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Abstract

The most effective way to control Breast Cancer is to detect the early signs of the 

disease and treat it before it can develop into a more serious problem. In order 

to achieve this the UK National Health Service operates a screening programme 

for all women between the ages of 50 and 65, The screening programme uses 

mammography, which is the most suitable of the available techniques for imaging 

the breast. However, the effectiveness of mammography critically depends on the 

ability of the radiologist to detect the small, often very subtle abnormalities that 

may be present in a mammogram. Prompting is a technique designed to aid 

radiologists in the detection of the subtle signs of breast cancer by directing 

attention towards the potentially suspicious regions of a mammogram that have 

been identified by computer-based detection systems. Previous research has 

suggested that a radiologist working in conjunction with a sufficiently accurate 

prompting system can lead to improvements in detection sensitivity.

The aim of this thesis is to investigate the feasibility of prompting as an aid to the 

radiologist. This includes an investigation of the computer-based techniques that 

may be used to automatically generate prompts and a study of errors that such 

a prompting system might make. Errors made in generating prompts may affect 

the search strategy and detection performance of the radiologist. Experimental 

studies described in this thesis have been used to investigate the effects that errors 

in prompt generation have on the search performance of the radiologist. This 

work suggests that prompting can be an effective technique for aiding the 

radiologist in the early detection of Breast Cancer, providing that certain 

conditions concerning the accuracy of prompts are met.
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Chapter 1

Introduction and Background

This chapter is designed to provide a general background on breast cancer, the 

importance of mass screening in controlling the disease and some techniques that 

are used for diagnosis, particularly mammography. The final section provides an 

overview of the remainder of the thesis and explains the purpose of this work.

1.1 Breast Cancer

Each year in Britain there are 24500 new cases of breast cancer and 15000 deaths 

from the disease. Around 20% of all new female cancer cases in Britain involve 

breast cancer, making it the most common form of cancer among women. It has 

been estimated that one in every twelve women will be affected by the disease at 

some time in their lives (Asbury 1990).

These rather bleak statistics illustrate the scale of the breast cancer problem, a 

problem that is compounded by the fact that although a number of risk factors 

have been identified, there are no known primary preventative measures for 

breast cancer and no specifically directed cures (Strax 1981).

There are a number of factors suggested as being associated with an increased 

probability of developing breast cancer. These risk factors include early onset of
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menarche, late onset of menopause, nulliparity, late age at first child birth, a 

history of benign breast disease, hormone replacement therapy and certain 

dietary factors (Henderson et al 1984). In particular, a family history of breast 

cancer is associated with an increased risk of developing the disease. The risk of 

disease may double or triple for first degree relatives of breast cancer patients 

(Anderson 1974), and can even rise as high as a nine times increase for the first 

degree relatives of premenopausal women with bilateral breast cancer 

(Henderson et al 1984).

However, in over 75% of women with breast cancer none of these risk factors are 

present (McClelland 1990). Furthermore, Berg (1984) has suggested that the only 

clearly identifiable risks associated with the disease are gender and ageing.

The relationship between ageing and the probability of developing breast cancer 

is clear. Roebuck (1990) investigated the ages of 1500 women in one institution 

who were found to have developed breast cancer. The distribution by age of these 

women is illustrated in figure 1.1 which clearly shows the increased chance of 

developing the disease after the age of 40. Other studies have shown very similar 

patterns (Macmahon et al 1973, Henderson et al 1984, Austoker et al 1988).

The lack of any risk factor, other than ageing, that is strongly predictive of disease 

occurrence makes it difficult to develop any measures for the primary prevention 

of breast cancer.

Breast cancer is an extremely complex condition that may assume a variety of 

forms and several models have been proposed that describe the clinical 

development of the disease (Gallagher 1985). Carcinomas generally arise either 

from the cells in the lobules of the milk-secreting system or in the branching duct 

system that transports milk to the nipple. They are subdivided into non-invasive 

and invasive types depending on whether the malignant cells are entirely confined 

within the lobules/ducts, or whether they have spread into surrounding tissue.

10
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Figure 1,1: Distribution of incidence of breast cancer by age.

While a detailed discussion of the suggested pathogenic courses of breast cancer 

is beyond the scope of this report, it should be noted that despite the large amount 

of research that has been carried out in this area, the cause or causes of the disease 

are still not fully understood (Baum 1988). However, the initial clinical 

manifestation of breast cancer is generally observed to be a single localised lesion 

in one breast. This stage in the development of the disease is commonly referred 

to as “early” or “minimal” breast cancer.

There is no generally accepted definition of precisely what constitutes an early 

cancer. Gallagher and Martin (1971) refer to minimal cancer in cases when the 

tumour is no larger than 0.5cm in size, while Urban (1976) raises this size limit 

to 1.0cm, with the additional stipulation that lymph node metastases cannot be 

palpated. Even the fact that a carcinoma is clinically occult does not necessarily 

lead to its classification as early cancer, since it is possible that relatively large 

tumours may remain clinically occult in large breasts (Lanyi 1985). In addition, 

Fisher (1985) points out that a small (0.5cm) carcinoma, although regarded as
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early in the clinical sense, represents a cell mass that has undergone 27 population 

doubles and is therefore, biologically speaking, a late tumour.

In view of this lack of a precise definition, for the remainder of this text the term 

“early cancer” will be used to refer to any small (less than 1.0cm), localised, 

non-invasive lesion arising from an early stage in the development of breast 

cancer. It is recognised that at this stage of the disease there may be some 

microscopic, occult dissemination elsewhere in the breast tissue but, as pointed 

out by Strax (1981), it is generally accepted that an intact immunological system 

can cope with this if the main clinical tumour burden is removed.

The concept of early cancer seems to suggest that the key to the successful 

treatment of breast cancer may lie in the detection and treatment of the localised 

lesion at a stage when the body’s natural immunological system is still intact. In 

fact there is a substantial body of evidence to support this notion of early detection 

and treatment. For example, Figure 1.2 shows the survival rates of patients up to 

5 years after the diagnosis and treatment of breast cancer, depending on the stage 

of development of the disease at diagnosis (CRC Factsheet 6 1988). Stage I 

corresponds to early breast cancer as described above. Stage II involves slightly 

larger tumours (2-5cm) with or without lymph node involvement. Stage III refers 

to locally advanced tumours possibly attached to the chest wall. At stage IV distant 

metastases are present.
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Figure 1.2: Breast cancer relative survival according to stage of
development

In another study, Letton and his colleagues (1977) examined 5810 asymptomatic 

women between the ages of 35 and 50 and discovered that 32 of this group had 

breast cancer in the early stages of development; this was subsequently treated. 

They report a five year cure rate among these patients of 87,1% compared to the 

63% rate commonly observed among unscreened women. Strax (1981) claims 

similar findings, reporting a five year survival rate of 85% in those cases where 

the cancer was treated at an early, localised stage. In those cases where treatment 

occurred at a later stage of development, after the glands had become affected, 

the five year survival rate dropped to 53%. In addition, Helman (1977) has 

reported a 10-15% reduction in the mortality rate for women over 50 who were 

screened using mammography, while Moskowitz (1977) has suggested that the 

early detection and treatment of small breast cancers may increase the twenty year 

survival rate from 47% to 70% among women affected by the disease.
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These figures clearly demonstrate that the treatment of breast cancer at an early 

stage in its development can considerably improve the patient’s chance of survival. 

An additional advantage of early detection is that recent advances in 

breast-conserving surgery and radiation therapy as an alternative to radical 

mastectomy (removal of the breast and associated structures) may mean that 

treatment of the disease at an early stage, while the tumour is still small, can 

greatly improve the possibility of conserving the breast (Haffty et al 1991).

However, the effectiveness of early treatment relies on the detection of the 

carcinoma at an early stage in its development, prior to the occurrence of any 

obvious symptoms that would generally indicate that the disease has progressed 

to a more advanced stage (Strax 1981). This means that women must be examined 

for breast cancer at a point before the presence of the disease is suspected by 

either the patient or the clinician.

1.2 Mammography

1.2.1 What is Mammography ?

Mammography is an X-ray technique for studying the breast. In common with 

other methods of radiographic examination the X-ray beam is passed through the 

breast and is differentially absorbed by the various types of tissue encountered. 

The emergent beam is then recorded as an image, or mammogram, on a sensitive 

film. The differential absorption of x-rays by different types of tissue means that 

the resulting mammogram represents a picture of the internal structure of the 

breast. Typically, radiopaque areas of the breast such as glandular and fibrous 

tissue appear as relatively bright areas in the mammogram, while the surrounding 

fatty tissue, which is radiolucent, appears darker. Since the various abnormalities 

that may be present in the breast all have their own particular absorption 

characteristics it is possible for the radiologist to identify potentially suspicious 

regions of the mammogram.
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A full mammographic study consists of four films, with two views of each breast. 

These consist of a mediolateral oblique (side) view and a craniocaudal (top-down) 

view. However, in some centres it is current practice in screening mammography 

to use only a single, mediolateral view of each breast. The single view approach 

is generally justified on the grounds of reduced cost, reduced acquisition time (and 

therefore increased patient throughput) and reduced interpretation time (Ihbar 

et al. 1983).

Some doubt has been expressed on the adequacy of the single view approach, 

primarily on the grounds that a single view is not sufficient to identify all 

mammographically detectable cancers. In addition, single view screening is more 

likely than the double view approach to require additional images to clarify 

potential abnormalities (Muir et al 1984). For example, Sickles et al. (1986a) 

studied 2500 asymptomatic women undergoing screening for the first time. The 

mammograms from each case were interpreted twice; once with only the single, 

oblique view and once with both the oblique and craniocaudal views. Figure 1.3 

summarises the results.

One View Two views
per breast per breast

Abnormal interpretations 642 179
Mammography-generated biopsies 76 83
Mammography-detected cancers 25 27

Figure 1.3: Results of baseline screening of 2500 women (Sickles et al 1986a)

In addition to the improved sensitivity displayed by double view mammography 

in this study, high extra costs were generated by the greatly increased number of 

follow-up images required for abnormal interpretations in the single view cases. 

These extra costs more than offset the savings made by using only a single view
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-  making the single view approach more expensive, as well as causing unnecessary 

anxiety in women who were recalled due to these false-positive interpretations 

(Sickles 1990a).

Results such as these have recently led the NHS to change its screening practice 

in favour of double view mammography.

During the imaging process the patient’s breast is compressed against the 

radio-sensitive plate. Although this results in discomfort for the patient it is 

necessaiy in order to obtain an image of sufficient quality. Compression of the 

breast serves to minimise the effect of scattered radiation which can greatly reduce 

the contrast of the resulting film. It also enables lower doses of radiation to be 

used and reduces artifacts that may occur as a consequence of motion of the 

breast.

Apart from contrast, the other important measure of image quality is resolution 

and the most important factor in producing a sufficiently high resolution is the 

film/screen combination, together with suitable film processing. The processing 

of the films is in fact critical to obtaining a mammogram of suitable technical 

quality. Roebuck (1990) suggests that “more potentially good mammograms are 

ruined, often to the level of being non-diagnostic, by lack of care in the choice 

and control of processor chemistry, operating temperature and development time 

than by any other single factor”.

Once a film of suitable technical quality is produced it must be viewed by a 

radiologist in order to locate any potentially abnormal structures. Clearly, it is no 

use producing technically good mammograms if the viewing conditions are 

inadequate to allow perception of all of the image detail in the film. Due to the 

sensitivity of the human visual system to small changes in brightness when the 

overall brightness is high, mammograms are generally viewed on high intensity 

film illuminators (light walls). Again there is a need for compromise, since at high
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levels of intensity any unmasked portions of the illuminator may produce glare, 

which could adversely affect film reading performance (Roebuck 1990).

1.2.2 Why use Mammography ?

Probably the most straightforward method for examining the breast is by 

palpation, which may be performed either by the clinician or by the patient herself 

through self examination. However, there are certain limitations on the 

effectiveness of palpation as a method for detecting the signs of early breast 

cancer.

Firstly, the breast is a naturally multi-nodular organ which may make it difficult 

to distinguish the small nodule that indicates an early cancer from naturally 

occurring lumps in the breast. In addition a veiy small lesion may not be palpable 

even by the most expert clinician and yet may still represent the early stages of 

a potentially fatal disease. It is well known that a small tumour may be present 

in the breast while being completely asymptomatic and non-palpable. Clearly, in 

such cases it is necessary to use a further, more sophisticated method of examining 

the internal structure of the breast.

There is some evidence to suggest that ultrasound, or sonomammography, 

provides better estimates of tumour size than either mammographic or clinical 

examination (Fornage et al 1987). However, very small lesions may not be reliably 

detected by sonomammography, so although the technique may be useful when 

used in conjunction with mammography it cannot really be considered suitable 

as the sole method of investigation except in exceptional circumstances (Roebuck 

1990). For example, an ultrasound examination may be appropriate when it is 

particularly important that the patient avoid ionising radiation -  such as when the 

patient is very young or pregnant.

For many locations in the body, Computed Tomography (CT) scanning is able to 

distinguish much smaller differences in density than conventional x-rays,
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providing useful additional diagnostic information. However, this improved 

density discrimination is less useful in examining the breast as mammography 

itself produces very high contrast images (Kopans 1987). Radiation doses during 

CT are considerably higher than those involved in mammography, the cost of a 

CT examination is very high and an intravenous infusion of iodide is required to 

allow reliable discrimination between benign and malignant structures (Sickles 

1990b). In addition, the spatial resolution of CT is poorer, making the technique 

less reliable for detecting microcalcifications.

These factors mean that although CT scanning is inappropriate for the detection 

and diagnosis of breast cancer, the technique can be used in pre-biopsy 

localisation of lesions located very near the chest wall when they are difficult to 

image using mammography (Muller et al 1983).

Magnetic resonance (MR) imaging has been shown to image areas of dense 

fibro-glandular tissue with a greater contrast range than either mammography or 

CT scanning (Kopans 1987). However, the spatial resolution of MR imaging is 

inferior to that of mammography -  making the detection of smaller lesions 

unreliable (Sickles 1990b). In addition, the inability of MR imaging to detect 

calcium-containing structures means that microcalcifications, an important sign 

of early breast cancer, cannot reliably be detected by this technique (Turner et al 

1988).

As with CT scanning, these factors in combination with the high cost of 

examination make MR imaging inappropriate as a method of screening for breast 

cancer. However, MR imaging has been used as a complement to mammography 

for examining already detected lesions (Sickles et al 1990b).

Though it does not involve imaging, fine needle aspiration (FNA) cytology is a 

diagnostic technique commonly used in conjunction with mammography. A 

needle is inserted into an abnormal region in the breast and a sample of cellular 

material is extracted for pathological examination. Although this is a useful
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diagnostic tool, and has some therapeutic value in the treatment of cysts, it does 

require that the abnormality has been detected before it can be used.

In summary, mammography is capable of providing images with high contrast and 

high spatial resolution at a relatively low radiation dose and a relatively low cost. 

The various problems associated with other imaging techniques make them less 

suitable for the detection of breast cancers, which is why mammography is 

currently the primary method used for breast screening.

1,2.3 The Appearance of Abnormalities in Mammograms

There are a number of different classes of abnormality that may be observed in 

mammograms and within any given class the appearance may vary greatly.

One of the most significant types of mammographic abnormality is 

microcalcification. Lanyi (1985) has described microcalcifications as “the most 

important leading symptom in mammographic detection of pre-clinical 

carcinomas.” He went on to report that 18% of the 519 carcinomas diagnosed in 

his institute between 1974 and 1983 were pre-clinical cases detected by 

mammography, and over half of these cases were diagnosed on the basis of 

microcalcifications alone. Other studies have suggested that from 30% to 50% of 

breast cancers show microcalcifications on mammograms, while from 60% to 

80% are found to have associated microcalcifications on histological examination 

(Murphy et al 1978, Sickles 1982). Typically microcalcifications appear as very 

small, sharp-edged blobs that are relatively bright in comparison with the 

surrounding normal tissue. They are generally between 0.01mm and 3.0mm in size 

and are of particular clinical significance when found in clusters of five or more 

in a 1cm x 1cm area (Sickles 1982).

Well-defined, or circumscribed, lesions -  a second class of mammographic 

abnormalities -  are considerably larger than individual calcifications and appear 

as large blobs with smooth edges that may be sharp or poorly defined. These
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lesions can vaiy greatly in optical density on a mammogram with radiolucent 

(dark) cases generally indicating benign disease and denser radiopaque lesions 

often corresponding to malignancies (Thbar & Dean 1985). Circumscribed lesions 

may be observed in a variety of shapes, possibly appearing as smooth circles or 

ovals, or alternatively they may have a lobular appearance. In addition, the size 

of these lesions may vary from less than 1cm to greater than 10cm.

Stellate, or spiculated, lesions -  a third type of mammographic abnormality -  are 

often associated with malignancy. They generally appear as a distinct radiopaque 

mass fully or partially surrounded by radiating linear structures known as spicules. 

These spicules vary in length and may either radiate in all directions or appear 

bunched together like a “sheaf of wheat” (Ihbar & Dean 1985). The central mass 

may contain circular or oval radiolucent patches, in which case the lesion is often 

benign. The ill-defined borders of stellate lesions may make them difficult to 

detect, especially when they are only a few millimetres in size, though these lesions 

can be several centimetres across.

Figure 1.2 illustrates some examples of abnormalities. Although these are the 

most common forms of mammographic abnormality, there are other indicators 

of breast disease such as architectural distortion, asymmetries between left and 

right breasts and thickening of the skin.
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E F

Figure 1.2: Examples of some Mammographic Abnormalities. 

A and B are clustered microcalcifications, C and D are 

well-defined lesions and E and F are spiculated lesions.
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1.2.4 Possible Risks of Mammography

Although mammography has great value both as a diagnostic tool in symptomatic 

women and as a method for the detection of non-palpable carcinomas in 

apparently well women, some concern has been expressed about the exposure of 

the breast to X-ray radiation (Morgan 1985). Irradiation of the breast is of 

particular concern because the breast is one of the organs most susceptible to 

radiation carcinogenesis, even more so than bone marrow, the lungs or the thyroid 

gland (Gregg 1977, Bailar 1978).

Ever increasing sophistication in radiological techniques has led to the production 

of good mammographic images with very low doses of radiation (Lissner et al 

1985), though the high susceptibility of the breast to radiation induced cancers 

means that a small risk may still exist. The actual radiation dose to the breast 

during a mammographic examination will depend both on aspects of the imaging 

system and characteristics of the breast, making it difficult to produce a single 

figure for the mean dose. However, Feig (1986) estimates the typical dose during 

mammography to be less than 0.1 rad, while Roebuck puts the estimate lower at 

around 0.05-0.015 rad.

Investigations of the risk associated with breast irradiation have studied 

populations who have been subjected to considerably higher radiation doses than 

are seen in mammography -  doses of the order of 100-2000 rads (Feig 1986). Such 

groups have included the survivors of the atomic bombs at Hiroshima and 

Nagisaki (Tokunaga et al 1979) and women who have received radiotherapy for 

the treatment of benign breast disease (Baral et al 1977). These cases have shown 

definite increases in the risk of developing breast cancer at these very high doses, 

but the evidence for the risk at the low doses seen in mammography requires 

extrapolation from these results and is far less clear.

If there is a risk of developing breast cancer as a consequence of the low radiation 

dose received during mammography then it is so small that it has never been
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observed (Roebuck 1986). Even if the estimated risk obtained from the models 

based on high dose studies were to be confirmed then it would be extremely low 

in comparison with other everyday activities -  approximately equivalent to 

smoking one eighth of a cigarette or travelling ten miles by car (Feig 1986).

It is commonly held that the great benefits of screening by mammography 

outweigh the small potential risks involved (Morgan 1985), but in recognition of 

the possible hazard, a number of recommendations have been made concerning 

the age at which the screening of women in low risk groups should begin, 

particularly since higher doses are needed to image young, dense breasts. For 

example, Breslow (1977) suggests that mammography should not be performed 

routinely on women under the age of 50, while Lissner (1985) endorses clinical 

examination plus mammography for women over 30 years old. The Forrest report 

(1986) recommended mammographic screening using a single medio-lateral view 

of each breast for all women between the ages of 50 and 64 at three yearly 

intervals. It is the recommendations of this report that have been adopted in the 

UK by the National Health Service as the basis of a national screening 

programme.

1.3 Mass Screening

As has already been discussed (section 1.1) the effectiveness of the early treatment 

of breast cancer relies on the detection of the tumour at an early, pre-symptomatic 

stage. This necessitates the mass screening of apparently well women, which is 

now the current policy of the UK National Health Service.

One of the earliest, and most important, studies of the usefulness of mass 

screening for breast cancer was the Health Insurance Plan study (HIP), instituted 

in 1963. In this study, 62 000 women aged between 40 and 64 were randomly 

chosen and divided into two carefully matched groups, a control group and a study 

group, each consisting of 31 000 women. The women in the study group were
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invited to attend an examination that employed both palpation and 

mammography. The two-thirds of the women in the study group who accepted 

the invitation were given an initial examination and three subsequent annual 

examinations.

In a follow-up study conducted nine years later it was found that 128 deaths from 

breast cancer had occurred in the control group, compared to 91 deaths in the 

study group (Shapiro et al 1973), This reduction in mortality rate of approximately 

one-third persisted after a twelve year follow-up.

Since the HIP study, there have been a number of large scale mass screening 

studies, all of which have, to a greater or lesser extent, demonstrated results in 

the form of reduced mortality rates among those women who have undergone 

regular screening. For example, Tabar and his colleagues (1985) have reported on 

a study begun in Sweden in 1977. In this case 162 981 women aged 40 years and 

over were randomly assigned either to a control group or to a study group that 

was offered screening by mammography every two or three years. At the end of 

1984, there was a 31% reduction in the breast cancer mortality rate among the 

study group.

Results such as these demonstrate the effectiveness of mass screening for the 

detection of breast cancer at an early enough stage to allow significant 

improvements in the treatment of the disease.

1.4 Overview of Thesis

1.4.1 Objectives

The preceding sections have discussed the usefulness of screening for breast 

cancer, and the important role that mammography plays as a screening technique. 

Current NHS practice is to invite all women aged 50-64 for screening using 

mammography once every three years.
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The effectiveness of mammography as a screening technique critically depends 

on the ability of a radiologist to detect the early signs of breast cancer in the 

mammographic image. This is not an easy task, as these abnormalities may be 

extremely subtle and they are embedded in the complex structured backgrounds 

associated with normal breast tissue.

Studies of the eye-movements of radiologists when they are reading radiographic 

images have revealed that the search patterns used are neither systematic nor 

complete (Kundel and Nodine 1978). It is often the case that regions of the image 

may not be fixated during the search and this can lead to abnormalities being 

missed. It is conceivable that this problem may be exaggerated during screening, 

when the radiologist is required to read a large quantity of films, typically 100 

cases per session, the vast majority of which are free from abnormalities.

One possible application of computer vision to mammography is to develop 

algorithms that can automatically detect the early signs of breast cancer in 

digitised mammograms. These algorithms can then be used to generate attention 

cues, or ‘prompts’ that direct the attention of the radiologist towards suspicious 

regions of the image.

Several studies have suggested that prompting may be an effective method for 

improving the performance of radiologists in reading mammographic films, at 

least in experimental settings. However, there are a number of issues that require 

investigation before prompting could be considered an acceptable technique for 

use in a clinical environment.

One important question that should be considered is the way in which errors in 

prompt generation might affect the performance of the radiologist. It may be the 

case that, under certain circumstances, the radiologist could become overly 

confident of the accuracy of the prompting system. In such a case a false-positive 

prompt could possibly lead the radiologist to make a false-positive judgement
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about the presence of an abnormality, when the film may have been correctly 

judged as normal had the prompt not been present.

Similarly, if a radiologist becomes too greatly reliant on the prompting system, 

the examination of the unprompted regions of the film may be less thorough than 

it might otherwise have been. This could have particularly serious consequences 

in the cases where abnormalities are missed by the prompting system. If the 

radiologist misses an abnormality that would have been detected if no prompting 

had been used, then prompting is clearly not a very effective technique.

The problem becomes compounded where the prompting system produces both 

false-positive and false-negative errors on a single film (or pair of films). In this 

case, the prompts will actually serve to direct the attention of the radiologist away 

from the location of the abnormality to some possibly clinically insignificant 

region of the film, which is precisely the opposite of the effect that prompting is 

designed to achieve.

Other problems may occur when the prompt generation system does not include 

algorithms for the detection of every type of mammographic abnormality. For 

example, a system may be set up to detect spiculated lesions and architectural 

distortions, but may not target any other forms of abnormality, in which case it 

is necessary to understand how the detection of untargeted abnormalities is 

affected by the prompting of the targeted ones.

Although it is possible that in the future a prompting system may be developed 

that can effectively target all of the possible classes of mammographic 

abnormality, it is extremely unlikely that such a system would be able to do so 

infallibly. Indeed, it should not be necessary for a prompting system to be 

infallible for it to be useful, since the radiologist could reasonably be expected 

to have a certain degree of tolerance to some small amount of error in the 

prompts. In order to develop an effective prompting system it is necessary to
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understand how errors in the prompts may affect the detection performance of 

radiologists.

The aim of this study was to investigate some of the questions concerning 

prompting in mammography, particularly the effects of errors in prompt 

generation on the detection performance of radiologists.

1.4.2 Overview

The next chapter of this thesis will go on to examine the film reading process in 

more detail, looking particularly at the types of errors that radiologists make when 

searching for abnormalities and the cognitive mechanisms underlying visual 

search, especially the role of attention. In addition, some of the previous work on 

attention cueing and prompting will be discussed.

Chapter 3 introduces signal detection theory and ROC analysis -  an important 

tool for measuring the detection performance of both human and artificial 

observers. The methods described in this chapter will be used throughout the rest 

of the thesis.

Chapter 4 will review some of the methods that have been developed for the 

automatic detection of abnormalities, particularly for the detection of clustered 

microcalcifications and tumour masses. Chapter 5 will then describe two 

particular detection algorithms in detail and compare their results when the 

algorithms are applied to a set of digital mammograms.

Chapter 6 describes an experiment carried out to investigate the effects that 

varying the accuracy level of the prompts had on their usefulness as aids to the 

radiologist.

The second experimental study, described in chapter 7, was designed to 

investigate the usefulness of prompting in a clinical setting. This was a study 

carried out at several screening centres around the UK.
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Chapter 8 also describes an experimental study, this time using a simulated 

mammographic task. This experiment was designed to examine the relationship 

between the true-positive and false-positive prompting rates of successful 

prompting systems.

The fourth, and final, experiment described in chapter 9 was a large scale 

investigation carried out in a clinical setting. This study develops on the findings 

of the experiment described in chapter 8 and applies them to a realistic screening 

environment.

Finally, chapter 10 will draw together some of the ideas discussed in the thesis and 

attempt to draw some conclusions about prompting and the conditions required 

for the technique to be a useful aid to the radiologist.
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Chapter 2

Mammographic Film Reading

2.1 Errors in Film Reading

Screening by mammography can clearly be of great value in the control of breast 

cancer. However, the effectiveness of mammography as a diagnostic tool relies 

on the ability of a radiologist to correctly interpret the mammogram. This is by 

no means an easy task since the signs of early breast cancer can be subtle and 

difficult to detect when embedded in a dense or complex structured background.

2.1.1 The Consequences of Error

Two general types of error are possible in the interpretation of mammograms; 

false-positives and false-negatives.

A false-negative error occurs when a mammogram containing an abnormality is 

classified as normal -  the abnormality has been missed. In other words, a woman 

who is suffering from the early stages of breast cancer is diagnosed as healthy. This 

is clearly the most serious of errors, as the delay in correct diagnosis and 

consequent treatment may adversely affect the woman’s chances of recovering 

from the disease.
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Burns (1978) reported a false-negative rate of 7% among all patients with breast 

cancer who were examined by mammography at her institute. Among the 

false-negative group, correct diagnosis was delayed by between 4 and 260 weeks, 

with a mean delay of 45 weeks. A study by Thomas (1978) which compared various 

diagnostic techniques found a 19% false-negative rate when mammography was 

the sole diagnostic method used.

Lesnick (1977) studied the preoperative mammograms of 52 patients who had 

been diagnosed as having breast cancer, only two of whom had been diagnosed 

by mammography. When these mammograms were examined by radiologists, 29 

of them were classified normal and 4 as having characteristics typical of benign 

tumours, yielding a total false-negative rate of a staggering 63%. It should be 

noted that the population under study in this case represented cases of breast 

cancer in symptomatic women, rather than the spectrum of disease detected by 

the screening of asymptomatic women.

The second type of error, false-positives, occur when a normal mammogram is 

incorrectly classified as containing an abnormality. Although this type of error is 

not potentially life-threatening, it does have important negative consequences, 

such as the psychological impact on the patient. Any positive diagnosis of cancer 

as a result of breast screening will fall upon a previously unsuspecting women who 

believed herself to be healthy.

The screening process, in the majority of cases, produces only low-level, transient 

anxiety. However, the levels of anxiety in women recalled for further assessment 

have been observed to be much higher (Hopwood & Maguire 1990).

Ellman and colleagues (1989) investigated the incidences of anxiety and 

depressive illness among a group of over 700 women who attended breast 

screening clinics, either for routine screening, for further investigation following 

a suspicious mammogram, or for investigation of breast symptoms.
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They found that women in whom further screening showed no cancer 

(false-positives) had significantly higher anxiety levels at the time of the second 

screening prior to the establishment of a negative diagnosis when compared to 

those women undergoing routine screening in which no abnormality was found. 

However, in a three month follow-up study, they found that anxiety levels had 

fallen significantly in the false-positive group and were no longer any higher than 

those of the routine screening group. This suggests that though there is no lasting 

increase in psychological morbidity following a false-positive diagnosis that is 

subsequently found to be negative, there is a significant increase in anxiety before 

the negative result is established.

In Ellman’s study, the false-positive diagnoses were found to be negative after 

further mammographic examination. This is not always the case. Lanyi (1985) 

reports that in 294 exploratory operations performed only on the basis of 

microcalcifications detected by mammography, only 50 carcinomas were found, 

which means that unnecessary surgery was performed in 83% of these cases.

Even if a false-positive diagnosis does not get as far as the operating theatre, the 

woman will still have to be recalled for a second mammogram. In addition to the 

waste of resources when a negative diagnosis is established, this will entail an 

additional dose of radiation to the breast.

2.1.2 The Causes of Errors

Since the consequences of errors in mammographic film reading can be severe 

it is worth tiying to understand how and why such errors occur. One possible 

approach to this problem is to study the search behaviour of radiologists when 

they are reading films.

Kundel and Nodine (1978) studied the eye movement data of 5 radiologists who 

were scanning for small lung abnormalities in chest X-rays. This is a task that is,
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to a certain degree, analogous to the detection of small abnormalities in 

mammograms since both tasks involve the detection of small subtle targets in 

complex backgrounds.

Kundel and Nodine found that the scanning patterns used by radiologists were 

neither systematic nor complete. In a large number of cases (around 40%) there 

was an initial circumferential sweep of the image with widely spaced fixations, a 

sequence that probably represents some global preliminary study. After this initial 

sweep, there was no consistently repeated sequence of fixations, although there 

appeared to be a certain amount of consistency in the locations that were fixated.

An interesting finding of this study was that the proportion of fixation time 

associated with given regions of the film image could be altered by giving verbal 

instructions before the task, usually in the form of a clinical history of the patient. 

Kundel and Nodine also found that there was a significant correlation between 

the proportion of fixation time spent on a region and the radiologists’ subjective 

rating of the importance of that region.

These results led Kundel and Nodine to conclude that radiologists approach the 

film-reading task with an organised and highly selective search strategy that is 

biased towards those regions of the image that are considered to be the most 

informative. They suggest that pre-selection of potentially informative regions is 

based in experience and expertise and that the basic search strategy may be 

modified for a particular case when the radiologist is provided with specific 

clinical information on that patient. Using this model, Kundel and Nodine 

proposed three main sources of error in the interpretation of X-rays.

The first main class of errors were search errors. These occurred when the 

abnormality, a lung nodule in this case, did not fall within the scanpath of the 

reader. The scanpath was defined as the locus of the “useful field of view”, which 

Kundel and Nodine believed to be an area of 4 degrees of visual angle centred 

on the foveal fixation point, though they do comment that 4 degrees is an average
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figure, and that considerations of background complexity and task demands may 

alter the size of the “useful field”.

The second group, recognition errors, occurred when the abnormality lay within 

the scanpath of the viewer but did not trigger recognition, in other words when 

the target was not disembedded from the background.

The final group consisted of decision making errors, which occurred when a 

suspicious region was located but was then misclassified.

Kundel and Nodine used dwell time as the criterion for distinguishing between 

recognition and decision making errors. They suggested that if the useful field of 

view fell on the abnormality for longer than 0.3 seconds then the target had been 

detected and consequently any error was of the decision making type, while if the 

dwell time was less than 0.3 seconds, then the abnormality had not been identified 

and a recognition error had occurred.

The data from a study of 20 errors and their classifications is shown in figure 2.1.

Error Type Number Proportion
Search 2 10%

Recognition 6 35%
Decision 9 53%

Figure 2.1: Classification of errors (from Kundel & Nodine 1978)

It should be noted that the sample size (n = 20) in this study was limited and that 

a certain proportion of the total errors are unaccounted for. In addition it is not 

really possible to draw any definite conclusions about the errors in 

mammographic film reading from these data since the tasks involved are 

somewhat different.
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Nevertheless, there are sufficient parallels between the two tasks to make the 

classification system a useful one, and it seems safe to conclude that a significant 

proportion of film reading errors may be due to inefficient search behaviour, or 

to oversights (Vernon 1971).

2.2 The Role of Attention

It is normally the case that an abnormality in a radiological image must be 

attended to in order to be recognised as such (Gale & Worthington 1986).

Usually, the locus of the observer’s attention will correspond to the locus of foveal 

fixation, or more precisely, to a limited area around fixation often referred to as 

the “useful field of view” (Kundel & Nodine 1978). The size of the useful field 

would probably vary somewhat depending on the task, but a typical estimate is 

around 2.8 degrees of visual angle around fixation. Kundel and Nodine found that 

90% of small lung abnormalities could be detected if they fell within this region.

Successful detection of an abnormality, therefore, seems to rely on directing the 

useful field of view to the location of the abnormality.

In the previous section it was mentioned that the radiologist approaches the film 

reading task with a pre-selected search strategy, or schema, which initially guides 

the pattern of fixations on the display. Once the search has been initiated, this 

schema does not remain rigidly fixed; it is subject to constant modification based 

on current foveal and peripheral visual information (Gale & Worthington 1986).

It may be the case that although foveal attention is required in order to identify 

abnormalities, peripheral attention plays an important role in guiding search 

through the image. This may be demonstrated by eye movement data in which 

large saccades from one part of the image to another are often observed. It seems 

as though peripheral attention is able to locate potentially suspicious regions 

within a relatively large area and direct the search of the image to bring 

high-acuity, foveal attention to bear on the region (Gale & Worthington 1986).
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2.2.1 Feature Integration Theory

An interesting account of the role of attention in object perception is the feature 

integration theory proposed by Triesman (1985, 1988).

According to this theory, early or “pre-attentive” visual processing involves the 

parallel extraction of simple object properties such as shape, colour and 

orientation from the visual field. These simple properties are detected by 

hardwired “feature maps”, each of which responds to a particular value of the 

feature dimension. For example, in the case of colour, separate feature maps 

might exist for red, yellow and blue. The parallel processing stage is then followed 

by a second, attentional stage involving the combination of the simple property 

information stored in the feature maps to form “objects”.

Triesman and Schmidt (1982) suggest that the combination of features to form an 

object may be achieved by attending to the location of the object, so that attention 

acts to ‘glue’ the features together. Furthermore, they also suggest that features 

may be combined on the basis of stored knowledge, or in some cases randomly 

-  producing “illusory conjunctions”.

There are several lines of evidence that support the notion of feature integration 

theory (Humphreys & Bruce 1989), but perhaps the most interesting, and 

certainly the most relevant to mammographic screening, involve studies of visual 

search tasks.

Using feature integration theory as a model, Treisman (1985) makes a distinction 

between “feature” and “conjunction” targets. A feature target has one or more 

feature values that are not shared by any other elements in the display, for 

example, a red circle within a display comprising blue circles. A conjunction 

target, however, is defined by a combination of properties that are shared with 

other elements, such as a red circle within a display comprising a mixture of blue 

circles and red squares.
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In a series of visual search tasks requiring a target present/absent judgement, 

Triesman found that the size of the display (number of distractors) had virtually 

no effect on performance when subjects were required to find a feature target. 

The target appeared to “pop-out” from the display, with detection being spatially 

parallel.

However, when a conjunction target was used, search latencies were seen to 

increase linearly with display size, suggesting that each item in the display had to 

be checked individually, or in other words, serial search was being employed, with 

each display element being attended to in turn.

Treisman suggests that in the case of feature targets, activity is produced in a 

separate feature map which is unaffected by the distractors, so that it is not 

necessary to check each individual element in the display, and “pop-out” occurs. 

With conjunction targets, there is no single feature map activated only by the 

target, making it necessary to attend to each item in the display in a serial fashion.

In another set of experiments, Treisman provides more direct evidence of the role 

of attention in object detection. The theoiy is that, if it is necessary to attend to 

a conjunction target in order to detect it, cueing the location of that target should 

direct attention towards it, allowing for detection without a serial search and 

consequently an increase in detection performance. However, cueing the location 

of a feature target should not significantly facilitate its detection, since feature 

targets are identified pre-attentively. The results of Treisman’s experiments 

demonstrated this to be the case, with the brief presentation of valid pre-cue 

immediately prior to the display having a substantial benefit for the detection of 

conjunction targets and veiy little effect with feature targets.

An interesting aspect of feature integration theory is that it suggests a mechanism 

by which properties of the display may affect target detectability. In 

mammographic film-reading, abnormalities may appear with a variety of
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different sizes, shapes and contrast levels. Similarly, the density and complexity 

of the background breast tissue may be subject to wide variations.

In some cases, clustered microcalcifications may be sharp-edged and fairly bright 

relative to the background tissue, and seem to have much in common with 

Treisman’s feature targets, leading to rapid detection by pre-attentive, parallel 

search. However, in other cases, where the background is highly structured or the 

target/background contrast is low, clustered microcalcifications may behave more 

like conjunction targets, requiring systematic, serial processing of the image.

2.3 Prompting and Pre-cues.

It seems to be the case that attending to the location of a target is highly beneficial, 

if not essential, to the detection and identification of that target, and that in order 

to ensure that the target location is attended to, it may be necessary to conduct 

a systematic, serial search of the display. However, Kundel and Nodine (1978) 

have demonstrated that in a number of cases abnormalities are overlooked 

because they are not attended to. This suggests that the accuracy of radiological 

diagnosis might benefit if the attention of the radiologist is directed towards those 

regions of the image in which abnormalities are present. In other words, the 

radiologist may be “prompted” towards suspicious regions of the image.

The traditional procedure employed by experimental psychologists for directing 

attention towards a certain part of the display is the presentation of a brief 

pre-cue immediately prior to displaying the image. This procedure was developed 

by Posner (1978, 1980), who conducted a series of simple reaction time (RT) 

experiments in which subjects were required to press a button when a light 

appeared in any one of several boxes located at various points within the visual 

field. Prior to each target, the subjects were presented with one of two types of 

cue. In the control condition this was a cross in the centre of the display that gave 

no information concerning the target location, while in the experimental
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condition the box in which the target would appear was briefly illuminated. The 

cue was valid on most trials, but on a small proportion it was invalid.

In order to separate the effects of prompting from the effects of eye movements, 

the cue was presented veiy briefly, so that the interval between cue onset and 

target onset was too short for eye movements to occur. The latency of eye 

movements is generally estimated to be about 180-200 msec (Posner 1980).

Posner found that that the RTs were faster than in the control condition when a 

valid cue was presented, but slower when an invalid cue was given, thus 

demonstrating the benefits of cueing target location in the detection of that target.

Several other researchers have found similar benefits of pre-cueing on the 

detection of targets (eg; Eriksen & Yeh 1985, Eriksen & Murphy 1987, Tfcal 1983), 

which suggests that some form of prompting based on pre-cueing may be useful 

to the radiologist. However, before prompting in any form can be accepted as a 

useful aid to radiological screening, there are a number of issues which must be 

addressed.

Firstly, the great majority of the evidence supporting pre-cueing comes from 

studies that have been both highly artificial and relatively simple. In almost all 

cases both the target and the background, or distractors, have been clearly defined 

and responses have generally been either simple RT or discrimination tasks. The 

question arises as to how far the results of these studies can be extended to 

situations involving real and often highly complex images, such as those seen in 

mammography.

Secondly, in most attentional pre-cueing studies, measurement of performance 

has been in terms of reaction time. This is not really an appropriate criterion for 

improvements in mammographic screening, where performance benefits in terms 

of improved detection accuracy are required. Treisman’s (1985) study did use 

accuracy, expressed in terms of the signal detection measure d’ (see section 3.2.1)
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as the measure of performance, and the pre-cueing of conjunction targets did lead 

to an improvement in detection accuracy. However, as mentioned above, the task 

in this case involved clearly defined artificial targets and distractors.

Furthermore, most studies of pre-cueing have involved the detection or location 

of only a single target in each display. In mammography it is quite possible for 

more than one abnormality to be present in an image. This potential for multiple 

targets requires an understanding of the effects of presenting a target with 

multiple prompts.

Perhaps the most important issue concerning prompting in mammography is the 

effect of presenting invalid prompts. If prompts are to be used to mark suspicious 

regions of a mammogram, then these areas of interest must be detected in some 

way, probably by some sort of computer vision system. Since no such system is 

likely to be completely specific, it follows that a certain number of false-positive, 

or invalid, prompts will be generated. Therefore it is important to know how these 

invalid prompts may affect detection performance.

Traditionally, it has been thought that the presentation of an invalid pre-cue has 

a detrimental effect on detection performance. This view has received a certain 

amount of support from experimental evidence, at least from simple RT tasks in 

which it is generally found that the presentation of an invalid pre-cue acts to 

increase reaction time (Posner 1980, Eriksen & Yeh 1985).

However, other experimental evidence has shown that this might not be the case. 

Treisman (1985), in her studies of the effects of pre-cueing targets, found that 

the presentation of an invalid pre-cue had little effect on the detection accuracy, 

relative to the no pre-cue control condition, of either feature or conjunction 

targets.

This result is encouraging since it suggests that invalid prompts might not 

adversely affect detection performance, but there is a problem with this

39



conclusion. The invalid pre-cues in Treisman’s experiments were not, strictly 

speaking, false-positives, since even when an invalid cue was presented the target 

was still present somewhere in the display and consequently the subjects knew that 

they must continue to search for the target. Having responded (shifted attention) 

to the invalid prom pt, the subject would then have to embark on a serial search 

for the target, just as if no pre-cue had been presented, which might explain the 

similarity between the results of the no cue and invalid cue conditions.

In these experiments the target and other display elements were clearly defined, 

so that a subject searching for a red circle who received an invalid pre-cue towards 

a blue square would be able to immediately disregard the cued element and 

embark on a serial search of the image. However, in mammography, the targets 

are not so clearly defined and the identification of an abnormality is often largely 

a question of interpretation. It has been suggested that many radiologists will 

disagree with their own previous interpretation of a mammogram one time in five 

(Gale et al 1979). It is conceivable therefore, that by focussing attention on a 

suspicious, but not abnormal, object in an image, an invalid prompt may lead the 

radiologist to make a false-positive judgement that would not have occurred if 

no prompt had been presented.

2.3.1 Prompting in Mammography

The first study to examine the effects of prompting specifically in mammography 

was conducted by Chan and her colleagues (1990). They used an automated 

detection system based on a difference-image technique and locally adaptive 

grey-level thresholding in order to identify microcalcification clusters in digital 

mammograms. This procedure, and other computer vision techniques used in the 

detection of microcalcifications will be discussed further in section 4.2.

Using the automated system, Chan achieved an accuracy level of 87% 

true-positive cluster detection with an average of four false-positives per image,
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which was referred to as “level 1 accuracy”. She then simulated an accuracy level 

of 87% true-positives with 0.5 false-positives per image, which was described as 

“level 2 accuracy”.

A set of 60 mammograms, half of which contained clustered microcalcifications, 

were processed as described above and printed out on a laser printer. Each image 

was printed out 3 times; once in a digitised but unprocessed form and once 

processed at each level of accuracy. The results of the computer detection system 

were superimposed on the processed films in the form of small open circles 

corresponding to the locations of the identified clusters.

The processed mammograms were then presented to 15 expert subjects who were 

asked to determine the presence and location of any microcalcification clusters 

in each image.

Using ROC analysis (see section 3.2.2), Chan found that both levels of prompting 

accuracy led to significantly higher detection performance than the control 

version without prompts, and there was no significant difference between the two 

prompting conditions.

These results imply that the presentation of valid cues to the locations of the 

abnormalities can significantly improve detection accuracy regardless of the 

number of invalid cues that are also presented. Although this is an encouraging 

result, it should be noted that there are certain questionable aspects of the 

methodology.

Firstly, the study time per image was limited to five seconds, a figure that was 

calculated from the suggestion that a full four-image mammographic study can 

be screened in as little as 45 seconds (Sickles et al 1986). A limited study time of 

this nature does not reflect the real screening task, in which the only time limits 

faced by the radiologist are self-imposed.
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Secondly, the mammograms were only presented in the digitised form as 

hardcopies. It is quite possible that the loss of spatial resolution inherent in the 

digitisation process may adversely affect the detectability of subtle 

microcalcifications, which may have affected the results. Certainly this casts some 

doubt on the applicability of these results to prompting with conventional 

mammographic films.

In addition, perhaps the most significant problem with Chan’s design was that 

each condition was presented to the subject as a separate block of 20 images, and 

prior to each block the subject was informed of the condition to be used and the 

level of accuracy involved. As has already been discussed, Kundel and Nodine 

(1978) found that the scanning strategy of a radiologist is affected by verbal 

instructions concerning the information to be presented and the nature of the task. 

It is possible therefore, that in Chan’s experiments the search biases of a given 

subject differed depending on the experimental condition, and that since the task 

was slightly different in each condition, slightly different scanning strategies were 

used in each case. For example, it might be the case that the subjective ratings of 

confidence that a cluster was present may have taken a different interpretation 

for each block.

Nevertheless, the results do indicate that a computer detection system can be used 

to produce a statistically significant improvement in the accuracy of 

mammographic film reading, a goal that is certainly worth pursuing.
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Chapter 3

Experimental Methodology

The aim of this section is to give a general introduction to the topics of signal 

detection theory and receiver operating characteristic (ROC) analysis, which form 

the basis of the methods used for testing the performance of both radiologists and 

automatic detection systems.

3.1 Introduction to Signal Detection Theory

3.1.1 Classical Psychophysics

It is generally the case that changing the value of a stimulus will produce a change 

in the perception of that stimulus. For example, an increase in the intensity of light 

will lead to an increase in perceived brightness. The relationships between stimuli 

and sensations are the province of psychophysics, a term first used by Gustav 

Fechner (1860).

Fechner was the first to adopt a mathematical approach to describe the 

relationship between mental experience and the physical world. The basic model 

of this relationship is the psychophysical function, the nature and measurement 

of which is the concern of one branch of psychophysical study.
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The other branch of psychophysics is concerned with the measurement of sensoiy 

thresholds. Fechner developed methods for estimating the just noticeable 

difference (jnd). Also known as the difference threshold, the jnd  is the minimal 

difference between two stimuli that can be perceived as a change in sensation. The 

underlying assumption of this work was that the jnd  is a fixed value that represents 

a fundamental unit of experience.

Unfortunately, there were two major problems with the measurement of the jn d . 

Firstly, the threshold did not appear to have a single value, but rather a range of 

values over which the probability of detection moved from 0% to 100% (Lloyd 

1984). Secondly, values of the jnd varied depending on the method used to 

measure them.

The problems associated with threshold measurement led to the development of 

an alternative approach, signal detection theory, which rejects the concept of 

thresholds completely.

3.1.2 Signal Detection Theory

Signal detection theory, originally formulated by Green and Swets (1966) is based 

on the idea that any signal is presented against a background of noise that varies 

randomly about some mean value. When a stimulus is presented, the activity that 

it creates in the sensory system is added to the noise existing at that moment. This 

noise may be within the system itself or it may be part of the input pattern. The 

task of the observer is to determine whether the level of activity in the system is 

due to noise alone or the result of a stimulus added to the noise.

Figure 3.1 shows the underlying distributions of the signal detection task. Mi and 

M2  are the means of the “noise alone” and “signal + noise” distributions 

respectively. The activity level marked c represents the criterion level of the 

observer, ie. the level of activity that must be exceeded in order for a “signal 

present” decision. The criterion level is discussed further in the section 3.1.4.
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In figure 3.1 the separation of the distributions, given by M2-M 1, is a measure of 

the sensitivity of the system (MacMillan 1991). If the signal is strong (a high 

signal-to-noise ratio), then the separation will be large and the sensitivity of the 

system to that signal will be high. However, a weaker stimulus will lead to a greater 

probability that activity in the system could result from noise alone and sensitivity 

to the signal will be low.

Noise Signal + Noise
f(I)

MX c

Intensity, I

Figure 3.1: Underlying distributions in signal detection task

The detection of a signal is therefore a statistical matter and the observed gradual 

change from 0% to 100% observed in threshold measurement is just what would 

be expected (Lloyd et al 1984).

In addition, by separating the behaviour of stimuli from the decision-making 

process, signal detection theoiy allows useful measures of performance that are 

independent of the procedures used to calculate them. From figure 3.1 it is clear 

that the sensitivity of the system (M2-M 1) is independent of the criterion level 

adopted by the observer. This means that while different procedures or 

differences in motivation may affect the criterion level of the observe, the
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sensitivity of that observer to a given stimulus should remain fixed (MacMillan 

1991).

The detection of an abnormality in a radiological image can be considered to be 

the problem of detecting a signal embedded in a background of structured noise 

-  in this case normal breast tissue. This suggests that signal detection theory may 

be an appropriate paradigm for studying the performance of both human 

observers and artificial systems engaged in the film reading task.

3.1.3 Measuring Sensitivity

The signal detection theory approach covers a range of experimental protocols, 

the simplest of which is a forced discrimination task. In a typical example of this 

type of study, an observer might be presented with a series of stimuli each 

consisting of either noise alone or noise plus a target signal. At each presentation 

the observer might have to respond either “signal present” or “signal absent”. 

Responses can thus be classified as one of four types as indicated in figure 3.2.

Present

Stimulus:

Absent

Figure 3.2: Possible responses in a simple signal detection theory experiment

As can be seen from figure 3.2 there are two possible types of error associated 

with this task. The first is a ‘miss’ which is when the observer fails to detect the

Response: (Signal present ?)

“Yes” “No”

HIT

(True-positive)

MISS

(False-negative)

FALSE
ALARM

(False-positive)

CORRECT
REJECTION

(True-negative)
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signal when it is present. The second is the ‘false alarm’ which occurs when the 

observer responds “signal present” even though there is no signal.

The performance of the observer can be summarised in terms of the “hit rate” -  

the probability of correctly responding “signal present” and the “false alarm rate” 

-  the probability of responding “signal present” when there is no signal. From 

these measures it is possible to calculate the detection sensitivity of the observer, 

generally expressed in terms of the sensitivity index; d \ which is calculated using 

equation 3.1.

d’ = z(H) -  z(F) [3.1]

where H and F are the hit rate and false alarm rate respectively, and z ( ) is the 

inverse of the normal distribution function.

The z transformation converts the hit and false-alarm rates into units of standard 

deviation in such a way that a proportion of 0.5 has a z-score of 0, larger 

proportions have a positive z-score and smaller proportions have a negative 

score.

If an observer shows no discrimination at all, H —F and d’ = 0. In this case the 

observer is operating at chance level and any positive judgement is as likely to be 

true as false.

Perfect accuracy, however, implies an infinite value of d \ In order to avoid this 

problem it is common practice to convert true-positive and false-positive rates 

of 0 and 1 to 1/2N and 1-1/(2N) respectively, where N is the number of trials 

(MacMillan 1991). For example, 25 hits and 0 misses gives H =  1 and F = 0. These 

values would be converted to H = 0.98 and F = 0.02, implying 24.5 hits and 0.5 

misses.
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3.1.4 Measuring Response Bias

Signal detection theory assumes that an observer has a fixed sensitivity for any 

given discrimination task. However, the willingness of that observer to respond 

“yes” rather than “no” may alter under different experimental conditions. For 

example, if the costs to the observer are greater for one type of error than for the 

other, then the observer may bias his/her response to reduce the possibility of 

making the more costly error. This is known as response bias and it reflects the 

strictness of the criterion level that the subject is using to determine an 

appropriate response.

The bias measure used in signal detection theory is c (for “criterion”) and is 

calculated using equation 3.2.

c = -0.5[z(H) + z(F)] [3.2]

Where H and F are the hit and false-alarm rates and z() is the inverse of the 

normal distribution function. It should be noted that a negative multiplier is 

included in equation 3.2. By convention a positive bias is a tendency to say “no 

signal”.

3.1.5 Signal Detection Theory Methodologies

It is a theoretical assumption of signal detection theory that, for a given observer 

on a given task, sensitivity will remain fixed even though response bias may 

change. In theory then, it should be possible to take a measure of sensitivity at 

a given criterion level and assume that it applies at all other criterion levels. 

However, it is often the case that in an experimental task, sensitivity may be 

subject to some variation at different levels of response bias. In practice it is often 

more useful to look at performance over a range of response bias levels and 

calculate an overall measure of sensitivity. This allows the sensitivity of an 

observer to be represented graphically by means of a receiver operating
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characteristic (ROC) curve. ROC curves are discussed in more detail in section

3.2

One way of measuring different levels of response bias is to present the same 

stimuli to the observer in several trials, and request response criteria of varying 

strictness, for example; “Answer yes if a signal is definitely present”, “Answer yes 

if a signal is probably present”, “Answer yes if a signal is possibly present”, etc. 

This method has two main drawbacks when used with human observers. Firstly, 

it is difficult to retain consistency in the observer’s definition of the response 

criteria. Even in a single trial the observer’s definition of precisely what constitutes 

“probably present” may differ from one stimulus to another. Secondly, this 

method requires that the observer undertake a great many presentations, possibly 

leading to a decrease in vigilance, and that the stimuli are repeated, so learning 

may interfere with the results. However, neither of these problems apply when this 

method is used to assess the detection performance of an artificial system and 

consequently this paradigm is often used for such purposes.

An alternative to the repeated presentations method is to use a rating scale. This 

is often a more effective method for assessing the performance of human 

observers. Rather than a simple Yes/No judgement, the observer is asked to rate 

his/her confidence that the signal is present on a scale that might range from 

“definitely present” to “definitely not present” with a number of points in 

between. Using this method, a single series of presentations can be used to 

generate measures of several levels of response bias, as indicated by the various 

scale points.

3.2 Receiver Operating Characteristic Analysis

3.2.1 Properties of ROC curves

According to signal detection theory, on any given discrimination task, an 

observer should have a fixed sensitivity but may vaiy in response bias. The locus
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of true-positive rate and false-positive rate pairs that yield a constant value of d’ 

is variously called an isosensitivity curve (Luce 1963), a relative operating 

characteristic (Swets 1973) or by engineering nomenclature, a receiver operating 

characteristic (ROC). This latter term will be used for the remainder of this text.

Figure 3.3 shows a set of ROC curves representing different levels of sensitivity. 

Each curve connects points with a constant value of d \

1.0

d’ =  2

d’ = l

Hit

Rate

0.0
0.0 1.0

False Alarm Rate 

Figure 3.3: Set of ROC curves showing different levels of sensitivity

In figure 3.3, the curve marked d’ = 0 is the chance line at which the observer is 

showing no discrimination. Sensitivity increases as the curves move closer to the 

upper-left corner.
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An important characteristic of the theoretical ROCs shown in figure 3.3 is that 

complete success in recognising one stimulus class is achieved at the cost of 

complete failure in recognising the other, ie. a hit rate of 1.0 can only be achieved 

with a false-alarm rate of 1.0, while a false-alarm rate of 0.0 can only be achieved 

with a hit rate of 0.0. ROCs that pass through (0,0) and (1,1) in this way are called 

regular curves (Swets & Pickett 1982). ROCs derived from experimental data, or 

empirical ROCs, are not always regular.

An alternative way to view ROC curves is as straight lines obtained by 

transforming the axes into z-scores. Figure 3.4 shows a set of such straight line 

ROCs plotted on transformed axes. On a straight line ROC the value of d’ can 

be read directly as the intercept of the line on the y-axis.

z(H)

2.0>

-1.C

-2.C

Figure 3.4: Straight line ROCs plotted on transformed axes
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The theoretical straight line ROCs shown in figure 3.4 all have a gradient of 1.0. 

This means that the magnitude of d’ corresponds to both the x-axis intercept, 

which may be referred to as d’i, and the y-axis intercept, d’2 . The ROC has unit 

slope because the underlying ‘noise’ and ‘signal + noise’ distributions, as 

illustrated in figure 3.1, have equal variance. Again, this is not always the case with 

empirical ROCs.

3.2.2 Empirical ROC analysis

The curves shown in figure 3.3 and 3.4 are, of course, theoretical curves and it is 

likely that in many cases experimental data will not fit into such a straightforward 

pattern, with each level of response bias (each point on the ROC curve) producing 

an equal value for sensitivity. However, sensitivity indices are useful for 

comparing systems since they can be used in statistical tests such as t-tests and 

analysis of variance (ANOVA) in order to determine statistical significance. 

Therefore it is useful to be able to calculate such measures from experimental 

data.

The first step in calculating sensitivity measures from experimental data is to 

generate a straight line ROC by converting the values for false alarm and hit rates 

into z-scores and then plotting them on linear axes. The straight line that passes 

through these points, which may be calculated by regression analysis, is a straight 

line ROC.

With the theoretical straight line ROC curves in figure 3.4, the value of d’ could 

be read off from either the x-axis intercept (d’i) or the y-axis intercept (d’2). 

However, this is only appropriate when the underlying “noise” and “signal + 

noise” distributions have equal variance, and the resulting straight line ROC has 

a slope of 1.0. If the slope of the ROC is other than 1.0 then an alternative measure 

of sensitivity must be calculated.
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Figure 3.5 shows an example of a straight line ROC that might be derived from 

experimental data. The line has a gradient other than 1.0 so different results are 

given by d’i and d’2 . Both of these values are inaccurate as d’i overestimates the 

sensitivity of the system and d ’2  underestimates it. An alternative measure, Dyn> 

has been suggested by Schulman and Mitchell (1966). Dyn is simply the 

perpendicular distance between the ROC line and the origin and is easily 

calculated, but unfortunately gives values that are always smaller than both d’i and

d ’2.

Z(H) ROC

D yn

0
z(F)

0

Figure 3.5: Sensitivity measures for non-unit slope ROC

A more appropriate measure, da, and was originally developed by Simpson and 

Fitter (1973). This is calculated by multiplying the perpendicular distance, D y n

b y /2  and represents the hypotenuse of an equilateral triangle whose other two 

sides have length Dyn- In addition to having a value that is intermediate in size 

between d’i and d’2 , da = d’ when the ROC has unit slope. The index da may be 

calculated from equation 3.3.

da -  [ 2  1 ( 1 + s2) ]^2 d’2 [3.3]

53



where s is the slope of the straight line ROC and d ’2 is the y-axis intercept.

Another useful measure of sensitivity, Az, can be calculated using da (or D y n ) -  A z 

is an estimate of the area under an ROC curve. For a standard ROC curve, 

sensitivity is higher the closer the curve comes to the upper-left corner of the ROC 

space. This implies that the greater the area under the curve, the higher the 

sensitivity of the observer. Az is expressed as a proportion of the total area of the 

ROC space, so that Az=0.5 represents chance level and Az=1.0 represents 

perfect performance. The index Az can be calculated from equation 3.4.

Az = <J>(da/ / 2  ) [3.3]

where <J>() is the normal distribution function, the inverse of the z-transformation 

used to calculate the sensitivity measure d’ and the criterion levelc (see equations

3.1 and 3.2).

3.2.3 ROC curve variants

The preceding sections have discussed the application of ROC analysis to 

experimental data. Although the methods described may be applied to a wide 

range of discrimination, detection and classification tasks, in order for ROC 

analysis to be used it is generally the case that the observer be restricted to a single 

response for each presentation.

In some cases, it is inappropriate to impose such a restriction on the observer. For 

example, a computer-based detection algorithm may be attempting to locate a 

target in a digital image. The algorithm may flag several locations in the image, 

one of which is the target while the others are false-positives. In terms of ROC 

analysis as discussed in the preceding sections, this would be considered a 

true-positive as the target has been detected. However, this ignores the data 

concerning the false-positive locations that were also flagged. In order to take this
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false-positive data in to account an alternative to the standard ROC analysis is 

required. This alternative is known as the the free-response operating 

characteristic (FROC) and is illustrated in figure 3,6.

1.0

Hit

Rate

0.0
0.0 0.5 1.0 1.5 2.0 2.5

Number of false-positives per image

Figure 3.6: Example of free-response operating characteristic (FROC)

For an FROC the hit rate is still expressed as a proportion, as it is still appropriate 

to express the number of hits in this way. However, by accounting for all possible 

false-positives, it becomes inappropriate to express the false-positives as a 

proportion since there is theoretically no limit to the number of false positives that 

may be generated. Therefore, the false-positive rate is expressed as the number 

per image.
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Note that in figure 3.6 the FROC curve does not pass through the upper-right 

corner where the the hit rate would be 100%. This is often the case with FROC 

curves where the number of false-positives generated in order achieve 100% 

true-positive detection would be extremely large.

In some cases FROC curves provide a clearer picture of how a system is operating 

than a conventional ROC curve. However, no very useful measures of sensitivity 

can be derived from FROC curves. They are really just a tool to illustrate a 

system’s performance in isolation. If it is necessary to derive some statistical 

measure of performance, for example if two systems are to be compared, then the 

FROC must be converted to a conventional ROC curve.

Converting FROCs to ROCs is easily achieved by re-examining the original data 

and assigning a single response class to each stimulus presentation. In other words, 

if any location is flagged on an image, then this is considered a positive decision. 

The problem with this conversion is clear. If the algorithm in the above example 

is presented with an image containing a target and it flags a location that is not 

the target then this will be considered a true-positive response, as the system has 

responded positively to a target-bearing image.

In order to avoid this problem another slight variant on the ROC is required. An 

‘ROC with localisation’ (LROC) appears exactly the same as a conventional ROC 

and is generated when an FROC is converted into the conventional form. To 

generate an LROC the conversion is similar to that described above with the 

restriction that a response can only be classed as true-positive if a genuine 

true-positive is present, ie. the correct location as well as the correct image has 

been flagged.

The LROC generally gives a lower estimate of sensitivity than the ROC and is 

most useful for extracting statistics for comparison with other systems whose
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performance has been analysed in a similar way. The best illustration of 

performance in these cases is still the FROC.
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Chapter 4

Computer Vision in Mammography

This chapter is intended to introduce some of the problems associated with digital 

mammography and provide a review of some of the methods that have been 

suggested for the automatic detection of two important abnormalities observed 

in mammograms; clustered microcalcifications and tumour masses.

4.1 Digital Mammography

4.1.1 Issues in Digital Mammography

Digital mammograms may be acquired by one of two methods; primary and 

secondary digital mammography. Primary digital mammography involves 

recording the emitted X-ray beam directly into a digital format, completely 

by-passing the need for a conventional film mammogram, while secondary digital 

mammography involves taking a conventional mammogram and digitising it with 

an appropriate scanner or CCD camera. Although the technology is in place in 

some institutions for the acquisition of primary digital mammograms, the use of 

such techniques is far from widespread and the vast majority of research in this 

field uses secondary techniques. All of the images discussed in this text have been 

acquired by means of secondary digital mammography.
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The digitisation of mammographic images offers a number of potential 

advantages when compared to standard screen-film procedures. Digitised images 

may readily be stored within a computer system, allowing for improvements in 

data security and display flexibility and facilitating the rapid transmission of the 

digital images between clinicians at different stations. Additionally, image 

processing techniques may be applied to the digital mammogram in order to 

enhance the image or allow automated film reading. However, these advantages 

must be offset against a significant problem: the loss of spatial resolution that is 

inherent in the digitisation process.

This reduction in spatial resolution can lead to a reduction in target detectability 

and consequently a reduction in the detection performance of the radiologist 

(Chan et al 1987a). Small abnormalities, such as microcalcifications, may fail to 

be adequately represented if the sampling frequency is insufficient. Similarly, the 

boundaries between adjacent microcalcifications may be blurred by the 

digitisation process, so that two or more microcalcifications may appear as a single 

structure.

The problems associated with the digitisation of mammographic images increase 

as the spatial resolution decreases. Fam and her colleagues (1988) applied a 

computer detection algorithm to images digitised at sampling rates of either 

0.1mm per pixel or 0.2mm per pixel. Fam found that the detection performance 

of the algorithm was better at the higher sampling rate. However, even at 

relatively high resolution the detection performance of the radiologist is still 

observed to be better with the original film than with the digitised image (Chan 

et al 1987a).

A more recent study by Karssemeijer and his colleagues (1993) presented 10 

radiologists with 72 image patches containing microcalcifications and asked them 

to classify the patches as benign or malignant and as comedo or non-comedo. 

These were presented both as the original film and in a digitised form with a
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resolution of 0.1 mm per pixel. There appeared to be no significant difference 

between the performance of the radiologists using the original or digitised 

versions, though it should be noted that this was a classification task and did not 

involve detection.

Nab (1992) presented radiologists with 210 mammograms; 135 normal, 75 

containing lesions and 60 containing microcalcifications. All were digitised at 

0.1mm per pixel and presented in both the original and digitised forms. Again, 

there was no significant decrease in performance with the digital images, and in 

this case there was a detection task involved. It appears therefore that images 

digitised with a sufficiently high resolution do not adversely effect the 

performance of the viewing radiologist.

Research in the field of computer vision has led to the development of increasingly 

sophisticated methods of image processing. These procedures can readily be 

applied to digital mammograms in order to enhance the images and facilitate the 

detection of abnormalities. Alternatively, systems may be developed for the 

automated detection of abnormalities. A fully automated screening system is still 

a rather distant goal, since it is very difficult to determine automatically that a film 

is unequivocally normal -  i.e. free of every type of mammographic abnormality. 

However, the results of a computer based detection system could be used to assist 

radiologists in the screening task. Ideally, computer-aided diagnostic (CAD) 

systems could be used to assist the radiologist to such an extent that detection 

performance is at least as good, if not better than that observed with the original 

mammograms.

The remainder of this chapter will discuss the ways in which image processing 

techniques have been applied to the problem of detecting abnormalities in 

mammograms. Firstly, algorithms for the detection and enhancement of 

microcalcifications will be reviewed. The next section will then examine some of 

the methods that have been used to detect lesions. T\vo particular systems have
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been implemented as part of this study, one for the detection of 

microcalcifications that combines evidence from a number of cue generators and 

the other which is based on gaussian pyramids and is designed to detect both 

microcalcifications and lesions. The final section will describe these two systems 

and present the results obtained from testing their detection performance.

4.1.2 Image Enhancement

The aim of image enhancement is to facilitate the detection of abnormalities in 

an image by highlighting those features of clinical significance while suppressing 

parts of the image that have no diagnostic value, such as normal background 

tissue.

One such procedure was employed in a study conducted by Chan and her 

colleagues (1987a). Chan used a set of 32 images, 12 of which contained subtle 

microcalcifications. These images were digitised with a sampling rate of 0.1mm 

per pixel and enhanced using an unsharp mask filter. Unsharp masking is a simple 

image processing technique that selectively enhances a certain range of spatial 

frequencies. The range to be enhanced is specified by the size of the mask, which 

in this case was 91x91 pixels. Enhancement of the high spatial frequency 

components of the image should have led to an increase in the contrast of small 

structures such as microcalcifications.

Each image was presented in each of the three forms (original, 

digitised-unprocessed and digitised-unsharp masked) to a group of nine 

radiologists. Chan found that the enhancement using the unsharp masked filter 

resulted in an improvement in the detection of clustered microcalcifications when 

compared to the unprocessed digital images, though the level of improvement was 

only barely statistically significant. However, neither the enhanced nor the 

unprocessed digital images led to a detection performance as high as that 

observed with the original images. It seems, therefore, as though this particular
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enhancement procedure, while effective to some degree, was not effective enough 

to counter the problems associated with the digitisation process.

Dhawan and his team (1986) investigated a range of contrast enhancement 

procedures based on optimal adaptive neighbourhood processing. The first stage 

of this system involved establishing an optimal neighbourhood around each pixel. 

A neighbourhood consisted of a central kernel of adjacent pixels and a single pixel 

annulus a short distance outside this kernel. The size of the neighbourhood was 

determined by finding the size at which a local contrast function reached a 

maximum.

The transformed value of each pixel was based on a number of factors, including 

the original pixel value, the average density of the annulus and the result of 

applying a contrast enhancement function to the local contrast value. Dhawan 

examined several methods of contrast enhancement, including the square root, 

exponential, logarithmic and trigonometric functions.

The effectiveness of each of the enhancement functions was measured using 

histogram analysis to examine the resulting grey level distribution. This analysis 

led to the conclusion that logarithmic and exponential functions were most 

effective for contrast enhancement, while the square root function enhanced the 

noise, resulting in the degradation of the image.

Unfortunately, the results of the enhancement processes were not presented to 

any radiologists, so it is not possible to determine whether or not the enhanced 

parts actually corresponded to clinically significant features in the image. 

Furthermore, Dhawan reports that the computing time required for this type of 

processing was substantial.

However, the notion of adaptive neighbourhood processing has a certain amount 

of appeal. The complexity and variability observed in mammographic images 

suggest that this sort of locally adaptive method may be more effective for image
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enhancement than global processing such as the unsharp mask filtering employed 

by Chan.

As was mentioned earlier, image enhancement is not the only possible application 

of CAD. An alternative application involves the detection of abnormalities. The 

remainder of this section will examine some of the techniques that have been 

developed for the detection of microcalcifications in digital mammograms.

4.2 The Detection of Microcalcifications

4.2.1 Pattern Recognition

One of the earliest microcalcification detection programs was developed by Wee 

and colleagues (1975) for the purposes of classifying benign and malignant 

lesions. The program employed a pattern recognition algorithm that operated on 

feature values extracted from microcalcifications that had been identified by edge 

detection and subsequent boundaiy tracing. Edge detection was achieved by 

adaptive local thresholding, with thresholds being established from the average 

grey level in the region under analysis.

The pattern recognition system used a set of seven features to classify the 

microcalcifications. These features included area, average grey level, contrast and 

smoothness, and using all seven features the system exhibited a classification 

accuracy of 88.2% with a set of 51 images containing microcalcifications (28 

benign, 21 malignant). Wee also found that an accuracy level of 84.3% could be 

attained using just three features; average grey level, horizontal length and 

contrast.

It should be noted that there are certain questionable aspects of this study. Firstly, 

Wee mentioned using some form of preprocessing methods to sharpen and 

smooth the image prior to edge detection, though no details of these methods
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were given. More significantly, the same set of images was used for both training 

and testing the system, which raises some doubt as to the validity of the results.

A rather more sophisticated pattern recognition system was developed by Davies 

and Dance (1990) for the automatic classification of normal and abnormal 

mammograms. The overall structure of this system was similar to that developed 

by Wee; local adaptive thresholding followed by feature extraction and pattern 

recognition. However there are a number of important differences between these 

two programs.

The first step in Davies and Dance’s system involved pre-processing with a mode 

filter. This filter set the value of a pixel to zero if the modal value of its adjacent 

pixels was zero, and should have served to filter out the background area of the 

digital mammogram that did not conform to breast tissue.

The adaptive local thresholding procedure operated on regions that overlapped 

in such a way that any given pixel appeared in five different regions. The threshold 

of each region was determined from the grey level histogram of that region and 

a pixel was accepted in the final segmented image if it was still present in a 

pre-determined number of regions after thresholding. Davies and Dance refer to 

this pre-determined number as the “threshold overlap number”.

Initially the image was processed with a threshold overlap number of 3. The 

structures in the segmented image were then analysed and five features w ere, 

extracted; area, mean grey level, two shape parameters and edge strength. These 

features enabled the pattern recognition system to discriminate between 

microcalcifications and other image features. A clustering principle was then used 

to locate groups of three or more microcalcifications with nearest neighbour 

distances of less than 5mm.

The next stage involved segmenting the original image again with a threshold 

overlap number of one. Feature extraction was then used to establish the parts
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of the image that corresponded with normal breast structures, such as ducts and 

blood vessels. The two processed images were then compared and those clusters 

in the first image that corresponded to normal breast tissue in the second were 

rejected.

Davies and Dance trained their system on a set of 25 images, then tested it with 

50 different images, half of which were normal and half of which contained 

clusters. The results of their study were encouraging. They reported that their 

system successfully detected 47 out of 49 clusters, giving a true-positive rate of 

approximately 96%. The system also found a total of 9 false-positive clusters in 

the 50 images, which is less than 0.2 false-positives per image. In terms of film 

classification, the system correctly classified all of the abnormal images and 92% 

of the normal images. This result may have been due to the substantial weighting 

against false-negative decisions (missed clusters) that was built into the cost 

matrix of the pattern recogniser.

It seems, therefore, as though the rather more sophisticated system of Davies and 

Dance performed more accurately than that developed by Wee. It should be 

stressed, however, that the two systems were designed for somewhat different 

tasks. It may be the case that distinguishing between benign and malignant clusters 

is more difficult than deciding whether or not a cluster of any sort is present. These 

two tasks, detection and interpretation, represent the two main problems 

associated with mammographic film reading (Astley et al 1992), and the two 

systems demonstrate the way in which computer vision techniques may be applied 

to either of these tasks.

4.2.2 Feature Testing

In order to distinguish between clinically significant structures and normal breast 

structures it is necessary to examine the features of those structures. The pattern 

recognition systems described in the preceding section used feature analysis to
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train the system to recognise the characteristic feature values of 

microcalcifications, allowing subsequent testing by comparison with these values.

The systems that will be examined in this section use feature analysis in a slightly 

different way. These systems are set up with pre-determined feature values or 

ranges of values that are accepted as characteristic of microcalcifications. These 

values form the basis of a set of tests, all of which must be passed in order for a 

cluster to be accepted. This approach is clearly illustrated in the work of Fam and 

her colleagues (Fam et al 1988, Fam & Olsen 1988).

The first set of three tests in Fam’s system was applied to each pixel in the 

unprocessed image. These tests measured the absolute intensity of the pixel and 

the intensity relative to its immediate neighbours. The pixels that passed all three 

tests were then subjected to a region growing algorithm in order to establish the 

sets of connected pixels that represented individual microcalcifications. A second 

set of tests based on size and edge strength values was then applied to the 

identified microcalcifications and those that passed were subjected to a cluster 

filter to identify groups of three or more microcalcifications in a 1cm x 1cm area.

Fam applied this system to a set of 40 mammograms, digitised with a 0.2mm per 

pixel sampling rate, all of which contained clustered microcalcifications. The 

system found all of the clusters that had been identified by the radiologists as well 

as four clusters that had not been observed at the initial screening. Only two 

false-positive clusters were found in the 40 cases.

This system appears to have performed well, at least with the limited test set used, 

though Fam reports that the algorithm did require some manual adjustment to 

compensate for contrast and intensity variations. This need for manual control 

would be difficult to overcome without some sort of normalisation process to 

counteract the variations in image properties that could take the feature values 

of microcalcifications out of the characteristic ranges.
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Chan and her colleagues (1987b, 1988, 1990) have developed an automatic 

detection system that employs a certain amount of image processing prior to 

feature analysis. Chan’s algorithm involved processing a digitised image to yield 

a signal-enhanced image and a signal-suppressed image. Subtracting the two 

gave a difference image that was thresholded and processed by feature analysis.

Signal enhancement was achieved by means of a matched filter, a simple spatial 

filter that increased the peak intensity values of microcalcification pixels relative 

to background pixels.

Several different forms of filter were investigated for the signal suppression, with 

the most effective being the box-rim filter. The box-rim filter is an averaging filter 

with the weights of the central region set to zero. This has the effect of replacing 

a signal with the average value of the background. This signal-suppressed image 

was then subtracted from the signal-enhanced image and the result was 

segmented by local thresholding.

The structures present in the segmented image were then tested for suitable area 

and contrast values before a clustering principle was applied to locate groups of 

3 or more microcalcifications in a 1.5cm x 1.5cm area.

The system was tested on a set of 20 clinical mammograms, digitised with a 0.1mm 

per pixel sampling rate. A true positive detection rate of 82% was attained with 

a false-positive rate of one cluster per image. By varying the signal-to-noise 

(SNR) ratio used to determine the local thresholds, the true positive rate could 

be increased to 100%, but at this value of SNR the system also detected 36 

false-positive clusters per image.

While this system does not appear to exhibit as high a level of performance as that 

of Fam’s algorithm, Chan’s system did have the distinct advantage of being fully 

automated. It is possible that, had no manual adjustment been made in Fam’s 

experiment, the performance of the system would have been significantly reduced.
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Of course, it should be stressed that care must be taken when comparing the 

results of these and other systems. The limited sample sizes of the test data, and 

the observed variability in mammographic images could mean that such factors 

as the degree of subtlety of the microcalcifications could vary greatly between the 

different studies.

Spiesberger and Groh (1977) developed a calcification detection system that used 

feature tests based on contrast, brightness and compactness. The interesting thing 

about this system was that in order to reduce false-positives, two mammographic 

views of the same breast were processed and then correlated, eliminating the 

suspicious structures that only appeared in one view. Unfortunately the detection 

accuracy of the system was not reported, so it is difficult to assess how effective 

the procedure might have been. However, it does seem feasible that the 

comparison of different views could be applied to other systems in order to 

improve detection performance.

4.2.3 Feature Analysis

In order to use pre-selected feature values in systems such as those described 

above, it is necessary to establish the characteristic feature values of 

microcalcifications.

Olson and her team (1988) analysed 48 images containing 52 microcalcification 

clusters, the locations of which had been previously identified by a radiologist. 

Characteristic feature values were extracted for individual microcalcifications as 

well as for clusters; other variables such as the patient’s age and type of 

mammography equipment used were also studied.

Olson used the feature values to compare benign and malignant clusters. She 

obtained a number of interesting results that seemed to suggest significant 

differences in the densities of the tissue surrounding benign and malignant
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calcifications, rather than in the calcifications themselves. Of course, these results 

were based on a fairly small sample size and apply at a population, rather than 

at an individual, level. Nevertheless, studies of this type can serve to assist the 

targeting of tests used in detection systems at those features that are of greatest 

diagnostic significance.

Lanyi (1985) has also studied the characteristics of benign and malignant 

microcalcification clusters, concentrating mainly on the shape of the 

microcalcifications and the configuration of clusters. Using the information 

gained from this study, Lanyi developed a differential diagnostic system based 

solely on the cluster characteristics. The application of this system to 297 cases 

yielded a sensitivity of 97.6% and a specificity of 73.3%

Once again, this demonstrates that an understanding of the characteristic 

appearance of clustered microcalcifications can be a significant aid to their 

identification and classification.

4.2.4 Neural Networks

The success of pattern recognition systems in the detection of microcalcification 

clusters (see section 4.2.2) suggests that the task may be suitable for the 

application of neural networks, which have been used successfully for a number 

of pattern recognition and classification tasks (Rich & Knight 1991).

Bourrely and Muller (1990) have evaluated several variations of neural networks 

applied to the task of detecting clustered microcalcifications.

They used a neural network that was trained to classify input patterns as either 

microcalcification or background. The input patterns consisted of 20x20 pixel 

windows taken from digital mammograms. The network was trained with 200 

patterns and then tested with 134 different patterns. The best results were 

obtained when the input pixels were logarithmically pre-processed. In this case
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the network correctly classified around 90% of the microcalcifications and 70% 

of the background patterns, with the remainder consisting mainly of unclassified 

patterns rather than false-positives.

Bourrely and Muller concluded that the combination of logarithmic 

pre-processing and shared weights for the connections between layers of the 

network would result in an improvement in the system performance, though this 

combination was not tested.

The results of this study are encouraging, but it should be noted that the input 

pattern consisted of only a veiy small portion of a mammogram. There are 

approximately 2600 20x20 pixel windows in a 1024x1024 pixel digital 

mammogram. The processing of an entire image would therefore require either 

a substantially larger network or a considerable number of individual runs of the 

system.

4.3 The Detection of Lesions

4.3.1 Feature Testing

In a similar manner to their use in the detection of microcalcifications feature tests 

may be used to discriminate between lesions and normal breast structures.

Kegelmeyer (1992) used feature tests as the basis of an algorithm for the detection 

of stellate lesions. The algorithm operates on each pixel in the image and extracts 

five feature values including four Laws texture energy measures and an index of 

the distribution of local edge orientations. These tests form the nodes of a binary 

decision tree, so that each node is effectively a threshold on one of the extracted 

feature values, with the thresholds being established from training data. A pixel 

must pass all five thresholds to be accepted as part of a suspicious region.
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The system was tested with 50 normal and 12 abnormal images. Half of these 

images were used to train the system while the others were used to test it. A 

true-positive rate of 100% was reported with 0.27 false-positives per image. At 

a lower operating point with a 92% true-positive rate there were no 

false-positives. Although these results are extremely encouraging, it should be 

noted that the number of abnormal images used for testing was very low.

Although Kegelmeyer used feature testing as the basis of his system, tests of this 

sort are more often used in addition to other methods as a means of improving 

the specificity of the system, in which case they usually occur in the latter stages 

of processing.

Giger and her colleagues (Giger et al 1990a & b, Nishikawa et al 1993, Yin et al 

1991,1993) use bilateral subtraction of the left and right breasts to identify 

asymmetries that may correspond to lesions then use feature testing to refine the 

set of candidate locations.

In Giger’s system each image is first thresholded ten times at different levels 

ranging from 5% to 50% of the area under the grey level histogram. Bilateral 

subtraction is then performed at each threshold level. Run length analysis is 

performed to find pixels that persist with a non-zero value in a series of more than 

five of the subtracted images. The final stage then involves the application of 

feature tests for such characteristics as size, circularity and contrast. This is a 

typical way in which feature testing is used after the bulk of the image processing 

has been performed.

Various results for the system have been reported. A test with 154 mammogram 

pairs (90 masses) showed a true-positive rate of 85% with three false-positives 

per image (Nishikawa et al 1993). A different study by the same group reported 

a true-positive rate of 95% with 3 false-positives per pair when tested with a set 

of 23 mammogram pairs, 18 of which contained lesions.
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An interesting distinction between different applications of feature analysis arises 

from the types of features used, or more precisely from the method of selecting 

those features. A good feature test may be defined as one that has maximum 

discriminatory power for distinguishing between targets and non-targets. 

Unfortunately, due to the extensive variation in the appearance of lesions, there 

appears to be no single feature that can distinguish any lesion from any non-lesion 

which is why most systems tend to use a set of feature tests rather than a single 

test. There seem to be two methods for selecting which feature tests to use; some 

researchers choose a large number of feature tests in a fairly arbitrary manner and 

perform experiments to determine which of these tests are the most 

discriminating, while others make use of expert knowledge.

As an example of using expert knowledge, Giger (1990a & b) uses a simple test 

for classifying lesions as benign or malignant. This test involves smoothing the 

lesion contour to remove any spiculations then comparing the lesion before and 

after smoothing to determine the degree of spiculation, with a high measure 

indicating malignancy. This test was motivated by the fact that the degree of 

spiculation is an important diagnostic cue that the radiologist uses to determine 

malignancy.

One limitation of relying on expert knowledge is that the system is tied by the 

limitations of the human visual system. For example, Miller & Astley (1993) have 

found that Law’s texture energy is quite good at distinguishing between glandular 

and fatty tissue -  although, it is unlikely that the unaided human brain could 

explicitly calculate a measure of this type.

An alternative to using expert knowledge is to experiment with a number of 

statistically derived descriptors for measuring such characteristics as texture, 

shape or intensity gradients. Hoyer and Spiesberger (1979), for example, used ten 

statistical measures including texture measures derived from run-length analysis 

and second order statistics taken from the co-occurrence matrix. Semmlow (1980)
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tested 19 measures for roughness, shape and spiculation, finally selecting nine of 

the most discriminating for use in the system.

Most commonly, feature tests are chosen on the basis of a grounding in expert 

knowledge and discriminatory power that has been proven experimentally. These 

common features include size, intensity gradients, contrast and simple shape 

descriptors such as circularity and eccentricity.

Feature tests seem to be most useful when used to refine a set of candidate 

locations that have been extracted from the image by some other processing 

technique. This not only improves the specificity of the system, but also reduces 

the computational cost by limiting the amount of the image that needs to be 

processed by these tests. Tests for fairly simple features such as size, circularity, 

contrast etc. have the advantage of being based on expert knowledge, which 

allows a certain amount of confidence that their discriminatory power will remain 

relatively constant over large numbers of images. In addition, they are fairly easy 

to implement. More sophisticated features involving the analysis of texture or 

second order statistics may appear to be effective for one group of images, but 

extensive testing on large data sets would be required before they could be 

accepted as reliable tests.

4.3.2 Asymmetry Detection

One property of mammograms that has been exploited by a number of 

researchers for the detection of lesions is that the images of the left and right 

breasts tend to be fairly symmetric. This means that a lesion in one breast should 

be detectable as an asymmetry if the breasts are compared.

Unfortunately, the left and right breast images are not perfectly symmetric. Apart 

from natural structural asymmetries in the breasts themselves, the mammographic 

imaging procedure involves compression of the breasts which can lead to
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differential distortion of the images. In addition, variations in the imaging process 

can mean different distributions of intensities in the two images. All of these 

phenomena lead to enough minor asymmetries between the left and right 

mammograms to defeat any attempts at a straightforward comparison.

Nevertheless, bilateral comparison is an important mechanism used by 

radiologists when searching for abnormalities, and the use of asymmetry cues 

could help to improve the effectiveness of automatic detection systems. Yin et al 

(1993) have compared their method for detecting asymmetry by bilateral 

subtraction (see previous section) with a lesion detection algorithm that operates 

on only a single mammographic view. They found that their bilateral technique 

exhibited significantly higher detection performance than the single view method. 

However, it should be noted that the single view technique used was really rather 

unsophisticated and that other systems working on single views have shown 

superior detection performance (eg. Kegelmeyer 1992, Lai et al 1988, 1989).

In general, most researchers investigating asymmetry detection have assumed a 

spatial correspondence between the two breast images and have attempted to 

align the breast images as much as possible before comparison. Hoyer and 

Spiesberger, for example, divide each of the breast regions into an equal number 

of rectangles, extract a number statistical measures from each rectangular patch 

and then compare the corresponding rectangles from the left and right breasts to 

find any asymmetries.

Miller & Astley (1993) however, take the view that a comparison of anatomically 

corresponding regions is more appropriate than looking at spatial 

correspondence. Their studies have demonstrated that radiologists can still 

achieve a relatively high level of lesion detection performance (true-positive rate 

of around 70%) even when all diagnostic cues have been removed except the 

shape of the non-fat regions of the image.
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Their system operated by segmenting out the glandular (non-fat) regions in each 

breast using texture measures. A number of measures were then calculated for 

each region and compared to determine whether the regions were asymmetrical. 

With the exception of transportation all of the measures used were global rather 

than local, so there was no need to align the regions.

Three types of asymmetry measure were used; shape (compactness, circularity, 

eccentricity and fourier features), brightness distributions (moments and 

transportation) and topology (area and binary moment). Of these features, 

experimentation revealed six with the greatest discriminatory power.

The system was tested with 104 mammogram pairs, each of which contained a 

single asymmetrical abnormality such as a mass lesion, an architectural distortion 

or a focal density. A true-positive rate of 67% was reported with a false-positive 

classification rate of 17%. Overall 74% of the pairs were correctly classified.

In most of the asymmetry detection systems, one of the first steps is to align the 

left and right images. Methods of image alignment vary greatly in their complexity. 

For example, Semmlow (1980) uses a fairly simple method that involves alignment 

to match up the extreme points on the image contours (the nipples) and then 

alignment in an orthogonal direction by application of a least-square-error 

technique to the differences between the two borders. Giger simply superimposes 

the breast contours and uses the smallest common area for further processing, 

though more recently rotation and translation procedures have been added to this 

basic method.

Simple alignment procedures as used by Semmlow and Giger will inevitably lead 

to a certain amount of correspondence error. Yin (1991) has suggested that most 

masses are large enough to not be affected by slight misalignments of the breast 

images. This may be the case, but it is the smaller, subtler lesions which might be
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affected by minor misalignments and these should be the targets of an automatic 

detection system.

Lau and Bischof (1991) use a much more sophisticated set of procedures including 

rotation, translation, skewing and scaling to account for differences in orientation, 

position, shape and size between the two images. The result of these procedures 

are two breast images that have an exact spatial correspondence on a 

pixel-for-pixel basis. This seems like a promising method, since it should avoid 

artifacts caused by contour misalignment. Giger, for example, had to include a 

‘border test’ in her final analysis to remove any suspicious locations that were 

associated with the border contour.

As Miller and Astley point out, the problem with a method like Lau and Bischof’s 

is that it involves a certain amount of distortion of the information in the 

mammogram, so that the image no longer gives a true representation of the breast 

structure. Additional problems could arise for a prompting system, since the 

lesion located on the distorted image would quite possibly have a different 

location on the original -  requiring that the detected locations be mapped back 

through the alignment procedures to the original image.

The actual comparison of images has been done in a number of ways, which fall 

into two groups. The first group of methods involve bilateral subtraction, either 

of the original grey level images (eg Giger 1990a-c, Yin 1991,1993) or of versions 

that have received a certain amount of processing (eg Semmlow 1980, Lau & 

Bischof 1991). These methods have the advantage of being fairly easy to 

implement and of quickly eliminating a large proportion of the non-target 

information. However, these methods are extremely vulnerable to small 

non-target asymmetries that do not represent lesions and are generally used in 

conjunction with some sort of feature testing to improve the systems specificity.

The second group of methods involve extracting some feature value such as 

texture or brightness distribution from the two images and comparing the values
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either globally (eg. Miller & Astley 1993) or on a more local level (eg Hoyer & 

Spiesberger 1979). These methods are generally less vulnerable to small 

non-target asymmetries but do involve all of the problems associated with feature 

analysis.

4.3.3 Multi-resolution Analysis

Another group of detection techniques take advantage of the fact that lesions tend 

to persist (remain visible in the image) at a variety of scales, ie; when the resolution 

of the image is reduced.

The most significant of these studies is the work of Brzakovic (1990) which was 

based on the technique of ‘fuzzy pyramid linking’. Firstly, a gaussian pyramid was 

constructed such that each layer was half the dimensions of the layer below it and 

every pixel was the weighted average of a 4x4 pixel window in the level below. The 

weights consisted of a gaussian mask. Each pixel was then linked to its four 

candidate ‘father’ pixels on the level above it with a link that had a strength which 

derived from a fuzzy membership function applied to the difference in grey level 

between the father and son pixels. Once each pixel had been linked, the values 

of eveiy pixel on all the layers above the base were updated to be the weighted 

average of that pixel’s sons. This process of linking and updating was repeated 

iteratively until a steady state was reached, then the image was segmented by 

propagating the values of high level nodes back down through the pyramid.

Brzakovic’s method has a lot of intuitive appeal. Firstly, the technique does not 

involve any a priori knowledge of the image or lesion characteristics, (although 

Brzakovic does use some simple feature testing at a late stage to improve the 

false-positive rate), which means that in theory the method should be able to 

detect any lesion regardless of size or shape. Secondly, the method, in fact the 

whole pyramid, can be used to detect microcalcifications as well as lesions with
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a fair degree of success (Brzakovic, 1993), which suggests that it might be the basis 

of a general abnormality detection system.

Brzakovic’s system correctly classified 85% of 15 films containing 10 mass lesions 

and demonstrated a false-positive classification rate of zero. Testing with 67 

images including 17 containing microcalcifications showed a true positive 

detection rate of about 88% again with no false positives.

Semmlow (1980) also took advantage of the scale persistence of lesions and 

constructed a series of reduced size primary resolution cell (PRC) images, where 

each pixel (PRC) represents a property of a 10x10 pixel window in the original 

image. One of these PRC images was based on average intensity, and was 

therefore really just a reduced resolution image. Other PRC formats including 

intensity gradients, roughness and shape descriptors. In this case, however, the 

PRC images were used to generate asymmetry cues and subjected to feature 

analysis, rather than being used as the basis of the detection algorithm as in 

Brzakovic’s system.

4.3.4 Other Methods

Two other methods of lesion detection that are worth noting but do not fall into 

any of the previous categories are template matching (Lai et al 1988, 1989) and 

neural networks (Nishikawa et al 1993).

The template matching method developed by Lai uses the observation that 

well-defined lesions are generally circular or near circular in shape. The first stage 

of this algorithm involves noise suppression by the application of a median filter 

to the image. In this case the median filter was specially modified with a threshold 

that served to preserve edge information. Lai compared what they called the 

“selective median filter” (SMF) with a number of other edge-preserving noise 

suppression algorithms and concluded that the SMF was the most effective.
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The filtered image was then cross-correlated with a series of circular templates 

ranging in radius from 2 to 14 pixels. Each of the templates consisted of l ’s inside 

the circle and - l ’s outside the circle with zeros at the boundary. These zeros 

constituted a free area that allowed for deviations of the lesion from a perfect 

circular shape. The top 2.5% of the cross-correlation measures were then 

thresholded out as suspicious regions. Finally two feature tests were applied to 

improve the system specificity.

The system was tested on a rather small data set (19 tumours in 17 images) and 

showed a 100% true-positive rate with 1.7 false-positives per image.

Nishikawa and colleagues (1993) described the application of a neural network 

to the classification of lesions. They identified 14 characteristic features of the 

signs of early breast cancer. Five of these related to lesions (eg degree of 

spiculation), six were related to associated microcalcifications and three were 

related to secondary features such as skin thickening. These features were applied 

to a set of lesions and and for each lesion, a value for each feature was assigned 

by a radiologist. These values were then fed into a neural network with a single 

output node in order to classify the lesions as benign or malignant.

The network was trained on 60 clinical cases using the leave-one-out technique. 

In addition to the training cases, 133 textbook examples of lesions were used to 

test the system. The classification performance of the network was reported to be 

slightly better than that of a radiologist used for comparison -  though no figures 

are given for the results. At present the manual extraction of feature values makes 

this system far from automatic, and the performance of the network would be 

expected to decline rapidly if it had to perform the additional task of automatic 

feature extraction.



4.4 Summary -  The Detection of Abnormalities

The preceding sections have described a number of systems that have been 

developed for the detection of abnormalities in digital mammograms, some of 

which have been more effective than others. The relatively high detection 

performance of some of these algorithms, especially in the detection of 

microcalcifications suggests that continuing development will lead to highly 

accurate systems, although, at present the development of a fully automated 

system for pre-screening mammograms is still a rather distant goal.

At present the most feasible application of these detection systems is as 

computer-based aids to assist the radiologist in the screening task. This 

observation has a number of important implications. Firstly, for the 

computer-based aid to be effective, the results of the detection system must be 

presented to the radiologist. This raises questions concerning human perceptual 

and attentional processes as well as human-computer interaction, and some of 

these questions have been addressed elsewhere in this report.

Another important implication that affects the development of CAD systems 

concerns the targeting of abnormalities. Ideally a CAD system would assist the 

radiologist by finding and drawing attention to abnormalities that the radiologist 

would otherwise have missed. The factors that lead to mammographic 

abnormalities being missed by radiologists have not really been studied in any 

depth, and certainly no CAD system has been developed on the basis of such data.

Research into the development of automated detection systems has focussed 

mainly on improving the detection accuracy of the system in its own right. While 

this is a worthwhile goal, it may not be the most appropriate direction for the 

development of computer-based aids to detection. It may be the case that an 

effective CAD system would exhibit a lower detection performance, in an
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absolute sense, than an automated detection system, but be more useful to the 

radiologist because it locates abnormalities that might otherwise have been 

overlooked.
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Chapter 5

Implementations of Prompting Systems

In order to assess the effects of prompting on the detection performance of 

radiologists a system was required for generating prompts. This section will 

describe in detail two such systems. The first is based on an algorithm developed 

by Astley and Taylor (1990) and is specifically targeted at microcalcifications. The 

second is based on the ‘fuzzy pyramid’ developed by Brzakovic (1990) for the 

detection of both microcalcifications and lesions. In addition to explanations of 

these systems, results are presented that compare the performance of the two 

algorithms for detecting microcalcifications and assess the performance of the 

latter system for detecting lesions.

5.1 Combining Cues

5.1.1 Overview

The first of the algorithms involves the combination of evidence from two cue 

generators, both of which used grey level morphology. Each of the cue generators 

was selected to respond to a particular property of microcalcifications: that they 

have relatively sharp edges, and that they appear as small bright blobs. Figure 5.1 

shows a diagrammatic overview of the algorithm.
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Figure 5.1: Diagrammatic overview of the cue combination method 

5.1.2 Description of Algorithm

It was noted in testing the system that the non-breast regions of the original 

images were far from uniform and the cue detectors tended to pick up small 

discontinuities in these areas. In order to avoid this problem a simple global 

threshold was used to set the lowest 5%  of the grey level histogram to zero, which 

effectively eliminated any variation in the darker non-breast regions with little 

effect on the breast tissue.

The thresholded image was then processed separately by each cue generator. The 

first cue generator, a morphological edge detector, consisted of an eroded image 

subtracted from the original (thresholded) image and should have picked up the 

sharp edges of the microcalcifications. The second cue generator was a 

morphological top hat transform which involved performing a large scale closing 

operation and subtracting the results from the initial image. In this case the closing
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operation involved 5 passes of erosion followed by 5 passes of dilation, which 

should have found bright objects up to 10 pixels (1 mm) in diameter. The top hat 

transform was preceded by a standard single pass closing operation in order to 

remove very small noise objects (<  0.1mm diameter).

Each of the cue generators should have picked up the microcalcifications as well 

as certain other structures with similar properties. However, the 

microcalcifications were rarely the most prominent structures in the cue generator 

images and it was difficult to differentiate between targets and non-targets. It was 

therefore necessary to weight the results of the cue generators to selectively 

enhance the microcalcifications.

The weighting procedure was based on a simple statistical model of 

microcalcifications, or more specifically a model of the typical responses of the 

cue generators to the microcalcifications. The model was obtained by a study of 

594 microcalcifications that had been located and marked by a radiologist. Each 

microcalcification was marked in the (approximate) centre and in order to locate 

the edge a region growing algorithm was used. This algorithm involved repeatedly 

dilating the central marked pixel and comparing the results with the original 

image. A pixel could only be ‘claimed’ by the dilation if its grey level on the 

original image was within 15% of that of the pixel being dilated. The value of 15% 

allowed for a reasonable amount of variation in grey level within the 

microcalcification. It was found that 2-4 passes of dilation were generally 

required to ‘fill in’ the microcalcifications, and if the number of passes was greater 

than 5 then it generally meant that the dilation had ‘leaked’ beyond the boundary 

of the microcalcification. The 23 cases in which this ‘leakage’ occurred were 

excluded from the results. A morphological inner-edge detector was then used 

to locate the edge of each microcalcification.

Each of the cue generators was then applied to the locations containing the known 

microcalcifications in the original images. In the case of the inner-edge detector
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the resulting values of each point on the edge were averaged to give a single value 

for each microcalcification, while the top-hat used the average value of all of the 

pixels within the microcalcification. This procedure yielded an average response 

value for each of the two cue generators applied to each of the 571 

microcalcifications in the training set. By analysing the distributions of the 

responses of each of the cue generators it was possible to calculate the mean and 

standard deviation in each case. These statistics formed the basis of the weighting 

procedure.

Figure 5.2 illustrates the function used to weight the cue generator responses. The 

results of each cue generator were weighted separately, using the appropriate 

statistics taken from the distribution of that generator’s typical responses to 

microcalcifications, though the weighting procedure was the same in each case.

Weighting
Function255

Weighted
Cue

Response

X-sd X X-Hsd
Original Cue Response 

Figure 5.2: Function used to weight cue images (X=mean, sd= standard deviation)

In the weighted cue image those points in the original cue image with a grey level 

equal to the mean of the typical responses for that cue generator were given the 

maximum grey scale value (255). The weighted value assigned to other points was 

inversely proportional to the difference between the original cue image value and
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the mean of the typical responses. When this difference exceeded a certain 

multiple of standard deviations of the distribution of typical responses the 

rescaled value was set to zero (background). The value of the multiple of standard 

deviations was varied in order to achieve different levels of response bias for the 

system.

The probability that a pixel was part of a microcalcification was now represented 

implicitly by its grey scale value in the weighted cue images and many of the 

non-target structures, such as the breast boundary, which had generated very 

strong edge cues were eliminated from the weighted images since they fell out of 

the range of the weighting function.

Although each cue generator responded to the target microcalcifications, each of 

them also responded to a number of other structures in the images that shared 

certain properties with microcalcifications. In order to improve the overall 

specificity of the system the evidence from the two cue generators was combined, 

with the intention of suppressing potential targets with evidence from only one 

generator and enhancing potential targets with evidence from both. The method 

used to combine the evidence was a straightforward multiplication of the two 

weighted cue images, which was particularly effective after the weighting 

procedure since the grey level of each pixel in the weighted image was an implicit 

representation of the likelihood that the pixel was part of a microcalcification.

At this stage the microcalcifications were clearly present in most images, however 

there was generally a certain amount of noise also present -  usually very small 

single or double pixel blobs. Initial attempts to eliminate this noise by means of 

a closing operation had the effect of removing too much target information, so 

an erosion procedure was used with an additional constraint that prevented the 

removal of a pixel if it was connected to at least two other pixels. Multiple passes
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of this procedure were applied until no more of the small noise blobs remained, 

with an average of 6 passes per image.

The final stage of the system involved searching the remaining objects in the 

system to see if any fell into clusters in the manner of microcalcifications. In order 

to achieve this, a mask of fixed size, 100x100 pixels (1cm2), was applied to each 

blob in the final image. In each case the mask was applied in each of the four 

positions that included the target blob in one of the four corners of the mask. At 

each position the mask was checked to see whether sufficient microcalcifications 

lay within its boundary to constitute a cluster. A minimum of 3 blobs were 

required for a cluster to be accepted. If the mask located a cluster, then the 

locations of all the constituent microcalcifications were averaged to obtain an 

estimate of the cluster centre which was recorded and used to generate a prompt.

4.5.3 Topical appearance at different stages

Figure 5.3a-d illustrates the various stages of the morphological algorithm, 

beginning with a patch taken from a digital mammogram that shows a cluster 

(Figure 5.3a). Figures 5.3b and 5.3c then show the output of the weighted edge 

detector and the weighted top hat respectively, and finally figure 5.3d shows the 

final result after the two cue images have been combined and small non-target 

blobs have been filtered out.
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Figure 5.3: Stages in the detection of a cluster: 
a. source image, b. weighted edge cue image, 
c. weighted top hat image, d. combined image

Figure 5.3 illustrates the typical appearance of a single cluster at the various stages 

involved in its detection. A fuller discussion of the results of the algorithm applied 

to a large test set of clusters will be presented in section 5.3.



5.2 Fuzzy Pyramid Linking

5.2.1 Introduction

The second method used for the detection of microcalcifications was a slightly 

modified version of the fuzzy pyramid linking algorithm described by Brzakovic 

(1990). One advantage of this method is that very little a priori knowledge about 

microcalcifications is required until the final stages of the algorithm, which 

involves testing the features of any structures passed by the segmentation 

procedure. This suggests that the algorithm could also be used for the detection 

of abnormalities other than microcalcifications.

5.2.2 Constructing the Pyramid

Prior to construction of the gaussian pyramid, the original image was 

pre-processed by contrast enhancement which involved simply ‘stretching’ the 

grey level histogram to occupy the full range of available grey levels. The images 

used in testing our system were 512x512 pixel patches extracted from 

mammograms, and as a consequence often only employed a part of the grey level 

range. Since the fuzzy linking procedure used in the algorithm operated on the 

difference in intensity between pixels, the combination of contrast stretching 

followed by the gaussian smoothing that was a natural part of the pyramid 

construction allowed for a greater range of link strengths than would otherwise 

have been the case, facilitating the discrimination of targets from non-targets on 

the basis of the link strengths.

The next step in this method was the construction of a gaussian pyramid with the 

(enhanced) original image as the base, as illustrated in figure 5.4. Each level of 

the pyramid above the base (level 0 ) had half the dimensions of the level below 

it, with the value of each pixel in a level above the base being generated by the 

application of a 4x4 gaussian mask to the pixels on the level directly below it.
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Figure 5.4: Structure of gaussian pyramid

5.2.3 Fuzzy Linking

Once the pyramid had been built the levels were linked together. Each node 

(pixel) on a level above the base had 16 possible son nodes on the level below that 

could be linked with it. Similarly, each node in a level below the top two had four 

possible father nodes on the level above that it could link with.

The simplest method of linking the levels together would have been to use ‘hard 

linking’ as described by Burt (1984). Using hard linking the four candidate father 

nodes are compared and the one closest in grey level to the son is linked, while 

the other three are not. Every son node is linked to a father in this way, and many 

fathers have more than one son. However, rather than this hard linking procedure, 

fuzzy linking as described by Brzakovic was employed in this algorithm.
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The fuzzy linking method allows any given node to be linked to all of its potential 

father nodes and all of its potential son nodes, with each link having a link strength 

determined by a fuzzy membership function (Zadeh 1965) operating on the 

difference in grey level between two linked nodes. Each node is linked with four 

father nodes and the link out of these four that has the highest link strength was 

known as the maximum link for that node.

The equations that determine the strength of the link between two nodes (<h) can 

be expressed as follows;

a, P, 7 ) = 1 -  S(u; a, p, 7 ),

where:

0  for u < = a

for a  <= u <= (3

for p <= u <= 7

for u > — 7

U = I II  (i> j) -  Il -i (i’> j ’) I

II  j) = intensity of node at point (i, j) in level L of the pyramid

at and 7  are parameters that determine the shape of the function

(3 = Q! + 7  

2

The shape of the fuzzy membership function used to determine link strengths is 

defined by two parameters; at and 7 . Brzakovic’s implementation of this algorithm 

used fixed values for the parameters ot and 7 , However, it was noted during testing 

of the algorithm that using fixed values for these parameters did not account for 

the degree of grey-level variation observed in the original images. This led to a

S(u; a, p, 7 ) =
2 ( u-q  

\  7 -a

1 -  2  f u - 7
\  7~0i.

1
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reduction in the discriminating power of the algorithm as the full range of possible 

link strengths was not being used. To overcome this problem oi was fixed at zero 

and 7  was automatically selected to be one standard deviation of the grey level 

distribution of the (contrast enhanced) original image. This meant that the full 

range of possible link strengths was used.

Once all the link strengths at a given level had been established, the values of the 

nodes at that level were updated. This was achieved by replacing’the value of any 

given node with the weighted average of the son nodes that were linked with it 

from below. The weight associated with each son node corresponded to the 

strength of the link between that node and the father node.

Once all of the nodes had been updated the process of linking and updating was 

repeated continuously, forming an iterative process. At each repetition, the 

number of nodes that had their maximum link with a different father than on the 

previous iteration was counted. Once this number reached zero, the pyramid had 

converged to a steady state, and there were no more passes of linking and 

updating.

The original image was now segmented by taking the values at the 2x2 level of 

the pyramid, just below the apex, and propagating these values down through the 

pyramid along eveiy link that exceeded a certain threshold on the link strength. 

The level of this threshold was varied to provide a number of different levels of 

response bias and allowed an ROC curve to be generated.

The final stage involved the application of feature tests based on the properties 

of the abnormality being searched for. In the case of microcalcifications this 

involved searching the image for clusters of 3 or more blobs with maximum 

nearest neighbour distances of 5mm (50 pixels). For lesions, the image was 

subjected to morphological opening then searched for objects with a minimum 

area of 25 pixels.
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5.3 Results

5.3.1 Comparison of Methods -  Microcalcification Detection

In order to assess the effectiveness of the two detection algorithms described in 

the preceding sections, each was tested with the same group of 60 images. The 

images were 512x512 pixel patches that had been taken from digital 

mammograms with a spatial resolution of 10 pixels mm-1. Of these 60 patches 36 

contained at least one cluster and three of these contained two distinct clusters 

-  giving a total of 39 clusters in the data set. The remaining 24 images contained 

no abnormalities. The images were read by a radiologist who also had access to 

the original films, and the locations of any clusters were determined. In the case 

of the first algorithm, films were also required for training the system. In these 

cases, the ‘leave-one-out’ method was used to train and test the algorithm.

In order to generate points for an ROC curve, the systems were required to 

operate at a number of different levels of response bias. In the first case, this was 

achieved by varying the width of the weighting function in terms of a multiple of 

the standard deviation (sd) ranging between 0.6sd and l.lsd  in steps of O.lsd. In 

the second case different operating levels were achieved by varying the threshold 

on the link strengths between 0.1 and 0.9 in steps of 0.1.

For each image, the numbers of true-positives and false-positives at each level 

of response bias were determined and the true-positive rates and numbers of 

false-positives generated per image were calculated for each system. These data 

are illustrated by the FROC curves shown in figure 5.5.

In order to derive measures of sensitivity that could be subjected to statistical 

analysis, the FROC curves illustrated in figure 5.5 were converted into ROC 

curves as described in chapter 3. The resulting curves are shown in figure 5.6. The 

solid-line curves in figure 5.6 represent the best-fit ROC curves for the
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experimental data, as calculated using the ROCFIT package. Analysis of these 

results revealed that the fuzzy pyramid system exhibited significantly higher 

classification accuracy than the morphology-based system, (t0bS = 4.17 , 

p <  0.005).

1.0

•5 0.6

0.2
<D Fuzzy Pyramid 
A Combined Cues

False-positives per image

Figure 5.5: FROC curves showing detection performance

Clearly in this test the performance of the fuzzy pyramid algorithm exceeded that 

of the morphological system, with this increased performance manifesting itself 

as a lower number of false-positives generated at any given true-positive rate. 

However, in their present state of development neither of these algorithms seems 

to operate at a level of accuracy that would be suitable for a system to be used 

in a clinical environment. True-positive detection performance was encouragingly
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high, reaching 92% in the fuzzy pyramid system and 95% in the morphological 

system, but the numbers of false positives generated at these operating points 

were approximately 2.5 per image and 6.1 per image respectively. Research on 

the effects of false-positive errors on prompting effectiveness has suggested that 

the benefit of the prompts as aids to the radiologist is diminished and may be lost 

altogether as the false-positive rate of the prompt generation system increases 

(see chapter 6 ). Even the 2.5 false-positives per image rate of the fuzzy-pyramid 

system may be too high for the prompts to be useful to the radiologist.
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Figure 5.6: ROC cuives illustrating classification performance

At present the final stages of processing in the fuzzy pyramid algorithm consist 

of simple tests to determine the size of potential microcalcifications in the final
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image and whether or not they represent a cluster. By introducing some more 

sophisticated feature testing during these latter stages, it may be possible to 

improve the specificity of the system. For example it may be useful to determine 

the locations of any detected potential microcalcifications in the segmented image 

and examine these locations in the original image with a view to rejecting any that 

represent clearly normal tissue.

5.3.2 Lesion Detection Results

In addition to being applied to the detection of microcalcifications, the fuzzy 

pyramid system described in section 5.2 was also used to detect well-defined 

lesions.

The lesion detection version of the system operated in exactly the same way as 

described for the detection of microcalcifications, up to the thresholding 

procedure in the latter stages of processing. For the detection of 

microcalcifications, the threshold on the link strength served as an upper limit, so 

that only weak links were propagated down through the pyramid. This was the 

most effective method because the microcalcifications are small inconsistencies 

in the background pattern that lead to weaker link strengths. However, lesions 

take up larger areas of the image and have relatively smooth internal texture, 

which meant that the links associated with lesions were relatively strong, except 

at the edges of the lesion, where weak links were observed. For this reason, the 

threshold served as a lower limit in the detection of lesions.

The cluster detection procedure was clearly not appropriate for the detection of 

lesions and was replaced by an area threshold. The segmented image was first 

subjected to morphological opening (dilation followed by erosion) in order to Till 

in’ the gaps that tended to appear within the lesions. Then any objects in the image 

with an area less than 25 pixels were rejected. The figure of 25 pixels was derived
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from an empirical analysis of the typical size of lesions after segmentation by the 

pyramid algorithm.

The lesion detection system was applied to 15 images containing well-defined 

lesions, all of which had been digitised at a 0.1mm per pixel sampling rate. In order 

to generate an ROC curve, the link strength threshold was varied between 0.45 

and 0.95 in steps of 0.05. The FROC curve in figure 5.7 shows the detection 

performance of the fuzzy pyramid algorithm in locating the lesions. For the 

purposes of comparison, the system’s microcalcification detection performance 

ROC is also shown.
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Figure 5.7: FROC curves showing detection performance of 

fuzzy pyramid system with lesions and microcalcifications
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Clearly, the system is by no means as effective at detecting lesions as it is at 

detecting microcalcifications. This appears to be due to a tendency to classify any 

region of bright glandular tissue as an abnormality. Consequently the 

false-positive rate was rather high. In its current state the system does not take 

advantage of any of the properties of well-defined lesions that may improve the 

specificity of the system. Such properties may include edge strength, circularity, 

and contrast relative to the surrounding tissue. It is possible that by the inclusion 

of tests based on these properties may improve the performance of the system.

5.4 Summary & Conclusions

This chapter has described two systems that have been implemented for the task 

of detecting abnormalities in digital mammograms. It is not suggested that either 

of these systems represents the most effective or efficient method of detecting 

abnormalities of the types described. Rather, the intention was to generate 

realistic prompts for use in psychophysical studies with radiologists and will be 

referred to in subsequent chapters.

The advantages of this are clear. Simulated prompts, selected by human 

intervention, have a great potential for bias -  especially in selecting the locations 

for false-positive prompts. Automatically generated false-positive prompts are 

not placed randomly, but rather will be sited at locations that have some 

characteristics in common with the abnormalities being detected. It may well be 

the case that such locations would be the most likely to cause a radiologist to make 

an error, making the interaction between the prompt and the human observer 

particularly interesting.

Of course, it should be noted that different detection algorithms will rely on 

different properties of abnormalities. The false-positives generated by one system 

will therefore differ from those generated by another.
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Chapter 6

The Effects of False-Positive Prompts

This chapter describes the first of three experimental studies designed to 

investigate the effects of prompting on the detection performance of radiologists. 

This experiment examines the effectiveness of prompting at different 

false-positive rates.

6.1 Objectives

The aim of this experiment is to investigate the effects of varying the accuracy of 

the prompt generation system on the detection performance of the radiologist 

when searching for one particular class of abnormalities, clustered 

microcalcifications.

It is very unlikely that any automatic prompt generation system will ever be 

completely specific, so that a certain number of false-positive, or invalid, prompts 

will be produced. It is important to know how such invalid cues may affect the 

performance of the radiologist.

Although the primary measure of detection performance will be the signal 

detection measure of sensitivity, Az, a number of other variables will be studied
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including the reading time, the active use of prompts, subjective ratings of 

usefulness and the relationship between invalid (false positive) prompts and false 

positive judgements from the radiologist.

6.2 Experimental Method

6.2.1 Data

The experimental data consisted of 24 pairs of mammograms, each from a 

different patient. Each pair comprised mediolateral views of the left and right 

breasts and in each case one of the pair contained a cluster while the other was 

normal. These mammograms were digitised with a spatial resolution of 10 pixels 

mm- 1  and an 8 -bit grey resolution. Previous studies have suggested that glandular 

pattern type can affect the detectability of microcalcifications (Hutt 1992), but in 

this experiment the pairing of each abnormal image with a normal from the same 

patient and consequently with the same glandular pattern type should have 

stopped the pattern type from affecting the results.

A 1024x1024 image patch was extracted from each of the digitised mammograms 

for use in the experiment. The patches from abnormal images were selected to 

contain the clusters, while the normal image patches were taken from a breast 

area roughly corresponding to that used for their paired abnormals. In both cases 

selections were made to minimise the amount of non-breast background present 

in the image patches. In order to increase the size of the data set each image patch 

was copied and reflected about the y axis, effectively doubling the number of 

patches available.

The 96 image patches were randomly assigned to four experimental conditions 

representing different levels of prompting accuracy. Of the 24 patches in each 

condition half were normal and half contained clusters. With the exception of
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those patches assigned to the control group, the image patches were all processed 

using the combined cues algorithm described in chapter 5. Each experimental 

condition represented a different combination of true-positive and false-positive 

prompting rates. These rates were obtained by running the detection algorithm 

at different operating points in a manner similar to that used to generate the ROC 

curves in section 5.3. Figure 6.1 summarises the accuracy data for each of the 

experimental conditions.

The ‘level 2 accuracy’ condition represents the true performance of the detection 

system with the width of the weighting function set at 1 . 1  standard deviations, 

which reflected an appropriate operating point as determined by ROC analysis. 

By running the algorithm with stricter criteria (narrower weighting functions), a 

true-positive rate of 60% and a false-positive rate of 0,5 image- 1  were achieved. 

These were then combined with the ‘level 2 accuracy’ results as described in figure 

6 .1.

Condition True Positive Rate False Positive Rate

Level 1 accuracy 89% 0.5 image-1

Level 2 accuracy 89% 2.4 image-1

Level 3 accuracy 60% 2.4 image-1

Unprompted (control) — —

Figure 6.1: Summary of experimental conditions

By combining true-positive and false-positive prompting rates from different 

operating points in this way, the three experimental conditions simulate three 

different systems, all with different levels of sensitivity.

The prompting rates used in the ‘level 1’ and ‘level 3’ conditions are artificial and 

do not represent the true performance of the detection system. It could be argued 

that for this reason it would have been easier to simply simulate the prompts.

101



However, simulating the prompts would have introduced a certain amount of bias 

as it would be necessaiy to somehow decide which abnormalities are prompted 

and which are not. A method for deciding where to place false-positives would 

also be required. As it stands, all of the prompts used in this study were genuine, 

in that they were all generated by a detection algorithm.

6.2.2 Subjects

The experiment was carried out with seven radiologists, three of whom were 

experienced in the reading of mammographic films and four of whom were 

involved in general radiological practice but were familiar with mammograms. 

None of the subjects had any significant experience i n . reading digital 

mammograms in a clinical setting.

Ideally, all of the subjects would have been experienced mammographers. 

However, the non-portability of the experiment restricted the number of 

mammographic radiologists available to participate.

Since the experimental task was rather different to conventional mammographic 

film reading (partial, digital mammograms presented on a workstation), any 

advantage associated with experience in reading mammograms should have been 

diminished.

6.2.3 Procedure

The images were presented to the subjects on a SUN Sparc workstation with a 

pixel size of 300 jim and a screen size of 1320 x 1035 pixels. Since the resolution 

of the images gave a 1 0 0  pm pixel size, the image patches were magnified by a 

factor of 3 in the experimental display. All of the subjects responses were made 

using a 3 button mouse and pad.

In order to maintain some level of consistency in lighting conditions, the 

experiment was carried out in a darkened room, though not in a total blackout.
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The subjects were free to use the brightness control on the VDU in order to adjust 

the light level of the display and all of the subjects were observed to use this 

control frequently throughout the experiment. The layout of the screen display 

is illustrated in figure 6 . 2

STATUS

NEXT

Figure 6.2: Diagram showing screen layout during experiment. A simulated 

cluster and two prompts are also shown, one TP and one FP.

The main portion of the display consists of the image window in which the image 

patches were displayed individually in sequence. At the upper right of the display 

is the status window which displayed brief instructions to the subject concerning 

their response options at any given point in the experiment. In a vertical column 

below the status window are 5 response buttons numbered 1 to 5. These were used 

by the subject to make confidence judgments. Finally, to the lower right of the 

display is the next image button which allowed the subject to move onto the next 

image in the sequence. All responses were made by clicking with the mouse on 

the appropriate button.

Each of the four experimental conditions was presented to the subjects as a 

separate block, with the order of block presentation randomised differently for

103



each subject. In addition the assignment of images to the various experimental 

conditions was different for each subject. In each case the assignment was random 

with the constraint that an image patch and its reflected version could not both 

appear in the same block. The order in which the images appeared within the 

block was also randomised. These precautions should have served to minimise or 

hopefully eliminate order effects arising from practice or fatigue.

Each of the images appeared twice in the study, once in its original state and once 

reflected, and therefore there is a possibility of learning influencing the results. 

However, the process of reflecting the image should have made it more difficult 

to recognise and when this is combined with the complexity of the image and the 

practice of separating the two versions, learning should not have been a major 

problem. In fact, when questioned after the experiment, none of the subjects 

reported having realised that the images were repeated.

Prior to the experiment, each subject was given verbal instructions concerning the 

nature and requirements of the task and the number of images in each block. In 

addition the subjects were informed of the proportion of abnormal images (50%) 

since this is much higher than the proportion that might be seen in a clinical setting 

such as a screening centre and the disparity between the expected proportion of 

abnormals and the actual proportion may have adversely affected the detection 

performance of the radiologists had they not been informed. Similarly, the 

subjects were informed of the accuracy of the prompting system before each block 

was presented. Kundel and Nodine (1978) have suggested that verbal instructions 

concerning the patient’s clinical history and other salient factors can serve to 

modify the search behaviour of the radiologist searching for small lung 

abnormalities. It is possible that informing the subjects of the prompt accuracy 

may have affected their search strategy slightly differently for each experimental 

condition in this experiment, but it is almost certainly the case that the subjects 

would have determined the approximate accuracy of the prompts after a few
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images, at which point they would have adjusted their search strategy anyway. By 

informing the subjects at the outset their search strategies should have remained 

fairly consistent throughout each block.

In addition to verbal instructions the subjects were also given a practice run in 

order to familiarise them with the display and the appropriate responses. The 

practice run consisted of 6  images representing a cross-section of the 

experimental conditions and subjects were invited to repeat the practice run if they 

did not feel comfortable with the controls, though none of the subjects felt that 

a repeat run was necessary. None of the practice images appeared in the main 

experiment.

For each presentation a single image patch was displayed in the main image 

window and the subjects were asked to search the image for any clusters of 

microcalcifications, with a cluster defined as 3 or more microcalcifications. If a 

cluster was found, the subjects were required to mark the approximate location 

of its centre by means of the mouse and cursor. Location markers appeared as 

open white circles 100 pixels in diameter. In the case of large extended clusters 

that would not fit within the marker, the subjects were asked to just provide a 

single marker located around the cluster centre, only providing two separate 

markers when they perceived two separate clusters.

For each marked location, the subjects were asked to give an estimate of their 

confidence that the marked location actually contained a cluster. Confidence 

ratings were given on a 5 point scale ranging from “definitely a cluster” (scale 

point 1) to “probably not a cluster” (scale point 5) and confidence judgements 

were made by clicking the mouse on the appropriate numbered response button. 

Each subject was asked to use the whole of the scale and to try to keep their 

interpretations of the scale points constant throughout the experiment. A sixth 

scale point “definitely not a cluster” was represented by the “next image” option
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that allowed the subject to move on to the next image in the block without making 

a location judgement.

The subjects were able to make as many location judgements as they wished on 

an image, each one followed by a confidence judgement. Once they were satisfied 

the subjects could move on to the next image in the block using the “next image” 

option.

Prompts, when available, appeared as open red circles 100 pixels in diameter. If 

an image had prompts associated with it they were displayed automatically when 

the image first appeared. This initial display lasted for approximately 200 msec 

before the prompts were removed again. The brief display, combined with the 

visual prominence of the prompts (red circles on a monochrome background) 

should have served to alert the subjects to the availability of the prompts, which 

could then be redisplayed and removed as desired. In addition to alerting the 

subjects to the availability of the prompts the initial brief display should have 

served as an attention cue, directing the locus of attention towards the prompted 

location. However, 200 msec is less than the latency of eye movements so the brief 

display should not have overly disrupted the search strategy of the radiologist by 

altering the initial foveal fixation point.

After each block, subjects were asked to give their opinion on how helpful the 

prompts had been in that block. A questionnaire with a 5 alternative forced choice 

(5-AFC) format was used to gather this information.

6.3 Results

6.3.1 Methods of Analysis

t
The true locations of the clusters in the image patches had been determined prior 

to the experiment by a radiologist working with the original films and pathological
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data where appropriate. A location judgement was considered to be true positive 

if the centre of the marker placed by the subject lay within 50 pixels of the true 

centre of the cluster. Any location judgement that did not satisfy this criterion was 

considered to be a false positive.

At each confidence (criterion) level the numbers of true positive and false positive 

judgements were counted and from these figures the cumulative totals at each 

level were calculated. The cumulative totals were then converted to probability 

scores and plotted to generate an ROC curve.

The confidence judgements provided by the subjects show different levels of 

response criteria, allowing a number of points on an ROC curve to be generated 

with a single experiment. This is the advantage of rating scale type signal detection 

experiments when compared to the traditional method that involves running an 

experiment several times and altering the response criterion of the subject each 

time by providing different instructions.

In order to perform a statistical comparison of the various experimental 

conditions, some form of index of detection performance was required in each 

case. The index used was the signal detection measure Az, which represents the 

area under an ROC curve and gives a measure of detection sensitivity. The values 

of Az were calculated separately for each of the subjects under each of the 

experimental conditions and could then be compared by t-tests to determine 

statistical significance. Ideally an ANOVA should have been used, as it is more 

powerful than the t-test and shows up interactions between the variables, but 

unfortunately the cells would have been of different sizes so an ANOVA was not 

possible.

6.3.2 Analysis of Order Effects

To check for order effects that might have influenced the results, the images in 

the first and last blocks presented to each subject were compared. Since each
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image was repeated (though reversed) in each case there was a set of images that 

appeared in both blocks and a subset of these that had no prompts associated with 

either instance. The number of images that fell into this subset varied from 2 to 

5 between subjects. A comparison of the first block images with the last block 

images in this limited group revealed no significant difference between the two 

(t0bs = 1.22). This result suggests that order effects were not a significant problem, 

though only a veiy limited amount of data was available for testing and it is not 

inconceivable that such an effect may have gone undetected.

6.3.3 Sensitivity

Values of Az were calculated separately for each subject in each experimental 

condition. These values are shown in figure 6.3. It should be noted that not all of 

the subjects completed all of the experimental conditions (this is why an ANOVA 

was not possible). On average it took 20 minutes for a subject to complete one 

block, so three blocks took around an hour. The demands on the participating 

radiologists’ time meant that an hour was all most of them could spare. In 

addition, most of the subjects were fairly bored after completing 3  blocks so the 

extra block would probably have suffered from decreased vigilance due to fatigue. 

The one subject who managed all 4 blocks completed each block in less than the 

average time and comparison of the first and last blocks completed (see section 

6.3.2) revealed no performance decrease.

Statistical analysis of these results revealed that the detection sensitivity of the 

radiologists was significantly higher in the level 1  condition (the most accurate 

prompts) than in the level 2 condition (tobs = 2.45, p < 0.025), the level 3 condition 

(fobs “  3.79, p < 0.005) or the unprompted condition (tobs = 2.28, p < 0.025). There 

was no significant difference in detection sensitivity between the level 2  and level 

3 conditions (tobs = 0.33) and neither of these two conditions showed any
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improvement in sensitivity when compared with the unprompted condition (level 

2: tobs =  0.72, level 3: t0bs= 1-12).

Subject Level 1 accuracy Level 2 accuracy Level 3 accuracy Unprompted

1 0.86 — 0.68 0.72

2 0.95 0.79 — 0.92

3 0.90 0.89 0.76 0.77

4 0.91 — 0.89 0.76

5 0.95 0.75 0.90

6 — 0.64 0.66 0.86

7 0.93 0.74 0.71 —

Figure 6.3: Summary of Az values for each subject under each experimental

condition.

Values of Az were also calculated for the prompt generation systems. For the level 

1 accuracy system this value was 0 .8 6 , which was significantly lower than the 

detection sensitivity of the radiologists in the level 1  accuracy condition 

(lobs= 2.54, p < 0.025). There was no significant difference between the sensitivity 

of the level 1  system and the sensitivity of the radiologists in the unprompted 

condition (t0bS = 1 .1 0 ).

The high false positive rates exhibited by the level 2 and level 3 systems made it 

difficult to calculate any reliable values of Az for these systems. In both cases the 

value would fall well below the radiologists’ sensitivity levels in both the prompted 

and unprompted conditions.

If the true positive detection rates are looked at in isolation, it is clear that the 

radiologists out perform the computer system. Figure 6.4 shows the average TP 

rates of the radiologists compared to the prompts.

Figure 6.5 shows the ROC curves corresponding to each of the experimental 

conditions. The curves were generated by averaging the cumulative probability
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scores of the seven subjects at each confidence level. The solid lines represent the 

3 levels of prompted accuracy and the broken line represents the unprompted 

condition. Although the graph is fairly untidy it can clearly be seen that the level 

1 accuracy condition is set apart from the other conditions which are all 

intertwined.

Level 1 accuracy Level 2 accuracy Level 3 accuracy Unprompted

Subjects (Mean) 95% 95% 90% 92%

Prompts 89% 89% 60% —

Figure 6.4: TP rates of subjects compared to prompts.
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True
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• Level 1 accuracy 
□ Level 2 accuracy 
■ Level 3 accuracy 
° Unprompted

0.4
0.0 0.8False Positive Fraction

Figure 6.5: ROC curves showing average detection 

performance in each experimental condition
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6.3.4 False Positives

One potential drawback of prompting is that prompts may lead a radiologist to 

make a false positive judgement when they would not otherwise have done so. 

This may occur when a false positive prompt directs the radiologist towards a 

region they might otherwise have disregarded. In this experiment there were 158 

false positive judgements made by the radiologists, of which 36 (23%) 

corresponded to false positive prompts, of which there were 126. Figure 6 . 6  

summarises the number of correspondences that occurred in each experimental 

condition.

Note that the subjects specialising in mammography (subjects 2, 5 and 6 ) have 

much lower levels of correspondence than the general radiologists. It was 

generally the case throughout the experiment that the mammography specialists 

demonstrated lower FP rates than the other radiologists.

Subject Level 1 accuracy Level 2 accuracy Level 3 accuracy Average

1 0 — 5 2.5

2 0 2 — 1.0

3 0 4 7 3.7

4 0 — 5 2.5

5 0 — 2 1.0

6 — 0 2 1.0

7 0 3 4 —

Figure 6 .6 : Number of radiologists’ FP judgements that corresponded to FP

prompts

6.3.5 Reading Times

In addition to the accuracy data, the time spent reading each image was also 

recorded. Figure 6.7 shows the average reading times for each radiologist in each 

experimental condition.
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Subject Level 1 accuracy Level 2 accuracy Level 3 accuracy Unprompted
1 39.0 — 48.7 21.5
2 6.9 26.6 — 14.5

3 21.0 21.5 21.6 17.6

4 29.1 — 20.2 14.4

5 9.0 - - 14.5 9.6

6 — 26.2 26.5 26.1

7 19.3 24.1 23.9 —

Figure 6.7: Average reading times per image (secs).

A statistical analysis of the reading time data revealed that none of the prompted 

conditions resulted in reading times that were significantly different to the 

unprompted condition (level 1: tobs = 0.61, level 2: t0bS= 1.84, level 3: tobs= 1.51). 

Similarly, there were no significant differences in reading time between the three 

prompted conditions (level 1-level 2: tobs = 0.37, level 1-level 3: tobs = 0.63, level 

2-level 3: tobs = 0.28).

6.3.6 Subjective Ratings of Helpfulness

Each subject was required to complete 4 item 5-AFC type questionnaire 

concerning the usefulness of the prompts in each condition. The first three items 

concerned the helpfulness of the prompts in each block and took the form;

How helpful did you find the prompts to be in block X  ?

A Very helpful

B Quite helpful

C Not helpful but not unhelpful

D Quite unhelpful

E Very unhelpful

The fourth item concerned digital mammograms in general and took the form;
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How do you feel the reading of digital mammograms compares to original 

films ?

A  Digital mammograms much easier to read

B Digital mammograms generally easier to read

C Little difference between the two

D  Original films generally easier to read

E Original films much easier to read

Figure 6.8 summarises the responses of the subjects to these questions. In general 

the perceived helpfulness of the prompts seems to vary with the accuracy of the 

prompt generation system. Rather surprisingly the opinions about digital 

mammography were fairly positive, with three of the subjects rating digital 

mammograms as easier to read than the original films.

Subject Level 1 accuracy Level 2 accuracy Level 3 accuracy Digital Mammo.

1 C — D B

2 B B — D

3 B B B B

4 B — C D

5 A — B C

6 — B D B

7 B C C C

Figure 6.8: Subjective ratings of helpfulness of prompts.

6.3.7 Active Use of Prompts

During the experiment, the prompts were presented for an initial brief display and 

then were available to be switched on and off by the subject. Thus, a distinction 

may be drawn between the initial passive display of prompts and any subsequent 

active use initiated by the subject. Figure 6.9 shows the number of times active 

use was made of the prompts in each experimental condition.
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Subject Level 1 accuracy Level 2 accuracy Level 3 accuracy Average

1 4 — 1 2.5

2 4 22 — 13.0

3 12 17 15 13.7

4 2 — 0 1.0

5 4 — 11 7.5

6 - - 1 2 1.5

7 6 11 9 8.7

Average 5.3 12.8 6.3

Figure 6.9: Number of active uses of prompts in each condition.

A statistical analysis of these data revealed that there were no significant 

differences in the number of active uses of prompts between the three conditions 

(level 1-level 2: t0bs = 1.65, level 1-level 3: t0bS = 0.31, level 2 - level 3: t0bS = 1.19).

It should be noted that there are extremely large individual differences in the 

degree to which the subjects made active use of the prompts. It is probably no 

coincidence that those subjects who made the least active use of the prompts (1, 

4 and 6) also gave slightly lower ratings for the helpfulness of the prompts than 

the other subjects. This suggests that the effectiveness (and certainly the perceived 

usefulness) of prompting may depend to some extent on the individual concerned 

and might reflect the differences in the search strategy of individual radiologists.

6.4 Discussion

6.4.1 Interpretation of Results

The results of this experiment support the conclusions of previous studies (Chan 

1990, Hutt 1992) that a radiologist working in conjunction with a computer-based 

detection system is more effective than either the radiologist or the computer 

system working alone. However, in this case that conclusion only holds true when 

the prompt generation system performs at a suitably high level of accuracy.
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It is interesting to note that the factor which seems to be most important is the 

false positive rate of the prompting system. If the detection sensitivity data in the 

level 1 and level 2 conditions are compared, it is clear that the prompts are only 

useful to the radiologist in the level 1 condition, in which case the FP rate of the 

prompts is much lower. In both conditions the TP detection rates are equal, 

suggesting that the high FP rate overrides the moderately high TP rate and 

eliminates any benefit to the radiologist.

If the benefits of prompting are lost when the prompts fall below a certain level 

of accuracy, the question is; why does this happen ? One possibility is that, as often 

happens in many cases of decision making, the radiologist is performing a form 

of cost/benefit analysis on the prompts in order to determine whether or not they 

are worth accounting for in their search strategy. In a situation such as the level

1 condition, when the prompts are predominantly true positive, the benefits of 

attending to all of the prompts outweigh the slight costs of pursuing ‘red herrings’ 

when the prompts are invalid (false positive). Consequently, the radiologist 

accepts the usefulness of the prompts, accounts for them in their search behaviour 

and there is an effect on detection performance. However, as the false positive 

rate increases, so too do the costs of attending to the prompts, in terms of the extra 

workload in checking false positives as well as the increased disruption of the 

normal search strategy. At some point the costs begin to exceed the benefits 

gained from attending to the prompts and the radiologist ceases to allow the 

prompts to affect their search patterns; in short, the prompts are ignored.

If this explanation is true then we would not expect to see the prompts in the level

2 and 3 conditions influence the detection performance of the radiologists. The 

analysis of detection sensitivity shows that in these two conditions detection 

performance is not significantly different from the unprompted condition, 

suggesting that the prompts in these conditions are having no effect. Similarly, the 

reading time data suggest that the average reading time is not affected by the
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presence of prompts in the level 2 and 3 conditions compared to the unprompted 

condition. The fact that there is a substantial amount of extra information in the 

prompted conditions, but no apparent increase in reading time, suggests that the 

extra information is not being processed by the radiologist. Of course, it might 

be the case that the time required to process and act on the extra information is 

negligible and therefore does not show up in the figures, but a previous study, 

(Hutt 1992), has shown that prompting can lead to increases in reading time, 

suggesting that this is not the case. One major problem here, is that the level 1 

condition does not show any significant differences in reading time compared to 

the unprompted and other conditions, even though there is a clear effect of the 

prompts on detection sensitivity. One possible explanation is that the effectiveness 

of the prompts in rapidly directing the attention of the radiologist towards the 

clusters, leads to a reduction in search time that counteracts the extra time 

required to process the prompt information.

The cost/benefit analysis explanation assumes that at some point the radiologist 

makes a decision that the prompts are no longer worth the increased workload 

and should be ignored. It would therefore be expected that the radiologist’s 

perception of the helpfulness of the prompts would decrease in the lower accuracy 

conditions and this is observed to be the case. Five of the seven subjects gave a 

lower rating of helpfulness to the prompts in level 2 and/or level 3 conditions than 

in the level 1 condition, while the ratings of the other two subjects remained 

constant throughout. No subjects gave a higher rating of helpfulness to any other 

condition than they did to the level 1 condition.

However, there is some evidence to suggest that the subjects were not ignoring 

the prompts in the level 2 and 3 conditions as proposed by the cost/benefit analysis 

explanation. The main problem lies in the data concerning the active use of 

prompts. An analysis of the active prompt use data shown in figure 6.9 showed 

that there was no significant difference between the three prompted conditions
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in the number of times prompts were actively used. If the prompts were being 

ignored, we would expect to see little or no active use of the prompts, and certainly 

we would expect significantly less active use than in the level 1 condition in which 

prompting clearly has an effect on detection sensitivity. While it seems as though 

the prompts were used to the same degree in all the conditions, it should be noted 

that the data in figure 6.9 refer to the number of times the prompts were actively 

used, which does not account for the number of prompts that were available in 

each condition. A previous study, (Hutt 1992), has suggested that prompts are 

actively displayed more often when there are multiple prompts associated with an 

image, while in this experiment the level of active prompt use seems to remain 

constant regardless of the fact that the number of images with multiple associated 

prompts varied greatly. In the level 1 condition only 37.5% (6 out of 16) of the 

prompted images had more than one prompt, while in both of the level 2 and level 

3 conditions the proportion of images with multiple prompts was 87.5% (21 out 

of 24). In addition, none of the images in the level 1 condition had more than 2 

associated prompts while 14 of the prompted images in the level 2 condition and 

13 of the prompted images in the level 3 condition had 3 or more prompts 

associated with them. As a consequence of all this we might expect to see 

substantially more active use of prompts in the level 2 and 3 conditions if the 

degree of prompt use across all three prompted conditions was equivalent. 

Therefore, although the number of times that prompts were used may be 

effectively equivalent across the three prompted conditions, it may be the case 

that relative to the number of images with multiple prompts in each condition, 

the level of active prompt use in the level 2 and 3 conditions is actually less than 

in the level 1 condition.

Of course, this analysis still does not explain the observation that there is a‘ 

significant level of active prompt use in level 2 and 3 conditions when it has been 

suggested that the subjects are ignoring the prompts. One possible explanation 

of this inconsistency concerns the way in which the prompts are being used. So
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far we have only considered the prompts as attention cues -  influencing the search 

pattern of the subject. However, prompts may have a secondary function as 

reinforcers or ‘second opinions’. It is possible that the subjects are ignoring the 

prompts when it comes to altering their search strategy, but having located a 

potential cluster that they are not sure about, the subjects actively display the 

prompts to see if the computer agrees with them. This would explain why the level 

of active prompt use does not seem to be affected by the number of multiple 

prompts; the subjects are not recalling the prompts to check each prompted 

location, but only to see if one of the prompts corresponds to the location they 

have identified as suspicious. If this is the case, the active use does not depend on 

the number of multiple prompts, but rather on the number of occasions that the 

subject requires a second opinion.

Further evidence against the cost/benefit analysis explanation comes from the 

data concerning the correspondence between false positive prompts and false 

positive judgements made by the radiologist. These data show that there were no 

cases of correspondence in the level 1 condition, but a fair number in each of the 

other two prompted conditions, especially the level 3 condition. This seems to 

suggest that the large numbers of false positive prompts in the level 2 and 3 

conditions are leading the radiologist to make false positive judgements when 

they might not otherwise do so. It should be noted that images containing several 

prompts, as are common in the level 2 and 3 conditions, have a substantial 

proportion of their area associated with prompted regions, so the possibility of 

a radiologist’s false positive judgement and an invalid prompt coinciding purely 

by chance are increased. Nevertheless, pure coincidence is not enough to fully 

account for all of the correspondence observed -  it seems as though the relatively 

high levels of false positive prompts do increase the false positive rates of the 

radiologists.
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The above observation does rather contradict the idea that the prompts are being 

ignored when the false positive rates are high, since if that were the case it does 

not seem possible that the invalid prompts could be leading the radiologists to 

make false positive judgements. However, the correspondence of false positives 

could fit the idea of prompts being used only second opinions, since the false 

positive prompts may then act to reinforce the radiologists opinion that an 

abnormality is present when it is not the case.

The correspondence between false-positive prompts and false-positive 

judgements raises another question; If the false positive prompts in the level 2 and 

3 conditions are leading to increases in the radiologists’ false positive rates, why 

are the observed detection sensitivities in these conditions no worse than that in 

the unprompted condition ? One possible answer is that prompting does actually 

lead to some improvement in the detection rate of the radiologists even in the low 

accuracy conditions, possibly by acting as a second opinion. However, this 

improvement may be offset by the increase in the radiologists’ false positive rates 

brought about by the high numbers of invalid prompts, so that the two factors 

cancel out -  leading to no effective improvement in the overall detection 

sensitivity.

6.4.2 Limitations of the Experiment

An important feature of any experiment is the extent to which the results may be 

generalised to other situations and though this experiment has generated some 

interesting data concerning the ways in which errors in the prompt generation 

system affect the performance of radiologists, there are a number of factors that 

bring into question the extent to which the results may be generalised.

Firstly, the low number of subjects, coupled with the limited size of the data set, 

makes it veiy difficult to be sure of the reliability of the results. An additional 

problem occurs because of the need to use radiologists who are not particularly
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experienced in mammography to make up the numbers. Eliminating these 

subjects from the study leaves such a small subject group that no worthwhile data 

could be generated.

The experiment also suffers from the highly artificial nature of the task. This is 

perhaps the most significant problem that prevents the generalisation of the 

results to any form of non-experimental setting. Only partial views of a single 

mammogram were used in the study, which is far removed from the normal film 

reading situation when films from both the left and right breasts are viewed 

simultaneously. In addition, the presentation of the image on a computer screen 

is veiy different from the usual display format of film and light box.

Additional problems occur in the area of the constraints on the subject’s 

responses. The confidence rating scale is a useful technique that allows a number 

of points on an ROC curve to be generated in one study, but it is very difficult to 

be sure that each subject’s precise interpretation of the scale points has remained 

constant throughout, and even more difficult to be sure that all of the subjects 

have used the same interpretation. Furthermore, the subjects were generally used 

to being much freer in the range of possible diagnoses that are available to them. 

Some of the subjects seemed to lose sight of the fact that clusters of 

m/crocalcifications were the only abnormalities they were supposed to be 

marking.

6.5 Conclusions

The experiment has served to further confirm the results of earlier studies that a 

radiologist working in conjunction with a prompting system is more effective than 

either the radiologist or the system working alone. It has also demonstrated that 

the beneficial effects of prompting are lost if the accuracy of the prompts falls too 

low, particularly when the rate of false positive prompts increases.
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The lack of improvement in the radiologists' detection sensitivity that occurs with 

a high false positive rate may be a consequence of the large amount of invalid 

information leading the radiologist to disregard the prompts when searching the 

image. Alternatively, there may be some improvement in the true positive 

detection rate of the radiologists even when the numbers of invalid prompts are 

relatively high, but this improvement may be counteracted by an increase in the 

radiologists’ false positive rate caused by the invalid prompts, so that there is no 

apparent overall improvement in sensitivity.

Although the data generated by the experiment are quite interesting, it would be 

very difficult to relate the results to anything approaching a clinical environment 

due to the highly artificial nature of the task and the limited numbers of expert 

subjects who took part. Consequently, in order to establish some more 

meaningful results, an experiment would need to simulate the task of 

mammographic film reading much more closely.
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Chapter 7

Prompting in a Realistic Environment

7.1 Objectives

The results of the study described in chapter 6  are encouraging in that they show 

that under certain circumstances, prompting can be a useful aid to the detection 

of Breast Cancer. However, it is difficult to generalise the results of this study to 

a clinical setting due to the artificial nature of the experiment. The main aim of 

this second study is to examine the effects of prompting in as realistic an 

environment as possible, while retaining sufficient experimental control to ensure 

that meaningful results are obtained.

The underlying philosophy in the design of this second experimental study was to 

mimic, as closely as possible, the film reading task as it would be undertaken in 

a typical screening environment. To this end, the experiments took place in actual 

screening centres using the film viewing equipment employed by radiologists 

during a routine screening session.

Apart from investigating prompting in a realistic setting, there are three main aims 

to this study. Firstly, the experiment will examine whether prompting is an 

effective aid to the detection of well-defined lesions. At present all of the studies
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that support prompting as a CAD technique have relied on studies of prompted 

microcalcifications. In this experiment, computer-based systems will be used to 

generate prompts both for microcalcifications and for well-defined lesions, 

making it possible to compare the effectiveness of prompting these two classes 

of abnormality.

A second aim of this experiment is to examine the effects of prompting when 

multiple abnormalities are present in the image. In the past, prompting studies 

have concentrated on images containing only a single abnormality, but it may be 

the case that more than one abnormality is present in a mammographic study such 

as in the case of bilateral breast cancer, for example.

The third aim is to investigate the effects of prompting on untargeted 

abnormalities. In this experiment prompt generation systems will be used to target 

clustered microcalcifications and well-defined lesions, but images in the 

experiment will also include examples of other abnormalities that are not targeted 

by the prompting systems, such as spiculated lesions and architectural distortion. 

The inclusion of images with a wide variety of mammographic abnormalities, 

rather than presenting only a single type, also serves to bring the study closer to 

the normal screening task.

7.2 Experimental Method

7.2.1 Images

In total, 100 pairs of mammographic films were used in the study. Each pair 

consisted of the mediolateral views of the left and right breasts of a single patient. 

All of the films were produced from routine screening. Each mammogram pair 

belonged to one of six experimental groups as follows:

• Group 0: Normals; no abnormality of any type present in 

either mammogram of the pair (50 pairs).
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• Group 1: Clusters; a single cluster of microcalcifications 

present in one of the mammograms in the pair (10 pairs).

• Group 2: Lesions; a single well-defined lesion present in 

one of the mammograms in the pair (10pairs).

• Group 3: Untargeted; a single untargeted abnormality in 

one of the mammograms in the pair. In six cases this was 

a spiculated lesion and in four cases this is an architectural 

distortion (10 pairs).

• Group 4: Multiple targeted; two or more abnormalities that 

may be clustered microcalcifications or well-defined 

lesions or a combination of the two. Multiple abnormalities 

may appear in a single mammogram or in both (10 pairs).

• Group 5: Multiple untargeted; one or more abnormalities 

that may be clustered microcalcifications or well-defined 

lesions or a combination of the two plus one or more 

untargeted abnormalities. Multiple abnormalities may 

appear in a single mammogram or in both (10 pairs).

Within groups 1-5 above, half of the films contained malignancies and half 

contained only benign abnormalities. In groups 4 and 5, when multiple 

abnormalities were present, some of the cases containing malignancies also 

contained benign abnormalities.

In this data set there was a normal to abnormal image ratio of 1:1, though in 

clinical practice only around 1 0 % of screening films will show any signs of 

abnormality. In keeping with the concept of maintaining realism throughout the 

experiment, it might be appropriate to have the normal to abnormal ratio similar 

to that found in practice. However, in order to maintain this ratio, 500 normal 

pairs would also be required, each of which would be need to be presented both
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with and without prompts for a total of 1100 presentations. This is rather more 

than the participating radiologists could be expected to read for an experiment.

Each of the films was digitised with a sampling rate of 100 pm per pixel and each 

digital image was then divided into five slightly overlapping 1024x1024 image 

patches in order to be processed by the prompt generation algorithms. Each patch 

was processed by the fuzzy pyramid algorithm, as described in section 5 .2 , both 

for the purposes of locating microcalcifications and for the detection of 

well-defined lesions. For the detection of microcalcifications an upper link 

strength threshold of 0.90 was used, while for detecting lesions a lower link 

strength threshold of 0.55 was used.

It was observed that, after processing with the prompt generation algorithm for 

the detection of microcalcifications, approximately one false-positive prompt per 

image patch was generated. This false-positive rate compares favourably with 

many of the systems that have been described for detecting microcalcifications 

(see section 4.2). However, since there are five such patches in one full image and 

two films to the pair, this generated an average of around 1 0  false-positives per 

image pair -  a clearly unacceptable number of false-positives -  making it 

necessary to remove some of the invalid prompts (effectively simulating a prompt 

generation system of much greater accuracy). This was achieved by performing 

the analysis again with a much lower threshold; 0.30, which generated very few 

false-positives or true-positives. the false-positive prompts from this procedure 

were then combined with true-positive prompts from the original processing in 

order to produce the final result. A similar procedure was used for the lesion 

detection system with a second threshold of 0.85.

Of all the microcalcification clusters used in the experiment, 8 6 % were prompted, 

while of all well-defined lesions, 65% were prompted. Although the prompt 

generation algorithm was not designed to detect the untargeted abnormalities, 

some of the untargeted abnormalities were actually found by the prompting
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system and as a consequence 35% of the untargeted abnormalities were also 

prompted. The false-positive rate across all of the image pairs in the experiment 

was 1.1 false-positives per pair. Figure 7.1 shows the prompt accuracy data broken 

down by image group.

Image Group True-positive rate False-positive rate

Group 0: Normals — 1.0 pair-1

Group 1: Clusters 90% 1.2 pair-1

Group 2: Lesions 70% 1.1 pair-1

Group 3: Untargeted 40% 1.2 pair-1

Group 4: Multiple targeted 64% 0.9 pair-1

Group 5; Multiple untargeted 57% 1.0 pair-1

Figure 7.1: Prompt accuracy according to image group

Each of the image pairs was printed out on a laser printer to produce two low 

resolution hard copies, each of which showed a pair of mammograms laid out as 

they might be presented to the radiologist on a film viewer. Each hard copy also 

contained the film number and rating scale for the radiologist’s response.

Of the two hard copies of each film, one showed the film pair in its unprocessed 

form with no prompts, while the other showed the processed version with the 

prompts presented as open white circles superimposed on the digital 

mammograms.

Appendix la  shows both hard copies for one film pair containing a single 

microcalcification cluster. The prompted version contains one true-positive and 

two false-positive prompts.

The low resolution hard copies all contained sufficient detail to be recognised as 

the corresponding original films but only in very few cases is enough detail present 

for the abnormalities to be visible.
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7.2.2 Subjects

Eight practising mammographic radiologists participated in the study. All of the 

participants were either consultant radiologists or senior registrars and all were 

involved in regular mammographic screening at various sites in the UK.

7.2.3 Procedure

Each radiologist was presented with each image in the experiment in both the 

processed (prompted) and unprocessed (control) conditions. Since there were 100 

film pairs, this entailed 2 0 0  presentations which were given in two sessions of 1 0 0  

presentations each. Gale (1989) has demonstrated that radiologists are able to 

read 1 0 0  film pairs in an hour of continuous reporting with no reduction in 

performance due to lack of vigilance. In addition, consultation with radiologists 

has revealed that a typical screening session might include 1 0 0  or more film pairs 

and would be expected to last approximately an hour. It would seem, therefore, 

that 1 0 0  films in a session is a realistic number to expect the subject radiologists 

to read and a vigilance decrement is not expected to affect the results.

Since each subject was reading each film twice, once with and once without 

prompts, the sessions were separated by a number of days and no two 

presentations of the same film occurred in the same session. This should have 

helped to prevent learning from affecting the results by reducing the chances that 

the radiologists will remember the films. Gale (1979) has suggested that it is not 

uncommon for radiologists to give different diagnoses from the same film on 

different occasions, so if a film is remembered from the previous session, it is quite 

possible that the response will not be. Even if the response and film were 

remembered, the radiologist had received no feedback concerning the 

correctness of their previous response, so remembering the film should not have 

been any help to them in making a judgement. In addition, each of the radiologists 

was involved in regular mammographic screening and all of them would have been 

presented with a large number of mammograms between the two sessions.
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In each case the radiologist was presented with the original pair of mammograms 

on a film viewer in their screening centre. In addition to the original films, one 

of the hardcopies was also presented; either the processed or unprocessed version 

depending on the experimental condition. The films were loaded on to the viewer 

in the same way they would have been during normal film reading with all of the 

films for that session loaded on to the viewer in two blocks -  fifty of one 

experimental condition (either prompted or control) followed by fifty of the other 

condition. The hard copies were presented in a similar way to that used for the 

patients’ medical records in a normal screening session; they were stacked to one 

side in the same order as the films appear on the viewer.

The hardcopies served as media for the prompt information when such 

information was available, but also acted as response forms. Each hardcopy 

displayed a film number for reference, the copy mammograms (with or without 

prompts superimposed) and a six point rating scale of the following form;

0: Normal 

1: Benign

2: Probably Benign 

3: Uncertain 

4: Probably Malignant 

5: Malignant

The points for the rating scale correspond to those generally used to rate films 

in screening centres with the exception of the ‘0: Normal’ point. Common practice 

in screening is not to give any rating for definite normals since these films are 

simply archived and no further action is taken.

Each radiologist was asked to study the original pair of mammograms on the 

viewer and provide a rating for it by ringing the corresponding point of the rating 

scale on the hard copy associated with that film pair. In every case where the
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radiologist gave a rating above zero, they were requested to mark the locations 

of any and all abnormalities on the hard copy of the image pair before moving 

on to the next pair.

When prompts were presented they should have been used in conjunction with 

the original films to locate potentially suspicious regions. Prior to the experiment, 

the radiologists were told the approximate accuracy levels of the prompting 

system and the fact that it was only targeting microcalcifications and well defined 

lesions, so that they knew what to expect rather than alter their strategy after a 

few films because they have made their own decisions about accuracy levels. They 

were also informed of the ratio of normal to abnormal films for similar reasons.

The radiologists were not given any practice runs before the main session as the 

task should have been familiar enough to make it unnecessary. However, in order 

to explain what was expected of them, they were shown a few examples of hard 

copies both with and without prompts when the experimental task was explained 

to them. None of the examples included films that appeared in the experiment.

For each film in the study a transparent overlay was produced with the edges of 

the hard copy images and the locations of any abnormalities marked on it. These 

known locations were provided by a consultant radiologist who had viewed all of 

the original films in conjunction with the patients’ medical records. The overlays 

were used to check the responses of each subject after the experiment and 

calculate the numbers of true- and false-positives at each point on the rating 

scale. This provided data suitable for ROC analysis and subsequent statistical 

comparison of the experimental conditions.

7.3 Results and Discussion

The detection performance of each radiologist under both the prompted and 

control conditions was determined by means of ROC analysis. This involved
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calculating the number of true-positive and false-positive responses at each point 

of the rating scale, since these points represent different levels of response bias. 

These values were then plotted to yield a free response operating characteristic 

(FROC) curve for each of the subjects. The individual FROC curves were then 

pooled to yield the curves shown in figure 7.2 by averaging the numbers of 

true-positives and false-positives at each criterion level.
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Figure 7.2: Pooled FROC curves showing detection performance of 
radiologists in each experimental condition

In order to perform conventional ROC analysis, the fractions of true-positives 

and false-positives at each level of response bias were required. These were 

obtained by collapsing the ‘normal’ and ‘benign’ scale points into a single category 

and taking the highest rating for each film as the criterion level! Once again, an
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ROC curve was prepared for each participating radiologist and the results were 

pooled by averaging at each level of response bias. The pooled ROC curves for 

each experimental condition are shown as dotted lines in figure 7 .3 , with the solid 

lines representing the best-fit ROC curve determined by maximum likelihood 

estimation (Metz, 1989).
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Figure 7.3: Pooled ROC curves showing detection performance of 
radiologists in each experimental condition

In order to test for statistical significance, values for the signal detection measure 

da were calculated for each radiologist in each of the two conditions. These values 

are summarised in figure 7.4. An analysis of these values showed that the detection 

performance of the radiologists in the prompted condition was significantly better 

than their performance in the control condition (tobs = 4.13, p<  0.005). It is
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interesting to note that the general case is also true for each individual radiologist 

with all of the participants demonstrating an improved level of performance in the 

prompted condition.

Subject Prompted Control
1 2.85 2.32
2 2.53 1.98
3 2.66 2.31
4 1.89 1.77
5 2.76 2.62
6 3.06 2.33
7 2.91 2.61
8 2.63 1.97

Figure 7.4: Values of da for each subject

The detection performance of all the participating radiologists was substantially 

higher than that of the prompt generation algorithm, which had an average 

true-positive detection rate of 51 out of 75 (6 8 %) at a false-positive rate of about

1.1 invalid prompts per image. These results confirm Chan’s suggestion that a 

radiologist working in conjunction with a computer-aided diagnostic system is 

more accurate than either the radiologist or the system working alone.

The results of the previous experiment suggested that false-positive prompts 

might reduce the effectiveness of a prompting system by leading radiologists to 

make false-positive judgements that they might not otherwise have made. Figure 

7.5 shows the total number of false-positive judgements made by each subject in 

each of the two experimental conditions in the second set of experiments. There 

is a tendency for there to be more false-positives in the prompted condition than 

in the control, though this difference is not statistically significant (tobs=1.36).
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However, in this case there were relatively few invalid prompts in the images. It 

may be that the detrimental effect of invalid prompts on the detection 

performance of radiologists is relatively small and requires a large number of 

invalid prompts before it becomes significant.

Subject Prompted Control
1 56 47
2 13 17
3 6 8 39
4 27 28
5 34 29
6 19 18
7 31 27
8 2 2 14

Figure 7.5: Number of false-positive responses in each condition

It is clear that the reason for the increased detection performance in the prompted 

condition is that the radiologists correctly detected prompted abnormalities that 

were missed in the control condition. A total of 600 abnormalities were presented 

in the experiment (75 to each of 8  radiologists) and 37 of these were only identified 

in the prompted condition. However, there were 4 abnormalities that were missed 

in the prompted condition but correctly located in the control condition. These 

3 abnormalities all had one things in common; they were all missed by the prompt 

generation system. In addition, in three of these four cases there was at least one 

invalid prompt present in the image. It is possible that this combination of a 

false-negative and false-positive error on the same film could result in the prompt 

having the opposite effect to that intended, directing attention away from an 

abnormality towards a region of normal tissue and thus causing the radiologist to 

miss the abnormality. This could be a serious problem for a prompting system.
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However, there were 16 cases of this type of combination error among the 100 

film pairs used in the study, giving a total of 128 instances across the eight subjects. 

In only four of these instances was a problem observed. The problem seems to 

be fairly minor in comparison to the advantages of prompting, though it should 

not be ruled out completely. A double-reading system where one radiologist used 

prompted films and one did not should eliminate any potential missed 

abnormalities caused by combination errors,

In addition to examining the radiologists’ performance as a whole, the results 

were broken down among the various types of image in the study. Thble 7.6 shows 

the pooled values of da for each of the types of image under each experimental 

condition.

Type Prompted Control
Single Cluster 2.81 2.29

Single Tumour 2 .6 8 1.98
Single Other 2.27 2.31

Multiple targeted 2.61 2.18
Multiple untargeted 2.41 2.35

Figure 7.6: Values of da for each type of image

An analysis of the da values for the various types of image revealed that the 

detection of clustered microcalcifications was improved in the prompted 

condition (tObs = 3.03, p<  0.025) as was the detection of tumour masses 

(fobs = 3.85, p < 0.01) and the detection of lesions in film pairs containing multiple 

examples of clusters and tumours (t0bs = 2.66, p < 0.025). There was no significant 

difference between the two conditions for the single untargeted abnormalities 

group (t0bs = 0.73), but since few of the abnormalities in this group were actually 

prompted, the prompted versions of the films in this group were similar to the
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control versions. There was no statistically significant improvement in 

performance with prompting for films containing multiple abnormalities with at 

least one untargeted lesion, though there was a slight, non-significant increase. 

Although a number of target abnormalities in this group were prompted, the 

majority of the untargeted abnormalities were not, reducing the effect of 

prompting for the images in this group.

7.4 Summary & Conclusions

Although the number of radiologists participating in this study was fairly low, the 

experiment was designed to capture some of the important aspects of screening 

in a realistic environment and consequently the results can be much more reliably 

generalised to the way in which prompting might work in clinical practice.

This is particularly encouraging, as once again the benefit of prompting to the 

radiologist has been demonstrated, certainly in the case of single clusters and 

lesions, and even with multiple targeted lesions on the the same film pair. It is also 

encouraging that the prompts did not seem to act as distractors in the case of the 

untargeted abnormalities -  as detection rates for these was no lower than in the 

unprompted condition.

One slight concern is the issue of combination errors and whether these might 

serve to reduce detection performance in certain cases by directing attention away 

from the locations of potential abnormalities. Once again, the role of 

false-positive prompts seems to be important. False-positives provide no 

valuable information and in certain cases may act as distractors -  to the detriment 

of film reading performance.

The next study (chapter 8 ) will examine the effects of false-positive prompts in 

more detail and will suggest a possible model to explain why these invalid cues 

may act as distractors in certain cases but not in others.
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Chapter 8

The Relationship between True-positive 
and False-positive prompts

8.1 Introduction

8.1.1 A Possible Relationship

Previous experiments on the effectiveness of prompting have suggested that an 

excessive level of invalid (false-positive) prompts can reduce or even eliminate 

the benefits of a prompting system (see chapter 6 ). This suggests that in order to 

develop an effective prompting system it is important to establish what constitutes 

an acceptable level of error in prompt generation.

There appear to be two main reasons why high levels of false-positives may reduce 

the effectiveness of prompting. Firstly, a false-positive prompt may lead a 

radiologist to make a false-positive judgement that would not otherwise have 

been made -  counteracting any increase in true-positive detections due to 

prompting. This is an unfortunate side-effect of an automatic prompt generation 

system that operates by searching for structures with characteristics typical of 

mammographic abnormalities. Any structures flagged by such a system may well
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have an appearance similar to malignancies. If the radiologist considers the 

detection system to be effective in detecting abnormalities, the invalid prompt 

may act to reinforce the opinion that a normal structure is actually abnormal. This 

effect would be more likely to occur with less experienced radiologists.

In cases such as these it is very difficult to set a general value for an acceptable 

false-positive rate. Any such value could be expected to depend heavily on the 

algorithms used by a particular prompt generation system. If the algorithms rely 

heavily on search strategies similar to those employed by human observers, 

false-positive errors may often lead to the prompting of structures that have an 

appearance similar to abnormalities. The problem is likely to be less severe when 

the detection system uses different techniques to those employed by radiologists 

-  as it is then possible that any resulting false-positives will look less like genuine 

abnormalities.

This problem could be circumvented by the use of double-reading. If only one 

reader were to be provided with prompts, consultation between readers should 

serve to weed out any false-positive judgements produced solely as the result of 

prompting.

The second reason why high levels of invalid prompts may reduce the effectiveness 

of the system is simply that the radiologist is wasting time checking a large number 

of obviously benign structures. If many such structures have been prompted then 

the system may be perceived as being too inaccurate and the prompts may be 

ignored. In this case a lot of time and effort has been expended developing a 

prompting system that is not being used.

In the study described in chapter 6  the prompts were only of benefit to the user 

in one experimental condition. In this condition, the true-positive rate was high 

(approx 90%) and since half of the 96 images contained abnormalities, there were 

43 true-positive prompts in the data set. The false-positive rate in this condition 

was relatively low (approx 0.5 image-1) so there were 47 invalid prompts in the
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data set. In other words the numbers of true- and false-positive prompts in this 

condition were roughly equal, so that any given prompt had an almost equal 

probability of being valid or invalid. In the other experimental conditions, the 

numbers of invalid prompts greatly exceeded the numbers of true-positives, so 

any given prompt was far more likely to be invalid than valid. In these conditions 

there was no benefit from prompting.

This result may suggest a method of setting an acceptable false-positive rate so 

that a system is perceived as being sufficiently accurate to be of use. It is possible 

that as long as any given prompt is at least as likely to be valid as invalid then the 

false-positive prompts may not lead to a reduction in the effectiveness of the 

prompting system.

8.1.2 Objectives

The results from the experiment cited above, although suggestive, are far from 

being conclusive. An experimental investigation is required to test whether these 

ideas have any merit.

The aim of this study is to test the hypothesis that prompting is effective only if 

the number of false-positive prompts does not greatly exceed the number of true 

positives. If this is the case then it may be useful in the development of prompting 

systems, as it indicates a way in which an acceptable false-positive rate may be 

set.

8.2 Experimental method

The ideal way to test this hypothesis would be to present a large quantity of 

mammograms to a number of radiologists. Each mammogram would be 

presented with prompts that are generated with one of several different
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combinations of true- and false-positive rates. In order to prevent learning from 

affecting the result, any given radiologist should see only one combination of 

true-positive and false-positive rates. This would require an impracticably large 

number of radiologists to participate in the study.

In order to conduct a large-scale realistic study, it is necessary to identify a critical 

range of true-positive/false-positive rates, so that the number of conditions 

required in the full-scale study could be kept to a minimum. To this end, a smaller 

scale preliminary study was carried out with a wide range of prompting accuracy 

rates.

For the purposes of this preliminary study a simulated mammogram reading task 

was used. This task was designed to encompass as many elements of the true 

film-reading task as possible but did not employ mammograms and did not 

therefore require radiologists to read them. This allowed a large number of 

non-radiologist subjects to participate in the experiment so that a wider range of 

true-positive/false-positive rate combinations could be studied.

8.2.1 Elements of the Mammogram Reading Task

Mammographic film reading can be considered as a signal detection task in which 

the observer must locate one of several target types that may vary in appearance 

and may or may not be present within a background of structured noise. In order 

for the results of the experiment to be of any value, the simulated task should 

reflect as many of the important elements of genuine mammogram reading as 

possible without actually employing mammograms. It is therefore necessary to 

identify the important aspects of the film-reading task that should be simulated:

• Target appearance. There are many classes of 

mammographic abnormality with a high degree of inter- 

and intra-class variability. Abnormalities may also vary in 

size, contrast, definition and orientation.
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• Target familiarity. Although there is a certain amount of 

target variation, radiologists are familiar with the typical 

characteristics of abnormalities.

• Background. Normal breast tissue can also vaiy greatly in 

appearance depending on the level of fatty/glandular tissue 

present. A number of normal structures (ducts, vessels etc.) 

may also be present.

• Anatomy. A radiologist is able to ignore certain structures 

in the mammogram, since they have a level of expertise in 

the anatomy of the breast that is used to guide their search 

strategy. This would be extremely difficult to simulate.

• Quantity/Time. A typical screening session may involve 

around 100 patients (200 films). In some cases a film may 

only be scanned for a few seconds. This scanning time is not 

fixed and the radiologist is free to examine any film further.

8.2.2 Stimulus Images

Each subject participating in the experiment was presented with a series of images. 

These images represented the simulated mammograms, though no attempt was 

made to mimic the appearance of a mammogram, just to retain the important 

elements of the task. A total of 100 images were used, 50% of the which contained 

some form of target. The targets present in the images varied in appearance and 

were selected to reflect the appearance of mammographic abnormalities, as 

illustrated in figure 8 .1 .
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Clustered microcalcifications:

Spiculated lesions: or

Well-defined lesions: O or Q
Figure 8.1: Examples of typical appearance of targets.

Thrgets were presented with various orientations and sizes. No two targets in the 

data set were identical. Other forms of variation specific to individual target type 

were also used, ie. the number of <microcalcifications, in a cluster, the number of 

‘spicules’ associated with a lesion and the shape of well-defined lesions. The 

participating subjects were familiarised with the general appearance of the targets 

during a brief instruction and training period before the main experiment.

Each target was presented within a field of structured noise. In order to prevent 

any ceiling or floor effects in the results, the task was designed to be difficult 

enough to prevent any subject from scoring 1 0 0 % but simple enough to prevent 

subjects from scoring zero. Treisman’s work on pre-attentive processing suggests 

that targets will be more difficult to detect if they are embedded within a field of 

distractors that have features in common with the targets. These distractors 

included; straight and curved lines, individual ‘microcalcifications’, geometric 

objects and regions of varying colour.

Figure 8.2 shows an example of one of the images used in the experiment. In this 

example the density of distractors is moderately high and since the precise form

141



of the target is unknown, detection is fairly difficult. The task can be made either 

easier or harder by altering the density of distractors. The experiment used images 

with various distractor densities. The target in figure 8.2 is a simulated spiculated 

lesion in the upper-left region of the image.

-

Figure 8.2: Example of Image used in Study

The image backgrounds were generated randomly. The backgrounds consisted of 

patches of varying intensity with a number of distractors superimposed. These 

distractors varied in size and shape and generally had characteristics in common 

with the targets. Half of the randomly generated backgrounds were randomly 

selected and targets were added to these. The targets also varied in appearance 

-  the aim being to produce a range of images -  some of which contain relatively
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easy to detect targets and some in which targets are very difficult to detect. The 

lack of an exact specification for the appearance of a target should have served 

to make the task more difficult.

8.2.3 Procedure

A total of 90 subjects took part in the experiment, each of whom was assigned to 

one of 9 experimental conditions. These conditions represented different 

combinations of true-positive and false-positive error rates.

The 9 experimental conditions were derived by combining three different 

true-positive rates (100%, 75% and 50%) with three different false-positive rates 

(0.17 in r 1, 0.33 im- 1  and 0.5 im_1). Figure 8.3 shows the 9 conditions and the ratio 

of the number of true-positives to the number of false-positives in each condition.

Number of False-positive Prompts

Number of 
True-positive

Prompts

8 16 24
16 0.5 1 .0 1.5

12 0 .6 6 1.33 2 .0

8 1 .0 2 .0 3.0

Figure 8.3: Ratio of true-positive to false-positive prompts in 
each experimental condition

Each of the 90 subjects was presented with 96 images, 48 prompted and 48 

unprompted -  reflecting the number of presentations that might typically take 

place in a screening session. Each image was presented for 6  seconds in order to
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introduce time pressure and increase the difficulty level of the task, thus 

preventing ceiling effects. The images were presented on A4 sheets bound 

together in a booklet.

After each presentation, the subject was required to make a simple Yes/No 

judgement on whether a target had been present. These responses were recorded 

on a separate score sheet.

One in three of the images contained targets in both the prompted and 

unprompted conditions. In no case did more than one target appear in a given 

image. The three types of target illustrated in figure 8.1 were presented in equal 

numbers.

Prior to the main experiment, the subjects received a training session in which the 

task was explained by means of both written and verbal instructions. Examples 

of typical targets and images were also shown at this point. This was followed by 

a practice run comprising 1 0  prompted and 1 0  unprompted images -  50% of which 

contained targets. The subjects were then given feedback on their performance 

in the practice run. This should have ensured full familiarisation with the task 

before the main experiment began.

As part of this training session, the subjects were given an indication of the 

accuracy level associated with the condition that they were participating in. Rather 

than a precise summary of the true-positive and false-positive rates, the 

participants were told whether the number of true-positive prompts was higher, 

lower or approximately equal to the number of false-positive prompts. The 

prompting rates associated with the practice run reflected the prompting rates 

associated with the main study for each condition.

When present, prompts took the form of open circles presented in a blank image 

to the side of the main stimulus image, as illustrated in figure 8.4. This method 

of presentation reflected the typical scenario for paper prompting in
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mammography, ie: with the prompts presented separate from the original 

mammograms.

True
Positive

False
Positive

Figure 8.4: Layout of page in prompted cases.

Each of the 9 conditions comprised the same 96 images, and in each condition 

the same 48 images were assigned to the prompted group. However, the order 

of presentation of these images was randomised for each subject. Half of the 

subjects in each condition received the prompted images first and half received 

the unprompted images first.

8.3 Results and Analysis

Since the experiment took the form of a classic forced-choice signal-detection 

study, values of d’ could be easily calculated for each subject. These values were 

calculated separately for the prompted and unprompted images. The prompted 

and unprompted d’ scores were then compared for all of the subjects in each
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condition. Figure 8.5 shows the overall significance levels (where prompting led 

to an improvement in detection performance) for each of the experimental 

conditions.

The first point to note is that prompting was only effective when the number of 

true-positives was at a certain minimum level (75% true-positive rate in this 

case). Above this minimum level there appears to be little difference between the 

higher true-positive rates in terms of the benefits associated with prompting.

Number of False-positive Prompts

Number of 
TVue-positive 

Prompts

8 16 24
16 (100%) p < 0 .0 1 p < 0 .0 1 NS

12 (75%) p < 0.05 p < 0 .0 1 p<0.1

8 (50%) NS p<0.05* NS

NS = No significant difference 
* = Prompting led to reduction in performance

Figure 8.5: Significance levels showing benefits of prompting 
in each experimental condition

In general it appears that prompting ceases to have a useful effect when the 

number of invalid prompts is more than 50% higher than the number of valid 

prompts, though there was a slight improvement when the number of 

true-positives was 12 and the number of false-positives was 24 (a ratio of 2.0). 

This improvement, though measurable, was not large enough to be considered 

significant and is included for the sake of completeness.

One veiy interesting result is the case where prompting led to a reduction in 

performance. This condition had a very low (50%) true-positive rate with twice

146



as many invalid as valid prompts -  circumstances that led to a lot of the type of 

combination errors discussed in chapter 7. It is not really surprising that the 

prompts reduced performance under these conditions. The time-pressure would 

have enhanced the role of the invalid prompts as distractors, so that the subject 

spends much of the limited presentation time checking locations that contain no 

target, possibly missing the true target in the process, especially if the target is 

missed by the prompts as it was in 50% of these images.

If this is the case, we might also expect to see the same effect in the next condition 

where there are three times as many invalid as valid prompts. However, in this 

case there is no significant difference between the prompted and unprompted 

images.

One possible explanation for this effect is that the prompts in this case were just 

too inaccurate and consequently not perceived as being of any benefit to the 

subject. The subjects may simply have ignored any prompt information so it would 

not have affected their performance.

This implies that when the prompts are inaccurate, but not hopelessly so, they are 

still perceived as being useful, even though detection performance is adversely 

affected. However, when the inaccuracy of the prompts is excessive the perception 

of benefit is lost and the prompts are ignored.

8.4 Conclusions

This results of this study suggest several interesting points. Firstly, that a minimum 

level of true-positive accuracy is required in order for prompting to be effective. 

Secondly, that the number of false-positive prompts should not greatly exceed the 

number of true-positive prompts or the benefits of prompting will be lost.

Also, it appears that there is a minimum level of prompt accuracy that must not 

be exceeded in order for prompts to be perceived as useful by the observer. This

147



suggests that the dangers associated with phenomenon such as combination errors 

may only occur when the prompting system is accurate enough to be perceived 

as useful but inaccurate enough to reduce detection performance.

This study has also served to identify the critical range of true-positive 

/false-positive ratios that should include the point at which prompting 

effectiveness is lost. This range appears to be between the point at which numbers 

of true- and false-positives are equal and the point where the number of invalid 

prompts is double the number of valid prompts. The next experiment, described 

in chapter 9, will look more closely at this result and determine whether these 

levels of prompt accuracy are appropriate for a clinical setting.
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Chapter 9

Prompting in a Realistic Environment

9.1 Introduction

In order to develop an effective prompting system it is important to understand 

the ways in which errors in prompt generation may affect the search behaviour 

of radiologists using the system. The studies described in the last three chapters 

have shown that excessive numbers of false-positive prompts reduce the 

effectiveness of prompting. It is therefore important to establish what constitutes 

an acceptable level of false-positive prompting error so that algorithm developers 

have a minimum standard of acceptable accuracy for their systems.

The experiment discussed in the previous chapter (chapter 8 ) described a potential 

model for the way in which the true-positive and false-positive rates may relate 

to each other in terms of the information content of the prompts, i.e. the 

probability that any given prompt was more likely to be valid than invalid. That 

experiment then went on to identify a critical range in which the effectiveness of 

a prompting system may break down due to an excessive proportion of invalid 

prompts.

This previous study, employing a simulated mammography task and 

non-radiologists, suggested that there is a relationship between the acceptable
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false-positive rate and the true-positive rate in an effective prompting system. 

The number of false-positives should not greatly exceed the number of 

true-positives, so that any given prompt is as likely to be valid as invalid. Under 

these conditions the prompts are both perceived as useful and demonstrate an 

improvement in detection performance.

The highly artificial nature of this task does limit its applicability to prompting in 

a clinical screening environment. However, the results do make it possible to 

focus the range of a larger scale study to a size where it may be performed using 

real mammograms and radiologists.

9.1.1 Objectives

The aim of this final study was to investigate whether the effects of the relationship 

between true-positive and false-positive rates investigated in the previous 

artificial study still apply in a realistic environment.

To this end the experiment was carried out in various screening centres within the 

UK, involving experienced mammographic radiologists viewing films on 

equipment that would typically be used for mammographic screening.

Three different levels of false-positive prompting rate were used at a fixed 

true-positive rate. These accuracy levels were chosen to reflect the critical range 

identified by the simulated mammography experiment described in chapter 7.

The results of this investigation should identify the level of accuracy that is 

required for a prompting system to be effective in a clinical environment.



9.2 Experimental Method

9.2.1 Images

The data set for the study comprised 100 pairs of mammograms taken from 

routine screening. Of these, 20 contained subtle malignancies of various types -  

microcalcifications, spiculated lesions, distortion etc. These malignancies were 

deliberately selected to be veiy subtle and difficult to detect. The remaining 

images consisted of normals and benign structures. The abnormality rate of 20% 

is somewhat higher than would normally be expected during a screening session, 

which might contain around 5-10% abnormalities. However, a rate of 20% does 

allow for a reasonably high number of abnormalities that can be investigated, 

while still simulating the typical screening situation in which the great majority of 

cases are normal.

The true-positive prompting rate was fixed at around 90%, since this is a 

reasonable goal to expect from a prompting system. There were 3 false-positive 

rates, each of which corresponded to a different experimental condition. These 

rates were determined by the ratio of the number of false-positive prompts (nFP) 

to the number of true-positive prompts (nTP). The three experimental conditions 

were selected to have nFP/nTP = 1,0, 1.5 and 2.0. Based on the results of the 

‘simulated mammogram’ study (chapter 8 ), it was expected that the first condition 

should lead to effective prompting and the third condition should not. Whether 

the second condition (nFP/nTP = 1.5) would lead to improved performance was 

not clear.

The data for the experiment included abnormalities for which no effective 

computer-based detection system has yet been developed. There were also highly 

specific requirements for the sensitivity and specificity of the prompts. For these 

reasons, the prompts used in the experiment were simulated and randomly 

assigned to the appropriate images.
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9.2.2 Subjects

In total, 30 experienced radiologists from 11 screening centres in the UK took part 

in the study. All of these participants were either consultants or senior registrars 

and all were involved in mammographic screening on a regular basis. Each subject 

was assigned to one of 3 experimental conditions. This assignment was random, 

but for practical reasons all participants in a given centre were assigned to the 

same condition.

9.2.3 Procedure

The procedure for this study was very similar to that described in chapter 7. Each 

radiologist was presented with the original film pairs presented on standard 

viewing equipment in their screening centre. Each film pair was accompanied by 

a hardcopy of the digital mammograms. This hardcopy contained prompt 

information when it was available and also served as a response form on which 

the radiologists were able to record their judgements. Appendix 1 contains 

examples of both prompted and unprompted hardcopies.

Each radiologist was presented with 100 film pairs, 50 of which were prompted 

and 50 unprompted. The malignancies were equally distributed between the 

prompted and unprompted images. Half of the subjects in each condition saw the 

prompted films first and half saw the unprompted first. Film pairs were randomly 

assigned to either the prompted or unprompted groups and for each screening 

centre this assignment was different.

Apart from the copy mammograms, each hardcopy contained a six-point rating 

scale ranging from ‘0: Normal’ to ‘5: Malignant’ as described in section 7,2.3. Also 

present was a list of recommended further actions chosen to reflect the typical 

courses of action that a radiologist would recommend in practice. It should be 

noted that due to differences in working practices at different screening centres
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it is not practical to develop a definitive list of possible recommendations, though 

the options listed here are among the more common alternatives:

Craniocaudal view 

Compression 

Magnification 

Ultrasound 

Surgical Opinion 

No Further Action

Each participating radiologist was asked to locate any abnormalities in the 

original mammograms, mark the locations on the hardcopy and provide a rating 

of the severity of case using the rating scale on the hardcopy. They were also asked 

to mark which course(s) of action on the list provided they would recommend in 

each case.

When prompts were presented they should have been used in conjunction with 

the original films to locate potentially suspicious regions. Prior to the experiment, 

the radiologists were told the approximate accuracy levels of the prompting 

system, so that they knew what to expect rather than alter their strategy after a 

few films because they have made their own decisions about accuracy levels. They 

were also informed of the ratio of normal to abnormal films.

The radiologists were not given any practice runs before the main session as the 

task should have been familiar enough to make it unnecessary. However, in order 

to explain what was expected of them, they were shown a few examples of hard 

copies both with and without prompts when the experimental task was explained 

to them. None of the examples included films that appeared in the experiment.
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9.3 Results and analysis

Truth data was obtained from an experienced consultant with access to patient 

records and pathology data in addition to the original films. All of the cases 

marked as malignancies had pathological confirmation of the diagnosis. Normal 

and benign cases were taken from screening sessions conducted some years prior 

to this experiment to ensure that no interval cancers had arisen in the interim.

Each of the three conditions was analysed separately. The detection performance 

of each radiologist under both the prompted and control conditions was 

determined by means of ROC analysis. This involved calculating the number of 

true-positive and false-positive responses at each point of the rating scale, since 

these points represent different levels of response bias. These values were then 

plotted to yield an ROC curve for each of the subjects. The individual ROC curves 

were then pooled to yield the overall curves by averaging the numbers of 

true-positives and false-positives at each criterion level.

9.3.1 Condition 1

In this condition the numbers of true-positive and false-positive prompts were 

equal. Figure 9.1 shows the pooled ROC curves for the 10 subjects assigned to 

this condition, while figure 9.2 lists the values of Az for each of the radiologists 

under each of the prompted and unprompted conditions (see chapter 3 for 

discussion of Az and related measures.)

In figure 9.1 the broken line represents the raw experimental data, while the solid 

line represents the theoretical ROC curve derived by the software package 

ROCFIT.
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Figure 9.1: ROC curves showing prompted and unprompted 
performance for prompt level 1 .

Subject Unprompted Prompted
1 0.8527 0.9067
2 0.8890 0,9357
3 0.7633 0.9197
4 0.8319 0.8794
5 0.8125 0.9163
6 0.8727 0.9326
7 0.9042 0.9064
8 0.9030 0.9541
9 0.7848 0.9503

1 0 0.7992 0.9215

Figure 9.2: Az scores of each subject for prompting condition 1.
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A related t-test applied to the Az scores showed in figure 9.2 revealed that 

prompting led to a significant improvement in performance (tobs = 4 .7 9 , 

p < 0.005). This suggests that prompting was beneficial to the radiologists at this 

level of accuracy, as would be predicted by the results of the experiment discussed 

in chapter 8 .

9.3.2 Condition 2.

In this second experimental condition the number of false-positive prompts was 

50% greater than the number of true-positive prompts, so that nFP/nTP was 3:2.

Once again the results for the 10 subjects were pooled to generate the pooled 

ROC curve shown in figure 9.3.
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0.2 0.4

False-positive fraction
0.6 1.0

Figure 9.3: Pooled ROC curves for prompted and 
unprompted cases in prompt condition 2
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Az scores for the individual subjects are shown in figure 9,4. A related t-test 

applied to these scores showed that prompting led to a significant improvement 

in performance (t0bs = 2.39, p < 0.025). While the improvement in this case is not 

as marked as that observed in the level 1  condition, the results suggest that 

prompting was still beneficial to the radiologists at this level of accuracy.

Subject Unprompted Prompted
1 0.8446 0,8963
2 0.7854 0.8546
3 0,8570 0.9012
4 0.8088 0.8833
5 0.7900 0.8841
6 0.7717 0.8551
7 0.8619 0.8225
8 0.8604 0.8303
9 0.8390 0.8448
1 0 0.8217 0.8472

Ihble 9.4: Az scores of each subject for prompting level 2.

9.3.3 Condition 3

In this condition the number of false-positive prompts was double the number 

of true-positive prompts. Figure 9.5 shows the pooled ROC curves for the 10 

subjects assigned to this condition, while figure 9.6 lists the values of Az for each 

of the radiologists under each of the prompted and unprompted conditions.
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Figure 9.5: Pooled ROC curves for prompted and 
unprompted cases in prompt level 3

Subject Unprompted Prompted
1 0.8024 0.7818
2 0.7296 0.8816
3 0.9350 0.7722
4 0.9418 0.9214
5 0.8567 0.8940
6 0.8203 0.7989
7 0.8776 0.8608
8 0.8796 0.8373
9 0.8546 0.8740

1 0 0.8116 0.9050

Tkble 9.6: Az scores of each subject for prompting level 3.
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An analysis of the Az scores for this final condition shows that there is no 

significant difference between the prompted and unprompted cases in prompt 

condition 3 (t0bs = 0.07). This suggests that prompting ceases to be beneficial to 

the radiologist at this level of accuracy.

9.3.4 Comparison of difficulty levels.

Each clinic in the study was presented with a different randomised order of films. 

This meant that a film that was prompted for one radiologist might be unprompted 

for another. In order to establish whether different film presentation orders had 

increased or decreased the difficulty of the task, the unprompted performance for 

the 3 conditions was compared.

There were found to be no significant differences in performance between the 

unprompted cases in level 1 and level 3 (tobs = 0.54), level 2 and level 3 (t0bs = 0.68) 

or level 1 and level 2 (tobs= 1.02). This supports the suggestion that the observed 

performance improvement in the level 1 and level 2  conditions was due to 

prompting and not due to differences in the degree of difficulty between the 

prompted and unprompted cases.

9.3.5 Analysis of ‘further action7 results

The radiologists’ responses to the ‘recommended further action’ task were also 

analysed separately for each experimental condition. The number of each type of 

response was counted for each radiologist in each of the prompted and 

unprompted conditions. The results were further subdivided into normal and 

abnormal cases -  the latter being those cases known to contain a malignancy.
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Figure 9.7 shows the numbers of each type of response given by the radiologists 

in experimental condition 1 .
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Figure 9.7: Recommendations for further action in condition 1.

In the prompted condition significantly fewer normal cases were recommended 

for further action (tobS = 3.40, p < 0.005). There was no significant difference in the
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number of abnormal cases recommended for no further action (tobS= 1.64). This 

suggests that prompting has reduced the number of false recalls without 

significantly affecting the number of genuine recalls.

Figure 9.8 shows the further action responses given by all of the radiologists in 

condition 2 .
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Figure 9.8: Recommendations for further action in condition 2.
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As with prompt level 1, in the prompted condition significantly fewer normal cases 

were recommended for further action (t0bS = 3.38, p < 0.005). Again there was no 

significant difference in the number of abnormal cases recommended for no 

further action (tobs = 2.00). As with prompt level 1, prompting has reduced the 

number of false recalls without significantly affecting the number of genuine 

recalls.

Figure 9.9 shows the responses for recommended further action in the final 

condition, where the number of false-positives was double the number of 

true-positives.

For this level of accuracy prompting does not lead to any significant change in the 

number of cases recommended for no further action, either for normal 

(fobs = 0.99) or for abnormal ( t0bS = 0.69) cases. This suggests that prompting had 

no effect on the decision to recall at this level of accuracy.

It should be noted that any analysis of the different types of further action 

recommended beyond the figures for ‘no further action’ will be unreliable, as the 

different clinics involved in the study all have different working practices. Many 

participating radiologists commented that the options in the study did not reflect 

the range of options they would normally have available.
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Figure 9.9: Recommendations for further action in condition 3.
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9.4 Summary and Conclusions

The experiment described in the preceding sections is the largest scale study of 

prompting effectiveness in a realistic environment to date.

Once again, prompting has been demonstrated to be an effective aid to the 

radiologist providing that the accuracy level of the prompts is sufficient.

In this experiment, both condition 1 and condition 2 showed an improvement in 

the detection performance of the radiologists. The improvement was much 

greater in the first condition, where the numbers of true-positive and 

false-positive prompts were equal, than in the second condition where there were 

50% more invalid than valid prompts. In the third condition, where the number 

of false-positive prompts was double the number of true-positive prompts, there 

appeared to be no benefit from prompting.

It is interesting to note that in the two conditions in which prompting was effective, 

there was also a significant reduction in the number of normal cases 

recommended for further action (cases that would be recalled in practice) in the 

prompted condition. However, there was no significant change in the number of 

abnormal cases recommended for further action. This suggests that prompting is 

improving performance by reducing the number of invalid judgements made by 

the radiologist.

The results of this study suggest that prompting is still effective as long as the 

numbers of false-positive prompts do not exceed the numbers of true-positive 

prompts by more than 50%. However, it should be noted that the proportion of 

abnormalities in the data-set was higher than would normally be seen during 

screening. Given the lower proportion of abnormalities that would be present in 

a clinical environment and the greater number of images that would be studied 

over time, it is possible that the acceptable false-positive rate might need to be 

lower than this. For this reason a more acceptable limit on prompting accuracy

164



might be that the number of false-positive prompts does not exceed the number 

of true-positive prompts generated by the detection system.
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Chapter 10

Summary and Conclusions

This thesis began with a discussion of the problem of breast cancer and the notion 

of early detection as one of the most effective means available for its control. This 

early detection and treatment requires an imaging technique that can detect the 

subtle signs of early breast cancer and consequently mammography has been 

adopted as the standard technique for screening. The effectiveness of 

mammography critically depends on the ability of radiologists to detect these 

subtle abnormalities embedded in the complex background associated with 

mammograms.

One possible application of computer-based imaging techniques to 

mammography is the development of a prompting system that automatically 

detects abnormalities in digital mammograms and points out their locations to the 

radiologist, thus aiding the detection of these abnormalities. A number of 

approaches to the automatic detection of common mammographic abnormalities 

have been discussed. Two such techniques have been described in detail.

The remainder of this thesis described several psychophysical studies designed to 

investigate the effectiveness of prompting and to study the effects of errors in
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prompt generation on the detection performance of radiologists working with a 

prompting system.

The experiments described in this thesis have demonstrated that under the right 

conditions, prompting can be a useful aid to the radiologist in the detection of 

subtle mammographic abnormalities. In a large scale realistic study (chapter 9) 

employing 30 experienced radiologists and 1 0 0  film pairs containing a variety of 

abnormalities, prompting led to an increase in detection performance, provided 

the accuracy of prompt generation was high enough.

An important observation from the experiments in this study is that false-positive 

prompts play a critical role in the effectiveness of a prompting system. The 

investigations described in chapters 6  and 9 both showed that prompting ceases 

to be a useful aid to the radiologist once the false-positive rate becomes too high. 

Chapters 8  and 9 have also suggested that an acceptable level of false-positive 

prompt generation can be set by not allowing the number of false-positive 

prompts to greatly exceed the number of true-positive prompts.

Taken individually, the results of the studies described in chapters 8  and 9 both 

support the notion of an important relationship between the acceptable numbers 

of true-positive and false-positive prompts. The fact that these two studies were 

very different in nature and were carried out independently of one another lends 

even greater support to this conclusion.

It is not a trivial matter to ensure that a prompting system generates less 

false-positives than true-positives. Typically, about 5% of screening 

mammograms contain some form of abnormality, and perhaps 90% of these are 

detected by a prompt generation system. This means that the system should 

generate a false-positive prompt no more often than once in every twenty cases. 

At present no reported algorithm comes close to this level of accuracy for the
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detection of a single class of abnormality. Certainly nothing is available that can 

attain these accuracy levels on a range of abnormalities.

It appears that although prompting may be an effective technique in theory, its 

utility as a practical aid to radiologists is restricted by the performance of the 

prompt generation algorithms. Unfortunately these algorithms have not yet 

reached a stage where they are accurate or fast enough for real-time prompting 

of screening mammograms to be a realistic proposition.

The technology for capturing primary digital mammograms, with no need for the 

use of conventional film, is becoming more and more common. As such 

equipment increasingly becomes the standard for screening mammography, the 

feasibility of prompting and other computer-based analysis techniques becomes 

more apparent. The process of digitising mammograms so that they are accessible 

to computer vision techniques is costly and fraught with problems (see section 

4.1.1). Removal of this step should make the application of computer vision 

techniques to mammography much more realistic.
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