow quantities alter with time. Unsteady turbulent systems may oc­

cur in many diverse situations, in tidal flows driving sediment transport, pollution 

dispersion, and around the legs of oil rigs, and also in engines of cars and aeroplanes 

and even in blood flow. Numerical modelling as an alternative to experimental stud­

ies is potentially less expensive in terms of equipment and also less time consuming. 

Turbulence modelling is also an alternative to direct numerical simulation (DNS), 

for which the complete Navier-Stokes equations (the equations th a t describe fluid 

flow) are solved numerically. At the present time DNS calculations are very expen­

sive and take a long time, and have been carried out only for relatively simple flows.

The main purpose of this study is the comparison, evaluation, and to some extent 

development of turbulence models. The motivation initially was from the work of 

Ismael (1993a) and Guy (2000), who both examined numerical modelling of peri­

odic pipe flow. A new turbulence model which had been not previously been applied 

to this type of flow was assessed in conjunction with two other numerical models, 

by comparison to DNS and experimental data. This led on to the work of Stansby 

(1997) studying oscillatory boundary layer flows (which are similar to unsteady pipe
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flows) for both smooth and rough beds. Although much work has been carried out 

for smooth bed flow there is relatively little on rough bed flows. A variety of rough 

beds are likely to be encountered in the natural world, for example a sand bed in an 

estuary or a covering of stones or pebbles may produce a relatively high level of bed 

roughness. In this study a wide range of rough flow types are examined, comparing 

the numerical calculations with the results of small and large-scale laboratory and 

field experiments.

A review of internal and external turbulent boundary layer flows is given below 

with particular reference to reciprocating flows, including previous experimental 

and computational work. All internal flows specified below (channel and pipe flow) 

are smooth wall cases. The external boundary layer flows include both smooth and 

rough bottom  surfaces.

R eview  of Previous Experim ental Work

A great deal of experimental work has been carried out for oscillatory pipe and 

boundary layer flows over smooth beds. Early detailed measurements of pulsating 

pipe flow were carried out by Mizushina et al (1973, 1975). Velocity and pressure 

gradient measurements were recorded and Reynolds shear stresses were deduced 

from a momentum balance for an average Reynolds number (Re) of 10000 and a 

range of periods of oscillation from 0.76 s to 7.9 s. The researchers identified a crit­

ical frequency below which the velocity and Reynolds stresses were found to behave 

in a quasi-steady manner.

Ramaprian and Tu (1983) and Tu and Ramaprian (1983) reported a detailed Laser 

Doppler Anemometer (LDA) experimental study of turbulent periodic pipe flow us­

ing a mean Re  of 50000 and two frequencies of oscillation, namely 0.5 Hz and 3.6 Hz. 

The study found th a t for the low frequency case the Reynolds stress response was 

akin to the phase-averaged velocity variation, whereas for the high frequency case 

the phase-averaged velocity variation was ‘frozen’. This breakdown in the structural
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equilibrium of the flow at high frequency was attributed to the effect of oscillation 

at the frequency of turbulence bursting.

Mao and H anratty (1986) reported experimental records of the time variation of 

the wall shear stress in a turbulent pulsating pipe flow, presenting the results with 

respect to the dimensionless frequency parameter, =  lqv/U 2. Finnicum and Han­

ratty  (1987) continued this research, recording measurements of wall shear stress in 

fully developed periodic pipe flow of frequencies ranging widely from 0.2 Hz to 

0.0912 Hz giving a range of values for the dimensionless frequency parameter u + 

from 0.0012 to 0.0912. The results demonstrate quasi-steady behaviour for values 

of w+ up to 0.004. The transitional band was found to be 0.004 <  u + <  0.0375, 

above which the turbulence no longer responds to the prescribed oscillation.

Lodahl et al (1998) recorded LDA measurements of velocity and hot wire bed shear 

stress measurements in a smooth circular pipe. The experimental set-up used was 

the same as th a t for Jensen et al, with additional circular pipes of varying diam­

eters inserted into the test section of the originally rectangular oscillating water 

tunnel. The main focus of the experimental work was combined current and oscil­

latory flow, although some preliminary examinations of solely oscillatory flow and 

solely current flow were carried out separately. In their investigation of the tran­

sition to turbulence, Lodahl et al found tha t the oscillatory flow was governed by 

two non-dimensional quantities, the Reynolds number Re  based upon the maximum 

freestream velocity and R /  (2v/uj)1/2 , the radius to Stokes layer thickness ratio. They 

also confirmed the findings of turbulence ‘bursting’ by Jensen et al (1989) th a t is 

the emergence of turbulence immediately preceding the reversal of flow in the wall 

shear stress.

Hino et al (1983) used hot-wire techniques and laser Doppler anemometry to mea­

sure smooth bed oscillatory boundary layer flow parameters using air as the working 

fluid.
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Brereton et al (1990) report LDA measurements of oscillatory boundary layer flow 

over a range of frequencies up to 2 Hz. The time-averaged profiles of velocity and 

Reynolds stress were found to be independent of the driving frequency.

There now follows a review of previous experiments for rough bed boundary lay­

ers. Jonsson and Carlsen (1976) examined two rough bed cases in an oscillating 

water tunnel (taking a /k s to be 124 and 28.4). A miniature propeller was used to 

measure the velocities of the flow. A variety of rough bed flows were studied by 

Sleath (1987) using LDAs to measure two components of the velocity within the 

range 0.74 < ks < 1112.

LDA techniques were also used by Sumer et al (1987) and Jensen et al (1989) to 

measure velocities and turbulence in high Reynolds number oscillatory boundary 

layer flows over both smooth and rough beds. Hot film probe measurements of the 

friction velocity in the smooth bed cases were also reported by Jensen et al

Lloyd et al (1997) conducted large-scale experiments at the UK Coastal Research 

Facility. The published study concentrates on flow around conical islands, but un­

published LDA measurements were also obtained for rough bed oscillatory flow with 

no island included. New experimental data acquired in the large-scale University 

of Manchester tidal flume investigates oscillatory flow over smooth and rough beds. 

LDAs were used to measure three components of velocity for relatively low-Reynolds- 

number flows.

Relatively few oscillatory flow field measurements have been reported. McLean 

(1983) used mechanical current meters to measure 30 tidal cycles of the velocity in 

the Jade estuary in Germany. Schroder (1987) used acoustic Doppler techniques to 

measure velocity for three tidal cycles of the Elbe estuary, also in Germany. The 

turbulence quantities were derived from a momentum balance.
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R eview  of Previous Com putational Work

DNS data sets are invaluable as alternative to experimental validatation of the nu­

merical turbulence models. The DNS of Kim et al (1987) further supplemented by 

Kim (1990) provides data for Re  of 180 and 395 where the Reynolds number is based 

on the centreline velocity and the channel half width.

Spalart and Baldwin (1989) provide direct numerical simulations of oscillatory flow 

over a smooth bed in the Reynolds number range 1.8 x 1 0 5 to 7.2 x 105. Justesen and 

Spalart (1990) supplemented this DNS data set with non-sinusoidal periodic flow 

calculations. Many numerical modellers have used this DNS data  set for validation 

purposes.

Many turbulence model studies have been undertaken for smooth periodic pipe and 

boundary layer flows. Blondeaux and Columbini (1985) compared the periodic pipe 

flow data of of Tu and Ramaprian (1983) with the calculations of Saffman’s (1970) 

k-Lj scheme. They found satisfactory agreement with the data.

Ismael (1993a) applied the two-equation Launder and Sharma (1974) k-e model to 

a range of experimental test cases of periodic pipe flow including Mizushina et al 

(1973, 1975), Tu and Ramaprian (1983) and Finnicum and H anratty (1987). Ismael 

stated tha t the data  did not cover an area close enough to the pipe wall to allow 

an assessment of the model in the near wall region. However the model was able to 

predict the velocity and Reynolds stresses satisfactorily, provided th a t flow reversal 

did not occur as it did in the high-frequency case of Mizushina et al

Patel et al (1985) give a review of two-equation turbulence model formulations ap­

plied to smooth wall boundary layer flows. The eight turbulence models assessed 

include the Launder and Sharma (1974), Chien (1982) k-e models and the Wilcox 

and Rubesin (1980) k-u  model. The ‘pseudo-vorticity’ w is proportional to e/k. 

Not all models yielded satisfactory results and the best agreement was given by the 

Launder-Sharma and the Wilcox-Rubesin schemes. Even so, Patel et al conclude
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tha t further refinement is necessary for these models to be applied to near wall flows 

with confidence.

Justesen and Spalart (1990) compared the DNS data set of Spalart and Baldwin 

(1989) and their own non-sinusoidal DNS data with the low-Reynolds-number mod­

els of Jones and Launder (1972) and Chien (1982). They found th a t the Jones and 

Launder model was in good agreement with the data and the Chien model was less 

accurate. Thais et al (1999) also applied the two-equation Chien model and found 

reasonable agreement against smooth bed data of Jensen et al (1989). Cotton et 

al (2000) employed the Launder and Sharma (1974) k-e model in comparison with 

the DNS data of Spalart and Baldwin (1989) and Justesen and Spalart (1990), and 

found agreement to be satisfactory although not exact.

A number of Reynolds Stress Transport models (RSTMs), more advanced than the 

two-equation formulations, have also been used to model periodic flows. Both k-e 

and Reynolds Stress Transport models were applied by Kebede et al (1985) to the 

reciprocating pipe flow data of Tu and Ramaprian (1983). Due to the greater com­

plexity of the second moment closure model and closer representation of the physical 

attributes of the flow, it might be expected tha t the RSTM would be the more suc­

cessful model. However, Kebede et al found the reverse. The researchers concluded 

th a t there was need for improvement in the e-equation, which among other things 

will improve calculation of the turbulence time and length scales, k /e  and &1-5 /e.

Cotton et al (2000) compared Shima’s (1989) variation of the Launder and Shima 

closure with the Spalart and Baldwin and the Justesen and Spalart DNS data cases. 

The RSTM gives improvement in the computation of the bed shear stress compared 

to the two-equation k-e model.

Rough bed oscillatory boundary layers are considered next. The one-equation k-l 

model was examined by Justesen (1991) against the experimental data of Sumer et 

al (1987) for a /k s =  720 and 3700. Reasonable agreement was found for the bed
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shear stress at both values of a /k s, and also for the phase-aver aged velocity profiles 

(although the details were not captured). In general the values of turbulent kinetic 

energy predicted by the k-l model were too high at a /k s = 720 and too low at 

a /k s = 3700. The k-l model did not predict the Reynolds shear stress accurately.

Justesen (1991) also compared the two-equation k-e model with the experimental 

data of Sumer et al (1987) and Jensen et al (1989). In direct comparison with the 

k-l model, the k-e formulation showed great improvement against the experimental 

data. The bed shear stress was again accurately predicted by the k-e model, and 

improvement was found in comparison with the k-l model in capturing the velocity 

profiles at a /k s — 3700. Again, prediction of the Reynolds shear stress is not wholly 

accurate. Although improvement is found compared to the k-l model at most phase 

positions, this is not true at all points in the cycle. Baum ert and Radach (1992) 

also applied the k-e model in comparison with the field data  of McLean (1983) and 

Schroder (1987). Although reasonable agreement was found against the velocity 

and Reynolds shear stress data, McLean’s data included a great deal of scatter. 

The k-e model performed well against Schroder’s velocity and turbulent kinetic en­

ergy data in the Elbe estuary. Stansby (1997) confirmed the findings of Baumert 

and Radach comparing the k-e model calculations with the field data of McLean 

and Schroder. Thais et al (1999) also compared Chien’s (1982) model and a high- 

Reynolds-number k-e model to the measurements of Sleath (1987) and Jensen et al 

(1989) over rough beds. Both models resolved the velocity data  well, but they were 

not so precise in their prediction of the turbulent kinetic energy data. In the tran­

sitional rough-to-smooth regimes of Sleath’s experimental cases, the Chien model 

displayed significant superiority over the high-Reynolds-number model. However 

this was not so pronounced when compared with the high-Reynolds-number exper­

imental tests of Sleath and Jensen et al

Hanjalic et al (1995) computed transitional and fully rough high-Reynolds-number 

flows using a modified form of the Launder and Sharma (1989) RSTM. Satisfactory
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agreement was found with the data of Jensen et al (1989) and the DNS of Spalart 

and Baldwin (1989), although discrepancies were found in comparison with the data 

of Hino et al (1983).

Harris (1997) compared both standard k-l and k-e models with Lamb’s analyti­

cal solution for laminar flow and with laboratory data (Jonsson and Carlsen, 1976 

and Jensen et al 1989) and for transitional rough turbulent flow at laboratory scale 

(Saveli 1986). A two-layer k-e model was found to give best agreement with the 

turbulent case. Results were also presented for random wave boundary layers. Lam 

and Bremhorst (1981) used a modified e equation in a low Reynolds number model 

while Tamaka and Sana (1994) also reviewed low Reynolds number models for os­

cillatory boundary layers and compared results with Jensen et al (1989) data for 

a smooth bed. Tanaka and Sana found tha t the Jones and Launder (1972) model 

gave the best results.

Vager and Karga (1969) examined k-l , k-e closures in tidal flows and found tha t by 

a suitable choice of I, it was possible to get almost as good results as k-e apparatus.

Sajjadi and Way well (1998) also compared numerical results to the field data of 

McLean (1983) and Schroder (1987). The k-l and k-e models were applied in con­

junction with two variants on the RSTM formulation. Good agreement against the 

field data was found for all models.

Brereton and Mankbadi (1995) give an extensive review of experimental and compu­

tational studies of these near-wall flows. Thais et al (1999) provide a comprehensive 

review of literature on rough bed oscillatory flows in the introduction to their paper.

Summary of the Present Study

In this study the types of flow are split into two categories:

•  Steady channel flow and unsteady pipe flow with smooth walls.
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• Shallow water oscillatory boundary layer flow over rough beds (this includes 

one smooth bed case).

The ‘steady’ flows refer to conditions for a flow variable th a t is constant in time, 

for example the imposed mass flow rate or the pressure gradient, as opposed to the 

‘unsteady’ regime in which the parameter varies in a prescribed manner. In regard 

to the channel and pipe flow three numerical formulations are assessed in compar­

ison with DNS and experimental data. The first is the low-Reynolds-number two- 

equation k-e model of Launder and Sharma (1974). The second is a three-equation 

model, termed the k-e-S model, developed by Cotton and Ismael (1998) based on 

the Launder and Sharma k-e formulation with a third transport equation dependent 

upon the ‘strain param eter’. The third numerical model applied to the channel and 

pipe flow cases is a second moment closure model based upon Launder and Shima’s 

(1989) Reynolds Stress Transport model and includes a modification developed by 

Shima (1989). For the shallow water oscillatory boundary layer flow over smooth 

and rough beds high-Reynolds-number formulations are necessary to overcome the 

difficulty of an uneven bottom surface. The one-equation high-Reynolds-number k-l 

model is assessed for this flow type in conjunction with a high-Reynolds-number k-e 

model. An introduction to turbulence model types and the details of the m athe­

matical formulation of all these numerical models are given in Chapter 2.

Relatively little code development was necessary in the course of this study, as the 

previous solution procedures were available. I modified both the channel and pipe 

flow code to include the numerical formulation of the k-epsilon-S  model and the 

oscillatory flow code to include the k-l model, and also to incorporate the procedures 

given in chapter 3. Also the oscillatory flow code was converted by the author from 

Salford Fortran 77 to Salford Fortran 90. Chapter 3 outlines the solution procedures 

applied to each flow type separately and the reader is also referred to the work of 

Ismael (1993a) and Guy (2000) in the first instance and Stansby (1997) in the sec­

ond for more detail. For the channel and pipe flow various methods of convergence
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are also compared and an investigation into the formulation of the turbulent kinetic 

energy near to the wall is examined. In the oscillatory flow case the input to the 

numerical code is also described and the refined computational grid is given in more 

detail. Sensitivity tests have also been included for validation purposes in both 

cases. These topics are also included in Chapter 3.

Chapter 4 contains the results of the initial study of steady channel and periodic 

pipe flow. The Launder and Sharma k-e model, Cotton and Ismael’s k-e-S model are 

first compared to the DNS channel flow data of Kim et al (1987) and Kim (1990). 

The periodic nature of the flow is then examined and this pipe flow study also in­

cludes the calculations of Shima’s RSTM. Comparisons with the experimental data 

of Finnicum and H anratty (1988) focus on the variation of the wall shear stress. For 

comparison with Tu and Ram aprian’s (1983) measurements the variation of wall 

shear stress, velocity, Reynolds shear stress, turbulence time scales, strain param­

eter and damping functions are examined. All models give satisfactory agreement 

with the data. The principal findings indicate tha t the k-e-S model is superior close 

to the wall, whilst the RSTM tends to be in best agreement with the data towards 

the centre of the channel and pipe.

The main results are included in Chapter 5, which covers the smooth and rough 

bed oscillatory boundary layer flows. In this chapter the high-Reynolds-number k-l 

and k-e models are applied to a wide range of experimental flow cases. The model 

results are initially compared to the field data of McLean (1983) in the Jade estuary 

and Schroder’s (1987) Elbe estuary measurements. Three cases of the Jensen et a ls 

(1989) data-set are studied, one smooth bed case and two rough bed cases. The mod­

els are also compared to data from the large scale experiments of Lloyd et al (1997) 

in the UK Coastal Research Facility and previously unpublished measurements from 

the University of Manchester Tidal Flume by Dr C. Chen and Dr. D. Chen, Dept, 

of Engineering. At high Reynolds numbers these rough bed boundary layer flows 

may be characterised by the dimensionless parameter a /k s and the experimental
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cases examined here give a wide range of this parameter from 8 6  to 3.6 x 106. Other 

relevant param eter for flows with large roughness particles are ks/h ,  which ranges 

from 0 . 0 0 0 1  to 0 . 1  for these cases, and also the range of the boundary layer thickness 

relative to the to tal depth, 0 . 2 2  <  5/h  <  13.5. (£ is the boundary layer thickness 

calculated as a function of particle amplitude upon roughness factor (equation 5.2) 

th a t would occur with infinite depth.) Where possible the variation of bed friction 

velocity is examined. The cyclic variation and profiles of the phase averaged velocity, 

the derived Reynolds shear stress and turbulent kinetic energy are also compared. 

The eddy viscosity is an im portant variable in the k-l and k-e models, and an at­

tem pt has been made to quantify the uncertainty in the derived experimental values 

for vt in order to evaluate the accuracy of the model calculation of this parameter. 

Overall the k-e model emerges as the superior scheme. Neither model accurately 

reproduces the data  values of the turbulence quantities in the outer boundary layer 

flow. The question is posed as to whether, without the provision of more accurate 

experimental data  for rough bed oscillatory flows, it is possible to reliably assess a 

more complex turbulence model.

The conclusions drawn from all the results are discussed in Chapter 6 .

A publication by the present author is also included on page 268. This sole-authored 

paper entitled:

k-l and k-e Modelling in Oscillatory Flow over Rough Beds

was one of 14 accepted in the John F. Kennedy student paper competition for the 

XXVIIIth biennial congress Hydraulic Engineering for Sustainable Water Manage­

ment at the Tarn of the Millennium of the International Association of Hydraulic 

Research (IAHR). The author presented the paper at the conference th a t took place 

on 22nd - 27th August 1999 in Graz, Austria.

It should be noted th a t the following manuscript:

An Assessment of k-e and k-l Turbulence Models for a Wide Range of
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Oscillatory Rough Bed Flows

by S. B. Letherman, M. A. Cotton, P. K. Stansby, C. Chen and D. Chen 

was subm itted for publication in March 2000 to the Journal of Hydroinformatics.



Chapter 2

Mathematical Formulation

2.1 G overning Equations

The Navier-Stokes equations th a t describe fluid motion are derived from the princi­

ples of continuity and Newton’s second law of motion. The details of this derivation 

are described in many textbooks, for example Schlichting (1979), and are therefore 

not presented here. A simplified form of the instantaneous Navier-Stokes equations 

can be used since the only fluids examined here are incompressible, isothermal, New­

tonian fluids, for which the stress is linearly related to strain rate. For turbulent 

flows with no body forces the instantaneous continuity and momentum equations 

are

The instantaneous quantities can be separated into mean and fluctuating compo­

nents given by

and thus statistical averages may be taken to form equations to  represent the tu r­

bulence motion.

For steady flow a time average of the flow quantity is taken over a large time. The

(2.1)

(2 .2)

Ui =  Ui +  Ui, p  =  p +  p ‘ (2.3)

39
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time average is denoted by an overbar and is defined for an instantaneous quantity 

such tha t

=  lim [  Qdt (2.4)
T-> oo Jq v '

For an unsteady flow, where the mean quantities change with time, the ensemble 

average, denoted by carat brackets, is applied. For a large or theoretically infinite 

number N  of flow realisations, the ensemble average of a quantity +  0 , where

<1* and (f) are the averaged and fluctuating components respectively, is given by

< * ( t ) > = ^ m  h  £ ;*,,(*) = $ (2.5)
71=1

where for the fluctuating component

<<p>= 0 , < $ $ > =  0  (2 .6 )

Thus the mean flow equations are derived by ensemble-averaging the instantaneous 

continuity and momentum equations, (2 .1 ) and (2 .2 ),

dUi , .
^  =  °- (2-7)

dUi Tr dUi 1 dp d (  dUi \
~ d t + u * W j ~  - p d ^  +  d ^ i ,' d ^ ~ <UiU* > )  ( }

These mean flow equations are in the same form as the instantaneous equations 

except for the additional turbulent diffusion term on the right hand side of the 

equation. The turbulence correlation <  UiUj >, known as the Reynolds stress, is 

unknown. Thus the problem of closure arises since there are now more unknowns 

than equations. This problem is tackled by the use of turbulence models.

Three types of fluid flow are studied here:

•  steady channel flow over smooth surfaces,

• unsteady periodic pipe flow over smooth surfaces, and

• oscillatory flow over smooth and rough beds.

All these types of flows are of the boundary layer or thin shear type, and thus the 

mean flow equations further simplify to the boundary layer equations given in the 

following section.
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2.2 Boundary Layer Equations

Thin shear or boundary layer flows have a predominant flow direction with no recir­

culation, for example flows in channels, pipes and over planes. The Navier-Stokes 

equations can be simplified for these flows. The following assumptions can be applied 

in boundary layer flow (Ferziger and Peric 1996):

•  In the main flow direction the diffusive transport term  in the momentum equa­

tion is much smaller than the convective term and can be neglected;

•  The velocity component in the principal flow direction is much larger than the 

components in the other directions and so the other velocity components may 

be neglected;

• The gradients in the direction perpendicular to the principal and cross stream 

flow directions are dominant and all other gradients can be neglected, with 

the sole exception of the pressure gradient. The pressure gradient in the prin­

cipal flow direction is dominant and pressure gradients across the flow can be 

neglected.

The mean flow equations are reduced to the streamwise momentum equation only. 

The momentum equation for boundary layer flow is

The only non-zero Reynolds stress is the Reynolds shear stress <  uw >.

2.2.1 C hannel and P ip e  F low  B oundary C ond itions

Only smooth walled channels and pipes are examined here. The no-slip condition is 

applied a t the wall and a symmetry condition at the centreline. Thus the streamwise

(2.9)

mean velocity is zero at the wall and the first velocity gradient is set to zero at the 

centreline

U — 0  at z  =  R (2 .10)
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=  0  at z  =  0  (2 .1 1 )
oz

where R  is the radius of the pipe or channel. The no-slip and impermeability

conditions apply to the Reynolds shear stress at the wall, and symmetry at the

centreline also applies:

< uw >=  0  at z  — 0 and z = R  (2 .1 2 )

2.2.2 O scillatory F low  B oundary C onditions

Boundary layer oscillatory flow is described by the momentum equation (2.9) above. 

Boundary conditions are required for areas outside the boundary layer at the upper 

boundary and at the bed.

Upper Boundary

The freestream velocity outside the boundary layer is independent of the distance 

from the bed and varies sinusoidally, such tha t

Uo(t) =  UMsm(ixjt) (2.13)

where Um  is the amplitude of the velocity variation Uq, and u  = 2ir/T  where T  is 

the period of oscillation of the flow. In this region outside the boundary layer where 

U =  Uq and the viscous term  reduces to zero, the momentum equation (2.9) reduces 

to the Euler equation

Bed Boundary

The bed boundary conditions on U depend upon whether the bed is rough or smooth. 

The bed region is taken to be

30 <  ^  < 100 (2.15)

where

z+ = ẑ ~  (2.16)
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and the friction velocity, UT is defined by the bed shear stress, rb such tha t

In the present study both smooth and rough bed oscillatory flows are examined. For 

a smooth bed the universal velocity-distribution law (Schlichting 1979) is applied in 

the following form,

For a rough bed standard wall functions are applied. The law-of-the-wall for fully 

rough turbulent boundary layers (Schlichting 1979) is used

where ks is the roughness parameter.

2.3 Closure: Turbulence m odels

2.3.1 In trodu ction  to  E ddy V iscosity  and R eyn old s Stress 

Transport M odels

The boundary layer equations are not a closed set of equations and thus cannot be 

solved exactly. The fluctuating velocity components are unknown and determination 

of these Reynolds stresses is the main concern of numerical modelling: ‘turbulence 

models’ are employed to compute the Reynolds stresses. Two general methods of 

closure are discussed in the following section, namely eddy viscosity models and 

Reynolds stress transport models.

(2.17)

U+ ~  2.5 I n +  5.5 (2.18)

(2.19)

In 1877 Boussinesq introduced the eddy viscosity concept to  model the Reynolds 

stresses (Rodi 1993). It assumes th a t the turbulent stresses are proportional to the 

mean velocity gradients. For general flows the eddy viscosity relation is given by
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vt is called the kinematic turbulent viscosity, or kinematic eddy viscosity. For bound­

ary layer flows equation (2 .2 0 ) reduces to

Turbulence models which use this concept are generally known as Eddy Viscosity 

Models (EVMs).

Stress Transport Models (RSTMs). These models do not use the Boussinesq eddy 

viscosity concept, but instead solve differential equations for the individual Reynolds 

stresses and the dissipation rate, e. Two-equation eddy viscosity models are poor 

at resolving regions of stagnation, separation and recirculation (Ferziger and Peric 

1996), and buoyancy effects are also treated approximately. RSTMs are more com­

plex and represent a higher level of closure than EVMs and are often referred to 

as ‘second-moment closures’. In contrast to EVMs, the differential equations of an 

RSTM give a delayed response to any change in the mean velocity gradient. This 

feature is of particular importance in the present study of unsteady pipe flows. The 

RSTM turbulent transport equations are derived from the instantaneous Navier- 

Stokes equations given by equation (2.2). The derivation is described in detail in 

Launder (1983). The exact Reynolds Stress Transport equations are stated below 

in equation (2.22) in which P.y represents the term for production of the Reynolds 

stress due to the mean flow strain, <j>y is the correlation between fluctuating pressure 

and fluctuating strain rate, represents the diffusion of the Reynolds stress, and 

€ij is the rate of destruction or dissipation.

dU
(2 .21)-  <  uw  > =  vt—  

oz

An alternative method of calculating the turbulent stresses is provided by Reynolds

d < UiUj >J

dt

(2 .22)
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- 2 «,/ dUi 9U>
'  \  dxk dxk

The RSTM of Launder and Shima (1989) was developed from the Gibson and Laun­

der (1987) model in order to extend the range of applicability of the model to include 

near-wall flow regions, by applying local equilibrium conditions a t the wall for tu r­

bulent stresses and energy dissipation rate. The new model was compared to data 

for flat plate boundary flows with zero, adverse, and strong pressure gradients and 

tuned so th a t the Reynolds stress profiles in the near wall sublayer were adequate. 

In 1989 Shima further optimised the model after comparing the model solutions 

with steady fully developed channel flow data. The 1989 Shima version is employed 

in this study.

The following sections detail the equations of five turbulence models studied here to 

calculate the flows stated below:

• High-Reynolds-Number k-l Model, (k-l), applied to oscillatory flow.

• High-Reynolds-Number k-e Model, (k-e), applied to oscillatory flow.

• Launder and Sharma k-e Model, (k-e), applied to steady channel flow and 

unsteady periodic pipe flow.

• Cotton and Ismael k-e-S Strain Parameter Model, (k-e-S), applied to steady 

channel flow and unsteady periodic pipe flow.

• Shima Reynolds Stress Transport Model, (RSTM), applied to unsteady peri­

odic pipe flow.

The high-Reynolds-number k-l and k-e models are applied to oscillatory flows over 

smooth and rough beds (i.e. rectangular geometries). The other three models are 

applied principally to pipe flows and their equations are given in cylindrical polar 

co-ordinates (although this includes a switch to reduce to equations for channel 

flow). The only RSTM is the Shima model; all the other models are based upon the 

Boussinesq eddy viscosity concept.
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2.3.2 H igh -R eynolds-N um b er k-l M odel

High-Reynolds-number eddy viscosity models are only applicable to flow regions 

distant from boundaries, and thus these models employ algebraic functions near 

to walls, commonly known as ‘wall functions’. Low-Reynolds-number EVMs, for 

example the Launder and Sharma k-e model, are applicable over the entire flow 

domain, the model equations being integrated up to solid boundaries. The k-l model 

includes a differential equation to solve for the turbulent kinetic energy A;, and e is 

supplied via an algebraic relation (using a prescribed length scale, I). The high- 

Reynolds-number k-l model is the simplest model employed in this study. The same 

k-l model has been previously applied by Justesen (1991) to oscillatory boundary 

layer flows over rough beds. The full equations of the k-l model for flow in the x-z  

plane are given below:

Standard values for the model constants are used are given in Table 1. The standard 

boundary conditions on velocity for smooth and rough beds are given in Section 

2.2.2. The first term  in the Adequation (2.25) is defined as production, P ,

(that is, turbulence production and dissipation are taken to be equal) and the un­

steady and diffusive terms are omitted from the equation, then it reduces to the 

following:

dU
(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

If the ‘local equilibrium’ assumption is applied to the ^-transport equation (2.25)

dU
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Combining the Boussinesq viscosity concept (2.23) with the constitutive equation

(2.24) gives the following expression for the Reynolds stress,

k2 dU-  < uw > = Cn —  (2.29)
€ OZ

Eliminating the Reynolds stress from equations (2.28) and (2.29) gives

(  — < uw  > \ 2 _
c„ = (  -  )  (2.30)

In a fully developed flow near to a wall, uniform stress is assumed and molecular 

viscosity can be neglected, thus

TTn dU
U2 = — < u w  > =  ut —  (2.31)

oz

P randtl’s mixing length approximation (estimating length scale I by k z )  is given by

9 9 dU
v t  =  k z 2—  (2.32)

Combining equations (2.31) and (2.32) gives

dU u r
7 T  =  —  2.33
O Z  K Z

and thus

v t  = U t k z  (2.34)

Applying the uniform stress assumption (2.31) in equation (2.30) gives the bed 

boundary condition for k,
U2

k = - ^ ~  (2.35)

At the surface the zero gradient condition applies

|  =  ° (2-36)

2.3.3 H igh -R eynolds-N um b er fc-e M od el

The high-Reynolds-number k-e model retains the ^-transport equation (2.25) of the 

k-l model. However instead of resorting to an algebraic relation, e is determined by
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solution of a transport equation. The k-e model is a two-equation eddy viscosity 

model. The high-Reynolds-number k-e model is described by equations (2.23), (2.24) 

and (2.25), in addition to the following e-transport equation:

,.2de _  e ( d U Y  d 
dt °elk V t \ d z )  dz

. vt \  de
V + 7 j t e °‘2 k

(2.37)

The boundary conditions given by equations (2.35) and (2.36) also apply here. The 

bed boundary condition on e is formed by rearrangement of the constitutive equation 

and substitution of above expressions for vt and k

e = u l
K Z

The zero gradient condition also applies at the surface, thus

t=»

(2.38)

(2.39)

2.3 .4  Launder and Sharm a k-e M odel

The Launder and Sharma (1974) k-e model is a ‘low-Reynolds-number’ eddy viscos­

ity model, and is thus applicable over the entire flow domain. EVMs of this type 

include additional functions and constants tha t are effective only near to a wall. The 

Launder and Sharma model is based upon the first low-Reynolds-number k-e model, 

the Jones and Launder model (1972). This model is widely used, often being applied 

as a benchmark against which to assess new models. For a full discussion and the 

complete Launder and Sharma model equations see Ismael (1993a) and Guy (2000). 

For brevity the equations are given here for spatially fully developed, axisymmetric, 

swirl-free pipe flows as follows:

dUz
— <  U r U z >  =  U f

dr

k2

f ^ R e t )  =  exp

Vt — C/if[t(Re-t) * e
-3 .4

dk
Y t =Vt

9U
dr

(1 + 0.02iJe,)2_

h l i r J i v +

R e ,=
k2
ve

vt \  dk
akJ dr

(e +  D e)

(2.40)

(2.41)

(2.42)

(2.43)
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e — e + D e where De = 2 u (  J (2.44)

de _  e (9U Z\ \  1 3 / , /  vt \  de' 
9 t Cclk V t[ dr  ) r’ dr r  V o j  dr

d2U, 2

C a h j  +  Cavvt \ ^ - j  (2.45)

/2  = 1.0 — 0.3 exp [—-Re,] (2-46)

For channel flow j  — 0, taking r to be equivalent to the vertical direction (normally 

z  in Cartesian co-ordinates) and j  =  1 for pipe flow. 2  is the distance measured 

from the pipe wall to the centreline, so 2  =  R  — r for a pipe radius R.

The boundary conditions for the turbulent kinetic energy, k and modified dissipation 

rate, e are given by,

k = e = 0  at r =  R]
dk de
_  =  _  = 0  at r  =  0 (2.47)
or or

The no-slip condition is applied to k at the wall, e is zero at the wall since Taylor

series expansions of k and e show th a t e has no zero order component near the wall.

Axial symmetry at the centreline implies tha t the first derivatives of k and e are 

zero.

2.3.5 k -e -S  Strain  P aram eter M odel

The k-e-S model is a three-equation eddy viscosity model. This model was developed 

by Cotton and Ismael in the mid-to-late 1990s and for a more detailed discussion 

and development of the model the reader is referred to Cotton and Ismael (1998). 

This model retains the k- and e-transport equations of the low-Reynolds-number 

k-e model with only slight changes to some of the coefficients. The main difference 

is the introduction of f s (S )  in the stress-strain relation, and the determination of 

the ‘strain param eter’ S  via an ^-transport equation. It should be noted tha t the
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differential equation for S  cannot be derived from the Navier-Stokes equations, but is 

based upon physical arguments related to Rapid Distortion Theory. The equations 

of the k-e-S model for spatially fully developed, axisymmetric, swirl-free pipe flows 

are given by:
dUz , A .

-  < uruz >=  (2.48)

(2.49)
e

f s (S)  =  ( l  -  0.55exp[—(0.135S + 0.0015S3)]) (2.50)

k2
ffj,{Ret) =  1 — 0.3exp[-0.02i2et]; Ret =  — (2.51)

z/e
9k f d U A 2 I S / , /  vt \ 9 k \  ,
at = V t [ w ) + ^  ( r (" + J  (e + Dt) (2'52)

f  dk 2 A 2
e =  e +  D e where D e =  2v I —— J (2.53)

de e (9U Z\ \  1 S /  , /  , vt \  9 i \
at = Ceir *  U r  + ^ Y r  V  V  + V J d - r )

I  92U,
- c a j  + ce3ui>t j  (2.54)

P S  k ( 9 U X  , 1  9 (  ,■ vt 9 S \  S
D t e \ d r  )  r id r  (  <?s dr J {k/e)  ̂ ^

As with the Launder and Sharma model, j  — 0 for channel flow and j  — 1 for pipe 

flow. The values of the model constants and the von Karman constant, re are given 

in Table 1. The ^-equation (2.52) is same as tha t of the Launder and Sharma model, 

equation (2.43). However the e-equation (2.54) is altered from the k-e version. cre 

is set to 1.21 instead of 1.3 in the k-e model, the function / 2 =  1 — 0.3exp(—Ref) 

is omitted and the coefficient ce3 is taken as 0.9, not 2.0. These model constants 

were optimised by comparison with DNS channel flow data and turbulent mixed 

convection data  in vertical pipes (Cotton and Ismael 1998). The modified form of.the 

dissipation rate, e is used throughout the model equations. The function equals 

1.0 when S  — c” 1. Viscous damping, introduced by the function f ^ R e t ) ,  is far more 

limited than for the k-e model, for example =  0.9 at Re* =  50,. corresponding to
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z+ ~  7 (Cotton and Ismael 1998). Under these equilibrium conditions (S  =  c"1; 

Ret oo), the expression for equation (2.49), resumes its high-Reynolds-number 

form:
k 2

vt =  (2.56)
£

The boundary conditions are given as

k = e =  S  = 0  at r — R
dk de OS . .
—  =  —  =  = 0  at r  — 0 (2.57)
a r  a r  a r

The boundary conditions for k and e are the same as those for the k-e model, for the 

same reasons. Analysis of equation (2.55) at the wall, with k ~  z 2 and e ~  z, gives 

th a t S  ~  z 2 and so the wall boundary condition S  = 0  is applied. At the centreline 

the zero gradient condition is applied to all variables, due to axial symmetry.

2.3.6 Shim a R eyn old s Stress Transport M od el

The Launder and Shima Reynolds stress transport model was based upon the Gibson 

and Launder model (Gibson and Launder 1987) and this model was extended so tha t 

it was also applicable to wall bounded flows. The model was optimised against data 

for flow over a flat plate and tuned so th a t the Reynolds stress profiles in the near 

wall sublayer were adequate. Shima introduced a slight variation in the model after 

comparing the results with steady fully developed channel flow data. It is the 1989 

Shima version th a t is implemented in this study. For a full equation set and a more 

detailed discussion see Shima (1989) and Guy (2000). Following the work of Guy 

the equations for the Shima Reynolds Stress Transport Model (RSTM) in cylindrical 

polar co-ordinates (r, 0, z) for spatially fully developed, axisymmetric and swirl-free 

pipe flow are as follows:
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d < u l >  1 d (  (  k 2 \  d < z t r >
-  (j)rr +  - 7 r \ r [ v - { - c s - < u ; > '

dt r dr V \ e r } dr

r z ( U + Cs>6 < > ) ( < “? > “ <  uo > )  ~ (2.59)

d < Uq > 1 d (  (  k 2 \  < ue >
- 0 T -  =  ^m +  r d r  V ( I/ +  C57 < u ' > ) d r ~

+  c‘ ~ < ue > )  (<  ur > -  < ue > ) -  5 1 (2.60)

d < ul > 1 d (  f  k 2 \  d < ul > \  2
=  Pzz +  <f>zz +  \ r \  v + ca- < u l > )  -----~ —  -  - t  (2.61)

dt  " ™ r dr  V V e )  dr J 3
d t  , . e l  d  f  f  k  2 \  e £  s c

dt =  (C£1 +  V’1 +  W  P  +  r ¥ r  ( r ( f  +  Ccl < U r > ) Y r ) -  ^  (2'62)
The RSTM production, pressure-strain, and modified dissipation terms are given by 

the following equations:

o dUz dUzPrz =  -  <  >  —- ;  Pzz =  - 2  < uruz > — ;
dr dr

P  = — < uruz > — -  (2.63)
dr

4*rz ^1 t d i ' z  1 C 2 P r z  ^  U r U z  Guj2C2P f w  (2.64)

(j)rr ~  ciearr +  ~c2P  — 2  — < ur >  T  Ao (2.65)

<^00 =  —C ie a ^  +  -C 2 P  +  <  u r  >  + ^ Ĉ 2 C2 P ^  f w  (2 .6 6 )

2  f t  2  \
&zz Cieo^  ̂ c2 (PZ2 3 ^ )  \ ŵ ~k ^  ^  Au (2.67)

e =  e - D £; D c =  2 u ( ^ j  (2.68)

The RSTM parameters and functions are as follows,

cs =  0.22; ce =  0.18; cel =  1.45; ce2 =  1.9 

ci =  1 +  2.58AA^25 ( l  -  exp[-(0.0067Pet)2]) ; c2 =  0.75A0 5 

C»1  =  - | c i  +  1.67; c W2 =  MAX f  ’ o) I =  (2’69)

i>t =  1.5A ( P  -  l )  ; V>2 =  0.35(1- 0 . 3 ^ 2 )exp[-(0.002iiei)0-5] (2.70)
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9
A =  1 — — (A 2 — A3 ); A2 =  Q%r +  ttQg +  Q̂ z +  2af,z 

o

A3 =  a%r +  cPqq +  a\z +  3aJJ8(orr -f a**) (2-71)

_  < uruz > _  < u f  > 2 _  < Uq > 2
o-rz — ^ ^ age — -  -

< ul > 2 A;2
— - —j R&t — (2.72)k 3 ve

z  is the distance measured from the pipe wall to the centreline, such th a t z  =  R  — r 

for a pipe radius R  . The boundary conditions on the normal stresses are given by:

<  ul > =  < > = < uz >  = 0  at r = R] (2.73)
d < ^ >  ^  d < ^ >  = d < v ^ >  =  0  a t r  =  0  

or or or

The no-slip and impermeability conditions apply to the normal stresses at the wall. 

The condition of axial symmetry applies at the centreline, hence the first radial 

derivatives are equal to zero. Note tha t the radial and tangential stresses are indis­

tinguishable at the centreline. The boundary conditions on the dissipation rate, e 

are
e =  2 v ( ? l f )  at r =  R-:

V 9r J (2.75)
fjf = 0 at r =  0

e is set to the zero order component of the Taylor series expansion near the wall for 

the wall boundary condition. Again, the axial symmetry condition is applied at the 

centreline.
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2.3 .7  Variant M odel C onstants in th e  k - l  and k -e  M odels

In this section the k-e and k-l models referred to are the high-Reynolds-number form 

of the models, detailed in Sections 2.3.2 and 2.3.3. The ‘standard’ and ‘variant’ val­

ues of (appearing in the k-e and k-l models) and cre (applicable to the k-e model 

only) are considered here. All other model constants are set to established standard 

values as shown in Table 1. Applying variant values of the model constants gives 

a ‘like-with-like’ comparison between the k-l and k-e models. Thus any differences 

found in the model results will be directly attributable to modelling the transport 

effects of the rate of dissipation e (k-e model) in comparison to an algebraic relation 

(k-l model), and not to the values of the model constants. The value of =  0.09 

applied in the k-e model approach is obtained from equation (2.30), since measure­

ment of shear layer flows yields — < uw > / k  & 0.3 (Rodi 1993). The value of 

— 0.08 applied in the k-l model is the outcome of computer optimisation (Rodi 

1993).

An expression may be obtained which relates all the values of the model constants. 

In a fully developed flow near to a wall uniform stress is assumed and molecular 

viscosity can be neglected. Assuming local equilibrium, and uniform stress near to a 

wall, and substituting the resulting expressions for dU /dz  (2.33), vt (2.34), k (2.35) 

and e (2.38) into the steady form of equation (2.37) leads to the following relation 

between the model constants

_ ^
c j 2 (ce2 -  ceX)

Substituting the standard values of c^, cei and ce2 in equation (2.76) and further 

taking k, — 0.4 yields <re =  1.11, the k-e model ‘variant’ value. In this case the 

standard value of 1.3 may be regarded as the outcome of an optimisation exercise 

(Jones and Launder 1972).

Tests comparing the standard and variant model constants have been performed on 

oscillatory flow cases, detailed in Chapter 5.7. The bed shear stress and velocity,
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turbulent kinetic energy, the rate of dissipation of kinetic energy and eddy viscosity 

profiles were examined to ascertain the effect of altering the model constants. The 

percentage difference in bed shear stress computed using the ‘standard’ and ‘variant’ 

forms of the k-l models was less than 0.05% in all cases. The percentage change 

for the k-e model was at most 2.1%. The sensitivity found in the case of the k-e 

model, where only the turbulent Prandtl number for the diffusion of e is altered, is 

perhaps in line with what might be expected. Tests on the k-l model, however, have 

revealed a surprising insensitivity to the value of cM, a constant tha t is central to 

the model formulation. The reason for this finding is believed to lie in the effective 

boundary condition on the turbulent viscosity at the bed-adjacent velocity control 

volume. Applying the boundary conditions (2.35) and (2.38) a t the bed-adjacent 

control volume (see Chapter 3 for details of the numerics) results in the following 

expressions for k and e,

U2 U3
km  ^  ~rj2 and em  =  ■— ~  (2-77)c j r  «*i(t)

Substituting these expressions into equation (2.24) for gives the classical mixing 

length result

€m

u? \ 2 ( Kzm \
,/  V u? )

= KUrZi(t) (2.78)

and hence vt adjacent to the bed is independent of c^. It was decided on the basis of 

these tests to use the ‘standard’ turbulence model constants in all the calculations, 

as shown in Table 1.
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2.4 Investigation  into k - e  M odel w ith  D am ping as

f ( P M

2.4.1 D evelopm en t o f D am ping Function , / (P /e )

In 1976 Rodi developed an algebraic relation to calculate the Reynolds stresses (Rodi 

1976). In this section an algebraic damping function is developed which is loosely 

based upon Rodi’s work. Rodi approximated the < UiUj > transport equation and 

assumed th a t the transport of <  muj > is proportional to the transport of k . After 

some working, the following algebraic stress relation is then obtained

where yt =  cM/(P /e )— (2.79)

thus cp/(P /e) =  |  ( l  -  c2)  / — 1p+ C \ e2 (2-80)
v (ci + 7  -  9

/ (P /e )  corresponds to Rodi’s (Rodi 1976). It can be clearly seen tha t the relation 

(2.79) is of the same general form as th a t of the k-e-S model from Section 2.3.5. The 

strain parameter S  in the k-e-S model becomes large near to the wall, before settling 

to lower values further away from the wall. In contrast P/e  does not become large 

near to the wall. A damping function f (P /e )  is outlined below, in addition to the 

Launder and Sharma k-e model. The function was first developed as an algebraic 

relation and then if necessary the function could be further developed to incorporate 

a differential equation which includes a dependence upon P /e .

Thus an eddy viscosity model of the following form was investigated,

k 2 S T L
-  < > =  cM/( P /e ) — ——  (2.81)

e ox 2

As with the Launder and Sharma k-e model and the k-e-S model, — 0.09 and k 

and e are calculated from transport equations. Initially the form of P /e  produced 

by the k-e and k-e-S models was considered. The production of P  is given by
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The Reynolds stress can be given by the following for the eddy viscosity models 

previously tested

< uw >— c ^ f — —  (2.84)
e dz

where /  =  f ^ (R e t) for the k-e model and /  =  f ^ R e ^ f s i S )  for the k-e-S model. 

Figure 1 plots /  against P/e  where the main region is distinguished from the near 

wall region. The damping function /(P /e )  attem pts to reproduce the shape of the 

curve in the main region only. Since the k-e-S model at Re  =  5600 for channel flow 

gives the smoothest curve (Figure 1(a)), the functions are fitted to this curve.

The plot of the region is a function of the form

f (P /e )  =  -— A r r r  (2-85)' 1 1 +  b(P/e)° v 1

where a, b and c are constants, and a is the value of / (P /e )  when P/e  — 0. A

variety of curve fits were compared to the original data (Figure 2). The function

considered closest to the original /  =  1.25/(1 +  0.7(P /e)7) is shown in Figure 2(a).

This function was used as the damping function / (P /e )  in the assessment of a new

k-e model.

The equations for the k-e-(P/e) model investigated in cylindrical polar co-ordinates 

are given below:
dU

-  < uruz > =  Vt - ? -  (2.86)
or

Vt =  c M R e t) f { P / e N  (2.87)e

f (P /e )  = ------ — — -
n  1 } 1 +  0.7(P /e)7

(2 .88)

k 2
fft(Ret) = 1.0 -  0.3 exp [-0 .02Pet] , R e t =  — (2.89)

ve

The k and e transport equations are the same as those for the Launder and Sharma 

model, equations (2.43), (2.44) and =  0.09. When this program was run the 

solution did not converge, nor indeed did it march in tim e to the first time step. 

Profiles of the damping function showed non-physical distributions, switching back 

and forth between two solutions. This behaviour is similar to th a t of the k-e-S
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model tested by Ismael (1991) where S  was an algebraic function. Ismael explained 

this behaviour in an internal note, Jan. 1991, showing the behaviour of the model 

when a small perturbation is introduced to the velocity profile of the new model. 

Ismael concluded tha t, in general, the condition which gives exponential decay of 

the perturbation is too stringent, hence leading to instability. The explanation for 

the instability of the present model is believed to be very similar.

2.4.2 E xpansion  to  k-e-II M odel

The next step is to expand the model to include a th ird transport equation, II 

equation, based upon the P/e  term. A possible method for this expansion is outlined 

in this section. The development of this model was not taken any further. Following 

the work of Cotton and Ismael (1994) and (1995), an ad hoc transport equation for 

the strain parameter was derived from arguments based upon Rapid Distortion 

Theory. This method of development (Cotton and Ismael 1995, appendix) can also 

be applied here.

Thus the equation may be re-cast as follows

dU P  , n  . .
I t  = ~k+  Diffusion -  J j l  (2.90)

Neglecting diffusion, the equation may be rearranged to give

dn n  P  . .
dt + k/e ~  ~k ( '

This equation may be solved for II, assuming the special case th a t P j k  and k/e  are 

constants. Thus

n  =  A e x p ( ~ * 7 i )  (2'92)

For t  =  0,

II =  —, thus A  =  — (2.93)
e e

Substituting (2.93) into (2.92) the Taylor series expansion of equation (2.92) for
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Summarising and rearranging

t —> oo,

k
e

n -»

n - >

p
€

P
1 -

k/e)_
P

~  J *

(2.95)

(2.96)



Chapter 3

Numerical Procedures

Two numerical procedures were adopted to solve the equation sets detailed in the 

previous chapter. The first code named ‘TRANSIT5 calculates spatially fully devel-. 

oped one-dimensional, unsteady pipe flows using an iterative procedure to march 

the solution forward in time. TRANSIT includes the Launder and Sharma k-e (Sec­

tion 2.3.4) and k-e-S (Section 2.3.5) models and the RSTM (Section 2.3.6) model 

and uses a finite volume /  finite difference scheme.

The second code, ‘SW1DV5 solves for one-dimensional, shallow water flows using a 

semi-implicit finite volume scheme. High-Reynolds-number k-e (Section 2.3.3) and 

k-l (Section 2.3.2) models are employed, with wall functions to accommodate both 

smooth and rough beds. In this study SW1DV is applied to purely reciprocating 

horizontal flows.

Relatively little work was carried out on numerical aspects of turbulence solution 

strategies in this study, and so the reader is referred to previous work for the full 

details of the numerical procedures, (Ismael 1993a, Cotton et al 1997, Guy 2000, 

Stansby 1997). Here an outline of the procedure is given and any changes or addi­

tions to the numerics by the author in this study are detailed in full. Two differing 

notations are used in the discretisation and solution procedures of ‘TRANSIT’ and 

‘SW1DV’. This is done in order to retain the same notation as previous authors.

60
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The only exception is tha t z  is used as the vertical co-ordinate in Section 3.1 instead

3.1 Channel and P ipe Flow

The numerical procedures for the equation sets in Chapter 2 applied to channel and 

pipe flows are detailed in Cotton (1987) and Guy (2000) and only a brief description 

is given here. The numerical code ‘CONVERT5 first developed by Cotton (1987) to 

calculate steady, spatially fully-developed pipe flows using the Launder and Sharma 

k-e model. The finite difference /  finite volume scheme of Leschziner (1982) was 

employed to solve for velocity, V, kinetic energy, k and its dissipation rate, e. The 

program was subsequently developed by Ismael (1993a) and renamed ‘TRANSIT5 

to calculate one-dimensional, spatially fully developed unsteady pipe flows and a 

/c-residual convergence test was included. Guy (2000) updated TRANSIT to incor­

porate the RSTM of Launder and Shima (1989), including the minor re-optimisation 

of Shima (1989). Guy also modified the program to include calculations for ramp- 

transient flows.

In the present study TRANSIT has been further developed by the author to include 

the k-e-S model of Cotton and Ismael (1998). Discretisation and solution procedures 

for the ^-equation in the k-e-S model are described in Section 3.1.1. The option for 

a ‘three-field5 test has also been added by the author to allow assessment of the con­

vergence of Uj k and S  for the k-e-S model (Section 3.1.2). Alternative treatments 

of k near the wall have also been included, given in Section 3.1.3. Sensitivity tests 

were carried out in the course of this study to ensure th a t the results are indepen­

dent of the numerical parameters are given in Section 3.1.4. The TRANSIT code 

was written in FORTRAN 77, and run on Hewlett Packard Apollo 700 workstations 

under UNIX.
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3.1.1 Solution  P rocedure

Discretised forms of the flow equations are obtained using Leschziner’s finite dif­

ference /  finite volume scheme. This involves formal integration over finite control 

volumes ensuring th a t the equations are conservative for each control volume. The 

integrals are then approximated as discretised forms on the corresponding compu­

tational grid. The equations for U, k, e and S  (or the RSTM equations) are then 

solved. These quantities are assumed to vary only in the radial direction and time.

Generic form of the EVM  equations

The discretisation of all the model equations above are detailed in Guy (2000), apart 

from the ^-equation due to the addition of the k-e-S model in TRANSIT by the 

author. The ^-equation involves a slight modification in the numerical treatm ent 

and thus the discretisation is outlined below. The S-equation takes the same generic 

form as the mean streamwise momentum equation and the k- and e-transport equa­

tions:

a ( p r $ ) -  5  (3.1)
dt dr \  dr /

where <3> is the dependent variable, T is the diffusion coefficient, and S§ is the

source/sink term. For the S'-transport equation <3?, T and S$ represent the following:

- *  *-£• s*=4(f)’- ( f )  m
The boundary conditions on S  and the other parameters (Uz , k and e) are the same 

as before and may be expressed in terms of <3>,

=  0 at r =  R  (3.3)
d $

=  0 at r  =  0 (3.4)
dr

Com putational grid

The finite volume /  finite difference discretisation method of Leschziner (1982) is 

applied. Before this can be done the computational grid and control volume no­

tation must be defined. On the radial grid distance from the centreline at the
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grid line is denoted by rj. Therefore the (z — l ) ^ 1 and the (z +  1 ) ^  gridlines de­

note the adjacent lines in the direction of the centreline and wall respectively. The 

distance between the (i — l ) ^ 1 and z ^  gridlines is given by (A r)i? and similarly 

the distance between the z ^  and (z 4 - l ) ^ 1 gridlines is given by (A r^+ i. Note that 

(Ar)i >  (Ar) i+i since the grid spacing increases towards the centreline.

The (j  — l ) ^ 1 and j ^  temporal grid nodes are represented by t j - 1 and tj which 

indicate the previous and present times. The difference between these times is de­

noted by (A t)j.

A  staggered grid is used for the RSTM model, where by the turbulence quantities 

are stored at ‘secondary’ gridlines bisecting the previously described ‘prim ary’ grid­

lines at which the mean velocity variable is stored. This staggered grid and the 

discretisation is described by Guy (2000), and since we are merely dealing with the 

S'-transport equation here, only the primary grid arrangement is discussed.

A brief description of the control volume arrangement follows. The z ^  primary 

control volume associated with the (z’) ^  primary radial grid line is bounded by the 

(r_); and (r+)i gridlines on the lower and upper faces respectively and the t j - 1  and 

tj  temporal faces. The wall and centreline control volume requires special treatment. 

For the S-equation this is the same treatm ent as for the other transport equations in 

an EVM and so the reader is referred to Guy (2000). For a prim ary control volume 

the radial cross sectional area (apart from a factor of 27r) is given by

r(r+)i
/ rdr =  r^(A r±)j (3.5)

where rl is the mean radius and (A r± )i is the radial dimension of the primary 

control volume defined by

D =  \ [ i r+)i +  (Ar±)< =  (r+)» -  (r_); (3.6)
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D iscretisation m ethod

The terms of the generic equations are integrated over each control volume. Leschziner 

(1982) applies the following rules to the resulting integral equations:

1. Quantities are uniform over temporal faces of control volumes.

2. Quantities at radial faces are evaluated by linear interpolation.

3. Quantities are constant and take present time value over radial faces of control

4. Sources are constant over control volumes and evaluated at the present-time

at nodes (i — 1, j) ,  (i, j ) ,  and ( i , j  — 1). This scheme was chosen in preference

to, for example, an explicit scheme because of the superior stability. For a general 

control volume each term  of equation (3.1) is integrated over the control volume 

from r_  to r + and t j ^ i  to tj. Discretised forms of the unsteady, diffusion and source

volumes.

grid node.

An implicit scheme is derived from the above assumptions which relates quantities

terms in equation (3.1) are obtained by integration and application of the above 

assumptions (l)-(4) to the resulting integrals:

(3.7)

(3.8)

ptj  rr+
j / rSdrdt  

J t j - i  Jr~

=  r i (A r± ) i (A t ) jS i j (3.9)
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The original equation (3.1) in discretised form now reads

~  *&i,j
(A r)^ !

f i

+ n ( A r ± ) i (At)j Sij
(Ar)i

This equation may be rewritten as

A P i , j * & i+ l , j  T A D i j & i j  T A M i j & i ^ i j  =  A U i ^ j ^ i j —i T 

where the coefficients are given by

APi j  = —•(r+ )i(A t)j(r+)j)j / ( A r ) ^ i

A M i j  =  - ( r_ ) i(A t)J-(r_ )i)i/(A r)i 

AUij  =  pn(Ar±) i  

A D i j  = AUij  — APij  — A M i}j

(3.10)

(3.11)

(3.12)Vi}j = n {A r± ) i{A t ) j

The corresponding generic equations for the control volume cases adjacent to the 

wall and at the centreline control volumes respectively are given by

A D ny_i Qny—i j  +  AMjiy—i^ 4?ny_2tj =  AUny—1ij 4?ny—i ,j—i T  Vny—i ,jS> ny—i ,j (3.13)

AP2,j<&3>j +  A D 2,j$2,j = AU2J$ 2 j - i  +  Vi,jS2,j (3.14)

Equations (3.11), (3.13) and (3.14) may be written in the form of a tri-diagonal

m atrix as follows 
/ A D ny - i tj A M ny- hj 

APny—2}j A D ny„ 2j A M ny — 2j

\

\

A P 3j A D 3j AM%j

AP2j AD 2j /

u  \®ny-1,3  

®ny-2}j

< c  ^

Cny- 2)j

V J

where the vector coefficients are given by

Q j  =  AUij<&ij-1 +  Vi jS ij

(3.15)

(3.16)
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Diagonal dominance in the 5-equation

The k and e transport equations in the k-e-S model use the above discretisation, 

however the treatm ent for the 5-equation differs, in th a t a technique to promote 

diagonal dominance is applied in order to increase the stability of the solution. For 

the 5-equation the source term in equation (3.16) is given by

2

C u  — A U i & i i - i  +
k dU7.

dr
Se
k

(3.17)

A non-standard implicit source term  treatm ent is implemented for the 5-equation. 

This involves including the negative part of the source term  into A D itj , thus

A D itj =  A D i}j +  p - r i ( A r± ) i ( A t ) j (3.18)

Hence the source term  is now given by

k f  dUz
dr ~  P

Se

+P U A  n (A r± ) i (A t ) .

r{(Ar±)i(At).

c
k ( dUv

dr
r i(Ar±)i (A t) . (3.19)

The solution is then marched in time from known initial conditions. An iterative 

procedure is required to obtain a converged solution within specified criteria at each 

time step. An under relaxation technique, originally applied by Cotton (1987), is 

adopted to  ensure stability. A field convergence or fc-residual test assesses whether 

a solution is converged. The 2-D channel flow equations are also discretised in Guy 

(2000).

3.1.2 C onvergence Tests

Three tests have been investigated to assess whether a converged solution has been 

obtained:

• Two-field convergence test: based on U and k fields
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•  Three-field convergence test: based on U, k and S  fields

• k residuals

For all three tests, if convergence is not attained within a certain number of iter­

ations, namely 100, then it is considered to be unattainable. The test is applied 

immediately after solving the discretised equations, for the second and subsequent 

iterations.

Field Convergence Test

Cotton (1987) originally formulated this test. For any field, 0, the solution is con­

sidered to have converged if the following inequality is satisfied,

A tih  <  c<ji (3.20)
k yj

where the subscript i represents the field number (£ =  2 to 100), k the iteration 

number, and c<j> the convergence criterion.

For the k-e model, the field convergence test was applied to  the U and k fields, since 

they have large gradients. The test is considered to be stringent, as the solution 

might not be expected to converge on account of these steep gradients. Note tha t 

the stringency of the convergence test is eventually dependent on the tolerance of the 

convergence criterion (and also the value of the under-relaxation factor). Standard 

values for the convergence criterion, c$ are given as:

cv  =  10"4 (3.21)

c,t =  1(T3 (3.22)

The two-field convergence test on the U and k fields was also applied to the k-e-

S  model and proved adequate. Even so, it was thought appropriate, due to the

very large gradients near the wall, tha t the 5-field should also be included in the 

convergence test. This test was added to TRANSIT by the present author. The
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test follows the same form as in equation (3.20), and the convergence criterion used 

is as follows

Cg =  1(T4 (3.23)

The extra test on the »9-field in fact proved unnecessary as it gave essentially the

same results as the original test. Additionally, this test increased the computational 

effort. An indication of computational effort required is given by the number of 

times th a t the tri-diagonal set is solved for a given problem.

k Residuals

The k residual convergence test was applied by Ismael (1993a). The Adequation was 

chosen due to the large changes in the Adfield, as mentioned in Section 3.1.2, thus 

providing a stringent test. The residual, n j  of the A:-equation is defined as:

tij =  APjkij+i -f- ADjkij  +  AMjki j^ i  — AUjki—ij — VjSij (3.24)

Thus the residual is the imbalance in a ‘re-constructed5 discretised Adequation fol­

lowing solution for k at time level i. Equation (3.24) may be rewritten to show the 

contribution of the unsteady, production, diffusion and dissipation processes.

Tij =  — AUij(kij — h j^ i )  unsteady

+  Vij (fijij (dUz / drj  .. production

— APij(ki+ij — kij) +  AMij(kij  — ki-ij)  diffusion

~  VijPeij dissipation

The test requires th a t the ratio of the residual to the maximum of unsteady, pro­

duction, diffusion, or dissipation processes is less then a specific value, denoted by 

Cjt . Thus convergence is attained if the following inequality is satisfied:

| residual |
max(| unsteady|,| production|,| diffusion|, | dissipation|) 

where c* — 10-3 .

<  ck ( 3 .26)

This test will be used from this point onwards.
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3.1.3 T reatm ent o f th e  k  E quation N ear th e  W all

Consider the following term  in the dissipation equation (2.44)

(3.27)

This term becomes infinite at a solid boundary, since e is finite but k is zero. The

given by equation (2.44) with the boundary condition e =  0 a t the wall.

e is the subject of the second transport equation, see Section 2.3.4. In the /c-equation, 

however, e is to be recovered and is now written as e +  D e. Previous experience 

(Cotton 1987) has shown tha t the use of D e as given by equation (2.44) may cause 

convergence difficulties in near-wall regions. This problem has been investigated by 

applying several different methods near to the wall. These are described below.

‘Sw itch’ M ethod

This method has been applied in turbulence modelling in recent years, and was used 

by Cotton (1987), Cotton and Jackson (1990) and Ismael (1993a). The following 

relation is used instead of equation (2.44), up to a specified distance from the wall,

The accuracy of this relation can be justified by comparing the original (2.44) and 

modified (3.28) forms of De. First expand k as follows:

problem can be resolved by the replacement of e by a new dissipation variable e,

e =  e 4---- — for z + < z t
z 2

(3.28)

k =  A z 2 +  B z 3 +  . . . (3.29)

where A and B are constants. This can be rearranged to give

( 3 .30)

Substituting the first term  into this expanded form
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and for the second term

. 1  . i /  I B
k 2 =  A * z \ l  + - —z +

dk*  i B
=  A z P —t z P . . .

dz A

(  dk  2 \  2
2v ( —— j =  2v(A +  2Bz  -f-. . . )

=  2i/A +  4za£?2 +  . . .  (3.32)

Thus, these terms agree to first order accuracy. Two different values of were

investigated, 1.5 and 2.0.

This method is not favoured as it incorporates a step change or ‘switch’ in the 

turbulence model formulation. The following methods retain the original form of 

the k-e model and change the numerical discretisation near the wall.

Quadratic Approxim ation

This method was developed by Ismael (1993b and c). Instead of the normal linear 

approximation, it uses a quadratic approximation to  the derivative in the discretisa­

tion of the k transport equation at the near-wall control volume. Following Ismael, 

consider a variable 0. The quadratic through the three points (0n, 0 n), (0n_i, 0 n-i) ,  

and (0n-2> Vto-2 ) is given by the Lagrange polynomial formula

j, _  ^
r / I I \ ( I I \ fin

(0ra 0ti—l)(07i 0ti—2 )
( 0 - 0 n ) ( 0 - 0 n - 2 )  ,

( 0 n - l  ~  1 ~  0 t x - 2 ) n _ 1

+  -r,--------- r-rr,--------- 2 (3.33)
("071—2 0 n ) ( 0 n —2 Y n — l )

Differentiating w.r.t. 0 , evaluating at 0  =  0 n, and using the following notation,

0 ti =  1

/S . ip n  ~  ip n  — i p n—i =  1 ip n —i

^ 0 7 1 —1 =  0 7 1 —1 0 7 1 —2 (3.34)
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The required formula is then obtained,

( =  A ^  +  ( l - ^ ra_2)

\ ^ 7  ^ = 1  A W  1 “  ^ - 2 )
(1 -  ^ w_2)
A ^ n A ^n -l n_1

+  /-i _  1 (3.35)
(1 Yn—2 ) A Wn— 1

1

This discretisation is applied to the ( ^ - ) 2 term  in the k transport equation only.

As shown above, the two forms of D e are identical if k varies quadratically near 

the wall. Since this method works for the special form of D e near the wall, it 

should also be possible to obtain a converged solution using the original form of 

D e all the way to the wall. This was found to be true. However, some convergence 

difficulties were experienced dependent upon the method of convergence testing. The 

quadratic approximation method failed when using the ^-residual convergence test. 

Convergence problems were found sometimes when using the three-field convergence 

test. This method worked consistently in conjunction with the two-field convergence 

test.

‘Staggered’ Interpolation

This method also uses the original form of D e all the way to the wall. It is a simple 

method to form k in the term v ■ First k is interpolated to the control

volume faces, as shown in Figure 3. k^ is calculated, and linear interpolation then 

is used to form

Discussion

All results were produced using the unsteady flow code TRANSIT which incorpo­

rates several turbulence models applied to pipe and channel flow, w ritten in FOR­

TRAN 77, and run on the HP700 workstations in the School of Engineering, Manch­

ester University.
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Coding for the three-field convergence method, and for the quadratic approximation 

and staggered interpolation was added by the author to TRANSIT. Options for a 

particular convergence method and for a treatm ent of the k equation near the wall 

were also added to enable the user to choose a particular method.

Tables 2-5 give the values of the friction coefficient for each method for the k-e and 

k-e-S models for channel flow at Reynolds numbers 5600 and 13750. The percentage 

change in comparison with the results of Blundell and Cotton (1995) is recorded. 

(Blundell and Cotton used the two-field convergence test and the quadratic approx­

imation.) The tables also give the number of calls to the m atrix solution subroutine 

(described by the heading ‘SOLVE’) to give a measure of the computational effort 

required for each run.

Tables 6 and 7 give the same friction coefficient results as Table 3 for the k-e-S model 

for channel flow with Re  =  5600. However the results are compared with those pro­

duced by the program ‘SMOD.F’ written in FORTRAN by Cotton (1997b). In 

Table 6 the results are compared to those of Cotton when the switch at z+ = 2.0 

was applied near the wall. Table 7 compares the results to those of Cotton when he 

applied the staggered discretisation. Cotton used the three field convergence test 

for both runs.

The percentage error is calculated using the friction coefficient as follows

%change = C/t8at ~ ĉ tandard x 100 (3.36)
^/standard

to the nearest 0.1%. The percentage change indicates whether the solution is accu­

rate, and the difference between the various methods. The results indicated by on 

Tables 2-7 represent a direct comparison with the results of Blundell and Cotton, 

tha t is the convergence test used and treatm ent of k near the wall are the same 

as those used for the TRANSIT solution. ‘— ’ indicates th a t the solution does not 

converge.

The program fails when the quadratic discretisation is used in conjunction with the
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k residuals convergence test. If the convergence criterion is changed, so tha t it is 

10 times the normal value, then the program does not fail, but clearly accuracy is 

sacrificed.

The program also fails for the k-e-S model with Re = 5600 using the quadratic 

discretisation and the three-field convergence test. This could be due to the large 

gradients in the S  field near the wall.

The results at the higher Reynolds number give a better indication of the accuracy 

of the various methods, since Re  =  5600 is very low for engineering flows. The 

switch method does seem more efficient in terms of computational effort, but this 

involves a change in the turbulence model near the wall. The other methods tha t 

change only numerically are preferable. The staggered discretization method is more 

reliable than the quadratic interpolation and uses less computational effort.

Comparison with an alternative set of results produced by Cotton, (Table 6 and 

7) confirmed the accuracy of the program, and in fact the percentage change was 

slightly smaller than tha t reported by Blundell and Cotton (Table 3).

Developm ent of Standard Procedures

The methods which will be taken as standard for all further work are the ‘staggered’ 

discretisation, in conjunction with the k residual convergence test. The option to 

use the other methods has been retained in the code.

3.1 .4  S en sitiv ity  T ests

Sensitivity tests are carried out in order to show the extent to which the results from 

the k-e and k-e-S models are independent of the arbitrary numerical parameters used 

to obtain a solution. As in Section 3.1.3, the tests were applied to both models for 

channel flow at Reynolds numbers 5600 and 13750 (Kim et al 1987, Kim 1990). 

Similarly, the tests are assessed by considering the value of the friction coefficient,
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Cf determined by the convergence criterion, Firstly, it is necessary to check tha t 

a converged solution is obtained. A solution is considered converged when the value 

of the Cf becomes constant. For periodic flow, similar cycles in a graph of Cf must 

be attained.

The solution must also be independent of the approximate initial conditions.

Then tests are applied to the numerical parameters, namely,

1. Number of radial grid nodes, iz

2. Position of the near-wall node, zfz_r

3. Initial time step, (At)o

4. Relaxation factor, ar

5. Convergence criterion,

6. Total duration, ttotai

These tests are to investigate whether the standard values used for these numerical 

parameters are adequate. More stringent and lenient tests are applied to see whether 

the results obtained with the standard procedures are accurate, and to assess the 

computational effort in each case. The accuracy of each test is determined by the 

error of Cf which is given by the percentage change with respect to the standard 

value of c/, see equation (3.36). If the error is within ±1%  then the standard value 

is considered adequate, as the error is negligible compared to the errors produced 

by the simplifications in the turbulence models.

Tables 8-13 give the results of these tests. The values of the tested parameter, 

the friction coefficient, the percentage change compared to the standard, and the 

number of times the m atrix equations are solved are given.
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Discussion

For each of the numerical parameters tested, similar results were obtained for the 

low-Reynolds-number k-e and k-e-S turbulence models a t a given Reynolds num­

ber. The values of Cf obtained from the sensitivity tests were in general within the 

required ±1% of the standard value. Altering the values of the initial time step, 

relaxation factor, convergence criterion and total duration had no significant effect 

on the Cf value. The position of the near wall node does have a slight effect on 

the solution but this was within the acceptable error limit. Halving the number 

of radial grid nodes gave unacceptable errors, particularly for the k-e model which 

gave 1.71% error for Re = 5600 and 1.88% error for Re = 13750. The k-e-S model 

produced slightly more acceptable discrepancies at 0.96% and 1.19% respectively. 

Doubling the number of radial grid nodes gives satisfactory results. Since increas­

ing the stringency of the test reduces the discrepancy, it can be concluded th a t the 

standard values give adequate results.

The last column in each table, ‘SOLVE’ shows the number of times the m atrix equa­

tions are solved in order to obtain a converged solution. This gives an indication 

of the computational effort required for each case. The general trend is tha t for a 

more stringent test the computational effort increases, and vice versa.

3.2 Shallow W ater 1-D O scillatory Flow

The 1-D numerical code applied to oscillatory flows over smooth and rough beds is a 

version of the 3-D numerical procedure described by Stansby (1997). k-e and k-l tu r­

bulence models given in Sections 2.3.2 and 2.3.3, are employed with wall functions. 

An implicit time-stepping scheme is used. The mesh spacing varies parabolically 

in the vertical direction to give fine resolution near the bed in order to resolve the 

large gradients of velocity, kinetic energy and dissipation. The computational mesh 

is described by a (j-coordinate scheme. The equations are solved by a conservative
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finite volume scheme in which the nodes for velocity and the turbulence quantities 

are staggered in the vertical direction. Two versions of the 1-D code are applied 

here, mainly due to differing input conditions. These are described in Section 3.2.1. 

The parabolic mesh generation is given in Section 3.2.2. The discretisation and 

solution procedure is described in Section 3.2.3 with particular attention paid to 

the differences between the two versions of SW1DV. The sensitivity to numerical 

parameters is detailed in Section 3.2.4. The SW1DV code was written in Salford 

FORTRAN 77 by Prof P. K. Stansby and converted to Salford FORTRAN 90 by 

the author in the present study to run on a PC with a Pentium II processor under 

Windows 95/98/NT.

3.2.1 Input Param eters

Two versions of the 1-D code are used in this study. The input parameter for the 

solution of the momentum equation is the main distinguishing factor between the 

versions. The first version uses the driving pressure gradient as the input quantity, 

and in the second version the volumetric flow rate, or bulk velocity, is the controlling 

parameter.

The choice of version is dependent upon the controlling variable in each experimental 

case to which the numerical results are compared. In those cases for which maxi­

mum surface slope, S m  is given, usually in field experiments, the driving horizontal 

pressure gradient, dp/dx  may be obtained as a function of time given by

1 dp _ /27Tt \
- p f e  =  sSMC0S( i r )  (3-37)

In those cases for which the freestream velocity, Uq is the controlling variable, the 

driving pressure gradient is then derived from the inviscid Euler equation, given by

dU0 _  1 dp
~  —p d i  (3'38)

These two cases are referred to as the ‘pressure gradient’ version of SW1DV. However 

in large scale laboratory experiments the bulk velocity generally is the controlling
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variable. In these cases the ‘bulk velocity’, Ub version of the code SW1DV is used, 

and an additional equation describing the volumetric flow rate as a function of time 

is used

Ub(t) = \ [  Udz (3.39)
fb J0

3.2 .2  M esh  G eneration

Following Stansby (1997) the numerical grid varies parabolically to give a fine mesh 

near the bed and near the surface. This is to ensure th a t large gradients of velocity 

and the turbulence quantities occurring in these regions will be solved accurately. 

A a  co-ordinate is introduced to ensure tha t the mesh fits the bed and surface with 

surface elevation

„  =  (3.40)

This is illustrated in Figure 4. Surface elevation is not used in this study and in fact 

7] = h. The following parabolic transformation is applied to compress the a  mesh 

near to the bed and surface symmetrically about the mid-depth:

y T h =  6(ffmesh +  a) (1 -  <7mesh +  a) (3.41)
^mesh

where 0 <  crmesh < 1 defines the a  mesh, a = <rmesh — 1 and 0 <  (T'mes]l <  1 is a

uniformly spaced mesh, a and 6 are algebraically related constants (a «  1). The

constants are defined by the following method. Inverting and rearranging equation 

(3.41) gives

^Tnesh ___ ___ 1
dcTmegh 6(1 T 2d)

and then integrating by <rmesh

‘7mesh =  6(1 +  2a )In ( l - ^ e e b + J  +  C  (3'43)

To evaluate 6 and C , substitute =  0 when a meBh =  0 into equation (3.43), thus

i  i }-------------------------
(^m esh T  a )  (1  C^mesh T  d )

(3.42)
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Substituting equation (3.44) into equation (3.43) gives

( ° in esh  T  d \  (  1 -|- tt
^mesh ^  +  2a) In -V d J \1  ^mesh T  a /  . 

Then taking <rmesh =  1 when <rmesh =  1 gives

(3.45)

6 =  -— l n f n - —̂  (3.46)
1 +  2d V d j

These constants and the number of vertical grid nodes determine the degree of 

compression.

Applying d < <  1 and at the bed <7mesh =  5a «  1 to equation (3.45) gives,

S a ‘  =
6(1 +  2d) \  a J

1 5a
6(1 +  2d) d

Applying the above assumptions at the bed to equation (3.46) gives

(3.47)

6 " " T T 2 S l na  (3'48)

Substituting equation (3.48) into (3.47)

5cr ~  ^  (3.49)
2a In a

Since 5a — 1 /K ,  at the bed and surface:

5z - 2 a  In a
t  — r ~  (3-50)

where K  is the number of vertical cells.

3.2 .3  D iscretisa tion  and Solution  P roced ure

In this section the numerical discretisation on the conventional staggered mesh sys­

tem is described. There are two solution procedures for velocity, dependent upon 

the input of either pressure gradient or bulk velocity. The discretisation and solu­

tion procedure for the U, k and e parameters is described for the ‘pressure gradient’
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version. The differences in the solution procedure for U between the ‘pressure gra-

parameters the solution procedures are exactly the same in both versions. The con­

ventional staggered mesh system is used. The cells are numbered centrally k where 

k =  1 , . . . ,  K y with k = 1 for the bed cell and k ~  K  for the surface cell. This is 

illustrated in Figure 5.

For homogeneous flows the momentum equation (2.8) takes the discretised form 

with the following equation

where n  denotes time level, 6t is time step, 6a1 =  1 / K  , the subscript E  has been 

omitted from v& to simplify the notation, and S m  is the maximum surface slope 

effectively defining the driving pressure gradient. Note cri corresponds to the bed 

and crK+i to the surface in this notation.

The tri-diagonal m atrix with m atrix elements am)m and right hand side term  bm 

(with m  =  1 , . . . ,  K )  is defined by for k =  1,

dient’ version and the ‘bulk velocity’ version are also explained. For the k and e

UJt+1 =  +  St g S mcos^ / T )

+  8t-

(3.51)

;,n da' da1 
l |  da l |  da 1

(h 5ar)2

Ul,2 =  —8t
7,n da' da' 

l |  da l i  da 1
(h 3a1)2

(3.52)

6i =  C/J1 +  5tgSM cos(2 irt/T) ( 3 . 53)

for k =  2 , . . . ,  K  -  1

i — 3t
y-n da' da' 
k— |  da k— |  da k

(h5af)2
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da' da da' da '

ak,k — 1 fit
da  k + ^  da k da k —~ da  k

(hfia'y
+  St-

(hfi&y

— fit'
jTl da' da' 
f c + |  da  f c + i  da k

(h5a')2

h  = U k +  fitgSM cos(2nt/T)

(3.54)

(3.55)

and for k — K ,

a>K,K- i  =  ~ f i t -

un da' da'
i f —tt da K —k da K

(hSa'y

. .n  da' da'
_  -I I r / K - i  d *  K - $  d *  K

a^ < ~ 1 + 6t— ( h s ? F —

bi( — Uf{ +  f i tgSu  cos(27rf/T)

(3.56)

(3.57)

Equations (3.52)~(3.57) may be written in the form of a tri-diagonal matrix as fol­

lows:

/
a l , l  a l ,2

a 2 ,l  <^2,2 &2,3

\ /
u r 1

u%+1

\  t  h ^01

u *+ 1 1

!> n-i

b,

(3.58)

V °K /

K-l,IC-2 0,K-lfK - l  ai<-l,K 

\  a>K,K-1 J

ve at time level n  was used above to advance U to time level n - 1-1 and k and e are 

then advanced to time level n  +  1.

For the ‘bulk velocity’ version the pressure gradient is unknown. The bulk velocity 

is defined by equation (3.39). Here this is given by

I<
(3.59)

Since the bulk velocity is known, equation (3.59) is used so th a t now the num­

ber of unknowns and equations are equal and thus we can solve for U . A full
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(K  +  1) x (Ff +  1) m atrix is applied to solve for U . 0 1 ,1 . . .  clk,k  are given by equa­

tions (3.52), (3.54) and (3.56) as above. The right hand side term  is now given 

by

bk = U£ for k = l , . . . , K  (3.60)

The value for bulk velocity at time n  is added to the end of the vector, thus

*K +1
rn + i
1b (3.61)

The driving pressure gradient, dp/dx  =  pgSM cos(27r£/T) is added to the end of the 

Un + 1 vector. The pressure gradient term  in equation (3.51) and the bulk velocity 

term  in equation (3.59) are added to the matrix via vectors dm and em as follows:

dj* — /i St S<jk 

, 5a

(3.62)

ei

eK

6 a 

5 a 

5 a

5a' 1 

, 5a
5af k 

, 5a
5a'i<

(3.63)

Thus the m atrix is now given by 

^ a i,i oh}2

^ 2,1  &2,2 CL 2 }3

di

d2

ei e2

C L K - l ,K - l clk- i j < !—11fcs;
"<3

U n t i e - 1 clk ,k d K

e j< r - i Gk 0

V n+1

u z +1

u n+1UK- 1

Uk+1

_i®£ 1V pdx J

TTn U K ~  1

UI<
TJn + 5v u b )

(3.64)

Gaussian elimination is then used by the bulk velocity code to  solve for U.

For the turbulence quantities, vertical diffusion is again handled implicitly, source 

terms for k explicitly and source terms for e semi-implicitly. k and e are defined at 

vertical mesh points between those for U since this is most convenient for specifying
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ve for vertical diffusion. The equation for k is thus discretised as

7 ,  ^ f e + l  da' ( b n+1  _  Jcn D  \  _  L L d vL  ( b n+1 — b n + 1 \

+  St ^  ^  ^ + 2  ak k~2
dcr fc+i (Sa'h)2

(3.65)

A tridiagonal m atrix is formed for k with m  =  1, , K  corresponding to k =

1 ^ , . . . ,  K  +  J, since values on the bed are not required and wall functions are used

to specify magnitudes at k =  l | .

W ith m  = 1 we require from equation (2.35)

ai,i =  1

a ii2 =  0 (3.66)
U2

&i =  -7^- (3-67)

for m  =  2 , . . . ,  K  — 1, corresponding to A; =  2 | , . . . ,  K  —

U id a ^  da!_
  a k da k  da  f c - f  |

~  ( h d c r ' f

uk da ' da' ^ f c + i  da' da'
_  1 i X4,°k da k  da  f c + ±  , ^  ak da  f c+1  da  f c + A

a m ,m  -  +  ( ^ 2  + «  2

L/k+ 1  da' da' 
s  a k da k +1 da  f c + i  . .

— St (3.68)

=  kk+1 T  St(P£+1 — ej+i)  (3.69)

For m  = K  without wind shear we require zero gradient which is given to close 

approximation

&k ,k - l  =  — 1

aK,K =  1 (3.70)

bK = 0 (3.71)
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The equation for e is discretised as

/  frn + 1  \

r n + 1 _  n  | Ty. I p n  k + l  \t k+i +  t t [ c u - P k + l - c 2t ^  j

uk+1 da' _  ^ + 1   ̂   U I dâ _ ( n + 1  _  rc+ l \
_ d<J ae da k + lA f c + l |  ^ + 2  d a k '-  f c + |  A:—

da fc+| {Sa’h)2

For e with m =  1 we require from equation (2.38)

®i,i — 1

«1,2 =  0  

c/ 3

61 "  Khap

for ?7A =  2 , . . . ,  K  — 1 , corresponding to k =  2 | , . . . ,  K  —

uk da' da'
_  ^  ae da k da  f c + |

_  ~ 6 t  ( h 5 a ' f

"k da' da1 ^fc+l da’ da'
a e da k da k + \  , a e da  fc+1 da  f c + |

<W» =  1  +  St- {h6al)2 ’ + «  {hSa,r
(  P71 Pn \x . I &+§ k+± \-  St cle— 2- -  c2un Ln

Kk+k h+k

^fc+i da' da'
  - ae da  fc+1 da  f c + i

^m,ra+ 1 — (hda'Y

bm =  e* a
2' f c + f

For m  =  K  the following equations are imposed

u k .k - i  =  0

&k ,k  =  1

, (k I<+ i V C „ ) ^
Ok  - 0.07k h

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)

(3.77)
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3.2 .4  S en sitiv ity  Tests

Sensitivity tests were also carried out by the author for the SW1DV code, as in 

Section 3.1.4 for the TRANSIT code, to determine whether the results are indepen­

dent of the numerical parameters. The tests are applied to both models for two 

experimental cases, JSF13 and UMTF. These experimental cases are described in 

Chapter 5. The JSF13 case uses the driving pressure gradient code, and the UMTF 

case uses the bulk velocity version. The tests are applied to the following numerical 

parameters:

1. Number of vertical grid nodes, iz

2. Position of the near-bed node, ^imax

3. Total depth, h

4. Number of time steps per cycle, ntper

5. Total number of cycles, eye

6 . Constant for parabolic mesh spacing, dm

Again the standard values are assessed by applying more stringent and lenient tests, 

and the error is determined by the percentage change in the value of wave friction 

factor, f w. Tables 14-19 give the results of the tests for the SW 1 DV code.

Discussion

Table 14 shows the results of the sensitivity tests on the number of vertical grid 

nodes. Large percentage changes (5% — 9%) in f w are found for the UMTF case. 

Only 10 vertical cells are used as the standard number. The to ta l number of vertical 

nodes should be increased in this case, however this number is restricted by the values 

of 4 a x  and z i / k 8. In order to keep the values of and z i / k s within the ranges 

given in equations (2.15) and (5.17) the standard values of iz  must be retained. The 

effect of altering the position of the near-bed grid node, ^imax fr°m approximately
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30 to 100 is shown in Table 15. This could only be achieved by altering the number 

of grid nodes. There is negligible effect for the JSF13 case, however large percentage 

changes were again found for the UMTF case.

The percentage change is negligible or within ±1% for the number of time steps 

per cycle (Table 17), the total number of cycles (Table 18) and the constant for 

parabolic mesh spacing (Table 19). The only exception is in Table 18 for the JSF13 

case applying the k-e model, for which halving the number of cycles gives a 2.19% 

change in f w. Since the more stringent test gives satisfactory results the standard 

value is taken to be acceptable. For the total depth (Table 16), only the JSF13 

case was tested since the depth must be kept constant for the UMTF case. Here 

decreasing the depth had a greater effect but since the largest percentage change 

was 1.25% this was deemed to be reasonable.



Chapter 4

Results I: Smooth Channel and

Pipe Flow

Steady channel flow and unsteady pipe flow over smooth walls is examined in this 

chapter. The results of the Launder and Sharma k-e model (Section 2.3.4), the 

Cotton and Ismael k-e-S model (Section 2.3.5), and the Launder and Shima RSTM 

model (Section 2.3,6) are compared with the DNS data  of Kim et al (1987) and 

Kim (1990) for steady channel flow in Section 4.1. In Section 4.2 the results of the 

same turbulence models are compared with periodic pipe flow experimental data 

of Finnicum and H anratty (1988) and Tu and Ramaprian (1983) and Ramaprian 

and Tu (1983). Throughout this chapter the ck-eJ model refers to the Launder and 

Sharma k-e model.

4.1 Steady Channel Flow

Steady, spatially fully-developed, turbulent channel or pipe flow is characterised by 

the Reynolds number, which is based upon the bulk velocity and channel width or 

pipe diameter in this case, and thus given by

Reb =  (4.1)
k

86
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The fluid properties were set to the standard tem perature and pressure values for 

air for all steady flow calculations, as given below

• density, p =  1.225 kg/m 3

•  kinematic viscosity, v =  1.461 x 1 0 - 5  m /s

• dynamic viscosity, p. =  1.790 x 10“ 5 kg/ms

• Also, full channel width, or pipe diameter =  0.1 m

The value of the bulk velocity, Ub therefore depends upon the corresponding Reynolds 

number, i?e&. The solutions are marched in time from approximate initial profiles 

until steady conditions are obtained. Details of the numerical calculations performed 

are described by Guy (2000).

4.1 .1  C om parisons w ith  D N S  C hannel F low  D a ta  o f K im  e t

a l

The study of two-dimensional fully-developed channel flow by Kim et al (1987) and 

further study by Kim (1990) produced DNS data sets. Direct Numerical Simula­

tion (DNS) applies the complete Navier Stokes equations to the flow problem. The 

present channel flow results are compared against the DNS data, and thus the per­

formance of the k-e and k-e-S models in channel flow may be assessed.

The DNS data produced by Kim et al numerically modelled turbulent channel flow 

for the Reynolds number calculated at approximately 5600. The value of Ret at the 

centre-line was defined to be 180 (Ret = UrD/v) .  Kim (1990) later used the same 

procedure to produce DNS results for channel flow with Ret — 395 a t the centre-line, 

giving a higher bulk Reynolds number, Reb — 13750. The DNS data  for the mean 

velocity, Reynolds stresses (thus giving the kinetic energy), and dissipation rates are 

available for both cases. Using the data given, other parameters such as turbulent 

time scales, and turbulent Reynolds number can then be calculated, giving further
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opportunity for comparison and analysis of the turbulence models under considera­

tion.

For both Reynolds numbers the k-e-S model calculated Ret to be in better agreement 

with the DNS value than the k-e model. For the lower Reynolds number the DNS 

value of Ret is defined to be 180, compared to 173 (—4%) for the k-e-S model and 

168 (—7%) for the k-e model. In the higher Reynolds number case, for which 395 is 

the DNS data value of Ret at the centre-line, the k-e-S model gives 386 (—2 %) and 

the k-e model gives 370 (—6 %). In a related measure of accuracy the k-e-S model 

also gives a closer value than the k-e model for the friction coefficient compared to 

the DNS data, which is defined for steady fully-developed turbulent flow as

=  ( 4 2 )

Cf is calculated as 8.18 x 1 0 ~ 3 (DNS) compared to 7.66 x 10_3 (—6%) and 7.17 x 

1 0 ~3 (—1 2 %) for the k-e-S and k-e models, respectively. This is in good agreement 

with Dean’s correlation of Cf — 0.073-Re“0-25 =  8.44 x 10~ 3 (Kim et al 1987), where 

R em is the Reynolds number base on the mean bulk velocity.

M ean V elocity Profiles

Figure 6  gives the mean velocity profiles U+ against z+ on semi-logarithmic axes 

(the velocity is normalised by wall co-ordinates U+ — U/UT) for the DATA (DNS 

results), KES (the k-e-S model) and KE (the k-e model) for (a) Ret, =  5600 and (b) 

Reb =  13750. For the higher Reynolds number, the DNS data  follows the logarithmic 

law (Kim 1990) for the region from z + «  30 to z + «  200, given by

U+ — 2.391nz+ +  5.45 =  5.51og102+ +  5.45 (4.3)

However, DNS data for the lower Reynolds number case was quoted to follow an 

alternative logarithmic curve (Kim et al 1987) from z + «  30 to z + «  150, given by,

U+ =  2.51n£+ +  5.5 =  5.81og10̂ + +  5.5 (4.4)
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For both higher and lower Reynolds number cases the DNS data  and the two models 

are in very close agreement in the viscous sublayer region (z + <  5). However, as 

z+ increases, both the models over-predict the mean velocity, with the k-e-S model 

in closer agreement with the data than the k-e model, particularly for the higher 

Reynolds number case. Furthermore, the k-e-S model then tends to be in reasonable 

agreement with the data  towards the centre-line, for which the k-e model is slightly 

high.

Reynolds Shear Stress Profiles

In the Reynolds shear stress profiles, Figure 7, the k-e-S model is in good agreement 

with the data  for low values of z +t until the maxima at z + & 30. However, the k-e 

model gives rather low values of the Reynolds stress compared to the data in the 

region for z + <  10. The k-e model maxima are at lower values than  the DNS data 

for both plots. The k-e-S model continues to give good agreement with the data, 

although the values are slightly low towards the centre-line for the lower Reynolds 

number case. The k-e model results are markedly lower than the data  and the k-e-S 

model for the main region of the channel.

Turbulent K inetic Energy Profiles

Again the k-e-S model gives good results for the turbulent kinetic energy compared 

with the data, Figure 8 . The k-e model calculates the near-wall peak significantly 

below the data, whereas the k-e-S model is in good agreement for Re^ =  13750, and 

slightly high for Re& =  5600 in the region z + >  30. As k+ decreases to zero at the 

wall, the k-e-S model is in better agreement with the data than  the k-e model. As 

k+ decreases towards the centre-line both models are in close agreement with each 

other and in fairly close agreement with the data, each slightly high for Re =  5600, 

and slightly low for Re — 13750. It should be noted th a t the k-e-S model was tuned 

against the channel flow DNS data for k+ (and other quantities).
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Turbulent D issipation R ate Profiles

The profiles of e+ against are shown in Figure 9 for both Reynolds numbers. 

In the region of the channel for z + >  20 e+ varies inversely with z+, and both 

models capture this well at z+ >  50. Both models give incorrectly high values of 

the dissipation rate in the region 7 > >  17, the k~e~S model doing better than

the k-e model. The k-e-S model also captures the plateau in this region whilst the 

k-e model merely predicts a maximum. However both models give vastly incorrect 

predictions of e+ in the viscous sublayer, e+ drops at z+ = 0 , whereas the data gives 

increasing values of e+ towards the wall, with e+ ps 0.17 and 0 . 2 2  at the wall for the 

respective lower and higher values of Reynolds number.

Dam ping Function Profiles

Figures 10 and 11 show the variation of the damping function for the two models. 

Figure 10 gives the composite damping functions for both models, whilst Figure 11 

shows the constituent parts of the k-e-S damping function. The damping for the 

k-e-S model has a high value of approximately 0.9 a t the wall, which then drops 

sharply to 0.05 at z + ps 5. In contrast, the k-e model has a very low value of damping 

(ps 0.02) in the viscous sublayer region. The damping predicted by the k-e model 

reaches a plateau in the region z + >  80, at about 0.8 and 0.9 for the lower and higher 

Reynolds numbers respectively. The k-e-S model gives far higher values of damping 

than the k-e model for z+ >  60. At z + ps 180 the values of the composite damping 

function for Re^ =  5600 and Re& =  13750 are about 1.25 and 1.1, respectively. Thus, 

for the region >  60, the general trend is tha t the composite damping function for 

the k-e model increases with higher Reynolds number, whereas for the k-e-S model, 

the damping function decreases with increasing Reynolds number. This trend is 

also observed by Cotton and Ismael (1998) who conclude th a t if /  =  f ^ R e t )  is an 

increasing function, then the damping function at a given value of z + also increases 

with Ret,. Figure 11 shows the separate and composite damping functions of the 

k-e-S model ( f s ( S )  and f ^ R e t ) ) .  The damping due to Ret is unity throughout the
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main region, and has only little effect for z+ <  15 dropping to »  0.7 at the wall. The 

damping due to the strain parameter, f s ( S )  is very similar to th a t of the composite 

damping function.

Strain Parameter Profiles

Profiles of the strain parameter, S  are shown in Figure 12. The strain parameter is 

zero at the wall rising rapidly in the sublayer region to a value of 280 for Re& = 5600 

and 260 for Reb = 13750 at z + «  10. S  then drops again rapidly to a value of 

approximately 2 0  a t z + rs 60 and then decays towards zero at the centre-line due to 

the symmetry condition giving zero gradient at the centreline.

Turbulent Tim e Scale Profiles

It is of interest to consider other parameters, such as &+/e +, a turbulent time scale:

T  = F P L  = (a «
e+ eif/U* {vjUf) X ' 1

In Figure 13 the models and data show similar trends, an almost linear increase 

from zero up to z + «  120 for the lower Reynolds number and up to z+ «  250 for 

the higher Reynolds number. The k-e-S model follows the data trend in the viscous 

sublayer region, increasing more rapidly than the k-e model. This is understandable 

since the k + profile of the k-e-S model gives higher values in this region.

Turbulent Reynolds Number Profiles

The turbulent Reynolds number, Ret = k2/ve  — (k+)2/e + is of interest since both 

models have damping functions dependent upon this parameter. In Figure 14 neither 

model follows the trend of the DNS data which differs greatly for each Reynolds 

number. However, the k-e-S model is in general agreement with the data in the 

region < 100 for the higher Reynolds number.



CHAPTER 4. RESULTS I: SMOOTH CHANNEL AND PIPE FLOW 92

Anisotropic Shear Stress Profiles

The anisotropic shear stress, auv =< uw  >  /&, Figure 15 of the models are in general 

agreement with the data. However, near the wall the k-e-S model gives a peak of 

0 . 2  instead of dropping to zero at the wall. This could be due to the variation of 

fs {S )  near the wall seen earlier.

4.2 U n steady P ipe Flow

Fully-developed pulsating pipe flow depends upon the mean bulk Reynolds number,

Reb} which can be expressed as

pUbD
Reb = (4.6)

F

The harmonically pulsating bulk velocity characterises the periodic pipe flow for all 

the numerical calculations. The bulk velocity, Ub is given by

Ub = Ub + \Ub\cos9 (4.7)

where

9 = u t  (4.8)

Thus the bulk velocity varies as a harmonic function with time, with frequency w,

about a mean level Ub and with amplitude \Ub\. The Strouhal number and relative

amplitude, 7  are also parameters of unsteady turbulent flow

Strouhal number =  (4.9)
Ub

1 - B  (4.10)

4.2 .1  W all Shear S tress in U n stead y  F low s

In their study of imposed sinusoidal oscillations on turbulent flow in a pipe, Finnicum 

and H anratty (1988) used a dimensionless frequency param eter, <u+ against which
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to compare the response of the amplitude and phase of the wall shear stress. This 

non-dimensional frequency parameter is defined as

+  WZ/ ( A  11\=  =  (4.11)
I/ r2 V ;

where

m  =  — (4.i2)
p

The non-dimensional relative amplitude, 7 + is generally defined as

7+ =  ^  (4.13)

However, in the case of Finnicum and Hanratty, it is defined in terms of the centre­

line velocity, \UC\ (presumably for simplicity in experimentation) as

1 * - | 1  (4-14)

Following the work of Ismael (1993a), for high frequencies (originally in Mao and 

H anratty 1986)

=  (4 .i5)
7 +pU

where 7 + is defined by equation (4.13), and a ‘quasi-laminar5 collapse of data is 

theoretically obtained when this term  |r{,|/(7 +pC/2) is plotted against co+. For low 

frequencies, quasi-steady oscillation is given as (Ismael 1993a)

M  /O , \ f^ -1 5 — f
r2, rr„ (2 +  2 (4.16)

7 +pUT V *

where A  and m  are real numbers, for example in the Blasius equation A  = 0.079 

and m  =  —0.25.

4.2 .2  Friction  C oefficient in U n stead y  F low

Following the work of Ismael and Cotton (1996) and an internal note by Cotton 

(1997a) asymptotes of the amplitude and phase of the friction coefficient in unsteady 

flows can be derived for high and low frequencies. The mean Reynolds number, Reb, 

Strouhal number, and relative amplitude, 7  are defined as in equations (4.6), (4.9)
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and (4.10) respectively. In this approach it is assumed th a t the derivation of Cf from

a steady value at R&b responds linearly to oscillation of the bulk velocity about its 

mean value

where

Cf — Cf(Reb) +  A (4.17)

BTJ
A =  A q +  AiUb +  A2~^~  +  . . .  (4-18)

A =  A0 (4.19)

Therefore

Cf — Cf(Reb) 4- Ao (4.20)

As 7 —y 0, Ub —y Ubf thus Ao —y 0

Cf = cf (Reb) (4.21)

A is a pure harmonic

Cf = c J T  |c/|cos(wt +  <fi) (4.22)

W ith A0 =  0, the amplitude of the friction coefficient, |c/| varies linearly with 7 , 

and the phase of the c/, <f)Cf is independent of 7 . It follows th a t

c j = h { R e b) (4.23)

=  M R T b, (4.24)

u D ,

W
<f>Cf= M R e b, r r - )  (4.25)

Analysing the high frequency response, and making certain assumptions detailed 

by Cotton (1997a) there results the following expression for the amplitude of the 

friction coefficient,

where C f ( 9) =  r{9)/\p{U{9))2. |c/| is required in terms of c j t n>+ and 7 . Since,
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(4.28)

Therefore

(4.29)
Ub2cJ2 2Ut2cJ 2c/

Substituting equation (4.29) into equation (4.26) gives

c f  | =  27  Cf
0J+

2 c j )  2 CJ
(4.30)

Rearranging equation (4.30) gives

•ULL =  2 
7 Cf
\ c f \ (4.31)

Thus the amplitude of the friction coefficient, normalised by the relative amplitude 

and the time mean of the friction coefficient, can be plotted against the frequency 

parameter, u +/2cj.

Similarly the following expression for the phase of the friction coefficient was ob­

tained

4.2 .3  C om parisons w ith  E xperim ental D a ta  o f F innicum  and  

H an ratty

using water as the working fluid. In the present simulation the following property 

values are used (Finnicum and Hanratty 1988):

•  density, p =  988.45 kg/m 3

•  kinematic viscosity, v =  8 . 6 6  x 1 0 ~ 7 m2/s

(4.32)

Substituting expression (4.29) into this equation gives

(4.33)

Finnicum and H anratty (1988) obtained experimental da ta  for periodic pipe flow
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•  dynamic viscosity, fi = 8.56 x 10- 4  kg/ms

• and pipe diameter, D =  0.0508 m

23 sets of data were obtained within the ranges 8650 <  Re^ <  44900 and 0 . 2  Hz 

<  /  <  1.5 Hz corresponding to a possible Strouhal number range of 0.07 < coD/Ub < 

2.8. The input data for each experimental run is shown in Table 20, tha t is the 

long-time-mean bulk Reynolds number, the frequency, and the long-time-mean bulk 

velocity. The values of the non-dimensional frequency parameter, to+ = (ljv/U^) 

are also given. It should be noted tha t the values of w4" for the experimental data 

will differ from those of the turbulence models, as shown in Table 2 0  which gives the 

values of oj+ for all solutions. In the experiments a fixed relative amplitude of centre­

line velocity oscillation of 1 0 % was used, whereas in the numerical calculations a 

constant fractional amplitude of bulk velocity equal to 20% was used. This difference 

in conditions is not considered to have any significant effect since the normalisation 

of the data reduces the dependence upon amplitude (Ismael and Cotton 1996).

A m plitude of the Wall Shear Stress

Figure 16 shows a log-logj plot of the dimensionless wall shear stress amplitude 

against the dimensionless frequency parameter, for the experimental data of 

Finnicum and H anratty given in Table 20, and for the corresponding numerical 

solutions of the k-e-S , k-e and RSTM turbulence models. The dotted line is the 

quasi-laminar solution, equation (4.15), for high frequencies. It can be seen th a t all 

the model solutions and the experimental data are in good agreement for w+ >  0.05. 

All the solutions collapse on the quasi-laminar asymptote. At lower frequencies 

(0.008 <  co+ <  0.03) all models, with the possible exception of the k-e model, give 

higher values of wall shear stress than the data, with the k-e-S model doing better 

than the RSTM. The range from w+ ps 0.007 to uj+ «  0,02 is of particular interest. 

This range of frequencies give the solutions to cases 9 -  12 in Table 20. The data 

indicate a  dip in this region th a t is not wholly captured by any of the models. The
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explanation for this is uncertain. At «  0.007 (case 9) the data give an amplitude 

of approximately 0.084, which the RSTM captures. The corresponding values of the 

k-e-S and k-e models are much lower («  0.007). However, in the next two cases 

the data jumps to a lower value of amplitude («  0.007), before increasing again to 

approximately 0 . 1  in case 12. None of the turbulence models follow this pattern. 

The k-e model captures the low values in cases 10 and 11 best. The other two 

models, and particularly the RSTM, give much higher values compared to the data. 

In fact in this region the amplitude of the wall shear stress for both the k-e-S and 

RSTM models increases roughly as a straight line on log-log axes with respect to 

the frequency parameter. At low frequencies, the distribution varies, with the data 

tending to higher values of amplitude (ps 0.09) than the model solutions («  0.07). 

All solutions settle to fairly constant but differing values of amplitude of the wall 

shear stress. It should be noted tha t the solutions in this range of low frequency 

(w+ < 0.006) are weakly Reynolds number dependent, equation (4.16).

The data, k-e-S and RSTM models do tend to give the same value of w+ for each 

case, whilst the k-e value of the frequency parameter is slightly higher for each case. 

This is thought to be due to the normalisation of the frequency parameter, since the 

value of UT1 for the k-e model (and hence the wall shear stress t&) is approximately 

1 0 % lower than th a t of the data and the other models.

The numerical order (cf. Table 20) and the order corresponding to increasing u + 

are the same for the wall shear stress amplitude and phase for all the solutions. The 

order for the experimental data and for each turbulence model was plotted, but for 

brevity the plots are not included in this study.

Phase of Wall Shear Stress

Figure 17 shows a plot of the wall shear stress phase with respect to negative pres­

sure gradient, (—dp/dx), against the dimensionless frequency param eter for the ex­

perimental data  and each turbulence model. There is a general collapse of the
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experimental and numerical results on the quasi-laminar asymptote (high frequency 

response) at cj)T — (j)_dR «  —45° (Ismael 1993a). The collapse is not as pronounced
dm

as for the amplitude. The phase angles calculated by the RSTM are in very good 

agreement with the data throughout the frequency range. The predicted phase an­

gles of the k-e-S and k-e models overshoot at high frequencies and undershoot at 

low frequencies. At u + «  0 . 0 2  the overshoot of the k-e model is larger, with a phase 

difference of approximately 4-10° compared to tha t of approximately +5° for the 

k-e-S model. However a t low frequencies (o;+ < 0.003), the reverse occurs. The 

k-e-S model gives a larger difference in the phase angles (»  —1 0 °), whereas the k-e 

model gives only a slight undershoot in the quasi-steady region.

In the narrow region 0.008 < <  0.01, there is a large difference in phase angle

between the models and data, with the k-e model giving rather good agreement, 

and the k-e-S model the worst agreement with the data. This frequency band is 

discussed further, later in this section.

Further Frequency Dependent Variables

Figure 18 shows plots of the frequency dependent variables used above to normalise 

the wall shear stress amplitude for the numerical models. This is to investigate 

whether the observed trends in the amplitude are a result of non-dimensionalisation. 

Figure 18(a) shows th a t the amplitude of the centre-line velocity is quite similar for 

the two eddy-viscosity models and higher at low frequencies than  the RSTM. This 

could in some part explain the variation of the turbulence models at low frequencies 

in Figure 16 (at least for RSTM compared to KES). The time-mean of the friction 

velocity given in (Figure 18b) shows good agreement between the RSTM and k-e- 

S , which give higher values of UT/Ub than the k-e model. Figure 18(c) shows the 

amplitude of the wall shear stress normalised by the relative amplitude, the density, 

and the square of the bulk velocity. In this plot the turbulence models are in very 

good agreement in the quasi-steady region.
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Similarly, Figure 19 gives the frequency dependent variables used above to present 

the wall shear stress phase. Figure 19(a) shows fairly good agreement between the 

numerical models for the phase of the pressure gradient relative to  the phase of the 

bulk velocity. However, there is more variation between the models for the phase of 

the wall shear stress relative to the phase of the bulk velocity. The overshoots and 

undershoots are more clear, and the trends described between the models for Figure 

17 are similar here. Thus these effects are not due to the normalisation.

A m plitude and Phase of the Friction Coefficient

The amplitude and phase of the friction coefficient in the form described in Section 

4.2.2 are shown for the turbulence models in Figure 20. The analytical functions 

described in equations (4.31) and (4.33) for high frequencies and the aymptotes 

are also plotted. Due to the normalisation of the wall shear stress data, and lack 

of experimental data for the normalisation parameters, experimental data for the 

friction coefficient could not be calculated. In Figure 2 0 (a) the amplitude of the 

friction coefficient for all the numerical models is in very good agreement with the 

analytical function at frequencies of u)+/2 c j  >  1 (equivalent to u + a* 0.02). The 

numerical models are also in fairly good agreement with the function for the phase of 

the friction coefficient (Figure 20(b)) at oj+/2 cJ > 2 , with the possible exception of 

the k-e model. At lower frequencies the model solutions are in less good agreement 

with each other. In Figure 20(a) the k-e model tends to give the lowest amplitude, 

and the k-e-S model the highest. Most significantly, no dip is found in the amplitude 

of the friction coefficient in cases 9 -  1 2 , for 0.6 < tj+/2cf  <  1. This is related to Cf 

using Ub(9) in the denominator. For the phase of the friction coefficient in Figure 

20(b) the RSTM lags the k-e-S model by approximately 10° and the k-e model by 

approximately 2 0 ° at low frequencies. This is the inverse of the trend found for the 

phase of the wall shear stress. For the phase of the friction coefficient mainly the 

RSTM, but also the other two turbulence models, follow the trend of the analytical 

function, with a constant difference in the phase angle.



CHAPTER 4. RESULTS I: SMOOTH CHANNEL AND PIPE FLOW 100

Figure 21 shows the amplitude and phase of the friction coefficient, as in Figure 

2 0 , but here extra calculations for each turbulence model at low values of u;+/ 2 c7  

are shown. This is to ascertain whether the calculations at low frequencies tend 

towards a quasi-steady asymptote. The amplitude of the friction coefficient is in 

good agreement with the low frequency analysis, and the phase results are slightly 

high.

Cyclic Variation of the Wall Shear Stress and Friction Coefficient for 

Cases 9 - 1 2

Figures 22 -  25 give the cyclic variation of the wall shear stress and local friction

coefficient for cases 9 -  1 2  of the Finnicum and H anratty experiments (see Table

20). This is to investigate the behaviour of the dip found in the amplitude of the

wall shear stress in these cases. For all solutions, the values of for these cases

can be seen in Table 20. The amplitude of the wall shear stress roughly corresponds
 2

to the difference between the maximum and minimum value of \Tb\/(pUb ) for each 

model. In Figure 22(a) (case 9, for experimental data u + =  0.0075), the wall shear 

stress amplitude of the RSTM («  2.0 x 10“ 3 peak-to-peak) is significantly greater 

than tha t of the k-e-S model (ss 1 . 6  x 10-3). The k-e model amplitude (1.5 x 1 0 -3) 

is similar to th a t of the k-e-S model. It can be seen in Figures 23(a) to 25(a) tha t as 

the frequency increases (0.009 < w+ < 0 .0 2 ), the amplitude of the k-e-S model and 

RSTM curves become closer. The k-e model amplitude remains low but steadily 

increases with frequency. For Figure 25(a), (cu+ «  0.0172) the amplitudes of the 

k-e-S and RSTM curves are nearly equal («  2.5 x 10-3 ), with the k-e model giving 

a similar but slightly lower amplitude of «  2.25 x 10“3. This trend confirms the 

pattern observed in Figure 16.

The cyclic variation of the friction coefficient for case 9 (u;+ ss 0.0075) is given in 

Figure 22(b). The shape of the curve of the friction coefficient is similar to the inverse 

of tha t for the wall shear stress, but stretched due to the function 1 / ( 1  -f-qcoswt)2. 

Here, the amplitude of the k-e-S model is clearly highest, whilst those of the other
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two models are fairly similar. This is illustrated by Figure 20(a).

To summarise, for case 9 the order of the amplitude of the wall shear stress for the

turbulence models from highest to lowest is

(1) RSTM, (2) k-e-S, (3) k-e,

whereas for the friction coefficient it is

(1 ) k-e-S, (2) RSTM, (3) k-e.

The k-e-S and RSTM models have ‘swapped over’. T hat is, the shape of the curves 

has been inverted, but the amplitudes of the results produced by turbulence models 

have not. This can be explained by the pattern of the multiplication factor necessary 

to convert from wall shear stress to friction coefficient. The shape is tha t of a cosine 

curve, arising from the (inverse) of the square of the bulk velocity variation.

The curves of the k-e-S and RSTM models for the wall shear stress cross over. Thus, 

when multiplied by a cosine curve, the curves are inverted, but must still cross over, 

and the rank order of the solutions is maintained, resulting in the local friction 

coefficient curve. The k-e model curve for the wall shear stress does not cross either 

of the other curves, and the value of the amplitude remains lower with respect to 

the other turbulence models.

Figure 22(a) shows th a t for the phase of the wall shear stress (for w+ ps 0.075) the 

order for each turbulence model from leading to lagging is 

(1) k-e-S, (2) RSTM, (3) k-e.

The phase angles of the turbulence models become increasingly similar for run 10 

and 11 (Figures 23(a) and 24(a)). However, for run 12, Figure 25(a), the RSTM 

clearly lags the k-e-S model, which itself lags the k-e model. The phase difference 

of the friction coefficient in Figures 2 2 (b) to 25(b) confirms the plot of phase of 

the friction coefficient in Figure 2 0 (b). This is reassuring, but it does not explain 

the presence of the dip in the wall shear stress amplitude for the frequency range 

0.007 < w+ <  0.02.



CHAPTER 4. RESULTS I: SMOOTH CHANNEL AND PIPE FLOW 102

4.2 .4  C om parisons w ith  E xperim ental D a ta  o f Tu and  

R am aprian

Tu and Ram aprian (1983) experimented with harmonically pulsating pipe flow, sim­

ilar to the experiments of Finnicum and Hanratty. Two oscillation frequencies were 

studied in detail by Tu and Ramaprian, 0 . 5  Hz and 3.6 Hz. In the present study, 

comparisons are made only with the lower frequency test case 0.5 Hz, for which the 

oscillation amplitude, ( |£4 |/L y , was 0.64. The fluid used was water. The following 

data  gives the parameters of the experiment:

• pipe diameter, D = 0.0504 m

• density, p =  1 0 0 0  kg/m 3

• dynamic viscosity, p — 9.4 x 10- 4  kg/ms

• frequency, /  =  0.5 Hz

• time-mean bulk velocity, U5 =  0.911 m /s

•  amplitude of bulk velocity, \Ub\ — 0.58 m /s

Tu and Ram aprian measured the wall shear stress and velocity, and the Reynolds 

shear stress data were then deduced. Figures 26 -  42 show comparisons of the 

experimental data  of Tu and Ramaprian and the results of three computational 

models; the k-e-S model, k-e model, and RSTM. Radial profiles of the ensemble- 

averaged velocity and the Reynolds shear stress plotted against z / R  are given for four 

different phase positions in a cycle of oscillation; 6 — 6.9°, 93.3° in the decelerating 

period of a cycle, and 0 =  179.9°, 266.1° in the accelerating period of a cycle. This 

illustrates changes in profile shape. The variation with phase position is also shown 

at two different radial locations, z / R  = 0.25 and 0.9, near to the wall and the 

centre-line respectively. The phase shifts will be seen most clearly in these plots. The 

variation of the amplitude and phase of the first harmonic are also given. For details 

of the calculations and numerical procedures see Ismael (1993a) who compared the
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data of Tu and Ramaprian with numerical results produced using the k-e model. In 

this study the additional results of the k-e-S model are presented.

Cyclic Variation of Wall Shear Stress and Friction Coefficient

Figure 26 shows the variation through a cycle of (a) wall shear stress and (b) local 

friction coefficient. Clearly the computational results for the wall shear stress are in 

quite good agreement with the data. The k-e-S model has the smallest amplitude 

and does not predict the minimum at 6 =  180° as well as the other two models. 

However, it compares well with the data at phase positions 50° <  9 <  130° and 

220° <  9 <  270°. For the cyclic variation of the friction coefficient the differences 

between the results are more varied. The RSTM model compares well with the wall 

shear stress data across the whole cycle. The k-e model predicts the maximum value 

much lower than the data and the k-e-S model much higher. Both these models 

lead the data by approximately 2 0 ° at the maximum, compared to the RSTM model 

which leads the data  by about 5° at this point.

Cyclic Variation of Velocity

Figure 27 shows the cyclic variation of the ensemble-averaged axial velocity (Uz/Ub) 

for two radial positions (a) z / R  =  0.25 and (b) z / R  = 0.9. In both plots the 

models agree well with the data. Near to the wall, z / R  = 0.25, the k-e-S model is 

in closer agreement with the data than the RSTM. However, near to the centre-line, 

z / R  = 0.9, the RSTM is, in general, in better agreement with the data than the 

k-e-S model. The k-e model closely follows the trend of the k-e-S model in both 

plots.

Cyclic Variation of Reynolds Shear Stress

There are greater phase shifts between the data and the models results for the 

cyclic variation of the Reynolds shear stress, Figure 28 for (a) z / R  =  0.25 and (b) 

z / R  = 0.9. In Figure 28(a) the RTSM lags the data whilst the two eddy-viscosity
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models lead the data. This trend is also apparent for (b) z / R  =  0.9. For both radial 

positions the trend of the experimental data for phase positions 220° < 9 < 300° is 

not picked up by any of the models. Again the k-e-S model follows the data trend 

more closely near the wall than the centreline. The RSTM is in closest agreement 

with the data for both radial positions.

Radial Profiles of Velocity

Figure 29 shows the radial profiles of the ensemble-averaged axial velocity for four 

different phase positions over a cycle, 9 =  6.9°, 93.3°, 179.9° and 266.1° for (a) the k-e 

model and (b) the k-e-S model compared with the data. The variation over a cycle 

of the velocity data is fairly widespread. Both models are in very good agreement 

with the data.

Figure 30 gives another perspective of the results shown in Figure 29. Here the data 

and the two model solutions are shown (a) over the decelerating period of a cycle, 

9 = 6.9°, 93.3° and (b) over the accelerating period of a cycle, 9 = 179.9°, 266.1°. 

Again, the data  and model solutions are in very close agreement.

Radial Profiles of Reynolds Shear Stress

Figure 31 shows the radial profiles of the Reynolds shear stress over a cycle for 

(a) the k-e model and (b) the k-e-S , model compared with the data. Both models 

follow the general trends of the experimental data for each phase position. Figure 

32 shows this information more clearly. The models tend to over-predict the data in 

the decelerating period of a cycle, Figure 32(a), and under-predict the data in the 

accelerating period of a cycle, Figure 32(b). The k-e model is in closer agreement 

with the data in the decelerating period of a cycle, whilst the k-e-S model is in closer 

agreement with the data for the accelerating period of a cycle.
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A m plitude and Phase Profiles of the Velocity

Figure 33 shows (a) the amplitude and (b) the phase profiles of the ensemble- 

averaged axial velocity. In Figure 33(a) the k-e-S model agrees very closely with the 

data towards the wall, (z / R  <  0.5), whereas towards the centre-line ( z /R  >  0.5), 

the RSTM follows the data trend better than the other two models. The phase 

profiles also show a similar trend, with the k-e-S model in best agreement with the 

data for z / R  <  0.5. In this region towards the wall ( z /R  <  0.5), the RSTM predicts 

a leading phase, and the k-e model a lagging phase with respect to the data. For 

z / R >  0.5 the two eddy-viscosity models both lead the phase data, the RSTM lags 

the data.

Am plitude and Phase Profiles of the Reynolds Shear Stress

Figures 34(a) for the amplitude and 34(b) for the phase of the Reynolds shear stress 

show quite large differences between the data and the model solutions. All the 

turbulence models follow the general trends of the data  across the pipe radius, but 

all predict higher amplitudes than the data. The RSTM is in better agreement with 

the data than  the eddy-viscosity models. This is more evidently the case for the 

phase profiles. As with the phase of the ensemble-averaged axial velocity where the 

phase is negative, the two eddy-viscosity models tend to lead, and the RSTM lag 

with respect to the phase of the experimental data. This trend in phase is also 

observed in Figures 28(a) and (b) for the cyclic variation of Reynolds shear stress 

at both radial positions. (The phase differences are larger near to the centre-line, 

Figure 28(b).) The k-e-S model in general for both the amplitude and phase plots is 

in slightly better agreement with the data than the k-e model. However, very close 

to the wall the k-e-S model phase profile predicts a drop of «  2 ° in phase, whilst 

the other two models give a small rise in phase.
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Radial Profiles of Turbulent Tim e Scale

Figure 35 gives a normalised turbulent time scale (iok/e) over the (a) accelerating 

and (b) decelerating period of a cycle for the k-e-S and k-e models. There is a wide 

variation in this parameter between phase positions. Although both models follow 

similar trends for each phase position, there is also a difference between the models, 

with the k-e model giving higher values of time scale than the k-e-S model at each 

phase position for z / R  > 0.05.

Radial Profiles of Anisotropic Shear Stress

The anisotropic shear stress, < uruz > j k  is shown in Figure 36 over the (a) decel­

erating and (b) accelerating period of a cycle. Again both models follow a similar 

trend for each phase position, but give a wide variation for the magnitude of the 

anisotropic shear stress. However, since the variation is less than  tha t of <  uruz > 

and k individually, the turbulence ‘structure’ is partially retained.

Strain Parameter Profiles

Figure 37 shows profiles of the strain parameter, S , over a cycle for the k-e-S model. 

Figure 37(a) shows the parameter across the pipe radius, whilst Figure 37(b) shows 

the strain parameter near to the wall for z / R  <  0.06. The profile of the strain 

parameter across the pipe radius for unsteady pipe flow is broadly similar to tha t 

for steady channel flow (Figure 1 2 ), giving a very high peak near to the wall. Closer 

examination near to the wall in Figure 37(b) shows great variation for each phase 

position across a cycle. The maximum is predicted at increasing values of z / R  for 

increasing values of phase for 6.9° < 9 <  266.1°. The value of the strain parameter 

is highest for 9 =  266.1°(5 «  370) and lowest for 9 =  179.7°(S  «  125).

Figure 38 shows the parameter (~f=f) 2 which is comparable to the strain parameter 

(under ‘equilibrium’ conditions) for the k-e-S and k-e model over (a) the accelerating 

and (b) the decelerating period of a cycle, near to the wall (z / R  <  0.06). There



CHAPTER 4. RESULTS I: SMOOTH CHANNEL AND PIPE FLOW 107

is great variation between the models for this parameter. The maxima for the k- 

e-S model tend to peak at far greater values of ( f | ^ ) 2 than  for the k-e model, 

(^0 <  ^  270 for the k-e-S model, and 30 <  5  60 for the k-e model).

Dam ping Function Profiles

Figure 39 shows the damping function profiles near to the wall ( z /R  <  0.06) for 

the k-e-S and k-e models over (a) the accelerating and (b) the decelerating period 

of a cycle. The damping for the k-e-S model at phase position 266.1° is far greater 

than tha t a t 6.9° and 93.3°, which in turn  is greater than the damping at 179.9°. 

In general the damping for the k-e-S model is greater than th a t for the k-e model, 

apart from at 9 =  179.9°. Comparison with Figure 38 shows th a t for each phase 

position the larger the strain parameter, the greater the damping.

A m plitude and Phase of Strain Parameters

Figure 40 compares the amplitude of the strain parameter, S  for the k-e-S model, 

and ( f ^ ) 2 for the k-e-S and k-e models, (a) across the pipe radius, and (b) near to 

the wall. Figure 40(b) reveals the wide variation in the region z / R  <  0.015 between 

the two turbulence models. The highest values of amplitude for the k-e-S model are 

\S\ ps 150 and |( f  f j ) 2| ~  1 2 0 , compared to Kff^-)2! ~  2 0  for the k-e model.

Figure 41 shows the phase of the strain parameters calculated by the k-e-S and k-e 

models. The phase of S  and ( f ^ f ) 2 for the k-e-S model are in close agreement for 

z / R  <  0.1, whereas the phase of ( f ^ ) 2 for the k-e model is quite different. However 

for z / R  >  0.1 the phase of ( f f ^ - ) 2 for the two models are in fairly close agreement 

whilst the phase of S  is much lower.

Num erical Accuracy

Figure 42 assesses the numerical accuracy of the k-e-S and k-e models, plotting the 

sensitivity of a) the k-e-S and (b) the k-e models to the numerical time steps d i / 2 , dt
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and 2dt, for the cyclic variation of the wall shear stress. Both models give excellent 

agreement at all time steps, infact the solutions are indistinguishable on the scale 

given by Figure 42. Thus the numerical accuracy is deemed to be adequate, and the 

effects observed are assumed to be unaffected by numerical errors.

Comparison of M odel Solutions w ith the Steady Flow Case

Figures 43 -  46 compare the k-e-S and k-e models with the steady flow case. Figure 

43 compares turbulence time scales of the two models. There is a wide variation 

across a cycle compared to the steady flow data. The anisotropic shear stress (Figure 

44) also shows a very wide variation compared to the steady flow case. However, 

as mentioned above the ‘structure’ is retained. For both models the steady flow 

solution is very close to the solution for 9 =  6.9° for z / R  <  0.1.

Again, in Figure 45 for the strain parameters of the k-e-S model, the steady flow 

solution is close to the solution for 6 — 6.9° near to the wall. This trend is also 

observed in Figure 46 for for the k-e model. However, this trend is not

thought to be of particular significance.



Chapter 5

Results II: Smooth and Rough 

Bed Oscillatory Flow

5.1 Introduction

In this chapter, the data for seven individual experimental cases are compared 

against the calculations of the high-Reynolds-number k-l and k-e models detailed 

in Sections 2.3.2 and 2.3.3, respectively. Two sets of field da ta  are examined, the 

measurements of McLean (1983) in the Jade estuary and those of Schroder (1987) in 

the Elbe estuary are analysed in Sections 5.2 and 5.3. Three cases of the laboratory 

experiments of Jensen et al (1989) are examined in Section 5.4. Firstly ‘ JSF10’ is the 

only smooth bed case studied in this chapter, ‘JSF 1 2 5 is a transitional case between 

rough and smooth turbulent regimes and ‘JSF13’ is a fully rough turbulent case. 

This group of the three experiments by Jensen et al is referred to as £ JSF’. The mea­

surements of Lloyd et al (1997) at the UK Coastal Research Facility (‘UKCRF’) are 

discussed in Section 5.5. Lastly £UM TF’ denotes the data obtained by Dr. C. Chen 

and Dr. D. Chen at the University of Manchester tidal flume. Some results from 

this data  set are given in Letherman et al (2000).

The physical parameters of all the data sets are given in Table 2 1 . This table gives 

the period of oscillation T, the depth of water h, the freestream or surface velocity

109
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Uq, the amplitude of the freestream velocity a = Uq/ (2 it/ T ) } and the roughness 

parameter ks.

The Reynolds number Re = aU^/v for each case is also given. Experimental values 

of £/r>max are given for the JSF, UKCRF and UMTF cases. However for the Jade 

and Elbe cases the following formula is used to obtain UT)max (Nielsen 1992, p. 25)

The following sections discuss the roughness parameter ks, the location of the the­

oretical bed level and the boundary layer thickness J, of the smooth and rough bed

kinetic energy in those experimental cases which measure only two components of 

velocity is also considered.

In Sections 5.2 — 5.6 each experimental case is examined individually; a brief sum­

mary of the experiment is given and then the data and model results are compared. 

In each case, where possible, the bed shear stress, velocity, Reynolds shear stress, 

turbulent kinetic energy and eddy viscosity are examined. The turbulent time scale 

k/e  is also considered for the Jade and Elbe cases. An estimation of the turbulent 

kinetic energy is considered for the JSF and UMTF data  sets. Additionally for 

both these cases an estimation of experimental uncertainty is made, in particular 

for comparison with the Reynolds shear stress and eddy viscosity. For all cases 

comparisons are presented for the variation through a cycle at given heights above 

the bed. Vertical profiles at given phase positions are also examined for the JSF, 

UKCRF and UMTF cases. For the Jade, Elbe and JSF cases the sensitivity of the 

numerical results to the ‘standard’ and ‘variant5 model constants outlined in Section 

2.3.7 is discussed further in Section 5.7.

fw T,max (5.1)

oscillatory flows. The experimental data sampling and the number of cycles of oscil­

lation measured in each case are also examined. An approximation for the turbulent
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5.1.1 R oughness P aram eter

A bed is considered smooth if the height or diameter of the roughness particles D * 

is small compared to the thickness of the viscous sublayer (Cebeci and Smith 1974). 

This is the case for JSF10. For all the other experimental cases D is large compared 

to the viscous sublayer and for each case a value for ks is given in Table 21 to indicate 

the roughness of the elements on the bed. The authors of the Jade, Elbe, JSF 1 2  and 

JSF13 cases each calculated their own value of ks. Following Sleath (1987) for the 

UKCRF and UMTF cases, ks is taken to be 2 The  param eters a /k s, ks/h  and 

the dimensionless roughness parameter k f  = ksUTjmâ / i '  (Table 21) give the relative 

roughness of each case. For surfaces covered with uniform roughness elements, the 

effective roughness &+ is grouped into three categories:

hydraulically smooth k f  <  5

transitional 5 <  k+ < 7 0  

fully rough k f  > 70

When roughness elements are so large tha t the viscous sublayer is small in compar­

ison, the flow is considered to be fully rough turbulent. These cases are dependent 

upon the ratio a /k s only. The transitional region has a reduced sublayer thickness 

and these cases may still have Reynolds number dependence, but a /k s is also a defin­

ing parameter. The diagram in Fredspe and Deigaard (1992, p .33) sheds some light 

on this m atter, illustrating the dual dependence on Reynolds number and a /k s with 

defined rough turbulent, smooth turbulent and transitional regions. This diagram 

has been reproduced in Figure 47 with some of the additional present cases also 

marked on. Thus the Elbe ( k f  = 820), JSF13, UKCRF and UMTF cases are fully 

rough turbulent, whereas JSF12 lies in the transitional rough to smooth regime.

5.1.2 T h eoretica l B ed  Level

This leads to the question of where the theoretical bed level should be located. 

There is no standard method to be followed. Sleath (1987) quoted a suggestion
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tha t the origin should be taken 0.35-D^ below the top of the roughness element. 

Nezu and Nakagawa (1993) look at this problem in some detail. From a range of

and Carlsen (1976) the theoretical bed level is taken to be 0 .2 D& and 0.47)^ below 

the top of the roughness elements. In the present study, the theoretical bed level

5,1.3 B oundary  Layer T hickness

For a rough bed the following formula by Freds0 e and Deigaard (1992, p .25) provides 

the boundary layer thickness 5:

illustrated in Figure 49. For the smooth bed case JSF10, the value of 6 — 0.05 m 

is given by the measurements of Jensen et al (1989). This is in excellent agreement 

with the formula S/a  = 0.086jRe“°‘n  for a smooth bed (Freds0 e and Deigaard 1992,

whether the boundary layer cannot physically extend beyond the surface (that is, 

where 5 /h >  1 ).

5.1 .4  D a ta  Sam pling

The number of cycles of oscillation for which measurements were recorded, eye and 

the sampling interval, in t are also given in Table 21. The value of in t for the 

Elbe estuary measurements is not known. Sleath (1987) stated th a t for eye > 50 

no significant improvement in the consistency of the statistics is obtained with the 

increase in the number of cycles sampled. Thus it can be concluded tha t only the 

JSF and UMTF cases have measurements for enough cycles of oscillation to gain

experimental results they conclude tha t the theoretical bed level should be within 

the range 0.15 <  z / k s <  0.3 below the roughness height. In the two cases of Jonsson

z  is taken to be 0 .2 below the top of the roughness elements, as illustrated in 

Figure 48.

(5.2)

Fredspe and Deigaard define 5 as the height of the maximum velocity above the bed,

p.29). An indication of the existence of a freestream is given by the value of 5 /h  or
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adequate mean (ensemble averaged) flow data. This is corroborated by the fact tha t 

the mean flow data  for the Jade estuary ensemble averaged, over 30 half cycles, is 

somewhat scattered. For the Elbe estuary this problem is circumvented by using the 

original recorded measurements over 3 cycles and no averaging is attem pted. For 

the UKCRF case the data  is recorded over only 6  cycles. This problem is discussed 

in more detail in Section 5.5.

5.1.5 Form ulating th e  Turbulent K in etic  E nergy

The turbulent kinetic energy is defined as:

ft = ~ (< u2 >  +  < v2 >  +  <  w2 > ) (5.3)
Z '

However in some cases, namely the JSF and UMTF, the spanwise component of ve­

locity, V  was not measured and thus only two components of velocity are available. 

A variety of approximations for turbulent kinetic energy are available in the litera­

ture. Mendoza and Shen (1990) assumed th a t < v2 > and < w2 > are equivalent, 

using the formula k =  | ( <  u2 > + 2  <  w2 >) to obtain the experimental kinetic 

energy. Svendsen (1987) used a modified version of this k = ~ ( <  u2 > A- < w2 >). 

Townsend (1976, p.429) suggested tha t the value of k was likely to be in the range

1.3ft' <  ft < 1.5ft' where ft' — | ( <  u2 >  +  < w2 > ), and this approximation has

been examined here in more detail. The relative turbulence intensities (Hinze 1975, 

p.641) in a boundary layer along a rough wall obtained by Corrisin and Kistler are 

shown in Figure 50. The turbulent kinetic energy (equation (5.3)) obtained from 

these values has also been plotted by the author. Figure 51 shows three approxi­

mations compared to the exact turbulent kinetic energy. The closest approximation 

was deemed to be tha t of Svendsen:

ft =  (<  u 2 >  +  < w2 > ) (5.4)

and this formula was used to obtain the experimental kinetic energy for the JSF 

and UMTF cases.
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5.2 Jade

McLean (1983) recorded field measurements in the Jade estuary in Germany at a 

site near Wilhelmshaven. McLean used orthogonally mounted mechanical current 

meters to obtain a record of three instantaneous velocity components. The velocity 

was recorded over th irty  half tidal cycles of the Jade. The velocity and Reynolds 

shear stress (determined from the velocity measurements) is shown here in Figures 

52 and 53 across half a cycle of oscillation at an elevation of 2.14 m above the bed. 

This corresponds to z /h  = 0.11 and z /5  =  0.05 as given in Table 21. These values 

indicate th a t the results are presented in the lower region of the boundary layer. 

There is considerable scatter in the data. Since no reference phase position is given 

only the magnitudes may be compared to the model results. For the k-l and k-e 

model calculations, a maximum surface slope Sm  of 2 x  105 was assumed (Baumert 

and Radach 1992).

Cyclic Variation of Flow Parameters

In Figures 52 and 53 the velocity and Reynolds shear stress model results are com­

pared to the data. These results confirm the findings of Baum ert and Radach (1992) 

and Sajjadi and Waywell (1998). Both models compute the velocity variation (Fig­

ure 52) accurately. The model prediction of the Reynolds shear stress is somewhat 

high in the accelerating quarter cycle, particularly when using the k-l model. The 

k-e model lags the k-l model by about 5° at the start of the cycle. This finding is 

repeated throughout the comparisons with other cases.

Figure 54 shows tha t both model variations of turbulent kinetic energy lag the ve­

locity by about 1 0 ° or 1240 s at the start of the cycle. At maximum flow rate the 

lag reduces to about 2 ° (250 s). Figure 55 compares the turbulence time scales (k/e) 

of both models. As might be expected the lags between the models are of the same 

order as the turbulence time scales. The time scale of the k-e model peaks at 1000 s, 

and tha t for the k-l model peaks at 700 s near the s tart of the cycle. The time scale
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reduces to about 1 0 0  s for both models at maximum flow rate.

5.3 E lbe

The second set of field data used in this study was obtained by Schroder (1987) in 

the Elbe estuary. Schroder used an acoustic Doppler technique to measure all three 

components of velocity at 1.9 m above the bed over three cycles of oscillation. This 

elevation corresponds to z /h  — 0.373 and z /5  — 0.03, which would indicate that 

the measurements were again made in the lower boundary layer near to the bed. 

In both the Elbe and Jade cases, the value of 5 calculated using equation (5.2) is 

actually greater than the water depth (h = 5.1 m for the Elbe). The value of the 

maximum surface slope S m  was taken to be 5 x 10~ 5 (Baumert and Radach 1992).

Cyclic Variation of Flow Parameters

Figures 56 -  60 show the model results compared with Schroder’s data  for the veloc­

ity, turbulent kinetic energy, Reynolds shear stress, velocity gradient and turbulent 

eddy viscosity. Again, as observed by Baumert and Radach (1992) and Sajaddi and 

Waywell (1998), the agreement between the model results and data for the velocity 

and turbulent kinetic energy is good in general. However there is a large discrep­

ancy between the calculations of Reynolds stress and the data. The model values 

are about three times the magnitude of the data at maximum flow. The models 

give an almost constant value of the ratio — <  uw > / k  ~  0.3. This constant value 

has also been found in other shear layer flow experiments (Rodi 1993, p.28). Thus 

it would appear tha t Schroder’s values of Reynolds stress are unduly small. To the 

w riter’s knowledge there are no independent model results available to verify this, 

since neither Baumert and Radach nor Sajaddi and Waywell include calculations of 

the Reynolds stress.

The velocity gradient data in Figure 59 are scattered and, given the quality of the 

data, both models give reasonable agreement. However there is a large difference
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between the k-e and k-l model results, with maxima at 0.08 s- 1  and 0.05 s- 1  re­

spectively. This leads to a similar discrepancy between the model results for the 

turbulent eddy viscosity (ut =  — < uw > /(dU /dz)). However the data bear lit­

tle relation to the model values. Schroder calculated the data  by dividing a least 

squares fit of the Reynolds shear stress by a least squares fit of the velocity gradient, 

and then taking a least squares fit of the resulting values, which could produce un­

certainty in the eddy viscosity data. This is discussed further in Section 5.4. Even 

so, it can clearly be seen th a t the magnitude of the model values (the k-l model in 

particular) is much greater than tha t of the data.

A similar cyclic variation in the turbulent time scale (k /e ) to  th a t Jade estuary 

is shown in Figure 61. Again the correspondence between the values of turbulent 

time scale and the phase lag between the turbulent kinetic energy and the velocity 

is notable. This lag can be observed more easily in Figure 62 which on one page 

compares the velocity, Reynolds stress, kinetic energy and turbulent time scale for 

half a cycle of oscillation from about 5 to 1 1  hours. For this case, the difference in 

magnitude and phase between the k-e and k-l model results is much less than for 

the Jade.

5.4 JSF

Jensen et al (1989) took measurements for 11 smooth bed cases and 4 rough bed 

cases in a small oscillating water tunnel. Laser Doppler anemometers were used to 

obtain phase averaged mean flow and turbulence measurements both perpendicular 

to the bed and in the streamwise directions. Hot film probe measurements of the 

bed shear stress were also recorded. Table 21 gives the parameters of the three data 

sets compared here: JSF10 is the only smooth bed case, JS F 1 2  is a transitional case 

from rough-to-smooth ( k f  =  44) and JSF13 is entirely rough turbulent ( k f  =  84), 

Apart from the difference in the bed, JSF 1 0  has all the same physical parameters 

as JSF13. Comparisons between the k-e and k-l model calculations and the JSF 1 0
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and JSF13 data  are presented as cycle variation over half a cycle a t 5 heights above 

the bed. The profiles against height at 1 2  phase positions across half a cycle from 

0° — 165° at 15° intervals are also presented for JSF10, JSF 1 2  and JSF13.

Cyclic Variation of Friction Velocity

Figures 63 and 64 compare the bed friction velocity data and model results across 

one cycle of oscillation for cases JSF12 and JSF13. The k-e model agreement is good 

in both cases. The k-l model predicts the phase well but is 15% -  20% in error in 

magnitude at the maximum and minimum values for both cases. In Figure 64 the 

k-e model prediction of the minimum to be 9% lower in magnitude compared to the 

data. However in the first half of the cycle, for which the k-e prediction is merely 

a translation of the results in the second half of the cycle, the agreement is good. 

This indicates incomplete reciprocation in the cyclic variation of the experimental 

data.

Profiles of Flow Parameters

Figures 65 -  67 present the velocity profiles for the JSF10, JS F 1 2  and JSF13 cases 

at phase positions between 0° and 165° at 15° intervals. The agreement between 

the data and model results is very good in all cases throughout the half cycle, and 

the k-e model captures the data extremely well for the JSF 1 2  case. In all cases the 

k-e model is better than the k-l around maximum velocity for phase positions 60° -  

120° and for 0.1 <  z /h  <  0.3.

The kinetic energy profiles for all three JSF cases are presented in Figures 6 8  -  70. 

Figure 6 8  shows th a t both models under-predict the data  a t phase positions 0° -  

45° and 105° -  165° for JSF 1 0  for which the k-l model does better then the k-e. At 

maximum velocity 60° -  90° the reverse is true, particularly for z /h  < 0.5. Similar 

results are found for the JSF13 case (Figure 70) although both models (particularly 

the k-e model) are closer to the data results than previously. However for JSF12 

(Figure 69) the k-e model results are very close to the data, and the k-l model tends



CHAPTER 5. RESULTS II: OSCILLATORY FLOW 118

to over-predict these results. This, of course, is subject to the approximation for the 

experimental values of k from equation (5.4).

all phase positions.

Eddy V iscosity D ata Formulation

In order to compare eddy viscosity profiles the eddy viscosity data must first be 

obtained. Eddy viscosity is formed by dividing the Reynolds shear stress by the ve-

Justesen (1991) used two methods to obtain eddy viscosity profiles:

1 . vt derived from measured Reynolds stresses and smoothed velocity profiles 

from experimental data. Or,

2 . vt derived from measured Reynolds stresses and velocity profiles computed 

using the k-e model.

Here eddy viscosity profiles for all three JSF cases are derived using a form of the 

first method described below. The cyclic variation of eddy viscosity is also obtained 

at the given elevations for JSF10 and JSF13, and an uncertainty measure in the 

data  is also calculated.

The velocity profiles are in the general shape of an exponential curve. Thus a least 

squares fit of the following form is applied to the velocity data  profiles:

where Ci, C2 , d± and c?2 are constants. The original measured velocity data and the 

least squares fit are compared in Figures 74 -  76 for JSF10, JSF 1 2  and JSF13 at 

phase positions 0° -  165°. It can be seen th a t the fit is not adequate at those phase

Similar trends apply to the Reynolds shear stress given in Figures 7 1 -7 3 , although 

in general the k-e predictions are far closer to the data, especially for z /h  < 0 . 2  at

locity gradient (equation (2 .2 1 )). Thus the velocity gradient must also be obtained.

(5.5)

positions which have low magnitudes of velocity. The fit is poor at 0 ° and 15°. For
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the JSF12 case the fit is also unreliable at 30°. The velocity gradient of the fits are 

shown in Figures 7 7 -  79 only for those phase positions at which the fit is good.

Applying equation (2 .2 1 ), the negative Reynolds shear stress is divided by the ve­

locity gradient fit to derive the eddy viscosity data profiles. Figures 80 -  82 compare 

the data  to the k-e and k-l model calculations. For z /h  > 0.2 the eddy viscosity 

data is rather scattered. The eddy viscosity calculated by the k-l model continues to 

increase with height. This is because Vt in the k-l model is directly dependent upon 

height, due to the length scale I = nz  in the e equation. The k-e model predicts 

a much lower magnitude of vt for z /h  =  0 .1 , but since the data  are so scattered it 

is difficult to draw any conclusions. For the JSF13 case (Figure 82) the data are 

smoother around maximum velocity at cot of 60° and 75°. This might be expected 

as the quality of the fit improves with increasing velocity, resulting in a satisfac­

tory velocity gradient. Here the agreement between the k-e model and the data is 

extremely good throughout the depth.

Cyclic Variation of Flow Parameters

The data  for the cyclic variation of flow parameters is only provided for JSF10 and 

JSF13. No cyclic variation plots are given here for case JS F 1 2 . The five elevations 

a t which comparisons are made for each case are given below:

• JSF10: z /h  =  0 .0 2 2 , 0.89, 0.27, 0.58, 0.84

• JSF13: z /h  =  0.013, 0.04, 0.13, 0.38, 0.84

This gives a range of heights throughout the boundary layer and an additional el­

evation (z /h  =  0.084) above the boundary layer (z /5  =  2.4 for JSF10 and 1.8 for

JSF13).

The agreement between the data and model calculations for the velocity in Figures 

83 and 84 is generally very good. A notable exception is for the smooth bed case
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very close to the bed (Figure 83(a)) where there seems to be some incomplete re­

ciprocation of the flow in the experimental data.

The data  for k (equation (5.4)) in Figures 85 and 8 6  are rather scattered but a 

general trend can be easily seen. In Figure 85, when close to the bed, both models 

calculations lead the JSF10 data by 20°. The k-l model continues to lag the data 

throughout the elevations, whereas the k-e model is in phase with the data in Figure 

85(c). In contrast the k-l model captures the magnitude of the data  much better at 

all elevations; the k-e model under-predicts the data. For the rough bed case the k-e 

model calculations are in much better agreement with the kinetic energy profile data 

in the lower boundary layer (Figure 8 6 (a) -  (c)). The k-l model over-predicts the 

data and k-e model calculations in this region. Again in the outer boundary layer 

(Figures 8 6 (d) and (e))-, the k-l model leads the data and the k-e model results, but 

captures the magnitude of the data better than the k-e model.

Uncertainty Measure for the Reynolds Shear Stress D ata

The plots of Reynolds shear stress for cases JSF10 and JSF 13 at 5 elevations are 

given in Figures 87 and 8 8 . It is clear th a t there is considerable scatter in the data. 

To overcome this problem the following method described in Letherman (1999) and 

Letherman et al (2000) fits a continuous polynomial <^poiy(wt) to the Reynolds stress 

experimental data at each elevation. A root mean square uncertainty value ±A</> at 

each elevation is then calculated as
_ i

1 71 1 2
— 5 3  (^data,i — ^poly,i) (^-6 )

i—1
where i = 1 , . . . ,  n  represents the discrete record of the Reynolds shear stress exper­

imental data  a t a given elevation.

In Figures 87 and 8 8  the ‘fit’ is represented as a dot-dash line with vertical uncer­

tainty bars superimposed at regular intervals. 71% of the original data points fall 

within the uncertainty range. In Figures 87(b) and (c) both models’ results gener­

ally fall within the uncertainty range. The k-e model captures the phase response of

A0 =
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the data fit better than the k-l model. In the outer boundary layer region (Figures 

87(d) and (e)) the k-l model captures data better than the k-e model, but neither 

come within the uncertainty range for most of the cycle of oscillation. For JSF13 in 

Figure 8 8  the k-e model is definitely much closer to the data  at all elevations. Close 

to the bed in Figure 8 8 (a), both models overpredict the maximum and minimum 

points of the data. At higher elevations the k-e model generally comes within the 

uncertainty range. The k-l model over-predicts the data  and at higher elevations 

tends to lead the data  and k-e model.

The velocity gradient data is compared to model results in Figures 89 and 90. This 

compares the ‘da ta5, the velocity gradient obtained from the original velocity data, 

denoted by the solid dots, and the ‘fit5, th a t is the velocity gradient obtained from 

the least squares fit of equation (5.5) to the velocity data  denoted by the circles. As 

explained above only those data points at which an adequate fit exists are shown on 

Figures 89 and 90, th a t is between 30° and 165° at 15° intervals, a t all 5 elevations.

For the JSF10 case in the lower boundary layer region (Figure 89(a) -  (c)) both 

‘d a ta 5 and ‘fit5 points are reasonably in phase with the model results. The ‘fit5 

points under-predict both the model calculations and the ‘d a ta 5 points. The points 

are quite scattered in the upper boundary layer region (Figure 89(d) -  (e)) where 

z /h  = 0.58 and z /h  = 0.84. This is also true for the JSF13 case (Figure 90). How­

ever the curves of the ‘d a ta 5 and ‘fit5 points are smoother, although they still show 

little agreement. Although the ‘da ta 5 points are closer to the model calculations, it 

is the ‘fit5 points th a t are used to calculate the eddy viscosity. Applying equation 

(2 .2 1 ) to obtain the eddy viscosity, the polynomial fit to the Reynolds shear stress 

data is divided by the velocity gradient fit. The uncertainty in the Reynolds shear 

stress fit at each elevation and each available phase position (from 30° -  165° at 15° 

intervals) is also divided by the velocity gradient. Thus eddy viscosity data and the 

‘inherited5 uncertainty ranges are obtained and compared to the model calculations 

in Figures 91 and 92 for JSF10 and JSF13 respectively. The data  and uncertainty
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measures in Figures 91 and 92 are rather uneven. However the k-e model does seem 

to capture the data better in JSF 1 0  at 2  =  0 . 0 2 2  m and 0.089 m (Figures 91(a) 

and (b)). The superiority of the k-e model can be clearly seen in Figures 92(a), 

(b) and (c) for the JSF13 case. The phase response of the data in Figures 92(a) is 

definitely predicted by the k-e model. As before, the k-l model tends to over-predict 

the magnitude of the data at higher elevations in the outer regions of the boundary 

layer.

5.5 U K  Coastal Research Facility (U K C R F)

While only a brief description of this experiment was given in Letherman et al 

(2000); the experimental details are described more fully here. Experiments were 

conducted by Lloyd et al (1997) at the UK Coastal Research Facility in HR Walling­

ford, Oxfordshire. The UKCRF is a large-scale wave-current basin. A photograph 

of the facility is shown in Figure 93. Oscillating flows are generated in the 36 m x 

19 m basin by four variable speed reversible pumps controlled by a PC. The sumps, 

pumps and flow straighteners provide control of the transverse velocity profile. Only 

the horizontal bed section of the facility is of concern here (h =  0.48 m). The bed 

was covered in 10 mm effective diameter granite chippings. The flow parameters 

of the experiment are detailed in Table 2 1 . Measurements of three components of 

velocity were made using acoustic Doppler velocimeters and ultrasonic current me­

ters. Figure 94 illustrates the experimental set-up.

The velocities were measured at 1 1  different heights from the bed between 0.004 m 

and 0.471 m. Samples were recorded over six complete cycles of oscillation (T =  180 s) 

at a frequency of 25 Hz (every 0.04 s). From the raw data, quantities such as mean 

velocities and (possibly) the turbulence quantities and Reynolds stresses may be 

extracted. Noise in the measurements may be due to the instruments or unwanted 

particles in the fluid and to errors, for example skewness in the oscillation.
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Usually the mean flow quantities are extracted from the raw data by ensemble- 

averaging over a large number of oscillations. The six cycles of oscillation recorded 

here are not enough, however, to obtain a reasonable ensemble average. As men­

tioned above, 50 or more cycles would be recommended. Thus an alternative method 

is applied by the author to extract the mean velocity.

The raw velocity data ensemble-averaged over six cycles are presented at 11 depths 

in Figure 95. There is a great deal of noise in the data. The expected predominant 

frequency in the flow is the driving frequency /  =  1/180 Hz. In order to extract 

the mean velocity, a Fourier transform of the raw data is taken and a cut-off filter is 

applied to remove the noise. This method is illustrated for the bulk velocity (inte­

grated over the depth) which is calculated using equation (3.39). The bulk velocity 

derived from the measured streamwise velocity ensemble averaged over six cycles is 

shown in Figure 96.

Extraction of the M ean Velocity

The discrete Fourier transform of the bulk velocity is taken by applying the following 

equation

amplitude of the velocity in the streamwise direction is calculated and plotted 

against frequency as illustrated in Figure 97. The predominant frequencies at 

/  =  0.0056 Hz and 0.017 Hz represent the first and third harmonics. These harmon­

ics were evident throughout the individual velocity records a t different elevations. 

The following low-pass filter was applied to remove the noise and turbulence:

N —i x 27r(k — l)(n  — 1 ) _fft(&) — U(n) exp for 1 <  k < N  (5.7)

where i is the complex number V —F This equation describes a discrete Fourier 

transform converting the time-dependent data to frequency-dependent data. The

1 for 0  <  /  <  x

0  for x  <  /  <  f i
(5.8)
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where x  the cut-off frequency is taken to  be 0.05, and / 1 is the Nyquist, or folding 

frequency. Thus all the amplitudes above 0.05 Hz were set to zero and the following 

inverse Fourier transform was calculated, given by

N

Usm0oth(n) =  T f  S  exP
k- 1

The smoothed bulk velocity is shown in Figure 98 with the noise and turbulence 

extracted. This smoothed bulk velocity is used as input to the code to calculate the 

model results.

i x 27r(A: — l)(n  — 1 )
N

for 1 <  n  < N  (5.9)

Extraction of the Turbulence Quantities

The question of distinguishing the turbulence data from noise now arises. It is hoped 

th a t the frequency spectrum of the turbulence quantities will lie inbetween tha t of 

the mean and noise. To find the frequency spectrum of the turbulence data, the 

turbulence time scales must be estimated. The large scale turbulence denoted Tl is 

obtained as k/e. k can be estimated as <  u > 2. The dissipation e can be estimated 

from equation (2.38), e =< u > 3 /«#, where k, =  0.4. Therefore

Tl =  * *  _5L _ (5.!0)
e < u >  v '

The small-scale (Kolmogorov) turbulence time scale is equivalent to

The approximate frequency range of the turbulence can then be calculated.

The value of < u > was estimated as 0.02 m /s by ensemble averaging. Taking 

a depth of 0 . 2  m for example the large-scale turbulence is given by Tl =  0 . 2  x 

0.4/0.02 ~  4s. This gives a frequency of roughly 0.25 Hz. For the small scale 

turbulence,
/1 0 “ 6 x 0.4 x 0. 2\*

T s  =  (  . 0.023 )  ̂ ° ' l s  <5-12)

which gives a frequency of approximately 1 0  Hz. The Nyquist frequency 12.5 Hz is 

half of the sampling frequency. Thus the noise is the same order as the small-scale
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turbulence. This problem could be overcome by using a larger sampling frequency. 

A sampling frequency ten times th a t of the small scale turbulence e.g. 100 Hz might 

be adequate.

The uncertainty of a sample can be estimated by calculating the standard deviation. 

Given n = 1 , . . . ,  N  discrete measurements of the velocity U, the mean of a sample 

at a particular phase position is given by

V = j f ' t u n (5.13)
JV 71=1

The standard deviation of the sample is given by

This is equivalent to the usual method used for extracting the turbulence quantities, 

as used by Jensen et al (1989), Sleath (1987) and McLean (1983). The uncertainty 

of the mean of the sample is given (to a 9 5 % confidence level) by

A U = ± 2  °  (5.15)

Say a  =  0.02 (estimated for the turbulence quantity < u >), then

for N  =  6 , A U ~  ± 0 . 0 2

for N  =  100, M J  ~  ±0.004 

Thus if only six cycles are sampled then the uncertainty of the mean is of the same 

order as the turbulence quantities, and thus the actual turbulence values could be 

invalid. The more cycles of oscillation tha t are sampled, the less the uncertainty. If 

1 0 0  cycles are sampled then the uncertainty is much less than  the magnitude of the 

turbulence quantities and so the derived turbulence values should be more accurate.

To summarise, the UKCRF data is not adequate to extract the turbulence quantities. 

The reasons for this are:

•  The number of cycles sampled was too low. The order of uncertainty of the 

mean velocity is the same as the order of magnitude of the turbulence quan­

tities since only 6  cycles have been sampled. To obtain a statistically valid

(5.14)
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phase average then approximately 50 cycles of oscillation should be measured,

•  The sampling rate of 25 samples per second was not high enough. The small- 

scale turbulence is the same order as the noise. A sampling rate of 100 Hz is 

recommended for this experiment.

Thus only the mean velocity data is adequate. The smoothed velocity data is derived 

using the same method as above for the bulk velocity. The cyclic variation of the 

smoothed velocity data  is compared to the model results a t 1 1  heights above the 

bed in Figure 99. The agreement between the model calculations and the data 

is reasonably good at all heights. The velocity data is also presented in semi- 

logarithmic profile plots at phase positions 0° -  160° in 20° intervals in Figure 100. 

Here it can be seen more clearly tha t the k-e model captures the data better than the 

k-l model, particularly around the point of maximum velocity. The semi-logarithmic 

fits used to obtain the experimental values of the friction velocity are shown for the 

1 0 0 ° -  160° phase positions.

The friction velocity through one cycle of oscillation is given in Figure 101. Both 

the k-e and k-l model calculations lead the data by approximately 10°. Again as for 

cases JSF12 and JSF13 the k-e model computes the magnitude of UT better than 

the k-l model, which tends to over-predict the cycle maxima.

5.6 U niversity  o f M anchester Tidal F lum e (U M T F)

The UMTF is a large-scale tidal flume situated in the Simon Building of the Uni­

versity of Manchester. The dimensions of the flume are 1 1 m long x 3.3 m wide x 

0 . 2  m deep. A schematic of the experimental set-up is shown in Figure 1 0 2 . A uni­

directional variable speed pump generates oscillatory current flows with a nearly 

sinusoidal velocity variation. The valves change the direction of the flow. Flow 

straighteners help to produce a uniform transverse velocity. The rough bed was
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made from a uniform covering of gravel with a 5 mm diameter on a smooth bot­

tom surface. 2-D Laser Doppler Velocimeters measure the streamwise and vertical 

velocity components. The experimental data was measured by Dr. C. Chen and 

Dr. D. Chen of the Engineering Dept., University of Manchester.

UM TF Input to the Bulk Velocity Code

The measured velocity was used as input to the bulk velocity code to give the k-e  

and k- l  model calculations of the flow. The bulk velocity derived by the author from 

the measured velocities using equation (3.39) is compared to the cyclic variation of 

U a t the maximum measurement height in Figure 103. Before this can be used in 

the code the data  must be smoothed. As with the UKCRF case, this is achieved 

by the author by applying a Fourier transform to the data. The amplitude of the 

velocity is plotted against frequency in Figure 104. A low-pass cutoff filter (equation 

5.8) is applied a t /  =  0.08 Hz such tha t all amplitudes above 0.08 Hz are set to zero. 

An inverse Fourier transform is then applied and the smoothed data are compared 

to the original bulk velocity in Figure 105. A polynomial fit of order 11 is fitted 

to the smoothed data  to obtain the bulk velocity at many phase positions across a 

cycle. This is illustrated in Figure 106.

As mentioned in Section 3.2.4 an attem pt was made to use 100 vertical nodes in 

the model calculations. Additionally the position of the first velocity node was to 

satisfy the following criteria:

The first restriction was satisfied without exception. Unfortunately it was not pos­

sible to simultaneously use 100 nodes and satisfy equation (5.17). In comparison 

with the UMTF data only 10 velocity nodes could be used whilst maintaining Z i / k s 

as low as possible.

30 <  z t m„  < 100 (5.16)

(5.17)0.03 <  Z i/k , <  0.1
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Cyclic Variation of Friction Velocity

The cyclic variation of friction velocity is given in Figure 107. Again the experimen­

tal values are derived from a semi-logarithmic fit to the measured velocity profiles. 

Both models compute the magnitude of the data well, however they lead the data 

by approximately 20°. This is similar to the findings for the UKCRF which were 

processed in a similar manner, but not of Jensen et al (1989) for which the UT data 

and model results were in phase. For the JSF12 and JSF13 cases many more veloc­

ity points were measured in the logarithmic region, thus providing a more reliable 

fit. An alternative method of deriving the friction velocity is shown in Figure 108. 

This is same as Figure 107 with the additional estimation of square of the friction 

velocity, UT is equal to the Reynolds shear stress close to the wall where viscous 

stress is negligible:

Ifi = W = _ < uw > (5.i8)
P

Here the shear stress is shown for the measurement point £ =  0.011 m. The magni­

tude is roughly 0 . 6 6  times tha t of the data and model predictions, but the phase of 

both models lags the data by about 2 0 °.

Profiles of Flow Parameters

The velocity profiles are shown in Figure 109 for 0° -  345° at 15° intervals. The 

model results are in reasonable agreement with the data but the peaks at 0 . 0 1  m 

<  z  <  0.02 m are not captured for phase positions 90° -  150° and 270° -  330°. 

Figure 110 shows the semi-logarithmic fit to the UMTF velocity data in order to 

obtain the friction velocity. Figure 111 shows the turbulent kinetic energy profiles. 

The model predictions at about 0.01 m show an anomalous peak at 45° -  150° and 

225° -  330°. This is likely to be the result of using too few vertical nodes in the 

model calculations. For z  >  0.01 m the k-e model predicts the data  well and the k-l 

model tends to over-predict the data.

Again irregular peaks can be seen close to the bed in the model calculations of
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Reynolds shear stress in Figure 112. Similarly the k-e model predictions are closer 

to the data than  the k-l in the upper region of the boundary layer.

In order to derive the eddy viscosity data, data processing must be carried out as 

described for the JSF cases in Section 5.4. Firstly the velocity gradient is derived. 

The velocity data  profiles and least squares fits are given in Figure 113. Figure 

114 then shows the gradient of the fits and the data  at those phase positions for 

which the fit is good: namely 0°, 75° -  180° and 240° -  345°. Equation (2.21) is 

then applied to the Reynolds shear stress and velocity gradient fit to obtain the 

eddy viscosity. This is compared to the model calculations in Figure 115. Again the 

model calculations are unreliable close to the bed. The magnitude of z/4 predicted 

by the k-l model increases with height, this trend was also found with the JSF case. 

The k-e model captures the data much better at £ >  0.02.

Cyclic Variation of Flow Parameters

Figure 116 shows the variation of velocity over one cycle of oscillation. Eight el­

evations are examined from z  =  0.01 m to 0.08 m representing z /5  =  0.3 to 2.3. 

In all examinations of the data at z  — 0.01 m there is some error in the data. At 

the other elevations the velocity data is predicted well by the model calculations in 

general. At higher elevations the model results under-predict the magnitude of the 

maximum forward and reverse velocity by about 10%. The cyclic variation of kinetic 

energy is shown in Figure 117, with the experimental data  again represented by the 

approximation (5.4). In Figure 117(b) the k-l model captures the maxima but not 

the minima of the experimental data better than the k-e model. This pattern is 

repeated for plots 117(c), (d) and (e). However in this lower boundary layer region 

the k-e model predicts the data phase response better. In the outer boundary layer 

regions Figure 117 (f) -  (h) the k-l model over-predicts and the k-e model under- 

predicts the data.

The cyclic variation of Reynolds shear stress is given in Figure 118. A polynomial of



CHAPTER 5. RESULTS II: OSCILLATORY FLOW 130

order 5 was fitted to the data and experimental uncertainty was estimated using the 

same method as before for JSF10 and JSF13 (Section 5.4). At the lower elevations 

z =  0.02 -  0.05 m the k-l model is somewhat more accurate than the k-e model, 

which tends to calculate values of Reynolds shear stress th a t are too low. Again the 

k-l model tends to lead the data, the higher the elevation the greater the lead. The 

k-e model is more accurate in resolving the phase response of the Reynolds shear 

stress. At higher elevations (Figure 118(f) -  (h)) there seems to be some error in the 

resolution of the data. Possibly the values have become too small for the measuring 

instruments to record a difference between them.

Figure 119 gives the data and least squares fit of the velocity gradient compared to 

the model results. At higher elevations z >  0.04 the fit and data  are in good agree­

ment, and for Figure 119(c), (d) and (e) the model agreement is also reasonably 

good. Close to the bed (b) and near to the surface (f) -  (h) the data values of the 

velocity gradient are much larger than the model results.

The eddy viscosity data  is formed in the same manner as before (see Section 5.4) 

and the uncertainty from the Reynolds shear stress fit to the data is ‘inherited’ 

by z/t . In Figure 120 the model results and the data show little agreement. Both 

models return greater values of the eddy viscosity than the derived data, the k-l 

model giving values of up to 10 times as much as the data. Towards the bed for (b) 

2  =  0.02 m to (d) z =  0.04 m the k-e model resolves the phase response of the data 

well. However, the accuracy of the data  after much processing is uncertain.

5.7 Sensitiv ity  to  Standard and Variant M odel 

C onstants

The final section in this chapter is concerned with the sensitivity of the computations 

to the turbulence model constants. This has been previously discussed in Section 

2.3.7. The value of in the k-l model is altered from the standard value of 0.08 for
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this model, to the variant value of 0.09, usually used for the k-e model. For the k-e 

model it is <t6, the turbulent Prandtl number for diffusion th a t is examined. The 

standard value of ae =  1.3 is compared to the variant value = 1.1.

The flow parameter examined is the friction velocity UT for the Jade, Elbe, JSF12 

and JSF13 cases shown in Figures 1 2 1  -  124. It can be easily seen th a t the difference 

between the results for the standard and variant model constants for the k-l model 

are negligible. The percentage difference between the calculations at the maximum 

is always less than 0.5%. This insensitivity to the value of is surprising and has 

been discussed in Section 2.3.7. As expected, altering the value of <re in the k-e 

model produces a slight difference in the results. The percentage change between 

the standard and variant results at UTimax varied between 1% and 3%.
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Conclusions

Steady Channel and Unsteady P ipe Flow

The low-Reynolds number Launder and Sharma (1974) k-e and the Cotton and Is­

mael (1998) k-e-S turbulence models were applied to the steady channel flow cases 

of Kim et al (1987) and Kim (1990) for Re of 5600 and 13750. Both the k-e and 

k-e-S models capture the features of steady channel flow. The k-e-S  model tends 

to be in better agreement with the DNS data of Kim et al (1987, 1990). The most 

pronounced example of this agreement is at the near-wall peak of the turbulent ki­

netic energy, where the k-e model is significantly below the data and k-e-S model 

calculations. The turbulent dissipation rate profile of the Kim et al DNS data near 

to the wall (for z + <  10) is not captured by either model. The models do not agree 

with the data  profiles of the turbulent Reynolds number and anisotropic shear stress 

towards the centreline (z+ > 100 for Re  =  5600 and z + >  200 for Re  =  13750)

The EVM models above and the Launder and Shima (1989) RSTM (including 

Shima’s (1989) modification) were applied to transient pipe flow and compared 

over a range of frequencies with the wall shear stress and friction coefficient data 

of Finnicum and Hanratty (1988). The dimensionless frequency parameter w+ =  

<jov/  U* characterises the pipe flow. The amplitude of the wall shear stress is well 

predicted by the Launder and Sharma k-e model, Cotton and Ismael k-e-S model

132
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and RSTM at high frequencies for which c<;+ > 0.05. All solutions collapse onto a 

quasi-laminar asymptote. A dip exists in the Finnicum and H anratty (1988) exper­

imental data  for the amplitude of the wall shear stress within the frequency range 

0.007 <  lo+ <  0.02. This is not wholly captured by any of three turbulence models 

applied (k-e, k-e-S and RSTM). Overall the Launder and Sharma k-e model appears 

to be the most accurate of the three in the region of transition from quasi-steady 

to quasi-laminar states. The RSTM model captures the phase of the Finnicum and 

H anratty data  better than the two EVM models.

These three models were also compared to the periodic pipe flow experimental data 

of Tu and Ram aprian (1983). Cyclic variation of the wall shear stress and friction 

velocity were examined and flow velocity and Reynolds shear stress variation were 

considered across a cycle at two radial positions, near to the wall and near to the 

centreline. Profiles were also given at four phase positions across a cycle. The k-e-S 

model tends to be in closer agreement with the Tu and Ram aprian data towards the 

wall, whereas the RSTM is better towards the centreline. The RSTM model tends 

to  lag the data  and the EVM models lead the data. This phase difference is more 

pronounced towards the centreline of the pipe.

Overall an RSTM which models the transport of the individual turbulent stresses 

is necessary to capture the finer details of transient flow. The k-e-S model predicts 

the flow better than  the k-e model and tends to capture the flow as well as, if not 

better than, the RSTM model near to the wall. However, the superiority of the 

RSTM and indeed the k-e-S model may not compensate for the greater complexity 

of the models and the inevitable increased computational effort.

Shallow W ater Oscillatory Flow over Sm ooth and Rough Beds

High-Reynolds-number one-equation k-l and two-equation k-e turbulence models 

have been applied to oscillatory flows over rough and smooth beds. These flows 

represent a wide range of defining parameters.
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The models were compared to seven different experimental cases including the field 

data of McLean (1983) and Schroder (1987), the small-scale laboratory experiments 

of Jensen, Sumer and Fredspe (1989) and the large-scale laboratory experimental 

data  of Lloyd et al (1997) and data from the University of Manchester Tidal Flume 

of Dr. C. Chen and Dr. D. Chen, Dept, of Engineering, University of Manchester.

It is found th a t the agreement with the velocity data is satisfactory for both models, 

although the k-e model is the superior scheme. Both models predict the cyclic 

variation and profiles of velocity adequately. The k-e model resolves the Reynolds 

shear stress and turbulent kinetic energy in the lower boundary layer (z /5  <  0 .2 ) 

significantly better than the k-l model. However in the outer boundary layer (z /5  > 

0.5) it is difficult to judge the relative accuracy of either model given the uncertainty 

in the experimental data. Although k-e model does not accurately predict the 

magnitude of the turbulence quantities well in the outer flow region, the phase 

response in this region is predicted fairly well. The k-e model performs better than 

the k-l scheme in comparison with the derived experimental eddy viscosity data. 

In particular, the k-l model produces values of v% far greater than the data in the 

outer region of the flow. This is due to the length scale I — k z  increasing linearly 

with height. However the experimental uncertainty bands for the Reynolds shear 

stress and eddy viscosity data are large and the accuracy of the model assessment 

for these parameters is questionable.

It would be interesting compare these results with a variation of the k-l model, for 

which the length scale, I only increased linearly up to a certain height, which is 

illustrated in Figure 125.

Overall the k-e model performance is better than the one-equation k-l scheme, as 

might be expected. This is attributed solely to the inclusion of a rate equation for 

e in the k-e model. Even so the agreement between the k-e model results and the 

experimental data  for the Reynolds stresses are poor in the outer flow region. This 

is possibly due to the breakdown of the eddy viscosity concept in this region, or
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possibly due to the uncertainty in the experimental data. In the transient pipe flow 

an RSTM model was necessary to capture the flow details in this region. This might 

also prove to be the case for rough bed oscillatory flows. However, it may not be 

possible to assess such a turbulence model properly, without first obtaining more 

accurate data sets.
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EVM K, cn Cel Ce2 Ce3 Cjfc Vs
High-Reynolds-number k-l 0.4 0.08 — — - — 1 . 0 — —
High-Reynolds-number k-e 0.4 0.09 1.44 1.92 — 1 . 0 1.3 —
Launder and Sharma k-e 0.4 0.09 1.44 1.92 2 . 0 1 . 0 1.3 —
Strain param eter k-e-S 0.4 0.09 1.44 1.92 0.9 1 . 0 1 . 2 1 6 . 0

Table 1: Eddy viscosity model constants and von K arm an’s constant

cf. Blundell 7.278 
and Cotton

Cf  x 10~ 3 SOLVE
Convergence test Convergence test

Near-wall U and k k residuals U and k k residuals
Switch a t z+ = 1.5 7.3065

(+0.4%)
7.3065

(+0.4%)
7004 6880

at z + =  2 . 0 7.3456
(+0.9%)

7.3456
(+0.9%)

6876 6828

Quadratic Approx. f 7.1411 
(-1 .8 %)

- 13956 --
Staggered Discret. 7.1852

(-1.3%)
7.1852

(-1.3%)
10504 9900

fDirect comparison with results of Blundell and Cotton (1995) 
‘---- ’ indicates th a t the solution does not converge.

Table 2: Comparison of convergence tests and treatm ent of k near the wall: k-e 
model for channel flow Re = 5600
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cf. Blundell 7.729 
and Cotton

Cf  x lO" 3 SOLVE
Convergence test Convergence test

Near-wall U, and 
k

U, k 
and S

k
residuals

U and
k

U, k 
and S

k
residuals

Switch at z+ =  1.5 7.6971
(-0.4%)

7.6970
(-0.4%)

7.6971
(-0.4%)

8115 18590 8610

at z + =  2 . 0 7.6952
(-0.4%)

7.6952
(-0.4%)

7.6952
(-0.4%)

8130 18365 8560

Quadratic Approx. f 7.6005 
(-1.7%)

---- .. . ' 17115 ----- -----

Staggered Discret. 7.6634
(-0.7%)

7.6634
(-0.7%)

7.6634
(-0.7%)

11930 33970 13030

Table 3: Comparison of convergence tests and treatm ent of k near the wall: k-e-S 
model for channel flow Re = 5600

cf. Blundell 5.811 
and Cotton

Cf  x 10~ 3 SOLVE
Convergence test Convergence test

Near-wall U and k k residuals U and k k residuals
Switch at z + — 1.5 5.8866

(+1.3%)
5.8866

(+1.3%)
10832 11696

at z+ =  2 . 0 5.9183
(+1.9%)

5.9183
(+1.9%)

10816 11496

Quadratic Approx. f 5.7543 
(-1 .0 %)

---- 22576

Staggered Discret. 5.7900
(-0.4%)

5.7900
(-0.4%)

15712 17052

Table 4: Comparison of convergence tests and treatm ent of k near the wall: k-e 
model for channel flow Re  =  13750
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cf. Blundell 6.333 
and Cotton

Cf  x 1 0 “ 3 SOLVE
Convergence test Convergence test

Near-wall U, and
k

U, k 
and S

k
residuals

U and 
k

U, k 
and S

k
residuals

Switch at z + =  1.5 6.3377
(+ 0 .1 %)

6.3377
(+ 0 .1 %)

6.3377
(+ 0 .1 %)

13165 23205 12230

at z + = 2 . 0 6.3355
(+ 0 .0 %)

6.3355
(+ 0 .0 %)

6.3355
(+ 0 .0 %)

13165 22995 12205

Quadratic Approx. f 6.2610 
(-1 .1 %)

6.2610
(-1 .1 %)

---- 24025 69385 ----

Staggered Discret. 6.3116
(-0.3%)

6.3116
(-0.3%)

6.3116
(-0.3%)

16975 34290 12930

Table 5: Comparison of convergence tests and treatm ent of k near the wall: k-e-S 
model for channel flow Re = 13750

c.f. Cotton 7.6993 Cf  x 10- 3

Convergence test
Near-wall U and U, k k

k and S residuals
Switch at z+ =  1.5 7.6971 7.6970 7.6971

(-0.03%) (-0.03%) (-0.03%)
at z+ — 2 . 0 7.6952 t  7.6951 7.6952

(-0.05%) (-0.05%) (-0.05%)
Quadratic Approx. 7.6005

(-1.28%)
----- -----

Staggered Discret. 7.6634 7.6634 7.6634
(-0.47%) (-0.47%) (-0.47%)

^Direct comparison with results of Cotton

Table 6 : Comparison of convergence tests and treatm ent of k near the wall with 
results of Cotton for which the switch near the wall at z + =  2 . 0  was used: k-e-S 
model for channel flow Re = 5600
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c.f. Cotton 7.6678 Cf  x 1 0 ~ 3

Convergence test
Near-wall U and 

k
U, k 

and S
k

residuals
Switch at z + — 1.5 7.6971

(+0.38%)
7.6970

(+0.38%)
7.6971

(+0.38%)
at z + — 2 . 0 7.6952

(+0.36%)
7.6951

(+0.36%)
7.6952

(+0.36%)
Quadratic Approx. 7.6005

(+ 0 .8 8 %)
---- ----

Staggered Discret. 7.6634
(-0.06%)

t  7.6634 
(-0.06%)

7.6634
(-0.06%)

^Direct comparison with results of Cotton

Table 7: Comparison of convergence tests and treatm ent of k near the wall with 
results of Cotton for which staggered discretisation near the wall was used: k-e-S 
model for channel flow Re  =  5600

Turbulence Model No. of Nodes Cf  x 103 % change SOLVE
k-e
Re =  5600

1 0 1 7.1852 9900
2 0 1 7.1466 -0 .5 4 10304
51 7.3084 +1.71 9828

k-e-S
Re =  5600

1 0 1 7.6758 13460
2 0 1 7.6758 -0 .2 8 13700
51 7.6758 +0.96 12950

k-e
Re =  13750

1 0 1 5.7900 17052
2 0 1 5.7900 -0 .5 5 16968
51 5.7900 + 1 . 8 8 16396

k-e-S
Re =  13750

1 0 1 6.3223 13320
2 0 1 6.3223 -0 .28 13275
51 6.3223 +1.19 13125

Table 8: Sensitivity tests on TRANSIT based on number of radial grid nodes, iz.
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Turbulence Model 4 z - 1 Cf  x 1 0 3 % change SOLVE
k-e
Re =  5600

0.25 7.1852 9900
0.125 7.2098 +0.34 27363
0.5 7.1777 - 0 . 1 0 7680,

k-e-S
Re =  5600

0.25 7.6758 13460
0.125 7.7122 +0.47 35777
0.5 7.6252 - 0 . 6 6 8735

k-e
Re =  13750

0.25 5.7900 17052
0.125 — __
0.5 5.7872 -0 .05 11584

k-e-S
Re =  13750

0.25 6.3223 13320
0.125 6.3505 +0.45 37237
0.5 6.2818 -0 .64 12560

‘— ’ indicates th a t the solution did not converge.

Table 9: Sensitivity tests on TRANSIT based on position of near wall node,

Turbulence Model (A t) 0 Cf  x 103 % change SOLVE
k-e
Re =  5600

v /U bUT 7.1852 9900
0  .hv/UbUT 7.1852 0 . 0 12472

2v/U bUT 7.1854 0 . 0 8464
k-e-S
Re =  5600

v jU bUT 7.6758 13460
0,5z*/UbUT 7.6758 0 . 0 13180

2v/U bUT 7.6758 0 . 0 13494
k-e
Re =  13750

v/U bUT 5.7900 17052
0.5z//U bUT 5.7900 0 . 0 21804

2v/U bUT 5.7900 0 . 0 14816
k-e-S
Re =  13750

vjU bUT 6.3223 13320
0.5 v/U bUT 6.3223 0 . 0 23210

2v/U bUT 6.3223 0 . 0 13549

Table 10: Sensitivity tests on TRANSIT based on initial time step, (At)
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Turbulence Model &R Cf  x 1 0 3 % change SOLVE
k-e
Re =  5600

0 . 2 7.1852 9900
0 . 1 7.1852 0 . 0 16656
0.4 7.1852 0 . 0 10124

k-e-S
Re =  5600

0 . 2 7.6758 13460
0 . 1 7.6758 0 . 0 18900
0.4 7.6757 0 . 0 12530

k-e
Re =  13750

0 . 2 5.7900 17052
0 . 1 5.7901 0 . 0 27040
0.4 5.7900 0 . 0 14760

k-e-S
Re =  13750

0 . 2 6.3223 13320
0 . 1 6.3223 0 . 0 15150
0.4 6.3223 0 . 0 13640

Table 11: Sensitivity tests on TRANSIT based on relaxation factor, o,r

Turbulence Model Ck Cf  x 103 % change SOLVE
k-e
Re =  5600

0 . 0 1 7.1852 9900
0.005 7.1852 0 . 0 20344
0 . 0 2 7.1852 0 . 0 5812

k-e-S
Re =  5600

0 . 0 1 7.6758 13460
0.005 7.6758 0 . 0 24445
0 . 0 2 7.6758 0 . 0 6635

k-e
Re =  13750

0 . 0 1 5.7900 17052
0.005 5.7900 0 . 0 25176
0 . 0 2 5.7900 0 . 0 11876

k-e-S
Re =  13750

0 . 0 1 6.3223 13320
0.005 6.3223 0 . 0 20015
0 . 0 2 6.3223 0 . 0 11605

Table 12: Sensitivity tests on TRANSIT based on convergence criterion,
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Turbulence Model ^total ( )̂ Cf  x 1 0 3 % change SOLVE
k-e
Re =  5600

15.0 7.1852 9900
30.0 7.1852 0 . 0 13900

7.5 7.1952 + 0 . 1 7900
k-e-S
Re =  5600

15.0 7.6758 13460
30.0 7.6752 0 . 0 18460

7.5 7.6979 +0.3 10960
k-e
Re =  13750

6 . 0 5.7900 17052
1 2 . 0 5.7900 0 . 0 25052
3.0 5.7943 + 0 . 1 13052

k-e-S
Re =  13750

6 . 0 6.3223 13320
1 2 . 0 6.3223 0 . 0 23320
3.0 6.3241 0 . 0 8320

Table 13: Sensitivity tests on TRANSIT based on to tal duration, t totai •

Case Model iz U  x io ~ 2 % change
JSF13 k-l 1 0 1 0.726

2 0 1 0.732 + 0 . 8 8

51 0.724 -0.23
JSF13 k-e 1 0 1 0.640

2 0 1 0.648 1.25
51 0.640 0 . 0

UMTF k-l 1 1 2.40
2 1 2.40 0 . 0

6 2.25 -6.25
UMTF k-e 1 1 2.55

2 1 2.33 -8 . 6

6 2.42 -5.1

Table 14: Sensitivity tests on SW1DV based on number of grid nodes, iz
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Case Model iz +
+  max /«, x  1 0 ” 2 % change

JSF13 k-l 1 0 1 41.88 0.726
81 52.58 0.725 -0.14
61 70.68 0.724 -0.28
46 95.33 0.724 -0.28

JSF13 k-e 1 0 1 39.39 0.640
81 49.45 0.639 -0.16
61 66.50 0.639 -0.16
46 89.83 0.641 +0.16

UMTF k-l 1 1 35.45 2.40
9 44.20 2.38 -0.83
7 58.37 2.32 -3.33
5 85.20 2.16 -1 0 . 0 0

UMTF k-e 1 1 35.89 2.55
9 45.12 2.56 +0.39
7 59.73 2.50 -1.96
5 86.42 2.27 -10.98

Table 15: Sensitivity tests on SW 1 DV cases based on the position of the near-bed 
grid node, z f max

Case Model h (m) f w x 1 0 " 2 % change
JSF13 k-l 0.366 0.726

0.732 0.721 -0 . 6 8

0.168 0.724 -0.28
JSF13 k-e 0.637 0.640

1.274 0.639 -0.16
0.319 0.648 +1.25

Table 16: Sensitivity tests on JSF cases based on to ta l depth, h
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Case Model ntper f w x 1 0 “ 2 % change
JSF13 k-l 580 0.726

1 0 0 0 0.726 -0.13
250 0.727 +0.14

JSF13 k-e 580 0.640
1 0 0 0 0.640 0 . 0

250 0.641 +0.16
UMTF k-l 1 0 0 0 0 2.40

2 0 0 0 0 2.40 0 . 0

5000 2.40 0 . 0

UMTF k-e 1 0 0 0 0 2.55
2 0 0 0 0 2.55 0 . 0

5000 2.55 0 . 0

Table 17: Sensitivity tests on SW1DV cases based on number of steps per cycle, 
ntper

Case Model eye f w x 1 0 “ 2 % change
JSF13 k-l 5 0.726

1 0 0.726 0 . 0

2.5 0.726 0 . 0

JSF13 k-e 5 0.640
1 0 0.640 -0.78

2.5 0.640 +2.19
UMTF k-l 1 0 2.40

2 0 2.40 0 . 0

5 2.40 0 . 0

UMTF k-e 1 0 2.55
2 0 2.55 0 . 0

5 2.55 0 . 0

Table 18: Sensitivity tests on SW1DV cases based on number of cycles, eye
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Case Model dm fw x 1 0 " 2 % change
JSF13 k-l 0 . 0 2 2 0.726

0.044 0.724 -0.28
0 . 0 1 1 0.730 +0.55

JSF13 k-e 0.0096 0.640
0.0019 0.638 -0.31
0.0048 0.645 +0.78

UMTF k-l 0.05 2.40
0 . 1 2.39 -0.42
0.025 2.42 +0.83

UMTF k-e 0.05 2.55
0 . 1 2.55 0 . 0

0.025 2.53 -0.78

Table 19: Sensitivity tests on SW1DV cases based on constant for parabolic mesh 
spacing, dm  .
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Run no. R&jj f m m Ub(m /s) DATA k-e k-e-S RSTM
1 44900 0.35 0.76542 0 . 0 0 1 2 0 0.0013 0 . 0 0 1 2 0 . 0 0 1 1

2 42000 0.35 0.71599 0.00135 0.0014 0.0013 0.0013
3 29400 0.25 0.50119 0.00180 0.0019 0.0018 0.0017
4 23700 0 . 2 0 0.40402 0 . 0 0 2 1 0 0.0023 0 . 0 0 2 1 0 . 0 0 2 0

5 31800 0.60 0.54210 0.00375 0.0040 0.0037 0.0036
6 25200 0.40 0.42959 0.00375 0.0040 0.0037 0.0037
7 2 0 1 0 0 0.30 0.34265 0.00420 0.0045 0.0042 0.0041
8 23000 0.45 0.39209 0.00495 0.0054 0.0050 0.0048
9 21400 0.60 0.36481 0.00750 0.0081 0.0075 0.0073
1 0 17100 0.50 0.29151 0.00930 0 . 0 1 0 0 0.0092 0.0090
1 1 14500 0.50 0.24719 0.01230 0.0135 0.0123 0 . 0 1 2 1

1 2 17900 1 . 0 0 0.30515 0.01720 0.0189 0.0171 0.0171
13 10600 0.45 0.18070 0.01950 0 . 0 2 1 2 0.0192 0.0189
14 10700 0.50 0.18241 0 . 0 2 1 0 0 0.0232 0 . 0 2 1 0 0.0208
15 15300 1 . 0 0 0.26082 0.02250 0.0251 0.0224 0.0225
16 14600 1 . 0 0 0.24889 0.02440 0.0273 0.0243 0.0244
17 14200 1 . 0 0 0.24207 0.02580 0.0287 0.0255 0.0256
18 10300 0.60 0.17559 0.02700 0.0301 0.0270 0.0269
19 8750 0.60 0.14916 0.0360 0.0405 0.0357 0.0358
2 0 11400 1 . 0 0 0.19434 0.03750 0.0427 0.0370 0.0372
2 1 9200 1 . 0 0 0.15684 0.05500 0.0625 0.0522 0.0528
2 2 10300 1.50 0.17559 0.0675 0.0756 0.0614 0.0621
23 8650 1.50 0.14746 0.09150 0.1008 0.0793 0.0815

Table 2 0 : Input data for periodic pipe flow experiments of Finnicum and Hanratty 
and oj+ values for experimental data of Finnicum and H anratty and turbulence 
models for the amplitude of the wall shear stress.
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FIGURES 159

a) KES model, Re = 5600 b) KE model, Re = 5600
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c) KES model, Re = 13750 d) KE model, Re = 13750
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Figure 1: Plots of /  against P /e  for channel flow at Re — 5600 and Re — 13750,
where /  =  f ( Re t) for the k-e model, and /  =  f (Ret ) f s(S)  for the k-e-S model, for
which the main region is distinguished from the near wall region
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Figure 2: Three functions fitted against the plot of /  against P /e  for channel flow
at Re =  5600 for the k-e-S model in the main region
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a) Re = 5600
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Figure 6: Mean velocity profiles in channel flow (a) Reb =  5600, (b) Reb =  13750:
model solutions compared with DNS data of Kim et al (1987) and Kim (1990)
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a) Re = 5600
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Figure 7: Reynolds shear stress profiles in channel flow (a) Reb =  5600, (b) Reb =
13750: model solutions compared with DNS data of Kim et al (1987) and Kim
(1990)
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a) Re = 5600
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Figure 8: Turbulent kinetic energy profiles in channel flow (a) Reb =  5600, (b)
Reb =  13750: model solutions compared with DNS data of Kim et al(1987) and
Kim (1990)
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a) Re = 5600
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Figure 9: Turbulent dissipation rate profiles in channel flow (a) Ret =  5600, (b)
Rei, =  13750: model solutions compared with DNS data of Kim et al (1987) and
Kim (1990)
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FIGURES 166

a) Re = 5600
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Figure 10: Composite damping functions in channel flow (a) Reb =  5600, (b) Reb =
13750
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FIGURES 167

a) Re = 5600
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Figure 11: Damping functions for k-e-S model in channel flow (a) Reb =  5600, (b)
Reb =  13750
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Figure 12: Strain parameter profiles for k-e-S model in channel flow (a) Re & =  5600,
(b) Reb =  13750
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Figure 13: Turbulent time scale profiles in channel flow (a) Ret, — 5600, (b) Ret, =
13750: model solutions compared with DNS data of Kim et al (1987) and Kim
(1990)
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Figure 14: Turbulent Reynolds number profiles in channel flow (a) Reb =  5600, (b)
Reb =  13750: model solutions compared with DNS data of Kim et al (1987) and
Kim (1990)
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a) Re = 5600
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Figure 15: Anisotropic shear stress profiles in channel flow (a) Rej, =  5600, (b)
Reb =  13750: model solutions compared with DNS data of Kim et al (1987) and
Kim (1990)
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compared with the experimental data of Finnicum and H anratty (1988)
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a) Amplitude of centre-line velocity
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Figure 18: Model solutions for the frequency dependent variables of the dimension- 
less wall shear stress amplitude
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a) Phase of pressure gradient

E 88

M  87D.

•S 85

+ + RSTM

+  x

.-3

CO +

60

50

^  40 
EXI
oT
« 30 
sz 
CL
I

2 0

sz 
a  10

0

-■*0 „

10 1 0 2 10“1
co +

Figure 19: Model solutions for the frequency dependent variables of the dimension- 
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FIGURES 176

a) Amplitude of Friction Coefficient.
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Figure 20: Comparison of model solutions for friction coefficient amplitude and 
phase with analytical functions and quasi-steady asymptotes
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a) Amplitude of Friction Coefficient.
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Figure 21: Comparison of model solutions for amplitude and phase of friction coeffi­
cient including extra data  beyond the experimental runs of Finnicum and Hanratty 
(1988) to see behaviour near to the aymptotes
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a) Cyclic variation of wall shear stress for run 9
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Figure 2 2 : Cyclic variation of (a) wall shear stress and (b) local friction coefficient 
for R&b =  21400 and /  =  0.6 (run 9): comparison of model solutions
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Figure 23: Cyclic variation of (a) wall shear stress and (b) local friction coefficient 
for Re^ = 17100 and /  =  0.5 (run 10): comparison of model solutions
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Figure 24: Cyclic variation of (a) wall shear stress and (b) local friction coefficient 
for Reb — 14500 and /  =  0.5 (run 11): comparison of model solutions
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x 1 rf3 a) Cyclic variation of wall shear stress for run 12
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Figure 25: Cyclic variation of (a) wall shear stress and (b) local friction coefficient 
for Ret — 17900 and /  =  1.0 (run 1 2 ): comparison of model solutions
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a) Cyclic variation of wall shear stress
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Figure 26: Cyclic variation of (a) wall shear stress, (b) local friction coefficient:
model solutions compared with the experimental data of Tu and Ramaprian (1983)



Uz
/U

bm
 

U
z/

U
bm

FIGURES 183

a) Cyclic variation of ensemble averaged axial velocity at z/R=0.25
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b) Cyclic variation of ensemble averaged axial velocity at z/R=0.9
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Figure 27: Cyclic variation of ensemble averaged axial velocity at (a) z /R  =  0.25,
(b) z / R  =  0.9: model solutions compared with the experimental data of Tu and
Ramaprian (1983)
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a) Cyclic variation of Reynolds shear stress at z/R=0.25
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Figure 28: Cyclic variation of Reynolds shear stress at (a) z / R  =  0.25, (b) z /R  =
0.9: model solutions compared with the experimental data of Tu and Ramaprian
(1983)
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a) KE solution compared with data of Tu and Ramaprian
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Figure 29: Development of ensemble averaged axial velocity profiles over a cycle: (a)
k~e, (b) k-e~S solution compared with the experimental data of Tu and Ramaprian
(1983)
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a) Decelerating period of a cycle
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Figure 30: Development of ensemble averaged axial velocity profiles over (a) de­
celerating, (b) accelerating period of a cycle: model solutions compared with the
experimental data of Tu and Ramaprian (1983)



FIGURES 187

x 1 0 "3 a) KE solution compared with data of Tu and Ramaprian
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Figure 31: Development of Reynolds shear stress profiles over a cycle: (a) k-e, (b)
k-e-S solution compared with the experimental data of Tu and Ramaprian (1983)
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X1 0" a) Decelerating period of a cycle
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Figure 32: Development of Reynolds shear stress profiles over (a) decelerating, (b)
accelerating period of a cycle: model solutions compared with the experimental data
of Tu and Ramaprian (1983)
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FIGURES 189

a) Amplitude profiles of ensemble averaged axial velocity
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Figure 33: (a) Amplitude and (b) Phase profiles of ensemble averaged axial velocity:
model solutions compared with the experimental data of Tu and Ramaprian (1983)
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Figure 34: (a) Amplitude and (b) Phase profiles of Reynolds shear stress: model
solutions compared with the experimental data of Tu and Ramaprian (1983)
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a) Decelerating period of a cycle
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Figure 35: Turbulent time scale profiles over the (a) decelerating, (b) accelerating
period of a cycle calculated by the k-e-S and k-e models
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a) Decelerating period of a cycle
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Figure 36: Anisotropic shear stress profiles over the (a) decelerating, (b) accelerating
period of a cycle calculated the k-e-S and k-e models
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Figure 37: Strain parameter profiles (a) across the pipe radius, (b) near to the wall 
calculated by the k-e-S model
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a) Decelerating period of a cycle
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Figure 38: Strain parameter ( f f j ) 2, profiles over the (a) decelerating, (b) acceler­
ating period of a cycle near to the wall calculated by the k-e-S and k-e model
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FIGURES 195

a) Decelerating period of a cycle
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Figure 39: Composite damping function profiles over the (a) decelerating, (b) accel­
erating period of a cycle near to the wall calculated by the k-e-S and k-e model
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a) Across pipe radius
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Figure 40: Amplitude of strain parameters (a) across the pipe radius, (b) near to
the wall calculated by the k-e-S and k-e models
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Figure 41: Phase of strain parameters calculated by the k-e-S  and k-e model
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a) KES model solution
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Figure 42: Sensitivity of (a) k-e-S , (b) k-e model to numerical time step: Cyclic 
variation of wall shear stress
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a) KES model
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Figure 43: Turbulent time scale profiles: comparison of (a) k-e-S, (b) k-e model
solutions with the steady flow case
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a) KES mode!
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Figure 44: Anisotropic shear stress profiles: comparison of (a) k-e-S, (b) k-e model
solutions with the steady flow case



St
ra

in
 

pa
ra

m
et

er
 

St
ra

in
 

pa
ra

m
et

er
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a) Strain parameter, S protiles
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Figure 45: Strain parameter (a) S, (b) profiles for the k-e-S model near to
the wall
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a) Across pipe radius
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Figure 46: profiles for the k-e model (a) across the pipe radius, (b) near to
the wall
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Theoretical bed level, 
z  =  0

Figure 48: Schematic of theoretical bed level

Figure 49: Schematic of boundary layer thickness estimation
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Figure 50; Relative turbulence intensities in a boundary layer along a rough wall 
and the resultant turbulent kinetic energy
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Figure 51: Comparison of approximate functions and exact turbulent kinetic energy
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Figure 52: Cyclic variation of velocity in the Jade estuary at 2.14 m above the bed
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Figure 53: Cyclic variation of Reynolds shear stress in the Jade estuary at 2.14 m 
above the bed
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Figure 54: Cyclic variation of turbulent kinetic energy in the Jade estuary at 2.14 m 
above the bed
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Figure 55: Cyclic variation of turbulent time scale in the Jade estuary at 2.14 m
above the bed
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Figure 58: Cyclic variation of Reynolds shear stress in the Elbe estuary at 1.9 m 
above the bed
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Figure 59: Cyclic variation of velocity gradient in the Elbe estuary at 1.9 m above 
the bed
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Figure 60: Cyclic variation of turbulent eddy viscosity in the Elbe estuary at 1.9 m 
above the bed
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Figure 61: Cyclic variation of turbulent time scale in the Elbe estuary at 1.9 m
above the bed
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Figure 62: Variation of (a) velocity (b) Reynolds shear stress (c) turbulent kinetic 
energy and (d) turbulent time scale in the Elbe estuary over half cycle of oscillation 
at 1.9 m above the bed
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Figure 63: Cyclic variation of bed friction velocity for the JSF 1 2  case
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Figure 64: Cyclic variation of bed friction velocity for the JSF13 case
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Figure 71: Profiles of Reynolds shear stress for the JSF10 case
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Figure 74: Profiles of experimental velocity data with least squares fit for the JSF10
case
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Figure 75: Profiles of experimental velocity data with least squares fit for the JSF12
case
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Figure 76: Profiles of experimental velocity data with least squares fit for the JSF13
case
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Figure 77: Profiles of velocity gradient data with gradient of least squares fit for the
JSF10 case
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Figure 78: Profiles of velocity gradient data with gradient of least squares fit for the
JSF12 case
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Figure 80: Profiles of turbulent eddy viscosity for the JSF10 case
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Figure 81: Profiles of turbulent eddy viscosity for the JSF12 case
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Figure 82: Profiles of turbulent eddy viscosity for the JSF13 case
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Figure 83: Cyclic variation of velocity at 5 heights above the bed for JSF10 case
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Figure 84: Cyclic variation of velocity at 5 heights above the bed for JSF13 case
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Figure 85: Cyclic variation of turbulent kinetic energy at 5 heights above the bed
for JSF10 case
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Figure 95: Cyclic variation of raw velocity ensemble averaged over 6 cycles at 11
heights above the bed for the UKCRF case
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Figure 96: Cyclic variation of bulk velocity ensemble averaged over 6  cycles of 
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case
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Figure 111: Profiles of turbulent kinetic energy for the UMTF case
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Figure 116: Cyclic variation of velocity for the UMTF case
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Figure 122: Cyclic variation of friction velocity for the Elbe estuary comparing the
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Figure 123: Cyclic variation of friction velocity for the JSF12 case comparing the
standard and variation values of the constants for the (a) k-l model and (b) k-e
model
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Figure 124: Cyclic variation of friction velocity for the JSF13 case comparing the
standard and variation values of the constants for the (a) k-l model and (b) k-e
model
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Figure 125: Schemtic diagram of proposed variation of length scale against height 
for the k-l model
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ABSTRACT
A new assessment is made of two-equation (k-e) and one-equation (k-l) turbulence 
models in oscillatory flow. The turbulence models are compared with the data of 
Jensen, Sumer and Fredspe An attem pt is made to quantify the uncertainties 
in the Reynolds shear stress measurements. The results show th a t the k-e model 
performs well, and considerably better than the k-l model.

KEYWORDS
Turbulence model, oscillatory flow, rough bed, k-e, k-l.

1. INTRODUCTION
The motivation for this study is to  assess two-equation (k-e) and one-equation (k-l) 
turbulence models (and eventually others) for oscillatory flow over rough beds. The 
equations are solved using a semi-implicit finite volume scheme. The parabolic spac­
ing in the numerical grid was selected in order to give high resolution near to the bed 
and the surface to resolve the large gradients of velocity, k and e. Wall functions for 
fully rough turbulent boundary layers are used at the bed. Here the Jensen, Sumer 
and Fredspe (JSF) experimental data f1’2̂ is used in comparison with the numerical 
models. In the future data for the Elbe ^  and also Manchester experimental data 
will also be used. Comparisons of the models with data for the bed shear stress are 
presented. The Reynolds shear stress and turbulent eddy viscosity are also exam­
ined. In order to obtain data for the eddy viscosity, the JSF experimental data for 
the Reynolds stress and velocity has been processed. The eddy viscosity therefore 
inherits an estimated error from the processing of the data.

2 . MODEL EQUATIONS
The boundary layer equation in the streamwise direction is

&u 1 dp d (  d u \  , 
dt ~  ~ p d i  +  dz  V ^

where x and 2  represent the horizontal and vertical directions, respectively. Given 
tha t the freestream velocity is independent of the distance from the bed, the flow 
outside the boundary layer varies sinusoidally with time as

u o o ( t )  =  « M s i n ( w t )  ( 2 .2 )

where um is the amplitude of u00 and u  =  2tt/ T  where T  is the period of oscillation. 
In this region outside the boundary layer the unsteady Euler equation applies

duoo _  1  dp ,
dt p d x '  [ ‘ }

mailto:mbgmhsbl@fsl.eng.man.ac.uk
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The Reynolds shear stress, —mtJ, the turbulent eddy viscosity and the effective 
total viscosity v e , are defined by

  du ..
~ uw  =  Vtdz ^ '

k 2
i / E  =  v  +  v t  =  v  + C p —  (2.5)

where v is the kinematic viscosity. For the two-equation k-t  model the kinetic energy, 
k and the dissipation rate, e are governed by the following transport equations ^

=  Cei-ZA

i/t \ d k
V + 7 J  T z

, » t\  0e'
v  +  7 J d ~ z

- e  (2.6)

£ 2
Ce2j (2.7)

For the one-equation k-l model, k is calculated using the above transport equation 
(2 .6 ), and e is supplied by the relation

e = (2 .8 )
^ KZ

The value of a e may be related to the other model constants by considering the flow 
in the bed region. Following Rodi the e-equation (2.7) reduces to

= — T <2-9)C/J (C tf-C el)
Thus taking the standard values of the other model constants: =  0.09, cei =
1.44, ce2 =  1.92, <7 fc =  1.0 and von Karman’s constant k, — 0.4, relation (2.9) gives 
a e = 1.11. At the bed the boundary conditions used are standard wall functions. 
The law of the wall for fully rough turbulent boundary layers gives the bed boundary 
condition ^

u  1 /  z
” + = ^  = « ( f ) + 8 '5 ( 2 - 1 0 )U " 7 *  I V  \  I V  C  /

where the bed friction velocity uT = y u / p  and ks is the roughness height. The 
bed region is taken to be 30 <  < 100 where z+ — zu Tjv .  In the bed region
the Reynolds stresses are assumed to be constant and equal to the bed shear stress 
and turbulence production is taken to be equal to dissipation. Thus the boundary 
conditions on k and e are

ip iP
* =  e =  ^  (2 .1 1 )

KZ
At the surface the shear stress is zero, and thus the velocity gradient d u /d z  =  0 . 
The surface boundary conditions for k and e are set to d k /d z  = de/dz  = 0.
For details of the numerical procedures refer to Stansby ^  since the method is based 
upon a one-dimensional version of the 3-D semi-implicit finite volume flow and so­
lute transport solver.

3. RESULTS AND DISCUSSION
The turbulence model results are compared to the JSF data  for a /k s =  3700 1̂,2\
where a is the freestream particle amplitude. The period of oscillation was T  = 9.72
s , the roughness height ks =  8.4 x 10- 4  m, the maximum value of the freestream
velocity um = 2.0 m /s and the kinematic viscosity v =  1.14 x 10- 6  m2 /s. The
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number of vertical grid points was 100. The mesh spacing was varied parabolically 
to give fine resolution near the bed and the free surface, motivated by the presence 
of large gradients in these regions. Sensitivity tests (not shown here due to lack of 
space) show th a t the solutions are independent of the mesh.
Following Justesen ^  we consider the two key quantities of bed shear stress and 
eddy viscosity. Figure (1) shows the bed friction velocity uT, normalized by um 
against time. The k-e model gives good agreement with the data and the k-l model 
overpredicts the data. The Reynolds shear stress and turbulent eddy viscosity are 
also examined over half a cycle at five distances from the bed: z /a  0.0006, 0.0018, 
0.0058, 0.017 and 0.038. Relative to the boundary layer, taken to be of thickness 
5 «  0.02 m W, these heights are z /5  ~  0.03, 0.09, 0.3, 0.85 and 1.9.
A polynomial fit of order 16 to the velocity data was taken to obtain the velocity 
gradient. Another polynomial fit to the Reynolds shear stress of order 5 was taken 
to overcome the scatter in the data (Figure (2)). For a given parameter <j), the 
following equation provides a measure of uncertainty:

A(j) = r i 1/2

~XAlata pt pt) ) 4* ^fit pt d: N(f> (3.1)
- Tb

where n  is the to tal number of points. Equation (3.1) was used to estimate the 
possible error in the polynomial fits of both the JSF Reynolds shear stress and the 
velocity data. In fact, the error of the velocity fit compared to the JSF data was 
negligible. For the Reynolds stress 71% of all JSF data points are within the fit un­
certainty range. Figures 2(a-e) show the —uw  data at the five heights given above, 
the polynomial fit and also the uncertainty range from equation (3.1). The Reynolds 
shear stress calculated by the turbulence models is also shown. At all heights the 
scatter of the data is large. The k-e model gives good agreement. The k-l model 
at heights near to the bed (figures 2(a-c)) is in good agreement a t phases 0°-50° 
and 125°-180°, but in the range 50°-125° where the velocity is largest, the k-l model 
overpredicts the data. This trend is also seen towards the edge of the boundary 
layer in figure 2(d). In figure 2(e) at z /a  =  0.038 in the notional freestream region, 
the k-l model is in very poor agreement with the data. Figures 3(a-e) show the 
turbulent eddy viscosity for the experimental data and the turbulence models over 
half a cycle at the five heights from the bed given above. The Reynolds stress fit and 
the uncertainty was divided by the velocity gradient using equation (2.4) to obtain 
the eddy viscosity data. Equation (2.5) was used to calculate the turbulent eddy 
viscosity for both turbulence models. As with the Reynolds stress, the k-e model 
is in general in good agreement. The k-l model again gives poor agreement in the 
range 50°-125°, although the model generally predicts the eddy viscosity fairly well 
at the other phases in the lower boundary layer. However figure 3(e) shows tha t 
pt predicted by the k-l model is very large compared to both the data and the k-e 
model in the freestream.

4. CONCLUSIONS
In order to evaluate the turbulence models the bed shear stress, Reynolds shear stress 
and eddy viscosity have been compared to the JSF experimental data. Polynomial 
fits have been taken to obtain the eddy viscosity in suitable form for comparison. 
Certain assumptions have been made to give a measure of possible error in the data



APPENDIX A. PUBLICATION 272

fits, namely th a t the error in the Reynolds stress data is independent of phase posi­
tion and has a normal distribution, enabling an average error to be determined for a 
cycle. Improving these assumptions would require much more detailed data but this 
approach gives a useful indication of scatter. Nevertheless, the results show tha t the 
k-e model predicts the Reynolds shear stress and eddy viscosity well. The k-l model 
does not do so well, particularly in the region towards the edge of the boundary 
layer. It would be interesting to compare with the results of a more complex model 
and indeed a simpler mixing length approach.
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Figure (1): Friction velocity at the bed against phase position over one cycle, x JSF 
experimental data from a log fit M , k-e m odel, k-l model.
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Figure (2): Reynolds shear stress as a function of time at five distances from the
bed, •  experimental data from JSF . polynomial f i t ,------- k-e m odel,------
- k-l model; the vertical lines give a measure of uncertainty in the polynomial fit.
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Figure (3): Turbulent eddy viscosity as a function of time at five distances from the
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